12.07.2015 Views

Vascular plant species inventory of a Philippine lowland rain forest ...

Vascular plant species inventory of a Philippine lowland rain forest ...

Vascular plant species inventory of a Philippine lowland rain forest ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Biodiversity and Conservation (2006) 15:1271–1301 Ó Springer 2006DOI 10.1007/s10531-005-2576-4-1<strong>Vascular</strong> <strong>plant</strong> <strong>species</strong> <strong>inventory</strong> <strong>of</strong> a <strong>Philippine</strong><strong>lowland</strong> <strong>rain</strong> <strong>forest</strong> and its conservation valueGERHARD LANGENBERGER, KONRAD MARTIN * andJOACHIM SAUERBORNInstitute <strong>of</strong> Plant Production and Agroecology in the Tropics and Subtropics (380), AgroecologySection, University <strong>of</strong> Hohenheim, 70593 Stuttgart, Germany; *Author for correspondence (e-mail:martin-k@uni-hohenheim.de; phone: +49-711-459-3605; fax: +49-711-459-3843)Received 22 June 2004; accepted in revised form 8 February 2005Key words: Conservation value, Dipterocarp <strong>forest</strong>s, Gene bank, Molave <strong>forest</strong>, Native <strong>species</strong>,Species richness, Tropical <strong>rain</strong> <strong>forest</strong>, <strong>Vascular</strong> <strong>plant</strong> <strong>species</strong>Abstract. The <strong>Philippine</strong>s are one <strong>of</strong> the most important biodiveristy hotspots on earth. Due to theextraordinary rate <strong>of</strong> environmental destruction, leaving only 3% <strong>of</strong> the land with primary <strong>forest</strong>,this biodiversity is at high risk. Despite that situation information on <strong>Philippine</strong> <strong>forest</strong> vegetation isfragmentary and focused on trees. This study aimed at analysing <strong>forest</strong> remnants in the LeyteCordillera on the Island <strong>of</strong> Leyte, and at evaluating their role as refuge to the largely destroyed<strong>lowland</strong> <strong>forest</strong> vegetation. A total <strong>of</strong> 49 plots (100 m 2 each) between 55 and 520 m a.s.l. werestudied. All vascular <strong>plant</strong> <strong>species</strong> except epiphytes were included. Records include 685 taxa from289 genera and 111 families, representing nearly 8% <strong>of</strong> the known <strong>Philippine</strong> vascular <strong>plant</strong> <strong>species</strong>.More than half (52%) <strong>of</strong> the <strong>species</strong> are <strong>Philippine</strong> endemics. A number <strong>of</strong> 41 tree <strong>species</strong>, or 6% <strong>of</strong>all taxa recorded, are included in the IUCN red list, either as vulnerable, endangered, or criticallyendangered. Life form composition was dominated by phanerophytes (65.3%), followed by lianasand chamaephytes (17.1 and 16.9%, respectively). The most common families were the Rubiaceaewith 35 and the Euphorbiaceae with 32 <strong>species</strong>. All five <strong>Philippine</strong> dipterocarp <strong>forest</strong> types as wellas the molave <strong>forest</strong> type were represented by typical tree <strong>species</strong>. The area provides an importantgene bank <strong>of</strong> the highly threatened <strong>Philippine</strong> <strong>lowland</strong> <strong>forest</strong> vegetation and is <strong>of</strong> high value forbiodiversity conservation. Additionally, it can play an important role as seed source <strong>of</strong> valuable tree<strong>species</strong> for the increasing initiatives to rehabilitate and re<strong>forest</strong> degraded land with native <strong>species</strong>.IntroductionThe destruction <strong>of</strong> tropical <strong>rain</strong> <strong>forest</strong>s is still continuing at high rates (FAO2003). This process, especially threatens the earth’s biodiversity hotspots such asthe <strong>Philippine</strong>s (Myers et al. 2000; Brooks et al. 2002). Despite this, there are onlyvery few studies worldwide which aimed at the documentation <strong>of</strong> the total <strong>plant</strong><strong>species</strong> richness <strong>of</strong> such sites. Most inventories were restriced to selected life formssuch as ground herbs (e.g. Kiew 1987; Poulsen and Balslev 1991; Poulsen 1996) ortrees <strong>of</strong> a defined minimum diameter (e.g. Valencia et al. 1994; Lieberman et al.1996; Newbery et al. 1996; Rennolls and Laumonier 2000; Slik et al. 2003).<strong>Vascular</strong> <strong>plant</strong> <strong>species</strong> composition <strong>of</strong> tropical <strong>lowland</strong> <strong>forest</strong>s was studied inGhana on 0.5- and 1-ha plots by Hall and Swaine (1981), in Amazonia on 0.02-ha plotsby Takeuchi (1960) and on 10 non-contiguous plots <strong>of</strong> 0.1 ha by Duivenvoorden


1272(1994), in Ecuador on 0.1-ha plots <strong>of</strong> three <strong>lowland</strong> <strong>forest</strong> types by Gentry andDodson (1987), and in stratified plots with a total area <strong>of</strong> about 2 ha in PuertoRico by Smith (1970). In Southeast Asia, Kochummen et al. (1992) studied thetrees and shrubs (>1 cm diameter at breast height (dbh)) in a 50-ha plot in thePasoh Forest Reserve in Malaysia. The most comprehensive study including allvascular <strong>plant</strong>s as well as mosses was conducted by Whitmore et al. (1985) on asingle 100-m 2 plot in the <strong>lowland</strong> <strong>rain</strong> <strong>forest</strong> <strong>of</strong> Costa Rica. However, no studyrepresenting a complete <strong>inventory</strong> <strong>of</strong> vascular <strong>plant</strong> <strong>species</strong> richness <strong>of</strong> any site <strong>of</strong><strong>lowland</strong> <strong>rain</strong> <strong>forest</strong> in Southeast Asia was found.The <strong>Philippine</strong>s are among the most seriously depleted tropical countrieswith only 3% <strong>of</strong> the land area still covered by primary <strong>forest</strong> (Myers et al.2000). From 1990 to 2000, the <strong>Philippine</strong>s lost 1.4%, or 89,000 ha, <strong>of</strong> the <strong>forest</strong>area annually (FAO 2003). At the same time, the <strong>Philippine</strong> archipelago is one<strong>of</strong> the most important biodiversity hotspots on earth (Myers et al. 2000) withhigh proportions <strong>of</strong> endemic <strong>plant</strong> and animal <strong>species</strong> (Heaney and Regalado1998). The endemism rate <strong>of</strong> <strong>plant</strong>s was estimated to be 39% (Davis et al.1995), but for certain taxa, it can be much higher. For example, 11 <strong>of</strong> 12 <strong>species</strong><strong>of</strong> pitcher <strong>plant</strong>s (Nepenthes spp.) known from the <strong>Philippine</strong>s are endemic(Cheek and Jebb 2001). Similarly, there are high rates <strong>of</strong> endemism among thefauna. Referring to terrestrial vertebrates, 64% <strong>of</strong> the archipelago’s landmammals are endemic, as well as 44% <strong>of</strong> the breeding land birds, 68% <strong>of</strong> thereptiles, and ca. 78% <strong>of</strong> the amphibians (Heaney and Regalado 1998). Most <strong>of</strong>them depend on <strong>forest</strong> ecosystems.Despite the ecological uniqueness on the one hand and the extensivedestruction on the other, the study <strong>of</strong> <strong>Philippine</strong> <strong>forest</strong> vegetation has beenneglected (Tan and Rojo 1989; Kartawinata 1990; Soerianegara and Lemmens1994). Much <strong>of</strong> the current knowledge is still based on studies conducted in theearly 20th century (Whitford 1906; Whitford 1911; Brown and Mathews 1914;Brown 1919), which were mainly dealing with timber trees under economicalaspects. Recent studies focused on the vegetation <strong>of</strong> montane and submontane<strong>forest</strong> types on different islands. However, in most cases (Aragones 1991;Pipoly and Madulid 1998; Proctor et al. 1998; Hamann et al. 1999) these werelargely restricted to trees <strong>of</strong> a defined size, which usually is ‡10 cm dbh. Buotand Okitsu (1997) only considered woody <strong>plant</strong>s higher than 1.3 m, and Ingle(2003) those <strong>of</strong> at least 5 cm dbh. The only data without size limitations areprovided by Gonzales-Salcedo (2001) from Mt. Amuyao, Luzon, at elevations<strong>of</strong> 1600–1800 a.s.l. and by Gruezo (1998) from the highly degraded vegetation<strong>of</strong> Pagbilao Grande Island. No study dealing with <strong>lowland</strong> <strong>forest</strong> vegetationwas found in the literature.In order to provide more substantial information on <strong>species</strong> richness andcomposition <strong>of</strong> <strong>Philippine</strong> <strong>lowland</strong> <strong>forest</strong>s, we analysed <strong>forest</strong> remnants in therugged foothills <strong>of</strong> the Leyte Cordillera. The island <strong>of</strong> Leyte is located in thecentral part <strong>of</strong> the <strong>Philippine</strong> archipelago and represents a typical example <strong>of</strong>the environmental situation in the <strong>Philippine</strong>s. In 1987, the remaining <strong>forest</strong>cover <strong>of</strong> Leyte was 12%, and in 1994 only 2% <strong>of</strong> the island’s area have been


estimated to be primary <strong>forest</strong> (Dargantes and Koch 1994). More recent data(DENR 1998) show that about 40% <strong>of</strong> the land area <strong>of</strong> Leyte is covered bygrassland and barren land, resulting from abandoned cultivation and grazingland that marginalised in productivity through erosion and leaching. Another40% <strong>of</strong> the island’s area is under coconut <strong>plant</strong>ations. The remaining area iscomposed <strong>of</strong> settlements, agricultural land and <strong>forest</strong>. In the view <strong>of</strong> this situation,the objectives <strong>of</strong> this study were (a) to analyse the vascular <strong>plant</strong> <strong>species</strong>composition and diversity <strong>of</strong> selected plots <strong>of</strong> mature primary <strong>forest</strong> and (b) toevaluate the role <strong>of</strong> the study area as refuge to <strong>lowland</strong> <strong>forest</strong> vegetation and itssignificance for conservation and as a gene bank.Material and methodsStudy area1273The Island <strong>of</strong> Leyte (Figure 1) belongs to the biogeographic region <strong>of</strong> theEastern Visayas (DENR and UNEP 1997). It is located between 9°55¢ N–11°48¢ N and 124°17¢ E–125°18¢ E, with an extension <strong>of</strong> 214 km from north tosouth. Located <strong>of</strong>fshore the northeastern part <strong>of</strong> Leyte is the island <strong>of</strong> Samar.The southern part <strong>of</strong> Leyte is exposed to the Pacific Ocean (Leyte Gulf).Leyte is characterised by the north–south running Leyte Cordillera which ispart <strong>of</strong> the <strong>Philippine</strong> Fault Line. The Cordillera reaches a maximum elevation <strong>of</strong>ca. 1350 m (Mt. Lobi) in the northern part <strong>of</strong> the island. As geologically youngvolcanic mountain range, it shows a typical rugged topography <strong>of</strong> narrow ridgesand steep slopes, where landslides are common (Bremer 1995, 1999; Walsh 1996).In its foothills, patches <strong>of</strong> primary <strong>forest</strong> without discernible human interferencecan still be found although the island is densely populated (ca. 262 inhabitants/km 2 as calculated after: NSCB RU-8 2001). The coastal plains have already beende<strong>forest</strong>ed in the first half <strong>of</strong> the last century (Barrera et al. 1954).The study area is located in the western part <strong>of</strong> the Leyte Cordillera,ca. 8 km north <strong>of</strong> the provincial capital <strong>of</strong> Baybay, in the foothills <strong>of</strong> Mt.Pangasugan (1150 m, 10°46¢ N, 124°50¢ E). In this part <strong>of</strong> the island, theCordillera reaches close to the coast. Large parts <strong>of</strong> the mountain’s westernrange are extremely steep and are free from trees <strong>of</strong> this reason. In the easternpart <strong>of</strong> the Cordillera, the slope has a lower gradient.Primary <strong>forest</strong> can be found from about 250 m a.s.l. up to the mountain’ssummit at 1150 m a.s.l. In hillsides below this elevation, the <strong>forest</strong>s has largelybeen replaced by coconut <strong>plant</strong>ations and slash and burn agriculture. Onlyalong the small creeks, near natural vegetation can still be found at these lowerelevations. Above ca. 600 m a.s.l., the <strong>lowland</strong> <strong>forest</strong> formation changes intomossy <strong>forest</strong>, with its stunted trees and a rich epiphyte community.Within the study area, no recent logging was observed, although <strong>forest</strong>clearing continues at other localities <strong>of</strong> the mountain. This can be explained bythe area’s status as Forest Reserve <strong>of</strong> the Leyte State University. Despite this,rattan collection and hunting was observed within the Forest Reserve.


1274Figure 1.The <strong>Philippine</strong> archipelago, the Island <strong>of</strong> Leyte, and the location <strong>of</strong> the study area.Geology and soilsThe soil type in the primary <strong>forest</strong> between 370 and 520 m a.s.l. is a haplicAndosol with rudic phase (FAO/UNESCO 1988) overlying basaltic andandesitic breccia (Zikeli 1998). The soil at lower elevations (100 m a.s.l.) hasbeen classified as haplic Alisol (FAO/UNESCO 1988) over basalt (Asio 1996).ClimateAccording to the climatic classification <strong>of</strong> the ‘Modified Corona’s System’,Leyte is climatically divided (Kintanar 1984). Southern Leyte belongs to theclimatic type II (i.e. no pronounced dry season), but exhibits a distinct <strong>rain</strong>fallpeak in December and January as a result <strong>of</strong> the northeast monsoon. Thenorthern part <strong>of</strong> Leyte which includes the study area has been assigned toclimatic type IV, showing a more or less even <strong>rain</strong>fall distribution throughout


1275the year. The standardization <strong>of</strong> the <strong>rain</strong>fall pattern in northern Leyte comparedto that <strong>of</strong> southern Leyte might be explained by the protective effect <strong>of</strong>the Island <strong>of</strong> Samar <strong>of</strong>f the northeast-coast <strong>of</strong> Leyte, although Samar’smountains are lower than those <strong>of</strong> Leyte (ca. 850 m a.s.l.).Local climatic conditions have been analysed from a 23-years period (1976–1998) <strong>of</strong> record by using data from the PAGASA (<strong>Philippine</strong> Atmospheric,Geophysical and Astronomical Services Administration) weather station onthe campus <strong>of</strong> the Leyte State University (7 m a.s.l.), ca. 1–3 km west <strong>of</strong> thestudy plots. The annual average temperature is 27.4 °C and the average annualprecipitation is 2586 mm. Highest precipitation occurs during November toJanuary. Lowest <strong>rain</strong>fall is observed between March and May. On average, allmonths receive at least 100 mm precipitation, i.e. there is no dry monthaccording to the definition <strong>of</strong> Walsh (1996). However, drought periods (i.e. lessthan 50 mm <strong>of</strong> monthly precipitation according to Walsh 1996) <strong>of</strong> up to4 months have been recorded during El Nin˜ o Southern Oscillation events. Thegeneral <strong>rain</strong>fall patterns and the climatic conditions measured at the PAGASAstation are more similar to climatic type II with its clear impact <strong>of</strong> the northeastmonsoon than to climatic type IV, implying that neither the mountains<strong>of</strong> Samar nor the Leyte Cordillera itself causes a distinct <strong>rain</strong> shadow west<strong>of</strong> Mt. Pangasugan.Orographic <strong>rain</strong>falls are an important factor in the Leyte Cordillera, especiallyin the vicinity <strong>of</strong> the mountain summits. The summit <strong>of</strong> Mt. Pangasuganis <strong>of</strong>ten observed being cloud covered, and during field work heavy <strong>rain</strong>fallshave been experienced, while the coastal plain did not receive any precipitation.An important climatic feature <strong>of</strong> the area are typhoons. Leyte lies at thesouthern margin <strong>of</strong> the typhoon tracks entering the <strong>Philippine</strong>s, and is hit at arate <strong>of</strong> five typhoons in three years, mainly during the summer months (Parong1984; cited in Kintanar 1984).Vegetation analysisField studies were conducted in 1997 and 1998. The attempt to identify aminimum area in mature primary <strong>forest</strong> failed due to the heterogeneity <strong>of</strong> thevegetation. A plot size allowing a reasonable number <strong>of</strong> replications proved tobe 100 m 2 . Where relief conditions and homogeneity <strong>of</strong> the vegetation allowed,plots were arranged along a catena from ridge to river bank. The 100-m 2 plotswere generally designed as quadrats, but on narrow ridges and river banks,other rectangular design was used due to relief const<strong>rain</strong>ts. A total <strong>of</strong> 49 plotswas established, with 15 on the ridge, 21 on slopes, and 11 on riverbanks. Twoplots were established in ca. 6-year-old land slide successions, with one <strong>of</strong> themlocated ca. 2 km south <strong>of</strong> the main study area.The vegetation analysis procedure was based on a ‘nested quadratdesign’ (Kent and Coker 1992). All <strong>plant</strong>s >2.5 m were identified fromthe total plots (100 m 2 ). On central subplots <strong>of</strong> 25 m 2 , all <strong>plant</strong>s £ 2.5 m


1276as well as the lianas were considered. Records included epiphytic and climbing<strong>plant</strong>s on the stem bases <strong>of</strong> trees up to a height <strong>of</strong> 2.5 m. Crown epiphytes werenot included in the analysis, but epiphytes found on the ground were identifiedand added to the <strong>species</strong> lists. From <strong>species</strong> which could not be identified in thefield, voucher specimens were collected. Tall trees were sampled with the help<strong>of</strong> a tree climber. However, no samples were taken from erect and climbingpalms (rattans), because this would have been destructive and the chance <strong>of</strong>identification was very low due to the lack <strong>of</strong> fertile specimens. Therefore, mostpalms had to be distinguished as morpho<strong>species</strong>.Taxa were assigned to life forms on the base <strong>of</strong> field observations, or with thehelp <strong>of</strong> literature information in the case <strong>of</strong> juveniles. Life form classificationfollowed Ellenberg and Mueller-Dombois (1967). Plant samples collected inthis study were deposited at the Department <strong>of</strong> Plant Breeding, Herbarium,Leyte State University, ViSCA, Baybay, Leyte, 6521A, <strong>Philippine</strong>s.Species identification and nomenclatureIdentification <strong>of</strong> specimens was conducted with the help <strong>of</strong> literature andspecialists. Publications referring to the <strong>Philippine</strong> flora included de Guzmanet al. (1986), Merrill (1912), Pancho (1983), Santos et al. (1986), van Steenis(1950-ongoing), and Zamora and Co 1986). Sources referring to neighbouringcountries, which also include many <strong>Philippine</strong> taxa, were used in addition(Henderson 1974a, b; Ng 1978, 1989; Keng 1983, 1990; Whitmore 1983a, b;Corner 1988; Anonymous 1993, 1994, 1996; Soepadmo and Wong 1995;Soepadmo et al. 1996). Identification <strong>of</strong> seedlings, infertile and juvenile <strong>plant</strong>swas not possible in all cases. For pre-identification <strong>of</strong> taxa and delimitation <strong>of</strong>morpho<strong>species</strong>, field characters were very important. Besides the description <strong>of</strong>such characters in the above mentioned literature, the specific publications byvan Balgooy (1997a, b) and Keller (1996) were used. Tree seedlings wereidentified with help <strong>of</strong> Ng (1991) and Burger (1972).In addition, <strong>plant</strong>s were identified by taxonomists from the <strong>Philippine</strong>National Herbarium, Manila, the National Herbarium <strong>of</strong> the Netherlands,Leiden Branch, and collaboratively during meetings <strong>of</strong> the <strong>Philippine</strong> NativePlant Group. Nomenclature followed various sources as cited above. However,priority was given to the Flora Malesiana (van Steenis 1950-ongoing), wheneverpossible. The legumes were assigned to the traditional family <strong>of</strong>Leguminosae. Scientific names were not derived from the translation <strong>of</strong> localnames in any case.Data analysisSpecies richness, diversity and evenness were determined for each <strong>of</strong> the 49plots. Only those <strong>plant</strong>s rooting within the plots were considered in the


1277analysis. The Shannon-Index (H¢) was used as a robust and simple diversitymeasure (Magurran 1988). For the analysis <strong>of</strong> <strong>species</strong> dominance patterns,Evenness (E) based on the Shannon-Index was calculated for each <strong>of</strong> the plots.To assess the area’s value as a refuge to <strong>Philippine</strong> tree <strong>species</strong>, the characterization<strong>of</strong> <strong>forest</strong> types by Whitford (1911) was used. His classification andcharacterization is based on the occurrence <strong>of</strong> typical tree <strong>species</strong> and tree<strong>species</strong> combinations. He <strong>of</strong>ten used vernacular names or typical families orgenera as e.g. ‘Apitong’ for Dipterocarpus spp. to characterise his <strong>forest</strong> types.For many <strong>of</strong> these vernacular names a scientific <strong>species</strong> could not be assignedwith certainty, and therefore, were not used for comparisons. Whitford (1911)pointed out that the description <strong>of</strong> his <strong>forest</strong> types was based on a still fragmentaryknowledge <strong>of</strong> <strong>Philippine</strong> <strong>forest</strong>s. Most <strong>of</strong> his ‘typical’ tree <strong>species</strong> –with few exceptions such as mangroves – occur in the other <strong>forest</strong> types as well.For example, many <strong>species</strong> <strong>of</strong> the dipterocarp <strong>forest</strong> types occur at wet localitiesin the Molave <strong>forest</strong> (limestone <strong>forest</strong>). On the other hand, the typicalMolave <strong>forest</strong> <strong>species</strong> also exist in the dipterocarp <strong>forest</strong> types, especially ondry sites. Of such reasons, Whitford’s (1911) <strong>forest</strong> types are primarily relatedto the major habitat conditions in the <strong>Philippine</strong>s and do not represent real<strong>plant</strong> associations. The comparison <strong>of</strong> the <strong>species</strong> recorded in this study withWhitford’s (1911) <strong>forest</strong> types merely demonstrates the diverse habitat conditionsin the present study area. Unfortunately, not much work has been conductedso far to improve Whitford’s system, and information on <strong>species</strong>composition <strong>of</strong> the undergrowth vegetation, which might be especially valuableto characterise habitat conditions (Schulze and Whitacre 1999), is still missing.ResultsFrom the 49 plots, a total <strong>of</strong> 685 taxa was recorded. Of these, 58.3% wereidentified to <strong>species</strong> level, 86.2% to genus level, and 96.7% to family level. Theremaining 3.3% <strong>of</strong> the taxa could only be assigned to higher taxonomic levels.All taxa identified to <strong>species</strong> level are listed in the Appendix. Species <strong>inventory</strong>was clearly dominated by angiosperms, accounting for 92.1% <strong>of</strong> all <strong>species</strong>.The pteridophytes represented 7.5% <strong>of</strong> the <strong>species</strong>. Only three <strong>species</strong> <strong>of</strong>gymnosperms (Podocarpus rumphii, Gnetum gnemon, G. latifolium) were found(Table 1).More than half (52%) <strong>of</strong> all <strong>species</strong> identified are endemic to the <strong>Philippine</strong>s,including one endemic genus (Greeniopsis, Rubiaceae). The most commonfamilies were the Rubiaceae (35 <strong>species</strong>) and the Euphorbiaceae (32 <strong>species</strong>),followed by the herbaceous family <strong>of</strong> Araceae and the erect and climbing palms(Arecaceae) with 28 <strong>species</strong> each. The Meliaceae and Moraceae included 27<strong>species</strong> each (Figure 2). The ratio between the number <strong>of</strong> genera and thenumber <strong>of</strong> <strong>species</strong> ranged between 1:1.5 (Anacardiaceae) and 1:6.7 (Moraceae).The frequency <strong>of</strong> taxa was low. Nearly half (48.5%) <strong>of</strong> all taxa were recordedfrom only one <strong>of</strong> the 49 plots, and nearly one third (30.5%) <strong>of</strong> the taxa were


1278Table 1. Taxonomic composition <strong>of</strong> 49 non-contiguous plots (100 m 2 each) in <strong>lowland</strong> <strong>forest</strong>remnants <strong>of</strong> the study area in the foothills <strong>of</strong> Leyte Cordilliera.Spermatophytes (%) Pteridophytes (%) Total (%)GymnospermsAngiospermsFamilies 2 (1.8) 94 (84.7) 15 (13.5) 111 (100)Genera 2 (0.7) 261 (90.3) 26 (9) 289 (100)Species 3 (0.4) 631 (92.1) 51 (7.5) 685 (100)Figure 2. The 20 most common <strong>plant</strong> families recorded from 49 plots (100 m 2 each) in the studyarea. Figures in brackets indicate the ratio between the number <strong>of</strong> genera and the number <strong>of</strong><strong>species</strong>.


1279represented by only one single individual. Very few <strong>species</strong> showed high frequenciesas e.g. the two tree <strong>species</strong>, Calophyllum blancoi (present in 32 plots)and Dacryodes rostrata (present in 31 plots), which was due to a high rate <strong>of</strong>juveniles.The average number <strong>of</strong> <strong>species</strong> per plot was 47 and ranged between 17 and80. Shannon diversity (H¢) reached values between 2.2 and 3.9, and evenness(E) ranged between 0.64 and 0.98. The <strong>species</strong>–area curve for all plots shows asteady increase <strong>of</strong> <strong>species</strong> numbers with only a weak tendency to level <strong>of</strong>f(Figure 3). The flattening <strong>of</strong> the curve at its beginning is the result <strong>of</strong> the riverbank vegetation which was comparatively <strong>species</strong> poor and homogenous. The<strong>species</strong>–area curve starts to rise again with the addition <strong>of</strong> the slope plots.Life form composition is clearly dominated by phanerophytes (65.3% <strong>of</strong> alltaxa), followed by lianas (17.1%) and chamaephytes (16.9%). Geophytes wererare (0.7%) and largely represented by few ground orchids. Hemicryptophytesand therophytes were absent (Figure 4). Epiphytes were not the focus <strong>of</strong> thisstudy and are therefore not included in the calculation <strong>of</strong> life form composition.A rough estimate <strong>of</strong> epiphyte contribution to the area’s <strong>species</strong> <strong>inventory</strong>is ca. 10%. The most conspicuous epiphytic <strong>plant</strong> group observed were orchids.Many <strong>of</strong> the vegetation clusters observed in the tree crowns were composed<strong>of</strong> the accumulation <strong>of</strong> orchid bulbs belonging to a single <strong>species</strong> (e.g.Grammatophyllum multiflorum).The following taxa occurring in the study plots have been classified bySoepadmo (1995) as endangered and economically important <strong>lowland</strong> <strong>forest</strong>genera in SE Asia: Anisoptera, Dipterocarpus, Parashorea, Shorea, Vatica(Dipterocarpaceae), Artocarpus (Moraceae), Mangifera (Anacardiaceae), andCalamus (Arecaceae). Additionally, 41 <strong>of</strong> the tree <strong>species</strong> recorded are listed asendangered for the <strong>Philippine</strong>s by IUCN (2000). Of these, 23 are classified asvulnerable, one as endangered, and 17 as critically endangered (see Appendix).Figure 3.Species–area curve for 49 plots (100 m 2 each) in the study area.


1280Figure 4. Life form spectrum (after Ellenberg and Mu¨ller-Dombois 1967) <strong>of</strong> <strong>species</strong> recordedfrom 49 plots (100 m 2 each) in the study area.DiscussionThe 685 taxa recorded from the 49 plots account for nearly 8% <strong>of</strong> the ca. 8900vascular <strong>plant</strong> <strong>species</strong> so far described for the <strong>Philippine</strong>s (Davis et al. 1995).Although the plots were not contiguous and <strong>species</strong> numbers can therefore beexpected to be higher than in contiguous plots (Whitmore 1985) this figure ishigh, considering the small overall study area (4900 m 2 in total). Only very fewdatasets cover tropical <strong>lowland</strong> <strong>forest</strong> vegetation comprehensively and aretherefore suitable for comparison. The only study using the same plot size wasconducted by Whitmore et al. (1985) in the tropical <strong>lowland</strong> <strong>rain</strong> <strong>forest</strong> <strong>of</strong>Costa Rica, who analysed a plot <strong>of</strong> 100 m 2 , considering all vascular <strong>plant</strong>s.They recorded a total <strong>of</strong> 233 <strong>species</strong>, including 59 (25%) epiphyte <strong>species</strong>. Inthe present study, the highest number <strong>of</strong> <strong>species</strong> recorded from a single 100-m 2plot was 80 and thus much lower than the number found by Whitmore et al.(1985). However, in the present study the vegetation up to 2.5 m tall as well asthe lianas were collected from subplots <strong>of</strong> 25 m 2 , and crown epiphytes wereexcluded. Despite this, the maximum number <strong>of</strong> vascular <strong>plant</strong> <strong>species</strong> on 100-m 2 plots in the study area can expected to be clearly lower than the number <strong>of</strong>233 <strong>species</strong> recorded by Whitmore et al. (1985).An estimate <strong>of</strong> the overall vascular <strong>plant</strong> <strong>species</strong> richness <strong>of</strong> Mt. Pangasuganarea, including mossy <strong>forest</strong> as well as the different stages <strong>of</strong> succession, resultsin 1500–2000 <strong>species</strong>. This estimate is based on the very conservativeassumption that 50% <strong>of</strong> the <strong>lowland</strong> <strong>forest</strong> <strong>species</strong> was recorded in this study,and that the mossy <strong>forest</strong> has a similar <strong>species</strong> richness as a 1-ha plot studied by


1281Meijer (1959) in a montane <strong>rain</strong><strong>forest</strong> in Indonesia (333 vascular <strong>plant</strong> <strong>species</strong>).The numbers <strong>of</strong> tree <strong>species</strong> given by Ingle (2001) (100 <strong>species</strong> ‡5 cm dbh) andHamann et al. (1999) (92 <strong>species</strong> ‡10 cm dbh) for 0.75- and 1-ha plots,respectively, in <strong>Philippine</strong> mountain environments show that the overall <strong>species</strong>richness including all life forms can be expected to be roughly similar to that <strong>of</strong>Meijer (1959) in Indonesia.Representation <strong>of</strong> taxaThe composition <strong>of</strong> taxa observed in this study is similar to other areas inSoutheast Asia. Differences to such sites are related to the proportions <strong>of</strong>families and result mainly from different <strong>inventory</strong> approaches. For treesalone, the dominance <strong>of</strong> the Dipterocarpaceae and the Euphorbiaceae concerningnumber <strong>of</strong> <strong>species</strong> is well documented (Manokaran and Kochummen1990; Sist and Saridan 1998; Slik et al. 2003; Wilkie et al. 2004). Sist andSaridan (1998) report that the Dipterocarpaceae represent 70% <strong>of</strong> alltrees ‡ 50 cm dbh in a primary <strong>forest</strong> in East Kalimantan. In our study, theDipterocarpaceae were the most common family in the canopy layer (12 <strong>of</strong> 44<strong>species</strong>).Turner (1994) analysed the vascular flora <strong>of</strong> Singapore and its main habitattypes from herbarium collections.The Orchidaceae are the most speciose familyin his taxonomic spectrum. This reflects the large number <strong>of</strong> orchid <strong>species</strong> inMalesia (6500 <strong>species</strong> according to Soepadmo 1995). In our study, however,Orchidaceae are poorly represented because we did not include crown epiphytes.Without considering the orchids in both studies, the pteridophytes arethe most speciose group, followed by the Rubiaceae and the Euphorbiaceae inboth studies. The other predominant families in terms <strong>of</strong> <strong>species</strong> richness listedby Turner (1994) are Annonaceae, Moraceae, Arecaceae/Palmae, Myrtaceae,Melastomataceae and Lauraceae. With exception <strong>of</strong> the Melastomataceae,these are also the most speciose families in our study (Figure 2).Representation <strong>of</strong> <strong>forest</strong> typesThe rugged relief <strong>of</strong> the study area represents a broad spectrum <strong>of</strong> <strong>Philippine</strong>habitats. The comparison <strong>of</strong> the tree <strong>species</strong> recorded from our study with thetypical tree <strong>species</strong> composition <strong>of</strong> the <strong>forest</strong> types described by Whitford(1911) showed a high degree <strong>of</strong> correspondence. Many tree <strong>species</strong> typical <strong>of</strong>the five dipterocarp <strong>forest</strong> types as well as the Molave type (Figure 5) werepresent. From the 18 tree <strong>species</strong> listed by Whitford (1911) as typical for theLaua´n-haga´ghak, 15 were also present in our study area. Originally, this <strong>forest</strong>type is established on <strong>lowland</strong> plains on wet soils (Whitford 1911), but wastransformed into rice fields in the study area. However, tree <strong>species</strong> representingthis type <strong>of</strong> <strong>forest</strong> still occur on the banks <strong>of</strong> the small creeks at low


1282Figure 5. Comparison <strong>of</strong> the number <strong>of</strong> characteristic <strong>species</strong> <strong>of</strong> the different <strong>lowland</strong> <strong>forest</strong> typesin the <strong>Philippine</strong>s (after Whitford 1911) with the number <strong>of</strong> respective <strong>species</strong> recorded in thisstudy.elevations. The typical tree <strong>species</strong> <strong>of</strong> other <strong>forest</strong> types were also well represented(Figure 5). The high number <strong>of</strong> Molave type <strong>species</strong> (50% <strong>of</strong> the typical<strong>species</strong> as mentioned by Whitford 1911) in the study area is remarkable, as this<strong>forest</strong> represents dry limestone areas (Whitford 1911). This is another indicationthat the area’s vegetation might be strongly influenced by drought periods.Life form compositionThe dominance <strong>of</strong> trees and phanerophytes is a typical feature <strong>of</strong> tropical <strong>rain</strong><strong>forest</strong>s (Richards 1996). In our study, Phanerophytes account for 65.3% <strong>of</strong> the<strong>species</strong>. Richards (1996) provides figures from a <strong>rain</strong> <strong>forest</strong> in Guyana, whichare based on the Raunkiaer System (Raunkiaer 1934) and cannot be directlycompared with our data. We therefore recalculated his data by excluding thelianas from the phanerophytes and excluded the epiphytes in addition. Thisresulted in a life form composition <strong>of</strong> 60% phanerophytes, 16% chamaephytes,and 24% lianas. A similar recalculation <strong>of</strong> figures provided by Cromer andPryor (1942) for a <strong>rain</strong> <strong>forest</strong> in Queensland results in 77.1% phanerophytes,12.5% chamaephytes, and 10.4% lianas. Figures for a terra firme <strong>rain</strong> <strong>forest</strong> in


1283Brasilia (Cain et al. 1956) are: phanerophytes 74.3%, chamaephytes 0.9%,hemicryptophytes 2.8%, geophytes 0.9%, lianas 12.8%, and epiphytes 8.3%.Therophytes and hemicryptophytes are usually absent from undisturbedtropical <strong>rain</strong> <strong>forest</strong>s (Richards 1996). Geophytes are also <strong>of</strong>ten absent as inRichards’ Guyana study or represented by few <strong>species</strong> as in the present study(0.7%), where they were mainly made up <strong>of</strong> ground orchids.The estimated proportion <strong>of</strong> epiphyte <strong>species</strong> <strong>of</strong> the total number <strong>of</strong> <strong>species</strong>in this study (ca. 10%) is clearly lower than the numbers given by Whitmoreet al. (1985) (25%) for Costa Rica or by Gentry and Dodson (1987) (35%) forEcuador.Conservation valueKochummen et al. (1992) stated that comparatively small areas might representhigh numbers <strong>of</strong> a regional flora. They found that their 50-ha plot in the PasohForest Reserve (Malaysia) included 25% <strong>of</strong> all trees and shrubs (‡ 1 cm dbh)<strong>of</strong> the Malay Peninsula. In our study, an overall sample area <strong>of</strong> approximatelyhalf hectare included ca. 8% <strong>of</strong> all <strong>Philippine</strong> vascular <strong>plant</strong> <strong>species</strong>. Given thesmall area considered as well as the fact that neither the successional vegetationnor the mossy <strong>forest</strong> is included, the representation <strong>of</strong> <strong>Philippine</strong> flora in theMt. Pangasugan area is clearly higher than 8%.The proportion <strong>of</strong> 52% endemic taxa recorded in this study is clearly higherthan the proportion <strong>of</strong> 39% stated as an average for the <strong>Philippine</strong>s (Daviset al. 1995). This result agrees with Ashton (1993) who stated that the southeasternpart <strong>of</strong> the <strong>Philippine</strong>s is especially rich in endemic <strong>plant</strong>s. The area’sendemism might be even higher than 52%, as a number <strong>of</strong> taxa could not beidentified. For example, only 3 <strong>of</strong> the 16 rattan <strong>species</strong> (Arecaceae) recorded,which generally show a high degree <strong>of</strong> endemism (Dransfield 1990), could beassigned to a scientific name. Two <strong>of</strong> them were <strong>Philippine</strong> endemics.Another aspect referring to the conservation value <strong>of</strong> the area is theoccurrence <strong>of</strong> 41 tree <strong>species</strong> in the red list <strong>of</strong> IUCN (2000). However, from the<strong>species</strong> recorded from this study, other than trees are not represented in the redlist. Despite this, it can be expected that many <strong>of</strong> the non-tree taxa recorded arethreatened by habitat destruction as well. For example, no rattans are listed byIUCN although this <strong>plant</strong> group is still heavily exploited and shows high rates<strong>of</strong> endemism. The IUCN red list seems to have a strong focus on well knownand economically important tree <strong>species</strong>. This is supported by the fact that onlydipterocarps are classified as critically endangered, although many other tree<strong>species</strong> are more rare in the study area. This was e.g. true for the valuable tree<strong>species</strong> Heritiera sylvatica (Sterculiaceae) and Xanthostemon verdugonianus(Myrtaceae) which were known by local farmers from only one mature treeeach in the entire western foothills <strong>of</strong> Mt. Pangasugan.Taken together, the Mt. Pangasugan region on Leyte represents a uniquerefuge for a high number <strong>of</strong> <strong>species</strong>, which are characteristic <strong>of</strong> all <strong>Philippine</strong>


1284dipterocarp <strong>forest</strong> types and the molave type. In view <strong>of</strong> the large areas <strong>of</strong>degraded land in the <strong>Philippine</strong>s, the conservation value <strong>of</strong> the Mt. Pangasuganregion is very high and represents an important gene bank <strong>of</strong> the <strong>Philippine</strong><strong>forest</strong> vegetation.AcknowledgementsThis study was part <strong>of</strong> the ViSCA-gtz Applied Tropical Ecology Program (PN95.2290.5–001.00) and partly funded by the Tropical Ecology Support Program(TO¨ B) <strong>of</strong> GTZ (PN 90.2136.1–03.107). We are grateful to the President<strong>of</strong> the Leyte State University, Dr. P.P. Milan and her staff for their support andhelp. We are also grateful to the Cienda San Vicente Farmer Association(CSVFA) and their community organiser Marlito Bande, who made theextensive field trips possible. Special thanks to the curator <strong>of</strong> the <strong>Philippine</strong>National Herbarium, Dr. Madulid, and his staff, as well as to the director <strong>of</strong>the National Herbarium <strong>of</strong> the Netherlands, Leiden branch, Pr<strong>of</strong>. Baas and hisstaff who helped to put <strong>species</strong> identification on a firm ground. We are alsovery grateful to Leonardo Co, Nina Ingle, David and Luze Bicknell, FranzSeidenschwarz, and B.C. Tan for various assistance. We also like to thank thetwo anonymous referees for their comments and constructive criticism.AppendixSpecies list <strong>of</strong> the vascular <strong>plant</strong> <strong>species</strong> found in 49 plots (100 m 2 each) in thefoothills <strong>of</strong> the Leyte Cordillera at Mt. Pangasugan, Leyte, <strong>Philippine</strong>s.The list includes only those <strong>species</strong> which could be identified to <strong>species</strong> level.Some <strong>species</strong> recorded outside the plots are provided in addition.Numbers in brackets following the <strong>species</strong> name indicate the first voucherspecimen collected <strong>of</strong> this <strong>species</strong>.Life form classification <strong>of</strong> <strong>species</strong> is based on observations <strong>of</strong> mature individualsin the study area, or from <strong>species</strong> descriptions in literature. Life formdefinitions follow Ellenberg and Mueller-Dombois (1967) with a minor revisionby Richter (1997). MacP, Macrophanerophyte (>20–50 m); MesP, Mesophanerophyte(>5–20 m); MiP, Microphanerophyte (>2–5 m); NP, Nanophanerophyte(>1–2 m); NP herb, herbaceous Nanophanerophyte; Ch,Chamaephyte ( £ 1 m); Ch frut, fruticose Chamaephyte; Ch suff, suffruticoseChamaephyte; Ch herb, herbaceous Chamaephyte; G rhiz, rhizome Geophyte;PL, Phanerophytic Liana; r PL, root PL; st PL, winding PL; el PL, tendril PL; dPL, spread climber; E, Epiphyte.


Species classified by IUCN (2000) as endangered are listed along with theirstatus in bold letters. Short definitions <strong>of</strong> the status are:CR, critically endangered (‘… facing an extremely high risk <strong>of</strong> extinction inthe wild in the immediate future …’); EN, endangered (‘… not criticallyendangered but facing a very high risk <strong>of</strong> extinction in the wild in the nearfuture …’); VU, vulnerable (‘… not critically endangered or endangered butfacing high risk <strong>of</strong> extinction in the wild in the medium-term future …’).For comprehensive definitions and criteria <strong>of</strong> classification see www.iucnredlist.org/search-basic.htmlI.1285SpermatophytaAceraceaeAcer laurinum Hassk. (1221)ActinidiaceaeSaurauia cf. denticulata C.B. Rob. (1078)Saurauia samarensis Merr. (235)AlangiaceaeAlangium longiflorum Merr. (1331) VUAmaranthaceaeDeeringia polysperma (Roxb.) Moq. (2214)AnacardiaceaeDracontomelon dao (Blco.) Merr. & Rolfe (660)Dracontomelon edule (Blco.) SkeelsKoordersiodendron pinnatum (Blco) Merr. (162)Mangifera altissima Blco. (971) VURhus taitensis Guill. (818)Semecarpus cuneiformis Blco. (538)AnnonaceaeAlphonsea arborea (Blco.) Merr. (1009)Anaxagorea javanica Bl. (1509)Artabotrys cf. rolfei Vid. (2159)Cananga odorata (Lamk.) Hook. f. & Thoms.Goniothalamus elmeri Merr. (327)Meiogyne virgata (Bl.) Miq.Papualthia cf. lanceolata (Vid.) Merr. (206)Popowia pisocarpa (Bl.) Endl. (1054)ApocynaceaeAlstonia macrophylla Wall. ex. G. Don (1774)Alstonia scholaris (L.) R. Br.Kibatalia blancoi (Rolfe) Merr. (467)Lepiniopsis ternatensis Val. (2220)Tabernaemontana pandacaqui Poir. (140)Voacanga globosa (Blco.) Merr. (218)AraceaeAlocasia cf. zebrina Schott ex van Houtte (1677)Amorphophallus paeoniifolius (Dennst.) Nicolson (1924)Costus speciosus (J. Konig) SmLife formMacPMiPMiPMesPCh herbMacPMesMacPMacPMesPMiPMesPMiPel PLMesPMiPMesPMesPMesPMesPMesPMesPMesPMicPMiPCh herbNP herbNP herb


1286SpermatophytaPothos cylindricus Presl (1226)Raphidophora korthalsii Schott (881)AraliaceaeArthrophyllum ahernianum Merr. (1911)Osmoxylon trilobatum (Merr.) Philipson (220)Polyscias nodosa (Bl.) Seem.ArecaceaeCalamus cf. merrillii Becc.Caryota cf. cumingii Lodd. ex MartCaryota cf. mitis Lour. (560)Daemonorops cf. mollis (Blco.) Merr. (593)Korthalsia laciniosa Mart. (1120)Pinanga maculata PorteCaryota rumphiana Mart. var. philippinensis Becc.AristolochiaceaeAristolochia philippinensis Warb. (702)AsclepiadaceaeHoya multiflora Bl. (689)AsteraceaeVernonia arborea Buch.-Ham. (826)BignoniaceaeOroxylum indicum (L.) Vent.Radermachera pinnata (Blco.) Seem. (1129)BurseraceaeCanarium asperum Benth. (265)Canarium denticulatum Bl. (428)Canarium euryphyllum Perk. (1265)Canarium gracile Engl. (611)Canarium hirsutum Willd. (1714)Dacryodes rostrata (Bl.) H. J. Lam (247)CaprifoliaceaeSambucus javanica Reinw. ex Bl.CasuarinaceaeGymnostoma rumphianum (Miq.) L.A.S. Johnson (1915)CecropiaceaePoikilospermum erectum (Blco) Merr. (321)Poikilospermum suaveolens (Bl.) Merr. (328)CelastraceaeBhesa paniculata Arn. (812)Euonymus cochinchinensis Pierre (495)Euonymus javanicus Bl. (232)Lophopetalum javanicum (Zoll.) Turcz. (1127)ChloranthaceaeChloranthus erectus (Buch.-Ham.) Verdc. (1522)Sarcandra glabra (Thunb.) Nakai (562)Life formr PLd PLMesPNPMesPd PLMiPMesPPLd PLMiPMacPCh suffPLMesPMesPMesPMacPMesPMacPMesPMesPMacPMiPMesPd PLd PLMesPMesPMesPMacPCh suffCh frut


1287SpermatophytaChrysobalanaceaeMaranthes corymbosa Bl. (790)ClusiaceaeCalophyllum blancoi Pl. & Tr. (278)Calophyllum soulattri Burm. f. (1250)Cratoxylum formosum Benth. & Hook. f. ex Dyer (452)CombretaceaeTerminalia microcarpa Decne. (672)Terminalia nitens Presl (481) VUCommelinaceaeFloscope scandens Lour.Forrestia hispida Less. & A. Rich. (423)Pollia sorzogoniensis (E. Meyer) Steud.Pollia thyrsiflora (Bl.) Steud.Rhopalephora cf. vitiensis (Seem.) Fader (2102)ConnaraceaeAgelaea borneensis (Hook. f.) Merr. (491)Connarus culionensis Merr. (686)Connarus semidecandrus Jack (623)Ellipanthus tomentosus Kurz (396)CrypteroniaceaeCrypteronia cumingii (Planch.) Planch. ex Endl. (1693)CunoniaceaeWeinmannia cf. hutchinsonii Merr. (130)DatiscaceaeOctomeles sumatrana Miq.DilleniaceaeDillenia megalantha Merr. (2007) VUDillenia philippinensis Rolfe VUTetracera fagifolia Bl. (674)DioscoreaceaeDioscorea hispida Dennst.DipterocarpaceaeAnisoptera thurifera Foxw. ssp. thurifera (353)Dipterocarpus gracilis Bl. (486) CRDipterocarpus validus Bl. CRHopea acuminata Merr. (292) CRHopea malibato Foxw. ex Elm. (20) CRHopea philippinensis Dyer (925) CRHopea plagata (Blco.) Vid. (305) CRParashorea malaanonan (Blco.) Merr. (267) CRShorea almon Foxw. (430) CRShorea assamica Dyer forma philippinensis (Brandis) Sym. (269) CRShorea astylosa Foxw. (1796) CRShorea cf. hopeifolia (Heim) Sym. (2110) CRShorea contorta Vid. (1001) CRLife formMacPMesPMesPMesPMacPMesPCh herbCh herbCh herbCh herbCh herbst PLPLPLMesPMesPMesPMacPMesPMesPst PLPLMacPMacPMacPMacPMacPMacPMacPMacPMacPMacPMacPMakPMacP


1288SpermatophytaShorea falciferoides Foxw. ssp. falciferoides (290) CRShorea guiso (Blco) Bl. (384) CRShorea palosapis (Blco) Merr. (263) CRShorea polysperma (Blco) Merr. (297) CRVatica mangachapui Blco. (528) ENEbenaceaeDiospyros blancoi A. DC. (163) VUDiospyros cf. nitida Merr. (1901)Diospyros curranii Merr. (1631)Diospyros multibracteata Merr. (598)Diospyros pilosanthera Blco.Diospyros pyrrhocarpa Miq. (385)ElaeagnaceaeElaeagnus triflora Roxb. var. triflora (412)ElaeocarpaceaeElaeocarpus cumingii Turcz. (1123)EuphorbiaceaeAcalypha amentacea Roxb. (254)Antidesma digitaliforme Tul. (371)Antidesma nitidum Tul. (268)Antidesma tomentosum Bl. (919)Aporosa benthamiana Hook. f. (573)Baccaurea tetrandra (Baill.) Mu¨ll. Arg. (360)Bridelia glauca Bl. (233)Claoxylon brachyandrum Pax & K. H<strong>of</strong>fm. (379)Cleistanthus cf. glaber Airy Shaw (628)Cleistanthus sumatranus (Miq.) Mu¨ll. Arg. (396)Codiaeum luzonicum Merr.Croton cascarilloides Raeusch. (205)Drypetes cf. megacarpa (Bl.) Pax & H<strong>of</strong>fm. (374)Drypetes longifolia (Merr.) Pax et H<strong>of</strong>fm. (372)Glochidion rubrum Bl. (715)Macaranga caudatifolia Elm. (735) VUMacaranga grandifolia (Blcol.) Merr. VUMacaranga hispida (Bl.) Muell.-Arg.Macaranga tanarius (L.) Muell.-Arg.Mallotus cf. paniculatus (Lam.) Muell.-Arg. (330)Mallotus floribundus (Bl.) Muell.-Arg. (228)Mallotus lackeyi Elm. (1800)Mallotus philippensis (Lam.) Muell.-Arg. (302)Neotrewia cumingii (Muell.-Arg.) Pax & H<strong>of</strong>fm. (343)Omalanthus populneus (Geisel.) PaxPhyllanthus leytensis Elm. (250)Suregada glomerulata (Hassk.) Jones (287)FagaceaeLithocarpus buddii (Merr.) A. Camus (15)Lithocarpus caudatifolia (Merr.) Rehd. (555)Lithocarpus coopertus (Blco) Rehd. (387)Life formMacPMacPMacPMacPMacPMacPMiPMesPMiPMesPMesPdPL frutMesPNPNPMiPMicPMiPMesPMesPMesPMesPMesPMiPNPMiPMiPMiPMiPMesPMiPMesPMesPMesPMesPMesPMesPMiPCh frutNPMacPMesPMesP


1289SpermatophytaFlacourtiaceaeCasearia cf. mindanaensis Merr. (1675)Casearia grewiaefolia Vent. var. gelonioides (Bl.) Sleum. (794)Flacourtia cf. indica (Burm. f.) Merr. (378)Osmelia philippina (Turcz.) Benth. (352)FlagellariaceaeFlagellaria indica L. (1128)GesneriaceaeCyrtandra angularis Elm. (2212)Cyrtandra glaucescens Kranzl. (960)Monophyllaea merrilliana Kranzl. (2027)Rhynchoglossum obliquum Bl.GnetaceaeGnetum gnemon L. var. gnemon (375)Gnetum latifolium Bl.HamamelidaceaeSycopsis dunnii Hemsl. (739)HernandiaceaeIlligera megaptera Merr. (721)IcacinaceaeGomphandra cumingiana (Miers) F.-Vill. (1118)Gonocaryum calleryanum (Baill.) Becc. (700)Miquelia celebica Bl.Phytocrine macrophylla (Bl.) Bl. var. macrophyllaPlatea excelsa Bl. var. borneensis (Heine) Sleum. (1217)IxonanthaceaeIxonanthes petiolaris Bl.JuglandaceaeEngelhardtia serrata Bl. (411)LamiaceaeGomphostemma javanicum (Bl.) Bth. (285)LauraceaeActinodaphne apoensis Merr. (1083)Actinodaphne bicolor (Elm.) Merr.Actinodaphne cf. multiflora Benth. (833)Caryodaphnopsis tonkinensis (Lec.) Shaw (441)Cinnamomum mercadoi Vid. (468) VUEndiandra coriacea Merr. (1883)Litsea garciae Vid. (478)Litsea leytensis Merr. (805) VUNeolitsea cf. vidallii Merr. (272) VULife formPMesPMesPMesPel PLCh herbCh herbCh herbCh herbMesPPLMesPPLMesPMesPPLPLMesPMesPMacPCh herbMesPMesPMesPMesPMacPMesPMesPMesPMiP


1290SpermatophytaLeeaceaeLeea aculeata Bl. ex Spreng.Leea guineensis G. Don (255)Leea quadrifida Merr. (546)LeguminosaeAfzelia rhomboidea (Blco.) Vid. VUAlbizia procera (Roxb.) Benth.Albizia saponaria (Lour.) Bl. ex Miq.Archidendron clypearia var. casai (Blco.) I.C. Nielsen (1082)Archidendron pauciflorum (Benth.) Nielsen (1852)Archidendron scutiferum (Blco.) I.C. Nielsen (323)Bauhinia integrifolia Roxb. ssp. cumingiana (Benth.) K. & S.S. Larsen (364)Dalbergia cf. mimosella (Blco) P<strong>rain</strong> (1435)Desmodium laxum DC. (820)Entada phaseoloides (L.) Merr.Erythrina subumbrans (Hassk.) Merr.Euchresta horsfieldii (Lesch.) Benn. (847)Kingiodendron alternifolium (Elm.) Merr. & Rolfe (357)Ormosia calavensis AzaolaPterocarpus indicus Willd. VUWallaceodendron celebicum Koord. (395)LiliaceaeDianella ensifolia (L.) DC.LoganiaceaeFagraea auriculata Jack ssp. auriculata (851)Fagraea racemosa Jack ex Wall.Strychnos luzoniensis Elm. (748)MagnoliaceaeMagnolia liliifera (L.) Baill. var. angatensis (719)MarantaceaeDonax cannaeformis (Forst. f.) K. Schum. (1006)MarattiaceaeAngiopteris evecta (Forst.) H<strong>of</strong>fm. (1188)Marattia pellucida Presl (1444)MelastomataceaeMemecylon paniculatum Jack (311)MeliaceaeAglaia argentea Bl. (642)Aglaia costata Merr. (275) VUAglaia elliptica Bl. (1295)Aglaia luzoniensis (Vid.) Merr. & Rolfe (511)Aphanamixis polystachia (Wall.) R.N. Parker (941)Chisocheton ceramicus (Miq.) C. DC.) (1184)Chisocheton cumingianus (C. DC.) Harms (211)Chisocheton pentandrus (Blco.) Merr. (753)Life formMipMiPMiPMesPMacPMesPMesPMiPMesPPLMesPCh herbel PLMacPCh herbMacPMesPMesPMacPCh herbst PLMiPel PLMesPMiPNP herbCh herbMiPMesPMesPMesPMiPMesPMesPMesPMesP


1291SpermatophytaDysoxylum arborescens (Bl.) Miq. (664)Dysoxylum cumingianum C. DC. (316)Reinwardtiodendron humile (Hassk.) Mabb. (965)Toona calantas Merr. & Rolfe (918)Vavaea amicorum Benth. (273)Walsura cf. pinnata Hassk. (2082)MenispermaceaeArcangelisia flava (L.) Merr. (1798)MonimiaceaeMatthaea pubescens Merr. (139)MoraceaeFicus aurita Bl. (210)Artocarpus blancoi (Elm.) Merr. (1701) VUArtocarpus elastica Reinw. ex Bl. (697)Ficus balete Merr. (v)Ficus benjamina L. (1075)Ficus cumingii Miq. var. angustissima (Merr.) Corner (778)Ficus fistulosa Reinw. ex Bl. (1307)Ficus heteropoda Miq. (425)Ficus odorata (Blco.) Merr.Ficus pedunculosa Miq. (1780)Ficus pseudopalma Blco.Ficus punctata Thunb. (406)Ficus ribes Reinw. ex Bl. (405)Ficus ruficaulis Merr.Ficus subulata Bl. (646, 1966)Ficus ulmifolia Lam. (451) VUMaclura cochinchinensis (Lour.) Corner (1417)Streblus ilicifolia (Vid.) Corner (1700)Streblus macrophyllus Bl. (216, 335, 613)MyristicaceaeEndocomia macrocoma (Miq.) W.J.J. de Wilde subsp. p<strong>rain</strong>ii(King) W.J.J.de Wilde (479)Gymnacranthera farquhariana (Hook. f. & Th) Warb. var.paniculata (A. DC.) R. Schouten (541)Horsfieldia cf. costulata (Miq.) Warb. (2002)Knema glomerata (Blco.) Merr. (641)Knema stellata Merr. (1481)Myristica cf. frugifera W. J. J. de Wilde (743) VUMyristica cf. philippensis Lam. VUMyristica simiarum A. DC cf ssp. simiarum (417)MyrsinaceaeArdisia pardalina Mez. (815)Ardisia squamulosa Presl (204) VUMaesa denticulata Mez (241)MyrtaceaeAcmena acuminatissima (Bl.) Merr. & Perry (503)Life formMesPMesPMesPMacPNPMesPel PLMiPMiPMacPMacPMacPMacPMesPMiPMiPMesPMiPNPr PLMiPMesPPLMesPd PLMesPMesPMesPMesPMesPMesPMesPMesPMesPMesPCh frutCh frutMiPMacP


1292SpermatophytaSyzygium cf. densinervium (Merr.) Merr. (749)Syzygium cf. xanthophyllum (C.B. Rob.) Merr.Syzygium cumini (L.) SkeelTristaniopsis decorticata (Merr.) P.G. Wilson& J.T. Waterh. (142) VUTristaniopsis micrantha (Merr.) P.G. Wilson & J.T. Waterh. (301)Xanthostemon verdugonianus Naves (2209) VUOchnaceaeGomphia serrata (Gaertn.) KanisOlacaceaeErythropalum scandens Bl. (780)Strombosia philippinensis (Baill.) Rolfe (380)OleaceaeOlea borneensis Boerl. (306)OpiliaceaeChampereia manillana (Bl.) Merr. (100)Melientha suavis Pierre ssp. suavis (366)OrchidaceaeCalanthe triplicata (Willem.) AmesCeratostylis retisquama Rchb. f.B143Cymbidium aliciae Quis. (880)Eulophia zollingeri (Reichb.f.) J.J.SmithGrammatophyllum multiflorum var. tigrinum Lindley.Lepidogyne longifolia (Bl.) Bl.Liparis wenzelii AmesPhalaenopsis hieroglyphica (Rchb. f.) SweetRobiquetia cf. compressa Schltr.Trichoglottis latisepala AmesTrichoglottis rosea (Lindl.) Ames (1055)PandanaceaeFreycinetia cf. philippinensis Hemsl. (1353)Freycinetia cumingiana Gaudich. (388, 1234)Freycinetia multiflora Merr. (1130)Freycinetia vidalii Hemsl. (1352)Freycinetia membranifolia Elm. (955)PentaphragmataceaePentaphragma grandiflorum Kurz (457, 458, 1407)PiperaceaePiper abbreviatum Opiz (638)Piper halconense C. CD.Piper toppingii C. CD. (654, 1143)Piper viminale Opiz (1205)PittosporaceaePittosporum resiniferum Hemsl. (448)Life formMesPMesPMesPMesPMesPMacPMesPel PLMesPMesPMesPMesPG rhizEEG rhizEG rhizG rhizEEEEr PLr PLr PLr PLr PLCh herbst PLst PLst PLst PLMesp


1293SpermatophytaPoaceaeBambusa spinosa Roxb.Dinochloa cf. pubiramea GambleDinochloa cf. scandens (Bl.) O. Ktze.PodocarpaceaePodocarpus rumphii Bl. (1520)PolygalaceaePolygala venenosa Juss. ex Poir. (284, 2011)Xanthophyllum vitellinum (Bl.) Dietr. (992)ProteaceaeHelicia graciliflora Merr. (1154)Helicia loranthoides Presl. (1079)Helicia robusta (Roxb.) R. Br. ex Wall. (588)RanunculaceaeClematis javana DC. (159, 1997)RhamnaceaeVentilago dichotoma (Blco.) Merr. (723)Ziziphus angustifolius (Miq.) Hatusima ex Steenis (488)Ziziphus crebrivenosa C.B. Rob. (492, 661)RhizophoraceaeGynotroches axillaris Bl. (1538)RosaceaePrunus arborea (Bl.) Kalkm. var. arborea (1624)Prunus cf. fragrans (Elm.) Kalkm. (795)Prunus grisea (Bl.) Kalkm. var. grisea (71, 490)Rubus fraxinifolius Poiret (2017)RubiaceaeBoholia nematostylis Merr. (1919)Canthium gynochthodes Baill. (563)Diodia ocynifolia (Willd.) Brem. (1424)Diplospora cf. fasciculiflora Elm. (663)Dolicholobium philippinense Trenteuse (260)Greeniopsis multiflora (Elm.) Merr. (279)Hedyotis baruensis (Miq.) Val. ex Merr. (329)Hypobathrum purpureum (Elm.) Merr. (1507)Ixora bartlingii Elm. (1060)Ixora cf. cumingiana Vidal (509)Ixora cf. macrophylla Bartl. (207)Ixora longistipula Merr. (1122)Ixora macrophylla Barth.Ixora salicifolia (Bl.) DC. (288)Lasianthus cf. obliquinerva Merr. (701)Morinda bracteata Roxb. (326)Mussaenda philippica A. Rich.Mussaenda vidallii Elm. (129)Mycetia javanica (Bl.) Korth. (258)Nauclea subdita (Korth.) Stend. (1958)Life formMesPPLPLMacPCh herbMesPMiPMesPMiPPLPLMesPd PLMacPMesPMesPMesPd PL suffCh herbMesPPLMiPMiPMesPCh herbMesPMipMiPMiPMiPMiPNPMiPMiPMiPMiPCh suffMiP


1294SpermatophytaLife formNeonauclea formicaria (Elm.) Merr. (793)MiPNeonauclea lanceolata (Bl.) Merr. subsp. gracilis (Vidal) Ridsdale (402)MesPPraravinia cf. mindanensis (Elm.) Brem. (289)NPPsychotria cf. ixoroides Bartl. ex DC. (515)st PLPsychotria membranifolia Bartl. ex DC. (257)NPTarenna cumingiana (Vid.) Elm. (464)MesPTarrenoidea wallichii (Hook. f.) D.D.Tirvengadum & C. Sastre (307)MesPTimonius arboreus Merr. (248)MiPUncaria cf. perrottetii (A. Rich.) Merr. (325)el PLUncaria lanosa Wall. f. philippinensis (Elm.) Ridsd. (900)el PLUncaria longiflora (Poir.) Merr. (1300)el PLWendlandia luzoniensis DC. (444)MesPXanthophytum fruticulosum Reinw. ex Bl. (1005)NPRutaceaeClausena anisum olens (Blco.) Merr. (605) NPLunasia amara Blco. (158)NPMicromelum compressum (Blco.) Merr. (771)NPSeverinia disticha (Blco) Merr. (398)NPSapindaceaeAllophyllus cobbe (L.) Raeuschel (823)MesPCubilia cubili (Blco.) Adelh. (586)MacPDictyoneura acuminata Bl. ssp. acuminata (246)MesPDimocarpus fumatus (Bl.) Leenhouts ssp. philippinensis Leenhouts (72)MesPEuphorianthus obtusatus Radlk. ex Koord. (1641)MesPGanophyllum falcatum Bl. (1212)MesPGuioa cf. diplopetala (Hassk.) Radlk. (1104)MesPHarpullia cupanioides Roxb. (212)MesPLepisanthes fruticosa (Roxb.) Leenh. (933)MesPNephelium cf. ramboutan ake (Labill.) Leenh. (442) MesPParanephelium cf. xestophyllum Miq. (727)MesPPometia pinnata Forst. (578, 1546)MesPSapotaceaePalaquium philippense (Perr.) C. B. Rob. (443) VUMacPPlanchonella mindanaensis Clemens (1126)MacPPouteria firma (Miq.) Baehni (1237)MacPSaxifragaceaeDichroa philippinensis Schltr.Ch frutPolyosma integrifolia Bl. (1219)NPDichroa fibrifuga (807)SimaroubaceaePicrasma javanica Bl. (218)MesPSolanaceaeSolanum anisophyllum Elm. (225)Ch herbSolanum ferox L. (282)Ch herbSonneratiaceaeDuabanga moluccana Bl.MacP


1295SpermatophytaStaphyleaceaeTurpinia borneensis (Merr. & Perry) B.L. Linden (1802)SterculiaceaeHeritiera sylvatica Vidal (1768)Pterocymbium tinctorium (Blco.) Merr. (345)Pterospermum diversifolium Bl. (270)Pterospermum elongatum Korth. (434)Pterospermum obliquum Blco. (120)Sterculia multistipularis Elm. (251)Sterculia oblongata R. Br. (678)Sterculia philippinensis Merr. (1898)Sterculia stipulata Korth. var. jagorii (Warb.) TantraSymplocaceaeSymplocos cochinchinensis(Lour.) Moore var. cochinchinensis (1954)TaccaceaeTacca palmata Bl. (303)TheaceaeEurya acuminata DC. (1314)Ternstroemia philippinensis Merr. var. philippinensis (1491)ThymelaeaceaeAquilaria cumingiana (Decn) Ridl. (300)Phaleria perrottetiana (Dcne) F.-Vill. (160)TiliaceaeColona serratifolia Cav. (626)Diplodiscus paniculatus Turcz. (271) VUUlmaceaeCeltis cf. philippinensis BlancoGironniera celtidifolia Gaudich. (238)Trema orientalis (L.) Bl. (2202)UrticaceaeCypholophus moluccanus (Bl.) Miq.Leucosyke capitellata (Poir.) Wedd. (242)Maoutia setosa Wedd.Villebrunea rubescens (Bl.) Bl. (324)Villebrunea trinervis Wedd. (733)VerbenaceaeClerodendrum villosum Bl.Teijsmanniodendron pteropodum (Miq.) Bakh. (157)Vitex parviflora Juss. (1837)Vitex turczaninowii Merr. (705)Premna odorata Blco. (633)Life formMesPMesPMacPMesPMesPMesPMiPMesPMesPMesPMicPG rhizNPMesPNPCh suffMesPMesPMesPMiPMesPCh frutMiPNPMesPMesPNPMesPMacPMacPMesP


1296II.PtaridophytaAspidiaceaeDidymochlaena cf. truncatula (Sw.) J. Sm. (2056)AspleniaceaeAsplenium nidus L. (1902)Asplenium tenerum Forst. (2096)AthyriaceaeDiplazium asperum (Bl.) Milde (1809)Diplazium esculentum (Retz.) Sw. (1846)CyatheaceaeCyathea cf. contaminans (Hook.) Copel.DavalliaceaeDavallia solida (G. Forst.) Sw. (1462)Davallia trichomanoides Bl. var. lor<strong>rain</strong>ii (Hance) Holttum (222)HymenophyllaceaeTrichomanes javanicum Bl. (1042)LindsaeaceaeLindsaea lucida Bl. ssp. lucida (533)Sphenomeris chinensis (L.) MaxonTapeinidium pinnatum (Cav.) C.Chr. (1267)LomariopsidaceaeBolbitis cf. guoyana (Gaudich.) Ching (2016)Bolbitis guoyana (Gaudich.) ChingBolbitis heteroclita (Presl) Ching (1049)Lomogramma cf. copelandii Holttum (1851)Lomogramma copelandii HolttumTeratophyllum arthropteroides (Christ) Holttum (2084)Teratophyllum cf. articulatum (J. Sm. ex Fèe) Mett. (516)OsmundaceaeOsmunda banksiaefolia (Pr.) Kuhn (1261, 1392)PolypodiaceaeDrynaria quercifolia (L.) J. SmLeptochilus cf. decurrens Bl.Microsorum cf. longissimum J. Sm. ex Fe´e (964)Microsorum membranifolium (R. Br.) ChingMicrosorum punctatum (L.) Copel. (1821)Microsorum scolopendria (Burm. f.) Copel. (1445)Pyrrosia cf. lanceolata (L.) FarwellMicrosorum plukenetii (Presl) M.G. Price (1860)PteridaceaePteris cf. pellucida PreslPteris ensiformis Burm. f. (1806)Pteris longipinnula Wall. (334)SchizaeaceaeLygodium auriculatum (Willd.) Alst. et Holtt. (1974)Lygodium circinnatum (Burm. f.) Sw. (1603)Life formCh herbCh herbCh herbCh herbCh herbMesPCh herbCh herbCh herbCh herbCh herbCh herbCh herbCh herbr PLr PLr PLCh herbCh herbCh herbECh herbCh herbCh herbCh herbCh herbPLCh herbCh herbCh herbst PLst PL


1297PtaridophytaSelaginellaceaeSelaginella cf. involvens (Sw.) Spring (856)Selaginella cf. springiana Alderw. (1526)Selaginella cupressina (Willd.) Spring (745)Selaginella engleri Hieron. (1011)TaenitidaceaeTaenitis blechnoides (Willd.) Sw. (1091)Tectaria groupCtenitis cf. silvatica Holttum (939)Cyclopeltis crenata (Fée) C. Chr. (1807)Pleocnemia cf. presliana Holttum (1849)Pleocnemia irregularis (Presl) Holttum (1007)Tectaria crenata Cav. (1301)ThelypteridaceaeCyclosorus sumatranus (v. Ald. v. Ros.) ChingPneumatopteris laevis (Mett.) Holttum (1812)Pronephrium · xiphioides (Christ) Holttum (498)Pseudophegopteris paludosa (Bl.) Ching (2093)Pronephrium granulosum (Presl) Holtt. (997)Life formCh frutCh frutCh frutCh frutCh herbCh herbCh herbCh herbCh herbCh herbCh herbCh herbCh herbCh herbCh herbReferencesAnonymous 1993. Flora <strong>of</strong> Taiwan Vol. 3, Angiosperms, Dicotyledons, , 2nd edn. EditorialCommittee <strong>of</strong> the Flora <strong>of</strong> Taiwan, Department <strong>of</strong> Botany, National Taiwan University, Taipei,Taiwan, ROC.Anonymous 1994. Flora <strong>of</strong> Taiwan Vol. 1, Pteridophyta, Gymnospermae, 2nd edn. EditorialCommittee <strong>of</strong> the Flora <strong>of</strong> Taiwan, Department <strong>of</strong> Botany, National Taiwan University, Taipei,Taiwan, ROC.Anonymous 1996. Flora <strong>of</strong> Taiwan Vol. 2, Angiospermae, 2nd edn. Editorial Committee <strong>of</strong> theFlora <strong>of</strong> Taiwan, Department <strong>of</strong> Botany, National Taiwan University, Taipei, Taiwan, ROC.Aragones E.G. Jr. 1991. Vegetation-soil pattern along altitudinal gradient in the western slopes <strong>of</strong>Mt. Banahaw, Luzon, <strong>Philippine</strong>s: I. The <strong>forest</strong> communities and changes in <strong>forest</strong> compositionwith altitude. Sylvatrop 1(1): 15–45.Ashton P.S. 1993. <strong>Philippine</strong> phytogeography. Asia Life Sciences 2(1): 1–8.Asio V. 1996. Characteristics, weathering, formation and degradation <strong>of</strong> soils from volcanic rocksin Leyte, <strong>Philippine</strong>s. Hohenheimer Bodenkundliche Hefte 33 Universität Hohenheim Institutfu¨r Bodenkunde und Standortslehre, Stuttgart, 209 pp.Barrera A., Aristorenas I. and Tingzon J.A. 1954. Soil Survey <strong>of</strong> Leyte Province, <strong>Philippine</strong>s. SoilSurvey Report No. 18, Bureau <strong>of</strong> Printing, Manila, 103 pp.Bremer H. 1995. Boden und Relief in den Tropen: Grundvorstellungen und Datenbank. Gebru¨derBornträger, Berlin, Stuttgart, 324 pp.Bremer H. 1999. Die Tropen – Geographische Synthese einer fremden Welt im Umbruch. Gebru¨derBornträger, Berlin, Stuttgart, 428 pp.Brooks T.M., Mittermeier R.A., Mittermeier C.G., da Fonseca G.A.B., Rylands A.B., KonstantW.R., Flick P., Pilgrim J., Oldfield S., Magin G. and Hilton-Taylor C. 2002. Habitat loss andextinction in the hotspots <strong>of</strong> biodiversity. Conservation Biology 16(4): 909–923.


1298Brown W.H. 1919. Vegetation <strong>of</strong> <strong>Philippine</strong> Mountains: The Relation between the Environmentand Physical Types at Different Altitudes. Bureau <strong>of</strong> Science, Manila, 434 pp.Brown W.H. and Mathews D.M. 1914. <strong>Philippine</strong> dipterocarps <strong>forest</strong>s. <strong>Philippine</strong> Journal <strong>of</strong>Science A 9(5): 413–561.Buot I.E. Jr. and Okitsu S. 1997. Woody <strong>species</strong> composition in the altitudinal zones <strong>of</strong> the mossy<strong>forest</strong> <strong>of</strong> Mt. Pulog, Luzon, <strong>Philippine</strong>s. Flora Malesiana Bulletin 12(1): 6–11.Burger D. 1972. Seedlings <strong>of</strong> Some Tropical Trees and Shrubs Mainly <strong>of</strong> South East Asia. Pudoc,Wageningen, 399 pp.Cain S.A., de Oliveira Castro G.M., Pires J.M. and da Silva N.T. 1956. Application <strong>of</strong> somephytosociological techniques to Brazilian <strong>rain</strong> <strong>forest</strong>. American Journal <strong>of</strong> Botany 43: 911–941.Cheek M. and Jebb M. 2001. Nepenthaceae. Flora Malesiana Vol. 15, Nationaal HerbariumNederland, Universiteit Leiden Branch, the Netherlands, 164 pp.Corner E.J.H. 1988. Wayside Trees <strong>of</strong> Malaya. Vol. 1 and 2. Malayan Nature Society, KualaLumpur, 774 pp.Cromer D.A.N. and Pryor L.D. 1942. A contribution to <strong>rain</strong>-<strong>forest</strong> ecology. Proceedings <strong>of</strong> theLinnean Society 67: 249–268.Dargantes B.B. and Koch W. 1994. Case studies on the occupation and cultivation <strong>of</strong> the <strong>forest</strong>lands <strong>of</strong> Leyte, <strong>Philippine</strong>s. Annals <strong>of</strong> Tropical Research 16: 13–29.Davis S.D., Heywood V.H. and Hamilton A.C. (eds) 1995. Centres <strong>of</strong> Plant Diversity – A Guideand Strategy for their Conservation, Vol. 2: Asia, Australasia and the Pacific. IUCN PublicationsUnit, Cambridge, UK.de Guzman E.D., Umali R.M. and Sotalbo E.D. 1986. Guide to <strong>Philippine</strong> Flora and Fauna, Vol.3: Dipterocarps, Non-Dipterocarps. Natural Resources Management Center, Ministry <strong>of</strong> NaturalResources and University <strong>of</strong> the <strong>Philippine</strong>s, 414 pp.DENR 1998. <strong>Philippine</strong> atlas. Department <strong>of</strong> Environment and Natural Resources (DENR),Quezon City, <strong>Philippine</strong>s.DENR and UNEP 1997. <strong>Philippine</strong> Biodiversity: An Assessment and Action Plan. Bookmark Inc.,Makati City, The <strong>Philippine</strong>s, 298 pp.Dransfield J. 1990. Outstanding problems in Malesian palms. In: Baas P., Kalkmann K. andGeesink R. (eds), The Plant Diversity <strong>of</strong> Malesia, Proceedings <strong>of</strong> the Flora Malesiana Symposium,Leiden, the Netherlands, August 1989. Kluwer Academic Publishers, Dordrecht-Boston-London, pp. 17–25.Duivenvoorden J.F. 1994. <strong>Vascular</strong> <strong>plant</strong> <strong>species</strong> counts in the <strong>rain</strong> <strong>forest</strong>s <strong>of</strong> the middle Caquetáarea. Colombian Amazonia. Biodiversity and Conservation 3: 685–715.Ellenberg H. and Mueller-Dombois D. 1967. A key to Raunkiaer <strong>plant</strong> life forms with revisedsubdivisions. Berichte des geobotanischen Instituts Ru¨bel 37: 56–73.FAO 2003. State <strong>of</strong> the World’s Forests 2003. FAO, Rome, Italy. www.fao.org/DOCREP/005/Y7581E/Y7581E00.HTM, accessed 25 February 2004.FAO/UNESCO 1988. Soil Map <strong>of</strong> the World, Revised Legend. World Soil Resources Report 60.FAO, Rome.Gentry A.H. and Dodson C. 1987. Contribution <strong>of</strong> nontrees to <strong>species</strong> richness <strong>of</strong> a tropical <strong>rain</strong><strong>forest</strong>. Biotropica 19(2): 149–56.Gonzales-Salcedo P.V. 2001. Floral diversity and vegetation zones <strong>of</strong> the northern slope <strong>of</strong>Province, Luzon, <strong>Philippine</strong>s. Asia Life Sciences 10(2): 119–157.Gruezo W.S. 1998. Species alpha diversity <strong>of</strong> Pagbilao Grande Island vegetations, Quezon Province,<strong>Philippine</strong>s. Asia Life Sciences 7(1): 39–92.Hall J.B. and Swaine M.D. 1981. Distribution and Ecology <strong>of</strong> <strong>Vascular</strong> Plants in a Tropical RainForest: Forest Vegetation in Ghana. Dr. W. Junk Publishers, The Hague.Hamann A., Barbon E.B., Curio E. and Madulid D.A. 1999. A botanical <strong>inventory</strong> <strong>of</strong> a submontanetropical <strong>rain</strong><strong>forest</strong> on Negros Island, <strong>Philippine</strong>s. Biodiversity and Conservation 8: 1017–1031.Heaney L. and Regalado J.C. Jr. 1998. Vanishing Treasures <strong>of</strong> the <strong>Philippine</strong> Rain Forest: AComprehensive Introduction to the Biodiversity <strong>of</strong> the <strong>Philippine</strong>s. The Field Museum University<strong>of</strong> Chicago Press, Chicago, 88 pp.


1299Henderson M.R. 1974a. Malayan Wild Flowers: Monocotyledons, reprint <strong>of</strong> the 1954 edition. TheMalayan Nature Society, Kuala Lumpur, Malaysia, 357+27 pp.Henderson M.R. 1974b. Malayan Wild Flowers: Dicotyledons, Reprint. The Malayan NatureSociety, Kuala Lumpur, Malaysia, 478 pp.Ingle N. 2003. Seed dispersal by wind, birds, and bats between <strong>Philippine</strong> montane <strong>rain</strong><strong>forest</strong> andsuccessional vegetation. Oecologia 134: 251–261.IUCN 2000. Red List – <strong>Philippine</strong>s. www.iucnredlist.org/search-basic.html. Accessed 14.01.2004.Kartawinata K. 1990. A review <strong>of</strong> natural vegetation studies in Malesia, with special reference toIndonesia. In: Baas P., Kalkmann K. and Geesink R. (eds), The Plant Diversity <strong>of</strong> Malesia,Proceedings <strong>of</strong> the Flora Malesiana Symposium, Leiden, the Netherlands, August 1989. KluwerAcademic Publishers, Dordrecht-Boston-London, pp. 120–132.Keller R. 1996. Identification <strong>of</strong> Tropical Woody Plants in the Absence <strong>of</strong> Flowers and Fruits.Birkhäuser Verlag, Basel, Boston, Berlin, 229 pp.Keng H. 1983. Orders and Families <strong>of</strong> Malayan Seed Plants, 3rd edn. Singapore University Press,National University <strong>of</strong> Singapore, 441 pp.Keng H. 1990. The Concise Flora <strong>of</strong> Singapore: Gymnosperms and Dicotyledons. SingaporeUniversity Press, National University <strong>of</strong> Singapore, Singapore, 222 pp.Kent M. and Coker P. 1992. Vegetation Description and Analysis. Belhaven Press, London, 363pp.Kiew R. 1987. The herbaceous flora <strong>of</strong> Ulu Endau, Johore-Pahang, Malaysia, including taxonomicnotes and descriptions <strong>of</strong> new <strong>species</strong>. Malayan Nature Journal 41(2 and 3): 201–234.Kintanar R.L. 1984. Climate <strong>of</strong> the <strong>Philippine</strong>s. PAGASA, Quezon City, <strong>Philippine</strong>s, September1984, 38 pp.Kochummen K.M., LaFrankie J.V. and Manokaran N. 1992. Floristic composition <strong>of</strong> PasohForest Reserve, a <strong>lowland</strong> <strong>rain</strong><strong>forest</strong> in peninsular Malaysia. In: Kheong Y.S. and Win L.S.(eds), In Harmony with Nature, Proceedings <strong>of</strong> the International Conference on Conservation <strong>of</strong>Tropical Biodiversity, Kuala Lumpur, Malaysia, 12–16 June 1990. Malayan Nature Society,Kuala Lumpur, Malaysia, pp. 545–554.Lieberman D., Lieberman M., Peralta R. and Hartshorn G.S. 1996. Tropical <strong>forest</strong> structure andcomposition on a large-scale altitudinal gradient in Costa Rica. Journal <strong>of</strong> Ecology 84: 137–152.Magurran A.E. 1988. Ecological Diversity and Its Measurement. Chapman and Hall, London, 179pp.Manokaran N. and Kochummen K.M. 1990. A re-examination <strong>of</strong> data on structure and floristiccomposition <strong>of</strong> hill and <strong>lowland</strong> dipterocarp <strong>forest</strong> in peninsular Malaysia. Malayan NatureJournal 44: 61–75.Meijer W. 1959. Plantsociological analysis <strong>of</strong> montane <strong>rain</strong><strong>forest</strong> near Tjibodas, West Java. ActaBotanica Neerlandica 8: 277–291.Merrill E.D. 1912. A Flora <strong>of</strong> Manila. Department <strong>of</strong> the Interior, Bureau <strong>of</strong> Science, Manila, 491pp.Myers N., Mittermeier R.A., Mittermeier C.G., da Fonseca G.A.B. and Kent J. 2000. Biodiversityhotspots for conservation priorities. Nature 403: 853–858.Newbery D.McC., Campbell E.J.F., Proctor J. and Still M.J. 1996. Primary <strong>lowland</strong> dipterocarp<strong>forest</strong> at Danum Valley, Sabah, Malaysia. Species composition and patterns in the understorey.Vegetatio 122: 193–220.Ng F.S.P. (ed.) 1978. Tree Flora <strong>of</strong> Malaya Vol. 3. Forest Department, Ministry <strong>of</strong> Agriculture andLands, Malaysia, Longman Singapore, 339 pp.Ng F.S.P. (ed.) 1989. Tree Flora <strong>of</strong> Malaya Vol. 4. Forest Department, Ministry <strong>of</strong> Agriculture andLands, Malaysia, Longman Malaysia, 548 pp.Ng F.S.P. 1991. Manual <strong>of</strong> Forest Fruits, Seeds and Seedlings. Vols. I and II. Malayan ForestRecord No. 34. Forest Research Institute Malaysia, Kepong, 52109 Kuala Lumpur, Malaysia,997 pp.NSCB RU-8 2001. Provincial/City statwatch: Regional Unit VIII – Eastern Visayas. NationalStatistical Coordination Board, www.nscb.gov.ph. Accessed 20.11.2003.


1300Pancho J.V. 1983. <strong>Vascular</strong> Flora <strong>of</strong> Mount Makiling and Vicinity, Part 1. Kalikasan, The <strong>Philippine</strong>Journal <strong>of</strong> Biology, Supplement No. 1. New Mercury Printing Press, Quezon City,<strong>Philippine</strong>s, 476 pp.Pipoly J.J.III and Madulid D.A. 1998. Composition, structure and <strong>species</strong> richness <strong>of</strong> a submontanemoist <strong>forest</strong> on Mt. Kinasalapi, Mindanao, <strong>Philippine</strong>s. In: Dallmeier F. and Comiskey J.A.(eds), Forest Biodiversity Research, Monitoring and Modeling: Conceptual Background and OldWorld Case Studies. UNESCO and The Parthenon Publishing Group Limited, Carnforth, UK,UNESCO, France, pp. 591–600.Poulsen A.D. 1996. Species richness and density <strong>of</strong> ground herbs within a plot <strong>of</strong> <strong>lowland</strong> <strong>rain</strong><strong>forest</strong>in north-west Borneo. Journal <strong>of</strong> Tropical Ecology 12: 177–190.Poulsen A.D. and Balslev H. 1991. Abundance and cover <strong>of</strong> ground herbs in an Amazonian <strong>rain</strong><strong>forest</strong>. Journal <strong>of</strong> Vegetation Science 2: 315–322.Proctor J., Argent G.C. and Madulid D.A. 1998. Forests <strong>of</strong> the ultramufic Mt. Giting-Giting,Sibuyan Island, the <strong>Philippine</strong>s. Edinburgh Journal <strong>of</strong> Botany 55(2): 295–316.Raunkiaer C. 1934. The Life-forms <strong>of</strong> Plants and Statistical Plant Geography. Oxford UniversityPress, Oxford.Rennolls K. and Laumonier Y. 2000. Species diversity structure analysis at two sites in the tropical<strong>rain</strong> <strong>forest</strong> <strong>of</strong> Sumatra. Journal <strong>of</strong> Tropical Ecology 16: 253–270.Richards P.W. 1996. The Tropical Rain Forest: An Ecological Study. Cambridge University Press,Great Britain, 575 pp.Richter M. 1997. Allgemeine Pflanzengeographie. B.G. Teubner, Stuttgart, 256 pp.Santos J.V., de Guzman E.D. and Fernando E.S. 1986. Guide to <strong>Philippine</strong> Flora and Fauna. Vol. IV:Bamboos, Grasses, Palms. Natural Resources Management Center, Ministry <strong>of</strong> Natural Resourcesand University <strong>of</strong> the <strong>Philippine</strong>s, JMC Press, Incorporated, Quezon City, <strong>Philippine</strong>s, 256 pp.Schulze M.D. and Whitacre D.F. 1999. A classification and ordination <strong>of</strong> the tree community <strong>of</strong>Tikal National Park, Peten, Guatemala. Bulletin <strong>of</strong> the Florida Museum <strong>of</strong> Natural History41(3): 169–297.Sist P. and Saridan A. 1998. Description <strong>of</strong> the primary <strong>lowland</strong> <strong>forest</strong> <strong>of</strong> Berau. In: Bertault J.-G.and Kadir K. (eds), Silviculture research in a <strong>lowland</strong> mixed dipterocarp <strong>forest</strong> <strong>of</strong> East Kalimantan,the contribution <strong>of</strong> STREK project. CIRAD-Foreˆ t Publication, pp. 51–93.Slik J.W.F., Poulsen A.D., Ashton P.S., Cannon C.H., Eichhorn K.A.O., Kartawinata K.,Lanniari I., Nagamasu H., Nakagawa M., van Nieuwstadt M.G.L., Payne J., Purwaningsih,Saridan A., Sidiyasa K., Verburg R.W., Webb C.O. and Wilkie P. 2003. A floristic analysis <strong>of</strong> the<strong>lowland</strong> dipterocarp <strong>forest</strong>s <strong>of</strong> Borneo. Journal <strong>of</strong> Biogeography 30: 1517–1531.Smith R.F. 1970. The vegetation structure <strong>of</strong> a Puerto Rican <strong>rain</strong> <strong>forest</strong> before and after short-termirradiation. In: Odum H. (ed.), A Tropical Rain Forest. Oak Ridge, Atomic Energy Commission,USA, pp. D103–140.Soepdadmo E. 1995. Plant diversity <strong>of</strong> the Malesian tropical <strong>rain</strong><strong>forest</strong> and its phytogeographicaland economic significance. In: Primack R.B. and Lovejoy T.E. (eds), Ecology, Conservation, andManagement <strong>of</strong> Southeast Asian Rain<strong>forest</strong>s. Yale University, pp. 19–40.Soepadmo E. and Wong K.M. (eds) 1995. Tree Flora <strong>of</strong> Sabah and Sarawak. Vol. 1. ForestResearch Institute Malaysia, Sabah Forestry Department, and Sarawak Forestry Department,Ampang Press Sdn. Bhd., Kuala Lumpur, Malaysia, 513 pp.Soepadmo E., Wong K.M. and Saw L.G. (eds) 1996. Tree Flora <strong>of</strong> Sabah and Sarawak. Vol. 2.Forest Research Institute Malaysia, Sabah Forestry Department, and Sarawak ForestryDepartment. Ampang Press Sdn. Bhd., Kuala Lumpur, Malaysia, 443 pp.Soerianegara I. and Lemmens R.H.M.J. (eds) 1994. Plant Resources <strong>of</strong> South-East Asia No. 5(1):Timber Trees: Major Commercial Timbers. Prosea Foundation, Bogor, Indonesia and Pudoc-DLO, Wageningen, the Netherlands, 610 pp.Takeuchi M. 1960. A estrutura da vegetaçao na Amazonia III: A mata da campina na regiaˆ odoRio Negro. Boletim do Museo Paraense Emilio Goeldi 8: 1–13.Tan B.C. and Rojo J.P. 1989. The <strong>Philippine</strong>s. In: Campbell D.G. and Hammond H.D. (eds),Floristic Inventory <strong>of</strong> Tropical Countries – The Status <strong>of</strong> Plant Systematics, Collections, and


1301Vegetation, Plus Recommendations for the Future. New York Botanical Garden, New York, pp.44–62.Turner I.M. 1994. The taxonomy and ecology <strong>of</strong> the vascular <strong>plant</strong> flora <strong>of</strong> Singapore: a statisticalanalysis. Bot. J. Linn. Soc. 114: 215–227.Valencia R., Balslev H. and Paz Y. Min˜ o C.G. 1994. High tree alpha-diversity in AmazonianEcuador. Biodiversity and Conservation 3: 21–28.van Balgooy M.M.J. 1997a. Malesian Seed Plants. Vol. 1: Spot-characters. Rijksherbarium /HortusBotanicus, Leiden, 154 pp.van Balgooy M.M.J. 1997b. Malesian Seed Plants. Vol. 2: Portraits <strong>of</strong> Tree Families. Rijksherbarium/Hortus Botanicus, Leiden, 307 pp.van Steenis C.G.G.J. (ed.) 1950-ongoing. Flora Malesiana. Martinus Nijh<strong>of</strong>f Publishers, Dordrecht,the Netherlands.Walsh R.P.D. 1996. Climate. In: Richards P.W. (ed.), The Tropical Rain<strong>forest</strong>. Cambridge UniversityPress, pp.159–205.Whitford H.N. 1906. Vegetation <strong>of</strong> the Lamao Forest Reserve. <strong>Philippine</strong> Journal <strong>of</strong> Science I:373–431 and 637–682.Whitford H.N. 1911. The Forests <strong>of</strong> the <strong>Philippine</strong>s. Part I: Forest Types and Products. Department<strong>of</strong> the Interior Bureau <strong>of</strong> Forestry, Bulletin No. 10, Manila, 94 pp.Whitmore T.C. (ed.) 1983a. Tree Flora <strong>of</strong> Malaya. Vol. 1. Corrected Reprint <strong>of</strong> the 1972 Edition.Forest Department, Ministry <strong>of</strong> Agriculture and lands, Malaysia Longman Malaysia, 473 pp.Whitmore T.C. (ed.) 1983b. Tree Flora <strong>of</strong> Malaya. Vol. 2. Corrected Reprint <strong>of</strong> the 1972 Edition.Forest Department, Ministry <strong>of</strong> Primary Industries, Malaysia, Longman Malaysia, 442 pp.Whitmore T.C. 1985. Tropical Rain Forests <strong>of</strong> the Far East. Corrected Reprint <strong>of</strong> the 1984 Edition.Clarendon Press, Oxford, 352 pp.Whitmore T.C., Peralta R. and Brown K. 1985. Total <strong>species</strong> count in a Costa Rican tropical <strong>rain</strong><strong>forest</strong>. Journal <strong>of</strong> Tropical Ecology 1: 375–378.Wilkie P., Argent G., Cambell E. and Saridan A. 2004. The diversity <strong>of</strong> 15 ha <strong>of</strong> <strong>lowland</strong> mixeddipterocarp <strong>forest</strong>, Central Kalimantan. Biodiversity and Conservation 13(4): 695–708.Zamora P.M. and Co L. 1986. Guide to <strong>Philippine</strong> Flora and Fauna. Vol. II: Economic Ferns,Endemic Ferns, Gymnosperms. Natural Resources Management, Center Ministry <strong>of</strong> NaturalResources, and University <strong>of</strong> the <strong>Philippine</strong>s, JMC Press, Incorporated, Quezon City, <strong>Philippine</strong>s,273 pp.Zikeli S. 1998. Nutrient status and nutrient cycles <strong>of</strong> the tropical <strong>rain</strong><strong>forest</strong>, Mt. Pangasugan, Leyte,<strong>Philippine</strong>s. Diploma thesis, Martin - Luther - University Halle - Wittenberg, LandwirtschaftlicheFakultaet, Institut fu¨r Bodenkunde und Pflanzenernaehrung, 100 pp.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!