12.07.2015 Views

Proceedings of the Third International Conference on Invasive ...

Proceedings of the Third International Conference on Invasive ...

Proceedings of the Third International Conference on Invasive ...

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g><str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaSAN FRANCISCO, CALIFORNIANovember 8-10, 2004Editors:Debra R. Ayres, Science EditorDrew W. Kerr, Management EditorStephanie D. Erics<strong>on</strong>, Copy and Layout EditorPeggy R. Ol<str<strong>on</strong>g>of</str<strong>on</strong>g>s<strong>on</strong>, Executive Editor2010


CONFERENCE AND PROCEEDINGS FUNDINGCalifornia State Coastal C<strong>on</strong>servancySan Francisco Bay-Delta Science C<strong>on</strong>sortium (Agreement #46000001642)University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, DavisNati<strong>on</strong>al Science Foundati<strong>on</strong>California Sea GrantSan Francisco Bay Joint VentureSan Francisco Estuary ProjectSan Francisco Estuary InstituteU.S. Envir<strong>on</strong>mental Protecti<strong>on</strong> Agency, Regi<strong>on</strong> 9Suggested Citati<strong>on</strong>:Ayres, D.R., D.W. Kerr, S.D. Erics<strong>on</strong> and P.R. Ol<str<strong>on</strong>g>of</str<strong>on</strong>g>s<strong>on</strong>, eds. 2010. <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g><str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartina, 2004 Nov 8-10, San Francisco, CA, USA. San Francisco Estuary<strong>Invasive</strong> Spartina Project <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> California State Coastal C<strong>on</strong>servancy: Oakland, CA.Printed <strong>on</strong> recycled paper.


FORWARD & ACKNOWLEDGEMENTSThe <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartina c<strong>on</strong>vened to provide a forum for <str<strong>on</strong>g>the</str<strong>on</strong>g> bestand latest Spartina research, and an opportunity to discuss new developments in Spartina science with marshland managers and technical experts who had extensive experience with this invasive genus. The <str<strong>on</strong>g>the</str<strong>on</strong>g>me <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>ference, “Linking science and management,” reflected <str<strong>on</strong>g>the</str<strong>on</strong>g> desire <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> organizers to improve bothfields through increased exposure and interacti<strong>on</strong> with each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r, c<strong>on</strong>tinuing and extending a focus <strong>on</strong>uniting managers and researchers that was established at earlier internati<strong>on</strong>al c<strong>on</strong>ferences <strong>on</strong> this subject. Thefirst internati<strong>on</strong>al Spartina c<strong>on</strong>ference was held in 1990 in Seattle, Washingt<strong>on</strong>, and <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d in 1997 inOlympia, Washingt<strong>on</strong>. We are pleased to have hosted <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong>Spartina here in San Francisco, California in 2004.The success <str<strong>on</strong>g>of</str<strong>on</strong>g> this event was <str<strong>on</strong>g>the</str<strong>on</strong>g> result <str<strong>on</strong>g>of</str<strong>on</strong>g> hard work and support <str<strong>on</strong>g>of</str<strong>on</strong>g> a number <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals andorganizati<strong>on</strong>s. The <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> Organizing Committee helped to guide <str<strong>on</strong>g>the</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>ferenceand addressed organizati<strong>on</strong>al issues as <str<strong>on</strong>g>the</str<strong>on</strong>g>y arose. The <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> Organizing Committee included:Ms. Marcia Brockbank, Program Manager, San Francisco Estuary ProjectDr. Mike C<strong>on</strong>ner, Executive Director, San Francisco Estuary InstitutePr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Edwin Grosholz, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Science and Policy, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, DavisMr. Paul Hedge, Project Manager, Nati<strong>on</strong>al Oceans Office, AustraliaMr. Doug Johns<strong>on</strong>, Executive Director, California <strong>Invasive</strong> Plants CouncilMs. Peggy Ol<str<strong>on</strong>g>of</str<strong>on</strong>g>s<strong>on</strong>, Director, San Francisco Estuary <strong>Invasive</strong> Spartina ProjectDr. Kim Patten, Director, L<strong>on</strong>g Beach Research and Extensi<strong>on</strong> Unit, Washingt<strong>on</strong> State UniversityDr. Bobbye Smith, Regi<strong>on</strong>al Science Liais<strong>on</strong> to Office <str<strong>on</strong>g>of</str<strong>on</strong>g> Research and Development, USEPA Regi<strong>on</strong> 9Ms. Erin Williams, N<strong>on</strong>-native <strong>Invasive</strong> Species Program Coordinator, U.S. Fish and Wildlife ServiceThe Science Program Committee developed <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>ference program, selected presentati<strong>on</strong>s andspecial guest presenters, and provided support throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>ference. The Science Program Committeeincluded:Dr. Lars Anders<strong>on</strong>, Exotic and <strong>Invasive</strong> Weed Research Laboratory, U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> AgricultureDr. Debra Ayres, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Evoluti<strong>on</strong> and Ecology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, DavisDr. Peter Baye, San Francisco Estuary <strong>Invasive</strong> Spartina ProjectMs. Janie Civille, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Evoluti<strong>on</strong> and Ecology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, DavisDr. Joshua Collins, Wetlands Program, San Francisco Estuary InstitutePr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Edwin Grosholz, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Science and Policy, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, DavisDr. Kim Patten, L<strong>on</strong>g Beach Research and Extensi<strong>on</strong> Unit, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Washingt<strong>on</strong>Dr. Drew Talley, Romberg Tibur<strong>on</strong> Center, San Francisco Bay Nati<strong>on</strong>al Estuarine Research ReserveMajor financial support for <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>ference was provided by <str<strong>on</strong>g>the</str<strong>on</strong>g> California State CoastalC<strong>on</strong>servancy, San Francisco Bay-Delta Science C<strong>on</strong>sortium (Agreement #46000001642), and University <str<strong>on</strong>g>of</str<strong>on</strong>g>California, Davis. Additi<strong>on</strong>al support for <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>ference was provided by <str<strong>on</strong>g>the</str<strong>on</strong>g> Nati<strong>on</strong>al Science Foundati<strong>on</strong>,California Sea Grant, San Francisco Bay Joint Venture, San Francisco Estuary Project, San FranciscoEstuary Institute, and U.S. Envir<strong>on</strong>mental Protecti<strong>on</strong> Agency, Regi<strong>on</strong> 9.A lunche<strong>on</strong> and exhibit <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d day <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>ference provided an opportunity for participantsto network while learning about emerging treatment technologies. We are grateful to <str<strong>on</strong>g>the</str<strong>on</strong>g> followingcompanies for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir sp<strong>on</strong>sorship <str<strong>on</strong>g>of</str<strong>on</strong>g> this lunche<strong>on</strong>: Aquatic Envir<strong>on</strong>ments, Inc., BASF Corporati<strong>on</strong>, Cygneti


Enterprises West, Inc., Helena Chemical Company, M<strong>on</strong>santo Company, Nufarm Turf & Specialty, Wilbur-Ellis Company, and Wilco Industries.Producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this proceedings volume has been a l<strong>on</strong>g and fragmented process, because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>sporadic availability <str<strong>on</strong>g>of</str<strong>on</strong>g> time and funding. We thank <str<strong>on</strong>g>the</str<strong>on</strong>g> authors for both <str<strong>on</strong>g>the</str<strong>on</strong>g>ir time and effort in preparing<str<strong>on</strong>g>the</str<strong>on</strong>g>se excellent papers, and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir patience as we worked through several years <str<strong>on</strong>g>of</str<strong>on</strong>g> staff changes, competingpriorities, and funding loss. We are especially grateful to Debra Ayres, who ultimately coordinated <str<strong>on</strong>g>the</str<strong>on</strong>g> peerreview <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 36 papers in <str<strong>on</strong>g>the</str<strong>on</strong>g> first three secti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> this volume; to Drew Kerr, who reviewed and edited <str<strong>on</strong>g>the</str<strong>on</strong>g>16 papers in <str<strong>on</strong>g>the</str<strong>on</strong>g> last secti<strong>on</strong>; and to Stephanie Erics<strong>on</strong>, who worked countless hours for over four years toedit, organize, and layout <str<strong>on</strong>g>the</str<strong>on</strong>g> entire volume.Peggy R. Ol<str<strong>on</strong>g>of</str<strong>on</strong>g>s<strong>on</strong>Organizing Committee Chair andDirector, San Francisco Estuary <strong>Invasive</strong> Spartina Projectii


TABLE OF CONTENTSForward & Acknowledgments ................................................................................................................. iIntroducti<strong>on</strong> .......................................................................................................................................... viiChapter 1: Spartina Biology ................................................................................................................ 1California Cordgrass (Spartina foliosa), an Endemic <str<strong>on</strong>g>of</str<strong>on</strong>g> Salt Marsh Habitats al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> Pacific Coast <str<strong>on</strong>g>of</str<strong>on</strong>g>Western North AmericaM.C. Vasey ................................................................................................................................................ 3Local and Geographic Variati<strong>on</strong> in Spartina-herbivore Interacti<strong>on</strong>sS.C. Pennings ............................................................................................................................................ 9Speciati<strong>on</strong>, Genetic, and Genomic Evoluti<strong>on</strong> in SpartinaM.L. Ainouche, A. Baumel, R. Bayer, K. Fukunaga, T. Cariou and M.T. Misset .................................... 15Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> Spartina Hybrids in San Francisco BayD.R. Ayres and D.R. Str<strong>on</strong>g .................................................................................................................... 23Evolving Invasibility <str<strong>on</strong>g>of</str<strong>on</strong>g> Exotic Spartina Hybrids in Upper Salt Marsh Z<strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> San Francisco BayM.R. Pakenham-Walsh, D.R. Ayres, and D.R. Str<strong>on</strong>g ............................................................................. 29Varying Success <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina spp. Invasi<strong>on</strong>s in China: Genetic Diversity or Differentiati<strong>on</strong>?S. An, Y. Xiao, H. Qing, Z. Wang, C. Zhou, B. Li, S. Shi, D. Yu, Z. Deng, and L. Chen .......................... 33Spartina densiflora x foliosa Hybrids Found in San Francisco BayD.R. Ayres and A.K.F. Lee ...................................................................................................................... 37Fungal Symbiosis: A Potential Mechanism Of Plant <strong>Invasive</strong>nessR.J. Rodriguez, R.S. Redman, M. Hoy, and N. Elder ............................................................................... 39Is Ergot a Natural Comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina Marshes? Distributi<strong>on</strong> and Ecological Host Range <str<strong>on</strong>g>of</str<strong>on</strong>g>Salt Marsh Claviceps purpureaA.J. Fisher ............................................................................................................................................... 43Mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> Sulfide and Anoxia Tolerance in Salt Marsh Grasses in Relati<strong>on</strong> to Elevati<strong>on</strong>alZ<strong>on</strong>ati<strong>on</strong>B.R. Maricle and R.W. Lee ...................................................................................................................... 47Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Salinity <strong>on</strong> Photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis in C 4 Estuarine GrassesB.R. Maricle, O. Kiirats, R.W. Lee and G.E. Edwards ............................................................................ 55Chapter 2: Spartina Distributi<strong>on</strong> and Spread ................................................................................... 59A Tale <str<strong>on</strong>g>of</str<strong>on</strong>g> Two Invaded Estuaries: Spartina in San Francisco Bay, California and Willapa Bay,Washingt<strong>on</strong>D.R. Str<strong>on</strong>g ............................................................................................................................................. 61Spartina In China: Introducti<strong>on</strong>, History, Current Status and Recent ResearchS. An, H. Qing, Y. Xiao, C. Zhou, Z. Wang, Z. Deng, Y. Zhi and L. Chen ............................................... 65Spread <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> Spartina in <str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco EstuaryK. Zaremba, M. McGowan, and D. R. Ayres ........................................................................................... 73iii


Remote Sensing, LiDAR and GIS Inform Landscape and Populati<strong>on</strong> Ecology, Willapa Bay,Washingt<strong>on</strong>J.C. Civille, S.D. Smith and D.R. Str<strong>on</strong>g ................................................................................................ 83Implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Variable Recruitment for <str<strong>on</strong>g>the</str<strong>on</strong>g> Management <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflora in Willapa Bay,Washingt<strong>on</strong>J.G. Lambrinos, D.R. Str<strong>on</strong>g, J.C. Civille and J. Bando ........................................................................ 87Pollen Limitati<strong>on</strong> in a Wind-Pollinated <strong>Invasive</strong> Grass, Spartina alternifloraH.G. Davis, C.M. Taylor, J.G. Lambrinos, J.C. Civille and D.R. Str<strong>on</strong>g ............................................... 91<strong>Invasive</strong> Hybrid Cordgrass (Spartina alterniflora x S. foliosa) Recruitment Dynamics in OpenMudflats <str<strong>on</strong>g>of</str<strong>on</strong>g> San Francisco BayC.M. Sloop, D.R. Ayres and D.R. Str<strong>on</strong>g ................................................................................................ 95The Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> Intertidal Z<strong>on</strong>e and Native Vegetati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Survival and Growth <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina anglica in Nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Puget Sound, WA, USAC.E. Hellquist and R.A. Black ................................................................................................................ 99Will Spartina anglica Invade Northwards with Changing Climate?A.J. Gray and R.J. Mogg ...................................................................................................................... 103Competiti<strong>on</strong> am<strong>on</strong>g Marsh Macrophytes by Means <str<strong>on</strong>g>of</str<strong>on</strong>g> Vertical Geomorphological DisplacementJ.T. Morris ............................................................................................................................................ 109Modeling <str<strong>on</strong>g>the</str<strong>on</strong>g> Spread <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> Spartina Hybrids in San Francisco BayR.J. Hall, A.M. Hastings and D.R. Ayres .............................................................................................. 117Modeling <str<strong>on</strong>g>the</str<strong>on</strong>g> Spread and C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflora in a Pacific EstuaryC.M. Taylor, A. Hastings, H.G. Davis, J.C. Civille and F.S. Grevstad ................................................ 121Hybrid Cordgrass (Spartina) and Tidal Marsh Restorati<strong>on</strong> in San Francisco Bay: If You Build ItThey Will ComeD.R. Ayres and D.R. Str<strong>on</strong>g .................................................................................................................. 125Chapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> Spartina ..................................................................... 127Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Potential C<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> Large-scale Eradicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglicafrom <str<strong>on</strong>g>the</str<strong>on</strong>g> Tamar Estuary, TasmaniaM. Sheehan and J.C. Ellis<strong>on</strong>................................................................................................................. 129Spartina Invasi<strong>on</strong> Changes Intertidal Ecosystem Metabolism in San Francisco BayA.C. Tyler and E.D. Grosholz ............................................................................................................... 135Mechanistic Processes Driving Shifts in Benthic Infaunal Communities Following SpartinaHybrid Tidal Flat Invasi<strong>on</strong>C. Neira, E.D. Grosholz and L.A. Levin ............................................................................................... 141Spartina alterniflora Invasi<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> Yangtze River Estuary, China: A SynopsisB. Li, C-Z. Liao, X-D. Zhang, H-L. Chen, Q. Wang, Z-Y. Chen, X-J. Gan, J-H. Wu, B. Zhao,Z-J. Ma, X-L. Cheng, L-F. Jiang, Y-Q. Luo, and J-K. Chen ................................................................. 147The Role <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglica Producti<strong>on</strong> in Bivalve Diets in Nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Puget Sound, WA, USAC.E. Hellquist and R.A. Black .............................................................................................................. 153C<strong>on</strong>trasting Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina foliosa and Hybrid Spartina <strong>on</strong> Benthic InvertebratesE.D. Brusati and E.D. Grosholz ........................................................................................................... 161Impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> Benthic Invertebrates <strong>on</strong> Sediment Porewater Amm<strong>on</strong>ium and Sulfide: C<strong>on</strong>sequencesfor Spartina Seedling Growth.U.H. Mahl, A.C. Tyler and E.D. Grosholz ............................................................................................ 165Quantifying <str<strong>on</strong>g>the</str<strong>on</strong>g> Potential Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina Invasi<strong>on</strong> <strong>on</strong> Invertebrate Food Resources foriv


Community Spartina Educati<strong>on</strong> and Stewardship ProjectK. O'C<strong>on</strong>nell ......................................................................................................................................... 265Biological C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> SpartinaF.S. Grevstad, M.S. Wecker and D.R. Str<strong>on</strong>g ....................................................................................... 267Ecological Investigati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural Enemies for an Interstate Biological C<strong>on</strong>trol Programagainst Spartina GrassesD. Viola, L. Tewksbury and R. Casagrande ......................................................................................... 273Potential for Sediment-Applied Acetic Acid for C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alternifloraL.W.J. Anders<strong>on</strong> ................................................................................................................................... 277vi


INTRODUCTION“Maritime Spartina species define and maintain <str<strong>on</strong>g>the</str<strong>on</strong>g> shoreline al<strong>on</strong>g broad expanses <str<strong>on</strong>g>of</str<strong>on</strong>g> temperatecoasts where <str<strong>on</strong>g>the</str<strong>on</strong>g>y are native. The large Spartina species grow lower <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> tidal plane than o<str<strong>on</strong>g>the</str<strong>on</strong>g>rvascular plants; tall, stiff stems reduce waves and currents to precipitate sediments from turbidestuarine waters. With <str<strong>on</strong>g>the</str<strong>on</strong>g> right c<strong>on</strong>diti<strong>on</strong>s, roots grow upward through harvested sediments toelevate <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh. This engineering can alter <str<strong>on</strong>g>the</str<strong>on</strong>g> physical, hydrological, and ecologicalenvir<strong>on</strong>ments <str<strong>on</strong>g>of</str<strong>on</strong>g> salt marshes and estuaries. Where native, Spartinas are uniformly valued, mostlyfor defining and solidifying <str<strong>on</strong>g>the</str<strong>on</strong>g> shore. The potential to terrestrialize <str<strong>on</strong>g>the</str<strong>on</strong>g> shore was <str<strong>on</strong>g>the</str<strong>on</strong>g> rati<strong>on</strong>ale <str<strong>on</strong>g>of</str<strong>on</strong>g>many <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scores <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina introducti<strong>on</strong>s. In a time <str<strong>on</strong>g>of</str<strong>on</strong>g> rising sea levels, <str<strong>on</strong>g>the</str<strong>on</strong>g>se plants are valued asa barrier to <str<strong>on</strong>g>the</str<strong>on</strong>g> sea in native areas and in China and Europe where <str<strong>on</strong>g>the</str<strong>on</strong>g>y have been cultivated. Inc<strong>on</strong>trast, in North America, Australia, Tasmania, and New Zealand, and in some parts <str<strong>on</strong>g>of</str<strong>on</strong>g> China,n<strong>on</strong>native Spartinas are seen as a bane both to ecology and to human uses <str<strong>on</strong>g>of</str<strong>on</strong>g> salt marshes andestuaries” (Str<strong>on</strong>g and Ayres 2009).Three c<strong>on</strong>ferences <strong>on</strong> Spartina were held spread should be developed to understandduring <str<strong>on</strong>g>the</str<strong>on</strong>g> last two decades to detail current populati<strong>on</strong> dynamics that could inform c<strong>on</strong>trolunderstanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> biological, ecological, and strategies. Attendees recommended <str<strong>on</strong>g>the</str<strong>on</strong>g>se basicpolitical repercussi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> invasive Spartina and its steps to address invasive Spartina c<strong>on</strong>trol: identifyc<strong>on</strong>trol. The first internati<strong>on</strong>al c<strong>on</strong>ference <strong>on</strong> a lead agency, appoint a single pers<strong>on</strong> to be ainvasive Spartina was held in Seattle, Washingt<strong>on</strong>, “Spartina Czar,” inventory <str<strong>on</strong>g>the</str<strong>on</strong>g> extent <str<strong>on</strong>g>of</str<strong>on</strong>g> invasi<strong>on</strong>,USA in 1990 (Mumford et al. 1991). In additi<strong>on</strong> to identify routes <str<strong>on</strong>g>of</str<strong>on</strong>g> spread, enlist public support,organizers, <str<strong>on</strong>g>the</str<strong>on</strong>g>re were 31 attendees, 17 evaluate various c<strong>on</strong>trol methods, and c<strong>on</strong>tinuepresentati<strong>on</strong>s, and discussi<strong>on</strong> <strong>on</strong> outcomes <str<strong>on</strong>g>of</str<strong>on</strong>g> four workgroup discussi<strong>on</strong>s.regi<strong>on</strong>al strategy workgroups (all <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Pacific The sec<strong>on</strong>d c<strong>on</strong>ference was held in Olympia,coast <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> United States). While most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Washingt<strong>on</strong> in 1997 (Patten 1997). There werepresenters were local to Washingt<strong>on</strong> State, 130 attendees from five countries (United States,Spartina researchers also came from <str<strong>on</strong>g>the</str<strong>on</strong>g> U.S. East Canada, Australia, New Zealand, and UnitedCoast, <str<strong>on</strong>g>the</str<strong>on</strong>g> United Kingdom and New Zealand. Kingdom) at <str<strong>on</strong>g>the</str<strong>on</strong>g> 29 presentati<strong>on</strong>s. Like <str<strong>on</strong>g>the</str<strong>on</strong>g> firstMany questi<strong>on</strong>s were posed at <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>ference. c<strong>on</strong>ference, it included presentati<strong>on</strong>s <strong>on</strong> invasiveAttendees deliberated <strong>on</strong> potential changes to <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina biology, distributi<strong>on</strong>, impacts, andhabitat (sedimentati<strong>on</strong> rates and detrital c<strong>on</strong>trol. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> 1997 c<strong>on</strong>ference also hadbreakdown) and fauna (invertebrates, fish, and presentati<strong>on</strong>s addressing <str<strong>on</strong>g>the</str<strong>on</strong>g> “political ecology <str<strong>on</strong>g>of</str<strong>on</strong>g>birds) as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> invasi<strong>on</strong>, and during and Spartina c<strong>on</strong>trol” (Perkins 1997). Topics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>sefollowing c<strong>on</strong>trol. As well, questi<strong>on</strong>s arose <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> papers included public activities, and riskefficacies <str<strong>on</strong>g>of</str<strong>on</strong>g> biological, chemical and mechanical assessment associated with c<strong>on</strong>trol measures; “<str<strong>on</strong>g>the</str<strong>on</strong>g>c<strong>on</strong>trol methods, and potential c<strong>on</strong>straints <strong>on</strong> hysteria over <str<strong>on</strong>g>the</str<strong>on</strong>g> cordgrass” (Cohen 1997) andmethod — envir<strong>on</strong>mental, political and/or “<str<strong>on</strong>g>the</str<strong>on</strong>g> crisis <str<strong>on</strong>g>of</str<strong>on</strong>g> civil dialogue” (Markham 1997)ec<strong>on</strong>omic. It was agreed that models <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina were noted. New topics at <str<strong>on</strong>g>the</str<strong>on</strong>g> 1997 c<strong>on</strong>ferencevii


included <str<strong>on</strong>g>the</str<strong>on</strong>g> documentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrids betweenS. alterniflora and S. foliosa in San Francisco Bay(Daehler and Str<strong>on</strong>g 1997), <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> GISmapping and associated databases to inventoryand model future spread <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina (Harringt<strong>on</strong>et al. 1997), <str<strong>on</strong>g>the</str<strong>on</strong>g> first empirical data <strong>on</strong> drift <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina seed (Sayce et al. 1997), increases inshorebird populati<strong>on</strong>s after Spartina die-back in<str<strong>on</strong>g>the</str<strong>on</strong>g> United Kingdom (Gray et al. 1997), andcomparis<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> benthic invertebrates betweenSpartina stands and mudflat (Luiting et al. 1997).Attendees suggested that additi<strong>on</strong>al research bec<strong>on</strong>ducted to develop models <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong>dynamics and genetic shifts, to m<strong>on</strong>itor spread andenvir<strong>on</strong>mental impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> invasive Spartina, toimprove mapping and modeling in order to helpprioritize c<strong>on</strong>trol and evaluate costs. They alsoproposed carrying out research to quantifysediment accreti<strong>on</strong> rates in invaded areascompared with n<strong>on</strong>-invaded habitats, to evaluatephysiological tolerance and vulnerabilities <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina, assess envir<strong>on</strong>mental impacts associatedwith Spartina removal and specific c<strong>on</strong>troltechniques.The third internati<strong>on</strong>al c<strong>on</strong>ference <strong>on</strong> invasiveSpartina was held in San Francisco, California in2004. Hosted by <str<strong>on</strong>g>the</str<strong>on</strong>g> California State CoastalC<strong>on</strong>servancy and <str<strong>on</strong>g>the</str<strong>on</strong>g> U.S. Envir<strong>on</strong>mentalProtecti<strong>on</strong> Agency, <str<strong>on</strong>g>the</str<strong>on</strong>g> meeting drew 147presenters and attendees from seven countries,including China, France, <str<strong>on</strong>g>the</str<strong>on</strong>g> United States,Canada, Australia, New Zealand, and <str<strong>on</strong>g>the</str<strong>on</strong>g> UnitedKingdom. Fifty-seven oral and posterpresentati<strong>on</strong>s were shared; 40 <strong>on</strong> science and 17<strong>on</strong> c<strong>on</strong>trol or management. Of <str<strong>on</strong>g>the</str<strong>on</strong>g> 11 papers <strong>on</strong>Spartina biology in this volume, half were focused<strong>on</strong> genetics, with Spartina hybridizati<strong>on</strong>s being<str<strong>on</strong>g>the</str<strong>on</strong>g> primary c<strong>on</strong>text for genetics studies. Thirteenpapers <strong>on</strong> distributi<strong>on</strong> and spread <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartinaincluded spatio-temporal analysis using GIStechniques, predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> spread due tocompetiti<strong>on</strong>, climate change, evoluti<strong>on</strong>, andrestorati<strong>on</strong>; dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> seed set and seedlingrecruitment; and two simulati<strong>on</strong> models describingspread. Studies <strong>on</strong> impacts to <str<strong>on</strong>g>the</str<strong>on</strong>g> ecosystemranged from increased sedimentati<strong>on</strong> underSpartina canopies, to changes in invertebrateviiicommunities and food webs, to shifts in birdcommunities, populati<strong>on</strong>s, and behaviors due to<str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina invasi<strong>on</strong>.Of <str<strong>on</strong>g>the</str<strong>on</strong>g> 17 papers <strong>on</strong> c<strong>on</strong>trol and management,seven papers were focused <strong>on</strong> c<strong>on</strong>trol per se,while five detailed <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g>tentimes complex andbureaucracy-laden routes <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina c<strong>on</strong>trol inSan Francisco Bay, Washingt<strong>on</strong> State, Tasmaniaand New Zealand — mostly benefiting from <str<strong>on</strong>g>the</str<strong>on</strong>g>perspective <str<strong>on</strong>g>of</str<strong>on</strong>g> hindsight. Two papers c<strong>on</strong>sidered<str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>g and hard task that lies ahead to restoreestuaries that have underg<strong>on</strong>e major increases inmarsh elevati<strong>on</strong> due to Spartina invasi<strong>on</strong> — whatHacker and Dethier (this volume) called <str<strong>on</strong>g>the</str<strong>on</strong>g>“legacy <str<strong>on</strong>g>of</str<strong>on</strong>g> invasi<strong>on</strong>.”A primary reas<strong>on</strong> for hosting <str<strong>on</strong>g>the</str<strong>on</strong>g> 2004Spartina c<strong>on</strong>ference in San Francisco was to giveparticipants a first-hand look at <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong>,through helicopter and “mud-level” field trips —with an eye toward assessing <str<strong>on</strong>g>the</str<strong>on</strong>g> extent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>invasi<strong>on</strong>, and determining whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r c<strong>on</strong>trol was, infact, feasible or even necessary. These questi<strong>on</strong>swere discussed by an expert panel at <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>c<strong>on</strong>ference. Overwhelmingly, <str<strong>on</strong>g>the</str<strong>on</strong>g> panel agreedthat c<strong>on</strong>trol was both possible and urgentlyneeded. With this unequivocal recommendati<strong>on</strong>,<str<strong>on</strong>g>the</str<strong>on</strong>g> California State Coastal C<strong>on</strong>servancyproceeded to fund and coordinate an aggressiveregi<strong>on</strong>al program to eradicate introduced Spartina(including hybrids) from <str<strong>on</strong>g>the</str<strong>on</strong>g> San FranciscoEstuary. By fall 2010, <str<strong>on</strong>g>the</str<strong>on</strong>g> program hadsuccessfully reduced <str<strong>on</strong>g>the</str<strong>on</strong>g> area <str<strong>on</strong>g>of</str<strong>on</strong>g> invasive Spartinafrom more than 800 net acres in 2005, to less than100 net acres, a reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 90 percent. Theprogram is <strong>on</strong>going, with full effective eradicati<strong>on</strong>expected before 2020.The papers that follow in this c<strong>on</strong>ferenceproceedings volume detail <str<strong>on</strong>g>the</str<strong>on</strong>g> advances that havebeen made in our understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartinabiology and demography, <str<strong>on</strong>g>the</str<strong>on</strong>g> pr<str<strong>on</strong>g>of</str<strong>on</strong>g>oundenvir<strong>on</strong>mental effects that result from <str<strong>on</strong>g>the</str<strong>on</strong>g>seinvasi<strong>on</strong>s worldwide, and suggest <str<strong>on</strong>g>the</str<strong>on</strong>g> scope <str<strong>on</strong>g>of</str<strong>on</strong>g>unresolved issues.Debra AyresUniversity <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Davis


REFERENCESCohen E.S. 1997. Local Spartina management planning forcommunity oriented research and development. In: Patt<strong>on</strong>, K.,ed. Sec<strong>on</strong>d <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> Spartina <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g>.Washingt<strong>on</strong> State University Cooperative Extensi<strong>on</strong>, L<strong>on</strong>gBeach, WA. pp. 58-59.Daehler C.C. and D.R. Str<strong>on</strong>g. 1997. Invasi<strong>on</strong>s and hybridizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>cordgrasses, Spartina spp. In: Patt<strong>on</strong>, K., ed. Sec<strong>on</strong>d<str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> Spartina <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g>. Washingt<strong>on</strong>State University Cooperative Extensi<strong>on</strong>, L<strong>on</strong>g Beach, WA. p. 17.Gray A.J., A.F. Raybould and S.L. Brown. 1997. Theenvir<strong>on</strong>mental impact <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglica: past, present andpredicted. In: Patt<strong>on</strong>, K., ed. Sec<strong>on</strong>d <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> Spartina<str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g>. Washingt<strong>on</strong> State UniversityCooperative Extensi<strong>on</strong>, L<strong>on</strong>g Beach, WA. pp. 39-45.Hacker S.D. and M.N. Dethier. Where do we go from here?Alternative c<strong>on</strong>trol and restorati<strong>on</strong> trajectories for a marine grass(Spartina anglica) invader in different habitat types. In: Ayres,D.R., D.W. Kerr, S.D. Erics<strong>on</strong> and P.R. Ol<str<strong>on</strong>g>of</str<strong>on</strong>g>s<strong>on</strong>, eds.<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong>Spartina, 2004 Nov 8-10, San Francisco, CA, USA. SanFrancisco Estuary <strong>Invasive</strong> Spartina Project <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CaliforniaState Coastal C<strong>on</strong>servancy: Oakland, CA. (this volume).Harringt<strong>on</strong> J.A., M.B. Harringt<strong>on</strong> and C.J. Berlin. 1997. ModelingSpartina in Willapa Bay. . In: Patt<strong>on</strong>, K., ed. Sec<strong>on</strong>d<str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> Spartina <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g>. Washingt<strong>on</strong>State University Cooperative Extensi<strong>on</strong>, L<strong>on</strong>g Beach, WA. pp.23-26.Luiting V.T., J.R. Cordell, A.M. Olso and C.A. Simenstad. 1997.Does exotic Spartina alterniflora change benthic invertebrateassemblage? In: Patt<strong>on</strong>, K., ed. Sec<strong>on</strong>d <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> Spartina<str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g>. Washingt<strong>on</strong> State UniversityCooperative Extensi<strong>on</strong>, L<strong>on</strong>g Beach, WA. pp. 48-50.Markham D.C. 1997. Sustainable development and Spartinac<strong>on</strong>trol – a case study <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> crisis <str<strong>on</strong>g>of</str<strong>on</strong>g> civil dialog. In: Patt<strong>on</strong>, K.,ed. Sec<strong>on</strong>d <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> Spartina <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g>.Washingt<strong>on</strong> State University Cooperative Extensi<strong>on</strong>, L<strong>on</strong>gBeach, WA. pp. 64-67.Mumford T.F, P. Peyt<strong>on</strong>., J.R. Sayce. and S. Harbell, eds. 1991.Spartina Workshop Record. Washingt<strong>on</strong> Sea Grant Program,University <str<strong>on</strong>g>of</str<strong>on</strong>g> Washingt<strong>on</strong>, Seattle.Perkins J.H. 1997. The political ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina andglyphosate. In: Patt<strong>on</strong>, K., ed. Sec<strong>on</strong>d <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> Spartina<str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g>. Washingt<strong>on</strong> State UniversityCooperative Extensi<strong>on</strong>, L<strong>on</strong>g Beach, WA. p. 82.Patten, K., ed. 1997. Sec<strong>on</strong>d <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> Spartina <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g><str<strong>on</strong>g>Proceedings</str<strong>on</strong>g>. Washingt<strong>on</strong> State University CooperativeExtensi<strong>on</strong>, L<strong>on</strong>g Beach, WA.Sayce K., B. Dumbauld and J. Hidy. 1997. Seed dispersal in drift <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina alterniflora. In: Patt<strong>on</strong>, K., ed. Sec<strong>on</strong>d <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g>Spartina <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g>. Washingt<strong>on</strong> State UniversityCooperative Extensi<strong>on</strong>, L<strong>on</strong>g Beach, WA. pp. 27-31.Str<strong>on</strong>g, D.R. and D.R. Ayres. 2009. Spartina Introducti<strong>on</strong>s andC<strong>on</strong>sequences in Salt Marshes: Arrive, Survive, Thrive, andsometimes Hybridize. In: Silliman B.R., E. Grosholz and M.Bertness, eds. Human Impacts <strong>on</strong> Salt Marshes: A GlobalPerspective. University <str<strong>on</strong>g>of</str<strong>on</strong>g> California Press, Berkeley, CAix


CHAPTER ONESpartina Biology


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 1: Spartina BiologyCALIFORNIA CORDGRASS (SPARTINA FOLIOSA), AN ENDEMIC OF SALT MARSH HABITATSALONG THE PACIFIC COAST OF WESTERN NORTH AMERICAM.C. VASEYDepartment <str<strong>on</strong>g>of</str<strong>on</strong>g> Biology, San Francisco State University, San Francisco, CA 94132; andDepartment <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Studies, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Santa Cruz, CA 95064; mvasey@sfsu.eduCalifornia cordgrass (Spartina foliosa) is an endemic <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> California Floristic Province in westernNorth America. This paper reviews its historic and c<strong>on</strong>temporary distributi<strong>on</strong>, pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles its habitatcharacteristics including key adaptive traits, and makes <str<strong>on</strong>g>the</str<strong>on</strong>g> case that S. foliosa should be recognizedas a foundati<strong>on</strong> species within salt marshes characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> California Floristic Province. Thisinformati<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g>n c<strong>on</strong>sidered in <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> introgressive hybridizati<strong>on</strong> between S. foliosa and<str<strong>on</strong>g>the</str<strong>on</strong>g> closely related Spartina alterniflora. Clearly, <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid between S. foliosa and S. alterniflora isprogressively spreading genes <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora into pure stands <str<strong>on</strong>g>of</str<strong>on</strong>g> S. foliosa throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> SanFrancisco Bay estuary. While this raises a c<strong>on</strong>cern about <str<strong>on</strong>g>the</str<strong>on</strong>g> potential “extincti<strong>on</strong>” <str<strong>on</strong>g>of</str<strong>on</strong>g> S. foliosa as adistinct genotype, it is suggested that a greater problem may be <str<strong>on</strong>g>the</str<strong>on</strong>g> ecological implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> thisintrogressi<strong>on</strong> for salt marshes in <str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco Bay estuary. Ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than eradicati<strong>on</strong> per se, it issuggested that focused c<strong>on</strong>tainment may be <str<strong>on</strong>g>the</str<strong>on</strong>g> best strategy for minimizing <str<strong>on</strong>g>the</str<strong>on</strong>g> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> thishybrid <strong>on</strong> salt marshes in <str<strong>on</strong>g>the</str<strong>on</strong>g> California Floristic Province <str<strong>on</strong>g>of</str<strong>on</strong>g> this regi<strong>on</strong>. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r, c<strong>on</strong>tinued adaptivemanagement studies that evaluate <str<strong>on</strong>g>the</str<strong>on</strong>g> impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> this species <strong>on</strong> salt marsh restorati<strong>on</strong> arerecommended.INTRODUCTIONIn this review, I will examine what we know aboutCalifornia cordgrass and attempt to frame this discussi<strong>on</strong> in<str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>servati<strong>on</strong> management challenges thatinvasive Spartina alterniflora pose to <str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco Bayestuary. The approach will be to discuss what is known <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> historic and c<strong>on</strong>temporary distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartinafoliosa, to focus <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> suite <str<strong>on</strong>g>of</str<strong>on</strong>g> adaptive traits that makes S.foliosa such an important comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> low marsh habitatsin west coast estuaries, and to pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile S. foliosa as a“foundati<strong>on</strong> species” in this envir<strong>on</strong>ment. I will <str<strong>on</strong>g>the</str<strong>on</strong>g>nsummarize this informati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> threats posedby hybridizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S. foloiosa with <str<strong>on</strong>g>the</str<strong>on</strong>g> invasive Spartinaalterniflora.HISTORIC AND CONTEMPORARY DISTRIBUTION OFSPARTINA FOLIOSAMacD<strong>on</strong>ald and Barbour (1974) c<strong>on</strong>ducted a survey <str<strong>on</strong>g>of</str<strong>on</strong>g>salt marsh vegetati<strong>on</strong> al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> North American Pacificcoast ranging from Point Barrow, Alaska to Cabo San Lucas,Baja California. In general, <str<strong>on</strong>g>the</str<strong>on</strong>g>y found three dominant saltmarsh vegetati<strong>on</strong> communities over this extensive range: anarctic, boreal, and north temperate assemblage is dominatedby nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn grasses such as Deschampsia caespitosa andsedge species such as Carex lygnbyei, which ranges from <str<strong>on</strong>g>the</str<strong>on</strong>g>Seward Peninsula down to Drake’s Estero in Marin County;a south temperate and subtropical assemblage ranges fromSan Francisco Bay to Laguna San Ignacio in Baja California,which is <str<strong>on</strong>g>the</str<strong>on</strong>g> assemblage occupied by S. foliosa; and south <str<strong>on</strong>g>of</str<strong>on</strong>g>this regi<strong>on</strong>, tropical mangrove forests and scrub assemblagesdominate estuarine tidal wetlands.The historic distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S. foliosa occurs in thisintermediate z<strong>on</strong>e, also known as <str<strong>on</strong>g>the</str<strong>on</strong>g> California FloristicProvince (Raven and Axelrod 1978). The California FloristicProvince occurs al<strong>on</strong>g a cism<strong>on</strong>tane regi<strong>on</strong> from sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rnOreg<strong>on</strong> down through nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Baja California. It ischaracterized by a Mediterranean-type climate c<strong>on</strong>sisting <str<strong>on</strong>g>of</str<strong>on</strong>g>l<strong>on</strong>g, hot and dry summers punctuated by short, wet and coldwinters. The California Floristic Province has recently beenrecognized as <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> twenty-five global “biodiversity hotspots,” with over 48% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plant species being endemics(Myers et al. 2000; Calsbeek et al. 2003). Spartina foliosa isam<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g>se endemic species.The particular distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S. foliosa occurs in twomajor disjunct regi<strong>on</strong>s: (1) nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn California (SanFrancisco Bay regi<strong>on</strong>) and, approximately 565 kilometersaway, (2) a series <str<strong>on</strong>g>of</str<strong>on</strong>g> geographically proximal populati<strong>on</strong>sfrom Orange County in sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn California through southcentralBaja California. The historic nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Californiadistributi<strong>on</strong> has been c<strong>on</strong>fused by <strong>on</strong>e case <str<strong>on</strong>g>of</str<strong>on</strong>g>misidentificati<strong>on</strong> and two o<str<strong>on</strong>g>the</str<strong>on</strong>g>r cases <str<strong>on</strong>g>of</str<strong>on</strong>g> relatively recentnor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn range extensi<strong>on</strong>s. The case <str<strong>on</strong>g>of</str<strong>on</strong>g> misidentificati<strong>on</strong> wasfirst recognized by P. Faber (pers<strong>on</strong>al communicati<strong>on</strong>) whoperceived that <str<strong>on</strong>g>the</str<strong>on</strong>g> extensive stands <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina l<strong>on</strong>grecognized in Humboldt Bay wetlands were actuallySpartina densiflora (a caespitose species from SouthAmerica) ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than S. foliosa. Later, Spicher and Josselyn(1985) published a c<strong>on</strong>firmati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this observati<strong>on</strong>.Barnhart et al. (1992) speculate that S. densiflora may havebeen introduced to Humboldt Bay as l<strong>on</strong>g ago as <str<strong>on</strong>g>the</str<strong>on</strong>g> 1860sas part <str<strong>on</strong>g>of</str<strong>on</strong>g> shingle or dry ballast deposited during <str<strong>on</strong>g>the</str<strong>on</strong>g> height<str<strong>on</strong>g>of</str<strong>on</strong>g> shipping activities in this formerly bustling port. Spicher-3-


Chapter 1: Spartina Biology<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinaand Josselyn (1985) also reported a local populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S.foliosa at Bodega Bay; however, this populati<strong>on</strong> was almostcertainly not present when Barbour (1970) and MacD<strong>on</strong>aldand Barbour (1974) reported <strong>on</strong> salt marsh vegetati<strong>on</strong> inBodega Bay wetlands. In <str<strong>on</strong>g>the</str<strong>on</strong>g> 1990s, a large populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S.foliosa was observed col<strong>on</strong>izing <str<strong>on</strong>g>the</str<strong>on</strong>g> accreting delta <str<strong>on</strong>g>of</str<strong>on</strong>g>Lagunitas Creek in sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Tomales Bay (Baye 2004,pers<strong>on</strong>al communicati<strong>on</strong>). Howell (1949, 1970) in his flora<str<strong>on</strong>g>of</str<strong>on</strong>g> Marin, however, does not menti<strong>on</strong> this locality for S.foliosa nor do any historic herbarium collecti<strong>on</strong>s suggest thatei<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g> Bodega Bay or Tomales Bay populati<strong>on</strong>s occurredprior to <str<strong>on</strong>g>the</str<strong>on</strong>g> latter part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> twentieth century. MacD<strong>on</strong>aldand Barbour (1974) specifically remark up<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> absence <str<strong>on</strong>g>of</str<strong>on</strong>g>S. foliosa in Tomales Bay.On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, Howell (1949, 1970) and historicherbarium collecti<strong>on</strong>s do c<strong>on</strong>firm that S. foliosa hashistorically been found in Drake’s Estero in sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn PointReyes as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> relatively nearby Bolinas Lago<strong>on</strong> inMarin County. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r than <str<strong>on</strong>g>the</str<strong>on</strong>g>se two outer coastal estuaries,all o<str<strong>on</strong>g>the</str<strong>on</strong>g>r historic nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn California populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> S. foliosaare found within <str<strong>on</strong>g>the</str<strong>on</strong>g> lower porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco Bayestuary, ranging from tidal wetlands <str<strong>on</strong>g>of</str<strong>on</strong>g> South San FranciscoBay up through San Pablo Bay and <str<strong>on</strong>g>the</str<strong>on</strong>g> lower tidal wetlands<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Petaluma River, S<strong>on</strong>oma Creek, and <str<strong>on</strong>g>the</str<strong>on</strong>g> Napa River.Spartina foliosa c<strong>on</strong>tinues up into <str<strong>on</strong>g>the</str<strong>on</strong>g> Carquinez Straightsbut is largely unknown from Suisun Bay. In this easternregi<strong>on</strong>, it is apparently c<strong>on</strong>strained by low brackish marshvegetati<strong>on</strong> dominated by Schoenoplectus acutus andSchoenoplectus californicus and its distributi<strong>on</strong> is dynamicdepending <strong>on</strong> decadal shifts in <str<strong>on</strong>g>the</str<strong>on</strong>g> salinity gradient in thisporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary. It is somewhat remarkable that <str<strong>on</strong>g>the</str<strong>on</strong>g>reare no historic or current occurrences <str<strong>on</strong>g>of</str<strong>on</strong>g> S. foliosa from <str<strong>on</strong>g>the</str<strong>on</strong>g>Golden Gate south al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> central California coast to PointC<strong>on</strong>cepti<strong>on</strong>, including likely tidal wetlands such as ElkhornSlough and Morro Bay. Peter Baye (pers<strong>on</strong>alcommunicati<strong>on</strong> 2004) suggests that before <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>structi<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> jetties, <str<strong>on</strong>g>the</str<strong>on</strong>g>se central Californian lago<strong>on</strong>s were not tidalduring summers (due to low flows) so it is possible that <str<strong>on</strong>g>the</str<strong>on</strong>g>ydid not provide suitable habitat.In summary, S. foliosa in nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn California washistorically c<strong>on</strong>centrated within <str<strong>on</strong>g>the</str<strong>on</strong>g> lower, saline reaches <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco Bay estuary where it was an importantc<strong>on</strong>stituent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> extensive salt marshes that historicallydominated tidal wetlands in this regi<strong>on</strong>. It appears to beslowly moving north al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> coast and is now present inBodega Bay. Its eastern distributi<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> San FranciscoBay estuary is dynamic and dependant <strong>on</strong> l<strong>on</strong>g-term shifts <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> salinity gradient in <str<strong>on</strong>g>the</str<strong>on</strong>g> Carquinez Straight and lowerSuisun Bay subregi<strong>on</strong>.The sec<strong>on</strong>d historic center <str<strong>on</strong>g>of</str<strong>on</strong>g> distributi<strong>on</strong> for S. foliosais relatively well documented by MacD<strong>on</strong>ald and Barbour(1974), Trnka and Zedler (2000), and Wiggins (1980). Thenor<str<strong>on</strong>g>the</str<strong>on</strong>g>rnmost historic locality is Mugu Lago<strong>on</strong> (OrangeCounty), c<strong>on</strong>siderably south <str<strong>on</strong>g>of</str<strong>on</strong>g> Point C<strong>on</strong>cepti<strong>on</strong>. There is<str<strong>on</strong>g>the</str<strong>on</strong>g>n a fairly c<strong>on</strong>tinuous occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> S. foliosa whereverc<strong>on</strong>diti<strong>on</strong>s are suitable down to <str<strong>on</strong>g>the</str<strong>on</strong>g> Tijuana Estuary in SanDiego County (e.g. Anaheim Bay, Bolsa Chica Bay,Newport Bay, Santa Margarita River, Los PeñasquitosLago<strong>on</strong>, San Elijo Lago<strong>on</strong>, San Diegito Lago<strong>on</strong>, Missi<strong>on</strong>Bay, and San Diego Bay). This distributi<strong>on</strong> c<strong>on</strong>tinues in arelatively c<strong>on</strong>sistent fashi<strong>on</strong> al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> coast <str<strong>on</strong>g>of</str<strong>on</strong>g> BajaCalifornia in Estero de Punta Banda, Bahia de San Quintin,Laguna Guerrero Negro, Ojo de Liebre, Laguna San Ignacio,and Bahia de la Magdalena. It is <str<strong>on</strong>g>of</str<strong>on</strong>g> interest that Bahia de laMagdalena is at a boundary between tropical and subtropicalmarine ecosystems. It may be that S. foliosa is able to extendfur<str<strong>on</strong>g>the</str<strong>on</strong>g>r south than most California Floristic Province plantendemics because it is resp<strong>on</strong>ding as much to <str<strong>on</strong>g>the</str<strong>on</strong>g>se marineinfluences as to Mediterranean climate influences. South <str<strong>on</strong>g>of</str<strong>on</strong>g>Laguna Guerrero Negro, S. foliosa begins to co-occur withmangroves and mangrove-like shrubs such as Rhizophoramangle, Laguncularia racemosa, C<strong>on</strong>ocarpus erecta, andAvicennia germinans. MacD<strong>on</strong>ald and Barbour (1974) pointout that <str<strong>on</strong>g>the</str<strong>on</strong>g>se same mangrove associates co-occur withsmooth cordgrass (S. alterniflora) in marshes near Tabasco<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Gulf <str<strong>on</strong>g>of</str<strong>on</strong>g> Mexico. Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> closest geographic distancebetween California cordgrass and smooth cordgrass is at S.foliosa’s sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn distributi<strong>on</strong>al limit. There are <strong>on</strong>ly about1,200 kilometers separating <str<strong>on</strong>g>the</str<strong>on</strong>g> Gulf coast <str<strong>on</strong>g>of</str<strong>on</strong>g> Mexico from<str<strong>on</strong>g>the</str<strong>on</strong>g> Pacific coast <str<strong>on</strong>g>of</str<strong>on</strong>g> Baja California.HABITAT CHARACTERISTICS AND ADAPTIVE TRAITSThroughout its entire range, S. foliosa occupies adistinctive z<strong>on</strong>e associated with coastal salt marshes. In mostcases, it is <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly vascular plant species present in thisz<strong>on</strong>e, which roughly corresp<strong>on</strong>ds to bay or channel marginsat or near <str<strong>on</strong>g>the</str<strong>on</strong>g> mean high tide line (Schoenherr 1995). Everyday, S. foliosa habitat is inundated by salt water for <strong>on</strong>e toseveral hours. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r, it is exposed to <str<strong>on</strong>g>the</str<strong>on</strong>g> forces <str<strong>on</strong>g>of</str<strong>on</strong>g> waveacti<strong>on</strong> and high velocity channel flows. This combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>high salinity, prol<strong>on</strong>ged inundati<strong>on</strong>, and daily hydrologicaldisturbance is obviously bey<strong>on</strong>d <str<strong>on</strong>g>the</str<strong>on</strong>g> tolerance limits foro<str<strong>on</strong>g>the</str<strong>on</strong>g>r salt marsh vascular plant species. Spartina foliosa isable to tolerate <str<strong>on</strong>g>the</str<strong>on</strong>g>se extreme c<strong>on</strong>diti<strong>on</strong>s because <str<strong>on</strong>g>of</str<strong>on</strong>g> a uniquesuite <str<strong>on</strong>g>of</str<strong>on</strong>g> adaptive traits that include: (1) C4 photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis, aphysiological drought-adaptive mechanism which meansthat about half as much water is needed for <str<strong>on</strong>g>the</str<strong>on</strong>g> same amount<str<strong>on</strong>g>of</str<strong>on</strong>g> carbohydrate produced; (2) epidermal salt glands whichalso help to c<strong>on</strong>serve water by reducing salt c<strong>on</strong>centrati<strong>on</strong>sin cell sap; (3) possessi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> deep rhizomes (about 15 cm)which regenerate new segments each seas<strong>on</strong> and createextensive, branching mats that penetrate anaerobic sedimentsand anchor shoreline habitat; (4) stems and leaves that arecomposed <str<strong>on</strong>g>of</str<strong>on</strong>g> aerenchymous tissue that allows oxygen totravel from aerial porti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plant down to <str<strong>on</strong>g>the</str<strong>on</strong>g> rhizomesthat are embedded in anaerobic sediments; and (5) stems andleaves that are about <strong>on</strong>e meter tall, enabling vegetativestructures to remain above extreme high tide levels so thatoxygen can reliably be transported to <str<strong>on</strong>g>the</str<strong>on</strong>g> roots.-4-


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 1: Spartina BiologyThese vegetative adaptive traits are also complementedby a number <str<strong>on</strong>g>of</str<strong>on</strong>g> important reproductive adaptati<strong>on</strong>s thatinclude: (1) wind pollinati<strong>on</strong>; (2) asynchr<strong>on</strong>ous flowering;i.e. protogyny (i.e. females flower first, <str<strong>on</strong>g>the</str<strong>on</strong>g>n males comeinto bloom) which promotes out-crossing yet allows someoverlap in flowering time so that individuals can partiallyself-fertilize (reproductive insurance); (3) producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>large numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> small seeds that can be dispersed byflotati<strong>on</strong> (hydrochory); (4) seeds with awns and o<str<strong>on</strong>g>the</str<strong>on</strong>g>rstructures that make <str<strong>on</strong>g>the</str<strong>on</strong>g>m available for attachment to birdfea<str<strong>on</strong>g>the</str<strong>on</strong>g>rs and potential avian dispersal (Vivian-Smith andStiles 1994); (5) vegetative rhizome fragments that can betransported by water to fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r spread individual genotypes;(6) phenology cued into optimal c<strong>on</strong>diti<strong>on</strong>s for flowering(late summer), seed set (fall) and dispersal during winterstorm events; and (7) timing <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersal coinciding withfresh c<strong>on</strong>diti<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary during winter flooding, suchthat fresh water c<strong>on</strong>diti<strong>on</strong>s promote germinati<strong>on</strong> andestablishment.The unique suite <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetative and reproductiveadaptati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> S. foliosa have resulted in its successfuloccupati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an important low marsh niche within westcoast tidal wetlands found in <str<strong>on</strong>g>the</str<strong>on</strong>g> California FloristicProvince (and bey<strong>on</strong>d through south-central BajaCalifornia). In fact, as I will argue below, S. foliosa could beviewed as a “foundati<strong>on</strong> species” i.e. a species that has apr<str<strong>on</strong>g>of</str<strong>on</strong>g>ound effect <strong>on</strong> tidal wetland functi<strong>on</strong>s such assuccessi<strong>on</strong>, productivity, and habitat structure. Thesefuncti<strong>on</strong>s ultimately facilitate <str<strong>on</strong>g>the</str<strong>on</strong>g> occupati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> such tidalwetlands by a myriad <str<strong>on</strong>g>of</str<strong>on</strong>g> microbial, algal, plant, invertebrate,fish, and bird species.SPARTINA FOLIOSA AS A FOUNDATION SPECIESThe c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> a foundati<strong>on</strong> species has been articulatedby Dayt<strong>on</strong> (1972), Bruno and Bertness (2001), and Bruno etal. (2003) in <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> recognizing facilitati<strong>on</strong> as anessential element <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>temporary ecological <str<strong>on</strong>g>the</str<strong>on</strong>g>ory. Unlikekeyst<strong>on</strong>e species, which are proporti<strong>on</strong>ately rare incommunities and yet exert a disproporti<strong>on</strong>ate influence overcommunity structure through processes such as predati<strong>on</strong> orecological engineering, foundati<strong>on</strong> species are habitatformingdominant species that provide <str<strong>on</strong>g>the</str<strong>on</strong>g> framework for <str<strong>on</strong>g>the</str<strong>on</strong>g>assembly <str<strong>on</strong>g>of</str<strong>on</strong>g> an entire community. California cordgrassappears to be an excellent example <str<strong>on</strong>g>of</str<strong>on</strong>g> a foundati<strong>on</strong> species.The importance <str<strong>on</strong>g>of</str<strong>on</strong>g> S. foliosa as an initiator <str<strong>on</strong>g>of</str<strong>on</strong>g> tidalwetland successi<strong>on</strong> in San Francisco Bay tidal wetlands hasl<strong>on</strong>g been appreciated. For example, Howell (1949) makes<str<strong>on</strong>g>the</str<strong>on</strong>g> following comment: “Pacific (i.e. California) cord grassis generally <str<strong>on</strong>g>the</str<strong>on</strong>g> first plant to appear <strong>on</strong> tidal flats where itfrequently establishes broad pure stands. Later it issucceeded by Salicornia and a more diversified salt marshassociati<strong>on</strong> as higher ground is built up around it. In thislater associati<strong>on</strong> Spartina still occurs as a narrow fringeal<strong>on</strong>g tidal sloughs and also occasi<strong>on</strong>ally as a localizedcol<strong>on</strong>y in low areas”. In recently restored tidal wetlands in<str<strong>on</strong>g>the</str<strong>on</strong>g> bay today, such as Carl’s Marsh in S<strong>on</strong>oma County orP<strong>on</strong>d 2A in Napa County, this exact pattern has beenobserved. Spartina foliosa is usually <str<strong>on</strong>g>the</str<strong>on</strong>g> first species tocol<strong>on</strong>ize barren mud flats by floating seeds and rhizomefragments. As cl<strong>on</strong>es grow and establish, rhizomatous matstrap sediment and facilitate <str<strong>on</strong>g>the</str<strong>on</strong>g> incremental rise <str<strong>on</strong>g>of</str<strong>on</strong>g> a marshplain. As elevati<strong>on</strong>s become suitable, o<str<strong>on</strong>g>the</str<strong>on</strong>g>r vascular plantspecies col<strong>on</strong>ize <str<strong>on</strong>g>the</str<strong>on</strong>g> emerging marsh plain and eventuallydisplace S. foliosa to <str<strong>on</strong>g>the</str<strong>on</strong>g> accreting edges <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh,margins <str<strong>on</strong>g>of</str<strong>on</strong>g> drainage channels, or it persists in lowdepressi<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh where durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> inundati<strong>on</strong>apparently detracts o<str<strong>on</strong>g>the</str<strong>on</strong>g>r marsh plain species from becomingestablished (pers<strong>on</strong>al observati<strong>on</strong>).Once established, dense low marsh stands <str<strong>on</strong>g>of</str<strong>on</strong>g> S. foliosaprovide a key role in marsh productivity. Each year, S.foliosa rhizomes put out fresh shoots that rapidly grow intotall, mature stems and leaves. A c<strong>on</strong>siderable phase <str<strong>on</strong>g>of</str<strong>on</strong>g>carb<strong>on</strong> fixati<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>n takes place before flowering begins inmid summer (June). After fruiting in <str<strong>on</strong>g>the</str<strong>on</strong>g> fall, stems die backand much <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> vegetative matter <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> stand c<strong>on</strong>tributes to<str<strong>on</strong>g>the</str<strong>on</strong>g> detritus base <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> wetland food web. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r, stemwrack is washed up to <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh/upland transiti<strong>on</strong> z<strong>on</strong>e,providing habitat and nutrients for a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> organismsthat inhabit this interface. Al<strong>on</strong>g with this direct c<strong>on</strong>tributi<strong>on</strong>to <str<strong>on</strong>g>the</str<strong>on</strong>g> wetland food web, S. foliosa also provides animportant indirect c<strong>on</strong>tributi<strong>on</strong> because its rhizomatous massprovides key habitat for a diverse assemblage <str<strong>on</strong>g>of</str<strong>on</strong>g> algae,including nitrogen-fixing cyanobacteria. Daws<strong>on</strong> and Foster(1982) describe this phenomen<strong>on</strong> as follows: “The mudbeneath and between California cord grass is covered withvarious algae, including films <str<strong>on</strong>g>of</str<strong>on</strong>g> golden-colored, unicellulardiatoms, <str<strong>on</strong>g>the</str<strong>on</strong>g> brownish-green Enteromorpha, redPolysiph<strong>on</strong>ia, <str<strong>on</strong>g>the</str<strong>on</strong>g> brownish-green, siph<strong>on</strong>ous Vaucheria, andblue-green algae. All <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se kinds <str<strong>on</strong>g>of</str<strong>on</strong>g> algae can beimportant c<strong>on</strong>tributors to marsh productivity and, inadditi<strong>on</strong>, some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> blue-greens can c<strong>on</strong>vert nitrogen gasinto o<str<strong>on</strong>g>the</str<strong>on</strong>g>r nitro-nutrients for <str<strong>on</strong>g>the</str<strong>on</strong>g> algae as well as <str<strong>on</strong>g>the</str<strong>on</strong>g>flowering plants.”Stands <str<strong>on</strong>g>of</str<strong>on</strong>g> S. foliosa also provide habitat structure that isimportant for a number <str<strong>on</strong>g>of</str<strong>on</strong>g> species that occupy tidalwetlands. The relati<strong>on</strong>ship between California cordgrass andCalifornia and light-footed clapper rails (both subspecies <str<strong>on</strong>g>of</str<strong>on</strong>g>Rallus l<strong>on</strong>girostris) is an excellent case in point. Both forcover and nesting habitat, California cordgrass is essentialfor <str<strong>on</strong>g>the</str<strong>on</strong>g> success <str<strong>on</strong>g>of</str<strong>on</strong>g> this species. Boyer and Zedler (1996) alsopoint out that insects occupy stands <str<strong>on</strong>g>of</str<strong>on</strong>g> S. foliosa and <str<strong>on</strong>g>the</str<strong>on</strong>g>seundoubtedly provide food resources for passerine birds (e.g.marsh wrens and s<strong>on</strong>g sparrows) that live in salt marshhabitats.Finally, because <str<strong>on</strong>g>of</str<strong>on</strong>g> its importance as a foundati<strong>on</strong>species, particularly in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> successi<strong>on</strong>, S. foliosa is alsoan essential element for tidal wetland restorati<strong>on</strong> projects.Seeds, rhizome fragments, and plugs <str<strong>on</strong>g>of</str<strong>on</strong>g> S. foliosa can beused to revegetate formerly diked wetlands that are restored-5-


Chapter 1: Spartina Biology<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinato tidal acti<strong>on</strong>. An interesting example is <str<strong>on</strong>g>the</str<strong>on</strong>g> restorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Muzzi Marsh in Marin County which, because <str<strong>on</strong>g>of</str<strong>on</strong>g> an alteredhydrology, is still dominated by large meadows <str<strong>on</strong>g>of</str<strong>on</strong>g> Californiacordgrass. One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> goals <str<strong>on</strong>g>of</str<strong>on</strong>g> this project was to recoverhabitat for California clapper rails and, indeed, this specieshas col<strong>on</strong>ized Muzzi Marsh and now hosts a thriving,nesting populati<strong>on</strong> (Page and Evens 1987). In San FranciscoBay, it is likely that <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> S. foliosa material in marshrestorati<strong>on</strong> projects will have to be much more carefullyc<strong>on</strong>trolled because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> possibility that hybrid sourcematerial may c<strong>on</strong>taminate seed sources. In fact, <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>greatest challenges <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora and itsintrogressi<strong>on</strong> with S. foliosa revolves around <str<strong>on</strong>g>the</str<strong>on</strong>g> desperateneed and opportunity to restore historic tidal wetlands inlower San Francisco Bay in <str<strong>on</strong>g>the</str<strong>on</strong>g> face <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> potential for <str<strong>on</strong>g>the</str<strong>on</strong>g>hybrids to occupy restorati<strong>on</strong> sites and send <str<strong>on</strong>g>the</str<strong>on</strong>g> successi<strong>on</strong>altrajectory into a completely unknown realm.SUMMARY AND IMPLICATIONS OF HYBRIDIZATIONSpartina foliosa has great significance as a foundati<strong>on</strong>species, shaping <str<strong>on</strong>g>the</str<strong>on</strong>g> structure and functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> salt marshassemblages within <str<strong>on</strong>g>the</str<strong>on</strong>g> California Floristic Province. Theecological dilemma is that its genetically-compatible sisterspecies, S. alterniflora (Baumel et al. 2002), possessessimilar adaptive traits combined with greater robustness,fertility, and ecological amplitude than S. foliosa.Fortunately, a majority <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> range and individualpopulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> S. foliosa lie in <str<strong>on</strong>g>the</str<strong>on</strong>g> sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn center <str<strong>on</strong>g>of</str<strong>on</strong>g> itsdistributi<strong>on</strong> from Point Mugu in Orange County throughBahia Magdalena in Baja California. Unfortunately, since70% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> acreage <str<strong>on</strong>g>of</str<strong>on</strong>g> salt marsh habitats in Californiaoccurs in <str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco Bay estuary, it is likely that <str<strong>on</strong>g>the</str<strong>on</strong>g>largest extant populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> S. foliosa are at risk due toc<strong>on</strong>taminati<strong>on</strong> by hybridizati<strong>on</strong>. As pointed out by Daehlerand Str<strong>on</strong>g (1997), Ayres et al. (2003), and Baye (2004),given <str<strong>on</strong>g>the</str<strong>on</strong>g> rapid spread S. foliosa x S. alterniflora hybrids, <str<strong>on</strong>g>the</str<strong>on</strong>g>array <str<strong>on</strong>g>of</str<strong>on</strong>g> short form and tall form recombinants, <str<strong>on</strong>g>the</str<strong>on</strong>g> malesuperiority <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se hybrids (Antilla et al. 1998, 2000), and<str<strong>on</strong>g>the</str<strong>on</strong>g> greater ecological amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se hybrid genotypes, itis probable that within <str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco Bay estuary, S.foliosa will ultimately be transformed into a new entity thatcombines traits <str<strong>on</strong>g>of</str<strong>on</strong>g> both S. foliosa and S. alterniflora.Just as S. foliosa is a foundati<strong>on</strong> species in SanFrancisco Bay tidal wetlands, and a myriad <str<strong>on</strong>g>of</str<strong>on</strong>g> species havelife history traits that are adapted to this species, it is likelythat <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid entity will take its place as a foundati<strong>on</strong>species as well, triggering a cascade <str<strong>on</strong>g>of</str<strong>on</strong>g> resp<strong>on</strong>ses by specieswhose ecological roles are entwined with S. foliosa. It is alsolikely that some species will benefit from this emergenthybrid entity while o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs will not. These implicati<strong>on</strong>s arecurrently under investigati<strong>on</strong>, as revealed by several papersin this volume. In any case, given <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid canspread by wind-born pollen, it is hard to imagine that <str<strong>on</strong>g>the</str<strong>on</strong>g>future demography <str<strong>on</strong>g>of</str<strong>on</strong>g> S. foliosa in San Francisco Bay willnot be influenced by S. alterniflora to some degree. The factthat hybrids appear to be more successful than pure S.alterniflora suggests that S. foliosa is making an importantc<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> adaptive success <str<strong>on</strong>g>of</str<strong>on</strong>g> this entity. In thatsense, S. foliosa is not so much going “extinct” as it is beingtransformed into a more fertile and ecologically successfulnew organism that combines traits <str<strong>on</strong>g>of</str<strong>on</strong>g> both species, analternative c<strong>on</strong>diti<strong>on</strong> that Arnold (1997) describes in a morepositive light as “genetic enrichment”.In a review <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> role <str<strong>on</strong>g>of</str<strong>on</strong>g> natural hybridizati<strong>on</strong> andevoluti<strong>on</strong>, Arnold (1997) points out that <str<strong>on</strong>g>the</str<strong>on</strong>g>re are both socioculturaland scientific underpinnings to <str<strong>on</strong>g>the</str<strong>on</strong>g> view that allhybridizati<strong>on</strong> is “completely maladaptive”. Yet, we arediscovering that hybridizati<strong>on</strong> is an important evoluti<strong>on</strong>arymechanism. Stebbins (1950, 1957) argued that a high degree<str<strong>on</strong>g>of</str<strong>on</strong>g> genetic variability is required for rapid rates <str<strong>on</strong>g>of</str<strong>on</strong>g> adaptati<strong>on</strong>and speciati<strong>on</strong>. His idea was that genetic recombinati<strong>on</strong> fromhybridizati<strong>on</strong> between differently adapted species, ra<str<strong>on</strong>g>the</str<strong>on</strong>g>rthan mutati<strong>on</strong>, is <str<strong>on</strong>g>the</str<strong>on</strong>g> most likely source <str<strong>on</strong>g>of</str<strong>on</strong>g> such variati<strong>on</strong>.The challenge for hybrid speciati<strong>on</strong> under natural c<strong>on</strong>diti<strong>on</strong>sis to (1) produce a fit recombinant and (2) keep thisgenotype intact in <str<strong>on</strong>g>the</str<strong>on</strong>g> face <str<strong>on</strong>g>of</str<strong>on</strong>g> potential genetic swamping by<str<strong>on</strong>g>the</str<strong>on</strong>g> parents (Arnold 1996, Rieseberg 1997, Turelli et al.2001). The hybridizati<strong>on</strong> event between S. foliosa and S.alterniflora has been mediated by human causes ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r thanshifting climate or some o<str<strong>on</strong>g>the</str<strong>on</strong>g>r “natural” event. As a result,<str<strong>on</strong>g>the</str<strong>on</strong>g> more robust but perhaps less locally adapted S.alterniflora does not exist in high enough numbers to swampout <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, <str<strong>on</strong>g>the</str<strong>on</strong>g> far more abundant andlocally adaptive S. foliosa appears to lack <str<strong>on</strong>g>the</str<strong>on</strong>g> pollen fertilityto swamp out <str<strong>on</strong>g>the</str<strong>on</strong>g> invading hybrids (Antilla et al. 1998).What seems to be happening is that S. alterniflora genes areintrogressing into S. foliosa populati<strong>on</strong>s faster than pure S.alterniflora individuals are col<strong>on</strong>izing o<str<strong>on</strong>g>the</str<strong>on</strong>g>r parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bay(Antilla et al. 2000). In that sense, over many generati<strong>on</strong>s, ifpure S. alterniflora can be c<strong>on</strong>strained or even eradicated, itis more likely that S. foliosa will assimilate S. alternifloragenes into its populati<strong>on</strong>s than <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trary (i.e. S.alterniflora genes are introgressing into pure S. foliosapopulati<strong>on</strong>s). Ultimately, fertile recombinant genotypesappear to be poised to generate a new evoluti<strong>on</strong>ary unitwithin San Francisco Bay whose ultimate fate and impact <strong>on</strong><str<strong>on</strong>g>the</str<strong>on</strong>g> ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> wetlands <str<strong>on</strong>g>of</str<strong>on</strong>g> this estuary, and elsewhere,are both unknown and potentially bey<strong>on</strong>d our c<strong>on</strong>trol.While it is still possible, <strong>on</strong>e questi<strong>on</strong> should beaddressed that could have legal implicati<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g> potentialmanagement <str<strong>on</strong>g>of</str<strong>on</strong>g> this situati<strong>on</strong>. That is, is <str<strong>on</strong>g>the</str<strong>on</strong>g>re any evidencethat <str<strong>on</strong>g>the</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn S. foliosa populati<strong>on</strong>s are geneticallydistinct from sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> this species? If it couldbe established that nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn populati<strong>on</strong>s represent a distinctpopulati<strong>on</strong> segment, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <strong>on</strong>e could make <str<strong>on</strong>g>the</str<strong>on</strong>g> case that SanFrancisco Bay area S. foliosa should be protected under <str<strong>on</strong>g>the</str<strong>on</strong>g>Endangered Species Act. How that might be d<strong>on</strong>e is wellbey<strong>on</strong>d <str<strong>on</strong>g>the</str<strong>on</strong>g> scope <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper, but it might help focus astrategy <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tainment and c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S. foliosa that-6-


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 1: Spartina Biologywould provide additi<strong>on</strong>al leverage to help protect <str<strong>on</strong>g>the</str<strong>on</strong>g> areas<str<strong>on</strong>g>of</str<strong>on</strong>g> San Francisco Bay salt marshes that are so far notimpacted by <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina hybrid.In <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>g term, it certainly is possible that this hybridevoluti<strong>on</strong>ary unit will spread bey<strong>on</strong>d San Francisco Bay. Infact, in 2001, a hybrid individual was found in BolinasLago<strong>on</strong> (35 kilometers away), and in 2002, five hybridswere found in Drake’s Estero, some 45 kilometers from <str<strong>on</strong>g>the</str<strong>on</strong>g>nearest San Francisco Bay populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid entities(Zaremba and McGowan 2004). Hybrids within <str<strong>on</strong>g>the</str<strong>on</strong>g> bay haveincreased some 317%, particularly in <str<strong>on</strong>g>the</str<strong>on</strong>g> Central Bay(Zaremba and McGowan 2004). Given that <str<strong>on</strong>g>the</str<strong>on</strong>g> Bay is amagnet for migratory shorebirds and waterfowl, and thatmany species are flying south during fall migrati<strong>on</strong>, it is hardto imagine that <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid w<strong>on</strong>’t eventually col<strong>on</strong>ize <str<strong>on</strong>g>the</str<strong>on</strong>g>sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn center <str<strong>on</strong>g>of</str<strong>on</strong>g> distributi<strong>on</strong> for S. foliosa. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>rhand, even given dispersal to sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn California, it ispossible that <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid will not fare as well as S. foliosa in<str<strong>on</strong>g>the</str<strong>on</strong>g> hotter and drier sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn habitats. N<strong>on</strong>e<str<strong>on</strong>g>the</str<strong>on</strong>g>less, it isadvisable for sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn California and Baja Californiawetland managers to remain vigilant to this possibility and toact quickly to eliminate hybrids, as was <str<strong>on</strong>g>the</str<strong>on</strong>g> case in BolinasLago<strong>on</strong> and Drake’s Estero.As known by wetland ecologists for decades, S. foliosais a vital force in shaping salt marsh communities in SanFrancisco Bay, sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn California, and Baja California. Theintroducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora into San Francisco Bay hasmost likely begun a new chapter in <str<strong>on</strong>g>the</str<strong>on</strong>g> evoluti<strong>on</strong>ary fate <str<strong>on</strong>g>of</str<strong>on</strong>g>S. foliosa, and in so doing, is reorganizing its relati<strong>on</strong>ship toa host <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r tidal wetland species in this regi<strong>on</strong>. We needto forge a realistic strategy to deal with this unexpecteddevelopment. Massive eradicati<strong>on</strong> efforts could have <str<strong>on</strong>g>the</str<strong>on</strong>g>irown unexpected c<strong>on</strong>sequences, especially if directedtowards <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid. From <str<strong>on</strong>g>the</str<strong>on</strong>g> perspective <str<strong>on</strong>g>of</str<strong>on</strong>g> S. foliosa, <str<strong>on</strong>g>the</str<strong>on</strong>g>fact that its genome is being transformed into a new hybridentity is not, in my view, extincti<strong>on</strong> per se, although thisperspective can certainly be argued and it is not aninsignificant c<strong>on</strong>cern. The more compelling issue, however,is how <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid will affect future salt marsh and mud flathabitats. Given that large-scale wetland restorati<strong>on</strong> projectsare planned for <str<strong>on</strong>g>the</str<strong>on</strong>g> South Bay and elsewhere, it might beworth taking a pluralistic approach to managing this crisis.Design restorati<strong>on</strong> activities to test different approaches,from aggressive preventi<strong>on</strong> to passive observati<strong>on</strong>. Give<str<strong>on</strong>g>the</str<strong>on</strong>g>se trials enough time to evaluate <str<strong>on</strong>g>the</str<strong>on</strong>g> ecological impacts <str<strong>on</strong>g>of</str<strong>on</strong>g>wetland restorati<strong>on</strong> projects that are influenced by hybrids.To <str<strong>on</strong>g>the</str<strong>on</strong>g> degree possible, as in <str<strong>on</strong>g>the</str<strong>on</strong>g> eradicati<strong>on</strong> effort at Bolinasand Drake’s Estero, aggressively c<strong>on</strong>tain hybrid col<strong>on</strong>istswherever <str<strong>on</strong>g>the</str<strong>on</strong>g>y can be caught in time. Like it or not, humansare part <str<strong>on</strong>g>of</str<strong>on</strong>g> nature, and nature is full <str<strong>on</strong>g>of</str<strong>on</strong>g> surprises. In <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>gterm, perhaps <str<strong>on</strong>g>the</str<strong>on</strong>g> best we can do is manage this complexitywith respect, active curiosity (including variousexperimental approaches), and perhaps, if not fatalism, atleast a degree <str<strong>on</strong>g>of</str<strong>on</strong>g> tolerance and humble appreciati<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g>evoluti<strong>on</strong>ary creativity inherent in this remarkable situati<strong>on</strong>.ACKNOWLEDGMENTSI thank Peggy Ol<str<strong>on</strong>g>of</str<strong>on</strong>g>s<strong>on</strong> for inviting me to c<strong>on</strong>tribute thispaper to <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong>Spartina. C<strong>on</strong>structive comments <strong>on</strong> this manuscript havebeen c<strong>on</strong>tributed by Drew Talley and Tom Parker. MarkBertness provided helpful feedback <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> topic <str<strong>on</strong>g>of</str<strong>on</strong>g>foundati<strong>on</strong> species.REFERENCESAntilla, C.K., C.C. Daehler, N.E. Rank, D.R. Str<strong>on</strong>g. 1998. Greatermale fitness <str<strong>on</strong>g>of</str<strong>on</strong>g> a rare invader (Spartina alterniflora, Poaceae)threatens a comm<strong>on</strong> native (Spartina foliosa) with hybridizati<strong>on</strong>.Amer. J. Bot. 85: 1597-1601.Antilla, C.K., R.A. King, C. Ferris, D.R. Ayres, D.R. Str<strong>on</strong>g. 2000.Reciprocal hybrid formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina in San Francisco Bay.Mol. Ecol. 9:765-770.Arnold, M.L. 1996. Natural Hybridizati<strong>on</strong> and Introgressi<strong>on</strong>.Princet<strong>on</strong> Univ. Press, Princet<strong>on</strong>, NJ.Arnold, M.L. 1997. Natural Hybridizati<strong>on</strong> and Evoluti<strong>on</strong>. OxfordUniversity Press, NY.Ayres, D.R., D.R. Str<strong>on</strong>g, P. Baye. 2003b. Spartina foliosa(Poaceae) – a comm<strong>on</strong> species <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> road to rarity? Madr<strong>on</strong>o50: 209-213.Barbour, M.G. 1970. The flora and plant communities <str<strong>on</strong>g>of</str<strong>on</strong>g> BodegaHead, California. Madr<strong>on</strong>o 20:289-313.Baumel, A., M.L. Ainouche, R.J. Bayer, A.K. Ainouche, M.T.Misset.. 2002. Molecular phylogeny <str<strong>on</strong>g>of</str<strong>on</strong>g> hybridizing species from<str<strong>on</strong>g>the</str<strong>on</strong>g> genus Spartina Schreb. (Poaceae). Molecular Phylogeneticsand Evoluti<strong>on</strong> 22: 303-314.Baye, P. 2004. DRAFT. A review and assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> potential l<strong>on</strong>gtermecological c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> introduced cordgrassSpartina alterniflora in <str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco Estuary. A technicalreport prepared for <str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco Estuary <strong>Invasive</strong> SpartinaProject, Berkeley, CA.Boyer, K. and J.B. Zedler. 1996. Damage to cordgrass by scaleinsects in a c<strong>on</strong>structed salt marsh: effects. Estuaries 19:1-12.Bruno, J.F. and M.D. Bertness. 2001. Habitat modificati<strong>on</strong> andfacilitati<strong>on</strong> in benthic marine communities. In: M.D. Bertness etal., eds. Marine Community Ecology. Sinauer Press, pp. 201-218.Bruno, J.F., J.J. Stachowicz, M.D. Bertness. 2003. Inclusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>facilitati<strong>on</strong> into ecological <str<strong>on</strong>g>the</str<strong>on</strong>g>ory. Trends in Evoluti<strong>on</strong> andEcology 3: 119-125.Calsbeek R.; J.N. Thomps<strong>on</strong>; J.E. Richards<strong>on</strong>. 2003. Patterns <str<strong>on</strong>g>of</str<strong>on</strong>g>molecular evoluti<strong>on</strong> and diversificati<strong>on</strong> in a biodiversity hotspot:<str<strong>on</strong>g>the</str<strong>on</strong>g> California Floristic Province. Mol. Ecol. 12: 1021-1029.Daehler, C.C. and D.R. Str<strong>on</strong>g. 1996. Status, predicti<strong>on</strong>, andpreventi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> introduced cordgrasses (Spartina spp.) invasi<strong>on</strong>s inPacific estuaries, USA. Biol. C<strong>on</strong>s. 78:51-58.Dayt<strong>on</strong>, P.K. 1972. Toward an understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> communityresilience and <str<strong>on</strong>g>the</str<strong>on</strong>g> potential effects <str<strong>on</strong>g>of</str<strong>on</strong>g> enrichments to <str<strong>on</strong>g>the</str<strong>on</strong>g> benthos<str<strong>on</strong>g>of</str<strong>on</strong>g> McMurdo Soiund Antarctica. In Parker, B.C. eds,<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Colloquium <strong>on</strong> C<strong>on</strong>servati<strong>on</strong> Problems inAntarctica. Allen Press, pp. 81-96.Daws<strong>on</strong>, E.Y. and M.S. Foster 1982. Seashore Plants <str<strong>on</strong>g>of</str<strong>on</strong>g> California.U.C. Press, Berkeley.Howell, J.T. 1949. Marin Flora; manual <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> flowering plantsand ferns <str<strong>on</strong>g>of</str<strong>on</strong>g> Marin County, California. U.C. Press, Berkeley.Howell, J.T. 1970. Marin Flora; manual <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> flowering plantsand ferns <str<strong>on</strong>g>of</str<strong>on</strong>g> Marin County, California (Including a Supplement).U.C. Press, Berkeley.-7-


Chapter 1: Spartina Biology<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaMacD<strong>on</strong>ald, K.B. and M.G. Barbour. 1974. Beach and salt marshvegetati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> North Americcan Pacific Coast. In Reimold,R.J. and W.H. Queen (Eds) Ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> Halophytes. AcademicPress, N.Y., pp.175-224.Myers, N., R.A. Mittermeier, C.G. Mittermeier, G.A.B. da F<strong>on</strong>seca,J. Kents. 2000. Biodiversity hotpots for c<strong>on</strong>servati<strong>on</strong> priorities.Nature 403: 853-858.Page, G.W., and J.G. Evens. 1987. The sizes <str<strong>on</strong>g>of</str<strong>on</strong>g> clapper railpopulati<strong>on</strong>s at Corte Madera Ecological Reserve, Muzzi Marsh,San Clemente Creek, and Triangle Marsh. Report to MarinAudub<strong>on</strong> Society from Point Reyes Bird Observatory, May 1987.PRBO C<strong>on</strong>tributi<strong>on</strong> Number 367.Raven, P.H and D.I. Axelrod. 1978. Origin and Relati<strong>on</strong>ships <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> California Flora. U.C. Press, Berkeley.Reiseberg, L.H. 1997. Hybrid origins <str<strong>on</strong>g>of</str<strong>on</strong>g> plant species. Ann. Rev.Ecol. Syst. 28: 359-389.Schoenherr, A. 1995. A Natural History <str<strong>on</strong>g>of</str<strong>on</strong>g> California. U.C. Press,Berkeley, CA.Spicher, D. and M. Josselyn. 1985. Spartina (Gramineae) inNor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn California: distributi<strong>on</strong> and tax<strong>on</strong>omic notes. Madr<strong>on</strong>o32: 158-167.Stebbins, G.L. 1950. Variati<strong>on</strong> and evoluti<strong>on</strong> in plants. ColumbiaUniv Press, NY.Stebbins, G.L. 1957. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> hybridizati<strong>on</strong> in evoluti<strong>on</strong>. Am.Philos. Soc. 103: 231-251.Trnka, S. and J.B. Zedler. 2000. Site c<strong>on</strong>diti<strong>on</strong>s, not parentalphenotype, determine <str<strong>on</strong>g>the</str<strong>on</strong>g> height <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina foliosa. Estuaries23: 572-582.Turelli, M., N.H. Bart<strong>on</strong>, J.A. Coyne. 2001. Theory and speciati<strong>on</strong>.Trends Ecol. Evol. 16: 330-343.Vivian-Smith, G. and E.W. Stiles. 1994. Dispersal <str<strong>on</strong>g>of</str<strong>on</strong>g> salt marshseeds <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> feet and featyers <str<strong>on</strong>g>of</str<strong>on</strong>g> waterfowl. Wetlands 14: 316-319.Wiggins, I. 1980. Flora <str<strong>on</strong>g>of</str<strong>on</strong>g> Baja California. Stanford Univ. Press,Palo Alto, CA.Zaremba, K. and M.F. McGowan. 2004. San Francisco Estuary<strong>Invasive</strong> Spartina Project M<strong>on</strong>itoring Report for 2003. SanFrancisco Estuary <strong>Invasive</strong> Spartina Project, Berkeley, CA.-8-


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 1: Spartina BiologyLOCAL AND GEOGRAPHIC VARIATION IN SPARTINA-HERBIVORE INTERACTIONSS.C. PENNINGSDepartment <str<strong>on</strong>g>of</str<strong>on</strong>g> Biology and Biochemistry, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Houst<strong>on</strong>, Houst<strong>on</strong> TX 77204; spennings@uh.eduSpartina alterniflora is c<strong>on</strong>sumed by a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> herbivores, and <str<strong>on</strong>g>the</str<strong>on</strong>g> nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se plant-herbivoreinteracti<strong>on</strong>s varies <strong>on</strong> both local and geographic scales. The palatability <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora toherbivores varies within single marshes as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> elevati<strong>on</strong>. Tall-form plants, which occur atlow elevati<strong>on</strong>s close to creek banks, are more palatable to herbivores than are short-form plants,which occur at middle elevati<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh platform. The proximate causes <str<strong>on</strong>g>of</str<strong>on</strong>g> this localvariati<strong>on</strong> in palatability include variati<strong>on</strong> in leaf nitrogen c<strong>on</strong>tent and chemical defenses.Differences in <str<strong>on</strong>g>the</str<strong>on</strong>g>se leaf traits are driven by variati<strong>on</strong> in sediment biogeochemistry across <str<strong>on</strong>g>the</str<strong>on</strong>g>elevati<strong>on</strong>al gradient. The palatability <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora to herbivores also varies geographically.High-latitude (New England) plants al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> Atlantic Coast <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> United States are more palatableto herbivores than are low-latitude (South Atlantic Bight) plants. The proximate causes <str<strong>on</strong>g>of</str<strong>on</strong>g> thislatitudinal variati<strong>on</strong> in palatability include variati<strong>on</strong> in leaf nitrogen c<strong>on</strong>tent, toughness, andchemical defenses. Differences in palatability and leaf traits persisted over 5 cl<strong>on</strong>al generati<strong>on</strong>s in acomm<strong>on</strong>-garden greenhouse envir<strong>on</strong>ment, and thus are probably genetically determined. A number<str<strong>on</strong>g>of</str<strong>on</strong>g> processes may c<strong>on</strong>tribute to driving this variati<strong>on</strong> in leaf traits. The most likely ultimate causesare latitudinal variati<strong>on</strong> in herbivore pressure and latitudinal variati<strong>on</strong> in plant phenology.Understanding spatial variati<strong>on</strong> in interacti<strong>on</strong>s between herbivores and S. alterniflora within itsnative range may shed insights into how <str<strong>on</strong>g>the</str<strong>on</strong>g>se interacti<strong>on</strong>s develop when S. alterniflora isintroduced to new regi<strong>on</strong>s, and may inform bioc<strong>on</strong>trol efforts.Keywords: comm<strong>on</strong>-garden experiment, elevati<strong>on</strong>, herbivory, latitude, leaf traits, salt marsh,Spartina alternifloraINTRODUCTIONEarly salt-marsh studies discounted <str<strong>on</strong>g>the</str<strong>on</strong>g> importance <str<strong>on</strong>g>of</str<strong>on</strong>g>herbivory to salt marsh ecology because herbivores did notappear to play a major role in energy flow through <str<strong>on</strong>g>the</str<strong>on</strong>g> marshfood web (Smalley 1960; Teal 1962). More recent work,however, has shown that herbivores can affect <str<strong>on</strong>g>the</str<strong>on</strong>g> biomass,distributi<strong>on</strong>s and reproducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> salt marshplants (Srivastava and Jefferies 1996; Bortolus and Iribarne1999; Pennings and Bertness 2001; Silliman and Zieman2001; Rand 2003; Silliman and Bortolus 2003; Ho andPennings 2008). Thus, a general understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> salt-marsh plants requires c<strong>on</strong>siderati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plan<str<strong>on</strong>g>the</str<strong>on</strong>g>rbivoreinteracti<strong>on</strong>s.In order to obtain a general understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> plan<str<strong>on</strong>g>the</str<strong>on</strong>g>rbivoreinteracti<strong>on</strong>s, it is necessary to c<strong>on</strong>sider spatialvariati<strong>on</strong>. Even within <str<strong>on</strong>g>the</str<strong>on</strong>g> limited c<strong>on</strong>fines <str<strong>on</strong>g>of</str<strong>on</strong>g> salt marshhabitats, interacti<strong>on</strong>s between plants and herbivores are notexactly <str<strong>on</strong>g>the</str<strong>on</strong>g> same everywhere. They vary with marshelevati<strong>on</strong> (Silliman and Bertness 2002; Gorans<strong>on</strong> et al.2004), local plant community compositi<strong>on</strong> (Rand 1999,2003, 2004), and latitude (Pennings et al. 2001; Penningsand Silliman 2005; Pennings et al. 2007). Thus, a generalunderstanding <str<strong>on</strong>g>of</str<strong>on</strong>g> plant-herbivore interacti<strong>on</strong>s in salt marshesmust incorporate spatial variati<strong>on</strong> <strong>on</strong> a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> scales.Here, I address variati<strong>on</strong> in interacti<strong>on</strong>s betweenherbivores and Spartina alterniflora at local and geographicscales. At <str<strong>on</strong>g>the</str<strong>on</strong>g> local scale I focus <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> intertidal gradientacross <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh. Al<strong>on</strong>g this gradient, soil biogeochemistryvaries markedly, producing str<strong>on</strong>g variati<strong>on</strong> in plantmorphology and palatability to herbivores. At <str<strong>on</strong>g>the</str<strong>on</strong>g>geographic scale I focus <strong>on</strong> latitudinal variati<strong>on</strong> al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g>Atlantic Coast <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> United States. Latitudinal differencesin palatability <str<strong>on</strong>g>of</str<strong>on</strong>g> salt marsh plants to herbivores are strikingand general across <str<strong>on</strong>g>the</str<strong>on</strong>g> plant and herbivore community.Understanding variati<strong>on</strong> in plant-herbivore interacti<strong>on</strong>s atboth <str<strong>on</strong>g>the</str<strong>on</strong>g>se scales provides a framework for syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sizingresults <str<strong>on</strong>g>of</str<strong>on</strong>g> different studies d<strong>on</strong>e in different locati<strong>on</strong>s, allowstests <str<strong>on</strong>g>of</str<strong>on</strong>g> general ecological <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, and may shed insights intoecological processes obtained when Spartina is introducedinto new geographic regi<strong>on</strong>s.LOCAL VARIATIONSpartina alterniflora varies in palatability to herbivoreswithin individual marshes because <str<strong>on</strong>g>of</str<strong>on</strong>g> variati<strong>on</strong> in soilbiogeochemistry that mediates plant traits. Salt marshhabitats are physically stressful for plants. Periodic flooding<str<strong>on</strong>g>of</str<strong>on</strong>g> marsh soils leads to high levels <str<strong>on</strong>g>of</str<strong>on</strong>g> sulfides, low redoxlevels, low levels <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen, and low bioavailability <str<strong>on</strong>g>of</str<strong>on</strong>g>nitrogen, a suite <str<strong>on</strong>g>of</str<strong>on</strong>g> factors that are inimicable to vigorous-9-


Chapter 1: Spartina Biology<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinaplant growth (P<strong>on</strong>namperuma 1972; Mendelssohn andMorris 2000). The high salinity <str<strong>on</strong>g>of</str<strong>on</strong>g> salt marsh soils fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rlimits plant growth by reducing soil water potential,damaging cellular processes, and interfering with nitrogenuptake (Drake 1989; Mendelssohn and Morris 2000).Flooding and salinity levels vary across <str<strong>on</strong>g>the</str<strong>on</strong>g> marshlandscape (Pennings and Bertness 2001). Flooding is leastat <str<strong>on</strong>g>the</str<strong>on</strong>g> terrestrial border <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh, which is rarely flooded,and increases at lower marsh elevati<strong>on</strong>s; however, stresscaused by flooding may be reduced at low elevati<strong>on</strong>simmediately adjacent to creekbanks, where <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a highlevel <str<strong>on</strong>g>of</str<strong>on</strong>g> exchange between pore water and <str<strong>on</strong>g>the</str<strong>on</strong>g> water column(Howes et al. 1981; Howes and Goehringer 1994). Salinitylevels are low at <str<strong>on</strong>g>the</str<strong>on</strong>g> terrestrial border, close to those <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>water column at <str<strong>on</strong>g>the</str<strong>on</strong>g> creekbank, and may peak in <str<strong>on</strong>g>the</str<strong>on</strong>g> highmarsh if c<strong>on</strong>diti<strong>on</strong>s favor evaporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> water andc<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> salts (Pennings and Bertness 1999).Because <str<strong>on</strong>g>of</str<strong>on</strong>g> this variati<strong>on</strong> in soil biogeochemistry acrosselevati<strong>on</strong>, almost all salt marsh plants exhibit str<strong>on</strong>g spatialvariati<strong>on</strong> in height and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r morphological traits (Richardset al. 2005). For S. alterniflora, which occurs at middle tolow marsh elevati<strong>on</strong>s, plants at middle elevati<strong>on</strong>s are short(to < 50 cm) and plants at low elevati<strong>on</strong>s, especially close tocreekbanks, are tall (to > 200 cm). This spatial variati<strong>on</strong> inmorphology is str<strong>on</strong>gly driven by variati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> abioticenvir<strong>on</strong>ment, although genetic variati<strong>on</strong> am<strong>on</strong>g plants alsoaffects morphology (Valiela et al. 1978; Anders<strong>on</strong> andTreshow 1980; Gallagher et al. 1988; Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt et al. 2003).Given str<strong>on</strong>g variati<strong>on</strong> in plant height and morphologyacross <str<strong>on</strong>g>the</str<strong>on</strong>g> intertidal z<strong>on</strong>e, it is not surprising that palatabilityto herbivores also varies across intertidal gradients. Lowmarshplants are more palatable than mid-marsh plants to avariety <str<strong>on</strong>g>of</str<strong>on</strong>g> herbivores, including geese (Buchsbaum et al.1984), hemiptera (Denno et al. 1980; Denno et al. 1996),grasshoppers (Gorans<strong>on</strong> et al. 2004) and snails (Silliman andBertness 2002).The plant traits mediating this variati<strong>on</strong> in palatabilityhave not been explicitly examined; however, low- and midmarshplants differ in two important ways that are likely toaffect palatability to herbivores. First, low-marsh plantshave a higher nitrogen c<strong>on</strong>tent than do plants occurring in<str<strong>on</strong>g>the</str<strong>on</strong>g> mid-marsh (Gallagher et al. 1980; Bowdish and Stiling1998). Sec<strong>on</strong>d, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> phenolics (a class <str<strong>on</strong>g>of</str<strong>on</strong>g>chemical compounds that <str<strong>on</strong>g>of</str<strong>on</strong>g>ten deter feeding by herbivores)is lower in low-marsh plants than in mid-marsh plants(Buchsbaum et al. 1984). Variati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g>se two traits likelyexplains much <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> preference <str<strong>on</strong>g>of</str<strong>on</strong>g> herbivores for low-marshversus mid-marsh S. alterniflora.The palatability <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora to herbivores is alsoaffected by past herbivory (Denno et al. 2000). Feeding byherbivores may reduce plant nutriti<strong>on</strong>al c<strong>on</strong>tent and/orinduce defenses against herbivores. In low-latitude marshes,gastropods that damage S. alterniflora are much moreabundant in <str<strong>on</strong>g>the</str<strong>on</strong>g> mid marsh than <str<strong>on</strong>g>the</str<strong>on</strong>g> low marsh (Silliman andBertness 2002). To <str<strong>on</strong>g>the</str<strong>on</strong>g> extent that this pattern is generalam<strong>on</strong>g herbivores, herbivore feeding damage in <str<strong>on</strong>g>the</str<strong>on</strong>g> middlemarsh z<strong>on</strong>e could reinforce patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> plant palatabilitycreated by biogeochemical differences across elevati<strong>on</strong>.Variati<strong>on</strong> in palatability to herbivores across marshelevati<strong>on</strong> is not unique to S. alterniflora. A number <str<strong>on</strong>g>of</str<strong>on</strong>g> saltmarsh plants vary in palatability to herbivores as a functi<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> marsh elevati<strong>on</strong> and/or salinity (Hemminga and vanSoelen 1988; Levine et al. 1998; Mo<strong>on</strong> and Stiling 2000;Gorans<strong>on</strong> et al. 2004). Given that <str<strong>on</strong>g>the</str<strong>on</strong>g> physical stressgradients in salt marshes affect both nitrogen availability andplant size, it is likely that most salt marsh plants vary innitrogen c<strong>on</strong>tent and toughness across elevati<strong>on</strong>, and itwould be surprising if variati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g>se factors did notaffect palatability to herbivores. The details <str<strong>on</strong>g>of</str<strong>on</strong>g> how physicalstress mediates plant palatability in salt marshes, however,appear to be species-specific, depending <strong>on</strong> both <str<strong>on</strong>g>the</str<strong>on</strong>g> plantand <str<strong>on</strong>g>the</str<strong>on</strong>g> herbivore involved, and <str<strong>on</strong>g>the</str<strong>on</strong>g>refore cannot be reducedto a simple generalizati<strong>on</strong> that applies across all species(Gorans<strong>on</strong> et al. 2004).LATITUDINAL VARIATIONSpartina alterniflora also varies in palatability toherbivores across latitude. Paired feeding preference assayscomparing S. alterniflora from New England versus <str<strong>on</strong>g>the</str<strong>on</strong>g>South Atlantic Bight found that four species <str<strong>on</strong>g>of</str<strong>on</strong>g> herbivoresstr<strong>on</strong>gly preferred to eat <str<strong>on</strong>g>the</str<strong>on</strong>g> high-latitude plants versus <str<strong>on</strong>g>the</str<strong>on</strong>g>low-latitude plants (Pennings et al. 2001). Results weresignificant in 19 <str<strong>on</strong>g>of</str<strong>on</strong>g> 21 assays, and did not depend <strong>on</strong> seas<strong>on</strong>,year, species <str<strong>on</strong>g>of</str<strong>on</strong>g> herbivore, or geographic origin <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>herbivore. Similar results were obtained for nine o<str<strong>on</strong>g>the</str<strong>on</strong>g>r saltmarsh plant species that were studied, and held true across asuite <str<strong>on</strong>g>of</str<strong>on</strong>g> herbivore taxa, indicating that <str<strong>on</strong>g>the</str<strong>on</strong>g> preference forhigh- versus low-latitude plants was general across <str<strong>on</strong>g>the</str<strong>on</strong>g> entireplant and herbivore community.What plant traits explain <str<strong>on</strong>g>the</str<strong>on</strong>g> preference for high-latitudeplants? A comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plant traits suggested that highlatitudeS. alterniflora plants had a higher nitrogen c<strong>on</strong>tentand were less tough than low-latitude plants (Siska et al.2002). In additi<strong>on</strong>, given a choice between polar extracts <str<strong>on</strong>g>of</str<strong>on</strong>g>high- and low-latitude plants, c<strong>on</strong>sumers c<strong>on</strong>sistentlypreferred to eat <str<strong>on</strong>g>the</str<strong>on</strong>g> high-latitude extracts, suggesting that<str<strong>on</strong>g>the</str<strong>on</strong>g>re were latitudinal differences in polar chemistry.(C<strong>on</strong>sumers did not show c<strong>on</strong>sistent preferences for n<strong>on</strong>polarextracts.) Phenolics, which are polar compounds, werehigher in low- versus high-latitude plants. Thus, this studysuggested that all three plant traits that were examined—nitrogen, toughness and sec<strong>on</strong>dary chemistry—might makehigh-latitude plants more palatable than low-latitude plants.Differences in palatability <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora plantsacross latitude appear to be c<strong>on</strong>stitutive ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than solely aplastic resp<strong>on</strong>se to <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment. When S. alternifloraplants were grown in a comm<strong>on</strong>-garden greenhouse-10-


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 1: Spartina Biologyenvir<strong>on</strong>ment over five cl<strong>on</strong>al generati<strong>on</strong>s and two growingseas<strong>on</strong>s, latitudinal differences in palatability, toughness andnitrogen c<strong>on</strong>tent persisted undiminished (Salgado andPennings 2005). (Palatability <str<strong>on</strong>g>of</str<strong>on</strong>g> extracts was not examinedin this study.) This study did not rule out <str<strong>on</strong>g>the</str<strong>on</strong>g> possibility thatS. alterniflora has induced defenses against herbivores, butdid indicate that plastic resp<strong>on</strong>ses al<strong>on</strong>e, whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r to <str<strong>on</strong>g>the</str<strong>on</strong>g>biotic or abiotic envir<strong>on</strong>ment, would not be sufficient toexplain <str<strong>on</strong>g>the</str<strong>on</strong>g> latitudinal patterns in palatability. However,c<strong>on</strong>stitutive differences in defense are str<strong>on</strong>g, and couldexplain part or all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> latitudinal gradient in palatability.The c<strong>on</strong>clusi<strong>on</strong> that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is latitudinal variati<strong>on</strong> in geneticresistance to herbivory is c<strong>on</strong>sistent with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r studiesshowing c<strong>on</strong>stitutive latitudinal variati<strong>on</strong> in S. alternifloratraits (Seneca 1974; Seliskar et al. 2002) and geneticdifferentiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora populati<strong>on</strong>s across latitude(O'Brien and Freshwater 1999).The ultimate factors producing <str<strong>on</strong>g>the</str<strong>on</strong>g>se latitudinaldifferences in plant traits are yet to be determined; however,because all ten plant species studied showed similarlatitudinal differences in palatability (Pennings et al. 2001),it is probable that <str<strong>on</strong>g>the</str<strong>on</strong>g> ultimate explanati<strong>on</strong>s lie in generalecological and biogeographic processes ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r thanidiosyncratic aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina biology. Because <str<strong>on</strong>g>the</str<strong>on</strong>g>sestudies were all d<strong>on</strong>e at sites exposed to full-strengthseawater, latitudinal differences in soil edaphic c<strong>on</strong>diti<strong>on</strong>swere minor compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> differences that occur acrosselevati<strong>on</strong> within single marshes, and thus probably notimportant. It is possible that latitudinal differences insubstrate type (peat at high latitudes; mineral soils at lowlatitudes) might select for differences in plant palatability insome way. The most likely hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>ses, however, are that<str<strong>on</strong>g>the</str<strong>on</strong>g> differences in plant traits are produced by latitudinaldifferences in herbivore pressure or in plant phenology.C<strong>on</strong>siderable evidence indicates that herbivore pressure<strong>on</strong> S. alterniflora and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r marsh plants is greater at lowversus high latitudes. In low-latitude marshes, gastropodscan str<strong>on</strong>gly suppress growth <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora (Silliman andZieman 2001), but gastropods have no effect <strong>on</strong> S.alterniflora growth in high-latitude marshes (Pennings andSilliman 2005). Omnivorous grasshoppers are larger and aremore likely to eat leaves ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than seeds or arthropods inlow- versus high-latitude marshes (Pennings and Silliman2005; Was<strong>on</strong> and Pennings 2008). Grazing damage to S.alterniflora from snails and grasshoppers (but not Prokelisiaspp.) is greater in low- versus high-latitude marshes(Pennings, unpublished data). Thus, it is possible thatgreater herbivore pressure at low versus high latitudes couldselect for increased plant defenses at low latitudes, creating ageographic difference in plant palatability. Alternatively,<str<strong>on</strong>g>the</str<strong>on</strong>g> shorter growing seas<strong>on</strong> at high latitudes might select forleaves that are higher in nitrogen but less tough (Reich andOleksyn 2004; Wright et al. 2004). Differences in <str<strong>on</strong>g>the</str<strong>on</strong>g>se leaftraits driven by phenology would likely affect palatability toherbivores even if herbivore pressure did not select for <str<strong>on</strong>g>the</str<strong>on</strong>g>traits.CONCLUSIONSSpartina alterniflora varies in palatability to herbivoresat both local and geographic scales. We have a basicunderstanding <str<strong>on</strong>g>of</str<strong>on</strong>g> how variati<strong>on</strong> in leaf traits correlates withvariati<strong>on</strong> in palatability at both spatial scales, but how muchdifferent leaf traits affect <str<strong>on</strong>g>the</str<strong>on</strong>g> feeding preferences <str<strong>on</strong>g>of</str<strong>on</strong>g> differen<str<strong>on</strong>g>the</str<strong>on</strong>g>rbivores remains to be determined. Similarly, we havesome understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> how variati<strong>on</strong> in soilbiogeochemistry, herbivore pressure and phenology may be<str<strong>on</strong>g>the</str<strong>on</strong>g> ultimate factors mediating local and geographic variati<strong>on</strong>in leaf traits, but much remains to be learned about <str<strong>on</strong>g>the</str<strong>on</strong>g>relative importance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se ultimate factors at differentspatial scales.Given that local and geographic patterns in palatability<str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora exist, <str<strong>on</strong>g>the</str<strong>on</strong>g>se patterns are important for atleast three reas<strong>on</strong>s. First, <str<strong>on</strong>g>the</str<strong>on</strong>g>y provide a unifying frameworkto link studies <str<strong>on</strong>g>of</str<strong>on</strong>g> plant-herbivore interacti<strong>on</strong>s d<strong>on</strong>e indifferent z<strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> different marshes. Although differentresults may be obtained in different studies, much <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>variati<strong>on</strong> am<strong>on</strong>g studies may be rec<strong>on</strong>ciled by understanding<str<strong>on</strong>g>the</str<strong>on</strong>g> underlying differences in plant palatability at local andgeographic scales. Sec<strong>on</strong>d, this variati<strong>on</strong> allows tests <str<strong>on</strong>g>of</str<strong>on</strong>g>general <str<strong>on</strong>g>the</str<strong>on</strong>g>ories <str<strong>on</strong>g>of</str<strong>on</strong>g> plant-herbivore interacti<strong>on</strong>s, which positthat plant-herbivore interacti<strong>on</strong>s will vary predictably withphysical stress (Gorans<strong>on</strong> et al. 2004; Huberty and Denno2004) and latitude (Pennings et al. 2001). <str<strong>on</strong>g>Third</str<strong>on</strong>g>, <str<strong>on</strong>g>the</str<strong>on</strong>g>sepatterns may lend insight into some aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> introducti<strong>on</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora into new geographic locati<strong>on</strong>s. Forexample, plants introduced from relatively high-latitude sitesare likely to be more vulnerable to herbivores than plantsintroduced from low-latitude sites.ACKNOWLEDGMENTSMy work <strong>on</strong> local and geographic variati<strong>on</strong> ininteracti<strong>on</strong>s between S. alterniflora and its herbivores hasbeen supported by <str<strong>on</strong>g>the</str<strong>on</strong>g> Nati<strong>on</strong>al Geographic Society, <str<strong>on</strong>g>the</str<strong>on</strong>g>Nati<strong>on</strong>al Science Foundati<strong>on</strong> (DEB-0296160 and 0638796,OCE99-82133), and <str<strong>on</strong>g>the</str<strong>on</strong>g> Envir<strong>on</strong>mental Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Houst<strong>on</strong>.This work is part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Georgia Coastal Ecosystems LTERprogram.REFERENCESAnders<strong>on</strong>, C.M. and M. Treshow. 1980. A review <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mentaland genetic factors that affect height in Spartina alternifloraLoisel. (salt marsh cordgrass). Estuaries 3:168-176.Bortolus, A. and O. Iribarne. 1999. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> SW Atlantic burrowingcrab Chasmagnathus granulata <strong>on</strong> a Spartina salt marsh.Marine Ecology Progress Series 178:79-88.Bowdish, T.I. and P. Stiling. 1998. The influence <str<strong>on</strong>g>of</str<strong>on</strong>g> salt and nitrogen<strong>on</strong> herbivore abundance: direct and indirect effects. Oecologia113:400-405.-11-


Chapter 1: Spartina Biology<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaBuchsbaum, R., I. Valiela, and T. Swain. 1984. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> phenoliccompounds and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r plant c<strong>on</strong>stituents in feeding by Canadageese in a coastal marsh. Oecologia 63:343-349.Denno, R.F., M.A. Peters<strong>on</strong>, C. Gratt<strong>on</strong>, J. Cheng, G.A. Langellotto,A.F. Huberty, and D.L. Finke. 2000. Feeding-inducedchanges in plant quality mediate interspecific competiti<strong>on</strong> betweensap-feeding herbivores. Ecology 81:1814-1827.Denno, R.F., M.J. Raupp, D.W. Tallamy, and C.F. Reichelderfer.1980. Migrati<strong>on</strong> in heterogeneous envir<strong>on</strong>ments: differences inhabitat selecti<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> wing forms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dimorphicplanthopper, Prokelisia marginata (Homoptera: Delphacidae).Ecology 61:859-867.Denno, R.F., G.K. Roderick, M.A. Peters<strong>on</strong>, A.F. Huberty, H.G.Dobel, M.D. Eubanks, J.E. Losey, and G.A. Langellotto. 1996.Habitat persistence underlies intraspecific variati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> dispersalstrategies <str<strong>on</strong>g>of</str<strong>on</strong>g> planthoppers. Ecological M<strong>on</strong>ographs 66:389-408.Drake, B.G. 1989. Photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> salt marsh species. AquaticBotany 34:167-180.Gallagher, J.L., R.J. Reimold, R.A. Linthurst, and W.J. Pfeiffer.1980. Aerial producti<strong>on</strong>, mortality, and mineral accumulati<strong>on</strong>exportdynamics in Spartina alterniflora and Juncus roemerianusplant stands in a Georgia salt marsh. Ecology 61:303-312.Gallagher, J.L., G.F. Somers, D.M. Grant, and D.M. Seliskar. 1988.Persistent differences in two forms <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflora: acomm<strong>on</strong> garden experiment. Ecology 69:1005-1008.Gorans<strong>on</strong>, C.E., C.-K. Ho, and S.C. Pennings. 2004. Envir<strong>on</strong>mentalgradients and herbivore feeding preferences in coastal saltmarshes. Oecologia 140:591-600.Hemminga, M.A. and J. van Soelen. 1988. Estuarine gradients and<str<strong>on</strong>g>the</str<strong>on</strong>g> growth and development <str<strong>on</strong>g>of</str<strong>on</strong>g> Agapanthia villosoviridescens,(Coleoptera), a stem-borer <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> salt marsh halophyte Astertripolium. Oecologia 77:307-312.Ho, C.-K. and S.C. Pennings. 2008. C<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> omnivory fortrophic interacti<strong>on</strong>s <strong>on</strong> a salt marsh shrub. Ecology 89:6.Howes, B.L. and D.D. Goehringer. 1994. Porewater drainage anddissolved organic carb<strong>on</strong> and nutrient losses through <str<strong>on</strong>g>the</str<strong>on</strong>g> intertidalcreekbanks <str<strong>on</strong>g>of</str<strong>on</strong>g> a New England salt marsh. Marine EcologyProgress Series 114:289-301.Howes, B.L., R. W. Howarth, J.M. Teal, and I. Valiela. 1981. Oxidati<strong>on</strong>-reducti<strong>on</strong>potentials in a salt marsh: spatial patterns andinteracti<strong>on</strong>s with primary producti<strong>on</strong>. Limnology and Oceanography26:350-360.Huberty, A.F. and R.F. Denno. 2004. Plant water stress and itsc<strong>on</strong>sequences for herbivorous insects: a new syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis. Ecology85:1838-1398.Levine, J.M., S.D. Hacker, C.D.G. Harley, and M.D. Bertness.1998. Nitrogen effects <strong>on</strong> an interacti<strong>on</strong> chain in a salt marshcommunity. Oecologia 117:266-272.Mendelssohn, I.A. and J.T. Morris. 2000. Eco-physiological c<strong>on</strong>trols<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> productivity <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflora Loisel. In:Weinstein, M.P. and D.A. Kreeger, eds. C<strong>on</strong>cepts and C<strong>on</strong>troversiesin Tidal Marsh Ecology. Kluwer Academic Publishers,Dordrecht.Mo<strong>on</strong>, D.C. and P. Stiling. 2000. Relative importance <str<strong>on</strong>g>of</str<strong>on</strong>g> abioticallyinduced direct and indirect effects <strong>on</strong> a salt-marsh herbivore.Ecology 81:470-481.O'Brien, D.L. and D.W. Freshwater. 1999. Genetic diversity withintall form Spartina alterniflora Loisel. al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> Atlantic and Gulfcoasts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> United States. Wetlands 19:352-358.Pennings, S.C. and M.D. Bertness. 1999. Using latitudinal variati<strong>on</strong>to examine effects <str<strong>on</strong>g>of</str<strong>on</strong>g> climate <strong>on</strong> coastal salt marsh pattern andprocess. Current Topics in Wetland Biogeochemistry 3:100-111.Pennings, S.C., and M.D. Bertness. 2001. Salt marsh communities.Pages 289-316 In: Bertness, M.D., S.D. Gaines, and M.E. Hay,eds. Marine Community Ecology. Sinauer Associates, Sunderland.Pennings, S.C., and B. R. Silliman. 2005. Linking biogeographyand community ecology: latitudinal variati<strong>on</strong> in plant-herbivoreinteracti<strong>on</strong> strength. Ecology 86:2310-2319.Pennings, S.C., E.L. Siska, and M.D. Bertness. 2001. Latitudinaldifferences in plant palatability in Atlantic Coast salt marshes.Ecology 82:1344-1359.Pennings, S.C., M. Zimmer, N. Dias, M. Sprung, N. Davé, C.-K.Ho, A. Kunza, C. McFarlin, M. Mews, A. Pfauder, and C.Salgado. 2007. Latitudinal variati<strong>on</strong> in plant-herbivore interacti<strong>on</strong>sin European salt marshes. Oikos 116:543-549.P<strong>on</strong>namperuma, F.N. 1972. The chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> submerged soils.Advances in Agr<strong>on</strong>omy 24:29-95.Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt, C.E., S.E. Travis, and K.R. Edwards. 2003. Genotype andelevati<strong>on</strong> influence Spartina alterniflora col<strong>on</strong>izati<strong>on</strong> and growthin a created salt marsh. Ecological Applicati<strong>on</strong>s 13:180-192.Rand, T.A. 1999. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental c<strong>on</strong>text <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> susceptibility<str<strong>on</strong>g>of</str<strong>on</strong>g> Atriplex patula to attack by herbivorous beetles.Oecologia 121:39-46.Rand, T.A. 2003. Herbivore-mediated apparent competiti<strong>on</strong> betweentwo salt marsh forbs. Ecology 84:1517-1526.Rand, T.A. 2004. Competiti<strong>on</strong>, facilitati<strong>on</strong>, and compensati<strong>on</strong> forinsect herbivory in an annual salt marsh forb. Ecology 85:2046-2052.Reich, P.B. and J. Oleksyn. 2004. Global patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> plant leaf Nand P in relati<strong>on</strong> to temperature and latitude. <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>Nati<strong>on</strong>al Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Science, USA 101:11001-11006.Richards, C.L., S.C. Pennings, and L.A. D<strong>on</strong>ovan. 2005. Habitatrange and phenotypic variati<strong>on</strong> in salt marsh plants. Plant Ecology176:263-273.Salgado, C.S. and S.C. Pennings. 2005. Latitudinal variati<strong>on</strong> inpalatability <str<strong>on</strong>g>of</str<strong>on</strong>g> salt-marsh plants: are differences c<strong>on</strong>stitutive?Ecology 86:1571-1579.Seliskar, D.M., J.L. Gallagher, D.M. Burdick, and L.A. Mutz.2002. The regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ecosystem functi<strong>on</strong>s by ecotypic variati<strong>on</strong>in a dominant plant: a Spartina alterniflora salt-marsh casestudy. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology 90:1-11.Seneca, E.D. 1974. Germinati<strong>on</strong> and seedling resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> Atlanticand Gulf coasts populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflora. AmericanJournal <str<strong>on</strong>g>of</str<strong>on</strong>g> Botany 61:947-956.Silliman, B.R. and M.D. Bertness. 2002. A trophic cascade regulatessalt marsh primary producti<strong>on</strong>. <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Nati<strong>on</strong>alAcademy <str<strong>on</strong>g>of</str<strong>on</strong>g> Science, USA 99:10500-10505.Silliman, B.R. and A. Bortolus. 2003. Underestimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartinaproductivity in western Atlantic marshes: marsh invertebrates eatmore than just detritus. Oikos 101:549-554.Silliman, B.R. and J.C. Zieman. 2001. Top-down c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina alterniflora producti<strong>on</strong> by periwinkle grazing in a Virginiasalt marsh. Ecology 82:2830-2845.Siska, E.L., S.C. Pennings, T.L. Buck, and M.D. Hanisak. 2002.Latitudinal variati<strong>on</strong> in palatability <str<strong>on</strong>g>of</str<strong>on</strong>g> salt-marsh plants: whichtraits are resp<strong>on</strong>sible? Ecology 83:3369-3381.Smalley, A.E. 1960. Energy flow <str<strong>on</strong>g>of</str<strong>on</strong>g> a salt marsh grasshopper populati<strong>on</strong>.Ecology 41:785-790.Srivastava, D.S. and R.L. Jefferies. 1996. A positive feedback:herbivory, plant growth, salinity, and <str<strong>on</strong>g>the</str<strong>on</strong>g> desertificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> anArctic salt-marsh. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology 84:31-42.Teal, J.M. 1962. Energy flow in <str<strong>on</strong>g>the</str<strong>on</strong>g> salt marsh ecosystem <str<strong>on</strong>g>of</str<strong>on</strong>g> Georgia.Ecology 43:614-624.-12-


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 1: Spartina BiologyValiela, I., J.M. Teal, and W.G. Deuser. 1978. The nature <str<strong>on</strong>g>of</str<strong>on</strong>g> growthforms in <str<strong>on</strong>g>the</str<strong>on</strong>g> salt marsh grass Spartina alterniflora. AmericanNaturalist 112:461-470.Was<strong>on</strong>, E.L. and S.C. Pennings. 2008. Grasshopper (Orthoptera:Tettig<strong>on</strong>iidae) species compositi<strong>on</strong> and size across latitude in AtlanticCoast salt marshes. Estuaries and Coasts 31:335-343.Wright, I.J., P.B. Reich, M. Westoby, D.D. Ackerly, Z. Baruch, F.B<strong>on</strong>gers, J. Cavender-Bares, T. Chapin, J.H.C. Cornelissen, M.Diemer, J. Flexas, E. Garnier, P.K. Groom, J. Gulias, K. Hikosaka,B.B. Lam<strong>on</strong>t, T. Lee, W. Lee, C. Lusk, J.J. Midgley, M.-L.Navas, U. Niinements, J. Oleksyn, N. Osada, H. Poorter, P. Poot,L. Prior, V.I. Pyankov, C. Roument, S.C. Thomas, M.G.Tjoelker, E. Veneklass, and R. Villar. 2004. The worldwide leafec<strong>on</strong>omics spectrum. Nature 428:821-827.-13-


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 1: Spartina BiologySPECIATION,GENETIC AND GENOMIC EVOLUTION IN SPARTINAM.L. AINOUCHE 1 ,A.BAUMEL 2 ,R.BAYER 3 ,K.FUKUNAGA 4 ,T.CARIOU 1 AND M.T. MISSET 11 UMR CNRS 6553 Ecobio. University <str<strong>on</strong>g>of</str<strong>on</strong>g> Rennes 1. Campus de Beaulieu. 35 042 Rennes Cedex (France);Malika.Ainouche@univ-rennes1.fr2 Institut Méditerranéen d'Ecologie et de Paléoécologie, Université Aix-Marseille – Faculté des Sciences de St. Jérôme.Avenue Escadrille Normandie-Niemen Boite 461, F 13397 Marseille cedex 20 (France)3 University <str<strong>on</strong>g>of</str<strong>on</strong>g> Memphis, 201A Life Sciences Building, Memphis, TN 38152 (USA)4 Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Life and Envir<strong>on</strong>mental Sciences, Prefectural University <str<strong>on</strong>g>of</str<strong>on</strong>g> Hiroshima, 562 Nanatsuka-Cho, Shobara,Hiroshima 727-0023 (Japan)The genus Spartina <str<strong>on</strong>g>of</str<strong>on</strong>g>fers several examples <str<strong>on</strong>g>of</str<strong>on</strong>g> reticulate evoluti<strong>on</strong> through interspecifichybridizati<strong>on</strong> and polyploidy. These processes appear to have critical impact <strong>on</strong> adaptati<strong>on</strong> andinvasive abilities. Here we examine how molecular analyses have helped our undertsanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>evoluti<strong>on</strong>ary patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina, with particular focus <strong>on</strong> Spartina anglica, which is a well-knownexample <str<strong>on</strong>g>of</str<strong>on</strong>g> recent and successful polyploid species <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid origin that has now col<strong>on</strong>ized severalc<strong>on</strong>tinents. Molecular phylogenies have provided new insights <strong>on</strong> relati<strong>on</strong>ships and genomicdivergence am<strong>on</strong>g species. S. anglica is characterised by morphological plasticity and largeecological amplitude, c<strong>on</strong>trasting with a weak inter-individual genetic variati<strong>on</strong> in both its native(western Europe) and introduced (e.g., Australia) ranges. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> homeologous sub-genomes<str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica exhibit c<strong>on</strong>sistent epigenetic and expressi<strong>on</strong> plasticity, which would represent keyprocesses explaining <str<strong>on</strong>g>the</str<strong>on</strong>g> ecological success <str<strong>on</strong>g>of</str<strong>on</strong>g> this species.INTRODUCTIONHybridizati<strong>on</strong> and polyploidy are am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> mostprominent evoluti<strong>on</strong>ary processes involved in diversificati<strong>on</strong>and speciati<strong>on</strong> in plants. This is particularly well illustratedin <str<strong>on</strong>g>the</str<strong>on</strong>g> genus Spartina where reticulate events and genomeduplicati<strong>on</strong> (allopolyploidy) have occurred recurrently(Ainouche et al. 2004a). Recent hybridizati<strong>on</strong> andpolyploidisati<strong>on</strong> events have resulted in <str<strong>on</strong>g>the</str<strong>on</strong>g> expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>particularly successful genotypes with notorious ecologicalimpacts, and represent excellent opportunities to explore <str<strong>on</strong>g>the</str<strong>on</strong>g>early evoluti<strong>on</strong>ary processes that accompany <str<strong>on</strong>g>the</str<strong>on</strong>g>establishment and expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a new species.In this paper, we will examine how recent molecularanalyses have helped our understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> evoluti<strong>on</strong>arypatterns in Spartina, with particular focus <strong>on</strong> Spartinaanglica which is a well-known example <str<strong>on</strong>g>of</str<strong>on</strong>g> recent andsuccessful polyploid species <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid origin that has nowcol<strong>on</strong>ized several c<strong>on</strong>tinents.HYBRIDIZATION AND POLYPLOIDY AS MAJORPROCESSES IN THE EVOLUTION OF SPARTINAAll Spartina species are polyploids; although anextensive screening <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chromosome numbers at <str<strong>on</strong>g>the</str<strong>on</strong>g>populati<strong>on</strong> level still needs to be performed in variousspecies, no diploid species are known in <str<strong>on</strong>g>the</str<strong>on</strong>g> genus, where<str<strong>on</strong>g>the</str<strong>on</strong>g> main ploidy levels recorded in <str<strong>on</strong>g>the</str<strong>on</strong>g> existing literature aretetraploid (2n = 40), hexaploid (2n = 60, 62) or dodecaploid(2n = 10, 122, 14), with a basic chromosome number x = 10(Marchant 1963, 1968). Spartina is a member <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tribeChloridoideae <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Grass family and it is composed <str<strong>on</strong>g>of</str<strong>on</strong>g> 17perennial species that are usually salt tolerant and thuscol<strong>on</strong>ize coastal or inland salt marshes in both <str<strong>on</strong>g>the</str<strong>on</strong>g> Nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rnand Sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn hemispheres. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> species originatefrom <str<strong>on</strong>g>the</str<strong>on</strong>g> New World (Mobberley 1956). Only four taxa arenative to <str<strong>on</strong>g>the</str<strong>on</strong>g> Old-world: S. maritima, S. x neyrautii, S. xtownsendii and S. anglica, <str<strong>on</strong>g>the</str<strong>on</strong>g> three latter being <str<strong>on</strong>g>of</str<strong>on</strong>g> recent(19 th century) hybrid origin.Using nuclear (ITS and Waxy) and chloroplast (trnTtrnL)DNA sequences, Baumel et al. (2002a) have shownthat <str<strong>on</strong>g>the</str<strong>on</strong>g> genus has evolved through two well-supportedlineages. The first lineage comprises <str<strong>on</strong>g>the</str<strong>on</strong>g> American tetraploidspecies S. patens, S. bakeri, S. cynusoroides, S. gracilis, and<str<strong>on</strong>g>the</str<strong>on</strong>g> endemic S. arundinacea from <str<strong>on</strong>g>the</str<strong>on</strong>g> South-Atlantic andIndian oceans, that appears closely related to <str<strong>on</strong>g>the</str<strong>on</strong>g>sou<str<strong>on</strong>g>the</str<strong>on</strong>g>astern American S. ciliata. The sec<strong>on</strong>d lineage iscomposed <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hexaploid species including <str<strong>on</strong>g>the</str<strong>on</strong>g> eastern-American S. alterniflora, that appears weakly divergent fromits sister species S. foliosa from California, <str<strong>on</strong>g>the</str<strong>on</strong>g> AtlanticEuro-African S. maritima that is more differentiated at both<str<strong>on</strong>g>the</str<strong>on</strong>g> molecular and morphological levels. The tetraploid S.argentinensis is basal to this hexaploid lineage (Baumel etal. 2002a).Recent and well-documented hybridizati<strong>on</strong> eventsinvolve S. alterniflora that has been introduced in Californiaand in western Europe, and it has, in both cases, hybridizedwith native species (Fig. 1). The patterns and outcomes <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g>se hybridizati<strong>on</strong>s agree with <str<strong>on</strong>g>the</str<strong>on</strong>g> phylogeneticrelati<strong>on</strong>ships and <str<strong>on</strong>g>the</str<strong>on</strong>g> molecular divergence found betweenspecies: fertile introgressant hybrids involving <str<strong>on</strong>g>the</str<strong>on</strong>g> sisterparental species S. alterniflora and S. foliosa <strong>on</strong> <strong>on</strong>e hand,and sterile hybrids (S. x neyrautii and S. x townsendii)-15-


Chapter 1: Spartina Biology<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinafollowed by alloploid speciati<strong>on</strong> (S. anglica), involvingrelated, but more divergent parental species (S. alternifloraand S. maritima) <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand.In California, S. alterniflora was deliberately introducedin <str<strong>on</strong>g>the</str<strong>on</strong>g> mid-1970s in San Francisco Bay where it now cooccurswith <str<strong>on</strong>g>the</str<strong>on</strong>g> native S. foliosa (Daehler and Str<strong>on</strong>g 1997).D. Str<strong>on</strong>g and his co-workers have extensively studied <str<strong>on</strong>g>the</str<strong>on</strong>g>ecological and evoluti<strong>on</strong>ary c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> thisintroducti<strong>on</strong> (Ayres and Str<strong>on</strong>g 2010). Hybridizati<strong>on</strong>between <str<strong>on</strong>g>the</str<strong>on</strong>g>se two outcrossing, wind-pollinated speciesoccurs during <str<strong>on</strong>g>the</str<strong>on</strong>g> overlap <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir flowering periods and hasbeen shown to occur bi-directi<strong>on</strong>ally (Antilla et al. 2000).Recurrent backcrosses have resulted in hybrid swarms thatdisplay most frequently <str<strong>on</strong>g>the</str<strong>on</strong>g> chloroplast haplotype <str<strong>on</strong>g>of</str<strong>on</strong>g> S.foliosa and up to 90% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> nuclear markers specific to S.alterniflora (Ayres et al. 1999; Antilla et al. 2000). Thesehybrids are rapidly spreading, and <str<strong>on</strong>g>the</str<strong>on</strong>g>y are now c<strong>on</strong>sideredas a c<strong>on</strong>servati<strong>on</strong> threat to <str<strong>on</strong>g>the</str<strong>on</strong>g> native S. foliosa populati<strong>on</strong>s.Reticulate events recently recorded in California alsoinvolve S. densiflora that has been introduced from Chile:Baumel et al. (2002a) reported an unexpected phylogeneticinc<strong>on</strong>gruence between different molecular data sets for <str<strong>on</strong>g>the</str<strong>on</strong>g>phylogenetic placement <str<strong>on</strong>g>of</str<strong>on</strong>g> a S. densiflora sample fromHumboldt Bay (California), and have c<strong>on</strong>sequentlyinterpreted this inc<strong>on</strong>gruence as possibly resulting fromhybridizati<strong>on</strong> with S. foliosa or S. alterniflora. Although <str<strong>on</strong>g>the</str<strong>on</strong>g>history <str<strong>on</strong>g>of</str<strong>on</strong>g> S. densiflora in both its native and introducedrange needs fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r molecular investigati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> recentdiscovery <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrids between S. densiflora and S. foliosa in<str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco Bay (Ayres and Lee 2010) c<strong>on</strong>firms thathybridizati<strong>on</strong> may take place even between distantly relatedSpartina species.In western Europe, S. alterniflora has been accidentallyintroduced by shipping ballast at <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 19 th century.In Southampt<strong>on</strong> Bay (England) hybridizati<strong>on</strong> with S.maritima resulted in a first generati<strong>on</strong> hybrid S. townsendii,that is still growing vegetatively near Hy<str<strong>on</strong>g>the</str<strong>on</strong>g>. Chromosomedoubling gave rise to a new fertile allopolyploid species, S.anglica that has rapidly expanded in range (Gray andRaybould 1997). Spartina anglica and S. x townsendii have35403S. foliosa1S. alternifloraS. maritimaBidirecti<strong>on</strong>al introgressi<strong>on</strong>Sterile F1 hybrids&Allopolyploid speciati<strong>on</strong>S. foliosaS. alternifloraS. maritimaFig. 1. Phylogenetic relati<strong>on</strong>ships <str<strong>on</strong>g>of</str<strong>on</strong>g> three Spartina species involved in recent hybridizati<strong>on</strong>s. Branch lengths are proporti<strong>on</strong>al to <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> nucleotidechanges (above <str<strong>on</strong>g>the</str<strong>on</strong>g> branches) recorded from <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> two nuclear (ITS and Waxy) and <strong>on</strong>e chloroplast (trnT-trnL spacer) DNA sequences(data from Baumel et al. 2002a). The map displays <str<strong>on</strong>g>the</str<strong>on</strong>g> natural range <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se species and <str<strong>on</strong>g>the</str<strong>on</strong>g> two arrows indicate <str<strong>on</strong>g>the</str<strong>on</strong>g> recent introducti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartinaalterniflora.-16-


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 1: Spartina Biology<str<strong>on</strong>g>the</str<strong>on</strong>g> same chloroplast genome as S. alterniflora, which wasc<strong>on</strong>sidered <str<strong>on</strong>g>the</str<strong>on</strong>g> maternal genome d<strong>on</strong>or when it hybridizedwith S. maritima (Ferris et al. 2001).Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r sterile hybrid has been described in southwestFrance (Basque regi<strong>on</strong>) <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Spanish border and has beencalled S. x neyrautii (Foucault, 1897). As <str<strong>on</strong>g>the</str<strong>on</strong>g> two hybrids S.x neyrautii and S. x townsendii display markedmorphological differences, <str<strong>on</strong>g>the</str<strong>on</strong>g>y were first c<strong>on</strong>sidered asreciprocal hybrids (Marchant 1977). However, Baumel et al.(2003) found that S. x neyrautii also has <str<strong>on</strong>g>the</str<strong>on</strong>g> same chloroplastgenome as S. alterniflora, which indicates that hybridizati<strong>on</strong>occurred in <str<strong>on</strong>g>the</str<strong>on</strong>g> same directi<strong>on</strong> (with S. maritima as <str<strong>on</strong>g>the</str<strong>on</strong>g> maleparent) in England and in southwest France. Both parentalspecies (S. maritima and S. alterniflora) have been foundgenetically depauperate in western Europe (Raybould et al.1991a; Baumel et al. 2003; Yannic et al. 2004), so <str<strong>on</strong>g>the</str<strong>on</strong>g> twohybrids have inherited similar parental genotypes that maybe distinguished by a few molecular markers (Baumel et al.2003). Moreover, Salm<strong>on</strong> et al. (2005) have found that <str<strong>on</strong>g>the</str<strong>on</strong>g>setwo taxa display very similar genetic and epigeneticdynamics.THE YOUNG INVASIVE S. ANGLICAThe neoallopolyploid S. anglica is a perfect example <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> fitness that can be immediately gained followingduplicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a hybrid genome: This species displays largerecological amplitude than its parents; as a pi<strong>on</strong>eer species, itis able to col<strong>on</strong>ize a vacant niche fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r down <str<strong>on</strong>g>the</str<strong>on</strong>g> shore,and to tolerate several hours <str<strong>on</strong>g>of</str<strong>on</strong>g> immersi<strong>on</strong> under sea water(Thomps<strong>on</strong>, 1991). Spartina anglica is characterized byhigher physiological tolerance to anoxic soil c<strong>on</strong>diti<strong>on</strong>s, andit is able to enhance <str<strong>on</strong>g>the</str<strong>on</strong>g> sediment oxygenati<strong>on</strong> (Lee 2003).This species now has a worldwide distributi<strong>on</strong> (northwesternEurope, China, Australia, North America), as aresult <str<strong>on</strong>g>of</str<strong>on</strong>g> both natural propagati<strong>on</strong> and deliberateintroducti<strong>on</strong>s for land reclamati<strong>on</strong>. This propagati<strong>on</strong> isfacilitated by high seed producti<strong>on</strong> and impressivevegetative features such as str<strong>on</strong>g rhizomes, that increase <str<strong>on</strong>g>the</str<strong>on</strong>g>sediment accumulati<strong>on</strong>. The rapid spread <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> introducedplants has lead to various attempts to c<strong>on</strong>trol or eradiate <str<strong>on</strong>g>the</str<strong>on</strong>g>species (Hedge et al. 2010; Hacker and Dethier 2010).However, after a variable period <str<strong>on</strong>g>of</str<strong>on</strong>g> rapid expansi<strong>on</strong>, S.anglica populati<strong>on</strong>s seem to experience “dieback” in oldercol<strong>on</strong>ized sites, which is probably caused by age-relateddecline <str<strong>on</strong>g>of</str<strong>on</strong>g> vigor or by competiti<strong>on</strong> with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r species afterniche elevati<strong>on</strong> (Gray 2010; An et al. 2010).Spartina anglica benefits from <str<strong>on</strong>g>the</str<strong>on</strong>g> reuni<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> twodivergent (homeologous) genomes from S. alterniflora andS. maritima (Baumel et al. 2002a), <str<strong>on</strong>g>the</str<strong>on</strong>g>refore it ischaracterized by high levels <str<strong>on</strong>g>of</str<strong>on</strong>g> intergenomic heterozygosityat nuclear loci (Guenegou et al. 1988; Raybould et al.1991b). However, c<strong>on</strong>trasting with most o<str<strong>on</strong>g>the</str<strong>on</strong>g>r known cases<str<strong>on</strong>g>of</str<strong>on</strong>g> recent alloploid formati<strong>on</strong> that have been explored withmolecular markers (Soltis et al. 2004; Abbott and Lowe2004), S. anglica has underg<strong>on</strong>e a genetic bottleneck as aresult <str<strong>on</strong>g>of</str<strong>on</strong>g> ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r a unique hybridizati<strong>on</strong> event, or multipleevents involving similar parental genotypes (Ainouche et al.2004b). The populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica display c<strong>on</strong>sistentmorphological variati<strong>on</strong>, particularly in differentsuccessi<strong>on</strong>al stages where pi<strong>on</strong>eer populati<strong>on</strong>s have beenfound to exhibit phenotypes with smaller plants and smallerinflorescence than in mature populati<strong>on</strong>s (Thomps<strong>on</strong> et al.1991a). This variati<strong>on</strong> has been found to be caused mainlyby phenotypic plasticity ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than by geneticdifferentiati<strong>on</strong> (Thomps<strong>on</strong> et al. 1991b, c).The British populati<strong>on</strong>s appear genetically depauperatefor allozyme markers (Raybould et al. 1991b). Baumel et al.(2001) have explored <str<strong>on</strong>g>the</str<strong>on</strong>g> populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglica inFrance using RAPD (Random Amplificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> PolymorphicDNA) and ISSR (InterSimple Sequence Repeat) markers,and have found that most populati<strong>on</strong>s are composed <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>same major genotype that is identical to <str<strong>on</strong>g>the</str<strong>on</strong>g> first generati<strong>on</strong>hybrid S. x townsendii. Table 1 summarizes molecularinvestigati<strong>on</strong>s that have been c<strong>on</strong>ducted in populati<strong>on</strong>s fromboth <str<strong>on</strong>g>the</str<strong>on</strong>g> native range <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> species (western Europe) andmore recently col<strong>on</strong>ized c<strong>on</strong>tinents (Australia). Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>introduced populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica in <str<strong>on</strong>g>the</str<strong>on</strong>g> world arebelieved to have originated from Pool Harbor, sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rnEngland (Hubbard 1965). In sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn England, S. xtowsendii has been sampled in Hy<str<strong>on</strong>g>the</str<strong>on</strong>g> (for comparis<strong>on</strong> withS. anglica genotypes), and <str<strong>on</strong>g>the</str<strong>on</strong>g> populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica havebeen sampled in Lymingt<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> former site where S. anglicawas recorded, Fawley (near Hy<str<strong>on</strong>g>the</str<strong>on</strong>g>), Keyhaven, Sand Bank,and Studland (Pool Harbour). Samples from Ireland (BullIsland) were also analyzed. Forty-three out <str<strong>on</strong>g>of</str<strong>on</strong>g> 45 S. anglicasamples from England and Ireland have <str<strong>on</strong>g>the</str<strong>on</strong>g> same multilocusRAPD genotype (Table 1); <strong>on</strong>ly two individuals exhibitdifferent genotypes: <strong>on</strong>e individual, sampled in Fawleydiffers from <str<strong>on</strong>g>the</str<strong>on</strong>g> major genotype by <str<strong>on</strong>g>the</str<strong>on</strong>g> absence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>eRAPD marker, whereas two o<str<strong>on</strong>g>the</str<strong>on</strong>g>r individuals fromLymingt<strong>on</strong> are distinguished by <str<strong>on</strong>g>the</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> two DNAfragments. A few ISSR, IRAP and REMAP markers arepolymorphic (Table 1), which allowed Baumel et al. (2002b)to distinguish 13 genotypes that were encountered at lowfrequency in some populati<strong>on</strong>s; <str<strong>on</strong>g>the</str<strong>on</strong>g>se genotypes are verysimilar to <str<strong>on</strong>g>the</str<strong>on</strong>g> major <strong>on</strong>e, as most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>m differ by <strong>on</strong>ly <strong>on</strong>e(lost) marker.The French populati<strong>on</strong>s have been sampled in variouslocati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Atlantic coast (Baumel et al. 2001),including Baie des Veys (Normandy) <str<strong>on</strong>g>the</str<strong>on</strong>g> first col<strong>on</strong>ized sitein France where S. anglica was recorded in 1906. Mostindividuals sampled in France also bel<strong>on</strong>g to <str<strong>on</strong>g>the</str<strong>on</strong>g>predominant genotype. One small populati<strong>on</strong> from Kerdruc(sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Brittany) was found fixed for two mutati<strong>on</strong>s, with<str<strong>on</strong>g>the</str<strong>on</strong>g> absence <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e RAPD (Baumel et al. 2001) and <strong>on</strong>eISSR marker (this study). The few slightly different o<str<strong>on</strong>g>the</str<strong>on</strong>g>rgenotypes (Table 1) were found to be randomly distributed,and at low frequency, am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r French populati<strong>on</strong>s.In Saint-Armel (sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Brittany), S. anglica growssympatrically with its parental species S. maritima.-17-


Chapter 1: Spartina Biology<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaTable 1: Inter-individual molecular variati<strong>on</strong> in native and introduced Spartina anglica populati<strong>on</strong>s investigated using three multilocus methods:RAPD (Random Amplificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Polymorphic DNA, 14 primers), ISSR (Inter Simple Sequence Repeats, 4 primers), IRAP (Inter-Retrotranspos<strong>on</strong> Amplified Polymorphism, 7 primer pairs), REMAP (Retrotranspos<strong>on</strong> Microsatellite Amplified Polymorphism, 4 primer pairs).The mean individual number sampled per populati<strong>on</strong> = 10. N= number <str<strong>on</strong>g>of</str<strong>on</strong>g> samples analyzed per regi<strong>on</strong>; pm = polymorphic markers; m=number<str<strong>on</strong>g>of</str<strong>on</strong>g> markers recorded; mg = number <str<strong>on</strong>g>of</str<strong>on</strong>g> genotypes that differ from <str<strong>on</strong>g>the</str<strong>on</strong>g> “major” genotype identified by Baumel et al. (2001) and identical to S. xtownsendii.RAPD ISSR IRAP/REMAPN pm/ m mg/N N pm/m mg/N N pm/m mg/NEngland &Ireland45 3/146 2/45 20 0/1440 b 3/920/204/40 40 b 10/296 9/40France129 a 6/146 6/12920129 a 2/921/142/201/1295 2/296 2/5Australia 20 0/146 0/20 160 0/21 0/160 - - -a = data from Baumel et al. (2001); b = data from Baumel et al. (2002b).Intermediate, morphologically variable individuals may beencountered (Guenegou and Levasseur, pers<strong>on</strong>alcommunicati<strong>on</strong>), but no genetic exchange was foundbetween <str<strong>on</strong>g>the</str<strong>on</strong>g> two species according to cytological, allozyme(M.T. Misset and G. Allard, unpublished data) andmolecular (Baumel et al. 2001) data.In Australia, 160 samples were collected in various sitesfrom Victoria (Corner Inlet including <str<strong>on</strong>g>the</str<strong>on</strong>g> mouth <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>Albert River and Anders<strong>on</strong> Inlet, Gippsland) and Tasmania(Franklin River in Port Sorell Bay, Duck River nearSmitht<strong>on</strong>, Perkins Bay, Tamar River and Little Swanportestuary). In Victoria, various attempts at eradicati<strong>on</strong> havebeen performed using <str<strong>on</strong>g>the</str<strong>on</strong>g> herbicide Fusillade; we havesampled n<strong>on</strong>-treated z<strong>on</strong>es and also collected rare survivingplants from treated areas. Morphological variati<strong>on</strong> is alsoencountered in <str<strong>on</strong>g>the</str<strong>on</strong>g> Australian populati<strong>on</strong>s where two distinctphenotypes (short plants <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 – 20 cm high <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e handand taller plants measuring up to 30 cm <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand)were collected in <str<strong>on</strong>g>the</str<strong>on</strong>g> Albert River (Victoria). In LittleSwanport, 20 seedlings have been collected in order toanalyse samples resulting unambiguously from sexualreproducti<strong>on</strong>. We found that all <str<strong>on</strong>g>the</str<strong>on</strong>g> individuals investigated inAustralia and Tasmania display <str<strong>on</strong>g>the</str<strong>on</strong>g> same multilocus RAPD orISSR genotype (Table 1), which is identical to <str<strong>on</strong>g>the</str<strong>on</strong>g> majorgenotype encountered in Europe and to S. x townsendii.It appears that populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica in both itsnative range and more recently col<strong>on</strong>ized areas are mainlycomposed <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> major genotype that is identical to <str<strong>on</strong>g>the</str<strong>on</strong>g> firstgenerati<strong>on</strong> hybrid S. x townsendii. Some variati<strong>on</strong> may beencountered, however, that result from a few mutati<strong>on</strong>soccurring in local populati<strong>on</strong>s and corresp<strong>on</strong>ding in mostcases to fragment loss. Ayres and Str<strong>on</strong>g (2001) also notedfragment loss in S. anglica. They encountered variati<strong>on</strong> inRAPD and ISSR analyses including samples <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglicafrom England and Australia, and observed variable bandlossat five S. maritima-specific loci. However, Salm<strong>on</strong> et al.(2005) have reported preferential fragment loss <str<strong>on</strong>g>of</str<strong>on</strong>g> S.alterniflora-specific markers using AFLP (AmplifiedFragment Length Polymorphism) in both S. x townsendii andS. anglica. It should be noted that <str<strong>on</strong>g>the</str<strong>on</strong>g> estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> diversitymay be ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r underestimated or overestimated according toboth sampling (number <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals analysed and number<str<strong>on</strong>g>of</str<strong>on</strong>g> markers examined over <str<strong>on</strong>g>the</str<strong>on</strong>g> genome) and <str<strong>on</strong>g>the</str<strong>on</strong>g> techniqueused: We can see (Table 1) that although globally limited,more variati<strong>on</strong> can be detected from ISSR and IRAP–REMAP markers, that target repetitive (Simple SequenceRepeats and Retrotranspos<strong>on</strong>s), potentially more variable,parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> genome. Moreover, c<strong>on</strong>sidering that <str<strong>on</strong>g>the</str<strong>on</strong>g>se PCRbasedmarkers are dominant, variati<strong>on</strong> resulting fromsegregating heterozygous genotypes cannot be ruled out.Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r potential source <str<strong>on</strong>g>of</str<strong>on</strong>g> variati<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g> structuraldynamic that may affect recently formed allopolyploidgenomes (Wendel 2000), but in <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica, thisdynamic does not seem to affect <str<strong>on</strong>g>the</str<strong>on</strong>g> genotype initiallyformed in England to <str<strong>on</strong>g>the</str<strong>on</strong>g> extent that was reported in <str<strong>on</strong>g>the</str<strong>on</strong>g>literature in o<str<strong>on</strong>g>the</str<strong>on</strong>g>r allopolyploid model systems (Baumel etal. 2002b; Ainouche et al. 2004b).We have recently explored <str<strong>on</strong>g>the</str<strong>on</strong>g> epigenetic alterati<strong>on</strong>sthat may affect <str<strong>on</strong>g>the</str<strong>on</strong>g> allopolyploid genome <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica(Salm<strong>on</strong> et al. 2005). Epigenetic mechanisms causeexpressi<strong>on</strong> changes that do not result from <str<strong>on</strong>g>the</str<strong>on</strong>g> modificati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> DNA sequence, and have been shown to result fromvarious, n<strong>on</strong>-exclusive processes including DNA or hist<strong>on</strong>emethylati<strong>on</strong>, hist<strong>on</strong>e acetylati<strong>on</strong>, and chromatin compacti<strong>on</strong>-18-


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 1: Spartina BiologyTable 2: Comparis<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> cDNA AFLP patterns in S. maritima, S. alternilflora, <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid S. x townsendii and <str<strong>on</strong>g>the</str<strong>on</strong>g> allopolyploid S. anglia. The followingselective primer combinati<strong>on</strong>s have been employed: EcoRI + ACG / MseI + CAA, EcoRI + ACG / MseI + CAC, EcoRI + ACA / MseI +CAA EcoRI + ACA / MseI + CAC EcoRI + AAC / MseI + CAA EcoRI + AAC / MseI + CA, EcoRI + AGA / MseI + CAG, EcoRI + AGA / MseI +CCA, EcoRI + ACC / MseI + CAA.Fragments inheritedin <str<strong>on</strong>g>the</str<strong>on</strong>g> hybridand <str<strong>on</strong>g>the</str<strong>on</strong>g> allopolyploïdLost fragments in<str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid andpresent in <str<strong>on</strong>g>the</str<strong>on</strong>g>allopolyploidLost fragments in<str<strong>on</strong>g>the</str<strong>on</strong>g> allopolyploid<strong>on</strong>lyLost fragments in<str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid and <str<strong>on</strong>g>the</str<strong>on</strong>g>allopolyploidM<strong>on</strong>omorphic fragments(173)127 30 14 2Polymorphicfragments(61)S. maritimaS. alteniflora28 2 13 410 0 4 0TOTAL 165 (70.5%) 32 (13.7%) 31 (13.2%) 6 (2.5%)(Liu and Wendel 2003). Epigenetic changes have been foundassociated with phenotypic instability in experimentally resyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sizedallopolyploids (Comai et al. 2000; Kashkush etal. 2002). Using Methylati<strong>on</strong> Sensitive AFLP (MSAP),Salm<strong>on</strong> et al. (2005) have compared <str<strong>on</strong>g>the</str<strong>on</strong>g> methylati<strong>on</strong> patterns<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> parental genomes <str<strong>on</strong>g>of</str<strong>on</strong>g> S. maritima and S. alterniflora, tothose <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> first generati<strong>on</strong> hybrid S. x townsendii and <str<strong>on</strong>g>the</str<strong>on</strong>g>resulting allopolyploid S. anglica. Thirty percent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>parental methylati<strong>on</strong> patterns were found altered in <str<strong>on</strong>g>the</str<strong>on</strong>g>hybrid and <str<strong>on</strong>g>the</str<strong>on</strong>g> allopolyploid, indicating that hybridizati<strong>on</strong>,ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than genome doubling have triggered most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>methylati<strong>on</strong> changes <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica. This high level <str<strong>on</strong>g>of</str<strong>on</strong>g>epigenetic changes might explain <str<strong>on</strong>g>the</str<strong>on</strong>g> morphologicalplasticity <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica and calls for fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r investigati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> potential regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> duplicate gene expressi<strong>on</strong>.In this perspective, transcriptomic changes in <str<strong>on</strong>g>the</str<strong>on</strong>g> hybridand <str<strong>on</strong>g>the</str<strong>on</strong>g> allopolyploid have been first analyzed using cDNAAFLP in order to examine whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g> parental genomeshave different expressi<strong>on</strong> patterns in S. x townsendii and S.anglica. RNA was extracted from young leaves collected inindividual plants cultivated in <str<strong>on</strong>g>the</str<strong>on</strong>g> greenhouse, in S. maritima(collected in Guerande and Saint Armel, Brittany France), S.alterniflora (collected in Landerneau, Brittany, France), S. xtowsendii (Hy<str<strong>on</strong>g>the</str<strong>on</strong>g>, England) and S. anglica (collected inSaint Lunaire and Saint Armel, Brittany, France). Interindividualor inter-populati<strong>on</strong> variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cDNA AFLPpatterns was checked for each species and <strong>on</strong>ly stable,species-specific cDNA fragments were taken into accountfor comparis<strong>on</strong>s. Of <str<strong>on</strong>g>the</str<strong>on</strong>g> over 234 unambiguous fragmentsscored, 173 were found m<strong>on</strong>omorphic and 61 werepolymorphic (i.e., present or absent) between <str<strong>on</strong>g>the</str<strong>on</strong>g> parentalspecies. As AFLP markers are dominant, polymorphicfragments are expected to be present in <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid and <str<strong>on</strong>g>the</str<strong>on</strong>g>allopolyploid if expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> genome additivity isrespected. Loss <str<strong>on</strong>g>of</str<strong>on</strong>g> parental fragment is interpreted as a result<str<strong>on</strong>g>of</str<strong>on</strong>g> gene silencing, and appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> fragments that areabsent in both parental species is interpreted as novel geneexpressi<strong>on</strong>. This genome-wide screening <str<strong>on</strong>g>of</str<strong>on</strong>g> duplicate geneexpressi<strong>on</strong> has been previously successfully employed to testgenome expressi<strong>on</strong> plasticity in various allopolyploids(Comai et al. 2000; Lee and Chen 2001; Kashkush et al.2002; Soltis et al. 2004; Adams et al. 2005). About seventypercent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> parental fragments are inherited by both <str<strong>on</strong>g>the</str<strong>on</strong>g>hybrid and <str<strong>on</strong>g>the</str<strong>on</strong>g> allopolyploid (Table 2). Am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> 61polymorphic fragments, 38 (28 from S. maritima and 10from S. alterniflora) were found to be additive in <str<strong>on</strong>g>the</str<strong>on</strong>g> hybridand <str<strong>on</strong>g>the</str<strong>on</strong>g> allopolyploid. Seventeen fragments (13 from S.maritima and 4 from S. alterniflora) are lost in S. anglica.All <str<strong>on</strong>g>the</str<strong>on</strong>g> fragments present in <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid and <str<strong>on</strong>g>the</str<strong>on</strong>g> allopolyploidare already present in <strong>on</strong>e (or both) <str<strong>on</strong>g>the</str<strong>on</strong>g> parental species.When c<strong>on</strong>sidering both m<strong>on</strong>omorphic and polymorphicfragments between <str<strong>on</strong>g>the</str<strong>on</strong>g> parental species, <str<strong>on</strong>g>the</str<strong>on</strong>g> allopolyploidhas lost 37 parental fragments <str<strong>on</strong>g>of</str<strong>on</strong>g> which 31 were still presentin <str<strong>on</strong>g>the</str<strong>on</strong>g> F1 hybrid S. x townsendii and 6 were lost in <str<strong>on</strong>g>the</str<strong>on</strong>g> hybridand <str<strong>on</strong>g>the</str<strong>on</strong>g> allopolyploid, which indicates an overall silencing inS. anglica <str<strong>on</strong>g>of</str<strong>on</strong>g> 15.8 % <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> examined loci, that occurredmostly following genome duplicati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> polyploid.Although more loci have to be screened in Spartina to verify<str<strong>on</strong>g>the</str<strong>on</strong>g> extent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> changes overall <str<strong>on</strong>g>the</str<strong>on</strong>g> genome, it appears fromthis first screening that 34.4 % <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> loci are silenced in S.anglica, when c<strong>on</strong>sidering <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> parental fragments thatare polymorphic. This represents a c<strong>on</strong>sistent amount <str<strong>on</strong>g>of</str<strong>on</strong>g>changes compared to those recorded in o<str<strong>on</strong>g>the</str<strong>on</strong>g>r polyploidsusing similar methods. Kashkush et al. (2002) have reportedabout 2% alterati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> parental transcripts in experimentallyre-syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sized allopolyploid wheat. Expressi<strong>on</strong> alterati<strong>on</strong>has also been found in allopolyploid Arabidopsis (Comai etal. 2000; Lee and Chen 2001). Recently, Soltis et al. (2004)found about 5% cDNA parental fragment loss and 4 % novelexpressi<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> allotetraploid Tragopog<strong>on</strong> mirus andTragopog<strong>on</strong> miscellus. Adams et al. (2003) showeddifferential expressi<strong>on</strong> patterns between homeologous genes-19-


Chapter 1: Spartina Biology<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinain different tissues <str<strong>on</strong>g>of</str<strong>on</strong>g> allotetraploid cott<strong>on</strong> (Gossypium),suggesting that sub-functi<strong>on</strong>alizati<strong>on</strong> was c<strong>on</strong>sequent toallopolyploid formati<strong>on</strong>. Over 2000 transcripts werescreened by cDNA AFLP (Adams et al. 2004) and about 5%<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> duplicated genes were inferred to have been silencedor down-regulated in <str<strong>on</strong>g>the</str<strong>on</strong>g> experimentally re-syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sizedallotetraploid Gossypium.SUMMARY AND CONCLUSIONSAllopolyploid species represent two important outcomes<str<strong>on</strong>g>of</str<strong>on</strong>g> hybridizati<strong>on</strong> and genome duplicati<strong>on</strong> that are critical for<str<strong>on</strong>g>the</str<strong>on</strong>g>ir evoluti<strong>on</strong>ary success: Hybridizati<strong>on</strong> leads to <str<strong>on</strong>g>the</str<strong>on</strong>g> merger<str<strong>on</strong>g>of</str<strong>on</strong>g> two more or less differentiated genomes that havepreviously evolved independently and polyploidizati<strong>on</strong>entails an immediate duplicati<strong>on</strong> and functi<strong>on</strong>al redundancyat all loci. These events entail various molecular interacti<strong>on</strong>sand adjustments that have received much attenti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g>recent literature, as <str<strong>on</strong>g>the</str<strong>on</strong>g>y are now c<strong>on</strong>sidered as <str<strong>on</strong>g>the</str<strong>on</strong>g> keyprocesses that explain <str<strong>on</strong>g>the</str<strong>on</strong>g> evoluti<strong>on</strong>ary success <str<strong>on</strong>g>of</str<strong>on</strong>g> polyploidyin Eucaryotes (reviewed in Liu and Wendel 2003; Osborn etal. 2003). Heterosis and dosage effect in duplicated genomesare likely to increase <str<strong>on</strong>g>the</str<strong>on</strong>g> metabolic plasticity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>duplicated genes, <str<strong>on</strong>g>the</str<strong>on</strong>g>reby affecting <str<strong>on</strong>g>the</str<strong>on</strong>g> fitness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> newlyformed species (Riddle and Birchler 2003).The particularly successful Spartina anglica ischaracterised by morphological plasticity and largeecological amplitude, c<strong>on</strong>trasting with a weak interindividualgenetic variati<strong>on</strong>, but c<strong>on</strong>sistent epigenetic andexpressi<strong>on</strong> plasticity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> duplicated homeologousgenomes. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r investigati<strong>on</strong>s and identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>sequences that are affected by epigenetic regulati<strong>on</strong> andexpressi<strong>on</strong> changes should deepen our understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ecological success <str<strong>on</strong>g>of</str<strong>on</strong>g> this young species. Spartina <str<strong>on</strong>g>of</str<strong>on</strong>g>fersparticular opportunities to learn about <str<strong>on</strong>g>the</str<strong>on</strong>g> evoluti<strong>on</strong>ary andecological c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> polyploid speciati<strong>on</strong> andreticulate evoluti<strong>on</strong> at both <str<strong>on</strong>g>the</str<strong>on</strong>g> short term (in nascent speciessuch as S. anglica) and l<strong>on</strong>g term (in <str<strong>on</strong>g>the</str<strong>on</strong>g> parental, olderpolyploid species) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> evoluti<strong>on</strong>ary time scale.ACKNOWLEDGMENTSThis work is supported by CNRS funds (UMR CNRS6553 Ecobio), PICS 932 CNRS – CSIRO Canberra, NSF –CNRS funds (project 12 978), and by a postdoctoral grantfrom <str<strong>on</strong>g>the</str<strong>on</strong>g> French Ministry <str<strong>on</strong>g>of</str<strong>on</strong>g> Research to K. Fukunaga. Weare particularly grateful to Les Leunig and Paul Hedge for<str<strong>on</strong>g>the</str<strong>on</strong>g>ir assistance in sampling Australian populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> S.anglica in Victoria and Tasmania, respectively, to MikeMcCorry, for sending samples from Ireland, to TravisColumbus and Debra Ayres for sending various AmericanSpartina samples. J<strong>on</strong>athan Wendel and Keith Adams (IowaState University, Ames) are thanked for helpful assistance in<str<strong>on</strong>g>the</str<strong>on</strong>g> cDNA AFLP approach and stimulating discussi<strong>on</strong>s <strong>on</strong>polyploidy. Neil Bagnall (CSIRO Canberra) and SylvieBaloche (CNRS Rennes) are thanked for technical help.REFERENCESAbbott, R.J. and A.J. Lowe. 2004. Origins, establishment andevoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two new polyploid species <str<strong>on</strong>g>of</str<strong>on</strong>g> Senecio in <str<strong>on</strong>g>the</str<strong>on</strong>g> BritishIsles. Biological Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Linnean Society 82: 467-474.Adams, K.L., R. Cr<strong>on</strong>n, R. Percifield, and J.F. Wendel. 2003.Genes duplicated by polyploidy show unequal c<strong>on</strong>tributi<strong>on</strong>s to<str<strong>on</strong>g>the</str<strong>on</strong>g> transcriptome and organ-specific reciprocal silencing.<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Nati<strong>on</strong>al Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> USA100, 4649–4654.Adams, K.L., R. Percifield, and J.F. Wendel. 2004. Organ-specificsilencing <str<strong>on</strong>g>of</str<strong>on</strong>g> duplicated genes in a newly syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sized cott<strong>on</strong>allotetraploid. Genetics 168: 2217-2226.Ainouche, M. L., A. Baumel, A. Salm<strong>on</strong> and G. Yannic. 2004a.Hybridizati<strong>on</strong>, polyploidy and speciati<strong>on</strong> in Spartina (Poaceae).New Phytologist, 161: 165-172.Ainouche, M.L., A. Baumel, and A. Salm<strong>on</strong>. 2004b. Spartinaanglica C.E. Hubbard: a natural model system for analysingearly evoluti<strong>on</strong>ary changes that affect allopolyploid genomes. In:Biological relevance <str<strong>on</strong>g>of</str<strong>on</strong>g> polyploidy: ecology to genomics (A.R.Leitch, D.E. Soltis, P.S. Soltis, I.J. Leitch and J.C. Pires Eds).Bioogical Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Linnean Society. 82: 475-484.An, S., S. Zhou, Z. Wang, Z. Deng, Y. Zhi, and L. Chen. 2010.Spartina in China: Introducti<strong>on</strong>, history, current status and recentresearch. In: Ayres, D.R., D.W. Kerr, S.D. Erics<strong>on</strong> and P.R.Ol<str<strong>on</strong>g>of</str<strong>on</strong>g>s<strong>on</strong>, eds. <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g><strong>on</strong> <strong>Invasive</strong> Spartina. 2004 Nov 8-10, San Francisco, CA, USA.San Francisco Estuary <strong>Invasive</strong> Spartina Project <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CaliforniaState Coastal C<strong>on</strong>servancy: Oakland, CA. (this volume).Anttila, C.K., R.A. King, C. Ferris, D.R. Ayres, and D.R. Str<strong>on</strong>g.2000. Reciprocal hybrid formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina in San FranciscoBay. Molecular Ecology 9: 765-770.Ayres, D.R., D. Garcia-Rossi, H.G. Davis, and D.R. Str<strong>on</strong>g. 1999.Extent and degree <str<strong>on</strong>g>of</str<strong>on</strong>g> hybridizati<strong>on</strong> between exotic (Spartinaalterniflora) and native (S. foliosa) cordgrass (Poaceae) inCalifornia, USA determined by randomly amplified polymorphicDNA (RAPDs). Molecular Ecology 8: 1179-1186.Ayres, D.R. and D.R. Str<strong>on</strong>g. 2001. Origin and genetic diversity <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina anglica (Poaceae) using nuclear DNA markers.American Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Botany 88: 1863-1867.Ayres, D. and D. Str<strong>on</strong>g. 2005. Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> Spartinahybrids in San Francisco Bay. In: Ayres, D.R., D.W. Kerr, S.D.Erics<strong>on</strong> and P.R. Ol<str<strong>on</strong>g>of</str<strong>on</strong>g>s<strong>on</strong>, eds. <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g><str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartina. 2004 Nov 8-10,San Francisco, CA, USA. San Francisco Estuary <strong>Invasive</strong>Spartina Project <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> California State Coastal C<strong>on</strong>servancy:Oakland, CA. (this volume).Ayres, D.R. and A.K.F. Lee. 2005. Spartina densiflora x foliosahybrids found in San Francisco Bay. In: Ayres, D.R., D.W. Kerr,S.D. Erics<strong>on</strong> and P.R. Ol<str<strong>on</strong>g>of</str<strong>on</strong>g>s<strong>on</strong>, eds. <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g><str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartina. 2004 Nov 8-10,San Francisco, CA, USA. San Francisco Estuary <strong>Invasive</strong>Spartina Project <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> California State Coastal C<strong>on</strong>servancy:Oakland, CA. (this volume).Baumel, A., M.L. Ainouche, and J.E. Levasseur. 2001. Molecularinvestigati<strong>on</strong>s in populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglica C.E. Hubbard(Poaceae) invading coastal Brittany (France). Molecular Ecology10: 1689-1701.Baumel, A, M.L. Ainouche, R.J. Bayer, A.K. Ainouche, and M.T.Misset. 2002a. Molecular phylogeny <str<strong>on</strong>g>of</str<strong>on</strong>g> hybridizing species from<str<strong>on</strong>g>the</str<strong>on</strong>g> genus Spartina Schreb. (Poaceae). Molecular Phylogeneticsand Evoluti<strong>on</strong> 22: 303-314.Baumel, A, M.L. Ainouche, R. Kalendar, and A.H. Schulman.2002b. Retrotranspos<strong>on</strong>s and genomic stability in populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> young allopolyploid species Spartina anglica C.E. Hubbard(Poaceae). Molecular Biology and Evoluti<strong>on</strong> 19: 1218-1227.-20-


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 1: Spartina BiologyBaumel, A, M.L. Ainouche, M.T. Misset, J.P. Gourret, and R.J.Bayer. 2003. Genetic evidence for hybridizati<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g>native Spartina maritima and <str<strong>on</strong>g>the</str<strong>on</strong>g> introduced Spartina alterniflora(Poaceae) in South-West France: Spartina x neyrautii re-examined.Plant Systematics and Evoluti<strong>on</strong> 237: 87-97.Comai, L, A.P. Tyagi, K. Winter, R. Holmes-Davis, S. Reynolds,Y. Stevens, and B. Byers. 2000. Phenotypic instability and rapidgene silencing in newly formed Arabidopsis allotetraploids.Plant Cell 12 : 1551-1567.Daehler, C.C. and D.R. Str<strong>on</strong>g. 1997. Hybridizati<strong>on</strong> betweenintroduced smooth cordgrass (Spartina alterniflora; Poaceae)and native California cordgrass (S. foliosa) in San Francisco Bay,California, USA. American Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Botany 81: 307-313.Gray, A.J. and A.F. Raybould. 1997. The history and evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>S. anglica in <str<strong>on</strong>g>the</str<strong>on</strong>g> British Isles. In: Patten, K., ed. <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> Sec<strong>on</strong>d <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> Spartina <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g>. Washingt<strong>on</strong> StateUniversity, Cooperative extensi<strong>on</strong>, 39-45.Gray, A. 2005. Will Spartina anglica invade northwards withchanging climate? In: Ayres, D.R., D.W. Kerr, S.D. Erics<strong>on</strong> andP.R. Ol<str<strong>on</strong>g>of</str<strong>on</strong>g>s<strong>on</strong>, eds. <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g><str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartina. 2004 Nov 8-10, San Francisco,CA, USA. San Francisco Estuary <strong>Invasive</strong> Spartina Project <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>California State Coastal C<strong>on</strong>servancy: Oakland, CA. (thisvolume).Hubbard, J.C.E. 1965. Spartina marshes in Sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn England. Patterns<str<strong>on</strong>g>of</str<strong>on</strong>g> invasi<strong>on</strong>s in Poole Harbour. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology 53: 799-813.Ferris, C, R.A. King, and A.J. Gray. 1997. Molecular evidence for<str<strong>on</strong>g>the</str<strong>on</strong>g> maternal parentage in <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid origin <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglicaC.E. Hubbard. Molecular Ecology 6: 185-187.Foucaud, 1897. Un Spartina inédit. Annales de la Société deSciences Naturelles Charente Inférieure 32: 220-222.Guénégou, M.C., J. Citharel, and J.E. Levasseur. 1988. The hybridstatus <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglica (Poaceae). Enzymatic analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>species and <str<strong>on</strong>g>the</str<strong>on</strong>g> presumed parents. Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Botany66: 1830-1833.Hacker, S.D. and M.N. Dethier. 2010. Where do we go from here?Alternative c<strong>on</strong>trol and restorati<strong>on</strong> trajectories for a marine grass(Spartina anglica) invader in different habitat types. In: Ayres,D.R., D.W. Kerr, S.D. Erics<strong>on</strong> and P.R. Ol<str<strong>on</strong>g>of</str<strong>on</strong>g>s<strong>on</strong>, eds.<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong>Spartina. 2004 Nov 8-10, San Francisco, CA, USA. SanFrancisco Estuary <strong>Invasive</strong> Spartina Project <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CaliforniaState Coastal C<strong>on</strong>servancy: Oakland, CA. (this volume).Hedge, P., C. Shepherd, and K. Dyke. 2010. Implementing <str<strong>on</strong>g>the</str<strong>on</strong>g>strategy for <str<strong>on</strong>g>the</str<strong>on</strong>g> management <str<strong>on</strong>g>of</str<strong>on</strong>g> rice grass, Spartina anglica inTasmania, Australia. In: Ayres, D.R., D.W. Kerr, S.D. Erics<strong>on</strong>and P.R. Ol<str<strong>on</strong>g>of</str<strong>on</strong>g>s<strong>on</strong>, eds. <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g><str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartina. 2004 Nov 8-10, San Francisco,CA, USA. San Francisco Estuary <strong>Invasive</strong> Spartina Project <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>California State Coastal C<strong>on</strong>servancy: Oakland, CA. (thisvolume).Kashkush, K., M. Feldman, A. Levy. 2002. Gene loss, silencingand activati<strong>on</strong> in newly syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sized wheat allotetraploid.Genetics 160: 1651-1659.Lee, R.W. 2003. Physiological adaptati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> invasivecordgrass Spartina anglica to reducing sediments: rhizomemetabolic gas fluxes and enhanced O 2 and H 2 S transport. MarineBiology 143: 9-15.Lee, H.S. and Z.J. Chen. 2001. Protein-coding genes areepigenetically regulated in Arabidopsis polyploids. <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g><str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Nati<strong>on</strong>al Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> USA 98, 6753–6758.Liu, B. and J.F. Wendel. 2003. Epignetic phenomena and <str<strong>on</strong>g>the</str<strong>on</strong>g>evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plant allopolyploids. Molecular Phylogenetics andEvoluti<strong>on</strong> 29: 365-379.Marchant, C.J. 1963. Corrected chromosome numbers for Spartinax townsendii and its parent species. Nature 31: 929.Marchant, C.J. 1968. Evoluti<strong>on</strong> in Spartina (Gramineae). II.Chromosomes, basic relati<strong>on</strong>ships and <str<strong>on</strong>g>the</str<strong>on</strong>g> problem <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina xtownsendii agg. Botanical Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Linnean. Society. 60:381-409.Marchant ,C.J. 1977. Hybrid characteristics in Spartina x neyrautiiFouc., a tax<strong>on</strong> rediscovered in nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Spain. Botanical Journal<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Linnean Society 74: 289-296.Mobberley, D.G. 1956. Tax<strong>on</strong>omy and distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> genusSpartina. Iowa State College Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Science 30: 471-574.Osborn, T.C., J.C. Pires, J.A. Birchler, D.L. Auger, K.J. Chen, H.Lee, L. Comai, A. Madlung, R.W. Doergue, V. Colot, and R.A.Martissen. 2003. Understanding mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> novel geneexpressi<strong>on</strong> in polyploids. Trends in Genetics 19, 3: 141 –147.Raybould, A.F., A.J. Gray, M.J. Lawrence, and D.F. Marshall.1991a. The evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglica C.E. Hubbard(Gramineae): genetic variati<strong>on</strong> and status <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> parental species inBritain. Biological Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Linnean Society 44: 369-380.Raybould, A.F., A.J. Gray, M.J. Lawrence, and D.F. Marshall.1991b. The evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglica C.E. Hubbard(Gramineae): origin and genetic variability. Biological Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> Linnean Society 43: 111-126.Riddle, N.C. and J.A. Birchler. 2003. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> reunited divergedregulatory hierarchies in allopolyploids and species hybrids.Trends in Genetics 19, 597-600.Salm<strong>on</strong>, A., M. Ainouche and J. Wendel. 2005. Genetic andepigenetic c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> recent hybridizati<strong>on</strong> and polyploidyin Spartina (Poaceae). Molecular Ecology 14, 1163-1175.Soltis, D.E., P.S. Soltis, J.C. Pires, A. Kovarik, J.A. Tate, and E.Mavrodiev. 2004. Recent and recurrent polyploiyd in Tragopog<strong>on</strong>(Asteraceae): cytogenetic, genomic and genetic comparis<strong>on</strong>s.Biological Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Linnean Society 82, 485-501.Thomps<strong>on</strong>, J.D. 1991. The biology <str<strong>on</strong>g>of</str<strong>on</strong>g> an invasive plant. Whatmakes Spartina anglica so successful? Bioscience 41, 393-401.Thomps<strong>on</strong>, J.D., T. McNeilly, and A.J. Gray. 1991a. Populati<strong>on</strong>variati<strong>on</strong> in Spartina anglica C.E. Hubbard. I. Evidence from acomm<strong>on</strong> garden experiment. New Phytologist 117, 115-128.Thomps<strong>on</strong>, J.D., T. McNeilly, and A.J. Gray. 1991b - Populati<strong>on</strong>variati<strong>on</strong> in Spartina anglica C.E. Hubbard. II. Reciprocaltransplants am<strong>on</strong>g three successi<strong>on</strong>al populati<strong>on</strong>s. NewPhytologist 117, 129–139.Thomps<strong>on</strong>, J.D., T. McNeilly, and A.J. Gray. 1991c - Populati<strong>on</strong>variati<strong>on</strong> in Spartina anglica C.E. Hubbard. III. Resp<strong>on</strong>se tosubstrate variati<strong>on</strong> in a glasshouse experiment. New Phytologist117, 141–152.Wendel, J.F. 2000. Genome evoluti<strong>on</strong> in polyploids. PlantMolecular Biology 42, 225–249.Yannic, G., A. Baumel, M.L. Ainouche. 2004. Uniformity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>nuclear and chloroplast genomes <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina maritima (Poaceae)a salt marshes species in decline al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> western EuropeanCoast. Heredity 93, 182-188.Malika L. Ainouche works <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>polyploid genomes in <str<strong>on</strong>g>the</str<strong>on</strong>g> grass family (Spartina andBromus), and leads <str<strong>on</strong>g>the</str<strong>on</strong>g> research group “Genome Evoluti<strong>on</strong>and Speciati<strong>on</strong>” in <str<strong>on</strong>g>the</str<strong>on</strong>g> Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Evoluti<strong>on</strong>ary Ecology<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> UMR CNRS 6553 at University <str<strong>on</strong>g>of</str<strong>on</strong>g> Rennes1 (France).-21-


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 1: Spartina BiologyEVOLUTION OF INVASIVE SPARTINA HYBRIDS IN SAN FRANCISCO BAYD.R. AYRES 1 AND D.R. STRONG 2Dept. <str<strong>on</strong>g>of</str<strong>on</strong>g> Evoluti<strong>on</strong> and Ecology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Davis, One Shields Avenue, Davis, CA 956161drayres@ucdavis.edu, 2 drstr<strong>on</strong>g@ucdavis.eduRapid evoluti<strong>on</strong> in c<strong>on</strong>temporary time occurs when genetically variable individuals face str<strong>on</strong>g selecti<strong>on</strong>pressures. Just such a c<strong>on</strong>juncti<strong>on</strong> is taking place in <str<strong>on</strong>g>the</str<strong>on</strong>g> intertidal marshes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> San Franciscoestuary. Three decades ago, exotic smooth cordgrass, Spartina alterniflora, was planted in <str<strong>on</strong>g>the</str<strong>on</strong>g> Bayfor erosi<strong>on</strong> c<strong>on</strong>trol and marsh restorati<strong>on</strong>. The natural structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Pacific estuaries leaves broadexpanses <str<strong>on</strong>g>of</str<strong>on</strong>g> open mud flats, critical foraging grounds for milli<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> birds. Fringing <str<strong>on</strong>g>the</str<strong>on</strong>g> upper mudflat margin is <str<strong>on</strong>g>the</str<strong>on</strong>g> native cordgrass S. foliosa that, due to small stature and sparse growth, is unableto col<strong>on</strong>ize <str<strong>on</strong>g>the</str<strong>on</strong>g> mud flats or modify <str<strong>on</strong>g>the</str<strong>on</strong>g>ir geomorphology, unlike <str<strong>on</strong>g>the</str<strong>on</strong>g> alien c<strong>on</strong>gener. Shortly after<str<strong>on</strong>g>the</str<strong>on</strong>g> introducti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> two species hybridized; in <str<strong>on</strong>g>the</str<strong>on</strong>g> last 20-odd years a broad array <str<strong>on</strong>g>of</str<strong>on</strong>g> genotypeshas arisen through reciprocal hybridizati<strong>on</strong> and introgressi<strong>on</strong>. Our research has found that somehybrids are taller, have more rapid rates <str<strong>on</strong>g>of</str<strong>on</strong>g> lateral expansi<strong>on</strong>, have higher tolerance to salinity, havehigher rates <str<strong>on</strong>g>of</str<strong>on</strong>g> self-pollinated seed set, and are better sires <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> native species than ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r parentalspecies. We predict that <str<strong>on</strong>g>the</str<strong>on</strong>g>se traits will result in 1) rampant col<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> open mud — both in <str<strong>on</strong>g>the</str<strong>on</strong>g>intertidal and in restorati<strong>on</strong> sites, 2) invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> middle elevati<strong>on</strong> Salicornia-dominated salinemarsh plains, 3) isolated self-compatible plants founding new populati<strong>on</strong>s; and 4) hybrid pollensiring <str<strong>on</strong>g>the</str<strong>on</strong>g> li<strong>on</strong>’s share <str<strong>on</strong>g>of</str<strong>on</strong>g> seed in surrounding S. foliosa plants in native marshes. Natural selecti<strong>on</strong>will favor <str<strong>on</strong>g>the</str<strong>on</strong>g>se traits in a positive feedback that will result in an accelerating populati<strong>on</strong> growth rate<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fittest, most invasive hybrid genotypes. Indirect evidence that evoluti<strong>on</strong> has ready occurredis our finding <str<strong>on</strong>g>of</str<strong>on</strong>g> super-exp<strong>on</strong>ential growth <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid cordgrass cover in <str<strong>on</strong>g>the</str<strong>on</strong>g> Bay. Effective managementand predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid cordgrass invasi<strong>on</strong> must incorporate a dynamic viewpoint <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartinapopulati<strong>on</strong> parameters.Keywords: <strong>Invasive</strong> Spartina, hybridizati<strong>on</strong>INTRODUCTIONSpartina alterniflora, smooth cordgrass, native to <str<strong>on</strong>g>the</str<strong>on</strong>g>Atlantic coast was introduced into San Francisco Bay in<str<strong>on</strong>g>the</str<strong>on</strong>g> 1970s. It hybridized with native California cordgrass, S.foliosa resulting in an interbreeding swarm <str<strong>on</strong>g>of</str<strong>on</strong>g> highly geneticallyvariable plants (Ayres et al. 1999; Anttila et al. 2000).One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chief c<strong>on</strong>straints <strong>on</strong> evoluti<strong>on</strong> is a lack <str<strong>on</strong>g>of</str<strong>on</strong>g> heritablevariati<strong>on</strong> in fitness traits. C<strong>on</strong>versely, high variati<strong>on</strong> in heritablefitness-related traits may fuel rapid evoluti<strong>on</strong>. Currentapproaches to understand successful plant invasi<strong>on</strong> c<strong>on</strong>siderboth <str<strong>on</strong>g>the</str<strong>on</strong>g> invader and <str<strong>on</strong>g>the</str<strong>on</strong>g> invaded system; invasive plantspossess traits that allow <str<strong>on</strong>g>the</str<strong>on</strong>g>m to invade open niches in vulnerablesystems. With <str<strong>on</strong>g>the</str<strong>on</strong>g>se c<strong>on</strong>cepts in mind, we assessedgenetic variati<strong>on</strong> in hybrid cordgrass, measured variati<strong>on</strong> inphysical traits <str<strong>on</strong>g>of</str<strong>on</strong>g> cordgrass hybrids (S. alterniflora x foliosa)that would c<strong>on</strong>fer invasive ability in <str<strong>on</strong>g>the</str<strong>on</strong>g> open mud <str<strong>on</strong>g>of</str<strong>on</strong>g> Pacificestuaries and in <str<strong>on</strong>g>the</str<strong>on</strong>g> high salinity tidal plains dominated bypickleweed (Sarcocornia virginica, former name Salicornia),and evaluated rate <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid spread.METHODSGenetic variati<strong>on</strong>. In previous work we documented<str<strong>on</strong>g>the</str<strong>on</strong>g> genetic variability <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora x foliosa hybridsusing nuclear DNA markers and chloroplast DNA sequences(Ayres et al. 1999; Anttila et al. 2000).Phenotypic variati<strong>on</strong>. We focused <strong>on</strong> several traits thatwe propose c<strong>on</strong>fer superior invasi<strong>on</strong> ability. These traitswere 1) stem height, where tall stems allow plants to survivetidal inundati<strong>on</strong> and grow fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r down <str<strong>on</strong>g>the</str<strong>on</strong>g> intertidal plain;2) rapid lateral expansi<strong>on</strong> that anchors plants in s<str<strong>on</strong>g>of</str<strong>on</strong>g>t mudsubstrates and allows encroachment into <str<strong>on</strong>g>the</str<strong>on</strong>g> space <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>rcordgrass plants; 3) high seed and pollen producti<strong>on</strong> to favorcol<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> open mud flat habitat and seed siring <strong>on</strong> o<str<strong>on</strong>g>the</str<strong>on</strong>g>rplants; and 4) tolerance to salinity and brackish water thatpermits growth in <str<strong>on</strong>g>the</str<strong>on</strong>g> Sarcocornia higher marsh (high salinity)and tidal creeks (brackish water).At Cogswell Marsh, a former salt p<strong>on</strong>d restored to tidalacti<strong>on</strong> in 1980, we compared variati<strong>on</strong> in vegetative andsexual reproducti<strong>on</strong> am<strong>on</strong>g established plants (Zaremba2001). Seventy-two plants were haphazardly selected froma 1998 aerial photograph; <str<strong>on</strong>g>the</str<strong>on</strong>g>ir genotypes were determinedusing nuclear DNA analysis (Ayres et al. 1999; Zaremba2000). Heights <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> three tallest stems (excluding inflorescences)in three randomly placed quadrats were measuredin 1998 and 1999 (results reported for 1998 <strong>on</strong>ly). Diameterswere staked and re-measured in 1998, 1999 and 2000.Inflorescences were randomly collected (three per plant)and assessed for seed set and pollen viability and quantity(see Zaremba 2001 for a full descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> methods). In agreenhouse at UC Davis, we compared growth <str<strong>on</strong>g>of</str<strong>on</strong>g> an array <str<strong>on</strong>g>of</str<strong>on</strong>g>-23-


Chapter 1: Spartina Biology<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinahybrids under three salinity regimes (Pakenham-Walsh et al.this volume; Pakenham-Walsh 2003).Spread rate. We developed physical indicators <str<strong>on</strong>g>of</str<strong>on</strong>g> hybridity(tall, wide, red, stems; late flowering) in greenhouse andfield studies to identify hybrids by sight in <str<strong>on</strong>g>the</str<strong>on</strong>g> field (Ayres etal. 2004). We combined aerial photographs, ground surveys,and genetic c<strong>on</strong>firmati<strong>on</strong>s to estimate areal cover by hybridcordgrass and S. alterniflora in 2001. We estimated cordgrasshybrid cover from <str<strong>on</strong>g>the</str<strong>on</strong>g> original 1976 populati<strong>on</strong>, and in<str<strong>on</strong>g>the</str<strong>on</strong>g> 1990s from early studies (Callaway and Josselyn 1992;Daehler and Str<strong>on</strong>g 1996) to plot cordgrass cover over time.RESULTSGenetic variati<strong>on</strong>. Diverse hybrid nuclear DNA genotypeswere present (Ayres et al. 1999), evidence that widespreadcrossing has occurred am<strong>on</strong>g cordgrass genotypes.Using chloroplast sequences, we found that hybridizati<strong>on</strong>was bi-directi<strong>on</strong>al; that is, both S. alterniflora and S. foliosahave been seed parents to hybrids (Antilla et al. 2000). Wealso determined that S. foliosa has been <str<strong>on</strong>g>the</str<strong>on</strong>g> dominant seedparent <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrids.Phenotypic variati<strong>on</strong>. A diverse array <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid genotypeswas present in <str<strong>on</strong>g>the</str<strong>on</strong>g> sampled populati<strong>on</strong> at CogwesllMarsh. Nine <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 72 plants were genetically determinedto be (n<strong>on</strong>-hybrid) parental species; four plants <str<strong>on</strong>g>of</str<strong>on</strong>g> native S.foliosa and five plants <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alternilfora. (Note: plants in Figs.1-3 are arranged according to <str<strong>on</strong>g>the</str<strong>on</strong>g> magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> trait and<str<strong>on</strong>g>the</str<strong>on</strong>g> order is NOT <str<strong>on</strong>g>the</str<strong>on</strong>g> same in all graphs.)Height. Individual plant height varied from < 30 cm to>120 cm (Fig. 1). Both S. foliosa and S. alterniflora plantsranged from 30 to 70 cm in height. While <str<strong>on</strong>g>the</str<strong>on</strong>g> tallest 23% <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> plants were hybrids, most hybrids fell within <str<strong>on</strong>g>the</str<strong>on</strong>g> heightrange <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> parental species, and three plants were shorterthan <str<strong>on</strong>g>the</str<strong>on</strong>g> shortest S. foliosa plant.Lateral spread. Plant areal increase varied from plantsthat shrunk in area after two growing seas<strong>on</strong>s (1998–1999,and 1999–2000) to a plant that expanded over 200 m 2 (Fig. 2;data are presented for 52 plants for which we had a completedata set). Plants <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> parental species had low to moderategrowth rates while <str<strong>on</strong>g>the</str<strong>on</strong>g> fastest growing 30% <str<strong>on</strong>g>of</str<strong>on</strong>g> plants werehybrids.Salinity tolerance. We found that under c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>high salinity several hybrids exceeded <str<strong>on</strong>g>the</str<strong>on</strong>g> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> bothparental plants by two to three times, and by as much as sixtimes under low salinity c<strong>on</strong>diti<strong>on</strong>s (Pakenham-Walsh 2003;Pakenham-Walsh, Ayres and Str<strong>on</strong>g in this proceedingsvolume).Sexual reproducti<strong>on</strong>. Hybrid inflorescences averagedover twice as many flowers as those <str<strong>on</strong>g>of</str<strong>on</strong>g> S. foliosa (460 vs200), but hybrid inflorescences varied from fewer than 125flowers to inflorescences with over 800 flowers (Fig. 3, Ayreset al. 2008). Fertile seed per inflorescence was <strong>on</strong>e and ahalf times higher in hybrids than in S. foliosa, but varied inhybrid plants from zero seed set (including a plant with over800 flowers per inflorescence) to five times higher seed setthan <str<strong>on</strong>g>the</str<strong>on</strong>g> native. We determined from genetic analyses thatbetween 50% and 80% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> seeds from <str<strong>on</strong>g>the</str<strong>on</strong>g> four S. foliosaFig. 1. Stem height in 1998 <str<strong>on</strong>g>of</str<strong>on</strong>g> cordgrass plants (individual plants are <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> x-axis) at Cogswell Marsh. Grey arrows are S. foliosa and black arrows are S.alterniflora plants (by genetic analyses); <str<strong>on</strong>g>the</str<strong>on</strong>g> rest are hybrids.-24-


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 1: Spartina Biology250200Cl<strong>on</strong>al Spread (m-squ)150100500-50Fig. 2. Cl<strong>on</strong>al spread in area <str<strong>on</strong>g>of</str<strong>on</strong>g> individual plants (al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> x-axis) at Cogswell Marsh from 1998 to 2000 (complete data was <strong>on</strong>ly available for 52plants). Grey arrows are S. foliosa and black arrow is S. alterniflora plants (by genetic analyses); <str<strong>on</strong>g>the</str<strong>on</strong>g> rest are hybrids.10008006004002000Fertile seedInfertile seedFig. 3. Sexual reproducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 48 cordgrass plants at Cogswell Marsh in 1998 (many plants did not flower); individual plants are al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> x-axis.Each bar is <str<strong>on</strong>g>the</str<strong>on</strong>g> average number <str<strong>on</strong>g>of</str<strong>on</strong>g> flowers <strong>on</strong> an inflorescence; <str<strong>on</strong>g>the</str<strong>on</strong>g> black porti<strong>on</strong> represents those florets that c<strong>on</strong>tained a fertile seed, <str<strong>on</strong>g>the</str<strong>on</strong>g> open porti<strong>on</strong>represents those flowers without a seed. The S. foliosa plants are al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> left side, with grey bars; <str<strong>on</strong>g>the</str<strong>on</strong>g> single S. alterniflora did not flower.-25-


Chapter 1: Spartina Biology<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartina1.00.80.60.40.20.0S. foliosa Hybrids S. foliosa Hybrids S. foliosa HybridsPollen Viability Pollen/m 2 Pollen/PlantFig. 4. Relative pollen viability and producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S. foliosa and cordgrass hybrids; box-whisker plots show 25th, 50th and 75th per-centiles solidlines in <str<strong>on</strong>g>the</str<strong>on</strong>g> “box”, whiskers are <str<strong>on</strong>g>the</str<strong>on</strong>g> 5th and 95th percentile; solid circles are at <str<strong>on</strong>g>the</str<strong>on</strong>g> 2.5 and 95.6 percentile; dotted line is <str<strong>on</strong>g>the</str<strong>on</strong>g> mean. This figurefirst appeared in Ayres et al. 2008.San Francisco vs Willapa Invasi<strong>on</strong>s• S. alterniflora• “Open niche”• 25 YA• Hybridizati<strong>on</strong>• Evoluti<strong>on</strong> fueled bygenetic variati<strong>on</strong>• Accelerating spread• S. altern iflora• “Open niche”• 100 YA• No native Spartina• Evoluti<strong>on</strong> c<strong>on</strong>strainedby lack <str<strong>on</strong>g>of</str<strong>on</strong>g> variati<strong>on</strong>• C<strong>on</strong>stant spread rateFig. 5. Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora introducti<strong>on</strong>s into 2 Pacific coast USAestuaries, San Francisco Bay, CA, and Willapa Bay, WA. We posit thatspread rates are a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> genetic variati<strong>on</strong>.plants in <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh were hybrids. The net result was that over95% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> seed produced from all 42 plants in our study (ca.40 milli<strong>on</strong> seeds in 1998) was hybrid.Hybrid pollen had 3.5 times <str<strong>on</strong>g>the</str<strong>on</strong>g> viability <str<strong>on</strong>g>of</str<strong>on</strong>g> S. foliosapollen (8.24% vs 2.38% viable grains, respectively), andhybrid plants produced twice <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> pollen grainsas native plants (9.5 milli<strong>on</strong> vs. 4.3 milli<strong>on</strong> grains per plant)(Fig. 4, Ayres et al. 2008). Viable pollen producti<strong>on</strong> rangedfrom a single hybrid individual (plant C1-5) that produced58% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total viable pollen to zero. The cumulative effects<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scarcity <str<strong>on</strong>g>of</str<strong>on</strong>g> S. foliosa plants, and differences in pollenproducti<strong>on</strong> and viability resulted in hybrid plants producingover 400 times more viable pollen than <str<strong>on</strong>g>the</str<strong>on</strong>g> native plants.Spread Rate. Combining <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> our 2000–2001cordgrass survey with literature-based estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong>ssize, we found that spread rates <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid and S. alterniflorahave increased over time (Ayres et al. 2004), from10% (during 1973 to 1992) to 40% (from 1993 to 2001) peryear. This pattern is apparently not typical <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflorainvasi<strong>on</strong> in general as analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> spread in Willapa Bay,Washingt<strong>on</strong> found a c<strong>on</strong>stant growth rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 12% over <str<strong>on</strong>g>the</str<strong>on</strong>g>past 100 years (Civille et al. 2005; Taylor et al. 2004, and inthis proceeding volume).DISCUSSION AND CONCLUSIONSWe have shown that hybrids are genetically variabledue to interbreeding am<strong>on</strong>g hybrids and backcrossing to <str<strong>on</strong>g>the</str<strong>on</strong>g>native (Ayres et al. 1999; Anttila et al. 2000). In <str<strong>on</strong>g>the</str<strong>on</strong>g> presentstudy, we dem<strong>on</strong>strate that hybrids are also phenotypicallyhighly variable in features <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetative and sexual reproducti<strong>on</strong>,with a subset <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid individuals having superiorgrowth and c<strong>on</strong>tributing disproporti<strong>on</strong>ately to seed andpollen producti<strong>on</strong>.We <str<strong>on</strong>g>the</str<strong>on</strong>g>orize that <str<strong>on</strong>g>the</str<strong>on</strong>g> open niche <str<strong>on</strong>g>of</str<strong>on</strong>g> native marshes,intertidal mud flats, and restorati<strong>on</strong> sites provides str<strong>on</strong>gselecti<strong>on</strong> for vigorous vegetative growth and seed producti<strong>on</strong>.Hybridizati<strong>on</strong> has provided large amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> geneticand phenotypic variati<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g>se traits. We suggest that <str<strong>on</strong>g>the</str<strong>on</strong>g>combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> natural selecti<strong>on</strong> and variability in fitnesstraits sets up a scenario <str<strong>on</strong>g>of</str<strong>on</strong>g> positive feedback whereby str<strong>on</strong>gnatural selecti<strong>on</strong> favors a subset <str<strong>on</strong>g>of</str<strong>on</strong>g> highly fit hybrids thatdrives growth rate, followed by fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r selecti<strong>on</strong> <strong>on</strong> hybridplants for invasi<strong>on</strong> ability and enhanced growth rates (Fig. 5).The accelerating growth rate we have observed in cordgrasspopulati<strong>on</strong>s in San Francisco Bay is indirect evidence thatthis has already occurred.This outcome c<strong>on</strong>trasts with that in Willapa Bay, whereS. alterniflora was introduced into <str<strong>on</strong>g>the</str<strong>on</strong>g> same open niche <str<strong>on</strong>g>of</str<strong>on</strong>g>intertidal mudflat habitat 100 years ago. There is no nativeSpartina at Willapa, and <str<strong>on</strong>g>the</str<strong>on</strong>g>refore hybridizati<strong>on</strong> has notoccurred. We propose that evoluti<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>re has been c<strong>on</strong>strainedby a relative lack <str<strong>on</strong>g>of</str<strong>on</strong>g> genetic diversity in <str<strong>on</strong>g>the</str<strong>on</strong>g> popula--26-


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 1: Spartina Biologyti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora), resulting in c<strong>on</strong>stant spread rates for<str<strong>on</strong>g>the</str<strong>on</strong>g> last 100 years (Fig. 5).We c<strong>on</strong>clude that if cordgrass is rapidly evolving in itsinvasi<strong>on</strong> ability, it will be difficult to precisely predict itseventual ecological range or where <str<strong>on</strong>g>the</str<strong>on</strong>g> tidal marsh system isor will be vulnerable.ACKNOWLEDGMENTSWe thank Katy Zaremba for allowing us to draw extensivelyup<strong>on</strong> her Master’s <str<strong>on</strong>g>the</str<strong>on</strong>g>sis data, Mark Taylor and <str<strong>on</strong>g>the</str<strong>on</strong>g>East Bay Regi<strong>on</strong>al Park District for providing our field siteand supporting our research efforts over many years (andstanding by to render aid if we got stuck in <str<strong>on</strong>g>the</str<strong>on</strong>g> mud), <str<strong>on</strong>g>the</str<strong>on</strong>g>many graduate students for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir intellectual collaborati<strong>on</strong>s,team Spartina for outstanding technical help at both UCDavis and <str<strong>on</strong>g>the</str<strong>on</strong>g> Bodega Marine Laboratory, and our fundingsources — California Coastal C<strong>on</strong>servancy (CalFed grant#99-110), California Sea Grant #27CN to D.R. Str<strong>on</strong>g, andNSF Biocomplexity DEB 0083583 to A. Hastings and D.R.Str<strong>on</strong>g.REFERENCESAnttila, C.K., A.R. King, C. Ferris, D.R. Ayres, and D.R. Str<strong>on</strong>g.2000. Reciprocal hybrid formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina in San FranciscoBay. Molecular Ecology 9:765-771.Ayres, D.R., D. Garcia-Rossi, H.G. Davis, and D.R. Str<strong>on</strong>g. 1999.Extent and degree <str<strong>on</strong>g>of</str<strong>on</strong>g> hybridizati<strong>on</strong> between exotic (Spartinaalterniflora) and native (S. foliosa) cordgrass (Poaceae) inCalifornia, USA determined by random amplified polymorphicDNA (RAPDs). Molecular Ecology 8:1179-1186.Ayres, D.R., D.L. Smith, K. Zaremba, S. Klohr, and D.R. Str<strong>on</strong>g.2004. Spread <str<strong>on</strong>g>of</str<strong>on</strong>g> exotic cordgrasses and hybrids (Spartina sp.)in <str<strong>on</strong>g>the</str<strong>on</strong>g> tidal marshes <str<strong>on</strong>g>of</str<strong>on</strong>g> San Francisco Bay. Biological Invasi<strong>on</strong>s6:221-231.Ayres, D.R., K. Zaremba, C.M. Sloop and D.R. Str<strong>on</strong>g. 2008.Sexual reproducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cordgrass hybrids (Spartina foliosax alterniflora) invading tidal marshes in San Francisco Bay.Diversity and Distributi<strong>on</strong>s 14:187-195.Callaway, J.C., and M.N. Josselyn. 1992. The introducti<strong>on</strong> andspread <str<strong>on</strong>g>of</str<strong>on</strong>g> smooth cordgrass (Spartina alterniflora) in South SanFrancisco Bay. Estuaries 15:218-226.Civille, J.C., K. Sayce, S.D. Smith and D.R. Str<strong>on</strong>g. 2005.Rec<strong>on</strong>structing a century <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina invasi<strong>on</strong> with historicalrecords and c<strong>on</strong>temporary remote sensing. Ecoscience 12:330-338.Daehler, C.C. and D.R. Str<strong>on</strong>g. 1996. Status, predicti<strong>on</strong> and preventi<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> introduced cordgrass Spartina spp. invasi<strong>on</strong>s in Pacificestuaries, USA. Biological C<strong>on</strong>servati<strong>on</strong> 78:51-58.Pakenham-Walsh, M.R. 2003. Variati<strong>on</strong> in salinity tolerance andcompetitive ability <str<strong>on</strong>g>of</str<strong>on</strong>g> invasive Spartina hybrids in San FranciscoBay. Master <str<strong>on</strong>g>of</str<strong>on</strong>g> Science <str<strong>on</strong>g>the</str<strong>on</strong>g>sis. University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Davis.Taylor, C.M., H.G. Davis, J.C. Civille, F.S. Grevstad, and A.Hastings. 2004. C<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> an Allee effect <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> a Pacific estuary by Spartina alterniflora. Ecology85:3254-3266.Zaremba, K. 2001. Hybridizati<strong>on</strong> and C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> a Native-N<strong>on</strong> NativeSpartina Complex in San Francisco Bay. Master <str<strong>on</strong>g>of</str<strong>on</strong>g> Arts <str<strong>on</strong>g>the</str<strong>on</strong>g>sis,San Francisco State University, San Francisco, California.-27-


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 1: Spartina BiologyEVOLVING INVASIBILITY OF EXOTIC SPARTINA HYBRIDS IN UPPER SALT MARSH ZONESOF SAN FRANCISCO BAYM.R. Pakenham-Walsh 1 , D.R. Ayres 2 , and D.R. Str<strong>on</strong>g 21 Regulatory Divisi<strong>on</strong>, U.S. Army Corps <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineers, 1325 J Street, Room 1480, Sacramento, CA 958142 Secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Evoluti<strong>on</strong> and Ecology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Davis, One Shields Avenue, Davis, CA 95616Keywords: Spartina, Sarcocornia virginica, invasive, hybridizati<strong>on</strong>INTRODUCTIONInvasi<strong>on</strong> by hybrid cordgrass (Spartina alterniflora xSpartina foliosa) is pr<str<strong>on</strong>g>of</str<strong>on</strong>g>oundly altering habitat structurewithin <str<strong>on</strong>g>the</str<strong>on</strong>g> intertidal z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> San Francisco Bay, California.Spartina hybrids exhibit wide ecological tolerance comparedto native S. foliosa and are invading <str<strong>on</strong>g>the</str<strong>on</strong>g> naturallyunvegetated lower intertidal z<strong>on</strong>e. Heterogeneous hybridgenotypes exhibit traits <str<strong>on</strong>g>of</str<strong>on</strong>g> both salinity tolerance andcompetitive vigor, which may enable invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> highermarsh z<strong>on</strong>es historically dominated by <str<strong>on</strong>g>the</str<strong>on</strong>g> highly salttolerantnative pickleweed species Sarcocornia virginica.The hybrid cordgrass swarm possesses a high degree <str<strong>on</strong>g>of</str<strong>on</strong>g>genetic variati<strong>on</strong>, with bi-directi<strong>on</strong>al introgressi<strong>on</strong> due tooverlapping flowering periods <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrids and both parentalspecies (Ayres et al. 1999; Antilla et al. 2000). Hybridizati<strong>on</strong>has been shown to play a role in large and rapid adaptiveevoluti<strong>on</strong> (Rieseberg et al. 2003), promoting <str<strong>on</strong>g>the</str<strong>on</strong>g> ability forniche separati<strong>on</strong> between hybrids and parental species(Rieseberg et al. 1999).Drawing <strong>on</strong> field observati<strong>on</strong>s indicating higher relativefitness <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid Spartina compared to native S. foliosa in<str<strong>on</strong>g>the</str<strong>on</strong>g> higher marsh z<strong>on</strong>es, we c<strong>on</strong>ducted two experiments toaddress <str<strong>on</strong>g>the</str<strong>on</strong>g> threat <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid col<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Sa. virginicahabitat. A greenhouse experiment investigated salinitytolerance <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrids. A field experiment examinedcompetitive suppressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrids by Sa. virginica.METHODSFor <str<strong>on</strong>g>the</str<strong>on</strong>g> greenhouse experiment, cl<strong>on</strong>al fragments <str<strong>on</strong>g>of</str<strong>on</strong>g>eighteen hybrid genotypes were collected from CogswellMarsh, Hayward, California. In additi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrids, <strong>on</strong>eS. alterniflora and two S. foliosa genotypes (21 plants total)were grown at three salinity levels (10, 25 and 40 ppt) withthree replicati<strong>on</strong>s for <strong>on</strong>e growing seas<strong>on</strong> in Davis,California (Fig. 1). Total dry biomass (roots and abovegroundmaterial) was determined at <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> seas<strong>on</strong>,and effects <str<strong>on</strong>g>of</str<strong>on</strong>g> genotype, salinity and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir potentialinteracti<strong>on</strong> determined with statistical analysis.The field experiment was c<strong>on</strong>ducted at Cogswell Marsh,a former salt p<strong>on</strong>d opened to tidal acti<strong>on</strong> in 1980. Four plottreatments (pure Spartina sp., pure Sa. virginica, clipped Sa.virginica and unclipped Sa. virginica; five replicates) wereset up at each <str<strong>on</strong>g>of</str<strong>on</strong>g> eight hybrid cl<strong>on</strong>e locati<strong>on</strong>s and <strong>on</strong>e S.foliosa cl<strong>on</strong>e (Fig. 2). End-<str<strong>on</strong>g>of</str<strong>on</strong>g>-seas<strong>on</strong> shoot density andabove-ground biomass were determined for each plot, andeffects <str<strong>on</strong>g>of</str<strong>on</strong>g> genotype and plot type were determined withstatistical analysis.Fig. 1., left.40 ppt. (left) vs.10 ppt. (right)in salinityexperiment.Fig. 2., right.Locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>nine Spartinagenotypes atCogswell Marsh.-29-


Chapter 1: Spartina Biology<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartina180.00160.00140.00Total Dry Biomass (g)120.00100.0080.0060.0040.0020.000.002-15(foli)S. foli 1-9 S. alt 3-7 3-2 3-4 2-5 2-17 1-5 2-13 3-13 3-1 3-10 3-5 2-6 1-17 2-8 2-16 3-8 2-11Spartina GenotypeLow Medium HighFig. 3. Total biomass <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina genotypes at each salinity level, in increasing order <str<strong>on</strong>g>of</str<strong>on</strong>g> total biomass achieved by each genotype(low + medium + high salinities).RESULTSHybrid Spartina genotypes exhibited great variability inmorphological traits, resp<strong>on</strong>se to salinity stress andcompetitive suppressi<strong>on</strong> by Sa. virginica. Salinity reducedtotal biomass <str<strong>on</strong>g>of</str<strong>on</strong>g> most Spartina genotypes. Several hybridcordgrass genotypes exhibited more robust growth than <str<strong>on</strong>g>the</str<strong>on</strong>g>parental species at both low and high salinity levels (Fig. 3).Results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> field experiment indicated that shootdensity <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid cordgrasses was highly sensitive to Sa.virginica removal, increasing an average <str<strong>on</strong>g>of</str<strong>on</strong>g> 105% (range =39-211%; Table 1). End-<str<strong>on</strong>g>of</str<strong>on</strong>g>-seas<strong>on</strong> biomass <str<strong>on</strong>g>of</str<strong>on</strong>g> cordgrassgenotypes increased an average <str<strong>on</strong>g>of</str<strong>on</strong>g> 64% in resp<strong>on</strong>se to Sa.virginica removal (range = 2-144%; Table 1). Genotypes inTable 1 are listed in order <str<strong>on</strong>g>of</str<strong>on</strong>g> appearance <strong>on</strong> Fig. 3.CONCLUSIONSCertain hybrids (e.g., genotypes 1-5 and 2-8) showed acombinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> competitive vigor in <str<strong>on</strong>g>the</str<strong>on</strong>g> field and relativelystr<strong>on</strong>ger performance in higher salinity c<strong>on</strong>diti<strong>on</strong>s,exhibiting <str<strong>on</strong>g>the</str<strong>on</strong>g> potential to successfully expand into highermarsh z<strong>on</strong>es. The native S. foliosa has weaker competitiveabilities and tolerance for salinity. Our results support apositive associati<strong>on</strong> between hybridizati<strong>on</strong> and invasi<strong>on</strong>ability. The genetic heterogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina hybrids willlead to <str<strong>on</strong>g>the</str<strong>on</strong>g> evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> even more invasive hybridpopulati<strong>on</strong>s.Table 1. Genotype means and percent change between plots with S. virginica "clipped" vs. unclipped, end-<str<strong>on</strong>g>of</str<strong>on</strong>g>-seas<strong>on</strong> shoot densityand aboveground dry biomass.Spartina Shoot Density (#/m 2 ) Dry Biomass (g/m 2 )Genotype Unclipped Clipped % Change Unclipped Clipped % Change2-15 (S. foli) 41 84 104 107 206 931-9 107 235 119* 212 330 562-17 84 117 39 234 243 41-5 67 136 103* 695 1360 96*3-13 77 173 126* 277 426 543-1 74 117 59 464 471 21-17 65 104 60 512 1251 144*2-8 62 139 124* 501 556 113-8 46 142 211* 159 342 115* Significant difference (P < 0.05)-30-


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 1: Spartina BiologyACKNOWLEDGMENTSWe would like to thank <str<strong>on</strong>g>the</str<strong>on</strong>g> staff <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> East BayRegi<strong>on</strong>al Shoreline, East Bay Regi<strong>on</strong>al Parks District, forsupport <str<strong>on</strong>g>of</str<strong>on</strong>g> field work at Cogswell Marsh, and <str<strong>on</strong>g>the</str<strong>on</strong>g> support <str<strong>on</strong>g>of</str<strong>on</strong>g>many individuals <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> U.C. Davis Spartina Lab for field,greenhouse and laboratory assistance. This work wassupported by <str<strong>on</strong>g>the</str<strong>on</strong>g> California Sea Grant #27CN to DRS.REFERENCESAntilla, C.K., R.A. King, C. Ferris, D.R. Ayres, and D.R. Str<strong>on</strong>g.2000. Reciprocal hybrid formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina in San FranciscoBay. Molecular Ecology 9:765-770.Ayres, D.R., D. Garcia-Rossi, H.G. Davis, and D. R. Str<strong>on</strong>g. 1999.Extent and degree <str<strong>on</strong>g>of</str<strong>on</strong>g> hybridizati<strong>on</strong> between exotic (Spartina alterniflora)and native (S. folisa) cordgrass (Poaceae) in California,USA determined by random amplified polymorphic DNA(RAPDs). Molecular Ecology 8: 1179-1186.Rieseberg, L.H., M.A. Archer, and R.K. Wayne. 1999. Transgressivesegregati<strong>on</strong>, adaptati<strong>on</strong> and speciati<strong>on</strong>. Heredity 83:363-372.Rieseberg, L.H., O. Raym<strong>on</strong>d, D.M. Rosenthal, Z. Lai, K. Livingst<strong>on</strong>e,T. Nakazato, J.L. Durphy, A.E. Schwarzbach, L.A. D<strong>on</strong>ovan,and C. Lexer. 2003. Major ecological transiti<strong>on</strong>s in wildsunflowers facilitated by hybridizati<strong>on</strong>. Science 301: 1211-1216.-31-


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 1: Spartina BiologyVARYING SUCCESS OF SPARTINA SPP. INVASIONS IN CHINA:GENETIC DIVERSITY OR DIFFERENTIATION?S. AN 1 , Y. XIAO 1 , H. QING 1 , Z. WANG 1 , C. ZHOU 1 , B. LI 2 , S. SHI 3 , D. YU 1 , Z. DENG 1 , AND L. CHEN 11School <str<strong>on</strong>g>of</str<strong>on</strong>g> Life Science, Nanjing University, Nanjing 210093, China; anshq@nju.edu.cn2Ministry Of Educati<strong>on</strong> Key Laboratory For Biodiversity Science And Ecological Engineering, Institute Of BiodiversityScience, Fudan University, Shanghai 200433, China; Bool@fudan.nju.edu.cn3School <str<strong>on</strong>g>of</str<strong>on</strong>g> Life Science, Zh<strong>on</strong>gshan University, Guangzhou 510275, China; Sshlss@zsu.edu.cnBiological invasi<strong>on</strong>s are widely envisaged as a comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> global change, which not <strong>on</strong>ly threatennative biodiversity but also cause a c<strong>on</strong>siderable ec<strong>on</strong>omic loss to <str<strong>on</strong>g>the</str<strong>on</strong>g> invaded areas. However, forsome species little is known about why <str<strong>on</strong>g>the</str<strong>on</strong>g>y are successful invaders. At <str<strong>on</strong>g>the</str<strong>on</strong>g> molecular level, manyresearchers have reported that high genetic diversity c<strong>on</strong>tributes to <str<strong>on</strong>g>the</str<strong>on</strong>g> success <str<strong>on</strong>g>of</str<strong>on</strong>g> plant invasi<strong>on</strong>swhereas o<str<strong>on</strong>g>the</str<strong>on</strong>g>r studies have shown that reduced genetic variati<strong>on</strong> makes invasive species more successful.Obviously, <str<strong>on</strong>g>the</str<strong>on</strong>g>se are c<strong>on</strong>tradictory explanati<strong>on</strong>s. Our studies <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina in China showthat S. alterniflora with higher populati<strong>on</strong> differentiati<strong>on</strong> (Fst) was more successful in invadingcoastal China than S. anglica which had low Fst, although <str<strong>on</strong>g>the</str<strong>on</strong>g> latter species, having fixed heterozygosity,had much higher genetic diversity than <str<strong>on</strong>g>the</str<strong>on</strong>g> former. Greater number <str<strong>on</strong>g>of</str<strong>on</strong>g> chromosomes orhigher genetic diversity (P and H) does not necessarily mean higher adaptability and more successfulinvasi<strong>on</strong> for exotic species, while higher Fst was associated with higher invading ability in S.alterniflora. However, factors o<str<strong>on</strong>g>the</str<strong>on</strong>g>r than genetic variati<strong>on</strong> and populati<strong>on</strong> genetic structure may bemore important in determining invasi<strong>on</strong> success.Keywords: Average heterogeneity, genetic diversity, plant invasi<strong>on</strong>, populati<strong>on</strong> differentiati<strong>on</strong>,Spartina<strong>Invasive</strong> plant species threaten <str<strong>on</strong>g>the</str<strong>on</strong>g> integrity <str<strong>on</strong>g>of</str<strong>on</strong>g> naturalecosystems and reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> ec<strong>on</strong>omic cropsthroughout <str<strong>on</strong>g>the</str<strong>on</strong>g> world by displacing native plant communities(Kennedy et al. 2002), establishing m<strong>on</strong>oculturesand competing with ec<strong>on</strong>omic species in new habitats(Callaway 2002). At <str<strong>on</strong>g>the</str<strong>on</strong>g> populati<strong>on</strong> level, <str<strong>on</strong>g>the</str<strong>on</strong>g> leading <str<strong>on</strong>g>the</str<strong>on</strong>g>oriesfor <str<strong>on</strong>g>the</str<strong>on</strong>g> successful invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plants are <str<strong>on</strong>g>the</str<strong>on</strong>g>ir escapefrom <str<strong>on</strong>g>the</str<strong>on</strong>g> natural enemies that hold <str<strong>on</strong>g>the</str<strong>on</strong>g>m in check, freeing<str<strong>on</strong>g>the</str<strong>on</strong>g>m to utilize <str<strong>on</strong>g>the</str<strong>on</strong>g>ir full potential for resource competiti<strong>on</strong>(Keane & Crawley 2002); allelopathic effects, where <str<strong>on</strong>g>the</str<strong>on</strong>g>phytotoxins released by exotic plants damage native species(Callaway & Aschehoug 2000; Bais et al. 2003); and <str<strong>on</strong>g>the</str<strong>on</strong>g>occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> a suitable niche existing in <str<strong>on</strong>g>the</str<strong>on</strong>g> new locati<strong>on</strong>(Sakai et al. 2001). At <str<strong>on</strong>g>the</str<strong>on</strong>g> molecular level, most researchershave reported that high genetic diversity c<strong>on</strong>tributes to <str<strong>on</strong>g>the</str<strong>on</strong>g>success <str<strong>on</strong>g>of</str<strong>on</strong>g> plant invasi<strong>on</strong>s (Ellstrand & Schierenbeck 2000;Novak & Mack 2001), although reduced genetic variati<strong>on</strong>can make invasive species more successful (Tsutsui et al.2000). Here we suggest that <str<strong>on</strong>g>the</str<strong>on</strong>g> different molecular parametersare correlated with success or failure <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartinainvasi<strong>on</strong>s in China.Historically, no native species <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> genus Spartinaexisted in China. For <str<strong>on</strong>g>the</str<strong>on</strong>g> purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> ecological engineering,two Spartina species, S. anglica and S. alterniflora, wereintroduced to China in <str<strong>on</strong>g>the</str<strong>on</strong>g> last century. However, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir fatesdiffered. Spartina anglica originated in 1870s in east coastalEngland and is a hybrid between S. maritima as paternalspecies and S. alterniflora as <str<strong>on</strong>g>the</str<strong>on</strong>g> seed parent (Ferris et al.1997). In 1963, 44 individuals (actually ramets) <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglicawere produced by seed in China; 21 <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>m were planted in<str<strong>on</strong>g>the</str<strong>on</strong>g> field and <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs were used to produce more <str<strong>on</strong>g>of</str<strong>on</strong>g>fspring,three <str<strong>on</strong>g>of</str<strong>on</strong>g> which had marvelous reproductive capacity (Chung1985). From 3 individuals, 9,100,000 cl<strong>on</strong>es were produced in1966, and were planted in 40 hectares (ha) <str<strong>on</strong>g>of</str<strong>on</strong>g> costal regi<strong>on</strong>sin China. Thirteen years later, about 31,600 ha <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglicalow marshes were established in coastal China, and 36,000ha in 83 counties al<strong>on</strong>g coastal China (Fig. 1a) in 1985 (Qin& Chung 1992). Its sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn limit in China was at 21º27’Nwhereas <str<strong>on</strong>g>the</str<strong>on</strong>g> sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn limit in its native range is locatedbetween 42ºand 43º N in Europe (Chung 1993).The populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica in China have generallylower height, lower biomass and lower net producti<strong>on</strong> (Chung1985) than <str<strong>on</strong>g>the</str<strong>on</strong>g>ir counterparts in its native range (Chater &J<strong>on</strong>es 1951; Gray & Benham 1991; Hubbard 1969) (Table 1).Starting in 1993, S. anglica became shorter in height, andlower in biomass and net biomass producti<strong>on</strong>. Pr<strong>on</strong>ounceddieback occurred in Chinese populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica like<str<strong>on</strong>g>the</str<strong>on</strong>g> older populati<strong>on</strong>s in England (Gray et al. 1991). In 2000,S. anglica was found <strong>on</strong>ly in six counties (Fig. 1b). In 2002,<str<strong>on</strong>g>the</str<strong>on</strong>g> populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica were found <strong>on</strong>ly in three counties,and <str<strong>on</strong>g>the</str<strong>on</strong>g> total area was less than 50 ha. Plant performancec<strong>on</strong>tinued to be suppressed, e.g., height, biomass and netproducti<strong>on</strong> were reduced; and <str<strong>on</strong>g>the</str<strong>on</strong>g> suppressi<strong>on</strong> still c<strong>on</strong>tinues.Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> S. anglica populati<strong>on</strong>s have been competitivelyreplaced by S. alterniflora, Phragmites australis, Typha spp.and Scirpus spp.-33-


Chapter 1: Spartina Biology<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaTable 1. Variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglica between native range and Chinaai s i r is s 1iri i1 2 4 6 H d s86 10 0.8 0.8 1.6 0.8 0.8 0.126 0.4202 0.0 84 0.0 20rs 1 1 1 1 1 66 1 8 2000 2002i ss2 41 .8 12 1. 2 24 . 8 8 1.0 21 .28 02.6r di2 yr44 00 110. 601.8 6. 112.4H i 0 0 4 1 80 0d r r ri s s r s 1 . 20012 H bb rd 1 6 r y d 1 1 d 4 r d s 1 1 .bFig. 1. Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglica and Spartina alterniflora in 1985 (a)and 2000 (b) al<strong>on</strong>g coastal China. Circles represent Spartina anglica andstars denote Spartina alterniflora.Seven multilocus genotypes (G1-G7) were identifiedusing RAPD markers for S. anglica in its native Europe(Baumel et al. 2001). G1 is <str<strong>on</strong>g>the</str<strong>on</strong>g> basic type that accounts for86% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> samples (Table 1). G2 – G7 are varieties <str<strong>on</strong>g>of</str<strong>on</strong>g> G1and <strong>on</strong>ly account for 10% - 0.8% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total. The studyshowed that S. anglica has low genetic variati<strong>on</strong> due to agenetic bottleneck. As an exotic species, S. anglica in Chinahas even lower genetic variati<strong>on</strong> with lower percentage <str<strong>on</strong>g>of</str<strong>on</strong>g>polymorphical loci (P), mean coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> dissimilarity(Gd) and coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> differentiati<strong>on</strong> (Fst) (Table1) although AFLP markers can provide higher diversity thanRAPD markers. Lower variati<strong>on</strong> may indicate that <str<strong>on</strong>g>the</str<strong>on</strong>g> speciespartially lost some <str<strong>on</strong>g>of</str<strong>on</strong>g> its variati<strong>on</strong> during <str<strong>on</strong>g>the</str<strong>on</strong>g> human-aidedinvasi<strong>on</strong>s in China, since <strong>on</strong>ly small parts <str<strong>on</strong>g>of</str<strong>on</strong>g> native populati<strong>on</strong>were collected in <str<strong>on</strong>g>the</str<strong>on</strong>g> introducti<strong>on</strong> process.S. alterniflora is a native species <str<strong>on</strong>g>of</str<strong>on</strong>g> north AtlanticAmerica. In 1979, 60 individuals and hundreds <str<strong>on</strong>g>of</str<strong>on</strong>g> seeds werecollected from Florida, Georgia and North Carolina, c<strong>on</strong>sisting<str<strong>on</strong>g>of</str<strong>on</strong>g> three distinct populati<strong>on</strong>s that differed in height,biomass producti<strong>on</strong> and protein (Chung 1985; Qin & Chung1992), namely F-type (Florida-type), G-type (Georgia-type)and N-type (North Carolina-type). In 1981, about 400 squaremeters (m 2 ) <str<strong>on</strong>g>of</str<strong>on</strong>g> planted area were established for each populati<strong>on</strong>,and in 1985 <str<strong>on</strong>g>the</str<strong>on</strong>g> area expanded to 260 ha with humanhelp (Qin & Chung 1992) (Fig. 1a). In 1990, <str<strong>on</strong>g>the</str<strong>on</strong>g>re were 1,300ha <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora m<strong>on</strong>oculture al<strong>on</strong>g coastal China, but<strong>on</strong>ly G-type remained as <str<strong>on</strong>g>the</str<strong>on</strong>g> two o<str<strong>on</strong>g>the</str<strong>on</strong>g>r types were replacedby <str<strong>on</strong>g>the</str<strong>on</strong>g> G-type through intraspecific competiti<strong>on</strong> (Guan et al.2003). In 2000, <str<strong>on</strong>g>the</str<strong>on</strong>g> total area reached 120,000 ha (Guan et al.2003) (Fig. 1b).Unlike S. anglica, <str<strong>on</strong>g>the</str<strong>on</strong>g> exotic S. alterniflora has highreproductive and dispersal capacity, and is competitive; ittook <strong>on</strong>ly 19 years to increase its area from 0.08 ha to 21,300ha in Jiangsu Province (Shen & Liu 2002). It excluded almostall <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r native plants that were originally dominantin wetlands, including Phragmites australis, Typha spp.,Scirpus spp., Suadae spp., and even invaded fishp<strong>on</strong>ds andyoung mangrove swamps (Qian & Ma 1995). Many nativespecies, including plants, some endangered birds (Ma etal. 2003), and molluscs <str<strong>on</strong>g>of</str<strong>on</strong>g> ec<strong>on</strong>omic importance in coastalChina are threatened by S. alterniflora invasi<strong>on</strong>s (Qian &Ma 1994). Spartina alterniflora is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> nine notoriousinvasive pest plants in China since <str<strong>on</strong>g>the</str<strong>on</strong>g> species directly causesmilli<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> dollars <str<strong>on</strong>g>of</str<strong>on</strong>g> ec<strong>on</strong>omic loss per year (Chen 1998).Spartina alterniflora is still rapidly replacing <str<strong>on</strong>g>the</str<strong>on</strong>g> nativeplants, although <str<strong>on</strong>g>the</str<strong>on</strong>g> Chinese government and scientists aredoing <str<strong>on</strong>g>the</str<strong>on</strong>g>ir best to c<strong>on</strong>trol or eradiate <str<strong>on</strong>g>the</str<strong>on</strong>g> species by physical,chemical, biological and integrated methods (Lin 1997; Liu& Huang 2000).S. alterniflora populati<strong>on</strong>s in China have similar percent<str<strong>on</strong>g>of</str<strong>on</strong>g> polymorphic loci (P) to native populati<strong>on</strong>s (Travis et al.2002), but we found that <str<strong>on</strong>g>the</str<strong>on</strong>g> species in China has muchhigher average heterogeneity (H), coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong>differentiati<strong>on</strong> (Fst), and much lower mean coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g>dissimilarity (Gd) (Table 2). The introduced S. alterniflorahas accumulated much populati<strong>on</strong> genetic differentiati<strong>on</strong>,-34-


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 1: Spartina BiologyTable 2. Genetic variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflora in native range andChina based <strong>on</strong> AFLP markers. percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> polymorphical loci (P), heterogeneity(H), mean coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> dissimilarity (Gd) and coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g>populati<strong>on</strong> differentiati<strong>on</strong> (Fst).i r iH d s H d s0. 0 0 0.11 4 0.2 0.064 0.280 0. 4 0.1 4 0.20 6d r r r is . 2002 .and c<strong>on</strong>siderably increased its invading capacity into coastalChina since its arrival in 1979. Rapid and genetic differentiati<strong>on</strong>may aid S. alterniflora in being a successful invasivespecies.Although S. anglica arrived in China 16 years earlierthan its seed parent S. alterniflora, <str<strong>on</strong>g>the</str<strong>on</strong>g> species has muchlower genetic differentiati<strong>on</strong> in coastal China’s envir<strong>on</strong>ments(Tables 1 and 2). Spartina anglica experienced a geneticbottleneck during its formati<strong>on</strong>, which might have c<strong>on</strong>tributedto its dieback in China as in its native Europe (Gray etal. 1991; Thomps<strong>on</strong> 1991).S. anglica has 120-124 chromosomes while S. alterniflorahas 62 (Gray & Benham 1991). Spartina anglica shouldhave high heterosis and potentially higher adaptability thanei<str<strong>on</strong>g>the</str<strong>on</strong>g>r parental species. Spartina anglica has replaced S.maritima in coastal England (Gray et al. 1991). However, S.alterniflora has rapidly occupied previous S. anglica habitatsin China. We suggest that <str<strong>on</strong>g>the</str<strong>on</strong>g> species with low populati<strong>on</strong> differentiati<strong>on</strong>(Fst) may be outcompeted by a species with highdifferentiati<strong>on</strong> in changing envir<strong>on</strong>ments like coastal areas<str<strong>on</strong>g>of</str<strong>on</strong>g> China, where accidental typho<strong>on</strong>s, irregular tidal cyclesand human-caused disturbances <str<strong>on</strong>g>of</str<strong>on</strong>g>ten happen. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r, agreater number <str<strong>on</strong>g>of</str<strong>on</strong>g> chromosomes or higher genetic diversity(P and H) does not guarantee a higher adaptability and moresuccessful invasi<strong>on</strong> for exotic species. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> generality<str<strong>on</strong>g>of</str<strong>on</strong>g> this finding needs to be tested fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r in more taxa.ACKNOWLEDGMENTSThis study was financially supported by NaturalScientific foundati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> China (No. 30400054), by NKBRSFoundati<strong>on</strong>, China (No. G2000046803) and KSJYXRCFoundati<strong>on</strong>, Ministry <str<strong>on</strong>g>of</str<strong>on</strong>g> Educati<strong>on</strong>, China (No. 0208002002).We thank to Dr. Chung-Hsin Chung for his valuable suggesti<strong>on</strong>sand comments.REFERENCESBais, H.P., R. Vepachedu, S. Gilroy, R.M. Callaway, and J.M.Vivanco. 2003. Allelopathy and exotic plant invasi<strong>on</strong>: from moleculesand genes to species interacti<strong>on</strong>s. Science 301:1377-1380.Baumel, A., M.L. Ainouche, and J.E. Levasseur. 2001. Molecularinvestigati<strong>on</strong>s in populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglica C.E. Hubbard(Poaceae) invading coastal Brittany (France). Molecular Ecology10(7):1689-1701.Callaway, R.M. 2002. The detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> neighbors by plants. Trendsin Ecology and Evoluti<strong>on</strong> 17(3):104-105.Callaway, R.M. and E.T. Aschehoug. 2000 . <strong>Invasive</strong> plants versus<str<strong>on</strong>g>the</str<strong>on</strong>g>ir new and old neighbors: A Mechanism for exotic invasi<strong>on</strong>.Science 290:521-523.Chater, E.H. and J.H. J<strong>on</strong>es. 1951. New form <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina townsendii.Nature 168:126-128.Chen, C.D. 1998. China’s Biodiversity: A Country Study. Envir<strong>on</strong>mentalScience Press.Chung, C.H. 1985. Twenty-two years <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglica in China.Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Nanjing University, Special Issue.Chung, C.H. 1993. Thirty years <str<strong>on</strong>g>of</str<strong>on</strong>g> ecological engineeringwith Spartina plantati<strong>on</strong> in China. Ecological Engineering2:261-289.Ellstrand, N.C. and K.A. Schierenbeck. 2000. Hybridizati<strong>on</strong> as astimulus for <str<strong>on</strong>g>the</str<strong>on</strong>g> evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> invasiveness in plant. <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g><str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Nati<strong>on</strong>al Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> United States <str<strong>on</strong>g>of</str<strong>on</strong>g>America 97(13):7043-7050.Ferris C., R. A. King and A.J. Gray. 1997. Molecular evidence for<str<strong>on</strong>g>the</str<strong>on</strong>g> maternal parentage in <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid origin <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglicaC. E. Hubbard. Molecular Ecology 6:185-187.Gray, A. J., D.F. Marshall and A.F. Raybould. 1991. A century <str<strong>on</strong>g>of</str<strong>on</strong>g>evoluti<strong>on</strong> in Spartina anglica. Advances in Ecological Research21:1-62.Gray, A.J. and P.E.M. Benham 1991. Spartina anglica — a researchreview. HMSO.Guan Y.J., S.Q. An, Y.H Liu., et al. 2003. Ecological benefit andecological invasi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina in China. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> NanjingForestry University 27:95-101.Hedge, P., L. Kriworken, and A. Ritar. 1997. Ecology, impact andc<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina in Little Swanport, Tasmania. In: Patten,K., ed., <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Sec<strong>on</strong>d <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> Spartina<str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g>, Olymipia, WA. Washingt<strong>on</strong> State UniveristyCooperative Extensi<strong>on</strong>, pp. 46-47.Hubbard, J.C.E. 1969 . Light in relati<strong>on</strong> to tidal immersi<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g>growth <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina townsendii. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology 57: 795-804.Kennedy, T.A. et al. 2002. Biodiversity as a barrier to ecologicalinvasi<strong>on</strong>. Nature 417:636-638.Keane, R.M. and M.J. Crawley. 2002. Exotic plant invasi<strong>on</strong>s and<str<strong>on</strong>g>the</str<strong>on</strong>g> enemy release hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis. Trends in Ecology and Evoluti<strong>on</strong>17:164-170.Lin, Q.R. 1997. Damage and management <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglica andSpartina alterniflora. Fujian Geography 12(1):16-20.Liu, J. and J.H. Huang. 2000. Management <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflora.Bulletin <str<strong>on</strong>g>of</str<strong>on</strong>g> Oceanography 10:68-72.Ma, Z.J., B. Li, and K. Jing. 2003. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> tidewater <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> feedingecology <str<strong>on</strong>g>of</str<strong>on</strong>g> hooded crane (Crane m<strong>on</strong>acha) and c<strong>on</strong>servati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir wintering habitats at Zh<strong>on</strong>gming D<strong>on</strong>gtai, China. EcologicalResearch 18(3):321-329.Novak, S.J. and R.N. Mack. 2001. Tracing plant introducti<strong>on</strong> andspread: genetic evidence from Bromus tectorun (cheatgrass).Bioscience 51(2): 114-122.Qian, Y.Q. and K.P. Ma. 1994. Bio-techniques, protecti<strong>on</strong> and wiseuses <str<strong>on</strong>g>of</str<strong>on</strong>g> biodiversity. In: Qian Y.Q. and K.P. Ma, eds. Principlesand Methods <str<strong>on</strong>g>of</str<strong>on</strong>g> Biodiversity Studies. China’s Science andTechnique Press, pp. 217-224.Qian, Y.Q. and K.P. Ma. 1995. Bio-techniques and bio-safety.Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural Resources 10(4):322-331.Qin, P. and C.H. Chung. 1992. Utilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina. Ocean Press,pp. 3-20.Sakai, A.K., F.W. Allendorf, J.S. Holt, et al. 2001. The populati<strong>on</strong>-35-


Chapter 1: Spartina Biology<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinabiology <str<strong>on</strong>g>of</str<strong>on</strong>g> invasive species. Annual Review <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology andSystematics 32:305-332.Shen, Y.M. and Y.M. Liu. 2002. Remote sensing <str<strong>on</strong>g>of</str<strong>on</strong>g> distributi<strong>on</strong>changes <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflora marshes in coastal Jiangsu.Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Plant Resources and Envir<strong>on</strong>ments 11(2):33-38.Thomps<strong>on</strong>, J.D. 1991. The biology <str<strong>on</strong>g>of</str<strong>on</strong>g> an invasive plant: what makesSpartina anglica so successful? Bioscience 41(6):393-400.Travis, S.E., C.E. Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt, R.C. Lowenfeld, et al. 2002. A comparativeassessment <str<strong>on</strong>g>of</str<strong>on</strong>g> genetic diversity am<strong>on</strong>g differently-agedpopulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflora <strong>on</strong> restored versus naturalwetlands. Restorati<strong>on</strong> Ecology 10(1):37-42.Tsutsui, N.D., A.V. Suarez, D.A. Holway, et al. 2000. Reducedgenetic variati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> success <str<strong>on</strong>g>of</str<strong>on</strong>g> an invasive species. <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g><str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Nati<strong>on</strong>al Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> UnitedStates <str<strong>on</strong>g>of</str<strong>on</strong>g> America 97(11):5948-5953.-36-


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 1: Spartina BiologySPARTINA DENSIFLORA X FOLIOSA HYBRIDS FOUND IN SAN FRANCISCO BAYD.R. Ayres 1 and A.K.F. Lee 2Dept. <str<strong>on</strong>g>of</str<strong>on</strong>g> Evoluti<strong>on</strong> and Ecology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Davis, One Shields Avenue, Davis, CA 956161 drayres@ucdavis.edu;2 alexkinlee@gmail.comKeywords: <strong>Invasive</strong> Spartina, hybridizati<strong>on</strong>, polyploidyINTRODUCTIONIn <str<strong>on</strong>g>the</str<strong>on</strong>g> 1970s, Spartina densiflora and S. foliosa wereplanted during <str<strong>on</strong>g>the</str<strong>on</strong>g> restorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Creekside Park in MarinCounty to a tidal salt marsh. In 2001 we discoveredcordgrass plants that spread by rhizomes like S. foliosa, buthad dense, evergreen stems like S. densiflora. Spartinafoliosa, California cordgrass, is native to <str<strong>on</strong>g>the</str<strong>on</strong>g> state. Plantsgrow laterally by rhizomes, creating meadows <str<strong>on</strong>g>of</str<strong>on</strong>g> sparse,evenly-spaced, deciduous stems. The species occupies lowertidal envir<strong>on</strong>ments (above mean sea level to mean highwater). Spartina densiflora, dense-flowered cordgrass, isnative to South America. Lack <str<strong>on</strong>g>of</str<strong>on</strong>g> rhizomes create a bunchtypegrass, with dense, largely evergreen stems. The speciesoccupies higher tidal areas than S. foliosa, occurring withSarcocornia viginica. The intermediate appearance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>Creekside Park plants suggested that <str<strong>on</strong>g>the</str<strong>on</strong>g> two species hadhybridized.MOLECULAR AND CYTOLOGICAL DYNAMICS OF S.DENSIFLORA X FOLIOSA HYBRIDSWe developed and used RAPD (Random AmplifiedPolymorphic DNA) nuclear DNA markers specific to ei<str<strong>on</strong>g>the</str<strong>on</strong>g>rS. foliosa or S. densiflora to identify and type hybrids (F1 orintrogressed). We used species-specific chloroplast DNAsequences (Anttila et al. 2000) to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> maternalparent <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid plants, as chloroplasts are maternallyinherited in Spartina (Ferris et al. 1997). Chromosomenumbers in root tips were counted in <str<strong>on</strong>g>the</str<strong>on</strong>g> parental species andin seven hybrid plants. We estimated genome size in mostplants using flow cytometry (Grotkopp 2004; Galbraith1982), compared <str<strong>on</strong>g>the</str<strong>on</strong>g> genome sizes with <str<strong>on</strong>g>the</str<strong>on</strong>g> corresp<strong>on</strong>dingchromosome counts, and used genome size to rapidly assess<str<strong>on</strong>g>the</str<strong>on</strong>g> ploidy <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrids (see Ayres et al. 2008 for details).We found 35 hybrid plants. All exhibited a F1 pattern<str<strong>on</strong>g>of</str<strong>on</strong>g> nuclear bands; that is, generally <str<strong>on</strong>g>the</str<strong>on</strong>g>y c<strong>on</strong>tained all 13 S.densiflora-specific bands and all nine S. foliosa-specificbands. A few plants lacked <strong>on</strong>e or two bands. Most plants(17 out <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 analyzed) had S. densiflora cpDNA. Mosthybrids were intermediate between S. densiflora and S.foliosa in chromosome number and genome size (Table 1);both chromosome number and genome size are c<strong>on</strong>sistentwith haploid gametes <str<strong>on</strong>g>of</str<strong>on</strong>g> each parental species (31 from S.foliosa + 35 from S. densiflora) uniting to form a F1 hybridwith 66 chromosomes. However, two plants were triploids,with <str<strong>on</strong>g>the</str<strong>on</strong>g> cp DNA <str<strong>on</strong>g>of</str<strong>on</strong>g> S. foliosa. Chromosome counts andgenome size assessments are c<strong>on</strong>sistent with a 2nc<strong>on</strong>tributi<strong>on</strong> by S. foliosa and a 1n c<strong>on</strong>tributi<strong>on</strong> by S.densiflora, with loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e and three chromosomes,respectively, in <str<strong>on</strong>g>the</str<strong>on</strong>g> two triploid individuals. Due tochromosomal mis-matching, viable gamete formati<strong>on</strong> isprobably rare in all hybrids. Even so, <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> triploidplants is important as it indicates that several avenues existTable 1. Molecular and cytological dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> S. densiflora x foliosa hybrids.Type/number <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrids(RAPDs)S. foliosa S. densiflora 2n hybrids 3n hybrids33 F1 2 F1cp DNA Sf Sd 17 Sd: 1 Sf 2 Sf : 0 SdChromosome number 62 70 65/66 94/96Genome size- pg (SD) 4.46 (SD= 0.10) 5.16 (SD = 0.06) 4.83 (SD = 0.06) 7.0 (SD = 0.01)Chromosome math 31 (S.f. 1n) + 35 (S.d. 1n) = 66 (S.d x f 2n)Triploid math 62 (S.f. 2n) + 35 (S.d. 1n) - (1 or 3 chromosomes) = 94 or 96 (S.d x f 3n)Genome size math {0.5 *4.46 (S.f. 2n)} + {0.5 *5.16 (S.d. 2n)} = 4.81 pg (S.d x f 2n)Triploid math {1*4.46 (S. f. 2n)} + {0.5 *5.16 (S.d. 2n)} = 7.0 pg (S.d x f 3n)-37-


Chapter 1: Spartina Biology<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaFig. 1. Final aboveground biomass <str<strong>on</strong>g>of</str<strong>on</strong>g> some plants in greenhouse salinityexperiment. CS-17 and CS-19 (diploid plants) are some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> transgressivehybrids, while CS-15 (triploid plant) has performance comparable to <str<strong>on</strong>g>the</str<strong>on</strong>g>parental species under <str<strong>on</strong>g>the</str<strong>on</strong>g> same high salinity stress.which may give rise to a new alloployploid species. Thus,this new hybridizati<strong>on</strong> possibly <str<strong>on</strong>g>of</str<strong>on</strong>g>fers us a chance to observe<str<strong>on</strong>g>the</str<strong>on</strong>g> origin <str<strong>on</strong>g>of</str<strong>on</strong>g> a new species.ECOLOGY OF S. DENSIFLORA X FOLIOSA HYBRIDSThis is <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d Spartina hybridizati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> SanFrancisco estuary in <str<strong>on</strong>g>the</str<strong>on</strong>g> past three decades; <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r,between S. alterniflora x foliosa, has resulted in abackcrossing swarm <str<strong>on</strong>g>of</str<strong>on</strong>g> invasive hybrids. Introducti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina have resulted in major biological invasi<strong>on</strong>s in saltmarshes around <str<strong>on</strong>g>the</str<strong>on</strong>g> world. Two <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se invaders arehybrids between native and introduced species (S.alterniflora x foliosa; S. anglica). Given <str<strong>on</strong>g>the</str<strong>on</strong>g> history <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina invasi<strong>on</strong>s and hybridizati<strong>on</strong>s, we investigatedwhe<str<strong>on</strong>g>the</str<strong>on</strong>g>r S. densiflora x foliosa hybrids have <str<strong>on</strong>g>the</str<strong>on</strong>g> potential tospread and invade surrounding marshes in <str<strong>on</strong>g>the</str<strong>on</strong>g> Bay. Thiswould require that hybrids tolerate marsh salinity and tidalinundati<strong>on</strong>, and produce viable seed. A greenhouseexperiment was performed with ten hybrid genotypes toassess <str<strong>on</strong>g>the</str<strong>on</strong>g>ir salinity tolerance against <str<strong>on</strong>g>the</str<strong>on</strong>g> parental species (S.foliosa – low elevati<strong>on</strong>, low salinity; and S. densiflora –higher elevati<strong>on</strong>, higher salinity). Salinity was increased by10 parts per thousand per week (ppt/week), and wemeasured several fitness indicators for 10 weeks. In <str<strong>on</strong>g>the</str<strong>on</strong>g>field, we combined mapping data with elevati<strong>on</strong>almeasurements (using a Trimble Total Stati<strong>on</strong>) to determine<str<strong>on</strong>g>the</str<strong>on</strong>g> relative tidal elevati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrids, native species, and S.densiflora. We also collected inflorescences from <str<strong>on</strong>g>the</str<strong>on</strong>g> fieldto measure <str<strong>on</strong>g>the</str<strong>on</strong>g>ir reproducti<strong>on</strong> (seed set).We found that some hybrids have high salinity tolerancebased <strong>on</strong> final aboveground biomass and flower producti<strong>on</strong>at <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 weeks (Fig. 1). Tolerance to high salinitycould allow hybrids to grow in higher marsh envir<strong>on</strong>ments,largely occupied by Sarcocornia virginica. Hybrids had anelevati<strong>on</strong>al range similar to S. densiflora at Creekside Park.Spartina foliosa occupies <str<strong>on</strong>g>the</str<strong>on</strong>g> lowest range, while <str<strong>on</strong>g>the</str<strong>on</strong>g>dominant Sarcocornia virginica is found in <str<strong>on</strong>g>the</str<strong>on</strong>g> highest. Thehybrids occupy <str<strong>on</strong>g>the</str<strong>on</strong>g> same “middle” range as <str<strong>on</strong>g>the</str<strong>on</strong>g>ir S.densiflora parent, which suggests that <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrids might nottolerate tidal inundati<strong>on</strong> as well as <str<strong>on</strong>g>the</str<strong>on</strong>g>ir S. foliosa parent.Finally, hybrids set no seed.SUMMARY AND CONCLUSIONSWe found that <str<strong>on</strong>g>the</str<strong>on</strong>g> salinity tolerance <str<strong>on</strong>g>of</str<strong>on</strong>g> some <str<strong>on</strong>g>of</str<strong>on</strong>g> hybridgenotypes exceeded that <str<strong>on</strong>g>of</str<strong>on</strong>g> both parental species; thathybrids occurred higher in <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh than S. foliosa andwithin a narrower elevati<strong>on</strong> range than ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r parentalspecies; and hybrids were apparently sterile as <str<strong>on</strong>g>the</str<strong>on</strong>g>yproduced no seed in <str<strong>on</strong>g>the</str<strong>on</strong>g> field and produced <strong>on</strong>ly shriveledan<str<strong>on</strong>g>the</str<strong>on</strong>g>rs in <str<strong>on</strong>g>the</str<strong>on</strong>g> greenhouse experiment. We c<strong>on</strong>clude thatdespite hybrid superiority in salinity tolerance, S. densiflorax foliosa hybrids will not be invasive due to sterility. Evenso, sterility may be overcome if fertile tetraploids orhexaploids evolve from hybrid individuals.ACKNOWLEDGMENTSWe would like to thank Krista Callinan (field andgreenhouse experiment), Carina Anttila (cpDNA), JohnBailey (cytology), Eva Grotkopp (flow cytometry), PabloRosso (GIS) and acknowledge <str<strong>on</strong>g>the</str<strong>on</strong>g> financial support from <str<strong>on</strong>g>the</str<strong>on</strong>g>California Coastal C<strong>on</strong>servancy (CalFed grant #99-110),California Sea Grant #27CN to D.R. Str<strong>on</strong>g, and NSFBiocomplexity DEB 0083583 to A. Hastings and D.R.Str<strong>on</strong>g.REFERENCESAnttila, C.K., A.R. King, C. Ferris, D.R. Ayres and D.R. Str<strong>on</strong>g.2000. Reciprocal hybrid formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina in San FranciscoBay. Molecular Ecology 9: 765-771.Ayres, D.R., E. Grotkopp, K. Zaremba, et al. 2008. Hybridizati<strong>on</strong>between invasive Spartina densiflora (Poaceae) and native S. foliosain San Francisco Bay, California, USA. American Journal<str<strong>on</strong>g>of</str<strong>on</strong>g> Botany 95(6): 713–719.Ayres, D.R., D. Garcia-Rossi, H.G. Davis and D.R. Str<strong>on</strong>g. 1999.Extent and degree <str<strong>on</strong>g>of</str<strong>on</strong>g> hybridizati<strong>on</strong> between exotic (Spartina alterniflora)and native (S. foliosa) cordgrass (Poaceae) in California,USA determined by random amplified polymorphic DNA(RAPDs). Molecular Ecology 8: 1179-1186.Ferris, C., R.A. King and A.J. Gray. 1997. Molecular evidence for<str<strong>on</strong>g>the</str<strong>on</strong>g> maternal parentage in <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid origin <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglicaC.E. Hubbard. Molecular Ecology 6: 185-187.Grotkopp, E., M. Rejmanek, M.J. Sanders<strong>on</strong> and T.L. Rost. 2004.Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> genome size in pines (Pinus) and its life-history correlates:supertree analyses. Evoluti<strong>on</strong> 58:1705-1729.Galbraith, D.W., K.R. Harkins, J.M. Maddox, N.M. Ayres, D.P.Sharma and E. Firoozabady. 1983. Rapid flow cytometric analysis<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cell cycle in intact plant tissues. Science 220: 1049-1051.-38-


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 1: Spartina BiologyFUNGAL SYMBIOSIS:APOTENTIAL MECHANISM OF PLANT INVASIVENESSR.J. RODRIGUEZ 1 ,R.S.REDMAN 2,3 ,M.HOY 2 , AND N. ELDER 41 U.S. Geological Survey, 6505 NE 65th Street, Seattle, WA 98115; Rusty_Rodriguez@usgs.gov2 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Washingt<strong>on</strong>, Seattle, WA 981953 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Microbiology, M<strong>on</strong>tana State University, Bozeman, MT 597174 U.S. Geological Survey, Marrowst<strong>on</strong>e Stati<strong>on</strong>, Nordland, WA 98358We propose that fungal endophytes provide a mechanism for <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> invasiveplants including Spartina species. We have determined that Spartina spp. are symbiotic wi<str<strong>on</strong>g>the</str<strong>on</strong>g>ndophytic fungi and have begun to assess <str<strong>on</strong>g>the</str<strong>on</strong>g> role <str<strong>on</strong>g>of</str<strong>on</strong>g> fungal endophytes in <str<strong>on</strong>g>the</str<strong>on</strong>g> invasiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>seplants. Preliminary data indicate that <str<strong>on</strong>g>the</str<strong>on</strong>g> fungal endophytes in Spartina spp. in Puget Sound arenative to that regi<strong>on</strong>. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> symbiosis in <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> invasive species and <str<strong>on</strong>g>the</str<strong>on</strong>g> adaptati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>plants to high stress habitats is discussed.Keywords: symbiosis, fungi, lifestyle, plant ecology, fungal ecology, Colletotrichum, Curvularia,SpartinaINTRODUCTIONIt is estimated that thousands <str<strong>on</strong>g>of</str<strong>on</strong>g> plants are introducedinto n<strong>on</strong>-native habitats every year, however, <strong>on</strong>ly a smallpercentage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se plants become invasive. Interestingly,invasi<strong>on</strong>s may result from interc<strong>on</strong>tinental orintrac<strong>on</strong>tinental plant movements and may involve ei<str<strong>on</strong>g>the</str<strong>on</strong>g>rvast or very short distances. Several <str<strong>on</strong>g>the</str<strong>on</strong>g>ories have beenproposed to explain <str<strong>on</strong>g>the</str<strong>on</strong>g> invasiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> plants (Daehler2003; Callaway and Ridenour 2004). However, n<strong>on</strong>eadequately explain why plants can achieve high densities innew habitats (Daehler, 2003; Silvertown 2004). It doesappear that invasi<strong>on</strong> is c<strong>on</strong>text dependent and may involve anumber <str<strong>on</strong>g>of</str<strong>on</strong>g> biotic and abiotic factors (Daehler 2003).Although <str<strong>on</strong>g>the</str<strong>on</strong>g>re have been numerous studies <strong>on</strong> invasiveplants, few include fungal symbiosis as a comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> plantbiology. Yet, all plants in natural ecosystems are thought tobe symbiotic with mycorrhizal and/or endophytic fungi.These fungi differ in distributi<strong>on</strong>, biology and physiology.Mycorrhizal fungi are limited to col<strong>on</strong>izing roots and growout into <str<strong>on</strong>g>the</str<strong>on</strong>g> rhizosphere effectively expanding root systemsby transporting nutrients and water that would o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise beunavaiable to root systems (Read 1999).Endophytic fungi reside entirely within plant tissues andmay occur in specific tissues (roots, crowns, stems, leaves,seed coats or seeds) or throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> plant. Althoughmycorrhizal fungi do not col<strong>on</strong>ize all plants, it is thoughtthat all plants are col<strong>on</strong>ized by endophytic fungi. Fungalendophytes can be divided into two major groups(Rodriguez et al. 2009b): 1) a small number <str<strong>on</strong>g>of</str<strong>on</strong>g> fastidiousspecies that are restricted to a small number <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>ocothosts (Clay and Schardl 2002) and 2) a large number <str<strong>on</strong>g>of</str<strong>on</strong>g>tractable species with broad host ranges (St<strong>on</strong>e et al. 2004).Both groups <str<strong>on</strong>g>of</str<strong>on</strong>g> fungal endophytes are known to be importantto <str<strong>on</strong>g>the</str<strong>on</strong>g> structure, functi<strong>on</strong>, and health <str<strong>on</strong>g>of</str<strong>on</strong>g> plant communities.In fact, without fungal symbioses, plant communities do notappear to survive many envir<strong>on</strong>mental stresses (Arnold et al.2003; Dingle and McGee 2003; Ernst et al., 2003; Redmanet al. 2002b).FUNGAL SYMBIOTIC LIFESTYLESCollectively, fungal symbi<strong>on</strong>ts express a variety <str<strong>on</strong>g>of</str<strong>on</strong>g>symbiotic lifestyles including mutualism, commensalism,and parasitism. These lifestyles are based <strong>on</strong> positive,neutral or negative fitness benefits to <str<strong>on</strong>g>the</str<strong>on</strong>g> host and symbi<strong>on</strong>t(Table 1, Lewis 1985). Mutualistic fungi have been shown toincrease plant growth and productivity (Marks and Clay1996; Varma et al. 1999; Read 1999; Redman et al. 2002a;Rodriguez et al. 2009a), and c<strong>on</strong>fer tolerance to abiotic andbiotic stresses including drought, metals, salt, temperature,pathogens and herbivores (Bac<strong>on</strong> and Hill 1996; Bac<strong>on</strong>1993; Read 1999; Carroll 1986; Redman et al. 2001;Redman et al. 2002b; Latch 1993; Rodriguez et al. 2008).We have dem<strong>on</strong>strated that endophytic fungi also have <str<strong>on</strong>g>the</str<strong>on</strong>g>ability to switch lifestyles in resp<strong>on</strong>se to host genotypes andthat <str<strong>on</strong>g>the</str<strong>on</strong>g> host range <str<strong>on</strong>g>of</str<strong>on</strong>g> fungal endophytes is typically greaterthan previously thought (Redman et al. 2001). For example,fungi from <str<strong>on</strong>g>the</str<strong>on</strong>g> genus Colletotrichum are classified as plantpathogenic fungi. However, several species have <str<strong>on</strong>g>the</str<strong>on</strong>g> abilityto asymptomatically col<strong>on</strong>ize plants not previously known tobe hosts and express n<strong>on</strong>-pathogenic lifestyles includingmutualism. When Colletotrichum species expressmutualistic lifesytles <str<strong>on</strong>g>the</str<strong>on</strong>g>y c<strong>on</strong>fer disease resistance againstfungi that express pathogneic lifestyles in <str<strong>on</strong>g>the</str<strong>on</strong>g> respective hostplant. Therefore, <strong>on</strong>e fungal isolate may be a virulentpathogen <strong>on</strong> <strong>on</strong>e host and a disease protecting mutualist <strong>on</strong>ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r.Symbiotically c<strong>on</strong>ferred disease resistance is correlatedwith <str<strong>on</strong>g>the</str<strong>on</strong>g> activati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> host defense systems (Redman et al.1999). When exposed to virulent pathogens, n<strong>on</strong>-symbioticplants slowly activated defense systems over a four-dayperiod and by day five <str<strong>on</strong>g>the</str<strong>on</strong>g> plants were dead. Symbioticplants activated defense systems within 24 hours <str<strong>on</strong>g>of</str<strong>on</strong>g> exposureto a virulent pathogen and completely terminated pathogen-39-


Chapter 1: Spartina Biology<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaTable 1. Fitness impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> Symbiotic LifestylesLifestyleFitness ImpactHost Symbi<strong>on</strong>tParasitism - +Commensalism 0 +Mutualism + +- = fitness decreased, + = fitness increased,0 = fitness not affectedingress. It appears that when Colletotrichum species areexpressing n<strong>on</strong>-pathogenic lifestyles <str<strong>on</strong>g>the</str<strong>on</strong>g>y are acting asbiological triggers allowing plants to recognize virulentpathogens more quickly (Rodriguez et al. 2004). Theeffectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> an endophyte as a biological trigger appearsto be a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> currently undefined genetic compatibilitywith <str<strong>on</strong>g>the</str<strong>on</strong>g> host.ADAPTIVE SYMBIOSISMutualistic fungi are known to c<strong>on</strong>fer a variety <str<strong>on</strong>g>of</str<strong>on</strong>g>fitness benefits. However, it is not known if symbioticallyc<strong>on</strong>ferred stress tolerance reflects an adaptive resp<strong>on</strong>se by<str<strong>on</strong>g>the</str<strong>on</strong>g> host and/or symbi<strong>on</strong>t. We have studied <str<strong>on</strong>g>the</str<strong>on</strong>g> ecologicalsignificance <str<strong>on</strong>g>of</str<strong>on</strong>g> endophytic fungi in plants thriving ingeo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal soils and found that <str<strong>on</strong>g>the</str<strong>on</strong>g> symbiosis is resp<strong>on</strong>siblefor <str<strong>on</strong>g>the</str<strong>on</strong>g> ability <str<strong>on</strong>g>of</str<strong>on</strong>g> both host and symbi<strong>on</strong>t to survive <str<strong>on</strong>g>the</str<strong>on</strong>g>rmalstress (Redman et al. 2002b; Marquez et al. 2007). In over200 individuals analyzed, <str<strong>on</strong>g>the</str<strong>on</strong>g> plant Dichan<str<strong>on</strong>g>the</str<strong>on</strong>g>liumlanuginosum is col<strong>on</strong>ized by <strong>on</strong>e fungal species (Curvulariaprotuberata) that is known to be a pathogen in o<str<strong>on</strong>g>the</str<strong>on</strong>g>r plantspecies (Farr et al. 1989). The fungal endophyte col<strong>on</strong>izesroots, crowns, stems, leaves and seed coats but not seeds.When seed coats are removed and seeds’ surfaces aresterilized it is possible to propagate plants devoid <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>fungus. This approach allowed us to compare <str<strong>on</strong>g>the</str<strong>on</strong>g> ability <str<strong>on</strong>g>of</str<strong>on</strong>g>symbiotic and n<strong>on</strong>-symbiotic plants to mitigate <str<strong>on</strong>g>the</str<strong>on</strong>g> impacts<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal stress. Nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> symbiotic partners toleratedtemperatures above 40°C, however, <str<strong>on</strong>g>the</str<strong>on</strong>g> symbiosis allowedboth to survive root temperatures up to 70°C. Recently wehave observed that isolates <str<strong>on</strong>g>of</str<strong>on</strong>g> C. protuberata from n<strong>on</strong>geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmalplants do not c<strong>on</strong>fer temperature tolerancesuggesting that this is an adaptive resp<strong>on</strong>se by fungi in <str<strong>on</strong>g>the</str<strong>on</strong>g>geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal habitat (Rodriguez et al. 2008).Comparative studies with Colletotrichum andCurvularia species support <str<strong>on</strong>g>the</str<strong>on</strong>g> hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis that symbiosesadapt to habitat stresses (Rodriguez et al. 2008). These fungiwere assessed for <str<strong>on</strong>g>the</str<strong>on</strong>g> ability to c<strong>on</strong>fer heat tolerance (anabiotic stress in geo<str<strong>on</strong>g>the</str<strong>on</strong>g>rmal habitats) and disease resistance(a biotic stress in agricultural habitats) to host plants.Colletotrichum isolates expressing n<strong>on</strong>-pathogenic lifestylesc<strong>on</strong>ferred disease resistance but not heat tolerance.C<strong>on</strong>versely, Curvularia isolates c<strong>on</strong>ferred heat tolerance butnot disease resistance. This observati<strong>on</strong> suggests that at leastsome <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> benefits c<strong>on</strong>ferred by mutualistic endophytesappear to reflect habitat-specific adaptati<strong>on</strong>.Colletotrichum species that express a mutualisticlifestyle typically are able to asymptomatically col<strong>on</strong>izegenetically divergent plant species (Redman et al. 2001). Forexample, C. magna is a virulent pathogen <strong>on</strong> cucurbits but isa disease protecting mutualist <strong>on</strong> tomato (Lycopersic<strong>on</strong>esculentum), beans (Phaseolus vulgaris) and strawberry(Fragaria ananassa), three genetically divergent species.Therefore, it appears that genetically distant plant speciescan gain novel biological functi<strong>on</strong> simply by formingsymbioses with different fungi. This could allow individualplant species to make quantum evoluti<strong>on</strong>ary leaps andexpand into new habitats or become dominant members <str<strong>on</strong>g>of</str<strong>on</strong>g>existing communities.SYMBIOSIS AS A POTENTIAL MECHANISM OFINVASIVENESSBased <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> broad host range <str<strong>on</strong>g>of</str<strong>on</strong>g> class 2 fungalendophytes, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir ability to c<strong>on</strong>fer abiotic and biotic stresstolerance, and <str<strong>on</strong>g>the</str<strong>on</strong>g> apparent adaptive nature <str<strong>on</strong>g>of</str<strong>on</strong>g> symbioses, wepropose <str<strong>on</strong>g>the</str<strong>on</strong>g> following hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis: The c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> at leastsome n<strong>on</strong>-native plants into invasive species requires <str<strong>on</strong>g>the</str<strong>on</strong>g>establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> symbioses with endophytic fungi thatc<strong>on</strong>fer tolerance to abiotic and biotic stresses. Thesesymbioses allow invasive species to circumvent <str<strong>on</strong>g>the</str<strong>on</strong>g>ecological factors that keep native species under c<strong>on</strong>trol andplant communities balanced. In order to properly challengethis hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis (designated <str<strong>on</strong>g>the</str<strong>on</strong>g> “symbiotic communicati<strong>on</strong>hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis”) several questi<strong>on</strong>s must be addressed such as:Do n<strong>on</strong>-native species carry n<strong>on</strong>-native endophytes whentransported? Are <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-native endophytes capable <str<strong>on</strong>g>of</str<strong>on</strong>g>releasing n<strong>on</strong>-native plants from ecological c<strong>on</strong>trols? If <str<strong>on</strong>g>the</str<strong>on</strong>g>n<strong>on</strong>-native plants are devoid <str<strong>on</strong>g>of</str<strong>on</strong>g> endophytes what are <str<strong>on</strong>g>the</str<strong>on</strong>g>dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> col<strong>on</strong>izati<strong>on</strong> by native fungi? If an adaptiveresp<strong>on</strong>se is required before n<strong>on</strong>-native plants becomeinvasive, what are <str<strong>on</strong>g>the</str<strong>on</strong>g> temporal dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> adaptati<strong>on</strong>?Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r mystery <str<strong>on</strong>g>of</str<strong>on</strong>g> plant invasi<strong>on</strong>s is that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a timelag time between introducti<strong>on</strong> and spread which may bemore than 100 years (Binggeli 2000). Several hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>seshave been proposed to explain invasive lag time but n<strong>on</strong>ehave adequately addressed this phenomen<strong>on</strong>. We havedem<strong>on</strong>strated that subtle differences in host genotypes aresufficient to eliminate symbiotically c<strong>on</strong>ferred stresstolerance and may result in <str<strong>on</strong>g>the</str<strong>on</strong>g> expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pathogenicra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than mutualistic lifestyles by endophytic fungi(Redman et al. 2001). Therefore, we propose that <str<strong>on</strong>g>the</str<strong>on</strong>g> lagphase comm<strong>on</strong>ly observed between introducti<strong>on</strong> andinvasi<strong>on</strong> may reflect <strong>on</strong>e or more <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> following:1) Endophytes carried with n<strong>on</strong>-native plants adapt t<strong>on</strong>ew habitat stresses and c<strong>on</strong>fer stress tolerance allowingn<strong>on</strong>-native plants to outcompete native plants;-40-


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 1: Spartina Biology2) N<strong>on</strong>-native plants establish symbioses with nativefungi that communicate more efficiently than with nativeplants;3) N<strong>on</strong>-native plants bring fungi that switch lifestylesand are pathogenic <strong>on</strong> native plants;4) N<strong>on</strong>-native plants alter <str<strong>on</strong>g>the</str<strong>on</strong>g> rhizosphere such thatnative root pathogens normally present in low abundancebecome abundant and are more virulent <strong>on</strong> native plants than<str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-native species.To begin testing <str<strong>on</strong>g>the</str<strong>on</strong>g> symbiotic communicati<strong>on</strong>hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis we have begun to assess <str<strong>on</strong>g>the</str<strong>on</strong>g> fungal endophytes inseveral native and invasive plant species in Puget Sound andnative habitats <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> invasive species. The list <str<strong>on</strong>g>of</str<strong>on</strong>g> plantspecies we are analyzing includes Spartina anglica, S.alterniflora and S. patens. A minimum <str<strong>on</strong>g>of</str<strong>on</strong>g> three populati<strong>on</strong>sfor each plant species was analyzed and at least 10 plants/perpopulati<strong>on</strong> were sampled. All <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina plantsanalyzed (N=100) c<strong>on</strong>tained class 2 endophytes whichappear to be native fungi based <strong>on</strong> a biogeographic study(Rodriguez et al. in preparati<strong>on</strong>). These endophytes arecurrently being tax<strong>on</strong>omically defined by sequence analysis<str<strong>on</strong>g>of</str<strong>on</strong>g> nuclear ribosomal DNA and classical morphologicalmethods. The host range <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> endophytes is also beingassessed and culture c<strong>on</strong>diti<strong>on</strong>s identified for fungalc<strong>on</strong>idiati<strong>on</strong>. In additi<strong>on</strong>, we have developed methods togerminate Spartina seeds devoid <str<strong>on</strong>g>of</str<strong>on</strong>g> endophytic fungi and arebeginning to perform comparative studies to evaluatesymbiotic and n<strong>on</strong>-symbiotic plants. In 2005-2007 weperformed greenhouse experiments to understand <str<strong>on</strong>g>the</str<strong>on</strong>g>symbiotic dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglica in <str<strong>on</strong>g>the</str<strong>on</strong>g> presence andabsence <str<strong>on</strong>g>of</str<strong>on</strong>g> abiotic stress. These studies indicated thatSpartina, like native coastal plants, establish associati<strong>on</strong>swith endophytes that c<strong>on</strong>fer salt tolerance Rodriguez et al.2008; Rodriguez et al., in preparati<strong>on</strong>). Therefore, wesurmise that endophytes play an important role in <str<strong>on</strong>g>the</str<strong>on</strong>g>invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> coastal areas by Spartina species. Studies areunderway to determine if endophytes c<strong>on</strong>tribute to <str<strong>on</strong>g>the</str<strong>on</strong>g>invasi<strong>on</strong> processes in n<strong>on</strong>-coastal habitats that imposedifferent degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> abiotic stress.ACKNOWLEDGMENTSWe would like to thank <str<strong>on</strong>g>the</str<strong>on</strong>g> organizers <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> Spartina <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> for <str<strong>on</strong>g>the</str<strong>on</strong>g> opportunity topresent <str<strong>on</strong>g>the</str<strong>on</strong>g>se hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>ses and submit this manuscript. Wewould like to thank Edward Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>fitt, David Heimer andRoger Fuller for assistance in collecting Spartina samples.This work was funded in part by grants from <str<strong>on</strong>g>the</str<strong>on</strong>g> U.S.Geological Survey and <str<strong>on</strong>g>the</str<strong>on</strong>g> Nati<strong>on</strong>al Science Foundati<strong>on</strong>.REFERENCESArnold, E.A., L.C. Mejia, D. Kyllo, E. Rojas, Z. Maynard,N. Robbins, and E.A. Herre. 2003. Fungal endophyteslimit pathogen damage in a tropical tree. <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> Nati<strong>on</strong>al Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences 100: 15649-15654.Bac<strong>on</strong>, C.W. 1993. Abiotic stress tolerances (moisture, nutrients)and photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis in endophyte-infected tall fescue.Agriculture Ecosystems and Envir<strong>on</strong>ment 44: 123-141.Bac<strong>on</strong>, C. W., and N.S. Hill. 1996. Symptomless grassendophytes: products <str<strong>on</strong>g>of</str<strong>on</strong>g> coevoluti<strong>on</strong>ary symbioses and<str<strong>on</strong>g>the</str<strong>on</strong>g>ir role in <str<strong>on</strong>g>the</str<strong>on</strong>g> ecological adaptati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> grasses. In: Redkin,S.C. and L.M. Carris, eds. Endophytic fungi in grassesand woody plants. St. Paul, APS Press, pp. 155-178.Binggeli, P. 2000. Time-lags between introducti<strong>on</strong>, establishmentand rapid spread <str<strong>on</strong>g>of</str<strong>on</strong>g> introduced envir<strong>on</strong>mentalweeds. <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> Weed Science C<strong>on</strong>gress, Fozdo Iguassu, Brazil, Manuscript number 8, pp. 14.Callaway, R.M., and W.M. Ridenour. 2004. Novel weap<strong>on</strong>s:invasive success and <str<strong>on</strong>g>the</str<strong>on</strong>g> evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> increased competitiveability. Fr<strong>on</strong>tiers in Ecology and <str<strong>on</strong>g>the</str<strong>on</strong>g> Envir<strong>on</strong>ment 2:436-443.Carroll, G.C. 1986. The biology <str<strong>on</strong>g>of</str<strong>on</strong>g> endophytism in plantswith particular reference to woody perennials. In: Fokkema,N.J. and J. Van Den Heuvel, eds. Microbiology <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> phyllosphere. Cambridge University Press, Cambridge,pp. 205-222.Clay, K., and C. Schardl. 2002. Evoluti<strong>on</strong>ary origins andecological c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> endophyte symbiosis withgrasses. The American Naturalist 160: Supplement, S99-S127.Daehler, C.C. 2003. Performance comparis<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> cooccurringnative and alien invasive plants: Implicati<strong>on</strong>s forc<strong>on</strong>servati<strong>on</strong> and restorati<strong>on</strong>. Annual Review Ecolology,Evoluti<strong>on</strong> and Systematics 34: 183-211.Dingle, J., and P.A. McGee. 2003. Some endophytic fungireduce <str<strong>on</strong>g>the</str<strong>on</strong>g> density <str<strong>on</strong>g>of</str<strong>on</strong>g> pustules <str<strong>on</strong>g>of</str<strong>on</strong>g> Puccinia rec<strong>on</strong>dita f. sp.tritici in wheat. Mycological Research 107: 310-316.Ernst, M., K.W. Mendgen, and S.G.R. Wirsel. 2003. Endophyticfungal mutualists: seed-borne Stag<strong>on</strong>ospora spp.enhance reed biomass producti<strong>on</strong> in axenic microcosms.Molecular Plant Microbe Interacti<strong>on</strong>s 16: 580-587.Farr, D.F., G.F. Bills, G.P. Chamuris, and A.Y. Rossman.1989. Fungi <strong>on</strong> plants and plant products in <str<strong>on</strong>g>the</str<strong>on</strong>g> UnitedStates. APS Press, St. Paul, MN, pp. 1252.Latch, G.C.M. 1993. Physiological interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> endophyticfungi and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir hosts. Biotic stress tolerance impartedto grasses by endophytes. Agriculture, Ecosystemsand Envir<strong>on</strong>ment 44: 143-156.Lewis, D.H. 1985. Symbiosis and mutualism: Crisp c<strong>on</strong>ceptsand soggy semantics. In: D.H. Boucher, ed. The Biology <str<strong>on</strong>g>of</str<strong>on</strong>g>Mutualism. L<strong>on</strong>d<strong>on</strong>, Croom Helm Ltd., pp. 29-39.Marks, S., and K. Clay. 1990. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 enrichment,nutrient additi<strong>on</strong>, and fungal endophyte-infecti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>growth <str<strong>on</strong>g>of</str<strong>on</strong>g> two grasses. Oecologia 84: 207-214.Marquez, L.M., R.S. Redman, R.J. Rodriquez and M.J.Roossinck. 2007. A virus in a fungus in a plant – threeway symbiosis required for <str<strong>on</strong>g>the</str<strong>on</strong>g>rmal tolerance. Science315:513-515.Read, D.J. 1999. Mycorrhiza - <str<strong>on</strong>g>the</str<strong>on</strong>g> state <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> art. In: Varma,A. and B. Hock, eds. Mycorrhiza. Berlin, Springer-Verlag,pp. 3-34.Redman, R.S., D.D. Dunigan, and R.J. Rodriguez. 2001.Fungal symbiosis: from mutualism to parasitism, who c<strong>on</strong>trols<str<strong>on</strong>g>the</str<strong>on</strong>g> outcome, host or invader? New Phytologist 151:705-716.-41-


Chapter 1: Spartina Biology<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaRedman, R.S., S. Freeman, D.R. Clift<strong>on</strong>, J. Morrel, G.Brown, and R.J. Rodriguez. 1999. Biochemical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g>plant protecti<strong>on</strong> afforded by a n<strong>on</strong>pathogenic endophyticmutant <str<strong>on</strong>g>of</str<strong>on</strong>g> Colletotrichum magna. Plant Physiology 119:795-804.Redman, R.S., M.J. Roossinck, S. Maher, Q.C. Andrews,W.L. Schneider, and R.J. Rodriguez. 2002a. Field performance<str<strong>on</strong>g>of</str<strong>on</strong>g> cucurbit and tomato plants col<strong>on</strong>ized with an<strong>on</strong>pathogenic mutant <str<strong>on</strong>g>of</str<strong>on</strong>g> Colletotrichum magna (teleomorph:Glomerella magna; Jenkins and Winstead). Symbiosis32: 55-70.Redman, R.S., K.B. Sheehan, R.G. Stout, R.J. Rodriguez,and J.M. Hens<strong>on</strong>. 2002b. Thermotolerance C<strong>on</strong>ferred toPlant Host and Fungal Endophyte During MutualisticSymbiosis. Science 298: 1581.Rodriguez, R.J., D.C. Freeman, E.D. McArthur, Y.O. Kim,and R.S. Redman. 2009a. Symbiotic regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plantgrowth, development and reproducti<strong>on</strong>. Communicative &Integrative Biology 2:141-143.Rodriguez R.J., J. Hens<strong>on</strong>, E. Van Volkenburgh, M. Hoy, L.Wright, F. Beckwith, Y. Kim, and R.S. Redman. 2008.Stress Tolerance in Plants via Habitat-Adapted Symbiosis.<str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Microbial Ecology 2: 404–416.Rodriguez, R.J., R.S. Redman, and J.M. Hens<strong>on</strong>. 2004. TheRole <str<strong>on</strong>g>of</str<strong>on</strong>g> Fungal Symbioses in <str<strong>on</strong>g>the</str<strong>on</strong>g> Adaptati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Plants toHigh Stress Envir<strong>on</strong>ments. Mitigati<strong>on</strong> and Adaptati<strong>on</strong>Strategies for Global Change 9: 261-272.Rodriguez, R.J., J.F. White, Jr., A.E. Arnold, and R.S.Redman. 2009b. Fungal endophytes: diversity and functi<strong>on</strong>alroles. Tansley Review, New Phytologist 182:314-330.Silvertown, J. 2004. Plant coexistence and <str<strong>on</strong>g>the</str<strong>on</strong>g> niche. Trendsin Ecology and Evoluti<strong>on</strong> 19: 605-611.St<strong>on</strong>e, J.K., J.D. Polishook, and J.F. White, Jr. 2004. EndophyticFungi. In: Mueller, G.M., G.F. Bills, and M.S. Foster,eds. Biodiversity <str<strong>on</strong>g>of</str<strong>on</strong>g> Fungi: Inventory and M<strong>on</strong>itoringMethods. Elsevier Academic Press, Oxford, U.K. pp. 241-270.Varma, A., S. Verma, Sudha, N. Sahay, B. Butehorn, and P.Franken, 1999. Piriformospora indica, a cultivable plantgrowth-promotingroot endophyte. Applied and Envir<strong>on</strong>mentalMicrobiology 65: 2741-2744.-42-


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 1: Spartina BiologyIS ERGOT A NATURAL COMPONENT OF SPARTINA MARSHES?DISTRIBUTION ANDECOLOGICAL HOST RANGE OF SALT MARSH CLAVICEPS PURPUREAA.J. FISHERDepartment <str<strong>on</strong>g>of</str<strong>on</strong>g> Plant Pathology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Davis, One Shields Ave., Davis, CA 95616; alijfisher@gmail.comThis study was undertaken to better characterize <str<strong>on</strong>g>the</str<strong>on</strong>g> geographic distributi<strong>on</strong> and host range <str<strong>on</strong>g>of</str<strong>on</strong>g>Claviceps purpurea from grass hosts in salt marsh habitats. Claviceps purpurea c<strong>on</strong>tains threeintraspecific groups, each with a habitat associati<strong>on</strong>: G1 from terrestrial habitats, G2 from moisthabitats and G3 from salt marshes. Twenty-six G3 isolates, representing 11 distinct populati<strong>on</strong>swere characterized based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> an EcoRI restricti<strong>on</strong> site in <str<strong>on</strong>g>the</str<strong>on</strong>g> 5.8S ribosomal DNA,and genetic similarity to isolates representing <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r two C. purpurea intraspecific groups (G1and G2). Distichlis spicata was identified as <str<strong>on</strong>g>the</str<strong>on</strong>g> first n<strong>on</strong>-Spartina host to G3 C. purpurea. Inadditi<strong>on</strong>, all isolates originating from Spartina densiflora, S. foliosa, S. alterniflora, and S. anglicawere identified as bel<strong>on</strong>ging to G3 based <strong>on</strong> genetic analysis. Salt marsh Claviceps purpurea can befound al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> Atlantic and Pacific Coasts <str<strong>on</strong>g>of</str<strong>on</strong>g> North America, Argentina, Ireland and England. Aglobal distributi<strong>on</strong> suggests that salt marsh (G3) C. purpurea is a natural comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartinadominatedsalt marsh habitats.Keywords: Ergot, Claviceps purpurea, Spartina, host rangeINTRODUCTIONClaviceps purpurea (Fr.) Tul, <str<strong>on</strong>g>the</str<strong>on</strong>g> cause <str<strong>on</strong>g>of</str<strong>on</strong>g> ergot, is awell known pathogen <str<strong>on</strong>g>of</str<strong>on</strong>g> cereal grains and forage. Thepathogen has a global distributi<strong>on</strong>, and a wide host rangewithin <str<strong>on</strong>g>the</str<strong>on</strong>g> Poaceae. This broad host range has led manyresearchers to seek evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> tax<strong>on</strong>omic substructurebased <strong>on</strong> morphology (Loveless 1971), alkaloid producti<strong>on</strong>(Eleuterius and Meyers 1977; Kobel and Sanglier 1978), andgenetic characteristics (Jungehülsing and Tudzynski 1997).In a recent study, Pazoutová et al. (2000) syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sizedprevious research <strong>on</strong> C. purpurea morphology, alkaloidchemistry and genetics, and identified three distinct groupswithin <str<strong>on</strong>g>the</str<strong>on</strong>g> species. Ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than divisi<strong>on</strong>s based <strong>on</strong> hostrange, <str<strong>on</strong>g>the</str<strong>on</strong>g> groups were defined by habitat associati<strong>on</strong>. Thelargest group, G1, was associated with terrestrial grasses,and G2 with grasses in moist envir<strong>on</strong>ments, whereas G3 wasfound <strong>on</strong>ly in salt marsh habitats. Isolates associated withG1 and G3 share an EcoRI restricti<strong>on</strong> site in <str<strong>on</strong>g>the</str<strong>on</strong>g> 5.8Sribosomal DNA (rDNA), which G2 isolates lack. The threegroups can be differentiated by RAPD analysis as well(Pazoutová et al. 2000).The ecological host range <str<strong>on</strong>g>of</str<strong>on</strong>g> maritime C. purpurea (G3)appears very narrow, compared to G1 and G2. G3 has beenisolated exclusively from cordgrass species <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> genusSpartina. Two host species to G3 have been identified, eachin <strong>on</strong>ly <strong>on</strong>e locati<strong>on</strong>: comm<strong>on</strong> cordgrass, S. anglica, in <str<strong>on</strong>g>the</str<strong>on</strong>g>United Kingdom and smooth cordgrass, S. alterniflora, from<str<strong>on</strong>g>the</str<strong>on</strong>g> state <str<strong>on</strong>g>of</str<strong>on</strong>g> New Jersey <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Atlantic coast <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> UnitedStates (Pazoutová et al. 2000, 2002b).Whereas <strong>on</strong>ly two populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> G3 have beenidentified using molecular markers, <str<strong>on</strong>g>the</str<strong>on</strong>g> host to thisintraspecific group, Spartina, is a widespread genusincluding both terrestrial and halophytic salt marsh species.Most members <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> genus, including S. alterniflora, sharea comm<strong>on</strong> native geographic range al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> Atlantic Coast<str<strong>on</strong>g>of</str<strong>on</strong>g> North and South America. Introduced populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> S.alterniflora have established <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Pacific Coast as well, in<str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco Bay, California (Daehler and Str<strong>on</strong>g 1994)and Willapa Bay, Washingt<strong>on</strong> (Stiller and Dent<strong>on</strong> 1995).Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> geographic range <str<strong>on</strong>g>of</str<strong>on</strong>g> G3 may be much greater thanis presently recognized and it is reas<strong>on</strong>able to think thatdiversity in populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> pathogen may reflect <str<strong>on</strong>g>the</str<strong>on</strong>g>diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> host species. The objectives <str<strong>on</strong>g>of</str<strong>on</strong>g> this studywere to assess <str<strong>on</strong>g>the</str<strong>on</strong>g> geographic distributi<strong>on</strong> and ecologicalhost range <str<strong>on</strong>g>of</str<strong>on</strong>g> G3 C. purpurea.MATERIALS AND METHODSIsolates included in this study, and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir origins, arelisted in Table 1. Isolates were sterilized and culturedaccording to <str<strong>on</strong>g>the</str<strong>on</strong>g> methods described in Pazoutová et al.(2000). Isolates not collected in <str<strong>on</strong>g>the</str<strong>on</strong>g> field were obtained aspure cultures from S. Pazoutová, including G1 isolates 374and 428 (Pazoutová et al. 2000), G2 isolates 236 and 434(Pazoutová et al. 2000), G3 isolates 500 and 538 (Pazoutováet al. 2002b), and G1 isolates165, 204 and 478. DNA wasextracted, and RAPD and AFLP markers were developedaccording to <str<strong>on</strong>g>the</str<strong>on</strong>g> methods described in Pazoutová et al.(2000). EcoRI analysis was also performed using <str<strong>on</strong>g>the</str<strong>on</strong>g>methods described in Pazoutová et al. (2000). Allm<strong>on</strong>omorphic and polymorphic RAPD and AFLP markerswere scored using a binary system (zero = absent and <strong>on</strong>e =present). Percent similarity between isolates was calculatedby dividing <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> shared markers by <str<strong>on</strong>g>the</str<strong>on</strong>g> totalnumber <str<strong>on</strong>g>of</str<strong>on</strong>g> markers and multiplying by 100.-43-


Chapter 1: Spartina Biology<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaRESULTSDistichlis spicata was identified as <str<strong>on</strong>g>the</str<strong>on</strong>g> first n<strong>on</strong>-Spartina host to G3 C. purpurea. In additi<strong>on</strong>, all isolatesoriginating from Spartina densiflora, S. foliosa, S.alterniflora, and S. anglica were identified as bel<strong>on</strong>ging toG3 based <strong>on</strong> genetic analysis. G1 and G3 isolates c<strong>on</strong>tainedan EcoRI restricti<strong>on</strong> site within <str<strong>on</strong>g>the</str<strong>on</strong>g> 5.8S rDNA, while G2isolates lacked this site, c<strong>on</strong>sistent with distincti<strong>on</strong>s am<strong>on</strong>g<str<strong>on</strong>g>the</str<strong>on</strong>g>se groups described by Pazoutová et al. (2000). UsingRAPD and AFLP markers, between-group diversity wasextraordinarily high with <strong>on</strong>ly less than 5 % <str<strong>on</strong>g>of</str<strong>on</strong>g> markersshared by all members <str<strong>on</strong>g>of</str<strong>on</strong>g> G1, G2 and G3. Within-groupsimilarity for G3 isolates was approximately 40%.DISCUSSIONThe maritime group <str<strong>on</strong>g>of</str<strong>on</strong>g> C. purpurea (G3) has beendistinguished from o<str<strong>on</strong>g>the</str<strong>on</strong>g>r intraspecific groups in this speciesby having an EcoRI site in <str<strong>on</strong>g>the</str<strong>on</strong>g> 5.8S ribosomal DNA, and aunique banding pattern based <strong>on</strong> RAPD analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> nuclearDNA. Based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>se characters, and AFLP analysis, <str<strong>on</strong>g>the</str<strong>on</strong>g>field collecti<strong>on</strong>s examined in this study from Spartina spp.and Distichlis spicata are representative <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> maritimegroup. The results <str<strong>on</strong>g>of</str<strong>on</strong>g> this study revealed G3 C. purpurea <strong>on</strong>three new species, S. foliosa, S. densiflora, and D. spicata.In additi<strong>on</strong>, this study has identified salt marsh (G3) C.purpurea <strong>on</strong> S. alterniflora where it is invasive: in <str<strong>on</strong>g>the</str<strong>on</strong>g> SanFrancisco Bay, CA and Willapa Bay, WA. Spartinaalterniflora was intenti<strong>on</strong>ally introduced into <str<strong>on</strong>g>the</str<strong>on</strong>g> SanFrancisco Bay as seed in <str<strong>on</strong>g>the</str<strong>on</strong>g> 1970s; S. alterniflora wasunintenti<strong>on</strong>ally introduced to Willapa Bay, Washingt<strong>on</strong> overa century ago (Stiller and Dent<strong>on</strong> 1995; Civille et al. 2005).The impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> C. purpurea <strong>on</strong> S. foliosa populati<strong>on</strong>s are notknown but <str<strong>on</strong>g>the</str<strong>on</strong>g>re is evidence that <str<strong>on</strong>g>the</str<strong>on</strong>g> pathogen can reduceseed producti<strong>on</strong> in this species (A. Fisher, 2007). In WillapaBay, <str<strong>on</strong>g>the</str<strong>on</strong>g> impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> C. purpurea <strong>on</strong> seed producti<strong>on</strong> are notknown. However, rates <str<strong>on</strong>g>of</str<strong>on</strong>g> infecti<strong>on</strong> are so low, that even if<str<strong>on</strong>g>the</str<strong>on</strong>g> pathogen reduces seed producti<strong>on</strong> <strong>on</strong> individualinfloresences, C. purpurea is unlikely to be a significantfactor for S. alterniflora fecundity.Spartina anglica, host to maritime C. purpurea <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>coast <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> United Kingdom and now identified as a host inIreland, has a hybrid origin, being derived from native S.maritima and introduced S. alterniflora (Raybould et al.1991). The first incidence <str<strong>on</strong>g>of</str<strong>on</strong>g> C. purpurea <strong>on</strong> S. anglica andS. townsendii, <str<strong>on</strong>g>the</str<strong>on</strong>g> sterile F1 hybrid <str<strong>on</strong>g>of</str<strong>on</strong>g> S. maritima and S.alterniflora, was reported in Ireland in 1975 (Boyle 1976).While unsure <str<strong>on</strong>g>of</str<strong>on</strong>g> its origin, Boyle argued that this and aherbarium specimen <str<strong>on</strong>g>of</str<strong>on</strong>g> C. purpurea <strong>on</strong> S. anglica collectedin 1971 were <str<strong>on</strong>g>the</str<strong>on</strong>g> first definitive reports <str<strong>on</strong>g>of</str<strong>on</strong>g> C. purpurea <strong>on</strong>salt marsh Spartina spp. in Great Britain and Ireland.Distichlis spicata has been previously identified as ahost to C. purpurea (Sprague 1950), and is currently <str<strong>on</strong>g>the</str<strong>on</strong>g><strong>on</strong>ly known host to G3 outside <str<strong>on</strong>g>the</str<strong>on</strong>g> genus Spartina. Perhapsnot surprisingly, Distichlis and Spartina are closely relatedgenera, bel<strong>on</strong>ging to <str<strong>on</strong>g>the</str<strong>on</strong>g> same subfamily (Chloridoideae)Table 1. Origin and host plant <str<strong>on</strong>g>of</str<strong>on</strong>g> C. purpurea isolates.a GroupOriginHostIDBřezno, Czech Republic Dactylis glomerata G1Altam<strong>on</strong>t, AL, USA F. arundinacea G1Lauderdale, AL, USAFestucaarundinaceaG1L’Anse aux meadows,Newfoundland, CanadaLeymus mollis G1Zubri, Czech Republic Poa pratensis G1MacDoel, CA, USA Secale cereale G1Aberdeen, ID, USA Secale cereale G1Hohenheim, Germany Secale cereale G1Phillipsreuth, Germany Dactylis spp. G2Vlčí Pole u Bousova,Czech RepublicMolinia coerulea G2Willapa River, WA, USA Distichlis spicata G3Palix River, WA, USA S. alterniflora G3Dolphin Island, AL, USA S. alterniflora G3Point Reyes NS, CA,USAS. alterniflora G3St. Augustine, FL, USA S. alterniflora G3Marsh Landing, GA, USA S. alterniflora G3Flax River, NY, USA S. alterniflora G3Rhode Island, USA S. alterniflora G3Southriver, NJ, USA S. alterniflora G3Marchwood, UK S. alterniflora G3Dublin, Ireland S. anglica G3Argentina Celpa Marsh,ArgentinaS. densiflora G3Bolinas Lago<strong>on</strong>, CA,USAS. foliosa G3Palo Alto, CA, USA S. foliosa G3Mountain View, CA, USA S. foliosa G3San Mateo, CA, USA S. foliosa G3Point Reyes NS, CA,USAS foliosaG3and tribe (Cynod<strong>on</strong>teae) (Peters<strong>on</strong> et al. 2001). This suggestsa phylogenetic corresp<strong>on</strong>dence between host and pathogen.The range <str<strong>on</strong>g>of</str<strong>on</strong>g> D. spicata includes <str<strong>on</strong>g>the</str<strong>on</strong>g> Atlantic Coast <str<strong>on</strong>g>of</str<strong>on</strong>g> NorthAmerica, <str<strong>on</strong>g>the</str<strong>on</strong>g> Gulf Coast states, Cuba, and <str<strong>on</strong>g>the</str<strong>on</strong>g> Pacific Coast<str<strong>on</strong>g>of</str<strong>on</strong>g> North America, from British Columbia south to Mexico,and South America (Hitchcock 1971). Distichlis spicata istypically found in salt marshes and seashores <strong>on</strong> moist andalkaline soils, and borders some S. alterniflora marshes inWillapa Bay, WA.In Argentina, G3 C. purpurea was collected from S.densiflora. Spartina densiflora is native to <str<strong>on</strong>g>the</str<strong>on</strong>g> Atlantic andPacific coasts <str<strong>on</strong>g>of</str<strong>on</strong>g> sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn South America (Mobberley 1956).Based <strong>on</strong> alkaloid pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile, Samuels<strong>on</strong> and Gjerstad (1966)proposed that C. purpurea from Spartina spp. in coastal-44-


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 1: Spartina BiologyArgentina was a separate species, C. maritima, or ‘fea<str<strong>on</strong>g>the</str<strong>on</strong>g>rergot.’ The host at <str<strong>on</strong>g>the</str<strong>on</strong>g> time was misidentified as S. maritima(Eleuterius and Meyers 1977). Eleuterius and Meyers (1977)proposed it was more likely to have been S. alterniflora,based <strong>on</strong> floristic surveys <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong>, but since S.densiflora is now known to be a host in South America, itcould be a candidate as well.Our results support <str<strong>on</strong>g>the</str<strong>on</strong>g> recogniti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> three discretegroups within C. purpurea. Results <str<strong>on</strong>g>of</str<strong>on</strong>g> RAPD and AFLPanalysis showed high intergroup variability between G1, G2,and G3. Using a collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> isolates from a different set <str<strong>on</strong>g>of</str<strong>on</strong>g>hosts, Jungehülsing and Tudzynski (1997) also found highintraspecific variability using RAPD markers. In <str<strong>on</strong>g>the</str<strong>on</strong>g>ir study,parsim<strong>on</strong>y analysis grouped samples from <str<strong>on</strong>g>the</str<strong>on</strong>g> same hostspecies toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r, suggesting some degree <str<strong>on</strong>g>of</str<strong>on</strong>g> host specificity.More sampling is necessary to reveal <str<strong>on</strong>g>the</str<strong>on</strong>g> ecological andphysiological range <str<strong>on</strong>g>of</str<strong>on</strong>g> G3, though <str<strong>on</strong>g>the</str<strong>on</strong>g>re is evidence that <str<strong>on</strong>g>the</str<strong>on</strong>g>pathogenicity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> G3, following greenhouseinoculati<strong>on</strong>s, is not limited to salt marsh species (Pazoutováet al. 2002a). Laboratory experiments notwithstanding, ourresults imply a degree <str<strong>on</strong>g>of</str<strong>on</strong>g> specificity in <str<strong>on</strong>g>the</str<strong>on</strong>g> ecological range <str<strong>on</strong>g>of</str<strong>on</strong>g>G3.Our results c<strong>on</strong>firm <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> three intraspecificgroups within C. purpurea and support from both RAPD andAFLP pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles str<strong>on</strong>gly suggests widespread geographicdispersal <str<strong>on</strong>g>of</str<strong>on</strong>g> salt marsh C. purpurea throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> range <str<strong>on</strong>g>of</str<strong>on</strong>g>both native and invasive Spartina species.ACKNOWLEDGMENTSThanks to S. Pazoutová for providing C. purpureaisolates; D. Str<strong>on</strong>g for comments <strong>on</strong> manuscripts; A.Bartolis, K. Heck, D. Garcia-Rossi, T. Buck, A. Kolker, S.Orl<str<strong>on</strong>g>of</str<strong>on</strong>g>f, M. Burzynski, D. Wesenberg and E. Landy for fieldsamples; B. Aegerter, D. Ayres, G. Douhan and D. Rizzo forassistance and use <str<strong>on</strong>g>of</str<strong>on</strong>g> laboratory equipment.This study was financially supported by The GardenClub <str<strong>on</strong>g>of</str<strong>on</strong>g> America, Jastro Shields and Humanities awardsfrom <str<strong>on</strong>g>the</str<strong>on</strong>g> University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Davis and NSFBiocomplexity DEB 0083583 to A. Hastings.REFERENCESBoyle, P.J. 1976. Ergot epiphytotic <strong>on</strong> Spartina spp. in Ireland.Irish Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Agricultural Research 15: 419-424.Civille J.C., K. Sayce, S.D. Smith and D.R. Str<strong>on</strong>g. 2005. Rec<strong>on</strong>structinga century <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina invasi<strong>on</strong> with historical recordsand c<strong>on</strong>temporary remote sensing. Ecoscience 12: 330-338.Daehler, C.C. and D.R. Str<strong>on</strong>g. 1994. Variable reproductive outputam<strong>on</strong>g cl<strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflora (Poaceae) invading SanFrancisco Bay, California: <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> herbivory, pollinati<strong>on</strong>,and establishment site. American Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Botany 81:307-131.Eleuterius, L.N. and S.P. Meyers. 1977. Alkaloids <str<strong>on</strong>g>of</str<strong>on</strong>g> Clavicepsfrom Spartina. Mycologia 69: 838-840.Fisher, A.J., J.M. DiTomaso, T.R. Gord<strong>on</strong>, B. Aegerter, and D.R.Ayres. 2007. Salt marsh Claviceps purpurea in native and invadedSpartina marshes in Nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn California. Plant Disease91:380-386.Hitchcock, A.S. 1971. Manual <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Grasses <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> United States.Dover: New York.Jungehülsing, U. and P. Tudzynski. 1997. Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> genetic diversityin Claviceps purpurea by RAPD markers. MycologicalResearch 101: 1-6.Kobel, H. and J.J. Sanglier. 1978. Formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ergotoxine alkaloidsby fermentati<strong>on</strong> and attempts to c<strong>on</strong>trol <str<strong>on</strong>g>the</str<strong>on</strong>g>ir biosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>ses.FEMS Symposium 5: 233-242.Loveless, A. R. (1971). C<strong>on</strong>idial evidence for host restricti<strong>on</strong> inClaviceps purpurea. Transacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> British Mycological Society56: 419-434.Mobberley, D.G. 1956. Tax<strong>on</strong>omy and distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> genusSpartina. Iowa State Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Science 30: 471-574.Pazoutová, S., B. Cagas, R. Kolínská, and A. H<strong>on</strong>zátko. 2002a.Host specializati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> different populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> ergot fungus(Claviceps purpurea). Czech Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Genetics and PlantBreeding 38: 75-81.Pazoutová, S., J. Olsovska, M. Linka, R. Kolínská, and M. Flieger.2000. Chemoraces and habitat specializati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Claviceps purpureapopulati<strong>on</strong>s. Applied and Envir<strong>on</strong>mental Microbiology 66:5419-5425.Pazoutová, S., A.F. Raybould, A. H<strong>on</strong>zátko, and R. Kolínská.2002b. Specialized populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Claviceps purpurea from saltmarsh Spartina species. Mycological Research 106: 210-214.Peters<strong>on</strong>, P.M., R.J. Soreng, D. Davidse, T.S. Filgueiras, F.O. Zuloagaand E.J. Judziewicz. 2001. Catalogue <str<strong>on</strong>g>of</str<strong>on</strong>g> New WorldGrasses (Poaceae): II. Subfamily Chloridoideae. C<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> U.S. Nati<strong>on</strong>al Herbarium 41: 1-255.Raybould A.F., A.J. Gray, M.J. Lawrence and D.F. Marshall. 1991.The evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglica C. E. Hubbard (Gramineae);<str<strong>on</strong>g>the</str<strong>on</strong>g> origin and genetic variability. Biological Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> LinneanSociety 43: 111-126.Samuels<strong>on</strong>, R.J. and G. Gjerstad. 1966. Intermediary metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g>ergot XIII. Fea<str<strong>on</strong>g>the</str<strong>on</strong>g>r ergot, a new, promising Claviceps species.Meddelelser Fra Norsk Farmaceutisk Selskap 28: 229-237.Sprague, R. 1950. Diseases <str<strong>on</strong>g>of</str<strong>on</strong>g> Cereals and grasses in North America.R<strong>on</strong>ald Press: New York.Stiller, J. W. and A.L. Dent<strong>on</strong>. 1995. One hundred years <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina alterniflora (Poaceae) in Willapa Bay, Washingt<strong>on</strong>:random amplified polymorphic DNA analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> an invasivepopulati<strong>on</strong>. Molecular Ecology 4: 355-363.-45-


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 1: Spartina BiologyMECHANISMS OF SULFIDE AND AOXIA TOLERANCE IN SALT MARSH GRASSESIN RELATION TO ELEVATIONAL ZONATIONB.R. MARICLE 1,2 AND R.W. LEE 11 School <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Sciences, Washingt<strong>on</strong> State University, Pullman, WA 99164-42362 Present address: Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Sciences, Fort Hays State University, Hays, KS 67601-4099; brmaricle@fhsu.eduSharply-defined ecot<strong>on</strong>es comm<strong>on</strong>ly separate species living in high intertidal and low intertidalestuarine z<strong>on</strong>es. Low intertidal regi<strong>on</strong>s are characterized by anoxic sediments and toxic levels <str<strong>on</strong>g>of</str<strong>on</strong>g>hydrogen sulfide. These c<strong>on</strong>diti<strong>on</strong>s exclude high marsh species. In c<strong>on</strong>trast, low marsh species arebelieved to possess physiological adaptati<strong>on</strong>s to resist <str<strong>on</strong>g>the</str<strong>on</strong>g> anoxia and sulfide. However, <str<strong>on</strong>g>the</str<strong>on</strong>g>seadaptati<strong>on</strong>s are poorly understood. One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most important characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> waterloggedsediments is <str<strong>on</strong>g>the</str<strong>on</strong>g> lack <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen. Many wetland plants have been shown to transport atmosphericoxygen internally to support respirati<strong>on</strong> in submerged tissues. This ability may allow plant survivalin low intertidal marsh areas and is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten implicated as a factor in determining species z<strong>on</strong>ati<strong>on</strong> inestuaries. In this study, oxygen transport and metabolic characteristics related to anoxia toleranceand rhizosphere oxidati<strong>on</strong> were investigated in <str<strong>on</strong>g>the</str<strong>on</strong>g> emergent estuarine species Spartina alterniflora,S. anglica, S. densiflora, S. patens, and Distichlis spicata (Poaceae). Plants were grown ingreenhouse experiments under simulated estuarine c<strong>on</strong>diti<strong>on</strong>s. All species showed a str<strong>on</strong>g ability torespire anaerobically. The high intertidal marsh species S. densiflora, S. patens, and D. spicata werefound to have high aerobic respirati<strong>on</strong> rates, low oxygen transport rates, and an apparent highsensitivity to sulfide. The low intertidal marsh species S. alterniflora and S. anglica had loweraerobic respirati<strong>on</strong> rates, moderate to high oxygen transport rates, and a lower sensitivity to sulfide.Spartina anglica appeared to have <str<strong>on</strong>g>the</str<strong>on</strong>g> greatest ability to transport oxygen and was more resistant tomudflat-related stressors compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r plants in this study. Evidence is presented thataerobic respirati<strong>on</strong> rates and sulfide sensitivity may be important factors for differences in estuarinez<strong>on</strong>ati<strong>on</strong> between species.Keywords: Distichlis spicata, hypoxia, oxygen transport, respirati<strong>on</strong>, sediment, Spartina, sulfideINTRODUCTIONThe introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> four species <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina grasses(Poaceae) into Washingt<strong>on</strong> estuaries has led to manydevastating ecological and ec<strong>on</strong>omic impacts. Nearly 8,100hectares (ha) <str<strong>on</strong>g>of</str<strong>on</strong>g> intertidal mudflat in Willapa Bay,Washingt<strong>on</strong>, USA, has been affected by introduced S.alterniflora (Hedge et al. 2003). Similarly, S. anglica wasintroduced in nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Puget Sound, Washingt<strong>on</strong> in 1961 topresvent shoreline erosi<strong>on</strong>, but quickly spread via tidalcurrents and now affects over 3,300 ha in <str<strong>on</strong>g>the</str<strong>on</strong>g> Puget Soundarea (Hacker et al. 2001). O<str<strong>on</strong>g>the</str<strong>on</strong>g>r Spartina introducti<strong>on</strong>s intoWashingt<strong>on</strong> estuaries include Spartina densiflora Br<strong>on</strong>g.(WSDA news release 11 Jan 2002) and S. patens (Ait<strong>on</strong>)Muhl. (Frenkel 1987). These populati<strong>on</strong>s remain small andare closely m<strong>on</strong>itored to prevent spread.Introduced Spartina flourishes in West Coast estuariesbecause it can occupy an open niche: low intertidal mudflatsand tidal channels characterized by highly reducingc<strong>on</strong>diti<strong>on</strong>s (an oxidati<strong>on</strong> reducti<strong>on</strong> potential less than -300millivolts [Eh


Chapter 1: Spartina Biology<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinain <str<strong>on</strong>g>the</str<strong>on</strong>g>se envir<strong>on</strong>ments is thought to be oxygen transport to<str<strong>on</strong>g>the</str<strong>on</strong>g> roots and rhizosphere, facilitated by a system <str<strong>on</strong>g>of</str<strong>on</strong>g> gasspaces (aerenchyma) c<strong>on</strong>necting leaves to root tissues (Tealand Kanwisher 1966, Hwang and Morris 1991, Arenovskiand Howes 1992, Howes and Teal 1994). The presence andfuncti<strong>on</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> aerenchyma is well documented in plantstolerant <str<strong>on</strong>g>of</str<strong>on</strong>g> flooded c<strong>on</strong>diti<strong>on</strong>s, and generally results in asupply <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen for aerobic respirati<strong>on</strong> as well as radialoxygen loss to <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>ment (reviewed by Jacks<strong>on</strong> andArmstr<strong>on</strong>g 1999).Once oxygen has reached submerged tissues inemergent plants like Spartina, it has at least three possiblefates (Fig. 1). Oxygen can be released into <str<strong>on</strong>g>the</str<strong>on</strong>g> rhizosphere,support mitoch<strong>on</strong>drial respirati<strong>on</strong>, or be used in sulfideoxidati<strong>on</strong> processes. The strength <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se competing oxygensinks can be important in <str<strong>on</strong>g>the</str<strong>on</strong>g> ecophysiology <str<strong>on</strong>g>of</str<strong>on</strong>g> wetlandplants since it influences how oxygen is budgeted insubmerged tissues (Sorrell 1999).Anoxic estuarine sediments represent a str<strong>on</strong>g externaloxygen sink and <str<strong>on</strong>g>the</str<strong>on</strong>g>y can overwhelm plant oxygen transportprocesses. Therefore, Spartina grasses also must exhibit astr<strong>on</strong>g capability for anaerobic respirati<strong>on</strong> to sustainmetabolism when oxygen supplies are low. The enzymealcohol dehydrogenase (ADH) catalyzes <str<strong>on</strong>g>the</str<strong>on</strong>g> final reacti<strong>on</strong> infermentative ethanol syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis. The ability to respire underhypoxic c<strong>on</strong>diti<strong>on</strong>s is important for life in waterlogged soils,so ADH activity in <str<strong>on</strong>g>the</str<strong>on</strong>g>se plants appears to be an adaptati<strong>on</strong>for anoxia tolerance (Crawford 1967).To understand <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanisms c<strong>on</strong>ferring success inlow intertidal z<strong>on</strong>es, aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen transport andmetabolic characteristics related to anoxia tolerance andrhizosphere oxidati<strong>on</strong> were investigated in greenhouseSpartina plants. The four Spartina species introduced intoFig. 1. Atmospheric oxygen can be transported through wetland plants tosubmerged tissues. Once oxygen reaches <str<strong>on</strong>g>the</str<strong>on</strong>g> roots (inset), it has severalpossible fates. Measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> indicated processes and enzymeactivities may indicate how oxygen is allocated in <str<strong>on</strong>g>the</str<strong>on</strong>g> roots <str<strong>on</strong>g>of</str<strong>on</strong>g> flood-tolerantplants.Washingt<strong>on</strong> estuaries provide a good system for studyingestuarine z<strong>on</strong>ati<strong>on</strong> since <str<strong>on</strong>g>the</str<strong>on</strong>g>y represent a range from highmarsh to low marsh species. The low marsh species Spartinaalterniflora and S. anglica were studied and compared to <str<strong>on</strong>g>the</str<strong>on</strong>g>high marsh species S. densiflora, S. patens, and <str<strong>on</strong>g>the</str<strong>on</strong>g> nativeDistichlis spicata.Plants are aerobes. Therefore, survival in waterloggedsoils requires a supply <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen to support tissuessubmerged in anoxic sediments (Crawford 1982). However,many additi<strong>on</strong>al physiological processes can be affected by<str<strong>on</strong>g>the</str<strong>on</strong>g> supply <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen to submerged tissues in wetland plants.Measures <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanisms shown in Fig. 1 may allow <strong>on</strong>eto estimate how much oxygen is used in aerobic respirati<strong>on</strong>and how str<strong>on</strong>g external oxygen sinks may be. In <str<strong>on</strong>g>the</str<strong>on</strong>g> presentstudy, rates <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen transport were measured andcompared to rates <str<strong>on</strong>g>of</str<strong>on</strong>g> aerobic respirati<strong>on</strong>. Highly reducingmudflat c<strong>on</strong>diti<strong>on</strong>s may inhibit aerobic respirati<strong>on</strong> processesand induce alternative anaerobic respirati<strong>on</strong> pathways.Therefore, rates <str<strong>on</strong>g>of</str<strong>on</strong>g> aerobic respirati<strong>on</strong> were measured as wellas activities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> aerobic respirati<strong>on</strong> enzyme cytochrome coxidase and <str<strong>on</strong>g>the</str<strong>on</strong>g> anaerobic respirati<strong>on</strong> enzyme alcoholdehydrogenase. Tolerance <str<strong>on</strong>g>of</str<strong>on</strong>g> estuarine mudflat c<strong>on</strong>diti<strong>on</strong>smay also require mechanisms to detoxify hydrogen sulfide, aphytotoxin produced under anaerobic c<strong>on</strong>diti<strong>on</strong>s.C<strong>on</strong>sequently, rates <str<strong>on</strong>g>of</str<strong>on</strong>g> sulfide oxidati<strong>on</strong> processes were alsomeasured in root tissues. The results <str<strong>on</strong>g>of</str<strong>on</strong>g> this study areexpected to provide a physiological explanati<strong>on</strong> to helpdefine differences between high marsh and low marshfuncti<strong>on</strong>al types and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir relati<strong>on</strong>ship to estuarine z<strong>on</strong>ati<strong>on</strong>.MATERIALS AND METHODSSpartina plants were collected from field sites andsubsequently maintained under greenhouse c<strong>on</strong>diti<strong>on</strong>s.Spartina alterniflora plants were collected in Willapa Bay,Washingt<strong>on</strong> and S. anglica was collected from nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rnPuget Sound, Washingt<strong>on</strong>. Additi<strong>on</strong>ally, S. patens plantswere obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g> Gulf Coast <str<strong>on</strong>g>of</str<strong>on</strong>g> northwest Florida andS. densiflora plants were obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g> Odiel SaltMarshes, southwest Spain. The native Distichlis spicata wascollected in nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Puget Sound, Washingt<strong>on</strong>.Greenhouse temperatures were 26°C during <str<strong>on</strong>g>the</str<strong>on</strong>g> day and18°C at night. Natural lighting provided a photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>ticphot<strong>on</strong> flux density (PPFD) averaging 200 micromolesquanta per square meter per sec<strong>on</strong>d (200 μmol quanta m -2sec -1 ) during daylight hours with peaks around 1,100 μmolquanta m -2 sec -1 <strong>on</strong> sunny days. Daughter tillers from fieldcollectedplants were potted individually in a 50/50(vol./vol.) sand/potting soil mixture and were watered tosaturati<strong>on</strong> twice weekly with modified Hoagland nutrientsoluti<strong>on</strong> (Epstein 1972). Freshly potted plants were selectedfor uniformity in size and randomized between flooded anddrained treatments. At least four replicate plants were grownin each treatment. Plants were allowed 60-80 days in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir-48-


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 1: Spartina Biologyrespective treatment (drained or flooded) before testing orharvest. All statistical analyses were performed betweenspecies and treatments with a two-factor (species andtreatment) analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> variance (Statview 5; 1998 SASInstitute Inc., Cary, NC; α=0.05).Individual plants were tested for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir ability to transportoxygen internally after <str<strong>on</strong>g>the</str<strong>on</strong>g> method <str<strong>on</strong>g>of</str<strong>on</strong>g> Maricle and Lee(2002). A fiber optic oxygen-sensing probe (FOXY-R probe;Ocean Optics Inc., Dunedin, FL) was used to measuredissolved oxygen c<strong>on</strong>centrati<strong>on</strong>s in sealed flasks c<strong>on</strong>tainingroots <str<strong>on</strong>g>of</str<strong>on</strong>g> intact plants suspended in water. Flask waterc<strong>on</strong>tained penicillin G and streptomycin sulfate at 1 gramper liter (1 g L -1 ) each and 50 mg L -1 chloramphenicol toprevent bacterial respirati<strong>on</strong>. During testing, plants wereplaced under a 250 watt (W) metal halide light (Hydr<str<strong>on</strong>g>of</str<strong>on</strong>g>armgardening products; Petaluma, CA). At plant level, PPFDwas about 150 μmol quanta m -2 s -1 and air temperature was28˚C. Flask dissolved oxygen c<strong>on</strong>centrati<strong>on</strong>s started at 100μM (±10 μM) and were measured over a period <str<strong>on</strong>g>of</str<strong>on</strong>g> 2-3 hoursto observe c<strong>on</strong>sumpti<strong>on</strong> or release <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen by plants to <str<strong>on</strong>g>the</str<strong>on</strong>g>surrounding medium.Parallel measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen c<strong>on</strong>sumpti<strong>on</strong> werec<strong>on</strong>ducted <strong>on</strong> plants where aerenchyma transport capabilitieswere blocked. Placing <str<strong>on</strong>g>the</str<strong>on</strong>g> shoot <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plant in a 100% N 2atmosphere prevents <str<strong>on</strong>g>the</str<strong>on</strong>g> entry <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen into <str<strong>on</strong>g>the</str<strong>on</strong>g>aerenchyma system (Armstr<strong>on</strong>g 1964, Teal and Kanwisher1966). Plants were maintained in <str<strong>on</strong>g>the</str<strong>on</strong>g> dark during thismeasurement to prevent <str<strong>on</strong>g>the</str<strong>on</strong>g> release <str<strong>on</strong>g>of</str<strong>on</strong>g> photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>ticoxygen. Rates <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen c<strong>on</strong>sumpti<strong>on</strong> were comparedbetween plants under a 21% O 2 atmosphere and a 100% N 2atmosphere; <str<strong>on</strong>g>the</str<strong>on</strong>g> difference between <str<strong>on</strong>g>the</str<strong>on</strong>g> two flux rates equals<str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen transported internally through <str<strong>on</strong>g>the</str<strong>on</strong>g>plant’s aerenchyma system (Lee 2003). Rates <str<strong>on</strong>g>of</str<strong>on</strong>g> internaloxygen transport were standardized to g fresh root weight.Oxygen c<strong>on</strong>sumpti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> dark under 100% N 2 representstotal oxygen demand by <str<strong>on</strong>g>the</str<strong>on</strong>g> plant and was taken to be <str<strong>on</strong>g>the</str<strong>on</strong>g>dark respirati<strong>on</strong> rate (Maricle and Lee 2007).At harvest, root samples were obtained from each plant,flash-frozen in liquid nitrogen, and stored at –80°C.Cytochrome c oxidase (CytOx) and sulfide oxidase (SOx)activities were determined in extracts from root tissuesamples. Roots were ground in liquid nitrogen and coldextracti<strong>on</strong> buffer was added at 2 milliliters per gram (2 mLg -1 ) (Maxwell and Bateman 1967). This mixture washomogenized with a mortar and pestle, filtered throughMiracloth (Calbiochem; San Diego, CA), and centrifuged at1,000 g for 20 minutes at 4°C. The supernatant was used inCytOx and SOx assays. Alcohol dehydrogenase (ADH) wasextracted from root tissue samples after John and Greenway(1976). Roots were ground in liquid nitrogen, and coldextracti<strong>on</strong> buffer was added at 5 mL g -1 . The resultingmixture was homogenized with a mortar and pestle, filteredthrough Miracloth, and centrifuged at 10,000 g for 10 min at4°C. This supernatant was used in ADH assays. All enzymeassays were performed spectrophotometrically at 25°C(Maricle et al. 2006).CytOx activity was determined as <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g>cytochrome c oxidati<strong>on</strong>, measured as a decrease inabsorbance at 550 nanometers (nm) (Smith 1955). Rates <str<strong>on</strong>g>of</str<strong>on</strong>g>CytOx activity were corrected for background rates <str<strong>on</strong>g>of</str<strong>on</strong>g>cytochrome c oxidati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>n standardized to g fresh rootweight. ADH activity was assayed spectrophotometrically in<str<strong>on</strong>g>the</str<strong>on</strong>g> ethanol-forming directi<strong>on</strong> (John and Greenway 1976).Enzyme activity was determined as <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> NADHoxidati<strong>on</strong>, measured as a decrease in absorbance at 340 nm.Rates <str<strong>on</strong>g>of</str<strong>on</strong>g> NADH oxidati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> acetaldehydewere corrected for background rates <str<strong>on</strong>g>of</str<strong>on</strong>g> ethanol formati<strong>on</strong>,<str<strong>on</strong>g>the</str<strong>on</strong>g>n standardized to g fresh root weight (Maricle et al.2006).A colorimetric method was developed to measure <str<strong>on</strong>g>the</str<strong>on</strong>g>activity <str<strong>on</strong>g>of</str<strong>on</strong>g> sulfide oxidati<strong>on</strong> processes. 50 microliter (μL)aliquots <str<strong>on</strong>g>of</str<strong>on</strong>g> extract were added to a series <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 mL buffersoluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 μM Na 2 S. 40 μL <str<strong>on</strong>g>of</str<strong>on</strong>g> Cline reagent (Cline1969) was added to <str<strong>on</strong>g>the</str<strong>on</strong>g> soluti<strong>on</strong>s after 0, 10, and 20 min todetermine <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> sulfide present. Background rates<str<strong>on</strong>g>of</str<strong>on</strong>g> sulfide oxidati<strong>on</strong> were measured by adding 50 μLphosphate buffer instead <str<strong>on</strong>g>of</str<strong>on</strong>g> enzyme extract to a series <str<strong>on</strong>g>of</str<strong>on</strong>g>tubes c<strong>on</strong>taining 100 μM Na 2 S as described above. SOxactivity was measured as a decrease in sulfide c<strong>on</strong>centrati<strong>on</strong>over time. Total rates <str<strong>on</strong>g>of</str<strong>on</strong>g> SOx activity were corrected forbackground rates <str<strong>on</strong>g>of</str<strong>on</strong>g> sp<strong>on</strong>taneous sulfide oxidati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>nstandardized to g fresh root weight. Rates <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>enzymaticsulfide oxidati<strong>on</strong> were determined using 50 μL aliquots <str<strong>on</strong>g>of</str<strong>on</strong>g>boiled enzyme extract. Enzymatic rates <str<strong>on</strong>g>of</str<strong>on</strong>g> sulfide oxidati<strong>on</strong>were calculated from <str<strong>on</strong>g>the</str<strong>on</strong>g> difference between <str<strong>on</strong>g>the</str<strong>on</strong>g> rates <str<strong>on</strong>g>of</str<strong>on</strong>g>total sulfide oxidati<strong>on</strong> and n<strong>on</strong>enzymatic sulfide oxidati<strong>on</strong>(Maricle et al. 2006).RESULTS AND DISCUSSIONSoil waterlogging is <str<strong>on</strong>g>the</str<strong>on</strong>g> most comm<strong>on</strong> cause <str<strong>on</strong>g>of</str<strong>on</strong>g> plantoxygen deficiency (Vartapetian and Jacks<strong>on</strong> 1997). Impacts<str<strong>on</strong>g>of</str<strong>on</strong>g> flooding <strong>on</strong> plant productivity can also have significantimpacts <strong>on</strong> commodity crops. Excessive rains in <str<strong>on</strong>g>the</str<strong>on</strong>g> spring<str<strong>on</strong>g>of</str<strong>on</strong>g> 1993 resulted in a 33% reducti<strong>on</strong> in Midwest cropproducti<strong>on</strong> (Bray et al. 2000). Despite <str<strong>on</strong>g>the</str<strong>on</strong>g>se kinds <str<strong>on</strong>g>of</str<strong>on</strong>g>ec<strong>on</strong>omic losses, many observers may have overlooked <str<strong>on</strong>g>the</str<strong>on</strong>g>cattails and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r wetland plants flourishing in nearbyflooded ditches. Differences in flooding tolerance have l<strong>on</strong>gbeen recognized between plant species, but <str<strong>on</strong>g>the</str<strong>on</strong>g> specificphysiology governing <str<strong>on</strong>g>the</str<strong>on</strong>g> differences has remained largelyunknown.Internal oxygen transport is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten regarded to be animportant factor c<strong>on</strong>ferring plant success in waterloggedareas, and <str<strong>on</strong>g>the</str<strong>on</strong>g>refore is thought to be important in estuarinez<strong>on</strong>ati<strong>on</strong> (e.g., Gleas<strong>on</strong> and Zieman 1981, Bertness 1991).The oxygen transport rates measured in this study exhibited-49-


Chapter 1: Spartina Biology<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaFig. 2. (a.) Internal oxygen transport rates, and (b.) root respirati<strong>on</strong> rates(μmol g -1 h -1 ) <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina and Distichlis grown under flooded soiltreatments. Shown is <str<strong>on</strong>g>the</str<strong>on</strong>g> mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 5-14 plants ± SE. Species are labeled asfollows: S. alt = Spartina alterniflora, S. ang = S. anglica, S. den = S.densiflora, Dist. = Distichlis spicata, S. pat = S. patens.a variability am<strong>on</strong>g individuals, with some apparentdifferences between species. The highest rates <str<strong>on</strong>g>of</str<strong>on</strong>g> transportwere exhibited by S. anglica, with moderate to low rates inall o<str<strong>on</strong>g>the</str<strong>on</strong>g>r species (Fig. 2a). Compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r species inthis study, S. anglica showed <str<strong>on</strong>g>the</str<strong>on</strong>g> greatest ability to transportoxygen (analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> variance [ANOVA], p


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 1: Spartina BiologyFig. 4. Alcohol dehydrogenase (ADH) activities (μmol g -1 min -1 ) <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina and Distichlis grown under drained and flooded soil treatments.Shown is <str<strong>on</strong>g>the</str<strong>on</strong>g> mean <str<strong>on</strong>g>of</str<strong>on</strong>g> 7-13 plants ± SE. Species are labeled as in Fig. 2.activities in S. anglica were significantly lower than all o<str<strong>on</strong>g>the</str<strong>on</strong>g>rspecies (ANOVA, p≤0.046). Flooded soil c<strong>on</strong>diti<strong>on</strong>sresulted in significantly higher ADH activities in all species(ANOVA, p≤0.018) expect <str<strong>on</strong>g>the</str<strong>on</strong>g> low marsh species S. anglica(ANOVA, p=0.564).Most plants can survive short term absence <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen(≤60 min) without cell death. In <str<strong>on</strong>g>the</str<strong>on</strong>g>se cases, normal ATPstores are quickly depleted in active cells, and mitoch<strong>on</strong>drialswelling is usually observed within minutes (Drew 1997).Large reserves <str<strong>on</strong>g>of</str<strong>on</strong>g> stored carb<strong>on</strong> can help <str<strong>on</strong>g>the</str<strong>on</strong>g> cells respireanaerobically, but l<strong>on</strong>ger absences <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen can result incell death. Irreversible damage to mitoch<strong>on</strong>dria and cellviability generally occurs following 15 hours <str<strong>on</strong>g>of</str<strong>on</strong>g> anaerobiosis(Perata and Alpi 1993). However, a supply <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen frominternal aerati<strong>on</strong> can allow marsh plants like Spartina torespire aerobically despite growing in waterloggedsubstrates. The superior oxygen transport abilities <str<strong>on</strong>g>of</str<strong>on</strong>g> S.anglica may have helped to account for its low root ADHactivities observed in this study.The plants studied showed varying degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> sulfideoxidati<strong>on</strong> capacity. Total sulfide oxidati<strong>on</strong> was partiti<strong>on</strong>edinto enzymatic and n<strong>on</strong>enzymatic processes. The meanenzymatic sulfide oxidase (SOx) activity ranged from 14.4to 97.2 nmol g -1 min -1 across species and waterloggingtreatments (Fig. 5a). Enzymatic SOx activities were highestin <str<strong>on</strong>g>the</str<strong>on</strong>g> high marsh species S. patens and D. spicata and weresignificantly lower in S. densiflora and <str<strong>on</strong>g>the</str<strong>on</strong>g> low marshspecies S. alterniflora and S. anglica (ANOVA, p≤0.050).This difference may suggest that high marsh species aremore sensitive to sediment sulfides and thus require greaterenzymatic protecti<strong>on</strong>. Enzymatic SOx activities did notchange in resp<strong>on</strong>se to flooding across species (ANOVA,p≥0.960).N<strong>on</strong>biotic factors such as metal i<strong>on</strong>s can c<strong>on</strong>tribute tosulfide oxidati<strong>on</strong> (Lee et al. 1999). Such n<strong>on</strong>enzymaticprocesses were also found to be important in sulfideoxidati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> present study. Mean n<strong>on</strong>enzymatic sulfideFig. 5. Sulfide oxidase (SOx) activities (nmol g -1 min -1 ) <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina andDistichlis grown under drained and flooded soil treatments. Shown are (a.)enzymatic and (b.) n<strong>on</strong>enzymatic rates <str<strong>on</strong>g>of</str<strong>on</strong>g> sulfide oxidati<strong>on</strong>. The mean <str<strong>on</strong>g>of</str<strong>on</strong>g>4-10 plants are shown ± SE. Species are labeled as in Fig. 2.oxidati<strong>on</strong> rates ranged from 12.6 to 51.1 nmol g -1 min -1across species and waterlogging treatments (Fig. 5b).N<strong>on</strong>enzymatic rates <str<strong>on</strong>g>of</str<strong>on</strong>g> sulfide oxidati<strong>on</strong> were not differentbetween species or flooding treatment (ANOVA, p≥0.141).CONCLUSIONSThe upper regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> salt marshes are characterized byoxidized soils, since tidal flooding is rare. However, episodicflooding at <str<strong>on</strong>g>the</str<strong>on</strong>g> highest tides can result in occasi<strong>on</strong>al anoxicand sulfidic c<strong>on</strong>diti<strong>on</strong>s. Therefore, plants from <str<strong>on</strong>g>the</str<strong>on</strong>g> highmarsh are not forced to withstand chr<strong>on</strong>ic anoxia. The highmarsh species S. patens, S. densiflora, and Distichlis spicatawere found to have high aerobic respirati<strong>on</strong> rates and highaerobic enzyme activity. This aerobic oxygen demand maybe too high to allow survival in anoxic low marshc<strong>on</strong>diti<strong>on</strong>s, where plants had lower aerobic demand.Anaerobic pathways (root ADH activities) increased afterflooding in all three high marsh species suggesting a highsensitivity to soil waterlogging. Internal oxygen transportrates were low in <str<strong>on</strong>g>the</str<strong>on</strong>g>se plants since <str<strong>on</strong>g>the</str<strong>on</strong>g>y are adapted to lifein sediments where soil oxygen is not normally limiting toroot respirati<strong>on</strong>.Additi<strong>on</strong>ally, higher SOx activities were found in highmarsh species compared to low marsh species. These trendssuggested that high marsh species were more sensitive tosulfide and required greater protecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aerobic respirati<strong>on</strong>.This idea is c<strong>on</strong>sistent with <str<strong>on</strong>g>the</str<strong>on</strong>g> finding that <str<strong>on</strong>g>the</str<strong>on</strong>g>se speciesexhibited higher activities <str<strong>on</strong>g>of</str<strong>on</strong>g> CytOx, <str<strong>on</strong>g>the</str<strong>on</strong>g> site <str<strong>on</strong>g>of</str<strong>on</strong>g> sulfideinhibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aerobic respirati<strong>on</strong> (Bagarinao 1992). Highrates <str<strong>on</strong>g>of</str<strong>on</strong>g> aerobic respirati<strong>on</strong> and apparent sulfide sensitivitymay substantially account for <str<strong>on</strong>g>the</str<strong>on</strong>g> exclusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se speciesfrom low marsh z<strong>on</strong>es.The low z<strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> salt marshes are characterized byfrequent tidal flooding. This leads to highly reducedsediments, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten c<strong>on</strong>taining high levels <str<strong>on</strong>g>of</str<strong>on</strong>g> sulfides. Plantsinhabiting low marsh regi<strong>on</strong>s must be able to tolerate highlyreducing and sulfidic sediment c<strong>on</strong>diti<strong>on</strong>s. Spartinaalterniflora is <str<strong>on</strong>g>the</str<strong>on</strong>g> dominant low marsh species in manyNorth American East- and Gulf Coast estuaries (Bertness-51-


Chapter 1: Spartina Biology<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartina1991). Spartina anglica can grow lower in <str<strong>on</strong>g>the</str<strong>on</strong>g> intertidalrange than S. alterniflora (Frenkel 1987, Sayce andMumford 1990), and <str<strong>on</strong>g>the</str<strong>on</strong>g>refore any o<str<strong>on</strong>g>the</str<strong>on</strong>g>r species in thisstudy. Low marsh species exhibited low aerobic respirati<strong>on</strong>rates and CytOx activity, which when coupled to high rates<str<strong>on</strong>g>of</str<strong>on</strong>g> internal oxygen transport may pose a significantadvantage for survival in anoxic sediments. The ability tosupply oxygen to submerged tissue is crucial to survival in<str<strong>on</strong>g>the</str<strong>on</strong>g> low marsh, as no plant tissue can endure anoxiaindefinitely (Crawford 1982). Low marsh species must alsopossess an ability to respire anaerobically since demand foroxygen from highly reduced sediments may overwhelmtransport processes. ADH activities measured in Spartinaroots indicated a well-developed capacity for fermentati<strong>on</strong>.However, increases in root ADH were not observed in <str<strong>on</strong>g>the</str<strong>on</strong>g>low marsh species S. anglica. High rates <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen transportin S. anglica may be adequate to supply oxygen to roots andexternal sinks, as suggested by its low root ADH activities.Low marsh species may be more resistant to sulfides whencompared to high marsh species. Lower aerobic respirati<strong>on</strong>rates and lower CytOx activities may relax needs for intensesulfide oxidati<strong>on</strong> requirements. Alternatively, higher rates <str<strong>on</strong>g>of</str<strong>on</strong>g>oxygen transport in some low marsh species may help tooxidize rhizosphere sulfides, resulting in reduced SOxactivity. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> acute toxicity <str<strong>on</strong>g>of</str<strong>on</strong>g> dissolved sulfidesaround roots still necessitates moderate SOx activities in lowmarsh species.The results <str<strong>on</strong>g>of</str<strong>on</strong>g> this study suggest metabolic characteristicsrelated to respirati<strong>on</strong> and sulfide tolerance may affect z<strong>on</strong>ati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> grasses in estuaries. While internal oxygen transport isimportant for survival in estuarine sediments, this study mayindicate that z<strong>on</strong>ati<strong>on</strong> within estuaries is dependent <strong>on</strong> morethan just oxygen transport. Aerobic respirati<strong>on</strong> rates andsensitivity to sediment sulfides may play a large role ininfluencing estuarine z<strong>on</strong>ati<strong>on</strong> as well.ACKNOWLEDGMENTSThe authors thank Chuck Cody for greenhouse assistance;Kim Patten, Sally Hacker, Eric Hellquist, and M. Enrique Figueroafor providing plants; and <str<strong>on</strong>g>the</str<strong>on</strong>g> Washingt<strong>on</strong> State Department <str<strong>on</strong>g>of</str<strong>on</strong>g>Agriculture for a Spartina transport permit. This project waspartially funded from <str<strong>on</strong>g>the</str<strong>on</strong>g> Betty W. Higinbotham Trust, NSFIBN0076604, EPA grant R-82940601, and NSF DBI-0116203.REFERENCESAdam, P. 2002. Saltmarshes in a time <str<strong>on</strong>g>of</str<strong>on</strong>g> change. Envir<strong>on</strong>mentalC<strong>on</strong>servati<strong>on</strong> 29:39-61.Arenovski, A.L., and B.L. Howes. 1992. Lacunal allocati<strong>on</strong> and gastransport capacity in <str<strong>on</strong>g>the</str<strong>on</strong>g> salt marsh grass Spartina alterniflora.Oecologia 90:316-322.Armstr<strong>on</strong>g, W. 1964. Oxygen diffusi<strong>on</strong> from <str<strong>on</strong>g>the</str<strong>on</strong>g> roots <str<strong>on</strong>g>of</str<strong>on</strong>g> someBritish bog plants. Nature 204:801-802.Bagarinao, T. 1992. Sulfide as an envir<strong>on</strong>mental factor and toxicant:Tolerance and adaptati<strong>on</strong>s in aquatic organisms. AquaticToxicology 24:21-62.Bertness, M.D. 1991. Z<strong>on</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina patens and Spartinaalterniflora in a New England salt marsh. Ecology 72:138-148.Bray, E.A., J. Bailey-Serres, and E. Weretilnyk. 2000. Resp<strong>on</strong>ses toabiotic stresses. In: Buchanan, B. B., W. Gruissem, and R. L.J<strong>on</strong>es, eds. Biochemistry and Molecular Biology <str<strong>on</strong>g>of</str<strong>on</strong>g> Plants.American Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Plant Physiologists: Rockville, Maryland.pp. 1158-1203.Brix, H., and B.K. Sorrell. 1996. Oxygen stress in wetland plants:comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> de-oxygenated and reducing root envir<strong>on</strong>ments.Functi<strong>on</strong>al Ecology 10:521-526.Burdick, D.M., and I.A. Mendelssohn. 1987. Waterlogging resp<strong>on</strong>sesin dune, swale, and marsh populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina patensunder field c<strong>on</strong>diti<strong>on</strong>s. Oecologia 74:321-329.Byrd, G.T., R.F. Sage, and R.H. Brown. 1992. A comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>dark respirati<strong>on</strong> between C 3 and C 4 plants. Plant Physiology100:191-198.Cline, J.D. 1969. Spectrophotometric determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrogensulfide in natural waters. Limnology and Oceanography 14:454-458.Crawford, R.M.M. 1967. Alcohol dehydrogenase activity in relati<strong>on</strong>to flooding tolerance in roots. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Experimental Botany18:458-464.Crawford, R.M.M. 1982. Physiological resp<strong>on</strong>ses to flooding. In:Lange, O.S. P.S. Nobel, C.B. Osm<strong>on</strong>d, and H. Ziegler, eds. Encyclopedia<str<strong>on</strong>g>of</str<strong>on</strong>g> Plant Physiology, Physiolological Plant EcologyII. Water Relati<strong>on</strong>s and Carb<strong>on</strong> Assimilati<strong>on</strong>. Springer-Verlag:Berlin. pp. 453-477Drew, M.C. 1997. Oxygen deficiency and root metabolism: Injuryand acclimati<strong>on</strong> under hypoxia and anoxia. Annual Review <str<strong>on</strong>g>of</str<strong>on</strong>g>Plant Physiology and Plant Molecular Biology 48:223-250.Emmett, R., R. Llanso, J. Newt<strong>on</strong>, R. Thom, M. Hornberger, C.Morgan, C. Levings, A. Copping, and P. Fishman. 2000. Geographicsignatures <str<strong>on</strong>g>of</str<strong>on</strong>g> North American West Coast estuaries. Estuaries23:765-792.Epstein, E. 1972. Mineral Nutriti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Plants: Principles and Perspectives.John Wiley and S<strong>on</strong>s, Inc.: New York.Frenkel, R.E. 1987. Introducti<strong>on</strong> and spread <str<strong>on</strong>g>of</str<strong>on</strong>g> cordgrass (Spartina)into <str<strong>on</strong>g>the</str<strong>on</strong>g> Pacific Northwest. Northwest Envir<strong>on</strong>mental Journal3:152-154.Gleas<strong>on</strong>, M.L., and J.C. Zieman. 1981. Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> tidal inundati<strong>on</strong>in internal oxygen supply <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflora andSpartina patens. Estuarine, Coastal and Shelf Science 13:47-57.Hacker, S.D., D. Heimer, C.E. Hellquist, T G. Reeder, B. Reeves,T.J. Riordan, and M.N. Dethier. 2001. A marine plant (Spartinaanglica) invades widely varying habitats: Potential mechanisms<str<strong>on</strong>g>of</str<strong>on</strong>g> invasi<strong>on</strong> and c<strong>on</strong>trol. Biological Invasi<strong>on</strong>s 3:211-217.Hedge, P., L.K. Kriwoken, and K. Patten. 2003. A review <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina management in Washingt<strong>on</strong> State, US. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g>Aquatic Plant Management 41:82-90.Howes, B.L., and J.M. Teal. 1994. Oxygen loss from Spartina alternifloraand its relati<strong>on</strong>ship to salt marsh oxygen balance.Oecologia 97:431-438.Hwang, Y.-H., and J.T. Morris. 1991. Evidence for hygrometricpressurizati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> internal gas space <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflora.Plant Physiology 96:166-171.Jacks<strong>on</strong>, M.B., and W. Armstr<strong>on</strong>g. 1999. Formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aerenchymaand <str<strong>on</strong>g>the</str<strong>on</strong>g> process <str<strong>on</strong>g>of</str<strong>on</strong>g> plant ventilati<strong>on</strong> in relati<strong>on</strong> to soil floodingand submergence. Plant Biology 1:274-287.John, C.D., and H. Greenway. 1976. Alcoholic fermentati<strong>on</strong> andactivity <str<strong>on</strong>g>of</str<strong>on</strong>g> some enzymes in rice roots under anaerobiosis. AustralianJournal <str<strong>on</strong>g>of</str<strong>on</strong>g> Plant Physiology 3:325-336.-52-


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 1: Spartina BiologyLee, R.W. 2003. Physiological adaptati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> invasivecordgrass Spartina anglica to reducing sediments: rhizome metabolicgas fluxes and enhanced O 2 and H 2 S transport. Marine Biology143:9-15.Lee, R.W., D.W. Kraus, and J.E. Doeller. 1999. Oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sulfideby Spartina alterniflora roots. Limnology and Oceanography44:1155-1159.Maricle, B.R., and R.W. Lee. 2002. Aerenchyma development andoxygen transport in <str<strong>on</strong>g>the</str<strong>on</strong>g> estuarine cordgrasses Spartina alternifloraand S. anglica. Aquatic Botany 74:109-120.Maricle, B.R., J.J. Crosier, B.C. Bussiere, and R.W. Lee. 2006.Respiratory enzyme activities correlate with anoxia tolerance insalt marsh grasses. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Experimental Marine Biology andEcology 337:30-37.Maricle, B.R., and R.W. Lee. 2007. Root respirati<strong>on</strong> and oxygenflux in saltmarsh grasses from different elevati<strong>on</strong>al z<strong>on</strong>es. MarineBiology 151:413-423.Maxwell, D.P., and D.F. Bateman. 1967. Changes in <str<strong>on</strong>g>the</str<strong>on</strong>g> activities<str<strong>on</strong>g>of</str<strong>on</strong>g> some oxidases in extracts <str<strong>on</strong>g>of</str<strong>on</strong>g> Rhizoct<strong>on</strong>ia-infected bean hypocotylsin relati<strong>on</strong> to lesi<strong>on</strong> maturati<strong>on</strong>. Phytopathology 57:132-136.Mendelssohn, I.A., K.L. McKee, and W.H. Patrick, Jr. 1981. Oxygendeficiency in Spartina alterniflora roots: Metabolic adaptati<strong>on</strong>to anoxia. Science 214:439-441.Naidoo, G., K.L. McKee, and I.A. Mendelssohn. 1992. Anatomicaland metabolic resp<strong>on</strong>ses to waterlogging and salinity in Spartinaalterniflora and S. patens. American Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Botany 79:765-770.Perata, P., and A. Alpi. 1993. Plant resp<strong>on</strong>ses to anaerobiosis. PlantScience 93:1-17.Pezeshki, S.R., J.H. Pardue, and R.D. DeLaune. 1993. The influence<str<strong>on</strong>g>of</str<strong>on</strong>g> soil oxygen deficiency <strong>on</strong> alcohol dehyrogenase activity,root porosity, ethylene producti<strong>on</strong>, and photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis inSpartina patens. Envir<strong>on</strong>mental and Experimental Botany33:565-573.Sayce, K., and T.F. Mumford, Jr. 1990. Identifying <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartinaspecies. In: Mumford, T.F. Jr., ed. The Spartina Workshop Record.Washingt<strong>on</strong> Sea Grant Program: Seattle, Washingt<strong>on</strong>. pp.9-14.Smith, L. 1955. Spectrophotometric assay <str<strong>on</strong>g>of</str<strong>on</strong>g> cytochrome c oxidase.Methods in Biochemical Analysis 2:427-434.Sorrell, B.K. 1999. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> external oxygen demand <strong>on</strong> radialoxygen loss by Juncus roots in titanium citrate soluti<strong>on</strong>s. Plant,Cell and Envir<strong>on</strong>ment 22:1587-1593.Teal, J., and M. Teal. 1969. Life and Death <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Salt Marsh. BallantineBooks, New York.Teal, J.M., and J.W. Kanwisher. 1966. Gas transport in <str<strong>on</strong>g>the</str<strong>on</strong>g> marshgrass, Spartina alterniflora. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Experimental Botany17:355-361.Thomps<strong>on</strong>, J.D. 1991. The biology <str<strong>on</strong>g>of</str<strong>on</strong>g> an invasive plant: Whatmakes Spartina anglica so successful? BioScience 41:393-401.Vartapetian, B.B., and M.B. Jacks<strong>on</strong>. 1997. Plant adaptati<strong>on</strong> toanaerobic stress. Annals <str<strong>on</strong>g>of</str<strong>on</strong>g> Botany 79 (Supplement A):3-20.-53-


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 1: Spartina BiologyEFFECTS OF SALINITY ON PHOTOSYNTHESIS IN C 4 ESTUARINE GRASSESB.R. MARICLE 1,2 ,O.KIIRATS 1 ,R.W.LEE 1 , AND G.E. EDWARDS 11 School <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Sciences, Washingt<strong>on</strong> State University, Pullman, WA 99164-42362 Present address: Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Sciences, Fort Hays State University, Hays, KS 67601-4099; brmaricle@fhsu.eduThe effects <str<strong>on</strong>g>of</str<strong>on</strong>g> salinity <strong>on</strong> gross and net photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis rates were measured in estuarine C 4 grasses.Net CO 2 fixati<strong>on</strong> was most affected by increasing salinity in Spartina patens and S. alterniflora,moderately affected in Distichlis spicata and S. densiflora, and unaffected in S. anglica. Spartinaanglica exhibited a decrease in internal carb<strong>on</strong> dioxide (CO 2 ) with increasing salinity, suggestingsome decrease in stomatal c<strong>on</strong>ductance. The results suggest S. anglica has a superior level <str<strong>on</strong>g>of</str<strong>on</strong>g> salttolerance compared to o<str<strong>on</strong>g>the</str<strong>on</strong>g>r species in <str<strong>on</strong>g>the</str<strong>on</strong>g> study, which could have implicati<strong>on</strong>s for communitystructure in field sites or for invasive potential <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica. The maximum quantum efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g>CO 2 fixati<strong>on</strong>, measured under limiting light, decreased with increasing salinity in S. alterniflora andS. patens, indicating an increase in leakage <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 from <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2 pump. While carb<strong>on</strong> fixati<strong>on</strong> decreasedunder increasing salinity in most species, fluorescence yield data showed <str<strong>on</strong>g>the</str<strong>on</strong>g>re was little effect<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> solar energy in photochemistry. This indicates additi<strong>on</strong>al sinks are induced undersalinity for use <str<strong>on</strong>g>of</str<strong>on</strong>g> photochemically generated energy (e.g., increase in <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2 pump, photorespirati<strong>on</strong>,or Mehler reacti<strong>on</strong>). Also, in S. patens and D. spicata, which had moderate decreases in photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis,n<strong>on</strong>-photochemical quenching (NPQ) mechanisms increased with salinity indicating some<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> excess light energy was lost as heat. Therefore, excess excitati<strong>on</strong> energy was diverted awayfrom <str<strong>on</strong>g>the</str<strong>on</strong>g> photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic reacti<strong>on</strong> centers to prevent photoinhibiti<strong>on</strong>. Variable to maximal fluorescence(F V /F M ) ratios were not significantly decreased by increasing salinity, suggesting <str<strong>on</strong>g>the</str<strong>on</strong>g>re was nodamage to photosystem II (PSII) reacti<strong>on</strong> centers in any species.Keywords: Spartina, Distichlis, chlorophyll fluorescence, gas exchange, salt stressINTRODUCTIONHigh and fluctuating salinity levels are characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g>salt marshes. Elevated soil salinity can cause low waterpotentials, which can decrease stomatal c<strong>on</strong>ductance,reducing incoming CO 2 , and thus reducing photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>ticrates (Willmer 1983). One aim <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> present study was todetermine how stomatal c<strong>on</strong>ductance and photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis inC 4 salt marsh grasses are affected by envir<strong>on</strong>mental salinity.Gross and net photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis rates were measured underthree salinity levels in <str<strong>on</strong>g>the</str<strong>on</strong>g> estuarine C 4 grasses Spartinaalterniflora, S. anglica, S. patens, S. densiflora, andDistichlis spicata in growth chamber studies. Differences in<str<strong>on</strong>g>the</str<strong>on</strong>g>se parameters were anticipated as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> changes inphotosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis as affected by salinity. Primary producti<strong>on</strong>by Spartina is an important input into <str<strong>on</strong>g>the</str<strong>on</strong>g> estuarine system(Peters<strong>on</strong> et al. 1985), so understanding <str<strong>on</strong>g>the</str<strong>on</strong>g> photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sisand hence producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this material may be important forunderstanding estuarine ecology and trophic interacti<strong>on</strong>s.MATERIALS AND METHODSPlants were collected at field sites in Washingt<strong>on</strong> (S.alterniflora, S. anglica, and D. spicata), Florida (S. patens),and Spain (S. densiflora). Tillers were potted in a 50/50volume to volume (v/v) sand/potting soil mixture, and plantswere watered to saturati<strong>on</strong> twice weekly with modifiedHoagland soluti<strong>on</strong> (Epstein 1972). Growth chamberc<strong>on</strong>diti<strong>on</strong>s were 14L/10D (light/dark hours) with 26°C daysand 18°C nights. Photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic phot<strong>on</strong> flux density (PPFD)was 300 micromoles per square meter per sec<strong>on</strong>d (μmol m -2s -1 ) at bench level. Flooded treatment plants were placed inlarge plastic tubs in a randomized block design. Water wasmaintained at 2 centimeters (cm) above <str<strong>on</strong>g>the</str<strong>on</strong>g> soil surface andwas completely replaced weekly. Salinity levels wereincreased 15 parts per thousand (‰) per week until floodedtreatments included 0, 15, and 30‰ salt (Instant Ocean salts;Aquarium Systems, Mentor, Ohio). Drained treatmentsc<strong>on</strong>tained 0‰ salt. Plants were held for 30 days under finaltreatment c<strong>on</strong>diti<strong>on</strong>s before testing. There were at least threereplicate plants per species/treatment combinati<strong>on</strong>.Chlorophyll fluorescence was measured with an OS-500modulated fluorometer (Opti-Sciences, Inc.; Tyngsboro,MA). Gross photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic rates <str<strong>on</strong>g>of</str<strong>on</strong>g> O 2 evoluti<strong>on</strong> werecalculated from fluorescence yield measurements after Kralland Edwards (1992). The sec<strong>on</strong>d-youngest leaf <strong>on</strong> each plantwas tested and light-resp<strong>on</strong>se curves were generated forPPFD <str<strong>on</strong>g>of</str<strong>on</strong>g> 15-2000 μmol m -2 s -1 .A FastEst gas exchange system (Maricle et al. 2007) wasused to measure leaf gas exchange <strong>on</strong> high (30‰) and low(0‰) salinity plants. Intact leaves were enclosed in a leafchamber at 25°C and 25% relative humidity. Measures <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2uptake gave net photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis rates, and measures <str<strong>on</strong>g>of</str<strong>on</strong>g> externalwater vapor allowed calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> stomatal c<strong>on</strong>ductance and-55-


Chapter 1: Spartina Biology<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartina<str<strong>on</strong>g>the</str<strong>on</strong>g> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> internal to atmospheric CO 2 c<strong>on</strong>centrati<strong>on</strong> (c i /c a ).A CO 2 analyzer (Li-Cor 6251; Lincoln, Nebraska) was used tomeasure leaf photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic carb<strong>on</strong> uptake. Simultaneousmeasures <str<strong>on</strong>g>of</str<strong>on</strong>g> chlorophyll fluorescence (Walz PAM 101;Effeltrich, Germany) allowed calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> grossphotosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic rates <str<strong>on</strong>g>of</str<strong>on</strong>g> O 2 evoluti<strong>on</strong>. Light-resp<strong>on</strong>se curveswere generated for PPFD <str<strong>on</strong>g>of</str<strong>on</strong>g> 0-1100 μmol m -2 s -1 . A 20-minutedark period was allowed before measuring F V /F M at 0 μmolm -2 s -1 . The initial slope <str<strong>on</strong>g>of</str<strong>on</strong>g> each plant’s light-resp<strong>on</strong>se curve(under limiting light) was taken to be <str<strong>on</strong>g>the</str<strong>on</strong>g> quantum efficiency<str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 fixati<strong>on</strong> or O 2 evoluti<strong>on</strong> (Genty et al. 1989).Light-resp<strong>on</strong>se curves were compared between speciesand treatments using repeated measures analysis <str<strong>on</strong>g>of</str<strong>on</strong>g>covariance (ANCOVAR). Parameters like quantumefficiency, c i /c a , F V /F M , and NPQ were compared betweenspecies and treatments using analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> variance (ANOVA).Treatments were blocked by tubs in all analyses.RESULTS AND DISCUSSIONMaximum rates <str<strong>on</strong>g>of</str<strong>on</strong>g> gross photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis (rates <str<strong>on</strong>g>of</str<strong>on</strong>g> O 2evoluti<strong>on</strong>) were quite high in this study (Fig. 1), c<strong>on</strong>sistentwith productivity data presented by L<strong>on</strong>g and Woolhouse(1979) for Spartina species. There were no significantdifferences in gross photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis rates between species,treatment, or <str<strong>on</strong>g>the</str<strong>on</strong>g>ir interacti<strong>on</strong>s (ANCOVAR, p≥0.439).Maximum quantum efficiencies <str<strong>on</strong>g>of</str<strong>on</strong>g> O 2 evoluti<strong>on</strong>,measured under limiting light, were not significantlydecreased by salinity in any species (ANOVA, p≥0.107;Table 1). Values for gross quantum efficiencies in Spartinaand Distichlis were slightly higher than previously publishednet quantum efficiency measures for C 4 m<strong>on</strong>ocots.Values for quantum efficiencies <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 fixati<strong>on</strong> wereslightly lower than gross quantum efficiencies (Table 1) andwere similar to those reported by Ehleringer and Pearcy(1983) for C 4 m<strong>on</strong>ocots. Quantum efficiencies <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2fixati<strong>on</strong> decreased in S. alterniflora and S. patens withincreased salinity (ANOVA, p≤0.058), but not in any o<str<strong>on</strong>g>the</str<strong>on</strong>g>rFig. 1. Light-resp<strong>on</strong>se curves showing gross photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis rates (μmolO 2 evolved m -2 s -1 ) <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina and Distichlis plants in flooded or drainedsoil c<strong>on</strong>diti<strong>on</strong>s and salt up to 30‰. Points are means <str<strong>on</strong>g>of</str<strong>on</strong>g> 3-23 plants ± SD.species (ANOVA, p≥0.161).There were large differences between gross and netphotosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis rates in most species (Table 2). This resulted ina surplus <str<strong>on</strong>g>of</str<strong>on</strong>g> harvested light energy not used in CO 2 fixati<strong>on</strong>.This energy must be dissipated in order to prevent damage tophotosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic reacti<strong>on</strong> centers. Net rates <str<strong>on</strong>g>of</str<strong>on</strong>g> photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>siswere lower in 30‰ salt compared to 0‰ salt in S. patens, S.alterniflora, and D. spicata (ANOVA, p≤0.063), but not in S.anglica or S. densiflora (ANOVA, p≥0.624).Maintaining gross photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis rates (as measured byfluorescence yield) in <str<strong>on</strong>g>the</str<strong>on</strong>g> light while rates <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 fixati<strong>on</strong>decrease with increasing salinity indicates additi<strong>on</strong>alTable 1. Photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis data collected for high- and low-salinity, flooded-treatment plants in <str<strong>on</strong>g>the</str<strong>on</strong>g> gas-exchange system. Shown is <str<strong>on</strong>g>the</str<strong>on</strong>g> net quantum efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2fixati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> gross quantum efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> O 2 evoluti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> maximum amount <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>photochemical quenching and c i/c a values at 1100 μmol m -2 s -1 , and <str<strong>on</strong>g>the</str<strong>on</strong>g> maximumF V/F M ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> dark-adapted plants. The mean ± SD (n) is given for each species/treatment combinati<strong>on</strong>.Species TreatmentsalinityNet QE(CO 2 phot<strong>on</strong> -1 )Gross QE(O 2 phot<strong>on</strong> -1 )Max NPQ(unitless)c i/c a(unitless)Max F V/F M(unitless)S. alterniflora 0‰ 0.065 ± 0.020 (3) 0.066 ± 0.010 (3) 1.99 ± 0.24 (3) 0.53 ± 0.10 (3) 0.74 ± 0.01 (3)30‰ 0.026 ± 0.016 (3) 0.046 ± 0.010 (3) 1.80 ± 0.36 (3) 0.60 ± 0.15 (3) 0.67 ± 0.08 (3)S. anglica 0‰ 0.025 ± 0.018 (4) 0.049 ± 0.009 (4) 1.64 ± 0.33 (4) 0.61 ± 0.11 (4) 0.72 ± 0.04 (4)30‰ 0.027 ± 0.021 (4) 0.056 ± 0.009 (4) 1.63 ± 0.50 (4) 0.41 ± 0.08 (4) 0.72 ± 0.03 (4)S. densiflora 0‰ 0.049 ± 0.048 (4) 0.056 ± 0.014 (4) 1.78 ± 0.24 (4) 0.57 ± 0.17 (4) 0.74 ± 0.01 (4)30‰ 0.034 ± 0.025 (4) 0.063 ± 0.006 (4) 1.44 ± 0.12 (4) 0.35 ± 0.14 (4) 0.73 ± 0.01 (4)S. patens 0‰ 0.067 ± 0.018 (3) 0.068 ± 0.003 (3) 1.19 ± 0.08 (3) 0.56 ± 0.14 (3) 0.71 ± 0.01 (3)30‰ 0.033 ± 0.022 (3) 0.057 ± 0.007 (3) 1.70 ± 1.16 (3) 0.53 ± 0.19 (3) 0.72 ± 0.01 (3)D. spicata 0‰ 0.038 ± 0.002 (3) 0.050 ± 0.014 (3) 0.79 ± 0.23 (3) 0.53 ± 0.04 (3) 0.60 ± 0.10 (3)30‰ 0.023 ± 0.015 (4) 0.057 ± 0.006 (4) 1.39 ± 0.37 (4) 0.53 ± 0.19 (3) 0.69 ± 0.04 (4)-56-


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 1: Spartina BiologyTable 2. Gross and net photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic rates collected for high- and lowsalinity,flooded-treatment plants at moderate PPFD (1100 μmol m -2 s -1 ).The mean gross photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic rate <str<strong>on</strong>g>of</str<strong>on</strong>g> O 2 evoluti<strong>on</strong> and net photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>ticrate <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 fixati<strong>on</strong> ± SD (n) is given for each species/treatmentcombinati<strong>on</strong>.Species SalinityGross PS rates Net PS rates(μmol O 2 m -2 s -1 ) (μmol CO 2 m -2 s -1 )S. alterniflora 0‰ 40.7 ± 1.0 (3) 11.0 ± 0.8 (3)30‰ 34.4 ± 9.0 (3) 2.9 ± 2.6 (3)S. anglica 0‰ 40.4 ± 5.5 (4) 2.2 ± 1.7 (4)30‰ 41.7 ± 2.6 (4) 5.9 ± 4.4 (4)S. densiflora 0‰ 38.3 ± 12.9 (4) 5.3 ± 7.2 (4)30‰ 46.3 ± 1.7 (4) 3.3 ± 11.4 (4)S. patens 0‰ 48.2 ± 2.5 (3) 16.1 ± 11.4 (3)30‰ 42.0 ± 1.6 (3) 3.0 ± 2.1 (3)D. spicata 0‰ 41.7 ± 13.2 (3) 10.3 ± 2.7 (3)30‰ 41.0 ± 3.3 (4) 6.3 ± 7.0 (4)electr<strong>on</strong> sinks are induced. Some possibilities include(Demmig-Adams and Adams, 1992): CO 2 pump activitymay increase to compensate for bundle sheath CO 2 leakage;this would use additi<strong>on</strong>al ATP generated by <str<strong>on</strong>g>the</str<strong>on</strong>g> Mehlerreacti<strong>on</strong>, and was potentially reflected in lower PSII yieldsin S. alterniflora and S. patens under high salinity (Table 1).Alternatively, an increase in photorespirati<strong>on</strong> could helpsustain gross photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis rates if CO 2 levels drop in <str<strong>on</strong>g>the</str<strong>on</strong>g>bundle sheath allowing O 2 to react with RuBP. Ac<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> photorespirati<strong>on</strong> is producing products likePGA and amm<strong>on</strong>ia that need reductive power fromphotochemistry. Increased reducti<strong>on</strong> rates <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrate, sulfate,or phosphate within chloroplasts could utilize excess lightenergy. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r work will be needed to see if nitrate orsulfate reducti<strong>on</strong> or photorespirati<strong>on</strong> rates increase withincreasing salinity. Finally, energy not used inphotochemistry may be dissipated by n<strong>on</strong>photochemicalquenching (NPQ) mechanisms, where excess light energy islost as heat. Maximum amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> NPQ increased withsalinity in S. patens and D. spicata (ANOVA, p≤0.073), butin no o<str<strong>on</strong>g>the</str<strong>on</strong>g>r species (ANOVA, p≥0.570; Table 1).Under high light, rates <str<strong>on</strong>g>of</str<strong>on</strong>g> light-harvesting (grossphotosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis) will invariably be larger than carb<strong>on</strong> fixati<strong>on</strong>(net photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis) rates. Therefore excess energy must besafely dissipated before reacti<strong>on</strong> centers are damaged(Demmig-Adams and Adams 1992). Dark-adapted F V /F Mratios <str<strong>on</strong>g>of</str<strong>on</strong>g> chlorophyll fluorescence can indicate damage to <str<strong>on</strong>g>the</str<strong>on</strong>g>PSII reacti<strong>on</strong> center (Krause and Weis 1991). F V /F M ratioswere not significantly reduced by salinity in any species inthis study (ANOVA, p≥0.165; Table 1), suggesting excessenergy was efficiently dispersed before reacti<strong>on</strong> centers weredamaged. Preventi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> photoinhibiti<strong>on</strong> is likely to beimportant in determining plant resistance to envir<strong>on</strong>mentalstresses that reduce carb<strong>on</strong> fixati<strong>on</strong> relative to lightharvesting rates (Demmig-Adams and Adams 1992).The c i /c a values <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plants in this study ranged from0.35 to 0.61 (Table 1). The c i /c a value <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglicasignificantly decreased with increasing salinity at moderatePPFD (ANOVA, p=0.032). The c i /c a values <str<strong>on</strong>g>of</str<strong>on</strong>g> all o<str<strong>on</strong>g>the</str<strong>on</strong>g>rspecies did not change in resp<strong>on</strong>se to increasing salinity(ANOVA, p≥0.421). In previous studies, c i /c a values did notchange with increasing salinity in C 4 grasses (Bowman et al.1989, Meinzer et al. 1994). C 3 leaf c i /c a values tend to behigher than corresp<strong>on</strong>ding C 4 values and are more sensitiveto increasing salinity (Brugnoli and Lauteri 1991).Increasing salinity may decrease C 3 c i /c a values by as muchas 0.48 (Farquhar et al. 1982). In <str<strong>on</strong>g>the</str<strong>on</strong>g> present study, c i /c adecreased by 0.20 in S. anglica, and by 0.22 in S. densiflora(n<strong>on</strong>significant change) with 30‰ salinity, but <strong>on</strong>ly as muchas 0.07 in <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r species (Table 1). We believe this to be<str<strong>on</strong>g>the</str<strong>on</strong>g> first report <str<strong>on</strong>g>of</str<strong>on</strong>g> salinity-induced decreases in C 4 c i /c avalues. One factor c<strong>on</strong>tributing to salt sensitivity in C 4 plantsmay be <str<strong>on</strong>g>the</str<strong>on</strong>g> susceptibility <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 leakage from bundle sheathcells under increasing salinity. Increasing salinity appearedto decrease c i /c a in S. anglica, but it was <str<strong>on</strong>g>the</str<strong>on</strong>g> most resistantspecies to salinity in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 fixati<strong>on</strong>. This suggestsCO 2 pump activity does not increase in S. anglica withincreasing salinity. Rates <str<strong>on</strong>g>of</str<strong>on</strong>g> photorespirati<strong>on</strong> or nitratereducti<strong>on</strong> may increase instead to use excess light energy.Excess energy dissipati<strong>on</strong> in resp<strong>on</strong>se to salinity may be anarea for future investigati<strong>on</strong> in marsh halophytes.This work illustrated how light harvesting and CO 2uptake relate to sediment salinity in C 4 marsh grasses.Excess energy dissipati<strong>on</strong> may also increase in times <str<strong>on</strong>g>of</str<strong>on</strong>g>salinity stress. Additi<strong>on</strong>ally, NPQ mechanisms increase inmany plants as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> external salinity. Portableflourometers can easily be used in <str<strong>on</strong>g>the</str<strong>on</strong>g> field to determine invivo NPQ and thus in vivo salt stress in some plants.However, photochemistry does not appear to be affected bysalt, so fluorescence yield measurements in <str<strong>on</strong>g>the</str<strong>on</strong>g> light or darkadaptedF V /F M measures will not reflect salt stress. Inc<strong>on</strong>trast, gas-exchange methods appear to be far moresensitive to salinity.ACKNOWLEDGMENTSThe authors thank C. Cody, P. Rabie, K. Patten, S.Hacker and M. Figueroa for assistance and plants. Thisproject was partially funded by <str<strong>on</strong>g>the</str<strong>on</strong>g> Betty W. HiginbothamTrust and a Padilla Bay NERR Research Assistantship. Thisresearch was also supported by NSF IBN0076604, EPA R-82940601, and NSF DBI-0116203.REFERENCESBowman, W.D., K.T. Hubick, S. v<strong>on</strong> Caemmerer, and G.D. Farquhar.1989. Short-term changes in leaf carb<strong>on</strong> isotope discriminati<strong>on</strong>in salt and water stressed C 4 grasses. Plant Physiol. 90:162-166.Brugnoli, E., and M. Lauteri. 1991. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> salinity <strong>on</strong> stomatalc<strong>on</strong>ductance, photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic capacity, and carb<strong>on</strong> isotope discriminati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> salt-tolerant (Gossypium hirsutum L.) and saltsensitive(Phaseolus vulgaris L.) C 3 n<strong>on</strong>-halophytes. PlantPhysiol. 95:628-635.-57-


Chapter 1: Spartina Biology<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaDemmig-Adams, B., and W.W. Adams, III. 1992. Photoprotecti<strong>on</strong>and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> plants to high light stress. Ann. Rev. PlantPhysiol. Plant Mol. Biol. 43:599-626.Ehleringer, J., and R.W. Pearcy. 1983. Variati<strong>on</strong> in quantum yieldfor CO 2 uptake am<strong>on</strong>g C 3 and C 4 plants. Plant Physiol. 73:555-559.Epstein, E. 1972. Mineral Nutriti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Plants: Principles and Perspectives.John Wiley and S<strong>on</strong>s, Inc.: New York.Farquhar, G.D., M.C. Ball, S. v<strong>on</strong> Caemmerer, and Z. Roksandic.1982. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> salinity and humidity <strong>on</strong> δ 13 C value <str<strong>on</strong>g>of</str<strong>on</strong>g> halophytes—Evidencefor diffusi<strong>on</strong>al isotope fracti<strong>on</strong>ati<strong>on</strong> determinedby <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> intercellular/atmospheric partial pressure <str<strong>on</strong>g>of</str<strong>on</strong>g>CO 2 under different envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s. Oecologia52:121-124.Genty, B., J.-M. Briantais, and N.R. Baker. 1989. The relati<strong>on</strong>shipbetween <str<strong>on</strong>g>the</str<strong>on</strong>g> quantum yield <str<strong>on</strong>g>of</str<strong>on</strong>g> photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic electr<strong>on</strong> transportand quenching <str<strong>on</strong>g>of</str<strong>on</strong>g> chlorophyll fluorescence. Biochim. Biophys.Acta 990:87-92.Krall, J.P., and G.E. Edwards. 1992. Relati<strong>on</strong>ship between photosystemII activity and CO 2 fixati<strong>on</strong> in leaves. Physiol. Plant.86:180-187.Krause, G.H., and E. Weis. 1991. Chlorophyll fluorescence andphotosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis: <str<strong>on</strong>g>the</str<strong>on</strong>g> basics. Ann. Rev. Plant Physiol. Plant Mol.Biol. 42:313-349.L<strong>on</strong>g, S.P., and H.W. Woolhouse. 1979. Primary producti<strong>on</strong> inSpartina marshes. In: R.L. Jefferies and A.J. Davy, eds. EcologicalProcesses in Coastal Envir<strong>on</strong>ments, 333-352. Blackwell ScientificPublicati<strong>on</strong>s: Oxford.Maricle, B.R., R.W. Lee, C.E. Hellquist, O. Kiirats, and G. Edwards.2007. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> salinity <strong>on</strong> chlorophyll fluorescence andCO 2 fixati<strong>on</strong> in C 4 estuarine grasses. Photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tica 45:433-440.Meinzer, F.C., Z. Plaut, and N.Z. Saliendra. 1994. Carb<strong>on</strong> isotopediscriminati<strong>on</strong>, gas exchange, and growth <str<strong>on</strong>g>of</str<strong>on</strong>g> sugarcane cultivarsunder salinity. Plant Physiol. 104:521-526.Peters<strong>on</strong>, B.J., R.W. Howarth, and R.H. Garritt. 1985. Multiplestable isotopes used to trace <str<strong>on</strong>g>the</str<strong>on</strong>g> flow <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter flow inestuarine food webs. Science 227:1361-1363.Willmer, C.M. 1983. Stomata. L<strong>on</strong>gman: L<strong>on</strong>d<strong>on</strong>.-58-


CHAPTER TWOSpartina Distributi<strong>on</strong> and Spread


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 2: Spartina Distributi<strong>on</strong> and SpreadATALE OF TWO INVADED ESTUARIES: SPARTINA IN SAN FRANCISCO BAY,CALIFORNIAAND WILLAPA BAY,WASHINGTOND.R. STRONGDepartment <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology and Evoluti<strong>on</strong>, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Davis, Davis, CA 95616; drstr<strong>on</strong>g@ucdavis.eduMaritime Spartina species grow lower <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> tidal plane than o<str<strong>on</strong>g>the</str<strong>on</strong>g>r vascular plants and maintain <str<strong>on</strong>g>the</str<strong>on</strong>g>shoreline <strong>on</strong> temperate coasts where <str<strong>on</strong>g>the</str<strong>on</strong>g>y are native. All but two <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 14 known species are nativeto <str<strong>on</strong>g>the</str<strong>on</strong>g> Atlantic. Spartina alterniflora was introduced a century ago into Willapa Bay, Washingt<strong>on</strong>,far north <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> native limit <str<strong>on</strong>g>of</str<strong>on</strong>g> this genus. This Atlantic native spread exp<strong>on</strong>entially throughtidelands <str<strong>on</strong>g>the</str<strong>on</strong>g>re at a remarkably c<strong>on</strong>stant approximately 12% per year over <str<strong>on</strong>g>the</str<strong>on</strong>g> 55-year history <str<strong>on</strong>g>of</str<strong>on</strong>g>aerial photographs. In 2000, it covered approximately 1,670 <str<strong>on</strong>g>of</str<strong>on</strong>g> 6,000 hectares (ha) or 27% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>intertidal habitat <str<strong>on</strong>g>of</str<strong>on</strong>g> Willapa Bay. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> spread was slowed greatly by an Allee effectdue to poor pollen dispersal. Without <str<strong>on</strong>g>the</str<strong>on</strong>g> Allee effect, <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> would have covered <str<strong>on</strong>g>the</str<strong>on</strong>g> li<strong>on</strong>’sshare <str<strong>on</strong>g>of</str<strong>on</strong>g> Willapa Bay l<strong>on</strong>g ago. Large-scale chemical c<strong>on</strong>trol is now greatly reducing S. alterniflorain Willapa Bay. The San Francisco Bay regi<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn limit <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina foliosa, <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> twoSpartina species native to <str<strong>on</strong>g>the</str<strong>on</strong>g> Pacific. Introduced Spartina played virtually no role in San FranciscoBay until 1975, when <str<strong>on</strong>g>the</str<strong>on</strong>g> U.S. Army Corps <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineers planted S. alterniflora, which hybridizedwith <str<strong>on</strong>g>the</str<strong>on</strong>g> native S. foliosa so<strong>on</strong> afterwards. While S. alterniflora has become virtually extinct, <str<strong>on</strong>g>the</str<strong>on</strong>g>hybrids have had a truly phenomenal rate <str<strong>on</strong>g>of</str<strong>on</strong>g> spread. The few hybrids that formed in <str<strong>on</strong>g>the</str<strong>on</strong>g> late 1970sspread to about 1,500 ha when <str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco Estuary <strong>Invasive</strong> Spartina Project (ISP) began <str<strong>on</strong>g>the</str<strong>on</strong>g>irc<strong>on</strong>trol effort. The rapid spread <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrids is probably due to <str<strong>on</strong>g>the</str<strong>on</strong>g> evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> self-pollinati<strong>on</strong>, thuseliminating <str<strong>on</strong>g>the</str<strong>on</strong>g> Allee effect. Ultimate success <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ISP will depend up<strong>on</strong> a sophisticatedcombinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> biochemical systematics with ecological field research that determines dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g>cryptic hybrids that could survive c<strong>on</strong>trol efforts.Key Words: Hybrid, rate <str<strong>on</strong>g>of</str<strong>on</strong>g> spreadSpartinas are cordgrasses (Str<strong>on</strong>g and Ayres 2009). Thespecies <str<strong>on</strong>g>of</str<strong>on</strong>g> estuarine cordgrasses that we have studied arewind-pollinated, largely self-incompatible and outbreeding.They are protogynous; <str<strong>on</strong>g>the</str<strong>on</strong>g> female flowers appear before <str<strong>on</strong>g>the</str<strong>on</strong>g>male flowers. In order to set much viable seed, each plantrequires pollen to be carried <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> wind from a different,earlier-flowering plant that has progressed to <str<strong>on</strong>g>the</str<strong>on</strong>g> later stage<str<strong>on</strong>g>of</str<strong>on</strong>g> having male, pollen-bearing flowers.Cordgrasses are ecosystem engineers. Their tall densestems slow water movement and cause sediment to settle andbe bound by thick, fibrous roots. Roots grow upwardthrough <str<strong>on</strong>g>the</str<strong>on</strong>g> settling sediment to form thick peat that elevates<str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh. Cordgrasses that invade areas withno emergent vegetati<strong>on</strong> greatly increase local photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>ticrates. Their roots greatly increase subsurface carb<strong>on</strong> whichremains in <str<strong>on</strong>g>the</str<strong>on</strong>g> anoxic sediment l<strong>on</strong>g after <str<strong>on</strong>g>the</str<strong>on</strong>g> plants havebeen removed. <strong>Invasive</strong> cordgrasses have transformed vastexpanses <str<strong>on</strong>g>of</str<strong>on</strong>g> open intertidal mudflat into meadows thatelevate with time. Estuarine cordgrasses disperse primarilyby floating seed that does not accumulate in soil. Noevidence indicates a seed bank more than <strong>on</strong>e year old forestuarine cordgrasses.All but <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 14 nominal species <str<strong>on</strong>g>of</str<strong>on</strong>g> cordgrass arenative to <str<strong>on</strong>g>the</str<strong>on</strong>g> Americas: Spartina maritima is endemic to <str<strong>on</strong>g>the</str<strong>on</strong>g>south <str<strong>on</strong>g>of</str<strong>on</strong>g> England and France (Daehler and Str<strong>on</strong>g 1997).The Pacific has but two natives, Spartina densiflora in Chileand Spartina foliosa, California cordgrass, that thrives inBaja California and in San Francisco Bay. Peoplepurposefully and inadvertently spread cordgrasses, and fourn<strong>on</strong>-native Spartinas have been introduced to San FranciscoBay.Spartina patens is <str<strong>on</strong>g>the</str<strong>on</strong>g> least successful San Franciscoinvader and is known from <strong>on</strong>ly two plants in Suisun Bay(Ayres et al. 2004). Native to Atlantic marshes <str<strong>on</strong>g>of</str<strong>on</strong>g> NorthAmerica, S. patens spread rapidly at <strong>on</strong>e site in Oreg<strong>on</strong>during <str<strong>on</strong>g>the</str<strong>on</strong>g> mid-20th century and it has appeared recently inSpain. With somewhat greater success, S. densiflora spreadto several sites in San Francisco Bay after at least twointroducti<strong>on</strong>s in Marin County, where it was brought from<str<strong>on</strong>g>the</str<strong>on</strong>g> huge, century-old Humboldt Bay, California infestati<strong>on</strong>.This species has also been introduced into Spain.Spartina anglica arose in England in <str<strong>on</strong>g>the</str<strong>on</strong>g> 19th century asa hybrid <str<strong>on</strong>g>of</str<strong>on</strong>g> S. maritima and S. alterniflora, after <str<strong>on</strong>g>the</str<strong>on</strong>g> latterspecies was introduced from its native Atlantic shores <str<strong>on</strong>g>of</str<strong>on</strong>g>North America. Spartina anglica spread widely afterintroducti<strong>on</strong> to Puget Sound, Washingt<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> Ne<str<strong>on</strong>g>the</str<strong>on</strong>g>rlands,Tasmania, Australia, and New Zealand. However, S. anglicahas not spread to o<str<strong>on</strong>g>the</str<strong>on</strong>g>r places in San Francisco Bay postintroducti<strong>on</strong>in 1977 to Creekside Park in Greenbrae, MarinCounty.In misguided attempts at marsh restorati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> mid-1970s, <str<strong>on</strong>g>the</str<strong>on</strong>g> fourth species, Spartina alterniflora, was-61-


Chapter 2: Spartina Distributi<strong>on</strong> and Spread<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinaintroduced twice into south San Francisco Bay. Seed from aMaryland marsh was sown in New Alameda Creek, locatedbetween Frem<strong>on</strong>t and Uni<strong>on</strong> City (Faber 2000). The sec<strong>on</strong>dknown introducti<strong>on</strong>, a planting sp<strong>on</strong>sored by <str<strong>on</strong>g>the</str<strong>on</strong>g> ArmyCorps <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineers at Alameda Island, occurred about 40kilometers (km) north <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> first (Ayres et al. 2003). As aresult <str<strong>on</strong>g>of</str<strong>on</strong>g> lack <str<strong>on</strong>g>of</str<strong>on</strong>g> pollen from c<strong>on</strong>specific plants and pollenswamping from S. alterniflora x S. foliosa hybrids, S.alterniflora has become quite rare in San Francisco Bay in<str<strong>on</strong>g>the</str<strong>on</strong>g> two or three decades since introducti<strong>on</strong>.One or both <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> S. alterniflora introducti<strong>on</strong>s resultedin hybridizati<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> native California cordgrass toproduce a backcrossing swarm <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora x S. foliosahybrids in San Francisco Bay. The chloroplast DNA <str<strong>on</strong>g>of</str<strong>on</strong>g> bothparental species is found am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> plants in <str<strong>on</strong>g>the</str<strong>on</strong>g> swarmindicating that both parental species have served as seedparents <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrids. While hybridizati<strong>on</strong> probably hasoccurred multiple times F1 hybrids are rare in <str<strong>on</strong>g>the</str<strong>on</strong>g> field. Withgreat effort in <str<strong>on</strong>g>the</str<strong>on</strong>g> greenhouse we have produced a few F1hybrids.A subset <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid genotypes are extremely fit in <strong>on</strong>e ora combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> following traits: vegetative growth rate,numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> viable seed, volume <str<strong>on</strong>g>of</str<strong>on</strong>g> pollen, and/or selfcompatibility.These hybrid traits can be transgressive,which means that hybrids exceed both parental species in <str<strong>on</strong>g>the</str<strong>on</strong>g>magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> trait. We entertain <str<strong>on</strong>g>the</str<strong>on</strong>g> hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis that <str<strong>on</strong>g>the</str<strong>on</strong>g>most important transgressive trait <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrids is selfcompatibility,which allows a plant to pollinate itself and setseed at low density after invasi<strong>on</strong>.A great deal <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid S. alterniflora x S. foliosa seed iscarried <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> currents and tides around San Francisco Bayand new marshes are invaded every year. Hybrid seed floatsto open mud flats, germinates, and grows rapidly. This seedalso spreads into vegetated marshes comprised <str<strong>on</strong>g>of</str<strong>on</strong>g> S. foliosaand o<str<strong>on</strong>g>the</str<strong>on</strong>g>r native marsh plants. Hybrid invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetativemarshes leads to severe ecological and genetic competiti<strong>on</strong>with native S. foliosa. Hybrid cordgrass is increasing atgreater than exp<strong>on</strong>ential rates in San Francisco Bay. In 2002,approximately 1,500 ha <str<strong>on</strong>g>of</str<strong>on</strong>g> salt marsh was dominated by <str<strong>on</strong>g>the</str<strong>on</strong>g>swarm in San Francisco Bay (Ayres et al. 2004). The mostrecent pair <str<strong>on</strong>g>of</str<strong>on</strong>g> censuses yields a doubling time <str<strong>on</strong>g>of</str<strong>on</strong>g> about threem<strong>on</strong>ths for coverage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid swarm in <str<strong>on</strong>g>the</str<strong>on</strong>g> Bay.The loss <str<strong>on</strong>g>of</str<strong>on</strong>g> native cordgrass due to competiti<strong>on</strong> andinterbreeding is accelerating. We can c<strong>on</strong>ceive <str<strong>on</strong>g>of</str<strong>on</strong>g> no naturallimitati<strong>on</strong> to this loss, which is a runaway, unregulatedprocess that could lead to <str<strong>on</strong>g>the</str<strong>on</strong>g> extincti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S. foliosa in SanFrancisco Bay. Similarly, dispersal <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrids to saltmarshes in Baja California could lead to <str<strong>on</strong>g>the</str<strong>on</strong>g> extincti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S.foliosa <str<strong>on</strong>g>the</str<strong>on</strong>g>re (Ayres et al. 2003). In c<strong>on</strong>trast, Willapa Bay,Washingt<strong>on</strong> has no native cordgrass and no potential forhybridizati<strong>on</strong>. Spartina alterniflora was introduced <str<strong>on</strong>g>the</str<strong>on</strong>g>remore than 100 years ago (Civille et al. 2005) and probablyarrived as a hitchhiker <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> numerous trains from NewYork harbor that brought oysters for outplanting in WillapaBay at <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 19th and beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 20thcenturies. The first hard historical evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> isfrom a photo and publicati<strong>on</strong> in 1941. The large patch size<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plant implies that it had already been growing forseveral decades. The first aerial photos, from 1945, showseveral large col<strong>on</strong>ies, fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r evidence that introducti<strong>on</strong>occurred decades earlier. The multiple, widely separatedcol<strong>on</strong>ies imply multiple introducti<strong>on</strong>s ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than spreadfrom a single focus. Coverage <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora hasincreased at a rate very close to exp<strong>on</strong>ential between 1945and 2000, about 12% per year. This gives a doubling time <str<strong>on</strong>g>of</str<strong>on</strong>g>about six years. Approximately 1,670 ha (27%) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 6,000ha <str<strong>on</strong>g>of</str<strong>on</strong>g> intertidal habitat <str<strong>on</strong>g>of</str<strong>on</strong>g> Willapa Bay had been col<strong>on</strong>ized byS. alterniflora by 2000. Large-scale chemical c<strong>on</strong>trol is nowgreatly reducing S. alterniflora in Willapa Bay (Str<strong>on</strong>g andAyres 2009).In an echo <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> slow spread <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora in SanFrancisco Bay, we have found that very little viable seed isset at <str<strong>on</strong>g>the</str<strong>on</strong>g> leading edge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Willapa Bay (Daviset al. 2004a). Seed settles at low densities <strong>on</strong>to open mudand recruits are widely separated from <strong>on</strong>e ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r. Decadeslater, when <str<strong>on</strong>g>the</str<strong>on</strong>g> circular cl<strong>on</strong>es coalesce to form c<strong>on</strong>tinuousmeadows, seed set increases by an order <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude. Thisis a weak Allee effect. A str<strong>on</strong>g Allee effect would result ifno seed is set by plants at low densities, indicating that S.alterniflora would have become extinct at <str<strong>on</strong>g>the</str<strong>on</strong>g> low densities<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> initial invasi<strong>on</strong>. The weak Allee effect has slowed <str<strong>on</strong>g>the</str<strong>on</strong>g>rate <str<strong>on</strong>g>of</str<strong>on</strong>g> invasi<strong>on</strong>. Were <str<strong>on</strong>g>the</str<strong>on</strong>g>re no Allee effect, S. alterniflorawould have to be able to self-pollinate, and single plantswould set seed at <str<strong>on</strong>g>the</str<strong>on</strong>g> same rate as plants growing in highdensities. Without an Allee effect, <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> increase incoverage <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora would have been about 30% peryear, and <str<strong>on</strong>g>the</str<strong>on</strong>g> doubling time would have been as short as 2.5years instead <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> actual six years (Taylor et al. 2004).Thus, without <str<strong>on</strong>g>the</str<strong>on</strong>g> Allee effect, <str<strong>on</strong>g>the</str<strong>on</strong>g> approximately three ha <str<strong>on</strong>g>of</str<strong>on</strong>g>S. alterniflora shown in <str<strong>on</strong>g>the</str<strong>on</strong>g> 1945 aerial photos would havegrown to completely cover <str<strong>on</strong>g>the</str<strong>on</strong>g> entire 19,000 ha <str<strong>on</strong>g>of</str<strong>on</strong>g> intertidalarea <str<strong>on</strong>g>of</str<strong>on</strong>g> Willapa Bay by about 1977.The dearth <str<strong>on</strong>g>of</str<strong>on</strong>g> viable seed set at <str<strong>on</strong>g>the</str<strong>on</strong>g> leading edge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora in Willapa Bay and <str<strong>on</strong>g>the</str<strong>on</strong>g> weakAllee effect are a result <str<strong>on</strong>g>of</str<strong>on</strong>g> a lack <str<strong>on</strong>g>of</str<strong>on</strong>g> pollen produced by lowdensityplants (Davis et al. 2004b). We found ninefold morepollen <strong>on</strong> stigmas <str<strong>on</strong>g>of</str<strong>on</strong>g> high-density plants in old marshes than<strong>on</strong> those <str<strong>on</strong>g>of</str<strong>on</strong>g> low-density plants at <str<strong>on</strong>g>the</str<strong>on</strong>g> leading edge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>invasi<strong>on</strong>. Only in old marshes, where plants had growntoge<str<strong>on</strong>g>the</str<strong>on</strong>g>r to form dense meadows, was <str<strong>on</strong>g>the</str<strong>on</strong>g>re sufficient pollen<strong>on</strong> stigmas for much seed set. Experimental pollinati<strong>on</strong>augmentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> low-density plants, but not <str<strong>on</strong>g>of</str<strong>on</strong>g> high-densityplants, increased seed set. Experimental pollen exclusi<strong>on</strong>from high-density plants, but not from low-density plants,decreased seed set.In summary, <str<strong>on</strong>g>the</str<strong>on</strong>g> cordgrass invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> San FranciscoBay is by hybrids <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora and S. foliosa, not by S.alterniflora al<strong>on</strong>e. The hybrid has a truly phenomenal rate <str<strong>on</strong>g>of</str<strong>on</strong>g>spread, and this rate is accelerating. This is evidence that <str<strong>on</strong>g>the</str<strong>on</strong>g>hybrids are much more invasive than S. alterniflora al<strong>on</strong>e.-62-


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 2: Spartina Distributi<strong>on</strong> and SpreadThe first 40 or 50 years <str<strong>on</strong>g>of</str<strong>on</strong>g> spread in Willapa Bay producedless than 10 ha <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora. Beginning with a verysmall number <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrids in <str<strong>on</strong>g>the</str<strong>on</strong>g> 1970s or 1980s, <str<strong>on</strong>g>the</str<strong>on</strong>g> overallcoverage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid has grown to about 1,500 ha.At a rate <str<strong>on</strong>g>of</str<strong>on</strong>g> increase <str<strong>on</strong>g>of</str<strong>on</strong>g> about 12% per year, similar to S.alterniflora in Willapa Bay, San Francisco Bay would have<strong>on</strong>ly about 3.4 times <str<strong>on</strong>g>the</str<strong>on</strong>g> area <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> initial introducti<strong>on</strong>ssome 30 years later. If <str<strong>on</strong>g>the</str<strong>on</strong>g> two introducti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> S.alterniflora had amounted to about <strong>on</strong>e ha <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora,<str<strong>on</strong>g>the</str<strong>on</strong>g>re would be <strong>on</strong>ly 3.4 ha now. I speculate that withouthybridizati<strong>on</strong>, this c<strong>on</strong>ference would not have occurred.Transgressive traits c<strong>on</strong>fer greater fitness up<strong>on</strong> a subset<str<strong>on</strong>g>of</str<strong>on</strong>g> hybrids than ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r parent exhibits. We entertain <str<strong>on</strong>g>the</str<strong>on</strong>g>hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis that <str<strong>on</strong>g>the</str<strong>on</strong>g> key trait is increased self-compatibility <str<strong>on</strong>g>of</str<strong>on</strong>g>some hybrids. This would erase <str<strong>on</strong>g>the</str<strong>on</strong>g> weak Allee effect thatwe see in Willapa Bay as increased self-compatibility allowssingle plants to set abundant seed.The presence <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrids means that c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>nativecordgrass in San Francisco Bay will require researchand understanding bey<strong>on</strong>d that required in Willapa Bay.Biochemical systematics are needed to detect hybrids at lowfrequency, in order that hybrids can be removed before <str<strong>on</strong>g>the</str<strong>on</strong>g>marsh is overrun by <str<strong>on</strong>g>the</str<strong>on</strong>g>m. Strategies c<strong>on</strong>cerning which andhow much hybrid cordgrass to eliminate for effective c<strong>on</strong>trolwill require understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamic mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g>hybrid spread. Research <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>se subjects is just beginning.REFERENCESAyres, D.R., D. Garcia-Rossi, H.G. Davis, and D.R. Str<strong>on</strong>g. 1999.Extent and degree <str<strong>on</strong>g>of</str<strong>on</strong>g> hybridizati<strong>on</strong> between exotic (Spartinaalterniflora) and native (S. foliosa) cordgrass (Poaceae) inCalifornia, USA determined by Random Amplified PolymorphicDNA (RAPDs). Molecular Ecology 8:1179-1187.Ayres, D.R., D.R. Str<strong>on</strong>g, and P. Baye. 2003. Spartina foliosa – acomm<strong>on</strong> species <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> road to rarity? Madroño 50: 209-213.Ayres, D.R., D.L. Smith, K. Zaremba, S. Klohr, and D.R. Str<strong>on</strong>g.2004. Spread <str<strong>on</strong>g>of</str<strong>on</strong>g> exotic cordgrasses and hybrids (Spartina sp.) in<str<strong>on</strong>g>the</str<strong>on</strong>g> tidal marshes <str<strong>on</strong>g>of</str<strong>on</strong>g> San Francisco Bay, California, USA.Biological Invasi<strong>on</strong>s 6: 221–231.Civille, J.C., K. Sayce, S. Smith, and D.R. Str<strong>on</strong>g. 2005.Rec<strong>on</strong>structing a century <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina invasi<strong>on</strong> with historicalrecords and c<strong>on</strong>temporary remote sensing. Ecoscience 12:330-338.Daehler, C.C. and D.R. Str<strong>on</strong>g. 1997. Hybridizati<strong>on</strong> betweenintroduced smooth cordgrass (Spartina alterniflora; Poaceae)and native California cordgrass (S. foliosa) in San Francisco Bay,California, USA. American Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Botany 84:607-611.Davis, H.G., C.M. Taylor, J.C. Civille, and D.R. Str<strong>on</strong>g. 2004a. AnAllee effect at <str<strong>on</strong>g>the</str<strong>on</strong>g> fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> a plant invasi<strong>on</strong>: Spartina in a Pacificestuary. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology 92:321-327.Davis, H.G, C.M. Taylor, J.G. Lambrinos, and D.R. Str<strong>on</strong>g. 2004b.Pollen limitati<strong>on</strong> causes an Allee effect in a wind-pollinatedinvasive grass (Spartina alterniflora). <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>Nati<strong>on</strong>al Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences USA 101: 13804-13807.Faber, P. 2000. Grass wars: good intenti<strong>on</strong>s g<strong>on</strong>e awry. CaliforniaCoast & Ocean 16, #2. Summer 2000. 1-5.Str<strong>on</strong>g, D. R. and D.R. Ayres. 2009. Spartina introducti<strong>on</strong>s andc<strong>on</strong>sequences in salt marshes: arrive, survive, thrive, andsometimes hybridize. In B.R. Silliman, E.D. Grosholz, and M.D.Bertness, eds. Human impacts <strong>on</strong> salt marshes: a globalperspective. Berkeley, California; L<strong>on</strong>d<strong>on</strong>: University <str<strong>on</strong>g>of</str<strong>on</strong>g>California Press.Taylor, C.M., Davis, H.G., Civille, J.C., Grevstad, F.S. and A.Hastings. 2004. C<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> an Allee effect <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> a Pacific estuary by Spartina alterniflora. Ecology. 85:3254-3266.-63-


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 2: Spartina Distributi<strong>on</strong> and SpreadSPARTINA IN CHINA:INTRODUCTION,HISTORY,CURRENT STATUS, AND RECENT RESEARCHS. AN,H.QING,Y.XIAO,C.ZHOU,Z.WANG,Z.DENG,Y.ZHI AND L. CHENSchool <str<strong>on</strong>g>of</str<strong>on</strong>g> Life Science, Nanjing University, Nanjing 210093, China; anshq@nju.edu.cnSpartina spp., with <str<strong>on</strong>g>the</str<strong>on</strong>g>ir str<strong>on</strong>g ability for survival, growth, and expansi<strong>on</strong>, attracts ecologists’attenti<strong>on</strong> throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> world. Four Spartina species: Spartina anglica, S. alterniflora, S. patensand S. cynosuroides were introduced into China in 1963, 1979, 1979 and 1998, respectively, for <str<strong>on</strong>g>the</str<strong>on</strong>g>purposes <str<strong>on</strong>g>of</str<strong>on</strong>g> agricultural and ecological engineering. So far <str<strong>on</strong>g>the</str<strong>on</strong>g> first three species still survive incoastal China with varying abundance. Spartina anglica is dying back, whereas S. alterniflora hasbeen rampantly invading. Spartina patens appears to be a potential invasive species in China. Weexamine <str<strong>on</strong>g>the</str<strong>on</strong>g> history <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina’s introducti<strong>on</strong>s into China, discuss <str<strong>on</strong>g>the</str<strong>on</strong>g> fate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> introduced speciesand <str<strong>on</strong>g>the</str<strong>on</strong>g>ir impacts <strong>on</strong> native ecosystems, and review <str<strong>on</strong>g>the</str<strong>on</strong>g> studies c<strong>on</strong>ducted in China over <str<strong>on</strong>g>the</str<strong>on</strong>g> past 40years (from 1963-2003), especially those carried out in <str<strong>on</strong>g>the</str<strong>on</strong>g> Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina and TidelandDevelopment at Nanjing University.Keywords: Ecological engineering, genetic structure, invasive impacts, management, SpartinaINTRODUCTIONFour Spartina species have been introduced into Chinaas bio-engineers for agricultural and ecological engineeringsince 1963. They were used to accelerate <str<strong>on</strong>g>the</str<strong>on</strong>g> development<str<strong>on</strong>g>of</str<strong>on</strong>g> coastal tidelands for croplands, protect <str<strong>on</strong>g>the</str<strong>on</strong>g> dykes fromtypho<strong>on</strong>s and c<strong>on</strong>trol erosi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tidelands from tidal waves(Chung and Zhuo 1979; Chung 1982, 1985). The specieshave had different fates in coastal areas <str<strong>on</strong>g>of</str<strong>on</strong>g> China resultingfrom both human activities and natural stresses. Seeds <str<strong>on</strong>g>of</str<strong>on</strong>g> S.patens and S. cynosuroides were introduced into China,toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with S. alterniflora. But, S. patens failed togerminate in <str<strong>on</strong>g>the</str<strong>on</strong>g> laboratory and S. cynosuroides failed tosurvive in <str<strong>on</strong>g>the</str<strong>on</strong>g> field. In 1998, seeds <str<strong>on</strong>g>of</str<strong>on</strong>g> S. patens wereintroduced into China again and successfully germinatedafter i<strong>on</strong> radiati<strong>on</strong> treatment (Zhou 2003), <str<strong>on</strong>g>the</str<strong>on</strong>g>n tissue culturewas used to produce <str<strong>on</strong>g>of</str<strong>on</strong>g>fspring at a large scale. So far, about20 hectares (ha) <str<strong>on</strong>g>of</str<strong>on</strong>g> S. patens has been transplanted inTianjing, Jiangsu and Zhejiang Provinces (Zhou et al 2003).Spartina alterniflora has rapidly spread to o<str<strong>on</strong>g>the</str<strong>on</strong>g>r coastalareas in China, outcompeted native plants and become <strong>on</strong>e<str<strong>on</strong>g>of</str<strong>on</strong>g> most harmful invading plants in China. In c<strong>on</strong>trast, S.anglica is experiencing a dieback and may disappear from<str<strong>on</strong>g>the</str<strong>on</strong>g> coasts. Although S. anglica is a serious invasive speciesin o<str<strong>on</strong>g>the</str<strong>on</strong>g>r countries (Daehler and Str<strong>on</strong>g 1996; Kriworken andHedge 2000; Baumel et al. 2001; Hacker et al. 2001), it isnow not an invasive species in China. More recently, S.patens has shown <str<strong>on</strong>g>the</str<strong>on</strong>g> potential to be an invasive species(Zhou et al. 2003). The four species have had differentdifferent fates including <str<strong>on</strong>g>the</str<strong>on</strong>g> failure <str<strong>on</strong>g>of</str<strong>on</strong>g> S. cynosuroidesintroducti<strong>on</strong> and different invasive processes in coastalChina. Here we give an brief account <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> experiencesfrom Chinese scientists and studies that have been c<strong>on</strong>ductedin China since <str<strong>on</strong>g>the</str<strong>on</strong>g> introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se species to thiscountry. It is hoped that <str<strong>on</strong>g>the</str<strong>on</strong>g> informati<strong>on</strong> presented here canbe <str<strong>on</strong>g>of</str<strong>on</strong>g> some use to <str<strong>on</strong>g>the</str<strong>on</strong>g> scientists who are working <strong>on</strong> use,management, c<strong>on</strong>trol and eradicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> species that areinvading both Atlantic and Pacific coastal areas worldwide.HISTORY OF SPARTINA INTRODUCTION IN CHINASpartina anglicaSpartina anglica was <str<strong>on</strong>g>the</str<strong>on</strong>g> first Spartina speciesintroduced into China from ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r country. In 1963, 35plants from Essex in England and 100 plants from Hojer inDenmark were introduced to <str<strong>on</strong>g>the</str<strong>on</strong>g> ecological laboratory <str<strong>on</strong>g>of</str<strong>on</strong>g>Nanjing University by Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Chung-Hsin Chung (Ch<strong>on</strong>g-XinZh<strong>on</strong>g) with <str<strong>on</strong>g>the</str<strong>on</strong>g> help <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Chinese Committee <str<strong>on</strong>g>of</str<strong>on</strong>g> Scienceand Technology. The Spartina survivors — 21 from Englandand 50 from Denmark — were sent to SheyangExperimental Stati<strong>on</strong> (35 o N) <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Yellow Sea coast after asimple survivial check in <str<strong>on</strong>g>the</str<strong>on</strong>g> laboratory. The survivors <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>English Spartina successfully produced 435,000 new rametsfrom July 1963 to April 1964, which were planted in <str<strong>on</strong>g>the</str<strong>on</strong>g>field in 1964; by 1966 <str<strong>on</strong>g>the</str<strong>on</strong>g> area <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plantati<strong>on</strong> hadincreased to 32 ha. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> Danish populati<strong>on</strong> so<strong>on</strong>died <str<strong>on</strong>g>of</str<strong>on</strong>g>f. Almost all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> S. anglica in China aredescendants <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> original 21 English plants, excluding <str<strong>on</strong>g>the</str<strong>on</strong>g>plantati<strong>on</strong>s in Xiaoshan and Wenlin <str<strong>on</strong>g>of</str<strong>on</strong>g> Zhejiang Province. In1964, 507 seeds and 18 plants from Poole Harbor in Englandwere introduced to China, <str<strong>on</strong>g>of</str<strong>on</strong>g> which 440 seeds with potentialgerminati<strong>on</strong> capacity were treated and sowed in <str<strong>on</strong>g>the</str<strong>on</strong>g>laboratory; 157 <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>m germinated, a germinati<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g>30.97%, and 44 seedlings survived. The 18 plants died <str<strong>on</strong>g>of</str<strong>on</strong>g>f in<str<strong>on</strong>g>the</str<strong>on</strong>g> lab. One year later, 30,601 individuals were obtainedfrom <str<strong>on</strong>g>the</str<strong>on</strong>g> 44 surviving seedlings (Fig. 1), and most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>mwere planted in Xiaoshan and Wenlin Experimental Stati<strong>on</strong>s-65-


Chapter 2: Spartina Distributi<strong>on</strong> and Spread<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinaal<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> coast <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> East Sea (29 o N). In <str<strong>on</strong>g>the</str<strong>on</strong>g> experiment,<strong>on</strong>e rhizome segment produced 9.10 milli<strong>on</strong> individualsduring 29 m<strong>on</strong>ths, and four ramets produced 7.60 milli<strong>on</strong>individuals during 33 m<strong>on</strong>ths. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 16.70 milli<strong>on</strong>individuals were planted in mid-1966 in two East Seastati<strong>on</strong>s, whose area was 73 ha. The total area <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglicaplantati<strong>on</strong> was 78 ha by August 1966 in <str<strong>on</strong>g>the</str<strong>on</strong>g> two stati<strong>on</strong>s.But, from 1973 to 1980, most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plantati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> twostati<strong>on</strong>s were reclaimed for croplands; thus almost all <str<strong>on</strong>g>the</str<strong>on</strong>g>individuals <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica died <str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>the</str<strong>on</strong>g>re.Four Spartina species: Spartina anglica, S. alterniflora,S. patens and S. cynosuroides have been introduced intoChina in 1963, 1979, 1979 and 1998, respectively, for <str<strong>on</strong>g>the</str<strong>on</strong>g>purposes <str<strong>on</strong>g>of</str<strong>on</strong>g> agricultural and ecological engineering.By 1978,all <str<strong>on</strong>g>the</str<strong>on</strong>g> coastal provinces <str<strong>on</strong>g>of</str<strong>on</strong>g> China planted S. anglica. Therewere 6,330 ha, 3,750 ha and 200 ha <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica plantati<strong>on</strong>sin Jiangsu, Zhejiang and Shand<strong>on</strong>g Provinces, respectively.Meanwhile, 5 ha, 2/3 ha, 1/2 ha and 1/3 ha existed in Hebei,Lia<strong>on</strong>ing, Tianjing and Guangd<strong>on</strong>g Provinces, respectively.Less than 1/3 ha <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> species was established in Shanghai,Fujian and Guangxi Provinces. In <str<strong>on</strong>g>the</str<strong>on</strong>g> field, S. anglica had astr<strong>on</strong>g reproductive capacity by asexual propagati<strong>on</strong> throughramets and rhizomes (Fig. 2). By 1980, all 83 counties <str<strong>on</strong>g>of</str<strong>on</strong>g>coastal China had S. anglica with a total area <str<strong>on</strong>g>of</str<strong>on</strong>g> 31,590 ha;by 1985 area had increased to 36,000 ha, although <str<strong>on</strong>g>the</str<strong>on</strong>g> sexualreproducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> species was very low.Spartina alternifloraSimilarly, seeds and individuals <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora werealso introduced to China by Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor Chung at <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g>1979 from North Carolina, Georgia and Florida, USA.Seedlings were successfully obtained from <str<strong>on</strong>g>the</str<strong>on</strong>g> seeds andnew ramets were reproduced from <str<strong>on</strong>g>the</str<strong>on</strong>g> exotic individuals in<str<strong>on</strong>g>the</str<strong>on</strong>g> laboratory and garden <str<strong>on</strong>g>of</str<strong>on</strong>g> Nanjing University in 1980,and <str<strong>on</strong>g>the</str<strong>on</strong>g>n were sent to Luoyuanwan Stati<strong>on</strong> (26 0 30’). TheTable 1. Growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e-year Spartina alterniflora from three differentorigins. (Data from Xu & Zhuo 1985.)Culm height(cm)Leaf length(cm)Leaf width(cm)Ear length(cm)SourcesRange Max Range Max Range Max Range MaxBiomass(DW g/m 2)LeafcolorNorthCarolina 110-170 217 45-70 95.5 1.3-1.5 2.0 14-30 48 297.9 BlackgreenLightGeorgia 140-240 275 50-70 90.0 1.4-1.7 2.1 18-35 42 457.2greenFlorida 70-100 128 40-60 82.0 1.5-1.7 2.1 12-15 30 268.2 GreenTable 2. Height and biomass growth <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflora fromdifferent origins at <str<strong>on</strong>g>the</str<strong>on</strong>g> field plots (Xu & Zhuo 1985).Fig. 1 Asexual reproducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> exotic Spartina anglica from seedlings.(Data from Chung et al 1985.)IntroductiveSourcesCulmheight(cm)Above-groundbiomass(g DW/m 2)Below-groundbiomass(g DW/m 2)Total biomass(g DW/m 2)North Carolina 170 (35) 1289 (136) 1235 (160) 2524 (274)Georgia 240 (50) 2745 (502) 1366 (25) 4111 (486)Florida 110 (25) 972 (139) 928 (100) 1900 (83)ANOVA & T-testP


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 2: Spartina Distributi<strong>on</strong> and Spreadplants were planted in <str<strong>on</strong>g>the</str<strong>on</strong>g> field in <str<strong>on</strong>g>the</str<strong>on</strong>g> spring <str<strong>on</strong>g>of</str<strong>on</strong>g> 1981 into anarea <str<strong>on</strong>g>of</str<strong>on</strong>g> 1,000-1,300 m 2 . However, most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina saltmarsh <str<strong>on</strong>g>of</str<strong>on</strong>g> coastal China was developed from 0.5 kg <str<strong>on</strong>g>of</str<strong>on</strong>g> seedsfrom North Carolina.( Chung et al. 1985) Three morphs <str<strong>on</strong>g>of</str<strong>on</strong>g> S.alterniflora were identified by Xu & Zhou (1985) and Qin etal. (1985) based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir morphological data (culm height,leaf size, ear length and biomass), respectively, collectedfrom <str<strong>on</strong>g>the</str<strong>on</strong>g> garden <str<strong>on</strong>g>of</str<strong>on</strong>g> Nanjing University (Table 1) and fieldplots in Luoyuan Bay <str<strong>on</strong>g>of</str<strong>on</strong>g> East Sea (Table 2). Both <str<strong>on</strong>g>the</str<strong>on</strong>g>experiments showed that Georgia Spartina had <str<strong>on</strong>g>the</str<strong>on</strong>g> tallestand str<strong>on</strong>gest culms, and <str<strong>on</strong>g>the</str<strong>on</strong>g> highest biomass. Meanwhile,Chen and Chung (1991) reported that <str<strong>on</strong>g>the</str<strong>on</strong>g>re were threegenetic types in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir studies <str<strong>on</strong>g>of</str<strong>on</strong>g> isozymes <str<strong>on</strong>g>of</str<strong>on</strong>g> EST, MDH andPOD <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> seedlings (Table 3). Since <str<strong>on</strong>g>the</str<strong>on</strong>g> people liked toplant higher and str<strong>on</strong>ger individuals <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> species, most <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> S. alterniflora plantati<strong>on</strong>s in China are now tall form(Georgia populati<strong>on</strong>) S. alterniflora. The tall form Spartinahad significant variati<strong>on</strong>s in survivorship, culm height andbiomass al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> elevati<strong>on</strong>al gradients <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Chinese coast(Chen & Chung 1991).IMPORTANT HUMAN FORCES DRIVING SPARTINAINVASIONSIn 1962, <str<strong>on</strong>g>the</str<strong>on</strong>g> Chinese Government decided to introduceSpartina from its native habitats for agricultural goalsaccording to <str<strong>on</strong>g>the</str<strong>on</strong>g> scientists’ recommendati<strong>on</strong>s. In 1963, S.anglica was introduced from Europe by <str<strong>on</strong>g>the</str<strong>on</strong>g> Chinesegovernment. In 1969, <str<strong>on</strong>g>the</str<strong>on</strong>g> first workshop was held by <str<strong>on</strong>g>the</str<strong>on</strong>g>government <str<strong>on</strong>g>of</str<strong>on</strong>g> Zhejiang Province to accelerate development<str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica marshes. From 1973 to 1978, severalworkshops were held by <str<strong>on</strong>g>the</str<strong>on</strong>g> governments <str<strong>on</strong>g>of</str<strong>on</strong>g> Jiangsu andShand<strong>on</strong>g provinces for <str<strong>on</strong>g>the</str<strong>on</strong>g> same purposes. Here we givesome <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> events that are associated with Spartina inchr<strong>on</strong>ological order:• 1978: Spartina research group <str<strong>on</strong>g>of</str<strong>on</strong>g> Nanjing University received<str<strong>on</strong>g>the</str<strong>on</strong>g> Nati<strong>on</strong>al Award for Natural Science <str<strong>on</strong>g>of</str<strong>on</strong>g>China.• 1978: The Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina and Tideland Developmentat Nanjing University was founded by China’sMinistry <str<strong>on</strong>g>of</str<strong>on</strong>g> Educati<strong>on</strong>, toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with China’s Committee<str<strong>on</strong>g>of</str<strong>on</strong>g> Science and Technology, China’s Ministry <str<strong>on</strong>g>of</str<strong>on</strong>g> Agricultureand China’s Ocean Bureau. The institute c<strong>on</strong>sisted<str<strong>on</strong>g>of</str<strong>on</strong>g> 17 members.• 1978-1979: Two workshops were held by China’sCommittee <str<strong>on</strong>g>of</str<strong>on</strong>g> Science and Technology to accelerate introducti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica.• 1979: Three o<str<strong>on</strong>g>the</str<strong>on</strong>g>r Spartina species were introduced byPr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor Chung-Hsin Chung, funded by <str<strong>on</strong>g>the</str<strong>on</strong>g> Chinesegovernment.• 1985: The first Chinese Spartina research m<strong>on</strong>ograph“Research Advances in Spartina — Achievement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>Past 22 Years”, was published as a special issue <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Nanjing University; <str<strong>on</strong>g>the</str<strong>on</strong>g> m<strong>on</strong>ograph c<strong>on</strong>tainedthree reviews, 26 reports and 24 short communicati<strong>on</strong>s.• 1985-1990: Several h<strong>on</strong>ors were awarded to Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>.Chung by different Chinese government departments forhis distinguished achievement in introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina.• 1992: A m<strong>on</strong>ograph, Applied Studies <strong>on</strong> Spartina (eds.Qin, P. and C.H. Chung), was published by OceanPress; it c<strong>on</strong>tained 30 papers.• 1993: Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Chung received an award from <str<strong>on</strong>g>the</str<strong>on</strong>g> Society<str<strong>on</strong>g>of</str<strong>on</strong>g> Wetland Scientists.• 1995: Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Chung received a Distinguished FellowAward from Ohio State University.• 1996: The Spartina Research Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Nanjing Universityreceived a Distinguished C<strong>on</strong>tributi<strong>on</strong> Award from<str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecological Engineering.• 1998: S. patens was again introduced into China as asalt-tolerant ec<strong>on</strong>omic species.CURRENT STATUS OF SPARTINA INVASIONS IN CHINAIn 1985, S. anglica plantati<strong>on</strong>, with human aid, reachedto an area <str<strong>on</strong>g>of</str<strong>on</strong>g> 36,000 ha, and was distributed in 83 coastalcounties in China. The species’ range had increased by 330times from 1966 to 1985. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plants came from 21English individuals. After that time, however, <str<strong>on</strong>g>the</str<strong>on</strong>g> specieshas declined without human plantings. Only 50 ha <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>plantati<strong>on</strong>s still existed in 2000 (Table 4). The species hasbeen also experiencing dieback because it cannot produceTable 4. Area changes and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir causes <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina in China. (Partialdata from Chung et al. 1985.)Year Spartina anglicaArea Causes(ha)1966 110 Planting and naturalreproducti<strong>on</strong>1973 2,000 Planting and naturalreproducti<strong>on</strong>1978 10,295 Planting and naturalreproducti<strong>on</strong>1980 31,590 Planting and naturalreproducti<strong>on</strong>1985 36,000 Planting and naturalreproducti<strong>on</strong>Area(ha)Spartina alternifloraCauses0.13 Planting260 Planting and naturalreproducti<strong>on</strong>2000


Chapter 2: Spartina Distributi<strong>on</strong> and Spread<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinaany seeds and it has become shorter at all elevati<strong>on</strong>s.On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, <str<strong>on</strong>g>the</str<strong>on</strong>g> range <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora increasedby 10,000 times from 1980 to 1988. Alhough planting <str<strong>on</strong>g>the</str<strong>on</strong>g>species <strong>on</strong> a large scale was stopped in 1995, it stillincreased by 86 times from 1988 to 2000. The species is stillinvading coastal areas in China by natural dispersal and hasbecome a threat to <str<strong>on</strong>g>the</str<strong>on</strong>g> native ecosystems. From 1995 to2000, ca. 200,000 ha <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora marshes and tidelandswere reclaimed, which did not stop <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>species.Many native species, including plants, some endangeredbirds (Ma et al. 2004), and mollusks <str<strong>on</strong>g>of</str<strong>on</strong>g> ec<strong>on</strong>omic value incoastal areas are threatened by S. alterniflora invasi<strong>on</strong>s. Itexcluded almost all <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r native plants that wereoriginally dominant in wetlands, including Phragmitesaustralis, Typha spp., Scirpus spp., Suadae spp., and eveninvaded fishp<strong>on</strong>ds and young mangrove swamps (Qian andMa 1995). For example, in intertidal z<strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> YangziRiver estuary, S. alterniflora invaded Scirpus mariquetercommunities. Through competiti<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> native species,S. alterniflora has greatly decreased native speciesabundance, and even excluded <str<strong>on</strong>g>the</str<strong>on</strong>g>m (Li et al. in thisvolume). Li et al. (this volume) also compared <str<strong>on</strong>g>the</str<strong>on</strong>g> structure<str<strong>on</strong>g>of</str<strong>on</strong>g> nematode communities am<strong>on</strong>g Spartina marsh and S.mariqueter and Phragmites marshes <str<strong>on</strong>g>of</str<strong>on</strong>g> D<strong>on</strong>gtan wetlands <strong>on</strong>Ch<strong>on</strong>gming Island, and found significant differences introphic structure <str<strong>on</strong>g>of</str<strong>on</strong>g> nematode communities between <str<strong>on</strong>g>the</str<strong>on</strong>g>marshes.Spartina alterniflora is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> 16 notorious invasivepest plants in China as <str<strong>on</strong>g>the</str<strong>on</strong>g> species directly causes milli<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>dollars <str<strong>on</strong>g>of</str<strong>on</strong>g> ec<strong>on</strong>omic loss per year (An et al, 2007). Spartinaalterniflora is still rapidly spreading, although <str<strong>on</strong>g>the</str<strong>on</strong>g> Chinesegovernment and scientists are doing <str<strong>on</strong>g>the</str<strong>on</strong>g>ir best to c<strong>on</strong>trol oreradiate <str<strong>on</strong>g>the</str<strong>on</strong>g> species by physical, chemical, biological andintegrated methods (Lin 1997; Liu and Huang 2000).RESEARCH BEFORE 1995Since S. anglica arrived at Nanjing University <str<strong>on</strong>g>of</str<strong>on</strong>g> China,a series <str<strong>on</strong>g>of</str<strong>on</strong>g> studies (all <str<strong>on</strong>g>the</str<strong>on</strong>g> papers published before 1986 in<str<strong>on</strong>g>the</str<strong>on</strong>g> cited literature) had been carried out by <str<strong>on</strong>g>the</str<strong>on</strong>g> SpartinaResearch Group, which focused <strong>on</strong> S. anglica by 1985. Forexample:• 1963 to 1966: Asexual propagati<strong>on</strong> from rhizome andramets; seed germinati<strong>on</strong>, tolerance <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals tocold, hot, drought, water logging, silt sediment and saltstress; growth under different elevati<strong>on</strong>; sexual andasexual reproducti<strong>on</strong> from established individuals;transplanting and management techniques.• 1967 to 1973: Field transplanting; impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglicagrowth <strong>on</strong> soil properties and planting techniques ininland riparian wetlands.• 1974 to 1978: Green manure for cropland, forage forsheep, goat and pig; height growth; fertilized flowersTable 5. Survivorship and growth <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflora at differentelevati<strong>on</strong> levels. (Revised from Xu and Zhuo 1985.)Elevati<strong>on</strong>(m)Inundati<strong>on</strong>frequency(days/m<strong>on</strong>th)Inundati<strong>on</strong>time(hours/day)Survivorship(%)Increase rate <str<strong>on</strong>g>of</str<strong>on</strong>g>individuals perclump (times)and seed producti<strong>on</strong>; biomass producti<strong>on</strong>, net biomassproducti<strong>on</strong>; impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> harvest <strong>on</strong> growth and reproducti<strong>on</strong>and impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> grazing by cows, sheep and goats.• 1979 to 1985: Silt sediment rate <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina plantati<strong>on</strong>;uses in protecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dykes; preventi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tideland erosi<strong>on</strong>;purificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> polluted water; impact <strong>on</strong> beneathfauna; Gram negative bacteria compositi<strong>on</strong>; anatomy <str<strong>on</strong>g>of</str<strong>on</strong>g>roots and stems; germinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> seeds produced inChina and impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> puncture and air pressure <strong>on</strong> seedgerminati<strong>on</strong>; physiology; tissue culture; introducti<strong>on</strong> toriparian wetlands in Yellow River <str<strong>on</strong>g>of</str<strong>on</strong>g> NorthwesternChina; biochemical compositi<strong>on</strong> and nutrient; impacts<str<strong>on</strong>g>of</str<strong>on</strong>g> fertilizer <strong>on</strong> growth and biomass producti<strong>on</strong>; foragefor fish; structures <str<strong>on</strong>g>of</str<strong>on</strong>g> salt glands; ultra-structures <str<strong>on</strong>g>of</str<strong>on</strong>g> leafcells; DNA c<strong>on</strong>tents; ecotype identificati<strong>on</strong> and methodsto increase <str<strong>on</strong>g>the</str<strong>on</strong>g> seed producti<strong>on</strong>.After 1985, most studies (in <str<strong>on</strong>g>the</str<strong>on</strong>g> cited literature between1986 and 1994) focused <strong>on</strong> biology and ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> S.alterniflora, including survivorship and growth at differentelevati<strong>on</strong>s (Table 5); growth rate and growth form/type fromthree different origins; above- and below-ground biomassand biomass allocati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> three growth-type populati<strong>on</strong>s;seed germinati<strong>on</strong> at different saline stresses; effect <str<strong>on</strong>g>of</str<strong>on</strong>g> N-fixed 4088 strain <str<strong>on</strong>g>of</str<strong>on</strong>g> bacteria <strong>on</strong> seed germinati<strong>on</strong> andindividual growth; transportati<strong>on</strong> and distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>phosphorus (P) in organs under salt stress; physiology andbiochemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> leaf and root; effects <str<strong>on</strong>g>of</str<strong>on</strong>g> seed soaking <strong>on</strong>seed germinati<strong>on</strong>; enzyme activity, sugar c<strong>on</strong>tents, aminoacid and cold tolerance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> seedling under different saltstress; translocati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mineral elements; c<strong>on</strong>tents, allocati<strong>on</strong>and uses <str<strong>on</strong>g>of</str<strong>on</strong>g> Selenium (Se) <str<strong>on</strong>g>of</str<strong>on</strong>g> plants; flav<strong>on</strong>oids andimmunity activity; isozyme differentiati<strong>on</strong>; micromorphology<str<strong>on</strong>g>of</str<strong>on</strong>g> pollen grains; ultrastructure <str<strong>on</strong>g>of</str<strong>on</strong>g> mesophyllcells; anatomy <str<strong>on</strong>g>of</str<strong>on</strong>g> seeds; biomass dynamics, speciesstructures, energy storage and energy flow <str<strong>on</strong>g>of</str<strong>on</strong>g> ecosystem; <str<strong>on</strong>g>the</str<strong>on</strong>g>relati<strong>on</strong>ships between Spartina and clamworms; soil enzymeactivity in Spartina salt marsh; extracti<strong>on</strong> method,toxicology, nutrient c<strong>on</strong>tents, functi<strong>on</strong>s and uses <str<strong>on</strong>g>of</str<strong>on</strong>g>biomineral beverages/tea.Height(cm)0.0 30 5.0 - 8.0 16.7 0 12.50.5 30 3.5 - 7.0 66.7 1.5 27.61.0 30 1.5 - 6.0 66.7 4.8 37.31.5 30 0.5 - 4.5 100.0 10.8 90.22.0 26 - 30 0.5 - 3.5 100.0 13.7 101.42.5 18 - 28 0.5 - 2.0 100.0 11.8 98.23.0 14 - 22 0.5 - 2.0 100.0 8.0 72.3-68-


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 2: Spartina Distributi<strong>on</strong> and SpreadOverall, most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> studies <strong>on</strong> Spartina before 1995were involved in ecology after introducti<strong>on</strong>, ecologicalengineering, multi-dimensi<strong>on</strong>al uses, physiology,biochemistry and <str<strong>on</strong>g>the</str<strong>on</strong>g> populati<strong>on</strong> biology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> species.RECENT STUDIES AND ADVANCESSince 1995, two research groups were rec<strong>on</strong>structedwith two pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essors, six associate pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essors, three assistantpr<str<strong>on</strong>g>of</str<strong>on</strong>g>essors and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir students at Nanjing University.Meanwhile, a couple <str<strong>on</strong>g>of</str<strong>on</strong>g> Chinese scientists joined in <str<strong>on</strong>g>the</str<strong>on</strong>g>research from o<str<strong>on</strong>g>the</str<strong>on</strong>g>r instituti<strong>on</strong>s. Our studies <strong>on</strong> S.alterniflora focused <strong>on</strong>: multidimensi<strong>on</strong>al uses, invasivec<strong>on</strong>sequences and management, competiti<strong>on</strong> with differentspecies, wave reducti<strong>on</strong>, ecological services and evaluati<strong>on</strong>,energy flow and community dynamics, evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>ecological engineering, purificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> wastewater, sedimentprocess, remote sensing, expending process and outbreak <str<strong>on</strong>g>of</str<strong>on</strong>g>populati<strong>on</strong>s, soil property <str<strong>on</strong>g>of</str<strong>on</strong>g> salt marsh, rare waterfowlc<strong>on</strong>servati<strong>on</strong>, cDNA library, flav<strong>on</strong>oids <str<strong>on</strong>g>of</str<strong>on</strong>g> biomass,decompositi<strong>on</strong> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> plants, genetic diversity andgenetic differentiati<strong>on</strong>, greenhouse gas release <str<strong>on</strong>g>of</str<strong>on</strong>g> salt marsh.The work <strong>on</strong> S. anglica covered salt-induced transcript,microbial compositi<strong>on</strong>, mechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> dieback and geneticstructures <str<strong>on</strong>g>of</str<strong>on</strong>g> declining populati<strong>on</strong>s. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, <str<strong>on</strong>g>the</str<strong>on</strong>g> studies<strong>on</strong> S. patens included tissue culture <str<strong>on</strong>g>of</str<strong>on</strong>g> seed, i<strong>on</strong>implantati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> plants, effect <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong> beam <strong>on</strong> seedgerminati<strong>on</strong> and uses <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> species. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> studies areinvolved in structures and functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina saltmarshes; genetic diversity and dieback <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica; geneticvariati<strong>on</strong>, outbreak, management and c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> S.alterniflora, restorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> degraded coastal ecosystemsinvaded by S. alterniflora; and effects <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflorainvasi<strong>on</strong> <strong>on</strong> release <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong>-, nitrogen- and sulfer-basedtrace gases. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> important results are summarizedbelow:• Rhizome and ramets <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica have str<strong>on</strong>g asexualreproductive capacity in both <str<strong>on</strong>g>the</str<strong>on</strong>g> laboratory and coastalecosystems, but <str<strong>on</strong>g>the</str<strong>on</strong>g> seeds have very low germinati<strong>on</strong>rate. The species grows well in rapid sedimentati<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>sat 2.5 meters (m) to 4.2 m in elevati<strong>on</strong> above sealevel if its leaves are not completely covered by <str<strong>on</strong>g>the</str<strong>on</strong>g>sediments, has broad temperature range from -25°C to42°C and can survive in open coasts with violent impactsfrom typho<strong>on</strong>s and tides. Spartina anglica cangrow at salinities <str<strong>on</strong>g>of</str<strong>on</strong>g> 0-6% (W/W), with <str<strong>on</strong>g>the</str<strong>on</strong>g> optimal salinity<str<strong>on</strong>g>of</str<strong>on</strong>g> 0.4-1.4%. Best growth occurs at 3.0±0.3 m inelevati<strong>on</strong> with a tolerance range from 2.3 m to 4.0 m. Itdecreased <str<strong>on</strong>g>the</str<strong>on</strong>g> dissoluble i<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> soil by 2.6% and in reclaimedtidelands <str<strong>on</strong>g>the</str<strong>on</strong>g> species decreased saline c<strong>on</strong>centrati<strong>on</strong>and pH by 38.2% and 2.4%, respectively.• Fertile flowers and seed producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica decreasedwith increasing density. On average, 24.6% <str<strong>on</strong>g>of</str<strong>on</strong>g>flowers can be fertilized and produce seeds in <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>dyear after planting in <str<strong>on</strong>g>the</str<strong>on</strong>g> field when <str<strong>on</strong>g>the</str<strong>on</strong>g> individualdensity is low. But, in <str<strong>on</strong>g>the</str<strong>on</strong>g> fourth year, <str<strong>on</strong>g>the</str<strong>on</strong>g> crowdedramet populati<strong>on</strong>s did not flower. Our observati<strong>on</strong>sshow that <str<strong>on</strong>g>the</str<strong>on</strong>g> species has lost its sexual propagati<strong>on</strong>ability. But, <str<strong>on</strong>g>the</str<strong>on</strong>g> trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f between density and seed producti<strong>on</strong>needs more experiments both in <str<strong>on</strong>g>the</str<strong>on</strong>g> field andunder c<strong>on</strong>trolled c<strong>on</strong>diti<strong>on</strong>s.• During <str<strong>on</strong>g>the</str<strong>on</strong>g> first four years <str<strong>on</strong>g>of</str<strong>on</strong>g> invasi<strong>on</strong>, individual density,leaf area index, biomass (both above- and belowgroundbiomass) and net assimilati<strong>on</strong> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S.anglica significantly (p


Chapter 2: Spartina Distributi<strong>on</strong> and Spread<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinaful method to eradicate Spartina, but more experimentsare needed to verify its effectiveness (Chen et al. 2007).• Spartina alterniflora has lower genetic diversity buthigher genetic differentiati<strong>on</strong> capacity whereas S. anglicahas higher genetic diversity and lower differentiati<strong>on</strong>capacity (An et al. this volume). These genetic differencesmay have c<strong>on</strong>tributed to <str<strong>on</strong>g>the</str<strong>on</strong>g> different invasi<strong>on</strong>dynamics, and different fates, for <str<strong>on</strong>g>the</str<strong>on</strong>g> two species <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina.ACKNOWLEDGMENTSThis study was financially supported by Comm<strong>on</strong>wealFoundati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Forestry Administrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> China (No.200804005) and by KSJYXRC Foundati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> China’sMinistry <str<strong>on</strong>g>of</str<strong>on</strong>g> Educati<strong>on</strong> (No. 0208002002). We thank Dr.Chung-Hsin Chung and Mr. R<strong>on</strong>gzh<strong>on</strong>g Zhuo for <str<strong>on</strong>g>the</str<strong>on</strong>g>irvaluable suggesti<strong>on</strong>s and comments <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> manuscript.Special thanks for Dr. Bo Li for his careful editing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>manuscript.REFERENCESAbdul-Kareem, A.R., C. Sheng, M. Shi, et al. 2003. Isolati<strong>on</strong> andcharacterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a salt-induced transcript from halophyteSpartina anglica using DDRT-PCR. J. <str<strong>on</strong>g>of</str<strong>on</strong>g> Nankai Univ. 36(2):8-14.An, S., Y. Xiao, H. Qing, Z. Wang, C. Zhou, B. Li, S. Shi, D. Yu, Z.Deng, and L. Chen. 2010. Varying success <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina spp. invasi<strong>on</strong>sin China: Genetic diversity or differentiati<strong>on</strong>? In: Ayres,D.R., D.W. Kerr, S.D. Erics<strong>on</strong> and P.R. Ol<str<strong>on</strong>g>of</str<strong>on</strong>g>s<strong>on</strong>, eds. <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g><str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartina, 2004Nov 8-10, San Francisco, CA, USA. San Francisco Estuary <strong>Invasive</strong>Spartina Project <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> California State Coastal C<strong>on</strong>servancy:Oakland, CA (this volume).An, S.Q. and C.H. Chung. 1991. Spartina ecological engineering andbenefit analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> disaster preventi<strong>on</strong>. J. <str<strong>on</strong>g>of</str<strong>on</strong>g> Nanjing Univ., disasterissue, 367-373.An, S.Q., B.H. Gu, C.F. Zhou, Z.S. Wang, Z.F. Deng, Y.B. Zhi, H.L.Li, L. Chen, D.H. Yu, and Y.H. Liu. 2007. Spartina invasi<strong>on</strong> inChina: implicati<strong>on</strong>s for invasive species management and futureresearch. Weed Research 47: 183-191.Baumel, A., M.L. Ainouche, and J.E. Levasseur. 2001. Molecularinvestigati<strong>on</strong>s in populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglica C.E. Hubbard(Poaceae) invading coastal Brittany (France). Mol. Ecol. 10: 1689-1701.Chen, C.J. 1994. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> increasing depositi<strong>on</strong> and defending seashoreby planting Spartina anglica <strong>on</strong> beach in Jiangsu Province.Bull. Mar. Sci., 13(2): 55-61.Chen, J.Q., and C.H. Chung. 1991. Differentiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 ecotypes inresp<strong>on</strong>ses to salt stress in Spartina alterniflora. Acta Phytoecol. etGeobot. Sinica, 14(1): 33-39.Chen, L., Z.F. Deng, S.Q. An, C.J. Zhao, C.F. Zhou, and Y.B. Zhi.2007. Alternative irrigati<strong>on</strong> restrains cl<strong>on</strong>al growth and reproducti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflora. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Plant Ecology 31(4): 645-651.Chung, C.H. 1982. Low marshes, China. In: Lewis, R.R., ed. Creati<strong>on</strong>and Restorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Coastal Plant Communities. Boca Rat<strong>on</strong>:CRC Press. pp. 131-145.Chung, C.H. 1983. Geographical distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglicaHubbard in China. Bull. Mar. Sci. 33(3):753-758.Chung, C.H. 1985. The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> introduced Spartina grass <strong>on</strong>coastal morphology in China. Z. Geomorph. N.F. Suppl. Bd.57:169-174.Chung, C.H. 1985. Twenty-two Year Research Advances inSpartina. J. <str<strong>on</strong>g>of</str<strong>on</strong>g> Nanjing Univ., special issue. pp.358.Chung, C.H. 1989. Ecological engineering <str<strong>on</strong>g>of</str<strong>on</strong>g> coastlines with saltmarshplantati<strong>on</strong>s. In: Mitsch, W.J. and S.E. Jørgensen, eds. EcologicalEngineering. New York: John Wiley & S<strong>on</strong>s 255-289.Chung, C.H. 1990. Twenty-five years <str<strong>on</strong>g>of</str<strong>on</strong>g> introduced Spartina anglicain China. In: Gray, A.J. and P.E. Benham, eds. Spartina anglica —a Research Review. L<strong>on</strong>d<strong>on</strong>: HMSO. pp. 72-76.Chung, C.H. 1993. Thirty years <str<strong>on</strong>g>of</str<strong>on</strong>g> ecological engineering withSpartina plantati<strong>on</strong>s in China. Ecol. Eng, 2:261-289.Chung, C.H., and R.Z. Zhuo. 1979. Spartina anglica. Grassland <str<strong>on</strong>g>of</str<strong>on</strong>g>China 1:45-48.Daehler, C.C. and D.R. Str<strong>on</strong>g. 1996. Status, predicti<strong>on</strong> and preventi<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> introduced cordgrass Spartina spp. invasi<strong>on</strong>s in Pacific estuaries,USA. Biol. C<strong>on</strong>serv., 78:51-58.Guan, Y.J. and S.Q. An. 2003. ecological benefits and biological invasi<strong>on</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina in Chna. J. Nanjing For. Univ., special issue,95-101.Hacker, S.D., D. Heimer, C.E. Hellquist, T.G. Reeder, B. Reeves,T.J. Riordan, and M.N. Dethier. 2001. A marine plant (Spartinaanglica) invades widely varying habitats: potential mechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g>invasi<strong>on</strong> and c<strong>on</strong>trol. Biol. Invasi<strong>on</strong>s, 3:211-217.Hu, Z.H. 1998. Anti-inflammatory activity <str<strong>on</strong>g>of</str<strong>on</strong>g> topically applied totalflav<strong>on</strong>oids <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflora Loisel in vivo. J. <str<strong>on</strong>g>of</str<strong>on</strong>g> Plant Res.and Envir<strong>on</strong>. 7(2):6-11.Hu, Z.H. 1998. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> total flav<strong>on</strong>oids <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflora <strong>on</strong>serum lipids in vivo. Mar. Sci., 2:16-18.Jiang, F.X. and W.Z. Wang. 1992. The relati<strong>on</strong>ships betweenSpartina anglica and clamworms. Acta Ecol. Sinica 12(1):84-88.Jiang, F.X. and W.Z. Wang. 1987. Decompositi<strong>on</strong> and nutrientchanges <str<strong>on</strong>g>of</str<strong>on</strong>g> dead Spartina anglica and S. alterniflora. ActaOceanologica Sinica 9(3):367-372.Jiang, H.X. and J.S. Huang. 1982. The preliminary observati<strong>on</strong> <strong>on</strong><str<strong>on</strong>g>the</str<strong>on</strong>g> digallic acid-treated transmissi<strong>on</strong> electr<strong>on</strong> microscopic specimens<str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglica C.E. Hubbard. J. Cell Biol., 4(2):15-16.Kriwoken, L.K. and P. Hedge. 2000. Exotic species and estuaries:managing Spartina anglica in Tasmania, Australia. Ocean &Coastal Manag., 43:573-584.Li, A.M. and X.C. Liu. 1994. Microbial compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglicasalt marshes. Tianjing Agri. Sci. 1: 27-28.Lin, Q.R. 1997. Damage and management <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglica and S.alterniflora. Fujian Geography, 1:16-20.Liu, J. and J.H. Huang. 2000. Management <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflora.Bull. Oceanogr., 10: 68-72.Liu, Y.X. 2001. Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> remote sensing images for vegetati<strong>on</strong>successi<strong>on</strong> <strong>on</strong> tidal salt marsh in Jiangsu. Rural Eco-Envir<strong>on</strong>.17(3):39-41.Lü, Z.X., and C.H. Chung. 1981. A comparative study <str<strong>on</strong>g>of</str<strong>on</strong>g> seed germinati<strong>on</strong>and free amino acid compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglica infresh and sea water c<strong>on</strong>diti<strong>on</strong>s. J. Plant Physiol. 7:281-286.Lü, Z.X., and C.H. Chung. 1983. The influence <str<strong>on</strong>g>of</str<strong>on</strong>g> NaCl <strong>on</strong> freeamino acid compositi<strong>on</strong> and proline c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglicaseedling. J. Plant Physiol., 8(4):393-398.Ma, Y.J. 2001. Studies <strong>on</strong> comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflora Loisel.II: The research <str<strong>on</strong>g>of</str<strong>on</strong>g> volatile comp<strong>on</strong>ent with GC-MS. Chinese J. <str<strong>on</strong>g>of</str<strong>on</strong>g>Bioch. Pharma. 23(1):36-37.Ma, Z.J., B. Li, K. Jing, S.M. Tang, and J.K. Chen. 2004. Are artificialwetlands good alternatives to natural wetlands for waterbirds?-70-


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 2: Spartina Distributi<strong>on</strong> and SpreadA case study <strong>on</strong> Ch<strong>on</strong>gming Island, China. Biodiversity and C<strong>on</strong>servati<strong>on</strong>13: 333-350.Ou, H.C. 1982. A preliminary study <str<strong>on</strong>g>of</str<strong>on</strong>g> alkalinity and salinity toleranceby seedlings <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglica Hubbard. Plant Physiol.Bull. 1:15-17.Qian, Y.Q. and K.P. Ma. 1995. Bio-techniques and bio-safety. J. <str<strong>on</strong>g>of</str<strong>on</strong>g>Nat. Res. 10: 322-334.Qin, P., M.D. Jin, and M. Xie. 1985. The comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> communitybiomass am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> three ecotypes <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alteniflora in Louyuanbay, Fujian. J. Nanjing Univ. Res. Adv. Spartina 226-236.Qin, P., and M. Xie. 1988. Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> N, P and K in Spartinaalterniflora salt marshes <str<strong>on</strong>g>of</str<strong>on</strong>g> Luoyuan Bay. Mar. Sci. 4: 63-67.Qin, P., and M. Xie. 1991. Primary producti<strong>on</strong> and formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> flavanoid<str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflora. Acta Ecol. Sinica 11(4): 293-298.Qin, P., and C.H. Chung. 1992. Applied Studies <strong>on</strong> Spartina. Beijing:Marine Press.Qin, P., M. Xie, and Y.S. Jiang. 1998. Spartina green food ecologicalengineering. Ecol. Eng. 11:147-156.Qin, P., M. Xie, Y.S. Jiang, and C.H. Chung. 1997. Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ecological-ec<strong>on</strong>omic benefits <str<strong>on</strong>g>of</str<strong>on</strong>g> two Spartina alterniflora plantati<strong>on</strong>sin North Jiangsu, China. Ecol. Eng. 8:5-17.Shen, Y.M. 2002. Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> expending process <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartinaalterniflora Loisel salt marsh <strong>on</strong> Jiangsu Province coast by remotesensing. J. Plant Res. Envir<strong>on</strong>. 11(2):33-38.Sun, B.Y., and C.S. Zhu. 1989. Distributi<strong>on</strong> and enzyme activity <str<strong>on</strong>g>of</str<strong>on</strong>g>soil microbes in Spartina alterniflora salt marshes. Acta Ecol. Sinica9:240-241.Wan, S.W., P. Qin, Y. Li, and X.P. Liu. 2001. Wetland creati<strong>on</strong> forrare waterfowl c<strong>on</strong>servati<strong>on</strong>: A project designed according to <str<strong>on</strong>g>the</str<strong>on</strong>g>principles <str<strong>on</strong>g>of</str<strong>on</strong>g> ecological successi<strong>on</strong>. Ecol. Eng., 18:115–120.Wang, C.Y. 1994. Seas<strong>on</strong>al changes <str<strong>on</strong>g>of</str<strong>on</strong>g> photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis rates and itseffects <strong>on</strong> primary producti<strong>on</strong> for Spartina. Rural Eco-Envir<strong>on</strong>.10(3):14-17.Xu, D.Z. 2002. Experimental research <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> purificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartinaanglica to household waste water. J. Guizhou Univ. 21(2):121-125.Xu, G.W., and R.Z. Zhuo. 1985. Preliminary studies <str<strong>on</strong>g>of</str<strong>on</strong>g> introducedSpartina alterniflora Loisel in China. J. <str<strong>on</strong>g>of</str<strong>on</strong>g> Nanjing Univ. (Speciesissue for research advances in Spartina—Achievements <str<strong>on</strong>g>of</str<strong>on</strong>g> past 22years) 212-225.Yu, W.H. and Y.Q. Cao. 1981. Preliminary studies <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>rhizosphere bacteria <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglica. J. <str<strong>on</strong>g>of</str<strong>on</strong>g> Nanjing Univ.3:365-370.Zhao, Q.L., and Q. Zhao. 1997. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglica to <str<strong>on</strong>g>the</str<strong>on</strong>g> soilhabitats <str<strong>on</strong>g>of</str<strong>on</strong>g> Perinereis aibuhitensis. Chinese J. Ecol. 16(2):28-30.Zhang, P.Y. 1998. C<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cDNA library from comm<strong>on</strong>cordgrass under salt stress. Acta Prataculturae Sinica 7(4):67-73.Zhang, R.S. 2004. Formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflora salt marshes <strong>on</strong><str<strong>on</strong>g>the</str<strong>on</strong>g> coast <str<strong>on</strong>g>of</str<strong>on</strong>g> Jiangsu Province, China. Ecol. Eng. 23: 95–105.Zhang, S.T., P. Qin, and S.W. Wan. 2000. Analysis <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> resourceallocati<strong>on</strong> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflora ecological engineeringfrom <str<strong>on</strong>g>the</str<strong>on</strong>g> emergy benefits aspect. Acta Ecol. Sinica 20(6):1045-1049.Zhou, C.F. 2002. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>s implantati<strong>on</strong> <strong>on</strong> several physiologicaland biochemical indexes <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina patens. Plant Physiol. Bull.38(3):237-239.Zhou, C.F. 2003. Free radical resp<strong>on</strong>ses in embry<strong>on</strong>ic calli <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina patens under N+ beam irradiati<strong>on</strong>. J. <str<strong>on</strong>g>of</str<strong>on</strong>g> Nanjing Univ.39(5):520-529.Zhou, C.F., P. Qin, and M. Xie. 2003. Vegetating coastal areas <str<strong>on</strong>g>of</str<strong>on</strong>g>east China: species selecti<strong>on</strong>, seedling cl<strong>on</strong>ing and transplantati<strong>on</strong>.Ecol. Eng. 20: 275-286.Zhou, H.B., and H.X. Jiang. 1982. Morphology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> salt gland <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina anglica Hubbard. Acta Bot. Sinica 24(2):115-118.Zhou, Lu. 2003. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> brassinolide <strong>on</strong> callus growth and regenerati<strong>on</strong>in Spartina patens (Poaceae). Plant Cell, Tissue and OrganCulture 73:87-89.Zhuang, S.H., and C.H. Chung. 1987. An investigati<strong>on</strong> <strong>on</strong> ecotypedifferentiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglica Hubbard. Chinese J. Ecol.6(6):1-9.-71-


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 2: Spartina Distributi<strong>on</strong> and SpreadSPREAD OF INVASIVE SPARTINA IN THE SAN FRANCISCO ESTUARYK. ZAREMBA 1,4 ,M.MCGOWAN 2 , AND D.R. AYRES 31 San Francisco Estuary <strong>Invasive</strong> Spartina Project, 2612-A 8 th St., Berkeley, CA 947102 Maristics, 1442A Walnut St., Suite 188, Berkeley, CA 94709, maristics@comcast.net3 U.C. Davis, Evoluti<strong>on</strong> and Ecology, Davis, CA 95616, drayres@ucdavis.edu4 Current address: 971 Village Dr. Bowen Island, BC, V0N 1G0 Canada; katyzaremba@yahoo.caWe mapped <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> and extent <str<strong>on</strong>g>of</str<strong>on</strong>g> all n<strong>on</strong>-native Spartina in <str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco estuary in 2000and 2001 and mapped a sample <str<strong>on</strong>g>of</str<strong>on</strong>g> 28 sites in 2003. We incorporated aerial photographs, groundsurveys, and genetic analyses into a GIS. These sites dem<strong>on</strong>strated an average increase <str<strong>on</strong>g>of</str<strong>on</strong>g> 317percent coverage <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora x foliosa hybrids, radiating from points <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> deliberateintroducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora. Extrapolating to <str<strong>on</strong>g>the</str<strong>on</strong>g> entire estuary, this suggests a potential increasefrom ca 190 hectares(ha) (470 acres[ac]) recorded in 2001 to as much as 793 ha (1,960 ac) in 2003.Hybrids now occupy approximately four percent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total area <str<strong>on</strong>g>of</str<strong>on</strong>g> marsh and mudflats in <str<strong>on</strong>g>the</str<strong>on</strong>g> bay.Spread was greater in tidal marshes or formerly diked baylands and mudflats than in creeks, sloughs,and urbanized marsh (riprap, boat ramps). Genetic testing found no new invasi<strong>on</strong> sites. Manualc<strong>on</strong>trol methods applied in 2002-2003—digging or covering with geo-textile fabric—were effectiveat removing or killing small populati<strong>on</strong>s or single plants <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina species.Keywords: invasive Spartina, S. alterniflora, S. densiflora, S. patens, S. alterniflora x foliosahybrids, m<strong>on</strong>itoringINTRODUCTIONThe San Francisco Bay Estuary c<strong>on</strong>tains <str<strong>on</strong>g>the</str<strong>on</strong>g> largest andmost ecologically important expanses <str<strong>on</strong>g>of</str<strong>on</strong>g> tidal mudflats andsalt marshes in <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tiguous western United States with adiverse array <str<strong>on</strong>g>of</str<strong>on</strong>g> native plants and animals. Over <str<strong>on</strong>g>the</str<strong>on</strong>g> years,many n<strong>on</strong>-native species <str<strong>on</strong>g>of</str<strong>on</strong>g> plants and animals have beenintroduced to <str<strong>on</strong>g>the</str<strong>on</strong>g> Estuary threatening to change <str<strong>on</strong>g>the</str<strong>on</strong>g> structure,functi<strong>on</strong>, and value <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Estuary’s tidal lands. In recentdecades four species <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-native Spartina have begun tospread rapidly in <str<strong>on</strong>g>the</str<strong>on</strong>g> Estuary. Though valuable in <str<strong>on</strong>g>the</str<strong>on</strong>g>irnative settings, <str<strong>on</strong>g>the</str<strong>on</strong>g>se introduced Spartina species are highlyaggressive in this new envir<strong>on</strong>ment and frequently become<str<strong>on</strong>g>the</str<strong>on</strong>g> dominant plant in areas <str<strong>on</strong>g>the</str<strong>on</strong>g>y invade. (Callaway andJosselyn 1992; Cohen and Carlet<strong>on</strong> 1995; Daehler andStr<strong>on</strong>g 1996; Goals Project 1999; Ayres et al. 2003;California Coastal C<strong>on</strong>servancy 2003; Ayres et al. 2004).In 2000 <str<strong>on</strong>g>the</str<strong>on</strong>g> California Coastal C<strong>on</strong>servancy established<str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco Estuary <strong>Invasive</strong> Spartina Project (ISP) toprovide a regi<strong>on</strong>ally coordinated approach to c<strong>on</strong>trolling oreradicating n<strong>on</strong>-native Spartina in San Francisco Bay. TheISP includes a m<strong>on</strong>itoring program to map n<strong>on</strong>-nativeSpartina and to assess <str<strong>on</strong>g>the</str<strong>on</strong>g> effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> treatmentmethods. In 2000-2001 <str<strong>on</strong>g>the</str<strong>on</strong>g> ISP mapped <str<strong>on</strong>g>the</str<strong>on</strong>g> entire Estuaryusing <str<strong>on</strong>g>the</str<strong>on</strong>g> methods outlined in Collins et al. (2001). In 2003<str<strong>on</strong>g>the</str<strong>on</strong>g> ISP M<strong>on</strong>itoring Program mapped a subset <str<strong>on</strong>g>of</str<strong>on</strong>g> 28 sites,m<strong>on</strong>itored sites treated in 2002 and 2003, used genetictesting to c<strong>on</strong>firm identificati<strong>on</strong>s at known and suspectedinvasi<strong>on</strong> sites, and compared methods for m<strong>on</strong>itoringcordgrass in <str<strong>on</strong>g>the</str<strong>on</strong>g> Estuary.Five species <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina are currently found in <str<strong>on</strong>g>the</str<strong>on</strong>g> SanFrancisco Bay Estuary including <str<strong>on</strong>g>the</str<strong>on</strong>g> native, S. foliosa. Thefour n<strong>on</strong>-native species currently found in <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary are S.alterniflora, S. densiflora, S. anglica, and S. patens. Hybridsbetween Atlantic smooth cordgrass S. alterniflora, and <str<strong>on</strong>g>the</str<strong>on</strong>g>native Pacific cordgrass S. foliosa (hereafter termed“hybrids”) now threaten <str<strong>on</strong>g>the</str<strong>on</strong>g> ecological balance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>Estuary and are likely to cause <str<strong>on</strong>g>the</str<strong>on</strong>g> extincti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nativePacific cordgrass, choke tidal creeks, dominate newlyrestored tidal marshes, and displace thousands <str<strong>on</strong>g>of</str<strong>on</strong>g> acres <str<strong>on</strong>g>of</str<strong>on</strong>g>existing shorebird habitat (Ayres and Str<strong>on</strong>g, this vol.;Stralberg et al. this vol.; Ayres et al. 2003; Ayres et al.2008). <strong>Invasive</strong> cordgrasses from <str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco Estuarycould spread to o<str<strong>on</strong>g>the</str<strong>on</strong>g>r California estuaries through seeddispersal <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> tides.The 2000-2001 survey found 195 net hectares (ha) (483acres (ac)) <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-native Spartina distributed throughoutnearly 16,187 ha (40,000 ac) <str<strong>on</strong>g>of</str<strong>on</strong>g> tidal marsh and 11,736 ha(29,000 ac) <str<strong>on</strong>g>of</str<strong>on</strong>g> tidal flats (Ayres et al. 2004). Net area is <str<strong>on</strong>g>the</str<strong>on</strong>g>coverage if all n<strong>on</strong>-native Spartina plants were c<strong>on</strong>tiguouswhile gross area would be all <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh areas that have somen<strong>on</strong>-native Spartina plants. Of this total, 190 ha (470 ac)were hybrids, 5 ha (13 ac) were S. densiflora, 0.23 ha (0.58ac) were S. patens, and 0.04 ha (0.09 ac) were S. anglica.The hybrids have increased in area 100-fold since <str<strong>on</strong>g>the</str<strong>on</strong>g> 1970s,from just over <strong>on</strong>e ha <str<strong>on</strong>g>of</str<strong>on</strong>g> planted S. alterniflora in 1978(Ayres et al. 2004). It is hypop<str<strong>on</strong>g>the</str<strong>on</strong>g>sized that <str<strong>on</strong>g>the</str<strong>on</strong>g> proliferati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> hybrids is accelerating <str<strong>on</strong>g>the</str<strong>on</strong>g> rate at which areas are covereddue to <str<strong>on</strong>g>the</str<strong>on</strong>g> evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> greater invasiveness (Ayres et al.2004; Ayres and Str<strong>on</strong>g this vol.; Hall et al. 2006 and this-73-


Chapter 2: Spartina Distributi<strong>on</strong> and Spread<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinavol.). In additi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> physical displacement <str<strong>on</strong>g>of</str<strong>on</strong>g> nativemarsh plants, <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid invasi<strong>on</strong> threatens <str<strong>on</strong>g>the</str<strong>on</strong>g> geneticintegrity and c<strong>on</strong>tinued existence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> native Spartinafoliosa (Ayres et al. 2003).METHODSOverall Descripti<strong>on</strong>A total <str<strong>on</strong>g>of</str<strong>on</strong>g> 31 estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> area covered by three species<str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-native Spartina were made at 28 separate samplingsites in 2003 (Table 1). The three species were S. patens, S.densiflora and hybrids. A sample <str<strong>on</strong>g>of</str<strong>on</strong>g> sites was selected toprovide coverage for <str<strong>on</strong>g>the</str<strong>on</strong>g> entire bay shoreline stratified by“regi<strong>on</strong>” as defined by <str<strong>on</strong>g>the</str<strong>on</strong>g> Wetlands Goals Project (GoalsProject 1999) (latitude) and “site type.” Field sites wereselected across <str<strong>on</strong>g>the</str<strong>on</strong>g> latitudinal extent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-nativeSpartina spp. invasi<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> Estuary (Fig. 1). The regi<strong>on</strong>swere North Bay (NB) (2 sites), Central Bay (CB) (21 sites),and South Bay (SB) (5 sites). The site types were I) tidal,micro-tidal, and formerly diked bayland, and back barriermarsh (9 sites); (II) fringing tidal marsh, mud flats andestuarine beaches (7 sites); (III) major tidal sloughs, creeksor flood c<strong>on</strong>trol channels (5 sites); and (IV) urbanized rock,riprap, docks, boat ramps and marinas (7 sites). At least twomarshes <str<strong>on</strong>g>of</str<strong>on</strong>g> each site type were selected from each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>three regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Bay. Within each site type six to sevenmarshes were selected.The three n<strong>on</strong>-native species differed in <str<strong>on</strong>g>the</str<strong>on</strong>g>irdistributi<strong>on</strong>s am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> three bay regi<strong>on</strong>s. Spartina. patensoccurred at <strong>on</strong>e locati<strong>on</strong>, Southampt<strong>on</strong>, in <str<strong>on</strong>g>the</str<strong>on</strong>g> North Baywhere no o<str<strong>on</strong>g>the</str<strong>on</strong>g>r n<strong>on</strong>-native species occurred. Spartinadensiflora occurred at seven locati<strong>on</strong>s: <strong>on</strong>e in <str<strong>on</strong>g>the</str<strong>on</strong>g> North Bayand six in <str<strong>on</strong>g>the</str<strong>on</strong>g> Central Bay. At three <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Central Bay sitesS. densiflora and hybrids both occurred. Two <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se threesites are adjacent to each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r, that is, Blackie’s Creek runsthrough Blackie’s Pasture. Hybrids occurred at 23 separatesites from <str<strong>on</strong>g>the</str<strong>on</strong>g> Central Bay and <str<strong>on</strong>g>the</str<strong>on</strong>g> South Bay. It was notpossible to sample equal numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> sites within each typeand regi<strong>on</strong> due to <str<strong>on</strong>g>the</str<strong>on</strong>g> unequal frequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> appropriatesites, <str<strong>on</strong>g>the</str<strong>on</strong>g> requirement to avoid clapper rails in somelocati<strong>on</strong>s and to sample particular sites at particular tideheights, and limited numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> trained field staff andGlobal Positi<strong>on</strong>ing System (GPS) units. Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less, asnoted below, <str<strong>on</strong>g>the</str<strong>on</strong>g> sampling in 2003 encompassed <str<strong>on</strong>g>the</str<strong>on</strong>g> fullknown regi<strong>on</strong>al extent <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-native Spartina speciesdistributi<strong>on</strong>.MappingIn 2003 distributi<strong>on</strong> and abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-nativeSpartina were mapped at <str<strong>on</strong>g>the</str<strong>on</strong>g> 28 sample sites and comparedto <str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong> and abundance at those locati<strong>on</strong>s in 2001.Overall methods followed Collins et al. (2001) with somemodificati<strong>on</strong>s.At each sampling site observers mapped <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong>and areal extent <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-native Spartina using a GPS dataTable 1. Change in Area Covered Between 2001 and 2003 Using FieldMeasurements and Field Estimates*at 28 sites for three Spartina taxa.SitesTaxaArea in Area in2001 (ac) 2003 (ac)Area in2001(squaremeters)Area in2003(squaremeters)Changein Area2001 to2003Site Type IBunker Marsh* Hybrids 0.39 1.40 1580.11 5665.59 259%Citati<strong>on</strong> Marsh* Hybrids 0.51 1.93 2059.74 7803.41 279%Cogswell Marsh(North Quadrant)*Hybrids 0.37 1.32 1503.16 5334.08 255%Piper Park West S. densiflora 0.02 0.08 99.92 318.40 219%Southampt<strong>on</strong>MarshS. patens 0.31 0.05 1244.49 196.99 -84%Point Pinole S. densiflora 0.00 0.00 2.99 6.39 114%Palo Alto Baylands Hybrids 0.12 0.15 478.26 618.49 29%Corte MaderaMarsh Reserve 1Corte MaderaMarsh Reserve 2S. densiflora 0.011 0.014 44.95 60.75 35%Hybrids 0.01 0.05 26.46 214.92 712%Pickleweed Park S. densiflora 0.49 0.03 1964.07 118.73 -94%Site Type IIEmeryville West Hybrids 0.07 1.59 282.60 6430.15 2175%Coyote CreekMarshAlameda Island –N. Elsie Roemer*Hybrids 0.09 0.06 353.25 233.15 -34%Hybrids 0.29 0.98 1171.89 3948.94 237%Blackie’s Pasture 1 S. densiflora 0.021 0.020 84.12 82.66 -2%Blackie’s Pasture 2 Hybrids 0.01 0.08 41.37 330.90 700%Ideal Marsh* Hybrids 0.26 0.88 1070.72 3541.00 231%Richm<strong>on</strong>d InnerHarbor – SteegeMarshHybrids 0.01 0.02 32.19 100.46 212%Bayshore Park Hybrids 0.05 0.25 168.19 1018.84 506%Site Type IIIBlackie’s Creek 1 Hybrids 0.03 0.02 108.33 93.97 -13%Blackie’s Creek 2 S. densiflora 0.00 0.00 12.06 8.46 -30%Colma Creek Hybrids 2.36 7.16 9551.11 28957.46 203%Corte MaderaCreekS. densiflora 1.19 2.70 4802.16 10948.30 128%San Leandro Creek Hybrids 2.16 3.83 8760.60 15481.79 77%San Mateo Creek Hybrids 0.20 0.78 825.41 3172.16 284%Site Type IVCoyote Pt Marina Hybrids 0.35 0.74 1408.81 3004.87 113%Oakland InnerHarborHybrids 2.74 5.40 11087.72 21685.73 96%Yosemite Slough Hybrids 0.02 0.12 75.47 476.02 531%India Basin Hybrids 0.10 0.01 408.20 41.47 -90%Pier 94 Hybrids 0.04 0.03 171.72 129.50 -25%Pier 98/Her<strong>on</strong>’sHead (treat tookplace in 2002)Loch Lom<strong>on</strong>dMarinaHybrids 0.002 0.009 8.83 37.40 324%Hybrids 0.005 0.016 19.63 64.98 231%Site and Marsh Types:Type I. Former Diked Bayland/Microtidal/Tidal/Back Barrier MarshType II. Fringing Tidal Marsh/Mudflats/Estuarine BeachesType III. Major Tidal Slough, Creek or Flood C<strong>on</strong>trol ChannelType IV. Urbanized rock, riprap, dock, ramp, marina.-74-


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 2: Spartina Distributi<strong>on</strong> and Spreadentry unit (Trimble Geo-Explorer III).Plant data were entered into <str<strong>on</strong>g>the</str<strong>on</strong>g> unit aspoints, lines or polyg<strong>on</strong>s depending <strong>on</strong><str<strong>on</strong>g>the</str<strong>on</strong>g> extent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong>. The GPSunits automatically collect data <strong>on</strong>date, time, locati<strong>on</strong>, area and polyg<strong>on</strong>perimeter and line length. Field staffmanually entered site name, speciesidentificati<strong>on</strong>, cl<strong>on</strong>e identificati<strong>on</strong>,cl<strong>on</strong>e diameter, line width, samplename, percent cover class, o<str<strong>on</strong>g>the</str<strong>on</strong>g>rapplicable data and comments.GPS data were downloaded usingPathfinder s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware, exported toArcView, differentially corrected,and reviewed for errors. The data were<str<strong>on</strong>g>the</str<strong>on</strong>g>n exported to Excel and <strong>on</strong>ceagain reviewed for data entry errors.Final data were summarized andmapped in ArcView and statisticallyanalyzed using SYSTAT.Three <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> four n<strong>on</strong>-native taxa<str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina found in <str<strong>on</strong>g>the</str<strong>on</strong>g> San FranciscoEstuary—S. Alterniflora hybrids, S.densiflora, and S. patens—weremapped in 2003. The <strong>on</strong>e locati<strong>on</strong>where S. anglica was found in 2001was not included in <str<strong>on</strong>g>the</str<strong>on</strong>g> 2003m<strong>on</strong>itoring program. Spartina specieswere identified in <str<strong>on</strong>g>the</str<strong>on</strong>g> field using plantmorphology (Zaremba 2001). Leafsamples were collected for geneticanalysis to c<strong>on</strong>firm field identificati<strong>on</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora and hybrids.Aerial Photo Interpretati<strong>on</strong>In additi<strong>on</strong> to field-collected data,aerial photo interpretati<strong>on</strong> was used atfive <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 28 sites for large Spartinahybrid infestati<strong>on</strong>s, not single cl<strong>on</strong>es.Color infrared photos were taken at1:6000 feet scale at low tide during <str<strong>on</strong>g>the</str<strong>on</strong>g> peak <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> growingseas<strong>on</strong> between August-October when <str<strong>on</strong>g>the</str<strong>on</strong>g> plants were stillgreen to allow for accurate yearly comparis<strong>on</strong>. Photos werescanned at 1200 dpi and orthorectified <str<strong>on</strong>g>the</str<strong>on</strong>g>n imported intoArcView 3.3 for review and analysis. Polyg<strong>on</strong>s weredigitized around <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina meadows and polyg<strong>on</strong>s weregiven a cover class (


##Chapter 2: Spartina Distributi<strong>on</strong> and Spread<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaGenetic AnalysesGenetic analyses to c<strong>on</strong>firm speciesidentificati<strong>on</strong> were d<strong>on</strong>e at each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 28sites and at additi<strong>on</strong>al sites requested byc<strong>on</strong>cerned landowners, managers orstakeholders (Fig. 2).Additi<strong>on</strong>al genetic surveys wered<strong>on</strong>e at a few sites al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> coast north<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Golden Gate in Point ReyesNati<strong>on</strong>al Seashore and Bolinas Lago<strong>on</strong>.In order to c<strong>on</strong>firm species identificati<strong>on</strong>,leaves from ambiguous plants and atleast 3-5 plants per m<strong>on</strong>itoring site werecollected according to standard methodsused previously (Ayres et al. 2004) andc<strong>on</strong>forming to recommendati<strong>on</strong>s inCollins et al. (2001). Where needed,transects were run <str<strong>on</strong>g>the</str<strong>on</strong>g> length <str<strong>on</strong>g>of</str<strong>on</strong>g> marshessampling every 10 meters to determine(1) if <str<strong>on</strong>g>the</str<strong>on</strong>g>re were any “hidden” S.alterniflora hybrids, or (2) <str<strong>on</strong>g>the</str<strong>on</strong>g> percentinvasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a particular marsh. Fromeach individual cl<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> unknownspecies identificati<strong>on</strong> and from each 10-meter sample al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> transects, asingle plant leaf was collected for geneticanalysis using RAPD (RandomAmplified Polymorphic DNA) nuclearmarkers (Daehler and Str<strong>on</strong>g 1997;Ayres et al. 1999).#Coyote Creek,Mill Valley -100 % nativeS. foliosaEfficacy M<strong>on</strong>itoringISP staff m<strong>on</strong>itored <str<strong>on</strong>g>the</str<strong>on</strong>g> efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> 13different treatments at eight sites. Sometreatments were d<strong>on</strong>e in 2002 withassessment <str<strong>on</strong>g>of</str<strong>on</strong>g> efficacy in 2003.Treatments d<strong>on</strong>e in 2003 will be assessedin 2004. Treatment m<strong>on</strong>itoring data werecollected c<strong>on</strong>sistent with methodsdescribed in Collins et al. (2001). Prior totreatment <str<strong>on</strong>g>the</str<strong>on</strong>g> extent <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-native Spartina was mapped todetermine <str<strong>on</strong>g>the</str<strong>on</strong>g> total area <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-native Spartina. For largetreatment sites mapped as polyg<strong>on</strong>s with a percent cover <str<strong>on</strong>g>of</str<strong>on</strong>g>n<strong>on</strong>-native Spartina <str<strong>on</strong>g>the</str<strong>on</strong>g> sampling scheme described byCollins et al. (2001) was modified from a graphicalinformati<strong>on</strong> system (GIS) based sampling approach to afield-based approach. A stratified random sub-samplingmethod was applied. Transects were run across <str<strong>on</strong>g>the</str<strong>on</strong>g> length <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> treatment area parallel to <str<strong>on</strong>g>the</str<strong>on</strong>g> shoreline at selectedelevati<strong>on</strong>s and <str<strong>on</strong>g>the</str<strong>on</strong>g>n random points were sampled al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g>transects. For smaller treatment sites where individual cl<strong>on</strong>eswere mapped as points all <str<strong>on</strong>g>the</str<strong>on</strong>g> mapped plants up to aSan Francisco BayN<strong>on</strong>-native Spartina Genetic Survey Map 2003Beach Drive,San Rafael -2S.alternifloracl<strong>on</strong>es found (12%)Loch Lom<strong>on</strong>dMarina -3S.alternifloracl<strong>on</strong>esPetaluma Marsh -Wiloki Creek,D<strong>on</strong>ahue Sloughand San Ant<strong>on</strong>io Creek -100% native S. foliosaCrissy Field -3S.alternifloraseedlings foundand pulled fall 2003#########Yosemite Slough -89% S. alt-hyb point samples84% S. alt-hyb transect samplesLegendSpartina genetic survey points 2003# S. alternifloralab tested# S.alterniflora-hybrid lab tested# S. foliosa lab tested# no resultsSpartina genetic survey lines 2003S. alt-hybS. foliosano results6 0 6 12 MilesFig. 2 - Baywide Map <str<strong>on</strong>g>of</str<strong>on</strong>g> Genetics Sampling SitesW#NS##Meeker Slough - 100% native S. foliosaEEast and West Stege Marsh -100% native S. foliosaOutbound Stege Marsh -2S.alterniflora-hybrid cl<strong>on</strong>esfound and treated fall 2003maximum <str<strong>on</strong>g>of</str<strong>on</strong>g> 30 plants per site were m<strong>on</strong>itored. If more than30 plants were mapped, 30 were randomly selected tom<strong>on</strong>itor pre-treatment and post-treatment to determine <str<strong>on</strong>g>the</str<strong>on</strong>g>treatment efficacy. Measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> overall plant vigorincluding plant height, density per 0.25 meter, plant vigor(high/medium/low), tide wash (yes/no), plant species percentcover (native and n<strong>on</strong>-native plant species) per 0.25 meter,percent flower Spartina per 0.25 meter, sediment type,high/medium/low marsh, and burn (yes/no) were collectedfrom each sampling locati<strong>on</strong>. The entire treatment area wasmapped again <strong>on</strong>e year post-treatment and <str<strong>on</strong>g>the</str<strong>on</strong>g> sametreatment efficacy data were collected.##Plummer Creek Mitigati<strong>on</strong> Site-100% native S. foliosa## ## ## # # # ##Cooley Landing/RavenswoodPreserve - 19% S. alterniflora-hybrids,seedlings 100% native S. foliosa-76-


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 2: Spartina Distributi<strong>on</strong> and SpreadTable 2. Change in area covered by n<strong>on</strong>-native Spartina species between2001 and 2003 averaged over all sites surveyed, comparing aerial photointerpretati<strong>on</strong> measurements (APIM) with field measurements and fieldestimates.SpeciesS. AlternifloraHybridsAverage Site Change in Area from 2001-2003Field Measurement +Field Estimates(N=28)**APIM(N=5)*317.00% 213.05%S. densiflora 52.83% n/aS. patens -84.2% n/aAll Species 244.41% 213.1%* Five <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 28 sites had <strong>on</strong>ly aerial photo interpretati<strong>on</strong> measurementsfor 2001. For <str<strong>on</strong>g>the</str<strong>on</strong>g>se five sites, a 2001 field estimate was calculated using aregressi<strong>on</strong> curve based <strong>on</strong> a correlati<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> existing 2001 and2003 field measurements. This 2001 field estimate was used in <str<strong>on</strong>g>the</str<strong>on</strong>g> place<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2001 field survey data to calculate <str<strong>on</strong>g>the</str<strong>on</strong>g> change in area from 2001-2003.** For five sites <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 28 sites, 2001 aerial photo interpretati<strong>on</strong> measurementwas used in <str<strong>on</strong>g>the</str<strong>on</strong>g> place <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2001 field survey data to calculate<str<strong>on</strong>g>the</str<strong>on</strong>g> change in area from 2001-2003.Data AnalysesData were subjected to a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> quality assurancemethods (Zaremba et al. 2004). Cross-tabulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>categorical names was d<strong>on</strong>e to check for typographicalerrors and duplicati<strong>on</strong>s. Summary statistics were <str<strong>on</strong>g>the</str<strong>on</strong>g>ncalculated for quantitative variables to check forunreas<strong>on</strong>able ranges and outliers. Descriptive statistics werecalculated and raw data transformed as needed to meetrequirements <str<strong>on</strong>g>of</str<strong>on</strong>g> parametric statistical tests.We tested <str<strong>on</strong>g>the</str<strong>on</strong>g> hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis that <str<strong>on</strong>g>the</str<strong>on</strong>g>re was an increase inarea covered by n<strong>on</strong>-native Spartina using a t-test betweenarea covered in 2001 and 2003. The hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis that aparticular species, site type or bay regi<strong>on</strong> (latitude) had aninfluence <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> change in area covered between 2001 and2003 was tested with an Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Variance (ANOVA).We tested <str<strong>on</strong>g>the</str<strong>on</strong>g> hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis that site latitude had a significanteffect <strong>on</strong> change in area covered between 2001 and 2003 byusing an Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Covariance (ANCOVA). The accuracy<str<strong>on</strong>g>of</str<strong>on</strong>g> field identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora, S. foliosa and <str<strong>on</strong>g>the</str<strong>on</strong>g>irhybrids was tested statistically with a Chi-square test <str<strong>on</strong>g>of</str<strong>on</strong>g>frequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> correct field identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora,S. alterniflora hybrids, and S. foliosa. This test used <str<strong>on</strong>g>the</str<strong>on</strong>g>genetic analysis as <str<strong>on</strong>g>the</str<strong>on</strong>g> true (or <str<strong>on</strong>g>the</str<strong>on</strong>g>oretically expected)frequencies and <str<strong>on</strong>g>the</str<strong>on</strong>g> field observati<strong>on</strong>s as <str<strong>on</strong>g>the</str<strong>on</strong>g> observedfrequencies.Based <strong>on</strong> data averaged over all species and all sitessampled, <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-native species and hybrids <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartinaincreased 244% in area covered (paired sample t-test, p =0.003) between 2001 and 2003 (Table 2). Field surveys(field measurement plus estimates) showed an increase <str<strong>on</strong>g>of</str<strong>on</strong>g>n<strong>on</strong>-native Spartina <str<strong>on</strong>g>of</str<strong>on</strong>g> 15% in <str<strong>on</strong>g>the</str<strong>on</strong>g> North Bay, 292% in <str<strong>on</strong>g>the</str<strong>on</strong>g>Central Bay and 177% in <str<strong>on</strong>g>the</str<strong>on</strong>g> South Bay from 2001 to 2003.These measurements showed that n<strong>on</strong>-native Spartina (allspecies) increased from 2001-2003 by 172% at Type I sites(tidal, micro-tidal, and formerly diked bayland, and backbarrier marsh), by 504% at Type II sites (fringing tidalmarsh, mud flats and estuarine beaches), by 108% at TypeIII sites (major tidal sloughs, creeks or flood c<strong>on</strong>trolchannels), and by 169% at Type IV sites (urbanized rock,riprap, dock, ramp, marina).S. patens occurred at <strong>on</strong>ly <strong>on</strong>e site in <str<strong>on</strong>g>the</str<strong>on</strong>g> North Bay, aSite Type I. It decreased in area covered by 84%.S. densiflora decreased in nearly as many sites (3) as itincreased (4). Statistical tests were precluded for S.densiflora because <str<strong>on</strong>g>of</str<strong>on</strong>g> low sample sizes but <str<strong>on</strong>g>the</str<strong>on</strong>g> averagepercent change in area covered was 53% with a range from-94% to +219%. Spartina densiflora was mapped at <strong>on</strong>ly<strong>on</strong>e sample locati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> North Bay (Pt. Pinole), where itincreased by 114%. Spartina densiflora increased by 43% in<str<strong>on</strong>g>the</str<strong>on</strong>g> Central Bay. Spartina densiflora increased in Type I andType III sites but apparently decreased slightly at Type IIsites. No S. densiflora were noted at Type IV sites.Hybrids make up most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-native coverage and<str<strong>on</strong>g>the</str<strong>on</strong>g>ir proporti<strong>on</strong> am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-natives increased in 2003compared to 2001 accounting for 83% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-nativecoverage in 2001 and increasing to 90% <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-nativecordgrasses in 2003. Hybrids increased in cover three-foldbetween 2001 and 2003 (paired sample t-test, p < 0.001)with a range from -90% to +2175% depending <strong>on</strong> site.Hybrids increased in area covered in 19 <str<strong>on</strong>g>of</str<strong>on</strong>g> 23 marshessampled, a statistically significant proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sites(n<strong>on</strong>-parametric sign test, p = 0.003).Hybrids in <str<strong>on</strong>g>the</str<strong>on</strong>g> South Bay were resp<strong>on</strong>sible for <str<strong>on</strong>g>the</str<strong>on</strong>g> 177%increase in n<strong>on</strong>-native invasive Spartina between 2001-2003. Hybrids increased by 403% in <str<strong>on</strong>g>the</str<strong>on</strong>g> Central Bay.Hybrids were not found in any sample sites <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> NorthBay. Hybrids had higher mean and total area covered in <str<strong>on</strong>g>the</str<strong>on</strong>g>Central Bay than in <str<strong>on</strong>g>the</str<strong>on</strong>g> South Bay in both 2001 and 2003.The slight trend <str<strong>on</strong>g>of</str<strong>on</strong>g> percent change in hybrid area coveredwith latitude (south-to-north trend) was not statisticallysignificant (p = 0.18).While hybrid acreage increased greatly from 2001 to2003 across all site types, site types I and II had higherpercent increases, <strong>on</strong> average, than site types III and IV(n<strong>on</strong>-parametric sign test; p = 0.254). Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> areacovered by hybrids (log-transformed square meters) in 2003found no statistical difference am<strong>on</strong>g site types (ANOVA,p = 0.377).Aerial Photos versus Field MeasurementsThe estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> area covered by n<strong>on</strong>-nativeSpartina hybrids differed between <str<strong>on</strong>g>the</str<strong>on</strong>g> aerial photo-77-


Chapter 2: Spartina Distributi<strong>on</strong> and Spread<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaTable 3. Change in Area Covered by N<strong>on</strong>-native Spartina between 2001 and 2003 for Five Sites Comparing Aerial Photo Interpretati<strong>on</strong> Measurements(APIM), Field Estimate and Field Measurement Measurements.Site NameBunker MarshSiteTypeISpeciesArea in 2001(square meters)APIMFieldEstimate*Area in 2003(square meters)APIMFieldMeasurementAPIM 2001vsAPIM 2003Change in Area2001 to 2003Field Estimate2001 vs FieldMeasurement2003Difference BetweenMethods <str<strong>on</strong>g>of</str<strong>on</strong>g>Estimating AreasField Measurement2003 vsAPIM 2003Hybrids 5,100.86 1,580.11 8,501.62 5,665.59 67% 259% -33%Citati<strong>on</strong> MarshCogswell Marsh (No. Quad.)Alameda Island - North ElsieRoemerIdeal MarshIIIIIIHybrids 244.83 2,059.735 2,448.35 7,803.41 900% 279% 219%Hybrids 700.12 1,503.16 700.12 5,334.08 0% 255% 662%Hybrids 2,882.37 1,171.89 3,610.10 3,948.94 25% 237% 9%Hybrids 2,229.01 1,070.72 3,863.62 3,541.00 73% 231% -8%Average Avg Avg 2,231.43 1,477.12 3,824.74 5,258.60 213% 252% 170%interpretati<strong>on</strong> and field measurement methods. The aerialphoto interpretati<strong>on</strong> measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> area covered byhybrids were <strong>on</strong> average 170% less than <str<strong>on</strong>g>the</str<strong>on</strong>g> fieldmeasurements (Table 3). However, both methods recorded atleast a doubling <str<strong>on</strong>g>of</str<strong>on</strong>g> area invaded in two years. The aerialphoto interpretati<strong>on</strong> measurements indicated that <str<strong>on</strong>g>the</str<strong>on</strong>g> hybridsincreased 322% at Site Type I and 49% at Site Type II.This discrepancy affects <str<strong>on</strong>g>the</str<strong>on</strong>g> estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> total acreageinvolved but does not substantially change <str<strong>on</strong>g>the</str<strong>on</strong>g> estimates <str<strong>on</strong>g>of</str<strong>on</strong>g>rate <str<strong>on</strong>g>of</str<strong>on</strong>g> increase <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> between 2001 and 2003,which is approximately doubled or more, whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r averagedby regi<strong>on</strong> or by site type. The relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g> aerial photomeasurements <str<strong>on</strong>g>of</str<strong>on</strong>g> area to field measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> area wastested statistically using a t-test and linear regressi<strong>on</strong> (<strong>on</strong>log-transformed data) <str<strong>on</strong>g>of</str<strong>on</strong>g> field estimates <strong>on</strong> photo estimatesfor five sites in 2003. No difference in mean area coveredwas found between methods (t-test, p = 0.616). However, noregressi<strong>on</strong> relati<strong>on</strong>ship was found (p = 0.797). This waslikely due to high variability am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> small sample size <str<strong>on</strong>g>of</str<strong>on</strong>g>aerial photo measurements. Thus, aerial photo interpretati<strong>on</strong>measurements should be used with cauti<strong>on</strong> to estimate cover.Accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> Field Identificati<strong>on</strong>Over <str<strong>on</strong>g>the</str<strong>on</strong>g> course <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2003 m<strong>on</strong>itoring seas<strong>on</strong>, 12landowners, managers or c<strong>on</strong>cerned stakeholders requestedsurveys for <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-native Spartina (Fig. 2). Inadditi<strong>on</strong>, genetic tests were performed to c<strong>on</strong>firm speciesidentificati<strong>on</strong> by field staff at each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> inventorym<strong>on</strong>itoring sites (Table 1). A total <str<strong>on</strong>g>of</str<strong>on</strong>g> 68 plant samples wereidentified to species in <str<strong>on</strong>g>the</str<strong>on</strong>g> field using plant morphology andanalyzed using genetic tools (Daehler and Str<strong>on</strong>g 1997;Ayres et al. 1999). Fifty-five <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plants were fieldidentified as S. alterniflora hybrids, and 13 as S. foliosa.Forty-nine <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plants were c<strong>on</strong>firmed genetically to be S.alterniflora hybrids, and 18 were c<strong>on</strong>firmed to be S. foliosa.There was not a statistically significant difference betweenfield classificati<strong>on</strong> and subsequent genetic (or true)identificati<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> 0.05 level (Chi Square). More native S.foliosa were called hybrid than vice versa. 89% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>hybrids and 100% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> S. foliosa were correctly identified.EfficacySites treated in 2002 were m<strong>on</strong>itored in 2003 as well aslimited m<strong>on</strong>itoring for <str<strong>on</strong>g>the</str<strong>on</strong>g> few sites that were treated in 2003(Table 4.) Manual Methods such as digging <str<strong>on</strong>g>of</str<strong>on</strong>g> S. densifloraat Piper Park or trampling and covering in Point ReyesNati<strong>on</strong>al Seashore (PRNS) were effective <strong>on</strong> a small scale.Return visits were required to make sure no new shoots hademerged.DISCUSSIONSpreadBased <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ISP’s 2003 survey results, <str<strong>on</strong>g>the</str<strong>on</strong>g> averageincrease in area (calculated by site) <str<strong>on</strong>g>of</str<strong>on</strong>g> all n<strong>on</strong>-nativeSpartina species was 244% over a period <str<strong>on</strong>g>of</str<strong>on</strong>g> two years. ForS. alterniflora and hybrids, <str<strong>on</strong>g>the</str<strong>on</strong>g> increase was 317%. Applyingthis rate <str<strong>on</strong>g>of</str<strong>on</strong>g> increase, which represents an average across allsite types with differing and variable envir<strong>on</strong>mentalc<strong>on</strong>diti<strong>on</strong>s and stages <str<strong>on</strong>g>of</str<strong>on</strong>g> invasi<strong>on</strong>, to <str<strong>on</strong>g>the</str<strong>on</strong>g> 190 ha (470 ac)recorded in <str<strong>on</strong>g>the</str<strong>on</strong>g> 2001 survey suggests that hybrids could havespread to as high as 793 ha (1,960 ac). In c<strong>on</strong>trast, S.alterniflora spread <strong>on</strong>ly 25% in 11 years in Willapa Bay,*No field measurement collected in 2001. 2001 field estimate was calculated using a regressi<strong>on</strong> curve based <strong>on</strong> a correlati<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> existing 2001 and 2003 field measurements.-78-


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 2: Spartina Distributi<strong>on</strong> and SpreadTable 4. Change in Area <str<strong>on</strong>g>of</str<strong>on</strong>g> N<strong>on</strong>-native Spartina at Pre- and Post-treatment Sites M<strong>on</strong>itored in 2003.Site namePiper Park(entire treatment areaincluding east stripmarsh)Piper Park(primary treatment areaw/out east strip marsh)PRNS-Drakes/LimantourEsteroTreatmentYear(s)2002 Post 0.03/ 123.02002 PostArea2001 Ac/m 2 2002Ac/m 2 2003Ac/m 20.03/122.172002 Post n/a0.02/97.120.02/85.920.06/233.53PRNS-Drakes Estero 2003 Pre n/a n/aBolinas Lago<strong>on</strong> North 2002 Post n/a0.002/7.07% Change2002-2003% Change2001-20030.01/ 50.47 -48.0% -59.0%0.01/ 23.00 -73.2% -81.2%0.00005/0.200.005/19.630.00001/0.03-99.9% n/aTreatment & CommentDig Winter 2003;2002-3 treatment, volunteers did not finish<str<strong>on</strong>g>the</str<strong>on</strong>g> entire treatment area. Nor did <str<strong>on</strong>g>the</str<strong>on</strong>g>y digevery plant in <str<strong>on</strong>g>the</str<strong>on</strong>g> primary treatment areathus not 100% kill.Dig Winter 2003;2002-3 treatment, primary treatment area,however volunteers did not dig every plantthus not 100% kill.Trample & Cover Summer 2002; Onecl<strong>on</strong>e at Creamery Bay had a patch thatgrew out from under <str<strong>on</strong>g>the</str<strong>on</strong>g> tarp.n/a n/a Trample & Cover Fall 2003.-99.6% n/aBolinas Lago<strong>on</strong> South 2003 Pre n/a n/a 38.47/ 0.01 n/a n/a*Emeryville CrescentEmeryville Crescent –Mowed Porti<strong>on</strong>Emeryville Crescent –Mowed & CoveredPorti<strong>on</strong>Richm<strong>on</strong>d Inner Harbor– Steege MarshAlameda Island – NorthElsie Roemer200220032002200320022003Pre &PostPre &PostPre &Post0.05/215.680.05/205.2775n/an/a0.00/ 3.53 n/a2003 Pre 0.01/ 32.19 n/a2003Pre &PostPier 94 2003 Pre0.53/2143.970.04/171.72n/a* Pre-treatment data <strong>on</strong>ly. No percent change results.n/an/a0.63/2547.520.38/1539.580.08/306.150.02/100.460.53/2125.050.08/318.94n/a 1081.2%n/a 650.0% Mow 2003.n/a 8566.7%n/an/a*n/a -0.88n/an/a*Dig Winter 2002; Return visits foundoccasi<strong>on</strong>al new sprouts.Trample & CoverSummer 2003.Mow & CoverSummer 2003; Small scale 2002 mowingtreatment had no effect thus mostly seeingspread.Mow & CoverSummer 2003.Trample & CoverFall 2003.Mow/Mow & Spray2002/Fall 2003; GIS based area calc 2003.Area calculati<strong>on</strong>s may be "imperfect".Dig, Trample & CoverSummer 2003.Washingt<strong>on</strong> from 800 ha (1977 ac) to 1,000 ha (2471 ac)between 1988 and 1999 (Daehler and Str<strong>on</strong>g 1996). Theformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrids between S. alterniflora and S. foliosamay have greatly increased <str<strong>on</strong>g>the</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid Spartinarelative to S. alterniflora; e.g., hybrids expanded 150% inCogswell Marsh, Hayward, California between 1999 and2000, including some individual hybrid cl<strong>on</strong>es that increased300% (Zaremba, 2001). Ayres and Str<strong>on</strong>g (2000) reported aremarkable 740% increase <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora-hybrids from5% to 42% at San Lorenzo Marsh between 1997 and 2000. Ithas been proposed that <str<strong>on</strong>g>the</str<strong>on</strong>g> formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrids expains <str<strong>on</strong>g>the</str<strong>on</strong>g>rapid rate <str<strong>on</strong>g>of</str<strong>on</strong>g> expansi<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco Estuary relativeto o<str<strong>on</strong>g>the</str<strong>on</strong>g>r estuaries where hybridizati<strong>on</strong> does not occur. Ayreset al. (2004) speculated that <str<strong>on</strong>g>the</str<strong>on</strong>g> recent rapid spread <str<strong>on</strong>g>of</str<strong>on</strong>g>hybrids in <str<strong>on</strong>g>the</str<strong>on</strong>g> Estuary may be a result <str<strong>on</strong>g>of</str<strong>on</strong>g> selecti<strong>on</strong> forhybrids with exp<strong>on</strong>ential cl<strong>on</strong>al growth and seed producti<strong>on</strong>.Theoretical models found greater-than-exp<strong>on</strong>ential spreadrates can occur when cl<strong>on</strong>al growth and seed producti<strong>on</strong> areunder selecti<strong>on</strong> (Hall et al. this vol.; Hall et al. 2006).Cover by n<strong>on</strong>-native Spartina increased at all site typesfrom 2001 to 2003, however, site types differed in <str<strong>on</strong>g>the</str<strong>on</strong>g> rate atwhich cover increased. The large variati<strong>on</strong>s in spread ratesam<strong>on</strong>g site types likely reflects <str<strong>on</strong>g>the</str<strong>on</strong>g> proximity <str<strong>on</strong>g>of</str<strong>on</strong>g> individualssites to seed source in additi<strong>on</strong> to habitat suitability.Fringing tidal marshes, mudflats, and estuarine beaches(Site Type II) experienced <str<strong>on</strong>g>the</str<strong>on</strong>g> greatest increase in cover(504% increase). Tidal and microtidal marshes, formerlydiked baylands, and back barrier marshes (Site Type I ) andurbanized shorelines (Site Type IV) increased by about170%. Cover in tidal sloughs, creeks, and flood c<strong>on</strong>trolchannels (Site Type III) increased by 108%. The differencesam<strong>on</strong>g site types may be related to successi<strong>on</strong>al processesPre-PostTreatment-79-


Chapter 2: Spartina Distributi<strong>on</strong> and Spread<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinalinked to sedimentati<strong>on</strong> c<strong>on</strong>sistent with S. alterniflora and S.townsendii invasi<strong>on</strong>s in New Zealand and S. anglica inEngland (Daehler and Str<strong>on</strong>g 1996), and predicti<strong>on</strong>s byCallaway and Josselyn (1992).One interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> spread rate differences am<strong>on</strong>gsites is that invasi<strong>on</strong> rates <str<strong>on</strong>g>of</str<strong>on</strong>g> susceptible habitat are initiallyhigh and <str<strong>on</strong>g>the</str<strong>on</strong>g>n slow until more susceptible habitat is createdby sediment accreti<strong>on</strong>. Fringing marshes, mudflats andbeach habitat (Site Type II) experienced <str<strong>on</strong>g>the</str<strong>on</strong>g> highest rate <str<strong>on</strong>g>of</str<strong>on</strong>g>spread from 2001 to 2003, suggesting a new invasi<strong>on</strong> fr<strong>on</strong>twas being exploited by hybrids. Presumably, after <str<strong>on</strong>g>the</str<strong>on</strong>g> initialrapid col<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> suitable “empty-niche” habitat, <str<strong>on</strong>g>the</str<strong>on</strong>g> rate<str<strong>on</strong>g>of</str<strong>on</strong>g> spread would slow to match <str<strong>on</strong>g>the</str<strong>on</strong>g> rate at which <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartinaaugments sedimentati<strong>on</strong> and creates additi<strong>on</strong>al habitat toinvade.Established S. foliosa marshes and open mudflats <str<strong>on</strong>g>of</str<strong>on</strong>g> anewly opened restorati<strong>on</strong> sites (Site Type I) are initiallyhighly susceptible to invasi<strong>on</strong> by pollen and by seed,respectively. The formerly diked bayland Citati<strong>on</strong> Marshexperienced a 900% increase in hybrid cover in three years.Then, <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> cover increase slowed as suitable habitatwas filled in.Site Type IIIs may be initially slower to col<strong>on</strong>izebecause <str<strong>on</strong>g>the</str<strong>on</strong>g>y include deep channels and creeks, wheresediment must accrete before <str<strong>on</strong>g>the</str<strong>on</strong>g>y are at suitable elevati<strong>on</strong>for more extensive col<strong>on</strong>izati<strong>on</strong>. Once <str<strong>on</strong>g>the</str<strong>on</strong>g> channel beds havesufficiently accreted, col<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> remaining channelbanks and bottoms is rapid, with cl<strong>on</strong>al col<strong>on</strong>ies quicklycoalescing into meadows. Rate <str<strong>on</strong>g>of</str<strong>on</strong>g> spread in urbanizedshoreline (site type IV) may likewise be relatively low dueto poor or little sediment availability.Am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> three n<strong>on</strong>-native Spartina taxa, hybridsspread <str<strong>on</strong>g>the</str<strong>on</strong>g> most rapidly (317% in three years). Hybrids havehigh rates <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetative spread, produce large quantities <str<strong>on</strong>g>of</str<strong>on</strong>g>pollen, have successful seed set, and readily backcross to <str<strong>on</strong>g>the</str<strong>on</strong>g>native S. foliosa. Spartina foliosa exposed to pollen <str<strong>on</strong>g>of</str<strong>on</strong>g>hybrids produces hybrid seeds, fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r accelerating <str<strong>on</strong>g>the</str<strong>on</strong>g>hybrid invasi<strong>on</strong>. The rate <str<strong>on</strong>g>of</str<strong>on</strong>g> col<strong>on</strong>izati<strong>on</strong> is particularly rapidin <str<strong>on</strong>g>the</str<strong>on</strong>g> early stages <str<strong>on</strong>g>of</str<strong>on</strong>g> invasi<strong>on</strong>. For example, EmeryvilleWest showed an increase in cover <str<strong>on</strong>g>of</str<strong>on</strong>g> 2,175%, between 2001and 2003. All habitats in <str<strong>on</strong>g>the</str<strong>on</strong>g> Bay appear to be susceptible toinvasi<strong>on</strong> by this S. alterniflora hybrid.S. densiflora, which has a cespitose growth form andinvests more reproductive effort in seed producti<strong>on</strong> thanvegetative spread, didn’t spread to <str<strong>on</strong>g>the</str<strong>on</strong>g> same degree as didhybrids: 52% averaged over all site types. Site Type Iexperienced <str<strong>on</strong>g>the</str<strong>on</strong>g> greatest increase in cover <str<strong>on</strong>g>of</str<strong>on</strong>g> S. densiflora(68%).S. patens apparently decreased in cover by 84%, but it isfound <strong>on</strong>ly at Southampt<strong>on</strong> Marsh where <str<strong>on</strong>g>the</str<strong>on</strong>g>re is less thanan acre <str<strong>on</strong>g>of</str<strong>on</strong>g> total cover. The apparent decrease is likely due tomapping error not a true decrease in cover.Of <str<strong>on</strong>g>the</str<strong>on</strong>g> three Bay regi<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> Central Bay, nearest to <str<strong>on</strong>g>the</str<strong>on</strong>g>original introducti<strong>on</strong> sites in <str<strong>on</strong>g>the</str<strong>on</strong>g> Frem<strong>on</strong>t and San Brunomarshes, had <str<strong>on</strong>g>the</str<strong>on</strong>g> largest increase in cover, 292%. Hybrids,<str<strong>on</strong>g>the</str<strong>on</strong>g> fastest spreading species (392%), dominate this regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> Bay. Clearly, <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrids are <str<strong>on</strong>g>the</str<strong>on</strong>g> dominant invasiveSpartina taxa and are well established, and both <str<strong>on</strong>g>the</str<strong>on</strong>g>iracreage and rate <str<strong>on</strong>g>of</str<strong>on</strong>g> spread is greatest in <str<strong>on</strong>g>the</str<strong>on</strong>g> heart <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Bay.Some new n<strong>on</strong>-native Spartina populati<strong>on</strong>s were foundin <str<strong>on</strong>g>the</str<strong>on</strong>g> sites surveyed at <str<strong>on</strong>g>the</str<strong>on</strong>g> request <str<strong>on</strong>g>of</str<strong>on</strong>g> land owners,managers, and stakeholders. In <str<strong>on</strong>g>the</str<strong>on</strong>g> South Bay, a survey <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> Plummer Creek Mitigati<strong>on</strong> Site found <strong>on</strong>ly nativeSpartina. However, 19% <str<strong>on</strong>g>of</str<strong>on</strong>g> seedlings from a Spartina spp.populati<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> Cooley Landing/Ravenswood PreserveRestorati<strong>on</strong> Project were genetically tested and determinedto be hybrids. Both <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se sites are near extensive hybridpopulati<strong>on</strong>s, and c<strong>on</strong>sidered to be at risk. Genetic surveyswere performed at a few small sites in <str<strong>on</strong>g>the</str<strong>on</strong>g> Central Bay(Crissy Field, Steege Marsh and Beach Drive) as part <str<strong>on</strong>g>of</str<strong>on</strong>g> amanagement regime to identify and remove newlyestablished n<strong>on</strong>-natives.GISThree difficulties emerged during <str<strong>on</strong>g>the</str<strong>on</strong>g> 2003 m<strong>on</strong>itoring:imprecisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> measuring small cl<strong>on</strong>al patches or small areasdue to <str<strong>on</strong>g>the</str<strong>on</strong>g> limits <str<strong>on</strong>g>of</str<strong>on</strong>g> precisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> GPS units, differencesbetween aerial photo interpretati<strong>on</strong> estimates and groundtruthdata, and low power to detect small changes in areacoverage because <str<strong>on</strong>g>of</str<strong>on</strong>g> broad cover class intervals (Zaremba etal. 2004). Field mapping with three-meter- resoluti<strong>on</strong> GPSunits is imprecise for small areas such as new invasi<strong>on</strong> sites,which necessarily c<strong>on</strong>tain small populati<strong>on</strong>s, and <str<strong>on</strong>g>the</str<strong>on</strong>g>physically smaller Spartina species, S. densiflora and S.patens. These possible sources <str<strong>on</strong>g>of</str<strong>on</strong>g> error could account for <str<strong>on</strong>g>the</str<strong>on</strong>g>apparent decrease in cover <str<strong>on</strong>g>of</str<strong>on</strong>g> S. patens at Southhampt<strong>on</strong>Marsh or S. densiflora at Pickleweed Park or Blackie’sPasture and Creek.Remote sensing using aerial infra-red photography haspotential for synoptic mapping <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> invasiveSpartina compared with labor-intensive field mapping.However, am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> five sites where we compared <str<strong>on</strong>g>the</str<strong>on</strong>g>semethods in 2003 <str<strong>on</strong>g>the</str<strong>on</strong>g>re were two sites where aerial estimateswere 8-33% less than field estimates and three sites whereaerial estimates were 9-661% greater than field estimates.Averaged over all five sites, <str<strong>on</strong>g>the</str<strong>on</strong>g> field measurements were170% greater than <str<strong>on</strong>g>the</str<strong>on</strong>g> aerial photo measurements. Aerialphoto interpretati<strong>on</strong> methods may prove useful to m<strong>on</strong>itor<str<strong>on</strong>g>the</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-native Spartina in grossly invaded areas,but it is not currently precise enough to map without fieldtruthing. The examples <str<strong>on</strong>g>of</str<strong>on</strong>g> both higher and lower aerial photointerpretati<strong>on</strong> cover estimates indicate that <str<strong>on</strong>g>the</str<strong>on</strong>g> currentmethod <str<strong>on</strong>g>of</str<strong>on</strong>g> digitizing polyg<strong>on</strong>s around <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh or Spartinapatch with a cover class may be too coarse to estimate coverprecisely.-80-


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 2: Spartina Distributi<strong>on</strong> and SpreadBroad cover-class boundaries also c<strong>on</strong>tribute toimprecisi<strong>on</strong>. For example, if a polyg<strong>on</strong> area is within a coverclass, e.g. 10-30%, <str<strong>on</strong>g>the</str<strong>on</strong>g>n it is assigned <str<strong>on</strong>g>the</str<strong>on</strong>g> midpoint <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>class, 15% in this example. In both 2001 and 2003 CogswellMarsh fell within cover class 10-30%. Ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g>re was nochange in cover between 2001 and 2003 or <str<strong>on</strong>g>the</str<strong>on</strong>g> differencewas not large enough for 2003 to be assigned to <str<strong>on</strong>g>the</str<strong>on</strong>g> nextlarger class. Thus, a trend <str<strong>on</strong>g>of</str<strong>on</strong>g> expansi<strong>on</strong> or c<strong>on</strong>tracti<strong>on</strong> willbe detected <strong>on</strong>ly when it crosses a cover class boundary.However, <str<strong>on</strong>g>the</str<strong>on</strong>g> cover classes are useful for determining anapproximate infestati<strong>on</strong> level and can be used to prioritizeremoval efforts.Accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> Field Identificati<strong>on</strong>Genetic tests were also performed to c<strong>on</strong>firm speciesidentificati<strong>on</strong> by field staff at each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> InventoryM<strong>on</strong>itoring Sites. The genetic tests c<strong>on</strong>firmed that field staffwere accurately identifying both S. alterniflora hybrids(89%) and S. foliosa (100%). The samples labeled as“unknown” or “unidentifiable” by field staff were found justas likely to be hybrids as S. foliosa (55%-45%).Trained field biologists can accurately identify <str<strong>on</strong>g>the</str<strong>on</strong>g>majority <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-native Spartina plants, but genetic testing <str<strong>on</strong>g>of</str<strong>on</strong>g>ambiguous hybrid specimens is necessary to reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> risk<str<strong>on</strong>g>of</str<strong>on</strong>g> overlooking n<strong>on</strong>-natives and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir hybrids.EfficacyPost-treatment m<strong>on</strong>itoring was d<strong>on</strong>e at five sites thatwere treated in 2002 and pre-treatment m<strong>on</strong>itoring wasd<strong>on</strong>e at seven sites. Manual removal (digging) <str<strong>on</strong>g>of</str<strong>on</strong>g> S.densiflora at Piper Park was effective; however, a number<str<strong>on</strong>g>of</str<strong>on</strong>g> divots remained visible in <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh plain severalm<strong>on</strong>ths after <str<strong>on</strong>g>the</str<strong>on</strong>g> cl<strong>on</strong>es were removed. It is uncertain howl<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g>se features will remain in <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh and it isunclear what effect <str<strong>on</strong>g>the</str<strong>on</strong>g>y may have <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> quality <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>marsh habitat. We observed that volunteer removal effortsare excellent for public outreach, but it was frequentlynecessary for organizers and ISP staff to complete workbegun by volunteers.Cl<strong>on</strong>es in Bolinas Lago<strong>on</strong> and Point Reyes that hadbeen dug or trampled and covered were reduced by 95%.However, <str<strong>on</strong>g>the</str<strong>on</strong>g> cl<strong>on</strong>e that was dug out in Bolinas Lago<strong>on</strong>c<strong>on</strong>tinued to produce some shoots around <str<strong>on</strong>g>the</str<strong>on</strong>g> cl<strong>on</strong>e edgethat required pulling. A single cl<strong>on</strong>e at Pier 98, which hadbeen partially dug out and covered with geo-textile fabricby volunteers, had a number <str<strong>on</strong>g>of</str<strong>on</strong>g> remaining shoots thatrequired fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r c<strong>on</strong>trol. Cl<strong>on</strong>es must be entirely coveredfor <str<strong>on</strong>g>the</str<strong>on</strong>g> treatment to be effective. Roots and rhizomesshould be c<strong>on</strong>firmed dead as was d<strong>on</strong>e at Point Reyesbefore uncovering treated cl<strong>on</strong>es. Preliminary posttreatmentm<strong>on</strong>itoring <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Emeryville treatment site thatwas mowed in 2002 indicated no noticeable treatmenteffect.CONCLUSIONS AND RECOMMENDATIONSData from 28 sites showed that n<strong>on</strong>-native Spartinaspecies are spreading at a rapid rate in <str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco BayEstuary. Between 2000-2001 and 2003, <str<strong>on</strong>g>the</str<strong>on</strong>g> average percentincrease in area covered by all n<strong>on</strong>-native Spartina speciesin <str<strong>on</strong>g>the</str<strong>on</strong>g> Estuary was 244%, and by hybrids, 317%. Some siteshad several hundred percent increases. While hybridsincreased in area at all site types, spread was greatest forfringing tidal marshes, mudflats, and estuarine beaches (SiteType II). There was a slight trend in increase <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid coverwith latitude (south to north trend). Aerial photo areameasurements were compared with field measurements atfive sites where both methods were used in 2003. There wasno difference in <str<strong>on</strong>g>the</str<strong>on</strong>g> mean coverage between methods, butgiven <str<strong>on</strong>g>the</str<strong>on</strong>g> small sample size and that no regressi<strong>on</strong>relati<strong>on</strong>ship was found, aerial photo interpretati<strong>on</strong>measurements should be used with cauti<strong>on</strong> to estimate fieldmeasurements for a single site. The increasingly rapid rate <str<strong>on</strong>g>of</str<strong>on</strong>g>spread <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina, in particular hybrids, c<strong>on</strong>tinues tothreaten existing habitat and species assemblages andpotentially threatens <str<strong>on</strong>g>the</str<strong>on</strong>g> success <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>going and plannedrestorati<strong>on</strong> projects within <str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco Estuary andouter coast marshes. Successful c<strong>on</strong>trol will <strong>on</strong>ly beachieved with dedicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> adequate resources, attenti<strong>on</strong> t<str<strong>on</strong>g>of</str<strong>on</strong>g>ollowing protocols completely, and follow-up m<strong>on</strong>itoringand periodic re-treatment as needed.ACKNOWLEDGMENTSFunding for <str<strong>on</strong>g>the</str<strong>on</strong>g> M<strong>on</strong>itoring Program was provided by<str<strong>on</strong>g>the</str<strong>on</strong>g> California Coastal C<strong>on</strong>servancy and <str<strong>on</strong>g>the</str<strong>on</strong>g> CalFed BayDelta Program (Interagency agreement 4600001875).Thank you to Alex Lee who performed <str<strong>on</strong>g>the</str<strong>on</strong>g> geneticanalyses and to Aimee Good, Johanna Good, TrippMcCandlish, Erik Grijalva, numerous landowners,managers, and stakeholders for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir able assistance with <str<strong>on</strong>g>the</str<strong>on</strong>g>fieldwork. We also thank Peggy Ol<str<strong>on</strong>g>of</str<strong>on</strong>g>s<strong>on</strong>, Director <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><strong>Invasive</strong> Spartina Project, and Patricia Bossak and MaxeneSpellman <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> California Coastal C<strong>on</strong>servancy for <str<strong>on</strong>g>the</str<strong>on</strong>g>iradministrative and staff assistance. Peggy Ol<str<strong>on</strong>g>of</str<strong>on</strong>g>s<strong>on</strong> andOliver Burke deserve special thanks for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir editorialassistance.REFERENCESAnttila, C.K, A.R. King, C. Ferris, D.R. Ayres, and D.R. Str<strong>on</strong>g.2000. Reciprocal hybrid formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina in San FranciscoBay. Molecular Ecology 9:765-771.Anttila, C.K., C.C. Daehler, N.E. Rank, and D.R Str<strong>on</strong>g. 1998.Greater male fitness <str<strong>on</strong>g>of</str<strong>on</strong>g> a rare invader (Spartina alterniflora,Poaceae) threatens a comm<strong>on</strong> native (S. foliosa) with hybridizati<strong>on</strong>.American Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Botany 85:1597-1601.ArcView 3.3 (2002). Envir<strong>on</strong>mental Systems Research Institute,Inc. (ESRI), 380 New York Street, Redlands, California.http://www.esri.com.Ayres, D.R., K. Zaremba, C.M. Sloop, D.R.Str<strong>on</strong>g. 2008. Sexualreproducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cordgrass hybrids (Spartina foliosa x al--81-


Chapter 2: Spartina Distributi<strong>on</strong> and Spread<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinaterniflora) invading tidal marshes in San Francisco BayDiversity and Distributi<strong>on</strong>s 9:187-195.Ayres, D.R., D.R. Str<strong>on</strong>g, and P. Baye. 2003. Spartina foliosa—acomm<strong>on</strong> species <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> road to rarity? Madroño 50: 209-213.Ayres, D.R., D. Smith, K. Zaremba, S. Klohr, and D.R. Str<strong>on</strong>g.2004. Spread <str<strong>on</strong>g>of</str<strong>on</strong>g> exotic cordgrasses and hybrids (Spartina sp.) in<str<strong>on</strong>g>the</str<strong>on</strong>g> tidal marshes <str<strong>on</strong>g>of</str<strong>on</strong>g> San Francisco Bay. Biological Invasi<strong>on</strong>s6:221-231.Ayres, D.R., D. Garcia-Rossi, H.G. Davis, and D.R. Str<strong>on</strong>g. 1999.Extent and degree <str<strong>on</strong>g>of</str<strong>on</strong>g> hybridizati<strong>on</strong> between exotic (Spartina alterniflora)and native (S. foliosa) cordgrass (Poaceae) in California,USA determined by random amplified polymorphic DNA(RAPDs). Molecular Ecology 8:1179-1186.Ayres, D.R. and D.R. Str<strong>on</strong>g. Evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> Spartina Hybridsin San Francisco Bay. 2010. In: Ayres, D.R., D.W. Kerr,S.D. Erics<strong>on</strong> and P.R. Ol<str<strong>on</strong>g>of</str<strong>on</strong>g>s<strong>on</strong>, eds. <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g><str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartina, 2004 Nov 8-10,San Francisco, CA, USA. San Francisco Estuary <strong>Invasive</strong>Spartina Project <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> California State Coastal C<strong>on</strong>servancy:Oakland, CA. (this volume).California State Coastal C<strong>on</strong>servancy. 2003. San Francisco Estuary<strong>Invasive</strong> Spartina Project: Spartina C<strong>on</strong>trol Program. Volume 1:Final Programmatic Envir<strong>on</strong>mental Impact Statement/Envir<strong>on</strong>mentalImpact Report. September 2003. Preparedby and for <str<strong>on</strong>g>the</str<strong>on</strong>g> California State Coastal C<strong>on</strong>servancy and <str<strong>on</strong>g>the</str<strong>on</strong>g> U.SFish and Wildlife Service. 454 pp. www.Spartina.orgCallaway, J.C. and M. N. Josselyn. 1992. The introducti<strong>on</strong> andspread <str<strong>on</strong>g>of</str<strong>on</strong>g> smooth cordgrass (Spartina alterniflora) in South SanFrancisco Bay. Estuaries 15: 218-226.Cohen, A.C. and J.T. Carlet<strong>on</strong>. 1995. N<strong>on</strong>indigenous aquatic speciesin a United States Estuary: a case study <str<strong>on</strong>g>of</str<strong>on</strong>g> biological invasi<strong>on</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco Bay and Delta. U.S. Fish and WildlifeService and Nati<strong>on</strong>al Sea Grant Report No. PB96-166525.Available at http://nas.er.usgs.gov/publicati<strong>on</strong>s/sfinvade.htm.Collins, J.N., Debra Smith, S. Klohr and K. Zaremba. 2001. Guidelinesto M<strong>on</strong>itor <str<strong>on</strong>g>the</str<strong>on</strong>g> Distributi<strong>on</strong>, Abundance, and Treatment <str<strong>on</strong>g>of</str<strong>on</strong>g>N<strong>on</strong>-indigenous Species <str<strong>on</strong>g>of</str<strong>on</strong>g> Cordgrass in <str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco Estuary.Report to <str<strong>on</strong>g>the</str<strong>on</strong>g> California Coastal C<strong>on</strong>servancy.Daehler and Str<strong>on</strong>g. 1996. Status, Predicti<strong>on</strong> and Preventi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>introduced cordgrass Spartina spp. invasi<strong>on</strong>s in Pacific Estuaries,USA. Biological C<strong>on</strong>servati<strong>on</strong> 78: 51-58.Daehler, C.C. and D.R. Str<strong>on</strong>g. 1997. Hybridizati<strong>on</strong> between introducedsmooth cordgrass (Spartina alterniflora, Poaceae) and nativeCalifornia cordgrass (S. foliosa) in San Francisco Bay, California,USA. American Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Botany 85: 607-611.Goals Project. 1999. Baylands Ecosystem Habitat Goals. A report<str<strong>on</strong>g>of</str<strong>on</strong>g> habitat recommendati<strong>on</strong>s prepared by <str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco BayArea Wetlands Ecosystem Goals Project. First Reprint. U.S. Envir<strong>on</strong>mentalProtecti<strong>on</strong> Agency, San Francisco, Calif./S.F. BayRegi<strong>on</strong>al Water Quality C<strong>on</strong>trol Board, Oakland, Calif.GPS Pathfinder Office v.3 (2003). Trimble Navigati<strong>on</strong> LimitedMapping & GIS Systems, 645 North Mary Avenue, P.O. Box3642, Sunnyvale, California. www.trimble.com.Hall, R.J. A.M. Hastings and D.R. Ayres. 2006. Explaining <str<strong>on</strong>g>the</str<strong>on</strong>g>explosi<strong>on</strong> : modelling hybrid invasi<strong>on</strong>s. <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> - Royal Society<str<strong>on</strong>g>of</str<strong>on</strong>g> L<strong>on</strong>d<strong>on</strong>. Biological Sciences 273 :1385-1389.Hall, R.J., A.M. Hastings and D.R. Ayres. 2010. Modeling <str<strong>on</strong>g>the</str<strong>on</strong>g>spread <str<strong>on</strong>g>of</str<strong>on</strong>g> invasive Spartina hybrids in San Francisco Bay. 2010In: Ayres, D.R., D.W. Kerr, S.D. Erics<strong>on</strong> and P.R. Ol<str<strong>on</strong>g>of</str<strong>on</strong>g>s<strong>on</strong>, eds.<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong>Spartina, 2004 Nov 8-10, San Francisco, CA, USA. San FranciscoEstuary <strong>Invasive</strong> Spartina Project <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> California StateCoastal C<strong>on</strong>servancy: Oakland, CA. (this volume).Josselyn, M.,B. Larss<strong>on</strong>, and A. Fiorillo. 1993. An ecological comparis<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> an introduced marsh plant, Spartina alterniflora, inSan Francisco Bay. Technical Report <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Romberg Tibur<strong>on</strong>Center, Tibur<strong>on</strong>, CA.Nati<strong>on</strong>al <strong>Invasive</strong> Species Council. 2001. Meeting <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Invasive</strong>Species Challenge: <strong>Invasive</strong> Species Management Plan. 80pp.San Francisco Bay C<strong>on</strong>servati<strong>on</strong> and Development Commissi<strong>on</strong>(BCDC). 2001. San Francisco Bay Ecology and Related Habitats.Staff Report September 28, 2001. http://www.bcdc.ca.gov.SPSS (2000). SYSTAT 10 Statistics. SPSS, Inc. Chicago, Illinois.www.systat.com.Strahlberg, D., V. T<strong>on</strong>iolo, G.W. Page and L.E. Stenzel. 2010.Potential impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina spread <strong>on</strong> shorebird populati<strong>on</strong>s inSouth San Francisco Bay. In: Ayres, D.R., D.W. Kerr, S.D. Erics<strong>on</strong>and P.R. Ol<str<strong>on</strong>g>of</str<strong>on</strong>g>s<strong>on</strong>, eds. <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g><str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartina, 2004 Nov 8-10, SanFrancisco, CA, USA. San Francisco Estuary <strong>Invasive</strong> SpartinaProject <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> California State Coastal C<strong>on</strong>servancy: Oakland,CA. (this volume).Wolf, D.E., N. Takebayashi, and L.H. Rieseberg. 2001. Predicting<str<strong>on</strong>g>the</str<strong>on</strong>g> risk <str<strong>on</strong>g>of</str<strong>on</strong>g> extincti<strong>on</strong> through hybridizati<strong>on</strong>. C<strong>on</strong>servati<strong>on</strong> Biology15:1039-1053.Zaremba K. 2001. Hybridizati<strong>on</strong> and C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> a Native-N<strong>on</strong> NativeSpartina Complex in San Francisco Bay. Master <str<strong>on</strong>g>of</str<strong>on</strong>g> Arts <str<strong>on</strong>g>the</str<strong>on</strong>g>sis,San Francisco State University, San Francisco, California.Zaremba K. 2001. San Francisco Estuary <strong>Invasive</strong> Spartina ProjectField Identificati<strong>on</strong> Guides. Prepared for <str<strong>on</strong>g>the</str<strong>on</strong>g> California CoastalC<strong>on</strong>servancy.Zaremba, K, M. McGowan, D. Ayres. 2004. San Francisco Estuary<strong>Invasive</strong> Spartina Project M<strong>on</strong>itoring Report for 2003.-82-


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 2: Spartina Distributi<strong>on</strong> and SpreadREMOTE SENSING,LIDAR AND GIS INFORM LANDSCAPE AND POPULATION ECOLOGY,WILLAPA BAY,WASHINGTONJ.C. CIVILLE 1,4 ,S.D.SMITH 2 AND D.R. STRONG 31 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Evoluti<strong>on</strong> and Ecology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Davis, One Shields Ave., Davis, CA 95616-87552 True North GIS, 4857 Grand Fir Lane, Olympia, WA 985023 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Evoluti<strong>on</strong> and Ecology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Davis, One Shields Ave., Davis, CA 95616-87554 Current address: 2731 Be<str<strong>on</strong>g>the</str<strong>on</strong>g>l St. NE, Olympia, WA 98506; jciville@comcast.netKeywords: Spartina alterniflora, Willapa Bay, photogrammetry, mappingThe spread <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflora Loisel. (smoothcordgrass, hereafter referred to as Spartina) in PacificNorthwest estuaries presents a unique opportunity toexamine ecological interacti<strong>on</strong>s between an invasive cl<strong>on</strong>alorganism and local abiotic factors. Willapa Bay is a large,shallow, tidal basin <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> southwest coast <str<strong>on</strong>g>of</str<strong>on</strong>g> Washingt<strong>on</strong>State. The bay is approximately 360 square kilometers (km 2 )at mean high tide, with well over 190 km 2 <str<strong>on</strong>g>of</str<strong>on</strong>g> s<str<strong>on</strong>g>of</str<strong>on</strong>g>t mud andsand tideflats exposed at mean low tide (Civille 2005). Themixed diurnal tides <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Pacific coast distinguishWashingt<strong>on</strong> estuaries from those <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Atlantic coast whereS. alterniflora is <str<strong>on</strong>g>the</str<strong>on</strong>g> predominant native salt marsh species.Spartina species are <str<strong>on</strong>g>the</str<strong>on</strong>g> principle comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> Atlanticand Gulf coast estuaries, but <str<strong>on</strong>g>the</str<strong>on</strong>g> introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina to<str<strong>on</strong>g>the</str<strong>on</strong>g> Willapa Bay estuary and its open mudflats has led to <str<strong>on</strong>g>the</str<strong>on</strong>g>rapid c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> thousands <str<strong>on</strong>g>of</str<strong>on</strong>g> intertidal hectares intodense stands <str<strong>on</strong>g>of</str<strong>on</strong>g> upper tidal meadows (Sayce 1988; Daehlerand Str<strong>on</strong>g 1996; Civille et al. 2005). The rapid expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>this robust cl<strong>on</strong>al grass across <str<strong>on</strong>g>the</str<strong>on</strong>g> open habitat <str<strong>on</strong>g>of</str<strong>on</strong>g> intertidalmudflats is a textbook example <str<strong>on</strong>g>of</str<strong>on</strong>g> unimpeded col<strong>on</strong>izati<strong>on</strong>,and presents challenges not <strong>on</strong>ly to management efforts, butto ecologists as well.The initial questi<strong>on</strong>s relevant to this research weregenerated by biologists and land managers in <str<strong>on</strong>g>the</str<strong>on</strong>g> state <str<strong>on</strong>g>of</str<strong>on</strong>g>Washingt<strong>on</strong>, who needed to understand Spartina expansi<strong>on</strong>for envir<strong>on</strong>mental impact analyses, adaptive managementplans, and to direct c<strong>on</strong>trol efforts in <str<strong>on</strong>g>the</str<strong>on</strong>g> most efficientmanner (Sayce 1988; Aberle 1990; Aberle 1993; Civille1993). These questi<strong>on</strong>s included: where were plantsspreading fastest, where was intertidal habitat being lostmost rapidly, and whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r stopping seed producti<strong>on</strong> wasmore effective than removing as many new plants aspossible (Moody and Mack 1988). Ecologists studyinginvasive populati<strong>on</strong> growth dynamics ask similar questi<strong>on</strong>s.What is regulating <str<strong>on</strong>g>the</str<strong>on</strong>g> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina <strong>on</strong> Willapa Baymudflats? Are <str<strong>on</strong>g>the</str<strong>on</strong>g>se regulators density dependent orindependent? With <str<strong>on</strong>g>the</str<strong>on</strong>g> seemingly limitless expanse <str<strong>on</strong>g>of</str<strong>on</strong>g>habitat available for col<strong>on</strong>izati<strong>on</strong>, why is it that some areasare filling in more quickly than o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs? Are <str<strong>on</strong>g>the</str<strong>on</strong>g>re factorsintrinsic to <str<strong>on</strong>g>the</str<strong>on</strong>g> biology and mating system <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina thatinfluence its spread, or are abiotic factors more important inshaping <str<strong>on</strong>g>the</str<strong>on</strong>g> col<strong>on</strong>izati<strong>on</strong> fr<strong>on</strong>ts? Does competiti<strong>on</strong> betweenSpartina plants limit <str<strong>on</strong>g>the</str<strong>on</strong>g> populati<strong>on</strong>, and will availability <str<strong>on</strong>g>of</str<strong>on</strong>g>resources affect <str<strong>on</strong>g>the</str<strong>on</strong>g>ir growth? Have evoluti<strong>on</strong>ary changestaken place in <str<strong>on</strong>g>the</str<strong>on</strong>g> Willapa Bay populati<strong>on</strong> that allowSpartina to compete more effectively? Many <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>sequesti<strong>on</strong>s have been addressed in experimental and<str<strong>on</strong>g>the</str<strong>on</strong>g>oretical work by members <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina BiocomplexityGroup at <str<strong>on</strong>g>the</str<strong>on</strong>g> University <str<strong>on</strong>g>of</str<strong>on</strong>g> California at Davis, (Davis et al.2004a; Davis et al. 2004b; Taylor 2004; Taylor and Hastings2004; Civille 2005; Davis 2005; Civille 2006) and werepresented at this c<strong>on</strong>ference by <str<strong>on</strong>g>the</str<strong>on</strong>g>ir primary authors (Daviset al.; Taylor et al.; this volume).Spartina was probably brought to <str<strong>on</strong>g>the</str<strong>on</strong>g> Willapa estuarythrough <str<strong>on</strong>g>the</str<strong>on</strong>g> transplanting <str<strong>on</strong>g>of</str<strong>on</strong>g> eastern oysters to bolster <str<strong>on</strong>g>the</str<strong>on</strong>g>flagging oyster industry <str<strong>on</strong>g>of</str<strong>on</strong>g> Willapa Bay in <str<strong>on</strong>g>the</str<strong>on</strong>g> 1890s andearly 1900s. The California gold rush had fueled <str<strong>on</strong>g>the</str<strong>on</strong>g>depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> native oysters from <str<strong>on</strong>g>the</str<strong>on</strong>g> bay, and an effort wasmade by <str<strong>on</strong>g>the</str<strong>on</strong>g> United States Fisheries Bureau to replant <str<strong>on</strong>g>the</str<strong>on</strong>g>bay with Chesapeake stock. The completi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>transc<strong>on</strong>tinental railway allowed <str<strong>on</strong>g>the</str<strong>on</strong>g> trip to be made in abouta week (Townsend 1896; Scheffer 1945; Civille et al. 2005),and eastern oysters c<strong>on</strong>tinued to be brought via railcar toWillapa until around 1917. The climate was apparently toocool for eastern oysters, and although <str<strong>on</strong>g>the</str<strong>on</strong>g>y grew well, <str<strong>on</strong>g>the</str<strong>on</strong>g>ywere never able to reproduce successfully in Willapa atcommercially viable levels. Spartina, however, was able toestablish in small col<strong>on</strong>ies that were close to beds used torear eastern oysters (Civille et al. 2005).The first written and photographic evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartinapresence in <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary was ga<str<strong>on</strong>g>the</str<strong>on</strong>g>red at <str<strong>on</strong>g>the</str<strong>on</strong>g> Willapa Nati<strong>on</strong>alWildlife Refuge by T.H. Scheffer in 1940 (Scheffer 1945).A photograph taken by Scheffer shows several “greenislands,” and was d<strong>on</strong>ated to <str<strong>on</strong>g>the</str<strong>on</strong>g> California Academy <str<strong>on</strong>g>of</str<strong>on</strong>g>Science Herbarium to document his findings. If an averageheight <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e meter (m) is assumed, <str<strong>on</strong>g>the</str<strong>on</strong>g> large plant in <str<strong>on</strong>g>the</str<strong>on</strong>g>photo is about 42 m in diameter, covering approximately1,367 square meters (m 2 ) <str<strong>on</strong>g>of</str<strong>on</strong>g> mudflat. The first aerialphotographs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bay were taken by <str<strong>on</strong>g>the</str<strong>on</strong>g> Army Corps <str<strong>on</strong>g>of</str<strong>on</strong>g>Engineers in 1945, and Spartina plants <str<strong>on</strong>g>of</str<strong>on</strong>g> a similar size to-83-


Chapter 2: Spartina Distributi<strong>on</strong> and Spread<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinathose in Scheffer’s photo can be seen in <str<strong>on</strong>g>the</str<strong>on</strong>g>se photos atwidely separated locati<strong>on</strong>s around <str<strong>on</strong>g>the</str<strong>on</strong>g> bay (Civille et al.2005).A time series analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina spread across <str<strong>on</strong>g>the</str<strong>on</strong>g>Willapa tidal flats was c<strong>on</strong>ducted using 55 years <str<strong>on</strong>g>of</str<strong>on</strong>g> synopticaerial photography, spanning from 1945 to 2000. Themethodology used for <str<strong>on</strong>g>the</str<strong>on</strong>g> study was a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>photogrammetry, image analysis and geographic informati<strong>on</strong>system (GIS) techniques (Wilkie 1996). Over 2,000 photos(black and white, true color and color infra-red) weredigitized, examined for Spartina plants, <str<strong>on</strong>g>the</str<strong>on</strong>g>n geo- ororthorectified to fit <str<strong>on</strong>g>the</str<strong>on</strong>g> curvature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> earth and assignedgeographic coordinates. The resulting corrected images were<str<strong>on</strong>g>the</str<strong>on</strong>g>n classified into <str<strong>on</strong>g>the</str<strong>on</strong>g>matic representati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartinameadows and cl<strong>on</strong>es. The final year <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> series, comprised<str<strong>on</strong>g>of</str<strong>on</strong>g> color infrared images acquired in 2000, was orthorectifiedto remove radial and scale distorti<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g>nclassified through hierarchical supervised and unsupervisedn<strong>on</strong>-parametric methods into 330 <str<strong>on</strong>g>the</str<strong>on</strong>g>matic raster files, withless than <strong>on</strong>e meter positi<strong>on</strong>al error and a 0.3 m minimummapping unit (Civille 2005). All o<str<strong>on</strong>g>the</str<strong>on</strong>g>r spatial data weregeorectified to this baseline layer. These tasks wereaccomplished with a large format scanner (28 x43 centimeter [cm] platform), Photoshop (Adobe), andImagine (ERDAS), a robust digital photogrammetrys<str<strong>on</strong>g>of</str<strong>on</strong>g>tware package. The resulting raster files were <str<strong>on</strong>g>the</str<strong>on</strong>g>nc<strong>on</strong>verted into GIS vector coverages in ArcInfo (ESRI), andcombined with a bathymetry digital elevati<strong>on</strong> model (DEM)to obtain z (elevati<strong>on</strong>) values for each polyg<strong>on</strong>.A vector-based coverage model was chosen for ouranalysis, ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than raster-based, because polyg<strong>on</strong>s areautomatically assigned a unique identifier, area andperimeter by ArcInfo s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware (Flynn and Pitts 2000). Thisallowed us to extract demographic history for each plant(greater than 300,000 individuals in 1997 al<strong>on</strong>e) that wedetected <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> photos. These data were used toparameterize ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical populati<strong>on</strong> models (Taylor et al.2004), and establish <str<strong>on</strong>g>the</str<strong>on</strong>g> ages <str<strong>on</strong>g>of</str<strong>on</strong>g> plants used in genetic andreproductive fitness experiments (Davis et al. 2004).Regi<strong>on</strong>s, which are a higher order organizati<strong>on</strong>al object inArcInfo, were applied to <str<strong>on</strong>g>the</str<strong>on</strong>g> coverages, allowing us toanalyze cl<strong>on</strong>al growth and meadow formati<strong>on</strong> year-to-year.Each c<strong>on</strong>tributing polyg<strong>on</strong> (cl<strong>on</strong>e) within a regi<strong>on</strong> (largemeadow), maintains its own unique identifier and also has aregi<strong>on</strong> identifier, which are maintained through dataextracti<strong>on</strong> and statistical analyses (Civille 2005).Spartina elevati<strong>on</strong> data were analyzed with twoseparate bathymetry (elevati<strong>on</strong>) layers; <strong>on</strong>e that wascollected by <str<strong>on</strong>g>the</str<strong>on</strong>g> Nati<strong>on</strong>al Oceanic and AtmosphericAdministrati<strong>on</strong> (NOAA) with depth soundings in 1953(channels updated in 1986); and ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r that was acquired in<str<strong>on</strong>g>the</str<strong>on</strong>g> spring <str<strong>on</strong>g>of</str<strong>on</strong>g> 2002. The new bathymetry data was collectedwith LiDAR (Light Detecti<strong>on</strong> And Ranging) techniques, andis <str<strong>on</strong>g>the</str<strong>on</strong>g> first <str<strong>on</strong>g>of</str<strong>on</strong>g> its kind to be ga<str<strong>on</strong>g>the</str<strong>on</strong>g>red for an entire estuarineintertidal z<strong>on</strong>e with tidal c<strong>on</strong>trol (Cracknell 1999; Irish andLillycrop 1999; Flowers 2002). Tidal exposure times werecalculated for <str<strong>on</strong>g>the</str<strong>on</strong>g> Willapa estuary during winter m<strong>on</strong>thswhen plant aboveground growth has died back, leavingmudflat elevati<strong>on</strong>s as <str<strong>on</strong>g>the</str<strong>on</strong>g> primary targets reflected by <str<strong>on</strong>g>the</str<strong>on</strong>g>laser. Data collecti<strong>on</strong> was scheduled for predicted tidalelevati<strong>on</strong>s lower than 30 cm Mean Low Water (MLW),although <str<strong>on</strong>g>the</str<strong>on</strong>g> actual tidal elevati<strong>on</strong>s at <str<strong>on</strong>g>the</str<strong>on</strong>g> time <str<strong>on</strong>g>of</str<strong>on</strong>g> acquisiti<strong>on</strong>varied from this target (Civille 2005). The LiDAR data wascollected through a collaborative effort with <str<strong>on</strong>g>the</str<strong>on</strong>g> NOAACoastal Services Center in Charlest<strong>on</strong>, South Carolina, anddata was acquired and compiled by photogrammetrists atSpencer B. Gross in Portland, Oreg<strong>on</strong>.To determine whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r individual Spartina plants weregrowing more rapidly in different abiotic c<strong>on</strong>diti<strong>on</strong>s, weextracted areas from polyg<strong>on</strong>s that overlapped <strong>on</strong>e ano<str<strong>on</strong>g>the</str<strong>on</strong>g>rin separate years. These were assumed to be <str<strong>on</strong>g>the</str<strong>on</strong>g> sameindividual increasing (or diminishing) in area through time.A stratified random selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 408 <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se co-occurringcl<strong>on</strong>es was extracted from <str<strong>on</strong>g>the</str<strong>on</strong>g> 1994 and 1997 layers, <str<strong>on</strong>g>the</str<strong>on</strong>g>nstatistically analyzed according to a simple relative arealgrowth index [(Area1997-Area1994)/Area1994]. Thisindex relates <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> areal growth to <str<strong>on</strong>g>the</str<strong>on</strong>g> initial size <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> plant. An ANOVA was performed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> 1994-1997data set and significant differences in relative growth rateswere observed between mud and sand substrates and tidalelevati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cl<strong>on</strong>es (Fig. 1). Cl<strong>on</strong>es in s<str<strong>on</strong>g>of</str<strong>on</strong>g>t mudsubstrates with proximity to fresh water sources exhibitedsignificantly higher areal growth rates than those <strong>on</strong> sand.Cl<strong>on</strong>es at higher elevati<strong>on</strong>s in general are growing morequickly than those at lower elevati<strong>on</strong>s, although differenceswere not significant in all elevati<strong>on</strong>al classes. Spartinaplants are noticeably absent from sand substrates lower thanFig. 1: Differences in relative lateral growth rate <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina comparingtidal elevati<strong>on</strong> and substrate type, 1994-1997.-84-


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 2: Spartina Distributi<strong>on</strong> and Spread<strong>on</strong>e m above MLW, although present in large numbers at<str<strong>on</strong>g>the</str<strong>on</strong>g>se elevati<strong>on</strong>s <strong>on</strong> mud.Seedling recruitment is ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r demographic propertythat is critical to <str<strong>on</strong>g>the</str<strong>on</strong>g> successful spread <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora inWillapa Bay. New individuals observed in 1997 (polyg<strong>on</strong>sless than three m in diameter without earlier counterparts)out-numbered those that were present in 1994 by an order <str<strong>on</strong>g>of</str<strong>on</strong>g>magnitude: over 46,000 single new plants versus 4,500 <str<strong>on</strong>g>of</str<strong>on</strong>g>similar size in 1994. By 2000, <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> newindividuals recruiting into <str<strong>on</strong>g>the</str<strong>on</strong>g> populati<strong>on</strong> rose by ano<str<strong>on</strong>g>the</str<strong>on</strong>g>rorder <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude to more than 155,550 new plants. Again,recruitment was greatest <strong>on</strong> those parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bay with s<str<strong>on</strong>g>of</str<strong>on</strong>g>tmud substrates and in proximity to fresh water sources(Civille 2005). The lateral growth and merger data areproviding important insights into abiotic factors that c<strong>on</strong>trolSpartina growth, and were used to populate and validate<str<strong>on</strong>g>the</str<strong>on</strong>g>oretical model development and explorati<strong>on</strong> (Taylor et al.2004; Taylor and Hastings 2004).The high resoluti<strong>on</strong> spatial datasets have provideddemographic and ecological informati<strong>on</strong> at a level <str<strong>on</strong>g>of</str<strong>on</strong>g> detailand bay-wide scale that could never have been collected byindividual ecologists with transects and sampling hoopsacross such difficult and remote terrain. The photographicrecord that has been maintained and cataloged providesunique opportunities to look into <str<strong>on</strong>g>the</str<strong>on</strong>g> history <str<strong>on</strong>g>of</str<strong>on</strong>g> this invasi<strong>on</strong>,and may provide insight into <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanisms andcharacteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r invasi<strong>on</strong>s.ACKNOWLEDGMENTSThis research could not have been possible without <str<strong>on</strong>g>the</str<strong>on</strong>g>photography collected and archived by <str<strong>on</strong>g>the</str<strong>on</strong>g> Washingt<strong>on</strong> StateDepartment <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural Resources (WADNR), <str<strong>on</strong>g>the</str<strong>on</strong>g>Washingt<strong>on</strong> State Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> U.S.Army Corps <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineers, District 10. The mapping andphotogrammetry staff in <str<strong>on</strong>g>the</str<strong>on</strong>g>se agencies provided invaluableadvice, support and expertise as this project was developed.Earlier Spartina mapping efforts by Barb Aberle, LindaKunze, Elizabeth Lanzer, and Tom Mumford made thismore sophisticated approach possible. This work was fundedin part by <str<strong>on</strong>g>the</str<strong>on</strong>g> WADNR and by <str<strong>on</strong>g>the</str<strong>on</strong>g> Nati<strong>on</strong>al ScienceFoundati<strong>on</strong> Biocomplexity Grant #DEB0083583 (P.I. AlanHastings).REFERENCESAberle, B.L. 1990. Chr<strong>on</strong>ology <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina c<strong>on</strong>trol methods inWashingt<strong>on</strong>, California, and Oreg<strong>on</strong>. Spartina Workshop Record.S. Harbell. University <str<strong>on</strong>g>of</str<strong>on</strong>g> Washingt<strong>on</strong>, Seattle, Washingt<strong>on</strong>,USA.Aberle, B.L. 1993. The Biology and C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Introduced Spartina(cordgrass) Worldwide and Recommendati<strong>on</strong>s for its C<strong>on</strong>trol inWashingt<strong>on</strong>. Masters <str<strong>on</strong>g>the</str<strong>on</strong>g>sis. Evergreen State College, Olympia,Washingt<strong>on</strong>, USA.Civille, J.C. 1993. Integrated Management Plan for Spartina alterniflorain Willapa Bay, Washingt<strong>on</strong>. Washingt<strong>on</strong> State Department<str<strong>on</strong>g>of</str<strong>on</strong>g> Natural Resources, Olympia, Washingt<strong>on</strong>, USA.Civille, J.C. 2006. Invasi<strong>on</strong> ecology and pattern assessed throughremote sensing: Spartina alterniflora in Willapa Bay, Washingt<strong>on</strong>.Doctoral dissertati<strong>on</strong>. University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Davis, Davis,California, USA.Civille J.C., K. Sayce, S.D. Smith and D.R. Str<strong>on</strong>g. 2005. Rec<strong>on</strong>structinga century <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina invasi<strong>on</strong> with historical recordsand c<strong>on</strong>temporary remote sensing. Ecoscience 12(3):330-338.Cracknell, A.P. 1999. Remote sensing techniques in estuaries andcoastal z<strong>on</strong>es - an update. <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Remote Sensing20(3):485-496.Daehler C.C. and C. Anttila. 1997. Impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> introduced smoothcordgrass (Spartina alterniflora) <strong>on</strong> Pacific estuaries. Bulletin <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> Ecological Society <str<strong>on</strong>g>of</str<strong>on</strong>g> America 78(4 SUPPL):10.Daehler C. C. and D. R. Str<strong>on</strong>g. 1996. Status, predicti<strong>on</strong> and preventi<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> introduced cordgrass Spartina spp. invasi<strong>on</strong>s in Pacificestuaries, USA. Biological C<strong>on</strong>servati<strong>on</strong> 78(1-2):51-58.Davis H.G., C.M. Taylor, J.C. Civille and D.R. Str<strong>on</strong>g. 2004a. AnAllee effect at <str<strong>on</strong>g>the</str<strong>on</strong>g> fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> a plant invasi<strong>on</strong>: Spartina in a Pacificestuary. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology 92:3231-237.Davis H.G., Taylor C.M., Lambrinos J.G. and D.R. Str<strong>on</strong>g. 2004b.Pollen limitati<strong>on</strong> causes an Allee effect in a wind-pollinated invasivegrass (Spartina alterniflora). <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> Nati<strong>on</strong>alAcademy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences USA 101: 13804-13807.Davis, H.G. 2005. r-Selected Traits in an <strong>Invasive</strong> Populati<strong>on</strong>. Evoluti<strong>on</strong>aryEcology 19(3):255-274.Flowers, R. 2002. Partnerships and new technologies: <str<strong>on</strong>g>the</str<strong>on</strong>g> JointAirborne Lidar Bathymetry Technical Center <str<strong>on</strong>g>of</str<strong>on</strong>g> Expertise. SeaTechnology 43(1):34-35.Flynn J. and T. Pitts. 2000. Inside ArcInfo. OnWord Press, Albany,New York, USA.Irish, J.L. and W.J. Lillycrop. 1999. Scanning laser mapping <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>coastal z<strong>on</strong>e: <str<strong>on</strong>g>the</str<strong>on</strong>g> SHOALS system. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Photogrammetryand Remote Sensing 54(2):123-129.Lillesand, T.M. and R.W. Kiefer. 1999. Remote Sensing and ImageInterpretati<strong>on</strong>. John Wiley & S<strong>on</strong>s, Inc., New York, New York,USA.Moody, M.E. and R.N. Mack. 1988. C<strong>on</strong>trolling <str<strong>on</strong>g>the</str<strong>on</strong>g> Spread <str<strong>on</strong>g>of</str<strong>on</strong>g>Plant Invasi<strong>on</strong>s - <str<strong>on</strong>g>the</str<strong>on</strong>g> Importance <str<strong>on</strong>g>of</str<strong>on</strong>g> Nascent Foci. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> AppliedEcology 25(3):1009-1021.Sayce, K. 1988. Introduced cordgrass, Spartina alternifloraLoisel., in salt marshes and tidelands <str<strong>on</strong>g>of</str<strong>on</strong>g> Willapa Bay, Washingt<strong>on</strong>.,U.S. Fish and Wildlife Service, Ilwaco, Washingt<strong>on</strong>, USA.Scheffer, T.H. 1945. The introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflora toWashingt<strong>on</strong> with oyster culture. Leaflets <str<strong>on</strong>g>of</str<strong>on</strong>g> Western BotanyIV:163-164.Taylor, C.M., H.G. Davis, J.C. Civille, F.S. Grevstad and A. Hastings.2004. C<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> an Allee effect <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aPacific estuary by Spartina alterniflora. Ecology 85:3254-3266.Taylor, C.M. and A.M. Hastings. 2004. Finding optimal c<strong>on</strong>trolstrategies for invasive species: a density-structured model forSpartina alterniflora. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology 41(6):1049-1057.Townsend, C.H. 1896. The transplanting <str<strong>on</strong>g>of</str<strong>on</strong>g> eastern oysters to WillapaBay, Washingt<strong>on</strong> with notes <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> native oyster industry.U. S. Fisheries Commissi<strong>on</strong>, Washingt<strong>on</strong>, D.C., USA.Wilkie, D.S. and J.T. Finn. 1996. Remote Sensing Imagery forNatural Resources M<strong>on</strong>itoring. Columbia University Press, NewYork, New York, USA.-85-


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 2: Spartina Distributi<strong>on</strong> and SpreadIMPLICATIONS OF VARIABLE RECRUITMENT FOR THE MANAGEMENT OF SPARTINAALTERNIFLORA IN WILLAPA BAY,WASHINGTONJ.G. LAMBRINOS 1,2 ,D.R.STRONG 3,5 ,J.C.CIVILLE 3,4 AND J. BANDO 1,61 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Science and Policy, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Davis, CA 956162 Current address: Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Horticulture, 4017 Ag and Life Sciences Building, Oreg<strong>on</strong> State University,Corvallis, OR 97331; lambrinj@hort.oreg<strong>on</strong>state.edu3 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Evoluti<strong>on</strong> and Ecology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Davis, CA 956164 Current address: 2731 Be<str<strong>on</strong>g>the</str<strong>on</strong>g>l St. NE, Olympia, WA 98506; jciville@comcast.net5 drstr<strong>on</strong>g@ucdavis.edu; 6 jun.bando@gmail.comThe spatial expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflora populati<strong>on</strong>s in Willapa Bay, Washingt<strong>on</strong> has beendriven primarily by seedling recruitment. We measured this recruitment at <str<strong>on</strong>g>the</str<strong>on</strong>g> landscape scale usinga series <str<strong>on</strong>g>of</str<strong>on</strong>g> precisi<strong>on</strong> GPS guided airboat censuses. Recruitment is highly variable across both spaceand time. Over <str<strong>on</strong>g>the</str<strong>on</strong>g> four years <str<strong>on</strong>g>of</str<strong>on</strong>g> observati<strong>on</strong>, yearly average estuary-wide recruitment varied from alow <str<strong>on</strong>g>of</str<strong>on</strong>g> 12 per hectare (ha) to a high <str<strong>on</strong>g>of</str<strong>on</strong>g> 500/ha. Variability across individual census plots was evengreater, ranging from 0 per ha to over 4000/ha. Several factors influence this variability. 1) Localrecruitment tracks variati<strong>on</strong> in local seed producti<strong>on</strong>. 2) Tidal elevati<strong>on</strong> and hydrological c<strong>on</strong>diti<strong>on</strong>sinfluence <str<strong>on</strong>g>the</str<strong>on</strong>g> spatial pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> seed depositi<strong>on</strong> and retenti<strong>on</strong>, and this is reflected in micro-spatialrecruitment patterns. 3) Substrate characteristics independent <str<strong>on</strong>g>of</str<strong>on</strong>g> elevati<strong>on</strong> and hydrology significantlyinfluence seedling survivorship and growth. These results have broad implicati<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g>management <str<strong>on</strong>g>of</str<strong>on</strong>g> invasive Spartina populati<strong>on</strong>s. Poor recruitment years afford windows <str<strong>on</strong>g>of</str<strong>on</strong>g> opportunityfor effective c<strong>on</strong>trol, but could equally lead to complacency and an inadequate resp<strong>on</strong>se duringrecruitment pulses. The str<strong>on</strong>g relati<strong>on</strong>ship between local seed producti<strong>on</strong> and local recruitmentsuggests that c<strong>on</strong>trol strategies that do not explicitly account for inter-regi<strong>on</strong>al dispersal can still besuccessful over <str<strong>on</strong>g>the</str<strong>on</strong>g> short-term, even if l<strong>on</strong>g-term management requires an explicit understanding <str<strong>on</strong>g>of</str<strong>on</strong>g>regi<strong>on</strong>al dispersal pathways. Finally, <str<strong>on</strong>g>the</str<strong>on</strong>g> str<strong>on</strong>g differences in recruitment and growth patternscaused by substrate differences may allow <str<strong>on</strong>g>the</str<strong>on</strong>g> categorizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sites by recruitment risk.Keywords: heterogeneity, invasi<strong>on</strong>, spread, wetlandINTRODUCTIONSpartina alterniflora has spread over 60 square kilometers(km 2 ) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> approximately 190 km 2 <str<strong>on</strong>g>of</str<strong>on</strong>g> intertidal habitat in WillapaBay, Washingt<strong>on</strong> (Civille et al., 2005; Civille et al. 2010).This large-scale invasi<strong>on</strong> threatens to disrupt many importantecosystem services such as habitat for oysters and migratorybirds, nutrient cycling, and storm water run<str<strong>on</strong>g>of</str<strong>on</strong>g>f c<strong>on</strong>trol (Sayce1988). A c<strong>on</strong>sortium <str<strong>on</strong>g>of</str<strong>on</strong>g> local residents, state agencies and <str<strong>on</strong>g>the</str<strong>on</strong>g>Federal government is currently attempting to manage <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong>with <str<strong>on</strong>g>the</str<strong>on</strong>g> ultimate goal <str<strong>on</strong>g>of</str<strong>on</strong>g> eradicating S. alterniflora from<str<strong>on</strong>g>the</str<strong>on</strong>g> estuary.There have been few attempts to comprehensively managesuch a large plant invasi<strong>on</strong>. Property ownership, funding allocati<strong>on</strong>s,and <str<strong>on</strong>g>the</str<strong>on</strong>g> idiosyncratic interests <str<strong>on</strong>g>of</str<strong>on</strong>g> stakeholders usuallyforce management to occur <strong>on</strong> an ad hoc and project-specificbasis. However, given <str<strong>on</strong>g>the</str<strong>on</strong>g> large extent <str<strong>on</strong>g>of</str<strong>on</strong>g> many invasi<strong>on</strong>s <str<strong>on</strong>g>the</str<strong>on</strong>g>reis a growing appreciati<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> need to manage invasiveplants at explicitly landscape scales (With 2002).The management <str<strong>on</strong>g>of</str<strong>on</strong>g> large-scale invasi<strong>on</strong>s takes time.Some invasi<strong>on</strong>s will likely require <strong>on</strong>going management,while <str<strong>on</strong>g>the</str<strong>on</strong>g> eradicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs will take years. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g>S. alterniflora in Willapa Bay, coordinated c<strong>on</strong>trol activitiesbegan over 10 years ago.The effective management <str<strong>on</strong>g>of</str<strong>on</strong>g> landscape-scale invasi<strong>on</strong>s,<str<strong>on</strong>g>the</str<strong>on</strong>g>refore, requires an understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> how basic properties<str<strong>on</strong>g>of</str<strong>on</strong>g> invasi<strong>on</strong>s vary across space and time. Here we report thattwo basic comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora demography, seedproducti<strong>on</strong> and seedling recruitment, vary c<strong>on</strong>siderablyacross different habitats in <str<strong>on</strong>g>the</str<strong>on</strong>g> bay and across years. Wediscuss <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> this variability for <str<strong>on</strong>g>the</str<strong>on</strong>g> management<str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora in Willapa Bay.METHODSSeedling RecruitmentTo test <str<strong>on</strong>g>the</str<strong>on</strong>g> degree <str<strong>on</strong>g>of</str<strong>on</strong>g> spatial and temporal variati<strong>on</strong> inseedling recruitment we established 44 permanent plots <strong>on</strong>tidal mudflat that was free <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora. Plots covered<str<strong>on</strong>g>the</str<strong>on</strong>g> full spatial extent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary and spanned a range <str<strong>on</strong>g>of</str<strong>on</strong>g>substrate characteristics, distance to established S. alterniflora,and tidal elevati<strong>on</strong>. Plots were 15 m wide andvaried in length depending <strong>on</strong> local site characteristics. Werecorded <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each plot using GPS equipment(Trimble Pathfinder Pro XRS). Beginning in June 2001 we-87-


Chapter 2: Spartina Distributi<strong>on</strong> and Spread<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaFig. 2. Recruitment <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora seedlings across 44 permanentplots in Willapa Bay, Washingt<strong>on</strong>.Fig. 1. Seedling census using airboat and GPS guided navigati<strong>on</strong>.used airboat surveys to visually census each plot for newseedling recruits (Fig. 1). Using <str<strong>on</strong>g>the</str<strong>on</strong>g> GPS as a navigati<strong>on</strong>alguide we traversed <str<strong>on</strong>g>the</str<strong>on</strong>g> borders <str<strong>on</strong>g>of</str<strong>on</strong>g> each plot in <str<strong>on</strong>g>the</str<strong>on</strong>g> airboat. Ateam <str<strong>on</strong>g>of</str<strong>on</strong>g> three would count <str<strong>on</strong>g>the</str<strong>on</strong>g> total number <str<strong>on</strong>g>of</str<strong>on</strong>g> seedlings observedduring each airboat pass. We used average counts <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> three observers as <str<strong>on</strong>g>the</str<strong>on</strong>g> estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> seedlingsper plot. Seedling counts am<strong>on</strong>g observers never variedmore than 10%, and usually were within <strong>on</strong>e or twoseedlings <str<strong>on</strong>g>of</str<strong>on</strong>g> each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r. We c<strong>on</strong>ducted yearly censuses eachJune from 2001-2004.Seed Producti<strong>on</strong>To test for variability in seed producti<strong>on</strong>, we established30 50 m x 50 m permanent plots in established S. alterniflorameadows across <str<strong>on</strong>g>the</str<strong>on</strong>g> full spatial extent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong>.Plots spanned a range <str<strong>on</strong>g>of</str<strong>on</strong>g> meadow ages. Beginning in<str<strong>on</strong>g>the</str<strong>on</strong>g> fall <str<strong>on</strong>g>of</str<strong>on</strong>g> 2002 we collected 15 inflorescences each from 10individual cl<strong>on</strong>es within <str<strong>on</strong>g>the</str<strong>on</strong>g> permanent plots. We also estimatedS. alterniflora cover and inflorescence density withineach plot. We placed <str<strong>on</strong>g>the</str<strong>on</strong>g> inflorescences in wet, cold (10 O C)storage to break dormancy. For each cl<strong>on</strong>e we calculated <str<strong>on</strong>g>the</str<strong>on</strong>g>germinati<strong>on</strong> rate per inflorescence. Using <str<strong>on</strong>g>the</str<strong>on</strong>g>se values and<str<strong>on</strong>g>the</str<strong>on</strong>g> estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> inflorescence density at each site we calculatedan estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> mean viable seed producti<strong>on</strong> per squaremeter (m 2 ) at each site.RESULTSRecruitment is episodicOver <str<strong>on</strong>g>the</str<strong>on</strong>g> course <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> study, <str<strong>on</strong>g>the</str<strong>on</strong>g> yearly variati<strong>on</strong> inseedling recruitment was dramatically episodic (Fig. 2).Yearly average estuary-wide recruitment varied from a low<str<strong>on</strong>g>of</str<strong>on</strong>g> 12/ha to a high <str<strong>on</strong>g>of</str<strong>on</strong>g> 500/ha. Site-specific yearly variati<strong>on</strong>was even greater. For instance, recruitment at <str<strong>on</strong>g>the</str<strong>on</strong>g> TarlattSlough site was 82 seedlings/ha in 2002 and 4,509 seedlings/hain 2003.Recruitment varies with substrateThe spatial variati<strong>on</strong> in recruitment was equally variable.Within a given year, recruitment density across sitesranged from 0/ha to over 4,000/ha. One factor c<strong>on</strong>tributingto this variati<strong>on</strong> was substrate type. Muddy sites had morethan five times greater recruitment than sandy or mixed sites(Fig. 3). Most potential sites for Spartina col<strong>on</strong>izati<strong>on</strong> withinWillapa Bay are sheltered from str<strong>on</strong>g wave energy (maximumfetch less than 1 kilometer [km]). Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sandysites in this study are associated with regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> high tidalenergy such as channel edges. A few sites were located inrelatively high fetch areas (approximately 4 km) or <strong>on</strong> barsnear <str<strong>on</strong>g>the</str<strong>on</strong>g> mouths <str<strong>on</strong>g>of</str<strong>on</strong>g> rivers.C<strong>on</strong>trol influences local recruitmentMeadows that received c<strong>on</strong>trol treatments in 2003 hadsignificantly reduced seed producti<strong>on</strong> relative to sites that-88-


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 2: Spartina Distributi<strong>on</strong> and SpreadFig. 3. Recruitment <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora seedlings in plots varying insubstrate texture. Values are means ± 1 S.E.Seedlings/ha25002000150010005000N<strong>on</strong>eC<strong>on</strong>trolFig. 4. The influence <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol efforts in 2003 <strong>on</strong> local seedlingrecruitment in 2004. C<strong>on</strong>trol methods included a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanicalmethods and herbicide applicati<strong>on</strong>. Values are means ± 1S.E.did not receive c<strong>on</strong>trol. The local reducti<strong>on</strong> in seed producti<strong>on</strong>influenced local (sub-regi<strong>on</strong>) seed recruitment <str<strong>on</strong>g>the</str<strong>on</strong>g> followingyear (Fig. 4). Areas such as <str<strong>on</strong>g>the</str<strong>on</strong>g> Palix and Cedar riversthat did not receive c<strong>on</strong>trol in 2003 had high seed producti<strong>on</strong>that fall and corresp<strong>on</strong>dingly high seedling recruitment<str<strong>on</strong>g>the</str<strong>on</strong>g> following year. In c<strong>on</strong>trast, sites that received c<strong>on</strong>trolin 2003 such as Tarlatt Slough and Diam<strong>on</strong>d Point experiencedlow rates <str<strong>on</strong>g>of</str<strong>on</strong>g> seed producti<strong>on</strong> that fall and had corresp<strong>on</strong>dinglylow recruitment <str<strong>on</strong>g>the</str<strong>on</strong>g> following year.DISCUSSIONCauses <str<strong>on</strong>g>of</str<strong>on</strong>g> variabilitySpartina alterniflora recruitment in Willapa Bay ishighly variable across years and across sub-regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>bay. The yearly variati<strong>on</strong> observed in this study corroboratesl<strong>on</strong>ger-term data from historical aerial photographssuggesting that <str<strong>on</strong>g>the</str<strong>on</strong>g>re have been str<strong>on</strong>g episodic bursts <str<strong>on</strong>g>of</str<strong>on</strong>g> S.alterniflora col<strong>on</strong>izati<strong>on</strong> (Civille et al. 2005). A significantcomp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> this yearly variati<strong>on</strong> in recruitment appears tobe directly related to levels <str<strong>on</strong>g>of</str<strong>on</strong>g> seed producti<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> previousyear. For <str<strong>on</strong>g>the</str<strong>on</strong>g> limited two years that we are able to makecomparis<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> average estuary-wide recruitment tracksaverage estuary-wide seed producti<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> previous year. Inadditi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is evidence that S. alterniflora seed set is significantlyinfluenced by pollen availability, and that pollenavailability is significantly reduced by wet and cool c<strong>on</strong>diti<strong>on</strong>s(Davis et al. 2004, and this volume). Yearly averagebay-wide recruitment is positively correlated with <str<strong>on</strong>g>the</str<strong>on</strong>g> number<str<strong>on</strong>g>of</str<strong>on</strong>g> August degree days (<str<strong>on</strong>g>the</str<strong>on</strong>g> cumulative number <str<strong>on</strong>g>of</str<strong>on</strong>g> growingdegree days in August) and negatively correlated withtotal August precipitati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> previous year (Lambrinos,unpublished data).Substrate characteristics appear to play an importantrole in <str<strong>on</strong>g>the</str<strong>on</strong>g> site-to-site variability in recruitment. Spartinaalterniflora seedlings are far less likely to establish at sandysites than at muddy sites. The mechanisms generating thispattern are still unclear. Spartina seeds may be less frequentlydeposited at more erosive sandy sites. In river systemsseed and sediment depositi<strong>on</strong> are closely related(Goods<strong>on</strong> et al. 2003). In additi<strong>on</strong>, seedlings may be lesslikely to establish at sandy sites because <str<strong>on</strong>g>of</str<strong>on</strong>g> higher erosi<strong>on</strong>and physical stress. Alternatively, seedlings could performpoorly in sandy sediments because <str<strong>on</strong>g>of</str<strong>on</strong>g> nutriti<strong>on</strong>al limitati<strong>on</strong>s.Increasing sediment sand corresp<strong>on</strong>ds with decreasing sedimentnitrogen (N) c<strong>on</strong>tent at <str<strong>on</strong>g>the</str<strong>on</strong>g>se sites (Tyler et al. 2007).Evidence from transplant experiments and comm<strong>on</strong> gardenexperiments indicate that S. alterniflora seedlings growpoorly <strong>on</strong> sand relative to mud irrespective <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ambienthydrological c<strong>on</strong>diti<strong>on</strong>s (Lambrinos and Bando 2008).Undoubtedly, ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r factor in <str<strong>on</strong>g>the</str<strong>on</strong>g> site-to-site variabilityin recruitment is seed supply. Spartina alterniflora can potentiallydisperse l<strong>on</strong>g distances (Howard and Sytsma 2010).However, <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that regi<strong>on</strong>s that received c<strong>on</strong>trol in 2003had corresp<strong>on</strong>dingly reduced recruitment levels in 2004,while no reducti<strong>on</strong>s in recruitment occurred in regi<strong>on</strong>s thatdid not receive c<strong>on</strong>trol suggests that a sizeable porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>recruitment is derived from local seed sources.Implicati<strong>on</strong>s for managementThe str<strong>on</strong>gly episodic and spatially variable nature <str<strong>on</strong>g>of</str<strong>on</strong>g> S.alterniflora recruitment in Willapa Bay has important implicati<strong>on</strong>sfor management. Years <str<strong>on</strong>g>of</str<strong>on</strong>g> poor recruitment haveprobably slowed <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> in Willapa Bay.Both vegetative growth and recruitment by seed c<strong>on</strong>tribute-89-


Chapter 2: Spartina Distributi<strong>on</strong> and Spread<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinato <str<strong>on</strong>g>the</str<strong>on</strong>g> spatial expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong>. However, most <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> expansi<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> bay has occurred through seedling recruitmentand subsequent growth <str<strong>on</strong>g>of</str<strong>on</strong>g> cl<strong>on</strong>es, not from <str<strong>on</strong>g>the</str<strong>on</strong>g>lateral growth <str<strong>on</strong>g>of</str<strong>on</strong>g> established meadows (Civille et al. 2005).With moderate and low annual budgets, <str<strong>on</strong>g>the</str<strong>on</strong>g> optimal c<strong>on</strong>trolstrategy in Willapa Bay is to target nascent populati<strong>on</strong>s(Taylor and Hastings 2004; Taylor et al., this volume).However, a “cl<strong>on</strong>e <strong>on</strong>ly” strategy may be incompatible witho<str<strong>on</strong>g>the</str<strong>on</strong>g>r management objectives such as restoring habitat formigratory birds. Periods <str<strong>on</strong>g>of</str<strong>on</strong>g> low recruitment may provideopportunities to target meadows with little reducti<strong>on</strong> in c<strong>on</strong>troleffort against nascent cl<strong>on</strong>es. In c<strong>on</strong>trast, periods <str<strong>on</strong>g>of</str<strong>on</strong>g>high recruitment would be poor times to allocate treatmentresources to established meadows.At <str<strong>on</strong>g>the</str<strong>on</strong>g> same time, periods <str<strong>on</strong>g>of</str<strong>on</strong>g> low recruitment may fostercomplacency. This is unlikely to occur with a comprehensiveand l<strong>on</strong>g-term management program such as <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ecurrently being implemented in Willapa Bay. However, poorrecruitment years may hamper implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> such comprehensivemanagement plans. For instance, if initial infestati<strong>on</strong>sare followed by years <str<strong>on</strong>g>of</str<strong>on</strong>g> low recruitment <str<strong>on</strong>g>the</str<strong>on</strong>g>re maybe little impetus to expend resources <strong>on</strong> c<strong>on</strong>trol because <str<strong>on</strong>g>the</str<strong>on</strong>g>spatial expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong>s is limited. Even if c<strong>on</strong>trolis initiated at a particular site, <str<strong>on</strong>g>the</str<strong>on</strong>g> need to develop a regi<strong>on</strong>alc<strong>on</strong>trol strategy may not be obvious. Untreated infestati<strong>on</strong>smay <str<strong>on</strong>g>the</str<strong>on</strong>g>n serve as significant seed sources during subsequentgood seed producti<strong>on</strong> years.The poor seedling recruitment at sandy sites comparedto muddy sites has allowed <str<strong>on</strong>g>the</str<strong>on</strong>g> S. alterniflora managementprogram in Willapa Bay to focus c<strong>on</strong>trol efforts spatially.The sandy L<strong>on</strong>g Beach Peninsula has been given a low priorityfor c<strong>on</strong>trol, and c<strong>on</strong>trol resources will <strong>on</strong>ly be spen<str<strong>on</strong>g>the</str<strong>on</strong>g>re during <str<strong>on</strong>g>the</str<strong>on</strong>g> final stages <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol program (K. Murphy,pers. comm.). The ability to prioritize estuaries in terms<str<strong>on</strong>g>of</str<strong>on</strong>g> susceptibility to S. alterniflora recruitment is an importantc<strong>on</strong>siderati<strong>on</strong> given <str<strong>on</strong>g>the</str<strong>on</strong>g> limited resources usually availableand <str<strong>on</strong>g>the</str<strong>on</strong>g> wide spatial extent <str<strong>on</strong>g>of</str<strong>on</strong>g> most estuaries.The ability to spatially allocate c<strong>on</strong>trol resources is alsoaided by <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that a significant proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> local recruitmentis derived from local seed producti<strong>on</strong>. C<strong>on</strong>trolefforts in <strong>on</strong>e area are unlikely to be completely swamped byrecruitment coming from distant or hydrologically disjunctun-c<strong>on</strong>trolled areas. This suggests that S. alterniflora c<strong>on</strong>trolin different sub-regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> an estuary can be managedsomewhat independently (e.g., c<strong>on</strong>trolled sequentially) andstill be successful. L<strong>on</strong>g-distance dispersal is certainly nottrivial, however, and l<strong>on</strong>g-term management will requireextensive m<strong>on</strong>itoring and a better understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> dispersalpathways.ACKNOWLEDGMENTSWe thank <str<strong>on</strong>g>the</str<strong>on</strong>g> kind and expert assistance <str<strong>on</strong>g>of</str<strong>on</strong>g> several peopleand agencies without whose assistance this work wouldnot have been possible: Brian Couch; Les Holcomb; KyleMurphy; Fritzie Grevstad; Kathleen Sayce; Brett Dumbauld;Dave Heimer; Charlie Stenvall; Todd Brownly; WendyBrown; The Washingt<strong>on</strong> Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Fish and Wildlife;The Washingt<strong>on</strong> Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture; The Washingt<strong>on</strong>Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural Resources; The Willapa Bay Nati<strong>on</strong>alWildlife Refuge. Funding was provided by NSF Biocomplexitygrant DEB0083583.REFERENCESCiville, J.C., K. Sayce, S.D. Smith and D.R. Str<strong>on</strong>g. 2005. Rec<strong>on</strong>structinga century <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflora invasi<strong>on</strong> with historicalrecords and c<strong>on</strong>temporary remote sensing. Ecoscience12(3):330-338.Civille, J.C., S.D. Smith, and D.R. Str<strong>on</strong>g. 2005. Remote sensingLiDAR and GIS inform landscape and populati<strong>on</strong> ecology, WillapaBay, WA. In: Ayres, D.R., D.W. Kerr, S.D. Erics<strong>on</strong> andP.R. Ol<str<strong>on</strong>g>of</str<strong>on</strong>g>s<strong>on</strong>, eds. <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g><strong>on</strong> <strong>Invasive</strong> Spartina, 2004 Nov 8-10, San Francisco,CA, USA. San Francisco Estuary <strong>Invasive</strong> Spartina Project <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>California State Coastal C<strong>on</strong>servancy: Oakland, CA.Davis, H.G., C.M. Taylor, J.G. Lambrinos and D.R. Str<strong>on</strong>g. 2004.Pollen limitati<strong>on</strong> causes an Allee effect in a wind-pollinated invasivegrass (Spartina alterniflora). <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Nati<strong>on</strong>alAcademy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences USA 101:13804-13807.Goods<strong>on</strong> J.M., A.M. Gurnell, P.G. Angold, and I.P. Morrissey.2003. Evidence for hydrochory and <str<strong>on</strong>g>the</str<strong>on</strong>g> depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> viableseeds within winter flow-deposited sediments: <str<strong>on</strong>g>the</str<strong>on</strong>g> River Dove,Derbyshire, UK. River Research & Applicati<strong>on</strong>s 19:317-334.Howard, V., and M. Sytsma. 2010. Fragment propagules <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina alterniflora and potential eastern pacific dispersal. In:Ayres, D.R., D.W. Kerr, S.D. Erics<strong>on</strong> and P.R. Ol<str<strong>on</strong>g>of</str<strong>on</strong>g>s<strong>on</strong>, eds.<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong>Spartina, 2004 Nov 8-10, San Francisco, CA, USA. San FranciscoEstuary <strong>Invasive</strong> Spartina Project <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> California StateCoastal C<strong>on</strong>servancy: Oakland, CA.Lambrinos, J.G. and K.J. Bando. 2008. Habitat modificati<strong>on</strong> inhibitsc<strong>on</strong>specific seedling recruitment in populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> an invasiveecosystem engineer. Biological Invasi<strong>on</strong>s 10:729-741.Sayce, K. 1988. Introduced cordgrass, Spartina alternifloraLoisel., in saltmarshes and tidelands <str<strong>on</strong>g>of</str<strong>on</strong>g> Willapa Bay, Washingt<strong>on</strong>.Report prepared for <str<strong>on</strong>g>the</str<strong>on</strong>g> Willapa Nati<strong>on</strong>al Wildlife Refuge.USFWS #FWSI-87058 (TS).Taylor, C. M., and A. Hastings. 2004. Finding optimal c<strong>on</strong>trolstrategies for an invasive grass using a density-structured model.Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology. 41:1049–1057Tyler, A.C., J.G. Lambrinos, and E.D. Grosholz. 2007 Nitrogeninputs promote <str<strong>on</strong>g>the</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> an invasive marsh grass. EcologicalApplicati<strong>on</strong>s 17:1886–1898.With, K.A. 2002. The landscape ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> invasive spread. C<strong>on</strong>servati<strong>on</strong>Biology 16:1192-1203.-90-


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 2: Spartina Distributi<strong>on</strong> and SpreadPOLLEN LIMITATION IN A WIND-POLLINATED INVASIVE GRASS, SPARTINAALTERNIFLORAH.G. DAVIS 1 ,C.M.TAYLOR 2 ,J.G.LAMBRINOS 3 ,J.C.CIVILLE 4,5 AND D.R. STRONG 1,41 Center for Populati<strong>on</strong> Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Davis, 2320 Storer Hall, One Shields Ave., Davis, CA 95616;hgdavis@s<strong>on</strong>ic.net2 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology and Evoluti<strong>on</strong>ary Biology, Tulane University, 6823 St. Charles Ave., New Orleans, LA 701183 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Science & Policy, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Davis, One Shields Ave., Davis, CA 956164 Secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Evoluti<strong>on</strong> & Ecology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Davis, One Shields Ave., Davis, CA 956165 Current address: 2731 Be<str<strong>on</strong>g>the</str<strong>on</strong>g>l St. NE, Olympia, WA 98506; jciville@comcast.netLimits to, and <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g>, pollen availability in wind-pollinated plants have been littlestudied. Reproductive failure or depressi<strong>on</strong> because <str<strong>on</strong>g>of</str<strong>on</strong>g> a lack <str<strong>on</strong>g>of</str<strong>on</strong>g> available mates could lead topopulati<strong>on</strong> demographic c<strong>on</strong>sequences for many species. Of particular interest is how pollenlimitati<strong>on</strong> affects <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> spatial spread <str<strong>on</strong>g>of</str<strong>on</strong>g> invasive plants. We performed a manipulative pollenadditi<strong>on</strong> and exclusi<strong>on</strong> study to investigate <str<strong>on</strong>g>the</str<strong>on</strong>g> role <str<strong>on</strong>g>of</str<strong>on</strong>g> pollen limitati<strong>on</strong> in an invasive perennialestuarine grass, Spartina alterniflora. We found pollen impoverishment at <str<strong>on</strong>g>the</str<strong>on</strong>g> low density leadingedge <str<strong>on</strong>g>of</str<strong>on</strong>g> a large invasi<strong>on</strong>, causing an eight fold reducti<strong>on</strong> in seed set am<strong>on</strong>g low density plants,though not am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> high density plants. We found pollen loads <strong>on</strong> stigmas to be determined bypollen availability in <str<strong>on</strong>g>the</str<strong>on</strong>g> air. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> airborne pollen is dictated by <str<strong>on</strong>g>the</str<strong>on</strong>g> spatialpattern <str<strong>on</strong>g>of</str<strong>on</strong>g> plants, with much more pollen available over c<strong>on</strong>tinuous meadows than in areas <str<strong>on</strong>g>of</str<strong>on</strong>g> lowplant density. The delay <str<strong>on</strong>g>of</str<strong>on</strong>g> appreciable numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> seed persists for decades until vegetative growthcoalesces plants into c<strong>on</strong>tinuous meadows, and this has slowed <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong>.Keywords: Allee effect, invasive species, pollen limitati<strong>on</strong>, Spartina alternifloraWhen Willapa Bay, Washingt<strong>on</strong> was first col<strong>on</strong>ized bySpartina alterniflora in <str<strong>on</strong>g>the</str<strong>on</strong>g> 1890s, <str<strong>on</strong>g>the</str<strong>on</strong>g> very slow rate <str<strong>on</strong>g>of</str<strong>on</strong>g>spread gave little reas<strong>on</strong> for c<strong>on</strong>cern. However, by <str<strong>on</strong>g>the</str<strong>on</strong>g>1980s, <str<strong>on</strong>g>the</str<strong>on</strong>g>re were vast areas <str<strong>on</strong>g>of</str<strong>on</strong>g> seedling recruitment andlarge meadow formati<strong>on</strong> <strong>on</strong> mudflats previously unoccupiedby any o<str<strong>on</strong>g>the</str<strong>on</strong>g>r species <str<strong>on</strong>g>of</str<strong>on</strong>g> emergent plant. In 1995, <str<strong>on</strong>g>the</str<strong>on</strong>g> problemhad grown so daunting that <str<strong>on</strong>g>the</str<strong>on</strong>g> Washingt<strong>on</strong> State Legislaturedeclared <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina invasi<strong>on</strong> an “envir<strong>on</strong>mentalemergency.” As with many invasive organisms, S.alterniflora maintained an initially low pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile due to a “lagtime” between col<strong>on</strong>izati<strong>on</strong> and rapid spread (e.g., Kowarik1995). In this paper, we examine <str<strong>on</strong>g>the</str<strong>on</strong>g> ultimate mechanisticcause resp<strong>on</strong>sible for <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina lag phase and <str<strong>on</strong>g>the</str<strong>on</strong>g>c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> its cessati<strong>on</strong>.<strong>Invasive</strong> S. alterniflora recruits <strong>on</strong>to open Pacificmudflats as seeds drift in <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> tides yearly, leaving noseedbank (Woodhouse 1979). Seedlings <str<strong>on</strong>g>the</str<strong>on</strong>g>n growrhizomatously into widely spaced circular cl<strong>on</strong>es.Eventually, <str<strong>on</strong>g>the</str<strong>on</strong>g>se isolated cl<strong>on</strong>es grow toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r to formc<strong>on</strong>tinuous meadows. Individuals within a low-densitypopulati<strong>on</strong>, such as isolated cl<strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora, maysuffer from depressed reproducti<strong>on</strong> due to a lack <str<strong>on</strong>g>of</str<strong>on</strong>g> sexualpartners. This syndrome, known as an Allee effect (Allee1931), will cause populati<strong>on</strong>s to go extinct if <str<strong>on</strong>g>the</str<strong>on</strong>g> populati<strong>on</strong>density drops below a threshold. A less well-knownmanifestati<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g> weak, as opposed to str<strong>on</strong>g, Allee effect.Under <str<strong>on</strong>g>the</str<strong>on</strong>g> weak Allee effect, <str<strong>on</strong>g>the</str<strong>on</strong>g> per capita rate <str<strong>on</strong>g>of</str<strong>on</strong>g> growth(<str<strong>on</strong>g>the</str<strong>on</strong>g> growth rate for individuals within <str<strong>on</strong>g>the</str<strong>on</strong>g> populati<strong>on</strong>) isdepressed when populati<strong>on</strong> density is low, but neverbecomes negative as occurs with a str<strong>on</strong>g effect. We surmisethat <str<strong>on</strong>g>the</str<strong>on</strong>g> Allee effect in Willapa Bay Spartina is weakbecause existing individuals are perennial; while <str<strong>on</strong>g>the</str<strong>on</strong>g>y maymake very few seeds when <str<strong>on</strong>g>the</str<strong>on</strong>g>y are isolated, <str<strong>on</strong>g>the</str<strong>on</strong>g>y surviveuntil populati<strong>on</strong> density becomes high with meadowformati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> Allee effect ends.To find whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r density has an effect up<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> number<str<strong>on</strong>g>of</str<strong>on</strong>g> seeds a plant can produce and <str<strong>on</strong>g>the</str<strong>on</strong>g> viability <str<strong>on</strong>g>of</str<strong>on</strong>g> those seeds,we collected five inflorescences from 20 individual S.alterniflora plants at five different sites within Willapa Bayin <str<strong>on</strong>g>the</str<strong>on</strong>g> year 2000 (L<strong>on</strong>g Island, Peninsula, Palix River,Shoalwaters, Porter Point). At each site we collected half <str<strong>on</strong>g>the</str<strong>on</strong>g>inflorescences from low density cl<strong>on</strong>es (all individualsisolated within bare mud) and half from high densitymeadows. We assessed both seed set (# seeds / # florets /inflorescence) and germinati<strong>on</strong> percentage (# germinati<strong>on</strong>s /# florets / inflorescence). We found that c<strong>on</strong>siderably fewerisolated cl<strong>on</strong>es (37%) than meadow plants (92%) could setany seed at all. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, for <str<strong>on</strong>g>the</str<strong>on</strong>g> plants that could set atleast some seed, <str<strong>on</strong>g>the</str<strong>on</strong>g> meadow plants had a much higherproporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> seeds (0.30) than <str<strong>on</strong>g>the</str<strong>on</strong>g> isolated cl<strong>on</strong>es (0.08)(Davis et al. 2004a). Finally, <str<strong>on</strong>g>the</str<strong>on</strong>g> seeds <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> isolated cl<strong>on</strong>eswere much less viable with a proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.13 germinating-91-


Chapter 2: Spartina Distributi<strong>on</strong> and Spread<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinaas opposed to a proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.34 <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> meadow plants’seeds germinating. There was no obvious effect <str<strong>on</strong>g>of</str<strong>on</strong>g> proximity<str<strong>on</strong>g>of</str<strong>on</strong>g> neighboring cl<strong>on</strong>es <strong>on</strong> isolated individuals. While somelow density areas were more crowded than o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs, <str<strong>on</strong>g>the</str<strong>on</strong>g>re wasno obvious trend towards relatively higher or lower seed setas l<strong>on</strong>g as <str<strong>on</strong>g>the</str<strong>on</strong>g> cl<strong>on</strong>es were not touching <strong>on</strong>e ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r. Thissuggests that <str<strong>on</strong>g>the</str<strong>on</strong>g> cl<strong>on</strong>es need to merge toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r before <str<strong>on</strong>g>the</str<strong>on</strong>g>step-wise increase in seed set is achieved by meadowindividuals. This work is reported in full in Davis et al.(2004a).We <str<strong>on</strong>g>the</str<strong>on</strong>g>n investigated whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r pollen limitati<strong>on</strong> could be<str<strong>on</strong>g>the</str<strong>on</strong>g> mechanism behind <str<strong>on</strong>g>the</str<strong>on</strong>g> Allee effect in Willapa BaySpartina. While this may appear to be an intuitivehypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis, pollen limitati<strong>on</strong> is generally assumed not tooccur in wind-pollinated plants, such as grasses, c<strong>on</strong>ifers andoak trees. There are many studies <str<strong>on</strong>g>of</str<strong>on</strong>g> pollen limitati<strong>on</strong> inanimal-pollinated plants (Burd 1994; Lars<strong>on</strong> & Barrett2000), very few <str<strong>on</strong>g>of</str<strong>on</strong>g> wind-pollinated plants, and n<strong>on</strong>e beforethis <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> wind-pollinated invasive plants. Pollen limitati<strong>on</strong>in animal vectored plants can diminish reproducti<strong>on</strong> andc<strong>on</strong>strain invasi<strong>on</strong> success (Bar<str<strong>on</strong>g>the</str<strong>on</strong>g>ll et al. 2001; Parker1997). Using simulati<strong>on</strong> and analytic models, we askedwhe<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g> Allee effect in Willapa Bay Spartina could haveslowed <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> invasi<strong>on</strong> and found it did produce a lagtime (Taylor et al. <str<strong>on</strong>g>the</str<strong>on</strong>g>se proceedings; Taylor et al. 2004).We c<strong>on</strong>ducted an observati<strong>on</strong>al and manipulative studyto assess <str<strong>on</strong>g>the</str<strong>on</strong>g> role <str<strong>on</strong>g>of</str<strong>on</strong>g> pollen limitati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> ability <str<strong>on</strong>g>of</str<strong>on</strong>g>Willapa Bay S. alterniflora to set seed. To see if <str<strong>on</strong>g>the</str<strong>on</strong>g>re is adifference in pollen depositi<strong>on</strong> rates <strong>on</strong> stigmas, we collectedstigmas from isolated cl<strong>on</strong>es and high density meadows overthree different sites (Cedar River n = 20; B<strong>on</strong>e River n = 40;Palix River n = 94) and screened <strong>on</strong>e lobe (half) <str<strong>on</strong>g>of</str<strong>on</strong>g> stigmasfor pollen load. We found that meadow plants’ stigmascaptured nine times <str<strong>on</strong>g>the</str<strong>on</strong>g> pollen that <str<strong>on</strong>g>the</str<strong>on</strong>g> isolated cl<strong>on</strong>es’ did.Isolated plants <strong>on</strong> average had less than <strong>on</strong>e pollen grain perstigma lobe while meadow plants had more than six.Although plants at individual sites differed in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir pollenloads, in every case, <str<strong>on</strong>g>the</str<strong>on</strong>g> meadow plants always had more(Davis et al. 2004b). Interestingly, <str<strong>on</strong>g>the</str<strong>on</strong>g> Cedar Rivercollecti<strong>on</strong>s had very little pollen with even meadow plantshaving <strong>on</strong> average less than <strong>on</strong>e pollen grain per stigma lobe,probably because it rained <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> day <str<strong>on</strong>g>of</str<strong>on</strong>g> collecti<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g>previous two days suggesting pollen flow is inhibited <strong>on</strong> wetdays and possibly rainy years.To find how pollen depositi<strong>on</strong> changes over awindward-to-leeward gradient and to see if <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g>pollen in <str<strong>on</strong>g>the</str<strong>on</strong>g> air is correlated with <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> pollendeposited <strong>on</strong> stigmas, we set out pollen traps and collectedadjacent stigmas. We set 10 traps al<strong>on</strong>g each <str<strong>on</strong>g>of</str<strong>on</strong>g> six transects.Oriented al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> prevailing wind: two inwindward isolated cl<strong>on</strong>es (I & II), <strong>on</strong>e al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> windwardmeadow edge (III), <strong>on</strong>e in <str<strong>on</strong>g>the</str<strong>on</strong>g> windward meadow (IV), <strong>on</strong>ein <str<strong>on</strong>g>the</str<strong>on</strong>g> leeward meadow (V) and <strong>on</strong>e 100 m from <str<strong>on</strong>g>the</str<strong>on</strong>g> leewardside <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> meadow across an unvegetated channel (VI)(Davis et al. 2004). We found extremely high correlati<strong>on</strong>between <str<strong>on</strong>g>the</str<strong>on</strong>g> pollen loads <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> traps and stigmas (r = 0.99)supporting <str<strong>on</strong>g>the</str<strong>on</strong>g> hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis that <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> pollen <strong>on</strong>stigmas is c<strong>on</strong>trolled by pollen abundance <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> wind. On<str<strong>on</strong>g>the</str<strong>on</strong>g> pollen traps, we found very little pollen anywhere in <str<strong>on</strong>g>the</str<strong>on</strong>g>isolated cl<strong>on</strong>es or al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> meadow edge. Pollen loadsincreased inside <str<strong>on</strong>g>the</str<strong>on</strong>g> windward end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> meadow andincreased yet more dramatically at <str<strong>on</strong>g>the</str<strong>on</strong>g> leeward end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>meadow. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> pollen droppedprecipitously across <str<strong>on</strong>g>the</str<strong>on</strong>g> unvegetated channel suggesting that<str<strong>on</strong>g>the</str<strong>on</strong>g> gap was too far for nearly all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> airborne pollen tocross (Davis et al. 2004).To c<strong>on</strong>clusively determine whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r isolated cl<strong>on</strong>es aremaking fewer seeds than <str<strong>on</strong>g>the</str<strong>on</strong>g> meadow plants because <str<strong>on</strong>g>of</str<strong>on</strong>g>pollen scarcity, we performed a manipulative experiment bysupplementing and excluding pollen received byinflorescences and leaving c<strong>on</strong>trol inflorescences open toambient pollen availability. Twenty-four plants received alltreatments and a fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r 20 plants received pollen additi<strong>on</strong>and c<strong>on</strong>trol treatments <strong>on</strong>ly. We found <str<strong>on</strong>g>the</str<strong>on</strong>g> pollen exclusi<strong>on</strong>treatment reduced seed set in <str<strong>on</strong>g>the</str<strong>on</strong>g> meadow plants by morethan sixfold, but caused no reducti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> isolated cl<strong>on</strong>es.The pollen additi<strong>on</strong> treatment had no effect <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> seed set<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> meadow plants, but did raise that <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> isolatedcl<strong>on</strong>es by more than threefold. We were not able to saturate<str<strong>on</strong>g>the</str<strong>on</strong>g> plants’ inflorescences with pollen, as an inflorescencehas receptive stigmas for about 10 days (~3 days per stigma)and we were able to supplement <strong>on</strong> <strong>on</strong>ly three c<strong>on</strong>secutivedays. This is likely <str<strong>on</strong>g>the</str<strong>on</strong>g> reas<strong>on</strong> why <str<strong>on</strong>g>the</str<strong>on</strong>g> isolated cl<strong>on</strong>es’pollen additi<strong>on</strong> seed set was not as high as <str<strong>on</strong>g>the</str<strong>on</strong>g> meadowplants’ ambient c<strong>on</strong>trol (Davis et al. 2004). These resultsindicate that isolated cl<strong>on</strong>es, col<strong>on</strong>ists at low density, areextremely pollen-limited whereas seed set in <str<strong>on</strong>g>the</str<strong>on</strong>g> highdensity meadow is not limited by pollen. This work isreported in full in Davis et al. (2004b). We found that anAllee effect c<strong>on</strong>tributed to <str<strong>on</strong>g>the</str<strong>on</strong>g> lag time in spatial spread <str<strong>on</strong>g>of</str<strong>on</strong>g> S.alterniflora in Willapa Bay. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, this Allee effectappears to be <str<strong>on</strong>g>the</str<strong>on</strong>g> result <str<strong>on</strong>g>of</str<strong>on</strong>g> pollen limitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> col<strong>on</strong>izingcl<strong>on</strong>es at <str<strong>on</strong>g>the</str<strong>on</strong>g> leading edge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong>. In <str<strong>on</strong>g>the</str<strong>on</strong>g> studiesoutlined here, and also in two years <str<strong>on</strong>g>of</str<strong>on</strong>g> unpublished data, wec<strong>on</strong>sistently found that isolated individuals set very fewseeds. However, <str<strong>on</strong>g>the</str<strong>on</strong>g>se studies were d<strong>on</strong>e in <str<strong>on</strong>g>the</str<strong>on</strong>g> singlelocati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Willapa Bay, so similar results may or may notbe duplicated in o<str<strong>on</strong>g>the</str<strong>on</strong>g>r locati<strong>on</strong>s. We found a wide range inself-compatibility <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflora from <str<strong>on</strong>g>the</str<strong>on</strong>g> nativerange (Davis 2005), so <str<strong>on</strong>g>the</str<strong>on</strong>g> ability <str<strong>on</strong>g>of</str<strong>on</strong>g> isolated plants to use<str<strong>on</strong>g>the</str<strong>on</strong>g>ir own seeds in different locati<strong>on</strong>s may be largelyinfluenced by <str<strong>on</strong>g>the</str<strong>on</strong>g> source <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> col<strong>on</strong>izing individuals. Itwould be advisable for managers <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r invaded areas toc<strong>on</strong>firm <str<strong>on</strong>g>the</str<strong>on</strong>g> lack <str<strong>on</strong>g>of</str<strong>on</strong>g> seeds in isolated Spartina alterniflorabefore discounting <str<strong>on</strong>g>the</str<strong>on</strong>g>ir potential as significant seed sources.-92-


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 2: Spartina Distributi<strong>on</strong> and SpreadLag times <str<strong>on</strong>g>of</str<strong>on</strong>g>fer a transient opportunity for management<str<strong>on</strong>g>of</str<strong>on</strong>g> invasive species. However, lag times can induce a falsesense <str<strong>on</strong>g>of</str<strong>on</strong>g> security about <str<strong>on</strong>g>the</str<strong>on</strong>g> threat from exotic plants so <str<strong>on</strong>g>the</str<strong>on</strong>g>y<str<strong>on</strong>g>of</str<strong>on</strong>g>ten go unnoticed and unc<strong>on</strong>trolled until <str<strong>on</strong>g>the</str<strong>on</strong>g> invader beginsto spread aggressively (Parker 2004). These studies raise <str<strong>on</strong>g>the</str<strong>on</strong>g>possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> pollen limitati<strong>on</strong> in o<str<strong>on</strong>g>the</str<strong>on</strong>g>r wind-pollinatedspecies. It is an open questi<strong>on</strong> whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r this is a comm<strong>on</strong>phenomen<strong>on</strong>, or whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r it is more likely to be found am<strong>on</strong>gpopulati<strong>on</strong>s that are actively declining or expanding.ACKNOWLEDGMENTSWe are grateful to <str<strong>on</strong>g>the</str<strong>on</strong>g> Washingt<strong>on</strong> State Departments <str<strong>on</strong>g>of</str<strong>on</strong>g>Natural Resources, Fish and Wildlife and Agriculture and<str<strong>on</strong>g>the</str<strong>on</strong>g>ir employees for <str<strong>on</strong>g>the</str<strong>on</strong>g> facilitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this research. We alsothank <str<strong>on</strong>g>the</str<strong>on</strong>g> U.C. Davis “Spartina Lab,” all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> volunteers,editors, reviewers and <str<strong>on</strong>g>the</str<strong>on</strong>g> organizers <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> Annual<strong>Invasive</strong> Spartina <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g>. This work was funded by <str<strong>on</strong>g>the</str<strong>on</strong>g>U.S. Envir<strong>on</strong>mental Protecti<strong>on</strong> Agency (EPA) Science toAchieve Results (STAR) program, <str<strong>on</strong>g>the</str<strong>on</strong>g> Nati<strong>on</strong>al ScienceFoundati<strong>on</strong> (NSF) Biocomplexity Grant program (P.I. A.Hastings), a Washingt<strong>on</strong> State Sea Grant and <str<strong>on</strong>g>the</str<strong>on</strong>g> NSFIntegrative Graduate Educati<strong>on</strong> and Research Trainee(IGERT) program.REFERENCESAllee, W.C. 1931. Animal Aggregati<strong>on</strong>s, a Study in General Sociology.University <str<strong>on</strong>g>of</str<strong>on</strong>g> Chicago Press: Chicago.Bar<str<strong>on</strong>g>the</str<strong>on</strong>g>ll, J.F., J.M. Randall, R.W. Thorp & A.M. Wenner. 2001.Promoti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> seed set in yellow star-thistle by h<strong>on</strong>ey bees: evidence<str<strong>on</strong>g>of</str<strong>on</strong>g> an invasive mutualism. Ecological Applicati<strong>on</strong>s11:1870-1883.Burd, M. 1994. Bateman’s principle and plant reproducti<strong>on</strong>: <str<strong>on</strong>g>the</str<strong>on</strong>g>role <str<strong>on</strong>g>of</str<strong>on</strong>g> pollen limitati<strong>on</strong> in fruit and seed set. Botanical Review60, 83-139.Davis, H.G., C.M. Taylor, J.C. Civille & D.R. Str<strong>on</strong>g. 2004a. AnAllee effect at <str<strong>on</strong>g>the</str<strong>on</strong>g> fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> a plant invasi<strong>on</strong>: Spartina in a Pacificestuary. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology 92:321-327.Davis, H.G., C.M. Taylor, J.G. Lambrinos & D.R. Str<strong>on</strong>g. 2004b.Pollen limitati<strong>on</strong> causes an Allee effect in a wind-pollinated invasivegrass (Spartina alterniflora). <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Nati<strong>on</strong>alAcademy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences USA 101:13804-13807.Davis, H.G. 2005. r-Selected traits in an invasive populati<strong>on</strong>. Evoluti<strong>on</strong>aryEcology 19:255-274.Kowarik, I. 1995. Time lags in biological invasi<strong>on</strong>s with regard to<str<strong>on</strong>g>the</str<strong>on</strong>g> success and failure <str<strong>on</strong>g>of</str<strong>on</strong>g> alien species. In Plant Invasi<strong>on</strong>s: GeneralAspects and Special Problems, eds. Pysek, P., Prach, K., Rejmánek,M. & Wade, M. SPB Academic: Amsterdam, pp. 15-38.Lars<strong>on</strong>, B.M.H. & S.C.H. Barrett. 2000. A comparative analysis <str<strong>on</strong>g>of</str<strong>on</strong>g>pollen limitati<strong>on</strong> in flowering plants. Biological Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>Linnean Society 69:503-520.Parker, I.M. 1997. Pollinator limitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Cytisus scoparius, aninvasive exotic shrub. Ecology 78:1457-70.Parker, I.M. 2004. Mating patterns and rates <str<strong>on</strong>g>of</str<strong>on</strong>g> biological invasi<strong>on</strong>.<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Nati<strong>on</strong>al Academy <str<strong>on</strong>g>of</str<strong>on</strong>g> Sciences USA101:13695-13696.Taylor, C.M., H.G. Davis, J.C. Civille, F.S.Grevstad and A. Hastings.2004. C<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> an Allee effect in an invasive plant:Spartina alterniflora in Willapa Bay, Washingt<strong>on</strong>. Ecology85:3254-3266.Taylor, C.M., A. Hastings, H.G. Davis, J.C. Civille, and F.S.Grevstad. 2010. Modeling <str<strong>on</strong>g>the</str<strong>on</strong>g> spread and c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflorain a Pacific Estuary. In: Ayres, D.R., D.W. Kerr, S.D.Erics<strong>on</strong> and P.R. Ol<str<strong>on</strong>g>of</str<strong>on</strong>g>s<strong>on</strong>, eds. <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g><str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartina, 2004 Nov 8-10, SanFrancisco, CA, USA. San Francisco Estuary <strong>Invasive</strong> SpartinaProject <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> California State Coastal C<strong>on</strong>servancy: Oakland,CA (this volume).Woodhouse, W.W. 1979. Building Saltmarshes al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> Coasts <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> C<strong>on</strong>tinental United States. Special report no. 4. Army Corps<str<strong>on</strong>g>of</str<strong>on</strong>g> Engineers, Coastal Engineering Research Center, Belvoir,Virginia.-93-


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 2: Spartina Distributi<strong>on</strong> and SpreadINVASIVE HYBRID CORDGRASS (SPARTINA ALTERNIFLORA X FOLIOSA)RECRUITMENTDYNAMICS IN OPEN MUDFLATS OF SAN FRANCISCO BAYC.M. SLOOP 1,2 ,D.R.AYRES 1 AND D.R. STRONG 11 Secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Evoluti<strong>on</strong> and Ecology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Davis, One Shields Avenue, Davis, CA 956162 Laguna de Santa Rosa Foundati<strong>on</strong>, 900 Sanford Road, Santa Rosa, CA 95401; christina@lagunafoundati<strong>on</strong>.orgHybrid Spartina are currently expanding <str<strong>on</strong>g>the</str<strong>on</strong>g>ir range in <str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco Bay (SFB) at a rateexceeding exp<strong>on</strong>ential growth. A subset <str<strong>on</strong>g>of</str<strong>on</strong>g> transgressive hybrid Spartina plants that positivelyexceed <str<strong>on</strong>g>the</str<strong>on</strong>g> fitness trait values <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir parents are competitively and reproductively superior to bothparents and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hybrids and likely drive <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong>. In order to col<strong>on</strong>ize <str<strong>on</strong>g>the</str<strong>on</strong>g> vast open SFBmudflats and found new populati<strong>on</strong>s hybrid cordgrass plants have to evolve self-compatibility andexhibit rapid vegetative and lateral growth. The mudflat tidal cycle covers or exposes plants for upto six hours, so new seedlings have to be robust and fast growing to survive and establish. A smallnumber <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid and native Spartina have col<strong>on</strong>ized <str<strong>on</strong>g>the</str<strong>on</strong>g> open mudflats al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> eastern shore <str<strong>on</strong>g>of</str<strong>on</strong>g>SFB. To discern mudflat seedling recruitment dynamics we investigated (1) <str<strong>on</strong>g>the</str<strong>on</strong>g> numbers andlocati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> recruiting seedlings at three SFB sites in 2003 and 2004 via GPS/GIS, and (2) <str<strong>on</strong>g>the</str<strong>on</strong>g>genetic relati<strong>on</strong>ship <str<strong>on</strong>g>of</str<strong>on</strong>g> established adult plants and parentage <str<strong>on</strong>g>of</str<strong>on</strong>g> seedlings using microsatellitemarkers. Our results identify all sampled seedlings as hybrids, and show a dramatic increase inseedling recruitment numbers in 2004. Molecular investigati<strong>on</strong>s reveal surrounding, inter-relatedadult plants as <str<strong>on</strong>g>the</str<strong>on</strong>g> most likely sires for most seedlings, and also show evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> increased selffertilizati<strong>on</strong>in isolated plants. We found seedling recruitment to be spatially heterogeneous al<strong>on</strong>gshorelines, with local pockets <str<strong>on</strong>g>of</str<strong>on</strong>g> recruitment at invaded sites and highly local aggregati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>seedlings in proximity to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir seed (and pollen) parents. These results give support to transgressivehybrid plants as <str<strong>on</strong>g>the</str<strong>on</strong>g> drivers <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong>.Keywords: Hybrid Spartina, seedling recruitment, self-compatibilityINTRODUCTIONIn light <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> accelerating spread <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina hybrids inSFB (Ayres et al. 2004) we propose that highly invasiveindividuals at <str<strong>on</strong>g>the</str<strong>on</strong>g> forefr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> possess extremephenotypes for traits important in hybrid cordgrass survivaland spread. We posit <str<strong>on</strong>g>the</str<strong>on</strong>g>se traits are i) self-compatibility,which enables single individuals to found new populati<strong>on</strong>s;ii) height, which c<strong>on</strong>fers <str<strong>on</strong>g>the</str<strong>on</strong>g> ability to grow low <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> openmud <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> intertidal plane; iii) lateral spread, which anchorsplants into <str<strong>on</strong>g>the</str<strong>on</strong>g> shifting substrate and allows col<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>occupied or unoccupied neighboring patches; iv) tolerance tohigh (40 parts per trilli<strong>on</strong> (ppt)) salinity which allows plantsto growth higher <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> intertidal plane in <str<strong>on</strong>g>the</str<strong>on</strong>g> range <str<strong>on</strong>g>of</str<strong>on</strong>g>Salicornia virginica, and v) <str<strong>on</strong>g>the</str<strong>on</strong>g> timing and abundance <str<strong>on</strong>g>of</str<strong>on</strong>g>flowering, which is important in siring ability <strong>on</strong> earlyflowering native S. foliosa and in seed producti<strong>on</strong> (Ayres etal. 2008). These traits cause <str<strong>on</strong>g>the</str<strong>on</strong>g> selective superiority <str<strong>on</strong>g>of</str<strong>on</strong>g> thoseindividuals that possess all or most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>m with regard too<str<strong>on</strong>g>the</str<strong>on</strong>g>r hybrids and both parent species, and we propose that<str<strong>on</strong>g>the</str<strong>on</strong>g>se hybrid individuals will drive <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> SFB openmudflats. We have found that Spartina hybrids show highlyvariable self-compatibility, while both hybrid parent species(S. alterniflora and S. foliosa) are marginally self-compatible(H. Davis and D. Ayres, unpublished data) (Fig. 1). Hybridindividuals thus greatly differ in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir ability to successfullyset self-fertilized seed, and certain hybrid plants aretransgressive, exceeding both parent species and o<str<strong>on</strong>g>the</str<strong>on</strong>g>rhybrids in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir ability to self-fertilize (Fig. 1).RESULTS AND DISCUSSIONWe performed GPS surveys in 2003 and 2004 at threesites al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> eastern shores <str<strong>on</strong>g>of</str<strong>on</strong>g> SFB (Elsie Roemer Marsh,Robert’s Landing, Hayward Shoreline) and found a dramaticincrease in seedling establishment from 2003-2004 (Fig. 2).At Hayward shoreline all genetically surveyed seedlingswere hybrids. Overlapping GPS points and <str<strong>on</strong>g>the</str<strong>on</strong>g> relativelylarger size <str<strong>on</strong>g>of</str<strong>on</strong>g> some individuals at Hayward suggest someseedling survival from 2003 to 2004 (Fig. 2). Microsatelliteparentage analysis (Sloop et al. 2005; Blum et al. 2004;Gerber et al. 2003) <str<strong>on</strong>g>of</str<strong>on</strong>g> a sub-sample <str<strong>on</strong>g>of</str<strong>on</strong>g> GPS-surveyedseedlings and surrounding plants suggests that seedlingsoriginate most likely from local seed sources, ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r thanfrom seeds swept in by <str<strong>on</strong>g>the</str<strong>on</strong>g> tides (Sloop et al. 2009). Ourparentage data show a large likelihood <str<strong>on</strong>g>of</str<strong>on</strong>g> establishingseedlings as <str<strong>on</strong>g>the</str<strong>on</strong>g> progeny <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> surrounding cl<strong>on</strong>es. In 200338% <str<strong>on</strong>g>of</str<strong>on</strong>g> all establishing seedlings were most likely selffertilizedat Hayward Shoreline. Microsatellite analysis alsorevealed that at Robert’s Landing <str<strong>on</strong>g>the</str<strong>on</strong>g> majority <str<strong>on</strong>g>of</str<strong>on</strong>g> 2003 seedscollected from isolated hybrid plants were self-fertilized.-95-


Chapter 2: Spartina Distributi<strong>on</strong> and Spread<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaFig.1: Percent seed set vs. %germinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> self-fertilizedhybrid seeds from CogswellMarsh, Hayward. Averagegerminati<strong>on</strong>/seed set rates for selffertilizedS. foliosa and S.alterniflora are 25%/12% and45%/25% respectively. HybridC3-1 represents a transgressiveindividual exceeding both parentsand o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hybrids in germinati<strong>on</strong>and seed set <str<strong>on</strong>g>of</str<strong>on</strong>g> self-fertilized seed.Fig. 2: Temporal variati<strong>on</strong>in seedling recruitment atHayward shoreline.Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> seedlingsin Spring 2004 (stars)increased >500-fold fromSpring 2003 (triangles).Overlap <str<strong>on</strong>g>of</str<strong>on</strong>g> stars andtriangles suggests survival<str<strong>on</strong>g>of</str<strong>on</strong>g> 2003 seedlings.-96-


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 2: Spartina Distributi<strong>on</strong> and SpreadSpartina hybrid seedling occurrence is highest atinvaded mudflat sites. While recruitment is mainly local,seed exportati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> tide will likely intensify aspopulati<strong>on</strong>s grow and expand. We predict that transgressivehybrid plants, with <str<strong>on</strong>g>the</str<strong>on</strong>g> greatest reproductive fitness willdrive <str<strong>on</strong>g>the</str<strong>on</strong>g> spread, col<strong>on</strong>izing new open mudflat sites allaround SFB at an ever-increasing rate. This will not <strong>on</strong>lyfur<str<strong>on</strong>g>the</str<strong>on</strong>g>r threaten <str<strong>on</strong>g>the</str<strong>on</strong>g> persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> native Californiacordgrass S. foliosa (Ayres et al. 2003), but will likelyirreversibly change <str<strong>on</strong>g>the</str<strong>on</strong>g> character <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> SFB ecosystem.Open mudflats will turn into hybrid Spartina meadows,which over time, after <str<strong>on</strong>g>the</str<strong>on</strong>g> accreti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment, will changefrom intertidal to terrestrial systems.ACKNOWLEDGMENTSWe would like to thank Team Spartina at UC Davis, andacknowledge <str<strong>on</strong>g>the</str<strong>on</strong>g> financial support from <str<strong>on</strong>g>the</str<strong>on</strong>g> CaliforniaCoastal C<strong>on</strong>servancy (CalFed grant #99_110), CaliforniaSea Grant #27CN to DRS, and NSF Biocomplexity DEB0083583 to A. Hastings and D.R. Str<strong>on</strong>g.REFERENCESAyres, D.R., D.R. Str<strong>on</strong>g, and P. Baye. 2003. Spartina foliosa(Poaceae): A comm<strong>on</strong> species <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> road to rarity? Madr<strong>on</strong>o.50:209-213.Ayres, D.R., D.L. Smith, K. Zaremba, S. Klohr, and D.R. Str<strong>on</strong>g.2004. Spread <str<strong>on</strong>g>of</str<strong>on</strong>g> Exotic Cordgrasses and Hybrids (Spartina sp.)in <str<strong>on</strong>g>the</str<strong>on</strong>g> Tidal Marshes <str<strong>on</strong>g>of</str<strong>on</strong>g> San Francisco Bay, California, USA.Biological Invasi<strong>on</strong>s 6:221-231.Ayres, D.R., K. Zaremba, C.M. Sloop, D.R. and Str<strong>on</strong>g. 2008.Sexual reproducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cordgrass hybrids (Spartina foliosa x alterniflora)invading tidal marshes in San Francisco Bay. Diversityand Distributi<strong>on</strong>s 14:187-195.Blum, M.J., C.M. Sloop, D.R. Ayres, and D.R. Str<strong>on</strong>g. 2004. Characterizati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> microsatellite loci in Spartina species (Poaceae).Molecular Ecology Notes 4:39-42.Gerber, S., P. Chabrier, and A. Kremer. 2003. Famoz: a s<str<strong>on</strong>g>of</str<strong>on</strong>g>twarefor parentage analysis using dominant, codominant and uniparentallyinherited markers. Molecular Ecology Notes 3: 479-481.Sloop, C.M, H.G. McGray, M.J. Blum and D.R. Str<strong>on</strong>g. 2005.Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 24 additi<strong>on</strong>al microsatellite loci in Spartinaspecies (Poaceae). C<strong>on</strong>servati<strong>on</strong> Genetics 6:1049–1052.Sloop, C.M., D.R. Ayres, D.R. Str<strong>on</strong>g. 2009. The rapid evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>self-fertility in Spartina hybrids (S. alterniflora x foliosa) invadingSan Francisco Bay, CA. Biological Invasi<strong>on</strong>s 11:1131-1144.-97-


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 2: Spartina Distributi<strong>on</strong> and SpreadTHE INFLUENCE OF INTERTIDAL ZONE AND NATIVE VEGETATION ON THE SURVIVALAND GROWTH OF SPARTINA ANGLICA IN NORTHERN PUGET SOUND, WA, USAC. E. HELLQUIST 1 AND R. A. BLACKSchool <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Sciences, Washingt<strong>on</strong> State University, Pullman WA, 991641 Current address: Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Sciences, State University <str<strong>on</strong>g>of</str<strong>on</strong>g> New York, Oswego, NY 13126;eric.hellquist@oswego.eduSpartina anglica col<strong>on</strong>izes mudflats, tidal channels, salt marshes, and gravel beaches in nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rnPuget Sound, Washingt<strong>on</strong>, USA. We measured Spartina seedling survival and growth al<strong>on</strong>g anintertidal gradient from mudflat to salt marsh at Alice Bay, Skagit County, Washingt<strong>on</strong>. Spartinaseedlings were transplanted into plots with full and reduced competiti<strong>on</strong> in open mudflat, a lowmarsh intertidal z<strong>on</strong>e dominated by Salicornia virginica, and a middle marsh z<strong>on</strong>e dominated byDistichlis spicata. In <str<strong>on</strong>g>the</str<strong>on</strong>g> mudflat, where little native vegetati<strong>on</strong> was present, two separate treatmentswere m<strong>on</strong>itored: unmanipulated (in situ) seedlings and seedlings transplanted within <str<strong>on</strong>g>the</str<strong>on</strong>g> mudflat.The in situ seedlings had 100% survival whereas seedlings transplanted within <str<strong>on</strong>g>the</str<strong>on</strong>g> mudflat had 60%survival. The mean relative growth rate (RGR) <str<strong>on</strong>g>of</str<strong>on</strong>g> in situ seedlings in <str<strong>on</strong>g>the</str<strong>on</strong>g> mudflat was 16 milligramsper milligram per day (mg mg -1 day -1 ) compared to RGR <str<strong>on</strong>g>of</str<strong>on</strong>g> 8 mg mg -1 day -1 for <str<strong>on</strong>g>the</str<strong>on</strong>g> transplantedseedlings. In <str<strong>on</strong>g>the</str<strong>on</strong>g> Salicornia virginica z<strong>on</strong>e, Spartina survival was 94% and RGR averaged 13 mgmg -1 day -1 with reduced competiti<strong>on</strong>. Spartina seedling survival was 90% and mean RGR was 11 mgmg -1 day -1 when grown in full competiti<strong>on</strong> with Salicornia. In <str<strong>on</strong>g>the</str<strong>on</strong>g> Distichlis z<strong>on</strong>e, Spartina survivalwas 57% and <str<strong>on</strong>g>the</str<strong>on</strong>g> RGR was 5 mg mg -1 day -1 without competiti<strong>on</strong>. Spartina seedling survivorship waszero when grown in competiti<strong>on</strong> with Distichlis. In general, Spartina survival and RGR were highestat lower intertidal elevati<strong>on</strong>s and with reduced competiti<strong>on</strong>. The spread <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica into upperintertidal levels appears limited by competiti<strong>on</strong> as well as physical c<strong>on</strong>diti<strong>on</strong>s al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> intertidalgradient.Keywords: competiti<strong>on</strong>, Distichlis spicata, Salicornia virginica, Spartina anglica, z<strong>on</strong>ati<strong>on</strong>INTRODUCTIONVegetati<strong>on</strong> z<strong>on</strong>ati<strong>on</strong> in salt marshes is determined byboth competitive (Bertness 1991a; Pennings and Callaway1992) and facilitative (Bertness and Shumway 1993,Bertness and Hacker 1994; Callaway and Pennings 2000)biotic interacti<strong>on</strong>s as well as physical c<strong>on</strong>diti<strong>on</strong>s includingsoil waterlogging, oxygen availability (Howes et al. 1981),sulfide toxicity (King et al. 1982) and porewater salinity(Callaway et al. 1990, Pennings and Callaway 1992). Innorthwestern Washingt<strong>on</strong>, salt marsh communities <str<strong>on</strong>g>of</str<strong>on</strong>g>tenform a fringe <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> upper edges <str<strong>on</strong>g>of</str<strong>on</strong>g>mudflats. These sites have high porewater salinities (>30grams per kilogram [g kg -1 ) and are typically isolated fromriverine freshwater. The lowest intertidal z<strong>on</strong>es in <str<strong>on</strong>g>the</str<strong>on</strong>g>semarshes are typically col<strong>on</strong>ized by mats <str<strong>on</strong>g>of</str<strong>on</strong>g> Salicorniavirginica with intermittent patches <str<strong>on</strong>g>of</str<strong>on</strong>g> Spergulariacanadensis, Triglochin maritimum, and Puccinelliamaritima. Frequently, individuals <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se species willcol<strong>on</strong>ize <str<strong>on</strong>g>the</str<strong>on</strong>g> open mudflat several meters <str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>the</str<strong>on</strong>g> seawardedge <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tiguous salt marsh.The introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglica into northwesternWashingt<strong>on</strong> has altered <str<strong>on</strong>g>the</str<strong>on</strong>g> z<strong>on</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> salt marsh vegetati<strong>on</strong>by creating a community <str<strong>on</strong>g>of</str<strong>on</strong>g> emergent vegetati<strong>on</strong> below <str<strong>on</strong>g>the</str<strong>on</strong>g>Salicornia virginica z<strong>on</strong>e <strong>on</strong> sediment that was previouslyopen mudflat. Throughout nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Puget Sound, Spartinacan form dense stands in areas that were formerly open mudflats (e.g. Triangle Cove and Livingst<strong>on</strong> Bay, IslandCounty). However, Spartina is <strong>on</strong>ly found sporadicallygrowing am<strong>on</strong>g native plants in higher intertidal z<strong>on</strong>es (e.g.at Maylor Marsh and English Boom, Island County).Based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> tendency <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina to col<strong>on</strong>ize openmudflats as opposed to closed mats <str<strong>on</strong>g>of</str<strong>on</strong>g> native vegetati<strong>on</strong>, wehypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sized that Spartina is an inferior competitor and thatsurvival and growth rates would be highest in <str<strong>on</strong>g>the</str<strong>on</strong>g> lowestintertidal z<strong>on</strong>es and in experimental plots where competiti<strong>on</strong>from native plants was limited.MATERIALS AND METHODSWe c<strong>on</strong>ducted a seedling transplant experiment in fourlocati<strong>on</strong>s at Alice Bay (48º 33’ 20” N, 122º 29’11” W;Skagit County). A series <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 random plots were placedal<strong>on</strong>g 30-meter (m) transects in <str<strong>on</strong>g>the</str<strong>on</strong>g> mudflat. We alsom<strong>on</strong>itored <str<strong>on</strong>g>the</str<strong>on</strong>g> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 naturally occurring,unmanipulated (in situ) seedlings in <str<strong>on</strong>g>the</str<strong>on</strong>g> mudflat to c<strong>on</strong>trolfor <str<strong>on</strong>g>the</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> transplanting. Ten paired plots were-99-


Chapter 2: Spartina Distributi<strong>on</strong> and Spread<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaRGR (mg mg -1 day -1 )20181614121086420accbFull competiti<strong>on</strong>Reduced competiti<strong>on</strong>No competiti<strong>on</strong>bdIN SITU MUD SALIC SALIC DIST DISTFig. 1. Percent survival (mean±SE; n=10 plots) <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina seedlingsplanted within each intertidal z<strong>on</strong>e. IN SITU: unmanipulated mudflatseedlings; MUD: transplanted mudflat seedlings; SALIC: Salicornia z<strong>on</strong>e;DIST: Distichlis z<strong>on</strong>e. Different letters indicate significant differences(p < 0.05) between treatment groups using Tukey’s multiple comparis<strong>on</strong>stest. Due to <str<strong>on</strong>g>the</str<strong>on</strong>g> lack <str<strong>on</strong>g>of</str<strong>on</strong>g> variati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> IN SITU and <str<strong>on</strong>g>the</str<strong>on</strong>g> Distichlis fullcompetiti<strong>on</strong> plots, <str<strong>on</strong>g>the</str<strong>on</strong>g>se treatments could not be compared using ANOVA.Instead, comparis<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se treatments were made using 95% c<strong>on</strong>fidenceintervals.INCREASING RELATIVE INTERTIDAL HEIGHTFig. 2. Spartina seedling RGR (mean±SE; n=10 plots) across intertidalz<strong>on</strong>es (abbreviati<strong>on</strong>s as in Figure 1). Different letters indicate significantdifferences (p < 0.05) between treatment groups using Tukey’s multiplecomparis<strong>on</strong>s test. Due to a lack <str<strong>on</strong>g>of</str<strong>on</strong>g> variance, <str<strong>on</strong>g>the</str<strong>on</strong>g> Distichlis full competiti<strong>on</strong>treatment was omitted from <str<strong>on</strong>g>the</str<strong>on</strong>g> ANOVA and comparis<strong>on</strong>s were made with95% c<strong>on</strong>fidence intervals.established in <str<strong>on</strong>g>the</str<strong>on</strong>g> Salicornia virginica-dominated salt marshz<strong>on</strong>e immediately adjacent to <str<strong>on</strong>g>the</str<strong>on</strong>g> mudflat. Ten paired plotsalso were placed in <str<strong>on</strong>g>the</str<strong>on</strong>g> Distichlis spicata-dominated z<strong>on</strong>elocated immediately above <str<strong>on</strong>g>the</str<strong>on</strong>g> Salicornia z<strong>on</strong>e. Plots wererandomly placed al<strong>on</strong>g 30 m transects in near m<strong>on</strong>ocultures<str<strong>on</strong>g>of</str<strong>on</strong>g> Salicornia and Distichlis. In <str<strong>on</strong>g>the</str<strong>on</strong>g> Salicornia and Distichlisz<strong>on</strong>es each plot c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> a subplot with native vegetati<strong>on</strong>intact (full competiti<strong>on</strong>) and native vegati<strong>on</strong> removed(reduced competiti<strong>on</strong>). In June 2001, three seedlings weretransplanted into each plot or subplot within each z<strong>on</strong>e.Seedlings were watered immediately after being transplantedand were tagged for identificati<strong>on</strong>. Reduced competiti<strong>on</strong>plots were cleared <str<strong>on</strong>g>of</str<strong>on</strong>g> all native vegetati<strong>on</strong> (ca. 0.25 mdiameter) and maintained throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> study.In late September-early October 2002, each Spartinaplant was harvested from <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental plots. Plants weretransported to <str<strong>on</strong>g>the</str<strong>on</strong>g> lab, washed repeatedly, dried for 72 hoursat 70ºC, and weighed. Biomass within each subplot wasaveraged for <str<strong>on</strong>g>the</str<strong>on</strong>g> three replicate seedlings in each subplot.Relative growth rates (RGR) <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina were calculated forall competiti<strong>on</strong> treatments at each intertidal level (Eqn. 1;Hunt 1978)RGR = lnW 2 - lnW 1 / T 2 -T 1 Eqn. 1where W 1 and W 2 are <str<strong>on</strong>g>the</str<strong>on</strong>g> plant weights at times 1 (T 1 ) and 2(T 2 ). Initial weight (W 1 ) was estimated using a regressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>tiller number in relati<strong>on</strong> to dried seedling biomass (Hellquist2005).Survival data were transformed using <str<strong>on</strong>g>the</str<strong>on</strong>g> arcsin squareroot transformati<strong>on</strong>. Survival and RGR data were analyzedusing analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> variance in <str<strong>on</strong>g>the</str<strong>on</strong>g> mixed model procedure <str<strong>on</strong>g>of</str<strong>on</strong>g>SAS 9.1 (SAS Institute 2000). Mixed models are appropriatewhen random factors (split plots) are present in anexperimental design (SAS Institute 2000). The Satterthwaiteadjustment was applied to compensate for heterogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g>variances. Unless o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise noted (see Figs. 1 and 2),Tukey’s pairwise comparis<strong>on</strong>s were made (p < 0.05) acrosstreatments.RESULTSAll seedlings survived over <str<strong>on</strong>g>the</str<strong>on</strong>g> course <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> experimentwithin <str<strong>on</strong>g>the</str<strong>on</strong>g> unmanipulated, in situ mudflat treatment.Seedlings transplanted within <str<strong>on</strong>g>the</str<strong>on</strong>g> mudflat had a 40%decrease in survival (Fig.1). Percent survival was high (>90%) and not different between <str<strong>on</strong>g>the</str<strong>on</strong>g> full and reducedcompetiti<strong>on</strong> plots in <str<strong>on</strong>g>the</str<strong>on</strong>g> Salicornia z<strong>on</strong>e. However, allseedlings died with full competiti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> Distichlis z<strong>on</strong>e.Fifty percent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> seedlings survived in reducedcompetiti<strong>on</strong> subplots within <str<strong>on</strong>g>the</str<strong>on</strong>g> Distichlis z<strong>on</strong>e. Survival in<str<strong>on</strong>g>the</str<strong>on</strong>g> Salicornia z<strong>on</strong>e was higher than in both Distichlistreatments (Fig. 1).The RGR <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglica generally decreasedmoving from <str<strong>on</strong>g>the</str<strong>on</strong>g> low Salicornia-dominated z<strong>on</strong>e to <str<strong>on</strong>g>the</str<strong>on</strong>g>higher Distichlis-dominated z<strong>on</strong>e (Fig. 2). Theunmanipulated, in situ plants had <str<strong>on</strong>g>the</str<strong>on</strong>g> greatest RGR. Themudflat in situ seedlings had a growth rate over two timesgreater than <str<strong>on</strong>g>the</str<strong>on</strong>g> seedlings transplanted within <str<strong>on</strong>g>the</str<strong>on</strong>g> mudflat.In <str<strong>on</strong>g>the</str<strong>on</strong>g> Salicornia z<strong>on</strong>e <str<strong>on</strong>g>the</str<strong>on</strong>g>re were no differences in RGRbetween full competiti<strong>on</strong> and reduced competiti<strong>on</strong> subplots.Distichlis z<strong>on</strong>e seedlings grew slower than within <str<strong>on</strong>g>the</str<strong>on</strong>g> in situand Salicornia treatments. The lowest RGRs were in <str<strong>on</strong>g>the</str<strong>on</strong>g>Distichlis z<strong>on</strong>e and in <str<strong>on</strong>g>the</str<strong>on</strong>g> transplanted mudflat seedlings(Fig. 2).- 100 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 2: Spartina Distributi<strong>on</strong> and SpreadDISCUSSIONThe high RGR <str<strong>on</strong>g>of</str<strong>on</strong>g> seedlings <strong>on</strong> mudflats corresp<strong>on</strong>ds tosimilar findings by Dethier and Hacker (2005).Transplanting seedlings clearly reduced survivorship andRGR <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina seedlings <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> mudflat where <str<strong>on</strong>g>the</str<strong>on</strong>g>re wasno competiti<strong>on</strong> from native vegetati<strong>on</strong> (Fig. 1). Dislodging<str<strong>on</strong>g>the</str<strong>on</strong>g> roots during transplantati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> mudflat madeseedlings vulnerable to uprooting via tidal disturbance. Tidaluprooting can be an important source <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica seedlingmortality in open mudflats (Groenendijk 1986). In this study<strong>on</strong>ly transplanted seedlings in <str<strong>on</strong>g>the</str<strong>on</strong>g> mudflat experiencedmortality that could be attributed to tidal disturbance.Seedling survival did not differ between competiti<strong>on</strong>treatments in <str<strong>on</strong>g>the</str<strong>on</strong>g> Salicornia z<strong>on</strong>e, but was greatly reducedby full competiti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> Distichlis z<strong>on</strong>e. Reduced survivalin <str<strong>on</strong>g>the</str<strong>on</strong>g> Distichlis z<strong>on</strong>e appeared to be due to competiti<strong>on</strong> withnative vegetati<strong>on</strong> as well as rodent herbivory. The apparentasymmetric affect <str<strong>on</strong>g>of</str<strong>on</strong>g> Salicornia and Distichlis <strong>on</strong> Spartinaseedlings may be <str<strong>on</strong>g>the</str<strong>on</strong>g> result <str<strong>on</strong>g>of</str<strong>on</strong>g> interacting substratec<strong>on</strong>diti<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> lower intertidal z<strong>on</strong>es that are favorable toSpartina growth.Although Spartina survival in <str<strong>on</strong>g>the</str<strong>on</strong>g> Salicornia treatmentswas not different, Spartina tiller producti<strong>on</strong> and totalbiomass were reduced in <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> Salicornia(Hellquist 2005). Decreased survival and RGR by Spartinaanglica when grown in competiti<strong>on</strong> with native vegetati<strong>on</strong>(e.g. Distichlis) is c<strong>on</strong>sistent with previous studies <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina. In greenhouse and field studies, Puccinelliamaritima has been shown to have a competitive effect <strong>on</strong> S.anglica (Scholten and Rozema 1990; Thomps<strong>on</strong> et al. 1993;Huckle et al. 2000). Competitive suppressi<strong>on</strong> by neighboringvegetati<strong>on</strong> also has been documented for S. alterniflora in<str<strong>on</strong>g>the</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>astern United States (Bertness 1991b) and S.maritima in Spain (Castellanos et al. 1994)Spartina anglica col<strong>on</strong>izes a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> habitatsincluding mudflats, low and high salinity salt marshes, aswell as cobble and gravel beaches in Puget Sound (Hacker etal. 2001). At Alice Bay, a mudflat with abundant Spartinaadjoins a protected salt marsh that is truncated by a dike.Spartina is a sporadic col<strong>on</strong>izer am<strong>on</strong>g Salicornia, but wasabsent from <str<strong>on</strong>g>the</str<strong>on</strong>g> virtual m<strong>on</strong>ospecific stands <str<strong>on</strong>g>of</str<strong>on</strong>g> Distichlisspicata higher al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> intertidal gradient. Our experimentshows that at Alice Bay, in <str<strong>on</strong>g>the</str<strong>on</strong>g> absence <str<strong>on</strong>g>of</str<strong>on</strong>g> competitors,Spartina is capable <str<strong>on</strong>g>of</str<strong>on</strong>g> surviving al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> entire salt marshgradient. In high salinity salt marshes Spartina may berestricted to lower intertidal z<strong>on</strong>es such as <str<strong>on</strong>g>the</str<strong>on</strong>g> Salicorniaz<strong>on</strong>e due to interspecific competiti<strong>on</strong> and a lack <str<strong>on</strong>g>of</str<strong>on</strong>g> availableopen substrate (Hacker et al. 2001). Although not testedhere, propagule pressure also can play a role in speciesinvasi<strong>on</strong>s (e.g. V<strong>on</strong> Holle and Simberl<str<strong>on</strong>g>of</str<strong>on</strong>g>f 2005) and mayinfluence <str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina across intertidal z<strong>on</strong>es.Although <str<strong>on</strong>g>the</str<strong>on</strong>g>se data and additi<strong>on</strong>al growth parameterdata (Hellquist 2005) indicate that biotic factors play a rolein <str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina in high salinity marshes(defined as > 29 g kg -1 by Hacker et al. 2001) <str<strong>on</strong>g>the</str<strong>on</strong>g> importance<str<strong>on</strong>g>of</str<strong>on</strong>g> abiotic factors such as tidal uprooting (Groenendijk 1986)and soil physical characteristics also c<strong>on</strong>tribute to Spartinacol<strong>on</strong>izati<strong>on</strong> (Hacker et al. 2001; Dethier and Hacker 2005;Hellquist 2005). Physical factors have been shown to beimportant in c<strong>on</strong>trolling seed germinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica inPuget Sound (Dethier and Hacker 2005). Physical factorsmay play a more important role during seed germinati<strong>on</strong> andinitial establishment (Dethier and Hacker 2005), but bioticinteracti<strong>on</strong>s may become more important during seedlingmaturati<strong>on</strong> (Hellquist 2005)An understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> physical and biotic factorsresp<strong>on</strong>sible for plant z<strong>on</strong>ati<strong>on</strong> in salt marshes is necessary tobetter identify anthropogenic pressures that threaten saltmarshes and to establish effective restorati<strong>on</strong> programs(Bertness and Pennings 2000). These data as well as Dethierand Hacker (2005) and Hellquist (2005), suggest thatremoval <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina in <str<strong>on</strong>g>the</str<strong>on</strong>g> mudflats will be an effective wayto slow <str<strong>on</strong>g>the</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina by c<strong>on</strong>trolling fast-growingpopulati<strong>on</strong>s that can serve as seed sources. Successfulc<strong>on</strong>trol in high salinity marshes is probably aided by slowerinvasi<strong>on</strong> rates mediated by biotic and physical factors(Hacker et al. 2001; Hellquist 2005). Knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartinagrowth patterns, <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> physical factors, and <str<strong>on</strong>g>the</str<strong>on</strong>g>importance <str<strong>on</strong>g>of</str<strong>on</strong>g> biotic interacti<strong>on</strong>s will provide a valuablec<strong>on</strong>text to prioritize sites for Spartina c<strong>on</strong>trol (Dethier andHacker 2005; Hellquist 2005).ACKNOWLEDGMENTSWe are very grateful for <str<strong>on</strong>g>the</str<strong>on</strong>g> support <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> GraduateStudent Research Fellowship (NA07OR0262) from <str<strong>on</strong>g>the</str<strong>on</strong>g>Estuarine Reserves Divisi<strong>on</strong>, Office <str<strong>on</strong>g>of</str<strong>on</strong>g> Ocean and CoastalResource Management, Nati<strong>on</strong>al Ocean Service, Nati<strong>on</strong>alOceanic and Atmospheric Administrati<strong>on</strong>, Padilla BayNati<strong>on</strong>al Estuarine Research Reserve (NERR), Mt. Vern<strong>on</strong>,Washingt<strong>on</strong> to CEH. Terry Stevens, Doug Bulthuis, andShar<strong>on</strong> Riggs (Padilla Bay NERR) provided essentialsupport for this research. Additi<strong>on</strong>al support was providedby <str<strong>on</strong>g>the</str<strong>on</strong>g> United States Envir<strong>on</strong>mental Protecti<strong>on</strong> AgencyScience to Achieve Results (EPA STAR) Graduate StudentFellowship (U-91616801: 2003-05). The Betty W.Higinbotham Trust <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Washingt<strong>on</strong> State UniversitySchool <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Sciences provided critical researchfunding as well. Richard Alldredge and Paul Rabie providedstatistical advice. Denise Howe, Sven Nels<strong>on</strong>, Ben Rhodesand Justin Snider assisted with sample processing. Thecooperati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Kyle Murphy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Washingt<strong>on</strong> StateDepartment <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture and Bill Rogers <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> SkagitCounty Noxious Weed C<strong>on</strong>trol Board also are appreciated.Thanks also to <str<strong>on</strong>g>the</str<strong>on</strong>g> reviewers for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir suggesti<strong>on</strong>s to improve<str<strong>on</strong>g>the</str<strong>on</strong>g> manuscript.- 101 -


Chapter 2: Spartina Distributi<strong>on</strong> and Spread<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaREFERENCESBertness, M.D. 1991a. Interspecific interacti<strong>on</strong>s am<strong>on</strong>g high marshperennials in a New England saltmarsh. Ecology 72:125-137.Bertness, M.D. 1991b. Z<strong>on</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina patens and Spartinaalterniflora in a New England salt marsh. Ecology 72:138-148.Bertness, M.D., and S.D. Hacker. 1994. Physical stress and positiveassociati<strong>on</strong>s am<strong>on</strong>g marsh plants. Am Nat 144:363-372.Bertness, M.D., and S.C. Pennings. 2000. Spatial variati<strong>on</strong> in processand pattern in salt marsh plant communities in eastern NorthAmerica. In: Weinstein, M.P. and D.A. Kreeger, eds. C<strong>on</strong>ceptsand c<strong>on</strong>troversies in tidal marsh ecology, 39-57. Kluwer Academic,Dordrecht, <str<strong>on</strong>g>the</str<strong>on</strong>g> Ne<str<strong>on</strong>g>the</str<strong>on</strong>g>rlands.Bertness, M.D., and S.W. Shumway. 1993. Competiti<strong>on</strong> and facilitati<strong>on</strong>in marsh plants. Am Nat 142:718-724.Callaway, R.M., S. J<strong>on</strong>es, W.R. Ferren, and A. Parikh. 1990. Ecology<str<strong>on</strong>g>of</str<strong>on</strong>g> a mediterranean-climate estuarine wetland at Carpinteria,California: plant distributi<strong>on</strong>s and soil salinity in <str<strong>on</strong>g>the</str<strong>on</strong>g> uppermarsh. Can J Bot 68:1139-1146.Callaway, R.M., and S.C. Pennings. 2000. Facilitati<strong>on</strong> may buffercompetitive effects: indirect and diffuse interacti<strong>on</strong>s am<strong>on</strong>g saltmarsh plants. Am Nat 156:416-424.Castellanos, E.M., M.E. Figueroa, and A.J. Davy. 1994. Nucleati<strong>on</strong>and facilitati<strong>on</strong> in saltmarsh successi<strong>on</strong>: interacti<strong>on</strong>s betweenSpartina maritima and Arthrocnemum perenne. J Ecol 82:239-248.Dethier, M.N. and S.D. Hacker. 2005. Physical factors vs. bioticresistance in c<strong>on</strong>trolling <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an estuarine marsh grass.Ecol Appl 15: 1273-1283.Groenendijk, A.M. 1986. Establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> a Spartina anglicapopulati<strong>on</strong> <strong>on</strong> a tidal mudflat: a field experiment. J Envir<strong>on</strong>Manage 22:1-12.Hacker, S.D., D. Heimer, C.E. Hellquist, T.G. Reeder, B. Reeves,T.J. Riordan, and M.N. Dethier. 2001. A marine plant (Spartinaanglica) invades widely varying habitats: potential mechanisms<str<strong>on</strong>g>of</str<strong>on</strong>g> invasi<strong>on</strong> and c<strong>on</strong>trol. Biol Invasi<strong>on</strong>s 3:211-217.Hellquist, C.E. 2005. Community and trophic c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglica C.E. Hubb. (Poaceae: EnglishCordgrass) in estuaries <str<strong>on</strong>g>of</str<strong>on</strong>g> Puget Sound, WA, USA. Ph.D. Dissertati<strong>on</strong>.Washingt<strong>on</strong> State University, Pullman, WA.Howes, B.L., R.W. Howarth, J.M. Teal, and I. Valiela. 1981. Oxidati<strong>on</strong>-reducti<strong>on</strong>potentials in a salt marsh: spatial patterns andinteracti<strong>on</strong>s with primary producti<strong>on</strong>. Limnol Oceanogr 26:350-360.Huckle, J.M., J.A. Potter, and R.H. Marrs. 2000. Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mentalfactors <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> growth and interacti<strong>on</strong>s between saltmarsh plants: effects <str<strong>on</strong>g>of</str<strong>on</strong>g> salinity, sediment and waterlogging. JEcol 88:492-505.Hunt, R. 1978. Plant growth analysis. Edward Arnold, L<strong>on</strong>d<strong>on</strong>,UK.King, G.M., M.J. Klug, R.G. Wiegert, and A.G. Chalmers. 1982.Relati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> soil water movement and sulfide c<strong>on</strong>centrati<strong>on</strong> toSpartina alterniflora producti<strong>on</strong> in a Georgia salt marsh. Science218:61-63.Pennings, S., and R. Callaway. 1992. Salt marsh z<strong>on</strong>ati<strong>on</strong>: <str<strong>on</strong>g>the</str<strong>on</strong>g> relativeimportance <str<strong>on</strong>g>of</str<strong>on</strong>g> competiti<strong>on</strong> and physical factors. Ecology73:681-690.SAS Institute. 2000. SAS Online Doc Versi<strong>on</strong> 8. SAS Institute Inc.:Cary, NC. http://v8doc.sas.com/sashtml/Scholten, M., and J. Rozema. 1990. The competitive ability <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina anglica <strong>on</strong> Dutch salt marshes. In: Gray, A.J. andP.E.M. Benham, eds. Spartina anglica – a research review, 39-47. HMSO, L<strong>on</strong>d<strong>on</strong>.Thomps<strong>on</strong>, J.D., T. McNeilly, and A.J. Gray. 1993. The demography<str<strong>on</strong>g>of</str<strong>on</strong>g> cl<strong>on</strong>al plants in relati<strong>on</strong> to successi<strong>on</strong>al habitat change:<str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglica. In: Miles, J. and D. W. H. Walt<strong>on</strong>,eds. Primary successi<strong>on</strong> <strong>on</strong> land. Blackwell Scientific Publicati<strong>on</strong>s,Oxford.V<strong>on</strong> Holle, B., and D. Simberl<str<strong>on</strong>g>of</str<strong>on</strong>g>f. 2005. Ecological resistance tobiological invasi<strong>on</strong> overwhelmed by propagule pressure. Ecology86:3212-3218.- 102 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 2: Spartina Distributi<strong>on</strong> and SpreadWILL SPARTINA ANGLICA INVADE NORTHWARDS WITH CHANGING CLIMATE?A.J. GRAY 1,2 AND R.J. MOGG 11 Centre for Ecology and Hydrology, CEH Dorset, Winfrith Technology Centre, Dorchester, Dorset, DT2 8ZD, UK2 email: ajg@ceh.ac.ukSpartina anglica’s successful invasi<strong>on</strong> has depended <strong>on</strong> its ability to occupy mudflats atlower elevati<strong>on</strong>s than existing saltmarsh vegetati<strong>on</strong> but has slowed, with dieback in <str<strong>on</strong>g>the</str<strong>on</strong>g>south and successi<strong>on</strong>al replacement in <str<strong>on</strong>g>the</str<strong>on</strong>g> north. The elevati<strong>on</strong>al niche <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica in <str<strong>on</strong>g>the</str<strong>on</strong>g>UK was shown to extend below that <str<strong>on</strong>g>of</str<strong>on</strong>g> its main competitor Puccinellia maritima by 68centimeters (cms). The niche <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two species overlapped by 20 cms and within thisz<strong>on</strong>e <str<strong>on</strong>g>the</str<strong>on</strong>g>ir distributi<strong>on</strong> depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> outcome <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir competitive interacti<strong>on</strong>. Thisinteracti<strong>on</strong> was investigated in <str<strong>on</strong>g>the</str<strong>on</strong>g> light <str<strong>on</strong>g>of</str<strong>on</strong>g> projected climate changes and <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that <str<strong>on</strong>g>the</str<strong>on</strong>g>two species utilize different photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic pathways. A competiti<strong>on</strong> experiment underelevated levels <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature and carb<strong>on</strong> dioxide is described and its implicati<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g>future development <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina-dominated marshes is discussed.Keywords: Spartina anglica, elevati<strong>on</strong>al niche, Puccinellia maritima, climate change,competiti<strong>on</strong>, C3 and C4 grassesTHE ORIGIN AND SPREAD OF S. ANGLICASpartina anglica CE Hubbard is arguably <str<strong>on</strong>g>the</str<strong>on</strong>g> bestknown example worldwide <str<strong>on</strong>g>of</str<strong>on</strong>g> an invasive allopolyploidspecies. It originated <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> south coast <str<strong>on</strong>g>of</str<strong>on</strong>g> England sometime between 1870, when <str<strong>on</strong>g>the</str<strong>on</strong>g> sterile F1 hybrid S. townsendiiwas first noticed, and 1892 when <str<strong>on</strong>g>the</str<strong>on</strong>g> first fertile specimenwas collected. The allopolyploid was subsequently named asSpartina anglica and its spread both naturally and bydeliberate planting, has been extremely well documented —Gray et al. (1991) provide a summary. The parental species,S. maritima, a native <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> old world, and S. alterniflora,accidentally introduced from North America intoSouthampt<strong>on</strong> Water, probably in ships’ ballast, were inc<strong>on</strong>tact for a relatively short period (30-40 years?).Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less <str<strong>on</strong>g>the</str<strong>on</strong>g> patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> isoenzyme variati<strong>on</strong> haveunambiguously established <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid origin <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica(Raybould et al. 1991a), and analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> DNA sequence<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chloroplast leucine tRNA gene intr<strong>on</strong> has shown thatS. alterniflora was <str<strong>on</strong>g>the</str<strong>on</strong>g> female parent in <str<strong>on</strong>g>the</str<strong>on</strong>g> original cross(cpDNA is maternally inherited in most grass species)(Ferris et al. 1997). This is not surprising in view <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>relative frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two species in <str<strong>on</strong>g>the</str<strong>on</strong>g> area <str<strong>on</strong>g>of</str<strong>on</strong>g>hybridizati<strong>on</strong> during <str<strong>on</strong>g>the</str<strong>on</strong>g> middle <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> last century.Following hybridizati<strong>on</strong> and chromosome doubling(nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>of</str<strong>on</strong>g> which events have been repeated experimentally)<str<strong>on</strong>g>the</str<strong>on</strong>g> hybrids and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir parents appear to have been quiterapidly isolated both genetically and ecologically. Spartinamaritima is found in <str<strong>on</strong>g>the</str<strong>on</strong>g> mid-level and high marsh z<strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g>well established salt marshes and is today largely c<strong>on</strong>fined to<str<strong>on</strong>g>the</str<strong>on</strong>g> east coast <str<strong>on</strong>g>of</str<strong>on</strong>g> England in <str<strong>on</strong>g>the</str<strong>on</strong>g> counties <str<strong>on</strong>g>of</str<strong>on</strong>g> Essex andSuffolk (Raybould et al. 1991b). The nearest extantpopulati<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> site <str<strong>on</strong>g>of</str<strong>on</strong>g> origin is <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Isle <str<strong>on</strong>g>of</str<strong>on</strong>g> Wight, about10 miles away. Spartina alterniflora has been reduced to asingle cl<strong>on</strong>al populati<strong>on</strong> in Southampt<strong>on</strong> Water and israpidly being lost as <str<strong>on</strong>g>the</str<strong>on</strong>g> lower z<strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> salt marshes areeroded al<strong>on</strong>g this coast. (There are a small number <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>rcl<strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> species elsewhere but <str<strong>on</strong>g>the</str<strong>on</strong>g>se have beendeliberately introduced from known sources since <str<strong>on</strong>g>the</str<strong>on</strong>g> date <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> original hybridizati<strong>on</strong>.) Thus, somewhat ir<strong>on</strong>ically inview <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> main <str<strong>on</strong>g>the</str<strong>on</strong>g>me <str<strong>on</strong>g>of</str<strong>on</strong>g> this c<strong>on</strong>ference, S. alterniflora in<str<strong>on</strong>g>the</str<strong>on</strong>g> UK is regarded as a rare and threatened species <str<strong>on</strong>g>of</str<strong>on</strong>g>c<strong>on</strong>servati<strong>on</strong> interest, and its presence was recentlyinstrumental in <str<strong>on</strong>g>the</str<strong>on</strong>g> refusal for permissi<strong>on</strong> to extend anddevelop <str<strong>on</strong>g>the</str<strong>on</strong>g> nearby port. The sterile hybrid S. townsendii isalso largely c<strong>on</strong>fined to <str<strong>on</strong>g>the</str<strong>on</strong>g> original hybridizati<strong>on</strong> site,although its distributi<strong>on</strong> is uncertain because it wasintroduced to many estuaries al<strong>on</strong>g with <str<strong>on</strong>g>the</str<strong>on</strong>g> fertile form.By c<strong>on</strong>trast S. anglica has col<strong>on</strong>ized, or been planted in,almost all English and Welsh estuaries, is found in Scotland,and occurs in suitable habitats around <str<strong>on</strong>g>the</str<strong>on</strong>g> coast <str<strong>on</strong>g>of</str<strong>on</strong>g> Europefrom 48 to 57.5° N. It has famously been introduced to manyo<str<strong>on</strong>g>the</str<strong>on</strong>g>r parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world and in several areas has become aserious invader <str<strong>on</strong>g>of</str<strong>on</strong>g> native biotopes. As detailed below, S.anglica mostly occurs in <str<strong>on</strong>g>the</str<strong>on</strong>g> lowest z<strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> salt marshes,and at its peak occupied almost 25% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total saltmarsharea in Britain (10,000 hectares (ha) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 44,000 hasurveyed by Charman (1990)).The initial rapid genetic isolati<strong>on</strong>, and current ecologicalisolati<strong>on</strong>, <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> species involved in <str<strong>on</strong>g>the</str<strong>on</strong>g> evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S.anglica makes a fascinating c<strong>on</strong>trast to <str<strong>on</strong>g>the</str<strong>on</strong>g> situati<strong>on</strong> in SanFrancisco Bay, where hybridizati<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> native plantS. foliosa, and its ecological replacement, are a feature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-native S. alterniflora.- 103 -


Chapter 2: Spartina Distributi<strong>on</strong> and Spread<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaTHE CURRENT STATUS OF S. ANGLICA IN EUROPEInvasi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> European mudflats by S. anglica (hereafterrefered to simply as ‘Spartina’) has been characterised by adifferent sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> events at different latitudes. In <str<strong>on</strong>g>the</str<strong>on</strong>g>south <str<strong>on</strong>g>of</str<strong>on</strong>g> England, and from <str<strong>on</strong>g>the</str<strong>on</strong>g> southwest Ne<str<strong>on</strong>g>the</str<strong>on</strong>g>rlandssouthwards, large m<strong>on</strong>ospecific stands developed rapidlyfollowing initial introducti<strong>on</strong> and have in many places beenfollowed in <str<strong>on</strong>g>the</str<strong>on</strong>g> early years <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> last century by ‘dieback,’<str<strong>on</strong>g>the</str<strong>on</strong>g> swards breaking up and retreating in area. By c<strong>on</strong>trast innor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn England north <str<strong>on</strong>g>of</str<strong>on</strong>g> about 54° N and in <str<strong>on</strong>g>the</str<strong>on</strong>g> Dutch andGerman Waddensea, invading Spartina is replacedsuccessi<strong>on</strong>ally by o<str<strong>on</strong>g>the</str<strong>on</strong>g>r species, most comm<strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> grassPuccinellia maritima (hereafter ‘Puccinellia’). For examplein Morecambe Bay a 100-ha marsh formerly dominated bySpartina is now a Puccinellia-dominated sward from whichSpartina has almost disappeared (Gray and Raybould 1997).Although c<strong>on</strong>founded in some cases by latitudinal variati<strong>on</strong>in sediment type (<str<strong>on</strong>g>the</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn marshes tend to be moresandy) this c<strong>on</strong>trast between nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn and sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn marshesmay be related to <str<strong>on</strong>g>the</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> differences in climate anddaylength <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> two species (see below).Although <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina invasi<strong>on</strong> has not completelyhalted it has certainly slowed, and with dieback widespreadin <str<strong>on</strong>g>the</str<strong>on</strong>g> south and a slow rate <str<strong>on</strong>g>of</str<strong>on</strong>g> col<strong>on</strong>izati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> north,<str<strong>on</strong>g>the</str<strong>on</strong>g>re is probably a net loss <str<strong>on</strong>g>of</str<strong>on</strong>g> area <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina marsh at <str<strong>on</strong>g>the</str<strong>on</strong>g>present day. Small isolated foci <str<strong>on</strong>g>of</str<strong>on</strong>g> recol<strong>on</strong>izati<strong>on</strong> may befound in <str<strong>on</strong>g>the</str<strong>on</strong>g> south where, in resp<strong>on</strong>se to rising relative sealevels, sea defences have been removed to create newmudflats and salt marsh, a process termed ‘managedrealignment’. Active invasi<strong>on</strong> by Spartina <str<strong>on</strong>g>of</str<strong>on</strong>g> such newlycreated intertidal mudflats can be observed at Tollesbury inEssex, a county which has lost more than 25% <str<strong>on</strong>g>of</str<strong>on</strong>g> its saltmarsh in <str<strong>on</strong>g>the</str<strong>on</strong>g> last thirty years. For <str<strong>on</strong>g>the</str<strong>on</strong>g> moment it seems <str<strong>on</strong>g>the</str<strong>on</strong>g>Spartina invasi<strong>on</strong> is ‘<strong>on</strong> hold.’INTERACTIONS BETWEEN SPARTINA AND PUCCINELLIAThe most parsim<strong>on</strong>ious explanati<strong>on</strong> for Spartina’ssuccess as an invader is that it has been able to grow <strong>on</strong>intertidal mudflats at lower elevati<strong>on</strong>s than <str<strong>on</strong>g>the</str<strong>on</strong>g> existingperennial saltmarsh vegetati<strong>on</strong>. This is undoubtedly due to arange <str<strong>on</strong>g>of</str<strong>on</strong>g> adaptive morphological and physiological features<str<strong>on</strong>g>the</str<strong>on</strong>g> net effect <str<strong>on</strong>g>of</str<strong>on</strong>g> which enable Spartina to withstand higherfrequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> tidal submergence. The ‘elevati<strong>on</strong>al niche’ <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina in Britain has been measured by surveyingtransects across salt marshes and recording <str<strong>on</strong>g>the</str<strong>on</strong>g> highest andlowest levels <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sward (in meters above <str<strong>on</strong>g>the</str<strong>on</strong>g> standard UKdatum height) and relating this to tidal c<strong>on</strong>stants (Gray et al.1991, 1995). Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this niche with that <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>rsaltmarsh species c<strong>on</strong>firms that Spartina extends <strong>on</strong> average68 centimeters (cm) below Puccinellia, <str<strong>on</strong>g>the</str<strong>on</strong>g> species with <str<strong>on</strong>g>the</str<strong>on</strong>g>next lowest elevati<strong>on</strong>al limit. There is also a niche overlapbetween <str<strong>on</strong>g>the</str<strong>on</strong>g> two species by 20 cm. Within this overlap z<strong>on</strong>e<str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two species is likely to be principallydetermined by interspecific competiti<strong>on</strong>, and Scholten andRozema (1990) provide clear evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> this using anelegant removal experiment. The outcome <str<strong>on</strong>g>of</str<strong>on</strong>g> interspecificcompetiti<strong>on</strong> was shown to be critically dependent <strong>on</strong>variati<strong>on</strong> in local marsh elevati<strong>on</strong>.Measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina’s elevati<strong>on</strong>al niche alsoindicated that its upper limit varies with latitude. Theregressi<strong>on</strong> equati<strong>on</strong> describing this limit (Gray et al. 1991)was:Upper Limit = 4.74 + 0.483(R) + 0.068(F) – 0.099(L)where R = spring tide range (m), F = fetch in <str<strong>on</strong>g>the</str<strong>on</strong>g> directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> transect (kilometers) and L = latitude (decimal degreesN). This equati<strong>on</strong>, which accounted for 90.2% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>variati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> species’ upper limit, shows that Spartinadoes not extend so far upshore in more nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rly latitudes. Apossible explanati<strong>on</strong> for this is that <str<strong>on</strong>g>the</str<strong>on</strong>g> competitiveinteracti<strong>on</strong> between Spartina and Puccinellia increasinglyfavours <str<strong>on</strong>g>the</str<strong>on</strong>g> latter as <strong>on</strong>e goes northwards, enabling it toinvade <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina z<strong>on</strong>e at lower elevati<strong>on</strong>s.The increasing competitive advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> Puccinellia athigher latitudes may be linked to <str<strong>on</strong>g>the</str<strong>on</strong>g> different effects <str<strong>on</strong>g>of</str<strong>on</strong>g>temperature <strong>on</strong> Spartina and Puccinellia, which are revealedby differences in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir seas<strong>on</strong>al growth patterns. Fieldmeasurements <strong>on</strong> a salt marsh at 52° N showed thatPuccinellia shoot weight increased in March when airtemperatures rose above 5° C, with growth peaking in Juneand July, whereas Spartina did not begin to grow until May,when temperatures reached 9° C, and reached maximumgrowth in October (Dunn et al. 1981). This laterdevelopment and growth <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina can be related to <str<strong>on</strong>g>the</str<strong>on</strong>g>species’ utilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> C4 photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic pathway. One<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>ly eight C4 species in <str<strong>on</strong>g>the</str<strong>on</strong>g> UK flora, Spartina is <strong>on</strong>lypartially adapted to cooler climates (C4 photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis, inwhich <str<strong>on</strong>g>the</str<strong>on</strong>g> first product <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> dioxide fixati<strong>on</strong> isoxaloacetate instead <str<strong>on</strong>g>of</str<strong>on</strong>g> phosphoglycerate as in C3 species, ismost comm<strong>on</strong> in semi-arid tropical and subtropical regi<strong>on</strong>s)(L<strong>on</strong>g 1983,1990).THE EFFECTS OF CLIMATE CHANGEThe studies outlined above suggest that <str<strong>on</strong>g>the</str<strong>on</strong>g> northwardinvasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina is being prevented, or slowed, by <str<strong>on</strong>g>the</str<strong>on</strong>g>species inability to grow at low temperatures, and that, at itsnor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn limits it is replaced by Puccinellia (a C3 specieswith a circumpolar distributi<strong>on</strong> from 70° N southwards).These two pi<strong>on</strong>eer saltmarsh species bioengineer vast tracts<str<strong>on</strong>g>of</str<strong>on</strong>g> intertidal mudflats and must be regarded as keyst<strong>on</strong>especies in saltmarsh development. The obvious andintriguing questi<strong>on</strong> is: will increases in air temperaturespredicted under various climate change scenarios enableSpartina to invade northwards into marshes currentlydominated by Puccinellia? Higher temperatures will bothincrease growth rate and extend <str<strong>on</strong>g>the</str<strong>on</strong>g> period <str<strong>on</strong>g>of</str<strong>on</strong>g> growth during<str<strong>on</strong>g>the</str<strong>on</strong>g> early m<strong>on</strong>ths <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> year. Spartina is unlikely to beaffected by increased atmospheric carb<strong>on</strong> dioxide as, where- 104 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 2: Spartina Distributi<strong>on</strong> and Spreadwater supply is not limiting, photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis in C4 plants iscarb<strong>on</strong> dioxide saturated. However higher atmosphericcarb<strong>on</strong> dioxide is likely to increase photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis, andhence growth, in C3 plants such as Puccinellia due to higherc<strong>on</strong>versi<strong>on</strong> efficiency.The different effects <str<strong>on</strong>g>of</str<strong>on</strong>g> elevated temperatures andcarb<strong>on</strong> dioxide <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> two species were modelled by L<strong>on</strong>g(1990). The model predicts <str<strong>on</strong>g>the</str<strong>on</strong>g> primary producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina and Puccinellia to be expected in <str<strong>on</strong>g>the</str<strong>on</strong>g> year 2050,assuming a 3 degree rise in temperature and a doubling <str<strong>on</strong>g>of</str<strong>on</strong>g>atmospheric carb<strong>on</strong> dioxide. It was validated by comparing<str<strong>on</strong>g>the</str<strong>on</strong>g> predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> under 1978 c<strong>on</strong>diti<strong>on</strong>s wi<str<strong>on</strong>g>the</str<strong>on</strong>g>mpirical field data. The increase in annual net producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina from 1.3 kilograms per square meter (kg/m 2 ) in1978 to 2.1 kg/m 2 in 2050 was largely attributable totemperature-driven increases in leaf area, enabling <str<strong>on</strong>g>the</str<strong>on</strong>g> pointwhere <str<strong>on</strong>g>the</str<strong>on</strong>g> leaf area index is sufficient to intercept 30% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>incoming solar radiati<strong>on</strong> to be reached 50 days earlier. Theincrease in Puccinellia, from 1.4 kg/m 2 in 1978 to 2.5 kg/m 2in 2050, was largely attributed to higher c<strong>on</strong>versi<strong>on</strong>efficiency in a high carb<strong>on</strong> dioxide envir<strong>on</strong>ment but <str<strong>on</strong>g>the</str<strong>on</strong>g>model indicated that Puccinellia would gain from highertemperatures in spring and autumn.L<strong>on</strong>g’s model, as he acknowledges, excludes severalfactors which may change with climate and will impact <strong>on</strong>plant growth. These include salinity, nutrient availability andwater level. Also excluded is a c<strong>on</strong>siderati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>competitive interacti<strong>on</strong>s between <str<strong>on</strong>g>the</str<strong>on</strong>g> two species underchanging c<strong>on</strong>diti<strong>on</strong>s.A COMPETITION EXPERIMENT BETWEEN THE TWO SPECIESIn order to gain insight into how changing climate mayaffect <str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina and Puccinellia <str<strong>on</strong>g>the</str<strong>on</strong>g> twospecies were grown in a competiti<strong>on</strong> experiment underc<strong>on</strong>trolled c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> dioxide and temperature.The experiment and full results are described in Gray andMogg (2001) and <strong>on</strong>ly a summary is given below.Plants <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two species were originally sampled froma salt marsh in Morecambe Bay (at 54° 10’ N) and grown incomm<strong>on</strong> c<strong>on</strong>diti<strong>on</strong>s for 18 weeks before 160 tillers <str<strong>on</strong>g>of</str<strong>on</strong>g> eachspecies were removed, size-matched and transplanted intopots c<strong>on</strong>taining standard soils. The experimental design wasa replacement series (de Wit 1960), each series comprisingfive pots <str<strong>on</strong>g>of</str<strong>on</strong>g> four tillers (4 Spartina, 3 Spartina + 1Puccinellia, 2 Spartina + 2 Puccinellia, 1 Spartina + 3Puccinellia, and 4 Puccinellia). Eight series were set up inlarge pots and eight in smaller pots to give two density levelsand, following a three-week establishment period, <str<strong>on</strong>g>the</str<strong>on</strong>g> potswere transferred to <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental c<strong>on</strong>diti<strong>on</strong>s. Thesecomprised eight hemispherical glasshouses (<str<strong>on</strong>g>the</str<strong>on</strong>g>‘solardomes’) in which atmosphere and temperature arec<strong>on</strong>trolled to a high degree <str<strong>on</strong>g>of</str<strong>on</strong>g> precisi<strong>on</strong>. The eight domesallowed two replicates <str<strong>on</strong>g>of</str<strong>on</strong>g> each treatment and <str<strong>on</strong>g>the</str<strong>on</strong>g> fourtreatments were: ambient temperature + ambient CO 2 ;ambient temperature + a CO 2 c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 340 parts permilli<strong>on</strong>; temperature elevated by 3° C and trackedc<strong>on</strong>tinuously above ambient + ambient CO 2 ; and elevatedtemperature + elevated CO 2 . The pots were maintained withn<strong>on</strong>-limiting water supplies, fertilized, and harvested after 11m<strong>on</strong>ths growth when each plant was separated into aboveand below ground material before weighing. The results aresummarized in Table 1.The main c<strong>on</strong>clusi<strong>on</strong>s to be drawn from <str<strong>on</strong>g>the</str<strong>on</strong>g> experimentare (1) most yield variables were significantly affected bytreatment, ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r by temperature or carb<strong>on</strong> dioxide level or<str<strong>on</strong>g>the</str<strong>on</strong>g> interacti<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g>se treatments and density(Spartina height and inflorescence number beingexcepti<strong>on</strong>s), (2) <str<strong>on</strong>g>the</str<strong>on</strong>g> main competitive interacti<strong>on</strong> effectswere due to <str<strong>on</strong>g>the</str<strong>on</strong>g> competitive superiority <str<strong>on</strong>g>of</str<strong>on</strong>g> Puccinellia,which had a significant negative effect <strong>on</strong> Spartina’s heightand above ground weight and displayed str<strong>on</strong>g intraspecificcompetitive effects <strong>on</strong> tiller number and biomass, (3)Spartina resp<strong>on</strong>ded to higher temperature as predicted, butalso, at low plant density, to carb<strong>on</strong> dioxide c<strong>on</strong>centrati<strong>on</strong>.In both cases <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>se was mainly an increase in belowgroundgrowth including rhizomes, (4) Puccinelliaresp<strong>on</strong>ded to higher atmospheric carb<strong>on</strong> dioxide and highertemperature mainly by increasing above-ground growth, (5)Spartina had an unexplained poor performance in <str<strong>on</strong>g>the</str<strong>on</strong>g> ++treatment, an effect seen at low density and <str<strong>on</strong>g>the</str<strong>on</strong>g>reforeunlikely to be explained by competiti<strong>on</strong> with Puccinellia,Table 1. Individual plant means for six yield variables at final harvest.Trait Species Amb +T +CO 2 ++ Sig mn effectsSpa 4.10 6.17 6.00 3.48 D*, CT*Till no.Pucc 31.46 17.69 25.76 25.98 P**, CTD*Fl. TillHt(cm)S wt(g)BG wt(g)Biom(g)Spa 0.13 0.11 0.28 0.01 nsPucc 1.79 0.42 1.34 1.53 D***, DP*Spa 15.37 16.69 19.98 17.88 P*Pucc 44.47 44.08 48.24 54.98 D***, CD*Spa 0.45 0.70 0.89 0.37 D*, P*Pucc 1.77 1.28 1.61 2.70 D***, CDT**Spa 0.61 0.97 1.38 0.60 CT*, CTD**Pucc 0.42 0.24 0.36 0.37 CTP**Spa 1.04 1.67 1.98 0.97 CT**, CTD**Pucc 2.19 1.53 1.97 3.08 D***, CTP*The treatments (see text) were: Amb = ambient temperature and CO 2 , +T =elevated temperature and ambient CO 2 , +CO 2 = ambient temperature andelevated CO 2 , ++ = elevated temperature and elevated CO 2 . The variableswere: Till no. = number <str<strong>on</strong>g>of</str<strong>on</strong>g> tillers, Fl. Till = number <str<strong>on</strong>g>of</str<strong>on</strong>g> flowering tillers,Ht(cm) = plant height, S wt(g) = shoot weight, BG wt(g) = weight <str<strong>on</strong>g>of</str<strong>on</strong>g>below-ground material, Biom(g) = total biomass. The significance levelsare from a generalised ANOVA <str<strong>on</strong>g>of</str<strong>on</strong>g> log transformed values in which D =effect <str<strong>on</strong>g>of</str<strong>on</strong>g> density (pot size) (1df), C = effect <str<strong>on</strong>g>of</str<strong>on</strong>g> elevated CO 2 (1df), T =effect <str<strong>on</strong>g>of</str<strong>on</strong>g> elevated temperature (1df), and P = effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Puccinellia (which is a measure <str<strong>on</strong>g>of</str<strong>on</strong>g> competitive interacti<strong>on</strong> effects) (3df).Only main interacti<strong>on</strong> effects are given. Significance * p


Chapter 2: Spartina Distributi<strong>on</strong> and Spread<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinaand (6) <str<strong>on</strong>g>the</str<strong>on</strong>g> pervasive effects <str<strong>on</strong>g>of</str<strong>on</strong>g> plant density <strong>on</strong> mostvariables underlines <str<strong>on</strong>g>the</str<strong>on</strong>g> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> varying density insuch experimental designs (Gibs<strong>on</strong> et al. 1999).A comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plant growth in ambient c<strong>on</strong>diti<strong>on</strong>swith that in <str<strong>on</strong>g>the</str<strong>on</strong>g> ++ treatment provides broad agreement withL<strong>on</strong>g’s (1990) model predicti<strong>on</strong>s. The mean biomass <str<strong>on</strong>g>of</str<strong>on</strong>g>individual Puccinellia plants increased by about 100% inpure stands, a similar order <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude to <str<strong>on</strong>g>the</str<strong>on</strong>g> 80%increase in cumulative net primary producti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> model.Increases in Spartina yield <str<strong>on</strong>g>of</str<strong>on</strong>g> 72% and 95% in elevatedtemperature and carb<strong>on</strong> dioxide respectively comparefavourably with <str<strong>on</strong>g>the</str<strong>on</strong>g> model predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 62%, but <str<strong>on</strong>g>the</str<strong>on</strong>g> smallincrease in ++ c<strong>on</strong>diti<strong>on</strong>s (+5%) was unexpected. Theresp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> Puccinellia is broadly in line with that found ino<str<strong>on</strong>g>the</str<strong>on</strong>g>r C3 species (Bazzaz 1990) as is Spartina’s resp<strong>on</strong>se toelevated temperature. However <str<strong>on</strong>g>the</str<strong>on</strong>g> increased yield <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina in higher carb<strong>on</strong> dioxide is at variance with o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwork <strong>on</strong> C4 grasses, including Spartina patens (Curtis et al.1989).DISCUSSION AND SPECULATIONAs menti<strong>on</strong>ed earlier, plant performance will be affectedby several o<str<strong>on</strong>g>the</str<strong>on</strong>g>r factors related to projected climate change,some <str<strong>on</strong>g>of</str<strong>on</strong>g> which are difficult to predict, and it is generallyrisky to make predicti<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> basis <str<strong>on</strong>g>of</str<strong>on</strong>g> photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>ticpathway or CO 2 resp<strong>on</strong>se al<strong>on</strong>e (Dukes and Mo<strong>on</strong>ey 1999).Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less it is interesting to speculate <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> implicati<strong>on</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> above experiment for <str<strong>on</strong>g>the</str<strong>on</strong>g> future changes in Spartinadistributi<strong>on</strong>. Indeed <str<strong>on</strong>g>the</str<strong>on</strong>g>re are some aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> interacti<strong>on</strong>between Spartina and Puccinellia which encourage us tobelieve that our predicti<strong>on</strong>s have a better than averagechance <str<strong>on</strong>g>of</str<strong>on</strong>g> being somewhere near <str<strong>on</strong>g>the</str<strong>on</strong>g> mark – a relativelysimple two-species system, predominately vegetativecompetiti<strong>on</strong> related to elevati<strong>on</strong> as a resource, a str<strong>on</strong>gseas<strong>on</strong>al element, wide dispersal <str<strong>on</strong>g>of</str<strong>on</strong>g> propagules, locallyshared resource levels and so <strong>on</strong> (see Gray and Mogg 2001for a fuller discussi<strong>on</strong>).Locally, competiti<strong>on</strong> will be influenced by <str<strong>on</strong>g>the</str<strong>on</strong>g> balancebetween increasing temperatures and carb<strong>on</strong> dioxidec<strong>on</strong>centrati<strong>on</strong>. The average global warming <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 to 3.5° Cover <str<strong>on</strong>g>the</str<strong>on</strong>g> next century predicted as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> increasedgreenhouse gases is likely to vary spatially and to be higherin nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn latitudes in winter (Hought<strong>on</strong> 1996). In generalhowever we may expect Spartina to extend its rangenorthwards <str<strong>on</strong>g>of</str<strong>on</strong>g> 57° N as temperatures and carb<strong>on</strong> dioxiderise. Seed set in nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn populati<strong>on</strong>s, which is currentlylimited by <str<strong>on</strong>g>the</str<strong>on</strong>g> length <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> growing seas<strong>on</strong> (for Spartinathis is <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> days above 9° C) may also increase andadd to <str<strong>on</strong>g>the</str<strong>on</strong>g> plant’s capacity to col<strong>on</strong>ize new mudfats. Theincreased biomass below ground should enable <str<strong>on</strong>g>the</str<strong>on</strong>g> speciesto survive in <str<strong>on</strong>g>the</str<strong>on</strong>g> lower parts <str<strong>on</strong>g>of</str<strong>on</strong>g> its elevati<strong>on</strong>al niche.However, it seems likely that <str<strong>on</strong>g>the</str<strong>on</strong>g> competitively superiorPuccinellia will replace Spartina at appropriate elevati<strong>on</strong>s. Itis even possible that <str<strong>on</strong>g>the</str<strong>on</strong>g> high performance <str<strong>on</strong>g>of</str<strong>on</strong>g> Puccinelliaunder elevated temperature and carb<strong>on</strong> dioxide indicates thatit will replace Spartina at lower elevati<strong>on</strong>s in nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rnlatitudes. The future management <str<strong>on</strong>g>of</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn marshes,especially <str<strong>on</strong>g>the</str<strong>on</strong>g> extent to which <str<strong>on</strong>g>the</str<strong>on</strong>g>y are grazed (a processwhich favours Puccinellia over Spartina) will influence <str<strong>on</strong>g>the</str<strong>on</strong>g>interacti<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> two species.In c<strong>on</strong>clusi<strong>on</strong>, our experiment suggests that changingclimatic c<strong>on</strong>diti<strong>on</strong>s could kick-start Spartina’s stalledinvasi<strong>on</strong>, enabling it to col<strong>on</strong>ize mudflats and marshesnorthwards <str<strong>on</strong>g>of</str<strong>on</strong>g> its present distributi<strong>on</strong>. Much will depend <strong>on</strong>changes in o<str<strong>on</strong>g>the</str<strong>on</strong>g>r ecosystem processes and <strong>on</strong> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r features<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> changing climate. Higher rainfall, through its effect <strong>on</strong>salinity, and changes in storm frequency and wind directi<strong>on</strong>are likely to be important factors. A key factor will be <str<strong>on</strong>g>the</str<strong>on</strong>g>impact <str<strong>on</strong>g>of</str<strong>on</strong>g> rising relative sea levels and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir influence <strong>on</strong>local sediment availability and accreti<strong>on</strong>.ACKNOWLEDGMENTSWe are grateful to Les J<strong>on</strong>es and <str<strong>on</strong>g>the</str<strong>on</strong>g> staff at CEHBangor who manned <str<strong>on</strong>g>the</str<strong>on</strong>g> solardomes and to Ralph Clarke forstatistical advice. AJG wishes to acknowledge <str<strong>on</strong>g>the</str<strong>on</strong>g> input over<str<strong>on</strong>g>the</str<strong>on</strong>g> years <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> many students who have c<strong>on</strong>tributed to <str<strong>on</strong>g>the</str<strong>on</strong>g>Spartina work, in particular Paul Adam, Colin Ferris, AlanRaybould , John Thomps<strong>on</strong> and Liz Warman.REFERENCESBazzaz, F.A. 1990. The resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> natural ecosystems to <str<strong>on</strong>g>the</str<strong>on</strong>g> risingglobal CO 2 levels. Annual Reviews <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology and Systematics.21: 167-196.Charman, K. 1990. The current status <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglica in GreatBritain. In: Gray, A.J. and P.E.B. Benham, eds. Spartina anglica– a Research Review, 11-14. HMSO, L<strong>on</strong>d<strong>on</strong>.Curtis, P.S., B.G. Drake, and D.F. Whigham 1989. Nitrogen andcarb<strong>on</strong> dynamics in C3 and C4 estuarine marsh plants grownunder elevated CO 2 in situ. Oecologia. 78:297-301.De Wit, C.T. 1960. On competiti<strong>on</strong>. Verslagen van LandbouwkundigeOnderzoekinge., 66:1-82.Dukes, J.S. and H.A. Mo<strong>on</strong>ey. 1999. Does global change increase<str<strong>on</strong>g>the</str<strong>on</strong>g> success <str<strong>on</strong>g>of</str<strong>on</strong>g> biological invaders? TREE., 14:135-139.Dunn, R., S.P. L<strong>on</strong>g, and S.M. Thomas. 1981. The effects <str<strong>on</strong>g>of</str<strong>on</strong>g>temperature <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> growth and photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> C4 grassSpartina townsendii. In: Grace J., E.D. Ford, and P.G. Jarvis,eds. Plants and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir atmospheric envir<strong>on</strong>ment, 301-311. Blackwell,Oxford.Ferris, C., R.A. King, and A.J. Gray. 1997. Molecular evidence for<str<strong>on</strong>g>the</str<strong>on</strong>g> maternal parentage in <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid origin <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglicaCE Hubbard. Molecular Ecology. 6:185-187.Gibs<strong>on</strong>, D.J., H. C<strong>on</strong>nolly, D.C. Hartnett, and J.D. Weidenhamer.1999. Designs for greenhouse studies <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong>s betweenplants. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology. 87:1-16.Gray, A.J. and R.J. Mogg. 2001. Climate impacts <strong>on</strong> pi<strong>on</strong>eersaltmarsh plants. Climate Research. 18: 105-112.Gray, A.J. and A.F. Raybould. 1997. The history and evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina anglica in <str<strong>on</strong>g>the</str<strong>on</strong>g> British Isles. <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> 2nd <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g>Spartina <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g>, 13-16. Washingt<strong>on</strong> State University,Olympia.Gray, A.J., D.F. Marshall, and A.F. Raybould. 1991. A century <str<strong>on</strong>g>of</str<strong>on</strong>g>evoluti<strong>on</strong> in Spartina anglica. Advances in Ecological Research.21:1-61.- 106 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 2: Spartina Distributi<strong>on</strong> and SpreadGray, A.J., A.E. Warman, R.T. Clarke, and P.J Johns<strong>on</strong>. 1995. Theniche <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglica <strong>on</strong> a changing coastline. Coastal Z<strong>on</strong>eTopics. 1:29-34.Hought<strong>on</strong>, J.T., ed. 1996. Climate change 1995: <str<strong>on</strong>g>the</str<strong>on</strong>g> science <str<strong>on</strong>g>of</str<strong>on</strong>g>climate change: c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Working Group 1 to <str<strong>on</strong>g>the</str<strong>on</strong>g> Sec<strong>on</strong>dAssessment Report <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Intergovernmental Panel <strong>on</strong> ClimateChange. Cambridge University Press, Cambridge.L<strong>on</strong>g S.P. 1983. C4 photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis at low temperatures. Plant Celland Envir<strong>on</strong>ment. 6:345-363.L<strong>on</strong>g S.P. 1990 The primary producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Puccinellia maritimaand Spartina anglica : a simple predictive model <str<strong>on</strong>g>of</str<strong>on</strong>g> resp<strong>on</strong>se toclimate change. In: Beukema, J.J., W.J. Wolff, and J.J.W.M.Brouns, eds. Expected effects <str<strong>on</strong>g>of</str<strong>on</strong>g> climatic change <strong>on</strong> marinecoastal ecosystems, 33-39. Kluwer, Dordrecht.Raybould, A.F., A.J. Gray, M.J. Lawrence, and D.F. Marshall.1991a. The evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglica CE Hubbard: originand genetic variability. Biological Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> LinneanSociety. 43:111-126.Raybould, A.F., A.J. Gray, M.J. Lawrence, and D.F. Marshall.1991b. The evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglica CE Hubbard: variati<strong>on</strong>and status <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> parental species in Britain. Biological Journal<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Linnean Society. 44:369-380.Scholten, M.C.J. and J. Rozema. 1990. The competitive ability <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina anglica <strong>on</strong> Dutch saltmarshes. In: Gray, A.J. and P.E.B.Benham, eds. Spartina anglica – A Research Review, pp. 39-47.HMSO, L<strong>on</strong>d<strong>on</strong>.- 107 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 2: Spartina Distributi<strong>on</strong> and SpreadCOMPETITION AMONG MARSH MACROPHYTES BY MEANS OF VERTICALGEOMORPHOLOGICAL DISPLACEMENTJ.T. MORRISBelle W. Baruch Institute for Marine & Coastal Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> South Carolina, Columbia, SC 29208This paper describes a <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> biogeomorphology that addresses how intertidal macrophytes canmodify landscape elevati<strong>on</strong>. Competitive interacti<strong>on</strong>s am<strong>on</strong>g marsh plant species are mediated by<str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> <strong>on</strong> sediment accreti<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> relative elevati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> marsh surface. A model described here dem<strong>on</strong>strates <str<strong>on</strong>g>the</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> feedback between physicalprocesses like sediment accreti<strong>on</strong> and biological processes such as those that determine speciesz<strong>on</strong>ati<strong>on</strong> patterns. Changes in geomorphology, primary productivity and <str<strong>on</strong>g>the</str<strong>on</strong>g> spatial distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>plant species are explained by competitive interacti<strong>on</strong>s and by interacti<strong>on</strong>s am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> tides, biomassdensity, and sediment accreti<strong>on</strong> that move marsh elevati<strong>on</strong> towards an equilibrium with mean sealevel (MSL). This equilibrium is affected positively (relative elevati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh surface increases)by <str<strong>on</strong>g>the</str<strong>on</strong>g> biomass density <str<strong>on</strong>g>of</str<strong>on</strong>g> emergent, salt marsh macrophytes and negatively by <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-levelrise. It was dem<strong>on</strong>strated that a dominant, invading species is able to modify its envir<strong>on</strong>ment toexclude competitively inferior species. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> outcome depends <strong>on</strong> a number <str<strong>on</strong>g>of</str<strong>on</strong>g> variablesincluding <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-level rise and <str<strong>on</strong>g>the</str<strong>on</strong>g> fundamental biomass distributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> species across <str<strong>on</strong>g>the</str<strong>on</strong>g>intertidal gradient. The model predicts that a marsh can move toward alternative states, depending<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-level rise and species biomass distributi<strong>on</strong>s within <str<strong>on</strong>g>the</str<strong>on</strong>g> tidal frame.Keywords: sedimentati<strong>on</strong>, marshes, Spartina, sea level, models, geomorphology, competiti<strong>on</strong>INTRODUCTIONPhysical ecosystem engineering is a process comm<strong>on</strong>to organisms that possess <str<strong>on</strong>g>the</str<strong>on</strong>g> ability to physically modify<str<strong>on</strong>g>the</str<strong>on</strong>g>ir habitats (J<strong>on</strong>es et al. 1997). This trait is comm<strong>on</strong> tointertidal marsh macrophytes that have <str<strong>on</strong>g>the</str<strong>on</strong>g> potential toraise <str<strong>on</strong>g>the</str<strong>on</strong>g> relative elevati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir habitat and modify <str<strong>on</strong>g>the</str<strong>on</strong>g>geomorphology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coastal landscape, potentially to <str<strong>on</strong>g>the</str<strong>on</strong>g>benefit and detriment <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r species (Zedler & Kercher2004). Historically, coastal wetlands have maintained anelevati<strong>on</strong> in equilibrium with mean sea level by <str<strong>on</strong>g>the</str<strong>on</strong>g> accumulati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> mineral sediment or organic matter (Redfield1972; Stevens<strong>on</strong> et al. 1986). Comm<strong>on</strong>ly, stable intertidalsalt marshes occupy a broad, flat expanse <str<strong>on</strong>g>of</str<strong>on</strong>g> landscape <str<strong>on</strong>g>of</str<strong>on</strong>g>tenreferred to as <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh platform at an elevati<strong>on</strong> within<str<strong>on</strong>g>the</str<strong>on</strong>g> intertidal z<strong>on</strong>e that approximates that <str<strong>on</strong>g>of</str<strong>on</strong>g> local meanhigh water (MHW) (Kr<strong>on</strong>e 1985). Marsh species typicallysegregate al<strong>on</strong>g gently sloping gradients across <str<strong>on</strong>g>the</str<strong>on</strong>g> marshplatform (Hacker & Bertness 1999; Silvestri et al. 20005).The elevati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh platform relative to sea leveldetermine inundati<strong>on</strong> frequency, durati<strong>on</strong> and, c<strong>on</strong>sequently,wetland productivity and species distributi<strong>on</strong>s.Recent work in a North Inlet, SC marsh has shown that<str<strong>on</strong>g>the</str<strong>on</strong>g> relative elevati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sediment surface is a criticallyimportant variable that ultimately c<strong>on</strong>trols <str<strong>on</strong>g>the</str<strong>on</strong>g> productivity<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> salt marsh plant community (Morris et al. 2002).Productivity has a positive feedback <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> accreti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh surface. This feedback is key to predicting <str<strong>on</strong>g>the</str<strong>on</strong>g>resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> coastal wetlands to rising sea level, includingchanges to <str<strong>on</strong>g>the</str<strong>on</strong>g> geometry <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> land margin and to <str<strong>on</strong>g>the</str<strong>on</strong>g> totalarea <str<strong>on</strong>g>of</str<strong>on</strong>g> wetland habitat. It is also fundamental to understanding<str<strong>on</strong>g>the</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> invasive marsh macrophytes, such asSpartina hybrids in San Francisco Bay, that have <str<strong>on</strong>g>the</str<strong>on</strong>g> abilityto physically alter <str<strong>on</strong>g>the</str<strong>on</strong>g>ir envir<strong>on</strong>ment in a manner that benefits<str<strong>on</strong>g>the</str<strong>on</strong>g> invading species (Cuddingt<strong>on</strong> & Hastings 2004).The objective <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> study reported here is to explore <str<strong>on</strong>g>the</str<strong>on</strong>g>behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> a model that explicitly treats <str<strong>on</strong>g>the</str<strong>on</strong>g> modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>habitat elevati<strong>on</strong> by a hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>tical group <str<strong>on</strong>g>of</str<strong>on</strong>g> marsh macrophytescompeting for habitat space within <str<strong>on</strong>g>the</str<strong>on</strong>g> intertidal z<strong>on</strong>e.The model accounts for <str<strong>on</strong>g>the</str<strong>on</strong>g> species-specific effect <str<strong>on</strong>g>of</str<strong>on</strong>g> marshvegetati<strong>on</strong> <strong>on</strong> mineral sediment accreti<strong>on</strong>, and for feedbacksam<strong>on</strong>g sea-level rise, relative elevati<strong>on</strong>, species replacement,and primary producti<strong>on</strong>. From this work it should be possibleto generalize about <str<strong>on</strong>g>the</str<strong>on</strong>g> types <str<strong>on</strong>g>of</str<strong>on</strong>g> adaptati<strong>on</strong>s that enable macrophytespecies to exploit a particular range <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat within<str<strong>on</strong>g>the</str<strong>on</strong>g> intertidal z<strong>on</strong>e and that endow some species with superiorcompetitive abilities. The c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> geomorphologicaldisplacement is described whereby <strong>on</strong>e species displacesano<str<strong>on</strong>g>the</str<strong>on</strong>g>r by modifying <str<strong>on</strong>g>the</str<strong>on</strong>g> relative elevati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> its habitat.MODEL DESCRIPTIONThe model described here is based <strong>on</strong> fieldwork thatwas carried out in a salt marsh at North Inlet, South Carolina(Morris et al. 2002). The model was initially developedand calibrated for a single species, Spartina alterniflora,which forms a m<strong>on</strong>oculture over <str<strong>on</strong>g>the</str<strong>on</strong>g> majority <str<strong>on</strong>g>of</str<strong>on</strong>g> this marshwithin a narrow range between 0.22 and 0.481 m relative- 109 -


Chapter 2: Spartina Distributi<strong>on</strong> and Spread<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinato NAVD88 (Morris et al. 2005). At North Inlet, <str<strong>on</strong>g>the</str<strong>on</strong>g> meanhigh water level was 0.618 m (2001 through May, 2003)with a mean tidal range <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.39 m. Details about <str<strong>on</strong>g>the</str<strong>on</strong>g> NorthInlet marsh can be found in a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> sources (Eiser &Kjerfve 1986; Dame et al. 2000; Morris 2000; Morris et al.2005). Below, <str<strong>on</strong>g>the</str<strong>on</strong>g> model is generalized for two or morespecies and its predicti<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> two hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>ticalspecies are discussed.The Elevati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Marsh SurfaceThe elevati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh platform equilibrates at apositi<strong>on</strong> where erosi<strong>on</strong> and depositi<strong>on</strong> are equal. It is clearthat sediment depositi<strong>on</strong> must approach zero at elevati<strong>on</strong>snear that <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> highest high tide and should increase as<str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> suspended sediment and hydroperiodincrease. This logic is based up<strong>on</strong> a c<strong>on</strong>siderati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> abiotic processes al<strong>on</strong>e and predicts that intertidalmarshes approach an equilibrium elevati<strong>on</strong> that approximatesMHW (Kr<strong>on</strong>e 1985). A rise in relative sea levelwill increase flooding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh and inundati<strong>on</strong> time<str<strong>on</strong>g>the</str<strong>on</strong>g>reby increasing <str<strong>on</strong>g>the</str<strong>on</strong>g> opportunity for sediment depositi<strong>on</strong>and re-establishing <str<strong>on</strong>g>the</str<strong>on</strong>g> elevati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh relativeto <str<strong>on</strong>g>the</str<strong>on</strong>g> new MSL (Pethick 1981, Kr<strong>on</strong>e 1985, French 1993).Sedimentati<strong>on</strong> rate is <str<strong>on</strong>g>the</str<strong>on</strong>g> product <str<strong>on</strong>g>of</str<strong>on</strong>g> settling velocity andtime <str<strong>on</strong>g>of</str<strong>on</strong>g> inundati<strong>on</strong>. Since depth below mean higher highwater (MHHW) and time <str<strong>on</strong>g>of</str<strong>on</strong>g> inundati<strong>on</strong> are roughly proporti<strong>on</strong>al,<str<strong>on</strong>g>the</str<strong>on</strong>g> net rate <str<strong>on</strong>g>of</str<strong>on</strong>g> change in <str<strong>on</strong>g>the</str<strong>on</strong>g> elevati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>marsh surface (dY/dt), is proporti<strong>on</strong>al to <str<strong>on</strong>g>the</str<strong>on</strong>g> depth (D) <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> marsh surface: dY/dt D. Strictly speaking, sedimentati<strong>on</strong>rate should be proporti<strong>on</strong>al to depth, whereaso<str<strong>on</strong>g>the</str<strong>on</strong>g>r processes that affect elevati<strong>on</strong>, like compacti<strong>on</strong>and decompositi<strong>on</strong>, may or may not be depth-dependent.However, compacti<strong>on</strong> can be taken to be a c<strong>on</strong>stant that isaccounted for in <str<strong>on</strong>g>the</str<strong>on</strong>g> local rate <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-level rise.Feedbacks between <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh vegetati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> sedimentsare also important. The rate <str<strong>on</strong>g>of</str<strong>on</strong>g> change <str<strong>on</strong>g>of</str<strong>on</strong>g> elevati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> marsh platform is a positive functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> standingdensity <str<strong>on</strong>g>of</str<strong>on</strong>g> plant biomass (B). For simplicity it is assumed thatthis relati<strong>on</strong>ship is linear: dY/dt q + kB, where parametersq and k are proporti<strong>on</strong>al to <str<strong>on</strong>g>the</str<strong>on</strong>g> settling velocity and <str<strong>on</strong>g>the</str<strong>on</strong>g> efficiency<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> vegetati<strong>on</strong> as a sediment trap, respectively. Theproduct <str<strong>on</strong>g>of</str<strong>on</strong>g> kB represents <str<strong>on</strong>g>the</str<strong>on</strong>g> positive effect that abovegroundbiomass density has <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> trapping <str<strong>on</strong>g>of</str<strong>on</strong>g> suspended sediments(e.g. Le<strong>on</strong>ard & Lu<str<strong>on</strong>g>the</str<strong>on</strong>g>r, 1995; Christiansen et al 2000). Thevalues <str<strong>on</strong>g>of</str<strong>on</strong>g> q and k are likely to vary locally and regi<strong>on</strong>allyas a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment availability and tidal range (e.g.Stevens<strong>on</strong> et al. 1986). Note that k also may vary by species.This implies that <str<strong>on</strong>g>the</str<strong>on</strong>g> efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment trapping may varyam<strong>on</strong>g species (e.g. Rooth and Stevens<strong>on</strong> 2000). Combining<str<strong>on</strong>g>the</str<strong>on</strong>g>se c<strong>on</strong>cepts, <str<strong>on</strong>g>the</str<strong>on</strong>g> absolute change in elevati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> marshsurface, for depths (D) within <str<strong>on</strong>g>the</str<strong>on</strong>g> intertidal z<strong>on</strong>e, can beapproximated by:dY/dt = (q + kB)D, for D>0 (1)The kB term implicitly accounts for <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>organic matter accreti<strong>on</strong> when <str<strong>on</strong>g>the</str<strong>on</strong>g> model is calibrated to <str<strong>on</strong>g>the</str<strong>on</strong>g>total accreti<strong>on</strong> rate. It assumes that organic matter accreti<strong>on</strong>is proporti<strong>on</strong>al to <str<strong>on</strong>g>the</str<strong>on</strong>g> standing biomass density <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> vegetati<strong>on</strong>.We have recent unpublished results that show that thisassumpti<strong>on</strong> overly simplistic, but <str<strong>on</strong>g>the</str<strong>on</strong>g> qualitative behavior<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> model with respect to total sediment accreti<strong>on</strong> andsea-level rise is not changed by breaking out organic matteraccreti<strong>on</strong> as a separate term.The Vertical-Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Standing BiomassBiomass density, B (g/m 2 ), is variable and changes witha number <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s including <str<strong>on</strong>g>the</str<strong>on</strong>g> relativeelevati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh platform. For any intertidal species,<str<strong>on</strong>g>the</str<strong>on</strong>g>re exist upper and lower limits <str<strong>on</strong>g>of</str<strong>on</strong>g> relative elevati<strong>on</strong>. For<str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid in San Francisco Bay as for S. alterniflora <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>Atlantic coast, <str<strong>on</strong>g>the</str<strong>on</strong>g> lower limit is probably set by <str<strong>on</strong>g>the</str<strong>on</strong>g> hypoxiaresulting from tidal flooding, while <str<strong>on</strong>g>the</str<strong>on</strong>g> upper elevati<strong>on</strong> isdetermined by salt stress, desiccati<strong>on</strong>, and competitivepressure from o<str<strong>on</strong>g>the</str<strong>on</strong>g>r species. The dominant representativesfrom different plant communities al<strong>on</strong>g a topographicgradient will have different biomass distributi<strong>on</strong>s (a, band c values in Eq. 2) that may or may not overlap, andinterspecific competiti<strong>on</strong> or facilitative interacti<strong>on</strong>s maymodify <str<strong>on</strong>g>the</str<strong>on</strong>g> shapes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> curves where overlap occurs (eg.Bertness 1991; Emery et al. 2001; Bertness & Ewanchuk2002; Pennings et al. 2005). These distributi<strong>on</strong>s can bedescribed by a family <str<strong>on</strong>g>of</str<strong>on</strong>g> curves:B i= a iD + b iD 2 + c i(2)where a, b, and c are coefficients that determine <str<strong>on</strong>g>the</str<strong>on</strong>g> upperand lower depth limits, and magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> B and where <str<strong>on</strong>g>the</str<strong>on</strong>g>subscript i refers to a specific dominant species or communitytype. Depth, D (cm), is positive for depths lessthan MHHW. These curves can be viewed as dimensi<strong>on</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g> a species’ fundamental (in <str<strong>on</strong>g>the</str<strong>on</strong>g> absence <str<strong>on</strong>g>of</str<strong>on</strong>g> competitors)or realized (in <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> competitors) niche, sensuHutchins<strong>on</strong> (1957). The values <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> coefficients a, b, and cwill also differ regi<strong>on</strong>ally as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tide range, salinity,or climate. In examples discussed below, <str<strong>on</strong>g>the</str<strong>on</strong>g> values <str<strong>on</strong>g>of</str<strong>on</strong>g>a, b, and c where chosen to represent hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>tical specieswith biomass distributi<strong>on</strong>s that span different ranges al<strong>on</strong>gan intertidal gradient.MHHW is used as <str<strong>on</strong>g>the</str<strong>on</strong>g> zero datum (D 0) for c<strong>on</strong>veniencesince it is approximates <str<strong>on</strong>g>the</str<strong>on</strong>g> elevati<strong>on</strong> where biomassdensity and sedimentati<strong>on</strong> rate approach zero. However,because MHHW is based up<strong>on</strong> an arithmetic average <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> higher high water height <str<strong>on</strong>g>of</str<strong>on</strong>g> each tidal day observedover <str<strong>on</strong>g>the</str<strong>on</strong>g> Nati<strong>on</strong>al Tidal Datum Epoch, D 0may differ fromMHHW regi<strong>on</strong>ally, depending <strong>on</strong> factors such as windtides. The departure <str<strong>on</strong>g>of</str<strong>on</strong>g> D 0from MHHW is probably greatestin microtidal estuaries where wind tides <str<strong>on</strong>g>of</str<strong>on</strong>g>ten dominateastr<strong>on</strong>omical tides. Moreover, MHHW will vary due tolow frequency variability in mean sea level and with <str<strong>on</strong>g>the</str<strong>on</strong>g>18.6-yr lunar nodal cycle (Stumpf and Haines, 1998). Thelunar nodal cycle changes <str<strong>on</strong>g>the</str<strong>on</strong>g> tidal amplitude by about 5 cmand is simulated below by allowing D 0to vary by 5 cm at afrequency <str<strong>on</strong>g>of</str<strong>on</strong>g> 1/18.6 yr.- 110 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 2: Spartina Distributi<strong>on</strong> and SpreadFeedbacks Am<strong>on</strong>g Biomass Distributi<strong>on</strong>, Relative Elevati<strong>on</strong>and Sea-Level RiseSubstituting for B in Eq. 1 yields <str<strong>on</strong>g>the</str<strong>on</strong>g> following equati<strong>on</strong>that describes <str<strong>on</strong>g>the</str<strong>on</strong>g> absolute change in elevati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> marshsurface as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> depth:dY/dt = [q + k i(a iD + b iD 2 + c i)]D, for D>0 (3)Equati<strong>on</strong> 3 was solved numerically for a hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>ticalmarsh landscape with <strong>on</strong>e or two species differing in <str<strong>on</strong>g>the</str<strong>on</strong>g>irbiomass distributi<strong>on</strong>s. The time-zero marsh elevati<strong>on</strong> andrates <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-level rise were set arbitrarily and model simulati<strong>on</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g> 120-yr durati<strong>on</strong> were generated to allow time forc<strong>on</strong>vergence <strong>on</strong> a dynamic steady state. A rate <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-levelrise <str<strong>on</strong>g>of</str<strong>on</strong>g> ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r 0.2 or 0.8 cm/yr was specified, and a sinusoidalfuncti<strong>on</strong> was used to simulate changes in tidal amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g>± 2.5 cm over <str<strong>on</strong>g>the</str<strong>on</strong>g> 18.6-yr lunar nodal cycle, centered abouta mean tidal amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.6 m. The coefficient values forq and k were set at 0.00018 yr -1 and 1.5 × 10 -5 cm m 2 g -1 yr -1(0.15 cm 3 g -1 yr -1 ). These parameter values were taken froma calibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> model to North Inlet data (Morris etal. 2002). In additi<strong>on</strong>, species distributi<strong>on</strong>s were varied inorder to explore effects <strong>on</strong> equilibrium elevati<strong>on</strong> and speciespersistence. Species distributi<strong>on</strong>s (Eq. 2) were describedby specifying a maximum biomass and optimum elevati<strong>on</strong>,operati<strong>on</strong>ally defined here as <str<strong>on</strong>g>the</str<strong>on</strong>g> elevati<strong>on</strong> that results in <str<strong>on</strong>g>the</str<strong>on</strong>g>greatest biomass density, and species range, defined as <str<strong>on</strong>g>the</str<strong>on</strong>g>upper and lower depth limits.RESULTS AND DISCUSSIONThe Single Species ExampleWhen <str<strong>on</strong>g>the</str<strong>on</strong>g> model was solved for a single species witha distributi<strong>on</strong> between 15 and 30 cm above mean sea level(Fig. 1A), and a rate <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-level rise <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.2 cm/yr, <str<strong>on</strong>g>the</str<strong>on</strong>g> marshsurface elevati<strong>on</strong> equilibrated at about 26 cm above mean sealevel and a depth <str<strong>on</strong>g>of</str<strong>on</strong>g> 34 ± 2.9 cm (mean ± amplitude) belowMHHW (Fig 1B). This elevati<strong>on</strong> is above <str<strong>on</strong>g>the</str<strong>on</strong>g> optimum elevati<strong>on</strong>specified in Fig. 1A, which is a c<strong>on</strong>diti<strong>on</strong> for stability(Morris et al. 2002). The c<strong>on</strong>straint <strong>on</strong> productivity imposedby high pore-water salinities that develop at super-optimalelevati<strong>on</strong>s is an important factor in maintaining relativeelevati<strong>on</strong>, because a rise in relative sea level brings about anincrease in flooding, decreases pore water salinity (Morris1995), and increases biomass density (Morris 2000). Theincrease in biomass density will enhance sediment depositi<strong>on</strong>by increasing sediment trapping efficiency (Gleas<strong>on</strong> etal. 1979, Le<strong>on</strong>ard & Lu<str<strong>on</strong>g>the</str<strong>on</strong>g>r 1995, Yang 1998).MHHW varies over <str<strong>on</strong>g>the</str<strong>on</strong>g> course <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 18.6-yr lunar nodalcycle by ± 2.5 cm. C<strong>on</strong>sequently, <str<strong>on</strong>g>the</str<strong>on</strong>g> depth <str<strong>on</strong>g>of</str<strong>on</strong>g> marsh surfacebelow MHHW varies at <str<strong>on</strong>g>the</str<strong>on</strong>g> same frequency (Fig. 1B), resultingin a cycle <str<strong>on</strong>g>of</str<strong>on</strong>g> standing biomass with a range <str<strong>on</strong>g>of</str<strong>on</strong>g> 296 g/m 2(Fig. 1C). This is c<strong>on</strong>sistent with empirical measurementsfrom North Inlet, SC where we have seen changes in S.alterniflora productivity <str<strong>on</strong>g>of</str<strong>on</strong>g> 248 g m -2 yr -1 over <str<strong>on</strong>g>the</str<strong>on</strong>g> lunar nodalcycle. It should be noted that MHHW varies independently<str<strong>on</strong>g>of</str<strong>on</strong>g> MSL owing to l<strong>on</strong>g-period astr<strong>on</strong>omical forcing, e.g. <str<strong>on</strong>g>the</str<strong>on</strong>g>lunar nodal cycle, but MHHW will also vary directly withchanges in MSL. C<strong>on</strong>sequently, MHHW is a better tidaldatum for purposes <str<strong>on</strong>g>of</str<strong>on</strong>g> defining <str<strong>on</strong>g>the</str<strong>on</strong>g> growth ranges <str<strong>on</strong>g>of</str<strong>on</strong>g> intertidalspecies than is MSL.Result <str<strong>on</strong>g>of</str<strong>on</strong>g> Adding a Competitor with Wider Distributi<strong>on</strong> andHigh BiomassWhen a competing species was added to <str<strong>on</strong>g>the</str<strong>on</strong>g> model witha distributi<strong>on</strong> like that <str<strong>on</strong>g>of</str<strong>on</strong>g> species 2 in Fig. 2A, species 1was eliminated within about 10 yr (Fig. 2C). Examples arecomm<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this type <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong>, such as <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Fig. 1 Model results with a single species (S1), distributed as above (A), and a rate <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-level rise <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.2 cm/yr, as shown in B. Panel C shows <str<strong>on</strong>g>the</str<strong>on</strong>g>predicted biomass trajectory as (B) <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh surface equilibrates at a relative surface elevati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> about 25 cm above mean sea level (MSL) and a depthbelow MHHW <str<strong>on</strong>g>of</str<strong>on</strong>g> about 35 cm.- 111 -


Chapter 2: Spartina Distributi<strong>on</strong> and Spread<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaFig. 2 Model results with two species with biomass distributi<strong>on</strong>s as above (A) and a rate <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-level rise <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.2 cm/yr. Shown in panel C is <str<strong>on</strong>g>the</str<strong>on</strong>g> predicted biomasstrajectory <str<strong>on</strong>g>of</str<strong>on</strong>g> both species as (B) <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh equilibrates at a higher relative surface elevati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> about 45 cm above mean sea level (MSL) and a depth belowMHHW <str<strong>on</strong>g>of</str<strong>on</strong>g> about 15 cm.Fig.3. Model results with two species with biomass distributi<strong>on</strong>s as in <str<strong>on</strong>g>the</str<strong>on</strong>g> previousexample (Fig. 2A) when <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-level rise was increased to 0.8 cm/yr; parameter values were o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise identical to those in <str<strong>on</strong>g>the</str<strong>on</strong>g> previous example(Fig. 2). Shown in panel B is <str<strong>on</strong>g>the</str<strong>on</strong>g> predicted biomass trajectory <str<strong>on</strong>g>of</str<strong>on</strong>g> both species as(A) <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh surface equilibrates at a relative surface elevati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> about 25 cmabove mean sea level (MSL) and a depth <str<strong>on</strong>g>of</str<strong>on</strong>g> about 35 cm below MHHW.Phragmites australis into brackish Spartina patens marsh(Windham 1999). Note that competiti<strong>on</strong> occurs in this modelindirectly by virtue <str<strong>on</strong>g>of</str<strong>on</strong>g> a change in relative elevati<strong>on</strong>, favoringspecies 2. Species resp<strong>on</strong>ses are defined exclusively by <str<strong>on</strong>g>the</str<strong>on</strong>g>irhabitat distributi<strong>on</strong>s (Eq. 2) and not by direct interference.For example, species 2 displaced species 1 when species 2was given a habitat range wider than species 1, a higheroptimum elevati<strong>on</strong>, and a greater biomass density at itsoptimum elevati<strong>on</strong>. In this example, <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh equilibrated ata higher surface elevati<strong>on</strong>, about 45 cm (Fig. 2B), than in <str<strong>on</strong>g>the</str<strong>on</strong>g>preceding case. The equilibrium surface elevati<strong>on</strong> (Fig. 2B)was significantly higher than <str<strong>on</strong>g>the</str<strong>on</strong>g> optimum elevati<strong>on</strong> forspecies 2 (Fig. 2A), which is a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> relativelyhigh biomass density <str<strong>on</strong>g>of</str<strong>on</strong>g> species 2. Thus, as <str<strong>on</strong>g>the</str<strong>on</strong>g> amplitude<str<strong>on</strong>g>of</str<strong>on</strong>g> a species’ biomass distributi<strong>on</strong> increases, <str<strong>on</strong>g>the</str<strong>on</strong>g> equilibriumelevati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh surface will increase.This predicti<strong>on</strong> is important for predicting and understandingchanges in salt marshes following <str<strong>on</strong>g>the</str<strong>on</strong>g> introducti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> an alien species. An invader with a greater biomass and awider habitat range can raise <str<strong>on</strong>g>the</str<strong>on</strong>g> elevati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh above<str<strong>on</strong>g>the</str<strong>on</strong>g> range <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> native species, although <str<strong>on</strong>g>the</str<strong>on</strong>g>re are severalqualificati<strong>on</strong>s that must be noted. Firstly, <str<strong>on</strong>g>the</str<strong>on</strong>g> model discussedhere is zero- dimensi<strong>on</strong>al or plot-scale. In two dimensi<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g>geomorphology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh landscape will adjust to changesin its relative elevati<strong>on</strong>, and it is possible that <str<strong>on</strong>g>the</str<strong>on</strong>g> resultingtopographic gradients will support a dynamically stable z<strong>on</strong>ati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> species, i.e. marshes transgress and species migrate andsegregate across topographic gradients. Sec<strong>on</strong>dly, <str<strong>on</strong>g>the</str<strong>on</strong>g>re arec<strong>on</strong>diti<strong>on</strong>s, such as <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-level rise, explored below,that lead to <str<strong>on</strong>g>the</str<strong>on</strong>g> persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> a weaker species.Facultative Behavior and <str<strong>on</strong>g>the</str<strong>on</strong>g> Rate <str<strong>on</strong>g>of</str<strong>on</strong>g> Sea-Level RiseA facultative interacti<strong>on</strong> between species is possible byvirtue <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> additive effects <strong>on</strong> sediment accreti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> overlappingspecies distributi<strong>on</strong>s. The additive effect <strong>on</strong> accreti<strong>on</strong>rate can maintain <str<strong>on</strong>g>the</str<strong>on</strong>g> elevati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh surface withinboth species’ ranges at a high rate <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-level rise. This wasdem<strong>on</strong>strated by raising <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-level rise from 0.2to 0.8 cm/yr (Fig. 3). The increase in rate <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-level riseresulted in stabilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> relative surface elevati<strong>on</strong> atabout 28 cm (Fig. 3A) at an elevati<strong>on</strong> that is greater than <str<strong>on</strong>g>the</str<strong>on</strong>g>optimum that had been specified for species 1 (22.5 cm) andsuboptimal for species 2 (32.5 cm, Fig. 2A). At this elevati<strong>on</strong>both species were able to coexist (Fig. 3B).- 112 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 2: Spartina Distributi<strong>on</strong> and SpreadFig.4. Model results with <strong>on</strong>e species with a biomass distributi<strong>on</strong> as above (A) and a rate <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-level rise <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.8 cm/yr. Shown in panel C is <str<strong>on</strong>g>the</str<strong>on</strong>g> predictedbiomass trajectory <str<strong>on</strong>g>of</str<strong>on</strong>g> species 2 as (B) <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh surface equilibrates at an elevati<strong>on</strong> below MSL and outside <str<strong>on</strong>g>of</str<strong>on</strong>g> species 2’s range. Parameter values wereo<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise identical to those in <str<strong>on</strong>g>the</str<strong>on</strong>g> previous examples (Fig. 2 and 3).The biomass <str<strong>on</strong>g>of</str<strong>on</strong>g> species 2 varied with depth at <str<strong>on</strong>g>the</str<strong>on</strong>g> frequency<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lunar nodal cycle, but 180º out-<str<strong>on</strong>g>of</str<strong>on</strong>g>-phase, whereas<str<strong>on</strong>g>the</str<strong>on</strong>g> lunar nodal cycle and biomass <str<strong>on</strong>g>of</str<strong>on</strong>g> species 1 were in phase(Fig. 3B). The biomass <str<strong>on</strong>g>of</str<strong>on</strong>g> species 2 decreased with a rise inMHHW, i.e. as equilibrium depth increased, because <str<strong>on</strong>g>the</str<strong>on</strong>g>marsh surface elevati<strong>on</strong>, 28 cm, was suboptimal for growth.C<strong>on</strong>versely, <str<strong>on</strong>g>the</str<strong>on</strong>g> biomass <str<strong>on</strong>g>of</str<strong>on</strong>g> species 1 increased with a rise inMHHW because surface elevati<strong>on</strong> was super-optimal for itsgrowth. Thus, species can coexist <str<strong>on</strong>g>the</str<strong>on</strong>g>oretically when <str<strong>on</strong>g>the</str<strong>on</strong>g>reis a periodic change in flood durati<strong>on</strong> and when <strong>on</strong>e speciesresp<strong>on</strong>ds to <str<strong>on</strong>g>the</str<strong>on</strong>g> change positively and <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r negatively.This is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> several c<strong>on</strong>diti<strong>on</strong>s that promote a facultativeinteracti<strong>on</strong> between species.Facultative interacti<strong>on</strong>s am<strong>on</strong>g marsh macrophytesinvolving ameliorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> soil salinity have been described(Bertness & Ewanchuk 2002), and simulati<strong>on</strong> results shownhere suggest that biogeomorphological interacti<strong>on</strong>s couldalso be facultative. When two species with overlapping distributi<strong>on</strong>s(Fig. 2A) were present, and <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-levelrise was raised to 0.8 cm/yr, <str<strong>on</strong>g>the</str<strong>on</strong>g> resulting interacti<strong>on</strong> couldbe described as facultative (Fig. 3), because nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r speciespersists in <str<strong>on</strong>g>the</str<strong>on</strong>g> absence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r (Fig. 4). When species 1was removed from <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> equilibrium elevati<strong>on</strong>quickly dropped below MSL and below <str<strong>on</strong>g>the</str<strong>on</strong>g> lower limit forspecies 2. Species 1 suffered <str<strong>on</strong>g>the</str<strong>on</strong>g> same fate when species 2was removed. However, at a low rate <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-level rise, 0.2cm/yr, species 1 did not survive (Fig. 2). Thus, <str<strong>on</strong>g>the</str<strong>on</strong>g> outcome<str<strong>on</strong>g>of</str<strong>on</strong>g> competiti<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> facultative behaviordepend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-level rise.The Rate <str<strong>on</strong>g>of</str<strong>on</strong>g> Sea-Level Rise and Alternative Stable StatesIt can also be dem<strong>on</strong>strated that <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh will movetoward alternative stable states or habitat preempti<strong>on</strong> by <strong>on</strong>especies or ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r, depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-level riseand <str<strong>on</strong>g>the</str<strong>on</strong>g> species’ biomass distributi<strong>on</strong>s. When <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> sealevelrise was 0.8 cm/yr and <str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> species 1 wasmodified by raising its maximum biomass to equal that <str<strong>on</strong>g>of</str<strong>on</strong>g>species 2 (Fig. 5A), <strong>on</strong>ly species 1 persisted throughout <str<strong>on</strong>g>the</str<strong>on</strong>g>simulati<strong>on</strong>, while species 2 was intermittent (Fig. 5C). Themarsh surface equilibrated at an elevati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> about 23 cm(Fig. 5B), which was at <str<strong>on</strong>g>the</str<strong>on</strong>g> lower limit <str<strong>on</strong>g>of</str<strong>on</strong>g> species 2 and above<str<strong>on</strong>g>the</str<strong>on</strong>g> optimum elevati<strong>on</strong> for species 1 (Fig. 5A). Keeping <str<strong>on</strong>g>the</str<strong>on</strong>g>species distributi<strong>on</strong>s as in Fig. 5A and lowering <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g>sea-level rise to 0.2 cm/yr resulted in a different outcome. Atthis lower rate <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-level rise, <strong>on</strong>ly species 2 persisted (Fig.6C). The marsh surface equilibrated at an elevati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> about46 cm (Fig. 6A), which is above <str<strong>on</strong>g>the</str<strong>on</strong>g> upper limit <str<strong>on</strong>g>of</str<strong>on</strong>g> species 1and above <str<strong>on</strong>g>the</str<strong>on</strong>g> optimum <str<strong>on</strong>g>of</str<strong>on</strong>g> species 2 (Fig. 5A).CONCLUSIONSThis paper describes a <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> biogeomorphology thataddresses how intertidal macrophytes can modify landscapeelevati<strong>on</strong> and affect <str<strong>on</strong>g>the</str<strong>on</strong>g> outcomes <str<strong>on</strong>g>of</str<strong>on</strong>g> species interacti<strong>on</strong>sby means <str<strong>on</strong>g>of</str<strong>on</strong>g> vertical geomorphological displacement.Competiti<strong>on</strong> by geomorphogical displacement is indirectand is a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fundamental and realized niches thatdescribe species biomass distributi<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> tidal frame. Theoutcomes <str<strong>on</strong>g>of</str<strong>on</strong>g> competitive interacti<strong>on</strong>s are a great deal morecomplex than described here when <str<strong>on</strong>g>the</str<strong>on</strong>g>re are direct interferencesor facultative interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sort described byBertness and Ewanchuk (2002). These types <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong>scan modify a species’ realized distributi<strong>on</strong>s dynamically andwould result in truly complex behavior.Marsh primary producti<strong>on</strong> and standing biomass aresensitive to hydroperiod and have positive effects <strong>on</strong> sedimentaccreti<strong>on</strong>. In that part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tidal frame that is higher- 113 -


Chapter 2: Spartina Distributi<strong>on</strong> and Spread<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaFigure 5. Model results with two species with biomass distributi<strong>on</strong>s as above (A) and a rate <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-level rise <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.8 cm/yr (B). Shown in panel C is <str<strong>on</strong>g>the</str<strong>on</strong>g>predicted biomass trajectory <str<strong>on</strong>g>of</str<strong>on</strong>g> both species (species 2 approaches extincti<strong>on</strong>) as <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh surface equilibrates at a relative elevati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> about 20 cm (B)above mean sea level (MSL).than a species ‘optimum’ elevati<strong>on</strong>, rising sea level increasesprimary producti<strong>on</strong>, which stimulates sedimentati<strong>on</strong> andmaintains equilibrium with MSL. Optimum elevati<strong>on</strong> isin quotes because, while that is <str<strong>on</strong>g>the</str<strong>on</strong>g> elevati<strong>on</strong> that favorsmaximum growth, it borders <strong>on</strong> instability. Several speciesor communities <str<strong>on</strong>g>of</str<strong>on</strong>g> plants may coexist if <str<strong>on</strong>g>the</str<strong>on</strong>g>y partiti<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>habitat space, and if a topographic gradient <str<strong>on</strong>g>of</str<strong>on</strong>g> sufficient slopeexists. Alternatively, coexistence is unlikely following aninvasi<strong>on</strong> by a species with greater niche breadth and higherproductivity as in Fig. 2A S2. Locally, sediment accreti<strong>on</strong>Fig. 6. Model results with two species with biomass distributi<strong>on</strong>s as in <str<strong>on</strong>g>the</str<strong>on</strong>g>previous example (Fig. 5A). Shown in (B) is <str<strong>on</strong>g>the</str<strong>on</strong>g> predicted biomass trajectory<str<strong>on</strong>g>of</str<strong>on</strong>g> both species (s1 became extinct) as <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh surface equilibrates ata relative elevati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> about 45 cm (A) above mean sea level (MSL). Therate <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-level rise was decreased to 0.2 cm/yr (A); parameter values wereo<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise identical to those in <str<strong>on</strong>g>the</str<strong>on</strong>g> previous example (Fig. 5).may drive species replacements or successi<strong>on</strong>. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> species’ productivities to hydroperiod, anomaliesin mean sea level and astr<strong>on</strong>omically forced changesin MHHW can alter <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> competing species <strong>on</strong>decadal or shorter time scales.Species differ in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir tolerance to flooding, hypoxia, desiccati<strong>on</strong>,and salt stress (Pennings & Callaway 1992, Kuhn &Zedler 1997). C<strong>on</strong>sequently, <str<strong>on</strong>g>the</str<strong>on</strong>g> fundamental distributi<strong>on</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g> plant species within <str<strong>on</strong>g>the</str<strong>on</strong>g> intertidal z<strong>on</strong>e are determined byphysical factors that set upper and lower depth limits, andoptimum depths. The realized distributi<strong>on</strong>s may or may notresemble closely <str<strong>on</strong>g>the</str<strong>on</strong>g> fundamental distributi<strong>on</strong>s, depending<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> strength <str<strong>on</strong>g>of</str<strong>on</strong>g> competitive or facilitative interacti<strong>on</strong>sam<strong>on</strong>g species (Ungar 1998, Bertness 1991). For a givenrate <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-level rise, <str<strong>on</strong>g>the</str<strong>on</strong>g> relative shapes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se distributi<strong>on</strong>sultimately determine <str<strong>on</strong>g>the</str<strong>on</strong>g> equilibrium elevati<strong>on</strong>, speciesreplacements and persistence. One species may replaceano<str<strong>on</strong>g>the</str<strong>on</strong>g>r by modifying <str<strong>on</strong>g>the</str<strong>on</strong>g> elevati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> its habitat to <str<strong>on</strong>g>the</str<strong>on</strong>g> detriment<str<strong>on</strong>g>of</str<strong>on</strong>g> competitors. This is characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> species withrelatively high biomass densities such as <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina hybridswarms that have become established in San Francisco Bay(Daehler & Str<strong>on</strong>g 1997, Ayres et al. 2004).These insights are important to our fundamental understating<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> marsh ecosystems and should alsobe relevant to <str<strong>on</strong>g>the</str<strong>on</strong>g> management community resp<strong>on</strong>sible forforecasting and c<strong>on</strong>trolling <str<strong>on</strong>g>the</str<strong>on</strong>g> course <str<strong>on</strong>g>of</str<strong>on</strong>g> species invasi<strong>on</strong>s.On a fundamental level, <str<strong>on</strong>g>the</str<strong>on</strong>g> work dem<strong>on</strong>strates how processesthat operate at different temporal scales can interactto modify ecosystem structure and functi<strong>on</strong>. For example,<str<strong>on</strong>g>the</str<strong>on</strong>g> outcome <str<strong>on</strong>g>of</str<strong>on</strong>g> interspecific competiti<strong>on</strong> am<strong>on</strong>g marsh macrophytes,a biological process that operates <strong>on</strong> relative shorttime scales, can be affected by <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> sea-level rise, aprocess that occurs <strong>on</strong> very l<strong>on</strong>g time scales.- 114 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 2: Spartina Distributi<strong>on</strong> and SpreadACKNOWLEDGMENTSThis research has been supported in part by a grantfrom <str<strong>on</strong>g>the</str<strong>on</strong>g> US Envir<strong>on</strong>mental Protecti<strong>on</strong> Agency’s Scienceto Achieve Results (STAR) Estuarine and Great Lakes(EaGLe) program through funding to <str<strong>on</strong>g>the</str<strong>on</strong>g> ACE-INC, US EPAAgreement R82-867701, but does not necessarily reflect <str<strong>on</strong>g>the</str<strong>on</strong>g>views <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Agency and no <str<strong>on</strong>g>of</str<strong>on</strong>g>ficial endorsement should beinferred. This research was also supported in part by <str<strong>on</strong>g>the</str<strong>on</strong>g>NSF LTREB and LTER programs. I thank <str<strong>on</strong>g>the</str<strong>on</strong>g> an<strong>on</strong>ymousreviewers whose thoughtful criticisms were quite helpful.REFERENCESAyres D.R., D.L. Smith, K. Zaremba, S. Klohr, and D.R. Str<strong>on</strong>g.2004. Spread <str<strong>on</strong>g>of</str<strong>on</strong>g> exotic cordgrasses and hybrids (Spartina sp.)in <str<strong>on</strong>g>the</str<strong>on</strong>g> tidal marshes <str<strong>on</strong>g>of</str<strong>on</strong>g> San Francisco Bay, California, USA.Biological Invasi<strong>on</strong>s 6:221-231.Bertness, M.D. 1991. Z<strong>on</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina patens and Spartinaalterniflora in a New England salt marsh. Ecology 72:138-148.Bertness, M.D. and P.J. Ewanchuk. 2002. Latitudinal and climatedrivenvariati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> strength and nature <str<strong>on</strong>g>of</str<strong>on</strong>g> biological interacti<strong>on</strong>sin New England salt marshes. Oecologia 132:392-401.Christiansen, T., P.L. Wiberg., and T.G. Milligan. 2000. Flow andsediment transport <strong>on</strong> a tidal salt marsh surface. Estuarine,Coastal and Shelf Science 50:315-331.Cuddingt<strong>on</strong>, K., and A. Hastings. 2004. <strong>Invasive</strong> engineers.Ecological Modelling 178:335-347.Daehler, C.C., and D.R. Str<strong>on</strong>g. 1997. Hybridizati<strong>on</strong> betweenintroduced smooth cordgrass (Spartina alterniflora; Poaceae)and native California cordgrass (S. foliosa) in San Francisco Bay,California, USA. American Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Botany 84:607-611.Dame, R., M. Alber, D. Allen, M. Mallin, C. M<strong>on</strong>tague, A. Lewitus,A. Chalmers, R. Gardner, C. Gilman, B. Kjerfve, J. Pinckney, andN. Smith. 2000. Estuaries <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> south Atlantic coast <str<strong>on</strong>g>of</str<strong>on</strong>g> NorthAmerica: Their geographical signatures. Estuaries 23:793-819.Eiser, W.C., and B. Kjerfve. 1986. Marsh topography and hypsometriccharacteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> a South Carolina salt marsh basin.Estuarine, Coastal and Shelf Science 23:595-605.Emergy, N.C., P.J. Ewanchuk, and M.D. Bertness. 2001. Competiti<strong>on</strong>and salt-marsh plant z<strong>on</strong>ati<strong>on</strong>: Stress tolerators may be dominantcompetitors. Ecology 82:2471-2483.French, J. R. 1993. Numerical simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> vertical marsh growthand adjustment to acceleerated sea-level rise, north Norfolk, U.K. Earth Surface Processes and Landforms 18: 63-81.Gleas<strong>on</strong>, M.L., D.A. Elmer, N.C. Pien,and J.S. Fisher. 1979. Effects<str<strong>on</strong>g>of</str<strong>on</strong>g> stem density up<strong>on</strong> sediment retenti<strong>on</strong> by salt marsh cord grass,Spartina alterniflora Loisel. Estuaries 2:271-273.Hacker, S.D., and M.D. Bertness. 1999. Experimental evidence forfactors maintaining plant species diversity in a New England saltmarsh. Ecology 80:2064-2073.Hutchins<strong>on</strong>, G.E. 1957. C<strong>on</strong>cluding Remarks. Cold Spring HarborSymposia <strong>on</strong> Quantitative Biology. 22: 415-42J<strong>on</strong>es, C.G., J.H. Lawt<strong>on</strong>, and M. Shachk. 1997. Positive andnegative effects <str<strong>on</strong>g>of</str<strong>on</strong>g> organisms as physical ecosystem engineers.Ecology 78:1946-1957.Kr<strong>on</strong>e, R.B., 1985. Simulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> marsh growth under rising sealevels. In: Waldrop, W.R. (Ed.), Hydraulics and Hydrology in <str<strong>on</strong>g>the</str<strong>on</strong>g>Small Computer Age, Hydraulics Div. ASCE, Washingt<strong>on</strong>, D.C.,pp. 316-323.Kuhn, N.L. and J.B. Zedler. 1997. Differential effects <str<strong>on</strong>g>of</str<strong>on</strong>g> salinityand soil saturati<strong>on</strong> <strong>on</strong> native and exotic plants <str<strong>on</strong>g>of</str<strong>on</strong>g> a coastal saltmarsh. Estuaries 20: 391-403.Le<strong>on</strong>ard, L.A. and M.E. Lu<str<strong>on</strong>g>the</str<strong>on</strong>g>r. 1995. Flow dynamics in tidal marshcanopies. Limnology and Oceanography 40:11474-11484.Morris, J.T. 1995. The salt and water balance <str<strong>on</strong>g>of</str<strong>on</strong>g> intertidal sediments:results from North Inlet, South Carolina. Estuaries 18:556-567.Morris, J.T. 2000. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> sea level anomalies <strong>on</strong> estuarineprocesses. In: Hobbie, J., ed., Estuarine Science: A Syn<str<strong>on</strong>g>the</str<strong>on</strong>g>ticApproach to Research and Practice. Island Press, pp.107-127.Morris, J.T., D. Porter, M. Neet, P.A. Noble, L. Schmidt, L.A.Lapine and J. Jensen. 2005. Integrating LIDAR elevati<strong>on</strong> data,multi-spectral imagery, and neural network modeling for marshcharacterizati<strong>on</strong>. <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Remote Sensing.26:5221-5234Morris, J.T., P.V. Sundareshwar, C.T. Nietch, B. Kjerfve and D.R.Caho<strong>on</strong>. 2002. Resp<strong>on</strong>ses <str<strong>on</strong>g>of</str<strong>on</strong>g> coastal wetlands to rising sea level.Ecology 83: 2869-2877.Pennings, S.C., M.B. Grant and M.D. Bertness. 2005. Plantz<strong>on</strong>ati<strong>on</strong> in low-latitude salt marshes: disentangling <str<strong>on</strong>g>the</str<strong>on</strong>g> roles<str<strong>on</strong>g>of</str<strong>on</strong>g> flooding, salinity and competiti<strong>on</strong>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology93:159-167.Pennings, S.C., and R.M. Callaway. 1992. Salt-marsh plant z<strong>on</strong>ati<strong>on</strong>-The relative importance <str<strong>on</strong>g>of</str<strong>on</strong>g> competiti<strong>on</strong> and physical factors.Ecology 73:681-690.Pethick, J.S. 1981. L<strong>on</strong>g-term accreti<strong>on</strong> rates <strong>on</strong> tidal marshes.Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Sedimentary Petrology 61:571-577.Redfield, A.C. 1972. Development <str<strong>on</strong>g>of</str<strong>on</strong>g> a New England salt marsh.Ecological M<strong>on</strong>ographs 42:201-237.Rooth, J.E. and J.C. Stevens<strong>on</strong>. 2000. Sediment depositi<strong>on</strong> patternsin Phragmites australis communities: Implicati<strong>on</strong>s for coastalareas threatened by rising sea-level. Wetlands Ecology andManagement 8:173-183.Silvestri, S., A. Defina and M. Marani. 2005. Tidal regime, salinityand salt marsh plant z<strong>on</strong>ati<strong>on</strong>. Estuarine Coastal and ShelfScience 62:119-130.Stevens<strong>on</strong>, J.C., L.G. Ward and M.S. Kearney. 1986. Vertical accreti<strong>on</strong>in marshes with varying rates <str<strong>on</strong>g>of</str<strong>on</strong>g> sea level rise. In: Wolfe,D.A., ed., Estuarine Variability. Academic Press, New York, pp.241-259.Stumpf, R.P. and J.W. Haines. 1998. Variati<strong>on</strong>s in tidal level in <str<strong>on</strong>g>the</str<strong>on</strong>g>Gulf <str<strong>on</strong>g>of</str<strong>on</strong>g> Mexico and implicati<strong>on</strong>s for tidal wetlands. Estuarine,Coastal and Shelf Science 46:165–173.Unger, I.A. 1998. Are biotic factors significant in influencing <str<strong>on</strong>g>the</str<strong>on</strong>g>distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> halophytes in saline habitats? Botanical Review64: 176-199.Windham, L. 1999. Microscale spatial distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Phragmitesaustralis (comm<strong>on</strong> reed) invasi<strong>on</strong> into Spartina patens (salthay)-dominated communities in brackish tidal marsh. BiologicalInvasi<strong>on</strong>s 1:137-148.Yang, S.L., 1998. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> Scirpus marsh in attenuati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrodynamicsand retenti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fine sediment in <str<strong>on</strong>g>the</str<strong>on</strong>g> Yangtze estuary.Estuarine, Coastal and Shelf Science 47:227-233.Zedler, J.B., S. Kercher. 2004. Causes and c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> invasiveplants in wetlands: Opportunities, opportunists, and outcomes.Critical Reviews in Plant Sciences 23:431-452.- 115 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 2: Spartina Distributi<strong>on</strong> and SpreadMODELING THE SPREAD OF INVASIVE SPARTINA HYBRIDS IN SAN FRANCISCO BAYR.J. HALL,A.M.HASTINGS AND D.R. AYRESUniversity <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Davis, One Shields Ave., Davis, CA 95616; rjhall@ucdavis.eduThe emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> highly fit hybrids between native and introduced species is an increasinglywidespread problem that can impact entire ecosystems. In San Francisco Bay, a swarm <str<strong>on</strong>g>of</str<strong>on</strong>g> hybridcordgrass (Spartina foliosa x alterniflora) is covering vast areas <str<strong>on</strong>g>of</str<strong>on</strong>g> intertidal mudflat, threatening <str<strong>on</strong>g>the</str<strong>on</strong>g>native S. foliosa with extincti<strong>on</strong>. Here we outline a modeling approach for assessing <str<strong>on</strong>g>the</str<strong>on</strong>g> relativeimportance <str<strong>on</strong>g>of</str<strong>on</strong>g> elevated hybrid fitness traits in explaining <str<strong>on</strong>g>the</str<strong>on</strong>g> rapidity <str<strong>on</strong>g>of</str<strong>on</strong>g> this invasi<strong>on</strong>. Wedem<strong>on</strong>strate that elevated growth rate, seedling survival and pollen producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrids relative to<str<strong>on</strong>g>the</str<strong>on</strong>g> native species interact to predict <str<strong>on</strong>g>the</str<strong>on</strong>g> observed faster-than-exp<strong>on</strong>ential spread <str<strong>on</strong>g>of</str<strong>on</strong>g> cordgrassthrough <str<strong>on</strong>g>the</str<strong>on</strong>g> Bay.Keywords: invasi<strong>on</strong>, model, hybridizati<strong>on</strong>, SpartinaINTRODUCTIONAn exotic introduced into a new range is <str<strong>on</strong>g>of</str<strong>on</strong>g>tenphenomenally successful; this may be due to exploitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>a previously unfilled niche, a release from natural enemies,or increased competitive ability relative to <str<strong>on</strong>g>the</str<strong>on</strong>g> native biota(Williams<strong>on</strong> 1996). However, in many ecosystems, <str<strong>on</strong>g>the</str<strong>on</strong>g>emergence <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrids between native and exotic species is<str<strong>on</strong>g>the</str<strong>on</strong>g> greatest threat to local biodiversity, particularly if <str<strong>on</strong>g>the</str<strong>on</strong>g>hybrids have superior fecundity or suvivorship comparedwith <str<strong>on</strong>g>the</str<strong>on</strong>g> native (Wolf et al. 2001). An example <str<strong>on</strong>g>of</str<strong>on</strong>g> this is <str<strong>on</strong>g>the</str<strong>on</strong>g>invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid cordgrass Spartina foliosa x alterniflorain San Francisco Bay. Since <str<strong>on</strong>g>the</str<strong>on</strong>g> introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S.alterniflora in <str<strong>on</strong>g>the</str<strong>on</strong>g> 1970s, hybrids have emerged whosegrowth rates, fecundity and tolerance to envir<strong>on</strong>mentalc<strong>on</strong>diti<strong>on</strong>s exceed that <str<strong>on</strong>g>of</str<strong>on</strong>g> both parental lineages (Ayres et al.2003). The hybrids impact <strong>on</strong> many organisms in <str<strong>on</strong>g>the</str<strong>on</strong>g> Bayby covering open mudflat crucial to feeding shorebirds,and changing <str<strong>on</strong>g>the</str<strong>on</strong>g> tidal pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile through sedimentaccumulated in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir root mass. C<strong>on</strong>trary to classicalecological <str<strong>on</strong>g>the</str<strong>on</strong>g>ory, which suggests that a species withunlimited resources can grow at most exp<strong>on</strong>entially (e.g.,Turchin 2003), <str<strong>on</strong>g>the</str<strong>on</strong>g> area covered by hybrid cordgrass in <str<strong>on</strong>g>the</str<strong>on</strong>g>Bay has increased super-exp<strong>on</strong>entially (i.e. <str<strong>on</strong>g>the</str<strong>on</strong>g> growth rateper unit area is increasing through time; Fig. 1). If thisinvasi<strong>on</strong> c<strong>on</strong>tinues unchecked, it seems likely that <str<strong>on</strong>g>the</str<strong>on</strong>g>native S. foliosa is doomed to extincti<strong>on</strong> throughintrogressi<strong>on</strong> (Ayres et al. 2003).In order to design effective c<strong>on</strong>trol strategies, it is vitalto determine <str<strong>on</strong>g>the</str<strong>on</strong>g> key hybrid traits resp<strong>on</strong>sible for drivingthis invasi<strong>on</strong>. Increased vegetative growth rates, elevatedpollen producti<strong>on</strong> and seedling survival <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid Spartinarelative to <str<strong>on</strong>g>the</str<strong>on</strong>g> native have all been proposed as c<strong>on</strong>tributingto <str<strong>on</strong>g>the</str<strong>on</strong>g> rate and extent <str<strong>on</strong>g>of</str<strong>on</strong>g> this invasi<strong>on</strong> (Ayres et al. 2004).Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical models are a useful tool for investigating <str<strong>on</strong>g>the</str<strong>on</strong>g>relative importance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se mechanisms. In this paper weoutline <str<strong>on</strong>g>the</str<strong>on</strong>g> modeling approach used to describe <str<strong>on</strong>g>the</str<strong>on</strong>g>dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> this hybridizati<strong>on</strong>. We use <str<strong>on</strong>g>the</str<strong>on</strong>g> model to testhow increased vegetative growth rate, seedling survival andpollen producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrids affect <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong>expansi<strong>on</strong> in areas <str<strong>on</strong>g>of</str<strong>on</strong>g> high and low recruitment. We find thatdepending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> level <str<strong>on</strong>g>of</str<strong>on</strong>g> local recruitment, increasedvegetative growth rate or seedling survival <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrids canresult in super-exp<strong>on</strong>ential populati<strong>on</strong> growth. Elevatedhybrid pollen producti<strong>on</strong> al<strong>on</strong>e results in an increase in <str<strong>on</strong>g>the</str<strong>on</strong>g>frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrids in <str<strong>on</strong>g>the</str<strong>on</strong>g> populati<strong>on</strong>, but does not predictsuper-exp<strong>on</strong>ential growth unless coupled with elevatedhybrid growth rate or seedling survival.MODEL AND METHODSHere we outline <str<strong>on</strong>g>the</str<strong>on</strong>g> key modeling assumpti<strong>on</strong>s andsketch <str<strong>on</strong>g>the</str<strong>on</strong>g> derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> model. The derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fullquantitative genetic, integro-difference equati<strong>on</strong> model isFig. 1: super-exp<strong>on</strong>ential (bold line) vs exp<strong>on</strong>ential (dashed line) populati<strong>on</strong>growth. After a sufficiently l<strong>on</strong>g time, <str<strong>on</strong>g>the</str<strong>on</strong>g> area occupied by aninvasive growing super-exp<strong>on</strong>entially differs from an exp<strong>on</strong>entiallygrowing populati<strong>on</strong> by orders <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitude.- 117 -


Chapter 2: Spartina Distributi<strong>on</strong> and Spread<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaFig. 2 (a) The distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gamete genotypes as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> parental genotypes. The broad distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid genotypes reflects <str<strong>on</strong>g>the</str<strong>on</strong>g> higher geneticdiversity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrids compared with <str<strong>on</strong>g>the</str<strong>on</strong>g> pure lineages. (b) Functi<strong>on</strong>al form <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> genotype-dependent (bold line) and genotype-independent (dashed line)trait values (growth rate, seedling survival or pollen producti<strong>on</strong>).outlined in Hall et al. 2006. In order to elucidate <str<strong>on</strong>g>the</str<strong>on</strong>g> role <str<strong>on</strong>g>of</str<strong>on</strong>g>genetic recombinati<strong>on</strong> in driving this invasi<strong>on</strong>, we makeseveral simplifying assumpti<strong>on</strong>s about <str<strong>on</strong>g>the</str<strong>on</strong>g> populati<strong>on</strong>dynamics. Specifically, we assume spatial andenvir<strong>on</strong>mental homogeneity, and focus <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g>plants into open mudflat (i.e., we ignore density-dependenteffects such as crowding). In <str<strong>on</strong>g>the</str<strong>on</strong>g> spirit <str<strong>on</strong>g>of</str<strong>on</strong>g> many quantitativegenetics models (e.g., Bulmer 1980), we assume that a largenumber <str<strong>on</strong>g>of</str<strong>on</strong>g> loci interact independently and additively todetermine phenotypic fitness, and ignore <str<strong>on</strong>g>the</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g>envir<strong>on</strong>ment <strong>on</strong> phenotype.Plants are classified by <str<strong>on</strong>g>the</str<strong>on</strong>g>ir genotype value, x, scaledsuch that pure S. foliosa has genotypes clustered around x=-1, pure S. alterniflora around x=+1, with hybrids spanning<str<strong>on</strong>g>the</str<strong>on</strong>g> intermediate range <str<strong>on</strong>g>of</str<strong>on</strong>g> genotype values. Plants <str<strong>on</strong>g>of</str<strong>on</strong>g>genotype x produce gametes whose genotype is drawn froma Normal distributi<strong>on</strong> with mean x/2. The variance <str<strong>on</strong>g>of</str<strong>on</strong>g> thisdistributi<strong>on</strong> is genotype-specific, under <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> thathybrids can produce genetically more diverse <str<strong>on</strong>g>of</str<strong>on</strong>g>fspring thanei<str<strong>on</strong>g>the</str<strong>on</strong>g>r parental lineage (Fig. 2a). When pollen <str<strong>on</strong>g>of</str<strong>on</strong>g> genotype ysuccessfully combines with an ovule <str<strong>on</strong>g>of</str<strong>on</strong>g> type z, <str<strong>on</strong>g>the</str<strong>on</strong>g> resultingseed has genotype y+z.The populati<strong>on</strong>-level model is formulated in terms <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> total area occupied by plants <str<strong>on</strong>g>of</str<strong>on</strong>g> genotype x in year t,denoted P t (x). The area occupied by plants in year t+1 isgiven by <str<strong>on</strong>g>the</str<strong>on</strong>g> sum <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetative growth <str<strong>on</strong>g>of</str<strong>on</strong>g> adult plants in yeart and <str<strong>on</strong>g>the</str<strong>on</strong>g> area occupied by new seedlings. Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>maticallythis is expressed byP t+1 (x)=G(x) P t (x)+S(x) N t (x),where G(x) is <str<strong>on</strong>g>the</str<strong>on</strong>g> (genotype-dependent) vegetative growthrate, S(x) is <str<strong>on</strong>g>the</str<strong>on</strong>g> survival <str<strong>on</strong>g>of</str<strong>on</strong>g> seedlings <str<strong>on</strong>g>of</str<strong>on</strong>g> genotype x, and N t (x)is <str<strong>on</strong>g>the</str<strong>on</strong>g> total number <str<strong>on</strong>g>of</str<strong>on</strong>g> seeds produced in year t <str<strong>on</strong>g>of</str<strong>on</strong>g> type x. Thenumber <str<strong>on</strong>g>of</str<strong>on</strong>g> seeds produced <str<strong>on</strong>g>of</str<strong>on</strong>g> type x is <str<strong>on</strong>g>the</str<strong>on</strong>g> product <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> pollen produced by male parents <str<strong>on</strong>g>of</str<strong>on</strong>g> genotype y(proporti<strong>on</strong>al to <str<strong>on</strong>g>the</str<strong>on</strong>g> genotype-specific pollen producti<strong>on</strong> rateM), <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> ovules from female parents <str<strong>on</strong>g>of</str<strong>on</strong>g> genotype z,and <str<strong>on</strong>g>the</str<strong>on</strong>g> probability that pollen <str<strong>on</strong>g>of</str<strong>on</strong>g> type y and ovules <str<strong>on</strong>g>of</str<strong>on</strong>g> type zcombine to produce a seed <str<strong>on</strong>g>of</str<strong>on</strong>g> type x, summed over allpossible genotype values <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> male and female parents.The above model is used to test <str<strong>on</strong>g>the</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> elevatedhybrid growth rate, seedling survival and pollen producti<strong>on</strong>(G, S and M respectively) <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> total area occupied bySpartina <str<strong>on</strong>g>of</str<strong>on</strong>g> all genotypes, and <str<strong>on</strong>g>the</str<strong>on</strong>g> frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> hybridgenotypes in <str<strong>on</strong>g>the</str<strong>on</strong>g> populati<strong>on</strong>. For comparis<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> model isalso run under a null scenario whereby all genotypes areequally fit. The functi<strong>on</strong>al dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> an elevated traitvalue <strong>on</strong> a plant’s genotype is depicted in Fig. 2b. Twolevels <str<strong>on</strong>g>of</str<strong>on</strong>g> seedling recruitment are also c<strong>on</strong>sidered: low (asmight be expected at a site subject to str<strong>on</strong>g tidal acti<strong>on</strong>) andhigh (e.g. in a sheltered inlet or marsh restorati<strong>on</strong> site).RESULTSWhen <str<strong>on</strong>g>the</str<strong>on</strong>g> model is run under <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> that allSpartina genotypes are equally fit, <str<strong>on</strong>g>the</str<strong>on</strong>g> populati<strong>on</strong> does notundergo super-exp<strong>on</strong>ential growth. However, even in <str<strong>on</strong>g>the</str<strong>on</strong>g>absence <str<strong>on</strong>g>of</str<strong>on</strong>g> any fitness advantage to <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid, <str<strong>on</strong>g>the</str<strong>on</strong>g> frequency<str<strong>on</strong>g>of</str<strong>on</strong>g> pure S. foliosa plants in <str<strong>on</strong>g>the</str<strong>on</strong>g> populati<strong>on</strong> suffers a slowdecline, suggesting that given sufficiently l<strong>on</strong>g time, <str<strong>on</strong>g>the</str<strong>on</strong>g>hybrid swarm could dominate.If <str<strong>on</strong>g>the</str<strong>on</strong>g> baseline level <str<strong>on</strong>g>of</str<strong>on</strong>g> seedling recruitment is low, anelevated vegetative growth rate <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrids can produce <str<strong>on</strong>g>the</str<strong>on</strong>g>observed faster-than-exp<strong>on</strong>ential populati<strong>on</strong> growth.Elevated seedling survival <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrids also results in superexp<strong>on</strong>entialgrowth, but at a much less dramatic rate.C<strong>on</strong>versely, in regi<strong>on</strong>s where seedling recruitment is high,elevated hybrid seedling survival produces faster populati<strong>on</strong>- 118 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 2: Spartina Distributi<strong>on</strong> and Spreadexpansi<strong>on</strong> than elevated hybrid growth rate. Elevated hybridgrowth rates and seedling survival both result in a rapiddecline in <str<strong>on</strong>g>the</str<strong>on</strong>g> frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> native genotypes: essentially as<str<strong>on</strong>g>the</str<strong>on</strong>g> area covered by hybrid cordgrass increases, <str<strong>on</strong>g>the</str<strong>on</strong>g>probability <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid pollen fertilizing <str<strong>on</strong>g>the</str<strong>on</strong>g> native alsoincreases. This ‘pollen-swamping' suggests that ultimatelyall new recruits to <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina populati<strong>on</strong> will be hybrid,resulting in extincti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> native through introgressi<strong>on</strong>.In both recruitment scenarios, <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> elevatedrates <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid pollen producti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> invasi<strong>on</strong> isnegligible, assuming <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrids have no o<str<strong>on</strong>g>the</str<strong>on</strong>g>r fitnessadvantage. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> native S. foliosagenotypes declines at a much faster rate than in <str<strong>on</strong>g>the</str<strong>on</strong>g> nullmodel (where all genotypes produce <str<strong>on</strong>g>the</str<strong>on</strong>g> same amount <str<strong>on</strong>g>of</str<strong>on</strong>g>viable pollen). If elevated hybrid pollen producti<strong>on</strong> iscoupled with an increased hybrid growth rate or seedlingsurvival, <str<strong>on</strong>g>the</str<strong>on</strong>g> resulting invasi<strong>on</strong> proceeds faster than it wouldfor elevated hybrid growth rates or seedling survival al<strong>on</strong>e.The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> differing life-history processes <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> rate<str<strong>on</strong>g>of</str<strong>on</strong>g> invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid Spartina genotypes are summarized inTable 1.DISCUSSIONHere we have shown that a model which allows forelevated fitness traits (growth, seedling survival, pollenproducti<strong>on</strong>) in hybrid Spartina can explain its explosivepropagati<strong>on</strong> through San Francisco Bay. As well aspredicting a huge increase in <str<strong>on</strong>g>the</str<strong>on</strong>g> total area covered bySpartina in <str<strong>on</strong>g>the</str<strong>on</strong>g> Bay, <str<strong>on</strong>g>the</str<strong>on</strong>g> model also shows a sharp decline in<str<strong>on</strong>g>the</str<strong>on</strong>g> frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> pure S. foliosa genotypes over <str<strong>on</strong>g>the</str<strong>on</strong>g> nextcentury, as an increasingly higher percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> seedlingshave hybrid origin. If this invasi<strong>on</strong> c<strong>on</strong>tinues unchecked, <str<strong>on</strong>g>the</str<strong>on</strong>g>native S. foliosa will become extinct in <str<strong>on</strong>g>the</str<strong>on</strong>g> Bay. O<str<strong>on</strong>g>the</str<strong>on</strong>g>rmodels <str<strong>on</strong>g>of</str<strong>on</strong>g> invasi<strong>on</strong> and hybridizati<strong>on</strong> predict <str<strong>on</strong>g>the</str<strong>on</strong>g> ultimateextincti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> species (Huxel 1999; Wolf et al. 2001). Thework presented here extends previous modeling efforts bylinking <str<strong>on</strong>g>the</str<strong>on</strong>g> populati<strong>on</strong> dynamics and genetics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>invasi<strong>on</strong>, making transparent <str<strong>on</strong>g>the</str<strong>on</strong>g> roles <str<strong>on</strong>g>of</str<strong>on</strong>g> geneticrecombinati<strong>on</strong> and selecti<strong>on</strong> acting <strong>on</strong> favourable phenotypictraits.Hybrid Spartina needs to be eradicated to ensure <str<strong>on</strong>g>the</str<strong>on</strong>g>persistence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> native S. foliosa in San Francisco Bay.Super-exp<strong>on</strong>ential populati<strong>on</strong> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrids may bedriven by different life-history processes depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>level <str<strong>on</strong>g>of</str<strong>on</strong>g> local recruitment. In accordance with recentmodeling work <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora in WillapaBay, Washingt<strong>on</strong> (Taylor and Hastings 2004), this suggeststhat c<strong>on</strong>trol efforts at sites with differing levels <str<strong>on</strong>g>of</str<strong>on</strong>g> seedlingrecruitment should be targeted at different stage classes <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina. At low recruitment sites, c<strong>on</strong>trol should beTable 1: Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> elevated life-history traits and parental compatibility<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid Spartina.TraitAll genotypesequally fitElevated growth rate(G)Elevated seedlingsurvival (S)Elevated pollenproducti<strong>on</strong> (M)Effect <strong>on</strong> growth rateExp<strong>on</strong>ential growth; increase infrequency <str<strong>on</strong>g>of</str<strong>on</strong>g> hybridsSuper-exp<strong>on</strong>ential; effect greatestwhen seedling recruitment lowSuper-exp<strong>on</strong>ential; effect greatestwhen seedling recruitment highExp<strong>on</strong>ential growth; rapid increasein hybrid frequency; superexp<strong>on</strong>ential<strong>on</strong>ly in c<strong>on</strong>juncti<strong>on</strong> wi<str<strong>on</strong>g>the</str<strong>on</strong>g>levated S or Mtargeted at <str<strong>on</strong>g>the</str<strong>on</strong>g> removal <str<strong>on</strong>g>of</str<strong>on</strong>g> fast-growing isolated cl<strong>on</strong>es. Atsites with potentially a high level <str<strong>on</strong>g>of</str<strong>on</strong>g> recruitment, such asmarsh restorati<strong>on</strong> sites, c<strong>on</strong>trol should focus <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> removal<str<strong>on</strong>g>of</str<strong>on</strong>g> seedlings, or herbicide treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid Spartinameadows during <str<strong>on</strong>g>the</str<strong>on</strong>g> pollinati<strong>on</strong> seas<strong>on</strong>.ACKNOWLEDGMENTSWe gratefully ackowledge funding from NSFBiocomplexity Grant AESRJ85. RJH is grateful to CazTaylor and John Lambrinos for helpful discussi<strong>on</strong>s.REFERENCESAyres, D.R., D.R. Str<strong>on</strong>g, and P. Baye, 2003. Spartina foliosa(Poaceae) – a comm<strong>on</strong> species <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> road to rarity? Madr<strong>on</strong>o50:209-213.Ayres, D.R., D.L. Smith, K. Zaremba, S.Klohr, and D.R. Str<strong>on</strong>g,2004. Spread <str<strong>on</strong>g>of</str<strong>on</strong>g> exotic cordgrasses and hybrids (Spartina sp.) in<str<strong>on</strong>g>the</str<strong>on</strong>g> tidal marshes <str<strong>on</strong>g>of</str<strong>on</strong>g> San Francisco Bay, California, USA. BiologicalInvasi<strong>on</strong>s 6: 221-231.Bulmer, M.G. 1980. The ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical <str<strong>on</strong>g>the</str<strong>on</strong>g>ory <str<strong>on</strong>g>of</str<strong>on</strong>g> quantitative genetics.Oxford University Press, UK.Hall, R.J., A. Hastings, and D.R. Ayres, 2006. Explaining <str<strong>on</strong>g>the</str<strong>on</strong>g> explosi<strong>on</strong>:modelling hybrid invasi<strong>on</strong>s. <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> RoyalSociety B 273:1385-1389.Huxel, G.R. 1999. Rapid displacement <str<strong>on</strong>g>of</str<strong>on</strong>g> native species by invasivespecies: effects <str<strong>on</strong>g>of</str<strong>on</strong>g> hybridizati<strong>on</strong>. Biological C<strong>on</strong>servati<strong>on</strong>89:143-152.Taylor, C.M., and A. Hastings, 2004. Finding optimal c<strong>on</strong>trolstrategies for an invasive grass using a density-structured model.Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology 41:1049-1057.Turchin, P. 2003. Complex populati<strong>on</strong> dynamics. Princet<strong>on</strong> UniversityPress, USA.Williams<strong>on</strong>, M. 1996. Biological invasi<strong>on</strong>s. Chapman and Hall,L<strong>on</strong>d<strong>on</strong>, UK.Wolf, D.E., N. Takebayashi, and L.H. Rieseberg, 2001. Predicting<str<strong>on</strong>g>the</str<strong>on</strong>g> risk <str<strong>on</strong>g>of</str<strong>on</strong>g> extincti<strong>on</strong> through hybridizati<strong>on</strong>. C<strong>on</strong>servati<strong>on</strong> Biology15:1039-1053.- 119 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 2: Spartina Distributi<strong>on</strong> and SpreadMODELING THE SPREAD AND CONTROL OF SPARTINA ALTERNIFLORA IN A PACIFICESTUARYC.M. TAYLOR 1 ,A.HASTINGS 2 ,H.G.DAVIS 3 ,J.C.CIVILLE 4,6 AND F.S. GREVSTAD 51 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology and Evoluti<strong>on</strong>ary Biology, Tulane University, 6823 St. Charles Ave., New Orleans, LA 70118;caz@tulane.edu2 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Science and Policy, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, One Shields Ave., Davis, CA 95616-87553 Center for Populati<strong>on</strong> Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Davis, One Shields Ave., Davis, CA 95616; hgdavis@s<strong>on</strong>ic.net4 Secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Evoluti<strong>on</strong> & Ecology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Davis, One Shields Ave., Davis, CA 956166 Current address: 2731 Be<str<strong>on</strong>g>the</str<strong>on</strong>g>l St. NE, Olympia, WA 98506; jciville@comcast.net5 Olympic Natural Resources Center, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Washingt<strong>on</strong>, 2907 Pi<strong>on</strong>eer Road, L<strong>on</strong>g Beach, WA 98331Results from both a spatially-explicit simulati<strong>on</strong> model and a spatially-implicit analytical model showthat an Allee effect can slow <str<strong>on</strong>g>the</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> an invasive plant, Spartina alterniflora at sites within a Pacificcoast estuary. The average rate <str<strong>on</strong>g>of</str<strong>on</strong>g> spread with <str<strong>on</strong>g>the</str<strong>on</strong>g> Allee effect is about 20% per year. Removing <str<strong>on</strong>g>the</str<strong>on</strong>g> Alleeeffect results in an average rate <str<strong>on</strong>g>of</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> about 30% per year. The analytical model which partiti<strong>on</strong>s<str<strong>on</strong>g>the</str<strong>on</strong>g> populati<strong>on</strong> according to density classes, instead <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> more usual age or stage classes was used inc<strong>on</strong>juncti<strong>on</strong> with a genetic algorithm to investigate density-based eradicati<strong>on</strong> strategies. We ask whe<str<strong>on</strong>g>the</str<strong>on</strong>g>rit is more efficient to first remove low-density plants at <str<strong>on</strong>g>the</str<strong>on</strong>g> edge <str<strong>on</strong>g>of</str<strong>on</strong>g> an invasi<strong>on</strong> site that produce fewerpropagules but spread rapidly by rhizomes or to remove high-density plants that spread slowly butproduce most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> new recruits. We explored <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Allee effect and different annualbudget levels <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> optimal strategy. We found that <str<strong>on</strong>g>the</str<strong>on</strong>g> optimal strategy was dependent <strong>on</strong> annualbudget levels. At low budgets, it was necessary to remove <str<strong>on</strong>g>the</str<strong>on</strong>g> low-density areas first to achieveeradicati<strong>on</strong> but if a high budget is available <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> optimal strategy is to prioritise high-density areas.Without an Allee effect <str<strong>on</strong>g>the</str<strong>on</strong>g> optimal strategy would always prioritize <str<strong>on</strong>g>the</str<strong>on</strong>g> removal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fast-growing lowdensityareas. Given uncertainty in future budgets, we recommend a strategy that prioritizses <str<strong>on</strong>g>the</str<strong>on</strong>g> removal<str<strong>on</strong>g>of</str<strong>on</strong>g> low density plants over <str<strong>on</strong>g>the</str<strong>on</strong>g> high density plants. The reproductive Allee effect in this system is notsufficiently str<strong>on</strong>g to outweigh <str<strong>on</strong>g>the</str<strong>on</strong>g> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rapid vegetative spread.Keywords: Allee effect, Spartina alterniflora, Willapa Bay, invasive species, c<strong>on</strong>trol strategy,eradicati<strong>on</strong>, pollen limitati<strong>on</strong>This paper describes two models that we developed tostudy <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflora into Willapa Bay inWashingt<strong>on</strong> State, USA. The first is a spatially explicitsimulati<strong>on</strong> model that we used to investigate populati<strong>on</strong> levelc<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> an Allee effect caused by pollen limitati<strong>on</strong>.The sec<strong>on</strong>d is a derived n<strong>on</strong>-spatial analytical model that weused to investigate eradicati<strong>on</strong> strategies.As is described by o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs at this c<strong>on</strong>ference (Davis et al.;Civille et al. this issue), S. alterniflora (smooth cordgrass,hereafter referred to as Spartina) was introduced to Willapabay just over 100 years ago. It was introduced into a smallnumber <str<strong>on</strong>g>of</str<strong>on</strong>g> locati<strong>on</strong>s around <str<strong>on</strong>g>the</str<strong>on</strong>g> bay and <str<strong>on</strong>g>the</str<strong>on</strong>g>n spread itselfaround <str<strong>on</strong>g>the</str<strong>on</strong>g> whole estuary. Individuals become established asseedlings <str<strong>on</strong>g>the</str<strong>on</strong>g>n grow, vegetatively, into circular cl<strong>on</strong>es.Eventually <str<strong>on</strong>g>the</str<strong>on</strong>g> cl<strong>on</strong>es merge toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r to form meadows. By2002, many <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mudflats <str<strong>on</strong>g>of</str<strong>on</strong>g> Willapa Bay had beencompletely c<strong>on</strong>verted to cordgrass meadow and almost all <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> mudflats have been invaded to some degree, although <str<strong>on</strong>g>the</str<strong>on</strong>g>reare still extensive areas <str<strong>on</strong>g>of</str<strong>on</strong>g> mostly unvegetated mudflat. Atypical mudflat is in transiti<strong>on</strong>, a meadow has already formed,uncoalesced cl<strong>on</strong>es are scattered at <str<strong>on</strong>g>the</str<strong>on</strong>g> edge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> meadowand <str<strong>on</strong>g>the</str<strong>on</strong>g> rest <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mudflat is uninvaded.When we measured seedset in <str<strong>on</strong>g>the</str<strong>on</strong>g>se cl<strong>on</strong>es we found thatseed producti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> meadows is vastly greater than (morethan ten times) seed producti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> uncoalesced cl<strong>on</strong>es(Davis et al. 2004a). This reduced seed producti<strong>on</strong> whendensity is low is an example <str<strong>on</strong>g>of</str<strong>on</strong>g> an Allee effect, definedgenerally as a positive relati<strong>on</strong>ship between any comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g>fitness (in this case seed producti<strong>on</strong>) and c<strong>on</strong>specific density(Stephens et al. 1999). Later experiments dem<strong>on</strong>strated thatpollen limitati<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanism that causes <str<strong>on</strong>g>the</str<strong>on</strong>g> Allee effectin <str<strong>on</strong>g>the</str<strong>on</strong>g> Willapa Bay populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora (Davis et al.2004b).SIMULATION MODEL OF SPARTINA SPREADWe calculated, from data collected in <str<strong>on</strong>g>the</str<strong>on</strong>g> field, that <str<strong>on</strong>g>the</str<strong>on</strong>g>meadows produce an average <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately 500 seeds persquare meter (m -2 ) and that <str<strong>on</strong>g>the</str<strong>on</strong>g> cl<strong>on</strong>es <strong>on</strong>ly produceapproximately 12 seeds m -2 . Data from GIS maps from 1994and 1997 (Civille 2005) was used to estimate seed dispersaldistances, establishment probability and vegetative growth- 121 -


Chapter 2: Spartina Distributi<strong>on</strong> and Spread<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinarates and, using <str<strong>on</strong>g>the</str<strong>on</strong>g>se parameters, we built a spatially explicitsimulati<strong>on</strong> model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina. Full details <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>model and its parameterizati<strong>on</strong> are given in Taylor et al. 2004.The model represents <strong>on</strong>e square kilometer <str<strong>on</strong>g>of</str<strong>on</strong>g> mudflat,arranged as a square lattice <str<strong>on</strong>g>of</str<strong>on</strong>g> 1000 by 1000 cells; each cell is<strong>on</strong>e square meter and can ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r be occupied by Spartina orvacant. The simulated invasi<strong>on</strong> starts from a single occupiedcell in <str<strong>on</strong>g>the</str<strong>on</strong>g> center <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lattice, representing a single 1-m 2cl<strong>on</strong>e, and is run for 100 years. In each year <str<strong>on</strong>g>the</str<strong>on</strong>g> plants growvegetatively into empty neighboring sites and produce arandom number <str<strong>on</strong>g>of</str<strong>on</strong>g> seeds (distributed according to a Poiss<strong>on</strong>distributi<strong>on</strong>), <str<strong>on</strong>g>the</str<strong>on</strong>g> seeds disperse exp<strong>on</strong>entially away from <str<strong>on</strong>g>the</str<strong>on</strong>g>parents and have a small probability <str<strong>on</strong>g>of</str<strong>on</strong>g> becoming establishedcl<strong>on</strong>es. When two cl<strong>on</strong>es become adjacent to <strong>on</strong>e ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r, thatpatch <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina is classified as a meadow. We have twolevels <str<strong>on</strong>g>of</str<strong>on</strong>g> seed producti<strong>on</strong>; cells that are classified as cl<strong>on</strong>esproduce a small number <str<strong>on</strong>g>of</str<strong>on</strong>g> seeds; cells that are classified asmeadows produce a larger number. We created a variant <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>model in which we removed <str<strong>on</strong>g>the</str<strong>on</strong>g> Allee effect by setting <str<strong>on</strong>g>the</str<strong>on</strong>g>seed producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cl<strong>on</strong>es to <str<strong>on</strong>g>the</str<strong>on</strong>g> same as <str<strong>on</strong>g>the</str<strong>on</strong>g> seed producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>meadows.We found that <str<strong>on</strong>g>the</str<strong>on</strong>g> Allee effect dramatically slows <str<strong>on</strong>g>the</str<strong>on</strong>g>invasi<strong>on</strong>. From 380 runs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> model, with parameters variedover <str<strong>on</strong>g>the</str<strong>on</strong>g>ir estimated ranges, we calculated an average increasein area occupied <str<strong>on</strong>g>of</str<strong>on</strong>g> about 20% per year with <str<strong>on</strong>g>the</str<strong>on</strong>g> Allee effect;<str<strong>on</strong>g>the</str<strong>on</strong>g> area occupied by Spartina doubles approximately every 5years. Removing <str<strong>on</strong>g>the</str<strong>on</strong>g> Allee effect and repeating those runs gavean average <str<strong>on</strong>g>of</str<strong>on</strong>g> 30% increase per year, a doubling time <str<strong>on</strong>g>of</str<strong>on</strong>g> lessthan 4 years (Taylor et al. 2004) (Fig. 1). This result isc<strong>on</strong>sistent with <str<strong>on</strong>g>the</str<strong>on</strong>g>oretical investigati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sequences<str<strong>on</strong>g>of</str<strong>on</strong>g> an Allee effect in invasi<strong>on</strong>s (Lewis and Kareiva 1993, Wangand Kot 2001, Wang et al. 2002).ANALYTICAL MODEL OF SPARTINA SPREADWe <str<strong>on</strong>g>the</str<strong>on</strong>g>n created a n<strong>on</strong>-spatial analytical model <str<strong>on</strong>g>of</str<strong>on</strong>g> thissame process (Taylor et al. 2004). We kept some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>structure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong> model by using as <str<strong>on</strong>g>the</str<strong>on</strong>g> mainvariables <str<strong>on</strong>g>the</str<strong>on</strong>g> area occupied by seedlings (S), <str<strong>on</strong>g>the</str<strong>on</strong>g> area occupiedby cl<strong>on</strong>es (C) and <str<strong>on</strong>g>the</str<strong>on</strong>g> area occupied by meadows (M). O<str<strong>on</strong>g>the</str<strong>on</strong>g>rvariables are <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> individual cl<strong>on</strong>es (N C ) and <str<strong>on</strong>g>the</str<strong>on</strong>g>number <str<strong>on</strong>g>of</str<strong>on</strong>g> meadows (N M ).The main equati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> this model are:S t+1 = f C C t + f M M t (1)C t+1 = S t + (1-)g c C t (2)M t+1 = g c C t + g M M t (3)Equati<strong>on</strong> 1 says that seedlings are created from <str<strong>on</strong>g>the</str<strong>on</strong>g> seedsproduced by cl<strong>on</strong>es and seeds produced by meadows. Thefecundity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> cl<strong>on</strong>es (f C ) is much smaller than <str<strong>on</strong>g>the</str<strong>on</strong>g> fecundity<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> meadows (f M ) when <str<strong>on</strong>g>the</str<strong>on</strong>g>re is an Allee effect. We remove<str<strong>on</strong>g>the</str<strong>on</strong>g> Allee effect in <str<strong>on</strong>g>the</str<strong>on</strong>g> same way as in <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong> model, bysetting f C equal to fM. Equati<strong>on</strong> 2 says that <str<strong>on</strong>g>the</str<strong>on</strong>g> area occupiedFig. 1: Mean area occupied by Spartina as predicted by 380 runs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> simulati<strong>on</strong>model with and without <str<strong>on</strong>g>the</str<strong>on</strong>g> Allee effect. The upper line (squares)shows <str<strong>on</strong>g>the</str<strong>on</strong>g> predicted area occupied when <str<strong>on</strong>g>the</str<strong>on</strong>g>re is no Allee effect and <str<strong>on</strong>g>the</str<strong>on</strong>g>lower line (circles) shows <str<strong>on</strong>g>the</str<strong>on</strong>g> predicted area occupied with <str<strong>on</strong>g>the</str<strong>on</strong>g> Allee effect.A modified form <str<strong>on</strong>g>of</str<strong>on</strong>g> this figure was originally published in Taylor et al. 2004,Ecology 85(12).by cl<strong>on</strong>es increases by seedlings becoming cl<strong>on</strong>es and also byvegetative spread <str<strong>on</strong>g>of</str<strong>on</strong>g> existing cl<strong>on</strong>es (at growth rate g C ) anddecreases by a proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> area occupied by cl<strong>on</strong>es ()coalescing into o<str<strong>on</strong>g>the</str<strong>on</strong>g>r patches <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina and becomingmeadow. Equati<strong>on</strong> 3 describes <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> area occupiedby meadow which increases by <str<strong>on</strong>g>the</str<strong>on</strong>g> cl<strong>on</strong>es coalescing intomeadow at rate and also by vegetative growth <str<strong>on</strong>g>of</str<strong>on</strong>g> existingmeadow (growth rate g M ). These equati<strong>on</strong>s are <strong>on</strong>ly a partialdescripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> model. The full model includes equati<strong>on</strong>s for<str<strong>on</strong>g>the</str<strong>on</strong>g> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> cl<strong>on</strong>es (N C ) and <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g>meadows (N M ) and also describes how <str<strong>on</strong>g>the</str<strong>on</strong>g> parameters (,f C ,f M ,g C , and g M ) change with <str<strong>on</strong>g>the</str<strong>on</strong>g> area occupied by cl<strong>on</strong>es andmeadows and number <str<strong>on</strong>g>of</str<strong>on</strong>g> cl<strong>on</strong>es and meadows. A fulldescripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this model is provided in (Taylor et al. 2004).Several comparis<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> analytical model with <str<strong>on</strong>g>the</str<strong>on</strong>g>simulati<strong>on</strong> model give us c<strong>on</strong>fidence that <str<strong>on</strong>g>the</str<strong>on</strong>g> two modelspredict <str<strong>on</strong>g>the</str<strong>on</strong>g> same dynamics. We use <str<strong>on</strong>g>the</str<strong>on</strong>g> analytical model to findoptimal density-based eradicati<strong>on</strong> strategies. Full details <str<strong>on</strong>g>of</str<strong>on</strong>g> thiswork are given in Taylor and Hastings 2004, and we give abrief summary here.MANAGEMENT STRATEGIESEfforts to c<strong>on</strong>trol or eradicate Spartina in Willapa Baybegan in <str<strong>on</strong>g>the</str<strong>on</strong>g> early 1990s and it so<strong>on</strong> became obvious thateradicating this plant this was not going to be easy or cheap.Spartina can be removed mechanically by mowing or diggingand it can be killed with herbicide but all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> methodsrequire specialized equipment and repeated treatments (Patten,this issue). Large scale efforts to c<strong>on</strong>trol this invasi<strong>on</strong> began in2003 and current plans predict that <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> will beeradicated within ten years if <str<strong>on</strong>g>the</str<strong>on</strong>g> current level <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol ismaintained (Murphy 2003).- 122 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 2: Spartina Distributi<strong>on</strong> and SpreadFig. 2: Grey area shows area occupied by Spartina invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> different agesas predicted by <str<strong>on</strong>g>the</str<strong>on</strong>g> analytical model and black area shows minimum areathat needs to be removed each year for eradicati<strong>on</strong> to succeed within tenyears.We used <str<strong>on</strong>g>the</str<strong>on</strong>g> model to explore two questi<strong>on</strong>s about c<strong>on</strong>trol.First, how much Spartina has to be removed each year in orderto clear this invasi<strong>on</strong>? Sec<strong>on</strong>d, is it better to target <str<strong>on</strong>g>the</str<strong>on</strong>g> highdensity meadows that are producing most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> seed but notspreading vegetatively very quickly; or is it more effective totarget <str<strong>on</strong>g>the</str<strong>on</strong>g> low density cl<strong>on</strong>es that produce very little seed(because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Allee effect) but spread vegetatively relativelymuch more quickly because <str<strong>on</strong>g>the</str<strong>on</strong>g>y are surrounded by open mud?We assume a fixed annual budget and that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a fixed costper square meter <str<strong>on</strong>g>of</str<strong>on</strong>g> removing Spartina; this means that a fixedmaximum area can be removed each year. We define a c<strong>on</strong>trolstrategy as (1) T t : <str<strong>on</strong>g>the</str<strong>on</strong>g> actual area <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina removed in eachyear t and (2) X t <str<strong>on</strong>g>the</str<strong>on</strong>g> proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> area removed that ismeadow in each year t. For a c<strong>on</strong>trol program that lasts tenyears <str<strong>on</strong>g>the</str<strong>on</strong>g>re will be ten values <str<strong>on</strong>g>of</str<strong>on</strong>g> T, <strong>on</strong>e for each year and tenvalues <str<strong>on</strong>g>of</str<strong>on</strong>g> X. We <strong>on</strong>ly c<strong>on</strong>sider c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> cl<strong>on</strong>es and meadows(not seedlings) so (1 - X t ) is <str<strong>on</strong>g>the</str<strong>on</strong>g> proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> area removedthat is cl<strong>on</strong>es. We model c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> cl<strong>on</strong>es by subtracting T t (1 -X t ) from <str<strong>on</strong>g>the</str<strong>on</strong>g> left hand side <str<strong>on</strong>g>of</str<strong>on</strong>g> equati<strong>on</strong> 2 and we model c<strong>on</strong>trol<str<strong>on</strong>g>of</str<strong>on</strong>g> meadows by subtracting T t X t from <str<strong>on</strong>g>the</str<strong>on</strong>g> left hand side <str<strong>on</strong>g>of</str<strong>on</strong>g>equati<strong>on</strong> 3 (Taylor and Hastings 2004).In order to be c<strong>on</strong>sidered successful <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol strategyhas to completely eradicate <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> within ten years. For asuccessful strategy, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are two o<str<strong>on</strong>g>the</str<strong>on</strong>g>r objectives. The first isto minimize <str<strong>on</strong>g>the</str<strong>on</strong>g> total cost which is <str<strong>on</strong>g>the</str<strong>on</strong>g> same as minimizing <str<strong>on</strong>g>the</str<strong>on</strong>g>total area removed over <str<strong>on</strong>g>the</str<strong>on</strong>g> ten years (since we are assuming afixed cost per square meter). The sec<strong>on</strong>d is to minimize <str<strong>on</strong>g>the</str<strong>on</strong>g>risk that this <strong>on</strong>e site <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> poses to o<str<strong>on</strong>g>the</str<strong>on</strong>g>r sites inWillapa Bay. We assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> risk <str<strong>on</strong>g>of</str<strong>on</strong>g> seeds escaping andcol<strong>on</strong>izing o<str<strong>on</strong>g>the</str<strong>on</strong>g>r mudflats in <str<strong>on</strong>g>the</str<strong>on</strong>g> bay is linearly proporti<strong>on</strong>al to<str<strong>on</strong>g>the</str<strong>on</strong>g> total number <str<strong>on</strong>g>of</str<strong>on</strong>g> seeds produced during <str<strong>on</strong>g>the</str<strong>on</strong>g> ten years <str<strong>on</strong>g>of</str<strong>on</strong>g>c<strong>on</strong>trol. In order to minimize both cost and risk, we minimized<str<strong>on</strong>g>the</str<strong>on</strong>g> product <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two quantities. We used a genetic algorithmto find <str<strong>on</strong>g>the</str<strong>on</strong>g> optimal strategy; for details <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> optimizati<strong>on</strong> seeTaylor and Hastings (2004). In <str<strong>on</strong>g>the</str<strong>on</strong>g> case when <str<strong>on</strong>g>the</str<strong>on</strong>g> annualA: Low BudgetB: High BudgetFig. 3: A The top left graph shows <str<strong>on</strong>g>the</str<strong>on</strong>g> optimal strategy (“cl<strong>on</strong>e first”) for eradicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a 40 year old invasi<strong>on</strong> when 3600 m 2 can be removed per year for up to tenyears. White bars show <str<strong>on</strong>g>the</str<strong>on</strong>g> fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> budget applied to removal <str<strong>on</strong>g>of</str<strong>on</strong>g> cl<strong>on</strong>es and grey bars show <str<strong>on</strong>g>the</str<strong>on</strong>g> fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> budget applied to removal <str<strong>on</strong>g>of</str<strong>on</strong>g> meadows. Thebottom left graph shows area occupied by cl<strong>on</strong>es and meadows as c<strong>on</strong>trol strategy is implemented. B. The top right graph shows <str<strong>on</strong>g>the</str<strong>on</strong>g> optimal strategy (“meadowfirst”) for eradicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a 40 year old invasi<strong>on</strong> when 5000 m 2 can be removed per year for up to ten years. As in A, white bars show removal <str<strong>on</strong>g>of</str<strong>on</strong>g> cl<strong>on</strong>es and greybars show removal <str<strong>on</strong>g>of</str<strong>on</strong>g> meadows. The bottom right graph shows area occupied by cl<strong>on</strong>es and meadows as this c<strong>on</strong>trol strategy is implemented. Details <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> optimizati<strong>on</strong>are given in text and in Taylor and Hastings (2004).- 123 -


Chapter 2: Spartina Distributi<strong>on</strong> and Spread<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinabudget is lower than is necessary to eradicate <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>optimizati<strong>on</strong> algorithm is unable to find a strategy thatremoves all <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina but instead finds <str<strong>on</strong>g>the</str<strong>on</strong>g> strategy thatminimizes <str<strong>on</strong>g>the</str<strong>on</strong>g> area occupied at <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol period.We calculated <str<strong>on</strong>g>the</str<strong>on</strong>g> minimum annual budget in terms <str<strong>on</strong>g>of</str<strong>on</strong>g>area removed that is necessary to eradicate an invasi<strong>on</strong> withinten years when starting c<strong>on</strong>trol after 40 to 100 years <str<strong>on</strong>g>of</str<strong>on</strong>g>unchecked invasi<strong>on</strong>. The results are shown in Fig. 2. Thenecessary annual budget depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> starting time and size<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> but roughly speaking it is necessary to removeannually at least <str<strong>on</strong>g>the</str<strong>on</strong>g> equivalent <str<strong>on</strong>g>of</str<strong>on</strong>g> about 15 to 20% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>starting area <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong>.We found that <str<strong>on</strong>g>the</str<strong>on</strong>g> optimal allocati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> resources(removal <str<strong>on</strong>g>of</str<strong>on</strong>g> cl<strong>on</strong>es versus meadows) depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> annualbudget level (Fig. 3). For a 40 year old invasi<strong>on</strong> that occupies~17,000 m 2 , if <str<strong>on</strong>g>the</str<strong>on</strong>g> budget is low (in this case removing at most3600m 2 per year; an area equivalent to about 22% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> initialinvasi<strong>on</strong>), <str<strong>on</strong>g>the</str<strong>on</strong>g> optimal strategy is to remove cl<strong>on</strong>es firstallowing <str<strong>on</strong>g>the</str<strong>on</strong>g> meadows to initially expand and <str<strong>on</strong>g>the</str<strong>on</strong>g>n removemeadows <strong>on</strong>ce <str<strong>on</strong>g>the</str<strong>on</strong>g> cl<strong>on</strong>es are largely removed. If <str<strong>on</strong>g>the</str<strong>on</strong>g> budget ishigh (removing at most 5000 m 2 per year; an area equivalent to30% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> initial invasi<strong>on</strong>), <str<strong>on</strong>g>the</str<strong>on</strong>g> optimal strategy is to remove<str<strong>on</strong>g>the</str<strong>on</strong>g> meadows first, allowing <str<strong>on</strong>g>the</str<strong>on</strong>g> cl<strong>on</strong>es to expand and startremoving cl<strong>on</strong>es in a later year. We also found that <str<strong>on</strong>g>the</str<strong>on</strong>g> cl<strong>on</strong>efirststrategy is optimal when minimizing cost <strong>on</strong>ly andignoring <str<strong>on</strong>g>the</str<strong>on</strong>g> risk posed by escaping seeds and that <str<strong>on</strong>g>the</str<strong>on</strong>g> cl<strong>on</strong>efirststrategy is <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly possible way to eradicate an invasi<strong>on</strong>when <str<strong>on</strong>g>the</str<strong>on</strong>g> budget is low. The meadow-first strategy can <strong>on</strong>ly beused when <str<strong>on</strong>g>the</str<strong>on</strong>g> budget is high and it is optimal because itsubstantially reduces <str<strong>on</strong>g>the</str<strong>on</strong>g> risk <str<strong>on</strong>g>of</str<strong>on</strong>g> escaping seed although it doesnot substantially reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> cost. We also found that <str<strong>on</strong>g>the</str<strong>on</strong>g> cl<strong>on</strong>efirststrategy is optimal when <str<strong>on</strong>g>the</str<strong>on</strong>g>re is no Allee effect since; inthis case, <str<strong>on</strong>g>the</str<strong>on</strong>g> cl<strong>on</strong>es produce as much seed as <str<strong>on</strong>g>the</str<strong>on</strong>g> meadows butgrow faster vegetatively (Taylor and Hastings 2004).CONCLUSIONSWe c<strong>on</strong>clude that <str<strong>on</strong>g>the</str<strong>on</strong>g> Allee effect caused by pollenlimitati<strong>on</strong> has dramatically slowed down <str<strong>on</strong>g>the</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> thisplant and affects <str<strong>on</strong>g>the</str<strong>on</strong>g> optimal eradicati<strong>on</strong> strategy. The optimalc<strong>on</strong>trol strategy illustrates <str<strong>on</strong>g>the</str<strong>on</strong>g> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetative spreadin this plant. To c<strong>on</strong>trol an invasi<strong>on</strong> with limited or uncertainresources, <str<strong>on</strong>g>the</str<strong>on</strong>g> best and <strong>on</strong>ly viable strategy is to prioritize <str<strong>on</strong>g>the</str<strong>on</strong>g>removal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fast growing, low density cl<strong>on</strong>es even though<str<strong>on</strong>g>the</str<strong>on</strong>g>y produce very few <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> new seedlings. With higherbudgets and taking into account <str<strong>on</strong>g>the</str<strong>on</strong>g> risk <str<strong>on</strong>g>of</str<strong>on</strong>g> seed escaping tocol<strong>on</strong>ize o<str<strong>on</strong>g>the</str<strong>on</strong>g>r sites, <str<strong>on</strong>g>the</str<strong>on</strong>g> optimal strategy is to prioritizeremoval <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> slower-growing, high density meadows.ACKNOWLEDGMENTSWe would like to thank D<strong>on</strong> Str<strong>on</strong>g, Debra Ayres,Miranda Wecker and John Lambrinos for helpful discussi<strong>on</strong>s.Field work was assisted by Washingt<strong>on</strong> State Department <str<strong>on</strong>g>of</str<strong>on</strong>g>Natural Resources and Washingt<strong>on</strong> State Fish and WildlifeService. This work was funded by <str<strong>on</strong>g>the</str<strong>on</strong>g> Nati<strong>on</strong>al ScienceFoundati<strong>on</strong> Biocomplexity Grant #DEB0083583 (P.I. AlanHastings)REFERENCESCiville, J.C. 2005. Spatial and temporal analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> an estuarineinvasi<strong>on</strong>: Spartina alterniflora in Willapa Bay, WA. DoctoralDissertati<strong>on</strong>. University <str<strong>on</strong>g>of</str<strong>on</strong>g> California at Davis, Davis, CA.Davis, H.G., C.M. Taylor, J.C. Civille, and D. R. Str<strong>on</strong>g. 2004a. AnAllee effect at <str<strong>on</strong>g>the</str<strong>on</strong>g> fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> a plant invasi<strong>on</strong>: Spartina in a Pacificestuary. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology 92:321-327.Davis, H.G., C.M. Taylor, J.G. Lambrinos, and D.R. Str<strong>on</strong>g. 2004b.Pollen limitati<strong>on</strong> causes an Allee effect in a wind-pollinatedinvasive grass (Spartina alterniflora). PNAS 101:13804-13807.Lewis, M.A., and P. Kareiva. 1993. Allee dynamics and <str<strong>on</strong>g>the</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g>invading organisms. Theoretical Populati<strong>on</strong> Biology 43:141-158.Murphy, K C. 2003. Report to <str<strong>on</strong>g>the</str<strong>on</strong>g> Legislature: Progress <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2003Spartina eradicati<strong>on</strong> program. PUB 805-110 (N/1/04), Washingt<strong>on</strong>State Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Olympia.Stephens, P.A., W.J. Su<str<strong>on</strong>g>the</str<strong>on</strong>g>rland, and R. P. Frecklet<strong>on</strong>. 1999. What is<str<strong>on</strong>g>the</str<strong>on</strong>g> Allee effect? Oikos 87:185-190.Taylor, C.M., H.G. Davis, J.C. Civille, FS. Grevstad, and A. Hastings.2004. C<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> an Allee effect <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a Pacificestuary by Spartina alterniflora. Ecology 85:3254-3266.Taylor, C.M., and A. Hastings. 2004. Finding optimal c<strong>on</strong>trolstrategies for invasive species: a density-structured model forSpartina alterniflora. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology 41:1049-1057.Wang, M.H., and M. Kot. 2001. Speeds <str<strong>on</strong>g>of</str<strong>on</strong>g> invasi<strong>on</strong> in a model withstr<strong>on</strong>g or weak Allee effects. Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>matical Biosciences 171:83-97.Wang, M.H., M. Kot, and M.G. Neubert. 2002. Integrodifferenceequati<strong>on</strong>s, Allee effects, and invasi<strong>on</strong>s. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ma<str<strong>on</strong>g>the</str<strong>on</strong>g>maticalBiology 44:150-168.- 124 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 2: Spartina Distributi<strong>on</strong> and SpreadHYBRID CORDGRASS (SPARTINA) AND TIDAL MARSH RESTORATION IN SAN FRANCISCO BAY:IF YOU BUILD IT, THEY WILL COMED. R. AYRES 1 AND D. R. STRONG 21,2Evoluti<strong>on</strong> and Ecology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Davis, CA 956161drayres@ucdavis.edu; 2 drstr<strong>on</strong>g@ucdavis.eduKeywords: invasive species, salt p<strong>on</strong>dsRestorati<strong>on</strong> sites built <strong>on</strong> former salt p<strong>on</strong>ds (Fig. 1) presentan ideal combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> biotic and abiotic c<strong>on</strong>diti<strong>on</strong>s forSpartina regenerati<strong>on</strong> by seed. First, <str<strong>on</strong>g>the</str<strong>on</strong>g>y are unvegetated soseedlings grow unhindered by competiti<strong>on</strong> with establishedplants. Sec<strong>on</strong>d, <str<strong>on</strong>g>the</str<strong>on</strong>g>y are graded to present a range <str<strong>on</strong>g>of</str<strong>on</strong>g> intertidalelevati<strong>on</strong>s enhancing <str<strong>on</strong>g>the</str<strong>on</strong>g> opportunity for col<strong>on</strong>izati<strong>on</strong> at elevati<strong>on</strong>sthat are nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r too saline, nor receive too much tidalinnundati<strong>on</strong> for cordgrass seedling germinati<strong>on</strong> and growth.<str<strong>on</strong>g>Third</str<strong>on</strong>g>, tidal waters enter through levee breaches (see Fig. 1),muting <str<strong>on</strong>g>the</str<strong>on</strong>g> force <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> waves and reducing seedling loss dueto physical removal by tidal acti<strong>on</strong>. And finally, many <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>restored marshes in <str<strong>on</strong>g>the</str<strong>on</strong>g> sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn and eastern regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>Bay are near marshes invaded by hybrids, or are actually fedby tidal water which travels though hybrid Spartina-chokedchannels (i.e. Alameda Creek and Alameda Flood C<strong>on</strong>trolChannel; se e # in Fig. 2), thus ensuring a tidally-borne seedbank rich in floating hybrid Spartina seed.The result is that recent restorati<strong>on</strong> sites in <str<strong>on</strong>g>the</str<strong>on</strong>g> area havebeen quickly col<strong>on</strong>ized by large numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid Spartina(Table 1). This pattern can be expected to c<strong>on</strong>tinue as morenew marshes are opened until hybrid cordgrass is c<strong>on</strong>trolled.Hybrid cordgrass thus presents a substantial challenge tomarsh restorati<strong>on</strong> that is particularly relevant in light <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>planned restorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 25 square miles <str<strong>on</strong>g>of</str<strong>on</strong>g> salt p<strong>on</strong>ds in <str<strong>on</strong>g>the</str<strong>on</strong>g>South Bay (Fig. 2).Fig. 1. Cogswell Marsh in Hayward, CA is a former salt p<strong>on</strong>d opened to tidal acti<strong>on</strong> (note levee breaches al<strong>on</strong>g<str<strong>on</strong>g>the</str<strong>on</strong>g> shoreline and within marsh denoted by ^ ) in 1980. N<strong>on</strong>-working salt p<strong>on</strong>ds are at <str<strong>on</strong>g>the</str<strong>on</strong>g> left and top <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>photo (photos provided by California Coastal C<strong>on</strong>servancy).- 125 -


Chapter 2: Spartina Distributi<strong>on</strong> and Spread<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaFig. 2. Twenty-five-square mile South Bay Salt P<strong>on</strong>d Restorati<strong>on</strong> Project which will result in large-scale restorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> wetlands from <str<strong>on</strong>g>the</str<strong>on</strong>g> San Mateo Bridge to<str<strong>on</strong>g>the</str<strong>on</strong>g> sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn end <str<strong>on</strong>g>of</str<strong>on</strong>g> SF Bay. Pound sign (#) denotes hybrid Spartina invaded creeks and channels in <str<strong>on</strong>g>the</str<strong>on</strong>g> area; asterisk (*) is <str<strong>on</strong>g>the</str<strong>on</strong>g> Eden Landing restorati<strong>on</strong> site(map from http://www.southbayrestorati<strong>on</strong>.org/images/map.gif).Table 1. Percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid plants as <str<strong>on</strong>g>of</str<strong>on</strong>g> 2004, determined by genetic analysis, in restored tidal marshes opened to tidalacti<strong>on</strong>. Questi<strong>on</strong> marks indicate uncertainty in opening dates and subsequent invasi<strong>on</strong> by hybrid cordgrass.Marsh Year Opened Acreage % hybrid plantsCogswell 1980 250 94Oro Loma 1997 364 73Arrowhead 1998 70 100Eden Landing (*Fig. 2) 2004? 836 ??South Bay Salt P<strong>on</strong>ds ?? 15,100 ??- 126 -


CHAPTER THREEEcosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>Invasive</strong> Spartina


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> SpartinaASSESSMENT OF THE POTENTIAL CONSEQUENCES OF LARGE-SCALE ERADICATION OFSPARTINA ANGLICA FROM THE TAMAR ESTUARY, TASMANIAM. SHEEHAN 1 AND J.C. ELLISON 21Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Primary Industries, PO Box 3100, Bendigo DC, Victoria, Australia; mat<str<strong>on</strong>g>the</str<strong>on</strong>g>w.sheehan@dpi.vic.gov.au2School <str<strong>on</strong>g>of</str<strong>on</strong>g> Geography and Envir<strong>on</strong>mental Studies, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tasmania, Locked bag 1376, Launcest<strong>on</strong>, Tasmania;Joanna.Ellis<strong>on</strong>@utas.edu.auSpartina anglica is a vigorous exotic perennial salt marsh grass typically inhabiting <str<strong>on</strong>g>the</str<strong>on</strong>g> upperintertidal z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> temperate estuaries. Following its introducti<strong>on</strong> into <str<strong>on</strong>g>the</str<strong>on</strong>g> Tamar Estuary, Tasmania,patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment depositi<strong>on</strong> and erosi<strong>on</strong> have been significantly altered. This paper presents <str<strong>on</strong>g>the</str<strong>on</strong>g>background to an interdisciplinary approach used to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> potential impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> widescale eradicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica, from what is now Australia’s largest infestati<strong>on</strong>. Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>seinterdisciplinary lines <str<strong>on</strong>g>of</str<strong>on</strong>g> inquiry have provided a greater understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> biogeomorphologicalresp<strong>on</strong>ses to restorati<strong>on</strong> attempts within intertidal z<strong>on</strong>es and have provided a sound basis <strong>on</strong> whichto formulate and implement future management <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina.Keywords: Spartina anglica, Estuaries, salt marsh, intertidal z<strong>on</strong>e, geomorphology, sward, sedimentati<strong>on</strong>,erosi<strong>on</strong>, accreti<strong>on</strong>, eradicati<strong>on</strong>, surveyingINTRODUCTIONSpartina anglica, (rice grass or cordgrass) is a vigorousexotic perennial salt marsh grass typically inhabiting<str<strong>on</strong>g>the</str<strong>on</strong>g> upper intertidal z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> temperate estuaries. Spartinaanglica influences marsh development through <str<strong>on</strong>g>the</str<strong>on</strong>g> ability <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> canopy to promote sediment depositi<strong>on</strong> (Shi et al. 1995),and <str<strong>on</strong>g>the</str<strong>on</strong>g> ability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dense rhizomes and roots to increase<str<strong>on</strong>g>the</str<strong>on</strong>g> erosi<strong>on</strong> resistance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> substrate (Brown 1998a; Brownet al. 1998b; Van Eerdt 1985). These properties, al<strong>on</strong>g withits ability to establish and spread rapidly are largely <str<strong>on</strong>g>the</str<strong>on</strong>g>reas<strong>on</strong> for its deliberate introducti<strong>on</strong> to temperate estuariesthroughout <str<strong>on</strong>g>the</str<strong>on</strong>g> world (Chapman 1960; Lee and Partridge1983; Ranwell 1967).Accelerated accreti<strong>on</strong> rates following <str<strong>on</strong>g>the</str<strong>on</strong>g> establishment<str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica have been observed in <str<strong>on</strong>g>the</str<strong>on</strong>g> Ne<str<strong>on</strong>g>the</str<strong>on</strong>g>rlands (VanEerdt 1985), China (Chung 1990), New Zealand (Lee andPartridge 1983) and in Poole Harbour, United Kingdom(L<strong>on</strong>g et al. 1999). However, compacti<strong>on</strong> and settling havebeen found to be important comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> sedimentati<strong>on</strong>that may, in some instances result in negligible change intopographic height <str<strong>on</strong>g>of</str<strong>on</strong>g> mudbanks (Lee and Partridge 1983).Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rmore, studies <str<strong>on</strong>g>of</str<strong>on</strong>g> Louisiana marshes suggest that rootgrowth and below-ground accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter,ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than inorganic matter governs <str<strong>on</strong>g>the</str<strong>on</strong>g> maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> saltmarshes in <str<strong>on</strong>g>the</str<strong>on</strong>g> vertical plane (Hatt<strong>on</strong> 1983; Nyman 1995;Turner 2004).This paper provides <str<strong>on</strong>g>the</str<strong>on</strong>g> background to an interdisciplinaryand precauti<strong>on</strong>ary study that was c<strong>on</strong>ducted between 2002and 2007 as part <str<strong>on</strong>g>of</str<strong>on</strong>g> a PhD research project aimed at assessing<str<strong>on</strong>g>the</str<strong>on</strong>g> impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> wide scale eradicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica from<str<strong>on</strong>g>the</str<strong>on</strong>g> Tamar Estuary, Tasmania. Methodology and results <str<strong>on</strong>g>of</str<strong>on</strong>g>this study have been reported elsewhere (Sheehan & Ellis<strong>on</strong>,2007; Sheehan, 2008).BackgroundThe Tamar Estuary (Fig. 1) extends some 71 kilometers(km) inland from Bass Strait through to its tidal extent at<str<strong>on</strong>g>the</str<strong>on</strong>g> city <str<strong>on</strong>g>of</str<strong>on</strong>g> Launcest<strong>on</strong>. The Tamar is a semi-diurnal mesotidalsystem with tides ranging from 1.3 meters (m) at LowHead, to 4 m at Launcest<strong>on</strong>. The Tamar is well supplied withsediment from <str<strong>on</strong>g>the</str<strong>on</strong>g> South and North Esk Rivers, which, in <str<strong>on</strong>g>the</str<strong>on</strong>g>narrow and poorly flushed estuary, tend to accumulate as finegrainedsilt deposits in <str<strong>on</strong>g>the</str<strong>on</strong>g> upper reaches <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> system bothwithin <str<strong>on</strong>g>the</str<strong>on</strong>g> channel and <strong>on</strong> adjacent mudflats and shoals. Theaverage rate <str<strong>on</strong>g>of</str<strong>on</strong>g> siltati<strong>on</strong> has been estimated at 30,000 cubicmeters (m 3 ) per year, though this may vary between 10,000and 90,000 depending <strong>on</strong> variati<strong>on</strong> in river flow (Foster etal. 1986). Sedimentati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> Tamar’s upper reaches hasbeen an issue <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g standing c<strong>on</strong>cern, both for reas<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>shipping channel maintenance and envir<strong>on</strong>mental quality.Introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> SpartinaSpartina anglica was introduced in 1947 at Windermere(Fig. 1) in an attempt to stabilize sediments and safeguardagainst fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r siltati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> shipping channel at a timewhen commercial water traffic travelled <str<strong>on</strong>g>the</str<strong>on</strong>g> length <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>estuary (Phillips 1975; Pringle 1993; Ranwell 1967). Mudflatsand shoals in <str<strong>on</strong>g>the</str<strong>on</strong>g> upper Tamar were pr<strong>on</strong>e to severe erosi<strong>on</strong>during <str<strong>on</strong>g>the</str<strong>on</strong>g> combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> flood tide and north-west winds.It was thought that stabilizing <str<strong>on</strong>g>the</str<strong>on</strong>g> mudflats would promotevertical accreti<strong>on</strong>, defining <str<strong>on</strong>g>the</str<strong>on</strong>g> channel to enhance scour, andhence reducing <str<strong>on</strong>g>the</str<strong>on</strong>g> likelihood <str<strong>on</strong>g>of</str<strong>on</strong>g> fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r siltati<strong>on</strong>.In 1997, surveys showed that S. anglica covered some420 hectares (ha) (4.2 km 2 ) <str<strong>on</strong>g>of</str<strong>on</strong>g> intertidal z<strong>on</strong>e within <str<strong>on</strong>g>the</str<strong>on</strong>g>- 129 -


Chapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> Spartina<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaFig. 2: Physiographic units <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Tamar Estuary intertidalz<strong>on</strong>e.Fig. 1: Tamar Estuary, Tasmania.Tamar; however, recent surveys indicate that it c<strong>on</strong>tinues tospread throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> lower estuary (Hedge 1998).Although <str<strong>on</strong>g>the</str<strong>on</strong>g> introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica has improvednavigability in <str<strong>on</strong>g>the</str<strong>on</strong>g> Tamar Estuary (Pringle 1993; Wells 1995),it is now c<strong>on</strong>sidered a pest species as <str<strong>on</strong>g>the</str<strong>on</strong>g> current generati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> natural resource managers and land-holders c<strong>on</strong>sider itsprogressive invasi<strong>on</strong> to be a major threat to <str<strong>on</strong>g>the</str<strong>on</strong>g> integrity <str<strong>on</strong>g>of</str<strong>on</strong>g>inter-tidal coastal ecosystems and wetlands <str<strong>on</strong>g>of</str<strong>on</strong>g> internati<strong>on</strong>alimportance (Doody 1990; Wells 1995).The present management strategy for S. anglica within<str<strong>on</strong>g>the</str<strong>on</strong>g> Tamar is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tainment ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than eradicati<strong>on</strong> dueto <str<strong>on</strong>g>the</str<strong>on</strong>g> complex nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Estuary as outline above. Thereis, however, community and industry pressure to eradicate S.anglica from <str<strong>on</strong>g>the</str<strong>on</strong>g> banks <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Tamar.GEOMORPHOLOGY OF THE INTERTIDAL ZONEThe intertidal z<strong>on</strong>e within <str<strong>on</strong>g>the</str<strong>on</strong>g> Tamar c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> fourdistinct physiographic units (Fig. 2):1) Narrow mudflats <str<strong>on</strong>g>of</str<strong>on</strong>g> recent alluvial deposits largely <str<strong>on</strong>g>of</str<strong>on</strong>g>terrestrial origin entering <str<strong>on</strong>g>the</str<strong>on</strong>g> system via <str<strong>on</strong>g>the</str<strong>on</strong>g> North Esk and <str<strong>on</strong>g>the</str<strong>on</strong>g>South Esk Rivers. These have accumulated predominantly in<str<strong>on</strong>g>the</str<strong>on</strong>g> upper estuary, however this unit can also be found in <str<strong>on</strong>g>the</str<strong>on</strong>g>mid and lower intertidal z<strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mid estuary or in largerembayments that receive sediment from minor tributaries;2) A laterally extensive area <str<strong>on</strong>g>of</str<strong>on</strong>g> outcropping substratewhich has wea<str<strong>on</strong>g>the</str<strong>on</strong>g>red in situ to form a narrow boulder beachthroughout <str<strong>on</strong>g>the</str<strong>on</strong>g> mid and some parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lower Tamar. Thisformati<strong>on</strong> c<strong>on</strong>sists largely <str<strong>on</strong>g>of</str<strong>on</strong>g> Dolerite but also some Miocenebasalt shorelines at Whirlpool reach;3) Extensive beaches within <str<strong>on</strong>g>the</str<strong>on</strong>g> mid Tamar c<strong>on</strong>sisting<str<strong>on</strong>g>of</str<strong>on</strong>g> a thin veneer <str<strong>on</strong>g>of</str<strong>on</strong>g> Tertiary sands and gravels underlain byclays. The clays are likely to be lacustrine deposits <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>Miocene while <str<strong>on</strong>g>the</str<strong>on</strong>g> sand and gravel are indicative <str<strong>on</strong>g>of</str<strong>on</strong>g> highenergyfluvial envir<strong>on</strong>ments, which would have been presentduring <str<strong>on</strong>g>the</str<strong>on</strong>g> Pleistocene; and- 130 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> SpartinaFig. 3: Native salt marsh communities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lower salt marsh being progressivelyinvaded by S. anglica cl<strong>on</strong>es, establishing seaward <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> nativevegetati<strong>on</strong>.Fig. 6: Spartina anglica col<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a dolerite boulder beach at EastArm.Source: T. Colesa) b)Fig. 4: The intertidal z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Tamar at Paper Beach in 1956 (a), showing<str<strong>on</strong>g>the</str<strong>on</strong>g> sand and gravel substrate, and in 2004 (b) Spartina marsh extendingsome 140 m seaward.Fig. 7: Mature Spartina marsh at L<strong>on</strong>e Pine point, previously a DoleriteBoulder beach.Fig. 5: One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> few remaining sandy intertidal z<strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> Tamar, <str<strong>on</strong>g>the</str<strong>on</strong>g> upperintertidal z<strong>on</strong>e is typically sand and gravels grading into mudflat.4) Marine sands, limited to <str<strong>on</strong>g>the</str<strong>on</strong>g> lower estuary close to <str<strong>on</strong>g>the</str<strong>on</strong>g>mouth at Low head.VEGETATION OF THE INTERTIDAL ZONEPrior to <str<strong>on</strong>g>the</str<strong>on</strong>g> establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica, much <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> intertidal z<strong>on</strong>e, particularly in <str<strong>on</strong>g>the</str<strong>on</strong>g> mid Tamar, wasunvegetated. Enteromorpha and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r algae were foundextensively <strong>on</strong> mudflats at all elevati<strong>on</strong>s within <str<strong>on</strong>g>the</str<strong>on</strong>g> intertidalz<strong>on</strong>e throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary. The absence <str<strong>on</strong>g>of</str<strong>on</strong>g> highernative salt marsh plants is probably due to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir inabilityto col<strong>on</strong>ize <str<strong>on</strong>g>the</str<strong>on</strong>g> various intertidal geologies and promote<str<strong>on</strong>g>the</str<strong>on</strong>g> accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fine silts. Native salt marsh vegetati<strong>on</strong>,such as Sarcocornia quinqueflora, Sclerostegia arbuscula,and Suaeda australis is limited to a narrow fringe belowFig. 8: A prograding Spartina marsh, with <str<strong>on</strong>g>the</str<strong>on</strong>g> coalescence <str<strong>on</strong>g>of</str<strong>on</strong>g> isolatedclumps characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina col<strong>on</strong>izati<strong>on</strong>.<str<strong>on</strong>g>the</str<strong>on</strong>g> high water mark and in sheltered embayments, wi<str<strong>on</strong>g>the</str<strong>on</strong>g>xtensive salt marshes occurring <strong>on</strong>ly near Bell Bay, <strong>on</strong>relatively sandy substrates in <str<strong>on</strong>g>the</str<strong>on</strong>g> lower estuary (Fig. 3). Theability <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica to establish at elevati<strong>on</strong>s lower thannative salt marsh plants provides a valuable competitiveadvantage. Spartina anglica has successfully col<strong>on</strong>izedin isolated clumps, coalesced to form laterally extensiveswards seaward <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> native salt marsh, and progressivelymove landward into <str<strong>on</strong>g>the</str<strong>on</strong>g> native vegetati<strong>on</strong>.- 131 -


Chapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> Spartina<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaIMPACTS OF SPARTINA INVASIONThe introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica to <str<strong>on</strong>g>the</str<strong>on</strong>g> Tamar Estuary hasbrought about a dramatic and rapid change to <str<strong>on</strong>g>the</str<strong>on</strong>g> physiography<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> intertidal z<strong>on</strong>e, illustrated well at a photo pointestablished in 1956 at Paper beach (Fig. 4a and b). The col<strong>on</strong>izati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> what was essentially a vacant niche has transformed<str<strong>on</strong>g>the</str<strong>on</strong>g> gently grading sandy intertidal z<strong>on</strong>es, as shown in Fig. 5,and hard rock intertidal z<strong>on</strong>es (Fig. 6) into laterally extensivemuddy terraces (Figs. 7 and 8).The ecological impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina invasi<strong>on</strong> in temperateestuaries <str<strong>on</strong>g>of</str<strong>on</strong>g> South Eastern Australia are poorly understood.Studies <str<strong>on</strong>g>of</str<strong>on</strong>g> benthic macro-invertebrate communities in <str<strong>on</strong>g>the</str<strong>on</strong>g>Little Swanport Estuary, Tasmania suggest that Spartinasignificantly increases macro-invertebrate species richnessand total species abundance when compared to previouslyn<strong>on</strong>-vegetated intertidal areas (Hedge 1997). Additi<strong>on</strong>ally,macro-invertebrate communities <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina marshesshowed remarkable similarity to those <str<strong>on</strong>g>of</str<strong>on</strong>g> native salt marshes(Hedge and Kriwoken 2000). It is suggested <str<strong>on</strong>g>the</str<strong>on</strong>g>refore thatSpartina invasi<strong>on</strong> has provided a niche <str<strong>on</strong>g>of</str<strong>on</strong>g> s<str<strong>on</strong>g>of</str<strong>on</strong>g>t substrate anddense protecti<strong>on</strong>, favoring macro-invertebrates and somebirds such as <str<strong>on</strong>g>the</str<strong>on</strong>g> purple swamphen (Porphyrio porphyrio).It is likely that this subsequently caused a displacement <str<strong>on</strong>g>of</str<strong>on</strong>g>species that formerly inhabited or utilized <str<strong>on</strong>g>the</str<strong>on</strong>g> intertidal z<strong>on</strong>e.Species assemblage and utilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> intertidal z<strong>on</strong>e priorto Spartina is not well documented, but likely was relativelyrich in fish and bird species.DISCUSSIONThis paper has provided background for <str<strong>on</strong>g>the</str<strong>on</strong>g> researchproject that assessed <str<strong>on</strong>g>the</str<strong>on</strong>g> alterati<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> intertidal z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>Tamar Estuary. Using transect based topographic surveys andcoring, <str<strong>on</strong>g>the</str<strong>on</strong>g> volume <str<strong>on</strong>g>of</str<strong>on</strong>g> material trapped under Spartina wascalculated to be 1,193,441 m 3 , comprised <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately17% Spartina-derived organic matter and 83% silts andclays. Based <strong>on</strong> historical pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles, sedimentati<strong>on</strong> rates since<str<strong>on</strong>g>the</str<strong>on</strong>g> introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica have been estimated at between8.7 and 52.4 millimeters per year (mm yr-1).From <str<strong>on</strong>g>the</str<strong>on</strong>g> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> 80 cores from four sites, Spartinatrappedsediment was found to c<strong>on</strong>tain levels <str<strong>on</strong>g>of</str<strong>on</strong>g> cadmium,copper, lead and zinc elevated above background levels.However, <str<strong>on</strong>g>the</str<strong>on</strong>g>se generaly were below trigger values <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ANZECC/ARMCANZ (2000) interim sediment qualityguidelines. It is c<strong>on</strong>sidered unlikely that released sedimentswould impact <strong>on</strong> water quality or health <str<strong>on</strong>g>of</str<strong>on</strong>g> biota with respectto trace metals or organic c<strong>on</strong>taminati<strong>on</strong>.Behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment with respect to erosi<strong>on</strong> rates,sediment redepositi<strong>on</strong> and causative hydrodynamics werealso m<strong>on</strong>itored within a test area from which Spartina coverwas removed. It has been dem<strong>on</strong>strated that <str<strong>on</strong>g>the</str<strong>on</strong>g> eradicati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica will result in elevati<strong>on</strong> loss from <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartinamarsh surface at a rate six times greater than in vegetatedmarshes. The study assumed that this elevati<strong>on</strong> loss is causedby liberati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sediments. The rate <str<strong>on</strong>g>of</str<strong>on</strong>g> elevati<strong>on</strong> loss orerosi<strong>on</strong> is likely to increase <strong>on</strong>ce <str<strong>on</strong>g>the</str<strong>on</strong>g> dead S. anglica root matdecomposes and <str<strong>on</strong>g>the</str<strong>on</strong>g> surface cohesi<strong>on</strong> and sediment-bindingcapacity is diminished. Elevati<strong>on</strong> loss increases by a factor <str<strong>on</strong>g>of</str<strong>on</strong>g>1.06 with every 10 m from <str<strong>on</strong>g>the</str<strong>on</strong>g> high water bank. Erosi<strong>on</strong> ratesin <str<strong>on</strong>g>the</str<strong>on</strong>g> outer 40 m <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh were also significantly greaterthan <str<strong>on</strong>g>the</str<strong>on</strong>g> remainder <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh at both sites, suggesting thata process o<str<strong>on</strong>g>the</str<strong>on</strong>g>r than S. anglica removal is c<strong>on</strong>tributing to thatretreat <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lower marsh.Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se interdisciplinary lines <str<strong>on</strong>g>of</str<strong>on</strong>g> inquiryhave allowed for a greater understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>biogeomorphological resp<strong>on</strong>ses to restorati<strong>on</strong> attempts withinintertidal z<strong>on</strong>es and have provided a sound basis <strong>on</strong> which t<str<strong>on</strong>g>of</str<strong>on</strong>g>ormulate and implement future management <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina.Spartina eradicati<strong>on</strong> is recommended for <str<strong>on</strong>g>the</str<strong>on</strong>g> lower estuary(type 2 marshes) <strong>on</strong>ly, where trapped sediment volumesare significantly smaller and tidal flushing is greatest. Thiswould enable significant areas <str<strong>on</strong>g>of</str<strong>on</strong>g> sand/gravel intertidal z<strong>on</strong>esto recover and reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> likelihood <str<strong>on</strong>g>of</str<strong>on</strong>g> fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r downstreamexpansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina swards. Retaining type 1 marshes in<str<strong>on</strong>g>the</str<strong>on</strong>g> upper estuary will prevent <str<strong>on</strong>g>the</str<strong>on</strong>g> remobilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sedimentsthat c<strong>on</strong>tain <str<strong>on</strong>g>the</str<strong>on</strong>g> highest c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>taminants, andwill retain <str<strong>on</strong>g>the</str<strong>on</strong>g> marshes for <str<strong>on</strong>g>the</str<strong>on</strong>g> ecological role <str<strong>on</strong>g>the</str<strong>on</strong>g>y currentlyperform.ACKNOWLEDGMENTSThis study was funded by <str<strong>on</strong>g>the</str<strong>on</strong>g> Australian ResearchCouncil Linkage Grant LP0214145, with support from <str<strong>on</strong>g>the</str<strong>on</strong>g>Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Primary Industries and Water, Tasmania and<str<strong>on</strong>g>the</str<strong>on</strong>g> Rice Grass Advisory Group.REFERENCESANZECC/ARMCANZ, 2000. Australian and New Zealand guidelinesfor fresh and marine water quality. Australian and NewZealand Envir<strong>on</strong>ment and C<strong>on</strong>servati<strong>on</strong> Council/ Agricultureand Resource Management Council <str<strong>on</strong>g>of</str<strong>on</strong>g> Australia and NewZealand, Canberra, ACT.Brown, S. 1998. Sedimentati<strong>on</strong> <strong>on</strong> a Humber salt marsh. In: Cramp,A. ed., Sedimentary Processes in <str<strong>on</strong>g>the</str<strong>on</strong>g> Intertidal Z<strong>on</strong>e. GeologicalSociety, L<strong>on</strong>d<strong>on</strong>.Brown, S., E.A. Warman, S. McGrorty, M. Yates, R.J. Pakeman,L.A. Boorman, J.D. Goss-Custard and A.J. Gray. 1998. SedimentFluxes in Intertidal Biotopes: BIOTA II. Marine Polluti<strong>on</strong>Bulletin 37(3-7):173-181.Chapman, V.J., 1960. Salt marshes and salt deserts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world.Le<strong>on</strong>ard Hill, L<strong>on</strong>d<strong>on</strong> and New York.Chung, C., 1990. Twenty-five years <str<strong>on</strong>g>of</str<strong>on</strong>g> introduced Spartina anglicain China. In: Gray, A.J. and P.E.M. Benham, eds. Spartinaanglica: a research review, ITE research publicati<strong>on</strong>. NaturalEnvir<strong>on</strong>ment Research Council, Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Terrestrial Ecology,L<strong>on</strong>d<strong>on</strong>.Doody, J.P., 1990. Spartina – friend or foe? A c<strong>on</strong>servati<strong>on</strong> viewpoint. In: Gray, A.J. and P.E.M. Benham, eds. Spartina anglica: aresearch review, ITE research publicati<strong>on</strong>. Natural Envir<strong>on</strong>mentResearch Council, Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Terrestrial Ecology, L<strong>on</strong>d<strong>on</strong>.Foster, D.N., R. Nittim J. Walker. 1986. Tamar River siltati<strong>on</strong> study.Technical Report, No. 85/07, University <str<strong>on</strong>g>of</str<strong>on</strong>g> NSW Water ResearchLaboratory.Hatt<strong>on</strong>, R.S., R.D. Delaune and W.H. Patrick, Jr. 1983.Sedimentati<strong>on</strong>, accreti<strong>on</strong>, and subsidence in marshes <str<strong>on</strong>g>of</str<strong>on</strong>g> BaratariaBasin, Louisiana. Limnology and Oceanography 28: 494-502.- 132 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> SpartinaHedge, P., 1997. Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglica to intertidal faunain Little Swanport Estuary, Tasmania. Graduate Diploma<str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental studies (H<strong>on</strong>ours) Thesis, Centre forEnvir<strong>on</strong>mental Studies, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tasmania, Hobart.Hedge, P., 1998. Strategy for <str<strong>on</strong>g>the</str<strong>on</strong>g> management <str<strong>on</strong>g>of</str<strong>on</strong>g> Rice Grass(Spartina anglica) in Tasmania, Australia., Department <str<strong>on</strong>g>of</str<strong>on</strong>g>Primary Industries, Water and Envir<strong>on</strong>ment, Tasmania,Australia.Hedge, P. and L.K. Kriwoken. 2000. Evidence for <str<strong>on</strong>g>the</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina anglica invasi<strong>on</strong> <strong>on</strong> benthic macr<str<strong>on</strong>g>of</str<strong>on</strong>g>auna in LittleSwanport Estuary, Tasmania. Austral Ecology 25: 150-159.Lee, W.G. and T.R. Partridge. 1983. Rates <str<strong>on</strong>g>of</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartinaanglica and sediment accreti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> New River Estuary,Invercargill, New Zealand. New Zealand Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Botany21:231-236.L<strong>on</strong>g, A.J., R.G. Scaife and R.J. Edwards. 1999. Pine pollen inintertidal sediments from Poole Harbour, UK: Implicati<strong>on</strong>s forlate Holocene accreti<strong>on</strong> rates and sea-level rise. Quaternary<str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> 55:3-16.Nyman, J.A., R.D. Delaune, S.R. Pezeshki, W.H. Patrick. 1995.Organic matter fluxes and marsh stability in a rapidly submergingestuarine marsh. Estuaries 18(1B):207-218.Phillips, A.W., 1975. The establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina in <str<strong>on</strong>g>the</str<strong>on</strong>g> TamarEstuary, Tasmania. Papers and <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Royal Society<str<strong>on</strong>g>of</str<strong>on</strong>g> Tasmania 109:65-75.Pringle, A., 1993. Spartina anglica ati<strong>on</strong> and physical effects in<str<strong>on</strong>g>the</str<strong>on</strong>g> Tamar Estuary, Tasmania 1971-91. Papers and <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g><str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Royal Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Tasmania 127:1-10.Ranwell, S., 1967. World resources <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina Townsenii (sensulato) and ec<strong>on</strong>omic use <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina marshland. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> AppliedEcology 4:239-256.Sheehan, M.R. and J.C. Ellis<strong>on</strong>. 2007. Baseline survey <str<strong>on</strong>g>of</str<strong>on</strong>g> TamarEstuary shoreline banks Report for NRM North, Launcest<strong>on</strong>.Sheehan, M.R. 2008. Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> potential impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> largescaleeradicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglica from <str<strong>on</strong>g>the</str<strong>on</strong>g> Tamar Estuary,Tasmania. Unpublished PhD <str<strong>on</strong>g>the</str<strong>on</strong>g>sis, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Tasmania,Launcest<strong>on</strong>.Shi, Z., J.S. Pethick, and K. Pye. 1995. Flow structure in <str<strong>on</strong>g>the</str<strong>on</strong>g>various heights <str<strong>on</strong>g>of</str<strong>on</strong>g> a Salt marsh canopy: A Laboratory FlumeStudy. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Coastal Research 11(4):1204-1209.Turner, R.E., E.M. Swens<strong>on</strong>, C.S. Milan, J.M. Lee, T.A. Oswald.2004. Below-ground biomass in healthy and impaired saltmarshes. Ecological Research 19(1):29-35.Van Eerdt, M., 1985. The influence <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetati<strong>on</strong> <strong>on</strong> erosi<strong>on</strong> andaccreti<strong>on</strong> in salt marshes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Oosterschelde, The Ne<str<strong>on</strong>g>the</str<strong>on</strong>g>rlands.Vegetati<strong>on</strong> 62:362-373.Wells, A., 1995. Rice grass in Tasmania - an overview. In: Rash,J.E., R.C. Williams<strong>on</strong> and S.J. Taylor, eds. <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> Australasian <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Spartina c<strong>on</strong>trol. VictorianGovernment Publicati<strong>on</strong>, Melbourne, Australia.- 133 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> SpartinaSPARTINA INVASION CHANGES INTERTIDAL ECOSYSTEM METABOLISM IN SANFRANCISCO BAYA.C. TYLER 1,2 AND E.D. GROSHOLZ 11 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Science and Policy, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Davis, CA 95616;annachristinatyler@gmail.com2 Current address: School <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological and Medical Sciences, Rochester Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Rochester, NY 14623In San Francisco Bay, Atlantic smooth cordgrass, Spartina alterniflora, and its hybrids haveinvaded unvegetated mudflats and native marshes formerly dominated by Sarcocorniapacifica and Spartina foliosa. This recent, rapid invasi<strong>on</strong> has dramatically changedecosystem processes and food web structure. We measured sediment fluxes <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong>dioxide (CO 2 ) to determine microalgal gross primary producti<strong>on</strong> (GPP), sediment respirati<strong>on</strong>and net sediment metabolism in native intertidal areas (mudflats, S. pacifica and S. foliosa)and in adjacent areas invaded by hybrid Spartina. Sediment microalgal GPP and microalgalchlorophyll a were substantially higher in all native habitats than in <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid. At <str<strong>on</strong>g>the</str<strong>on</strong>g> sametime, sediment respirati<strong>on</strong> rates were generally higher in native vegetati<strong>on</strong> than in hybriddominatedhabitats, but substantially lower <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> mudflats than elsewhere. Net sedimentmetabolism switched from autotrophy to heterotrophy following invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mudflats.However, <str<strong>on</strong>g>the</str<strong>on</strong>g> higher respirati<strong>on</strong> rate in native vegetati<strong>on</strong>, especially S. pacifica, relative tohybrid areas, suggests slower decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid detritus. This result is corroboratedby litterbag decompositi<strong>on</strong> rates and indicates a build-up and/or export <str<strong>on</strong>g>of</str<strong>on</strong>g> refractory organicmatter following hybrid invasi<strong>on</strong>. The switch from a microalgal-dominated system to arefractory detritus-dominated system has clear implicati<strong>on</strong>s for support <str<strong>on</strong>g>of</str<strong>on</strong>g> higher trophiclevels within <str<strong>on</strong>g>the</str<strong>on</strong>g> intertidal z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> San Francisco Bay.Keywords: ecosystem metabolism, carb<strong>on</strong> cycling, Spartina alterniflora, Sarcocornia sp.,Spartina foliosa, benthic microalgaeINTRODUCTIONOne <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most serious threats to natural ecosystemsand <str<strong>on</strong>g>the</str<strong>on</strong>g> maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> ecosystem services is <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>n<strong>on</strong>-native plant species (Drake et al. 1989; Vitousek et al.1997). These threats may include <str<strong>on</strong>g>the</str<strong>on</strong>g> extincti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nativespecies, loss <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>al native diversity, changes innutrient cycling and organic matter storage and loss <str<strong>on</strong>g>of</str<strong>on</strong>g>habitat. One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most dramatic invasi<strong>on</strong>s in coastalsystems in western North America has been <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina alterniflora (smooth cordgrass), a native <str<strong>on</strong>g>of</str<strong>on</strong>g> westernAtlantic marshes. This invasi<strong>on</strong> has fostered large-scalealterati<strong>on</strong>s in ecosystem processes in commercially andecologically important estuaries in both California andWashingt<strong>on</strong>.S. alterniflora was first introduced into San FranciscoBay by <str<strong>on</strong>g>the</str<strong>on</strong>g> U.S. Army Corps <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineers in 1973 for marshrestorati<strong>on</strong> (Faber 2000). Subsequent hybridizati<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g>native cordgrass, Spartina foliosa, resulted in a highlysuccessful hybrid populati<strong>on</strong> (henceforth hybrid Spartina)that has col<strong>on</strong>ized ~500 acres, in south and central porti<strong>on</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Bay (Daehler and Str<strong>on</strong>g 1997; Ayres et al. 2004).Hybrid Spartina occupies a wide tidal range that includeshistorically unvegetated mudflats and native marshes <strong>on</strong>cedominated by S. foliosa and Sarcocornia pacifica (Callawayand Josselyn 1992).The Spartina invasi<strong>on</strong> has greatly altered <str<strong>on</strong>g>the</str<strong>on</strong>g> cycling <str<strong>on</strong>g>of</str<strong>on</strong>g>carb<strong>on</strong> (C) in <str<strong>on</strong>g>the</str<strong>on</strong>g> intertidal z<strong>on</strong>e. Hybrid Spartina formsdense cl<strong>on</strong>es, with an average aboveground biomass <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.8 ±0.3 kilograms per square meter (kg m -2 ) at <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>growing seas<strong>on</strong> (fall; Tyler et al. 2007). Much <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>aboveground porti<strong>on</strong> senesces during <str<strong>on</strong>g>the</str<strong>on</strong>g> winter, but <str<strong>on</strong>g>the</str<strong>on</strong>g>substantial belowground roots and rhizomes (mean = 4.2 ±0.8 kg m -2 ) persist year-round (Tyler et al. 2007). Thecarb<strong>on</strong> to nitrogen (C:N) ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina is higher than <str<strong>on</strong>g>the</str<strong>on</strong>g>native vegetati<strong>on</strong>, particularly when compared tomicroalgae, and <str<strong>on</strong>g>the</str<strong>on</strong>g> slow decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this refractorydetritus has resulted in substantial deposits <str<strong>on</strong>g>of</str<strong>on</strong>g> belowgroundorganic matter (Neira et al. 2005). We do not know howoverall ecosystem producti<strong>on</strong> and respirati<strong>on</strong> are changed asa result <str<strong>on</strong>g>of</str<strong>on</strong>g> this invasi<strong>on</strong>, but this is clearly important inunderstanding <str<strong>on</strong>g>the</str<strong>on</strong>g> overall impact <str<strong>on</strong>g>of</str<strong>on</strong>g> invasi<strong>on</strong> <strong>on</strong> estuarineecosystem functi<strong>on</strong>.The lower productivity and low stature <str<strong>on</strong>g>of</str<strong>on</strong>g> nativesou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn California salt marsh plants, which results in morelight reaching <str<strong>on</strong>g>the</str<strong>on</strong>g> sediment surface, may promote microalgal- 135 -


Chapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> Spartina<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinaproductivity that is generally greater than that <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> vascularplants (Zedler 1984). In c<strong>on</strong>trast, primary producti<strong>on</strong> inAtlantic and Gulf coast marshes is generally dominated by S.alterniflora (Zedler 1980). Studies <str<strong>on</strong>g>of</str<strong>on</strong>g> salt marsh food webs<strong>on</strong> both <str<strong>on</strong>g>the</str<strong>on</strong>g> Atlantic and Pacific coasts show that microalgaemay c<strong>on</strong>tribute up to 50% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> C assimilated byinvertebrates and higher trophic levels (Page 1995; Deeganand Garritt 1997; Kwak and Zedler 1997; Page 1997). Theimpact <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina invasi<strong>on</strong> <strong>on</strong> microalgal productivitywithin vegetated marshes <str<strong>on</strong>g>of</str<strong>on</strong>g> San Francisco Bay is not wellunderstood. However, because algae are more readilyassimilated than detrital Spartina, <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartinamay ultimately reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> availability <str<strong>on</strong>g>of</str<strong>on</strong>g> primary producti<strong>on</strong>to higher trophic levels (i.e., c<strong>on</strong>sumers).The results presented here are a preliminary analysis <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> invasive Spartina <strong>on</strong> microalgal producti<strong>on</strong>,sediment respirati<strong>on</strong> and net sediment metabolism. Futureanalysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se data, in combinati<strong>on</strong> with detailed estimates<str<strong>on</strong>g>of</str<strong>on</strong>g> vascular plant producti<strong>on</strong> and decompositi<strong>on</strong> rates willultimately give us a more complete understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> howSpartina influences overall ecosystem functi<strong>on</strong>ing in <str<strong>on</strong>g>the</str<strong>on</strong>g>intertidal areas <str<strong>on</strong>g>of</str<strong>on</strong>g> San Francisco Bay.METHODSSediment CO 2 fluxes and benthic chlorophyll a (Chl a)were measured in native- and hybrid-dominated areas at foursites in South San Francisco Bay in December 2003 andMarch, June and September 2004 (Fig. 1). Two sites,Cogswell marsh (Hayward Regi<strong>on</strong>al Shoreline) and SanMateo marsh, represent areas formerly dominated bypickleweed, S. pacifica. The Elsie Roemer Bird Sanctuary<strong>on</strong> Alameda Island and <str<strong>on</strong>g>the</str<strong>on</strong>g> San Lorenzo marsh at Robert’sLanding are mudflats currently being invaded by hybridSpartina. Also at San Lorenzo, areas <str<strong>on</strong>g>of</str<strong>on</strong>g> native S. foliosa areoverrun with hybrid Spartina.Sediment CO 2 fluxes were measured in polycarb<strong>on</strong>atecores as described in (Neubauer et al. 2000). Briefly,polycarb<strong>on</strong>ate cores (9.3 centimeters inside diameter [cmI.D.]) were inserted 5 cm into <str<strong>on</strong>g>the</str<strong>on</strong>g> sediment (headspaceapproximately 800 cubic centimeters [cm 3 ]). Incurrent andexcurrent tubes were fitted into <str<strong>on</strong>g>the</str<strong>on</strong>g> sealed lid and c<strong>on</strong>nectedto a LiCor LI820 Infrared CO 2 Gas Analyzer. Air flow wasmaintained at approximately 500 millileters per minute (mlmin -1 ) using a small electric air pump. Prior to eachsampling period <str<strong>on</strong>g>the</str<strong>on</strong>g> Gas Analyzer was calibrated using CO 2standards (Scott Specialty Gases, 0 parts per milli<strong>on</strong> [ppm]and 1,007 ppm CO 2 ). All measurements were c<strong>on</strong>ductedbetween approximately 10 am and 2 pm during low tide.Each core was darkened using plastic pots coated withaluminum foil for a minimum <str<strong>on</strong>g>of</str<strong>on</strong>g> 30 minutes prior to makingmeasurements. We recorded CO 2 c<strong>on</strong>centrati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> coreevery two sec<strong>on</strong>ds for 4-6 minutes in <str<strong>on</strong>g>the</str<strong>on</strong>g> dark and <str<strong>on</strong>g>the</str<strong>on</strong>g>nremoved <str<strong>on</strong>g>the</str<strong>on</strong>g> darkening pot. After waiting ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r 4-6minutes, <str<strong>on</strong>g>the</str<strong>on</strong>g> CO 2 c<strong>on</strong>centrati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> light were recorded.SBOSMHBAIALARLAOLACOGALCFig. 1. South San Francisco Bay showing sampling sites: Elsie RoemerBird Sanctuary (ALA), Robert’s Landing (RLA), Cogswell (COG) andSan Mateo (SMH).Three replicates were performed in each area at each site.Fluxes were estimated based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> slope <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> change inc<strong>on</strong>centrati<strong>on</strong> over time using <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong>:dC VJ = •dt Awhere J is <str<strong>on</strong>g>the</str<strong>on</strong>g> flux rate in micromoles per square meter perhour (μmol m -2 h -1 ), A is <str<strong>on</strong>g>the</str<strong>on</strong>g> core area, V is <str<strong>on</strong>g>the</str<strong>on</strong>g> headspacevolume, C is <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CO 2 and t is time.Light at <str<strong>on</strong>g>the</str<strong>on</strong>g> sediment surface and at <str<strong>on</strong>g>the</str<strong>on</strong>g> top <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>canopy was recorded every two minutes during <str<strong>on</strong>g>the</str<strong>on</strong>g> samplingperiod using a Li-Cor model LI1400 meter with a 4πspherical quantum sensor. Sediment temperature adjacent toeach core was measured using an analog soil temperatureprobe. Following each set <str<strong>on</strong>g>of</str<strong>on</strong>g> measurements two small (1.1cm I.D. x 0.5 cm depth) cores were taken for Chl a analysis.These samples were kept frozen until s<strong>on</strong>icati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>sediment with cold 90% acet<strong>on</strong>e, overnight extracti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g>freezer and standard spectrophotometric measurement.Hourly gross primary producti<strong>on</strong> (GPP) was calculatedfrom <str<strong>on</strong>g>the</str<strong>on</strong>g> difference between CO 2 fluxes in <str<strong>on</strong>g>the</str<strong>on</strong>g> light and <str<strong>on</strong>g>the</str<strong>on</strong>g>dark by assuming that sediment respirati<strong>on</strong> was <str<strong>on</strong>g>the</str<strong>on</strong>g> same in<str<strong>on</strong>g>the</str<strong>on</strong>g> light and <str<strong>on</strong>g>the</str<strong>on</strong>g> dark. Daily GPP was calculated bymultiplying hourly GPP by <str<strong>on</strong>g>the</str<strong>on</strong>g> numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> hours <str<strong>on</strong>g>of</str<strong>on</strong>g> light <strong>on</strong><str<strong>on</strong>g>the</str<strong>on</strong>g> day <str<strong>on</strong>g>of</str<strong>on</strong>g> measurement. Net daily sediment metabolism was- 136 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> Spartinacalculated by summing daily GPP and hourly respirati<strong>on</strong> x24. Data were pooled across sampling dates and statisticalcomparis<strong>on</strong>s were made (ANOVA) between GPP, sedimentrespirati<strong>on</strong>, light at <str<strong>on</strong>g>the</str<strong>on</strong>g> sediment surface, and Chl ameasured in hybrid Spartina and native areas for each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>three native c<strong>on</strong>diti<strong>on</strong>s (mudflats, S. foliosa, S. pacifica).Mudflats and S. pacifica were represented by two sites andS. foliosa by a single site (San Lorenzo).RESULTSWe found significant differences for several variablesbetween native and Spartina hybrid-invaded habitats inSouth San Francisco Bay.GPPMicroalgal GPP was greater in native habitats than inhybrid Spartina in all cases (Fig. 2A). This difference wassignificant for <str<strong>on</strong>g>the</str<strong>on</strong>g> mudflat-hybrid comparis<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> S.pacifica-hybrid comparis<strong>on</strong>, where GPP was more than twotimes greater in S. pacifica.Sediment Respirati<strong>on</strong>Hybrid Spartina had significantly greater sedimentrespirati<strong>on</strong> rates than those found <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> mudflat (Fig. 2B).In c<strong>on</strong>trast, both S. foliosa and S. pacifica had higherrespirati<strong>on</strong> rates, but <strong>on</strong>ly significantly so for S. pacifica.Net Sediment MetabolismInvaded mudflats switched from net autotrophic(positive net metabolism) to net heterotrophic (negative netmetabolism) up<strong>on</strong> invasi<strong>on</strong> by hybrid Spartina (Fig. 2C).The native habitats, S. foliosa and S. pacifica, had higher netmetabolism than <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid. Again, <strong>on</strong>ly S. pacifica wassignificantly different from <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid.LightSpartina hybrid invasi<strong>on</strong> resulted in a significantreducti<strong>on</strong> in light availability at <str<strong>on</strong>g>the</str<strong>on</strong>g> sediment surface relativeto mudflats (18% <str<strong>on</strong>g>of</str<strong>on</strong>g> available light) and S. foliosa (61% in S.foliosa; 26% in hybrid; Fig. 3A). Light availability wassimilar in S. pacifica and hybrid habitats (16% and 18% <str<strong>on</strong>g>of</str<strong>on</strong>g>available light, respectively).Benthic Chl aNative habitats had higher Chl a than hybrid habitats inall cases, but <strong>on</strong>ly significantly so relative to S. pacifica (Fig.3B).DISCUSSIONThe invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora and its hybrids into <str<strong>on</strong>g>the</str<strong>on</strong>g>native mudflats and marshes <str<strong>on</strong>g>of</str<strong>on</strong>g> San Francisco Bay hasclearly changed both microalgal producti<strong>on</strong> and sedimentrespirati<strong>on</strong>. As a result net metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sediments isdramatically different than it was prior to invasi<strong>on</strong>, with <str<strong>on</strong>g>the</str<strong>on</strong>g>trajectory <str<strong>on</strong>g>of</str<strong>on</strong>g> change depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> initial c<strong>on</strong>diti<strong>on</strong>s.The c<strong>on</strong>sistent decrease in microalgal GPP and Chl aup<strong>on</strong> invasi<strong>on</strong> may be due to a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> factors,including light and nutrient availability and grazing. TheA. MICROALGAL GROSS PRIMARY PRODUCTIONmg C m -2 d -18006004002000MF HYB FOL HYB SAR HYBB. SEDIMENT RESPIRATION0mg C m -2 d -1-500-1000-1500-2000-2500-3000-3500MF HYB FOL HYB SAR HYBC. NET SEDIMENT METABOLISMmg C m -2 d -15000-500-1000-1500-2000-2500MF HYB FOL HYB SAR HYBFig. 2. Microalgal gross primary producti<strong>on</strong> (2A), sediment respirati<strong>on</strong>(2B) and net sediment metabolism (2C) measured in mudflats (MF), S.foliosa (FOL), S. pacifica (SAR) and adjacent hybrid areas. Starsrepresent significant differences between areas (p < 0.05) based <strong>on</strong>ANOVA.substantial decrease in available light relative to anunvegetated mudflat is likely important. However, lightavailability is similar between hybrid and S. pacificahabitats, suggesting <str<strong>on</strong>g>the</str<strong>on</strong>g> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r mechanism.The current estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> GPP is likely an overestimate <str<strong>on</strong>g>of</str<strong>on</strong>g>actual GPP because our measurements were made at <str<strong>on</strong>g>the</str<strong>on</strong>g>time <str<strong>on</strong>g>of</str<strong>on</strong>g> peak solar insolati<strong>on</strong> and at low tide. Futurerefinement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se results will include an adjustment <str<strong>on</strong>g>of</str<strong>on</strong>g>GPP based <strong>on</strong> photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis-irradiance curves for eachhabitat type and <str<strong>on</strong>g>the</str<strong>on</strong>g> reducti<strong>on</strong> in photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis observed- 137 -


Chapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> Spartina<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaA. LIGHTmmol phot<strong>on</strong>s m -2 s -1B. BENTHIC CHLOROPHYLL amg Chl a m -225002000150010005000250200150100500MF HYB FOL HYB SAR HYBMF HYB FOL HYB SAR HYBFig. 3. Light measured at <str<strong>on</strong>g>the</str<strong>on</strong>g> sediment surface (3A) and benthicchlorophyll a (3B) measured in mudflats (MF), S. foliosa (FOL), S.pacifica (SAR) and adjacent hybrid areas. Stars represent significantdifferences between areas (p < 0.05) based <strong>on</strong> ANOVA.during flooding, which can be 25–49% (Holmes and Mahall1982; Pinckney and Zingmark 1993). In spite <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>limitati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> our current GPP estimates, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a clear andc<strong>on</strong>sistent decline in microalgal abundance. This decline hasvery important ramificati<strong>on</strong>s for higher trophic levels.Infaunal invertebrate abundance and diversity declined 75%up<strong>on</strong> invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mudflats at <str<strong>on</strong>g>the</str<strong>on</strong>g> Alameda site (Neira et al.2005). While <str<strong>on</strong>g>the</str<strong>on</strong>g>re are a number <str<strong>on</strong>g>of</str<strong>on</strong>g> factors that mayc<strong>on</strong>tribute to this loss, including a lack <str<strong>on</strong>g>of</str<strong>on</strong>g> available space,slower water velocities, and predati<strong>on</strong> (Neira et al. 2005),<str<strong>on</strong>g>the</str<strong>on</strong>g> availability <str<strong>on</strong>g>of</str<strong>on</strong>g> microalgae as a food source is also a keyc<strong>on</strong>tributor (Levin et al. 2006; Grosholz et al. 2009).The massive increase in belowground biomass andorganic matter that occurs when mudflats are invaded bySpartina is <str<strong>on</strong>g>the</str<strong>on</strong>g> likely cause <str<strong>on</strong>g>of</str<strong>on</strong>g> higher respirati<strong>on</strong> rates inhybrid habitats. Both microbial and root respirati<strong>on</strong> shouldbe higher in invaded areas. However, higher respirati<strong>on</strong>rates in native vegetati<strong>on</strong> relative to hybrid areas are moredifficult to interpret. We did not observe an increase inbelowground biomass in hybrid habitats relative to S. foliosaor S. pacifica. Therefore, root respirati<strong>on</strong> is likely to besimilar am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g>se three habitats. However, in separatelitterbag experiments, we found that both S. foliosa and S.pacifica decompose more rapidly than hybrid Spartina(Tyler, unpub. data). This is c<strong>on</strong>sistent with <str<strong>on</strong>g>the</str<strong>on</strong>g> higher C:Nratio <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid Spartina relative to native vegetati<strong>on</strong>.Because <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid detritus is refractory and <str<strong>on</strong>g>the</str<strong>on</strong>g>reby a poorqualityfood source for microbes and invertebrates, wewould expect <str<strong>on</strong>g>the</str<strong>on</strong>g> low sediment respirati<strong>on</strong> rates that we didindeed observe. When decompositi<strong>on</strong> rates are low, organicmatter will remain intact and will build up in <str<strong>on</strong>g>the</str<strong>on</strong>g> system overtime. The build up <str<strong>on</strong>g>of</str<strong>on</strong>g> this detritus is also supported by <str<strong>on</strong>g>the</str<strong>on</strong>g>finding that Spartina detritus does not c<strong>on</strong>tribute to highertrophic levels as readily as native plant detritus (Brusati2004; Brusati and Grosholz 2007, 2008).The difference in net sediment metabolism <str<strong>on</strong>g>of</str<strong>on</strong>g> hybridsediments relative to S. foliosa and S. pacifica is drivenlargely by <str<strong>on</strong>g>the</str<strong>on</strong>g> high respirati<strong>on</strong> rates found in native habitats.Hybrid invasi<strong>on</strong> acts to decrease <str<strong>on</strong>g>the</str<strong>on</strong>g> overall metabolic rateand create an excess inventory <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter. Themudflats, however, switched from net autotrophy to ne<str<strong>on</strong>g>the</str<strong>on</strong>g>terotrophy up<strong>on</strong> invasi<strong>on</strong>, due to higher respirati<strong>on</strong> andlower microalgal photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis. In this case, <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong>acts to eliminate a valuable food source (microalgae) andreplace it with a poor quality food source (Spartina detritus).Future refinements to this model <str<strong>on</strong>g>of</str<strong>on</strong>g> ecosystemmetabolism following Spartina hybrid invasi<strong>on</strong> will includevascular plant producti<strong>on</strong>, above-ground decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>vascular plant detritus and <str<strong>on</strong>g>the</str<strong>on</strong>g> adjustments to microalgalGPP discussed above. From this, we will be able toestimate, <strong>on</strong> an annual basis, <str<strong>on</strong>g>the</str<strong>on</strong>g> very significant impact <str<strong>on</strong>g>of</str<strong>on</strong>g>invasive Spartina <strong>on</strong> ecosystem functi<strong>on</strong> in San FranciscoBay. At this point, we can c<strong>on</strong>clude that this invasi<strong>on</strong> hasresulted in <str<strong>on</strong>g>the</str<strong>on</strong>g> replacement <str<strong>on</strong>g>of</str<strong>on</strong>g> mudflats and marshesc<strong>on</strong>taining abundant microalgae and bioavailable detritus bya habitat with lower microalgal productivity and refractorydetritus. This change has very important ramificati<strong>on</strong>s forhigher trophic levels and for <str<strong>on</strong>g>the</str<strong>on</strong>g> health <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary as awhole.ACKNOWLEDGMENTSFunding for this work came from a NSF BiocomplexityGrant (DEB-0083583). We are particularly grateful to U.Mahl, R. Blake, C. Sorte, N. Christensen and C. Love forfield and laboratory assistance and to <str<strong>on</strong>g>the</str<strong>on</strong>g> C. Goldman lab for<str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> lab facilities.REFERENCESAyres, D.R., D.L. Smith, K. Zaremba, S. Klohr, and D.R. Str<strong>on</strong>g.2004. Spread <str<strong>on</strong>g>of</str<strong>on</strong>g> exotic cordgrasses and hybrids (Spartina sp.) in<str<strong>on</strong>g>the</str<strong>on</strong>g> tidal marshes <str<strong>on</strong>g>of</str<strong>on</strong>g> San Francisco Bay, California, USA.Biological Invasi<strong>on</strong>s 6:221-231.Brusati, E.D. 2004. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> native and hybrid cordgrass <strong>on</strong>benthic invertebrate communities and food webs. Ph.D.Dissertati<strong>on</strong>, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Davis, Davis, California,USA.Brusati, E.D., and E.D. Grosholz. 2007. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> native andinvasive cordgrass <strong>on</strong> Macoma petalum density, growth, and- 138 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> Spartinaisotopic signatures. Estuarine, Coastal and Shelf Science 71:517-222.Brusati, E. D., and E. D. Grosholz. 2008. Does invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hybridcordgrass change estuarine food webs? Biological Invasi<strong>on</strong>s11:917-926.Callaway, J.C., and M.N. Josselyn. 1992. The introducti<strong>on</strong> andspread <str<strong>on</strong>g>of</str<strong>on</strong>g> smooth cordgrass (Spartina alterniflora) in South SanFrancisco Bay. Estuaries 15:218-226.Daehler, C.C., and D.R. Str<strong>on</strong>g. 1997. Hybridizati<strong>on</strong> betweenintroduced smooth cordgrass (Spartina alterniflora, Poaceae)and native California cordgrass (Spartina foliosa) in SanFrancisco Bay, California, USA. American Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Botany85:607-611.Deegan, L.A., and R.H. Garritt. 1997. Evidence for spatialvariability in estuarine food webs. Marine Ecology ProgressSeries 147:31-47.Drake, J.A., H.A. Mo<strong>on</strong>ey, F. DiCastri, R.H. Groves, F.J. Kruger,M. Rejmanek, and M. Williams<strong>on</strong>. 1989. Biological Invasi<strong>on</strong>s:A Global Perspective. John Wiley & S<strong>on</strong>s, Inc., Chichester, UK.Faber, P.M. 2000. Grass Wars: Good intenti<strong>on</strong>s g<strong>on</strong>e awry.California Coast and Ocean 16:14-17.Grosholz, E.D., L.A. Levin, A.C. Tyler, and C. Neira. 2009.Changes in community structure and ecosystem functi<strong>on</strong>following Spartina alterniflora invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pacific estuaries. In:Silliman, B.R., E.D. Grosholz, and M.D. Bertness, eds. HumanImpacts <strong>on</strong> Salt Marshes: A Global Perspective. University <str<strong>on</strong>g>of</str<strong>on</strong>g>California Press, Berkeley, California, USA.Holmes, R., and B. Mahall. 1982. Preliminary observati<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>effects <str<strong>on</strong>g>of</str<strong>on</strong>g> flooding and dessicati<strong>on</strong> up<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> net photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>ticrates <str<strong>on</strong>g>of</str<strong>on</strong>g> high intertidal estuarine sediments. Limnology andOceanography 27:954-958.Kwak, T.J., and J.B. Zedler. 1997. Food web analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rnCalfiornia coastal wetlands using multiple stable isotopes.Oecologia 110:262-277.Levin, L.A., C. Neira, and E.D. Grosholz. 2006. <strong>Invasive</strong> cordgrassmodifies wetland trophic functi<strong>on</strong>. Ecology 87:419-432.Neira, C., L.A. Levin, and E.D. Grosholz. 2005. Benthicmacr<str<strong>on</strong>g>of</str<strong>on</strong>g>aunal communities <str<strong>on</strong>g>of</str<strong>on</strong>g> three sites in San Francisco Bayinvaded by hybrid Spartina, with comparis<strong>on</strong> to uninvadedhabitats. Marine Ecology Progress Series 292:111-126.Neubauer, S., W. Miller, and I. Anders<strong>on</strong>. 2000. Carb<strong>on</strong> cycling ina tidal freshwater marsh ecosystem: a carb<strong>on</strong> gas flux study.Marine Ecology Progress Series 199:13-20.Page, H.M. 1995. Variati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> natural abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> 15 N in <str<strong>on</strong>g>the</str<strong>on</strong>g>halophyte, Salicornia virginica, associated with groundwatersubsidies <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrogen in a sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn California salt-marsh.Oecologia 104:181-188.Page, H.M. 1997. Importance <str<strong>on</strong>g>of</str<strong>on</strong>g> vascular plant and algalproducti<strong>on</strong> to macro-invertebrate c<strong>on</strong>sumers in a sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rnCalifornia salt marsh. Estuarine, Coastal and Shelf Science45:823-834.Pinckney, J.L., and R.G. Zingmark. 1993. Modeling <str<strong>on</strong>g>the</str<strong>on</strong>g> annualproducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> intertidal benthic microalgae in estuarineecosystems. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Phycology 29:396-407.Tyler, A.C., J.G. Lambrinos, and E.D. Grosholz. 2007. Nitrogeninputs promote <str<strong>on</strong>g>the</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> an invasive marsh grass. EcologicalApplicati<strong>on</strong>s 17:1886-1898.Vitousek, P.M., H.A. Mo<strong>on</strong>ey, J. Lubchenco, and J.M. Melillo.1997. Human dominati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Earth's ecosystems. Science277:494-499.Zedler, J.B. 1980. Algal mat productivity: comparis<strong>on</strong>s in a saltmarsh. Estuaries 3:122-131.Zedler, J.B. 1984. The Ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> Sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn California Coastal SaltMarshes: A Community Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile. Report No. FWS/OBS-81/54,U.S. Fish and Wildlife Service, Washingt<strong>on</strong>, DC, USA.- 139 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> SpartinaMECHANISTIC PROCESSES DRIVING SHIFTS IN BENTHIC INFAUNAL COMMUNITIESFOLLOWING HYBRID SPARTINA TIDAL FLAT INVASIONC. NEIRA 1 , E.D. GROSHOLZ 2 AND L.A. LEVIN 31 Integrative Oceanography Divisi<strong>on</strong>, Scripps Instituti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Oceanography, La Jolla, California 92093-0218, USA;cneira@coast.ucsd.edu2 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Science and Policy, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Davis, One Shields Ave., Davis, CA 95616,USA; tedgrosholz@ucdavis.edu3 Integrative Oceanography Divisi<strong>on</strong>, Scripps Instituti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Oceanography, La Jolla, California 92093-0218, USA;llevin@ucsd.eduSpartina alterniflora x foliosa hybrids are perennial cordgrasses that have rapidly invaded mudflatsand marshes in central and sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn San Francisco Bay. Recent studies c<strong>on</strong>ducted by <str<strong>on</strong>g>the</str<strong>on</strong>g> authors at<str<strong>on</strong>g>the</str<strong>on</strong>g> Elsie Roemer Bird Sanctuary in Alameda (San Francisco Bay) showed a 75% reducti<strong>on</strong> inmacr<str<strong>on</strong>g>of</str<strong>on</strong>g>aunal densities and shift in macr<str<strong>on</strong>g>of</str<strong>on</strong>g>aunal compositi<strong>on</strong>. Here we identify <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanisms thatunderlie such observed changes in macr<str<strong>on</strong>g>of</str<strong>on</strong>g>aunal community structure following tidal flat invasi<strong>on</strong> by<str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid Spartina. Specifically we performed a series <str<strong>on</strong>g>of</str<strong>on</strong>g> in situ manipulative experiments toexamine hybrid Spartina canopy influence <strong>on</strong> water moti<strong>on</strong> and water flow speed, larval flux,animal transport, and predati<strong>on</strong>, as mediators <str<strong>on</strong>g>of</str<strong>on</strong>g> change for sediments and macrobenthos. Overall,hybrid Spartina exerted a str<strong>on</strong>g influence <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> hydrodynamic regime, reducing water flow that, inturn, influences flux <str<strong>on</strong>g>of</str<strong>on</strong>g> recruiting larvae, transport <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r benthos, and <str<strong>on</strong>g>the</str<strong>on</strong>g> input <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matterand sediment depositi<strong>on</strong>. Habitat modificati<strong>on</strong> results in poor survivorship <str<strong>on</strong>g>of</str<strong>on</strong>g> surface-feeding taxavia sulfide toxicity, altered predati<strong>on</strong> pressure and changed food availability. All <str<strong>on</strong>g>the</str<strong>on</strong>g>se mechanismscan play key, possibly synergistic roles in structuring Spartina-invaded ecosystems.Keywords: tidal flat invasi<strong>on</strong>, Spartina alterniflora, hybrid Spartina, benthos, macr<str<strong>on</strong>g>of</str<strong>on</strong>g>auna,mechanistic processesINTRODUCTIONSan Francisco Bay is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most heavily invadedestuaries in <str<strong>on</strong>g>the</str<strong>on</strong>g> world with nearly 250 n<strong>on</strong>-native orintroduced species (Cohen and Carlt<strong>on</strong> 1998). One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>most serious invasi<strong>on</strong>s has been that <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Atlanticcordgrass Spartina alterniflora and its hybrids (hereafter“hybrid Spartina”). The genetic background <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plantswas c<strong>on</strong>firmed by molecular genetic analysis by D. Ayres(unpublished results). Hybrid Spartina has invaded morethan 800 hectares (ha) <str<strong>on</strong>g>of</str<strong>on</strong>g> mudflats and marshes in centraland south San Francisco Bay (Ayres et al. 2004). Thisinvasive cordgrass is c<strong>on</strong>verting mudflats at low tidal levelsinto dense, nearly m<strong>on</strong>otypic meadows (Ayres et al. 2003,2004). Of extreme c<strong>on</strong>cern is that this plant’s invasi<strong>on</strong> intounvegetated tidal flats will result in a loss <str<strong>on</strong>g>of</str<strong>on</strong>g> open foragingarea for shorebirds and fishes, flow reducti<strong>on</strong>s, highersedimentati<strong>on</strong> rates, changes in light penetrati<strong>on</strong>, andreducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> benthic algal producti<strong>on</strong> (Zipperer 1996;Daehler and Str<strong>on</strong>g 1996; Stenzel et al. 2002; Grosholz et al.2009).To date very little is known about <str<strong>on</strong>g>the</str<strong>on</strong>g> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>hybrid Spartina invasi<strong>on</strong> <strong>on</strong> sediment properties,macr<str<strong>on</strong>g>of</str<strong>on</strong>g>aunal communities, and ecosystem functi<strong>on</strong>ing. Whatwe do know results from recent studies <str<strong>on</strong>g>of</str<strong>on</strong>g> three sites in SanFrancisco Bay, including <str<strong>on</strong>g>the</str<strong>on</strong>g> Elsie Roemer Bird Sanctuary inAlameda (San Francisco Bay, CA, USA) (Neira et al. 2005),which has experienced hybrid Spartina invasi<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> past30 years. At this site macr<str<strong>on</strong>g>of</str<strong>on</strong>g>aunal densities were 75% lowerin hybrid Spartina-invaded sediments than <strong>on</strong> adjacent,uninvaded tidal flats (Neira et al. 2005). Biomass was 57%lower in invaded sediments (Levin et al. 2006). We alsoobserved important shifts in species compositi<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g>hybrid-invaded patches relative to tidal flats (Neira et al.2005). Surface feeders such as Gemma gemma (Bivalvia),Corophium spp. and Grandidierella jap<strong>on</strong>ica (Amphipoda),and Tharyx sp. and Ete<strong>on</strong>e sp. (Polychaeta) were negativelyaffected by Spartina invasi<strong>on</strong>, exhibiting reduced densities.Subsurface-deposit feeders such as capitellid polychaetesand tubificid oligochaetes were less affected or unaffected(Neira et al. 2005). Because surface-feeding taxa are moreaccessible to epibenthic c<strong>on</strong>sumers than capitellidpolychaetes and oligochaetes that live deeper in <str<strong>on</strong>g>the</str<strong>on</strong>g>sediment, <str<strong>on</strong>g>the</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> surface feeding taxa could havepr<str<strong>on</strong>g>of</str<strong>on</strong>g>ound implicati<strong>on</strong>s for higher trophic levels and henceaffect <str<strong>on</strong>g>the</str<strong>on</strong>g> whole ecosystem. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> aim <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>following work was to experimentally document <str<strong>on</strong>g>the</str<strong>on</strong>g> causes<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> benthic changes identified in <str<strong>on</strong>g>the</str<strong>on</strong>g> initial mensurativestudy.METHODSThe study site was located <strong>on</strong> Alameda Island (SanFrancisco Bay) al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> shoreline adjacent to Elsie RoemerBird Sanctuary (37 o 45’35”N; 122 o 28’48”W). Detailed- 141 -


Chapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> Spartina<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinadescripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> study site is provided in Neira et al.(2005). Using a paired sampling design, we established 10blocks (2x2 meters (m)), approximately 10 m inside <str<strong>on</strong>g>the</str<strong>on</strong>g>hybrid Spartina meadow, and 10 similar blocks <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>adjacent open tidal flat approximately 5-10 m from <str<strong>on</strong>g>the</str<strong>on</strong>g>meadow edge. We performed in situ manipulativeexperiments to identify what mechanisms are resp<strong>on</strong>sible forobserved shifts in faunal community structure followinghybrid Spartina invasi<strong>on</strong>.Water moti<strong>on</strong>: To evaluate <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hybridSpartina canopy <strong>on</strong> relative water moti<strong>on</strong>, we used <str<strong>on</strong>g>the</str<strong>on</strong>g>gypsum dissoluti<strong>on</strong> technique (Doty 1971). Pre-weighedgypsum cards were deployed about 10 cm above <str<strong>on</strong>g>the</str<strong>on</strong>g> bottomfor 6, 3 and 4 days during April and June 2002 in vegetatedand unvegetated tidal flat habitats. It is assumed thatdissoluti<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> gypsum, grams per day (g d -1 ), isproporti<strong>on</strong>al to water velocity (Porter et al. 2000). Watervelocity in both habitats was measured <strong>on</strong> several days nearmaximum ebb and flood tides just below <str<strong>on</strong>g>the</str<strong>on</strong>g> water surfacewith a Marsh-McBirney Flow Meter 2000.Larval flux: The influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid Spartinacanopy <strong>on</strong> larval flux was measured in vegetated andunvegetated habitats using Geukensia demissa (mussel)shells as a hard substrate for settlement. Barnacle larvalabundance over time was used as a proxy for larval flux.Three dowels, each with <strong>on</strong>e attached Geukensia shell, wereinserted into <str<strong>on</strong>g>the</str<strong>on</strong>g> sediment (1 m 2 plot) in each block <str<strong>on</strong>g>of</str<strong>on</strong>g> bothhybrid Spartina habitat and tidal flat (i.e., 60 in total).Mussels remained 10-20 cm above <str<strong>on</strong>g>the</str<strong>on</strong>g> sediment.Sediment depositi<strong>on</strong>: We investigated <str<strong>on</strong>g>the</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina plant canopy <strong>on</strong> short-term sediment depositi<strong>on</strong>rates by deploying petri-dish sediment traps (Reed 1992) inboth vegetated and unvegetated habitats (10 replicates each)during low tide. Sediment traps were composed <str<strong>on</strong>g>of</str<strong>on</strong>g> GF/FWhatman filters (9-cm diameter) supported <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> petridishes affixed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> sediment surface. Filters were removedand replaced 24 hours (h) later (<strong>on</strong>e tidal cycle) during twosuccessive days in July 2002. Filters were gently rinsed withdistilled water to remove salts <strong>on</strong> pre-weighed aluminumdishes, oven-dried at 60 o C, and re-weighed. Sedimentdepositi<strong>on</strong> rate was calculated as mass deposited per trap andexpressed in milligrams per centimeter squared per day (mgcm -2 d -1) . Percent organic matter was determined by massloss after igniti<strong>on</strong> at 500 o C for 4 h. Mud c<strong>on</strong>tent wasestimated after wet sieving (63 micrometers(μm)) <str<strong>on</strong>g>the</str<strong>on</strong>g>sediment deposited <strong>on</strong> traps and weighing both fracti<strong>on</strong>s (>63 μm and < 63 μm) after drying at 60°C.Animal transport: The influence <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid Spartinacanopy <strong>on</strong> animal-transport dynamics was evaluated usingpassive tube traps made <str<strong>on</strong>g>of</str<strong>on</strong>g> polypropylene (22 cm tall x 2.7cm diameter). To prevent escape <str<strong>on</strong>g>of</str<strong>on</strong>g> animals from <str<strong>on</strong>g>the</str<strong>on</strong>g> tube,15 milliliters (ml) <str<strong>on</strong>g>of</str<strong>on</strong>g> a dense brine soluti<strong>on</strong> (>90 parts perthousand (ppt)) was added; <str<strong>on</strong>g>the</str<strong>on</strong>g> remained volume was filledwith filtered seawater. Ten replicate tube traps weredeployed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> unvegetated tidal flat about 10 cm above <str<strong>on</strong>g>the</str<strong>on</strong>g>sediment surface, supported <strong>on</strong> PVC pipe inserted into <str<strong>on</strong>g>the</str<strong>on</strong>g>sediment. In <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid Spartina habitat, tube traps wereinserted into <str<strong>on</strong>g>the</str<strong>on</strong>g> sediment leaving <str<strong>on</strong>g>the</str<strong>on</strong>g>ir opening about 5 cmabove <str<strong>on</strong>g>the</str<strong>on</strong>g> bottom. Sediment was collected from traps inplastic jars and preserved in 8% buffered formalin.Sediment properties: In order to explore how hybridSpartina ultimately affects <str<strong>on</strong>g>the</str<strong>on</strong>g> sediment ecosystem, weexamined some key sediment properties in vegetated andunvegetated habitats (10 replicates each). Porewater salinity(top 3 cm) was measured with a hand-held refractometer,sediment redox potential (top 1 cm) was measured with aportable Mettler Toledo redox meter. Plexi-glass cores (18.1cm 2 , 0-6 cm depth) were taken for total organic c<strong>on</strong>tent(determined after combusti<strong>on</strong> at 500°C x 4h); syringe coreswere taken for chlorophyll a (an estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> sedimentmicroalgal biomass) and determined according to Plante-Cuny (1973) after extracti<strong>on</strong> with 90% acet<strong>on</strong>e. Sedimentporosity was determined according to Buchanan (1984).Porewater sulfide was measured c<strong>on</strong>currently by A.C. Tyler(UC Davis) based <strong>on</strong> Cline (1969) with a few modificati<strong>on</strong>s.Macr<str<strong>on</strong>g>of</str<strong>on</strong>g>auna were collected from both habitats with cores(18.1 cm 2 , 0-6 cm depth) and sieved through a 0.3-mm meshsieve.Plant removal experiment: We also performed anexperiment to determine if <str<strong>on</strong>g>the</str<strong>on</strong>g> invaded habitats would returnto <str<strong>on</strong>g>the</str<strong>on</strong>g> original unvegetated c<strong>on</strong>diti<strong>on</strong> and resembleunvegetated tidal flats. We clipped all above-groundSpartina plant material to <str<strong>on</strong>g>the</str<strong>on</strong>g> sediment level in ten replicate2x2 m areas with adjacent c<strong>on</strong>trols. In both removal andc<strong>on</strong>trols, we compared sediment properties and macr<str<strong>on</strong>g>of</str<strong>on</strong>g>aunalcommunities am<strong>on</strong>g habitats after 90 days.Sediment transplant experiment: We c<strong>on</strong>ducted atransplant experiment to determine whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r unvegetatedsediment and fauna from <str<strong>on</strong>g>the</str<strong>on</strong>g> tidal flat would begin to looklike those in <str<strong>on</strong>g>the</str<strong>on</strong>g> invaded areas when moved into <str<strong>on</strong>g>the</str<strong>on</strong>g> areainvaded by hybrid Spartina. In summer 2002, intactsediment (625 cm 2 x 10 cm depth) was moved from <str<strong>on</strong>g>the</str<strong>on</strong>g> tidalflat (about 7 m from <str<strong>on</strong>g>the</str<strong>on</strong>g> edge) to Spartina-invaded habitat(10 m inside <str<strong>on</strong>g>the</str<strong>on</strong>g> meadow). Tidal flat sediment removed andreplaced served as a c<strong>on</strong>trol treatment. Each treatmentc<strong>on</strong>tained ten replicate blocks (20 in total).Predati<strong>on</strong>: In order to assess if <str<strong>on</strong>g>the</str<strong>on</strong>g> shifts observed inmacr<str<strong>on</strong>g>of</str<strong>on</strong>g>aunal compositi<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> initial transplant experimentwere <str<strong>on</strong>g>the</str<strong>on</strong>g> result <str<strong>on</strong>g>of</str<strong>on</strong>g> changes in predati<strong>on</strong> pressure followingSpartina-hybrid invasi<strong>on</strong>, we performed c<strong>on</strong>trolled andreplicated in situ predator exclusi<strong>on</strong> experiments beginning<strong>on</strong> September 10, 2003. We used European green crabs(Carcinus maenas), which are comm<strong>on</strong> (introduced) marshpredators in San Francisco Bay (Cohen et al. 1995). Intactuninvaded tidal flat sediment and associated fauna weretransplanted to hybrid Spartina habitat as in <str<strong>on</strong>g>the</str<strong>on</strong>g> transplantexperiment. However, this time we enclosed <strong>on</strong>e individualC. maenas (carapace width 40 mm) in each <str<strong>on</strong>g>of</str<strong>on</strong>g> eightreplicated enclosures (0.3 x 0.3 m x 0.5 m height) made <str<strong>on</strong>g>of</str<strong>on</strong>g>galvanized hardware cloth (0.63-cm mesh). Crabs were- 142 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> Spartinacollected from adjacent tidal flats and placed directly intoenclosures. A total <str<strong>on</strong>g>of</str<strong>on</strong>g> eight replicate blocks with fivetreatments per block were established (details in Neira et al.2006). All cages had a removable top for measurement <str<strong>on</strong>g>of</str<strong>on</strong>g>envir<strong>on</strong>mental variables such as temperature, salinity, lightpenetrati<strong>on</strong>, and redox potential. At <str<strong>on</strong>g>the</str<strong>on</strong>g> terminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>experiment (4 weeks), we recorded sediment temperature,salinity, light, and redox potential. For macr<str<strong>on</strong>g>of</str<strong>on</strong>g>aunalanalyses, we collected a single-core (18.1 cm 2 , 0-6 cm) from<str<strong>on</strong>g>the</str<strong>on</strong>g> center <str<strong>on</strong>g>of</str<strong>on</strong>g> each experimental and c<strong>on</strong>trol enclosure. Aftersieving <strong>on</strong> a 0.3 mm mesh sieve, retained organisms weresorted, identified to species level and counted. An additi<strong>on</strong>alcore was taken for analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter c<strong>on</strong>tent.RESULTSRelative water flow: Overall relative water velocity wasreduced by more than 50% in hybrid Spartina habitatrelative to unvegetated tidal flats. The plant canopy reducedmean flow speed from 3-4 cm s -1 in unvegetated tidal flat toless than 0.7 cm per sec<strong>on</strong>d (s -1 ) in vegetated patches. Waterflux as estimated by mass loss <str<strong>on</strong>g>of</str<strong>on</strong>g> gypsum cards (pooledacross <str<strong>on</strong>g>the</str<strong>on</strong>g> three measurement periods) was 14.5 ±0.9 g d -1 in<str<strong>on</strong>g>the</str<strong>on</strong>g> tidal flat and 6.6 ±0.5 g d -1 in <str<strong>on</strong>g>the</str<strong>on</strong>g> vegetated patches(paired t test, P < 0.0001, Table 1). Gypsum cards placed <strong>on</strong><str<strong>on</strong>g>the</str<strong>on</strong>g> tidal flat were str<strong>on</strong>gly eroded which revealed <str<strong>on</strong>g>the</str<strong>on</strong>g>dynamic and variable nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> water regime at ElsieRoemer.Larval flux: The hybrid Spartina canopy structurereduced larval flux relative to <str<strong>on</strong>g>the</str<strong>on</strong>g> unvegetated tidal flat.After two m<strong>on</strong>ths, <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> barnacles per shell wasnearly 10 times higher in tidal flats (32.1 ±6.4) than inSpartina hybrid habitat (3.6 ±1.3 (paired t test, P = 0.022,Table 1).Sediment depositi<strong>on</strong>: We recorded higher rates <str<strong>on</strong>g>of</str<strong>on</strong>g>sedimentati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid Spartina habitat (20.4 mg cm -2d -1 ) than <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> unvegetated tidal flat (14.2 mg cm -2 d -1 )(paired t test, P = 0.005). The fine sediment fracti<strong>on</strong> (< 63μm) deposited <strong>on</strong> traps placed in <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid habitat wasgreater than 45%, but was less than 13% in tidal flats (Table1).Animal transport: We found nearly two times as manyanimals entrained in traps deployed in <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid Spartinahabitat (4.9 ±0.6 per individual trap per day (ind trap -1 d -1 ))than <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> unvegetated tidal flats (2.6 ±0.5 ind trap -1 d -1 )(paired t test, P = 0.019, Table 1. In additi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> faunalassemblage differed between habitats (ANOSIM, P =0.013). This may be <str<strong>on</strong>g>the</str<strong>on</strong>g> result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> canopy structureslowing water flow and reducing turbulence, thus allowinggreater depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> animals in <str<strong>on</strong>g>the</str<strong>on</strong>g> collectors placed in <str<strong>on</strong>g>the</str<strong>on</strong>g>vegetated patches.Sediment properties: Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> alterati<strong>on</strong>s weresimilar to those found during mensurative studies performedpreviously at this site (Neira et al. 2005). Relative tounvegetated tidal flat, sediments <str<strong>on</strong>g>of</str<strong>on</strong>g> unclipped hybridSpartina -vegetated patches were muddier (48.6% vs 10.7%Table 1. Summarized results <str<strong>on</strong>g>of</str<strong>on</strong>g> manipulative experiments performed at Elsie RoemerEnvir<strong>on</strong>ment variables / Macr<str<strong>on</strong>g>of</str<strong>on</strong>g>auna Tidal flat Spartina hybrid(Mean ± 1 SE)Water columnWater moti<strong>on</strong> (weight loss <str<strong>on</strong>g>of</str<strong>on</strong>g> gypsum cards) (g d -1 ) 14.5 (±0.9) 6.6 (±0.5)Water speed (cm s -1 ) 3-4 0.3-0.7Larval flux (barnacle shell -1 ) 32.1 (±6.4) 3.6 (±1.3)Sediment depositi<strong>on</strong> rate (mg cm -2 d -1 ) 14.2 (±) 20.4 (±)TOM <str<strong>on</strong>g>of</str<strong>on</strong>g> deposited sediment (%) 1.9 (±0.4) 13.9 (±0.8)Mud c<strong>on</strong>tent (


Chapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> Spartina<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinaobserved in unmanipulated sediments <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid Spartinahabitat relative to tidal flats (Neira et al. 2005).Predati<strong>on</strong>: The sediment surface in cages c<strong>on</strong>tainingcrabs was disturbed with obvious depressi<strong>on</strong>s created byforaging crabs. The sediments also had lower organic matterand chlorophyll a c<strong>on</strong>tent relative to those cages withoutcrabs. No differences were found in salinity, temperatureand light penetrati<strong>on</strong> between treatments. Total macr<str<strong>on</strong>g>of</str<strong>on</strong>g>aunaldensity in experimental enclosures c<strong>on</strong>taining crabs was 2.2times lower than those without crabs. Density <str<strong>on</strong>g>of</str<strong>on</strong>g> selectedsurface-feeding species such as G. jap<strong>on</strong>ica, Corophium spp.and G. gemma declined by 57%, 87% and 67%, respectivelyin enclosures with crabs. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r taxa that also declined wereSphaerosyllis californiensis, turbellarians, a juvenilearenicolid species and juvenile capitellids (Neira et al.2006).DISCUSSION AND CONCLUSIONOur results show that compositi<strong>on</strong> and structure <str<strong>on</strong>g>of</str<strong>on</strong>g> tidalflat macr<str<strong>on</strong>g>of</str<strong>on</strong>g>aunal benthic communities are str<strong>on</strong>glyinfluenced by hybrid Spartina invasi<strong>on</strong>. Specifically, wefound that Spartina reduces water flow. These, in turn,influence flux <str<strong>on</strong>g>of</str<strong>on</strong>g> recruiting larvae, transport <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>rbenthos, <str<strong>on</strong>g>the</str<strong>on</strong>g> input <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter, and sedimentdepositi<strong>on</strong>.These physical changes interacted with chemicalchanges including increased porewater sulfidec<strong>on</strong>centrati<strong>on</strong>s and more negative redox potential levels(Neira et al. 2006, 2007). We also found changes in growthand survival via predati<strong>on</strong> (Neira et al. 2006) and foodavailability (Levin et al. 2006), which can play key, possiblysynergistic, roles in structuring Spartina-invadedecosystems. The presence <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid Spartina in open tidalflats exerts a str<strong>on</strong>g influence <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> anddistributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> benthic invertebrates in Elsie Roemer (Neiraet al. 2005, 2006).The reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> macr<str<strong>on</strong>g>of</str<strong>on</strong>g>aunal densities in hybridSpartina relative to <str<strong>on</strong>g>the</str<strong>on</strong>g> naturally unvegetated tidal flats isc<strong>on</strong>sistent with results for invasive S. anglica (Jacks<strong>on</strong> 1985)and S. alterniflora in o<str<strong>on</strong>g>the</str<strong>on</strong>g>r estuaries (Zipperer 1996), butc<strong>on</strong>trasts with existing paradigms about positive vegetati<strong>on</strong>effects <strong>on</strong> marine macrobenthos (e.g., Hedge and Kriwoken2000; Netto and Lana 1999). In additi<strong>on</strong>, not all systemsresp<strong>on</strong>d in <str<strong>on</strong>g>the</str<strong>on</strong>g> same way to <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid Spartina invasi<strong>on</strong>(Neira et al. 2005). For example, at o<str<strong>on</strong>g>the</str<strong>on</strong>g>r sites such asRoberts Landing (15-year invasi<strong>on</strong>), hybrid Spartina habitatdiffered from tidal flat sediments in compositi<strong>on</strong> but notabundance. At a third San Francisco Bay site, in San Mateo,where a Salicornia marsh is being invaded (8-10 years),sediment properties were similar, and no differences weredetected in densities or proporti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> surface- orsubsurface-deposit feeders, but <str<strong>on</strong>g>the</str<strong>on</strong>g> proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>carnivores/omnivores and grazers increased in <str<strong>on</strong>g>the</str<strong>on</strong>g> hybridSpartina habitat (Neira et al. 2005). At Elsie Roemer, most<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> species shown to have reduced density in hybridSpartina-invaded tidal flats are surface-feeding animals,such as amphipods (Corophium spp., Grandidierellajap<strong>on</strong>ica) bivalves (Gemma gemma) and polychaetes(Tharyx spp.). Thus, where hybrid Spartina has invaded tidalflats it is likely to cause not <strong>on</strong>ly changes in <str<strong>on</strong>g>the</str<strong>on</strong>g> habitatstructure, but also to shift macr<str<strong>on</strong>g>of</str<strong>on</strong>g>aunal feeding modes fromsurface-microalgae feeders to subsurface detritivores. Theshift from surface-feeding taxa can have negative ecologicalimplicati<strong>on</strong>s for higher trophic levels. Birds and fishesdepend more <strong>on</strong> larger, surface-feeding species (Simenstadand Thom 1995), which decline in abundance with <str<strong>on</strong>g>the</str<strong>on</strong>g>invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> full impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>Spartina invasi<strong>on</strong> <strong>on</strong> birds and fishes in San Francisco Bayhas yet to be measured.We can c<strong>on</strong>clude that <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid Spartinahas resulted in substantial changes in benthic communitiesby modifying <str<strong>on</strong>g>the</str<strong>on</strong>g> physical and chemical envir<strong>on</strong>ment.However, we find that not all ecosystems resp<strong>on</strong>d identicallyfollowing hybrid Spartina invasi<strong>on</strong> in San Francisco Bay.Hybrid Spartina can have differing and complex effects <strong>on</strong><str<strong>on</strong>g>the</str<strong>on</strong>g> sediment envir<strong>on</strong>ment and associated fauna depending<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong>, type <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat involved, age <str<strong>on</strong>g>of</str<strong>on</strong>g> invasi<strong>on</strong>,and local hydrodynamics. The processes underlying <str<strong>on</strong>g>the</str<strong>on</strong>g>variable resp<strong>on</strong>ses to Spartina invasi<strong>on</strong>, and <str<strong>on</strong>g>the</str<strong>on</strong>g> differentrates <str<strong>on</strong>g>of</str<strong>on</strong>g> recovery following invasi<strong>on</strong>, are factors that shouldbe c<strong>on</strong>sidered in planning for Spartina eradicati<strong>on</strong>.ACKNOWLEDGMENTSWe acknowledge G. Mendoza, R. Blake, C. Tyler, S.Maezumi, C. Whitcraft, U. Mahl, E. Brusati, N. Rayl, N.Christensen, P. McMillan, P. Colombano, J. G<strong>on</strong>zalez, S.Nort<strong>on</strong>, and D. Chiang who kindly assisted in experimentsetup, sample collecti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> field and lab analysis. We aregrateful to C. Tyler who provided sulfide data. We thank C.Nordby, E. Brusati and R. Blake for providing compliancewith California Clapper Rail permit requirements. Supportwas provided by Nati<strong>on</strong>al Science Foundati<strong>on</strong>Biocomplexity Program (DEB 0083583) to L.A.L. andE.D.G.A full manuscript <str<strong>on</strong>g>of</str<strong>on</strong>g> this study was published inEcological Applicati<strong>on</strong>s (Neira et al. 2006); see referencebelow.REFERENCESAyres, D.R., D.R. Str<strong>on</strong>g and P. Baye. 2003. Spartina foliosa(Poaceae) - A comm<strong>on</strong> species <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> road to rarity. Madroño50:209-213.Ayres, D.R., D.L. Smith, K. Zaremba, S. Klohr and D.R. Str<strong>on</strong>g.2004. Spread <str<strong>on</strong>g>of</str<strong>on</strong>g> exotic cordgrasses and hybrids (Spartina sp.) in<str<strong>on</strong>g>the</str<strong>on</strong>g> tidal marshes <str<strong>on</strong>g>of</str<strong>on</strong>g> San Francisco Bay. Biological Invasi<strong>on</strong>s6:221-231.Buchanan, J.B. 1984. Sediment analysis. In: Holme N.A., andMcIntyre, A.D., eds. Methods for <str<strong>on</strong>g>the</str<strong>on</strong>g> study <str<strong>on</strong>g>of</str<strong>on</strong>g> marine benthos, p.41-65, 2nd Ed. Blackwell Scientific Publicati<strong>on</strong>s, Oxford,L<strong>on</strong>d<strong>on</strong>.Cline, J.D. 1969. Spectrophotometric determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrogensulfide in natural waters. Limnology and Oceanography 14:454-485.- 144 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> SpartinaCohen, A.N., J.T. Carlt<strong>on</strong> and M.C. Fountain. 1995. Introducti<strong>on</strong>,dispersal, and potential impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> green crab Carcinusmaenas in San Francisco Bay, California. Marine Biology122:225-237.Cohen, A.N. and J.T. Carlt<strong>on</strong>. 1998. Accelerating invasi<strong>on</strong> rate in ahighly invaded estuary. Science 279:555-558.Daehler, C.C. and D.R. Str<strong>on</strong>g. 1996. Status, predicti<strong>on</strong> andpreventi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> introduced cordgrass Spartina spp. invasi<strong>on</strong>s inPacific estuaries, USA. Biological C<strong>on</strong>servati<strong>on</strong> 78:51-58.Doty, M.S. 1971. Measurements <str<strong>on</strong>g>of</str<strong>on</strong>g> water movement in reference tobenthic algae growth. Botanica Marina 14:32-35.Grosholz, E.D., L.A. Levin, A.C. Tyler, and C. Neira. 2009.Changes in community structure and ecosystem functi<strong>on</strong>following Spartina alterniflora invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pacific estuaries, p.23-40. In: Silliman, B.R., Grosholz, E.D., and Bertness, M.D.,eds. Human impacts <strong>on</strong> salt marshes: a global perspective.University <str<strong>on</strong>g>of</str<strong>on</strong>g> California Press, Berkeley and Los Angeles,California.Hedge, P. and L.K. Kriwoken. 2000. Evidence for effects <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina anglica invasi<strong>on</strong> <strong>on</strong> benthic macr<str<strong>on</strong>g>of</str<strong>on</strong>g>auna in LittleSwanport estuary, Tasmania. Austral Ecology 25:150-159.Jacks<strong>on</strong>, D. 1985. Invertebrate populati<strong>on</strong>s associated withSpartina anglica salt-marsh and adjacent intertidal mud flats.Estuarine Brackishwater Science Associati<strong>on</strong> Bulletin 40:8-14.Levin, L.A., C. Neira and E.D. Grosholz. 2006. <strong>Invasive</strong> cordgrassmodifies wetland and trophic functi<strong>on</strong>. Ecology 87:419-432.Neira, C., L.A. Levin and E.D. Grosholz. 2005. Benthicmacr<str<strong>on</strong>g>of</str<strong>on</strong>g>aunal communities <str<strong>on</strong>g>of</str<strong>on</strong>g> three sites in San Francisco Bayinvaded by hybrid Spartina, with comparis<strong>on</strong> to uninvadedhabitats. Marine Ecology Progress Series 292:111-126.Neira, C., E.D. Grosholz, L.A. Levin and R. Blake. 2006.Mechanisms generating modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> benthos following tidalflat invasi<strong>on</strong> by a Spartina hybrid. Ecological Applicati<strong>on</strong>s16:1391-1404.Neira, C., L.A. Levin, E.D. Grosholz and G. Mendoza. 2007.Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> invasive Spartina growth stages <strong>on</strong> associatedmacr<str<strong>on</strong>g>of</str<strong>on</strong>g>aunal communities. Biological Invasi<strong>on</strong>s 9:975-993.Netto, S.A., and P.C. Lana. 1999. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> above- and belowgroundcomp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflora (Loisel) and detritusbiomass in structuring macrobenthic associati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> ParanaguaBay (SE, Brazil). Hydrobiologia 400:167-177.Nichols, F.H., and J.K. Thomps<strong>on</strong>. 1985. Persistance <str<strong>on</strong>g>of</str<strong>on</strong>g> anintroduced mudflat community in South San Francisco Bay,California. Marine Ecology Progress Series 24:83-97.Plante-Cuny, M.R. 1973. Reserches sur la producti<strong>on</strong> primairebentique en milieu marin tropical. I. Variati<strong>on</strong>s de la producti<strong>on</strong>primaire et des teneurs en pigments photosynthétiques surquelques f<strong>on</strong>ds sableux. Valeur des résultats obtenus par laméthode du 14 C. Cahiers O.R.S.T.O.M., sér. Océanographique.11:317-348.Porter, E.K., L.P. Sanford and S.E. Suttles. 2000. Gypsumdissoluti<strong>on</strong> is not a universal integrator <str<strong>on</strong>g>of</str<strong>on</strong>g> “water moti<strong>on</strong>”.Limnology and Oceanography 45:145-158.Reed, D.J. 1992. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> weirs <strong>on</strong> sediment depositi<strong>on</strong> inLouisiana coastal marshes. Envir<strong>on</strong>mental Management 16:55-65.Simenstad, C.A., and R.M. Thom. 1995. Spartina alterniflora(smooth cordgrass) as an invasive halophyte in Pacific NorthwestEstuaries. Hortus Northwest 6: 9-12 and 38-40.Stenzel, L.E., C.M. Hickey, J.E. Kjelmyr and G.W. Page. 2002.Abundance and distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> shorebirds in <str<strong>on</strong>g>the</str<strong>on</strong>g> San FranciscoBay area. Western Birds 33:69-98.Zipperer, V.T. 1996. Ecological effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> introducedcordgrass, Spartina alterniflora, <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> benthic communitystructure <str<strong>on</strong>g>of</str<strong>on</strong>g> Willapa Bay, Washingt<strong>on</strong>. M.S. Thesis. University<str<strong>on</strong>g>of</str<strong>on</strong>g> Washingt<strong>on</strong>, Seattle, Washingt<strong>on</strong>.- 145 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> SpartinaSPARTINA ALTERNIFLORA INVASIONS IN THE YANGTZE RIVER ESTUARY,CHINA:ASYNOPSISB. LI 1 ,C-Z.LIAO, X-D. ZHANG, H-L. CHEN,Q.WANG, Z-Y. CHEN, X-J. GAN, J-H. WU,B.ZHAO, Z-J. MA,X-L. CHENG,L-F.JIANG, Y-Q. LUO, AND J-K. CHENCoastal Ecosystems Research Stati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Yangtze River Estuary, Ministry <str<strong>on</strong>g>of</str<strong>on</strong>g> Educati<strong>on</strong> Key Laboratory for BiodiversityScience and Ecological Engineering, The Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Biodiversity Science, Fudan University, #220 Handan Road, Shanghai200433, China1 For corresp<strong>on</strong>dence: bool@fudan.edu.cnSpartina alterniflora was first found in <str<strong>on</strong>g>the</str<strong>on</strong>g> Yangtze River estuary in <str<strong>on</strong>g>the</str<strong>on</strong>g> mid 1990s, and has nowbecome <str<strong>on</strong>g>the</str<strong>on</strong>g> most abundant vascular plant in <str<strong>on</strong>g>the</str<strong>on</strong>g> estuarine marshlands. We have investigated <str<strong>on</strong>g>the</str<strong>on</strong>g>potential c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflora invasi<strong>on</strong>s to <str<strong>on</strong>g>the</str<strong>on</strong>g> salt marshes <strong>on</strong> two large islands in<str<strong>on</strong>g>the</str<strong>on</strong>g> estuary, Ch<strong>on</strong>gming and Jiuduansha, over <str<strong>on</strong>g>the</str<strong>on</strong>g> past five years, focusing <strong>on</strong> effects <strong>on</strong> biodiversityand ecosystem processes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> marshlands resulting from <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong>. We here summarize <str<strong>on</strong>g>the</str<strong>on</strong>g>major findings from our previous work and provide <str<strong>on</strong>g>the</str<strong>on</strong>g> relevant literature.Keywords: Biodiversity, ecosystem processes, plant invasi<strong>on</strong>s, saltmarshes, Spartina alterniflora,Yangtze River estuaryINTRODUCTIONThe Yangtze River estuary with two nati<strong>on</strong>al naturereserves is an important ecoregi<strong>on</strong> as it is <str<strong>on</strong>g>the</str<strong>on</strong>g> home for manyec<strong>on</strong>omically and ecologically important species, and servesas an important stopover site for migratory birds <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> EastAsian-Australasian Flyway (Chen et al. 2003; Ma et al.2004). However, in comm<strong>on</strong> with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r estuaries in <str<strong>on</strong>g>the</str<strong>on</strong>g>world (Cohen and Carlt<strong>on</strong> 1998; Grosholz 2002), <str<strong>on</strong>g>the</str<strong>on</strong>g>Yangtze River estuary is seriously threatened by exoticspecies invasi<strong>on</strong>s. Of all <str<strong>on</strong>g>the</str<strong>on</strong>g> invasive exotic species, smoothcordgrass (Spartina alterniflora) introduced from NorthAmerica, has become <str<strong>on</strong>g>the</str<strong>on</strong>g> most harmful exotic plant to <str<strong>on</strong>g>the</str<strong>on</strong>g>salt marshes, leading to multifold c<strong>on</strong>sequences to <str<strong>on</strong>g>the</str<strong>on</strong>g>estuary. Over <str<strong>on</strong>g>the</str<strong>on</strong>g> past five years, we have investigated <str<strong>on</strong>g>the</str<strong>on</strong>g>populati<strong>on</strong> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora <strong>on</strong> two major islands in<str<strong>on</strong>g>the</str<strong>on</strong>g> estuary, Ch<strong>on</strong>gming and Jiuduansha, and examined <str<strong>on</strong>g>the</str<strong>on</strong>g>ecosystem-level effects <str<strong>on</strong>g>of</str<strong>on</strong>g> its invasi<strong>on</strong>. This synopsis isbased <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>se investigati<strong>on</strong>s. Detailed reports werepublished elsewhere. (See References for <str<strong>on</strong>g>the</str<strong>on</strong>g> full list.)SPREAD AND DISTRIBUTIONS. alterniflora was intenti<strong>on</strong>ally introduced fromAmerica to China in 1979 (An et al. this volume), and was<str<strong>on</strong>g>the</str<strong>on</strong>g>n spread to <str<strong>on</strong>g>the</str<strong>on</strong>g> Yangtze River estuary in <str<strong>on</strong>g>the</str<strong>on</strong>g> mid 1990sboth by natural dispersal and intenti<strong>on</strong>al introducti<strong>on</strong>s. For<str<strong>on</strong>g>the</str<strong>on</strong>g> purposes <str<strong>on</strong>g>of</str<strong>on</strong>g> ecological engineering, i.e., rapid sedimentaccreti<strong>on</strong>, S. alterniflora was <str<strong>on</strong>g>the</str<strong>on</strong>g>n intenti<strong>on</strong>ally introduced totwo large islands in <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary, Jiuduansha (in 1997) andCh<strong>on</strong>gming (in 2001 and 2003). On each island a nati<strong>on</strong>alnature reserve had been set aside for c<strong>on</strong>serving nativebiodiversity and maintaining ecosystem integrity. In fact,this invasive plant has invaded almost all <str<strong>on</strong>g>the</str<strong>on</strong>g> mudflats andsalt marshes in <str<strong>on</strong>g>the</str<strong>on</strong>g> Yangtze River estuary (Fig. 1A), S. alternifloraei<str<strong>on</strong>g>the</str<strong>on</strong>g>r col<strong>on</strong>ized tidal mudflats (Fig. 1D) or replacednative plants like Scirpus mariqueter (Fig. 1E) (Chen et al.2004) and Phragmites australis (Wang et al. 2006b), and hasbecome <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most abundant species in estuarineecosystems during a period <str<strong>on</strong>g>of</str<strong>on</strong>g> just over 10 years. Our recentdata obtained through remote sensing show that in 2005 S.alterniflora m<strong>on</strong>ocultures accounted for 49.4% and 37.0% <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> vegetated area in D<strong>on</strong>gtan (Fig. 1B) and Jiuduansha (Fig.1C) marshlands respectively (Li et al. 2009). Range expansi<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora still c<strong>on</strong>tinues in estuarine wetlands.Successful invasi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora in <str<strong>on</strong>g>the</str<strong>on</strong>g> YangtzeRiver estuary were <str<strong>on</strong>g>the</str<strong>on</strong>g> result <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong>s between biotic,abiotic and human factors (Wang et al. 2006a). The “enemyrelease hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis” that is used to explain successful invasi<strong>on</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g> exotic plants elsewhere might also apply to those <str<strong>on</strong>g>of</str<strong>on</strong>g> S.alterniflora in <str<strong>on</strong>g>the</str<strong>on</strong>g> Yangtze River estuary. Spartina alterniflorahas a number <str<strong>on</strong>g>of</str<strong>on</strong>g> superior traits such as fast growth, a highlyefficient use <str<strong>on</strong>g>of</str<strong>on</strong>g> resources, a high tolerance to salt and a welldevelopedbelowground system that make it a superiorcompetitor or invader and a potent ecosystem engineer (Li etal. 2009). It is for this latter reas<strong>on</strong> that S. alterniflora waswidely used for erosi<strong>on</strong> c<strong>on</strong>trol and sediment accreti<strong>on</strong> al<strong>on</strong>gshorelines in <str<strong>on</strong>g>the</str<strong>on</strong>g> Yangtze River estuary (Wang et al. 2006a),which might have directly led to its rapid spread in <str<strong>on</strong>g>the</str<strong>on</strong>g>marshlands. Frequent reclamati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> Yangtze Riverestuary has made <str<strong>on</strong>g>the</str<strong>on</strong>g> estuarine ecosystem susceptible to S.alterniflora as areas outside <str<strong>on</strong>g>the</str<strong>on</strong>g> dike exhibit c<strong>on</strong>diti<strong>on</strong>s typical<str<strong>on</strong>g>of</str<strong>on</strong>g> early saltmarsh successi<strong>on</strong>, which favor S. alterniflorara<str<strong>on</strong>g>the</str<strong>on</strong>g>r than native plants. Envir<strong>on</strong>mental changes (saltwaterintrusi<strong>on</strong> and eutrophicati<strong>on</strong>) caused by human activities- 147 -


Chapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> Spartina<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaFig. 1A) Locati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Jiuduansha and Ch<strong>on</strong>gming D<strong>on</strong>gtan in <str<strong>on</strong>g>the</str<strong>on</strong>g> Yangtze River estuary, <strong>on</strong> each <str<strong>on</strong>g>of</str<strong>on</strong>g> which a nati<strong>on</strong>al nature reserve was set up in 2005 (Li etal. 2009); B) and C) Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora in Ch<strong>on</strong>gming D<strong>on</strong>gtan and Jiuduansha marshlands in 2005; D) C<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tidal mudflats to S.alterniflora meadows; and E) Replacement <str<strong>on</strong>g>of</str<strong>on</strong>g> S. mariqueter with S. alterniflora.might also facilitate fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r invasi<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary (Wang etal. 2006a, b).PLANT COMMUNITIESOne <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> threats <str<strong>on</strong>g>of</str<strong>on</strong>g> invasive exotic plants to nativeecosystems is <str<strong>on</strong>g>the</str<strong>on</strong>g>ir competitive effects <strong>on</strong> native plantbiodiversity. Our experimental studies showed that S.alterniflora had great competitive effects <strong>on</strong> native plantspecies in <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary, e.g., S. mariqueter, which is endemicto <str<strong>on</strong>g>the</str<strong>on</strong>g> Yangtze River estuary (Chen et al. 2004; 2005b) andP. australis (Wang et al. 2006b), which resulted in <str<strong>on</strong>g>the</str<strong>on</strong>g>reduced abundance and even local extincti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se nativeplants. In particular, <str<strong>on</strong>g>the</str<strong>on</strong>g> decline <str<strong>on</strong>g>of</str<strong>on</strong>g> S. mariqueter abundancehas been dramatic, which may have important c<strong>on</strong>sequencesto shorebird communities because this sedge serves as foodfor shorebirds and creates favorable habitats for <str<strong>on</strong>g>the</str<strong>on</strong>g> birds(Ma et al. 2009; Li et al. 2009).SOIL BIOTIC COMMUNITIESNematodes are important comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> soilecosystem and play important roles in ecosystemfuncti<strong>on</strong>ing. The changes in compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plantcommunities are believed to affect <str<strong>on</strong>g>the</str<strong>on</strong>g> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> nematodecommunities (Yeates 1999). We compared <str<strong>on</strong>g>the</str<strong>on</strong>g> structure <str<strong>on</strong>g>of</str<strong>on</strong>g>soil nematode communities am<strong>on</strong>g native (S. mariqueter andP. australis) and S. alterniflora communities <strong>on</strong> Ch<strong>on</strong>gming,Jiuduansha Islands and Nanhui (Chen et al. 2007b). Therewere no significant differences am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> three plantcommunities in total density <str<strong>on</strong>g>of</str<strong>on</strong>g> nematodes, <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g>genera, or in <str<strong>on</strong>g>the</str<strong>on</strong>g> diversity indices. However, S. alterniflorainvasi<strong>on</strong>s altered <str<strong>on</strong>g>the</str<strong>on</strong>g> trophic structure <str<strong>on</strong>g>of</str<strong>on</strong>g> nematodecommunities in soil. The relative abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> bacterivoressignificantly increased, whereas that <str<strong>on</strong>g>of</str<strong>on</strong>g> plant feeders andalgal feeders declined in S. alterniflora communities,compared with that in P. australis and S. mariquetercommunities. Our fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r experimental study dem<strong>on</strong>stratedthat <str<strong>on</strong>g>the</str<strong>on</strong>g> changes in nematode communities were <str<strong>on</strong>g>the</str<strong>on</strong>g> result <str<strong>on</strong>g>of</str<strong>on</strong>g>altered litter quality due to <str<strong>on</strong>g>the</str<strong>on</strong>g> replacement <str<strong>on</strong>g>of</str<strong>on</strong>g> native plantsby S. alterniflora (Chen et al. 2007a).Similarly, we compared <str<strong>on</strong>g>the</str<strong>on</strong>g> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> macrobenthicinvertebrate communities between S. mariqueter and S.alterniflora communities at Ch<strong>on</strong>gming D<strong>on</strong>gtan (Chen etal. 2005a). No significant difference in total density <str<strong>on</strong>g>of</str<strong>on</strong>g>macrobenthic invertebrates was detected between <str<strong>on</strong>g>the</str<strong>on</strong>g> twoplant communities although <str<strong>on</strong>g>the</str<strong>on</strong>g> relative abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> somecomm<strong>on</strong> species was altered, ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r increased or decreased.One <str<strong>on</strong>g>of</str<strong>on</strong>g> our recent studies also showed that S. alternifloraprovided compatible habitats for <str<strong>on</strong>g>the</str<strong>on</strong>g> native crab Sesarmadehaani by <str<strong>on</strong>g>of</str<strong>on</strong>g>fering moderate envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s- 148 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> Spartina(e.g., mild temperature in summer) (Wang et al. 2008). Likenematodes, <str<strong>on</strong>g>the</str<strong>on</strong>g> relative abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> major trophicfuncti<strong>on</strong>al groups <str<strong>on</strong>g>of</str<strong>on</strong>g> macrobenthic invertebrates was alsoaltered when S. mariqueter was replaced by S. alterniflora.Spartina alterniflora communities had a higher proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>suspensivores but a lower proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> herbivores anddetritivores than S. mariqueter communities (Chen et al.2005a).In additi<strong>on</strong>, we compared <str<strong>on</strong>g>the</str<strong>on</strong>g> structure and diversity <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> bacterial communities in rhizosphere soils <str<strong>on</strong>g>of</str<strong>on</strong>g> S.alterniflora, P. australis and S. mariqueter throughc<strong>on</strong>structing 16S ribosomal DNA (rDNA) cl<strong>on</strong>e libraries.Our results showed that <str<strong>on</strong>g>the</str<strong>on</strong>g> shift <str<strong>on</strong>g>of</str<strong>on</strong>g> species compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>plant communities from native plants to S. alternifloracaused c<strong>on</strong>siderable changes in bacterial compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>rhizosphere soils in estuarine salt masrhes (Wang et al.2007).The above changes in soil biota caused by S.alterniflora invasi<strong>on</strong>s could have great effects <strong>on</strong> ecosystemprocesses in <str<strong>on</strong>g>the</str<strong>on</strong>g> soils that are associated with <str<strong>on</strong>g>the</str<strong>on</strong>g>seorganisms as decomposers.ARTHROPOD COMMUNITIESPlants serve as both food and habitats for manyarthropods, so subtle shifts in plant community compositi<strong>on</strong>may lead to c<strong>on</strong>siderable changes in <str<strong>on</strong>g>the</str<strong>on</strong>g> arthropodcommunity. In order to understand <str<strong>on</strong>g>the</str<strong>on</strong>g> possible effects <str<strong>on</strong>g>of</str<strong>on</strong>g> S.alterniflora invasi<strong>on</strong>s <strong>on</strong> arthropods, we examined <str<strong>on</strong>g>the</str<strong>on</strong>g>community structure and diets <str<strong>on</strong>g>of</str<strong>on</strong>g> arthropods in an estuarinesalt marsh previously dominated by native P. australis atCh<strong>on</strong>gming D<strong>on</strong>gtan through net sweeping and plantharvesting methods and stable isotope analysis (Wu et al.2009). We found that diversity indices were not significantlydifferent between exotic and native plant communities, but<str<strong>on</strong>g>the</str<strong>on</strong>g> total abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> insects estimated through plantharvesting was found to be lower in S. alternifloram<strong>on</strong>ocultures than that in P. australis m<strong>on</strong>ocultures.Community structure <str<strong>on</strong>g>of</str<strong>on</strong>g> insects in S. alternifloram<strong>on</strong>ocultures was dissimilar to that in P. australism<strong>on</strong>ocultures and P. australis–S. alterniflora mixtures.Moreover, stable isotope analysis showed that althoughsome native arthropods (perhaps generalists) shifted <str<strong>on</strong>g>the</str<strong>on</strong>g>irdiets, most native taxa did prefer P. australis to S.alterniflora even in S. alterniflora m<strong>on</strong>ocultures. Spartinaalterniflora invasi<strong>on</strong>s resulted in reduced abundances <str<strong>on</strong>g>of</str<strong>on</strong>g>some arthropds, and increased <str<strong>on</strong>g>the</str<strong>on</strong>g> dominance <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs thatfed preferentially <strong>on</strong> S. alterniflora. The experimentalevidence provided showed that invasive plants can change<str<strong>on</strong>g>the</str<strong>on</strong>g> community structure and diets <str<strong>on</strong>g>of</str<strong>on</strong>g> native arthropods,which will eventually alter arthropod food webs, and affect<str<strong>on</strong>g>the</str<strong>on</strong>g> integrity and functi<strong>on</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> native ecosystems within anature reserve that has been set aside for c<strong>on</strong>serving <str<strong>on</strong>g>the</str<strong>on</strong>g>native biodiversity and maintaining <str<strong>on</strong>g>the</str<strong>on</strong>g> ecosystem integrity.BIRD COMMUNITIESThe c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mudflats to meadows resulting fromS. alterniflora invasi<strong>on</strong>s had significant impact <strong>on</strong> birds <str<strong>on</strong>g>of</str<strong>on</strong>g>Charadriidae and Scolopacidae, which might have beenattributable to <str<strong>on</strong>g>the</str<strong>on</strong>g> reducti<strong>on</strong> in food resources and physicalalterati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> habitats for birds (Li et al. 2009). Never<str<strong>on</strong>g>the</str<strong>on</strong>g>less,S. alterniflora may also provide habitat for certain landbirds.Recent bird surveys indicated that <str<strong>on</strong>g>the</str<strong>on</strong>g> Japanese marshwarbler Megalurus pryeri, a newly-recorded species in <str<strong>on</strong>g>the</str<strong>on</strong>g>Yangtze River estuary, nested exclusively in S. alternifloracommunities (Gan et al. 2006). This might be because <str<strong>on</strong>g>the</str<strong>on</strong>g>dense vegetati<strong>on</strong> benefits <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nests. Inadditi<strong>on</strong>, M. pryeri largely fed <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> invertebrates in S.alterniflora communities (Gan 2009). It is likely that <str<strong>on</strong>g>the</str<strong>on</strong>g>rapid populati<strong>on</strong> increase <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Japanese marsh warbler wasrelated to <str<strong>on</strong>g>the</str<strong>on</strong>g> rapid spread <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora in <str<strong>on</strong>g>the</str<strong>on</strong>g> YangtzeRiver estuary. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora <strong>on</strong>local landbird communities still remain largely unexplored,and fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r studies are needed.CARBON AND NITROGEN CYCLESS. alterniflora had great productive potential in <str<strong>on</strong>g>the</str<strong>on</strong>g>marshlands in <str<strong>on</strong>g>the</str<strong>on</strong>g> Yangtze River estuary. The results weobtained in Jiuduansha marshlands showed that exotic S.alterniflora had much greater primary productivity thannatives S. mariqueter and P. australis (Liao et al. 2007)because <str<strong>on</strong>g>the</str<strong>on</strong>g> exotic had greater leaf area index (LAI) and al<strong>on</strong>ger photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic seas<strong>on</strong> than <str<strong>on</strong>g>the</str<strong>on</strong>g> native species (Jianget al. 2009). At <str<strong>on</strong>g>the</str<strong>on</strong>g> same time, decompositi<strong>on</strong> rates <str<strong>on</strong>g>of</str<strong>on</strong>g> S.alterniflora litter, particularly <str<strong>on</strong>g>the</str<strong>on</strong>g> belowground litter, werelower than those <str<strong>on</strong>g>of</str<strong>on</strong>g> S. mariqueter and P. australis litter dueto <str<strong>on</strong>g>the</str<strong>on</strong>g> lower litter quality <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora (Liao et al. 2008).Therefore, larger stocks <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> and nitrogen were foundin <str<strong>on</strong>g>the</str<strong>on</strong>g> ecosystems dominated by S. alterniflora than in thosedominated by S. mariqueter and P. australis. Our fur<str<strong>on</strong>g>the</str<strong>on</strong>g>ranalysis <str<strong>on</strong>g>of</str<strong>on</strong>g> stable carb<strong>on</strong> isotopes also c<strong>on</strong>firmed that <str<strong>on</strong>g>the</str<strong>on</strong>g>replacement <str<strong>on</strong>g>of</str<strong>on</strong>g> S. mariqueter by S. alterniflora significantlyincreased soil organic carb<strong>on</strong> and total soil nitrogen (Chenget al. 2006), especially soil labile carb<strong>on</strong>, recalcitrant carb<strong>on</strong>,and soil recalcitrant nitrogen c<strong>on</strong>tents in <str<strong>on</strong>g>the</str<strong>on</strong>g> upper soil layers(0–60 cm) (Cheng et al. 2008). The ecosystem carb<strong>on</strong> andnitrogen cycles altered by S. alterniflora invasi<strong>on</strong>s might be<str<strong>on</strong>g>of</str<strong>on</strong>g> limited significance <strong>on</strong> a large scale in relati<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g>range <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora in <str<strong>on</strong>g>the</str<strong>on</strong>g> Yangtze River estuary, butmight have potentially far-reaching impact <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> adjacentecosystems. In fact, S. alterniflora functi<strong>on</strong>ed as <str<strong>on</strong>g>the</str<strong>on</strong>g> primaryenergy source for certain nekt<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> marshlands in <str<strong>on</strong>g>the</str<strong>on</strong>g>Yangtze River estuary (Quan et al. 2007). Potentialcascading effects <strong>on</strong> estuarine food webs <str<strong>on</strong>g>of</str<strong>on</strong>g> increasedecosystem productivity due to S. alterniflora invasi<strong>on</strong>s needsfur<str<strong>on</strong>g>the</str<strong>on</strong>g>r explorati<strong>on</strong>.- 149 -


Chapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> Spartina<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaCONCLUSIONSThe invasi<strong>on</strong> history <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora in <str<strong>on</strong>g>the</str<strong>on</strong>g> YangtzeRiver estuary is relatively short, but this invasive plant hasbeen found to cause c<strong>on</strong>siderable impact <strong>on</strong> structure andfuncti<strong>on</strong>ing <str<strong>on</strong>g>of</str<strong>on</strong>g> native ecosystems although it might havepositive effects <strong>on</strong> certain species. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>ses<str<strong>on</strong>g>of</str<strong>on</strong>g> native ecosystems to plant invasi<strong>on</strong>s may be <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>gerdurati<strong>on</strong> than a few decades, thus l<strong>on</strong>g-term m<strong>on</strong>itoring isneeded to understand <str<strong>on</strong>g>the</str<strong>on</strong>g> ecosystem changes in resp<strong>on</strong>se toS. alterniflora invasi<strong>on</strong>s. In <str<strong>on</strong>g>the</str<strong>on</strong>g> meantime, most <str<strong>on</strong>g>of</str<strong>on</strong>g> ourstudies have examined <str<strong>on</strong>g>the</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora invasi<strong>on</strong>s<strong>on</strong> biodiversity and processes <str<strong>on</strong>g>of</str<strong>on</strong>g> native ecosystems.Therefore, future studies are clearly needed to examine how<str<strong>on</strong>g>the</str<strong>on</strong>g> change <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e ecosystem comp<strong>on</strong>ent affects or isaffected by those <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r comp<strong>on</strong>ents, as examined byLevin et al. (2006) in San Francisco Bay (USA), and to link<str<strong>on</strong>g>the</str<strong>on</strong>g> changes <str<strong>on</strong>g>of</str<strong>on</strong>g> biodiversity caused by S. alterniflorainvasi<strong>on</strong>s to <str<strong>on</strong>g>the</str<strong>on</strong>g> alterati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> ecosystem processes. Finally,c<strong>on</strong>sidering that most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> marshlands invaded by S.alterniflora that we studied are protected for c<strong>on</strong>serving <str<strong>on</strong>g>the</str<strong>on</strong>g>native biodiversity and maintaining <str<strong>on</strong>g>the</str<strong>on</strong>g> ecosystem integrityin <str<strong>on</strong>g>the</str<strong>on</strong>g> Yangtze River estuary, S. alterniflora invasi<strong>on</strong>s needto be managed appropriately.ACKNOWLEDGMENTSWe thank <str<strong>on</strong>g>the</str<strong>on</strong>g> students at <str<strong>on</strong>g>the</str<strong>on</strong>g> Ecology Lab <str<strong>on</strong>g>of</str<strong>on</strong>g> BiologicalInvasi<strong>on</strong>s at Fudan University who <str<strong>on</strong>g>of</str<strong>on</strong>g>fered assistance in <str<strong>on</strong>g>the</str<strong>on</strong>g>filed. The entire work described here was financiallysupported by Nati<strong>on</strong>al Basic Research Program <str<strong>on</strong>g>of</str<strong>on</strong>g> China(Grant no.: 2006CB403305), Natural Science Foundati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>China (Grant No.: 30670330 and 30370235), <str<strong>on</strong>g>the</str<strong>on</strong>g> Ministry <str<strong>on</strong>g>of</str<strong>on</strong>g>Educati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> China (Grant No.: 105063), and <str<strong>on</strong>g>the</str<strong>on</strong>g> Scienceand Technology Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Shanghai (Grant No.:04DZ19304) to Bo Li.REFERENCESChen, H.L., Li B., Fang C.M., Chen J.K., and Wu J.H. 2007a. Exoticplant influences soil nematode communities through litterinput. Soil Biology and Biochemistry 39: 1782-1793.Chen, H.L., Li B., Hu J.B., Chen J.K., and Wu J.H. 2007b. Effects<str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflora invasi<strong>on</strong> <strong>on</strong> benthic nematode communitiesin <str<strong>on</strong>g>the</str<strong>on</strong>g> Yangtze Estuary. Marine Ecology-Progress Series336: 99-110.Chen, J.K., Ma Z.J. and Li B. (ed). 2003. Comprehensive Surveys<strong>on</strong> Shanghai Jiuduansha Wetland Nature Reserve, <str<strong>on</strong>g>the</str<strong>on</strong>g> YangtzeRiver Estuary. Beijing: Science Press.Chen, Z.Y., Li B., Zh<strong>on</strong>g Y., and Chen J.K. 2004. Local competitiveeffects <str<strong>on</strong>g>of</str<strong>on</strong>g> introduced Spartina alterniflora <strong>on</strong> Scirpus mariqueterat D<strong>on</strong>gtan <str<strong>on</strong>g>of</str<strong>on</strong>g> Ch<strong>on</strong>gming Island, <str<strong>on</strong>g>the</str<strong>on</strong>g> Yangtze River estuaryand <str<strong>on</strong>g>the</str<strong>on</strong>g>ir potential ecological c<strong>on</strong>sequences. Hydrobiologia528: 99-106.Chen, Z.Y., Fu C.Z., Wang H.Y., Li B., Wu J.H., and Chen J.K.2005a. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflora invasi<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> macrobenthicinvertebrate community in saltmarshes at Ch<strong>on</strong>gmingD<strong>on</strong>gtan , <str<strong>on</strong>g>the</str<strong>on</strong>g> Yangtze River Estuary. Wetland Science, 3: 1-7.Chen, Z.Y., Li B. and Chen J.K. 2005b. Growth-related traits andrelative competitive ability <str<strong>on</strong>g>of</str<strong>on</strong>g> invasive Spartian alterniflora andnative Scirpus mariqueter. Biodiversity Science 13: 130-136.Cheng, X.L., Luo Y.Q., Chen J.Q., Lin G.H., Chen J.K. and Li B.2006. Short-term C 4 plant Spartina alterniflora invasi<strong>on</strong>s change<str<strong>on</strong>g>the</str<strong>on</strong>g> soil carb<strong>on</strong> in C 3 plant-dominated tidal wetlands <strong>on</strong> a growingestuarine island. Soil Biology and Biochemistry 38: 3380–3386.Cheng, X.L., Chen J.Q., Luo Y.Q., Henders<strong>on</strong> R., Zhang Q.F.,Chen J.K. and Li B. 2008. Assessing <str<strong>on</strong>g>the</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> short-termSpartina alterniflora invasi<strong>on</strong> <strong>on</strong> labile and recalcitrant C and Npools by means <str<strong>on</strong>g>of</str<strong>on</strong>g> soil fracti<strong>on</strong>ati<strong>on</strong> and stable C and N isotopes.Geoderma 145: 177-184.Cohen, A.N. and Carlt<strong>on</strong> J.T. 1998. Accelerating invasi<strong>on</strong> rate in ahighly invaded estuary. Science 279: 555-558.Gan, X.J. 2009. Habitat selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> saltmarsh birds at Ch<strong>on</strong>gmingD<strong>on</strong>gtan in <str<strong>on</strong>g>the</str<strong>on</strong>g> Yangtze River Estuary as influenced by Spartinaalterniflora invasi<strong>on</strong>s. Ph.D. dissertati<strong>on</strong>, Fudan University,Shanghai, China.Gan, X.J., Zhang K.J., Tang S.M., Li B. and Ma Z.J. 2006. Threenew records <str<strong>on</strong>g>of</str<strong>on</strong>g> birds in Shanghai: Locustella pleskei (Pleske’swarbler), Megalurus pryeri (Japanese swamp warbler) and Acrocephalusc<strong>on</strong>cinens (blunt-winged paddyfield warbler). Journal<str<strong>on</strong>g>of</str<strong>on</strong>g> Fudan University (Natural Science) 45: 417–419.Grosholz, E. 2002. Ecological and evoluti<strong>on</strong>ary c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g>coastal invasi<strong>on</strong>s. Trends in Ecology and Evoluti<strong>on</strong> 17: 22-27.Jiang, L.F., Luo Y.Q., Chen J.K. and Li B. 2009. Ecophysiologicalcharacteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> invasive Spartina alterniflora and native speciesin salt marshes <str<strong>on</strong>g>of</str<strong>on</strong>g> Yangtze River estuary, China. Estuarine,Coastal and Shelf Science 81:74-82.Levin, L.A, Neira C., and Grosholz E.D. 2006. <strong>Invasive</strong> cordgrassmodifies wetland trophic functi<strong>on</strong>. Ecology 87: 419-432.Li B., Liao C.Z., Zhang X.D., Chen H.L, Wang Q., Chen Z.Y., GanX.J., Wu J.H., Zhao B., Ma Z.J., Cheng X.L., Jiang L.F. andChen J.K. 2009. Spartina alterniflora invasi<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> YangtzeRiver estuary, China: an overview <str<strong>on</strong>g>of</str<strong>on</strong>g> current status and ecosystemeffects. Ecological Engineering 35:511-520.Liao, C.Z., Luo Y.Q., Jiang L.F., Zhou X.H., Wu X.W., Fang C.M.,Chen J.K. and Li B. 2007. Invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflora enhancedecosystem carb<strong>on</strong> and nitrogen stocks in <str<strong>on</strong>g>the</str<strong>on</strong>g> Yangtze Estuary,China. Ecosystems 10: 1351-1361.Liao, C.Z., Luo Y.Q., Fang C.M., Chen J.K. and Li B. 2008. Litterpool sizes, decompositi<strong>on</strong>, and nitrogen dynamics in Spartina alterniflora-invadedand native coastal marshlands <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> YangtzeEstuary. Oecologia 156: 589-600.Ma, Z.J., Li B., Jing K., Tang S.M. and Chen J.K. 2004. Are artificialwetlands good alternatives to natural wetlands for waterbirds?-A case study <strong>on</strong> Ch<strong>on</strong>gming Island, China. Biodiversityand C<strong>on</strong>servati<strong>on</strong> 13: 333-350.Ma, Z.J., Wang Y., Gan X.J., Li B., Cai Y.T. and Chen J.K. 2009.Waterbird populati<strong>on</strong> changes in <str<strong>on</strong>g>the</str<strong>on</strong>g> wetlands at Ch<strong>on</strong>gmingD<strong>on</strong>gtan in <str<strong>on</strong>g>the</str<strong>on</strong>g> Yangtze River estuary, China. Envir<strong>on</strong>mentalManagement 43:1187-1200.Quan, W.M., Fu C.Z., Jin B.S., Luo Y.Q., Li B., Chen J.K. and WuJ.H. 2007. Tidal marshes as energy sources for commerciallyimportant nekt<strong>on</strong>ic organisms: stable isotope analysis. MarineEcology-Progress Series 352: 89–99.Wang, J.Q., Zhang X.D., Nie M., Fu C.Z., Chen J.K. and Li B.(2008) Exotic Spartina alterniflora provides compatible habitatsfor native estuarine crab Sesarma dehaani in <str<strong>on</strong>g>the</str<strong>on</strong>g> Yangtze Riverestuary. Ecological Engineering 34: 57-64.Wang, M., Chen J.K. and Li B. 2007. Characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bacterialcommunity structure and diversity in rhizosphere soils <str<strong>on</strong>g>of</str<strong>on</strong>g> threeplants in rapidly changing salt marshes using 16S rDNA. Pedosphere17: 545-556.- 150 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> SpartinaWang, Q., An S.Q., Ma Z.J., Zhao B., Chen J.K. and Li B. 2006a.<strong>Invasive</strong> Spartina alterniflora: biology, ecology and management.Acta Phytotax<strong>on</strong>omica Sinica 44: 559–588.Wang, Q., Wang C.H., Zhao B., Ma Z.J., Luo Y.Q., Chen J.K. andLi B. 2006b. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> growing c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> andinteracti<strong>on</strong>s between salt marsh plants: implicati<strong>on</strong>s for invasibility<str<strong>on</strong>g>of</str<strong>on</strong>g> habitats. Biological Invasi<strong>on</strong>s 8: 1547-1560.Wu, Y.T., Wang C.H., Zhang X.D., Zhao B., Jiang L.F., Chen J.K.and Li B. 2009. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> saltmarsh invasi<strong>on</strong> by Spartina alterniflora<strong>on</strong> arthropod community structure and diets. BiologicalInvasi<strong>on</strong>s 11:635-649.Yeates, G.W. 1999. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> plant <strong>on</strong> nematode community structure.Annual Review <str<strong>on</strong>g>of</str<strong>on</strong>g> Phytopathology 37: 127-149.- 151 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> SpartinaTHE ROLE OF SPARTINA ANGLICA PRODUCTION IN BIVALVE DIETS IN NORTHERNPUGET SOUND, WA, USAC.E. HELLQUIST 1 AND R.A. BLACKSchool <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Sciences, Washingt<strong>on</strong> State University, Pullman, WA 991641 Current address: Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Sciences, State University <str<strong>on</strong>g>of</str<strong>on</strong>g> New York, Oswego, NY 13126;eric.hellquist@oswego.eduThe importance <str<strong>on</strong>g>of</str<strong>on</strong>g> salt marsh productivity to coastal food webs is a questi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ecological andec<strong>on</strong>omic importance. In nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Puget Sound, Washingt<strong>on</strong>, USA, a relatively new source <str<strong>on</strong>g>of</str<strong>on</strong>g>producti<strong>on</strong> has become prominent with <str<strong>on</strong>g>the</str<strong>on</strong>g> establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> invasive Spartina anglica (Poaceae:English cordgrass). Spartina anglica has c<strong>on</strong>verted native coastal mudflat communities that hadlittle or no emergent vascular vegetati<strong>on</strong> into expansive cordgrass meadows. One c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina productivity <strong>on</strong> invaded mudflats may be altered trophic patterns. Three bivalves withdifferent feeding modes (Macoma balthica, Mya arenaria, and Mytilus sp.) that are comm<strong>on</strong>lyfound at <str<strong>on</strong>g>the</str<strong>on</strong>g> edges <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina meadows were selected to investigate whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r Spartina isc<strong>on</strong>tributing to bivalve diets. We compared <str<strong>on</strong>g>the</str<strong>on</strong>g> stable isotope ratios (δ 13 C and δ 34 S) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bivalvesto potential food sources including macroalgae, Spartina, and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r vascular plants. We estimated<str<strong>on</strong>g>the</str<strong>on</strong>g> feasible c<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> producti<strong>on</strong> to bivalve diets during March 2003 by analyzing <str<strong>on</strong>g>the</str<strong>on</strong>g> results<str<strong>on</strong>g>of</str<strong>on</strong>g> multiple source, mass-balanced linear mixing models as calculated by IsoSource. Our estimatesindicate that Spartina biomass may comprise 37-60% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> diet <str<strong>on</strong>g>of</str<strong>on</strong>g> Macoma, while dead Spartinabiomass c<strong>on</strong>tributes 0-46%. For Mya arenaria a filter-feeding clam, 40-59% <str<strong>on</strong>g>of</str<strong>on</strong>g> its diet may c<strong>on</strong>tainSpartina biomass, while 0-35% <str<strong>on</strong>g>of</str<strong>on</strong>g> its diet may c<strong>on</strong>sist <str<strong>on</strong>g>of</str<strong>on</strong>g> dead Spartina biomass. Mytilus sp., afilter-feeding mussel, had 19-44% <str<strong>on</strong>g>of</str<strong>on</strong>g> its diet originating from Spartina biomass while dead Spartinamay be 0-46% <str<strong>on</strong>g>of</str<strong>on</strong>g> its diet. Spartina c<strong>on</strong>sumpti<strong>on</strong> by bivalves is c<strong>on</strong>sistent with previous isotopicstudies. Although Spartina biomass is c<strong>on</strong>sidered recalcitrant, <str<strong>on</strong>g>the</str<strong>on</strong>g> immediate proximity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>c<strong>on</strong>sumers to vast quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina productivity may best explain <str<strong>on</strong>g>the</str<strong>on</strong>g> prevalence <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina inbivalve diets while o<str<strong>on</strong>g>the</str<strong>on</strong>g>r potential sources have minor estimated c<strong>on</strong>tributi<strong>on</strong>s. This study providesan initial examinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> how <str<strong>on</strong>g>the</str<strong>on</strong>g> biomass <str<strong>on</strong>g>of</str<strong>on</strong>g> an invasive plant species is becoming integrated intoestuarine trophic webs.Keywords: Spartina anglica, stable isotopes, mixing models, IsoSource, Macoma, Mytilus, MyaINTRODUCTIONEstuarine salt marshes intercept nutrients and biomassfrom uplands and also export nutrients and biomass int<strong>on</strong>earshore coastal ecosystems (Deegan and Garritt 1997;Tealand Howes 2000; Valiela et al. 2000). The importance <str<strong>on</strong>g>of</str<strong>on</strong>g> saltmarsh productivity in estuarine ecosystems has been acentral research questi<strong>on</strong> with ramificati<strong>on</strong>s forec<strong>on</strong>omically important coastal fisheries (Peters<strong>on</strong> et al.1985, 1986; Teal and Howes 2000; Valiela et al. 2000).Few studies have addressed <str<strong>on</strong>g>the</str<strong>on</strong>g> role <str<strong>on</strong>g>of</str<strong>on</strong>g> invasive speciesin altering ecosystem processes in marine and estuarineenvir<strong>on</strong>ments (Ruiz et al. 1997, Grosholz 2002) despite <str<strong>on</strong>g>the</str<strong>on</strong>g>wealth <str<strong>on</strong>g>of</str<strong>on</strong>g> research examining how invasive species alterlandscapes, nutrient cycling, and species interacti<strong>on</strong>s (Macket al. 2000 and references <str<strong>on</strong>g>the</str<strong>on</strong>g>rein). Spartina anglica C. E.Hubbard (Poaceae; English cordgrass) was introduced int<strong>on</strong>or<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Puget Sound, Washingt<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> early 1960s inSnohomish County (Hacker et al. 2001; Hellquist 2005).Spartina anglica covers nearly 300 solid hectares (ha) <str<strong>on</strong>g>of</str<strong>on</strong>g>Puget Sound intertidal habitat (Hedge et al. 2003). Spartinaanglica col<strong>on</strong>izes s<str<strong>on</strong>g>of</str<strong>on</strong>g>t sediments and is capable <str<strong>on</strong>g>of</str<strong>on</strong>g> rapidlyc<strong>on</strong>verting mudflat habitats into elevated Spartina meadows.Habitat c<strong>on</strong>versi<strong>on</strong> by Spartina is <str<strong>on</strong>g>of</str<strong>on</strong>g> great c<strong>on</strong>cernecologically, ec<strong>on</strong>omically, and aes<str<strong>on</strong>g>the</str<strong>on</strong>g>tically (Hacker et al.2001; Hedge et al. 2003).There are no native maritime species <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina in <str<strong>on</strong>g>the</str<strong>on</strong>g>Pacific Northwest <str<strong>on</strong>g>of</str<strong>on</strong>g> North America and thus mudflatecosystems <str<strong>on</strong>g>of</str<strong>on</strong>g> Puget Sound have developed without lowintertidal meadows <str<strong>on</strong>g>of</str<strong>on</strong>g> emergent C 4 vegetati<strong>on</strong> (i.e. S.anglica) al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g>ir periphery. Generally, <str<strong>on</strong>g>the</str<strong>on</strong>g> high carb<strong>on</strong>c<strong>on</strong>tents <str<strong>on</strong>g>of</str<strong>on</strong>g> C 4 plants have been c<strong>on</strong>sidered to be <str<strong>on</strong>g>of</str<strong>on</strong>g> lownutriti<strong>on</strong>al quality (Caswell et al. 1973). Extensive meadows<str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina that col<strong>on</strong>ize mudflats represent a large subsidy<str<strong>on</strong>g>of</str<strong>on</strong>g> low-quality productivity for c<strong>on</strong>sumers. At Alice Bay,Washingt<strong>on</strong>, S. anglica meadows had over 10 times <str<strong>on</strong>g>the</str<strong>on</strong>g>aboveground biomass as uninvaded mudflat (Hellquist2005). In Willapa Bay, Washingt<strong>on</strong>, col<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Zosterajap<strong>on</strong>ica and Spartina alterniflora has increased primaryproductivity by more than 50% in intertidal mudflats(Ruesink et al. 2006).- 153 -


Chapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> Spartina<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaAs noted for introduced Zostera jap<strong>on</strong>ica (Hahn 2003),<str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica could potentially alter detritaldecompositi<strong>on</strong> rates and detrital quality within estuariesdominated by native eelgrass, Zostera marina. LikeSpartina alterniflora that has higher C:N ratios than Z.marina (Ruesink et al. 2006), mudflats col<strong>on</strong>ized by S.anglica have higher C:N ratios than those with nativeproducers (Hellquist 2005). Changes in detrital availabilityand quality may influence <str<strong>on</strong>g>the</str<strong>on</strong>g> feeding patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> residentdetrital c<strong>on</strong>sumers. The S. anglica invasi<strong>on</strong> provides aunique opportunity to understand <str<strong>on</strong>g>the</str<strong>on</strong>g> trophic integrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>an invasive producer in an estuarine ecosystem.Estuarine food webs are complex due to <str<strong>on</strong>g>the</str<strong>on</strong>g>predominance <str<strong>on</strong>g>of</str<strong>on</strong>g> detrital pathways, <str<strong>on</strong>g>the</str<strong>on</strong>g> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g>potential productivity sources for c<strong>on</strong>sumpti<strong>on</strong>, omnivory,spatial heterogenity, and opportunistic feeding <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>sumersthat may change throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> course <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> year (Deeganand Garritt 1997; Riera et al. 1999). The use <str<strong>on</strong>g>of</str<strong>on</strong>g> multiplestable isotopes (especially δ 13 C and δ 34 S) can providevaluable insight into how Spartina spp. may c<strong>on</strong>tribute to<str<strong>on</strong>g>the</str<strong>on</strong>g> diets <str<strong>on</strong>g>of</str<strong>on</strong>g> estuarine c<strong>on</strong>sumers (Peters<strong>on</strong> et al. 1986;Peters<strong>on</strong> and Howarth 1987; Deegan and Garritt 1997;Valiela et al. 2000; C<strong>on</strong>nolly et al. 2004). For example,13 C/ 12 C isotope ratios can distinguish C 3 from C 4 vegetati<strong>on</strong>or marine algae from terrestrial C 3 vegetati<strong>on</strong> (Fry and Sherr1984, Deegan and Garritt 1997). In marine studies, 34 S/ 32 Sisotope ratios are especially useful to distinguish sources <str<strong>on</strong>g>of</str<strong>on</strong>g>productivity because SO 2– 4 and HS – that are used by plantshave distinct isotopic signatures (Fry et al. 1982; Trust andFry 1992; C<strong>on</strong>nolly et al. 2004).Due to <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sistency <str<strong>on</strong>g>of</str<strong>on</strong>g> isotopic signatures fromproducers to c<strong>on</strong>sumers, trophic relati<strong>on</strong>ships can bediscerned from stable isotopic data that o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise mayremain virtually unknown (Fry and Sherr 1984; Peters<strong>on</strong> etal. 1985). Once isotopic data <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>sumers and potentialdietary producers is obtained, stable isotopic mixing modelscan be used to estimate <str<strong>on</strong>g>the</str<strong>on</strong>g> proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sources (producers)that c<strong>on</strong>tribute to <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a mixture (c<strong>on</strong>sumers;Phillips 2001).We present data that describe <str<strong>on</strong>g>the</str<strong>on</strong>g> potential c<strong>on</strong>tributi<strong>on</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina biomass to <str<strong>on</strong>g>the</str<strong>on</strong>g> diets <str<strong>on</strong>g>of</str<strong>on</strong>g> three bivalves in nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rnPuget Sound through <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 13 C and δ 34 S stable isotoperatios and mixing models calculated by <str<strong>on</strong>g>the</str<strong>on</strong>g> computerapplicati<strong>on</strong> IsoSource (Phillips and Gregg 2003). As adeposit feeder that scours surface sediments for organicmatter, we expected that <str<strong>on</strong>g>the</str<strong>on</strong>g> clam Macoma balthica wouldhave a Spartina c<strong>on</strong>tributi<strong>on</strong> in its diet. For <str<strong>on</strong>g>the</str<strong>on</strong>g> filter feedersMya arenaria (s<str<strong>on</strong>g>of</str<strong>on</strong>g>t-shelled clam) and Mytilus sp. (mussel),we expected Spartina c<strong>on</strong>tributi<strong>on</strong>s to be minimal or entirelyabsent.MATERIALS AND METHODSSamples were collected in March 2003 at West Pass(Camano Island, Island County, Washingt<strong>on</strong>; 48º 15’ 19” N,122º 24’ 56” W). The West Pass and English Boomshoreline is an extensive area <str<strong>on</strong>g>of</str<strong>on</strong>g> mudflat fringed by nativesalt marsh and Spartina meadows located in south SkagitBay, just north <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> original introducti<strong>on</strong> site <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartinaanglica near Stanwood, Washingt<strong>on</strong>. This area is dominatedby approximately 100 ha <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica meadows that growal<strong>on</strong>g mudflats adjacent to <str<strong>on</strong>g>the</str<strong>on</strong>g> West Pass channel. Producerswere randomly collected al<strong>on</strong>g transects and included C 3emergent vascular vegetati<strong>on</strong> (Grindelia integrifolia andSalicornia virginica), submergent vascular vegetati<strong>on</strong>(Zostera marina), macroalgae (Fucus spiralis), and C 4vascular plants. C 4 plants included S. anglica (living leafand standing dead tissue) and <str<strong>on</strong>g>the</str<strong>on</strong>g> native salt marsh grassDistichlis spicata.Three bivalve species (Macoma balthica, Mya arenaria,and Mytilus sp.) were chosen based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir feeding patternsand co-occurrence with Spartina. Macoma is a surfacedeposit feeder, Mya a filter feeder, and Mytilus is anepifaunal filter feeder (Incze et al. 1982; Dame 1996). BothMacoma and Mya burrow in sediments immediately adjacentto Spartina meadows or burrow am<strong>on</strong>g Spartina roots al<strong>on</strong>gtidal channels. Mytilus was found al<strong>on</strong>g Spartina meadowstypically using Spartina root masses and stems as anchoringsubstrate. Bivalves and Spartina were randomly sampled <strong>on</strong><str<strong>on</strong>g>the</str<strong>on</strong>g> same transect at <str<strong>on</strong>g>the</str<strong>on</strong>g> edge <str<strong>on</strong>g>of</str<strong>on</strong>g> a large tidal channel thatpasses through <str<strong>on</strong>g>the</str<strong>on</strong>g> largest Spartina meadow at West Pass.Following collecti<strong>on</strong>, bivalves were held for 24 hours toallow gut c<strong>on</strong>tents to clear. Plant and animal samples werefrozen, cleaned to remove sediment, epiphytes, andcarb<strong>on</strong>ates (10% HCl acid washes) and dried in a dryingoven. Samples were ground into a fine powder prior toisotopic analysis. For Macoma all visceral mass tissue wasused for analysis, whereas for Mya and Mytilus adductormuscles were dissected for analysis. Sample sizes forMacoma, Mya, and Mytilus were 12, seven, and sevenindividuals respectively. Producer sample sizes ranged fromthree to seven collecti<strong>on</strong>s.Samples were analyzed for δ 13 C at <str<strong>on</strong>g>the</str<strong>on</strong>g> Idaho StableIsotope Laboratory, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Idaho, Moscow, Idaho.C<strong>on</strong>tinuous-flow stable isotopic analyses were c<strong>on</strong>ducted <strong>on</strong>a Finnigan-MAT, Delta+ isotope ratio mass spectrometer(Thermo Finnigan, Thermo Electr<strong>on</strong>: Waltham,Massachusetts). Samples were flash-combusted in a NC2500 elemental analyzer (CE Instruments, Thermo Electr<strong>on</strong>:Waltham, Massachusetts) interfaced with a C<strong>on</strong>flo II. Stableisotope ratios are <str<strong>on</strong>g>the</str<strong>on</strong>g> ratio (R) <str<strong>on</strong>g>of</str<strong>on</strong>g> 13 C/ 12 C or 34 S/ 32 Sexpressed in standard delta (δ) notati<strong>on</strong> values in parts permille (‰) where δ 13 C or δ 34 S = [(R sample /R standard)-1 ]*1000.The δ 13 C and δ 15 N reference standard was acetanilide (δ 13 C= -26.07‰ ± 0.11‰; δ 15 N = -0.33 ± 0.17‰). Spinach wasused as an internal standard (δ 13 C = -26.2‰ ± 0.2‰).Sample analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> δ 34 S was c<strong>on</strong>ducted by Iso-Analytical Limited (Sandbach, Cheshire, United Kingdom).The reference standard was NBS-127 (barium sulfateδ 34 S V-CDT = 20.3‰; IAEA, Vienna, Austria). Calibrati<strong>on</strong> and- 154 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> Spartinacorrecti<strong>on</strong> standards were IAEA S-1 (silver sulfide δ 34 S V-CDT= -0.3‰) and Iso-Analytical IA-R025 (barium sulfateδ 34 S V-CDT = +8.53‰). IA-R025 (barium sulfate δ 34 S V-CDT =+8.53‰) and whale baleen (δ 34 S V-CDT = +16.30‰) wereused as internal standards.The IsoSource isotopic mixing model analysisapplicati<strong>on</strong> (www.epa.gov/wed/pages/models.htm; Phillipsand Gregg 2003) was used to estimate <str<strong>on</strong>g>the</str<strong>on</strong>g> feasiblec<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica and six o<str<strong>on</strong>g>the</str<strong>on</strong>g>r potential sources to<str<strong>on</strong>g>the</str<strong>on</strong>g> diets <str<strong>on</strong>g>of</str<strong>on</strong>g> Macoma, Mya, and Mytilus. IsoSource calculates<str<strong>on</strong>g>the</str<strong>on</strong>g> ranges <str<strong>on</strong>g>of</str<strong>on</strong>g> all possible source c<strong>on</strong>tributi<strong>on</strong>s when <str<strong>on</strong>g>the</str<strong>on</strong>g>number <str<strong>on</strong>g>of</str<strong>on</strong>g> sources placed in <str<strong>on</strong>g>the</str<strong>on</strong>g> mixing model exceeds n+1,where n is <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> isotopic tracers (e.g. δ 13 C or δ 34 S;Phillips and Gregg 2003). Therefore, IsoSource allowssource c<strong>on</strong>tributi<strong>on</strong>s to a mixture to be estimated regardless<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> sources and isotopic tracers available. In<str<strong>on</strong>g>the</str<strong>on</strong>g>se circumstances unique soluti<strong>on</strong>s cannot be obtained dueto <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> large numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> sources in <str<strong>on</strong>g>the</str<strong>on</strong>g> mixing model(Phillips and Gregg 2003). Since unique soluti<strong>on</strong>s cannot bedetermined, IsoSource output provides ranges <str<strong>on</strong>g>of</str<strong>on</strong>g> all possiblesource c<strong>on</strong>tributi<strong>on</strong>s to <str<strong>on</strong>g>the</str<strong>on</strong>g> mixture based <strong>on</strong> mass balancecalculati<strong>on</strong>s (Table 1; Phillips and Gregg 2003). The morenarrow <str<strong>on</strong>g>the</str<strong>on</strong>g> range <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se soluti<strong>on</strong>s (e.g 30%-50% vs. 10-70%), <str<strong>on</strong>g>the</str<strong>on</strong>g> more reliable <str<strong>on</strong>g>the</str<strong>on</strong>g> interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sourcec<strong>on</strong>tributi<strong>on</strong>s to <str<strong>on</strong>g>the</str<strong>on</strong>g> mixture can be. Thus, IsoSource is veryuseful for studies <str<strong>on</strong>g>of</str<strong>on</strong>g> trophic relati<strong>on</strong>ships where numerousfood sources could exist for a c<strong>on</strong>sumer. IsoSource has beenapplied to a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> trophic studies inside and outside <str<strong>on</strong>g>of</str<strong>on</strong>g>estuaries (e.g. Felicetti et al. 2003; Melville and C<strong>on</strong>nolly2003; Ben-David et al. 2004; Newsome et al. 2004).The carb<strong>on</strong> isotope ratios <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bivalves were adjustedby a 1‰ fracti<strong>on</strong>ati<strong>on</strong> factor based <strong>on</strong> Peters<strong>on</strong> and Fry(1987), Vander Zanden and Rasmussen (1999), andMcCutchan et al. (2003). Sulfur appears to have little to n<str<strong>on</strong>g>of</str<strong>on</strong>g>racti<strong>on</strong>ati<strong>on</strong> associated with its movement through trophiclevels. Due to <str<strong>on</strong>g>the</str<strong>on</strong>g> scarcity <str<strong>on</strong>g>of</str<strong>on</strong>g> sulfur fracti<strong>on</strong>ati<strong>on</strong> data(McCutchan et al. 2003), <str<strong>on</strong>g>the</str<strong>on</strong>g> typical assumpti<strong>on</strong> that <str<strong>on</strong>g>the</str<strong>on</strong>g>re isminimal fracti<strong>on</strong>ati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sulfur was applied (Peters<strong>on</strong> andHowarth 1987). A biomass c<strong>on</strong>tributi<strong>on</strong> increment <str<strong>on</strong>g>of</str<strong>on</strong>g> 1%and a tolerance interval <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.11‰ was used for all IsoSourceanalyses to insure that <str<strong>on</strong>g>the</str<strong>on</strong>g> full range <str<strong>on</strong>g>of</str<strong>on</strong>g> feasible soluti<strong>on</strong>swas generated (Table 1).RESULTSMacoma (n=12) clustered close to <str<strong>on</strong>g>the</str<strong>on</strong>g> outer edge <str<strong>on</strong>g>of</str<strong>on</strong>g>mixing polyg<strong>on</strong> in close proximity to living and deadSpartina tissue (Figure 1A). Only living tissue <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartinawas c<strong>on</strong>sidered to be a comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> diet <str<strong>on</strong>g>of</str<strong>on</strong>g> Macoma inall soluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mixing model with c<strong>on</strong>tributi<strong>on</strong>s rangingfrom 37-60% (Table 1). Five <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> six productivity sourcessampled could be absent in <str<strong>on</strong>g>the</str<strong>on</strong>g> diet <str<strong>on</strong>g>of</str<strong>on</strong>g> Macoma (Table 1).Four Mya clustered near <str<strong>on</strong>g>the</str<strong>on</strong>g> center <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mixingpolyg<strong>on</strong> while three o<str<strong>on</strong>g>the</str<strong>on</strong>g>r individuals clustered close toSpartina (Figure 1B). IsoSource indicated that Mya couldreceive 40-59% <str<strong>on</strong>g>of</str<strong>on</strong>g> its diet from living Spartina tissue andTable 1. IsoSource results. Ranges <str<strong>on</strong>g>of</str<strong>on</strong>g> feasible biomass source c<strong>on</strong>tributi<strong>on</strong>sfor <str<strong>on</strong>g>the</str<strong>on</strong>g> each bivalve summarized from 34,854 mass balanced mixingmodel soluti<strong>on</strong>s (Macoma balthica), 23,996 soluti<strong>on</strong>s (Mya arenaria), and56,083 soluti<strong>on</strong>s (Mytilus sp.). Each distributi<strong>on</strong> is defined by <str<strong>on</strong>g>the</str<strong>on</strong>g> minimumand maximum values as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> 1 st and 99 th percentiles. The percentilesrepresent 98% <str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>the</str<strong>on</strong>g> possible IsoSource soluti<strong>on</strong>s. The meanpercent <str<strong>on</strong>g>of</str<strong>on</strong>g> each source distributi<strong>on</strong> is cited to show central tendency <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>distributi<strong>on</strong> <strong>on</strong>ly and should not be c<strong>on</strong>sidered a point estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>source c<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> diet <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bivalve.Source C<strong>on</strong>sumer Biomass %Minimum 1% Mean 99% MaximumSpartina (living leaves) Macoma 37 41 52 59 60Mya 40 44 53 58 59Mytilus 19 24 36 43 44Spartina (standing dead) Macoma 0 0 15 38 46Mya 0 0 8 27 35Mytilus 0 0 11 36 46Distichlis spicata Macoma 0 0 10 26 31Mya 0 0 6 19 24Mytilus 0 0 8 25 32C 3 Vascular Plants Macoma 0 0 5 15 17Salicornia virginica Mya 3 5 14 23 26Grindelia integrifolia Mytilus 5 8 20 32 35Zostera marina Macoma 0 0 9 28 33Mya 0 0 10 32 40Mytilus 0 0 13 42 52Macroalgae Macoma 0 0 9 26 31Fucus spiralis Mya 0 0 9 30 38Mytilus 0 0 12 40 503-26% <str<strong>on</strong>g>of</str<strong>on</strong>g> its diet from C 3 vegetati<strong>on</strong>. All o<str<strong>on</strong>g>the</str<strong>on</strong>g>r sources hadwide ranges <str<strong>on</strong>g>of</str<strong>on</strong>g> potential producer c<strong>on</strong>tributi<strong>on</strong>s that includedzero as likely dietary c<strong>on</strong>tributi<strong>on</strong>s (Table 1).Living Spartina biomass and C 3 vegetati<strong>on</strong> were <str<strong>on</strong>g>the</str<strong>on</strong>g><strong>on</strong>ly dietary sources that IsoSource included within all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>feasible soluti<strong>on</strong>s for Mytilus. Living Spartina couldc<strong>on</strong>tribute 19-44% to <str<strong>on</strong>g>the</str<strong>on</strong>g> diet <str<strong>on</strong>g>of</str<strong>on</strong>g> Mytilus, whereas C 3vegetati<strong>on</strong> may c<strong>on</strong>tribute 5-35% <str<strong>on</strong>g>of</str<strong>on</strong>g> its diet. All o<str<strong>on</strong>g>the</str<strong>on</strong>g>rpotential sources included 0% as <str<strong>on</strong>g>the</str<strong>on</strong>g> most frequent feasiblec<strong>on</strong>tributi<strong>on</strong> (Table 1). Six <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> seven individuals <str<strong>on</strong>g>of</str<strong>on</strong>g>Mytilus clustered in <str<strong>on</strong>g>the</str<strong>on</strong>g> center <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mixing polyg<strong>on</strong> while<strong>on</strong>e individual was more depleted in its δ 34 S signature(Fig. 1C).DISCUSSIONOur mixing models present evidence that Spartinaanglica is c<strong>on</strong>sumed by bivalves. The use <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina byMacoma is particularly c<strong>on</strong>vincing based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>strainedmixing model soluti<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> proximity <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals to<str<strong>on</strong>g>the</str<strong>on</strong>g> isotopic signatures <str<strong>on</strong>g>of</str<strong>on</strong>g> living and dead Spartina (Fig. 1A).The mixing model for Mya is also c<strong>on</strong>vincing, although <str<strong>on</strong>g>the</str<strong>on</strong>g>δ 13 C values tend to be more depleted than those <str<strong>on</strong>g>of</str<strong>on</strong>g> Macomapotentially indicating smaller Spartina c<strong>on</strong>tributi<strong>on</strong>s to itsdiet compared to Macoma. With <str<strong>on</strong>g>the</str<strong>on</strong>g> excepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>eoutlying individual, Mytilus had <str<strong>on</strong>g>the</str<strong>on</strong>g> most c<strong>on</strong>sistent isotopicsignatures for δ 13 C and δ 34 S, and <str<strong>on</strong>g>the</str<strong>on</strong>g> lowest ranges <str<strong>on</strong>g>of</str<strong>on</strong>g>potential Spartina c<strong>on</strong>tributi<strong>on</strong>s. As a suspensi<strong>on</strong> feedingmussel, Mytilus should be drawing its food from <str<strong>on</strong>g>the</str<strong>on</strong>g>- 155 -


Chapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> Spartina<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaFig. 1. Dual isotope (δ 34 Sand δ 13 C) scatterplots <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> three bivalves andsix producers sampled at West Pass, Island County, Washingt<strong>on</strong>. Eachopen circle is an individual c<strong>on</strong>sumer. A. Macoma balthica (n=12). B.Mya arenaria (n=7). C. Mytilus sp. (n=7). Producers (mean±SE) are <str<strong>on</strong>g>the</str<strong>on</strong>g>same for each panel: C 3 (pooled values <str<strong>on</strong>g>of</str<strong>on</strong>g> Salicornia virginica and Grindeliaintegrifolia: diam<strong>on</strong>d), Fucus spiralis (closed circle), Zostera marina(square), Distichlis spicata (x), Standing dead Spartina (inverted triangle),Living Spartina leaves (triangle). Source sample sizes range from n=3(Zostera) to n=7 (C 3 plants). Error bars are plotted for SE values > 1 ‰.predominant sources <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> available in <str<strong>on</strong>g>the</str<strong>on</strong>g> sest<strong>on</strong>(Ruckelshaus et al. 1993). However, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>suspended particulate organic matter (SPOM) by <str<strong>on</strong>g>the</str<strong>on</strong>g>sebivalves at West Pass during additi<strong>on</strong>al 2003 samplingperiods was surprisingly inc<strong>on</strong>clusive despite using δ 13 C,δ 15 N and δ 34 S to simultaneously estimate dietaryc<strong>on</strong>tributi<strong>on</strong>s (Hellquist 2005).Previous trophic studies have provided a variety <str<strong>on</strong>g>of</str<strong>on</strong>g>c<strong>on</strong>clusi<strong>on</strong>s about <str<strong>on</strong>g>the</str<strong>on</strong>g> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> detrital Spartina inestuarine food webs. These results differ depending <strong>on</strong>c<strong>on</strong>sumer trophic status and locati<strong>on</strong>. For example, filterfeeders including Geukensia demissa (ribbed mussel;Peters<strong>on</strong> et al. 1985, 1986; Peters<strong>on</strong> and Howarth 1987),Crassostrea virginica (oyster; Peters<strong>on</strong> et al. 1986) and Myaarenaria (Peters<strong>on</strong> et al. 1986; Peters<strong>on</strong> and Howarth 1987)have been identified as using Spartina biomass in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir diets.The mud snail (Ilyanassa obsoleta) which is a deposit feederalso appears to use Spartina in Massachusetts and NorthCarolina (Peters<strong>on</strong> et al. 1986; Peters<strong>on</strong> and Howarth 1987;Currin et al. 1995). Spartina species also c<strong>on</strong>tribute to <str<strong>on</strong>g>the</str<strong>on</strong>g>diets <str<strong>on</strong>g>of</str<strong>on</strong>g> fish in Massachusetts (Peters<strong>on</strong> et al. 1986) andsou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn California (Kwak and Zedler 1997).However, in a study similar to those above, <str<strong>on</strong>g>the</str<strong>on</strong>g> role <str<strong>on</strong>g>of</str<strong>on</strong>g>vascular plants in <str<strong>on</strong>g>the</str<strong>on</strong>g> diets <str<strong>on</strong>g>of</str<strong>on</strong>g> over 50 c<strong>on</strong>sumers wasc<strong>on</strong>sidered minimal or n<strong>on</strong>existent in a Mississippi estuary(Sullivan and M<strong>on</strong>creiff 1990). Instead, macroalgae andzooplankt<strong>on</strong> appeared to be <str<strong>on</strong>g>the</str<strong>on</strong>g> major dietary comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sumers sampled. Even Geukensia demissa andCrassostrea virginica shown by Peters<strong>on</strong> et al. (1986) to useSpartina biomass seemed to have little input from vascularplant productivity (Sullivan and M<strong>on</strong>creiff 1990).In France, S. anglica appears to be an unused source <str<strong>on</strong>g>of</str<strong>on</strong>g>productivity for bivalves (Riera et al. 1999). Despite <str<strong>on</strong>g>the</str<strong>on</strong>g>availability <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica detrital matter, bivalves (Macomabalthica and Mytilus edulis) relied <strong>on</strong> suspended particulateorganic matter and benthic diatoms as <str<strong>on</strong>g>the</str<strong>on</strong>g>ir primary dietarycomp<strong>on</strong>ents. Mytilus edulis had a diet dominated by 65%phytoplankt<strong>on</strong> and 35% diatoms (Riera et al. 1999) whereas<str<strong>on</strong>g>the</str<strong>on</strong>g> diet <str<strong>on</strong>g>of</str<strong>on</strong>g> M. balthica was estimated to be composed <str<strong>on</strong>g>of</str<strong>on</strong>g>76% benthic diatoms and 24% phytoplankt<strong>on</strong>. However,Jacks<strong>on</strong> et al. (1986) used δ 13 C to estimate <str<strong>on</strong>g>the</str<strong>on</strong>g> dietaryc<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica to M. balthica and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir datasuggested that 34-50% <str<strong>on</strong>g>of</str<strong>on</strong>g> assimilated biomass c<strong>on</strong>sumed byM. balthica was Spartina, for a total estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.2-0.3grams <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> per square meter per year (g C m -2 yr -1 )assimilated.Relatively few studies <str<strong>on</strong>g>of</str<strong>on</strong>g> Puget Sound trophic dynamicshave been c<strong>on</strong>ducted (e.g., Simenstad and Wissmar 1985;Ruckelshaus et al. 1993). In sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Puget Sound estuariesand littoral beaches, detrital carb<strong>on</strong> was shown to originateprimarily from Zostera spp., epiphytic algae, andmacroalgae (Simenstad and Wissmar 1985). Our data alsoindicate small c<strong>on</strong>tributi<strong>on</strong>s to bivalve diets from nativemarsh plants with C 3 isotopic signatures (Table 1).Distichlis spicata, a C 4 salt marsh plant that grows inabundance adjacent to <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina meadows at West Pass,apparently c<strong>on</strong>tributes very little to bivalve diets (Table 1).The small c<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Zostera marina to bivalve diets isprobably a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> its low abundance in <str<strong>on</strong>g>the</str<strong>on</strong>g> immediatevicinity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sampling locati<strong>on</strong>.This study indicates that S. anglica biomass is a locallyimportant comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> bivalve diets in nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn PugetSound after being in <str<strong>on</strong>g>the</str<strong>on</strong>g> ecosystem for just over 40 years.The extent that Spartina may c<strong>on</strong>tribute to bivalve diets inour study is somewhat unexpected due to <str<strong>on</strong>g>the</str<strong>on</strong>g> recalcitrant- 156 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> Spartinanature <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina tissue (Peters<strong>on</strong> and Howarth 1987). Of<str<strong>on</strong>g>the</str<strong>on</strong>g> two Spartina tissue types sampled, we were expectingmore c<strong>on</strong>strained IsoSource soluti<strong>on</strong>s for standing deadSpartina c<strong>on</strong>tributi<strong>on</strong>s to bivalve diets since we expecteddead tissue to more closely match <str<strong>on</strong>g>the</str<strong>on</strong>g> detritus available tobivalves (Table 1). The living Spartina tissue samples in thisstudy were newly emerged leaves, whereas <str<strong>on</strong>g>the</str<strong>on</strong>g> deadSpartina samples c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> standing dead Spartina stemsand leaves. Living and dead Spartina biomass were sampledto represent <str<strong>on</strong>g>the</str<strong>on</strong>g> end points <str<strong>on</strong>g>of</str<strong>on</strong>g> a range <str<strong>on</strong>g>of</str<strong>on</strong>g> potential Spartinaisotopic signatures during its life history. The range <str<strong>on</strong>g>of</str<strong>on</strong>g>potential intermediate isotopic values that may occur duringsenescence is apparent as <str<strong>on</strong>g>the</str<strong>on</strong>g> distance between <str<strong>on</strong>g>the</str<strong>on</strong>g>signatures <str<strong>on</strong>g>of</str<strong>on</strong>g> living and dead Spartina (Figs. 1A-C).It may seem c<strong>on</strong>tradictory that <str<strong>on</strong>g>the</str<strong>on</strong>g> mixing models in thisstudy indicate <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina living tissue when <str<strong>on</strong>g>the</str<strong>on</strong>g>bivalves sampled are sediment dwelling or epifaunaldetritivores. These estimates suggest that as Spartinadecomposes, plant fragments in <str<strong>on</strong>g>the</str<strong>on</strong>g> early stages <str<strong>on</strong>g>of</str<strong>on</strong>g> decaymay be c<strong>on</strong>sumed. Early during decay, Spartina would haveits greatest nutriti<strong>on</strong>al value and would be at its leastrecalcitrant since C:N ratios more than double from livingtissue to <str<strong>on</strong>g>the</str<strong>on</strong>g> standing dead tissue phase <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina(Hellquist 2005). Alternatively, <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina detritusby <str<strong>on</strong>g>the</str<strong>on</strong>g> bivalves may be <str<strong>on</strong>g>the</str<strong>on</strong>g> result <str<strong>on</strong>g>of</str<strong>on</strong>g> trophic modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> biomass as it passes through <str<strong>on</strong>g>the</str<strong>on</strong>g> detrital food web(Peters<strong>on</strong> et al. 1986).The spatial proximity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bivalves to <str<strong>on</strong>g>the</str<strong>on</strong>g> edge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>Spartina meadow probably accounts for <str<strong>on</strong>g>the</str<strong>on</strong>g> higher thanexpected inputs <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina in <str<strong>on</strong>g>the</str<strong>on</strong>g> bivalve diets. Although asimilar study <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica and bivalves did not find arelati<strong>on</strong>ship between Spartina c<strong>on</strong>sumpti<strong>on</strong> and proximity toSpartina (Riera et al. 1999), o<str<strong>on</strong>g>the</str<strong>on</strong>g>r work has linked spatialproximity <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>sumers to Spartina with <str<strong>on</strong>g>the</str<strong>on</strong>g> magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina dietary c<strong>on</strong>tributi<strong>on</strong>s (Peters<strong>on</strong> et al. 1986; Peters<strong>on</strong>and Howarth 1987). Local sources <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter were <str<strong>on</strong>g>of</str<strong>on</strong>g>major dietary importance to <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sumers sampled in aMassachusetts estuary (Deegan and Garritt 1997). Forexample, c<strong>on</strong>sumers in <str<strong>on</strong>g>the</str<strong>on</strong>g> upper estuary relied <strong>on</strong>freshwater marsh organic matter and oligohalinephytoplankt<strong>on</strong>, whereas in <str<strong>on</strong>g>the</str<strong>on</strong>g> lower estuary marine sourceswere more important (e.g. benthic diatoms and salt marshvegetati<strong>on</strong>). We sampled bivalves collected from a tidalcreek passing through an extensive Spartina meadow, whereSpartina was <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly immediate source <str<strong>on</strong>g>of</str<strong>on</strong>g> vascular plantproductivity. It is probably not surprising that <str<strong>on</strong>g>the</str<strong>on</strong>g> bivalveshave such a large potential c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica to <str<strong>on</strong>g>the</str<strong>on</strong>g>irdiets. Spartina was also a locally important dietary sourcefor <str<strong>on</strong>g>the</str<strong>on</strong>g> mussel Geukensia demissa when sampled fromwithin a salt marsh tidal channel (Peters<strong>on</strong> et al. 1985,1986). In Padilla Bay, Washingt<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> locallyabundant productivity sources also has been described forMytilus edulis (Ruckelshaus et al. 1993).Like Spartina alterniflora in Willapa Bay, Washingt<strong>on</strong>(Ruesink et al. 2006), S. anglica produces biomassthroughout <str<strong>on</strong>g>the</str<strong>on</strong>g> growing seas<strong>on</strong> that senesceces during <str<strong>on</strong>g>the</str<strong>on</strong>g>autumn and over winter. Thus, S. anglica adds copiousamounts <str<strong>on</strong>g>of</str<strong>on</strong>g> wrack to intertidal habitats. Release <str<strong>on</strong>g>of</str<strong>on</strong>g> biomassinto <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary as a c<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol efforts may alsoc<strong>on</strong>tribute to <str<strong>on</strong>g>the</str<strong>on</strong>g> high levels <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica in bivalve diets atWest Pass. The West Pass area c<strong>on</strong>tains <str<strong>on</strong>g>the</str<strong>on</strong>g> greatestc<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica in Washingt<strong>on</strong> (Hacker et al.2001) and has been subjected to intense c<strong>on</strong>trol efforts. In2003, West Pass and its envir<strong>on</strong>s were intensively c<strong>on</strong>trolledvia applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> herbicide as well as mowing. Thesec<strong>on</strong>trol treatments kill Spartina during <str<strong>on</strong>g>the</str<strong>on</strong>g> growing seas<strong>on</strong>and produce Spartina wrack much earlier than typicalsenescence. The less recalcitrant Spartina tissue that diesprematurely due to c<strong>on</strong>trol activity enters <str<strong>on</strong>g>the</str<strong>on</strong>g> food web up t<str<strong>on</strong>g>of</str<strong>on</strong>g>our to five m<strong>on</strong>ths earlier than is typical. This plant tissuemay <str<strong>on</strong>g>the</str<strong>on</strong>g>n decay faster during <str<strong>on</strong>g>the</str<strong>on</strong>g> warmer summer and earlyfall m<strong>on</strong>ths. By March, <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina isotopic signaturewould be fully incorporated into c<strong>on</strong>sumer tissue.The c<strong>on</strong>tributi<strong>on</strong>s to bivalve diets in this study duringMarch 2003 are subject to some sampling limitati<strong>on</strong>s. Thelack <str<strong>on</strong>g>of</str<strong>on</strong>g> samples <str<strong>on</strong>g>of</str<strong>on</strong>g> benthic diatoms and SPOM unfortunatelyexcludes productivity sources that should logicallyc<strong>on</strong>tribute to bivalve diets. However, additi<strong>on</strong>al stableisotope ratio data from West Pass collected later in 2003using δ 13 C, δ 15 N, and δ 34 S provide additi<strong>on</strong>al evidence for<str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica by bivalves (Hellquist 2005).These data indicate that <str<strong>on</strong>g>the</str<strong>on</strong>g>re are seas<strong>on</strong>al patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> S.anglica use in bivalve diets (Hellquist 2005). However,during <str<strong>on</strong>g>the</str<strong>on</strong>g>se two additi<strong>on</strong>al sampling periods that includesamples <str<strong>on</strong>g>of</str<strong>on</strong>g> sest<strong>on</strong>ic and benthic producti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> dietary role<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se sources was unexpectedly inc<strong>on</strong>clusive (Hellquist2005).The calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> IsoSource greatly enhance ourability to estimate source c<strong>on</strong>tributi<strong>on</strong>s where <str<strong>on</strong>g>the</str<strong>on</strong>g>re are moresources than elements analyzed (Phillips 2001; Phillips andGregg 2003). However, it is crucial to remember that <str<strong>on</strong>g>the</str<strong>on</strong>g>semixing models should be viewed as an index <str<strong>on</strong>g>of</str<strong>on</strong>g> dietaryc<strong>on</strong>sumpti<strong>on</strong>, and not discrete point estimates (Ben-Davidand Schell 2001; Phillips and Gregg 2003). The uncertaintyassociated with <str<strong>on</strong>g>the</str<strong>on</strong>g> dietary estimates generated by IsoSource(Table 1) reinforces <str<strong>on</strong>g>the</str<strong>on</strong>g> inexact nature <str<strong>on</strong>g>of</str<strong>on</strong>g> isotopic data incases where <str<strong>on</strong>g>the</str<strong>on</strong>g>re are multiple productivity sources withsimilar isotopic ratios and where c<strong>on</strong>sumer omnivory isprevalent.Al<strong>on</strong>g with Hahn (2003), Hellquist (2005), and Ruesinket al. (2006), this research illustrates how ecosystemprocesses in Washingt<strong>on</strong> estuaries can be altered by invasiveplant species including Zostera jap<strong>on</strong>ica, S. anglica, and S.alterniflora. To our knowledge, this study is <str<strong>on</strong>g>the</str<strong>on</strong>g> first use <str<strong>on</strong>g>of</str<strong>on</strong>g>multiple stable isotope ratios to examine trophicrelati<strong>on</strong>ships in Puget Sound in relati<strong>on</strong> to invasive Spartina.This study provides evidence that bivalves living in- 157 -


Chapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> Spartina<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinaimmediate proximity to invasive S. anglica are using itsbiomass as a source <str<strong>on</strong>g>of</str<strong>on</strong>g> nutriti<strong>on</strong> during winter m<strong>on</strong>ths. As arelatively new additi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> estuarine flora <str<strong>on</strong>g>of</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rnPuget Sound, not <strong>on</strong>ly is S. anglica a productivity sourcethat was previously absent, but it is also an ecosystemengineer that will eventually alter sediment c<strong>on</strong>diti<strong>on</strong>s to <str<strong>on</strong>g>the</str<strong>on</strong>g>detriment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bivalve populati<strong>on</strong>s that currently use itsbiomass for nutriti<strong>on</strong> (Hellquist 2005).ACKNOWLEDGMENTSFunding for this study was provided by: <str<strong>on</strong>g>the</str<strong>on</strong>g> UnitedStates Envir<strong>on</strong>mental Protecti<strong>on</strong> Agency (US EPA) Office<str<strong>on</strong>g>of</str<strong>on</strong>g> Research and Development, Nati<strong>on</strong>al Center forEnvir<strong>on</strong>mental Research, Science to Achieve Results(STAR) Fellowship for Graduate Envir<strong>on</strong>mental Study toCEH; <str<strong>on</strong>g>the</str<strong>on</strong>g> Estuarine Reserves Divisi<strong>on</strong>, Office <str<strong>on</strong>g>of</str<strong>on</strong>g> Ocean andCoastal Resource Management, Nati<strong>on</strong>al Ocean Service,Nati<strong>on</strong>al Oceanic and Atmospheric Administrati<strong>on</strong>, Nati<strong>on</strong>alEstuarine Research Reserve System Graduate StudentFellowship (NA07OR0262) at <str<strong>on</strong>g>the</str<strong>on</strong>g> Padilla Bay Nati<strong>on</strong>alEstuarine Research Reserve (PBNERR), Mt. Vern<strong>on</strong>, WA toCEH; <str<strong>on</strong>g>the</str<strong>on</strong>g> Washingt<strong>on</strong> State University (WSU) School <str<strong>on</strong>g>of</str<strong>on</strong>g>Biological Sciences Betty W. Higinbotham Trust. We arealso very grateful to <str<strong>on</strong>g>the</str<strong>on</strong>g> University <str<strong>on</strong>g>of</str<strong>on</strong>g> Idaho Stable IsotopeLaboratory (John Marshall and Robert Brander) and Iso-Analytical, Ltd (Sandbach, Cheshire, UK) for sampleanalysis. R. Dave Evans (WSU) provided essentiallaboratory logistical support. D<strong>on</strong>ald Phillips (US EPA,Corvallis, OR) provided critical advice and helpfuldiscussi<strong>on</strong> for IsoSource analyses. Denise Howe, SvenNels<strong>on</strong>, and Justin Snider provided assistance with samplepreparati<strong>on</strong>. Doug Bulthuis and Shar<strong>on</strong> Riggs (PBNERR)provided logistical support throughout this research. KyleMurphy (Washingt<strong>on</strong> State Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture)provided Spartina anglica research permitting support.Thanks also to Brian Maricle, Joel Pankey, Paul Rabie, <str<strong>on</strong>g>the</str<strong>on</strong>g>WSU-UI Stable Isotopes in Ecology seminar, and <str<strong>on</strong>g>the</str<strong>on</strong>g>an<strong>on</strong>ymous reviewers for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir helpful comments <strong>on</strong> drafts<str<strong>on</strong>g>of</str<strong>on</strong>g> this paper.REFERENCESBen-David, M., and D.M. Schell. 2001. Mixing models in analyses<str<strong>on</strong>g>of</str<strong>on</strong>g> diet using multiple stable isotopes: a resp<strong>on</strong>se. Oecologia127:180-184.Ben-David, M., K. Titus, and L.R. Beier. 2004. C<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>salm<strong>on</strong> by Alaskan brown bears: a trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>f between nutriti<strong>on</strong>alrequirements and <str<strong>on</strong>g>the</str<strong>on</strong>g> risk <str<strong>on</strong>g>of</str<strong>on</strong>g> infanticide? Oecologia 138:465-474.C<strong>on</strong>nolly, R.M., M.A. Guest, A.J. Melville, and J.M. Oakes. 2004.Sulfur stable isotopes separate producers in marine food-webanalysis. Oecologia 138:161-167.Currin, C.A., S.Y. Newell, and H.W. Pearl. 1995. The role <str<strong>on</strong>g>of</str<strong>on</strong>g>standing dead Spartina alterniflora and benthic microalgae insalt marsh food webs: c<strong>on</strong>siderati<strong>on</strong>s based <strong>on</strong> multiple stableisotope analysis. Mar Ecol Prog Ser 121:99-116.Dame, R. F. 1996. Ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> marine bivalves: an ecosystem approach.CRC Press, Boca Rat<strong>on</strong>, FL.Deegan, L.A., and R.H. Garritt. 1997. Evidence for spatial variabilityin estuarine food webs. Mar Ecol Prog Ser 147:31-47.Felicetti, L.A., C.C. Schwartz, R.O. Rye, M.A. Harolds<strong>on</strong>, K.A.Gun<str<strong>on</strong>g>the</str<strong>on</strong>g>r, D.L. Phillips, and C.T. Robbins. 2003. Use <str<strong>on</strong>g>of</str<strong>on</strong>g> sulfurand nitrogen stable isotopes to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> importance <str<strong>on</strong>g>of</str<strong>on</strong>g>whitebark pine nuts to Yellowst<strong>on</strong>e grizzly bears. Can J Zool81:763-770.Fry, B., R.S. Scanlan, J.K. Winters, and P.L. Parker. 1982. Sulphuruptake by salt grasses, mangroves, and seagrasses in anaerobicsediments. Geochim Cosmochim Acta 46:1121-1124.Fry, B., and E.B. Sherr. 1984. d13C measurements as indicators <str<strong>on</strong>g>of</str<strong>on</strong>g>carb<strong>on</strong> flow in marine and freshwater ecosystems. C<strong>on</strong>trib MarSci 27:15-47.Grosholz, E. 2002. Ecological and evoluti<strong>on</strong>ary c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g>coastal invasi<strong>on</strong>s. Trends Ecol Evol 17:22-27.Hacker, S.D., D. Heimer, C.E. Hellquist, T.G. Reeder, B. Reeves,T.J. Riordan, and M.N. Dethier. 2001. A marine plant (Spartinaanglica) invades widely varying habitats: potential mechanisms<str<strong>on</strong>g>of</str<strong>on</strong>g> invasi<strong>on</strong> and c<strong>on</strong>trol. Biol Invasi<strong>on</strong>s 3:211-217.Hahn, D.R. 2003. Alterati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> microbial community compositi<strong>on</strong>and changes in decompositi<strong>on</strong> associated with an invasive intertidalmacrophyte. Biol Invasi<strong>on</strong>s 5:45-51.Hedge, P., L.K. Kriwoken, and K. Patten. 2003. A review <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina management in Washingt<strong>on</strong> State, US. J. Aquat PlantManage 41:82-90.Hellquist, C.E. 2005. Community and trophic c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglica C.E. Hubb. (Poaceae: Englishcordgrass) in estuaries <str<strong>on</strong>g>of</str<strong>on</strong>g> Puget Sound, WA, USA. Ph.D. Dissertati<strong>on</strong>.Washingt<strong>on</strong> State University, Pullman, WA.Incze, L.S., L.M. Mayer, E.B. Sherr, and S.A. Macko. 1982. Carb<strong>on</strong>inputs to bivalve mollusks: a comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> two estuaries.Can J Fish Aquat Sci 39:1348-1352.Jacks<strong>on</strong>, D., D.D. Harkness, C.F. Mas<strong>on</strong>, and S.P. L<strong>on</strong>g. 1986.Spartina anglica as a carb<strong>on</strong> source for salt-marsh invertebrates:a study using d 13 C values. Oikos 46:163-170.Kwak, T.J., and J.B. Zedler. 1997. Food web analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rnCalifornia coastal wetlands using multiple stable isotopes.Oecologia 110:262-277.Mack, R.N., D. Simberl<str<strong>on</strong>g>of</str<strong>on</strong>g>f, W.M. L<strong>on</strong>sdale, H. Evans, M. Clout,and F.A. Bazzaz. 2000. Biotic invasi<strong>on</strong>s: causes, epidemiology,global c<strong>on</strong>sequences, and c<strong>on</strong>trol. Ecol Appl 10:689-710.McCutchan, J.H., Jr., J.W. M. Lewis, C. Kendall, and C.C.McGrath. 2003. Variati<strong>on</strong> in trophic shift for stable isotope ratios<str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong>, nitrogen, and sulfur. Oikos 102:378-390.Melville, A.J., and R.M. C<strong>on</strong>nolly. 2003. Spatial analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> stableisotope data to determine primary sources <str<strong>on</strong>g>of</str<strong>on</strong>g> nutriti<strong>on</strong> for fish.Oecologia 136:499-507.Newsome, S.D., D.L. Phillips, B.J. Cullet<strong>on</strong>, T.P. Guilders<strong>on</strong>, andP.L. Koch. 2004. Dietary rec<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an early to middleHolocene human populati<strong>on</strong> from <str<strong>on</strong>g>the</str<strong>on</strong>g> central California coast:insights from advanced stable isotope mixing models. J ArchaeolSci 31:1101-1115.Peters<strong>on</strong>, B.J., and B. Fry. 1987. Stable isotopes in ecosystem studies.Annu Rev Ecol Syst 18:293-320.Peters<strong>on</strong>, B.J., and R.W. Howarth. 1987. Sulfur, carb<strong>on</strong>, and nitrogenisotopes used to trace organic matter flow in <str<strong>on</strong>g>the</str<strong>on</strong>g> salt-marshestuaries <str<strong>on</strong>g>of</str<strong>on</strong>g> Sapelo Island, Georgia. Limnol Oceanogr 32:1195-1213.Peters<strong>on</strong>, B.J., R.W. Howarth, and R.H. Garritt. 1985. Multiplestable isotopes used to trace <str<strong>on</strong>g>the</str<strong>on</strong>g> flow <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matter in estuarinefood webs. Science 227:1361-1363.Peters<strong>on</strong>, B.J., R.W. Howarth, and R.H. Garritt. 1986. Sulfur andcarb<strong>on</strong> isotopes as tracers <str<strong>on</strong>g>of</str<strong>on</strong>g> salt-marsh organic matter flow.Ecology 67:865-874.Phillips, D.L. 2001. Mixing models in analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> diet using multiplestable isotopes: a critique. Oecologia 127:166-170.- 158 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> SpartinaPhillips, D.L., and J.W. Gregg. 2003. Source partiti<strong>on</strong>ing usingstable isotopes: coping with too many sources. Oecologia136:261-269.Riera, P., L.J. Stal, J. Nieuwenhuize, P. Richard, G. Blanchard, andF. Gentil. 1999. Determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> food sources for benthic invertebratesin a salt marsh (Aiguill<strong>on</strong> Bay, France) by carb<strong>on</strong> andnitrogen stable isotopes: importance <str<strong>on</strong>g>of</str<strong>on</strong>g> locally produced sources.Mar Ecol Prog Ser 187:301-307.Ruckelshaus, M.H., R.C. Wissmar, and C.A. Simenstad. 1993. Theimportance <str<strong>on</strong>g>of</str<strong>on</strong>g> autotroph distributi<strong>on</strong> to mussel growth in a wellmixed,temperate estuary. Estuaries 16:898-912.Ruesink, J.L., B.E. Feist, C.J. Harvey, J.S. H<strong>on</strong>g, A.C. Trimble,and L.M. Wisehart. 2006. Changes in productivity associatedwith four introduced species: ecosystem transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a 'pristine'estuary. Mar Ecol Prog Ser 311: 203-215.Ruiz, G.M., J.T. Carlt<strong>on</strong>, E. Grosholz, and A.H. Hines. 1997.Global invasi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> marine and estuarine habitats by n<strong>on</strong>indigenousspecies: mechanisms, extent , and c<strong>on</strong>sequences. AmZool 37:621-632.Simenstad, C.A., and R.C. Wissmar. 1985. δ13C evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>origins and fates <str<strong>on</strong>g>of</str<strong>on</strong>g> organic carb<strong>on</strong> in estuarine and nearshorefood webs. Mar Ecol Prog Ser 22:141-152.Sullivan, M.J., and C.A. M<strong>on</strong>creiff. 1990. Edaphic algae are animportant comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> salt marsh food-webs: evidence frommultiple stable isotope analyses. Mar Ecol Prog Ser 62:149-159.Teal, J.M., and B.L. Howes. 2000. Salt marsh values: retrospecti<strong>on</strong>from <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> century. In: M. P. Weinstein and D. A. Kreeger,eds. C<strong>on</strong>cepts and c<strong>on</strong>troversies in tidal marsh ecology,9-19. Kluwer Academic, Dordrecht, The Ne<str<strong>on</strong>g>the</str<strong>on</strong>g>rlands.Trust, B.A., and B. Fry. 1992. Stable sulphur isotopes in plants: areview. Plant Cell Envir<strong>on</strong> 15:1105-1110.Valiela, I., M.L. Cole, J. McClelland, J. Hauxwell, J. Cebrian, andS.B. Joye. 2000. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> salt marshes as part <str<strong>on</strong>g>of</str<strong>on</strong>g> coastal landscapes.In: M. P. Weinstein and D. A. Kreeger [eds.], C<strong>on</strong>ceptsand c<strong>on</strong>troversies in tidal marsh ecology, 23-38. Kluwer Academic,Dordrecht, The Ne<str<strong>on</strong>g>the</str<strong>on</strong>g>rlands.Vander Zanden, M.J., and J.B. Rasmussen. 1999. Primary c<strong>on</strong>sumerδ 13 C and δ 15 N and <str<strong>on</strong>g>the</str<strong>on</strong>g> trophic positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> aquatic c<strong>on</strong>sumers.Ecology 80:1395-1404.- 159 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> SpartinaCONTRASTING EFFECTS OF SPARTINA FOLIOSA AND HYBRID SPARTINA ON BENTHICINVERTEBRATESE.D. BRUSATI 1,2 AND E.D. GROSHOLZ 11 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Science and Policy, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Davis, One Shields Ave., Davis, CA, USA 956162 Present address: California <strong>Invasive</strong> Plant Council, 1442-A Walnut St. #462, Berkeley, CA USA 94709;edbrusati@cal-ipc.orgIn San Francisco Bay, California, mudflats and native California cordgrass (Spartina foliosa)marshes are being invaded by a hybrid cordgrass formed by hybridizati<strong>on</strong> between S. foliosa andintroduced S. alterniflora. We investigated differences in vegetati<strong>on</strong> and sediment structure, benthicinfauna, and food webs within native and invaded Spartina marshes between San Francisco Bay andBodega Bay, California. The greatest impact <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid Spartina in San Francisco Bay appears to beits alterati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat structure ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than food webs. Habitat structure differed significantlybetween native and hybrid Spartina. Hybrid Spartina produced greater biomass both above andbelow ground, and taller stem heights. Spartina foliosa c<strong>on</strong>tained significantly higher densities andbiomass <str<strong>on</strong>g>of</str<strong>on</strong>g> infaunal organisms in benthic cores than did mudflats, while densities and biomass <str<strong>on</strong>g>of</str<strong>on</strong>g>infauna in hybrid Spartina were lower than, or did not differ from, mudflats. Stable isotopes <str<strong>on</strong>g>of</str<strong>on</strong>g>carb<strong>on</strong> and nitrogen were used to examine whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r macr<str<strong>on</strong>g>of</str<strong>on</strong>g>aunal food webs differ between native orhybrid Spartina and mudflats. Some c<strong>on</strong>sumers collected within Spartina showed evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> a shiftin carb<strong>on</strong> isotope ratios indicating a possible increase in Spartina c<strong>on</strong>sumpti<strong>on</strong> within vegetati<strong>on</strong>;however, <str<strong>on</strong>g>the</str<strong>on</strong>g> pattern was not c<strong>on</strong>sistent across species and sites. Due to <str<strong>on</strong>g>the</str<strong>on</strong>g> differences in <str<strong>on</strong>g>the</str<strong>on</strong>g>ireffects <strong>on</strong> infauna, hybrid Spartina and S. foliosa should not be c<strong>on</strong>sidered equivalent for marshrestorati<strong>on</strong> projects.Keywords: hybrid Spartina, Spartina foliosa, infauna, food webs, CaliforniaINTRODUCTIONIn San Francisco Bay, hybrids formed between nativeCalifornia cordgrass (S. foliosa) and introduced S.alterniflora accrete sediment, increase elevati<strong>on</strong> compared tosurrounding mudflats, and significantly reduce light levelsunder <str<strong>on</strong>g>the</str<strong>on</strong>g>ir canopies (Neira et al. 2005). Based <strong>on</strong> tidallevels, hybrid Spartina would also be able to fill large areas<str<strong>on</strong>g>of</str<strong>on</strong>g> shallow outer coast bays if it establishes populati<strong>on</strong>s <str<strong>on</strong>g>the</str<strong>on</strong>g>re(Daehler and Str<strong>on</strong>g 1997). The spread <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid Spartinathreatens flood c<strong>on</strong>trol channels and habitat for migratingshorebirds, and may impact invertebrates that are food forbirds and fishes.Spartina cordgrasses may ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r facilitate or inhibitinfauna depending <strong>on</strong> locati<strong>on</strong> (e.g., Capehart and Hackney1989, Netto and Lana 1999). The invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hybridSpartina provides an opportunity to examine howdifferences in structure between two closely-relatedecosystem engineers affect infaunal communities.Understanding differences between S. foliosa and hybridSpartina may help managers predict <str<strong>on</strong>g>the</str<strong>on</strong>g> impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>c<strong>on</strong>tinued spread <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid Spartina.This study examined whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r hybrid Spartina isecologically equivalent to native S. foliosa in its impacts <strong>on</strong>infaunal and epifaunal invertebrates. We investigated twohypo<str<strong>on</strong>g>the</str<strong>on</strong>g>ses. First, we predicted that differences in structurebetween S. foliosa and hybrid Spartina will be reflected indifferences in infaunal density, biomass, and tax<strong>on</strong>omiccompositi<strong>on</strong>. Sec<strong>on</strong>d, we predicted that, due to <str<strong>on</strong>g>the</str<strong>on</strong>g> greateraboveground biomass produced by hybrid Spartina,organisms living within <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid will show greater use <str<strong>on</strong>g>of</str<strong>on</strong>g>hybrid as a food source than those in S. foliosa or mudflats,based <strong>on</strong> stable isotopes <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> and nitrogen.METHODSStudy sites included five S. foliosa marshes and twohybrid Spartina marshes in nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn California. Spartinafoliosa sites included: China Camp State Park (38° 0.37’N,122° 28.66’W) <strong>on</strong> San Pablo Bay; Bolinas Lago<strong>on</strong> (38°19.22’N, 122° 41.73’W); Shields Marsh (38° 5.35’N, 122°50.44’W) and Tom’s Point (38° 13.21’N, 122° 56.86’W) <strong>on</strong>Tomales Bay; Drakes Estero (38° 5.36’N, 122° 55.86’W).Hybrid marshes were located <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> eastern side <str<strong>on</strong>g>of</str<strong>on</strong>g> SanFrancisco Bay in San Lorenzo (Roberts Landing, 37°40.22’N 122° 09.70’W) and Alameda (Elsie Roemer BirdSanctuary, 37° 45.58’N 122° 28.80’W). The San Lorenzosite is unique in that it c<strong>on</strong>tains discrete patches <str<strong>on</strong>g>of</str<strong>on</strong>g> both S.foliosa and hybrid Spartina (genotypes c<strong>on</strong>firmed by D.Ayres, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Davis, pers. comm.).- 161 -


Chapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> Spartina<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaWe established ten study quadrats within Spartina ateach site, paired with ten <strong>on</strong> mudflats. These quadrats wereused for vegetati<strong>on</strong>, sediment, and infauna sampling. Fordetails <str<strong>on</strong>g>of</str<strong>on</strong>g> methods, see Brusati and Grosholz (2006). Wemeasured stem heights and densities, aboveground biomass,and belowground biomass at each site, as well as sedimentcharacteristics such as organic matter c<strong>on</strong>tent, bulk density,sediment porewater salinity, and oxidati<strong>on</strong>-reducti<strong>on</strong>potential. Infauna cores (5 centimeters [cm] deep x 5 cmdiameter) were collected in winter and summer 2001-03.Cores were preserved in 8% formalin and organisms werecounted and weighed in <str<strong>on</strong>g>the</str<strong>on</strong>g> laboratory. We used t-tests <strong>on</strong>transformed data to compare results between Spartina andmudflats.To analyze <str<strong>on</strong>g>the</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina <strong>on</strong> invertebrate foodwebs, we collected species <str<strong>on</strong>g>of</str<strong>on</strong>g> infaunal and epifaunalinvertebrates in S. foliosa, hybrid Spartina, and mudflats.To understand how <str<strong>on</strong>g>the</str<strong>on</strong>g>se plants are incorporated into <str<strong>on</strong>g>the</str<strong>on</strong>g>invertebrate food webs we analyzed organisms for naturallyoccuring abundances <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> stable isotope ratios 13 C and 15 N. The carb<strong>on</strong> signal reflects a weighted average <str<strong>on</strong>g>of</str<strong>on</strong>g> foodsources, with Spartina 13 C = -14 ‰, which is significantlymore enriched than o<str<strong>on</strong>g>the</str<strong>on</strong>g>r carb<strong>on</strong> sources in this habitat(Cloern et al. 2002). We predict that if hybrid Spartina isentering <str<strong>on</strong>g>the</str<strong>on</strong>g> food web, c<strong>on</strong>sumers collected within invadedareas will have a str<strong>on</strong>ger Spartina signal than those frommudflats, with c<strong>on</strong>sumers from S. foliosa showing anintermediate signal.RESULTSHybrid Spartina differs from S. foliosa in its effects <strong>on</strong>habitat structure, infaunal communities, and food webs.Hybrid Spartina produces more biomass, and <str<strong>on</strong>g>the</str<strong>on</strong>g>refore moredense structure <strong>on</strong> mudflats, than S. foliosa both above andbelow ground (Fig. 1). Alameda, where <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> is 30years old, has greater belowground biomass than SanLorenzo, which was invaded in <str<strong>on</strong>g>the</str<strong>on</strong>g> 1990s. We found fewc<strong>on</strong>sistent differences between sediment characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g>hybrid or S. foliosa and mudflats. Spartina foliosa generallyhad significantly higher infaunal densities and biomass thanadjacent mudflats. Winter data are presented here, butsummer samples showed similar patterns. In c<strong>on</strong>trast, hybridSpartina sediments never c<strong>on</strong>tained significantly greaterdensities or biomass than mudflats (Fig. 2, numbers abovebars are p-values, n = 10).Food web analysis also shows differences between S.foliosa and hybrid Spartina. Stable isotope results indicated thatsome species show evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> a slight shift in 13 C towardSpartina for individuals collected within S. foliosa. (Fig. 3) Forexample, shore crabs (Hemigrapsus oreg<strong>on</strong>ensis) and Europeangreen crabs (Carcinus maenas) living within S. foliosa at ChinaCamp, and H. oreg<strong>on</strong>ensis in S. foliosa at Drakes Estero hadisotopic signatures more similar to S. foliosa than thosecollected <strong>on</strong> mudflats. At Alameda, <str<strong>on</strong>g>the</str<strong>on</strong>g>re was no significantdifference in isotopic signatures <str<strong>on</strong>g>of</str<strong>on</strong>g> C. maenas or Atlantic oysterdrills (Urosalpinx cinerea) from hybrid Spartina and mudflats.When results from all sites are compared, hybrid Spartina doesnot appear to produce a str<strong>on</strong>ger shift in isotope signatures thanS. foliosa (Brusati and Grosholz 2009).DISCUSSIONOur results show that hybrid Spartina is not ecologicallyequivalent to <str<strong>on</strong>g>the</str<strong>on</strong>g> native cordgrass. While both S. foliosa andhybrid Spartina modify estuarine habitat, <str<strong>on</strong>g>the</str<strong>on</strong>g> magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> changes produced by hybrid Spartina are greater,resulting in qualitative differences in <str<strong>on</strong>g>the</str<strong>on</strong>g> infauna. Thestr<strong>on</strong>gest differences were seen in <str<strong>on</strong>g>the</str<strong>on</strong>g> greater height andaboveground biomass <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid Spartina compared to S.foliosa. The greater aboveground biomass <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid Spartinais more than would be expected from differences in stemheight and density between <str<strong>on</strong>g>the</str<strong>on</strong>g> two species; it also reflects<str<strong>on</strong>g>the</str<strong>on</strong>g> fact that <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid’s stems are c<strong>on</strong>siderably thicker thanS. foliosa’s. Native S. foliosa faciliates infauna, possibly bystabilizing substrate or providing attachment sites for tubebuildingorganisms. In c<strong>on</strong>trast, <str<strong>on</strong>g>the</str<strong>on</strong>g> dense roots andAboveground Biomass (g/m 2 )25002000150010005000Outer coastNodataSan FranciscoEstuaryBH BL DE SH TP CC SLF SLH AL---------------Spartina foliosa ----------------------- Hybrid2001 2002 2003Individuals/m 27000060000500004000030000200001000000.005Outer Coast0.2630.0020.000San FranciscoEstuary0.7240.114BL DE SM TP CC SL ALMudflat S. foliosa Hybrid0.001Fig. 1. Aboveground biomass <str<strong>on</strong>g>of</str<strong>on</strong>g> S. foliosa and hybrid Spartina 2001-03 (n= 10). Site abbreviati<strong>on</strong>s: BH = Bodega Harbor, BL = Bolinas Lago<strong>on</strong>, DE= Drake’s Estero, SH = Shields March, TP = Tom’s Pt., CC = China Camp,SLF = Robert’s Landing S. foliosa, SLH = San Lorenzo hybrid, AL =Alameda.Fig. 2. Infaunal densities in S. foliosa exceed those in mudflats, whilehybrid Spartina never c<strong>on</strong>tained greater densities than mudflats (numbersabove bars are p-values, n = 10, winter 2001 data shown).- 162 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> SpartinaB.A. 15 N (‰) 15 N (‰)1815121816141296China CampHemigrapsusBalanus CarcinusBalanus-22 -20 -18 -16 -14 -12 13 C (‰)BalanusCarcinusUrosalpinxAlameda10-20 -18 -16 -14 -12 13 C (‰)hybridCarcinusHemigrapsusS. foliosa mudflatCarcinusUrosalpinxBalanushybridSpartinamudflatS. foliosaFig. 3. Stable Isotope Results. Crabs (H. oreg<strong>on</strong>ensis, C. maenas) at ChinaCamp showed possible incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S. foliosa (A), while nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r C.maenas nor oyster drills (Urosalpinx cinerea) at Alameda appeared to incorporatehybrid Spartina (B).rhizomes <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid Spartina pre-empt space needed byinfauna so that invertebrates are replaced by plant material.Our stable isotope results show that <str<strong>on</strong>g>the</str<strong>on</strong>g> high biomassproduced by hybrid Spartina does not translate intoincreased incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina in <str<strong>on</strong>g>the</str<strong>on</strong>g> infaunal food web.Hybrid Spartina’s thick stems may require a l<strong>on</strong>ger time todecompose than <str<strong>on</strong>g>the</str<strong>on</strong>g> thinner stems <str<strong>on</strong>g>of</str<strong>on</strong>g> S. foliosa. As a result,carb<strong>on</strong> is held in hybrid Spartina ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than transferred tohigher trophic levels.The change from <str<strong>on</strong>g>the</str<strong>on</strong>g> relatively open canopy <str<strong>on</strong>g>of</str<strong>on</strong>g> S.foliosa to <str<strong>on</strong>g>the</str<strong>on</strong>g> more denser stems <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid Spartina mayhave indirect c<strong>on</strong>sequences for o<str<strong>on</strong>g>the</str<strong>on</strong>g>r primary producers thatare important to estuarine food webs, especially benthicmicroalgae. On <str<strong>on</strong>g>the</str<strong>on</strong>g> Atlantic coast, microalgal producti<strong>on</strong>was lower underneath <str<strong>on</strong>g>the</str<strong>on</strong>g> canopy <str<strong>on</strong>g>of</str<strong>on</strong>g> tall form S. alterniflorathan under <str<strong>on</strong>g>the</str<strong>on</strong>g> shorter dwarf form (Sullivan and Currin2000), suggesting a potential decrease in microalgalproducti<strong>on</strong> in nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn California as hybrid Spartina replacesshorter S. foliosa.Comparing effects <str<strong>on</strong>g>of</str<strong>on</strong>g> native S. foliosa and hybridSpartina may help resource managers predict <str<strong>on</strong>g>the</str<strong>on</strong>g> impact ifhybrid Spartina establishes populati<strong>on</strong>s in coastal bays north<str<strong>on</strong>g>of</str<strong>on</strong>g> San Francisco, while data from S. foliosa marshes mayprovide reference informati<strong>on</strong> for evaluating restorati<strong>on</strong>projects. Infauna are major food sources for shorebirds andnative fishes, recycle carb<strong>on</strong> by breaking down plantdetritus, and move sediment by bioturbati<strong>on</strong> and suspensi<strong>on</strong>feeding (Levin et al. 2001). Therefore, if replacement <str<strong>on</strong>g>of</str<strong>on</strong>g> S.foliosa with hybrid Spartina leads to relatively lowerinfaunal densities, c<strong>on</strong>sequences for <str<strong>on</strong>g>the</str<strong>on</strong>g> food web may reachbey<strong>on</strong>d <str<strong>on</strong>g>the</str<strong>on</strong>g> direct structural changes caused by <str<strong>on</strong>g>the</str<strong>on</strong>g> plants.ACKNOWLEDGMENTSWe thank <str<strong>on</strong>g>the</str<strong>on</strong>g> following for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir assistance with thisproject. Funding: Can<strong>on</strong> Nati<strong>on</strong>al Parks Science ScholarsProgram (E.B.), University <str<strong>on</strong>g>of</str<strong>on</strong>g> California CoastalEnvir<strong>on</strong>mental Quality Initiative (E.B.), UC-Davis PublicService Research Group (E.B.), Bodega Marine Laboratory,Sigma Xi (E.B.), Jastro Shields grant (E.B.), NSFBiocomplexity Program (DEB-0083583) (E.G.). Field andlab assistance: D. Ayres, L. Harris, C. Black, R. Blake, A. C.Tyler, N. Rayl, S. Nort<strong>on</strong>, T. Dill<strong>on</strong>, and J. McCoy. Siteaccess: Point Reyes Nati<strong>on</strong>al Seashore (permit PORE-2001-SCI-0026), Gulf <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Farall<strong>on</strong>es Nati<strong>on</strong>al MarineSanctuary (permit GFNMS-2001-004), Cypress GrovePreserve, China Camp State Park, Marin County OpenSpace District, and East Bay Regi<strong>on</strong>al Park District.REFERENCESBrusati, E.D., and E.D. Grosholz. 2006. Native and introducedecosystem engineers produce c<strong>on</strong>trasting effects <strong>on</strong> estuarineinfaunal communities. Biological Invasi<strong>on</strong>s 8:683-695.Brusati, E.D., and E.D. Grosholz. 2009. Does <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>hybrid cordgrass change estuarine food webs? BiologicalInvasi<strong>on</strong>s 11:917-926.Capehart, A.A., and C.T. Hackney. 1989. The potential role <str<strong>on</strong>g>of</str<strong>on</strong>g>roots and rhizomes in structuring salt-marsh benthiccommunities. Estuaries 12:119-122.Daehler, C.C., and D.R. Str<strong>on</strong>g. 1996. Status, predicti<strong>on</strong>, andpreventi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> introduced cordgrass Spartina spp. invasi<strong>on</strong>s inPacific estuaries, USA. Biological C<strong>on</strong>servati<strong>on</strong> 78:51-58.Levin, L.A., D.F. Boesch, A. Covich, C. Dahm, C. Erseus, K.C.Ewel, R.T. Kneib, A. Moldenke, and J.M. Weslawski. 2001. Thefuncti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> marine critical transiti<strong>on</strong> z<strong>on</strong>es and <str<strong>on</strong>g>the</str<strong>on</strong>g> importance <str<strong>on</strong>g>of</str<strong>on</strong>g>sediment biodiversity. Ecosystems 4:430-451.Neira, C., L.A. Levin, and E.D. Grosholz. 2005. Benthicmacroalgal communities <str<strong>on</strong>g>of</str<strong>on</strong>g> three sites in San Francisco Bayinvaded by hybrid Spartina with comparis<strong>on</strong> to uninvadedhabitats. Marine Ecology Progress Series 292:111-126.Netto, S.A., and P.C. Lana. 1999. The role <str<strong>on</strong>g>of</str<strong>on</strong>g> above- and belowgroundcomp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflora (Loisel) and detritusbiomass in structuring macrobenthic associati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> ParanaguaBay (SE, Brazil). Hydrobiologia 400:167-177.Sullivan, M.J., and C.A. Currin. 2000. Community structure andfuncti<strong>on</strong>al dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> benthic microalgae in salt marshes. In:Weinstein, M.P., and D.A. Kreeger. C<strong>on</strong>cepts and C<strong>on</strong>troversiesin Tidal Marsh Ecology. pp. 81-106. Kluwer AcademicPublishers. Dordrecht, The Ne<str<strong>on</strong>g>the</str<strong>on</strong>g>rlands.- 163 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> SpartinaIMPACTS OF BENTHIC INVERTEBRATES ON SEDIMENT POREWATER AMMONIUM ANDSULFIDE:CONSEQUENCES FOR SPARTINA SEEDLING GROWTHU.H. MAHL 1,2 ,A.C.TYLER 1,3 AND E.D. GROSHOLZ 11 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Science and Policy, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Davis, CA 956162 Current address: Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Notre Dame, South Bend, IN 46556; umahl@nd.edu3 Current address: School <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological and Medical Sciences, Rochester Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Rochester, NY 14623Since its introducti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> 1970s, Spartina alterniflora and its hybrids have rapidly invaded <str<strong>on</strong>g>the</str<strong>on</strong>g>intertidal z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> San Francisco Bay. We know relatively little about <str<strong>on</strong>g>the</str<strong>on</strong>g> biotic and abiotic factorsthat have ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r facilitated or hindered this invasi<strong>on</strong>. In its native range, nitrogen availability andsediment anoxia are known to limit <str<strong>on</strong>g>the</str<strong>on</strong>g> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora. Benthic invertebrates may alterporewater c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> both amm<strong>on</strong>ium and soluble sulfide, and <str<strong>on</strong>g>the</str<strong>on</strong>g>reby indirectly influence S.alterniflora success. In order to better understand how <str<strong>on</strong>g>the</str<strong>on</strong>g> resident macr<str<strong>on</strong>g>of</str<strong>on</strong>g>aunal invertebratecommunity may impact <str<strong>on</strong>g>the</str<strong>on</strong>g> expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora into <str<strong>on</strong>g>the</str<strong>on</strong>g> intertidal z<strong>on</strong>e, we examined howcomm<strong>on</strong> invertebrates influence c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> amm<strong>on</strong>ium and soluble sulfide in sedimentporewater. We c<strong>on</strong>ducted laboratory microcosm experiments to determine how species from threefuncti<strong>on</strong>al feeding groups <str<strong>on</strong>g>of</str<strong>on</strong>g> benthic invertebrates (subsurface deposit feeders, surface depositfeeders and surface grazers) affect porewater in unvegetated areas adjacent to Spartina-invadedareas. In a separate experiment, we examined <str<strong>on</strong>g>the</str<strong>on</strong>g> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora seedlings in <str<strong>on</strong>g>the</str<strong>on</strong>g> presence<str<strong>on</strong>g>of</str<strong>on</strong>g> individual invertebrates. Relative to microcosms without invertebrates, where porewateramm<strong>on</strong>ium was fairly high (greater than 400 micromoles per liter [μM]), we found slightly lowerporewater amm<strong>on</strong>ium in microcosms with Heteromastus filiformis (subsurface deposit feeder) orMacoma petalum (surface deposit feeder). Porewater sulfide was slightly higher in <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g>H. filiformis <strong>on</strong>ly. The significantly greater growth <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora seedlings in <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> M.petalum than in <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> H. filiformis suggests that both high sulfide and high amm<strong>on</strong>iummay have been detrimental to seedling success. Thus, invertebrates may indirectly influence <str<strong>on</strong>g>the</str<strong>on</strong>g>success <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora seedlings by altering porewater chemistry.Keywords: amm<strong>on</strong>ium, benthic, functi<strong>on</strong>al group, invasive species, porewater, Spartina, sulfideINTRODUCTIONAm<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> greatest threats to natural ecosystems areinvasi<strong>on</strong>s by n<strong>on</strong>-native species (Drake et al. 1989;Vitousek et al. 1997). However, <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanisms thatdetermine <str<strong>on</strong>g>the</str<strong>on</strong>g> success or failure <str<strong>on</strong>g>of</str<strong>on</strong>g> new invasi<strong>on</strong>s are <str<strong>on</strong>g>of</str<strong>on</strong>g>tenpoorly understood. The invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pacific Coast estuariesby Spartina alterniflora and its hybrids (S. alterniflora xnative Spartina foliosa) provides some insight into howSpartina can rapidly change benthic communities throughaltering physico-chemical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat. Theshift from native mudflats and relatively diverse uppermarsh habitats to dense Spartina meadows followinginvasi<strong>on</strong> has pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ound effects <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> functi<strong>on</strong>al diversity <str<strong>on</strong>g>of</str<strong>on</strong>g>benthic invertebrates, nutrient cycling, and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r physicalprocesses (Neira et al. 2005, 2006; Levin et al. 2006).However, we still have little informati<strong>on</strong> <strong>on</strong> what biotic andabiotic factors may c<strong>on</strong>tribute to <str<strong>on</strong>g>the</str<strong>on</strong>g> great success <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina in <str<strong>on</strong>g>the</str<strong>on</strong>g> intertidal z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> San Francisco Bay.Determining which factors most str<strong>on</strong>gly influence seedlingestablishment will greatly improve our understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong>.Previous work has shown that nutrient limitati<strong>on</strong> andanoxia affect <str<strong>on</strong>g>the</str<strong>on</strong>g> growth and survival <str<strong>on</strong>g>of</str<strong>on</strong>g> native S.alterniflora in Atlantic coast salt marshes (e.g., Gallagher1975; King et al. 1982; DeLaune et al. 1983; Dai andWiegert 1997) and that nutrient limitati<strong>on</strong> may be especiallysevere during <str<strong>on</strong>g>the</str<strong>on</strong>g> early stages <str<strong>on</strong>g>of</str<strong>on</strong>g> marsh development in bothnative and invaded marshes (Tyler et al. 2003, 2007).Benthic invertebrates can significantly impact <str<strong>on</strong>g>the</str<strong>on</strong>g>c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> solutes in porewater and nutrient cyclingthrough bioturbati<strong>on</strong>, burrow ventilati<strong>on</strong> and c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>organic matter (e.g. Aller 1982, Peters<strong>on</strong> and Heck 1999;Christensen et al. 2000). However, research has not beend<strong>on</strong>e to determine whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> benthiccommunities <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients (e.g.,amm<strong>on</strong>ium) and toxic metabolites (e.g., soluble sulfide) inporewater can affect <str<strong>on</strong>g>the</str<strong>on</strong>g> success <str<strong>on</strong>g>of</str<strong>on</strong>g> invasive plants like S.alterniflora.As part <str<strong>on</strong>g>of</str<strong>on</strong>g> an investigati<strong>on</strong> linking benthic communitystructure to <str<strong>on</strong>g>the</str<strong>on</strong>g> establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora seedlings, weperformed two pilot microcosm experiments. The objective<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> first experiment was to determine whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r comm<strong>on</strong>benthic invertebrates from three different functi<strong>on</strong>al feeding- 165 -


Chapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> Spartina<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinagroups affect porewater amm<strong>on</strong>ium and soluble sulfidewithout plants present. The objective <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>dexperiment was to determine whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g>se same speciesinfluenced <str<strong>on</strong>g>the</str<strong>on</strong>g> growth <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora seedlings. Wepredicted that <str<strong>on</strong>g>the</str<strong>on</strong>g>se three functi<strong>on</strong>al groups would havedifferent effects <strong>on</strong> porewater chemistry resulting indifferential growth <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora seedlings.METHODSWe c<strong>on</strong>ducted microcosm experiments in anenvir<strong>on</strong>mental chamber with a c<strong>on</strong>stant temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> 14°Cand a 12-hour light cycle. All organisms and sedimentswere collected from mudflats near <str<strong>on</strong>g>the</str<strong>on</strong>g> edge <str<strong>on</strong>g>of</str<strong>on</strong>g> a hybridSpartina marsh at <str<strong>on</strong>g>the</str<strong>on</strong>g> Elsie Roemer Bird Sanctuary,Alameda Island, San Francisco Bay, California.Microcosms c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> clear polycarb<strong>on</strong>ate tubes (9.3centimeters inside diameter [cm I.D.] x 30 cm height [H])filled with two layers <str<strong>on</strong>g>of</str<strong>on</strong>g> homogenized, defaunated sediment.The lower layer (12 cm) was seived to 500 micrometers(μm) and <str<strong>on</strong>g>the</str<strong>on</strong>g>n frozen for two weeks to kill any organismsthat passed through <str<strong>on</strong>g>the</str<strong>on</strong>g> seive. The surface layer (3 cm),which was seived to 300 μm, but unfrozen, inoculated <str<strong>on</strong>g>the</str<strong>on</strong>g>core with natural micr<str<strong>on</strong>g>of</str<strong>on</strong>g>lora. Following rec<strong>on</strong>structi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>cores acclimated in <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>mental chamber for threedays. Organic matter (<strong>on</strong>e gram [g] dried, ground Ulva sp.)was added to <str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> each microcosm <strong>on</strong>e day prior toorganism additi<strong>on</strong>. To simulate tidal inundati<strong>on</strong>, wec<strong>on</strong>structed an elaborate, automated system that filled eachchamber with sea water (32 parts per thousand [ppt])halfway through <str<strong>on</strong>g>the</str<strong>on</strong>g> light cycle and drained each chamberhalfway through <str<strong>on</strong>g>the</str<strong>on</strong>g> dark cycle each day.In <str<strong>on</strong>g>the</str<strong>on</strong>g> first experiment, we tested <str<strong>on</strong>g>the</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> threefuncti<strong>on</strong>al feeding groups (subsurface deposit feeders,surface deposit feeders, and surface grazers) <strong>on</strong> porewateramm<strong>on</strong>ium and soluble sulfide c<strong>on</strong>centrati<strong>on</strong>s. Ourexperimental design c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> a defaunated c<strong>on</strong>trol andthree single species treatments (n = 6) representing each <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> three functi<strong>on</strong>al groups: <str<strong>on</strong>g>the</str<strong>on</strong>g> capitellid polychaeteHeteromastus filiformis (sub-surface deposit feeder), <str<strong>on</strong>g>the</str<strong>on</strong>g>nassariid snail Ilyanassa obsoleta (surface grazer) and <str<strong>on</strong>g>the</str<strong>on</strong>g>tellinid clam Macoma petalum (surface deposit feeder) wi<str<strong>on</strong>g>the</str<strong>on</strong>g>ight replicates <str<strong>on</strong>g>of</str<strong>on</strong>g> each treatment (Table 1). The numbers <str<strong>on</strong>g>of</str<strong>on</strong>g>individuals added to each microcosm were equivalent todensities at <str<strong>on</strong>g>the</str<strong>on</strong>g> Elsie Roemer site (see Neira et al. 2005).We extracted porewater from depths <str<strong>on</strong>g>of</str<strong>on</strong>g> 2, 4, and 7 cm usingTable 1: Design for Experiment 1. Density is <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals forthat taxa per core (68 cm 2 ). N=6 for all treatments.Treatment Functi<strong>on</strong>al Group DensityDefaunated c<strong>on</strong>trol - -Heteromastus filiformis Subsurface deposit feeder 30Ilyanassa obsolete Surface grazer 2Macoma petalum Surface deposit feeder 3a perforated stainless steel sampling probe (Berg andMcGla<str<strong>on</strong>g>the</str<strong>on</strong>g>ry 2001) at <str<strong>on</strong>g>the</str<strong>on</strong>g> terminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> experiment (14days). Porewater samples were analyzed for amm<strong>on</strong>iumusing <str<strong>on</strong>g>the</str<strong>on</strong>g> indophenol blue method (Solorzano 1969) and forsulfide using a modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> method described byCline (1969). For statistical analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> porewaterparameters, we calculated a mean value for all three depthsfor each replicate and analyzed differences am<strong>on</strong>gtreatments separately for amm<strong>on</strong>ium and sulfide usingANOVA.In <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d experiment, we used <str<strong>on</strong>g>the</str<strong>on</strong>g> same invertebratetreatments and defaunated c<strong>on</strong>trol as in <str<strong>on</strong>g>the</str<strong>on</strong>g> first experiment,but added <strong>on</strong>e S. alterniflora seedling to each microcosm.We used nine replicates for defaunated c<strong>on</strong>trols and each <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> three macroinvertebrate treatments. The seedlings usedin this experiment were germinated in <str<strong>on</strong>g>the</str<strong>on</strong>g> greenhouse usingseeds from inflorescences collected in Willapa Bay,Washingt<strong>on</strong>. Thirty days after germinati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> seedlingswere transferred to envir<strong>on</strong>mental chambers and acclimatedto experimental temperature and light regimes while salinity<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> water in sediments was gradually increased from 0 to35 ppt over a period <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 days. Seedlings were transplantedto microcosms after this acclimati<strong>on</strong> period. After 14 days,we measured change in total leaf length (sum <str<strong>on</strong>g>of</str<strong>on</strong>g> length <str<strong>on</strong>g>of</str<strong>on</strong>g>individual leaves) and seedling biomass (aboveground andbelowground). We analyzed differences am<strong>on</strong>g treatmentsusing ANOVA.RESULTSFor <str<strong>on</strong>g>the</str<strong>on</strong>g> first experiment, preliminary analysis suggestedthat <str<strong>on</strong>g>the</str<strong>on</strong>g> affects <str<strong>on</strong>g>of</str<strong>on</strong>g> benthic invertebrates <strong>on</strong> porewateramm<strong>on</strong>ium and sulfide c<strong>on</strong>centrati<strong>on</strong>s differed am<strong>on</strong>gfuncti<strong>on</strong>al groups. Sulfide c<strong>on</strong>centrati<strong>on</strong>s were highest inmicrocosms c<strong>on</strong>taining H. filiformis but differences betweentreatments were not significant (p = 0.381; Fig. 1A). Theamm<strong>on</strong>ium c<strong>on</strong>centrati<strong>on</strong> was highest in <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol andlowest in microcosms c<strong>on</strong>taining M. petalum, but again <str<strong>on</strong>g>the</str<strong>on</strong>g>differences were not significant (p = 0.285; Fig. 1B). Thesurface grazer I. obsoleta had no obvious effects <strong>on</strong>amm<strong>on</strong>ium or sulfide.Overall, in <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d experiment, seedlingestablishment was relatively poor, and <str<strong>on</strong>g>the</str<strong>on</strong>g>re was visibleyellowing and dehydrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> leaves in all treatments,particularly microcosms c<strong>on</strong>taining H. filiformis. However,our preliminary analysis indicates that <str<strong>on</strong>g>the</str<strong>on</strong>g> surface depositfeeder treatment (M. petalum) had a positive effect <strong>on</strong>seedling establishment (Fig. 2A, 2B and 2C). In c<strong>on</strong>trast toc<strong>on</strong>trols that had no significant growth, <str<strong>on</strong>g>the</str<strong>on</strong>g> total leaf lengthincreased approximately seven cm in microcosms c<strong>on</strong>tainingM. petalum. Post-hoc Tukey tests indicated significantdifferences between M. petalum and H. filiformis (p =0.048). Aboveground and belowground biomass were alsohigher in microcosms c<strong>on</strong>taining M. petalum than in o<str<strong>on</strong>g>the</str<strong>on</strong>g>r- 166 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> SpartinaA.sulfide (μM)35302520151050B.600amm<strong>on</strong>ium (μM)5004003002001000CTRL HET ILY MACCTRL HET ILY MACFig. 1: Results from Experiment 1 by treatment (CTRL=defaunated c<strong>on</strong>trol,HET=Heteromastus filiformis, ILY=Ilyanassa obsoleta, andMAC=Macoma petalum). A. Porewater sulfide c<strong>on</strong>centrati<strong>on</strong>. B. Porewateramm<strong>on</strong>ium c<strong>on</strong>centrati<strong>on</strong>. N=6 for all treatments.treatments, although <str<strong>on</strong>g>the</str<strong>on</strong>g>se differences were not significant(Fig. 2B and 2C).DISCUSSIONOur preliminary results suggest that under laboratoryc<strong>on</strong>diti<strong>on</strong>s benthic macroinvertebrates can affect bothporewater amm<strong>on</strong>ium c<strong>on</strong>centrati<strong>on</strong>s and Spartinaalterniflora seedling growth. We found that both H.filiformis and M. petalum lowered porewater amm<strong>on</strong>iumc<strong>on</strong>centrati<strong>on</strong>s relative to c<strong>on</strong>trols, while surface grazers hadno obvious effect <strong>on</strong> porewater amm<strong>on</strong>ium or sulfides.Benthic invertebrates can decrease porewater amm<strong>on</strong>iumand soluble sulfide c<strong>on</strong>centrati<strong>on</strong>s by flushing porewatersolutes from sediments during burrow c<strong>on</strong>structi<strong>on</strong> andirrigati<strong>on</strong> (Aller 1982; Christensen et al. 2000) and bystimulating oxidati<strong>on</strong>-reducti<strong>on</strong> reacti<strong>on</strong>s (Pelegri andBlackburn 1995; Rysgaard et al. 2000), but <str<strong>on</strong>g>the</str<strong>on</strong>g> magnitude <str<strong>on</strong>g>of</str<strong>on</strong>g>change is limited by <str<strong>on</strong>g>the</str<strong>on</strong>g> depth <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> burrow (e.g., Aller1982; Francois et al. 2002; Michaud et al. 2006).Despite <str<strong>on</strong>g>the</str<strong>on</strong>g> negative effect <strong>on</strong> porewater amm<strong>on</strong>iumc<strong>on</strong>centrati<strong>on</strong>s, H. filiformis appeared to have a positiveeffect <strong>on</strong> soluble sulfide c<strong>on</strong>centrati<strong>on</strong>s although this wasnot c<strong>on</strong>firmed statistically. Past work has dem<strong>on</strong>strated thatinvertebrates can increase sulfate reducti<strong>on</strong> rates in marinesediments (Hansen et al. 1996). A variety <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanismsincluding removal <str<strong>on</strong>g>of</str<strong>on</strong>g> inhibitory metabolites, redistributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>particles, secreti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> labile mucus al<strong>on</strong>g burrow walls, andtranslocati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> labile organic matter from <str<strong>on</strong>g>the</str<strong>on</strong>g> surface to <str<strong>on</strong>g>the</str<strong>on</strong>g>deeper sediment during feeding could be resp<strong>on</strong>sible forincreased anaerobic metabolism and sulfide producti<strong>on</strong>A.B.C.change in leaf length (cm)biomass (g)biomass (g)121086420-2-4-60.100.080.060.040.020.000.120.100.080.060.040.020.00CTRL HET ILY MACCTRL HET ILY MACCTRL HET ILY MACFig. 2: Results from Experiment 2 by treatment (CTRL=defaunated c<strong>on</strong>trol,HET=Heteromastus filiformis, ILY=Ilyanassa obsoleta, MAC=Macomapetalum). A. Change in leaf length <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflora seedlings. B.Aboveground biomass <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora seedlings. C. Belowground biomass<str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora seedlings. * indicates treatment means that differsignificantly from each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r (post-hoc Tukey, p< 0.05). N = 9 for eachtreatment.(Wheatcr<str<strong>on</strong>g>of</str<strong>on</strong>g>t et al. 1994; Marinelli and Boudreau 1996; Allerand Aller 1998). However, it is not clear which mechanismswould account for <str<strong>on</strong>g>the</str<strong>on</strong>g> positive effect <str<strong>on</strong>g>of</str<strong>on</strong>g> H. filiformis <strong>on</strong>soluble sulfides or why H. filiformis would have oppositeeffects <strong>on</strong> amm<strong>on</strong>ium and sulfide.Significant differences between treatments for change intotal leaf length suggest that <str<strong>on</strong>g>the</str<strong>on</strong>g> benthic community has <str<strong>on</strong>g>the</str<strong>on</strong>g>- 167 -


Chapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> Spartina<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinapotential to substantially influence <str<strong>on</strong>g>the</str<strong>on</strong>g> establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> S.alterniflora seedlings at <str<strong>on</strong>g>the</str<strong>on</strong>g> edge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> expanding marsh.Work from eastern U.S. marshes in <str<strong>on</strong>g>the</str<strong>on</strong>g> native range <str<strong>on</strong>g>of</str<strong>on</strong>g> S.alterniflora has shown growth and establishment can belimited by high porewater sulfide c<strong>on</strong>centrati<strong>on</strong>s (Morris andDacey 1984; Bradley and Morris 1990) and by availability<str<strong>on</strong>g>of</str<strong>on</strong>g> amm<strong>on</strong>ium in porewater (Tyler et al. 2003). At <str<strong>on</strong>g>the</str<strong>on</strong>g> sametime, very high amm<strong>on</strong>ium can have a toxic effect <strong>on</strong> plantsalthough tolerances vary widely between species (Britto andKr<strong>on</strong>zucker 2001). Amm<strong>on</strong>ium toxicity for o<str<strong>on</strong>g>the</str<strong>on</strong>g>r marshspecies has been dem<strong>on</strong>strated at c<strong>on</strong>centrati<strong>on</strong>s above 200μM (Tylova et al. 2008), although to our knowledge this hasnot been dem<strong>on</strong>strated for S. alterniflora. H. filiformisstimulated an increase in porewater sulfide c<strong>on</strong>centrati<strong>on</strong>s, adecrease in porewater amm<strong>on</strong>ium and a loss <str<strong>on</strong>g>of</str<strong>on</strong>g> S.alterniflora leaves (measured as <str<strong>on</strong>g>the</str<strong>on</strong>g> decrease in leaf length).In c<strong>on</strong>trast, <str<strong>on</strong>g>the</str<strong>on</strong>g> low porewater sulfide and amm<strong>on</strong>ium in <str<strong>on</strong>g>the</str<strong>on</strong>g>presence <str<strong>on</strong>g>of</str<strong>on</strong>g> M. petalum appeared to promote seedlingsuccess. In our experiments, c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> amm<strong>on</strong>iumexceeded 300 μM and it is possible that it had an inhibitoryeffect <strong>on</strong> seedling growth. While future work is needed toclarify <str<strong>on</strong>g>the</str<strong>on</strong>g> mechanisms linking benthic invertebratecommunities to seedling success, our results suggest thatboth low porewater sulfide and moderate levels <str<strong>on</strong>g>of</str<strong>on</strong>g> porewateramm<strong>on</strong>ium are requisite for S. alterniflora seedling success.The spread <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora and its hybrids in WestCoast estuaries may depend in part <strong>on</strong> complex interacti<strong>on</strong>sbetween infaunal community structure and localbiogeochemical cycling that in turn dictate seedling success.As <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> proceeds, changes in benthic communitystructure may ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r facilitate or inhibit <str<strong>on</strong>g>the</str<strong>on</strong>g> success <str<strong>on</strong>g>of</str<strong>on</strong>g> S.alterniflora and its hybrids. L<strong>on</strong>g-term goals for c<strong>on</strong>trol,eradicati<strong>on</strong>, and restorati<strong>on</strong> depend <strong>on</strong> an understanding <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> processes that c<strong>on</strong>trol <str<strong>on</strong>g>the</str<strong>on</strong>g> establishment and expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g>se invaders.ACKNOWLEDGMENTSMany thanks to: Jay Stachowicz for generous use <str<strong>on</strong>g>of</str<strong>on</strong>g> hiswet lab, John Lambrinos for provisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> seedlings, andRachael Blake, Nicole Christiansen, Nicole Smith, andCrystal Love for all <str<strong>on</strong>g>the</str<strong>on</strong>g>ir hard work. Funding was providedby NSF Biocomplexity Project (DEB-0083583).REFERENCESAller, R.C. 1982. The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> macrobenthos <strong>on</strong> chemical properties<str<strong>on</strong>g>of</str<strong>on</strong>g> marine sediment and overlying water. In: P.L. McCall andM.J.S. Tevesz, eds. Animal-Sediment Relati<strong>on</strong>s. Plenum Press,New York, USA.Aller, R.C., and J.Y. Aller. 1998. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> bioirrigati<strong>on</strong> intensityand solute exchange <strong>on</strong> diagenetic reacti<strong>on</strong> rates in marinesediments. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Marine Research 56:905–936.Berg P., and K.J. McGla<str<strong>on</strong>g>the</str<strong>on</strong>g>ry. 2001. A high-resoluti<strong>on</strong> pore watersampler for sandy sediments. Limnology and Oceanography46:203-10.Bradley, P.M., and J.T. Morris. 1990. Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen andsulfide c<strong>on</strong>centrati<strong>on</strong> <strong>on</strong> nitrogen uptake kinetics in Spartina alterniflora.Ecology 71:282-287.Britto, D.T., and H.J. Kr<strong>on</strong>zucker. 2002. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Plant Physiology159:567-584.Christensen, B., A. Vedel, and E. Kristensen. 2000. Carb<strong>on</strong> andnitrogen fluxes in sediment inhabited by suspensi<strong>on</strong>-feeding (Nereisdiversicolor) and n<strong>on</strong>-suspensi<strong>on</strong>-feeding (N. virens) polychaetes.Marine Ecological Progress Series 192:203-217.Cline, J.D. 1969. Spectrophotometric determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrogensulfide in natural waters. Limnology and Oceanography 14:454-8.Dai, T., and R.G. Wiegert. 1997. A field study <str<strong>on</strong>g>of</str<strong>on</strong>g> photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>ticcapacity and its resp<strong>on</strong>se to nitrogen fertilizati<strong>on</strong> in Spartina alterniflora.Estuarine, Coastal, and Shelf Science 45:273-83.DeLaune, R.D., C.J. Smith, and W.H. Patrick, Jr. 1983. Relati<strong>on</strong>ship<str<strong>on</strong>g>of</str<strong>on</strong>g> marsh elevati<strong>on</strong>, redox potential, and sulfide to Spartinaalterniflora productivity. Soil Science Society <str<strong>on</strong>g>of</str<strong>on</strong>g> America Journal47:930-5.Drake, J.A., H.A. Mo<strong>on</strong>ey, F. DiCastri, R.H. Groves, F.J. Kruger,M. Rejmanek, and M. Williams<strong>on</strong>, eds. 1989. Biological Invasi<strong>on</strong>s:A Global Perspective. John Wiley & S<strong>on</strong>s, Chichester,UK.Francois, F., M. Gerino, G. Stora, J. Durbec, and J. Poggiale. 2002.Functi<strong>on</strong>al approach to sediment reworking by gallery-formingmacrobenthic organisms: modeling and applicati<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g>polychaete Nereis diversicolor. Marine Ecological Progress Series229:127-136.Gallagher, J.L. 1975. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> an amm<strong>on</strong>ium pulse <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> growthand elemental compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> natural stands <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alternifloraandJuncus roemerianus. American Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Botany62:644-648.Hansen, K., G. King, and E. Kristensen. 1996. Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> s<str<strong>on</strong>g>of</str<strong>on</strong>g>tshellclam Mya arenaria <strong>on</strong> sulfate reducti<strong>on</strong> in an intertidalsediment. Aquatic Microbial Ecology 10:181 -194.King, G.M., M.J. Klug, R.G. Wiegert, and A.G. Chalmers. 1982.Relati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> soil water movement and sulfide c<strong>on</strong>centrati<strong>on</strong> toSpartina alterniflora producti<strong>on</strong> in a Georgia salt marsh. Science218:61-63.Levin, L.A., C. Neira, and E.D. Grosholz. 2006. <strong>Invasive</strong> cordgrassmodifies wetland trophic functi<strong>on</strong>. Ecology. 87:419-432.Marinelli, R.L., and B.P. Boudreau. 1996. An experimental andmodeling study <str<strong>on</strong>g>of</str<strong>on</strong>g> pH and related solutes in irrigated anoxiccoastal sediment. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Marine Research 54:939-966.Michaud, E., G. Desrosiers, F. Mermillod-Bl<strong>on</strong>din, B. Sundby, andG. Stora. 2006. The functi<strong>on</strong>al group approach to bioturbati<strong>on</strong>:<str<strong>on</strong>g>the</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Macoma balthica community <strong>on</strong> fluxes <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrientsand dissolved organic carb<strong>on</strong> across <str<strong>on</strong>g>the</str<strong>on</strong>g> sediment-waterinterface. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Experimental Marine Biology and Ecology.337:178-189.Morris, J.T., and J.W.H. Dacey. 1984. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> O 2 <strong>on</strong> amm<strong>on</strong>iumuptake and root respirati<strong>on</strong> by Spartina alterniflora. AmericanJournal <str<strong>on</strong>g>of</str<strong>on</strong>g> Botany. 71:979-985.Neira, C., L.A. Levin, and E.D. Grosholz. 2005. Benthic macr<str<strong>on</strong>g>of</str<strong>on</strong>g>aunalcommunities <str<strong>on</strong>g>of</str<strong>on</strong>g> three sites in San Francisco Bay invaded byhybrid Spartina with comparis<strong>on</strong> to uninvaded habitats. MarineEcological Progress Series 292:111-126.Neira, C., E.D. Grosholz, L.A. Levin, and R. Blake. 2006. Mechanismsgenerating modificait<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> benthos following tidal flat invasi<strong>on</strong>by a Spartina hybrid. Ecological Applicati<strong>on</strong>s 16:1391-1404.- 168 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> SpartinaPelegri, S.P., and T.H. Blackburn. 1995. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> bioturbati<strong>on</strong> byNereis sp., Mya arenaria and Cerastoderma sp. <strong>on</strong> nitrificati<strong>on</strong>and denitrificati<strong>on</strong> in estuarine sediments. Ophelia 42:289-99.Peters<strong>on</strong>, B.J., and K.L. Heck. 1999. The potential for suspensi<strong>on</strong>feeding bivalves to increase seagrass productivity. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g>Marine Biology and Ecology 240:37-52.Rysgaard, S., P.B. Christensen, M.V. Sorensen, P. Funch, and P.Berg. 2000. Marine mei<str<strong>on</strong>g>of</str<strong>on</strong>g>auna, carb<strong>on</strong> and nitrogen mineralizati<strong>on</strong>in sandy and s<str<strong>on</strong>g>of</str<strong>on</strong>g>t sediments <str<strong>on</strong>g>of</str<strong>on</strong>g> Disko Bay, West Greenland.Aquatic Microbial Ecology 21:59-71.Solorzano, L. 1969. Determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> amm<strong>on</strong>ia in natural waters by<str<strong>on</strong>g>the</str<strong>on</strong>g> phenolhypochlorite method. Limnology and Oceanography14:799-801.Tyler, A.C., J.G. Lambrinos, and E.D. Grosholz. 2007. Nitrogeninputs promote <str<strong>on</strong>g>the</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> an invasive marsh grass. EcologicalApplicati<strong>on</strong>s 17:1886-1898.Tyler, A.C., T.A. Mastr<strong>on</strong>icola, and K.J. McGla<str<strong>on</strong>g>the</str<strong>on</strong>g>ry. 2003. Nitrogenfixati<strong>on</strong> and nitrogen limitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> primary producti<strong>on</strong> al<strong>on</strong>ga natural marsh chr<strong>on</strong>osequence. Oecologia 136:431-438.Tylovia, E., L. Steinbachova, O. Votrubova, B. Lorenzen, and H.Brix. 2008. Different sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> Phragmites australis andGlycera maxima to high availability <str<strong>on</strong>g>of</str<strong>on</strong>g> amm<strong>on</strong>ium-N. AquaticBotany 88:93-98.Vitousek, P.M., H.A. Mo<strong>on</strong>ey, J. Lubchenco, and J.M. Melillo.1997. Human dominati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Earth's ecosystems. Science277:494-499.Wheatcr<str<strong>on</strong>g>of</str<strong>on</strong>g>t, R.A., I. Olmez, and F.X. Pink. 1994. Particle bioturbati<strong>on</strong>in Massachusetts Bay: preliminary results using a new deliberatetracer technique. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Marine Research 52:1129-1150.- 169 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> SpartinaQUANTIFYING THE POTENTIAL IMPACT OF THE SPARTINA INVASION ON INVERTEBRATEFOOD RESOURCES FOR FORAGING SHOREBIRDS IN SAN FRANCISCO BAYN. CHRISTIANSEN 1 , E.D. GROSHOLZ 2 AND P. ROSSODepartment <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Science and Policy, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Davis, One Shields Ave., Davis, CA 956161 n.a.christiansen@gmail.com; 2 tedgrosholz@ucdavis.eduThe extensive mudflats <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco Bay estuary are critical habitats and foraging groundsfor migratory shorebirds. However, San Francisco Bay has experienced invasi<strong>on</strong> by hundreds <str<strong>on</strong>g>of</str<strong>on</strong>g>n<strong>on</strong>-native introduced species, and its productive mudflats are now threatened by <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se —hybrid Spartina alterniflora. To assess <str<strong>on</strong>g>the</str<strong>on</strong>g> potential effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> invasive cordgrass <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>shorebird foraging habitat, we quantified invertebrate abundance and biomass al<strong>on</strong>g transectsextending from <str<strong>on</strong>g>the</str<strong>on</strong>g> edge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina meadow to <str<strong>on</strong>g>the</str<strong>on</strong>g> lowest tide line at two locati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> bay,Robert’s Landing and Elsie Roemer. We also estimated <str<strong>on</strong>g>the</str<strong>on</strong>g> size <str<strong>on</strong>g>of</str<strong>on</strong>g> areas potentially invaded bySpartina using tidal elevati<strong>on</strong> data based <strong>on</strong> LIDAR images and tidal inundati<strong>on</strong> data taken fromc<strong>on</strong>tinuous tidal height m<strong>on</strong>itoring stati<strong>on</strong>s. We found that invertebrate biomass was greatest athigher tidal elevati<strong>on</strong>s nearer to <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh, while abundance was greatest at intermediate distancesfrom <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh. Current estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> tolerance to tidal inundati<strong>on</strong> indicate that <str<strong>on</strong>g>the</str<strong>on</strong>g> area col<strong>on</strong>ized bySpartina could increase by as much as four to eight times its present size, depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>individual site characteristics. These data suggest that <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a high potential for losing significantamounts <str<strong>on</strong>g>of</str<strong>on</strong>g> valuable foraging habitat for shorebirds if Spartina extends its distributi<strong>on</strong> to predictedtidal elevati<strong>on</strong>s in San Francisco Bay.Keywords: shorebirds, San Francisco Bay, Hybrid Spartina, infaunaINTRODUCTIONSan Francisco Bay is now home to more than 250species <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-native plants and animals (Cohen and Carlt<strong>on</strong>1998). One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most serious recent invasi<strong>on</strong>s has been <str<strong>on</strong>g>the</str<strong>on</strong>g>smooth cordgrass Spartina alterniflora, which is native to<str<strong>on</strong>g>the</str<strong>on</strong>g> eastern coast <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> North America. Since itsintroducti<strong>on</strong>, S. alterniflora has hybridized with <str<strong>on</strong>g>the</str<strong>on</strong>g> nativecordgrass S. foliosa creating a hybrid that has rapidlycol<strong>on</strong>ized many areas <str<strong>on</strong>g>of</str<strong>on</strong>g> central and south San FranciscoBay (Daelher and Str<strong>on</strong>g 1997, Ayres et al. 2004). Thehybrid can col<strong>on</strong>ize open mudflats as well as out-competenative vegetati<strong>on</strong> at higher tidal heights (Ayres et al. 2004).The ecological repercussi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> this invasi<strong>on</strong> are farreaching with widespread impacts <strong>on</strong> community structureand ecosystem functi<strong>on</strong> (Neira et al. 2005; 2006, Levin et al.2006).One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most serious c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid Spartinainvasi<strong>on</strong> is <str<strong>on</strong>g>the</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> open mudflat habitat for shorebirds.San Francisco Bay, with its extensive mudflats, c<strong>on</strong>tainscritical habitat for more than <strong>on</strong>e milli<strong>on</strong> migratory shorebirdsand is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most important estuaries al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g>Pacific Flyway (Page et al. 1999). This important habitat isnow threatened by <str<strong>on</strong>g>the</str<strong>on</strong>g> smooth cordgrass. Shorebirds requireunvegetated mudflat habitats for foraging (Goss-Custard andMoser 1988), and invasive hybrid Spartina threatens tocol<strong>on</strong>ize critical upper levels <str<strong>on</strong>g>of</str<strong>on</strong>g> this important habitat. As aresult <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rapid spread <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid Spartina, which increasedby 317% at sampled sites between 2001 and 2003(Ayres et al. 2004), by <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> 2003 it was estimated tooccupy nearly 800 hectares <str<strong>on</strong>g>of</str<strong>on</strong>g> bay habitat, up from less than200 acres in 2001 (Zaremba and McGowen 2004). Thisrapid spread suggests that <str<strong>on</strong>g>the</str<strong>on</strong>g> risk for shorebird habitat lossmay be substantial.To better estimate <str<strong>on</strong>g>the</str<strong>on</strong>g> potential value and extent <str<strong>on</strong>g>of</str<strong>on</strong>g> lostforaging habitat, we measured <str<strong>on</strong>g>the</str<strong>on</strong>g> biomass and abundance <str<strong>on</strong>g>of</str<strong>on</strong>g>invertebrates at different tidal elevati<strong>on</strong>s at two sites in SanFrancisco Bay. To accurately measure tidal elevati<strong>on</strong> acrossbroad areas <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two study sites, we used LIDAR (LightDetecti<strong>on</strong> and Ranging), a flight-based radar system that canaccurately measure elevati<strong>on</strong> with high spatial resoluti<strong>on</strong>.We used <str<strong>on</strong>g>the</str<strong>on</strong>g>se elevati<strong>on</strong> data toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r with tidal height datafrom c<strong>on</strong>tinuous recording stati<strong>on</strong>s to estimate <str<strong>on</strong>g>the</str<strong>on</strong>g> arealikely to be invaded by Spartina based <strong>on</strong> current estimates<str<strong>on</strong>g>of</str<strong>on</strong>g> its inundati<strong>on</strong> tolerance. Therefore, we were able toestimate <str<strong>on</strong>g>the</str<strong>on</strong>g> value and extent <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat lost to shorebirdsunder different scenarios <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina spread. Thisinformati<strong>on</strong>, when combined with <str<strong>on</strong>g>the</str<strong>on</strong>g> data <strong>on</strong> patterns <str<strong>on</strong>g>of</str<strong>on</strong>g>shorebird usage generated by PRBO C<strong>on</strong>servati<strong>on</strong> Science(Stralberg et al. 2010) can help guide future eradicati<strong>on</strong>efforts by highlighting areas <str<strong>on</strong>g>of</str<strong>on</strong>g> particular importance forshorebirds.- 171 -


Chapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> Spartina<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaMETHODSTo determine <str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong> and abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> keyinvertebrate taxa <str<strong>on</strong>g>of</str<strong>on</strong>g> importance for foraging shorebirds, wesampled infauna at two sites in central San Francisco Baywith open mudflats that are being invaded by hybridSpartina: Elsie Roemer Bird Sanctuary <strong>on</strong> Alameda Island(37º45’35’’N; 122º28’48’’W) and Roberts Landing in SanLorenzo (37º40’13’’N; 122º28’48’’W). At both sites, weestablished three transects spanning <str<strong>on</strong>g>the</str<strong>on</strong>g> entire tidal range <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> mudflat (several hundred meters) from <str<strong>on</strong>g>the</str<strong>on</strong>g> edge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>Spartina meadow to <str<strong>on</strong>g>the</str<strong>on</strong>g> channel. We collected sedimentcore samples from <str<strong>on</strong>g>the</str<strong>on</strong>g> following distances from <str<strong>on</strong>g>the</str<strong>on</strong>g> seawardedge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid Spartina meadow: 1, 10, 50, 100, and 200meters (m) and <str<strong>on</strong>g>the</str<strong>on</strong>g>reafter at approximately 100 m intervalsto within 50 m <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> channel edge. At Elsie Roemersampling extended up to 350 m, whereas at Robert’sLanding, sampling extended up to 850 m from <str<strong>on</strong>g>the</str<strong>on</strong>g> meadow.At each sampling locati<strong>on</strong>, <strong>on</strong>e infauna sample was collectedwith a 5 centimeters (cm) diameter core taken to 5 cm depth.The locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each sample site was recorded with ashoulder mounted GPS (Global Positi<strong>on</strong>ing System, TrimblePro-XR). In <str<strong>on</strong>g>the</str<strong>on</strong>g> lab, samples were sieved at 500 micrometers(μm) to collect organisms <str<strong>on</strong>g>of</str<strong>on</strong>g> importance for shorebirds. Allorganisms were fixed in 10% buffered formalin for at least24 hours, <str<strong>on</strong>g>the</str<strong>on</strong>g>n stored in 70% ethanol stained with rosebengal.We estimated <str<strong>on</strong>g>the</str<strong>on</strong>g> biomass <str<strong>on</strong>g>of</str<strong>on</strong>g> invertebrates for <str<strong>on</strong>g>the</str<strong>on</strong>g> threemost comm<strong>on</strong> phyla (>95% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> biomass): Annelida,Arthropoda (Crustacea), and Mollusca. We regressedbiomass for all taxa and for each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> three comm<strong>on</strong> phyla<strong>on</strong> distance from <str<strong>on</strong>g>the</str<strong>on</strong>g> edge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina meadow definedas <str<strong>on</strong>g>the</str<strong>on</strong>g> lower limit <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tiguous aboveground vegetati<strong>on</strong>.We used LIDAR images that resulted from a moreextensive flyover <str<strong>on</strong>g>of</str<strong>on</strong>g> San Francisco Bay, but includeddetailed views <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two study sites. Images permittedestimati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> tidal elevati<strong>on</strong>s to within 0.1 m atapproximately 1 m spatial resoluti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> x-y plane. Thesedata were used to develop images <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> study site withwhich we could estimate area covered by Spartina assumingit could spread downward in tidal elevati<strong>on</strong> to a particulartidal level. We used <str<strong>on</strong>g>the</str<strong>on</strong>g>se images toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r withgeoreferenced sampling sites to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> abundanceand distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> invertebrates at particular tidal elevati<strong>on</strong>s.We calculated inundati<strong>on</strong> as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tidal elevati<strong>on</strong>s,using c<strong>on</strong>tinuous water level data available from <str<strong>on</strong>g>the</str<strong>on</strong>g> Nati<strong>on</strong>alOceanic and Atmospheric Administrati<strong>on</strong> (NOAA) usingstati<strong>on</strong> # 9414750 Alameda, CA for both sites. Tidal data weremeasured in meters above mean low low water (MLLW) based<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> updated Nati<strong>on</strong>al Tidal Datum Epoch (NTDE). We usedhourly tidal data to estimate <str<strong>on</strong>g>the</str<strong>on</strong>g> percentage time for <str<strong>on</strong>g>the</str<strong>on</strong>g> year2004 that a given elevati<strong>on</strong> determined from LIDAR imageswould be inundated.RESULTSInvertebrate biomass at higher tidal elevati<strong>on</strong>s wasapproximately triple <str<strong>on</strong>g>the</str<strong>on</strong>g> biomass at lower elevati<strong>on</strong>s whenboth sites were analyzed toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r (Fig. 1) based <strong>on</strong> anexp<strong>on</strong>ential regressi<strong>on</strong> curve:y = 18.593 e -0.0032x , R² = 0.36 (1)However, <str<strong>on</strong>g>the</str<strong>on</strong>g> abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> invertebrates was greatest atintermediate tidal elevati<strong>on</strong>s (Fig. 2), and <str<strong>on</strong>g>the</str<strong>on</strong>g> least at <str<strong>on</strong>g>the</str<strong>on</strong>g>lowest elevati<strong>on</strong>s based <strong>on</strong> a polynomial regressi<strong>on</strong> curve:Total Biomass (gm)60y = 18.593e -0.0032x50R 2 = 0.36344030201000 200 400 600 800 1000Distance from Marsh Edge (m)Fig. 1. Total invertebrate biomass as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> distance from <str<strong>on</strong>g>the</str<strong>on</strong>g>marsh edge at <str<strong>on</strong>g>the</str<strong>on</strong>g> current lower tidal limit <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid Spartina.Fig. 2. LIDAR image <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Elsie Roemer site showing lower extent <str<strong>on</strong>g>of</str<strong>on</strong>g>hybrid Spartina distributi<strong>on</strong> (grey) and invertebrate sampling points al<strong>on</strong>gtransects (dots).- 172 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> SpartinaInundati<strong>on</strong> Time vs. Tidal Height0.80Inundati<strong>on</strong> Time (%)0.750.700.650.600.550.500.450.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2Tidal Height (m)Fig. 4. Plot <str<strong>on</strong>g>of</str<strong>on</strong>g> inundati<strong>on</strong> time (%) calculated from c<strong>on</strong>tinuous tidalheight data relative to estimated elevati<strong>on</strong> from LIDAR data.Fig. 3. LIDAR image <str<strong>on</strong>g>of</str<strong>on</strong>g> Robert’s Landing showing lower extent <str<strong>on</strong>g>of</str<strong>on</strong>g> hybridSpartina distributi<strong>on</strong> (grey) and invertebrate sampling points al<strong>on</strong>g transects(dots).y = -0.0006x² + 0.3889x + 56.787, R² = 0.1713 (2)The high abundances at intermediate tidal elevati<strong>on</strong>swere due to high numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> small juvenile clams (> 1 mm)that did not c<strong>on</strong>tribute very significant biomass. When weanalyzed <str<strong>on</strong>g>the</str<strong>on</strong>g> data by phyla, we found that annelids, mollusksand crustaceans generally showed similar patterns. Annelidsalso showed a substantial decline in biomass with tidalelevati<strong>on</strong>:y = -0.0165x + 13.624, R 2 =0.12 (3)Molluscs and crustaceans showed a similar but morevariable decline (R 2


Chapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> Spartina<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinainvaded by hybrid Spartina could see a potential eightfoldincrease at Elsie Roemer and a fourfold expansi<strong>on</strong> atRobert’s Landing. We emphasize that this is likely to be anupper estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> area invaded, given that it assumes thathybrid Spartina could withstand being inundatedapproximately 75% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> time, which is bey<strong>on</strong>d currentestimates <str<strong>on</strong>g>of</str<strong>on</strong>g> tidal inundati<strong>on</strong> tolerance. However, <str<strong>on</strong>g>the</str<strong>on</strong>g>seestimates are based in part <strong>on</strong> present distributi<strong>on</strong>s, whichare subject to change. These estimates also do not c<strong>on</strong>siderthat this tolerance may be under str<strong>on</strong>g selecti<strong>on</strong> and mayevolve significantly over time. In any case, our data suggestthat much <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most important foraging habitat formigratory shorebirds in San Francisco Bay that lies between0.6-1.1 m MLLW may be lost over <str<strong>on</strong>g>the</str<strong>on</strong>g> next several years.ACKNOWLEDGMENTSWe would like to thank R. Blake, C. Love, U. Mahl, and C.Tyler for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir help and labor.REFERENCESAyres, D.R., D.L. Smith, K. Zaremba, S. Klohr, and D.R. Str<strong>on</strong>g.2004. Spread <str<strong>on</strong>g>of</str<strong>on</strong>g> exotic cordgrasses and hybrids (Spartina sp.) in<str<strong>on</strong>g>the</str<strong>on</strong>g> tidal marshes <str<strong>on</strong>g>of</str<strong>on</strong>g> San Francisco Bay, California, USA.Biological Invasi<strong>on</strong>s 6:221-231.Cohen, A.N. and J.T. Carlt<strong>on</strong>. 1998. Accelerating invasi<strong>on</strong> rate in ahighly invaded estuary. Science 279:555-558.Daelher, C.C., and D.R. Str<strong>on</strong>g. 1997. Hybridizati<strong>on</strong> betweenintroduced smooth cordgrass (Spartina alterniflora; Poaceae)and native California cordgrass (S. foliosa) in San Francisco Bay,California, USA. American Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Botany 84:607-611.Goss-Custard, J.D., and M.E. Moser. 1988. Rates <str<strong>on</strong>g>of</str<strong>on</strong>g> change in <str<strong>on</strong>g>the</str<strong>on</strong>g>numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> Dunlin Calidris-alpina wintering in British estuariesin relati<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglica. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> AppliedEcology 25:95-110.Levin, L.A., C. Neira and E.D. Grosholz. 2006. <strong>Invasive</strong> cordgrassmodifies wetland trophic functi<strong>on</strong>. Ecology 87:419-432.Neira, C., L.A. Levin, and E.D. Grosholz. 2005. Benthicmacr<str<strong>on</strong>g>of</str<strong>on</strong>g>aunal communities <str<strong>on</strong>g>of</str<strong>on</strong>g> three Spartina-hybrid invaded sitesin San Francisco Bay, with comparis<strong>on</strong> to uninvaded habitats.Marine Ecology Progress Series 292:111-126.Neira, C., E.D. Grosholz, L.A. Levin, and R. Blake. 2006.Mechanisms generating modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> benthos following tidalflat invasi<strong>on</strong> by a Spartina (alterniflora x foliosa) hybrid.Ecological Applicati<strong>on</strong>s 16:1391-1404.Page, G.W., L.E. Stenzel, and J.E. Kjelmyr. 1999. Overview <str<strong>on</strong>g>of</str<strong>on</strong>g>shorebird abundance and distributi<strong>on</strong> in wetlands <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> PacificCoast <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tiguous United States. C<strong>on</strong>dor 101:461-471.Stralberg, D., V. T<strong>on</strong>iolo, G.W. Page and L.E.Stenzel. 2010. Potentialimpacts <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina spread <strong>on</strong> shorebird populati<strong>on</strong>s in SouthSan Francisco Bay. In: Ayres, D.R., D.W. Kerr, S.D. Erics<strong>on</strong> andP.R. Ol<str<strong>on</strong>g>of</str<strong>on</strong>g>s<strong>on</strong>, eds. <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g><strong>on</strong> <strong>Invasive</strong> Spartina, 2004 Nov 8-10, San Francisco,CA, USA. San Francisco Estuary <strong>Invasive</strong> Spartina Project <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>California State Coastal C<strong>on</strong>servancy: Oakland, CA (this volume).Zaremba, K. and M.F. McGowan. 2004. San Francisco Estuary<strong>Invasive</strong> Spartina Project M<strong>on</strong>itoring Report for 2003. SanFrancisco Estuary <strong>Invasive</strong> Spartina Project. (available fromhttp://www.spartina.org/project.htm).- 174 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> SpartinaPOTENTIAL IMPACTS OF SPARTINA SPREAD ON SHOREBIRD POPULATIONS IN SOUTH SANFRANCISCO BAYD. STRALBERG 1 , V. TONIOLO 1,2 , G.W. PAGE 1 , AND L.E. STENZEL 11 PRBO C<strong>on</strong>servati<strong>on</strong> Science, 3820 Cypress Drive #11, Petaluma, CA 94954, dstralberg@prbo.org2 Current address: Ocean Biogeochemistry Lab, Dept. <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Earth System Science, Mitchell Bldg, A67, StanfordUniversity Stanford, CA 94305-2215San Francisco Bay holds 70% <str<strong>on</strong>g>of</str<strong>on</strong>g> California’s mudflats and provides habitat to more wintering andmigratory shorebirds than any o<str<strong>on</strong>g>the</str<strong>on</strong>g>r wetland al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> Pacific coast <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tiguous U.S. The bay’smudflats are currently threatened by <str<strong>on</strong>g>the</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> a n<strong>on</strong>-native cordgrass, Spartina alterniflora, andassociated hybrids, which grow at lower elevati<strong>on</strong>s than <str<strong>on</strong>g>the</str<strong>on</strong>g> native S. foliosa and can render largemudflat areas effectively unavailable to shorebirds for foraging. Using shorebird survey data, tidestati<strong>on</strong> data, and GIS-based habitat data, we analyzed <str<strong>on</strong>g>the</str<strong>on</strong>g> potential effect <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora x foliosahybrids <strong>on</strong> shorebird habitat in <str<strong>on</strong>g>the</str<strong>on</strong>g> South Bay by creating grid-based spatial models <str<strong>on</strong>g>of</str<strong>on</strong>g> shorebirdhabitat value and potential Spartina spread. We developed three scenarios <str<strong>on</strong>g>of</str<strong>on</strong>g> potential habitat valueloss for shorebirds based <strong>on</strong> assumpti<strong>on</strong>s about <str<strong>on</strong>g>the</str<strong>on</strong>g> inundati<strong>on</strong> tolerance <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora and temporalavailability <str<strong>on</strong>g>of</str<strong>on</strong>g> mudflat resources. Predicti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat value loss across seas<strong>on</strong>s ranged from27% to 80%. We identified <str<strong>on</strong>g>the</str<strong>on</strong>g> upper mudflats, due to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir greater exposure time, and <str<strong>on</strong>g>the</str<strong>on</strong>g> east andsouth shore mudflats, due to <str<strong>on</strong>g>the</str<strong>on</strong>g> high numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> birds detected <str<strong>on</strong>g>the</str<strong>on</strong>g>re, as <str<strong>on</strong>g>the</str<strong>on</strong>g> areas <str<strong>on</strong>g>of</str<strong>on</strong>g> highest valueto shorebirds in <str<strong>on</strong>g>the</str<strong>on</strong>g> South Bay. These areas also coincide with <str<strong>on</strong>g>the</str<strong>on</strong>g> areas <str<strong>on</strong>g>of</str<strong>on</strong>g> greatest Spartina invasi<strong>on</strong>potential.Keywords: Spartina alterniflora, mudflats, inundati<strong>on</strong> tolerance, Charadrii, GISINTRODUCTIONThe San Francisco Bay estuary holds 70% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mudflatsin California (Josselyn et al. 1990), providing habitatto over 350,000 migrating shorebirds (Charadrii) in <str<strong>on</strong>g>the</str<strong>on</strong>g>fall, over 325,000 in winter, and over 900,000 in <str<strong>on</strong>g>the</str<strong>on</strong>g> spring(based <strong>on</strong> single-day counts) (Stenzel et al. 2002). Al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g>Pacific coast <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tiguous United States al<strong>on</strong>e (excludingAlaska), San Francisco Bay holds more shorebirds thanany o<str<strong>on</strong>g>the</str<strong>on</strong>g>r wetland in all seas<strong>on</strong>s (Page et al. 1999). Surveydata suggest that San Francisco Bay holds over 50% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>Pacific coast populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> several shorebird species—11<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 12 most abundant species in fall, six <str<strong>on</strong>g>of</str<strong>on</strong>g> 13 in winter,and seven <str<strong>on</strong>g>of</str<strong>on</strong>g> 13 in spring (Page et al. 1999). Within <str<strong>on</strong>g>the</str<strong>on</strong>g> Bay,mudflats are <str<strong>on</strong>g>the</str<strong>on</strong>g> most important habitats for <str<strong>on</strong>g>the</str<strong>on</strong>g> majority <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g>se species (Stenzel et al. 2002).San Francisco Bay’s mudflats are now threatened by<str<strong>on</strong>g>the</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> cordgrass hybrids (Spartina alterniflora xfoliosa) (Ayres et al. 2008). The n<strong>on</strong>-native S. alterniflorawas originally introduced to <str<strong>on</strong>g>the</str<strong>on</strong>g> South San Francisco Bay(South Bay) in <str<strong>on</strong>g>the</str<strong>on</strong>g> 1970s (Callaway and Josselyn 1992) andhybridized with native S. foliosa (Ayres et al. 1999). Spartinaalterniflora x foliosa hybrids exhibit higher tolerance totidal submersi<strong>on</strong> and salinity, as well as higher growth andgerminati<strong>on</strong> rates than <str<strong>on</strong>g>the</str<strong>on</strong>g> native S. foliosa (Callaway andJosselyn 1992; Daehler and Str<strong>on</strong>g 1997; Anttila et al. 1998;Collins 2002). Projecti<strong>on</strong>s from sampling sites suggested thatnearly 800 hectares (ha) <str<strong>on</strong>g>of</str<strong>on</strong>g> South Bay marshes, channels,and mudflats had been invaded by 2003, an increase <str<strong>on</strong>g>of</str<strong>on</strong>g> morethan 300% since 2001 (Zaremba et al., this volume). Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rspread <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid Spartina <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Bay’s mudflats poses a greatthreat to shorebirds, which cannot forage in areas <str<strong>on</strong>g>of</str<strong>on</strong>g> densegrowth (Josselyn 1983, Evans 1986, Goss-Custard and Moser1988, White 1995).In Willapa Bay, Washingt<strong>on</strong>, which was initiallyinvaded in <str<strong>on</strong>g>the</str<strong>on</strong>g> late 19th century, S. alterniflora recentlyexperienced explosive growth, tripling its areal extentbetween 1994 and 2002 and c<strong>on</strong>verting many mudflats toSpartina marshes (Buchanan 2003; Civille 2005). Surveys<str<strong>on</strong>g>of</str<strong>on</strong>g> Willapa Bay birds suggested a reducti<strong>on</strong> in shorebirdnumbers by as much as 67% and foraging time by as muchas 50% (Jaques 2002). Unlike San Francisco Bay, WillapaBay is outside <str<strong>on</strong>g>the</str<strong>on</strong>g> range <str<strong>on</strong>g>of</str<strong>on</strong>g> native Spartina and <str<strong>on</strong>g>the</str<strong>on</strong>g>reforehas no hybrid Spartina, which has been found to exhibitmuch more rapid rates <str<strong>on</strong>g>of</str<strong>on</strong>g> lateral expansi<strong>on</strong> than its parentalspecies (Ayres et al. 2008). Thus <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> potential inSan Francisco Bay is thought to be substantially greaterthan in Willapa Bay.While San Francisco Bay and Willapa Bay also differin <str<strong>on</strong>g>the</str<strong>on</strong>g>ir bathymetry and tidal inundati<strong>on</strong> regimes, relati<strong>on</strong>shipsthat have been identified between tidal inundati<strong>on</strong>parameters and S. alterniflora growth tolerance (McKeeand Patrick 1988; Collins 2002) may be used to estimate <str<strong>on</strong>g>the</str<strong>on</strong>g>potential for hybrid Spartina spread in San Francisco Bay.Here we present a preliminary GIS-based analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>potential effects <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid Spartina <strong>on</strong> shorebird habitat inSouth San Francisco Bay (<str<strong>on</strong>g>the</str<strong>on</strong>g> South Bay), using grid-basedspatial models <str<strong>on</strong>g>of</str<strong>on</strong>g> (a) shorebird habitat value and (b) potentialSpartina spread.- 175 -


Chapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> Spartina<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaMETHODSMany studies have dem<strong>on</strong>strated that shorebird use <str<strong>on</strong>g>of</str<strong>on</strong>g>mudflat habitats is spatially and temporally variable, and thatthis variati<strong>on</strong> is closely tied to cycles <str<strong>on</strong>g>of</str<strong>on</strong>g> tidal inundati<strong>on</strong>, aswell as prey availability across <str<strong>on</strong>g>the</str<strong>on</strong>g> intertidal z<strong>on</strong>e (Burger etal. 1977; Goss-Custard et al. 1977; Puttick 1977; Page et al.1979; Colwell and Landrum 1993; Yates et al. 1993). While wedid not have data <strong>on</strong> prey availability in San Francisco Bay,our quantificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> shorebird habitat value did incorporatevariati<strong>on</strong> within mudflats based <strong>on</strong> tidal inundati<strong>on</strong> cycles, aswell as variati<strong>on</strong> am<strong>on</strong>g mudflats based <strong>on</strong> shorebird use datafrom PRBO’s Pacific Flyway surveys (1988-1993, Page et al.1999). For <str<strong>on</strong>g>the</str<strong>on</strong>g> purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> this exercise, we assumed that SouthBay mudflats were at carrying capacity (i.e., <str<strong>on</strong>g>the</str<strong>on</strong>g> maximumnumber <str<strong>on</strong>g>of</str<strong>on</strong>g> birds that can be supported by a finite food supply)at <str<strong>on</strong>g>the</str<strong>on</strong>g> time <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> surveys. By extensi<strong>on</strong>, we assumed thatloss <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat in <strong>on</strong>e area would not be compensated for byincreased use <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r areas.The spread potential <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora and associatedhybrids was based <strong>on</strong> percentiles <str<strong>on</strong>g>of</str<strong>on</strong>g> cumulative m<strong>on</strong>thly tidalinundati<strong>on</strong> across <str<strong>on</strong>g>the</str<strong>on</strong>g> mudflats. The cumulative m<strong>on</strong>thlydurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> inundati<strong>on</strong> at a particular site is a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>mudflat elevati<strong>on</strong> and tidal range, with a greater tidal rangeresulting in a l<strong>on</strong>ger durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> inundati<strong>on</strong>. According toCollins’ (2002) analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-native Spartina locati<strong>on</strong>sin San Francisco Bay, <str<strong>on</strong>g>the</str<strong>on</strong>g> lower limit <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina growthappears to corresp<strong>on</strong>d with cumulative m<strong>on</strong>thly inundati<strong>on</strong>,and existing n<strong>on</strong>-native Spartina locati<strong>on</strong>s suggest that <str<strong>on</strong>g>the</str<strong>on</strong>g>maximum cumulative durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> inundati<strong>on</strong> tolerated during<str<strong>on</strong>g>the</str<strong>on</strong>g> m<strong>on</strong>th <str<strong>on</strong>g>of</str<strong>on</strong>g> June is approximately 70%, regardless <str<strong>on</strong>g>of</str<strong>on</strong>g> meantidal range. 1 This means that <str<strong>on</strong>g>the</str<strong>on</strong>g> smaller <str<strong>on</strong>g>the</str<strong>on</strong>g> tidal range, <str<strong>on</strong>g>the</str<strong>on</strong>g>lower <str<strong>on</strong>g>the</str<strong>on</strong>g> elevati<strong>on</strong> at which n<strong>on</strong>-native Spartina would bepredicted to grow. Due to uncertainty about <str<strong>on</strong>g>the</str<strong>on</strong>g> behavior <str<strong>on</strong>g>of</str<strong>on</strong>g>S. alterniflora hybrids, and because <str<strong>on</strong>g>the</str<strong>on</strong>g>se plants are known tochange <str<strong>on</strong>g>the</str<strong>on</strong>g>ir envir<strong>on</strong>ment over time (Ranwell 1964; Daehlerand Str<strong>on</strong>g 1996), accreting sediment at rates <str<strong>on</strong>g>of</str<strong>on</strong>g> 1-2 cm/yearin Willapa Bay (Sayce 1988) and up to 4 cm/year in Australia(Bascand 1970), we evaluated a range <str<strong>on</strong>g>of</str<strong>on</strong>g> inundati<strong>on</strong> tolerancesbetween 60% and 80%. We assumed that mudflat areascovered by S. alterniflora and associated hybrids would beeffectively lost to shorebirds.Our GIS-based analysis was restricted to mudflatsmapped by <str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco Estuary Institute’s EcoAtlas(v. 1.50b, SFEI 1998) south <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco Bay Bridge.Using EcoAtlas map layers, PRBO shorebird surveys (Stenzelet al. 2002), and tide level data from <str<strong>on</strong>g>the</str<strong>on</strong>g> Nati<strong>on</strong>al Oceanicand Atmospheric Administrati<strong>on</strong>’s (NOAA) tide stati<strong>on</strong>s, wedeveloped a set <str<strong>on</strong>g>of</str<strong>on</strong>g> grid-based data layers (ArcInfo format)that were combined to generate predicti<strong>on</strong>s about <str<strong>on</strong>g>the</str<strong>on</strong>g> potentialloss <str<strong>on</strong>g>of</str<strong>on</strong>g> mudflat habitat and shorebird numbers.To generate <str<strong>on</strong>g>the</str<strong>on</strong>g> GIS grid layers for this analysis, wecompleted <str<strong>on</strong>g>the</str<strong>on</strong>g> following steps using <str<strong>on</strong>g>the</str<strong>on</strong>g> ArcInfo 8.3 GRIDmodule (ESRI 2002).1 Initial estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> 40% presented in Collins (2002) have since been revised.Fig. 1. Tide stati<strong>on</strong> locati<strong>on</strong>s, stati<strong>on</strong> IDs, and allocati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tide stati<strong>on</strong>swith c<strong>on</strong>tinuous water level data to mudflat areas. Tide stati<strong>on</strong> informati<strong>on</strong>was obtained from NOAA/NOS (http://tidesandcurrents.noaa.gov/).Elevati<strong>on</strong>/BathymetryWhen this analysis was performed, bathymetry datalayers <str<strong>on</strong>g>of</str<strong>on</strong>g> a fine enough resoluti<strong>on</strong> to capture mudflat topographywere not available for <str<strong>on</strong>g>the</str<strong>on</strong>g> South Bay. Thus, to createa spread model for S. alterniflora and associated hybrids,we elected to estimate mudflat elevati<strong>on</strong> at a 3x3 m 2 (3-m)pixel resoluti<strong>on</strong>, creating a digital elevati<strong>on</strong> model (DEM)based <strong>on</strong> mapped mudflat boundaries, tide level data, and anassumed linear mudflat slope.First, mean tide level (MTL) and mean lower low water(MLLW) c<strong>on</strong>tours were estimated from EcoAtlas (SFEI1998) and were defined based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> boundaries betweenmudflat and tidal marsh and between open water and mudflat,respectively. Actual elevati<strong>on</strong>s al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> MTL c<strong>on</strong>tour werenot assumed to be c<strong>on</strong>stant, but were assigned based <strong>on</strong> MTLelevati<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> closest tide stati<strong>on</strong>. MTL elevati<strong>on</strong>s wereobtained from NOAA’s Nati<strong>on</strong>al Oceanic Service (NOS)published benchmark sheets for seven South Bay locati<strong>on</strong>sthat have been referenced to <str<strong>on</strong>g>the</str<strong>on</strong>g> new Nati<strong>on</strong>al Tidal DatumEpoch (NTDE; 1983-2001) (Fig. 1). For each mudflat area weassumed that local MTL was <str<strong>on</strong>g>the</str<strong>on</strong>g> same as that <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> nearestNTDE-referenced tide stati<strong>on</strong>.Next we used MTL and MLLW c<strong>on</strong>tours to determine<str<strong>on</strong>g>the</str<strong>on</strong>g> width <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mudflat for each 3-m pixel. We calculated <str<strong>on</strong>g>the</str<strong>on</strong>g>distance from each pixel to <str<strong>on</strong>g>the</str<strong>on</strong>g> MTL line and to <str<strong>on</strong>g>the</str<strong>on</strong>g> MLLWline, to obtain two separate distance grids, which were <str<strong>on</strong>g>the</str<strong>on</strong>g>nadded to obtain a single grid representing mudflat width. For- 176 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> Spartinaeach mudflat secti<strong>on</strong> we estimated <str<strong>on</strong>g>the</str<strong>on</strong>g> slope (assumed linear)by dividing <str<strong>on</strong>g>the</str<strong>on</strong>g> total change in elevati<strong>on</strong> across <str<strong>on</strong>g>the</str<strong>on</strong>g> mudflat(MTL) by mudflat width (slope = rise/run). Then we createdtwo 3-m elevati<strong>on</strong> grids based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> following equati<strong>on</strong>s,where each 3- m pixel value was equal to <str<strong>on</strong>g>the</str<strong>on</strong>g> elevati<strong>on</strong> atthat point:(1) elevati<strong>on</strong> 1 = slope * distance to MLLW; and(2) elevati<strong>on</strong> 2 = MTL – (slope * distance to MTL).We averaged <str<strong>on</strong>g>the</str<strong>on</strong>g>se two grids to obtain <str<strong>on</strong>g>the</str<strong>on</strong>g> final 3-mmudflat elevati<strong>on</strong> grid (DEM). Values greater than localMTL were redefined to be equal to local MTL.Tidal Inundati<strong>on</strong> and Shorebird Habitat ValuePublished verified c<strong>on</strong>tinuous (six-minute interval)water level data was available from NOS for <strong>on</strong>ly three <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>seven tide stati<strong>on</strong> locati<strong>on</strong>s: Alameda (stati<strong>on</strong> ID 9414750,year 2001), Dumbart<strong>on</strong> Bridge (stati<strong>on</strong> ID 9414509, year1996), and Redwood City (stati<strong>on</strong> ID 9414523, year 2002).Assuming that <str<strong>on</strong>g>the</str<strong>on</strong>g> tidal inundati<strong>on</strong> regime for each mudflatarea was most similar to <str<strong>on</strong>g>the</str<strong>on</strong>g> nearest tide stati<strong>on</strong> with availablec<strong>on</strong>tinous water level data, we created a tide stati<strong>on</strong> gridlayer by allocating each 3-m pixel to a tide stati<strong>on</strong> (Fig. 1).Because our shorebird data collecti<strong>on</strong> efforts were centeredaround April and September, we generated m<strong>on</strong>thly inundati<strong>on</strong>curves for <str<strong>on</strong>g>the</str<strong>on</strong>g>se m<strong>on</strong>ths using cumulative water level datafrom each tide stati<strong>on</strong> using Stata 8.0 (2003) (Fig. 2).Water level values were in meters above MLLW. Topredict <str<strong>on</strong>g>the</str<strong>on</strong>g> m<strong>on</strong>thly tidal inundati<strong>on</strong> percent <str<strong>on</strong>g>of</str<strong>on</strong>g> each 3-mmudflat pixel, we performed separate polynomial regressi<strong>on</strong>analyses (Stata 8.0, 2003) for each tide stati<strong>on</strong> and eachm<strong>on</strong>th (April and September) using <str<strong>on</strong>g>the</str<strong>on</strong>g> appropriate NOS6 minute water level data. Resulting regressi<strong>on</strong> equati<strong>on</strong>s(Table 1) were used to calculate grids representing April andSeptember inundati<strong>on</strong>. Separate equati<strong>on</strong>s were developedfor each tide stati<strong>on</strong> so grids for each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> three tide stati<strong>on</strong>Table 1. Coefficients for regressi<strong>on</strong> equati<strong>on</strong>s used to predict inundati<strong>on</strong>from elevati<strong>on</strong>. Equati<strong>on</strong>s were based <strong>on</strong> inundati<strong>on</strong> curves obtained from6-minute water level data from NOS tide stati<strong>on</strong>s and took <str<strong>on</strong>g>the</str<strong>on</strong>g> form y =ax + bx 2 + cx 3 + d, where y = percent <str<strong>on</strong>g>of</str<strong>on</strong>g> time inundated and x = elevati<strong>on</strong>above MLLW.Tide stati<strong>on</strong> M<strong>on</strong>th a b c d R2Alameda April -27.9 -24.9 7.85 91.3 0.9974Alameda Sept -21.6 -28.4 7.92 96.4 0.9997Dumbart<strong>on</strong>BridgeApril -19.7 -13.7 2.93 94.6 0.9990Dumbart<strong>on</strong>BridgeSept -20.4 -12.1 2.36 98.2 0.9984RedwoodCityApril -20.4 -16.8 4.01 93.9 0.9974RedwoodCitySept -15.7 -18.2 3.79 97.9 0.9994areas could be calculated separately and <str<strong>on</strong>g>the</str<strong>on</strong>g>n merged to create<strong>on</strong>e seamless 3-m inundati<strong>on</strong> grid for each seas<strong>on</strong>. We <str<strong>on</strong>g>the</str<strong>on</strong>g>ngenerated grids representing April and September mudflatexposure (100 - m<strong>on</strong>thly inundati<strong>on</strong> percent), as indices <str<strong>on</strong>g>of</str<strong>on</strong>g>overall shorebird habitat value (Fig. 3).Potential Spartina SpreadCumulative water level data (m above MLLW) from eachtide stati<strong>on</strong> were used to generate m<strong>on</strong>thly June inundati<strong>on</strong>curves using Stata 8.0 (2003). For each tide stati<strong>on</strong>, June dura-Fig. 2. Cumulative durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tidal inundati<strong>on</strong> curves for April based <strong>on</strong>water level data from Alameda, Redwood City, and Dumbart<strong>on</strong> Bridgetide stati<strong>on</strong>s. Elevati<strong>on</strong>s corresp<strong>on</strong>ding to 60% inundati<strong>on</strong> were 0.762 m,1.018 m, and 1.083 m, respectively.Fig. 3. April mudflat habitat availability, based <strong>on</strong> m<strong>on</strong>thly mudflat exposureexpressed as 100% - m<strong>on</strong>thly mudflat inundati<strong>on</strong>. Color shadings representmudflat habitat quantiles, where 20% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total area is c<strong>on</strong>tained in eachshading category and darker colors have higher value.- 177 -


Chapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> Spartina<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaFig. 4. Cumulative durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> inundati<strong>on</strong> curves for June based <strong>on</strong> waterlevel data from Alameda, Redwood City, and Dumbart<strong>on</strong> Bridge tide stati<strong>on</strong>s.Elevati<strong>on</strong>s corresp<strong>on</strong>ding to 60% inundati<strong>on</strong> were 0.864 m, 1.101m, and 1.113 m, respectively. Elevati<strong>on</strong>s corresp<strong>on</strong>ding to 70% inundati<strong>on</strong>were 0.674 m, 0.882 m, and 0.874 m, respectively. Elevati<strong>on</strong>s corresp<strong>on</strong>dingto 80% inundati<strong>on</strong> were 0.413 m, 0.575 m, and 0.646 m, respectively.Table 2. Projected percent <str<strong>on</strong>g>of</str<strong>on</strong>g> mudflat area and shorebird habitat value lost,based <strong>on</strong> a range <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina spread scenarios (1-3). All predicti<strong>on</strong>s assumethat mudflats are at carrying capacity, and that mudflat habitat value isinversely proporti<strong>on</strong>al to tidal inundati<strong>on</strong>.Fall1 (60% inundati<strong>on</strong>tolerance)2 (70% inundati<strong>on</strong>tolerance)3 (80% inundati<strong>on</strong>tolerance)Spring1 (60% inundati<strong>on</strong>tolerance)2 (70% inundati<strong>on</strong>tolerance)3 (80% inundati<strong>on</strong>tolerance)Percent <str<strong>on</strong>g>of</str<strong>on</strong>g> mudflatinvaded bySpartinaPercent<str<strong>on</strong>g>of</str<strong>on</strong>g> habitatvalue lost toshorebirds14% 29%33% 57%54% 80%14% 27%33% 54%54% 76%Fig. 5. Shorebird biomass density (kg/ha) based <strong>on</strong> overall means fromcomprehensive spring shorebird survey data (1988-1993). Species-specificbiomass estimates were taken from <str<strong>on</strong>g>the</str<strong>on</strong>g> shorebird literature.ti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> inundati<strong>on</strong> curves were used to identify <str<strong>on</strong>g>the</str<strong>on</strong>g> elevati<strong>on</strong>sat which 60%, 70%, and 80% cumulative m<strong>on</strong>thly inundati<strong>on</strong>were achieved (Fig. 4). Each elevati<strong>on</strong> was c<strong>on</strong>sidered apotential threshold below which S. alterniflora and associatedhybrids would not grow (i.e., <str<strong>on</strong>g>the</str<strong>on</strong>g>ir inundati<strong>on</strong> tolerance). We<str<strong>on</strong>g>the</str<strong>on</strong>g>n calculated potential Spartina spread for each inundati<strong>on</strong>tolerance, selecting all mudflat pixels with modeled elevati<strong>on</strong>sabove that particular elevati<strong>on</strong> threshold.Shorebird NumbersWe used PRBO’s shorebird survey data to estimate falland spring shorebird numbers and overall biomass in kilograms(kg) for each <str<strong>on</strong>g>of</str<strong>on</strong>g> six South Bay mudflat census tracts(Stenzel et al. 2002). This resulted in fall and spring shorebirddensity grids, with densities uniformly distributed over eachcensus tract (Fig. 5).Potential Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina Spread <strong>on</strong> Shorebird NumbersUsing <str<strong>on</strong>g>the</str<strong>on</strong>g> GIS grid layers described above, we estimated<str<strong>on</strong>g>the</str<strong>on</strong>g> potential effects <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-native Spartina spread <strong>on</strong> shorebirdnumbers. For each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> six South Bay census tractsand for each Spartina spread scenario (60%, 70%, and80% inundati<strong>on</strong> tolerance), we first calculated <str<strong>on</strong>g>the</str<strong>on</strong>g> percent<str<strong>on</strong>g>of</str<strong>on</strong>g> mudflat area that would be lost. Then we calculated <str<strong>on</strong>g>the</str<strong>on</strong>g>proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat value that would be lost to shorebirds ifmudflat value were inversely related to <str<strong>on</strong>g>the</str<strong>on</strong>g> percent <str<strong>on</strong>g>of</str<strong>on</strong>g> mudflatinundati<strong>on</strong> time.For each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> three Spartina spread scenarios, we calculateda predicted loss <str<strong>on</strong>g>of</str<strong>on</strong>g> spring and fall shorebird biomassby multiplying <str<strong>on</strong>g>the</str<strong>on</strong>g> proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mudflat value lost in eachcensus tract with <str<strong>on</strong>g>the</str<strong>on</strong>g> total estimated shorebird biomass supportedby that census tract. The same was d<strong>on</strong>e for individualspecies’ numbers.RESULTSOur Spartina spread model predicted that between14% and 54% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total South Bay mudflat area could beencroached up<strong>on</strong> by S. alterniflora and associated hybrids(Fig. 6, Table 2). The areas <str<strong>on</strong>g>of</str<strong>on</strong>g> greater Spartina spread poten-- 178 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> SpartinaFig. 6. Predicted extent <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina spread based <strong>on</strong> m<strong>on</strong>thly inundati<strong>on</strong>tolerances ranging from 60% to 80% (from Collins 2002). Sharp breaks inpredicti<strong>on</strong>s are due to breaks in nearest tide stati<strong>on</strong> locati<strong>on</strong>s.*tial were <str<strong>on</strong>g>the</str<strong>on</strong>g> upper mudflats, due to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir higher elevati<strong>on</strong> andlower tidal inundati<strong>on</strong> frequency (Fig. 6).Weighting <str<strong>on</strong>g>the</str<strong>on</strong>g> areas <str<strong>on</strong>g>of</str<strong>on</strong>g> potential Spartina spread byrelative shorebird value, <str<strong>on</strong>g>the</str<strong>on</strong>g> predicted loss to shorebirdsranged from 27% to 80% (Table 2). The upper mudflats had<str<strong>on</strong>g>the</str<strong>on</strong>g> highest relative value due to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir lower tidal inundati<strong>on</strong>frequency (Figs. 7, 8). The east and south shore mudflats had<str<strong>on</strong>g>the</str<strong>on</strong>g> highest value during <str<strong>on</strong>g>the</str<strong>on</strong>g> fall (Fig. 7), and <str<strong>on</strong>g>the</str<strong>on</strong>g> east shoremudflats had <str<strong>on</strong>g>the</str<strong>on</strong>g> highest value during <str<strong>on</strong>g>the</str<strong>on</strong>g> spring (Fig. 8),based <strong>on</strong> shorebird survey numbers.Multiplying <str<strong>on</strong>g>the</str<strong>on</strong>g> predicted mudflat habitat loss in eachcensus tract by estimated current shorebird numbers yieldedloss projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 48,615 to 94,175 birds in <str<strong>on</strong>g>the</str<strong>on</strong>g> fall (Table 3)and 104,793 to 212,813 birds in <str<strong>on</strong>g>the</str<strong>on</strong>g> spring (Table 4).Species that c<strong>on</strong>centrated in <str<strong>on</strong>g>the</str<strong>on</strong>g> South Bay were BlackbelliedPlover, Willet, Marbled Godwit, small sandpipers, anddowitchers (Stenzel et al. 2002). Overall shorebird numberswere higher in spring than in fall, driven primarily by <str<strong>on</strong>g>the</str<strong>on</strong>g>large number <str<strong>on</strong>g>of</str<strong>on</strong>g> Western Sandpipers that use San FranciscoBay as a staging area during spring migrati<strong>on</strong>. BecauseWestern Sandpipers are small-bodied shorebirds, <str<strong>on</strong>g>the</str<strong>on</strong>g> differencebetween fall and spring biomass was much smaller than<str<strong>on</strong>g>the</str<strong>on</strong>g> difference between fall and spring numbers.Because our models did not incorporate any species-specificdifferences in shorebird foraging habits, <str<strong>on</strong>g>the</str<strong>on</strong>g> predictedproporti<strong>on</strong>al change in numbers was <str<strong>on</strong>g>the</str<strong>on</strong>g> same for all groups.Due to migrati<strong>on</strong> timing and overall numbers detected <strong>on</strong>* Current extent <str<strong>on</strong>g>of</str<strong>on</strong>g> invasive Spartina is based <strong>on</strong> pre-c<strong>on</strong>trol mapping effortsFig. 7. Predicted extent <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina spread, based <strong>on</strong> a 70% inundati<strong>on</strong>tolerance, and overlap with tidal mudflats, classified according to <str<strong>on</strong>g>the</str<strong>on</strong>g>irpotential fall seas<strong>on</strong> value for shorebirds. Shorebird habitat value wasbased <strong>on</strong>: (a) PRBO Pacific Flyway shorebird survey data (1988-1993) and(b) length <str<strong>on</strong>g>of</str<strong>on</strong>g> mudflat inundati<strong>on</strong> during September.*Fig. 8. Predicted extent <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina spread, based <strong>on</strong> a 70% inundati<strong>on</strong>tolerance, and overlap with tidal mudflats, classified according to <str<strong>on</strong>g>the</str<strong>on</strong>g>irpotential spring seas<strong>on</strong> value for shorebirds. Shorebird habitat value wasbased <strong>on</strong>: (a) PRBO Pacific Flyway shorebird survey data (1988-1993) and(b) length <str<strong>on</strong>g>of</str<strong>on</strong>g> mudflat inundati<strong>on</strong> during April.*- 179 -


Chapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> Spartina<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaTable 3. Predicted loss <str<strong>on</strong>g>of</str<strong>on</strong>g> fall shorebird numbers by species, based <strong>on</strong> arange <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina spread scenarios. All predicti<strong>on</strong>s assume that mudflatsare at carrying capacity, and that mudflat habitat value is proporti<strong>on</strong>al totidal inundati<strong>on</strong>.Table 4. Predicted loss <str<strong>on</strong>g>of</str<strong>on</strong>g> spring shorebird numbers by species, based <strong>on</strong> arange <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina spread scenarios. All predicti<strong>on</strong>s assume that mudflatsare at carrying capacity, and that mudflat habitat value is proporti<strong>on</strong>al totidal inundati<strong>on</strong>.CurrentScenario 1:60%inundati<strong>on</strong>toleranceScenario 2:70%inundati<strong>on</strong>toleranceScenario 3:80%inundati<strong>on</strong>toleranceCurrentScenario 1:60%inundati<strong>on</strong>toleranceScenario 2:70%inundati<strong>on</strong>toleranceScenario 3:80%inundati<strong>on</strong>toleranceMudflatHectares6,062 -904 -1,988 -3,269MudflatHectares6,062 -904 -1,988 -3,269Bird Numbers:AmericanAvocetBlack-belliedPlover5,023 -1,701 -3,034 -4,1018,138 -2,756 -4,916 -6,645Dowitcher 13,377 -4,530 -8,081 -10,923L<strong>on</strong>g-billedCurlewMarbledGodwit371 -126 -224 -30314,251 -4,826 -8,609 -11,636Red Knot 1,678 -568 -1,014 -1,370SemipalmatedPlover1,501 -508 -907 -1,225Willet 15,612 -5,286 -9,431 -12,747Westernand LeastSandpiper,160,374 -54,305 -96,880 -130,948DunlinTotal 220,325 -48,615 -70,055 -94,175Bird Numbers:AmericanAvocetBlack-belliedPlover844 -263 -476 -6564,595 -1,432 -2,590 -3,570Dowitchers 33,008 -10,289 -18,608 -25,644L<strong>on</strong>g-billedCurlewMarbledGodwit218 -68 -123 -16913,437 -4,188 -7,575 -10,439Red Knot 503 -157 -284 -391SemipalmatedPlover725 -226 -409 -563Willet 2,112 -658 -1,191 -1,641Westernand LeastSandpiper,Dunlin450,817 -140,528 -254,137 -350,241Total 506,259 -104,793 -156,097 -212,813shorebird surveys, Spartina spread would have <str<strong>on</strong>g>the</str<strong>on</strong>g> biggestnumerical impact <strong>on</strong> small shorebirds, dowitchers, andMarbled Godwits (Tables 3, 4). Willets and Black-belliedPlovers would be most affected during <str<strong>on</strong>g>the</str<strong>on</strong>g> fall, when <str<strong>on</strong>g>the</str<strong>on</strong>g>irnumbers are highest. In terms <str<strong>on</strong>g>of</str<strong>on</strong>g> total bird biomass (seeStenzel et al. 2002), <str<strong>on</strong>g>the</str<strong>on</strong>g> largest predicted losses were in <str<strong>on</strong>g>the</str<strong>on</strong>g>spring, due to higher overall biomass densities (Table 5).DISCUSSIONThe results presented herein are based <strong>on</strong> several basicassumpti<strong>on</strong>s, all <str<strong>on</strong>g>of</str<strong>on</strong>g> which should be examined in fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rdetail in order to restrict <str<strong>on</strong>g>the</str<strong>on</strong>g> wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> predicted shorebirdlosses. Our most fundamental assumpti<strong>on</strong> was that <str<strong>on</strong>g>the</str<strong>on</strong>g>mudflat habitats were at carrying capacity during <str<strong>on</strong>g>the</str<strong>on</strong>g> falland spring survey periods. However, it is possible that <strong>on</strong>lypreferred areas are functi<strong>on</strong>ing at carrying capacity (Goss-Custard 1979). If individuals could switch to lower-qualitymudflat areas without significantly affecting <str<strong>on</strong>g>the</str<strong>on</strong>g>ir overallfitness, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <str<strong>on</strong>g>the</str<strong>on</strong>g> potential loss <str<strong>on</strong>g>of</str<strong>on</strong>g> birds may have been overestimated(Goss-Custard 2003). Anecdotal evidence suggeststhat San Francisco Bay mudflats may reach carrying capacityduring <str<strong>on</strong>g>the</str<strong>on</strong>g> winter, when storm-related flooding may promptsome species to move inland to <str<strong>on</strong>g>the</str<strong>on</strong>g> Central Valley (Warnocket al. 1995; Takekawa et al. 2002) but we do not know if mudflatsand neighboring tidal and salt p<strong>on</strong>d habitats are at carryingcapacity during migrati<strong>on</strong>. Currently, we lack <str<strong>on</strong>g>the</str<strong>on</strong>g> data <strong>on</strong>mudflat food resources, shorebird energetics, and individualforaging behavior (especially prey preference) that would benecessary to obtain an estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> carrying capacity.A potential bias in <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r directi<strong>on</strong>, however, was thatour models examined <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> lower limits <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina spreadand <str<strong>on</strong>g>the</str<strong>on</strong>g> subsequent impacts <strong>on</strong> shorebird habitat value. Inreality, upward Spartina spread may pose an equally seriousthreat to shorebirds as mudflats al<strong>on</strong>g tidal channels andopen areas within <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh plain are col<strong>on</strong>ized by invasiveSpartina and become unavailable to foraging shorebirds.Table 5. Predicted loss <str<strong>on</strong>g>of</str<strong>on</strong>g> fall and spring shorebird biomass, based <strong>on</strong> a range<str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina spread scenarios (1-3). All predicti<strong>on</strong>s assume that muflats areat carrying capacity, and that mudflat habitat value is proporti<strong>on</strong>al to tidalinundati<strong>on</strong>.Fallbiomass(kg)Springbiomass(kg)CurrentScenario 1:60%inundati<strong>on</strong>toleranceScenario 2:70%inundati<strong>on</strong>toleranceScenario 3:80%inundati<strong>on</strong>tolerance21,416 -6,245 -12,263 -17,06725,289 -6,884 -13,560 -19,202- 180 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> SpartinaAno<str<strong>on</strong>g>the</str<strong>on</strong>g>r assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> our habitat value models wasthat exposed mudflat areas are used evenly by shorebirds,and thus in direct proporti<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir temporal availability.However, we know that individuals <str<strong>on</strong>g>of</str<strong>on</strong>g> many species tendto forage al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> rising or receding tide line (Colwell andLandrum 1993; Durell et al. 1997), as invertebrates are moreabundant and more accessible in wet substrates and tendto burrow deeper as <str<strong>on</strong>g>the</str<strong>on</strong>g> tide recedes and <str<strong>on</strong>g>the</str<strong>on</strong>g> mud dries out(Goss-Custard 1984; White 1995). For shorebirds that <strong>on</strong>lyforaged al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> tide line, any given full tidal range mudflatshould support a c<strong>on</strong>stant number <str<strong>on</strong>g>of</str<strong>on</strong>g> birds as l<strong>on</strong>g as someminimum mudflat area was exposed, and shorebird densities(with respect to exposed mudflat) should increase as <str<strong>on</strong>g>the</str<strong>on</strong>g> tiderises. In reality, it is likely that some intermediate c<strong>on</strong>diti<strong>on</strong>exists and mudflat use patterns vary by species. In SanFrancisco Bay we have observed that Semipalmated Plover,Least Sandpiper, and Black-bellied Plover tend to foragehigher al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> tidal gradient, whereas Dunlin, dowitchers,Marbled Godwit, and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r species forage closer to <str<strong>on</strong>g>the</str<strong>on</strong>g> tideline (PRBO unpubl. data; USGS unpubl. data).Shorebird densities are also known to vary accordingto <str<strong>on</strong>g>the</str<strong>on</strong>g> uneven distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sediments, prey densities, andprey availability across <str<strong>on</strong>g>the</str<strong>on</strong>g> intertidal z<strong>on</strong>e (Burger et al.1977; Goss-Custard et al. 1977; Puttick 1977; Page et al.1979; Quammen 1982, Colwell and Landrum 1993; Yates etal. 1993). This highlights <str<strong>on</strong>g>the</str<strong>on</strong>g> need to study <str<strong>on</strong>g>the</str<strong>on</strong>g> spatial distributi<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> shorebirds and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir invertebrate prey over SanFrancisco Bay mudflats, especially given <str<strong>on</strong>g>the</str<strong>on</strong>g> dynamic nature<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> largely n<strong>on</strong>-native invertebrate community (Nichols etal. 1986; Cohen and Carlt<strong>on</strong> 1998).With respect to our estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> mudflat elevati<strong>on</strong> andtidal inundati<strong>on</strong>, we used a simple approach that involvedassuming an unrealistic linear mudflat slope. While highresoluti<strong>on</strong>topographic/ bathymetric data were not availablefor <str<strong>on</strong>g>the</str<strong>on</strong>g> entire South Bay mudflat regi<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> time <str<strong>on</strong>g>of</str<strong>on</strong>g> thisstudy, we hope that recently-obtained Light Detecti<strong>on</strong> andRanging (LiDAR) data (Foxgrover and Jaffe 2005) may beused to improve our models in <str<strong>on</strong>g>the</str<strong>on</strong>g> future.Finally, our model predicti<strong>on</strong>s were based <strong>on</strong> a staticpicture <str<strong>on</strong>g>of</str<strong>on</strong>g> mudflat spatial extent and elevati<strong>on</strong>. In reality,<str<strong>on</strong>g>the</str<strong>on</strong>g>re are several factors in additi<strong>on</strong> to hybrid Spartina spreadthat may affect mudflat extent and quality, including sea levelrise (D<strong>on</strong>nelly and Bertness 2001; Galbraith et al. 2002),tidal marsh restorati<strong>on</strong>, and natural geomorphic processes(Foxgrover et al. 2004). Thus it would be useful to apply ourmodels to future mudflat predicti<strong>on</strong>s developed by coastalgeomorphologists.CONCLUSIONThe above-described models <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina inundati<strong>on</strong>tolerance and shorebird habitat value allowed us to generatepreliminary predicti<strong>on</strong>s about <str<strong>on</strong>g>the</str<strong>on</strong>g> potential impact <str<strong>on</strong>g>of</str<strong>on</strong>g>future Spartina spread <strong>on</strong> South Bay shorebird populati<strong>on</strong>s.Because mudflat habitat availability and Spartina spreadpotential are both determined by tidal inundati<strong>on</strong> frequency,<str<strong>on</strong>g>the</str<strong>on</strong>g> areas <str<strong>on</strong>g>of</str<strong>on</strong>g> greatest value to shorebirds coincide with <str<strong>on</strong>g>the</str<strong>on</strong>g>areas <str<strong>on</strong>g>of</str<strong>on</strong>g> greatest Spartina invasi<strong>on</strong> potential. In additi<strong>on</strong>,<str<strong>on</strong>g>the</str<strong>on</strong>g> eastern shore mudflats, which had <str<strong>on</strong>g>the</str<strong>on</strong>g> highest recordedshorebird densities, are adjacent to <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sites <str<strong>on</strong>g>of</str<strong>on</strong>g> initialSpartina invasi<strong>on</strong> at Coyote Hills Slough, increasing <str<strong>on</strong>g>the</str<strong>on</strong>g>irsusceptibility to Spartina encroachment.Due to various sources <str<strong>on</strong>g>of</str<strong>on</strong>g> uncertainty, our preliminaryanalysis resulted in a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> predicti<strong>on</strong>s: a 14% to 54%loss in mudflat area, and a 27% to 80% loss in habitat valueacross <str<strong>on</strong>g>the</str<strong>on</strong>g> three Spartina spread scenarios examined. At <str<strong>on</strong>g>the</str<strong>on</strong>g>low end, this represents a significant loss <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat for shorebirds,which may or may not result in populati<strong>on</strong> declines.At <str<strong>on</strong>g>the</str<strong>on</strong>g> high end, our predicti<strong>on</strong>s suggest an extreme changein habitat availability that would almost certainly reduce <str<strong>on</strong>g>the</str<strong>on</strong>g>number <str<strong>on</strong>g>of</str<strong>on</strong>g> foraging shorebirds in <str<strong>on</strong>g>the</str<strong>on</strong>g> South Bay.At <str<strong>on</strong>g>the</str<strong>on</strong>g> same time, o<str<strong>on</strong>g>the</str<strong>on</strong>g>r major changes are occurring in<str<strong>on</strong>g>the</str<strong>on</strong>g> South Bay, including <str<strong>on</strong>g>the</str<strong>on</strong>g> restorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> up to 5,000 hectares<str<strong>on</strong>g>of</str<strong>on</strong>g> commercial salt p<strong>on</strong>ds to tidal, muted, and managedmarsh. The loss <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se salt p<strong>on</strong>ds, which currently serveas valuable foraging and roosting habitat, may also reduceshorebird numbers (Stralberg et al. 2006). Thus we suspectthat South Bay shorebird populati<strong>on</strong>s may suffer from multiplenegative impacts within a relatively short timeframe ifSpartina spread is not arrested, reducing <str<strong>on</strong>g>the</str<strong>on</strong>g> value <str<strong>on</strong>g>of</str<strong>on</strong>g> SanFrancisco Bay as a major migratory stopover and winteringsite. Additi<strong>on</strong>al research and modeling will be needed toassess <str<strong>on</strong>g>the</str<strong>on</strong>g> cumulative effects <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat change <strong>on</strong> shorebirds,while large-scale, integrated habitat c<strong>on</strong>servati<strong>on</strong> planningmay help to mitigate <str<strong>on</strong>g>the</str<strong>on</strong>g>se negative effects.AUTHORS’ NOTE:Due to extensive Spartina c<strong>on</strong>trol efforts since <str<strong>on</strong>g>the</str<strong>on</strong>g>writing <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper, Spartina spread now poses much less<str<strong>on</strong>g>of</str<strong>on</strong>g> an immediate threat to shorebirds in San Francisco Bay.ACKNOWLEDGMENTSThis project was requested by <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Invasive</strong> SpartinaProject (ISP), and funded by <str<strong>on</strong>g>the</str<strong>on</strong>g> California CoastalC<strong>on</strong>servancy, <str<strong>on</strong>g>the</str<strong>on</strong>g> State Resources Agency, and <str<strong>on</strong>g>the</str<strong>on</strong>g> CALFEDProgram, under c<strong>on</strong>tract #02-212. We would like to thankKaty Zaremba and Peggy Ol<str<strong>on</strong>g>of</str<strong>on</strong>g>s<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ISP, Debra Ayres,D<strong>on</strong> Str<strong>on</strong>g, Janie Civille and Ted Grosholz <str<strong>on</strong>g>of</str<strong>on</strong>g> UC Davis,and Bruce Jaffe and John Takekawa <str<strong>on</strong>g>of</str<strong>on</strong>g> USGS for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir valuableinput and support. We are also grateful to Josh Collinsand Stuart Siegel for advice <strong>on</strong> methods, to Hildie Spautz forassistance with <str<strong>on</strong>g>the</str<strong>on</strong>g> literature review, and to an an<strong>on</strong>ymousreviewer for feedback <strong>on</strong> an earlier draft <str<strong>on</strong>g>of</str<strong>on</strong>g> this manuscript.Finally, we are very grateful for <str<strong>on</strong>g>the</str<strong>on</strong>g> assistance <str<strong>on</strong>g>of</str<strong>on</strong>g> hundreds <str<strong>on</strong>g>of</str<strong>on</strong>g>volunteers who made <str<strong>on</strong>g>the</str<strong>on</strong>g> shorebird surveys possible. This isPRBO c<strong>on</strong>tributi<strong>on</strong> number 1221.REFERENCESAnttila, C.K., C.C. Daehler, N.E. Rank, and D.R. Str<strong>on</strong>g. 1998.Greater male fitness <str<strong>on</strong>g>of</str<strong>on</strong>g> a rare invader (Spartina alterniflora,Poaceae) threatens a comm<strong>on</strong> native (Spartina foliosa) withhybridizati<strong>on</strong>. Am. J. Bot. 85:1597–1601.Ayres, D.R., D. Garcia-Rossi, H.G. Davis, and D.R. Str<strong>on</strong>g. 1999.Extent and degree <str<strong>on</strong>g>of</str<strong>on</strong>g> hybridizati<strong>on</strong> between exotic (Spartina- 181 -


Chapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> Spartina<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinaalterniflora) and native (S. foliosa) cordgrass (Poaceae) inCalifornia, USA determined by random amplified polymorphicDNA (RAPDs). Mol. Ecol. 8:1179-1186.Ayres, D.R., Zaremba, K., Sloop, C.M., Str<strong>on</strong>g, D.R., 2008. Sexualreproducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cordgrass hybrids (Spartina foliosa x al-terniflora)invading tidal marshes in San Francisco Bay. Divers.Distrib. 14:187-195.Bascand, L.D. 1970. The roles <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina species in New Zealand.Proc. N.Z. Ecol. Soc. 17:33-40.Buchanan, J.B. 2003. Spartina invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pacific coast estuariesin <str<strong>on</strong>g>the</str<strong>on</strong>g> United States: implicati<strong>on</strong>s for shorebird c<strong>on</strong>servati<strong>on</strong>.Wader Study Group Bulletin 100:47-49.Burger, J., M.A. Howe, D.C. Hahn, and J. Chase. 1977. Effects<str<strong>on</strong>g>of</str<strong>on</strong>g> tide cycles <strong>on</strong> habitat selecti<strong>on</strong> and habitat partiti<strong>on</strong>ing bymigrating shorebirds. Auk 9:743-758.Callaway, J.C., and M.N. Josselyn. 1992. The introducti<strong>on</strong> andspread <str<strong>on</strong>g>of</str<strong>on</strong>g> smooth cordgrass (Spartina alterniflora) in South SanFrancisco Bay. Estuaries 15:218-226.Civille, J.C., K. Sayce, S.D. Smith, and D.R. Str<strong>on</strong>g. 2005.Rec<strong>on</strong>structing a century <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflora invasi<strong>on</strong> withhistorical records and c<strong>on</strong>temporary remote sensing. Ecoscience12:330-338.Cohen, A.N. and J.T. Carlt<strong>on</strong>. 1998. Accelerating invasi<strong>on</strong> rate in ahighly invaded estuary. Science 279:555-558.Collins, J.N. 2002. Invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> San Francisco Bay by smooth cordgrass,Spartina alterniflora: a forecast <str<strong>on</strong>g>of</str<strong>on</strong>g> geomorphic effects <strong>on</strong><str<strong>on</strong>g>the</str<strong>on</strong>g> intertidal z<strong>on</strong>e. Unpublished report <str<strong>on</strong>g>of</str<strong>on</strong>g> San Francisco EstuaryInstitute, Oakland, CA.Colwell, M.A. and S.L. Landrum. 1993. N<strong>on</strong>random shorebirddistributi<strong>on</strong> and fine-scale variati<strong>on</strong> in prey abundance. C<strong>on</strong>dor95:94-103.Daehler, C.C. and D.R. Str<strong>on</strong>g. 1996. Status, predicti<strong>on</strong> and preventi<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> introduced cordgrass Spartina spp. invasi<strong>on</strong>s in Pacificestuaries, USA. Biological C<strong>on</strong>servati<strong>on</strong> 78:51-58.Daehler, C.C. and D.R. Str<strong>on</strong>g. 1997. Hybridizati<strong>on</strong> betweenintroduced Smooth Cordgrass (Spartina alterniflora) and nativeCalifornia cordgrass (S. foliosa) in San Francisco Bay, California,USA. American Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Botany 84:607-611.D<strong>on</strong>nelly, J.P. and M.D. Bertness. 2001. Rapid shoreward encroachment<str<strong>on</strong>g>of</str<strong>on</strong>g> salt marsh cordgrass in resp<strong>on</strong>se to accelerated sea-levelrise. PNAS 98:14218-14223.Durell, S.E., A. LeDit, J.D. Goss-Custard, and R.T. Clarke. 1997.Differential resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> migratory subpopulati<strong>on</strong>s to winterhabitat loss. J. Appl. Ecol. 34:1155-1164.ESRI. 2002. ArcInfo 8.3. Envir<strong>on</strong>mental Systems Research Institute,Redlands, CA.Evans, P.R. 1986. Use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> herbicide ‘Dalap<strong>on</strong>’ for c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina encroaching <strong>on</strong> intertidal mudflats: beneficial effects<strong>on</strong> shorebirds. Col<strong>on</strong>ial Waterbirds 9:171-175.Foxgrover, A.C., S.A. Higgins, M.K. Ingraca, B.E. Jaffe, and R.E.Smith. 2004. Depositi<strong>on</strong>, erosi<strong>on</strong>, and bathymetric change inSouth San Francisco Bay: 1858-1983: U.S. Geological SurveyOpen-File Report 2004-1192.Foxgrover, A.C., B.E. Jaffe. 2005. South San Francisco Bay 2004topographic lidar survey: Data overview and preliminaryquality assess-ment, U.S. Geological Survey Open-File ReportOFR-2005-1284, versi<strong>on</strong> 1.0. http://pubs.usgs.gov/<str<strong>on</strong>g>of</str<strong>on</strong>g>/2005/1284/.Galbraith, H., R. J<strong>on</strong>es, R. Park, J. Clough, S. Herrod-Julius, B.Harringt<strong>on</strong>, and G. Page. 2002. Global climate change and sealevel rise: potential losses <str<strong>on</strong>g>of</str<strong>on</strong>g> intertidal habitat for shorebirds.Waterbirds 25:173-183.Goss-Custard, J.D. 1979. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat loss <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> numbers <str<strong>on</strong>g>of</str<strong>on</strong>g>overwintering shorebirds. Studies in Avian Biology 2:167-177.Goss-Custard, J. D. 1984. Intake rates and food supply in migratingand wintering shorebirds. In: Burger, J. and B.L. Olla, eds.Shorebirds: Migrati<strong>on</strong> and Foraging Behaviour, pp. 233-270.Plenum Press, L<strong>on</strong>d<strong>on</strong> and New York.Goss-Custard, J.D. 2003. Fitness, demographic rates and managing<str<strong>on</strong>g>the</str<strong>on</strong>g> coast for wader populati<strong>on</strong>s. Wader Study Group Bulletin100:183-191.Goss-Custard, J.D., R.E. J<strong>on</strong>es, and P.E. Newbery. 1977. Theecology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Wash. I. Distributi<strong>on</strong> and diet <str<strong>on</strong>g>of</str<strong>on</strong>g> wading birds(Charadrii). J. Appl. Ecol. 14:681-700.Goss-Custard, J. D. and M. E. Moser. 1988. Rates <str<strong>on</strong>g>of</str<strong>on</strong>g> change in <str<strong>on</strong>g>the</str<strong>on</strong>g>numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> Dunlin, Calidris alpina, wintering in British estuariesin relati<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina Anglica. J. Appl. Ecol.25:95-109.Jaques, D. 2002. Shorebird status and effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alternifloraat Willapa NWR Unpublished report. US Fish and WildlifeService, Willapa Bay Nati<strong>on</strong>al Wildlife Refuge.Josselyn, M. 1983. The ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> San Francisco Bay tidal marshes:a community pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile. U.S. Fish and Wildlife Service, Div. <str<strong>on</strong>g>of</str<strong>on</strong>g>Biological Services, FWS/OBS-83/23. Washingt<strong>on</strong> D.C.Josselyn, M., J. Zedler, and T. Griswold. 1990. Wetland mitigati<strong>on</strong>al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> Pacific Coast <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> United States. In: Kentula, J,A, andM.E. Kusler, eds. Wetland Creati<strong>on</strong> and Restorati<strong>on</strong>: <str<strong>on</strong>g>the</str<strong>on</strong>g> Status<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Science. Island Press, Washingt<strong>on</strong> D.C.Nichols, F.H., J.E. Cloern, S.N. Luoma, and D.H. Peters<strong>on</strong>. 1986.The modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an estuary. Science 231:567-573.Page, G.W., L.E. Stenzel, and J.E. Kjelmyr. 1999. Overview <str<strong>on</strong>g>of</str<strong>on</strong>g>shorebird abundance and distributi<strong>on</strong> in wetlands <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> PacificCoast <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tiguous United States. C<strong>on</strong>dor 101:461-471.Page, G.W., L.E. Stenzel, and C.M. Wolfe. 1979. Aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> shorebirds <strong>on</strong> a central California estuary. Studiesin Avian Biology 2:15-32.Puttick, G.M. 1977. Spatial and temporal variati<strong>on</strong>s in intertidalanimal distributi<strong>on</strong> at Langebaan Lago<strong>on</strong>, South Africa. RoyalSociety <str<strong>on</strong>g>of</str<strong>on</strong>g> South Africa. Trans. 42:403-440.Quammen, M.L. 1982. Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> subtle substrate differences<strong>on</strong> feeding by shorebirds <strong>on</strong> intertidal mudflats. Mar. Biol.71:339-343.Ranwell, D.S. 1964. Spartina salt marshes in sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn England:II. rate and seas<strong>on</strong>al pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment accreti<strong>on</strong>. J. Ecol.52:79-94.Sayce, K. 1988. Introduced cordgrass, Spartina alterniflora Loiselin saltmarshes and tidelands <str<strong>on</strong>g>of</str<strong>on</strong>g> Willapa Bay, Washingt<strong>on</strong>. Reportto US Fish and Wildlife Service, Willapa NWR.SFEI. 1998. EcoAtlas beta release, versi<strong>on</strong> 1.5b4. San FranciscoEstuary Institute, Oakland, CA.Stata. 2003. Intercooled Stata 8.0 for Windows. Stata Corporati<strong>on</strong>,College Stati<strong>on</strong>, TX.Stenzel, L.E., C.M. Hickey, J.E. Kjelmyr, and G.W. Page. 2002.Abundance and distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> shorebirds in <str<strong>on</strong>g>the</str<strong>on</strong>g> San FranciscoBay area. Western Birds 33:69-98.Stralberg, D., M. Herzog, N. Warnock, N. Nur, and S. Valdez. 2006.Habitat-based modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> wetland bird communities: an evaluati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> potential restorati<strong>on</strong> alternatives for South San FranciscoBay. PRBO unpubl. report to California Coastal C<strong>on</strong>servancy.http://www.prbo.org/wetlands/hcm.Takekawa, J.Y., N. Warnock, G.M. Martinelli, A.K. Miles, andD. C. Tsao. 2002. Waterbird use <str<strong>on</strong>g>of</str<strong>on</strong>g> bayland wetlands in <str<strong>on</strong>g>the</str<strong>on</strong>g> San- 182 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> SpartinaFrancisco Bay Estuary: movements <str<strong>on</strong>g>of</str<strong>on</strong>g> L<strong>on</strong>g-billed Dowitchersduring winter. Waterbirds 25 (Special Publicati<strong>on</strong> 2):93-105.Warnock, N., and M.A. Bishop. 1998. Spring stopover ecology <str<strong>on</strong>g>of</str<strong>on</strong>g>migrant Western Sandpipers. C<strong>on</strong>dor 100:456-467.Warnock, N., G.W. Page, and L. E. Stenzel. 1995. N<strong>on</strong>-migratorymovements <str<strong>on</strong>g>of</str<strong>on</strong>g> Dunlin <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir California wintering grounds.Wils<strong>on</strong> Bulletin 107:131-139.White, B. C. 1995. The shorebird foraging resp<strong>on</strong>se to <str<strong>on</strong>g>the</str<strong>on</strong>g> eradicati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> introduced cordgrass, Spartina alterniflora. M.A.Thesis. San Francisco State University, San Francisco, CA.Yates, M.G., J.D. Goss-Custard, S. McGrorty, K.H. Lakhani, S.Durell, R.T. Clarke, W.E. Rispin, I. Moy, T. Yates, R.A. Plant,and J. Frost. 1993. Sediment characteristics, invertebrate densitiesand shorebird densities <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> inner banks <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Wash. J.Appl. Ecol. 30:599-614.Zaremba, K., M. McGowan and D.R. Ayres. Spread <str<strong>on</strong>g>of</str<strong>on</strong>g> invasiveSpartina in <str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco estuary. In: Ayres, D.R., D.W.Kerr, S.D. Erics<strong>on</strong> and P.R. Ol<str<strong>on</strong>g>of</str<strong>on</strong>g>s<strong>on</strong>, eds. <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g><str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartina, 2004 Nov8-10, San Francisco, CA, USA. San Francisco Estuary <strong>Invasive</strong>Spartina Project <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> California State Coastal C<strong>on</strong>servancy:Oakland, CA. (this volume).- 183 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> SpartinaNON-NATIVE CORDGRASS AND THE CALIFORNIA CLAPPER RAIL:BIOGEOGRAPHICALOVERLAP BETWEEN AN INVASIVE PLANT AND AN ENDANGERED BIRDJ. EVENS 1 ,K.ZAREMBA 2 , AND J. ALBERTSON 31Avocet Research Associates, P.O. Box 839, Point Reyes Stati<strong>on</strong>, CA 94956; email: jevens@svn.net2San Francisco Estuary <strong>Invasive</strong> Spartina Project, 2612-A 8 th St., Berkeley, CA 947102Current address: 971 Village Dr. Bowen Island, BC, V0N 1G0 Canada; katyzaremba@yahoo.ca3 D<strong>on</strong> Edwards San Francisco Bay Nati<strong>on</strong>al Wildlife Refuge, 9500 Thornt<strong>on</strong> Ave.,Newark, CA 94560-3300The federally endangered California clapper rail (Rallus l<strong>on</strong>girostris obsoletus) is a tidal marshdependentbird whose distributi<strong>on</strong> is restricted entirely to <str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco Estuary. The nativecordgrass, Spartina foliosa, has l<strong>on</strong>g been recognized as a critical comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> clapper rail habitatwithin <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary. The distributi<strong>on</strong> and abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> clapper rail has been m<strong>on</strong>itoredintermittently since <str<strong>on</strong>g>the</str<strong>on</strong>g> mid-1970s and that effort has increased since <str<strong>on</strong>g>the</str<strong>on</strong>g> early 1990s. Thec<strong>on</strong>current invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bay’s tidal marshes by n<strong>on</strong>-native Spartina alterniflora and its hybridswith S. foliosa has impacted clapper rail abundance and distributi<strong>on</strong> in some areas <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary. Inthis paper we discuss: (1) habitat affinities and density estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> rail in invaded and n<strong>on</strong>-invadedmarshes; (2) <str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-native Spartina relative to that <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> clapper rails over <str<strong>on</strong>g>the</str<strong>on</strong>g> last15 years; and, (3) potential impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> changing marsh ecology <strong>on</strong> rail distributi<strong>on</strong> and abundance inboth <str<strong>on</strong>g>the</str<strong>on</strong>g> near term and <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>g term.Keywords: California clapper rail, Rallus l<strong>on</strong>girostris obsoletus, Spartina, cordgrass, impacts,habitat characteristics, distributi<strong>on</strong>, abundanceCLAPPER RAIL DISTRIBUTION, HABITAT AFFINITIES ANDABUNDANCEFormerly more widespread al<strong>on</strong>g California’s outercoast (e.g. Morro Bay, Elkhorn Slough, Tomales Bay), <str<strong>on</strong>g>the</str<strong>on</strong>g>breeding distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> California clapper rail is nowrestricted entirely to <str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco Estuary (Alberts<strong>on</strong>and Evens 2000). Within <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary, <str<strong>on</strong>g>the</str<strong>on</strong>g> clapper rail ispatchily distributed through tidally influenced marshes, withpopulati<strong>on</strong> centers fairly evenly dispersed am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> SouthBay and <str<strong>on</strong>g>the</str<strong>on</strong>g> North Bay (aka “San Pablo Bay”) marshes. TheCentral Bay also hosts significant populati<strong>on</strong>s, but, like <str<strong>on</strong>g>the</str<strong>on</strong>g>habitat, <str<strong>on</strong>g>the</str<strong>on</strong>g>se tend to be relatively discrete and locallyclustered (e.g. Arrowhead Marsh, San Bruno Marsh, CorteMadera marshes). In Suisun Bay, distributi<strong>on</strong> is very spotty,densities are apparently low, and occurrence may besporadic, especially in <str<strong>on</strong>g>the</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn reaches <str<strong>on</strong>g>of</str<strong>on</strong>g> Suisun Marsh(Collins et al. 1994; Alberts<strong>on</strong> and Evens 2000; Estrella2007). Indeed, no clapper rails were detected in <str<strong>on</strong>g>the</str<strong>on</strong>g> Suisunsystem in 2005 or 2007 (Herzog et al. 2005; Estrella 2007).The most recent populati<strong>on</strong> estimates suggest thatapproximately 1500 California clapper rails remain in <str<strong>on</strong>g>the</str<strong>on</strong>g>San Francisco Estuary with approximately <strong>on</strong>e-third <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>populati<strong>on</strong> in San Pablo Bay and two-thirds in <str<strong>on</strong>g>the</str<strong>on</strong>g> Centraland South bays, combined (Alberts<strong>on</strong> and Evens 2000;Avocet Research Associates 2004; USFWS unpubl. data).This compares with estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> 4200-6000 rails in <str<strong>on</strong>g>the</str<strong>on</strong>g> mid-1970s (Gill 1979). However <str<strong>on</strong>g>the</str<strong>on</strong>g>se numbers require a caveat:Populati<strong>on</strong> estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> clapper rails are fraught withuncertainty, survey coverage is sporadic, and numbers mayvary widely from year-to-year.CALIFORNIA CLAPPER RAIL HABITATCHARACTERISTICS: PRE-INVASIONHabitat availability and <str<strong>on</strong>g>the</str<strong>on</strong>g> characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> tidalmarshes differ between South, Central, and North Baymarshlands. In general, marshlands in <str<strong>on</strong>g>the</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn reachesare more extensive and less modified by human activity thanthose in <str<strong>on</strong>g>the</str<strong>on</strong>g> central and sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn porti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary.Additi<strong>on</strong>ally, invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary by n<strong>on</strong>-nativeSpartina—c<strong>on</strong>fined largely to <str<strong>on</strong>g>the</str<strong>on</strong>g> sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn half <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>estuary (http://www.spartina.org/maps.htm)—has amplifiedthis disparity.Synoptic surveys <str<strong>on</strong>g>of</str<strong>on</strong>g> North Bay marshes (north <str<strong>on</strong>g>of</str<strong>on</strong>g> PointsSan Pedro and San Pablo) in <str<strong>on</strong>g>the</str<strong>on</strong>g> early 1990s describedhabitat use in <str<strong>on</strong>g>the</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn reaches <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary (Evens andCollins 1992; Collins et al. 1994). We assume that <str<strong>on</strong>g>the</str<strong>on</strong>g>seecological parameters most closely resemble habitatpreferences <str<strong>on</strong>g>of</str<strong>on</strong>g> California clapper rail’s prior to <str<strong>on</strong>g>the</str<strong>on</strong>g> extensivemodificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary that began in <str<strong>on</strong>g>the</str<strong>on</strong>g> mid-1800s(C<strong>on</strong>omos 1979; Goals Project 1999). Additi<strong>on</strong>ally, earlierstudies throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary described distributi<strong>on</strong>,abundance, and habitat affinities <str<strong>on</strong>g>of</str<strong>on</strong>g> obsoletus prior toinvasi<strong>on</strong> by n<strong>on</strong>-native Spartina (Grinnell and Miller 1944;Gill 1979; Avocet Research 1992; Evens and Collins 1992;Collins et al. 1994; Alberts<strong>on</strong> 1995). Generalized habitat- 185 -


Chapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> Spartina<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinaaffinities <str<strong>on</strong>g>of</str<strong>on</strong>g> clapper rails in n<strong>on</strong>-invaded marshes aresummarized as follows:• Distributi<strong>on</strong> limited to fully tidally, saline to brackishmarshlands and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir foreshores within <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary. Clapperrails do not occur upstream in <str<strong>on</strong>g>the</str<strong>on</strong>g> Sacramento-San JoaquinDelta and fresher porti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> system.• Well-developed channel and slough systems that extendthrough or into patches <str<strong>on</strong>g>of</str<strong>on</strong>g> tall m<strong>on</strong>ocot vegetati<strong>on</strong>.Channels functi<strong>on</strong> as important areas for foraging and asmovement corridors.• M<strong>on</strong>ocot vegetati<strong>on</strong> is used for nesting material;nests are built at or about Mean Higher High Water(MHHW), <str<strong>on</strong>g>of</str<strong>on</strong>g>ten at <str<strong>on</strong>g>the</str<strong>on</strong>g> headward reach <str<strong>on</strong>g>of</str<strong>on</strong>g> a tidal channel(ARA 1992). N<strong>on</strong>-native Spartina extends upward to nearlyMHHW (Collins 2002.)• Habitat patches typically comprise some mature andsome youthful marsh. 1 The highest densities in <str<strong>on</strong>g>the</str<strong>on</strong>g> NorthBay marshes are generally associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> largestc<strong>on</strong>tiguous areas <str<strong>on</strong>g>of</str<strong>on</strong>g> youthful, saline marshland adjoining atleast moderate amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> historical, mature marshland(Evens and Collins 1992; Collins et al. 1994).• Broad marshes <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> bayshore, or near <str<strong>on</strong>g>the</str<strong>on</strong>g> mouths<str<strong>on</strong>g>of</str<strong>on</strong>g> tidal tributaries are favored; narrow, linear, strip marshessupport much lower densities, but serve as important corridorsbetween habitat patches and as foraging areas.• Densities <str<strong>on</strong>g>of</str<strong>on</strong>g> rails are highest where patches <str<strong>on</strong>g>of</str<strong>on</strong>g> habitatare at least 100 hectares (ha) in size (Collins et al. 1994).• Densities <str<strong>on</strong>g>of</str<strong>on</strong>g> rails tend to increase with channel density(length <str<strong>on</strong>g>of</str<strong>on</strong>g> channel per unit <str<strong>on</strong>g>of</str<strong>on</strong>g> marshland.)• Density is positively correlated (R 2 = 0.74) to arealextent <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tiguous marshland.• Small parcels <str<strong>on</strong>g>of</str<strong>on</strong>g> marsh al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> immediate margin<str<strong>on</strong>g>of</str<strong>on</strong>g> a tributary are more likely to support California clapperrails than small parcels that are more isolated.• Refugial vegetati<strong>on</strong>, or even man-made structures(docks, duck blinds, etc.) may provide some protecti<strong>on</strong> forrails, particularly during high tides and flood events. Populati<strong>on</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g> mesopredators (racco<strong>on</strong>s, skunks, feral cats, etc.),and especially <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-native red fox (Vulpes vulpes),threaten rail survival; aerial predators also pose a threat.• Boardwalks, fence lines, towers, and stakes may increasepredati<strong>on</strong> pressure by providing perch sites for avianpredators (Barn Owl, Great Horned Owl, Nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Harrier, etc.)Numerous protocol-level populati<strong>on</strong> surveys have beenc<strong>on</strong>ducted in <str<strong>on</strong>g>the</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn reaches <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary since <str<strong>on</strong>g>the</str<strong>on</strong>g>early 1980s (e.g. Evens and Page 1987; Collins et al. 1994;ARA 2004; Herzog et al. 2005).At San Pablo Bay sites where rails have been detected,densities typically varied between 0.1 and 2.8 birds perhectare (Collins et al. 1992; ARA 2004; Herzog et al. 2005)with highest densities at sites where youthful marsh hasrecently developed, e.g. Bahia Lago<strong>on</strong> with 1.7 to 2.8birds/ha (ARA 2004; Herzog et al. 2005).In large maturemarshes, with well-developed channel systems, but wherenative cordgrass is limited to a narrow fringing edge, densityestimates are more typically <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> order <str<strong>on</strong>g>of</str<strong>on</strong>g> about 0.5birds/ha but, in <str<strong>on</strong>g>the</str<strong>on</strong>g> largest marshes may range up as high as1.8 birds/ha (e.g Gallinas Creek mouth—ARA 2004; Herzoget al. 2005).NON-NATIVE SPARTINA DISTRIBUTION AND ABUNDANCEAND EXTENT OF OVERLAP WITH RAILSWithin <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary, n<strong>on</strong>-native cordgrass (Spartinaalterniflora and hybrids) is limited primarily to <str<strong>on</strong>g>the</str<strong>on</strong>g>marshlands and tidal flats south <str<strong>on</strong>g>of</str<strong>on</strong>g> Point San Pedro andPoint San Pablo (Hogle 2006). Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> San Pablo Bayrail subpopulati<strong>on</strong>s exist essentially independent <str<strong>on</strong>g>of</str<strong>on</strong>g> invadedhabitat while <str<strong>on</strong>g>the</str<strong>on</strong>g> Central and South Bay rail subpopulati<strong>on</strong>soverlap extensively with actively col<strong>on</strong>izing n<strong>on</strong>-nativecordgrass (Broom 2008).Protocol-level surveys over <str<strong>on</strong>g>the</str<strong>on</strong>g> three years 2005-2007that covered 60 sites and were limited to marshes invaded byn<strong>on</strong>-native cordgrass found mean baywide densities in <str<strong>on</strong>g>the</str<strong>on</strong>g>range <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.58 rails/ha to 0.68 rails/ha (Broom 2008). Thesevalues are not highly disparate from those reported in <str<strong>on</strong>g>the</str<strong>on</strong>g>nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn reaches <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary (Collins et al. 1994; ARA2004; Herzog et al. 2005) Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r study <str<strong>on</strong>g>of</str<strong>on</strong>g> 45 Central andSouth bay sites c<strong>on</strong>ducted in 2005-2006 derived an overallmean abundance 0f 0.84 (±0.163) rails/ha and found nostatistically significant differences am<strong>on</strong>g categories (0 to>50%) <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina hybrid cover (Spautz et al. 2006).However, at several locati<strong>on</strong>s where Spartina cl<strong>on</strong>es haveaggresively invaded <str<strong>on</strong>g>the</str<strong>on</strong>g> foreshore, clapper rail densitiesgreatly exceeded those reported in San Pablo Bay, in <str<strong>on</strong>g>the</str<strong>on</strong>g>Central and South bays prior to <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> by n<strong>on</strong>-nativecordgrass, and <str<strong>on</strong>g>the</str<strong>on</strong>g> mean density reported in <str<strong>on</strong>g>the</str<strong>on</strong>g> twoaforementi<strong>on</strong>ed surveys. The most obvious examples:San Bruno Marsh (Colma Creek mouth): 2.4 to 3.8birds/ha (J. Evens, unpublished data., Spautz et al. 2006)Arrowhead Marsh: 3.8 to 4.2 birds/ha (Spautz et al.2006; J. Did<strong>on</strong>ato, EBRPD, pers. comm.).This positive resp<strong>on</strong>se to youthful, recently established,intertidal marsh vegetati<strong>on</strong> by obsoletus is not unexpected.As North Bay studies in <str<strong>on</strong>g>the</str<strong>on</strong>g> early 1990s reported: “. . .highest densities <str<strong>on</strong>g>of</str<strong>on</strong>g> clapper rails were generally associatedwith <str<strong>on</strong>g>the</str<strong>on</strong>g> largest c<strong>on</strong>tiguous areas <str<strong>on</strong>g>of</str<strong>on</strong>g> youthful, salinemarshland adjoining at least moderate areas <str<strong>on</strong>g>of</str<strong>on</strong>g> historical,mature marshland . . .” (Collins et al. 1994). The col<strong>on</strong>izati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> marsh edge and foreshore by n<strong>on</strong>-native cordgrass isapparently mimicking c<strong>on</strong>diti<strong>on</strong>s in “native marshes” thatprograde as ecological c<strong>on</strong>diti<strong>on</strong>s change (e.g. depositi<strong>on</strong>alerosi<strong>on</strong>patterns). However, <str<strong>on</strong>g>the</str<strong>on</strong>g> Central and South Baymarshes invaded by n<strong>on</strong>-native cordgrass differ frommarshlands <str<strong>on</strong>g>of</str<strong>on</strong>g> San Pablo Bay, in that few adjoin largemature marshlands, few support a heterogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g> marshage classes, few exhibit a natural transiti<strong>on</strong>al grade from <str<strong>on</strong>g>the</str<strong>on</strong>g>low marsh to <str<strong>on</strong>g>the</str<strong>on</strong>g> high marsh plain, and vegetative cover at<str<strong>on</strong>g>the</str<strong>on</strong>g> marsh/upland ecot<strong>on</strong>e is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten sparse or absent. North- 186 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> SpartinaBay marshes are also larger than marshes in <str<strong>on</strong>g>the</str<strong>on</strong>g> sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rnreach, higher in elevati<strong>on</strong>, have a lower rate <str<strong>on</strong>g>of</str<strong>on</strong>g> subsidencerelative to mean tidal level, and have more emergent marshvegetati<strong>on</strong> (Atwater et al. 1979; Josselyn 1983; GoalsProject 1999; Baye et al. 2000).ONGOING THREATS TO THE CLAPPER RAIL POPULATIONExtensive c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tidal lands resulting fromhistoric and <strong>on</strong>going pressures <str<strong>on</strong>g>of</str<strong>on</strong>g> agricultural producti<strong>on</strong>,urbanizati<strong>on</strong>, and salt producti<strong>on</strong> has drastically reducedCalifornia clapper rail habitat in <str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco Estuary(Goals Project 1999; Alberts<strong>on</strong> and Evens 2000). Theremnant tidal marshlands <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary, <str<strong>on</strong>g>the</str<strong>on</strong>g> largest and lastrefuge <str<strong>on</strong>g>of</str<strong>on</strong>g> R.l. obsoletus, occupy <strong>on</strong>ly about 12-15% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>irhistoric extent, yet even in such diminished capacitycomprise more than 90% <str<strong>on</strong>g>of</str<strong>on</strong>g> all remaining California tidalmarshlands (Dedrick 1989; Goals Project 1999). In additi<strong>on</strong>to, and exacerbated by, habitat loss and fragmentati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>rail populati<strong>on</strong> is vulnerable to a redundancy <str<strong>on</strong>g>of</str<strong>on</strong>g> threats—predati<strong>on</strong> by introduced red fox (Vulpes vulpes); depredati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> nests and eggs by n<strong>on</strong>-native rodents (Rattus spp.) andinflated populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> native mammals (e.g. striped skunk,racco<strong>on</strong>); c<strong>on</strong>taminati<strong>on</strong> (L<strong>on</strong>zarich et al. 1992;Schwarzbach et al. 2006); diminuti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> peripheral refugialvegetati<strong>on</strong>; and sea-level rise. The ecological alterati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> estuary’s tidal marshes by n<strong>on</strong>-native vegetati<strong>on</strong>,especially Spartina alterniflora and its hybrids, and possiblyLepidium (Spautz and Nur 2004), poses yet ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r potentialthreat to an already beleaguered species.Ecologists have found that n<strong>on</strong>-native hybrid cordgrassexceeds <str<strong>on</strong>g>the</str<strong>on</strong>g> narrower niche <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> native tidal marsh plantand predicted that as <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> progresses, hybridSpartina will likely spread to higher and lower elevati<strong>on</strong>s(Cohen 2001; Callaway and Josselyn 1992; Daehler andStr<strong>on</strong>g 1996; Collins 2002; Baye 2004). As cordgrass bedsexpand, <str<strong>on</strong>g>the</str<strong>on</strong>g>y are expected to “c<strong>on</strong>strain <str<strong>on</strong>g>the</str<strong>on</strong>g> tidal network”(Collins 2002) and, as <str<strong>on</strong>g>the</str<strong>on</strong>g> culms reach mature densities, <str<strong>on</strong>g>the</str<strong>on</strong>g>stands are apt to become effective sediment traps, promotinginfilling (Baye 2004). Additi<strong>on</strong>ally, <str<strong>on</strong>g>the</str<strong>on</strong>g> lower elevati<strong>on</strong>limits <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-native cordgrass “corresp<strong>on</strong>d to <str<strong>on</strong>g>the</str<strong>on</strong>g> slumpblocks and lower banks <str<strong>on</strong>g>of</str<strong>on</strong>g> large channels” (Collins 2002),prime clapper rail foraging areas.One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> forecasts <str<strong>on</strong>g>of</str<strong>on</strong>g> a study <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> geomorphiceffects <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-native cordgrass invasi<strong>on</strong> was that it will tend“to isolate <str<strong>on</strong>g>the</str<strong>on</strong>g> headward reaches <str<strong>on</strong>g>of</str<strong>on</strong>g> first order channelsfrom <str<strong>on</strong>g>the</str<strong>on</strong>g>ir networks,” [in effect] “shortening and simplifyingintertidal channel networks and <str<strong>on</strong>g>the</str<strong>on</strong>g> shoreline <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Estuaryas a whole” (Collins 2002). This narrow elevati<strong>on</strong>al nicheoverlaps almost precisely with habitat that is critical for <str<strong>on</strong>g>the</str<strong>on</strong>g>California clapper rail (Collins et al. 1994; Alberts<strong>on</strong> andEvens 2000). Given <str<strong>on</strong>g>the</str<strong>on</strong>g> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> channel complexity toclapper rails, a reducti<strong>on</strong> in channel density and complexitypredicted for marshes invaded by n<strong>on</strong>-native Spartina(Collins 2002; Ayres et al. 2003; Baye 2004) is likely toreduce <str<strong>on</strong>g>the</str<strong>on</strong>g> availability <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat for clapper rails.RAIL DENSITY AND HABITAT QUALITYThe populati<strong>on</strong> estimates reported above suggest thatclapper rails may occur in dramatically higher densities insome invaded marshes than in n<strong>on</strong>-invaded marshes. Thisapparent selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-native over native habitats by railspredicates a questi<strong>on</strong>: Do increased densities <str<strong>on</strong>g>of</str<strong>on</strong>g> rails meanincreased viability <str<strong>on</strong>g>of</str<strong>on</strong>g> rail populati<strong>on</strong>s?Some have interpreted <str<strong>on</strong>g>the</str<strong>on</strong>g> density <str<strong>on</strong>g>of</str<strong>on</strong>g> rails detectedwithin n<strong>on</strong>-native Spartina patches as a positive trend forthis highly endangered tax<strong>on</strong>. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> literaturecauti<strong>on</strong>s that density is a misleading indicator <str<strong>on</strong>g>of</str<strong>on</strong>g> habitatquality or reproductive success (VanHorne 1983; Vickery etal. 1992; Pulliam 1996). Given <str<strong>on</strong>g>the</str<strong>on</strong>g> biogeography <str<strong>on</strong>g>of</str<strong>on</strong>g> tidalmarshlands within <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary, and <str<strong>on</strong>g>the</str<strong>on</strong>g> disparity in habitattypes that exists between marshes in its nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn andsou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn reaches (Josselyn 1983; Goals Project 1999; Bayeet al. 2000) land managers and biologists should c<strong>on</strong>sider<str<strong>on</strong>g>the</str<strong>on</strong>g> possibility that n<strong>on</strong>-native Spartina pastures might beecological traps, or perhaps “attractive sinks,” phenomenathat occur most comm<strong>on</strong>ly in anthropogenically modifiedhabitats (Delibes et al. 2001; Schlaepfer et al. 2002; Battin2004; Roberts<strong>on</strong> and Hutto 2006). Indeed, San FranciscoEstuary and <str<strong>on</strong>g>the</str<strong>on</strong>g> California clapper rail fulfill most if not all<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> criteria that increase vulnerability <str<strong>on</strong>g>of</str<strong>on</strong>g> animalpopulati<strong>on</strong>s to ecological traps summarized by Battin(2004). It is also worth c<strong>on</strong>sidering <str<strong>on</strong>g>the</str<strong>on</strong>g> possibility that <str<strong>on</strong>g>the</str<strong>on</strong>g>increasing trends in abundance associated with invadedmarshes (east bayshore) and coincident negative trends inless invaded sites (west bayshore) reported in Broom (2008),suggest <str<strong>on</strong>g>the</str<strong>on</strong>g> possibility that rails are being lured away fromhigher quality habitat (larger patch size, age heterogeneity,native Spartina beds ) to occupy falsely attractive habitat.However, <str<strong>on</strong>g>the</str<strong>on</strong>g> suppositi<strong>on</strong> that ecological traps account for<str<strong>on</strong>g>the</str<strong>on</strong>g>se apparent trends is open to o<str<strong>on</strong>g>the</str<strong>on</strong>g>r interpretati<strong>on</strong>s (Battin2004; Roberts<strong>on</strong> and Hutto 2006; Gilroy and Su<str<strong>on</strong>g>the</str<strong>on</strong>g>rland2007).To determine <str<strong>on</strong>g>the</str<strong>on</strong>g> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-native Spartina beds toclapper rail l<strong>on</strong>g-term populati<strong>on</strong> viability, studiesdetermining reproductive success, survivorship, andpredati<strong>on</strong> rates in both habitat types will be needed. Futurestudies aimed at determining reproductive success ininvaded and n<strong>on</strong>-invaded habitat may help address thisimportant questi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>servati<strong>on</strong> biology.SUMMARY AND CONCLUSIONSN<strong>on</strong>-native cordgrass has invaded intertidal marshlandsin <str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco Estuary, crucial habitat for <str<strong>on</strong>g>the</str<strong>on</strong>g> endemicand endangered California clapper rail. The ecologicaltransformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> intertidal marsh z<strong>on</strong>e is apparentlyunderway and future changes are anticipated. Densities <str<strong>on</strong>g>of</str<strong>on</strong>g>rails in invaded habitat appear to be somewhat higher than at- 187 -


Chapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> Spartina<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinan<strong>on</strong>-invaded habitat, but <str<strong>on</strong>g>the</str<strong>on</strong>g> ultimate effects <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>reproductive success and recovery <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> California clapperrail poplati<strong>on</strong> are unknown.The South and Central Bay subpopulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> railsoccupy tidal marshes that are undergoing an aggressiveinvasi<strong>on</strong> by n<strong>on</strong>-native cordgrass. The North Bay clapperrail populati<strong>on</strong>s occupy marshes that are mostly free <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>nativecordgrass. The North Bay is also an area whereextensive marsh restorati<strong>on</strong> efforts are underway or in <str<strong>on</strong>g>the</str<strong>on</strong>g>planning phases (Siegel 2002). These differing situati<strong>on</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g>fer opportunities for:• N<strong>on</strong>-native cordgrass c<strong>on</strong>trol in <str<strong>on</strong>g>the</str<strong>on</strong>g> South and Centralbays employing “best management practices” to reduceor minimize impacts to rails, currently in progress by <str<strong>on</strong>g>the</str<strong>on</strong>g> SanFrnacisco Bay <strong>Invasive</strong> Spartina Project.• M<strong>on</strong>itoring <str<strong>on</strong>g>of</str<strong>on</strong>g> North Bay marshes for <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g>n<strong>on</strong>-native cordgrass, particularly in marsh restorati<strong>on</strong> sites.• C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-native cordgrass in <str<strong>on</strong>g>the</str<strong>on</strong>g> North Bayprior to alterati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> structure and functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat.• Research focused <strong>on</strong> populati<strong>on</strong> dynamics <str<strong>on</strong>g>of</str<strong>on</strong>g> rails atdifferent sites (invaded and “pristine”) to determine reproductivesuccess and survivorship.REFERENCESAlberts<strong>on</strong>, J. and J. Evens. 2000. California Clapper Rail. In:Ol<str<strong>on</strong>g>of</str<strong>on</strong>g>s<strong>on</strong>, P.R., ed. Baylands Ecosystem Species and CommunityPr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles: life histories and envir<strong>on</strong>mental requirements <str<strong>on</strong>g>of</str<strong>on</strong>g> keyplants, animals, and wildlife, pp. 332-341. San Francisco BayRegi<strong>on</strong>al Water Quality C<strong>on</strong>trol Board, Oakland, California.Atwater, B.F., S.G. C<strong>on</strong>ard, J.N. Dowden, C.W. Hedel, R.L.MacD<strong>on</strong>ald, and W. Savage. 1979. History, landforms, and vegetati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary’s tidal marshes. In: C<strong>on</strong>omos, T.J., ed. SanFrancisco Bay: <str<strong>on</strong>g>the</str<strong>on</strong>g> urbanized estuary, pp. 348-385. Pacific Divisi<strong>on</strong>,American Associati<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> Advancement <str<strong>on</strong>g>of</str<strong>on</strong>g> Science. SanFrancisco, California.Avocet Research Associates. 1992. Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> NavalRiverine Forces Training Operati<strong>on</strong>s <strong>on</strong> nesting habitat <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>California Clapper Rail at Napa River, California. Report toU.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Navy, Western Divisi<strong>on</strong>, San Bruno,California.Avocet Research Associates. 2004. California Clapper Rail (Rallusl<strong>on</strong>girostris obsoletus): breeding seas<strong>on</strong> surveys, San Pablo Bayand tributaries—2004. Final report to Marin Audub<strong>on</strong> Societyfrom Avocet Research associates.Ayres, D.R., D.R. Str<strong>on</strong>g, and P. Baye. 2003. Spartina foliosa(Poaceae)—A comm<strong>on</strong> species <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> road to rarity? Madr<strong>on</strong>o50:209-213.Battin, J. 2004. When good animals love bad habitats: Ecologicaltraps and <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> animal populati<strong>on</strong>s. C<strong>on</strong>servati<strong>on</strong>Biology 18: 1482-1491.Baye, P., P.M. Faber, and B. Grewell. 2000. Tidal marsh plants <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco Estuary. In: Ol<str<strong>on</strong>g>of</str<strong>on</strong>g>s<strong>on</strong>, P.R., ed. Baylands EcosystemSpecies and Community Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles: life histories and envir<strong>on</strong>mentalrequirements <str<strong>on</strong>g>of</str<strong>on</strong>g> key plants, animals, and wildlife, pp.9-67. San Francisco Bay Regi<strong>on</strong>al Water Quality C<strong>on</strong>trol Board,Oakland, California.Baye, P. 2004. A Review and Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> Potential L<strong>on</strong>g-termEcological C<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Introduced Cordgrass Spartinaalternifora in <str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco Estuary. Draft ms.Broom, J. 2008. Regi<strong>on</strong>al Trends in California Clapper RailAbundance at N<strong>on</strong>-native Spartina-invaded Sites in <str<strong>on</strong>g>the</str<strong>on</strong>g> SanFrancisco Estuary from 2005 to 2007. Report prepared by Ol<str<strong>on</strong>g>of</str<strong>on</strong>g>s<strong>on</strong>Envir<strong>on</strong>mental, Inc. for <str<strong>on</strong>g>the</str<strong>on</strong>g> State Coastal C<strong>on</strong>servancy.http://www.spartina.org/project_documents/clapper_rails/CLRA_Trends_2005-07(web).pdf.Callaway, J.C., and M.N. Josselyn. 1992. The introducti<strong>on</strong> andspread <str<strong>on</strong>g>of</str<strong>on</strong>g> smooth cordgrass (Spartina alterniflora) in South SanFrancisco Bay. Estuaries 15(2):218-226.Cohen, A.N. 2001. C<strong>on</strong>servati<strong>on</strong> management <str<strong>on</strong>g>of</str<strong>on</strong>g> exotic cordgrassin <str<strong>on</strong>g>the</str<strong>on</strong>g> Pacific coast salt marshes: preserving clapper rails vs.preserving <str<strong>on</strong>g>the</str<strong>on</strong>g> clapper rail. Abstract for Sec<strong>on</strong>d Symposium <strong>on</strong>Marine C<strong>on</strong>servati<strong>on</strong> Biology. San Francisco state University,June 21-26, 2001.Collins, J. 2002. Invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> San Francisco Bay by SmoothCordgrass, Spartina alterniflora: a forecast <str<strong>on</strong>g>of</str<strong>on</strong>g> geomorphic effects<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> intertidal z<strong>on</strong>e. Report prepared for U.S. EPA Regi<strong>on</strong>9.Collins, J.N., J.G. Evens, and B. Grewell. 1994. A synoptic survey<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong> and abundance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> California Clapper Rail,Rallus l<strong>on</strong>girostris obsoletus, in <str<strong>on</strong>g>the</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn reaches <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> SanFrancisco Estuary during <str<strong>on</strong>g>the</str<strong>on</strong>g> 1992 and 1993 breeding seas<strong>on</strong>s.Draft Technical Report to California Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Fish andGame (8/1/94).C<strong>on</strong>omos, T.J., ed. 1979. San Francisco Bay: The UrbanizedEstuary. http://www.estuaryarchive.org/archive/c<strong>on</strong>omos_1979.Daehler, C.C. and D.R. Str<strong>on</strong>g. 1996. Status, predicti<strong>on</strong>, andpreventi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> introduced cordgrass Spartina spp. invasi<strong>on</strong>s inPacific estuaries, USA. Biological C<strong>on</strong>servati<strong>on</strong> 78:51-58.Dedrick, K. 1989. San Francisco bay tidal marshland acreages:recent and historic values. <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 6 th Symposium inCoastal and Ocean Management (Coastal Z<strong>on</strong>e 1989). Am. Soc.Of Engineers, pp. 383-398.Delibes, M., P. Ga<strong>on</strong>a, and P. Ferreras. 2001. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> an attractivesink leading into maladaptive habitat selecti<strong>on</strong>. AmericanNaturalist 158: 277-285.Estrella, S. California Clapper Rail and California Black Rail:Suisun Marsh Survey 2007. California Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Fish andGame Bay-Delta Regi<strong>on</strong>. Report to California Department <str<strong>on</strong>g>of</str<strong>on</strong>g>Water Resources. C<strong>on</strong>tract #4600004374.Evens, J.G. and G.W. Page. 1987. Clapper rail populati<strong>on</strong>s atCorte Madera Creek, Muzzi Marsh, San Clemente Creek, andTriangle Marsh, Marin County, California. Report to MarinAudub<strong>on</strong> Society from Point Reyes Bird Observatory.Evens, J.G. and J.N. Collins. 1992. Distributi<strong>on</strong>, abundance, andhabitat affinities <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> California Clapper Rail, Rallus l<strong>on</strong>girostrisobsoletus, in <str<strong>on</strong>g>the</str<strong>on</strong>g> nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn reaches <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> San FranciscoEstuary during <str<strong>on</strong>g>the</str<strong>on</strong>g> 1992 breeding seas<strong>on</strong>. Report by AvocetResearch Associates to California Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Fish and Game.Gill, R. 1979. Status and distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> California Clapper Rail(Rallus l<strong>on</strong>girostris obsoletus). California Fish and Game 65:36-49.Gilroy, J.J. and W.J. Su<str<strong>on</strong>g>the</str<strong>on</strong>g>rland. 2007. Bey<strong>on</strong>d ecological traps:perceptual errors and undervalued resources. Trends in Ecologyand Evoluti<strong>on</strong> 22(7):351-6.Goals Project. 1999. Baylands ecosystem habitat goals. A report <str<strong>on</strong>g>of</str<strong>on</strong>g>habitat recommendati<strong>on</strong>s prepared by <str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco BayArea Wetlands Ecosystem Goals Project. USEPA, San Francisco/SFBRWQCB,Oakland, CA.Grinnell, J. and A. Miller. 1944. Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Birds <str<strong>on</strong>g>of</str<strong>on</strong>g>California. Pacific Coast Avifauna No. 27.Herzog, M., L. Liu, J. Evens, N. Nur, and N. Warnock. 2005.Temporal and spatial patterns in populati<strong>on</strong> trends in California- 188 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> SpartinaClapper Rail (Rallus l<strong>on</strong>girostris obsoletus). 2005 ProgressReport to California Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Fish and Game and U.S. Fishand Wildlife Service. PRBO C<strong>on</strong>servati<strong>on</strong> Science.Hogle, I. 2008. San Francisco Estuary <strong>Invasive</strong> Spartina ProjectM<strong>on</strong>itoring Report for 2006. Appendix 3. Report prepared byOl<str<strong>on</strong>g>of</str<strong>on</strong>g>s<strong>on</strong> Envir<strong>on</strong>mental, Inc. for <str<strong>on</strong>g>the</str<strong>on</strong>g> State Coastal C<strong>on</strong>servancy.http://www.spartina.org/project_documents/2006_M<strong>on</strong>Rept_App3_Maps_Web.pdfJosselyn, M. 1983. The ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco Bay tidalmarsh: a community pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile. U.S. Fish and Wildlife Service,Divisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Biological Services, Washingt<strong>on</strong>, D.C. FWS/OBS-83/23.L<strong>on</strong>zarich, D.G., T.E. Harvey, and J.E. Takekawa. 1992. Traceelement and organochlorine c<strong>on</strong>centrati<strong>on</strong>s in California ClapperRail (Rallus l<strong>on</strong>girostris obsoletus) eggs. Archives <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mentalC<strong>on</strong>taminati<strong>on</strong> and Toxicology 23:147-153.Pulliam, H.R. 1996. Sources and sinks: Empirical evidence andpopulati<strong>on</strong> c<strong>on</strong>sequences. Rhodes, O.E., R.K. Chesser, and M.H.Smith, eds. In: Populati<strong>on</strong> dynamics in ecological space andtime, pp 45-69. Univ. Chicago Press.Roberts<strong>on</strong>, B.A. and R.L. Hutto. 2006. A framework for understandingecological traps and an evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> existing evidence.Ecology 87: 1075-1085Schwarzbach, S.E., J.D. Alberts<strong>on</strong>, and C.M. Thomas. 2006,Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> predati<strong>on</strong>, flooding, and c<strong>on</strong>taminati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> reproductivesuccess <str<strong>on</strong>g>of</str<strong>on</strong>g> California Clapper Rails (Rallus l<strong>on</strong>girostrisobsoletus) in San Francisco Bay: Auk, v. 123, no. 1, p. 45–60.Siegel, S. 2002. Wetland Restorati<strong>on</strong> & Enhancement Projects:Completed and Planned in <str<strong>on</strong>g>the</str<strong>on</strong>g> North Bay, San Francisco Estuary,California (January 2002). Produced by Wetland WaterResources for CALFED Bay-Delta Program.Schlaepfer, M.A., M.C. Runge, and P.W. Sherman, 2002. Ecologicaland evoluti<strong>on</strong>ary traps. Trends in Ecology and Evoluti<strong>on</strong> 17:474-480.Spautz, H. and N. Nur. 2004. Impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> N<strong>on</strong>-native PerennialPepperweed (Lepidium latifolium) <strong>on</strong> Abundance, Distributi<strong>on</strong>and Reproductive Success <str<strong>on</strong>g>of</str<strong>on</strong>g> San Francisco Bay Tidal MarshBirds. Point Reyes Bird Observatory C<strong>on</strong>servati<strong>on</strong> Science.http://www.prbo.org/cms/docs/wetlands/lepidium04.pdfSpautz, H., J. McBroom, K. Zaremba, J. Evens, J. Alberts<strong>on</strong>, S.Bobzien, and M. Herzog. 2006. California Clapper Rails in SanFrancisco Bay: Modeling habitat relati<strong>on</strong>ships at multiple scalesto guide habitat restorati<strong>on</strong> and eradicati<strong>on</strong> <strong>on</strong> n<strong>on</strong>-nativeSpartina. Poster paper presented at South Bay Salt P<strong>on</strong>d Symposium.June 6, 2006. San Jose State University and at CALFEDU.S. Fish and Wildlife Service. 2001. Draft Survey Protocol:California Clapper Rail. (1/21/2001).VanHorne, B. 1983. Density as a misleading indicator <str<strong>on</strong>g>of</str<strong>on</strong>g> habitatquality. J. Wildlife Management 47:893-901.Vickery, P.D., M.L. Hunter, and J.V. Wells. 1992. Is density anindicator <str<strong>on</strong>g>of</str<strong>on</strong>g> breeding success? Auk 109:706-710.- 189 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> SpartinaTHE EFFECTS OF GRAZING GEESE ON HYBRID AND NATIVE SPARTINA IN SANFRANCISCO BAYE.D. GROSHOLZ 1 AND R.E. BLAKE 2Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Science and Policy, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Davis, One Shields Ave., Davis, CA 95616tedgrosholz@ucdavis.edu 1 ; reblake@vims.edu 2The invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflora has become <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most significant invasi<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g>already heavily invaded San Francisco Bay. The Spartina invasi<strong>on</strong> has resulted in many changes tocommunity and ecosystem processes at lower trophic levels, however, we have so far failed todocument equivalent changes at higher trophic levels that are likely occurring as well. In this study,we report <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid invasi<strong>on</strong> with respect to an important vertebrate grazer,western Canada geese (Branta canadensis m<str<strong>on</strong>g>of</str<strong>on</strong>g>fitti). Canada geese regularly nest during winterm<strong>on</strong>ths in <str<strong>on</strong>g>the</str<strong>on</strong>g> vicinity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> invaded central and sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn areas <str<strong>on</strong>g>of</str<strong>on</strong>g> San Francisco Bay. We foundthat Canada geese intensively graze native Spartina foliosa at several study sites in <str<strong>on</strong>g>the</str<strong>on</strong>g> central bayregi<strong>on</strong> removing up to 90% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> aboveground vegetati<strong>on</strong>. However, geese completely ignorehybrid Spartina with virtually no evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> grazing in hybrid areas adjacent to heavily grazednative Spartina areas. Experiments with captive geese dem<strong>on</strong>strated that geese repeatedly preferrednative Spartina when presented intact cl<strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid and native cl<strong>on</strong>es in side-by-side preferencetrials. However, when cut stems were presented in similar trials, geese showed no preference for <str<strong>on</strong>g>the</str<strong>on</strong>g>native over <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid. We c<strong>on</strong>clude that <str<strong>on</strong>g>the</str<strong>on</strong>g> preference dem<strong>on</strong>strated in <str<strong>on</strong>g>the</str<strong>on</strong>g> first experiment wasnot <str<strong>on</strong>g>the</str<strong>on</strong>g> result <str<strong>on</strong>g>of</str<strong>on</strong>g> plant defensive chemistry, but <str<strong>on</strong>g>the</str<strong>on</strong>g> result <str<strong>on</strong>g>of</str<strong>on</strong>g> physical differences between intactcl<strong>on</strong>es and cut stems that geese could assess. Field exclosure experiments c<strong>on</strong>ducted for two years inareas where hybrid Spartina was overgrowing native Spartina showed that grazing <str<strong>on</strong>g>of</str<strong>on</strong>g> nativeSpartina by geese resulted in 25% greater rates <str<strong>on</strong>g>of</str<strong>on</strong>g> lateral spread <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid into native areas. Thissuggests that grazing by geese may be accelerating <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> invasi<strong>on</strong> and ultimate replacement <str<strong>on</strong>g>of</str<strong>on</strong>g>native Spartina by hybrid Spartina.Keywords: Canada geese, San Francisco Bay, hybrid Spartina, grazing, invasi<strong>on</strong> rateINTRODUCTIONThe introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> smooth cordgrass (Spartinaalterniflora) has been am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> most significant <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>nearly 250 n<strong>on</strong>-native species invasi<strong>on</strong>s recorded in SanFrancisco Bay (Cohen and Carlt<strong>on</strong> 1998). Spartinaalterniflora became established in 1976 as <str<strong>on</strong>g>the</str<strong>on</strong>g> result <str<strong>on</strong>g>of</str<strong>on</strong>g> anintenti<strong>on</strong>al introducti<strong>on</strong> by <str<strong>on</strong>g>the</str<strong>on</strong>g> Army Corp <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineers formitigati<strong>on</strong> purposes (Faber 2000). Following establishment,S. alterniflora hybridized with <str<strong>on</strong>g>the</str<strong>on</strong>g> native cordgrass S.foliosa. Hybrid Spartina has rapidly col<strong>on</strong>ized many areas<str<strong>on</strong>g>of</str<strong>on</strong>g> central and south San Francisco Bay (Daehler and Str<strong>on</strong>g1997; Ayres et al. 2004). Hybrid Spartina can col<strong>on</strong>ize openmudflats as well as out-compete native vegetati<strong>on</strong> at highertidal heights (Ayres et al. 2004).Recent studies have shown that <str<strong>on</strong>g>the</str<strong>on</strong>g> ecologicalrepercussi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid Spartina invasi<strong>on</strong> are farreaching with widespread impacts <strong>on</strong> community structureand ecosystem functi<strong>on</strong> (Neira et al. 2005, 2006, 2007;Levin et al. 2006). However, work to date has focused <strong>on</strong>ly<strong>on</strong> changes at lower trophic levels, despite <str<strong>on</strong>g>the</str<strong>on</strong>g> fact thatvertebrate herbivores are known to c<strong>on</strong>sume S. alterniflorain its native regi<strong>on</strong> (Buchsbaum et al. 1981). Little is knownregarding <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> hybridizati<strong>on</strong> forsusceptibility to herbivores <str<strong>on</strong>g>of</str<strong>on</strong>g> any kind (Daehler and Str<strong>on</strong>g1997).Am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> most comm<strong>on</strong> and potentially importantvertebrate herbivores <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina are western Canada geese,Branta canadensis m<str<strong>on</strong>g>of</str<strong>on</strong>g>fitti (Banks et al. 2004). The westernsubspecies is <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly <strong>on</strong>e regularly found in San FranciscoBay (Mowbray et al. 2002) and <str<strong>on</strong>g>the</str<strong>on</strong>g>y typically nest fromNovember to April. While nesting, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir foraging isgenerally restricted to nearby areas that typically includemudflats with native Spartina. Our initial observati<strong>on</strong>ssuggested that geese were grazing intensively <strong>on</strong> areasoccupied by native Spartina. One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> key questi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>this study was to determine whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r grazing by westernCanada geese could influence <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hybridSpartina in San Francisco Bay. Therefore, our goal was tomeasure grazing by Canada geese <strong>on</strong> native Spartina andcompare this with grazing <strong>on</strong> hybrid Spartina. If we foundevidence <str<strong>on</strong>g>of</str<strong>on</strong>g> selective grazing, <str<strong>on</strong>g>the</str<strong>on</strong>g> next goal would be todetermine whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r selective grazing was due to ameasurable preference for <strong>on</strong>e plant over <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r. Wewould also determine <str<strong>on</strong>g>the</str<strong>on</strong>g> basis for any preference that mightexist. Finally, we would quantify any influence that geese- 191 -


Chapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> Spartina<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinagrazing might have <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hybridSpartina into areas occupied by native Spartina.METHODSGrazing Intensity in San Francisco BayTo estimate <str<strong>on</strong>g>the</str<strong>on</strong>g> intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> grazing by western Canadageese, we measured grazing at three sites in <str<strong>on</strong>g>the</str<strong>on</strong>g> centralporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> San Francisco Bay: Point Isabel (37º53’30’’N;122º20’55’’W), Robert’s Landing (37º40’13’’N;122º28’48’’W), and Oro Loma (37º37’45’’N;122º09’08’’W). These sites were distributed al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g>eastern margin <str<strong>on</strong>g>of</str<strong>on</strong>g> San Francisco Bay and each c<strong>on</strong>tainedareas <str<strong>on</strong>g>of</str<strong>on</strong>g> native S. foliosa with varying degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> cover byhybrid Spartina. At each site, we laid 30 meter (m) transectsal<strong>on</strong>g which 10 0.25 m x 0.25 m quadrats were established atrandomly chosen points. Plant samples to verify geneticidentificati<strong>on</strong> (hybrid vs. native) were taken within severalquadrats and kept refrigerated until genetic assays usingrandom amplified polymorphic DNA (RAPD) markers couldbe c<strong>on</strong>ducted at <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina genetics lab at UC Davis(Ayres, unpublished results), typically less than a week aftercollecti<strong>on</strong>. Genetic determinati<strong>on</strong> followed previouslypublished protocols (Ayres et al. 1999). In some cases, <str<strong>on</strong>g>the</str<strong>on</strong>g>area covered by native S. foliosa was smaller so shortertransects with fewer quadrats were used. Within eachquadrat, we measured <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> stems that had beengrazed or not by geese and <str<strong>on</strong>g>the</str<strong>on</strong>g> heights <str<strong>on</strong>g>of</str<strong>on</strong>g> 15 stems to <str<strong>on</strong>g>the</str<strong>on</strong>g>nearest <strong>on</strong>e centimeter (cm). Grazing produces characteristicdamage that is easily identified. At sites where we also haddata for hybrid Spartina, <str<strong>on</strong>g>the</str<strong>on</strong>g> same measurements were madeal<strong>on</strong>g similar transects. We tested <str<strong>on</strong>g>the</str<strong>on</strong>g> proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> stemsgrazed by geese between native and hybrid transects.Field Grazing ExclosuresTo experimentally measure <str<strong>on</strong>g>the</str<strong>on</strong>g> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> grazingCanada geese <strong>on</strong> both native and hybrid Spartina in <str<strong>on</strong>g>the</str<strong>on</strong>g>field, we c<strong>on</strong>ducted exclosure experiments at <str<strong>on</strong>g>the</str<strong>on</strong>g> RobertsLanding site. At this site, we established goose exclosuresin three areas (six replicates per treatment). The first areawas in a c<strong>on</strong>tinuous meadow <str<strong>on</strong>g>of</str<strong>on</strong>g> native S. foliosa. Thesec<strong>on</strong>d was in a c<strong>on</strong>tinuous meadow <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid Spartina. Thethird was located where hybrid Spartina was overgrowingnative Spartina. In single species stands we c<strong>on</strong>structed a 1m x 1 m exclosure cage <str<strong>on</strong>g>of</str<strong>on</strong>g> plastic mesh (4 cm x 4 cmopenings) attached by electrical cable ties to polyvinylchloride (PVC) posts. At border areas with both native andhybrid Spartina, we established exclosure cages 1 m x 4 mwith <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>g axis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exclosure perpendicular to <str<strong>on</strong>g>the</str<strong>on</strong>g>hybrid-native border. The center <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exclosure (at 2 m)was positi<strong>on</strong>ed to be over <str<strong>on</strong>g>the</str<strong>on</strong>g> approximate border edge at <str<strong>on</strong>g>the</str<strong>on</strong>g>time <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>structi<strong>on</strong>. Adjacent c<strong>on</strong>trol areas for both singlespecies exclosures and border exclosures were establishedwithin 2 m <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exclosure cages. The c<strong>on</strong>trol areas weredelineated with PVC posts at <str<strong>on</strong>g>the</str<strong>on</strong>g> corners. We estimated <str<strong>on</strong>g>the</str<strong>on</strong>g>linear distance in spread for c<strong>on</strong>trol and exclosure treatmentsby measuring <str<strong>on</strong>g>the</str<strong>on</strong>g> distance (to nearest 0.1 m) from <str<strong>on</strong>g>the</str<strong>on</strong>g> hybridborder at <str<strong>on</strong>g>the</str<strong>on</strong>g> start <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> experiment to <str<strong>on</strong>g>the</str<strong>on</strong>g> leading edge <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> spread after two years. We tested differences withAnalysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Variance (ANOVA) using log transformedvalues for distance and treatment (exclosure vs. c<strong>on</strong>trol) asfixed factors using SAS versi<strong>on</strong> 9.1 (SAS Institute, Cary,North Carolina).Grazing Trials with Intact Cl<strong>on</strong>esIn order to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> extent that observed grazingwas <str<strong>on</strong>g>the</str<strong>on</strong>g> result <str<strong>on</strong>g>of</str<strong>on</strong>g> preference for native Spartina ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r thanavailability or o<str<strong>on</strong>g>the</str<strong>on</strong>g>r factors, we c<strong>on</strong>ducted grazing trialsduring February-March 2003 using a small group (six) <str<strong>on</strong>g>of</str<strong>on</strong>g>captive western Canada geese maintained by <str<strong>on</strong>g>the</str<strong>on</strong>g> WildlifeDepartment at Humboldt State University (HSU), Arcata,California. This group <str<strong>on</strong>g>of</str<strong>on</strong>g> geese had been maintainedtoge<str<strong>on</strong>g>the</str<strong>on</strong>g>r for several years <strong>on</strong> processed diets. Theexperiment involved using intact segments (0.5 m x 0.5 m x0.5 m) <str<strong>on</strong>g>of</str<strong>on</strong>g> two cl<strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r hybrid or native Spartina<str<strong>on</strong>g>of</str<strong>on</strong>g>fered in brown plastic bins. Each plant segment had beenexcavated from field sites in San Francisco Bay (hybridplants from Elsie Roemer Bird Sanctuary, City <str<strong>on</strong>g>of</str<strong>on</strong>g> Alamedaand S. foliosa from Bothin Marsh, City <str<strong>on</strong>g>of</str<strong>on</strong>g> Mill Valley) anddriven to <str<strong>on</strong>g>the</str<strong>on</strong>g> Humboldt aviary <str<strong>on</strong>g>the</str<strong>on</strong>g> next day. All stems andleaves were counted for each cl<strong>on</strong>e prior to <str<strong>on</strong>g>the</str<strong>on</strong>g> start <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>experiment. At <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> experiment, <str<strong>on</strong>g>the</str<strong>on</strong>g> tubswith <str<strong>on</strong>g>the</str<strong>on</strong>g> cl<strong>on</strong>e segments were established in a two by twoarray approximately 2 m apart. The geese were <str<strong>on</strong>g>the</str<strong>on</strong>g>n allowedto enter <str<strong>on</strong>g>the</str<strong>on</strong>g> aviary and encounter <str<strong>on</strong>g>the</str<strong>on</strong>g> cl<strong>on</strong>es. We made focalobservati<strong>on</strong>s <strong>on</strong> each cl<strong>on</strong>e at <strong>on</strong>e minute intervals noting <str<strong>on</strong>g>the</str<strong>on</strong>g>number <str<strong>on</strong>g>of</str<strong>on</strong>g> geese grazing <strong>on</strong> each. After two hours, wecollected <str<strong>on</strong>g>the</str<strong>on</strong>g> cl<strong>on</strong>es and measured <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> stems andleaves that had been grazed by geese. The entire experimentwas repeated three times over <str<strong>on</strong>g>the</str<strong>on</strong>g> following three weeks.We estimated <str<strong>on</strong>g>the</str<strong>on</strong>g> intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> grazing by counting <str<strong>on</strong>g>the</str<strong>on</strong>g>percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> leaves and stems that had been grazed during<str<strong>on</strong>g>the</str<strong>on</strong>g> trial for both hybrid and native cl<strong>on</strong>es. We testeddifferences in grazing with ANOVA using arc-sintranformed percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> leaves or stems with treatment as afixed factor (as above).Grazing Trials with Clipped StemsTo determine whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g> preferences <str<strong>on</strong>g>of</str<strong>on</strong>g> experimentalgeese were determined by differences in <str<strong>on</strong>g>the</str<strong>on</strong>g> physicalproperties <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plants versus differences in plant chemistry,we used <str<strong>on</strong>g>the</str<strong>on</strong>g> same group <str<strong>on</strong>g>of</str<strong>on</strong>g> geese during experiments fromFebruary-March 2004. We collected stems <str<strong>on</strong>g>of</str<strong>on</strong>g> both nativeand hybrid Spartina at <str<strong>on</strong>g>the</str<strong>on</strong>g> same sites used for collecting <str<strong>on</strong>g>the</str<strong>on</strong>g>cl<strong>on</strong>es <str<strong>on</strong>g>the</str<strong>on</strong>g> previous year. We cut <str<strong>on</strong>g>the</str<strong>on</strong>g> stems at <str<strong>on</strong>g>the</str<strong>on</strong>g> base <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>plant and wrapped <str<strong>on</strong>g>the</str<strong>on</strong>g>m in large plastic bags for shipment.Stems were kept refrigerated from <str<strong>on</strong>g>the</str<strong>on</strong>g> time <str<strong>on</strong>g>of</str<strong>on</strong>g> clipping andsent to <str<strong>on</strong>g>the</str<strong>on</strong>g> aviary at HSU within 24 hours and were usedimmediately <str<strong>on</strong>g>the</str<strong>on</strong>g>reafter in feeding trials. Geese showed <str<strong>on</strong>g>the</str<strong>on</strong>g>- 192 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> Spartinasame interest in <str<strong>on</strong>g>the</str<strong>on</strong>g> clipped stems as <str<strong>on</strong>g>the</str<strong>on</strong>g>y did in <str<strong>on</strong>g>the</str<strong>on</strong>g> intactcl<strong>on</strong>es, <str<strong>on</strong>g>the</str<strong>on</strong>g>refore we assume that <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> stemsand leaves were similar to that in <str<strong>on</strong>g>the</str<strong>on</strong>g> previous experiment.In this sec<strong>on</strong>d experiment, we <str<strong>on</strong>g>of</str<strong>on</strong>g>fered <str<strong>on</strong>g>the</str<strong>on</strong>g> geese a choice<str<strong>on</strong>g>of</str<strong>on</strong>g> cut stems <str<strong>on</strong>g>of</str<strong>on</strong>g> ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r hybrid Spartina or native S. foliosausing <str<strong>on</strong>g>the</str<strong>on</strong>g> same bins <str<strong>on</strong>g>the</str<strong>on</strong>g> geese are normally <str<strong>on</strong>g>of</str<strong>on</strong>g>fered <str<strong>on</strong>g>the</str<strong>on</strong>g>irpelleted feed. We arranged three bins <str<strong>on</strong>g>of</str<strong>on</strong>g> each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> twoplant types in a 2 x 3 array with each bin approximately 2 mfrom <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs. After setting up <str<strong>on</strong>g>the</str<strong>on</strong>g> feeding array, <str<strong>on</strong>g>the</str<strong>on</strong>g> geesewere allowed to graze for at least <strong>on</strong>e hour after which all<str<strong>on</strong>g>the</str<strong>on</strong>g> plants remaining in <str<strong>on</strong>g>the</str<strong>on</strong>g> bins were collected. Also, plantsthat had been removed from <str<strong>on</strong>g>the</str<strong>on</strong>g> bins and discarded werealso collected and stored separately. We repeated thisexperiment two times over <str<strong>on</strong>g>the</str<strong>on</strong>g> following eight weeks. Weestimated <str<strong>on</strong>g>the</str<strong>on</strong>g> intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> grazing by weighing <str<strong>on</strong>g>the</str<strong>on</strong>g> dryweight <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plants in each bin remaining at <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>experiment as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> discarded plants adjacent to thatbin. We tested differences in grazing with ANOVA usinglog-transformed weights for ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r bins or discards withtreatment as a fixed factor (as above).RESULTSGrazing Intensity in San Francisco BayOur data from several sites in San Francisco Bay showintense grazing by western Canada geese <strong>on</strong> native S.foliosa. Our most extensive data from Robert’s Landing(Fig. 1) show greater than 90% loss <str<strong>on</strong>g>of</str<strong>on</strong>g> aboveground biomasswith nearly all stems grazed to within a few centimeters <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> ground <strong>on</strong> all three transects (Fig. 1). By c<strong>on</strong>trast, geesevirtually ignored hybrid Spartina with no measurablegrazing <strong>on</strong> any plants al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> transect. Similarly intensegrazing was measured at Oro Loma (greater than 85% <str<strong>on</strong>g>of</str<strong>on</strong>g>stems grazed) and Pt. Isabel (greater than 95% <str<strong>on</strong>g>of</str<strong>on</strong>g> stemsgrazed).Field Grazing ExclosuresHybrid Spartina grew laterally into <str<strong>on</strong>g>the</str<strong>on</strong>g> native Spartinaz<strong>on</strong>es in nearly all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> experimental areas independent <str<strong>on</strong>g>of</str<strong>on</strong>g>treatment. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> lateral spread <str<strong>on</strong>g>of</str<strong>on</strong>g>aboveground plant biomass was significantly greater(p


Chapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> Spartina<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaRemaining Plants (%)100806040200StemsLeavesHybridS. foliosaFig. 3. Results <str<strong>on</strong>g>of</str<strong>on</strong>g> feeding preference experiments showing means (+ 1s.e.) <str<strong>on</strong>g>of</str<strong>on</strong>g> remaining stems and leaves <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid (black bars) and nativeSpartina (white bars) after being grazed by captive geese.Grazing Trials with Clipped StemsThe results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d set <str<strong>on</strong>g>of</str<strong>on</strong>g> feeding trials withclipped stems produced very different results than <str<strong>on</strong>g>the</str<strong>on</strong>g> trialsinvolving intact cl<strong>on</strong>es. The captive geese showed nosignificant preference for clipped stems <str<strong>on</strong>g>of</str<strong>on</strong>g> native Spartinacompared with stems <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid Spartina. Geese grazing wasvigorous overall and geese spent similar amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> timegrazing as <str<strong>on</strong>g>the</str<strong>on</strong>g>y did in <str<strong>on</strong>g>the</str<strong>on</strong>g> trials with <str<strong>on</strong>g>the</str<strong>on</strong>g> cl<strong>on</strong>es (p>0.05).However, nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> biomass c<strong>on</strong>sumed bygrazing geese nor <str<strong>on</strong>g>the</str<strong>on</strong>g> amount discarded was significantlydifferent for hybrid stems relative to native stems (p>0.25for all).DISCUSSIONOur findings from <str<strong>on</strong>g>the</str<strong>on</strong>g> field surveys suggest that grazingby western Canada geese <strong>on</strong> native S. foliosa is widespreadthroughout <str<strong>on</strong>g>the</str<strong>on</strong>g> central porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> San Francisco Bay. Datafrom at least five sites showed a large reducti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g>aboveground biomass <str<strong>on</strong>g>of</str<strong>on</strong>g> native Spartina. By c<strong>on</strong>trast,adjacent areas where hybrid Spartina was present showedlittle sign <str<strong>on</strong>g>of</str<strong>on</strong>g> grazing. Geese appeared to ignore hybridSpartina entirely when it was present in our surveys. Thereis <str<strong>on</strong>g>the</str<strong>on</strong>g> possibility that geese may c<strong>on</strong>sume a higherproporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid genotypes that are morphologicallymore similar to native S. foliosa, however, we have not yetseen evidence for this.Our results from <str<strong>on</strong>g>the</str<strong>on</strong>g> goose exclusi<strong>on</strong> studies indicatethat lateral spread <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid into areas occupied by nativeS. foliosa is more rapid in areas where goose grazing hasbeen excluded for two years. The rate <str<strong>on</strong>g>of</str<strong>on</strong>g> lateral spread is25% greater than in adjacent c<strong>on</strong>trol areas where goosegrazing c<strong>on</strong>tinued. This 25% increase in lateral spread mayhave significant c<strong>on</strong>sequences for <str<strong>on</strong>g>the</str<strong>on</strong>g> overall rate <str<strong>on</strong>g>of</str<strong>on</strong>g>invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid Spartina in San Francisco Bay. Although<str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> sexual reproducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid Spartina isoverwhelming native reproducti<strong>on</strong> due to higher seed set andpollen swamping, plant cl<strong>on</strong>al growth is also important formaintaining its presence in <str<strong>on</strong>g>the</str<strong>on</strong>g> bay. The degree to whichhybrid plants can overgrow and outcompete native plantswill have a significant effect <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> speed that hybridSpartina may be able to drive S. foliosa locally extinct incentral San Francisco Bay (Ayres et al. 2004).The eventual replacement <str<strong>on</strong>g>of</str<strong>on</strong>g> native with hybrid mayalso have some negative c<strong>on</strong>sequences for <str<strong>on</strong>g>the</str<strong>on</strong>g> nesting geese.Native Spartina is not likely to be <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly food source fornesting geese in an urbanized estuary like San FranciscoBay, where lawns and golf courses <str<strong>on</strong>g>of</str<strong>on</strong>g>fer easy forage.However, <str<strong>on</strong>g>the</str<strong>on</strong>g> high levels <str<strong>on</strong>g>of</str<strong>on</strong>g> grazing <strong>on</strong> native Spartina at ourstudy sites suggest that this is still an important source <str<strong>on</strong>g>of</str<strong>on</strong>g>forage for <str<strong>on</strong>g>the</str<strong>on</strong>g>se birds. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r sources <str<strong>on</strong>g>of</str<strong>on</strong>g> forage are not likelyas proximate to nesting sites as native Spartina and,<str<strong>on</strong>g>the</str<strong>on</strong>g>refore may be costly in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> foraging time and timespent away from <str<strong>on</strong>g>the</str<strong>on</strong>g> nest. This ultimately may affect nestingsuccess. Unfortunately, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are no data with which to test<str<strong>on</strong>g>the</str<strong>on</strong>g>se possibilities.The results from our experiments with captive geesestr<strong>on</strong>gly support our observati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> field. The data from<str<strong>on</strong>g>the</str<strong>on</strong>g> first set <str<strong>on</strong>g>of</str<strong>on</strong>g> aviary trials show a str<strong>on</strong>g ability <str<strong>on</strong>g>of</str<strong>on</strong>g> geese todiscriminate between native S. foliosa and hybrid Spartina inside-by-side choice trials. This supports <str<strong>on</strong>g>the</str<strong>on</strong>g> idea that geeseare also discriminating am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g>se same plant types in <str<strong>on</strong>g>the</str<strong>on</strong>g>field. It is possible that geese may also discriminate am<strong>on</strong>gdifferent hybrids, possibly preferring hybrids that moreclosely resemble <str<strong>on</strong>g>the</str<strong>on</strong>g> native S. folioa. However, we cannotdetermine that from <str<strong>on</strong>g>the</str<strong>on</strong>g> current study.Our data from <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d set <str<strong>on</strong>g>of</str<strong>on</strong>g> aviary trials isc<strong>on</strong>sistent with <str<strong>on</strong>g>the</str<strong>on</strong>g> idea that geese are able to distinguishhybrid from native Spartina based <strong>on</strong> physicalcharacteristics ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than chemical characteristics. Inc<strong>on</strong>trast to <str<strong>on</strong>g>the</str<strong>on</strong>g> first trials (plants upright and intact), resultsfrom <str<strong>on</strong>g>the</str<strong>on</strong>g>se trials (cut stems laid sideways in trays) showedthat geese exhibited no ability to distinguish hybrid fromnative.Physical characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> intact plants may allow geeseto assess palatability <str<strong>on</strong>g>of</str<strong>on</strong>g> potential forage by tugging <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>plant and gauging its resistance (Lang and Black 2001).Physical differences between native and hybrid Spartina areimmediately obvious to any human investigator as hybridstems and leaves are much thicker, tougher and morefibrous. Results from <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d experiment, designed toeliminate physical differences experienced by geese tugging<strong>on</strong> leaves and stems, showed that geese failed todiscriminate between native and hybrid Spartina. Thegeneral c<strong>on</strong>clusi<strong>on</strong> from studies <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>dary defensive plantcompounds is that if by removing physical differences, <str<strong>on</strong>g>the</str<strong>on</strong>g>reis no subsequent preference shown by <str<strong>on</strong>g>the</str<strong>on</strong>g> herbivore, <str<strong>on</strong>g>the</str<strong>on</strong>g>nplant chemistry can generally be ruled out as important. If- 194 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> Spartinageese preference in <str<strong>on</strong>g>the</str<strong>on</strong>g> first experiment was based <strong>on</strong>differences in defensive chemistry between native S. foliosaand hybrid Spartina, <str<strong>on</strong>g>the</str<strong>on</strong>g>y would presumably still be able touse those cues in <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d trial. We also measureddifferences in <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> material that geese discarded toexplore <str<strong>on</strong>g>the</str<strong>on</strong>g> idea that geese might discard a greaterproporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid if defensive chemistry was a cue.However, we measured no significant differences indiscarded material between native and hybrid Spartina.Our results parallel o<str<strong>on</strong>g>the</str<strong>on</strong>g>r studies <str<strong>on</strong>g>of</str<strong>on</strong>g> factors influencinggoose grazing. Earlier work by Buchsbaum et al. (1981)with eastern Canada geese (Branta canadensis canadensis)suggested that geese can detect defensive compounds suchas ferulic acid in lawn grass. Their results suggest thatphenolics at relatively high c<strong>on</strong>centrati<strong>on</strong>s could beimportant in grazing preferences. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r studies havegenerally found less support for <str<strong>on</strong>g>the</str<strong>on</strong>g> role <str<strong>on</strong>g>of</str<strong>on</strong>g> phenolicsinfluencing goose grazing. A study with greater snow geese(Anser caerulescens atlantica) tested <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> water,fiber, phenolic and protein c<strong>on</strong>tent am<strong>on</strong>g grass species andfound that <strong>on</strong>ly water c<strong>on</strong>tent was important (Gauthier andBedard 1991). Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r study using barnacle geese (Brantaleucopsis) found that feeding preferences <str<strong>on</strong>g>of</str<strong>on</strong>g> geese were bestcorrelated with water and nitrogen c<strong>on</strong>tent, although <str<strong>on</strong>g>the</str<strong>on</strong>g>relati<strong>on</strong>ship with water was str<strong>on</strong>ger (Owen et al. 1977).Coleman and Boag (1987) found that for western Canadageese n<strong>on</strong>-structural carbohydrate and not fiber or proteinc<strong>on</strong>tent was <str<strong>on</strong>g>the</str<strong>on</strong>g> best predictor <str<strong>on</strong>g>of</str<strong>on</strong>g> preferences am<strong>on</strong>g foragespecies. Structural compounds such as cellulose have alsobeen found to be poorly digested by geese relative toproteins and soluble carbohydrates (Buchsbaum et al. 1986).The c<strong>on</strong>clusi<strong>on</strong>s from our study are generally c<strong>on</strong>sistent with<str<strong>on</strong>g>the</str<strong>on</strong>g>se o<str<strong>on</strong>g>the</str<strong>on</strong>g>r studies that found little evidence for a str<strong>on</strong>g rolefor defensive chemicals such as phenolics in determining <str<strong>on</strong>g>the</str<strong>on</strong>g>observed preferences and str<strong>on</strong>ger influences <str<strong>on</strong>g>of</str<strong>on</strong>g> structuralcompounds, nitrogen and water c<strong>on</strong>tent. Interestingly,native S. foliosa has a lower carb<strong>on</strong> to nitrogen (C:N) ratio(more protein, less cellulose) relative to hybrid Spartina(Tyler et al. 2007), and also has a less coarse physicalstructure and presumably higher water c<strong>on</strong>tent.In summary, our results suggest that Canada geese maybe influencing <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> hybrid Spartina in <str<strong>on</strong>g>the</str<strong>on</strong>g>central porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> San Francisco Bay. The eventual loss <str<strong>on</strong>g>of</str<strong>on</strong>g>native S. foliosa due to <str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid invasi<strong>on</strong>, at least in someporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> San Francisco Bay, could also have negativec<strong>on</strong>sequences for foraging by removing a potentiallyimportant food source. The intense and highly selectivegrazing <strong>on</strong> native Spartina and almost total avoidance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>hybrid results from a str<strong>on</strong>g preference for <str<strong>on</strong>g>the</str<strong>on</strong>g> native that isapparently based <strong>on</strong> structural ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than chemicaldifferences.ACKNOWLEDGMENTSOur greatest thanks to J. Black, Humboldt StateUniversity, for many informative discussi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> geese andgrazing, his very generous assistance and collaborati<strong>on</strong> with<str<strong>on</strong>g>the</str<strong>on</strong>g> HSU captive goose facility and his help with permitting,logistics, and procedures for behavioral studies. We alsothank HSU students E. Bjerre and K. Spragens for <str<strong>on</strong>g>the</str<strong>on</strong>g>irgenerous assistance with followup experiments, aviarylogistics and Spartina care. We also thank S. Nort<strong>on</strong>, N.Rayl, U. Mahl, N. Christiansen and C. Love for help withfield grazing studies, plant collecti<strong>on</strong>s, sample processingand data entry.REFERENCESAyres, D.R., D. Garcia-Rossi, H.G. Davis, and D.R. Str<strong>on</strong>g1999. Extent and degree <str<strong>on</strong>g>of</str<strong>on</strong>g> hybridizati<strong>on</strong> between exotic(Spartina alterniflora) and native (S. foliosa) cordgrass(Poaceae) in California, USA determined by random amplifiedpolymorphic DNA (RAPDs). Molecular Ecology 8:1179-1186.Ayres D.R., D.L. Smith, K. Zaremba, S. Klohr, and D.R.Str<strong>on</strong>g. 2004. Spread <str<strong>on</strong>g>of</str<strong>on</strong>g> exotic cordgrasses and hybrids(Spartina sp.) in <str<strong>on</strong>g>the</str<strong>on</strong>g> tidal marshes <str<strong>on</strong>g>of</str<strong>on</strong>g> San Francisco Bay,California, USA. Biological Invasi<strong>on</strong>s 6: 221-231.Banks, R.C., C. Cicero, J.L. Dunn, A.W. Kratter, P.C. Rasmussen,J.V. Remsen, J.D. Rising, and D.F. Stotz. 2004.Forty-fifth supplement to <str<strong>on</strong>g>the</str<strong>on</strong>g> American Ornithologists'Uni<strong>on</strong> Check-list <str<strong>on</strong>g>of</str<strong>on</strong>g> North American Birds. Auk 121:985-995.Buchsbaum, R., I. Valiela, and J. Teal. 1981. Grazing byCanada geese and related aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> saltmarsh vegetati<strong>on</strong>. Col<strong>on</strong>ial Waterbirds 4: 126-131.Buchsbaum, R., J. Wils<strong>on</strong>, and I.Valiela. 1986. Digestibility<str<strong>on</strong>g>of</str<strong>on</strong>g> plant c<strong>on</strong>stituents by Canada geese and Atlantic Brant.Ecology 67: 386-393.Coleman, T.S., and D.A. Boag. 1987. Canada goose foods:<str<strong>on</strong>g>the</str<strong>on</strong>g>ir significance to weight gain. Wildfowl 38: 82-88.Cohen, A.N., and J.T. Carlt<strong>on</strong>. 1998. Accelerating invasi<strong>on</strong>rate in a highly invaded estuary. Science 279: 555-558.Daehler, C.C., and D.R. Str<strong>on</strong>g. 1997. Reduced herbivoreresistance in introduced smooth cordgrass (Spartina alterniflora)after a century <str<strong>on</strong>g>of</str<strong>on</strong>g> herbivore-free growth.Oecologia 110: 99-108.Faber, R.M. 2000. Good intenti<strong>on</strong>s g<strong>on</strong>e awry. CaliforniaCoast and Ocean 16: 14-17.Gauthier, G., and J. Bedard. 1991. Experimental tests <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>palatability <str<strong>on</strong>g>of</str<strong>on</strong>g> forage plants in greater snow geese. Journal<str<strong>on</strong>g>of</str<strong>on</strong>g> Applied Ecology 28: 491-500.Lang, A., and J.M. Black. 2001. Foraging efficiency in BarnacleGeese Branta leucopsis: a functi<strong>on</strong>al resp<strong>on</strong>se tosward height and an analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> sources <str<strong>on</strong>g>of</str<strong>on</strong>g> individualvariati<strong>on</strong>. Wildfowl 52: 7-20.Levin, L.A., C. Neira, and E.D. Grosholz. 2006. <strong>Invasive</strong>cordgrass modifies wetland trophic functi<strong>on</strong>. Ecology 87:419-432.- 195 -


Chapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> Spartina<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaNeira, C., L.A. Levin, and E.D. Grosholz. 2005. Benthicmacr<str<strong>on</strong>g>of</str<strong>on</strong>g>aunal communities <str<strong>on</strong>g>of</str<strong>on</strong>g> three Spartina-hybrid invadedsites in San Francisco Bay, with comparis<strong>on</strong> to uninvadedhabitats. Marine Ecology Progress Series292:111-126.Neira, C., E.D. Grosholz, L.A. Levin, and R. Blake. 2006.Mechanisms generating modificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> benthos followingtidal flat invasi<strong>on</strong> by a Spartina (alterniflora X foliosa)hybrid. Ecological Applicati<strong>on</strong>s 16:1391-1404.Neira, C., L.A. Levin, E.D. Grosholz, and G. Mendoza.2007. The influence <str<strong>on</strong>g>of</str<strong>on</strong>g> invasive Spartina growth phases<strong>on</strong> associated macr<str<strong>on</strong>g>of</str<strong>on</strong>g>aunal communities. Biological Invasi<strong>on</strong>s9:975-993.Owen, M., M. Nugent, and N. Davies. 1977. Discriminati<strong>on</strong>between grass species and nitrogen-fertilized vegetati<strong>on</strong>by young Barnacle Geese. Wildfowl 28:21-26.Poole, A. (Editor). 2005. The birds <str<strong>on</strong>g>of</str<strong>on</strong>g> North America <strong>on</strong>line:http://bna.birds.cornell.edu/BNA/. Cornell Laboratory <str<strong>on</strong>g>of</str<strong>on</strong>g>Ornithology, Ithaca, NY.Tyler, A.C., J.G. Lambrinos, and E.D. Grosholz. 2007. Nitrogeninputs promote <str<strong>on</strong>g>the</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> an invasive marshgrass. Ecological Applicati<strong>on</strong>s 17:1886-1898.- 196 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> SpartinaIMPACT OF INVASIVE HYBRID CORDGRASS (SPARTINA ALTERNIFLORA X FOLIOSA) ONSONG SPARROW AND MARSH WREN POPULATIONS IN SAN FRANCISCO BAY SALTMARSHESJ.C. NORDBY 1,4 , J.T. MCBROOM 2 ,A.N.COHEN 3 AND S.R. BEISSINGER 11Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Science, Policy and Management, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Berkeley, 151 Hilgard Hall #3110Berkeley, CA, 947202San Francisco Estuary <strong>Invasive</strong> Spartina Project, 2612-A 8 th Street, Berkeley, CA 947103 San Francisco Estuary Institute, 7770 Pardee Lane, 2 nd Floor, Oakland, CA 946214Current address: Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Envir<strong>on</strong>ment and Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology and Evoluti<strong>on</strong>ary Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g>California, Los Angeles, Los Angeles, CA 90095; nordby@ucla.eduExotic hybrid cordgrass, Spartina alterniflora x foliosa, is altering <str<strong>on</strong>g>the</str<strong>on</strong>g> vegetative structure andcompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco Bay tidal marsh ecosystem, which has multiple impacts <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>Alameda s<strong>on</strong>g sparrow (Melospiza melodia pusillula), a resident passerine species that is aCalifornia Species <str<strong>on</strong>g>of</str<strong>on</strong>g> Special C<strong>on</strong>cern. These sparrows are affected not <strong>on</strong>ly by <str<strong>on</strong>g>the</str<strong>on</strong>g> altered habitat,but also by <str<strong>on</strong>g>the</str<strong>on</strong>g> occupati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this habitat by a potential competitor, <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh wren (Cistothoruspalustris). To assess <str<strong>on</strong>g>the</str<strong>on</strong>g> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> S. alterniflora invasi<strong>on</strong> <strong>on</strong> s<strong>on</strong>g sparrow and marsh wrenpopulati<strong>on</strong>s we: 1) located s<strong>on</strong>g sparrow nests to observe nesting habitat preferences and nestsuccess and 2) used focal observati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> color-banded birds to assess <str<strong>on</strong>g>the</str<strong>on</strong>g> vegetati<strong>on</strong> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>each territory and <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> territory overlap between <str<strong>on</strong>g>the</str<strong>on</strong>g> two species. Our findings suggest that<str<strong>on</strong>g>the</str<strong>on</strong>g> changes in salt marsh habitat associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cordgrass hybrids may favor marshwrens over s<strong>on</strong>g sparrows and could eventually result in a decrease in salt marsh s<strong>on</strong>g sparrowpopulati<strong>on</strong>s.Keywords: Spartina alterniflora, s<strong>on</strong>g sparrow, marsh wren, nest success, territory, competiti<strong>on</strong>,San Francisco BayINTRODUCTIONNative San Francisco Bay tidal salt marshes arecharacterized by broad expanses <str<strong>on</strong>g>of</str<strong>on</strong>g> open tidal mudflats, anarrow mid-marsh z<strong>on</strong>e where Spartina foliosa occurs, and ahigh-marsh z<strong>on</strong>e composed mainly <str<strong>on</strong>g>of</str<strong>on</strong>g> low-growingSarcocornia spp. (formerly Salicornia spp.) with narrowareas <str<strong>on</strong>g>of</str<strong>on</strong>g> Grindelia that line <str<strong>on</strong>g>the</str<strong>on</strong>g> meandering tidal channels.Spartina alterniflora, a cordgrass native to <str<strong>on</strong>g>the</str<strong>on</strong>g> Atlantic andGulf coasts <str<strong>on</strong>g>of</str<strong>on</strong>g> North America, was introduced to SanFrancisco Bay in <str<strong>on</strong>g>the</str<strong>on</strong>g> early 1970s (Ayres et al. 2004). Theexotic cordgrass subsequently hybridized with <str<strong>on</strong>g>the</str<strong>on</strong>g> nativecordgrass, S. foliosa, and <str<strong>on</strong>g>the</str<strong>on</strong>g>se hybrids have spread and nowcover more than 600 hectares (ha) <str<strong>on</strong>g>of</str<strong>on</strong>g> tidal flat and tidalmarsh habitat (Zaremba et al., this volume).The tall, dense exotic Spartina (S. alterniflora and/or<str<strong>on</strong>g>the</str<strong>on</strong>g> hybrid S. alterniflora x foliosa) can grow fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r down<str<strong>on</strong>g>the</str<strong>on</strong>g> tidal gradient than any native tidal marsh plant speciesand so is able to col<strong>on</strong>ize open tidal flats. This exoticcordgrass can also grow much fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r up <str<strong>on</strong>g>the</str<strong>on</strong>g> tidal gradientthan native S. foliosa and thus displaces o<str<strong>on</strong>g>the</str<strong>on</strong>g>r native plantspecies in <str<strong>on</strong>g>the</str<strong>on</strong>g> mid- to high-marsh z<strong>on</strong>es as well (Ayres et al.1999; Nordby pers. obs.).The pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ound changes in habitat structure andcompositi<strong>on</strong> that accompany <str<strong>on</strong>g>the</str<strong>on</strong>g> exotic Spartina invasi<strong>on</strong>(Callaway and Josselyn 1992) will likely have <str<strong>on</strong>g>the</str<strong>on</strong>g> greatestimpact <strong>on</strong> species, such as birds, that are wholly dependent<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> tidal salt marsh system. The Alameda s<strong>on</strong>g sparrowFig. 1. Alameda s<strong>on</strong>g sparrow (Melospiza melodia pusillula). Photo byJen McBroom.- 197 -


Chapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> Spartina<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaCriteri<strong>on</strong>) revealed that overall nesting success wasestimated to be 30% lower in areas <str<strong>on</strong>g>of</str<strong>on</strong>g> exotic Spartina than inareas <str<strong>on</strong>g>of</str<strong>on</strong>g> native vegetati<strong>on</strong>. We also found str<strong>on</strong>g evidence <str<strong>on</strong>g>of</str<strong>on</strong>g>marsh wren destructi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sparrrow eggs, particularly inareas <str<strong>on</strong>g>of</str<strong>on</strong>g> high marsh wren density (Nordby et al. 2009).Fig. 2. Marsh wren (Cistothorus palustris). Photo by Jen McBroom.(Melospiza melodia pusillula) (Fig. 1), a California Species<str<strong>on</strong>g>of</str<strong>on</strong>g> Special C<strong>on</strong>cern, resides entirely within salt marshes inSouth San Francisco Bay. In a native marsh, this sparrow is<str<strong>on</strong>g>the</str<strong>on</strong>g> main resident passerine species and occupies territoriesand nests in Sarcocornia and Grindelia near tidal channels.Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r passerine species, <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh wren (Cistothoruspalustris) (Fig. 2), that normally occurs in fresh or brackishwater marshes <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Pacific Coast, has started to occupy <str<strong>on</strong>g>the</str<strong>on</strong>g>newly available exotic Spartina habitat (Nordby and Cohen,pers. obs.). Marsh wrens are very aggressive and will defend<str<strong>on</strong>g>the</str<strong>on</strong>g>ir territories against o<str<strong>on</strong>g>the</str<strong>on</strong>g>r birds, even o<str<strong>on</strong>g>the</str<strong>on</strong>g>r species, bybreaking <str<strong>on</strong>g>the</str<strong>on</strong>g> eggs in nests that are close to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir ownterritories (Picman 1977).To assess <str<strong>on</strong>g>the</str<strong>on</strong>g> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exotic Spartina invasi<strong>on</strong> <strong>on</strong>s<strong>on</strong>g sparrow and marsh wren populati<strong>on</strong>s in San FranciscoBay we 1) studied sparrow nesting habitat preferences andnest success and also looked for evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> destructi<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> s<strong>on</strong>g sparrow eggs by marsh wrens, and 2) assessed <str<strong>on</strong>g>the</str<strong>on</strong>g>vegetati<strong>on</strong> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sparrow and wren territories aswell as <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> territory overlap between <str<strong>on</strong>g>the</str<strong>on</strong>g> twospecies.SONG SPARROW NEST SUCCESSDuring <str<strong>on</strong>g>the</str<strong>on</strong>g> 2002 and 2003 breeding seas<strong>on</strong>s wefollowed and observed <str<strong>on</strong>g>the</str<strong>on</strong>g> fates <str<strong>on</strong>g>of</str<strong>on</strong>g> 351 nests in 45+territories across three study sites (Newark, San Leandro andAlameda). Once <str<strong>on</strong>g>the</str<strong>on</strong>g> fate <str<strong>on</strong>g>of</str<strong>on</strong>g> a nest had been determined(failed due to predati<strong>on</strong>, failed due to tidal flooding, failedfor o<str<strong>on</strong>g>the</str<strong>on</strong>g>r reas<strong>on</strong>s, or successful), we recorded <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong>and vegetati<strong>on</strong> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> nest site.We found that s<strong>on</strong>g sparrows did use exotic Spartina asnesting habitat, but <str<strong>on</strong>g>the</str<strong>on</strong>g>se nests were much more likely to faildue to tidal flooding than nests placed in native vegetati<strong>on</strong>.As a result, our model <str<strong>on</strong>g>of</str<strong>on</strong>g> daily nest survival (a generalizedlinear modeling approach using Akaike’s Informati<strong>on</strong>SONG SPARROW AND MARSH WREN TERRITORIESDuring <str<strong>on</strong>g>the</str<strong>on</strong>g> 2003 breeding seas<strong>on</strong> (from March toAugust), we c<strong>on</strong>ducted two to four focal observati<strong>on</strong>s <strong>on</strong>each color-banded male to map <str<strong>on</strong>g>the</str<strong>on</strong>g> territory boundaries for<str<strong>on</strong>g>the</str<strong>on</strong>g> 32 s<strong>on</strong>g sparrows and 16 marsh wrens in <str<strong>on</strong>g>the</str<strong>on</strong>g> twoSpartina-invaded study sites (San Leandro and Alameda).Observers used binoculars, a compass, and a range-finder tomap bird locati<strong>on</strong>s during each <strong>on</strong>e-hour observati<strong>on</strong> period.Observati<strong>on</strong> locati<strong>on</strong>s were marked using a GPS unit, birdlocati<strong>on</strong>s were <str<strong>on</strong>g>the</str<strong>on</strong>g>n calculated and <str<strong>on</strong>g>the</str<strong>on</strong>g>se data were added toan ArcView GIS database. The points were used to c<strong>on</strong>struct100% minimum c<strong>on</strong>vex polyg<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> each territory. Usingcolor-infrared aerial photographs, we identified areas <str<strong>on</strong>g>of</str<strong>on</strong>g>invasive Spartina throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> sites. In ArcView, wecombined <str<strong>on</strong>g>the</str<strong>on</strong>g> layer <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina vegetati<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> layers <str<strong>on</strong>g>of</str<strong>on</strong>g>marsh wren and s<strong>on</strong>g sparrow territory polyg<strong>on</strong>s. We <str<strong>on</strong>g>the</str<strong>on</strong>g>ndetermined <str<strong>on</strong>g>the</str<strong>on</strong>g> percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> each territory that wascomposed <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina habitat, as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g>overlap between <str<strong>on</strong>g>the</str<strong>on</strong>g> two species.Although s<strong>on</strong>g sparrows did include some exoticSpartina habitat in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir territories, all but <strong>on</strong>e s<strong>on</strong>g sparrowterritory included some areas <str<strong>on</strong>g>of</str<strong>on</strong>g> native salt marsh habitat.The <strong>on</strong>e territory that was determined from aerialphotographs to be entirely covered by Spartina, actually hada large porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> native pickleweed vegetati<strong>on</strong> underlying<str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina stand. In c<strong>on</strong>trast, marsh wren territories weremore highly correlated with exotic Spartina habitat andmany territories were exclusively composed <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> exoticcordgrass. We also found that <str<strong>on</strong>g>the</str<strong>on</strong>g>re was little overlapbetween <str<strong>on</strong>g>the</str<strong>on</strong>g> territories <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> two species (Nordby et al., inprep).DISCUSSIONThese results suggest that <str<strong>on</strong>g>the</str<strong>on</strong>g> changes in salt marshhabitat associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> exotic Spartina mayfavor marsh wrens over s<strong>on</strong>g sparrows. While s<strong>on</strong>g sparrowsare occupying and nesting in <str<strong>on</strong>g>the</str<strong>on</strong>g> exotic Spartina, those thatdo so may be at a disadvantage. It is possible that s<strong>on</strong>gsparrows are being drawn to nesting sites in exotic Spartinathat are inappropriate because <str<strong>on</strong>g>the</str<strong>on</strong>g>y are too low in elevati<strong>on</strong>relative to <str<strong>on</strong>g>the</str<strong>on</strong>g> tides. This increase in nest failure due t<str<strong>on</strong>g>of</str<strong>on</strong>g>looding coupled with an apparent increase in interferencecompetiti<strong>on</strong> from marsh wrens may serve to negativelyimpact salt marsh s<strong>on</strong>g sparrow populati<strong>on</strong>s in SanFrancisco Bay.However, we do not yet know whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r exotic Spartinais acting as an ‘ecological trap’ for s<strong>on</strong>g sparrows, where- 198 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 3: Ecosystem Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Invasive</strong> Spartinaoverall reproductive success is reduced. It is also not yetknown whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r marsh wrens are excluding s<strong>on</strong>g sparrowsfrom <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina habitat or if s<strong>on</strong>g sparrows are selectingagainst those areas for o<str<strong>on</strong>g>the</str<strong>on</strong>g>r reas<strong>on</strong>s (e.g., nesting habitat orfood resources are limited).ACKNOWLEDGMENTSWe thank Letitia Grenier, Jules Evens, Joy Alberts<strong>on</strong>,Katy Zaremba and Hildie Spautz for assistance withinitiating this research. We also thank Lisa Eigner, BeckyDucore and April Robins<strong>on</strong> for assistance in <str<strong>on</strong>g>the</str<strong>on</strong>g> field. TheCalifornia Coastal C<strong>on</strong>servancy’s <strong>Invasive</strong> Spartina Projectand Pablo Rosso graciously provided <str<strong>on</strong>g>the</str<strong>on</strong>g> aerial photo GISfiles. We thank U.S. Fish and Wildlife Service, CADepartment <str<strong>on</strong>g>of</str<strong>on</strong>g> Fish and Game, East Bay Regi<strong>on</strong>al ParkDistrict and <str<strong>on</strong>g>the</str<strong>on</strong>g> City <str<strong>on</strong>g>of</str<strong>on</strong>g> San Leandro for research permitsand access to marshes. Funding was provided by a David H.Smith C<strong>on</strong>servati<strong>on</strong> Research Fellowship from The NatureC<strong>on</strong>servancy, <str<strong>on</strong>g>the</str<strong>on</strong>g> Nati<strong>on</strong>al Science Foundati<strong>on</strong>Biocomplexity grant DEB 0083583, and <str<strong>on</strong>g>the</str<strong>on</strong>g> San FranciscoEstuary Institute.REFERENCESAyres, D.R., D.L. Smith, K. Zaremba, S. Klohr, and D.R. Str<strong>on</strong>g.2004. Spread <str<strong>on</strong>g>of</str<strong>on</strong>g> exotic cordgrasses and hybrids (Spartina sp.) in<str<strong>on</strong>g>the</str<strong>on</strong>g> tidal marshes <str<strong>on</strong>g>of</str<strong>on</strong>g> San Francisco Bay, CA, USA. Biological Invasi<strong>on</strong>s6: 221-231.Ayres, D.R., D. Garcia-Rossi, H.G. Davis, and D.R. Str<strong>on</strong>g. 1999.Extent and degree <str<strong>on</strong>g>of</str<strong>on</strong>g> hybridizati<strong>on</strong> between exotic (Spartina alterniflora)and native (S. foliosa) cordgrass (Poaceae) in California,USA determined by random amplified polymorphic DNA(RAPDs). Molecular Ecology 8: 1179-1186.Callaway, J.C., and M.N. Josselyn. 1992. The introducti<strong>on</strong> andspread <str<strong>on</strong>g>of</str<strong>on</strong>g> smooth cordgrass (Spartina alterniflora) in South San-Francisco Bay. Estuaries 15: 218-226.Nordby, J.C., A.C. Cohen and S.R. Beissinger. 2009. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> ahabitat-altering invader <strong>on</strong> nesting sparrows: An ecological trap?Biological Invasi<strong>on</strong>s 11:565-575.Picman, J. 1977. Destructi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> eggs by <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>g-billed marshwren. Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Zoology 55: 1914-1920.Zaremba, K., M. McGowan, and D.R. Ayres. 2010. Spread <str<strong>on</strong>g>of</str<strong>on</strong>g> invasiveSpartina in <str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco estuary. In: Ayres, D.R.,D.W. Kerr, S.D. Erics<strong>on</strong> and P.R. Ol<str<strong>on</strong>g>of</str<strong>on</strong>g>s<strong>on</strong>, eds. <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartina, 2004Nov 8-10, San Francisco, CA, USA. San Francisco Estuary <strong>Invasive</strong>Spartina Project <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> California State Coastal C<strong>on</strong>servancy:Oakland, CA. (this volume).- 199 -


CHAPTER FOURSpartina C<strong>on</strong>trol and Management


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 4: Spartina C<strong>on</strong>trol and ManagementTAKING ADVANTAGE OF SPARTINA’S SPATIAL PATTERN FOR EFFICIENT CONTROLF.S. GREVSTADOlympic Natural Resources Center, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Washingt<strong>on</strong>, 2907 Pi<strong>on</strong>eer Road, L<strong>on</strong>g Beach, WA 98631;grevstad@u.washingt<strong>on</strong>.eduThe invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> open mudflats by Spartina alterniflora takes <strong>on</strong> a distinctive spatial pattern. Thispattern <str<strong>on</strong>g>of</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g>fers opportunity for strategic placement <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol efforts. Spartina seedlingsestablish <strong>on</strong> open mud and <str<strong>on</strong>g>the</str<strong>on</strong>g>n spread vegetatively to form expanding circular patches, which dot<str<strong>on</strong>g>the</str<strong>on</strong>g> mudflats and eventually coalesce into a c<strong>on</strong>tiguous m<strong>on</strong>ospecific meadow. The invasi<strong>on</strong>typically begins in <str<strong>on</strong>g>the</str<strong>on</strong>g> upper tide z<strong>on</strong>e and <str<strong>on</strong>g>the</str<strong>on</strong>g>n moves down <str<strong>on</strong>g>the</str<strong>on</strong>g> tidal gradient. Using a spatiallyexplicit model, I simulated <str<strong>on</strong>g>the</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora and compared various strategies for c<strong>on</strong>trolin a situati<strong>on</strong> where <strong>on</strong>ly a fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total infestati<strong>on</strong> could be c<strong>on</strong>trolled each year. A strategy<str<strong>on</strong>g>of</str<strong>on</strong>g> killing outlying patches first and <str<strong>on</strong>g>the</str<strong>on</strong>g>n attacking <str<strong>on</strong>g>the</str<strong>on</strong>g> dense meadows (moving up <str<strong>on</strong>g>the</str<strong>on</strong>g> tidal gradient)led to eradicati<strong>on</strong> in up to 44% less time and effort than a strategy <str<strong>on</strong>g>of</str<strong>on</strong>g> targeting <str<strong>on</strong>g>the</str<strong>on</strong>g> dense meadowsfirst and outlying patches sec<strong>on</strong>d (moving down <str<strong>on</strong>g>the</str<strong>on</strong>g> tidal gradient). In <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tiguousmeadows located adjacent to <str<strong>on</strong>g>the</str<strong>on</strong>g> shoreline, <str<strong>on</strong>g>the</str<strong>on</strong>g> best strategy was to approach <strong>on</strong>e end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>infestati<strong>on</strong>, moving across <str<strong>on</strong>g>the</str<strong>on</strong>g> meadow to <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r end. Suppressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> seeds was not an effectivec<strong>on</strong>trol strategy by itself. In general, effective c<strong>on</strong>trol strategies were those that first eliminate <str<strong>on</strong>g>the</str<strong>on</strong>g>plant in areas where current or future vegetative growth is greatest. Field applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se resultsfor S. alterniflora and similar invasive plants could greatly reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> costs <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol work andimprove <str<strong>on</strong>g>the</str<strong>on</strong>g> likelihood <str<strong>on</strong>g>of</str<strong>on</strong>g> local or complete eradicati<strong>on</strong>.Keywords: Spartina alterniflora, Willapa Bay, spatial pattern, c<strong>on</strong>trol strategy, c<strong>on</strong>trol efficiencyINTRODUCTIONWhen resources for c<strong>on</strong>trol work are limited, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten <strong>on</strong>lya fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a weed invasi<strong>on</strong> can be c<strong>on</strong>trolled in any givenyear. Under <str<strong>on</strong>g>the</str<strong>on</strong>g>se c<strong>on</strong>diti<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g> spatial pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> a weedinvasi<strong>on</strong> can provide an opportunity for strategic placement<str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol efforts to achieve <str<strong>on</strong>g>the</str<strong>on</strong>g>ir greatest effect.The invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mudflats by Spartina spp. (cordgrasses)takes <strong>on</strong> a characteristic pattern. Seedlings establish in openmud and <str<strong>on</strong>g>the</str<strong>on</strong>g>n spread vegetatively to form expanding circularpatches. These initially dot <str<strong>on</strong>g>the</str<strong>on</strong>g> mudflats and can eventuallycoalesce into a c<strong>on</strong>tiguous meadow. The invasi<strong>on</strong> typicallybegins in <str<strong>on</strong>g>the</str<strong>on</strong>g> upper intertidal z<strong>on</strong>e and <str<strong>on</strong>g>the</str<strong>on</strong>g>n moves down <str<strong>on</strong>g>the</str<strong>on</strong>g>tidal gradient. A distinct boundary is formed by <str<strong>on</strong>g>the</str<strong>on</strong>g> highernative marsh, which Spartina rarely invades. This study usesa simulati<strong>on</strong> to compare c<strong>on</strong>trol approaches for this pattern<str<strong>on</strong>g>of</str<strong>on</strong>g> spread. A more detailed versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> it appears Grevstead2005.METHODSA stochastic grid-based model was developed usingMatlab® s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware to simulate <str<strong>on</strong>g>the</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartinaalterniflora <strong>on</strong> a mudflat and to compare different c<strong>on</strong>trolstrategies. The simulati<strong>on</strong>s used a grid dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 120 by120 cells where each cell was 1 square meter (m 2 ). One axis<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> model space follows a tidal elevati<strong>on</strong> gradient, with<str<strong>on</strong>g>the</str<strong>on</strong>g> upper edge representing <str<strong>on</strong>g>the</str<strong>on</strong>g> native marsh boundary and<str<strong>on</strong>g>the</str<strong>on</strong>g> bottom edge representing <str<strong>on</strong>g>the</str<strong>on</strong>g> lower extent <str<strong>on</strong>g>of</str<strong>on</strong>g> S.alterniflora growth. Cells are c<strong>on</strong>sidered ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r empty oroccupied by S. alterniflora. They become occupied throughvegetative spread from neighboring cells or by establishment<str<strong>on</strong>g>of</str<strong>on</strong>g> seedlings dispersed from an occupied cell. Parameterestimates were obtained from field data for S. alterniflora inWillapa Bay. Assumpti<strong>on</strong>s and parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> modelwere as follows:• Vegetative spread = 0.77 m radial increase per year(measured from aerial photos)• Seeds disperse from occupied sites according to aGaussian distributi<strong>on</strong> ( = 50)• Seedling recruitment declines linearly with tidalelevati<strong>on</strong> (based <strong>on</strong> Feist 1999)• Seedling recruitment produces a 17% increase in areaper year (based <strong>on</strong> Murphy 2003)• Once established, cl<strong>on</strong>al patches do not die until treatedOutlying patches first vs. meadows firstThe time and total effort needed to eradicate apopulati<strong>on</strong> was compared for a meadows-first vs. anoutliers-first treatment strategy. In each case a fixed amount<str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina was removed each year starting with a 20-yearoldinvasi<strong>on</strong> (Fig.1). Paired trials were replicated 10 timesfor each <str<strong>on</strong>g>of</str<strong>on</strong>g> three levels <str<strong>on</strong>g>of</str<strong>on</strong>g> yearly effort.Approach directi<strong>on</strong> for meadowsFor a case where <str<strong>on</strong>g>the</str<strong>on</strong>g>re are no outliers but <strong>on</strong>ly anobl<strong>on</strong>g meadow adjacent to <str<strong>on</strong>g>the</str<strong>on</strong>g> native marsh boundary, threestrategies were compared: (1) Approaching from <str<strong>on</strong>g>the</str<strong>on</strong>g> lowertide z<strong>on</strong>e (mudflat) and moving toward <str<strong>on</strong>g>the</str<strong>on</strong>g> upper tide z<strong>on</strong>e- 203 -


Chapter 4: Spartina C<strong>on</strong>trol and Management<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaA. Meadow first B. Outlying cl<strong>on</strong>es firstTime to eradicati<strong>on</strong> (years)403530252015105A.Yearly effort5001000150001 2Meadow firstOutliers firstFig. 1 Meadow-first (left) and outlier-first (right) approaches to c<strong>on</strong>trollingSpartina. Shown is <str<strong>on</strong>g>the</str<strong>on</strong>g> remaining Spartina at times 22, 25 and 30years. Removal <str<strong>on</strong>g>of</str<strong>on</strong>g> 500 occupied squares each year began <strong>on</strong> year 20.Fig. 1. Meadow-first (left) and outlier-first (right) approaches to c<strong>on</strong>trollingSpartina. Shown is <str<strong>on</strong>g>the</str<strong>on</strong>g> remaining Spartina (black areas) at times 2, 5,and 10 years. Removal <str<strong>on</strong>g>of</str<strong>on</strong>g> 500 occupied squares each year began <strong>on</strong> year20.(native marsh), (2) approaching from <str<strong>on</strong>g>the</str<strong>on</strong>g> upper tide z<strong>on</strong>e andmoving toward <str<strong>on</strong>g>the</str<strong>on</strong>g> lower tide z<strong>on</strong>e, and (3) approachingfrom <strong>on</strong>e end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> meadow and moving parallel to shore to<str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r end. Each year a fixed amount <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina wasremoved.Is seed suppressi<strong>on</strong> effective?Seed suppressi<strong>on</strong>, through mowing or low c<strong>on</strong>centrati<strong>on</strong>herbicide spray, can be carried out at a much lower cost thancompletely killing <str<strong>on</strong>g>the</str<strong>on</strong>g> plants. To test <str<strong>on</strong>g>the</str<strong>on</strong>g> effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g>seed suppressi<strong>on</strong>, three start c<strong>on</strong>diti<strong>on</strong>s were used (a 15-year-old invasi<strong>on</strong>, a 20-year-old invasi<strong>on</strong>, and a 15-year-oldmeadow without outliers). Seeds were suppressed at threelevels: 0%, 50%, or 100%. In each case, seeds weresuppressed every year, while established plants wereallowed to spread vegetatively.RESULTSThe outliers-first strategy achieved eradicati<strong>on</strong> substantiallyso<strong>on</strong>er and with less total effort than <str<strong>on</strong>g>the</str<strong>on</strong>g> meadow firstTotal cost (m 2 c<strong>on</strong>trolled)20000180001600014000120001000080006000strategy. The difference was especially great when <str<strong>on</strong>g>the</str<strong>on</strong>g> availableyearly effort was low (Fig. 2).For obl<strong>on</strong>g meadows, Spartina was eliminated fastest,and with <str<strong>on</strong>g>the</str<strong>on</strong>g> least total effort, when c<strong>on</strong>trol work was appliedfirst to <strong>on</strong>e end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> meadow and <str<strong>on</strong>g>the</str<strong>on</strong>g>n moved across<str<strong>on</strong>g>the</str<strong>on</strong>g> meadow in subsequent years. Slightly less effective was<str<strong>on</strong>g>the</str<strong>on</strong>g> approach <str<strong>on</strong>g>of</str<strong>on</strong>g> moving from lower to upper intertidal z<strong>on</strong>e.The least effective strategy was to c<strong>on</strong>trol from <str<strong>on</strong>g>the</str<strong>on</strong>g> uppertide z<strong>on</strong>e, because this opened up an additi<strong>on</strong>al growingedge. Again, <str<strong>on</strong>g>the</str<strong>on</strong>g> largest difference in strategy effectivenesswas found when <str<strong>on</strong>g>the</str<strong>on</strong>g> yearly c<strong>on</strong>trol effort was low.B.Yearly effort500100015001 2Meadow firstOutliers firstFig. 2. Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> time (A) and amount <str<strong>on</strong>g>of</str<strong>on</strong>g> effort (B)needed to eradicate a Spartina populati<strong>on</strong> using a meadow-first or outliersfirstapproach. Plots show mean and standard error <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 replicate trials foreach strategy and yearly effort combinati<strong>on</strong>.- 204 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 4: Spartina C<strong>on</strong>trol and ManagementTime to eradicati<strong>on</strong> (years)30252015105*A.Yearly effort200300600Area occupied1400012000100008000600040002000Seeds suppressed after year 150% seed suppressi<strong>on</strong>50% seed suppressi<strong>on</strong>100% seed suppressi<strong>on</strong>0Upper to lower Lower to upper End <strong>on</strong>Approach directi<strong>on</strong>00 5 10 15 20 25 30 35 40 45Time (years)14000Relative cost <str<strong>on</strong>g>of</str<strong>on</strong>g> eradicati<strong>on</strong>(m 2 c<strong>on</strong>trolled)50004000300020001000*B.Yearly effort200300600Area occupied12000100008000600040002000Seeds suppressed after year 200% seed suppressi<strong>on</strong>50% seed suppressi<strong>on</strong>100% seed suppressi<strong>on</strong>00 5 10 15 20 25 30 35 40 45Time (years)0Upper to lower Lower to upper End <strong>on</strong>Approach directi<strong>on</strong>Fig. 3. Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> time (A) and amount <str<strong>on</strong>g>of</str<strong>on</strong>g> effort (B)needed to eradicate a Spartina populati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> an obl<strong>on</strong>g meadowadjacent to <str<strong>on</strong>g>the</str<strong>on</strong>g> native marsh using three approach directi<strong>on</strong>s. Plots showmean and standard error <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 replicate trials for each strategy and yearlyeffort combinati<strong>on</strong>.When <str<strong>on</strong>g>the</str<strong>on</strong>g> mudflat was already dotted with patches <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina, seed suppressi<strong>on</strong> <strong>on</strong>ly slightly reduced <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g>invasi<strong>on</strong> and it took many years to see an effect. Seed suppressi<strong>on</strong>was somewhat more effective in <str<strong>on</strong>g>the</str<strong>on</strong>g> meadow-<strong>on</strong>lycase. However, in all cases, <str<strong>on</strong>g>the</str<strong>on</strong>g> area occupied by Spartinac<strong>on</strong>tinued to increase.CONCLUSIONSIn a situati<strong>on</strong> where <strong>on</strong>ly a fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> canbe c<strong>on</strong>trolled each year, strategic placement <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>troltreatments can greatly reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> time and effort needed toeradicate Spartina. C<strong>on</strong>trol is more effective if it first targetsoutlying cl<strong>on</strong>es in <str<strong>on</strong>g>the</str<strong>on</strong>g> lower tide z<strong>on</strong>e and <str<strong>on</strong>g>the</str<strong>on</strong>g>n moves up <str<strong>on</strong>g>the</str<strong>on</strong>g>tidal gradient to target <str<strong>on</strong>g>the</str<strong>on</strong>g> larger meadow. These results arec<strong>on</strong>sistent with expectati<strong>on</strong>s based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> more generalizedstudy by Moody and Mack (1988); <str<strong>on</strong>g>the</str<strong>on</strong>g>y also agree with aArea occupied12000100008000600040002000Meadow <strong>on</strong>ly infestati<strong>on</strong>Seeds suppressed after year 150% seed suppressi<strong>on</strong>50% seed suppressi<strong>on</strong>100% seed suppressi<strong>on</strong>00 5 10 15 20 25 30 35 40 45Time (years)Fig. 4. Growth <str<strong>on</strong>g>of</str<strong>on</strong>g> simulated S. alterniflora populati<strong>on</strong>s for which seedswere suppressed at levels <str<strong>on</strong>g>of</str<strong>on</strong>g> 0%, 50% and 100% every year for a 20 yearperiod. Seed suppressi<strong>on</strong> treatment was applied to <str<strong>on</strong>g>the</str<strong>on</strong>g> invading populati<strong>on</strong>after year 15 in (A) and after year 20 in (B). In (C) seed suppressi<strong>on</strong> wasapplied to a 15-year-old meadow surrounded by an uninfested mudflat.model <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina c<strong>on</strong>trol by Taylor et al. (this volume). Theoutliers-first approach eliminates Spartina in <str<strong>on</strong>g>the</str<strong>on</strong>g> areas wherevegetative spread is greatest. In additi<strong>on</strong>, it avoids openingup a new growing edge in <str<strong>on</strong>g>the</str<strong>on</strong>g> upper intertidal z<strong>on</strong>e and also- 205 -


Chapter 4: Spartina C<strong>on</strong>trol and Management<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinaavoids opening up <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat that is most favorable forseedlings.For <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> solid meadows without outlyingpatches (i.e. after outliers have been c<strong>on</strong>trolled), treatmentshould begin with ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r <str<strong>on</strong>g>the</str<strong>on</strong>g> lower edge or, slightly better,<strong>on</strong>e end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> meadow. Again, this more rapidly cuts down<str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> growing edge and avoids opening a newedge in <str<strong>on</strong>g>the</str<strong>on</strong>g> upper z<strong>on</strong>e.An assumpti<strong>on</strong> behind <str<strong>on</strong>g>the</str<strong>on</strong>g>se results is that <str<strong>on</strong>g>the</str<strong>on</strong>g> cost <str<strong>on</strong>g>of</str<strong>on</strong>g>c<strong>on</strong>trol per unit area is similar in different parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong>.This may or may not be true depending <strong>on</strong> what toolsare available to <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol crew. It is anticipated that landmanagers will c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> this study in combinati<strong>on</strong>with <str<strong>on</strong>g>the</str<strong>on</strong>g>ir own costs <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol for different secti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> S. alterniflora invasi<strong>on</strong>.Seed suppressi<strong>on</strong> al<strong>on</strong>e is not likely to be effective, especiallywhen <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> is already widespread. This isbecause <str<strong>on</strong>g>the</str<strong>on</strong>g> established plants will c<strong>on</strong>tinue to spread vegetatively.Seed suppressi<strong>on</strong> may be warranted if used in combinati<strong>on</strong>with c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetative spread and when it can bed<strong>on</strong>e completely and ec<strong>on</strong>omically.ACKNOWLEDGEMENTSThis work was inspired by discussi<strong>on</strong>s with state andfederal agency Spartina c<strong>on</strong>trol coordinators in Willapa Bay,including Todd Brownlee, Blaine Reeves, Kyle Murphy,Charlie Stenvall, Brady Scott, Wendy Brown, Lester Holcum,Dave Heimer, and Kim Patten. Photographs used inparameterizing <str<strong>on</strong>g>the</str<strong>on</strong>g> model were made available by WendyBrown and Janie Civille <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Washingt<strong>on</strong> Department <str<strong>on</strong>g>of</str<strong>on</strong>g>Natural Resources. Financial support was provided by <str<strong>on</strong>g>the</str<strong>on</strong>g>Nati<strong>on</strong>al Sea Grant Program and <str<strong>on</strong>g>the</str<strong>on</strong>g> U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g>Fish and Wildlife.REFERENCESFeist, B.E. 1999. Spatio-temporal analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>mentaland climatic factors c<strong>on</strong>trolling <str<strong>on</strong>g>the</str<strong>on</strong>g> expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflorain Willapa Bay, Washingt<strong>on</strong>. PhD <str<strong>on</strong>g>the</str<strong>on</strong>g>sis. University <str<strong>on</strong>g>of</str<strong>on</strong>g>Washingt<strong>on</strong>.Grevstad, F.S. 2005. Strategies for c<strong>on</strong>trolling a spatially structuredplant invasi<strong>on</strong>: Spartina alterniflora in Pacific Coast estuaries.Biological Invasi<strong>on</strong>s 7: 665-667.Moody, M.E. and R.N. Mack. 1988. C<strong>on</strong>trolling <str<strong>on</strong>g>the</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> plantinvasi<strong>on</strong>s: <str<strong>on</strong>g>the</str<strong>on</strong>g> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> nascent foci. J Appl Ecol 25:1009-1021.Murphy K.C. 2003. Report to <str<strong>on</strong>g>the</str<strong>on</strong>g> Legislature: Progress <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>Spartina Eradicati<strong>on</strong> and C<strong>on</strong>trol Programs. Olympia, WA:Washingt<strong>on</strong> State Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture.Taylor, C.M., A. Hastings, H.G. Davis, J.C. Civille, and F.S.Grevstad. Modeling <str<strong>on</strong>g>the</str<strong>on</strong>g> spread and c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflorain Willapa Bay. In: Ayres, D.R., D.W. Kerr, S.D. Erics<strong>on</strong>and P.R. Ol<str<strong>on</strong>g>of</str<strong>on</strong>g>s<strong>on</strong>, eds. <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g><str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartina, 2004 Nov 8-10, SanFrancisco, CA, USA. San Francisco Estuary <strong>Invasive</strong> SpartinaProject <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> California State Coastal C<strong>on</strong>servancy: Oakland,CA. (this volume).- 206 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 4: Spartina C<strong>on</strong>trol and ManagementSHOREBIRD USE OF SPARTINA-AFFECTED TIDELANDS –CAN WE ACHIEVE FUNCTIONALHABITAT POST-CONTROL?K. PATTEN AND C. O’CASEYWashingt<strong>on</strong> State University, L<strong>on</strong>g Beach Research and Extensi<strong>on</strong> Unit.2907 Pi<strong>on</strong>eer Road, L<strong>on</strong>g Beach, WA 98631; pattenk@wsu.edu; ocasey@wsu.eduOne <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> major threats <str<strong>on</strong>g>of</str<strong>on</strong>g> invasive Spartina is <str<strong>on</strong>g>the</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> shorebird foraging habitat. The Audub<strong>on</strong>Society lists <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Willapa Bay (WB) by Spartina as <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d most critical threat toshorebird habitat in <str<strong>on</strong>g>the</str<strong>on</strong>g> nati<strong>on</strong>. Studies were c<strong>on</strong>ducted <strong>on</strong> how large-scale mechanical and chemicalc<strong>on</strong>trol efforts affect shorebird and waterfowl usage <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina meadows in WB. Food abundanceand accessibility, shorebird, waterfowl and bird <str<strong>on</strong>g>of</str<strong>on</strong>g> prey density, and bird behaviour were evaluated<strong>on</strong> treated meadows and compared to untreated meadows and bare mudflats. Based <strong>on</strong> l<strong>on</strong>g-termpoint counts and remote video m<strong>on</strong>itoring, <str<strong>on</strong>g>the</str<strong>on</strong>g>re was no bird usage (<str<strong>on</strong>g>of</str<strong>on</strong>g> any species) in Spartinameadows. Highest food abundance and accessibility was found in mudflats. Waterfowl and birds <str<strong>on</strong>g>of</str<strong>on</strong>g>prey preferred herbicide-treated sites over <str<strong>on</strong>g>the</str<strong>on</strong>g> tilled and mudflat sites. Shorebirds preferred mudflatsfollowed by tilling over that <str<strong>on</strong>g>of</str<strong>on</strong>g> herbicide-treated sites. Bird behaviour (feeding or resting) wasvariable and dependent <strong>on</strong> species, time <str<strong>on</strong>g>of</str<strong>on</strong>g> year and treatment. Although tilling appears to beinitially effective in expediting restorati<strong>on</strong> for shorebirds, it is too costly to implement <strong>on</strong> a largescale. The most significant l<strong>on</strong>g-term c<strong>on</strong>cern for shorebird usage is <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina-induced increasein tidal elevati<strong>on</strong>s <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>se meadows (>35 cm). Less than 20% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> gain in elevati<strong>on</strong> wasattributable to sediment accreti<strong>on</strong>; <str<strong>on</strong>g>the</str<strong>on</strong>g> rest was root biomass. Due to <str<strong>on</strong>g>the</str<strong>on</strong>g> change in bathymetry, <strong>on</strong>ceSpartina was c<strong>on</strong>trolled at <str<strong>on</strong>g>the</str<strong>on</strong>g>se sites, native salt marsh plants (Salicornia, Triglochin and Spergula)immediately invaded more than 400 meters out into what were previously intertidal mudflats. Thispotentially permanent large scale c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mudflat to salt marsh will have pr<str<strong>on</strong>g>of</str<strong>on</strong>g>oundimplicati<strong>on</strong>s for shorebird habitat. Some potential remedies will be suggested.Keywords: restorati<strong>on</strong>, Dunlin, Western Sandpiper, birds <str<strong>on</strong>g>of</str<strong>on</strong>g> prey, native salt marsh, Willapa Bay,SpartinaINTRODUCTIONSpartina has col<strong>on</strong>ized and eliminated much <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>upper porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> wide expansive intertidal mudflats <str<strong>on</strong>g>of</str<strong>on</strong>g>Willapa Bay. Species most threatened by Spartina are likelyto be <str<strong>on</strong>g>the</str<strong>on</strong>g> thirty species <str<strong>on</strong>g>of</str<strong>on</strong>g> shorebirds that rely up<strong>on</strong> WillapaBay’s 47,000 acres <str<strong>on</strong>g>of</str<strong>on</strong>g> tideland for food and shelter duringannual migrati<strong>on</strong>s to and from <str<strong>on</strong>g>the</str<strong>on</strong>g> Arctic. Much <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> mostpreferredshorebird habitat <str<strong>on</strong>g>of</str<strong>on</strong>g> Willapa Bay, sheltered uppertidal mudflats in <str<strong>on</strong>g>the</str<strong>on</strong>g> sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn bay, has been displaced bySpartina. Peak winter and spring shorebird usage in secti<strong>on</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bay has declined over 60 percent in <str<strong>on</strong>g>the</str<strong>on</strong>g> past decade asSpartina meadows have replaced <str<strong>on</strong>g>the</str<strong>on</strong>g> tidal mudflats (Jaques2002). Census studies <strong>on</strong> shorebird abundance in WillapaBay in 1991-1995, prior to <str<strong>on</strong>g>the</str<strong>on</strong>g> major increase in Spartinagrowth, found that 44 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total bird usage waswithin two areas, <str<strong>on</strong>g>the</str<strong>on</strong>g> Bear River/Lewis Unit – South WillapaBay regi<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> Willapa River area (Buchanan andEvens<strong>on</strong> 1997). These two areas have become almostc<strong>on</strong>tiguous Spartina meadows. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> habitatcaused by Spartina, <str<strong>on</strong>g>the</str<strong>on</strong>g> Audub<strong>on</strong> Society has listed WillapaBay as <str<strong>on</strong>g>the</str<strong>on</strong>g> sec<strong>on</strong>d most endangered shorebird habitat in <str<strong>on</strong>g>the</str<strong>on</strong>g>United States (Audub<strong>on</strong> 2004).The <strong>on</strong>going chemical and mechanical c<strong>on</strong>trol effort is<str<strong>on</strong>g>the</str<strong>on</strong>g> first step in recovering that habitat. The ultimate goal <str<strong>on</strong>g>of</str<strong>on</strong>g>a c<strong>on</strong>trol effort should not be limited to c<strong>on</strong>trol, but als<strong>on</strong>eeds to c<strong>on</strong>sider restorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> affected habitat formaximal ecological value. Little informati<strong>on</strong> exists to date<strong>on</strong> how <str<strong>on</strong>g>the</str<strong>on</strong>g> numerous chemical and mechanical c<strong>on</strong>trolmethods being used to manage Spartina have expeditedhabitat restorati<strong>on</strong>. The l<strong>on</strong>g-term ecological impact <str<strong>on</strong>g>of</str<strong>on</strong>g>invasive Spartina <strong>on</strong> shorebirds in England has beenrecently reviewed by Lacambra et al. 2004. They c<strong>on</strong>cludethat a return <str<strong>on</strong>g>of</str<strong>on</strong>g> shorebirds to English estuaries followingSpartina removal is not axiomatic. In Washingt<strong>on</strong>, where<str<strong>on</strong>g>the</str<strong>on</strong>g>re have been l<strong>on</strong>g-term c<strong>on</strong>trol efforts by variousagencies, use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> affected tideflats by shorebirds andwaterfowl increases dramatically within several years <str<strong>on</strong>g>of</str<strong>on</strong>g>removal <str<strong>on</strong>g>of</str<strong>on</strong>g> invasive Spartina from mudflats (Patten andO’Casey 2007). The objective <str<strong>on</strong>g>of</str<strong>on</strong>g> this study was to assess <str<strong>on</strong>g>the</str<strong>on</strong>g>likelihood and <str<strong>on</strong>g>the</str<strong>on</strong>g> limiting factors involved in achievingfuncti<strong>on</strong>al habitat at Spartina-affected mudflats after c<strong>on</strong>trol.METHODSSite informati<strong>on</strong>:Direct and indirect assessments were made <str<strong>on</strong>g>of</str<strong>on</strong>g> shorebird,waterfowl and birds <str<strong>on</strong>g>of</str<strong>on</strong>g> prey usage <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina meadows(treated and untreated) in comparis<strong>on</strong> to bare mudflats.These assessments were made for five sites: bare mudflat,- 207 -


Chapter 4: Spartina C<strong>on</strong>trol and Management<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaShorebirds/m 2 /hr86420Native Tilled Sprayedmudflat meadow /mowedmeadowSprayedmeadowUntreatedSpartinameadowFig. 1. A summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> comparative use <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina affected tideflats byshorebirds during <str<strong>on</strong>g>the</str<strong>on</strong>g> winter/spring migrati<strong>on</strong> in 2003 based <strong>on</strong> foragingflux density data from remote sensing cameras as a funcit<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartinac<strong>on</strong>trol method. Bars = Std. Err.Bird number / ha / 15 minutes1500 Western SandPiperDunlin1000Untreated Spartina50001500100050001500100050001500Sprayed SpartinaTilled Spartinatilled Spartina meadow, sprayed Spartina meadow, spraymowedSpartina meadow and an untreated Spartinameadow. Data collected included beak probe density,footprint density, fecal dropping density, visual countsduring peak migrati<strong>on</strong> in spring 2003 and winter <str<strong>on</strong>g>of</str<strong>on</strong>g>2003/2004, and remote m<strong>on</strong>itoring with video cameras inwinter/spring 2003. The study site was <strong>on</strong> Willapa Nati<strong>on</strong>alWildlife Refuge property at <str<strong>on</strong>g>the</str<strong>on</strong>g> south end <str<strong>on</strong>g>of</str<strong>on</strong>g> Willapa Bay.The Spartina infestati<strong>on</strong> was 10 to 14 years old and coveredover 1000 hectares (ha). Treatment sites were adjacent toeach o<str<strong>on</strong>g>the</str<strong>on</strong>g>r and large enough to be c<strong>on</strong>sidered ecologicallysignificant units (>60 ha). This part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bay supported anabundant bird populati<strong>on</strong> prior to infestati<strong>on</strong> by Spartina(Jacques 2002). Although <str<strong>on</strong>g>the</str<strong>on</strong>g> sites had similar bathymetryprior to Spartina infestati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir current elevati<strong>on</strong>s weremeasured to be greater than 35 centimeters (cm) above <str<strong>on</strong>g>the</str<strong>on</strong>g>adjacent mudflats. The bare mudflat site is and has beenSpartina-free. The tilled site has been treated since2000/2001 with mowing, tilling, and spraying for cleanup. Ithas been relatively free <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina since 2002. The sprayedand spray-mowed sites were treated with 2 gall<strong>on</strong>s/acre <str<strong>on</strong>g>of</str<strong>on</strong>g>glyphosate (Rodeo®) in summer <str<strong>on</strong>g>of</str<strong>on</strong>g> 2002 and had follow-upspraying in summer <str<strong>on</strong>g>of</str<strong>on</strong>g> 2003. The spray-mowed site wasmowed to a level <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately 14 cm during <str<strong>on</strong>g>the</str<strong>on</strong>g> spring<str<strong>on</strong>g>of</str<strong>on</strong>g> 2003 to remove dead stubble and encourage bird usage.The untreated Spartina area is a large meadow comprisingmore than 200 ha at <str<strong>on</strong>g>the</str<strong>on</strong>g> southwest end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bay.Shorebird dataBeak probe density, footprint density, and fecaldropping density (#/0.25 m 2 ) data were collected <strong>on</strong> May 13,2003, using five replicati<strong>on</strong>s per habitat per locati<strong>on</strong>, withfive subsample counts per replicati<strong>on</strong>. For each replicati<strong>on</strong>,comparative habitats (treatments) were located within 20feet <str<strong>on</strong>g>of</str<strong>on</strong>g> each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r. Remote m<strong>on</strong>itoring <str<strong>on</strong>g>of</str<strong>on</strong>g> sites was d<strong>on</strong>eusing video cameras in winter/spring 2003. A Mitsubishi1000500Bare mudflat011/22/03 12/12/03 1/1/04 1/20/04 2/9/04Date <str<strong>on</strong>g>of</str<strong>on</strong>g> observati<strong>on</strong>Fig. 2. Visual counts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> major shorebird species in Willapa Bay inWinter 03/04 as a funcit<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina c<strong>on</strong>trol method.Time Lapse Security Recorder, Model #HS-1280U, wasused to record <str<strong>on</strong>g>the</str<strong>on</strong>g> black and white image from a SuperCircuits PC23C camera with a 12-mm 1/3” CS TV lens.Power was provided using three 12-volt deep cycle marinebatteries and a 16-watt solar pane with a DC to AC, 12-volt,150-watt inverter. Cameras were mounted in wea<str<strong>on</strong>g>the</str<strong>on</strong>g>rpro<str<strong>on</strong>g>of</str<strong>on</strong>g>camera housing <strong>on</strong> 7-m poles 133 m from <str<strong>on</strong>g>the</str<strong>on</strong>g> native marsh.The camera focal area for each site varied slightly, rangingfrom approximately 90 to 180 m 2 . Total bird usage(shorebird and waterfowl) from each tape was recordedevery 30 sec<strong>on</strong>ds and <str<strong>on</strong>g>the</str<strong>on</strong>g> data was c<strong>on</strong>verted to mean dailyflux densities (#/m 2 /hour). For shorebirds, daily fluxdensities were based <strong>on</strong>ly <strong>on</strong> time periods during <str<strong>on</strong>g>the</str<strong>on</strong>g> daywhen <str<strong>on</strong>g>the</str<strong>on</strong>g> tideflats were exposed. The total number <str<strong>on</strong>g>of</str<strong>on</strong>g> days <str<strong>on</strong>g>of</str<strong>on</strong>g>complete data collecti<strong>on</strong>, from February 18, 2003 to May 14,2003, ranged from 20 to 40 depending <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> site. Visualobservati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bird usage in <str<strong>on</strong>g>the</str<strong>on</strong>g> winter <str<strong>on</strong>g>of</str<strong>on</strong>g> 2003/04 was d<strong>on</strong>eusing a single observer. Three plots (<strong>on</strong>e hectare each) persite were observed for 10 minute intervals using a spottingscope. Observati<strong>on</strong>s were timed to coincide with peak usageat each site, just prior to tidal submergence or after tidalwithdraw. Observati<strong>on</strong> frequency was at least <strong>on</strong>ce a week.Bird species and behavior were noted.Soil and plant dataIntact cores to <str<strong>on</strong>g>the</str<strong>on</strong>g> bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> root system (80+ cm)were collected by digging a 1-m wide and deep trench.- 208 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 4: Spartina C<strong>on</strong>trol and ManagementDistance from native marsh (m)10008006004002000Salicornia virginicaTriglochin maritimumCotula cor<strong>on</strong>opifoliaSpergularia canadensisTilled 2001/2002Sprayed 2002/2003Fig. 3. The mean maximum distance from <str<strong>on</strong>g>the</str<strong>on</strong>g> shoreline that salt marshspecies were located after Spartina was c<strong>on</strong>trolled. Data were collected June2004.Standard soil science methodology was used to determineporosity, bulk density, and <str<strong>on</strong>g>the</str<strong>on</strong>g> core sample compositi<strong>on</strong>. Bywashing <str<strong>on</strong>g>the</str<strong>on</strong>g> trench wall it was possible to identify allgrowing point meristems and record <str<strong>on</strong>g>the</str<strong>on</strong>g>ir points <str<strong>on</strong>g>of</str<strong>on</strong>g> origin(depth). The change in depth from <str<strong>on</strong>g>the</str<strong>on</strong>g> first occurringmeristem to <str<strong>on</strong>g>the</str<strong>on</strong>g> current growing points over <str<strong>on</strong>g>the</str<strong>on</strong>g> 8-to-10-yearperiod this meadow had been growing was assumed to be achange in tidal elevati<strong>on</strong> resulting from Spartina-inducedaccreti<strong>on</strong>. Data <strong>on</strong> vascular plant density (#/m 2 ) by specieswere collected in June 2004 from multiple transects from <str<strong>on</strong>g>the</str<strong>on</strong>g>native marsh line out to 500 m through each treatment site.RESULTSShorebird foragingBased <strong>on</strong> visual and remote observati<strong>on</strong> data during <str<strong>on</strong>g>the</str<strong>on</strong>g>time course <str<strong>on</strong>g>of</str<strong>on</strong>g> this study, n<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina c<strong>on</strong>trolmethods resulted in shorebird usage comparable to <str<strong>on</strong>g>the</str<strong>on</strong>g> baremudflats (Figures 1 & 2). Flux density <str<strong>on</strong>g>of</str<strong>on</strong>g> shorebirds duringwinter and spring <str<strong>on</strong>g>of</str<strong>on</strong>g> 2003 was higher in <str<strong>on</strong>g>the</str<strong>on</strong>g> bare mudflatthan in <str<strong>on</strong>g>the</str<strong>on</strong>g> tilled areas based <strong>on</strong> remote sensing (Figure 1),but comparable between <str<strong>on</strong>g>the</str<strong>on</strong>g> sites based <strong>on</strong> visualobservati<strong>on</strong>s (Figure 2). Flux densities <str<strong>on</strong>g>of</str<strong>on</strong>g> shorebirds <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>tilled site were higher than <str<strong>on</strong>g>the</str<strong>on</strong>g> sprayed or spray-mowed site(Figures 1 & 2). During 480 hours <str<strong>on</strong>g>of</str<strong>on</strong>g> video recordings, noshorebirds were ever observed at <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina meadow site.Shorebirds (Western sandpipers) were <strong>on</strong>ly noted <strong>on</strong>ce over14 visual observati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina meadow, and <str<strong>on</strong>g>the</str<strong>on</strong>g>yfloated in <strong>on</strong> a Spartina wrack. From a behavioralperspective, it appeared that <str<strong>on</strong>g>the</str<strong>on</strong>g> tilled site had <str<strong>on</strong>g>the</str<strong>on</strong>g> lowestpercentage <str<strong>on</strong>g>of</str<strong>on</strong>g> skittish feeding and <str<strong>on</strong>g>the</str<strong>on</strong>g> bare mudflat <str<strong>on</strong>g>the</str<strong>on</strong>g>lowest percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> resting (data not shown).Based <strong>on</strong> short-term comparis<strong>on</strong>s in shorebirdfootprints, fecal droppings and beak probe densities, <str<strong>on</strong>g>the</str<strong>on</strong>g>rewere major differences in shorebird microsite habitatpreferences (Table 1). All types <str<strong>on</strong>g>of</str<strong>on</strong>g> dead Spartina stubble orlive Spartina stems drastically interfered with shorebirdforaging. For three locati<strong>on</strong>s within Porter Point, <str<strong>on</strong>g>the</str<strong>on</strong>g>re wasalmost no evidence <str<strong>on</strong>g>of</str<strong>on</strong>g> any shorebird usage where <str<strong>on</strong>g>the</str<strong>on</strong>g>re wasTable 1. Shorebird usage <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina habitat at Porter Point based <strong>on</strong>footprint, fecal dropping and beak print densities as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>accessibility.*General sitelocati<strong>on</strong>Sprayedmeadow, 80 mfrom nativemarsh; stubble25-50cm highEdge <str<strong>on</strong>g>of</str<strong>on</strong>g> sprayedmeadowadjacent to baremudflat, 80 mfrom nativemarsh; stubble25 to 50 cm highTilled strips inbetween sprayedSpartina, 1000’from nativemarsh; stubblewas mowed at25 cm heightShorebirdaccessdescripti<strong>on</strong>s Footprints*Live SpartinacanopyDensity (#/0.25m 2 )**FecaldroppingsBeakprints0 0 0.8±0.4Dead stubble 50±50 0.9±0.4 29±4ExposedmudflatLive Spartinacanopy134±11 1.8±0.3 68±100.2±0.1 0 3±2Dead stubble 8±2 6±0.3 13±4Exposedmudflat35±5 0.8±0.2 47±5Dead stubble 87±12 0.5±0.2 25±4Exposedmudflat130±19 1.3±0.3 76±9*Data collected 5-13-03; 5 replicati<strong>on</strong>s per habitat per locati<strong>on</strong>, with 5subsample counts per replicati<strong>on</strong>. For each replicati<strong>on</strong> comparative habitats(treatments) were located with 20 feet <str<strong>on</strong>g>of</str<strong>on</strong>g> each o<str<strong>on</strong>g>the</str<strong>on</strong>g>r.** mean ± standard errorlive Spartina growing. The bare mud and dead stubblelocati<strong>on</strong>s usually displayed high counts <str<strong>on</strong>g>of</str<strong>on</strong>g> beak and footprints and fecal droppings. Bare mud usually had twice asmuch shorebird usage as dead stubble.Soil and plant dataSpartina meadows rapidly began a transiti<strong>on</strong> to nativemiddle to upper salt marsh as so<strong>on</strong> as <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina was killed(Figure 3). Within two years <str<strong>on</strong>g>of</str<strong>on</strong>g> treatment, four salt marshplant species extended 400 m out from <str<strong>on</strong>g>the</str<strong>on</strong>g>ir native marshhabitat. At this particular site, <str<strong>on</strong>g>the</str<strong>on</strong>g> transiti<strong>on</strong> from mudflat toSpartina meadow to salt marsh has all occurred with tenyears and represents a permanent loss <str<strong>on</strong>g>of</str<strong>on</strong>g> hundreds <str<strong>on</strong>g>of</str<strong>on</strong>g>hectares <str<strong>on</strong>g>of</str<strong>on</strong>g> prime shorebird habitat. In an analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> soilparameters at this meadow (data not shown), we have found<str<strong>on</strong>g>the</str<strong>on</strong>g> dead Spartina root mat extends down to 35 cm, with <str<strong>on</strong>g>the</str<strong>on</strong>g>bulk <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> soil volume being comprised <str<strong>on</strong>g>of</str<strong>on</strong>g> organic matterand pore space. Only 15% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elevati<strong>on</strong> rise could beaccounted for by sediment accreti<strong>on</strong>.DISCUSSIONRestoring mudflats back to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir original form andfuncti<strong>on</strong> will be extremely difficult. Even with tilling andseveral years <str<strong>on</strong>g>of</str<strong>on</strong>g> follow-up chemical c<strong>on</strong>trol, as well as- 209 -


Chapter 4: Spartina C<strong>on</strong>trol and Management<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinanatural restorati<strong>on</strong> processes occurring over several years,Spartina-affected mudflats are far from having shorebirdusage comparable to what normally occurred <strong>on</strong> a bare tidalmudflat. This may be especially true for low tidal energysites in <str<strong>on</strong>g>the</str<strong>on</strong>g> sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn half <str<strong>on</strong>g>of</str<strong>on</strong>g> Willapa Bay, where <str<strong>on</strong>g>the</str<strong>on</strong>g>re istraditi<strong>on</strong>ally high shorebird usage. At <str<strong>on</strong>g>the</str<strong>on</strong>g>se sites, <str<strong>on</strong>g>the</str<strong>on</strong>g>landscape-scale changes in bathymetry via Spartina-inducedaccreti<strong>on</strong> and root mass accumulati<strong>on</strong> make it unlikely thatany restorati<strong>on</strong> effort would be able to bring back <str<strong>on</strong>g>the</str<strong>on</strong>g>original bathymetry. This is especially true since nativemarsh is already succeeding in <str<strong>on</strong>g>the</str<strong>on</strong>g>se areas. Once <str<strong>on</strong>g>the</str<strong>on</strong>g>se siteshave transiti<strong>on</strong>ed to stable salt marshes, <str<strong>on</strong>g>the</str<strong>on</strong>g>re will be littlelikelihood that <str<strong>on</strong>g>the</str<strong>on</strong>g>y could ever become functi<strong>on</strong>al mudflatsagain. To prevent irreversible loss <str<strong>on</strong>g>of</str<strong>on</strong>g> prime shorebirdhabitat, it is <str<strong>on</strong>g>the</str<strong>on</strong>g>refore absolutely essential to eradicate allexisting Spartina in <str<strong>on</strong>g>the</str<strong>on</strong>g>se critical sites as quickly as possible.Can we realistically achieve restorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>alshorebird habitat at Spartina-affected tidelands post-c<strong>on</strong>trol?If <str<strong>on</strong>g>the</str<strong>on</strong>g> site has underg<strong>on</strong>e major elevati<strong>on</strong> changes, it is likelythat it will become a stable salt marsh, and achievingshorebird habitat over <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>g term will be problematic. If<str<strong>on</strong>g>the</str<strong>on</strong>g> site has not underg<strong>on</strong>e major Spartina-induced elevati<strong>on</strong>changes, <str<strong>on</strong>g>the</str<strong>on</strong>g>n habitat restorati<strong>on</strong> is feasible. Restorati<strong>on</strong> maybe expedited with a process that breaks up root masses andremoves stubble and traces <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina canopy, such astilling. This process is not inexpensive. Tilling <str<strong>on</strong>g>of</str<strong>on</strong>g> largeSpartina meadows is cost-prohibitive, requires veryspecialized equipment and is very slow (


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 4: Spartina C<strong>on</strong>trol and ManagementWHERE DO WE GO FROM HERE?ALTERNATIVE CONTROL AND RESTORATIONTRAJECTORIES FOR A MARINE GRASS (SPARTINA ANGLICA)INVADER IN DIFFERENTHABITAT TYPESS.D. HACKER 1 AND M.N. DETHIER 21 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Zoology, Oreg<strong>on</strong> State University, 3029 Cordley Hall, Corvallis, Oreg<strong>on</strong> 97331;hackers@science.oreg<strong>on</strong>state.edu2 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Biology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Washingt<strong>on</strong>, Friday Harbor Laboratories, 620 University Road, Friday Harbor,Washingt<strong>on</strong> 98250; mdethier@u.washingt<strong>on</strong>.eduLittle is known about <str<strong>on</strong>g>the</str<strong>on</strong>g> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> removing invasive species and subsequent c<strong>on</strong>sequences forcommunity restorati<strong>on</strong>. <strong>Invasive</strong> species removal can have positive effects for some communitiesbut may cause unexpected changes that lead <str<strong>on</strong>g>the</str<strong>on</strong>g> system to an alternative state. The c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g>invasive species removal are likely to be c<strong>on</strong>text-dependent with restorati<strong>on</strong> occurring readily undersome situati<strong>on</strong>s but not o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs. English cordgrass, Spartina anglica, has invaded large areas <str<strong>on</strong>g>of</str<strong>on</strong>g>protected shoreline in <str<strong>on</strong>g>the</str<strong>on</strong>g> Puget Sound, Washingt<strong>on</strong> State, USA, and is <str<strong>on</strong>g>the</str<strong>on</strong>g> target <str<strong>on</strong>g>of</str<strong>on</strong>g> intensiveremoval efforts. It invades and modifies a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat types, from unvegetated mudflats andcobble beaches to established low and high salinity native marshes. It binds sediment around itsdense root system and changes biogeochemical processes, all <str<strong>on</strong>g>of</str<strong>on</strong>g> which can have significantc<strong>on</strong>sequences for shorebirds, infauna, and commercial aquaculture. Cordgrass invasi<strong>on</strong>,modificati<strong>on</strong>, and removal varies am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> different habitat types but post-removal col<strong>on</strong>izati<strong>on</strong>predictably results in col<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> native vascular plants. Although <str<strong>on</strong>g>the</str<strong>on</strong>g>se plants are <str<strong>on</strong>g>the</str<strong>on</strong>g> dominantspecies in salt marsh communities, <str<strong>on</strong>g>the</str<strong>on</strong>g>y are uncomm<strong>on</strong> in mudflat and cobble beach communities,and thus do not represent a restored post-removal state. Instead, <str<strong>on</strong>g>the</str<strong>on</strong>g> legacy effects <str<strong>on</strong>g>of</str<strong>on</strong>g> cordgrassproduce alternative outcomes. We hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>size, based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> interacti<strong>on</strong> between recruitment,physical disturbance (water movement) and sediment accreti<strong>on</strong>, that cobble beach and high salinitymarshes will be restored but that mudflats and low salinity marshes will retain <str<strong>on</strong>g>the</str<strong>on</strong>g> legacy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>invasi<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>g term.Keywords: English cordgrass, Spartina anglica, habitat modificati<strong>on</strong>, salt marsh, mudflat, cobblebeach, restorati<strong>on</strong>, alternative states, Puget Sound, Washingt<strong>on</strong>.INTRODUCTIONIn recent years <str<strong>on</strong>g>the</str<strong>on</strong>g>re has been a str<strong>on</strong>g focus <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> invasive species both at community andecosystem levels (Parker et al. 1999; Ruiz et al. 1999;Grosholz 2002). Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se invasive species, known asfoundati<strong>on</strong>, dominant, or ecosystem engineering species(J<strong>on</strong>es et al. 1994; Power et al. 1996; Bruno and Bertness2001; Crooks 2002), can transform communities, resulting inboth positive and negative effects for native as well asn<strong>on</strong>indigenous species. These species can have a largeinfluence <strong>on</strong> community structure relative to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir biomass;<str<strong>on</strong>g>the</str<strong>on</strong>g>y alter ecological processes in multiple ways and <str<strong>on</strong>g>of</str<strong>on</strong>g>tencreate positive feedbacks that benefit <str<strong>on</strong>g>the</str<strong>on</strong>g>ir c<strong>on</strong>tinuedexpansi<strong>on</strong> and impact.Much less is known about <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g>removing invasive species, especially dominant orfoundati<strong>on</strong> species (Hobbs and Humphries 1995; Myers etal. 2000; Zavalata et al. 2001, Hacker and Dethier 2009).<strong>Invasive</strong> species removal can have positive effects for somecommunities, with restorati<strong>on</strong> occurring so<strong>on</strong> after removal(Fig. 1A; Myers et al. 2000). However, in many cases, <str<strong>on</strong>g>the</str<strong>on</strong>g>results have been mixed, with unexpected and widespreadimpacts <strong>on</strong> natural communities (Zavalata et al. 2001;D’Ant<strong>on</strong>io and Meyers<strong>on</strong> 2002). Communities may notsimply return to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir former state in a straightforwardreversal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> process but, instead, could be somodified by <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> that <str<strong>on</strong>g>the</str<strong>on</strong>g>y are not easily restored(Fig. 1B; Hobbs and Humphries 1995; D’Ant<strong>on</strong>io andMeyers<strong>on</strong> 2002). These modificati<strong>on</strong>s are likely to vary indegree, depending <strong>on</strong> characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> invader, <str<strong>on</strong>g>the</str<strong>on</strong>g>invaded community, and <str<strong>on</strong>g>the</str<strong>on</strong>g> time since invasi<strong>on</strong>, but couldprevent full recovery after <str<strong>on</strong>g>the</str<strong>on</strong>g> invader is removed. Just how<str<strong>on</strong>g>the</str<strong>on</strong>g> ‘legacy’ <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> influences post-removalcommunity structure is poorly understood; yet suchunderstanding is critical to be able to c<strong>on</strong>fidently predictwhe<str<strong>on</strong>g>the</str<strong>on</strong>g>r management goals, originally intended to restore<str<strong>on</strong>g>the</str<strong>on</strong>g> integrity <str<strong>on</strong>g>of</str<strong>on</strong>g> highly invaded communities, will be met byremoval al<strong>on</strong>e or whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r additi<strong>on</strong>al measures may berequired. Given <str<strong>on</strong>g>the</str<strong>on</strong>g> numerous removal programs underway,development <str<strong>on</strong>g>of</str<strong>on</strong>g> testable <str<strong>on</strong>g>the</str<strong>on</strong>g>ories that predict post-removalcommunity dynamics are needed to better understand <str<strong>on</strong>g>the</str<strong>on</strong>g>benefits and risks <str<strong>on</strong>g>of</str<strong>on</strong>g> removing invaders that have largemodifying effects (Hacker and Dethier 2009).- 211 -


Chapter 4: Spartina C<strong>on</strong>trol and Management<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaA. Best casescenarioRestorati<strong>on</strong>B. More likelyscenarioAlternativeFig. 1. Stages <str<strong>on</strong>g>of</str<strong>on</strong>g> invasive species removal (arrow) under A) <str<strong>on</strong>g>the</str<strong>on</strong>g> best casescenario for which <str<strong>on</strong>g>the</str<strong>on</strong>g> invader modificati<strong>on</strong> is lost and habitat is restored,and B) <str<strong>on</strong>g>the</str<strong>on</strong>g> more likely scenario for which <str<strong>on</strong>g>the</str<strong>on</strong>g> modificati<strong>on</strong> remains andcommunity follows an alternative trajectory. From Hacker and Dethier 2009In this paper, we explore <str<strong>on</strong>g>the</str<strong>on</strong>g> possible c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g>removing <str<strong>on</strong>g>the</str<strong>on</strong>g> invasive English cordgrass, Spartina anglica,which has invaded <str<strong>on</strong>g>the</str<strong>on</strong>g> shoreline <str<strong>on</strong>g>of</str<strong>on</strong>g> Puget Sound inWashingt<strong>on</strong> State, USA. Spartina anglica col<strong>on</strong>izescommunities with different species assemblages andphysical c<strong>on</strong>diti<strong>on</strong>s, and thus produces variable degrees <str<strong>on</strong>g>of</str<strong>on</strong>g>invader modificati<strong>on</strong>. Our goal is to use <str<strong>on</strong>g>the</str<strong>on</strong>g>se patterns <str<strong>on</strong>g>of</str<strong>on</strong>g>differential invasi<strong>on</strong> al<strong>on</strong>g with a simple c<strong>on</strong>ceptual modelto make predicti<strong>on</strong>s about post-removal communitystructure. Based <strong>on</strong> this analysis, we predict that somecommunities will be readily restored while o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs willfollow alternative states. These states will depend <strong>on</strong> how<str<strong>on</strong>g>the</str<strong>on</strong>g> modificati<strong>on</strong>s and physical disturbance interact toinfluence both species recruitment and communitymaintenance through time.STUDY SYSTEMSpartina anglica was first introduced to Puget Soundfrom England in 1961. It did not become a managementpriority until <str<strong>on</strong>g>the</str<strong>on</strong>g> late 1990s when it had spread to a total <str<strong>on</strong>g>of</str<strong>on</strong>g>3,300 hectares (ha) <str<strong>on</strong>g>of</str<strong>on</strong>g> intertidal habitat at 77 sites (Hacker etal. 2001). Cordgrass is a str<strong>on</strong>g ecosystem modifier thataccretes sediment around its dense root system and changessediment biogeochemistry, which can have importantcommunity-wide c<strong>on</strong>sequences (Thomps<strong>on</strong> 1991; Daehlerand Str<strong>on</strong>g 1996). Species affected by <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> includenative and commercial invertebrates (infauna and epifaunasuch as clams and oysters; Zipperer 1996; O’C<strong>on</strong>nell 2002),plants (Hacker and Dethier 2006), and birds (Goss-Custardand Moser 1988; Triplet et al. 2002).Cordgrass grows in a range <str<strong>on</strong>g>of</str<strong>on</strong>g> communities in PugetSound from mudflats and cobble beaches, which arenormally devoid <str<strong>on</strong>g>of</str<strong>on</strong>g> vascular plants, to low and high salinitymarshes, where native vascular plants are <str<strong>on</strong>g>the</str<strong>on</strong>g> mainbiological comp<strong>on</strong>ent (Hacker et al. 2001). Our researchshows that cordgrass invasi<strong>on</strong>, removal, and post-removalpatterns vary dramatically between <str<strong>on</strong>g>the</str<strong>on</strong>g>se communities(Hacker et al. 2001; Reeder and Hacker 2004; Dethier andHacker 2005; Hacker and Dethier 2006), thus suggestingthat its removal will result in different post-removalcommunity structure depending <strong>on</strong> habitat.Habitat dependent invasi<strong>on</strong> and modificati<strong>on</strong> by cordgrassThe abundance and distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> English cordgrassvaries between four habitat types within Puget Sound(Hacker et al. 2001). Low salinity marsh and mudflat siteshave much larger infestati<strong>on</strong>s than cobble beach and highsalinity marsh sites. These differences are driven mostly byvariability in physical c<strong>on</strong>diti<strong>on</strong>s across <str<strong>on</strong>g>the</str<strong>on</strong>g> four habitattypes although biological interacti<strong>on</strong>s play a small role(Dethier and Hacker 2005). In a seed additi<strong>on</strong> experiment(Dethier and Hacker 2005), we found that mudflat and lowsalinity marshes had <str<strong>on</strong>g>the</str<strong>on</strong>g> greatest cordgrass germinati<strong>on</strong>,survival, and growth <str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>the</str<strong>on</strong>g> habitats. In mudflatcommunities, which are naturally devoid <str<strong>on</strong>g>of</str<strong>on</strong>g> vascular plants,seed germinati<strong>on</strong> was high and surviving seedlings grewquickly. This growth pattern eventually results in <str<strong>on</strong>g>the</str<strong>on</strong>g>coalescence <str<strong>on</strong>g>of</str<strong>on</strong>g> individual plants and widespread growthacross all <str<strong>on</strong>g>the</str<strong>on</strong>g> intertidal elevati<strong>on</strong>s. Low salinity marshes, <strong>on</strong><str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, are dominated by a diverse native vascularplant assemblage. Cordgrass had high seedling germinati<strong>on</strong>,survival and growth; this pattern eventually results in largeswards that outcompete native plants and form densem<strong>on</strong>ocultures. In high salinity marsh habitats, cordgrassgrows mainly in sparsely vegetated low intertidal streamchannel areas. Seed additi<strong>on</strong>s show high germinati<strong>on</strong> andsurvival in low elevati<strong>on</strong> areas without plant neighbors butnot higher in <str<strong>on</strong>g>the</str<strong>on</strong>g> intertidal z<strong>on</strong>e, pointing to <str<strong>on</strong>g>the</str<strong>on</strong>g> importance<str<strong>on</strong>g>of</str<strong>on</strong>g> high salinity and native plant interacti<strong>on</strong>s in restrictingcordgrass distributi<strong>on</strong>. Finally, cordgrass is rare in cobblebeach habitats despite <str<strong>on</strong>g>the</str<strong>on</strong>g> lack <str<strong>on</strong>g>of</str<strong>on</strong>g> native vegetati<strong>on</strong>. Hereshifting cobble sediments c<strong>on</strong>tribute to <str<strong>on</strong>g>the</str<strong>on</strong>g> low germinati<strong>on</strong>,survival, and growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plant.Cordgrass generally modifies its habitat by accretingsediment around its large root system, forming an elevatedroot mat and changing sediment biogeochemistry(Thomps<strong>on</strong> 1991; Maricle and Lee 2002; Hacker and- 212 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 4: Spartina C<strong>on</strong>trol and ManagementDethier 2006). In additi<strong>on</strong>, it can provide substantialaboveground structure not normally present in somehabitats. These structural and biogeochemical modificati<strong>on</strong>shave direct and indirect effects <strong>on</strong> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r plant and animalspecies as menti<strong>on</strong>ed earlier. In our study system, Englishcordgrass differentially modifies four habitat types, resultingin variable, community-wide c<strong>on</strong>sequences (Hacker andDethier 2006). For example, we know that <str<strong>on</strong>g>the</str<strong>on</strong>g> accumulati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> sediment by cordgrass differs between <str<strong>on</strong>g>the</str<strong>on</strong>g> four habitats,with mudflats experiencing <str<strong>on</strong>g>the</str<strong>on</strong>g> greatest sediment accreti<strong>on</strong>(~30 cm) and low and high salinity marshes, <str<strong>on</strong>g>the</str<strong>on</strong>g> least (~10-15 cm) (Hacker and Dethier 2006). Cordgrass growing incobble beaches accretes much less sediment (~20 cm) thanmudflats. A likely explanati<strong>on</strong> for this difference is waveenergy; water movement is lower in mudflats but higher incobble beaches.In additi<strong>on</strong> to accreting sediment, thus changing <str<strong>on</strong>g>the</str<strong>on</strong>g>structural characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> substrate, cordgrass causes anumber <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical transformati<strong>on</strong>s. We found changes insediment water c<strong>on</strong>tent, redox potential (a proxy for oxygenc<strong>on</strong>tent), and salinity in invaded versus native areasdepending <strong>on</strong> community type (Hacker and Dethier 2006).For example, cordgrass caused a decline in sediment waterc<strong>on</strong>tent in mudflats and high salinity marshes suggesting that<str<strong>on</strong>g>the</str<strong>on</strong>g> elevated root mat had less tidal inundati<strong>on</strong>, betterdrainage, and/or more water uptake by cordgrass. In cobblebeaches, <str<strong>on</strong>g>the</str<strong>on</strong>g> opposite was seen; root mat sediments hadhigher water c<strong>on</strong>tent than <str<strong>on</strong>g>the</str<strong>on</strong>g> unmodified cobble sediments.In low salinity marshes, <str<strong>on</strong>g>the</str<strong>on</strong>g>re was no change in sedimentwater c<strong>on</strong>tent with <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> cordgrass compared t<strong>on</strong>ative vascular plants. Cordgrass generally increases oxygenc<strong>on</strong>tent in <str<strong>on</strong>g>the</str<strong>on</strong>g> sediments <str<strong>on</strong>g>of</str<strong>on</strong>g> all <str<strong>on</strong>g>the</str<strong>on</strong>g> communities. This may berelated, in part, to better drainage seen in some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>communities but is more likely due to oxygen leakage fromroot aerenchyma (Maricle and Lee 2002). Finally, surfacesalinities were generally lower in sediments with cordgrassalthough <str<strong>on</strong>g>the</str<strong>on</strong>g>y did not change in low salinity sites with nativeplant cover. These results suggest that cordgrass shades <str<strong>on</strong>g>the</str<strong>on</strong>g>sediment surface thus decreasing water evaporati<strong>on</strong> and saltaccumulati<strong>on</strong> compared to unvegetated areas although thishypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sis was untested. We have not investigated cordgrasseffects <strong>on</strong> nutrient cycling but it is clear that cordgrass is amajor carb<strong>on</strong> source unlike any o<str<strong>on</strong>g>the</str<strong>on</strong>g>r in <str<strong>on</strong>g>the</str<strong>on</strong>g>se communitiesand likely modifies microbial and macr<str<strong>on</strong>g>of</str<strong>on</strong>g>aunal resource use.English cordgrass modificati<strong>on</strong>s have significantc<strong>on</strong>sequences for community structure. We compared nativevascular plant and algal abundance in areas with and withoutcordgrass in all communities (Hacker and Dethier 2006). Inthis study, we found that in mudflats, cobble beaches, andhigh salinity marshes, cordgrass invasi<strong>on</strong> caused an increasein native vascular plant cover and decline in algal cover. Byelevating sediments, increasing oxygen c<strong>on</strong>tent, anddecreasing salinity, cordgrass clearly provides a moresuitable habitat for native vascular salt marsh plants but aless suitable habitat for algae, which require greater tidalinundati<strong>on</strong> to avoid desiccati<strong>on</strong>. In low salinity marshes,native vascular plants declined precipitously, presumably ac<strong>on</strong>sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> cordgrass competitive dominance. We alsocompared marine invertebrates in mud and cobble sedimentsversus adjacent cordgrass patches. Cobble areas withoutcordgrass had oligochaetes, bivalves, and a variety <str<strong>on</strong>g>of</str<strong>on</strong>g>crustaceans; cobble with cordgrass had less infauna because<str<strong>on</strong>g>of</str<strong>on</strong>g> dense root mat formati<strong>on</strong>. Uninvaded mudflats <str<strong>on</strong>g>of</str<strong>on</strong>g>ten hadabundant clams and a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> polychaete worms, whilethose with cordgrass had fewer infauna but more epifaunalcrustaceans such as amphipods (presumably because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>three–dimensi<strong>on</strong>al structure provided by <str<strong>on</strong>g>the</str<strong>on</strong>g> vegetati<strong>on</strong>).Invertebrate studies (Zipperer 1996; O’C<strong>on</strong>nell 2002) inareas invaded by Spartina alterniflora in Willapa Bay, WA,similarly found that certain taxa are excluded by cordgrass(esp. polychaetes and bivalves) while o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs are increased(esp. dipteran larvae and spiders). Although we have notquantitatively measured possible changes in epifaunalcommunities, we have observed a general increase in highermarsh epifauna such as grasshoppers, spiders, snails, mice,and marsh wrens within cordgrass meadows and a decline inshorebirds, some species <str<strong>on</strong>g>of</str<strong>on</strong>g> snails, mussels, and oysters.Cordgrass removal and c<strong>on</strong>sequences for post-removalrestorati<strong>on</strong>Removal <str<strong>on</strong>g>of</str<strong>on</strong>g> English cordgrass, involving mowing andherbicide applicati<strong>on</strong>s, began in 1997 and has caused amodest 10-20% decline as <str<strong>on</strong>g>of</str<strong>on</strong>g> 2002 (Hacker et al. 2001;Dethier and Hacker 2004). Although local eradicati<strong>on</strong> hasoccurred at some sites with minimal treatment repetiti<strong>on</strong>,most sites have required repeated removal spanning multipleyears to achieve eradicati<strong>on</strong>. To investigate <str<strong>on</strong>g>the</str<strong>on</strong>g> factorshindering removal success, we c<strong>on</strong>ducted a multiple sitestudy that linked removal data with ecological factors andremoval methodologies. We found that removal successdepended <strong>on</strong> removal regime and community type (Dethierand Hacker 2004). The bulk <str<strong>on</strong>g>of</str<strong>on</strong>g> cordgrass decline was due toc<strong>on</strong>sistent, multi-year removal (<strong>on</strong>ce per year) in certaincommunities. For example, cobble beaches, high salinitymarshes, and mudflats showed <str<strong>on</strong>g>the</str<strong>on</strong>g> most promising resp<strong>on</strong>seto c<strong>on</strong>sistent removal even when years <str<strong>on</strong>g>of</str<strong>on</strong>g> removal effortwere similar to low salinity marshes. When removal wasintermittent ( 2 years missed), low salinity marshes andmudflats were <str<strong>on</strong>g>the</str<strong>on</strong>g> least resp<strong>on</strong>sive to removal.The pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> regrowth with removal regime points to<str<strong>on</strong>g>the</str<strong>on</strong>g> resiliency <str<strong>on</strong>g>of</str<strong>on</strong>g> cordgrass. If photosyn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis is notc<strong>on</strong>tinually interrupted to slowly kill <str<strong>on</strong>g>the</str<strong>on</strong>g> plant, removalsuccess is compromised due to its ability to regrow. In a set<str<strong>on</strong>g>of</str<strong>on</strong>g> manipulative experiments, we found that biomass gainsunder intermittent removal greatly outweigh losses accruedunder c<strong>on</strong>sistent removal both because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> highlyproductive nature <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> species, <str<strong>on</strong>g>the</str<strong>on</strong>g> benefits <str<strong>on</strong>g>of</str<strong>on</strong>g> competitiverelease, and <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat modificati<strong>on</strong>s that facilitate fur<str<strong>on</strong>g>the</str<strong>on</strong>g>rgrowth (Reeder and Hacker 2004).- 213 -


Chapter 4: Spartina C<strong>on</strong>trol and Management<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaPreliminary study <str<strong>on</strong>g>of</str<strong>on</strong>g> post–removal community structuresuggests that <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>se largely depends <strong>on</strong> howmodificati<strong>on</strong>s created by <str<strong>on</strong>g>the</str<strong>on</strong>g> invader interact with habitattype (Reeder and Hacker 2004). In this study, all sitesexhibited similar community resp<strong>on</strong>ses following cordgrassremoval. Native vascular plants increased with c<strong>on</strong>sistentremoval in all communities, but declined under intermittentremoval. In additi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> plant assemblages in <str<strong>on</strong>g>the</str<strong>on</strong>g> two saltmarsh communities were different after cordgrass removalthan <str<strong>on</strong>g>the</str<strong>on</strong>g>ir native counterparts. As a result, post-removalcommunity structure and habitat restorati<strong>on</strong> is more complexthan simply removing cordgrass and anticipating a reversal<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> process.IMPLICATIONS AND FUTURE DIRECTIONSIn this system, we found that removing invasive S.anglica resulted in an increase in native vascular plantsirrespective <str<strong>on</strong>g>of</str<strong>on</strong>g> habitat type (Reeder and Hacker 2004).Although <str<strong>on</strong>g>the</str<strong>on</strong>g>se plants are <str<strong>on</strong>g>the</str<strong>on</strong>g> dominant species in salt marshcommunities, <str<strong>on</strong>g>the</str<strong>on</strong>g>y are uncomm<strong>on</strong> in mudflat and cobblebeach communities, and thus do not represent a restoredpost-removal state. Instead, <str<strong>on</strong>g>the</str<strong>on</strong>g> legacy effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>cordgrass infestati<strong>on</strong> produced alternative short termoutcomes, which may or may not c<strong>on</strong>tinue for some time.Legacy effects include elevated, stabilized sediments andaltered biogeochemical processes that make c<strong>on</strong>diti<strong>on</strong>sbetter for vascular plants and poorer for macroalgae andinfauna. We have observed a similar pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> vascularplant col<strong>on</strong>izati<strong>on</strong> <strong>on</strong> relic cordgrass root mats both in <str<strong>on</strong>g>the</str<strong>on</strong>g>U.S. (Willapa Bay, Washingt<strong>on</strong>) and in o<str<strong>on</strong>g>the</str<strong>on</strong>g>r countries (Baiede Somme, France and Invercargill, New Zealand)suggesting that <str<strong>on</strong>g>the</str<strong>on</strong>g> effect is widespread (pers<strong>on</strong>alobservati<strong>on</strong>). Interestingly, in <str<strong>on</strong>g>the</str<strong>on</strong>g> Baie de Somme, nativevegetati<strong>on</strong> that col<strong>on</strong>izes cordgrass removal areas, inparticular <str<strong>on</strong>g>the</str<strong>on</strong>g> salt marsh plants Salicornia and Atriplex, areharvested and sold as a specialty food. However, in mostcases, l<strong>on</strong>g-term vascular plant col<strong>on</strong>izati<strong>on</strong>, especially inmudflat habitats, is likely to prol<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> main managementissues surrounding invasive cordgrass (i.e. reducing habitatfor shorebirds, infauna, and commercially importantshellfish).Given <str<strong>on</strong>g>the</str<strong>on</strong>g> potential that removal <str<strong>on</strong>g>of</str<strong>on</strong>g> cordgrass can resultin alternative community structure trajectories, wedeveloped a c<strong>on</strong>ceptual model that helps predict <str<strong>on</strong>g>the</str<strong>on</strong>g> possibleoutcomes <str<strong>on</strong>g>of</str<strong>on</strong>g> cordgrass removal (Hacker and Dethier 2009).It is based <strong>on</strong> alternative stable state <str<strong>on</strong>g>the</str<strong>on</strong>g>ory which explains<str<strong>on</strong>g>the</str<strong>on</strong>g> observati<strong>on</strong> that different species assemblages can occurin <str<strong>on</strong>g>the</str<strong>on</strong>g> same general locality at different times (or differentlocalities at <str<strong>on</strong>g>the</str<strong>on</strong>g> same time) because historical events orc<strong>on</strong>tingencies play an important role in creating communitystructure (Lewint<strong>on</strong> 1969; Su<str<strong>on</strong>g>the</str<strong>on</strong>g>rland 1974; Petraitis andLatham 1999). We suggest that it can provide a usefulframework for identifying <str<strong>on</strong>g>the</str<strong>on</strong>g> processes important to postremovalcommunity structure by identifying <str<strong>on</strong>g>the</str<strong>on</strong>g> factors thatAlternative,post-removal stateMAINTENANCETRANSITIONSA. Cobble Beach and Mud flat CommunitiesMaintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> cordgrasssediment accreti<strong>on</strong>,biogeochemicalprocessesVascular PlantsDominateDecreasealgal, infaunalrecruitmentIncrease vascularplant, epifaunalrecruitmentAlgalRecruitmentVascular PlantRecruitmentWater MovementB. Low and High Salinity Marsh CommunitiesHigher IntertidalVascular PlantsDominateMaintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> cordgrasssediment accreti<strong>on</strong>,biogeochemicalprocessesDecreaseoriginal plantrecruitmentIncreasehigh intertidal plantrecruitmentOriginal PlantRecruitmentHigher IntertidalPlant RecruitmentWater MovementRestored,post-removal stateMAINTENANCEAlgae, InfaunaDominateLoss <str<strong>on</strong>g>of</str<strong>on</strong>g> cordgrasssediment accreti<strong>on</strong>,biogeochemicalprocessesIncreasealgal, infaunalrecruitmentDecrease vascularplant, epifaunalrecruitmentOriginalVascular PlantsDominateLoss <str<strong>on</strong>g>of</str<strong>on</strong>g> cordgrasssediment accreti<strong>on</strong>,biogeochemicalprocessesIncreaseoriginal plantrecruitmentDecreasehigh intertidal plantrecruitmentFig. 2. Depicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>sized processes c<strong>on</strong>trolling alternative vs.restored community structure for ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r A) cobble beach and mudflathabitats (original communities lack native vascular plants) or B) high andlow salinity marshes (original communities dominated by native vascularplants). Modified from Hacker and Dethier (2009).could lead a community toward or away from a restoredstate.In our model (Hacker and Dethier 2009 based <strong>on</strong>Petraitis and Latham 1999) <str<strong>on</strong>g>the</str<strong>on</strong>g>re are two community states:1) a restored state defined as <str<strong>on</strong>g>the</str<strong>on</strong>g> replacement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lostcommunity assemblage, and its functi<strong>on</strong>, after <str<strong>on</strong>g>the</str<strong>on</strong>g> invader isremoved, and 2) an alternative state defined as <strong>on</strong>e in whicha new species assemblage col<strong>on</strong>izes and persists; it couldalso include reinvasi<strong>on</strong> by <str<strong>on</strong>g>the</str<strong>on</strong>g> original invading species.There are transiti<strong>on</strong>al processes that include disturbance andstress, recruitment <str<strong>on</strong>g>of</str<strong>on</strong>g> species, and biological interacti<strong>on</strong>s. Inadditi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>re are positive feedback processes in which <str<strong>on</strong>g>the</str<strong>on</strong>g>existing species assemblage acts to reinforce and maintainits current structure and functi<strong>on</strong>.Applying <str<strong>on</strong>g>the</str<strong>on</strong>g>se ideas to post-removal communitystructure, we can hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>size what may happen to <str<strong>on</strong>g>the</str<strong>on</strong>g> fourhabitats when cordgrass is removed (Hacker and Dethier2009). We predict that cobble beaches will assume arestored state due to <str<strong>on</strong>g>the</str<strong>on</strong>g> interacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> both transiti<strong>on</strong> andmaintenance processes as outlined in Fig. 2. If we assumethat vascular plant recruitment occurs in cobble beaches, butplant density is low due to high water movement, <str<strong>on</strong>g>the</str<strong>on</strong>g>n analternative state can <strong>on</strong>ly be produced if vascular plants can- 214 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 4: Spartina C<strong>on</strong>trol and Managementmaintain elevated sediments and altered biogeochemicalprocesses (Fig. 2A, left side). Active water movement and<str<strong>on</strong>g>the</str<strong>on</strong>g> scouring acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> shifting cobbles and gravel shouldhamper this process. Ultimately, we predict that analternative state will not be maintained due to <str<strong>on</strong>g>the</str<strong>on</strong>g> transiti<strong>on</strong>alprocess <str<strong>on</strong>g>of</str<strong>on</strong>g> water movement increasing sediment erosi<strong>on</strong>around plant roots and decreasing subsequent vascular plantand infaunal recruitment. As a result, negative feedbackprocesses in <str<strong>on</strong>g>the</str<strong>on</strong>g> maintenance comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> alternativestate will shift cobble beach community structure to arestored state (Fig. 2A, right side). Algal recruitment willincrease as sediment erosi<strong>on</strong> occurs and cobbles re-emerge,pushing <str<strong>on</strong>g>the</str<strong>on</strong>g> community into a positive feedback loop thatincludes loss <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment, decreased native vascular plantrecruitment, and c<strong>on</strong>tinued increases in algal and infaunalrecruitment (Fig. 2A, right side).We hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>size that mudflat habitats, because <str<strong>on</strong>g>the</str<strong>on</strong>g>yexperience lower wave acti<strong>on</strong>, will have increased vascularplant recruitment, and allow for <str<strong>on</strong>g>the</str<strong>on</strong>g> maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g>cordgrass sediment accreti<strong>on</strong> and biogeochemical processes(Fig. 2A, left side). We expect that a positive feedback loopgenerated by slower water movement and <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g>vascular plants will maintain sediment characteristicscreated by cordgrass, decrease algal and infaunalrecruitment, and c<strong>on</strong>tinue to increase native vascular plantrecruitment (Fig. 2A, left side).Finally, we suggest that high and low salinity marshespreviously invaded by cordgrass will experience recruitment<str<strong>on</strong>g>of</str<strong>on</strong>g> higher intertidal vascular plant assemblages, ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than<str<strong>on</strong>g>the</str<strong>on</strong>g> original assemblage, due to <str<strong>on</strong>g>the</str<strong>on</strong>g> increased tidal elevati<strong>on</strong>produced by cordgrass-accreted sediments. We expect that<str<strong>on</strong>g>the</str<strong>on</strong>g>se plants will be good at maintaining sediment depth andbiogeochemical processes originally created by cordgrass.Their presence will be maintained via a positive feedbackloop that increases <str<strong>on</strong>g>the</str<strong>on</strong>g>ir own c<strong>on</strong>tinued recruitment whiledecreasing that <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> lower intertidal plant communitypresent before <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> (Fig. 2B, left side). However, ifwater movement is sufficient to erode sediments or if plantrecruitment is low or delayed, marsh communities may shiftinto a restored state (Fig. 2B, right side).Testing <str<strong>on</strong>g>the</str<strong>on</strong>g>se hypo<str<strong>on</strong>g>the</str<strong>on</strong>g>ses will require both large andsmall-scale experiments in areas where cordgrass has beenremoved. Ultimately, this research will provide natural areamanagers with better ways <str<strong>on</strong>g>of</str<strong>on</strong>g> predicting and evaluating <str<strong>on</strong>g>the</str<strong>on</strong>g>c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> post-removal impact across differenthabitat types. It may be that active removal <str<strong>on</strong>g>of</str<strong>on</strong>g> nativevascular plant assemblages will be necessary in habitats suchas mudflats where restorati<strong>on</strong> could be c<strong>on</strong>tinually hinderedby <str<strong>on</strong>g>the</str<strong>on</strong>g> recruitment and positive feedbacks produced by <str<strong>on</strong>g>the</str<strong>on</strong>g>seplants. Although invasive species removal and restorati<strong>on</strong> isa critical comp<strong>on</strong>ent to <str<strong>on</strong>g>the</str<strong>on</strong>g> management <str<strong>on</strong>g>of</str<strong>on</strong>g> many naturalareas, most research is site or species-specific. The proposedresearch will help establish <str<strong>on</strong>g>the</str<strong>on</strong>g> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> a general<str<strong>on</strong>g>the</str<strong>on</strong>g>ory <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>textual dependence <str<strong>on</strong>g>of</str<strong>on</strong>g> invasive speciesremoval that can be applied to communities with varyingspecies assemblages, physical c<strong>on</strong>diti<strong>on</strong>s, and degrees <str<strong>on</strong>g>of</str<strong>on</strong>g>invasi<strong>on</strong>.ACKNOWLEDGEMENTSWe thank <str<strong>on</strong>g>the</str<strong>on</strong>g> many hands that assisted with <str<strong>on</strong>g>the</str<strong>on</strong>g> researchincluding C. Catt<strong>on</strong>, C. Gozart, E. Hellquist, A. Hysert, T.Reeder, T. Riord<strong>on</strong>, and T. Royce. The research wassupported by Washingt<strong>on</strong> and Nati<strong>on</strong>al Sea Grant Programs.REFERENCESBruno, J., and M.D. Bertness. 2001. Habitat modificati<strong>on</strong> andfacilitati<strong>on</strong> in benthic marine communities. Pages 201-220 In:M.D. Bertness, S.D. Gaines, and M.E. Hay, eds., MarineCommunity Ecology. Sinauer Associates: Sunderland, MA, pp.201-210.Crooks, J. 2002. Characterizing ecosystem-level c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g>biological invasi<strong>on</strong>s: <str<strong>on</strong>g>the</str<strong>on</strong>g> role <str<strong>on</strong>g>of</str<strong>on</strong>g> ecosystem engineers. Oikos97:153-166.D’Ant<strong>on</strong>io, C.D., and L.A. Meyers<strong>on</strong>. 2002. Exotic plant species asproblems and soluti<strong>on</strong>s in ecological restorati<strong>on</strong>: a syn<str<strong>on</strong>g>the</str<strong>on</strong>g>sis.Restorati<strong>on</strong> Ecology 10:703–713.Daehler, C.C., and D.R. Str<strong>on</strong>g. 1996. Status, predicti<strong>on</strong> andpreventi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> introduced cordgrass, Spartina spp. invasi<strong>on</strong>s inPacific estuaries, USA. Biological C<strong>on</strong>servati<strong>on</strong> 78:51-58.Dethier, M.N., and S.D. Hacker. 2005. Physical factors vs. bioticresistance in c<strong>on</strong>trolling <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> an estuarine marsh grass.Ecological Applicati<strong>on</strong>s 15:1273-1283.Dethier, M.N., and S.D. Hacker. 2004. Improving managementpractices for invasive cordgrass in <str<strong>on</strong>g>the</str<strong>on</strong>g> Pacific Northwest: a casestudy <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglica. Washingt<strong>on</strong> Sea Grant Publicati<strong>on</strong>s,Seattle, WA, USA.Goss-Custard, J.D., and M.E. Moser. 1988. Rates <str<strong>on</strong>g>of</str<strong>on</strong>g> change in <str<strong>on</strong>g>the</str<strong>on</strong>g>numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> Dunlin, Calidris alpina, wintering in British estuariesin relati<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglica. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> AppliedEcology 25:95-109.Grosholz, E. 2002. Ecological and evoluti<strong>on</strong>ary c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g>coastal invasi<strong>on</strong>s. Trends in Ecology and Evoluti<strong>on</strong> 17:22–27.Hacker, S.D., and M.N. Dethier. 2006. Community modificati<strong>on</strong> bya grass invader has differing impacts for marine habitats. Oikos113:279-286.Hacker, S.D., and M.N. Dethier. 2009. Differing c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g>removing ecosystem-modifying invaders: Significance <str<strong>on</strong>g>of</str<strong>on</strong>g> impactand community c<strong>on</strong>text to restorati<strong>on</strong> potential. In: J.A. Rilovand J.A. Crooks, eds., Biological Invasi<strong>on</strong>s in MarineEcosystems. Springer-Verlag: Berlin Heidelberg, pp. 375-385.Hacker, S.D., D. Heimer, C.E. Hellquist, T.G. Reeder, B. Reeves,T. Riordan, and M.N. Dethier. 2001. A marine plant (Spartinaanglica) invades widely varying habitats: potential mechanisms<str<strong>on</strong>g>of</str<strong>on</strong>g> invasi<strong>on</strong> and c<strong>on</strong>trol. Biological Invasi<strong>on</strong>s 3:211-217.Hobbs, R.J., and S.E. Humphries. 1995. An integrated approach to<str<strong>on</strong>g>the</str<strong>on</strong>g> ecology and management <str<strong>on</strong>g>of</str<strong>on</strong>g> plant invasi<strong>on</strong>s. C<strong>on</strong>servati<strong>on</strong>Biology 9:761–770.J<strong>on</strong>es, C.G., J.H. Lawt<strong>on</strong>, and M. Shachak. 1994. Organisms asecosystem engineers. Oikos 689:373-386.Lewint<strong>on</strong>, R.C. 1969. The meaning <str<strong>on</strong>g>of</str<strong>on</strong>g> stability. In: Diversity andstability in ecological systems. Brookhaven Symposia in BiologyNo. 22. Brookhaven Nati<strong>on</strong>al Laboratories, Brookhaven, NY,USA, pp. 13-24.Maricle, B.R., and R.W. Lee. 2002. Aerenchyma development andoxygen transport in <str<strong>on</strong>g>the</str<strong>on</strong>g> estuarine cordgrasses Spartinaalterniflora and S. anglica. Aquatic Botany 74:109-120.Myers, J.H., D. Simberl<str<strong>on</strong>g>of</str<strong>on</strong>g>f, A.M. Kuris, and J.R. Carey. 2000.Eradicati<strong>on</strong> revisited: dealing with exotic species. Trends inEcology and Evoluti<strong>on</strong> 15:316-320.- 215 -


Chapter 4: Spartina C<strong>on</strong>trol and Management<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaO’C<strong>on</strong>nell, K.A. 2002. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> invasive Atlantic smoothcordgrass(Spartina alterniflora) <strong>on</strong> infaunal macroinvertebratecommunities in sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Willapa Bay, WA. MS Thesis, WesternWashingt<strong>on</strong> University, Bellingham, WA.Parker, I.M., D. Simberl<str<strong>on</strong>g>of</str<strong>on</strong>g>f, W.M. L<strong>on</strong>sdale, K. Goodell, M.W<strong>on</strong>ham, P.M. Kareiva, M.H. Williams<strong>on</strong>, B. V<strong>on</strong> Holle, P.B.Moyle, J.E. Byers, and L. Goldwasser. 1999. Impact: toward aframework for understanding <str<strong>on</strong>g>the</str<strong>on</strong>g> ecological effects <str<strong>on</strong>g>of</str<strong>on</strong>g> invaders.Biological Invasi<strong>on</strong>s 1:3-19.Petratis, P.S., and R.E. Latham. 1999. The importance <str<strong>on</strong>g>of</str<strong>on</strong>g> scale intesting <str<strong>on</strong>g>the</str<strong>on</strong>g> origins <str<strong>on</strong>g>of</str<strong>on</strong>g> alternative community states. Ecology80:429-442.Power, M.E., D. Tilman, J.A. Estes, B.A. Menge, W.J. B<strong>on</strong>d, L.S.Mills, G. Daily, J.C. Castilla, J. Lubchenco, and R.T. Paine.1996. Challenges in <str<strong>on</strong>g>the</str<strong>on</strong>g> quest for keyst<strong>on</strong>es. Bioscience 46:609–620.Reeder, T.G., and S.D. Hacker. 2004. Factors c<strong>on</strong>tributing to <str<strong>on</strong>g>the</str<strong>on</strong>g>removal <str<strong>on</strong>g>of</str<strong>on</strong>g> a marine grass invader (Spartina anglica) andsubsequent potential for habitat restorati<strong>on</strong>. Estuaries 27:244-252.Ruiz, G.M., P. F<str<strong>on</strong>g>of</str<strong>on</strong>g><strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>f, A.H. Hines, and E.D. Grosholz. 1999.N<strong>on</strong>indigenous species as stressors in estuarine and marinecommunities: assessing impacts and interacti<strong>on</strong>s. Limnology andOceanography 44:950–972.Su<str<strong>on</strong>g>the</str<strong>on</strong>g>rland, J.P. 1974. Multiple stable points in naturalcommunities. American Naturalist 108: 859-873.Triplet, P., C. Fagot, S. Van Imbeck, A. Sournia, and F. Sueur.2002. Rôle de la végétati<strong>on</strong> dans l'utilisati<strong>on</strong> de l'estran par leslimicoles. Alauda 70:445-449.Thomps<strong>on</strong>, J.D. 1991. The biology <str<strong>on</strong>g>of</str<strong>on</strong>g> an invasive plant: Whatmakes Spartina anglica so successful? BioScience 41:393-401.Zavaleta, E.S., R.J. Hobbs, and H.A. Mo<strong>on</strong>ey. 2001. Viewinginvasive species removal in a whole-ecosystem c<strong>on</strong>text. Trendsin Ecology and Evoluti<strong>on</strong> 16:454-459.Zipperer, V.T. 1996. Ecological effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> introducedcordgrass, Spartina alterniflora, <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> benthic communitystructure <str<strong>on</strong>g>of</str<strong>on</strong>g> Willapa Bay, WA. MS Thesis, University <str<strong>on</strong>g>of</str<strong>on</strong>g>Washingt<strong>on</strong>, Seattle, WA.- 216 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 4: Spartina C<strong>on</strong>trol and ManagementSPARTINA CONTROL STRATEGY AND EXPERIENCE IN THE SAN FRANCISCO ESTUARYE.K. GRIJALVASan Francisco Estuary <strong>Invasive</strong> Spartina Project, 2612-A 8 th Street, Berkeley, CA 94710; ekgrijalva@spartina.orgIn 2004, <str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco Estuary <strong>Invasive</strong> Spartina Project (ISP) initiated its first year <str<strong>on</strong>g>of</str<strong>on</strong>g> a regi<strong>on</strong>wide,coordinated Spartina c<strong>on</strong>trol program. The strategies for selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> treatment locati<strong>on</strong>sand <str<strong>on</strong>g>the</str<strong>on</strong>g> coordinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> projects were developed jointly by <str<strong>on</strong>g>the</str<strong>on</strong>g> ISP and its partners, which includea number <str<strong>on</strong>g>of</str<strong>on</strong>g> local, regi<strong>on</strong>al, state, and federal agencies and n<strong>on</strong>-pr<str<strong>on</strong>g>of</str<strong>on</strong>g>it organizati<strong>on</strong>s. Fundingfor <str<strong>on</strong>g>the</str<strong>on</strong>g> work was c<strong>on</strong>tributed by many <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> partners, by <str<strong>on</strong>g>the</str<strong>on</strong>g> ISP’s host agency (California StateCoastal C<strong>on</strong>servancy), by grants from a state-federal c<strong>on</strong>sortium, and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r sources. The c<strong>on</strong>trolplans were developed by <str<strong>on</strong>g>the</str<strong>on</strong>g> ISP, and implemented by <str<strong>on</strong>g>the</str<strong>on</strong>g> partners. Approximately 176 hectares (ha)(435 acres [ac]) <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-native Spartina (Spartina alterniflora and hybrids, S. densiflora, and S. patens)were treated in 2004 using a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> methods including covering, digging, and treatment withaquatic herbicide. The ISP facilitates acquisiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> permits, grants, and c<strong>on</strong>tracts to implement <str<strong>on</strong>g>the</str<strong>on</strong>g>c<strong>on</strong>trol work. Successful c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina in <str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco Estuary is complicated by severalfactors, including an extremely short treatment seas<strong>on</strong> (September 1 to mid-October) to avoid disturbingendangered California clapper rails during <str<strong>on</strong>g>the</str<strong>on</strong>g>ir breeding seas<strong>on</strong>, and <str<strong>on</strong>g>the</str<strong>on</strong>g> greater-thanexp<strong>on</strong>entialspread <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> S. alterniflora hybrid swarm. At <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2004 c<strong>on</strong>trol seas<strong>on</strong>, approximately627 ha (1,550 ac) <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-native Spartina remained untreated in <str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco Estuary.In order to address this rapidly-expanding infestati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> ISP seeks to have c<strong>on</strong>trol plans inplace for all n<strong>on</strong>-native Spartina in <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary by <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> 2005, even though treatment may notbe implemented <strong>on</strong> all sites until <str<strong>on</strong>g>the</str<strong>on</strong>g> following years to minimize impact <strong>on</strong> endangered species.One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tools that <str<strong>on</strong>g>the</str<strong>on</strong>g> ISP hopes will help assure a successful c<strong>on</strong>trol program is <str<strong>on</strong>g>the</str<strong>on</strong>g> aquatic herbicideimazapyr, which should be registered for use in California by <str<strong>on</strong>g>the</str<strong>on</strong>g> summer <str<strong>on</strong>g>of</str<strong>on</strong>g> 2005. The highefficacy and suitability <str<strong>on</strong>g>of</str<strong>on</strong>g> this herbicide for estuarine use bodes well for c<strong>on</strong>trol efforts around SanFrancisco Bay. Building up<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> structure and partnerships developed during <str<strong>on</strong>g>the</str<strong>on</strong>g> 2004 Spartinac<strong>on</strong>trol seas<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> ISP believes it is possible to set in place coordinated, sustainable, estuary-widemanagement and c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-native Spartina.Keywords: Spartina, cordgrass, hybrids, hybrid swarm, imazapyr, glyphosate, estuary, Californiaclapper railThe spread <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-native Spartina in <str<strong>on</strong>g>the</str<strong>on</strong>g> San FranciscoEstuary has been a topic <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>cern in <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong> since <str<strong>on</strong>g>the</str<strong>on</strong>g>early 1970s, following <str<strong>on</strong>g>the</str<strong>on</strong>g> initial introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> several species:S. densiflora (Chilean cordgrass), S. anglica (Englishcordgrass), and S. patens (salt meadow cordgrass), but especiallyS. alterniflora (smooth cordgrass). By <str<strong>on</strong>g>the</str<strong>on</strong>g> early1990s, ecologists and land managers in <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary recognized<str<strong>on</strong>g>the</str<strong>on</strong>g> increasing impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> as marshlandwithin <str<strong>on</strong>g>the</str<strong>on</strong>g>ir respective jurisdicti<strong>on</strong>s began to support everexpandingpopulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-native Spartina species.Around this time, a hybridizati<strong>on</strong> event between <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>nativeS. alterniflora and <str<strong>on</strong>g>the</str<strong>on</strong>g> native S. foliosa (Pacificcordgrass) produced <str<strong>on</strong>g>the</str<strong>on</strong>g> first individual cl<strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> a vigoroushybrid swarm that swiftly outpaced its alien parent species inits ability to col<strong>on</strong>ize a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> habitats in <str<strong>on</strong>g>the</str<strong>on</strong>g> SanFrancisco Estuary.In 2000, <str<strong>on</strong>g>the</str<strong>on</strong>g> California State Coastal C<strong>on</strong>servancy(C<strong>on</strong>servancy) initiated <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Invasive</strong> Spartina Project (ISP)to stave <str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-native cordgrass and its potentialimpacts. The ISP was intended to be a regi<strong>on</strong>allycoordinatedeffort <str<strong>on</strong>g>of</str<strong>on</strong>g> federal, state and local agencies, privatelandowners, and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r interested parties, with <str<strong>on</strong>g>the</str<strong>on</strong>g> ultimategoal <str<strong>on</strong>g>of</str<strong>on</strong>g> arresting and reversing <str<strong>on</strong>g>the</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-nativeSpartina in <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary. It was not until <str<strong>on</strong>g>the</str<strong>on</strong>g> late summer <str<strong>on</strong>g>of</str<strong>on</strong>g>2004 that all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> required permitting and planning hadbeen completed sufficient to initiate <str<strong>on</strong>g>the</str<strong>on</strong>g> first seas<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina c<strong>on</strong>trol work estuary-wide.The process to produce an Envir<strong>on</strong>mental ImpactStatement and Envir<strong>on</strong>mental Impact Report (FEIS/R), satisfyingboth Federal and State requirements, began at <str<strong>on</strong>g>the</str<strong>on</strong>g> incepti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ISP in 2000. In October <str<strong>on</strong>g>of</str<strong>on</strong>g> 2003, following <str<strong>on</strong>g>the</str<strong>on</strong>g>c<strong>on</strong>clusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> public comment period <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> draft documentand preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> comment resp<strong>on</strong>ses, <str<strong>on</strong>g>the</str<strong>on</strong>g> Final EIS/Rwas completed by <str<strong>on</strong>g>the</str<strong>on</strong>g> C<strong>on</strong>servancy and <str<strong>on</strong>g>the</str<strong>on</strong>g> U.S. Fish andWildlife Service (California Coastal C<strong>on</strong>servancy andUSFWS 2003). The FEIS/R was <str<strong>on</strong>g>the</str<strong>on</strong>g>n used by <str<strong>on</strong>g>the</str<strong>on</strong>g> FWS toproduce a Programmatic Biological Opini<strong>on</strong> (PBO)(USFWS 2004(a)) for ISP’s C<strong>on</strong>trol Program, which outlined<str<strong>on</strong>g>the</str<strong>on</strong>g> requirements for creating detailed individual BiologicalOpini<strong>on</strong>s (BOs) for each proposed Spartina treatment- 217 -


Chapter 4: Spartina C<strong>on</strong>trol and Management<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinasite. Issuance <str<strong>on</strong>g>of</str<strong>on</strong>g> site-specific BOs depended <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> development<str<strong>on</strong>g>of</str<strong>on</strong>g> site-specific Spartina c<strong>on</strong>trol plans by <str<strong>on</strong>g>the</str<strong>on</strong>g> ISP andits partners.SITE-SPECIFIC SPARTINA CONTROL PLANSC<strong>on</strong>current with, and subsequent to <str<strong>on</strong>g>the</str<strong>on</strong>g> completi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> FEIS/R and PBO, individual site-specific Spartina c<strong>on</strong>trolplans (SSPs) (California Coastal C<strong>on</strong>servancy 2004(b))for 2004 were drafted by <str<strong>on</strong>g>the</str<strong>on</strong>g> ISP and its partners for 16 sitesscattered throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary. These sites were chosenbased <strong>on</strong> a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> characteristics, including existing partnerinvolvement, infestati<strong>on</strong> age and compositi<strong>on</strong>, endangeredspecies issues, access issues, adjacent land uses ando<str<strong>on</strong>g>the</str<strong>on</strong>g>r criteria. The 16 sites chosen for Spartina c<strong>on</strong>trol in2004 included 45 sub-areas (areas fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r delineated for ease<str<strong>on</strong>g>of</str<strong>on</strong>g> treatment) encompassing an estimated 181 net ha (447 netac) <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina, within just over 6,070 ha (15,000 ac) <str<strong>on</strong>g>of</str<strong>on</strong>g> estuarymarshland. Each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> SSPs included: Scope <str<strong>on</strong>g>of</str<strong>on</strong>g> Work Work Program defining <str<strong>on</strong>g>the</str<strong>on</strong>g> schedule <str<strong>on</strong>g>of</str<strong>on</strong>g> work Budget Impact Identificati<strong>on</strong> Matrix Impact Mitigati<strong>on</strong> Matrix Spill Preventi<strong>on</strong> Protocols Drift Reducti<strong>on</strong> Protocols Marsh Safety Recommendati<strong>on</strong>s Site Maps Site PhotographsAs part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> requirements <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> California Envir<strong>on</strong>mentalQuality Act (CEQA), each SSP c<strong>on</strong>tained an ImpactIdentificati<strong>on</strong> Matrix and an Impact Mitigati<strong>on</strong> Matrix. TheImpact Identificati<strong>on</strong> Matrix evaluated <str<strong>on</strong>g>the</str<strong>on</strong>g> suite <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartinac<strong>on</strong>trol methods proposed for each site for potential impactsto envir<strong>on</strong>mental resources. Included in <str<strong>on</strong>g>the</str<strong>on</strong>g> matrix were impactsrelated to geomorphology and hydrology, water quality,biological resources, air quality, noise, human health andsafety, visual resources, and cumulative impacts.Once <str<strong>on</strong>g>the</str<strong>on</strong>g> impacts associated with Spartina c<strong>on</strong>trol workwere identified for a given site, an Impact Mitigati<strong>on</strong> Matrixwas prepared. Each site’s matrix explicitly referenced thosemitigati<strong>on</strong> measures defined in <str<strong>on</strong>g>the</str<strong>on</strong>g> FEIS/R that were to beimplemented in <str<strong>on</strong>g>the</str<strong>on</strong>g> field. Impact Mitigati<strong>on</strong> Matrices weredesigned to require verificati<strong>on</strong> signatures next to each mitigati<strong>on</strong>measure. Both <str<strong>on</strong>g>the</str<strong>on</strong>g> implementing agency representativeand a representative <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ISP were required to verifythat all mitigati<strong>on</strong> measures were implemented.PERMITTING AND GRANTSThe completi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> SSPs enabled FWS review <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>documents for issuance <str<strong>on</strong>g>of</str<strong>on</strong>g> site-specific BOs which analyzed<str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> proposed work <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> suite <str<strong>on</strong>g>of</str<strong>on</strong>g> endangeredspecies within <str<strong>on</strong>g>the</str<strong>on</strong>g> scope <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> project (USFWS 2004(b)).Individual site-specific Envir<strong>on</strong>mental Assessments (EAs)were also prepared at this time to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>proposed work <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> greater envir<strong>on</strong>ment bey<strong>on</strong>d endangeredspecies issues (USFWS 2004(c)). The results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>seanalyses provided <str<strong>on</strong>g>the</str<strong>on</strong>g> basis for a Finding <str<strong>on</strong>g>of</str<strong>on</strong>g> No SignificantImpact (FONSI), which declared that <str<strong>on</strong>g>the</str<strong>on</strong>g> proposed Spartinac<strong>on</strong>trol work would not produce “significant impact” <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>estuary’s natural resources (USFWS 2004(d)). Additi<strong>on</strong>ally,a Record <str<strong>on</strong>g>of</str<strong>on</strong>g> Decisi<strong>on</strong> (ROD) was published in <str<strong>on</strong>g>the</str<strong>on</strong>g> FederalRegister announcing <str<strong>on</strong>g>the</str<strong>on</strong>g> completi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> FEIS/R (USFWS2004(e)).So<strong>on</strong> after its incepti<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> ISP worked to identify partneragencies and groups that would be willing to join in <str<strong>on</strong>g>the</str<strong>on</strong>g>effort to c<strong>on</strong>trol n<strong>on</strong>-native Spartina in <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary. Many <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> partners involved in developing SSPs for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir jurisdicti<strong>on</strong>slacked <str<strong>on</strong>g>the</str<strong>on</strong>g> funds to initiate c<strong>on</strong>trol work <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir own,so outside funding for c<strong>on</strong>trol operati<strong>on</strong>s were necessary forwork to proceed. In some cases, funding was not <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>strainingfactor for <str<strong>on</strong>g>the</str<strong>on</strong>g> partner, but instead, clearing permittinghurdles, logistics or knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol methodologiespresented <str<strong>on</strong>g>the</str<strong>on</strong>g> greatest challenge. In each case, <str<strong>on</strong>g>the</str<strong>on</strong>g> ISPprovided <str<strong>on</strong>g>the</str<strong>on</strong>g> necessary assistance to implement <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartinac<strong>on</strong>trol plan. Where funding was <str<strong>on</strong>g>the</str<strong>on</strong>g> limiting factor, grantsfrom <str<strong>on</strong>g>the</str<strong>on</strong>g> C<strong>on</strong>servancy were provided to enable work to proceed.The terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se grant agreements were negotiatedduring late 2003 and <str<strong>on</strong>g>the</str<strong>on</strong>g> first half <str<strong>on</strong>g>of</str<strong>on</strong>g> 2004. Ultimately <str<strong>on</strong>g>the</str<strong>on</strong>g>C<strong>on</strong>servancy and <str<strong>on</strong>g>the</str<strong>on</strong>g> CalFed Bay Delta Authority issued atotal <str<strong>on</strong>g>of</str<strong>on</strong>g> $350,000 in grants for Spartina c<strong>on</strong>trol work in <str<strong>on</strong>g>the</str<strong>on</strong>g>estuary for <str<strong>on</strong>g>the</str<strong>on</strong>g> 2004 c<strong>on</strong>trol seas<strong>on</strong>. Official ISP partners forthis seas<strong>on</strong> included U.S. Fish and Wildlife Service, EastBay Regi<strong>on</strong>al Parks District, Alameda County Flood C<strong>on</strong>trolDistrict, California Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Transportati<strong>on</strong>, SantaClara Valley Water District, City <str<strong>on</strong>g>of</str<strong>on</strong>g> Palo Alto, Friends <str<strong>on</strong>g>of</str<strong>on</strong>g>Corte Madera Creek Watershed, Tibur<strong>on</strong> Audub<strong>on</strong> Society,Marin C<strong>on</strong>servati<strong>on</strong> Corps, and California Department <str<strong>on</strong>g>of</str<strong>on</strong>g>Parks and Recreati<strong>on</strong>. Inclusi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> any organizati<strong>on</strong> oragency as an <str<strong>on</strong>g>of</str<strong>on</strong>g>ficial ISP partner required that partner’s governingbody <str<strong>on</strong>g>of</str<strong>on</strong>g>ficially adopt <str<strong>on</strong>g>the</str<strong>on</strong>g> ISP’s FEIS/R, develop anSSP in coordinati<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> ISP, and adhere to any mitigati<strong>on</strong>sdefined in <str<strong>on</strong>g>the</str<strong>on</strong>g> Impact Mitigati<strong>on</strong> Matrix developed for<str<strong>on</strong>g>the</str<strong>on</strong>g> site within <str<strong>on</strong>g>the</str<strong>on</strong>g>ir jurisdicti<strong>on</strong>.For each type <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol method proposed for each site,certain permits needed to be acquired before work couldbegin. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> herbicide applicati<strong>on</strong>s, all treatmentswere required to comply with <str<strong>on</strong>g>the</str<strong>on</strong>g> Envir<strong>on</strong>mental Protecti<strong>on</strong>Agency’s Nati<strong>on</strong>al Pollutant Discharge Eliminati<strong>on</strong> System(NPDES), administered by <str<strong>on</strong>g>the</str<strong>on</strong>g> California Water QualityC<strong>on</strong>trol Board’s (CWQCB) San Francisco Bay regi<strong>on</strong>al <str<strong>on</strong>g>of</str<strong>on</strong>g>fice.However, at <str<strong>on</strong>g>the</str<strong>on</strong>g> outset <str<strong>on</strong>g>of</str<strong>on</strong>g> 2004, <str<strong>on</strong>g>the</str<strong>on</strong>g> CWQCB had yet todevelop an NPDES permit to cover <str<strong>on</strong>g>the</str<strong>on</strong>g> discharge <str<strong>on</strong>g>of</str<strong>on</strong>g> aquaticpesticides, a novel applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> CleanWater Act that had, until recently, been reserved for <str<strong>on</strong>g>the</str<strong>on</strong>g>regulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> effluent discharge. As a c<strong>on</strong>sequence,herbicide-based c<strong>on</strong>trol operati<strong>on</strong>s throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> state were<strong>on</strong> hold until <str<strong>on</strong>g>the</str<strong>on</strong>g> CWQCB revised its permitting procedures- 218 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 4: Spartina C<strong>on</strong>trol and Managementto address aquatic herbicides. The revisi<strong>on</strong>s were adopted inJune <str<strong>on</strong>g>of</str<strong>on</strong>g> 2004, enabling ISP partners to issue Notices <str<strong>on</strong>g>of</str<strong>on</strong>g> Intent(NOIs) to be covered under <str<strong>on</strong>g>the</str<strong>on</strong>g> Statewide GeneralNPDES Permit for Aquatic Weed C<strong>on</strong>trol.The NPDES permit also requires developing an AquaticPesticide Applicati<strong>on</strong> Plan (APAP) identifying <str<strong>on</strong>g>the</str<strong>on</strong>g> proceduresfor applying herbicides, <str<strong>on</strong>g>the</str<strong>on</strong>g> chemicals to be used, <str<strong>on</strong>g>the</str<strong>on</strong>g>species targeted for treatment, a descripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> waterbodysystem, and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r related informati<strong>on</strong>. Within <str<strong>on</strong>g>the</str<strong>on</strong>g> APAP is aWater Quality M<strong>on</strong>itoring Plan (WQMP), which defines <str<strong>on</strong>g>the</str<strong>on</strong>g>protocols for water quality sampling <str<strong>on</strong>g>of</str<strong>on</strong>g> treatment areaswhere herbicide is used. While <str<strong>on</strong>g>the</str<strong>on</strong>g> ISP developed <str<strong>on</strong>g>the</str<strong>on</strong>g> APAP<strong>on</strong> behalf <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ISP partners, <str<strong>on</strong>g>the</str<strong>on</strong>g>y c<strong>on</strong>tracted <str<strong>on</strong>g>the</str<strong>on</strong>g> services <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco Estuary Institute (SFEI) to fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r developand implement <str<strong>on</strong>g>the</str<strong>on</strong>g> WQMP for <str<strong>on</strong>g>the</str<strong>on</strong>g> work proposed by <str<strong>on</strong>g>the</str<strong>on</strong>g> ISPand its partners, and to report <strong>on</strong> its findings following <str<strong>on</strong>g>the</str<strong>on</strong>g>2004 treatment seas<strong>on</strong> (California Coastal C<strong>on</strong>servancy2004(c)).In additi<strong>on</strong>, access permits from regi<strong>on</strong>al and localagencies were necessary for treatment <strong>on</strong> many <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 16sites slated for Spartina c<strong>on</strong>trol and <str<strong>on</strong>g>the</str<strong>on</strong>g> ISP coordinated <str<strong>on</strong>g>the</str<strong>on</strong>g>irprocurement.TREATMENT METHODSA variety <str<strong>on</strong>g>of</str<strong>on</strong>g> methods can be used to treat n<strong>on</strong>-nativeSpartina populati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary. However, very rarely isany particular treatment method appropriate for all situati<strong>on</strong>s.In <str<strong>on</strong>g>the</str<strong>on</strong>g> FEIS/R, <str<strong>on</strong>g>the</str<strong>on</strong>g> ISP proposed a suite <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trolmethods and approaches based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> cumulative expertise<str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina c<strong>on</strong>trol operati<strong>on</strong>s worldwide, especially <str<strong>on</strong>g>the</str<strong>on</strong>g>work being d<strong>on</strong>e to c<strong>on</strong>trol S. alterniflora in Willapa Bay,Washingt<strong>on</strong> State, USA. In 2004, <str<strong>on</strong>g>the</str<strong>on</strong>g> ISP tested several possiblec<strong>on</strong>trol techniques to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> relative benefits <str<strong>on</strong>g>of</str<strong>on</strong>g>each.Chemical C<strong>on</strong>trolGlyphosate herbicide (Aquamaster® or Rodeo®) wasused in most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> area <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina infestati<strong>on</strong> that waschemically treated in 2004. The applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> herbicidescomprised <str<strong>on</strong>g>the</str<strong>on</strong>g> largest part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> C<strong>on</strong>trol Program for a host<str<strong>on</strong>g>of</str<strong>on</strong>g> reas<strong>on</strong>s, not least <str<strong>on</strong>g>of</str<strong>on</strong>g> which was <str<strong>on</strong>g>the</str<strong>on</strong>g> need to c<strong>on</strong>trol largeacreage at low cost to stay ahead <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> rapid expansi<strong>on</strong> rate<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> invader. Moreover, this method has a relatively lowimpact <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> treated marshlands in c<strong>on</strong>trast to o<str<strong>on</strong>g>the</str<strong>on</strong>g>r treatmentopti<strong>on</strong>s. Drawbacks to herbicide use include <str<strong>on</strong>g>the</str<strong>on</strong>g> potentialfor herbicide or fuel spills, negative public percepti<strong>on</strong>,timing restricti<strong>on</strong>s, and potential water quality impacts. Glyphosateherbicide was applied via tracked amphibious vehicles(Hydrotraxx or Argo) fitted with spray apparatus, truckmountedspray equipment, backpack sprayers, shallowbottomedboats with outboard motors and broadcast aerialapplicati<strong>on</strong>s via helicopter with a 30-foot boom fitted with anozzle array.Manual C<strong>on</strong>trolFor those sites not yet fully established—where <str<strong>on</strong>g>the</str<strong>on</strong>g>rewere very small, pi<strong>on</strong>eering infestati<strong>on</strong>s to be treated—manual c<strong>on</strong>trol techniques were used. These methods were<str<strong>on</strong>g>of</str<strong>on</strong>g>ten incorporated into public outreach efforts, involvingvolunteer groups that worked <strong>on</strong> marshland restorati<strong>on</strong>projects. For smaller sites, digging <str<strong>on</strong>g>the</str<strong>on</strong>g> plants resulted ingood c<strong>on</strong>trol, but swiftly exhausted worker enthusiasm andresulted in heavy impacts to <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh. Digging plants ininfestati<strong>on</strong>s much larger than 25 square meters is prohibitivelyexpensive and has <str<strong>on</strong>g>the</str<strong>on</strong>g> potential to leave lasting damageto <str<strong>on</strong>g>the</str<strong>on</strong>g> treated marsh in <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g> deep holes ortrenches. In such cases, tarping or covering <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plants wasused to good effect. Heavy syn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic tarps were staked inplace over trampled stands <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-native Spartina in severallocati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary, as well as at Point Reyes Nati<strong>on</strong>alSeashore <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> outer coast north <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Golden Gate. Tarpswere left in place for at least eight m<strong>on</strong>ths and required regularm<strong>on</strong>itoring to assure that <str<strong>on</strong>g>the</str<strong>on</strong>g> covering remained in placeduring tidal fluctuati<strong>on</strong>, especially storms. Removal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>covering following successful c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina was<str<strong>on</strong>g>of</str<strong>on</strong>g>ten difficult because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> heavy accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mud <strong>on</strong>top <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tarps, requiring laborious excavati<strong>on</strong>s to unearth<str<strong>on</strong>g>the</str<strong>on</strong>g> covering. Drawbacks to covering include <str<strong>on</strong>g>the</str<strong>on</strong>g> high cost <str<strong>on</strong>g>of</str<strong>on</strong>g>installati<strong>on</strong>, maintenance and removal and <str<strong>on</strong>g>the</str<strong>on</strong>g> attendantdamage to <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh, as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> negative envir<strong>on</strong>mentalimpacts <str<strong>on</strong>g>of</str<strong>on</strong>g> petrochemical producti<strong>on</strong> associated with <str<strong>on</strong>g>the</str<strong>on</strong>g>manufacture <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> heavy syn<str<strong>on</strong>g>the</str<strong>on</strong>g>tic fabric used in this treatmentmethod. Two <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sub-areas identified for Spartinac<strong>on</strong>trol in 2004 used small-scale mowing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> infestati<strong>on</strong>.Gas-powered hand mowers fitted with a tri-blade were ableto make quick work <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> standing material which was ei<str<strong>on</strong>g>the</str<strong>on</strong>g>rleft in place in <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh (early seas<strong>on</strong>, pre-seed set) orremoved from <str<strong>on</strong>g>the</str<strong>on</strong>g> marsh and disposed <str<strong>on</strong>g>of</str<strong>on</strong>g> at a landfill (lateseas<strong>on</strong>, post seed-set). Mowing in this way serves to c<strong>on</strong>trolseed and pollen spread and may slow <str<strong>on</strong>g>the</str<strong>on</strong>g> vegetative expansi<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina cl<strong>on</strong>e by usurping root reserves. Mowingal<strong>on</strong>e does not kill <str<strong>on</strong>g>the</str<strong>on</strong>g> plants, however. Unless coupledwith o<str<strong>on</strong>g>the</str<strong>on</strong>g>r c<strong>on</strong>trol methods, mowing would need to be implementedseveral times each year in perpetuity and yetwould still allow some vegetative expansi<strong>on</strong>.O<str<strong>on</strong>g>the</str<strong>on</strong>g>r methods <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina c<strong>on</strong>trol tried elsewhere werenot attempted in <str<strong>on</strong>g>the</str<strong>on</strong>g> 2004 c<strong>on</strong>trol seas<strong>on</strong> for various reas<strong>on</strong>s.Macerating or tilling was not used because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>cerns<str<strong>on</strong>g>of</str<strong>on</strong>g> land managers that <str<strong>on</strong>g>the</str<strong>on</strong>g> high amount <str<strong>on</strong>g>of</str<strong>on</strong>g> urban refuse presentin estuary marshes (tires, shopping carts, blocks <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>crete,pieces <str<strong>on</strong>g>of</str<strong>on</strong>g> metal, wood debris embedded with bolts ornails) and natural wrack (driftwood logs), would result inhigh maintenance costs or operator injury. The extremelys<str<strong>on</strong>g>of</str<strong>on</strong>g>t nature <str<strong>on</strong>g>of</str<strong>on</strong>g> most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary mud where c<strong>on</strong>trol wouldtake place was also taken into c<strong>on</strong>siderati<strong>on</strong>, as <str<strong>on</strong>g>the</str<strong>on</strong>g> machineryinvolved in <str<strong>on</strong>g>the</str<strong>on</strong>g>se methods is heavy and very likely to getstuck in place. Crushing <str<strong>on</strong>g>the</str<strong>on</strong>g> plants, where machinery is used- 219 -


Chapter 4: Spartina C<strong>on</strong>trol and Management<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaFig. 1. 2004 Spartina treatment sites in <str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco Estuary, CA.to press <str<strong>on</strong>g>the</str<strong>on</strong>g> plants into <str<strong>on</strong>g>the</str<strong>on</strong>g> mud, was tried <strong>on</strong> a very smallscale, but <str<strong>on</strong>g>the</str<strong>on</strong>g> visual impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> such a treatment method aswell as potential impacts to endangered species made thisopti<strong>on</strong> unsuitable for large-scale use.TIMINGSpartina c<strong>on</strong>trol work in <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary is limited by morethan just <str<strong>on</strong>g>the</str<strong>on</strong>g> daunting amount <str<strong>on</strong>g>of</str<strong>on</strong>g> paperwork necessary toinitiate treatment. The estuary is a highly dynamic system,and <str<strong>on</strong>g>the</str<strong>on</strong>g> areas typically infested with n<strong>on</strong>-native Spartinabear <str<strong>on</strong>g>the</str<strong>on</strong>g> brunt <str<strong>on</strong>g>of</str<strong>on</strong>g> much <str<strong>on</strong>g>of</str<strong>on</strong>g> this dynamism. Occupying manyhabitats, including <str<strong>on</strong>g>the</str<strong>on</strong>g> bayfr<strong>on</strong>t edge as well as more shelteredmarshlands, n<strong>on</strong>-native Spartina infestati<strong>on</strong>s are subjectto daily tidal inundati<strong>on</strong>, storms, wrack deposits, urbanrun<str<strong>on</strong>g>of</str<strong>on</strong>g>f and polluti<strong>on</strong>, and sediment depositi<strong>on</strong>. Treatmentmethods selected for <str<strong>on</strong>g>the</str<strong>on</strong>g>se areas must account for all <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g>se factors. Since large-scale treatment in 2004 reliedheavily <strong>on</strong> herbicide use, <str<strong>on</strong>g>the</str<strong>on</strong>g> treatment parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> glyphosatefur<str<strong>on</strong>g>the</str<strong>on</strong>g>r dictated <str<strong>on</strong>g>the</str<strong>on</strong>g> available treatment window in<str<strong>on</strong>g>the</str<strong>on</strong>g> estuary.Glyphosate herbicide has specific requirements thatmust be satisfied in order to achieve high treatment efficacies.For Spartina c<strong>on</strong>trol <str<strong>on</strong>g>the</str<strong>on</strong>g>se are: l<strong>on</strong>g dry times (12-24- 220 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 4: Spartina C<strong>on</strong>trol and Managementhours) where <str<strong>on</strong>g>the</str<strong>on</strong>g> plant is nei<str<strong>on</strong>g>the</str<strong>on</strong>g>r inundated at high tide norrained <strong>on</strong>, low amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> silt and salt <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> treated plants,and complete coverage <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> treated plant (“spray-to-wet”).Where Spartina grows in <str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco Estuary, <str<strong>on</strong>g>the</str<strong>on</strong>g>serequirements can be difficult to meet. Tidal fluctuati<strong>on</strong>s precludemost low and mid-elevati<strong>on</strong> sites from adequate drytime for glyphosate most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> year. Siltati<strong>on</strong> is a c<strong>on</strong>stantproblem in <str<strong>on</strong>g>the</str<strong>on</strong>g> highly turbid waters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten resultingin much <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> herbicide binding to <str<strong>on</strong>g>the</str<strong>on</strong>g> accumulatedsilt <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> plant’s leaves ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than entering <str<strong>on</strong>g>the</str<strong>on</strong>g> plant’s tissuesand translocating properly. Finally, complete coverage<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> targeted Spartina can be difficult to achieve over largestands or in areas difficult to access. Given all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se c<strong>on</strong>straints,very few days are available in a given growing seas<strong>on</strong>(late May through mid-October) with <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>vergence <str<strong>on</strong>g>of</str<strong>on</strong>g>c<strong>on</strong>diti<strong>on</strong>s necessary for efficacious treatment using thisherbicide.The San Francisco Estuary is also <str<strong>on</strong>g>the</str<strong>on</strong>g> habitat <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>Federal and State endangered California clapper rail (Rallusl<strong>on</strong>girostris obsoletus), whose breeding seas<strong>on</strong> extends fromFebruary 1 through August 31 <str<strong>on</strong>g>of</str<strong>on</strong>g> each year. Many <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>marshes where larger populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> clapper rail breed havebeen invaded by n<strong>on</strong>-native Spartina, and represent <str<strong>on</strong>g>the</str<strong>on</strong>g> majority<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> infestati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary. No Spartina c<strong>on</strong>trolwork can occur during <str<strong>on</strong>g>the</str<strong>on</strong>g> clapper rail breeding seas<strong>on</strong> in<str<strong>on</strong>g>the</str<strong>on</strong>g>se marshes. Therefore, <str<strong>on</strong>g>the</str<strong>on</strong>g> larger infestati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>nativeSpartina may <strong>on</strong>ly be treated between September 1and roughly <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> October every year. During this time,tidal windows <str<strong>on</strong>g>of</str<strong>on</strong>g> opportunity that allow for <str<strong>on</strong>g>the</str<strong>on</strong>g> required drytime for glyphosate are limited. Finally, in most sites in <str<strong>on</strong>g>the</str<strong>on</strong>g>estuary, late-morning or early-afterno<strong>on</strong> winds develop thatexceed spray drift reducti<strong>on</strong> criteria for herbicide applicati<strong>on</strong>(10 mph sustained winds). As a result, in <str<strong>on</strong>g>the</str<strong>on</strong>g> 2004 treatmentseas<strong>on</strong>, Spartina c<strong>on</strong>trol work within clapper rail occupiedmarsh was restricted to roughly 6-10 days where all necessaryc<strong>on</strong>diti<strong>on</strong>s were met.2004 TREATMENTAt <str<strong>on</strong>g>the</str<strong>on</strong>g> outset <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2004 treatment seas<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> SSPscalled for treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> 45 individual sub-areas within <str<strong>on</strong>g>the</str<strong>on</strong>g>selected 16 sites. The total area targeted was 181 ha (447ac), which roughly coincided with <str<strong>on</strong>g>the</str<strong>on</strong>g> initial estimates <str<strong>on</strong>g>of</str<strong>on</strong>g>populati<strong>on</strong> size determined in 2001, just after <str<strong>on</strong>g>the</str<strong>on</strong>g> ISP’s incepti<strong>on</strong>and initial inventory mapping <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-nativeSpartina in <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary. Figure 1 shows <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>various c<strong>on</strong>trol sites within <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary.As <str<strong>on</strong>g>of</str<strong>on</strong>g> December 2004, 176 ha (435 ac) <str<strong>on</strong>g>of</str<strong>on</strong>g> targeted n<strong>on</strong>nativeSpartina had been treated, with roughly 0.8 ha (2 ac)slated for manual c<strong>on</strong>trol work in January 2005. Herbicidetreatment <str<strong>on</strong>g>of</str<strong>on</strong>g> several sub-areas with large infestati<strong>on</strong>s wascancelled as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> heavy October rains, which preventedvehicle travel <strong>on</strong> bay-mud levees. Planned use <str<strong>on</strong>g>of</str<strong>on</strong>g> anamphibious excavator (Aquamog) was also postp<strong>on</strong>ed because<str<strong>on</strong>g>of</str<strong>on</strong>g> rain.RATE OF SPREADIn <str<strong>on</strong>g>the</str<strong>on</strong>g> fall <str<strong>on</strong>g>of</str<strong>on</strong>g> 2004 <str<strong>on</strong>g>the</str<strong>on</strong>g> ISP Inventory M<strong>on</strong>itoring Programproduced a M<strong>on</strong>itoring Report based <strong>on</strong> selected sitessurveyed during 2003 (California Coastal C<strong>on</strong>servancy2004(a)). This report analyzed <str<strong>on</strong>g>the</str<strong>on</strong>g> change in area <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>nativeSpartina at 28 m<strong>on</strong>itoring sites stratified across <str<strong>on</strong>g>the</str<strong>on</strong>g>estuary by subregi<strong>on</strong> (latitude), site type and marsh type.Based <strong>on</strong> sample surveys, <str<strong>on</strong>g>the</str<strong>on</strong>g> report extrapolated an average244% increase in area between 2001 and 2003 from all n<strong>on</strong>nativeSpartina species in <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary. Spartina alterniflorahybrids were found to be spreading at <str<strong>on</strong>g>the</str<strong>on</strong>g> fastest rate, by asmuch as 317% over that time period. In 2001, an estuarywideinventory mapped approximately 195 ha (470 acres) <str<strong>on</strong>g>of</str<strong>on</strong>g>n<strong>on</strong>-native Spartina, with hybrids comprising all but five <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g>se hectares. Applying <str<strong>on</strong>g>the</str<strong>on</strong>g> 317% rate <str<strong>on</strong>g>of</str<strong>on</strong>g> increase results inan estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> as much as 793 ha (1960 acres) <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflorahybrids in <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary in 2003.Based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>se numbers, 2004 treatment efforts resultedin some 20% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary’s Spartina populati<strong>on</strong> receivingtreatment during <str<strong>on</strong>g>the</str<strong>on</strong>g> year, leaving 80% untreated. If <str<strong>on</strong>g>the</str<strong>on</strong>g> untreatedarea doubles by <str<strong>on</strong>g>the</str<strong>on</strong>g> 2005 treatment seas<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>recould be as much as 1,294 ha (3,200 ac) <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-nativeSpartina requiring treatment during that year. This numberbecomes even larger if efficacy rates (40-80%) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> varioustreatment methods are factored into <str<strong>on</strong>g>the</str<strong>on</strong>g> calculati<strong>on</strong>.OUTLOOK FOR 2005 AND BEYONDGiven <str<strong>on</strong>g>the</str<strong>on</strong>g> “supra-exp<strong>on</strong>ential” expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>Spartina hybrid swarm in <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary, <str<strong>on</strong>g>the</str<strong>on</strong>g> ISP has determinedthat <strong>on</strong>ly an aggressive, comprehensive strategyaimed at treating all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina during <str<strong>on</strong>g>the</str<strong>on</strong>g> 2005 c<strong>on</strong>trolseas<strong>on</strong> has a realistic chance <str<strong>on</strong>g>of</str<strong>on</strong>g> eradicating <str<strong>on</strong>g>the</str<strong>on</strong>g> invader from<str<strong>on</strong>g>the</str<strong>on</strong>g> estuary. Building up<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> partnerships and experiencedeveloped during <str<strong>on</strong>g>the</str<strong>on</strong>g> 2004 treatment seas<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> ISP willaim to put in place each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> four main comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina treatment for each site or sub-area in <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary.The comp<strong>on</strong>ents, broadly defined are:• Partner identificati<strong>on</strong> and buy-in. Identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> specific agency, landowner or land manager for<str<strong>on</strong>g>the</str<strong>on</strong>g> estimated 130 sub-areas requiring treatmentduring 2005 can be difficult given overlappingjurisdicti<strong>on</strong>al boundaries, property lines that bisectSpartina infestati<strong>on</strong>s, and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r issues. Much <str<strong>on</strong>g>of</str<strong>on</strong>g> thiswork for public property has been accomplishedduring <str<strong>on</strong>g>the</str<strong>on</strong>g> 2004 treatment seas<strong>on</strong>; however,extensive public outreach will be necessary for <str<strong>on</strong>g>the</str<strong>on</strong>g>large number <str<strong>on</strong>g>of</str<strong>on</strong>g> individual private property ownerswhose properties are infested with n<strong>on</strong>-nativeSpartina.• Development <str<strong>on</strong>g>of</str<strong>on</strong>g> Site-Specific Treatment Plans. Foreach sub-area or site a site-specific treatment planwill be produced following <str<strong>on</strong>g>the</str<strong>on</strong>g> model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2004SSPs, and incorporating elements <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> FWS BOand EA. These plans will be developed in close- 221 -


Chapter 4: Spartina C<strong>on</strong>trol and Management<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinacoordinati<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> ISP partners resp<strong>on</strong>sible for<str<strong>on</strong>g>the</str<strong>on</strong>g> infested area.• Procurement <str<strong>on</strong>g>of</str<strong>on</strong>g> Funding. Identifying a fundingsource for <str<strong>on</strong>g>the</str<strong>on</strong>g> proposed work <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> individual sitecan take many forms. In additi<strong>on</strong> to grants awardedby <str<strong>on</strong>g>the</str<strong>on</strong>g> C<strong>on</strong>servancy, <str<strong>on</strong>g>the</str<strong>on</strong>g> ISP will seek grants fromo<str<strong>on</strong>g>the</str<strong>on</strong>g>r sources and coordinate volunteer activitiesappropriate for each site based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Site-SpecificPlans.• Obtain Necessary Permits for Work. In closecoordinati<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> regulatory agencies whosepurview encompasses <str<strong>on</strong>g>the</str<strong>on</strong>g> areas slated for Spartinatreatment, <str<strong>on</strong>g>the</str<strong>on</strong>g> ISP will aid partners in obtaining <str<strong>on</strong>g>the</str<strong>on</strong>g>necessary permits for work <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir site.In 2005 treatment work will c<strong>on</strong>tinue, and expandwhere appropriate, <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> sites treated in 2004. As time is <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> essence in treating Spartina, several enhanced c<strong>on</strong>troltechniques will be employed to <str<strong>on</strong>g>the</str<strong>on</strong>g> fullest extent possible tomaximize <str<strong>on</strong>g>the</str<strong>on</strong>g> treatment area in 2005.Chief am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g>se is <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> herbicide imazapyr(Habitat®), which is well suited to <str<strong>on</strong>g>the</str<strong>on</strong>g> challenges <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina c<strong>on</strong>trol in an estuarine envir<strong>on</strong>ment. Applicati<strong>on</strong>requirements for imazapyr herbicide are not as challengingas those for glyphosate; required dry times are shorter andplants need not be completely covered with <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical forhigh efficacy (less chemical used). These qualities allowtreatment <str<strong>on</strong>g>of</str<strong>on</strong>g> larger areas <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina in a given time periodwhile also providing wider tidal windows for treatment.The incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> imazapyr herbicide into <str<strong>on</strong>g>the</str<strong>on</strong>g> C<strong>on</strong>trolProgram also enables greater use <str<strong>on</strong>g>of</str<strong>on</strong>g> aerial (helicopter)treatments. An estimated 42% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total area slated fortreatment may be suitable for aerial treatment. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> thisarea is difficult to access <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ground; for <str<strong>on</strong>g>the</str<strong>on</strong>g>se sites, replacingground-based treatment with aerial applicati<strong>on</strong>s willsave time and m<strong>on</strong>ey, and enable pers<strong>on</strong>nel to target lessdemanding sites.Bey<strong>on</strong>d <str<strong>on</strong>g>the</str<strong>on</strong>g> 2005 Spartina c<strong>on</strong>trol ceas<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> ISPanticipates establishing <str<strong>on</strong>g>the</str<strong>on</strong>g> initial stages <str<strong>on</strong>g>of</str<strong>on</strong>g> a land-managerbasedSpartina m<strong>on</strong>itoring and c<strong>on</strong>trol program, as a pilotproject for eventual dissoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ISP. The 2006 and2007 Spartina c<strong>on</strong>trol seas<strong>on</strong>s will require <str<strong>on</strong>g>the</str<strong>on</strong>g> ISP to be infull effect coordinating estuary-wide eradicati<strong>on</strong> efforts, butlater, and <strong>on</strong>ce <str<strong>on</strong>g>the</str<strong>on</strong>g> infestati<strong>on</strong> has been reduced to moremanageable levels, individual land managers will graduallyneed to assume resp<strong>on</strong>sibility for keeping low-level remnantinfestati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-native, invasive Spartina under c<strong>on</strong>trol.In this way, <str<strong>on</strong>g>the</str<strong>on</strong>g> ISP seeks to render itself unnecessaryfollowing <str<strong>on</strong>g>the</str<strong>on</strong>g> 2010 Spartina treatment seas<strong>on</strong>.CONCLUSIONSThe infestati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-native Spartina in <str<strong>on</strong>g>the</str<strong>on</strong>g> San FranciscoEstuary is spreading at a supra-exp<strong>on</strong>ential rate in <str<strong>on</strong>g>the</str<strong>on</strong>g>absence <str<strong>on</strong>g>of</str<strong>on</strong>g> widespread treatment. However, c<strong>on</strong>trol effortsundertaken during <str<strong>on</strong>g>the</str<strong>on</strong>g> 2004 treatment seas<strong>on</strong> indicate thatc<strong>on</strong>trol and eventual eradicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-native Spartina in<str<strong>on</strong>g>the</str<strong>on</strong>g> estuary is possible given c<strong>on</strong>tinued funding, expandedpartner involvement, and political will. New tools, including<str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> imazapyr herbicide, are expected to greatly assistin achieving this goal.ACKNOWLEDGEMENTSThe author would like to thank Peggy Ol<str<strong>on</strong>g>of</str<strong>on</strong>g>s<strong>on</strong> and KatyZaremba <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Invasive</strong> Spartina Project, as well as all ISPpartners involved in Spartina c<strong>on</strong>trol during <str<strong>on</strong>g>the</str<strong>on</strong>g> 2004 c<strong>on</strong>trolseas<strong>on</strong>, and acknowledges <str<strong>on</strong>g>the</str<strong>on</strong>g> financial support from <str<strong>on</strong>g>the</str<strong>on</strong>g>California Coastal C<strong>on</strong>servancy (C<strong>on</strong>tract #02-153).REFERENCESCalifornia Coastal C<strong>on</strong>servancy and U.S. Fish and Wildlife Service.2003. San Francisco Estuary <strong>Invasive</strong> Spartina Project:Spartina C<strong>on</strong>trol Program: Final Envir<strong>on</strong>mental Impact Statement/Envir<strong>on</strong>mental Impact Report (Vol. 1), and Appendices(Vol. 2). Berkeley, CA.California Coastal C<strong>on</strong>servancy. 2004(a). San Francisco Estuary<strong>Invasive</strong> Spartina Project M<strong>on</strong>itoring Report for 2003. Producedby <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Invasive</strong> Spartina Project for <str<strong>on</strong>g>the</str<strong>on</strong>g> California Coastal C<strong>on</strong>servancy.Berkeley, CA.California Coastal C<strong>on</strong>servancy. 2004(b). San Francisco Estuary<strong>Invasive</strong> Spartina Project: Spartina C<strong>on</strong>trol Program, 2004 Site-Specific Spartina C<strong>on</strong>trol Plans. Prepared by SFEISP for <str<strong>on</strong>g>the</str<strong>on</strong>g>California Coastal C<strong>on</strong>servancy and <str<strong>on</strong>g>the</str<strong>on</strong>g> U.S. Fish & WildlifeService. Berkeley, CA.California Coastal C<strong>on</strong>servancy. 2004(c). Aquatic Pesticide Applicati<strong>on</strong>Plan for <str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco Estuary <strong>Invasive</strong> SpartinaProject. Produced by <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Invasive</strong> Spartina Project for <str<strong>on</strong>g>the</str<strong>on</strong>g> CaliforniaCoastal C<strong>on</strong>servancy. Berkeley, CA.U.S. Fish and Wildlife Service. 2004(a). Programmatic FormalIntra-Service Endangered Species C<strong>on</strong>sultati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> SanFrancisco Estuary <strong>Invasive</strong> Spartina Project. Sacramento, CA.U.S. Fish and Wildlife Service. 2004(b). Formal Intra-ServiceEndangered Species C<strong>on</strong>sultati<strong>on</strong> <strong>on</strong> implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> SanFrancisco Estuary <strong>Invasive</strong> Spartina Project: Spartina C<strong>on</strong>trolProgram. Sacramento, CA.U.S. Fish and Wildlife Service. 2004(c). Envir<strong>on</strong>mental Assessment,San Francisco Estuary <strong>Invasive</strong> Spartina Project 2004Spartina C<strong>on</strong>trol Program, San Francisco Bay, California. Sacramento,CA.U.S. Fish and Wildlife Service. 2004(d). Finding <str<strong>on</strong>g>of</str<strong>on</strong>g> No SignificantImpact Statement for a Proposed Acti<strong>on</strong> to C<strong>on</strong>trol N<strong>on</strong>-native<strong>Invasive</strong> Spartina at 15 Locati<strong>on</strong>s In <str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco Bay Estuary,California. Sacramento, CAU.S. Fish and Wildlife Service. 2004(e). Record <str<strong>on</strong>g>of</str<strong>on</strong>g> Decisi<strong>on</strong>, SanFrancisco Estuary <strong>Invasive</strong> Spartina Project, Spartina C<strong>on</strong>trolProgram, Final Envir<strong>on</strong>mental Impact Statement. Sacramento,CA.- 222 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 4: Spartina C<strong>on</strong>trol and ManagementACOMPREHENSIVE LOOK AT THE MANAGEMENT OF SPARTINA IN WASHINGTON STATEK.C. MURPHY 1 ,W.BROWN 2 AND D. HEIMER 31 Aquatic Reserves Program Manager, Washingt<strong>on</strong> State Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural Resources, P.O. Box 47027, Olympia, WA98504-7027; kyle.murphy@dnr.wa.gov2 Executive Coordinator, Washingt<strong>on</strong> <strong>Invasive</strong> Species Council, P.O. Box 40917, Olympia, WA 98504-09173 Noxious Weed Program Coordinator, Washingt<strong>on</strong> State Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Fish and Wildlife, 4516 N 28 th , Tacoma, WA 98407Washingt<strong>on</strong> State has been fighting <str<strong>on</strong>g>the</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> invasive Spartina since <str<strong>on</strong>g>the</str<strong>on</strong>g> early 1990’s. Untilrecently <str<strong>on</strong>g>the</str<strong>on</strong>g> progress in Puget Sound was slow or, in <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> Willapa Bay, n<strong>on</strong>-existent.However, with appropriate funding, increased community, agency and legislative support, improvedtools, and better cooperati<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g> entities involved, <str<strong>on</strong>g>the</str<strong>on</strong>g> eradicati<strong>on</strong> in Puget Sound isprogressing at a rapid pace, and <str<strong>on</strong>g>the</str<strong>on</strong>g> tide is finally being turned in Willapa Bay.This paper discusses <str<strong>on</strong>g>the</str<strong>on</strong>g> challenges that have led to <str<strong>on</strong>g>the</str<strong>on</strong>g> current success in Washingt<strong>on</strong> State from an<strong>on</strong>-<str<strong>on</strong>g>the</str<strong>on</strong>g>-ground management prospective. Elements c<strong>on</strong>tributing to that success range from choosing<str<strong>on</strong>g>the</str<strong>on</strong>g> correct c<strong>on</strong>trol tools to <str<strong>on</strong>g>the</str<strong>on</strong>g> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> cultivating community support and cooperati<strong>on</strong>necessary for a successful program, regardless <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> infestati<strong>on</strong> that is being treated.The less<strong>on</strong>s c<strong>on</strong>veyed in this paper are intended to help o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs c<strong>on</strong>fr<strong>on</strong>ting infestati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-nativeSpartina and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r invasive species to make <str<strong>on</strong>g>the</str<strong>on</strong>g> most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir available resources. Not repeating <str<strong>on</strong>g>the</str<strong>on</strong>g>same learning processes and avoiding <str<strong>on</strong>g>the</str<strong>on</strong>g> mistakes that have already been made can save resourcemanagers and field coordinators precious time and m<strong>on</strong>ey and help to build a successful program toaddress invasive species problems.Keywords: <strong>Invasive</strong> Spartina, Spartina alterniflora, Spartina anglica, Spartina patens, Spartinadensiflora, Willapa Bay, Puget Sound, Hood Canal, Integrated Pest ManagementINTRODUCTIONSpartina species introduced to Washingt<strong>on</strong> State haveproven to be aggressive noxious weeds that severely disrupt<str<strong>on</strong>g>the</str<strong>on</strong>g> ecosystems <str<strong>on</strong>g>of</str<strong>on</strong>g> native saltwater estuaries. Theyoutcompete native vegetati<strong>on</strong> and c<strong>on</strong>vert mudflats intom<strong>on</strong>otypic Spartina meadows. This is <str<strong>on</strong>g>of</str<strong>on</strong>g> great c<strong>on</strong>cernbecause estuaries serve as an important rearing area fornumerous fish species, important breeding, migrati<strong>on</strong> andwintering grounds for many migratory birds, waterfowl ando<str<strong>on</strong>g>the</str<strong>on</strong>g>r wildlife and provide a critical ec<strong>on</strong>omic resource formany communities dependent <strong>on</strong> commercial fishing,mariculture, shipping and tourism (Patten and Stenvall2002). By 2002, in large areas <str<strong>on</strong>g>of</str<strong>on</strong>g> Willapa Bay, <str<strong>on</strong>g>the</str<strong>on</strong>g> area with<str<strong>on</strong>g>the</str<strong>on</strong>g> largest cordgrass infestati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> state, Spartinaalterniflora had reduced <str<strong>on</strong>g>the</str<strong>on</strong>g> available foraging time forshorebirds by 50% <str<strong>on</strong>g>of</str<strong>on</strong>g> winter daylight hours because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>reducti<strong>on</strong> in mudflat acreage (Jaques 2002).In Washingt<strong>on</strong>, federal, state and local goverments,tribal entities, n<strong>on</strong>-pr<str<strong>on</strong>g>of</str<strong>on</strong>g>it organizati<strong>on</strong>s, business interests,local universities and private citizens are working toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r tocombat <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong>. This effort is becoming moresuccessful each year with reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> invasive Spartinastatewide over <str<strong>on</strong>g>the</str<strong>on</strong>g> past two years. This report outlines <str<strong>on</strong>g>the</str<strong>on</strong>g>different comp<strong>on</strong>ents that have been instrumental in leading<str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina eradicati<strong>on</strong> effort towards success, includingprogram support, planning and coordinati<strong>on</strong>, adaptivemanagement, and <str<strong>on</strong>g>the</str<strong>on</strong>g> evoluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> various tools used foreradicati<strong>on</strong> efforts.EXTENT OF INFESTATIONWashingt<strong>on</strong> State has <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> largest invasi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>n<strong>on</strong>-native Spartina species <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> entire U.S. west coast(Patten and Stenvall 2002). The invasi<strong>on</strong> is comprised <str<strong>on</strong>g>of</str<strong>on</strong>g>four species, Spartina alterniflora, Spartina anglica,Spartina patens and Spartina densiflora, spread throughoutfour main waterbodies, Willapa Bay, Grays Harbor, PugetSound and Hood Canal. Willapa Bay is known to c<strong>on</strong>tain<strong>on</strong>ly S. alterniflora; Grays Harbor c<strong>on</strong>tains both S.alterniflora and S. densiflora. Hood Canal is known toc<strong>on</strong>tain S. alterniflora, S. anglica and S. patens, while PugetSound has infestati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora, S. anglica and S.densiflora.The current size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> infestati<strong>on</strong> in Washingt<strong>on</strong> isapproximately 3,035 solid hectares (ha) (7,500 acres [ac]),affecting more than 7,300 ha (18,000 ac) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> intertidalmarine envir<strong>on</strong>ment (Murphy 2004). In Puget Sound andHood Canal <str<strong>on</strong>g>the</str<strong>on</strong>g>re are 95 sites with current or historicalinfestati<strong>on</strong>s (Fig. 1). The infestati<strong>on</strong>s cover approximately260 solid ha (645 ac). The infestati<strong>on</strong> in Willapa Bay coversmore than 2,800 solid ha (7,000 ac) and encompases almost<str<strong>on</strong>g>the</str<strong>on</strong>g> entire shoreline <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bay (Fig. 2).- 223 -


Chapter 4: Spartina C<strong>on</strong>trol and Management<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaFig. 1. Map showing Spartina invasi<strong>on</strong> sites found within Puget Sound inWashingt<strong>on</strong> State, USA.PROGRAM SUPPORTSupport for <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina eradicati<strong>on</strong> program inWashingt<strong>on</strong> is vital for success and can be categorized intothree types: community, agency, and legislative.Community support for <str<strong>on</strong>g>the</str<strong>on</strong>g> program has come fromprivate landowners, most <str<strong>on</strong>g>of</str<strong>on</strong>g> whom own property directlyaffected by Spartina or situated adjacent to infestati<strong>on</strong>s, butalso includes local industries, sportsmen, tribal entities withland impacted by Spartina invasi<strong>on</strong>s, envir<strong>on</strong>mental groups,and local universities. At <str<strong>on</strong>g>the</str<strong>on</strong>g> outset <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> eradicati<strong>on</strong>program in <str<strong>on</strong>g>the</str<strong>on</strong>g> early 1990s <str<strong>on</strong>g>the</str<strong>on</strong>g> biggest advocates for <str<strong>on</strong>g>the</str<strong>on</strong>g>program were those who depended <strong>on</strong>, managed, or ownedproperty in <str<strong>on</strong>g>the</str<strong>on</strong>g> intertidal envir<strong>on</strong>ment impacted by Spartina.During <str<strong>on</strong>g>the</str<strong>on</strong>g> early stages <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> infestati<strong>on</strong>, communitysupport played a critical role in bringing <str<strong>on</strong>g>the</str<strong>on</strong>g> problem to <str<strong>on</strong>g>the</str<strong>on</strong>g>attenti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> both <str<strong>on</strong>g>the</str<strong>on</strong>g> goverment agencies who were in apositi<strong>on</strong> to acknowledge and act <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> problem and locallawmakers who were in a positi<strong>on</strong> to mandate and fundappropriate acti<strong>on</strong>s.Support for <str<strong>on</strong>g>the</str<strong>on</strong>g> program also has come from <str<strong>on</strong>g>the</str<strong>on</strong>g> variousfederal, state and local government agencies that must dealwith <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina invasi<strong>on</strong> ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r as part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir landFig. 2. Map showing Spartina invasi<strong>on</strong> sites found within Willapa Bay inWashingt<strong>on</strong> State, USA. Infestati<strong>on</strong> data provided by Washingt<strong>on</strong> StateDepartment <str<strong>on</strong>g>of</str<strong>on</strong>g> Natural Resources.management resp<strong>on</strong>sibilities or through <str<strong>on</strong>g>the</str<strong>on</strong>g>ir various legalmandates. These agencies include <str<strong>on</strong>g>the</str<strong>on</strong>g> U.S. Fish and WildlifeService, which manages Willapa Nati<strong>on</strong>al Wildlife Refugein Willapa Bay, as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> Washingt<strong>on</strong> StateDepartments <str<strong>on</strong>g>of</str<strong>on</strong>g> Fish and Wildlife, Natural Resources,Ecology and State Parks. County noxious weed c<strong>on</strong>trolboards are also involved with and support <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartinaeradicati<strong>on</strong> program as a part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir legislative mandates.Finally, <str<strong>on</strong>g>the</str<strong>on</strong>g> Washingt<strong>on</strong> State Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture ismandated by law to lead <str<strong>on</strong>g>the</str<strong>on</strong>g> statewide eradicati<strong>on</strong> effort.In <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning stages <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> eradicati<strong>on</strong> program, <str<strong>on</strong>g>the</str<strong>on</strong>g>early 1990s, some higher-level individuals within keyagencies were reluctant to recognize Spartina as a threat.However, after field pers<strong>on</strong>nel familiar with <str<strong>on</strong>g>the</str<strong>on</strong>g> problemeducated <str<strong>on</strong>g>the</str<strong>on</strong>g>m <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> pertinent issues, and with <str<strong>on</strong>g>the</str<strong>on</strong>g> passage<str<strong>on</strong>g>of</str<strong>on</strong>g> state legislati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>se agencies became fully supportive<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> effort. The most important step in this educati<strong>on</strong>process was <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tinued efforts by <str<strong>on</strong>g>the</str<strong>on</strong>g> field pers<strong>on</strong>nel andbiologists working <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina problem in educating<str<strong>on</strong>g>the</str<strong>on</strong>g>ir pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>al peers, making <str<strong>on</strong>g>the</str<strong>on</strong>g>m aware <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina’sthreat to <str<strong>on</strong>g>the</str<strong>on</strong>g> larger ecosystem and viability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> estuaries.- 224 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 4: Spartina C<strong>on</strong>trol and ManagementAno<str<strong>on</strong>g>the</str<strong>on</strong>g>r aspect <str<strong>on</strong>g>of</str<strong>on</strong>g> agency support is interagencycooperati<strong>on</strong>. The ability <str<strong>on</strong>g>of</str<strong>on</strong>g> each agency to work closely wi<str<strong>on</strong>g>the</str<strong>on</strong>g>ach o<str<strong>on</strong>g>the</str<strong>on</strong>g>r, share equipment, resources and pers<strong>on</strong>nel hasalso been a very important part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> eradicati<strong>on</strong> program’ssuccess. The various partners in Washingt<strong>on</strong> have signed <str<strong>on</strong>g>of</str<strong>on</strong>g>f<strong>on</strong> a Memorandum <str<strong>on</strong>g>of</str<strong>on</strong>g> Understanding (MOU) that helps t<str<strong>on</strong>g>of</str<strong>on</strong>g>oster this cooperative process.Legislative support has also been extremely importantin helping to motivate <str<strong>on</strong>g>the</str<strong>on</strong>g> governmental agencies to makeSpartina eradicati<strong>on</strong> a priority. Most importantly, str<strong>on</strong>gpolitical support from both local and federal politicians hasensured <str<strong>on</strong>g>the</str<strong>on</strong>g> program <str<strong>on</strong>g>of</str<strong>on</strong>g> adequate funding. Such support mustbe <strong>on</strong>going to ensure that adequate funding remainsavailable.PLANNING AND COORDINATIONThe Washingt<strong>on</strong> State Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture(WSDA) has been identified by law, RCW 17.26 (RevisedCode <str<strong>on</strong>g>of</str<strong>on</strong>g> Washingt<strong>on</strong>), as <str<strong>on</strong>g>the</str<strong>on</strong>g> lead agency <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartinaeradicati<strong>on</strong> program. Lead agency resp<strong>on</strong>sibilities includeensuring that <str<strong>on</strong>g>the</str<strong>on</strong>g> proper permits are in place, producingyearly progress reports for <str<strong>on</strong>g>the</str<strong>on</strong>g> Washingt<strong>on</strong> State Legislature,maintaining eradicati<strong>on</strong> program records, m<strong>on</strong>itoring waterquality in relati<strong>on</strong> to herbicide applicati<strong>on</strong>s, providing publiceducati<strong>on</strong>al informati<strong>on</strong> and developing management plansin cooperati<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r entities. Having <strong>on</strong>e agency in<str<strong>on</strong>g>the</str<strong>on</strong>g> state manage <str<strong>on</strong>g>the</str<strong>on</strong>g>se resp<strong>on</strong>sibilities has allowed <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>rentities to prioritize <strong>on</strong>-<str<strong>on</strong>g>the</str<strong>on</strong>g>-ground eradicati<strong>on</strong> efforts.However, no legal authority was given to WSDA requiringpartners to follow specific WSDA plans or directives. Thisled to beneficial innovati<strong>on</strong> in c<strong>on</strong>trol methods as variouspartners tried c<strong>on</strong>trol tools which <str<strong>on</strong>g>the</str<strong>on</strong>g>y believed aided ineradicati<strong>on</strong> and built friendly competiti<strong>on</strong> between <str<strong>on</strong>g>the</str<strong>on</strong>g>agencies. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> absence <str<strong>on</strong>g>of</str<strong>on</strong>g> lead-agency authorityalso sometimes resulted in unilateral decisi<strong>on</strong>s and a lack <str<strong>on</strong>g>of</str<strong>on</strong>g>budgetary transparency.Spartina eradicati<strong>on</strong> efforts in Washingt<strong>on</strong> are plannedcooperatively. In Puget Sound, <str<strong>on</strong>g>the</str<strong>on</strong>g> North Puget SoundSpartina Eradicati<strong>on</strong> Task Force, made up <str<strong>on</strong>g>of</str<strong>on</strong>g> representativesfrom local and state agencies, tribal entities, and n<strong>on</strong>-pr<str<strong>on</strong>g>of</str<strong>on</strong>g>itorganizati<strong>on</strong>s meets throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> year to developmanagement plans and discuss <str<strong>on</strong>g>the</str<strong>on</strong>g> successes and failures <str<strong>on</strong>g>of</str<strong>on</strong>g>different approaches. In Willapa Bay, a technical groupmade up <str<strong>on</strong>g>of</str<strong>on</strong>g> field coordinators and biologists develops yearlymanagement plans and brings <str<strong>on</strong>g>the</str<strong>on</strong>g>m before an advisorycommittee for review and critique. While <str<strong>on</strong>g>the</str<strong>on</strong>g>re has notalways been agreement <strong>on</strong> all <str<strong>on</strong>g>the</str<strong>on</strong>g> specifics c<strong>on</strong>tained in <str<strong>on</strong>g>the</str<strong>on</strong>g>management plans, <str<strong>on</strong>g>the</str<strong>on</strong>g>re has always been c<strong>on</strong>sensus <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>overall goal <str<strong>on</strong>g>of</str<strong>on</strong>g> eradicating Spartina. With this comm<strong>on</strong>ground, <str<strong>on</strong>g>the</str<strong>on</strong>g> partners c<strong>on</strong>tinue to return to <str<strong>on</strong>g>the</str<strong>on</strong>g> planning table.ADAPTIVE MANAGEMENTRCW 17.15.020 directs state agencies in Washingt<strong>on</strong> toimplement integrated pest management (IPM) practiceswhen carrying out <str<strong>on</strong>g>the</str<strong>on</strong>g> agency's or instituti<strong>on</strong>'s duties relatedto pest c<strong>on</strong>trol. IPM effectively extends <str<strong>on</strong>g>the</str<strong>on</strong>g> operating seas<strong>on</strong>and allows techniques to be applied when and where <str<strong>on</strong>g>the</str<strong>on</strong>g>ywork best (DOI 1996).Adaptive management is a key element <str<strong>on</strong>g>of</str<strong>on</strong>g> a successfulIPM program. It allows management policies and practicesto c<strong>on</strong>tinually improve by learning from <str<strong>on</strong>g>the</str<strong>on</strong>g> interimoutcomes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> eradicati<strong>on</strong> program.http://www.for.gov.bc.ca/hfp/amhome/Admin/index.htmWashingt<strong>on</strong>’s Spartina eradicati<strong>on</strong> program c<strong>on</strong>tains fiveadaptive management comp<strong>on</strong>ents: pre-treatmentm<strong>on</strong>itoring, implementing eradicati<strong>on</strong> practices <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>proper scale, post-treatment m<strong>on</strong>itoring and evaluati<strong>on</strong>,adjusting future treatment based <strong>on</strong> evaluati<strong>on</strong>, andc<strong>on</strong>trolling in a c<strong>on</strong>sistent manner.Pre-treatment m<strong>on</strong>itoring sets a baseline for comparis<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> post-treatment m<strong>on</strong>itoring results. During <str<strong>on</strong>g>the</str<strong>on</strong>g> spring <str<strong>on</strong>g>of</str<strong>on</strong>g>2002, <str<strong>on</strong>g>the</str<strong>on</strong>g> partners involved in c<strong>on</strong>trol work developed acomprehensive m<strong>on</strong>itoring plan that included protocols forpre-treatment m<strong>on</strong>itoring. This ensured an accurate baseline<str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina stem counts.The next comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> adaptive management isimplementing eradicati<strong>on</strong> practices <strong>on</strong> an appropriate scale.It is important to choose <str<strong>on</strong>g>the</str<strong>on</strong>g> proper tools to use and set agoal <str<strong>on</strong>g>of</str<strong>on</strong>g> treating <str<strong>on</strong>g>the</str<strong>on</strong>g> entire site. For example, using backpacksprayers to completely treat a 200-hectare meadow wouldnot be appropriate, whereas using a helicopter applicati<strong>on</strong>would be time- and cost-efficient. Post-treatment m<strong>on</strong>itoringhelped determine that using <str<strong>on</strong>g>the</str<strong>on</strong>g> proper tool(s) forretreatment <str<strong>on</strong>g>of</str<strong>on</strong>g> a large Spartina infestati<strong>on</strong> takes a minimum<str<strong>on</strong>g>of</str<strong>on</strong>g> three years. Ensuring that <str<strong>on</strong>g>the</str<strong>on</strong>g> entire site receivestreatment is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten dependent <strong>on</strong> funding, so matchingappropriate funding to <str<strong>on</strong>g>the</str<strong>on</strong>g> infestati<strong>on</strong> size is essential.Through field experience and research, it has become clearthat c<strong>on</strong>sistency <str<strong>on</strong>g>of</str<strong>on</strong>g> treatment is as important as <str<strong>on</strong>g>the</str<strong>on</strong>g> methodchosen for c<strong>on</strong>trol. Early failures in Washingt<strong>on</strong>, in part,resulted from not treating <str<strong>on</strong>g>the</str<strong>on</strong>g> entire site, leaving viableplants to re-seed and spread back into <str<strong>on</strong>g>the</str<strong>on</strong>g> treated porti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> site.Once eradicati<strong>on</strong> practices are implemented, posttreatmentm<strong>on</strong>itoring is c<strong>on</strong>ducted. The m<strong>on</strong>itoring plandeveloped in 2002 ensured that enough samples werecollected to allow for accurate comparis<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> pretreatmentsampling. Through this comparis<strong>on</strong>, managers andfield coordinators were able to evaluate <str<strong>on</strong>g>the</str<strong>on</strong>g> effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> eradicati<strong>on</strong> practices employed.Adjusting <str<strong>on</strong>g>the</str<strong>on</strong>g> treatments based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> completedevaluati<strong>on</strong> becomes <str<strong>on</strong>g>the</str<strong>on</strong>g> next step in <str<strong>on</strong>g>the</str<strong>on</strong>g> process. Forinstance, crushing Spartina was found to be ineffective when<str<strong>on</strong>g>the</str<strong>on</strong>g> substrate was too firm and, as a result, <str<strong>on</strong>g>the</str<strong>on</strong>g> site inquesti<strong>on</strong> was sprayed <str<strong>on</strong>g>the</str<strong>on</strong>g> next seas<strong>on</strong>. With adequate preandpost-treatment m<strong>on</strong>itoring and evaluati<strong>on</strong>, managers andfield coordinators get a good picture <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> success or failure- 225 -


Chapter 4: Spartina C<strong>on</strong>trol and Management<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaFig. 3. Field crew member mowing Spartina anglica with hand-held brushcutters.Fig. 4. Field crew member treating Spartina patens with backpack herbicidesprayer.<str<strong>on</strong>g>of</str<strong>on</strong>g> a treatment method. This allows for <str<strong>on</strong>g>the</str<strong>on</strong>g> adjustment <str<strong>on</strong>g>of</str<strong>on</strong>g>treatment methods for better c<strong>on</strong>trol.The most imporant comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> adaptive managementin Spartina eradicati<strong>on</strong> is c<strong>on</strong>sistent c<strong>on</strong>trol from year toyear. Research has shown that invasive Spartina is highlyresilient and requires multiple years <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>sistent treatmentto cause substantial declines. In some instances inc<strong>on</strong>sistentc<strong>on</strong>trol, specifically, when two treatment seas<strong>on</strong>s werefollowed by a year without treatment, resulted in a 100% to500% increase in cover and number <str<strong>on</strong>g>of</str<strong>on</strong>g> tillers (Reeder andHacker 2004). This underscores <str<strong>on</strong>g>the</str<strong>on</strong>g> importance <str<strong>on</strong>g>of</str<strong>on</strong>g>c<strong>on</strong>sistently treating a chosen site year after year to achieveeventual reducti<strong>on</strong> and eradicati<strong>on</strong>.EVOLUTION OF TOOLSOver <str<strong>on</strong>g>the</str<strong>on</strong>g> more than ten years <str<strong>on</strong>g>of</str<strong>on</strong>g> invasive Spartinaeradicati<strong>on</strong> efforts in Washingt<strong>on</strong> State, <str<strong>on</strong>g>the</str<strong>on</strong>g> treatment toolshave evolved and become more effective. In <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning,crews treated infestati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> all sizes with small hand heldbrushcutters (Fig. 3) and backpack herbicide sprayers (Fig.4). While <str<strong>on</strong>g>the</str<strong>on</strong>g>se tools are effective <strong>on</strong> small infestati<strong>on</strong>s andare still used to this day, <str<strong>on</strong>g>the</str<strong>on</strong>g>y are simply too slow foreffectively treating anything greater than a few hectares. Theeradicati<strong>on</strong> program in Washingt<strong>on</strong> now employs helicoptersand large, tracked amphibious machines to treat largemeadows, and airboats with high pressure herbicide spraysytems to treat scattered cl<strong>on</strong>es and re-growth. Thehelicopters, applying herbicides at low carrier volumes, 97lliters per hectare (l/ha) (10 gall<strong>on</strong>s per acre [10 gpa]), cantreat more than 160 ha (400 ac) per day. While slower than<str<strong>on</strong>g>the</str<strong>on</strong>g> helicopters, <str<strong>on</strong>g>the</str<strong>on</strong>g> tracked machines with broadcastapplicati<strong>on</strong> systems are still able to treat upwards <str<strong>on</strong>g>of</str<strong>on</strong>g> 16 ha(40 ac) per day. Airboats may <strong>on</strong>ly be able to treat 3.2 ha (8ac) per day at most, but <str<strong>on</strong>g>the</str<strong>on</strong>g>y are able to manuever in <str<strong>on</strong>g>the</str<strong>on</strong>g>estuaries and <strong>on</strong> mudflats, allowing for rapid transportbetween scattered infestati<strong>on</strong>s and produce virtually noenvir<strong>on</strong>mental footprint.Having <str<strong>on</strong>g>the</str<strong>on</strong>g> ability to treat large infestati<strong>on</strong>s quickly andeffectively has increased <str<strong>on</strong>g>the</str<strong>on</strong>g> success <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> eradicati<strong>on</strong>program in Washingt<strong>on</strong> .CONCLUSIONOver <str<strong>on</strong>g>the</str<strong>on</strong>g> past two years, <str<strong>on</strong>g>the</str<strong>on</strong>g> eradicati<strong>on</strong> program inWashingt<strong>on</strong> State has become more efficient and effective.In 2003, a total <str<strong>on</strong>g>of</str<strong>on</strong>g> 2,700 solid ha (6,695 ac) out <str<strong>on</strong>g>of</str<strong>on</strong>g>approximately 3,400 solid ha (8,500 ac) were treated(Murphy 2003). These treatments resulted in <str<strong>on</strong>g>the</str<strong>on</strong>g> first overallreducti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> statewide infestati<strong>on</strong>. In 2004, a total <str<strong>on</strong>g>of</str<strong>on</strong>g>2,500 solid ha (6,200 ac) out <str<strong>on</strong>g>of</str<strong>on</strong>g> an estimated 3,000 solid ha(7,500 ac) were treated statewide (Murphy 2004). Managersare c<strong>on</strong>fident that <str<strong>on</strong>g>the</str<strong>on</strong>g> 2004 treatments will also result in aFig. 5. Helicopter herbicide applicati<strong>on</strong>, Willapa Bay, Washingt<strong>on</strong>, USA- 226 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 4: Spartina C<strong>on</strong>trol and ManagementFig. 6. Tracked amphibious machine with ground broadcast herbicide applicati<strong>on</strong>equipment, Willapa Bay, Washingt<strong>on</strong>, USA.Fig. 7. Airboat with high-pressure spray equipment, Willapa Bay, Washingt<strong>on</strong>,USA.c<strong>on</strong>tinued overall decline <str<strong>on</strong>g>of</str<strong>on</strong>g> Washingt<strong>on</strong>’s Spartinainfestati<strong>on</strong>.Many things have c<strong>on</strong>tributed to <str<strong>on</strong>g>the</str<strong>on</strong>g> current success <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> program. C<strong>on</strong>sistent c<strong>on</strong>trol made possible with adequatefunding led to effective treatment. Washingt<strong>on</strong>’smanagement plans called for a multi-year commitment totreatment sites, c<strong>on</strong>trolling a site until eradicati<strong>on</strong> has beenachieved. Permitting c<strong>on</strong>solidati<strong>on</strong> also c<strong>on</strong>tributed to <str<strong>on</strong>g>the</str<strong>on</strong>g>program’s success. WSDA is granted an Nati<strong>on</strong>al PollutantDischarge Eliminati<strong>on</strong> System (NPDES) permit that allowsfor <str<strong>on</strong>g>the</str<strong>on</strong>g> chemical treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina. As <str<strong>on</strong>g>the</str<strong>on</strong>g> permit holder,WSDA extends coverage to o<str<strong>on</strong>g>the</str<strong>on</strong>g>r entities to treat Spartinainfestati<strong>on</strong>s, while WSDA retains <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>sibily form<strong>on</strong>itoring and reporting. This allows <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r entities t<str<strong>on</strong>g>of</str<strong>on</strong>g>ocus <str<strong>on</strong>g>the</str<strong>on</strong>g>ir resources towards <strong>on</strong>-<str<strong>on</strong>g>the</str<strong>on</strong>g>-ground c<strong>on</strong>trol, ra<str<strong>on</strong>g>the</str<strong>on</strong>g>rthan <strong>on</strong> manuevering through <str<strong>on</strong>g>the</str<strong>on</strong>g> bureaucratic permittingprocess.Finally, through a l<strong>on</strong>g and painful learning curve,managers and field coordinators have discovered what worksbest to c<strong>on</strong>trol Spartina infestati<strong>on</strong>s within a complicated,and sometimes c<strong>on</strong>troversial, envir<strong>on</strong>mental, social andpolitical c<strong>on</strong>text. Garnering public support, havinglegislati<strong>on</strong> in place to provide incentive and funding,working collaboratively with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r agencies, having accessto a wide breadth <str<strong>on</strong>g>of</str<strong>on</strong>g> tools, and knowing where and how tobest use those tools have all c<strong>on</strong>tributed to <str<strong>on</strong>g>the</str<strong>on</strong>g> currentsuccess <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> program. While <str<strong>on</strong>g>the</str<strong>on</strong>g>re is still much progress tobe made, <str<strong>on</strong>g>the</str<strong>on</strong>g> partners involved are c<strong>on</strong>fident that <str<strong>on</strong>g>the</str<strong>on</strong>g>ireradicati<strong>on</strong> goal will be achieved. The effort in Washingt<strong>on</strong>will c<strong>on</strong>tinue searching for better tools and equipment toincrease efficacy and efficiency, while minimizing costs.2010 UPDATEAt <str<strong>on</strong>g>the</str<strong>on</strong>g> time <str<strong>on</strong>g>of</str<strong>on</strong>g> this article’s publicati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> cooperativeSpartina eradicati<strong>on</strong> effort in Washingt<strong>on</strong> State hasc<strong>on</strong>tinued to yield great success in effectively reducing <str<strong>on</strong>g>the</str<strong>on</strong>g>infestati<strong>on</strong> statewide. During 2009 <str<strong>on</strong>g>the</str<strong>on</strong>g> partners involved in<str<strong>on</strong>g>the</str<strong>on</strong>g> eradicati<strong>on</strong> effort treated approximately 110 solid acres<str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina. WSDA now estimates that, as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>2009 effort, <str<strong>on</strong>g>the</str<strong>on</strong>g> infestati<strong>on</strong> statewide has been reduced to<strong>on</strong>ly 40 solid acres (Phillips pers. com. 2010). Thisrepresents a 99.5% overall reducti<strong>on</strong> from <str<strong>on</strong>g>the</str<strong>on</strong>g> historic high<str<strong>on</strong>g>of</str<strong>on</strong>g> 9,260 solid acres estimated in 2003.This c<strong>on</strong>tinued success provides evidence that <str<strong>on</strong>g>the</str<strong>on</strong>g>management effort, originally detailed in this article in 2004,was and c<strong>on</strong>tinues to be an effective approach. Since <str<strong>on</strong>g>the</str<strong>on</strong>g>2004 <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <strong>Invasive</strong> Spartina <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g>, <str<strong>on</strong>g>the</str<strong>on</strong>g> effortin Washingt<strong>on</strong> has c<strong>on</strong>tinued to seek improvements in <str<strong>on</strong>g>the</str<strong>on</strong>g>tools and approaches used to eradicate Spartina. Imazapyr,first aerially applied to 2000 solid acres during <str<strong>on</strong>g>the</str<strong>on</strong>g> 2004seas<strong>on</strong> (Murphy 2005), proved to be a huge success and abig reas<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> success <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> overall Washingt<strong>on</strong> Stateeffort. Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r obvious reas<strong>on</strong> for this success was <str<strong>on</strong>g>the</str<strong>on</strong>g>c<strong>on</strong>tinued program support and funding.As major reducti<strong>on</strong>s were made in <str<strong>on</strong>g>the</str<strong>on</strong>g> overall size <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>infestati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> remaining Spartina was scattered throughouta large area. This required <str<strong>on</strong>g>the</str<strong>on</strong>g> partners to modify <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>-<str<strong>on</strong>g>the</str<strong>on</strong>g>groundapproach. The effort went from focusing <strong>on</strong> largescaleaerial and ground broadcast applicati<strong>on</strong>s, to smallscale,targeted treatments <str<strong>on</strong>g>of</str<strong>on</strong>g> scattered infestati<strong>on</strong>s. Thishighlights <str<strong>on</strong>g>the</str<strong>on</strong>g> need to c<strong>on</strong>stantly re-evaluate <str<strong>on</strong>g>the</str<strong>on</strong>g> program toensure that <str<strong>on</strong>g>the</str<strong>on</strong>g> most effective and efficient tools andapproaches are used to c<strong>on</strong>tinue <str<strong>on</strong>g>the</str<strong>on</strong>g> success <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>cooperative Spartina eradicati<strong>on</strong> effort.REFERENCESBritish Columbia Ministry <str<strong>on</strong>g>of</str<strong>on</strong>g> Forests & Range. 2008. Definiti<strong>on</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g> Adaptive Management. Posted athttp://www.for.gov.bc.ca/hfp/amhome/Admin/index.htm.- 227 -


Chapter 4: Spartina C<strong>on</strong>trol and Management<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaJaques, D. 2002. Shorebird status and effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alternifloraat Willapa Nati<strong>on</strong>al Wildlife Refuge. Progress Reportto <str<strong>on</strong>g>the</str<strong>on</strong>g> WNWR.Murphy, K. 2003. Report to <str<strong>on</strong>g>the</str<strong>on</strong>g> Legislature: Progress <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2003Spartina Eradicati<strong>on</strong> Program. WSDA Pub # AGR PUB 850-110 (N/1/04).Murphy, K. 2004. Report to <str<strong>on</strong>g>the</str<strong>on</strong>g> Legislature, Progress <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2004Spartina Eradicati<strong>on</strong> Program. WSDA Pub # AGR PUB 850-132 (N/1/05).Murphy, K. 2005. Report to <str<strong>on</strong>g>the</str<strong>on</strong>g> Legislature, Progress <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2005Spartina Eradicati<strong>on</strong> Program. WSDA Pub # AGR PUB 850-151 (N/1/06).Patten, K. and C. Stenvall. 2002. C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Smooth Cordgrass(Spartina alterniflora): A Comparis<strong>on</strong> between mechanical andchemical c<strong>on</strong>trol methods for efficacy, cost and aquatic toxicity.In: <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 11th Int. C<strong>on</strong>f. <strong>on</strong> Aquatic <strong>Invasive</strong> Species,2001,Pembroke, Ontario, Canada. 25-28 February 2002,Alexandria, VA. The Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>al Edge, Pembroke, ON. Canada:340-350.Reeder, T.G., S.D. Hacker. 2004. Factors C<strong>on</strong>tributing to <str<strong>on</strong>g>the</str<strong>on</strong>g> Removal<str<strong>on</strong>g>of</str<strong>on</strong>g> a Marine Grass Invader (Spartina anglica) and SubsequentPotential for Habitat Restorati<strong>on</strong>. Estuaries 27: 244-253.U.S. Dept <str<strong>on</strong>g>of</str<strong>on</strong>g> Interior, Fish and Wildlife Service, Willapa Nati<strong>on</strong>alWildlife Refuge. 1996. Iterim Envir<strong>on</strong>mental Assessment: C<strong>on</strong>trol<str<strong>on</strong>g>of</str<strong>on</strong>g> Smooth Cordgrass (Spartina alterniflora) <strong>on</strong> Willapa Nati<strong>on</strong>alWildlife Refuge in 1996: 20-21.- 228 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 4: Spartina C<strong>on</strong>trol and ManagementWHY DID IT TAKE SO LONG TO TURN THINGS AROUND IN WILLAPA BAY?THE HUMAN SIDE OF THE SPARTINA INVASIONM. WECKERP.O. Box 160, Naselle, WA 98638; mwecker@wwest.netOyster growers first noticed cl<strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> exotic cordgrass growing in Willapa Bay in <str<strong>on</strong>g>the</str<strong>on</strong>g> 1950s andbrought <str<strong>on</strong>g>the</str<strong>on</strong>g>ir c<strong>on</strong>cerns about <str<strong>on</strong>g>the</str<strong>on</strong>g> alien grass to <str<strong>on</strong>g>the</str<strong>on</strong>g> attenti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> staff <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Willapa Refuge. Atthat time, <str<strong>on</strong>g>the</str<strong>on</strong>g> infestati<strong>on</strong> involved no more than a handful <str<strong>on</strong>g>of</str<strong>on</strong>g> cl<strong>on</strong>es. Spartina now infests over15,000 acres <str<strong>on</strong>g>of</str<strong>on</strong>g> mudflats in Willapa Bay, seriously degrading <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most ecologicallyproductive and o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise healthy estuarine areas al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> entire Pacific Coast. The human storythat parallels <str<strong>on</strong>g>the</str<strong>on</strong>g> expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina reveals more than just <str<strong>on</strong>g>the</str<strong>on</strong>g> inevitable physical, logistical, andbiological challenges <str<strong>on</strong>g>of</str<strong>on</strong>g> resp<strong>on</strong>ding to an aggressive invasive species. Many <str<strong>on</strong>g>of</str<strong>on</strong>g> our envir<strong>on</strong>mentalorganizati<strong>on</strong>s were unprepared for this problem and reacted in ways that made <str<strong>on</strong>g>the</str<strong>on</strong>g> problem farworse. Our government structures were also not well designed to meet <str<strong>on</strong>g>the</str<strong>on</strong>g> challenges <str<strong>on</strong>g>of</str<strong>on</strong>g> a highlydamaging but very natural process. This paper will present <str<strong>on</strong>g>the</str<strong>on</strong>g> views <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e pers<strong>on</strong> who has beenboth an observer from <str<strong>on</strong>g>the</str<strong>on</strong>g> sidelines and an involved participant in <str<strong>on</strong>g>the</str<strong>on</strong>g> Willapa Bay Spartina programfor <str<strong>on</strong>g>the</str<strong>on</strong>g> past 13 years. Since 1995, Miranda Wecker has served as leader <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> marine researchprogram <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> University <str<strong>on</strong>g>of</str<strong>on</strong>g> Washingt<strong>on</strong>’s Olympic Natural Resources Center. In that capacity, shesupervised research <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> feasibility <str<strong>on</strong>g>of</str<strong>on</strong>g> biological c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina as well as spatial analysis <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> weed’s spread. She also collaborated with local leaders in <str<strong>on</strong>g>the</str<strong>on</strong>g> development and implementati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> a l<strong>on</strong>g-term strategy for eradicati<strong>on</strong> based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> alternative c<strong>on</strong>trol opti<strong>on</strong>s usinggeographic informati<strong>on</strong> system (GIS) tools. It is important to acknowledge errors that have beenmade and draw less<strong>on</strong>s from <str<strong>on</strong>g>the</str<strong>on</strong>g>m in order to assure that <str<strong>on</strong>g>the</str<strong>on</strong>g> same mistakes are not repeated whenwe face <str<strong>on</strong>g>the</str<strong>on</strong>g> next invasi<strong>on</strong>.Keywords: management less<strong>on</strong>s, l<strong>on</strong>g-term strategyINTRODUCTIONMy task is to summarize <str<strong>on</strong>g>the</str<strong>on</strong>g> key less<strong>on</strong>s that I havelearned during <str<strong>on</strong>g>the</str<strong>on</strong>g> more than 15 years that we have beenfighting <str<strong>on</strong>g>the</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina in Willapa Bay. My aim isnot to insult or embarrass any<strong>on</strong>e. My hope is that an h<strong>on</strong>estappraisal <str<strong>on</strong>g>of</str<strong>on</strong>g> our problems will allow us to makeimprovements. I also hope our counterparts in San FranciscoBay will find it helpful to hear my opini<strong>on</strong>s about <str<strong>on</strong>g>the</str<strong>on</strong>g> less<strong>on</strong>swe have learned.What is at stake, it seems to me, is something muchmore than winning <str<strong>on</strong>g>the</str<strong>on</strong>g> battle against Spartina. I believe that<str<strong>on</strong>g>the</str<strong>on</strong>g> mismanagement <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina c<strong>on</strong>trol effort in WillapaBay has damaged local attitudes towards government and itsabilities to solve societal problems. During <str<strong>on</strong>g>the</str<strong>on</strong>g> past tenyears, Willapa residents have watched Spartina c<strong>on</strong>tinue tospread at an alarming rate despite <str<strong>on</strong>g>the</str<strong>on</strong>g> expenditure <str<strong>on</strong>g>of</str<strong>on</strong>g> milli<strong>on</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g> dollars <str<strong>on</strong>g>of</str<strong>on</strong>g> public funds. The <strong>on</strong>going failure to beat <str<strong>on</strong>g>the</str<strong>on</strong>g>Spartina invasi<strong>on</strong> has added ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r chapter to a l<strong>on</strong>ghistory <str<strong>on</strong>g>of</str<strong>on</strong>g> rural skepticism towards government programs.Poor performance creates a double bind. If governmentagencies perform poorly, vocal criticism puts funding at risk.Without such criticism, poor performance is allowed toc<strong>on</strong>tinue unquesti<strong>on</strong>ed. Without reform, <str<strong>on</strong>g>the</str<strong>on</strong>g> program wouldexhaust <str<strong>on</strong>g>the</str<strong>on</strong>g> public will and funds available to deal with <str<strong>on</strong>g>the</str<strong>on</strong>g>problem and fail anyway.In <str<strong>on</strong>g>the</str<strong>on</strong>g> following secti<strong>on</strong>s, I will present my thoughtsregarding what we have learned in fighting Spartina inWillapa Bay. These comments are intended to be subjectivepers<strong>on</strong>al c<strong>on</strong>clusi<strong>on</strong>s based my experiences in <str<strong>on</strong>g>the</str<strong>on</strong>g> humandimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina battle. For <str<strong>on</strong>g>the</str<strong>on</strong>g> battle was not justabout deploying <str<strong>on</strong>g>the</str<strong>on</strong>g> physical resources to kill 20,000 acres<str<strong>on</strong>g>of</str<strong>on</strong>g> an invasive weed. Success required assembly <str<strong>on</strong>g>of</str<strong>on</strong>g> logistical,legal, financial, and political resources. Success depended <strong>on</strong>organizing an array <str<strong>on</strong>g>of</str<strong>on</strong>g> people and instituti<strong>on</strong>s to act in ac<strong>on</strong>certed and effective manner.LESSON 1: NEVER TOO MANY MAPS, BUT THEY CAN BETOO EXPENSIVEA biological invasi<strong>on</strong> is an inherently spatial problem.Before you can formulate a sensible management plan, youneed a good idea <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scale <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> problem. You need toknow where <str<strong>on</strong>g>the</str<strong>on</strong>g> enemy plants are. If your aim is to assist andfacilitate management, you have to be c<strong>on</strong>cerned about <str<strong>on</strong>g>the</str<strong>on</strong>g>costs and <str<strong>on</strong>g>the</str<strong>on</strong>g> time delays associated with <str<strong>on</strong>g>the</str<strong>on</strong>g> variousmapping opti<strong>on</strong>s. Rarely does a weed c<strong>on</strong>trol program havesurplus funding. To see that most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> m<strong>on</strong>ey goes towarderadicati<strong>on</strong> activities in <str<strong>on</strong>g>the</str<strong>on</strong>g> field, you must avoid overlyexpensive and labor intensive methods <str<strong>on</strong>g>of</str<strong>on</strong>g> mapping. GIS- 229 -


Chapter 4: Spartina C<strong>on</strong>trol and Management<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinaanalytic services are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten very expensive. Most agencieshave geographic informati<strong>on</strong> system (GIS) expertise, but<str<strong>on</strong>g>the</str<strong>on</strong>g>y are assigned to <str<strong>on</strong>g>the</str<strong>on</strong>g> highest priority projects for <str<strong>on</strong>g>the</str<strong>on</strong>g>agency. The Spartina infestati<strong>on</strong> was not c<strong>on</strong>sidered to besufficiently important to justify dedicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> internal GISservices by any <str<strong>on</strong>g>of</str<strong>on</strong>g> Washingt<strong>on</strong>’s state agencies. Fortunately,precisi<strong>on</strong> is not critical. You really d<strong>on</strong>’t need maps andanalysis worthy <str<strong>on</strong>g>of</str<strong>on</strong>g> scientific publicati<strong>on</strong>s. For that reas<strong>on</strong>, Ibelieve that <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> standard-accuracy Global Positi<strong>on</strong>ingSystem (GPS) technology is an acceptable way to map formanagement purposes. We found that a basic survey <str<strong>on</strong>g>of</str<strong>on</strong>g>Willapa Bay could be d<strong>on</strong>e in seven-day period bydelineating <str<strong>on</strong>g>the</str<strong>on</strong>g> outer edge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> infestati<strong>on</strong> using a GPSunit. GPS surveys are inherently ground-tru<str<strong>on</strong>g>the</str<strong>on</strong>g>d and georeferenced.The data from a GPS survey can be easilyexported and displayed as a GIS layer. Our total cost wasless than $2,000. Infrared aerial photography and itsinterpretati<strong>on</strong>, by comparis<strong>on</strong>, was so expensive thatagencies could <strong>on</strong>ly afford to have it d<strong>on</strong>e every third year.Image processing and interpretati<strong>on</strong> required years <str<strong>on</strong>g>of</str<strong>on</strong>g> work.Katy Zaremba presented informati<strong>on</strong> earlier in this Spartinac<strong>on</strong>ference indicating that aerial photography misses a greatmany plants. While aerial photography may have academicvalue, I believe that we have learned that it is not <str<strong>on</strong>g>the</str<strong>on</strong>g> optimalway to serve day-to-day management needs.In terms <str<strong>on</strong>g>of</str<strong>on</strong>g> quantity, however, I would say that it wouldbe difficult to have too many maps. During <str<strong>on</strong>g>the</str<strong>on</strong>g> first fiveyears <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Willapa Spartina program, we had too few. It isbest to have surveys d<strong>on</strong>e at <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning as well as at <str<strong>on</strong>g>the</str<strong>on</strong>g>end <str<strong>on</strong>g>of</str<strong>on</strong>g> each seas<strong>on</strong>. I would recommend that you have GISand GPS services at your beck and call. You’ll need maps toresp<strong>on</strong>d quickly to new challenges as <str<strong>on</strong>g>the</str<strong>on</strong>g>y arise.For example, in 2002, Dr. Kim Patten <str<strong>on</strong>g>of</str<strong>on</strong>g> Washingt<strong>on</strong>State University c<strong>on</strong>cluded that herbicide applicati<strong>on</strong>s would<strong>on</strong>ly deliver optimal kill rates if a minimum <str<strong>on</strong>g>of</str<strong>on</strong>g> 12 hours <str<strong>on</strong>g>of</str<strong>on</strong>g>dry time followed treatment. Our challenge was to determinewhe<str<strong>on</strong>g>the</str<strong>on</strong>g>r Spartina in <str<strong>on</strong>g>the</str<strong>on</strong>g> lowest elevati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Willapa Baywere exposed for at least 12 hours during any <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tidesexpected in <str<strong>on</strong>g>the</str<strong>on</strong>g> upcoming seas<strong>on</strong>. Using <str<strong>on</strong>g>the</str<strong>on</strong>g> new LiDARbathymetry layer generated through <str<strong>on</strong>g>the</str<strong>on</strong>g> University <str<strong>on</strong>g>of</str<strong>on</strong>g>California at Davis and <str<strong>on</strong>g>the</str<strong>on</strong>g> NOAA Coastal Services Centerproject, Teresa Alcock and Keven Bennett <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> University<str<strong>on</strong>g>of</str<strong>on</strong>g> Washingt<strong>on</strong>’s Olympic Natural Resources Center(ONRC) formulated a method for presenting spatiallyexplicittidal predicti<strong>on</strong>s. Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r example <str<strong>on</strong>g>of</str<strong>on</strong>g> a spatialinformati<strong>on</strong> challenge was <str<strong>on</strong>g>the</str<strong>on</strong>g> identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> owners <str<strong>on</strong>g>of</str<strong>on</strong>g>infested parcels. In many areas <str<strong>on</strong>g>of</str<strong>on</strong>g> Willapa Bay, <str<strong>on</strong>g>the</str<strong>on</strong>g> pattern<str<strong>on</strong>g>of</str<strong>on</strong>g> ownership is extremely complex with hundreds <str<strong>on</strong>g>of</str<strong>on</strong>g> plotsshaped like jigsaw pieces. Before treatment could take place,landowners had to be c<strong>on</strong>tacted and permissi<strong>on</strong> forms had tobe completed. ONRC staff generated maps with ownershipsand Spartina coverage displayed.In additi<strong>on</strong> to its use as a m<strong>on</strong>itoring and planning tool,GIS also played an important role in communicati<strong>on</strong>s andpublic relati<strong>on</strong>s. An animated movie clip we generatedgraphically displayed how <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina infestati<strong>on</strong> wouldexpand throughout Willapa Bay. This short movie proved tobe <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> most effective educati<strong>on</strong>al tools we created tocommunicate <str<strong>on</strong>g>the</str<strong>on</strong>g> risks. In additi<strong>on</strong>, GIS played aninvaluable role in generating c<strong>on</strong>crete images to helpfacilitate discussi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> alternative strategies. Because we hada GIS staff at <str<strong>on</strong>g>the</str<strong>on</strong>g> ready, we were able to rapidly react to <str<strong>on</strong>g>the</str<strong>on</strong>g>emerging informati<strong>on</strong> needs as <str<strong>on</strong>g>the</str<strong>on</strong>g>y arose.LESSON 2: TEACH THE PUBLIC WELLIn Willapa Bay, it was obvious from <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning thatbroad-based public support for <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol program wasnecessary. Roughly half <str<strong>on</strong>g>the</str<strong>on</strong>g> infestati<strong>on</strong> occurred <strong>on</strong> privatelands. The full costs <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol far exceeded <str<strong>on</strong>g>the</str<strong>on</strong>g> local abilityto pay, so help from <str<strong>on</strong>g>the</str<strong>on</strong>g> state and federal government wasneeded. The <strong>on</strong>ly practical opti<strong>on</strong> was a c<strong>on</strong>certed andhighly visible effort by public agencies. So it was obviousthat <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina c<strong>on</strong>trol program could not succeed without<str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sent, understanding and au<str<strong>on</strong>g>the</str<strong>on</strong>g>ntic support <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>citizenry. C<strong>on</strong>troversy would also have complicated <str<strong>on</strong>g>the</str<strong>on</strong>g>ability <str<strong>on</strong>g>of</str<strong>on</strong>g> lawmakers to secure <str<strong>on</strong>g>the</str<strong>on</strong>g> milli<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> dollars <str<strong>on</strong>g>of</str<strong>on</strong>g>funding needed to sustain <str<strong>on</strong>g>the</str<strong>on</strong>g> eradicati<strong>on</strong> effort to itsc<strong>on</strong>clusi<strong>on</strong>. The public relati<strong>on</strong>s challenge was successfullymet by focussing time and energy <strong>on</strong> educating andinvolving local residents; this kept <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina issue at <str<strong>on</strong>g>the</str<strong>on</strong>g>top <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> priorities list. We also provided numerousopportunities for citizens to track c<strong>on</strong>trol program progressand comment <strong>on</strong> its evoluti<strong>on</strong>. Because for years <str<strong>on</strong>g>the</str<strong>on</strong>g>Spartina c<strong>on</strong>trol effort was not making progress, many <str<strong>on</strong>g>of</str<strong>on</strong>g>our public meetings provided <str<strong>on</strong>g>the</str<strong>on</strong>g> opportunity for expressi<strong>on</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g> harsh criticism. In resp<strong>on</strong>se, agency pers<strong>on</strong>nel becameexcessively defensive.To overcome <str<strong>on</strong>g>the</str<strong>on</strong>g> climate <str<strong>on</strong>g>of</str<strong>on</strong>g> pessimism that surrounded<str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina issue, we resorted to some ra<str<strong>on</strong>g>the</str<strong>on</strong>g>runc<strong>on</strong>venti<strong>on</strong>al approaches to public educati<strong>on</strong>. Weunderstood that <str<strong>on</strong>g>the</str<strong>on</strong>g> standard envir<strong>on</strong>mental jarg<strong>on</strong> andtactics that work well in receptive urban populati<strong>on</strong>s would<strong>on</strong>ly trigger sarcasm and hostile reacti<strong>on</strong>s in our area. Onenew way in which we delivered detailed informati<strong>on</strong> toaudiences was through educati<strong>on</strong>al placemats. We designedplacemats presenting key informati<strong>on</strong> al<strong>on</strong>g with beautifulimages and distributed <str<strong>on</strong>g>the</str<strong>on</strong>g>m free <str<strong>on</strong>g>of</str<strong>on</strong>g> charge to local c<str<strong>on</strong>g>of</str<strong>on</strong>g>feeshops around Pacific County. Customers in restaurantsproved to be very willing to read whatever was available as<str<strong>on</strong>g>the</str<strong>on</strong>g>y waited for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir orders. Copies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> placemats werealso carried away and shared with o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs. Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r successfuldevice was our series <str<strong>on</strong>g>of</str<strong>on</strong>g> “science for <str<strong>on</strong>g>the</str<strong>on</strong>g> people” meetings inwhich research scientists presented progress updates <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>irwork to <str<strong>on</strong>g>the</str<strong>on</strong>g> public. One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> more entertaining <str<strong>on</strong>g>of</str<strong>on</strong>g> thoseevenings occurred when Dr. D<strong>on</strong>ald Str<strong>on</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> University- 230 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 4: Spartina C<strong>on</strong>trol and Management<str<strong>on</strong>g>of</str<strong>on</strong>g> California at Davis engaged in a lively debate over <str<strong>on</strong>g>the</str<strong>on</strong>g>feasibility <str<strong>on</strong>g>of</str<strong>on</strong>g> biological c<strong>on</strong>trol with a senior <str<strong>on</strong>g>of</str<strong>on</strong>g>ficial <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>Washingt<strong>on</strong> State Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture. Citizenslearned about <str<strong>on</strong>g>the</str<strong>on</strong>g> uncertainties comm<strong>on</strong> to research and <str<strong>on</strong>g>the</str<strong>on</strong>g>ways in which enterprising scientists resp<strong>on</strong>d to <str<strong>on</strong>g>the</str<strong>on</strong>g>m. Theywere able to draw <str<strong>on</strong>g>the</str<strong>on</strong>g>ir own c<strong>on</strong>clusi<strong>on</strong>s after hearingfirsthand <str<strong>on</strong>g>the</str<strong>on</strong>g> various sides <str<strong>on</strong>g>of</str<strong>on</strong>g> a debate.LESSON 3: TIME IS OF THE ESSENCEWhen <str<strong>on</strong>g>the</str<strong>on</strong>g> Willapa Bay Spartina invasi<strong>on</strong> becameevident as a serious threat, <str<strong>on</strong>g>the</str<strong>on</strong>g> outside world was not readyto see it as such. In <str<strong>on</strong>g>the</str<strong>on</strong>g> late 1980s, local civic leaders becamec<strong>on</strong>vinced that <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina invasi<strong>on</strong> was fast becoming anecological disaster. Unfortunately, <str<strong>on</strong>g>the</str<strong>on</strong>g> majority <str<strong>on</strong>g>of</str<strong>on</strong>g>envir<strong>on</strong>mental pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als across <str<strong>on</strong>g>the</str<strong>on</strong>g> country had not yetrecognized <str<strong>on</strong>g>the</str<strong>on</strong>g> extent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> threat posed by invasive species.Within <str<strong>on</strong>g>the</str<strong>on</strong>g> ranks <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> many public agencies withjurisdicti<strong>on</strong>, pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>al staff held varying views. C<strong>on</strong>flictsover <str<strong>on</strong>g>the</str<strong>on</strong>g> acceptability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> impacts tied to c<strong>on</strong>troltreatments made a prompt resp<strong>on</strong>se to <str<strong>on</strong>g>the</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartinaimpossible.Resp<strong>on</strong>ses were delayed because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> availability <str<strong>on</strong>g>of</str<strong>on</strong>g>legal mechanisms for individuals who held c<strong>on</strong>trarian viewsto block agency acti<strong>on</strong> despite support for <str<strong>on</strong>g>the</str<strong>on</strong>g> program by<str<strong>on</strong>g>the</str<strong>on</strong>g> vast majority <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> public. In Willapa Bay, suchchallenges deflected energies and added to <str<strong>on</strong>g>the</str<strong>on</strong>g> costs <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>management effort. C<strong>on</strong>trarian activists made repeatedefforts to derail <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina c<strong>on</strong>trol program in <str<strong>on</strong>g>the</str<strong>on</strong>g> name <str<strong>on</strong>g>of</str<strong>on</strong>g>envir<strong>on</strong>mental c<strong>on</strong>cern. Their “m<strong>on</strong>keywrenching” tacticswere ultimately defeated by <str<strong>on</strong>g>the</str<strong>on</strong>g> active participati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>Washingt<strong>on</strong> Chapter <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Nature C<strong>on</strong>servancy andAudub<strong>on</strong> Society Washingt<strong>on</strong>. It is vital to enlist <str<strong>on</strong>g>the</str<strong>on</strong>g> supportand involvement <str<strong>on</strong>g>of</str<strong>on</strong>g> credible pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>al envir<strong>on</strong>mentalorganizati<strong>on</strong>s in order to prevent o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs from framing <str<strong>on</strong>g>the</str<strong>on</strong>g>issue in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir own terms. During that early period <str<strong>on</strong>g>of</str<strong>on</strong>g> delay,an aggressive c<strong>on</strong>trol program would have solved <str<strong>on</strong>g>the</str<strong>on</strong>g>problem with <str<strong>on</strong>g>the</str<strong>on</strong>g> least costs and <str<strong>on</strong>g>the</str<strong>on</strong>g> least ecologicalimpacts. Instead, <str<strong>on</strong>g>the</str<strong>on</strong>g> invasi<strong>on</strong> was allowed to accelerate.LESSON 4: SOMEBODY HAS TO BE IN CHARGEIn Willapa Bay, three state agencies and <strong>on</strong>e federalagency are directly engaged in field operati<strong>on</strong>s. They areindependent <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r, have separate lands, and pursuedifferent missi<strong>on</strong>s. In 1995, <str<strong>on</strong>g>the</str<strong>on</strong>g> Washingt<strong>on</strong> Legislatureenacted RCW 17.26—a statute calling for coordinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina c<strong>on</strong>trol efforts and str<strong>on</strong>g leadership under a singlelead agency. The Legislature designated <str<strong>on</strong>g>the</str<strong>on</strong>g> Washingt<strong>on</strong>State Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture (WSDA) as <str<strong>on</strong>g>the</str<strong>on</strong>g> leadagency, but also directed that each agency take resp<strong>on</strong>sibilityfor Spartina c<strong>on</strong>trol <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir own lands. WSDA hasinterpreted its lead role as comprised <str<strong>on</strong>g>of</str<strong>on</strong>g> two major functi<strong>on</strong>s:it c<strong>on</strong>venes interagency meetings and drafts <str<strong>on</strong>g>the</str<strong>on</strong>g> annual reportto <str<strong>on</strong>g>the</str<strong>on</strong>g> Legislature. WSDA declined to interpret its assignmentexpansively, in o<str<strong>on</strong>g>the</str<strong>on</strong>g>r words to include all missi<strong>on</strong> criticalleadership functi<strong>on</strong>s.Without a single agency in charge, it was impossible for<str<strong>on</strong>g>the</str<strong>on</strong>g> agencies to develop and implement a comprehensive andcoherent l<strong>on</strong>g-term strategy with an appropriate allocati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>assignments and resp<strong>on</strong>sibilities. Without a single agency incharge, individual agencies were free to pursue <str<strong>on</strong>g>the</str<strong>on</strong>g>irindividual near-term interests ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than subordinate <str<strong>on</strong>g>the</str<strong>on</strong>g>m to<str<strong>on</strong>g>the</str<strong>on</strong>g> interests <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> overall program. No <strong>on</strong>e agency was in apositi<strong>on</strong> to demand <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs a timetable for success or toassess <str<strong>on</strong>g>the</str<strong>on</strong>g> level <str<strong>on</strong>g>of</str<strong>on</strong>g> funding needed for overall success. No <strong>on</strong>eagency was held accountable for <str<strong>on</strong>g>the</str<strong>on</strong>g> success or failure <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>program. No <strong>on</strong>e agency was motivated to demand adherenceto an overall visi<strong>on</strong> and coordinating scheme. As a result, <str<strong>on</strong>g>the</str<strong>on</strong>g>c<strong>on</strong>trol effort in Willapa Bay drifted down a path that wasunnecessarily expensive and slow. Each agency was free topoint to <str<strong>on</strong>g>the</str<strong>on</strong>g> inadequacies <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> program withoutresp<strong>on</strong>sibility for <str<strong>on</strong>g>the</str<strong>on</strong>g> whole. From presentati<strong>on</strong>s during thisc<strong>on</strong>ference, it is obvious that <str<strong>on</strong>g>the</str<strong>on</strong>g> California CoastalC<strong>on</strong>servancy’s <strong>Invasive</strong> Spartina Project has very competent,hard-working staff. They have generated a number <str<strong>on</strong>g>of</str<strong>on</strong>g>impressive documents that will go a l<strong>on</strong>g way toward gainingcooperati<strong>on</strong> through persuasi<strong>on</strong>. Our experience tells us thatcoordinati<strong>on</strong> will require more than persuasi<strong>on</strong>. Legal andcoercive authority will probably be needed.LESSON 5: SELL THE NEED FOR SCIENCELooking back, I now think that <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> our biggest errorswas that we did not argue strenuously enough for a seriousm<strong>on</strong>itoring and research effort in <str<strong>on</strong>g>the</str<strong>on</strong>g> early years. We neverpersuaded our political leadership <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> importance <str<strong>on</strong>g>of</str<strong>on</strong>g>m<strong>on</strong>itoring and research designed to inform <str<strong>on</strong>g>the</str<strong>on</strong>g> managementeffort. From <str<strong>on</strong>g>the</str<strong>on</strong>g> outset, we should have more adequatelycountered <str<strong>on</strong>g>the</str<strong>on</strong>g> str<strong>on</strong>g antipathy towards spending dedicatedfunds <strong>on</strong> research. Public hostility towards research wasunderstandable: substantial sums had been spent exploring<str<strong>on</strong>g>the</str<strong>on</strong>g> n<strong>on</strong>-target impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol tools that had beenapproved for years and used without problems in a widevariety <str<strong>on</strong>g>of</str<strong>on</strong>g> settings. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> scientists involved in earlyresearch were seen as biased. They were more c<strong>on</strong>cernedwith <str<strong>on</strong>g>the</str<strong>on</strong>g> short-term and minor effects <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol tools thanwith <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>g-term ecological devastati<strong>on</strong> wrought by <str<strong>on</strong>g>the</str<strong>on</strong>g>invasi<strong>on</strong> itself. In at least <strong>on</strong>e case, a scientist was politicallyaffiliated with groups opposed to <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> herbicides. Thisbiased him to propose a research plan designed to ignore <str<strong>on</strong>g>the</str<strong>on</strong>g>l<strong>on</strong>gterm implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina invasi<strong>on</strong> whilehighlighting <str<strong>on</strong>g>the</str<strong>on</strong>g> very transient benefits <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina increating edge habitat. O<str<strong>on</strong>g>the</str<strong>on</strong>g>r scientists participating in <str<strong>on</strong>g>the</str<strong>on</strong>g>project objected to <str<strong>on</strong>g>the</str<strong>on</strong>g> inherent bias and forced a redesign <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> workplan. In <str<strong>on</strong>g>the</str<strong>on</strong>g> end, because <str<strong>on</strong>g>the</str<strong>on</strong>g> results were not to <str<strong>on</strong>g>the</str<strong>on</strong>g>liking <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> politically motivated scientist, he refused topublish <str<strong>on</strong>g>the</str<strong>on</strong>g> results. This intenti<strong>on</strong>al blurring <str<strong>on</strong>g>of</str<strong>on</strong>g> science andpolitics undermined trust in good science. It also led <str<strong>on</strong>g>the</str<strong>on</strong>g>- 231 -


Chapter 4: Spartina C<strong>on</strong>trol and Management<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinapolitical leadership to restrict <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> funds. Agencieswere forbidden from using funds for research, even studiesthat would directly improve <str<strong>on</strong>g>the</str<strong>on</strong>g> efficiency and effectiveness<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol program. Ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than <str<strong>on</strong>g>of</str<strong>on</strong>g>ficially-sancti<strong>on</strong>edstudies, evaluati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> costs and benefits <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>troltechniques were d<strong>on</strong>e using grant funds cobbled toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r.C<strong>on</strong>trol technique trials were not c<strong>on</strong>ducted to providereliable informati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tools. Alternativestrategies could not be compared. Good c<strong>on</strong>sistent recordswere not kept. No agency could compare <str<strong>on</strong>g>the</str<strong>on</strong>g>ir work witho<str<strong>on</strong>g>the</str<strong>on</strong>g>rs. The c<strong>on</strong>trol program was c<strong>on</strong>ducted year after yearwithout a good understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> how well <str<strong>on</strong>g>the</str<strong>on</strong>g> tools and <str<strong>on</strong>g>the</str<strong>on</strong>g>applicati<strong>on</strong> strategies actually worked.The lack <str<strong>on</strong>g>of</str<strong>on</strong>g> objective quantitative informati<strong>on</strong> harmed<str<strong>on</strong>g>the</str<strong>on</strong>g> pers<strong>on</strong>al relati<strong>on</strong>s am<strong>on</strong>g both <str<strong>on</strong>g>the</str<strong>on</strong>g> allied agencies andlocal stakeholders as well. More and more frequently,interagency meetings provided <str<strong>on</strong>g>the</str<strong>on</strong>g> occasi<strong>on</strong> for majorsquabbles over whe<str<strong>on</strong>g>the</str<strong>on</strong>g>r particular treatment techniques weresufficiently effective to c<strong>on</strong>tinue <str<strong>on</strong>g>the</str<strong>on</strong>g>ir use. Withoutdefinitive studies, <str<strong>on</strong>g>the</str<strong>on</strong>g> subjectivity inherent in our argumentscould not be overcome. The tensi<strong>on</strong> and distrust generatedby <str<strong>on</strong>g>the</str<strong>on</strong>g>se irresolvable debates eventually led facti<strong>on</strong>s to stoptalking.If I had it to do over, I would have spent much moretime selling our politicians and <str<strong>on</strong>g>the</str<strong>on</strong>g> public <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> need forgood rigorous science and m<strong>on</strong>itoring. We should have triedto learn how to kill Spartina effectively and affordably at <str<strong>on</strong>g>the</str<strong>on</strong>g>very start. A rigorous comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> tools should havebeen c<strong>on</strong>ducted to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s for maximumefficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> each. We should also have gotten an earlierstart <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> feasibility <str<strong>on</strong>g>of</str<strong>on</strong>g> biological c<strong>on</strong>trol, and startedlooking for alternative chemicals so<strong>on</strong> after hearing from ourfriends in Australia and New Zealand that glyphosate doesnot work well <strong>on</strong> Spartina.LESSON 6: THINK AHEAD AND SHARE YOUR VISIONMy experience has c<strong>on</strong>vinced me that l<strong>on</strong>g-termplanning is very necessary despite <str<strong>on</strong>g>the</str<strong>on</strong>g> discomfort andhumility you may feel in <str<strong>on</strong>g>the</str<strong>on</strong>g> face <str<strong>on</strong>g>of</str<strong>on</strong>g> many seemingly criticalunknowns. By taking a decent stab at planning, youcommunicate that you are serious about solving <str<strong>on</strong>g>the</str<strong>on</strong>g> problemin a logical and efficient manner. If all <str<strong>on</strong>g>the</str<strong>on</strong>g> facts are notavailable, assumpti<strong>on</strong>s will have to do for <str<strong>on</strong>g>the</str<strong>on</strong>g> time being.The c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> adaptive management is nothing more than<str<strong>on</strong>g>the</str<strong>on</strong>g> explicit promise to update your plan as you learn fromexperience. You are likely to attract <str<strong>on</strong>g>the</str<strong>on</strong>g> m<strong>on</strong>ey you need<strong>on</strong>ly if you have a compelling and well-defined plan <str<strong>on</strong>g>of</str<strong>on</strong>g>acti<strong>on</strong>. You are also likely to draw important allies if yourvisi<strong>on</strong> is clear and c<strong>on</strong>vincing. If you are asking citizens toaccept <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical applicati<strong>on</strong>s as a major part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>program, you had better have an endpoint in mind and beprepared to explain why it will take you that l<strong>on</strong>g to get<str<strong>on</strong>g>the</str<strong>on</strong>g>re. You need a flexible timetable. You need graphicimages showing how you can succeed with <str<strong>on</strong>g>the</str<strong>on</strong>g> resourcesyou have at hand. Then you need to take your visi<strong>on</strong> forsuccess <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> road and sell it to <str<strong>on</strong>g>the</str<strong>on</strong>g> key stakeholders.LESSON 7: CONSOLIDATED SYSTEMATIC PROGRESSOver <str<strong>on</strong>g>the</str<strong>on</strong>g> years, it became more and more apparent thatwe would make no progress unless we could eliminate largec<strong>on</strong>tiguous blocks <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina in a systematic fashi<strong>on</strong>.Ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than dispersing <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol effort here and <str<strong>on</strong>g>the</str<strong>on</strong>g>rearound <str<strong>on</strong>g>the</str<strong>on</strong>g> Bay, we needed to c<strong>on</strong>solidate our efforts. Tolimit re-infestati<strong>on</strong> from nearby untreated areas, we adopteda strategy <str<strong>on</strong>g>of</str<strong>on</strong>g> working in c<strong>on</strong>solidated blocks. Theoreticalweed management models advise that all outliers should betreated first in order to minimize <str<strong>on</strong>g>the</str<strong>on</strong>g> overall l<strong>on</strong>g-term costs.Logistical realities in Willapa Bay make <str<strong>on</strong>g>the</str<strong>on</strong>g> “outliers first”strategy untenable. Few tides are sufficiently low to allowtime for effective treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> all outliers before o<str<strong>on</strong>g>the</str<strong>on</strong>g>r parts<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> infestati<strong>on</strong> are tackled. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> outliers were also<strong>on</strong> private lands, while an agency’s first priorities are <str<strong>on</strong>g>the</str<strong>on</strong>g>irown lands. Chemical applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> glyphosate required drytimes rarely available where <str<strong>on</strong>g>the</str<strong>on</strong>g> outliers occur. The timerequired and costs <str<strong>on</strong>g>of</str<strong>on</strong>g> moving heavy equipment dictate thatcrews limit hopping, skipping, and backtracking as much aspossible. It is also far easier to keep track <str<strong>on</strong>g>of</str<strong>on</strong>g> where you haveleft <str<strong>on</strong>g>of</str<strong>on</strong>g>f if <str<strong>on</strong>g>the</str<strong>on</strong>g> progressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> treatments is simple andmethodical. Based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>se practical c<strong>on</strong>siderati<strong>on</strong>s, ourcrews have adopted a strategy <str<strong>on</strong>g>of</str<strong>on</strong>g> sweeping Spartina from <str<strong>on</strong>g>the</str<strong>on</strong>g>eastern side <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Bay first and <str<strong>on</strong>g>the</str<strong>on</strong>g>n finishing up <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>west side. The federal crews are moving from south to north,while <str<strong>on</strong>g>the</str<strong>on</strong>g> state crews in general are operating from north tosouth.For many years, most parties were driven by narrowself-interest. Under those c<strong>on</strong>diti<strong>on</strong>s, it was impossible tocreate a coherent and effective strategy. The lack <str<strong>on</strong>g>of</str<strong>on</strong>g> any—even a flawed—l<strong>on</strong>g-term visi<strong>on</strong> allowed agencies to pursue<str<strong>on</strong>g>the</str<strong>on</strong>g>ir own near-term interests without political c<strong>on</strong>sequences.No <strong>on</strong>e had <str<strong>on</strong>g>the</str<strong>on</strong>g> authority or permissi<strong>on</strong> to impose <str<strong>on</strong>g>the</str<strong>on</strong>g>discipline <str<strong>on</strong>g>of</str<strong>on</strong>g> working toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r to treat some lands first,o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs later, and some at <str<strong>on</strong>g>the</str<strong>on</strong>g> very end. Without such a multiyearcommitment, no <strong>on</strong>e had c<strong>on</strong>fidence <str<strong>on</strong>g>the</str<strong>on</strong>g> program wouldlast l<strong>on</strong>g enough to serve <str<strong>on</strong>g>the</str<strong>on</strong>g>ir own interests. The brevity <str<strong>on</strong>g>of</str<strong>on</strong>g>budget periods c<strong>on</strong>strained l<strong>on</strong>g-term thinking. With federalbudgets set <strong>on</strong> an annual basis and state budgets set everytwo years, <str<strong>on</strong>g>the</str<strong>on</strong>g>re were no absolute guarantees that <str<strong>on</strong>g>the</str<strong>on</strong>g>funding would be maintained to <str<strong>on</strong>g>the</str<strong>on</strong>g> very end. Still, with awell thought-out plan and <str<strong>on</strong>g>the</str<strong>on</strong>g> support <str<strong>on</strong>g>of</str<strong>on</strong>g> all parties, you candraw toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r enough political will to have a good shot atsustaining <str<strong>on</strong>g>the</str<strong>on</strong>g> program over <str<strong>on</strong>g>the</str<strong>on</strong>g> required number <str<strong>on</strong>g>of</str<strong>on</strong>g> years.LESSON 8: LOSE THE THIN SKINI have to c<strong>on</strong>clude with some cauti<strong>on</strong>ary words about<str<strong>on</strong>g>the</str<strong>on</strong>g> emoti<strong>on</strong>al toll that comes with difficult challenges likec<strong>on</strong>trolling a widespread invasive weed. Weed eradicati<strong>on</strong>work in <str<strong>on</strong>g>the</str<strong>on</strong>g> field is tough and dirty business. People get hurt,- 232 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 4: Spartina C<strong>on</strong>trol and Managementequipment breaks down, and tempers fray. In Willapa Bay,<str<strong>on</strong>g>the</str<strong>on</strong>g> social and political dynamics am<strong>on</strong>g agency staff andstakeholders were as challenging as <str<strong>on</strong>g>the</str<strong>on</strong>g> physical tests.Natural resource pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als should remember to keepperspective and understand why <str<strong>on</strong>g>the</str<strong>on</strong>g> affected stakeholdersget very angry at times. In <str<strong>on</strong>g>the</str<strong>on</strong>g> Willapa Bay area, manypeople rely <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> resources <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Bay for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir livelihood.Their jobs and lifestyle are in jeopardy. Even if notec<strong>on</strong>omically tied to <str<strong>on</strong>g>the</str<strong>on</strong>g> Bay, many o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs feel very deepaffecti<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir surroundings. Large amounts <str<strong>on</strong>g>of</str<strong>on</strong>g> publicm<strong>on</strong>ey were being expended, yet, year after year, Spartinaspread and no progress was evident. It is no w<strong>on</strong>der thatmeetings <str<strong>on</strong>g>of</str<strong>on</strong>g>ten became c<strong>on</strong>tentious. In my view, agencystaff <str<strong>on</strong>g>of</str<strong>on</strong>g>ten reacted as if <str<strong>on</strong>g>the</str<strong>on</strong>g> criticisms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> program werepers<strong>on</strong>al affr<strong>on</strong>ts. Ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than acknowledging <str<strong>on</strong>g>the</str<strong>on</strong>g> reas<strong>on</strong>s forfrustrati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> re-evaluati<strong>on</strong> in light <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>slow progress, <str<strong>on</strong>g>the</str<strong>on</strong>g>y decided to reduce <str<strong>on</strong>g>the</str<strong>on</strong>g>ir exposure to localstakeholders. The heightened sensitivity to criticismdisplayed by state agency staff involved in <str<strong>on</strong>g>the</str<strong>on</strong>g> WillapaSpartina program became an obstacle that prevented seriousevaluati<strong>on</strong> and program improvement. If <str<strong>on</strong>g>the</str<strong>on</strong>g> agencies hadtaken an attitude that welcomed criticism as a means to seekprogram improvements, <str<strong>on</strong>g>the</str<strong>on</strong>g> agencies would have g<strong>on</strong>e al<strong>on</strong>g way to enlist public support and c<strong>on</strong>fidence. Becausemany <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> agency staff asked to manage this complicatedprogram were relatively young and inexperienced, it isunderstandable that <str<strong>on</strong>g>the</str<strong>on</strong>g>ir public relati<strong>on</strong>s skills wereinadequate. Less understandable was <str<strong>on</strong>g>the</str<strong>on</strong>g> disinterestdisplayed by <str<strong>on</strong>g>the</str<strong>on</strong>g>ir supervisors in requiring c<strong>on</strong>duct thatwould improve relati<strong>on</strong>s with local c<strong>on</strong>stituents. It appearedthat <str<strong>on</strong>g>the</str<strong>on</strong>g> distrust <str<strong>on</strong>g>of</str<strong>on</strong>g> government decisi<strong>on</strong>-making comm<strong>on</strong>am<strong>on</strong>g citizens was met by its mirror image within agencies:a distaste felt by agency employees for public involvementin decisi<strong>on</strong>-making.For better or worse, natural resource issues do bel<strong>on</strong>g toevery<strong>on</strong>e. Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als who choose this line <str<strong>on</strong>g>of</str<strong>on</strong>g> work shouldaccept that <str<strong>on</strong>g>the</str<strong>on</strong>g> people most affected by <str<strong>on</strong>g>the</str<strong>on</strong>g> success or failure<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir work will want to have a voice in decisi<strong>on</strong>-making.An attitude <str<strong>on</strong>g>of</str<strong>on</strong>g> intolerance towards criticism will <strong>on</strong>ly invitemore criticism. When <str<strong>on</strong>g>the</str<strong>on</strong>g> results visible <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ground areextremely unsatisfactory, little else counts for much. Soulsearching and healthy criticism are helpful after all. Themissi<strong>on</strong> to succeed should outweigh all petty resentments. In<str<strong>on</strong>g>the</str<strong>on</strong>g> end, <str<strong>on</strong>g>the</str<strong>on</strong>g>re is no choice but to work toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r.- 233 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 4: Spartina C<strong>on</strong>trol and ManagementDISCOVERY AND MANAGEMENT OF SPARTINA ANGLICA IN THE FRASER RIVER ESTUARY,BRITISH COLUMBIA,CANADAG. WILLIAMS 1 ,J.BAUMANN 2 ,D.BUFFETT 3 ,R.GOLDSTONE 4 ,V.KUCY 5 ,P.LIM 6 ,W.MATHER 7 ,K.MOORE 89, 10AND T. MURRAY1 GL Williams & Associates Ltd., 2907 Silver Lake Place Coquitlam, BC, V3C 6A2; glwill@telus.net2 Port Metro Vancouver, 100 The Pointe, 999 Canada Place, Vancouver, BC, V6C 3T43 Ducks Unlimited Canada, Unit 511, 13370 - 78 Avenue, Surrey, BC, V3W 0H64 Ministry <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>ment, Parks & Protected Areas, PO Box 220, Brackendale, BC, V0N 1H05 The Corporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Delta, 4500 Clarence Taylor Crescent, Delta, BC, V4K 3E26 Fisheries & Oceans Canada, Major Projects Review Unit, Habitat Enhancement Branch, Suite 200 – 401 Burrard Street,Vancouver, BC, V6C 3S47 Metro Vancouver Regi<strong>on</strong>al District, Regi<strong>on</strong>al Parks, 4330 Kingsway, Burnaby, BC V5H 4G88 Envir<strong>on</strong>ment Canada, Canadian Wildlife Service, R.R.1, 5421 Roberts<strong>on</strong> Road, Delta, BC V4K 3N29 Vancouver Aquarium Marine Science Centre, PO Box 3232, Vancouver, BC V6B 3X810 Current address: Greater Vancouver <strong>Invasive</strong> Plant Council, 6435 Marine Drive, Burnaby, BC V3N 2Y5Spartina anglica (English cordgrass) was discovered in August 2003, during intercauseway marshsurveys <str<strong>on</strong>g>of</str<strong>on</strong>g> Roberts Bank for a proposed Vancouver Port Authority (VPA) c<strong>on</strong>tainer terminalexpansi<strong>on</strong>. This was a new species discovery for <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary and <str<strong>on</strong>g>the</str<strong>on</strong>g> province <str<strong>on</strong>g>of</str<strong>on</strong>g> British Columbia,and a c<strong>on</strong>trol program was immediately initiated by VPA. The c<strong>on</strong>trol program involved collectingpreliminary data <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> S. anglica infestati<strong>on</strong> in September (measuring stalk density and height,c<strong>on</strong>ducting GPS surveys, GIS mapping) followed by manual removal in October. Spartina cl<strong>on</strong>es,measuring 3–4.5 meter (m) diameter, had an average stalk density <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately 800 stalks persquare meter (m 2 ) and average height <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 m, but most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> growth was in <str<strong>on</strong>g>the</str<strong>on</strong>g> form <str<strong>on</strong>g>of</str<strong>on</strong>g> seedlingsand small tussocks


Chapter 4: Spartina C<strong>on</strong>trol and Management<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartina<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> North Arm. The c<strong>on</strong>centrated port activity includes ac<strong>on</strong>stant movement <str<strong>on</strong>g>of</str<strong>on</strong>g> barges and ships through <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary.S. anglica is <str<strong>on</strong>g>of</str<strong>on</strong>g> particular c<strong>on</strong>cern in <str<strong>on</strong>g>the</str<strong>on</strong>g> Fraser estuarybecause <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> known ecological impacts, includingc<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> mudflats to m<strong>on</strong>oculture Spartina marshes(Gray et al. 1991; Huckle et al. 2000), displacement <str<strong>on</strong>g>of</str<strong>on</strong>g>waterbirds (Goss-Cutard and Moser 1988; Nairn 1986), fish(Sullivan 2001 cited in An<strong>on</strong>. 2002; Dethier and Hacker2004), and invertebrates (Hedge and Kriwoken 2000;Jacks<strong>on</strong> et al. 1985), accreti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment (Ranwell 1964;Gray 1991; Dethier and Hacker 2004), disrupti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tidaldrainage patterns (Gray et al. 1991), and impacts <strong>on</strong> nativeintertidal marsh, eelgrass beds, and unvegetated habitats(Hedge and Kriwoken 2000; Hacker et al. 2001). Experiencein Washingt<strong>on</strong> State and elsewhere has shown that a quickresp<strong>on</strong>se is required to avoid costly Spartina eradicati<strong>on</strong>programs. For example, $1.5 milli<strong>on</strong> was spent in 2003 totreat 6,000 ac <str<strong>on</strong>g>of</str<strong>on</strong>g> solid Spartina (70% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> infestati<strong>on</strong>) inWillapa Bay and 694 solid ac (90% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> infestati<strong>on</strong>) inPuget Sound (Murphy 2003). This paper summarizes <str<strong>on</strong>g>the</str<strong>on</strong>g>work undertaken in 2003 and 2004 in Roberts Bank andBoundary Bay and provides suggesti<strong>on</strong>s for fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r work toeffectively c<strong>on</strong>trol S. anglica in <str<strong>on</strong>g>the</str<strong>on</strong>g> Fraser River estuary.METHODS AND PROGRAM PLANNINGFig.1. Locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Fraser River estuary.The large tidal flats provide vast mudflat, eelgrass, andbrackish and salt marsh habitats for birds, fish and wildlife(Adams and Williams 2004; Harris<strong>on</strong> and Dunn 2004;Schaefer 2004). Over <strong>on</strong>e milli<strong>on</strong> migratory birds use <str<strong>on</strong>g>the</str<strong>on</strong>g>outer delta for critical feeding and staging areas annually(Butler and Campbell 1987; Important Bird Area (IBA) SiteSummary, BC017, www.ibscanada.com; Pacific EstuaryC<strong>on</strong>servati<strong>on</strong> Program, www.ramsar.org). Numerous fishand invertebrate species utilize <str<strong>on</strong>g>the</str<strong>on</strong>g> flats, including Pacificsalm<strong>on</strong> and Dungeness crab that support importantcommercial, recreati<strong>on</strong>al, and First Nati<strong>on</strong>s fisheries (Hoosand Packmann 1974; Levings 2004). Much <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> area isprotected within provincial Wildlife Management Areas, isrecognized as a nati<strong>on</strong>ally Important Bird Area, and exceeds<str<strong>on</strong>g>the</str<strong>on</strong>g> criteria for Ramsar and Western Hemisphere ShorebirdNetwork sites (Important Bird Area, IBA, Site Summary,BC017, www.ibacanada.com). The 586-hectare AlaskanNati<strong>on</strong>al Wildlife Area <strong>on</strong> Westham Island, adjacent toRoberts Bank, is a designated Ramsar site.Fraser River estuary is also a hub for domestic andinternati<strong>on</strong>al shipping with three port authorities: VPA’sc<strong>on</strong>tainer and bulk terminals at Roberts Bank, Fraser Port’scoastal and deep sea terminals <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Main Arm, and PortNorth Fraser’s coastal shipping and log booming facilities2003 VPA Spartina C<strong>on</strong>trol Program for Roberts BankFollowing discovery <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica in Roberts Bank inAugust, GL Williams & Associates Ltd. was retained byVPA to establish a c<strong>on</strong>trol program. Since <str<strong>on</strong>g>the</str<strong>on</strong>g> infestati<strong>on</strong>was limited in coverage and total area, <str<strong>on</strong>g>the</str<strong>on</strong>g> objective was tomanually remove <str<strong>on</strong>g>the</str<strong>on</strong>g> plants as quickly as possible without<str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> herbicide. The VPA c<strong>on</strong>trol program c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g>c<strong>on</strong>firming identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Roberts Bank Spartina,researching scientific literature to guide managementopti<strong>on</strong>s, c<strong>on</strong>ducting field GPS/GIS mapping and datacollecti<strong>on</strong>, and undertaking plant removal.Plant Identificati<strong>on</strong>Plant specimens were collected, digital images obtained,and a web search c<strong>on</strong>ducted for informati<strong>on</strong> about S.anglica. The field identificati<strong>on</strong> manual prepared by <str<strong>on</strong>g>the</str<strong>on</strong>g>California Coastal C<strong>on</strong>servancy (www.spartina.org) wasespecially useful for preliminary identificati<strong>on</strong> and providingdescripti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> five Spartina species found al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g>Pacific Coast. Several wetland specialists in BritishColumbia and Washingt<strong>on</strong> State were c<strong>on</strong>tacted forappropriate keys and informati<strong>on</strong>. The indentificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>Roberts Bank specimens were c<strong>on</strong>firmed using <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartinakey developed by Barkworth (2003). Specimens were alsosubmitted to <str<strong>on</strong>g>the</str<strong>on</strong>g> Univeristy <str<strong>on</strong>g>of</str<strong>on</strong>g> British Columbia herbarium.Fresh S. anglica specimens from Roberts Bank andBoundary Bay were shipped to Dr. Debra Ayres, University<str<strong>on</strong>g>of</str<strong>on</strong>g> California at Davis, for DNA analysis (Ayres and Str<strong>on</strong>g- 236 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 4: Spartina C<strong>on</strong>trol and Management2001). DNA analysis was undertaken to c<strong>on</strong>firm <str<strong>on</strong>g>the</str<strong>on</strong>g>identificati<strong>on</strong> and determine if <str<strong>on</strong>g>the</str<strong>on</strong>g> origin <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> S. anglicacould be established. Finally, specimens from B.C. werecompared with samples <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica and S. alterniflorafrom Padilla Bay during a meeting with S. Riggs at <str<strong>on</strong>g>the</str<strong>on</strong>g>Padilla Bay Estuarine Research Reserve in Mount Vern<strong>on</strong>,Washingt<strong>on</strong>.Field Surveys and MappingIn late September, S. anglica plants were located using ahandheld Garmin XL GPS, and a GIS map was producedusing Fraser River estuary orthophotos. To prevent <str<strong>on</strong>g>the</str<strong>on</strong>g>release <str<strong>on</strong>g>of</str<strong>on</strong>g> seeds, above-ground leaves and all inflorescenceswere cut and collected in plastic bags for disposal. Densityand height were measured for a small subsample (n=4)within <str<strong>on</strong>g>the</str<strong>on</strong>g> largest cl<strong>on</strong>e.Spartina RemovalOn October 24, 2003, <str<strong>on</strong>g>the</str<strong>on</strong>g> first Fraser Spartina Busterswere assembled <strong>on</strong> Roberts Bank The group was comprised<str<strong>on</strong>g>of</str<strong>on</strong>g> 21 volunteer representatives from VPA, federal, andprovincial agencies, Ducks Unlimited Canada (DUC),Langely Envir<strong>on</strong>mental Partners Society, and TsawwassenFirst Nati<strong>on</strong>s (TFN). The removal was c<strong>on</strong>ducted over <strong>on</strong>elow-tidal cycle and involved digging up plants with shovels,washing <str<strong>on</strong>g>the</str<strong>on</strong>g> roots and rhizomes in pools to removesediment, placing <str<strong>on</strong>g>the</str<strong>on</strong>g> washed plants in industrial-strengthplastic bags, and collecting <str<strong>on</strong>g>the</str<strong>on</strong>g>m in a shore-based disposalbin for incinerati<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> GVRD incinerator. All abovegroundmaterial was removed except for three cl<strong>on</strong>esmeasuring 3 m or greater in diameter.Hovercraft Survey <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Outer Fraser EstuaryThe Canadian Coast Guard hovercraft, operated byFisheries and Oceans Canada (FOC), was used to survey <str<strong>on</strong>g>the</str<strong>on</strong>g>mudflat-marsh interface <strong>on</strong> Sturge<strong>on</strong> Bank, Roberts Bankand Boundary Bay during low tide <strong>on</strong> November 19.Observers included <str<strong>on</strong>g>the</str<strong>on</strong>g> author (GW) and biologists fromFOC and VPA. Envir<strong>on</strong>ment Canada, GVRD, and FOCprovided funding for <str<strong>on</strong>g>the</str<strong>on</strong>g> survey. GPS locati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglicawere recorded and <str<strong>on</strong>g>the</str<strong>on</strong>g> distributi<strong>on</strong> mapped.Outreach and Educati<strong>on</strong>To increase <str<strong>on</strong>g>the</str<strong>on</strong>g> awareness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ecological impacts <str<strong>on</strong>g>of</str<strong>on</strong>g>S. anglica to <str<strong>on</strong>g>the</str<strong>on</strong>g> Fraser River estuary, a PowerPointpresentati<strong>on</strong> was shown to several local naturalist groups.Articles were published in <str<strong>on</strong>g>the</str<strong>on</strong>g> Vancouver Natural HistorySociety newsletter (Williams 2004) and Botanical Electr<strong>on</strong>icNews (Williams 2004a). Interviews were also c<strong>on</strong>ducted andarticles published in local newspapers. CanadianBroadcasting Corporati<strong>on</strong> (CBC) radio ran a short feature <strong>on</strong>S. anglica during a newscast. VPA is also c<strong>on</strong>sideringestablishing an envir<strong>on</strong>mental stewardship program withTFN that would include <str<strong>on</strong>g>the</str<strong>on</strong>g> m<strong>on</strong>itoring and removal <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina in Roberts Bank.2004 Spartina anglica C<strong>on</strong>trol ProgramCoordinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ManagementFollowing <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>firmati<strong>on</strong> that S. anglica was notrestricted to Roberts Bank, <str<strong>on</strong>g>the</str<strong>on</strong>g> invasive species coordinatorfor FOC, Pat Lim, was c<strong>on</strong>tacted and a committeeestablished to deal with <str<strong>on</strong>g>the</str<strong>on</strong>g> S. anglica threat. OnDecember 4, 2003, representatives <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> agenices involvedin <str<strong>on</strong>g>the</str<strong>on</strong>g> Roberts Bank c<strong>on</strong>trol program met with invitedSpartina eradicati<strong>on</strong> specialists from Washingt<strong>on</strong> State todevelop an acti<strong>on</strong> plan for <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol and removal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> S.anglica from Boundary Bay and Roberts Bank. Washingt<strong>on</strong>State representatives <str<strong>on</strong>g>of</str<strong>on</strong>g>fered to assist in <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol andremoval program.The acti<strong>on</strong> plan, developed over several meetings,c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> using volunteers to manually dig out plantsduring low tides in June, with a follow-up removal in <str<strong>on</strong>g>the</str<strong>on</strong>g>fall. A preliminary budget was determined to cover hiring avolunteer coordinator, producing educati<strong>on</strong>al materials, andsupporting a field operati<strong>on</strong>. Matching funds werenegotiated with partner agencies and organizati<strong>on</strong>s, andc<strong>on</strong>siderable in-kind support was obtained.Mapping S. anglica Distributi<strong>on</strong>On May 31 and June 4, 2004, FOC mapped <str<strong>on</strong>g>the</str<strong>on</strong>g> easternarea <str<strong>on</strong>g>of</str<strong>on</strong>g> Boundary Bay between 104 th and 112 th Streets inDelta using handheld GPS units (Garmin eTrex Vista andGPS 76 Marine Navigator) with an accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> ± 5 m..Spartina was classified according to <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> four classes:seedling, cl<strong>on</strong>e 0.3 m to 1 m diameter. A GIS map was produced using a recentorthophoto base map. The map was useful in indicating <str<strong>on</strong>g>the</str<strong>on</strong>g>amount <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina present and <str<strong>on</strong>g>the</str<strong>on</strong>g> allotment <str<strong>on</strong>g>of</str<strong>on</strong>g> resourcesfor removal.New growth <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica was mapped in Roberts Bankin June and October using a Garmin 60 C handheld unit anda GIS map produced by DUC. On November 24, ahovercraft survey was c<strong>on</strong>ducted in Boundary Bay to mapnew and existing S. anglica. The GPS locati<strong>on</strong>s were addedto <str<strong>on</strong>g>the</str<strong>on</strong>g> GIS map produced by DUC.A survey <str<strong>on</strong>g>of</str<strong>on</strong>g> selected sites in Burrard Inlet (e.g.Maplewood, Port Moody mudflats, and Spanish Banks) wasc<strong>on</strong>ducted at low tide <strong>on</strong> November 21, 2004. No S. anglicawas observed at <str<strong>on</strong>g>the</str<strong>on</strong>g> Burrard Inlet sites.Outreach and Educati<strong>on</strong>On June 5, World Oceans Day was organized at BlackieSpit Park and a S. anglica poster and materials were put <strong>on</strong>display. The event also provided an opportunity to recruitvolunteers for <str<strong>on</strong>g>the</str<strong>on</strong>g> S. anglica removal in Boundary Bayscheduled for June 17–19. FOC produced a fact sheet fordistributi<strong>on</strong> at <str<strong>on</strong>g>the</str<strong>on</strong>g> event and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r forums.PowerPoint presentati<strong>on</strong>s were made to several NGO’s,including naturalist groups and envir<strong>on</strong>mental training- 237 -


Chapter 4: Spartina C<strong>on</strong>trol and Management<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaGel image <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica (first 2 lanes) and S. alterniflora x foli hybridsBand is absent in S. alt (and S. foli)S. maritima band in S. anglicaFig. 2. Spartina anglica <strong>on</strong> Roberts Bank in August 2003.programs. Ducks Unlimited Canada and <str<strong>on</strong>g>the</str<strong>on</strong>g> Corporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Delta issued several press releases. Delta established a website <strong>on</strong> Spartina anglica as part <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir outreach program.An oral presentati<strong>on</strong> describing <str<strong>on</strong>g>the</str<strong>on</strong>g> Fraser Spartina Bustersprogram was also made at <str<strong>on</strong>g>the</str<strong>on</strong>g> 3 rd <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <strong>Invasive</strong>Spartina <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> in San Francisco, November 8-10,2004.Volunteer Recruitment and ManagementVolunteer organizati<strong>on</strong>s and individuals were c<strong>on</strong>tactedby email providing informati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> meeting time andplace, as well as mapping and field needs for <str<strong>on</strong>g>the</str<strong>on</strong>g> BoundaryBay S. anglica removal. A meeting room at <str<strong>on</strong>g>the</str<strong>on</strong>g> Delta AirPark was made available to <str<strong>on</strong>g>the</str<strong>on</strong>g> organizers for volunteer signup, supply and equipment staging, and brief orientati<strong>on</strong>.Laminated S. anglica identificati<strong>on</strong> cards were given to allvolunteers to assist in accurate identificati<strong>on</strong> duringremovals.Several volunteer removal efforts were held from Juneand October in Boundary Bay and Roberts Bank. Eightyeightvolunteers participated in <str<strong>on</strong>g>the</str<strong>on</strong>g> June 17–19 removal. Afall follow-up was held October 13–15 supported by 19volunteers.Volunteers received a brief instructi<strong>on</strong> <strong>on</strong> manualremoval methods in <str<strong>on</strong>g>the</str<strong>on</strong>g> meeting room during <str<strong>on</strong>g>the</str<strong>on</strong>g> Juneremoval, with field dem<strong>on</strong>strati<strong>on</strong>s c<strong>on</strong>ducted in subsequentremovals.Manual and Mechanical Removal MethodsThe manual removal methods were similar to <str<strong>on</strong>g>the</str<strong>on</strong>g>Roberts Bank program. However, an all-terrain vehicle,provided by Delta, was used to collect and transport bags to<str<strong>on</strong>g>the</str<strong>on</strong>g> dike. Filled bags were piled at collecti<strong>on</strong> points <strong>on</strong> top <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> dike and subsequently loaded by backhoe into a truckFig. 3. DNA analysis gel image <str<strong>on</strong>g>of</str<strong>on</strong>g> Roberts Bank S. anglica (left samples)showing S. maritima bands and absence <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora (courtesy <str<strong>on</strong>g>of</str<strong>on</strong>g> D.Ayres, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Davis).and taken to <str<strong>on</strong>g>the</str<strong>on</strong>g> GVRD incinerator, where <str<strong>on</strong>g>the</str<strong>on</strong>g>y wereweighed prior to incinerati<strong>on</strong>.For larger cl<strong>on</strong>es (i.e., >1 m diameter), an amphibiousswamp excavator operated by C<strong>on</strong>cord Excavating andC<strong>on</strong>tracting Ltd. was used to bury <str<strong>on</strong>g>the</str<strong>on</strong>g> plants in deep holesexcavated in <str<strong>on</strong>g>the</str<strong>on</strong>g> mudflat. The machine ran <strong>on</strong> large trackedp<strong>on</strong>to<strong>on</strong>s and left a light footprint <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ground (< 1 psi).Excavated S. anglica was buried in holes about 3–5 m deepand backfilled with excavated material, which was graded to<str<strong>on</strong>g>the</str<strong>on</strong>g> surrounding substrate (referred to earlier as in situburial). At some locati<strong>on</strong>s, GPS was used to record <str<strong>on</strong>g>the</str<strong>on</strong>g>locati<strong>on</strong> for future m<strong>on</strong>itoring. The excavator was also usedto remove several large cl<strong>on</strong>es in <str<strong>on</strong>g>the</str<strong>on</strong>g> western secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Boundary Bay in June.Two removal efforts were also c<strong>on</strong>ducted at <str<strong>on</strong>g>the</str<strong>on</strong>g> RobertsBank site. On August 5, <str<strong>on</strong>g>the</str<strong>on</strong>g> swamp excavator was used tocomplete in situ burial <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> three large cl<strong>on</strong>es. A volunteerremoval <str<strong>on</strong>g>of</str<strong>on</strong>g> seedings occurred <strong>on</strong> September 28, involvingeight pers<strong>on</strong>-days <str<strong>on</strong>g>of</str<strong>on</strong>g> effort.RESULTSSpartina Identificati<strong>on</strong>S. anglica was quite easily identified based <strong>on</strong> habitatand plant characteristics. Most plants col<strong>on</strong>ized mudflatelevati<strong>on</strong>s well below native salt marsh. The oblique bladeand vertical spikelet arrrangements were distinguishingcharacteristics in <str<strong>on</strong>g>the</str<strong>on</strong>g> field (Fig. 2).DNA analysis showed <str<strong>on</strong>g>the</str<strong>on</strong>g> distinctive S. maritima bands,lacking in S. alterniflora (Fig. 3). However, due to <str<strong>on</strong>g>the</str<strong>on</strong>g>limited genetic variati<strong>on</strong> in S. anglica, it was not possible todetermine <str<strong>on</strong>g>the</str<strong>on</strong>g> source <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Fraser River estuary specimens(D. Ayres, pers. comm.).- 238 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 4: Spartina C<strong>on</strong>trol and ManagementFig 5. November 2003 GPS locati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> main S. anglica infestati<strong>on</strong>s recordedduring hovercraft survey.Fig. 4. Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica distributi<strong>on</strong> <strong>on</strong> Roberts Bank in 2003 and2004.S. anglica Distributi<strong>on</strong> <strong>on</strong> Roberts Bank and BoundaryBayIn 2003, S. anglica was present <strong>on</strong> Roberts Bank inthree 3-m diameter cl<strong>on</strong>es and approximately 50 scatteredseedlings and tussocks up to 1 m in diameter. The totalmudflat area affected was 60 ha (148 ac), but <str<strong>on</strong>g>the</str<strong>on</strong>g> actual totalarea covered by S. anglica was <strong>on</strong>ly about 0.1 ha (0.2 ac).The average plant density and height in <str<strong>on</strong>g>the</str<strong>on</strong>g> main cl<strong>on</strong>e(n=4) was 217 ± 42 shoots/0.25 m 2 and 108 ± 6 cm,respectively). Individual seedlings were much smaller,ranging from 0.1–0.3 m (4–12 in.) in height.In 2004, new seedling growth was found <strong>on</strong> RobertsBank, despite previous clearing in 2003 (Fig. 4). Seedlingdistributi<strong>on</strong>, mapped in June and October, showed that <str<strong>on</strong>g>the</str<strong>on</strong>g>distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plants c<strong>on</strong>tinued to expand through <str<strong>on</strong>g>the</str<strong>on</strong>g>summer. Above-average temperatures experienced in <str<strong>on</strong>g>the</str<strong>on</strong>g>summer <str<strong>on</strong>g>of</str<strong>on</strong>g> 2004 appeared to increase <str<strong>on</strong>g>the</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> S.anglica.In 2003, S. anglica in Boundary Bay was c<strong>on</strong>centratedin two nodes near Beach Grove, in <str<strong>on</strong>g>the</str<strong>on</strong>g> west and between 96 thand 112 th Streets in <str<strong>on</strong>g>the</str<strong>on</strong>g> central porti<strong>on</strong> (Fig.5). Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>observed S. anglica was present as seedlings or smalltussocks, with occasi<strong>on</strong>al cl<strong>on</strong>es ranging from 1–3mdiameter. Total area impacted was about 135 ha (330 ac),but total coverage was estimated at 1% or 1.35 ha (3 ac).Similar to Roberts Bank, Boundary Bay seedlingabundance increased in 2004, and new areas weredocumented in Surrey and Mud Bay in <str<strong>on</strong>g>the</str<strong>on</strong>g> eastern secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Boundary Bay. The most densely infested area was locatedwest <str<strong>on</strong>g>of</str<strong>on</strong>g> 112 th Street, outside <str<strong>on</strong>g>the</str<strong>on</strong>g> FOC mapped area. Thecomposite map <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglica locati<strong>on</strong>s is shown inFig. 6.Spartina RemovalIn 2003, <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>e-day removal effort (total <str<strong>on</strong>g>of</str<strong>on</strong>g> 21 pers<strong>on</strong>days)was successful in removing all S. anglica plants fromRoberts Bank, except for those in <str<strong>on</strong>g>the</str<strong>on</strong>g> three 3-meter diametercl<strong>on</strong>es. Roberts Bank sediments were quite s<str<strong>on</strong>g>of</str<strong>on</strong>g>t which madewalking and digging more difficult. Manual removal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>dense growth in <str<strong>on</strong>g>the</str<strong>on</strong>g> cl<strong>on</strong>es was slow, and <strong>on</strong>ly half <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> 3-m diameter cl<strong>on</strong>e was removed by six volunteersworking a full day (Fig. 7). The sediments were washedfrom <str<strong>on</strong>g>the</str<strong>on</strong>g> plants to reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> weight <str<strong>on</strong>g>of</str<strong>on</strong>g> collecti<strong>on</strong> bags. InBoundary Bay, <str<strong>on</strong>g>the</str<strong>on</strong>g> sediments were firmer (i.e. sand) whichfacilitated removal. The use <str<strong>on</strong>g>of</str<strong>on</strong>g> an all-terrain vehicle toremove <str<strong>on</strong>g>the</str<strong>on</strong>g> bags greatly reduced <str<strong>on</strong>g>the</str<strong>on</strong>g> labour. The 140 pers<strong>on</strong>days<str<strong>on</strong>g>of</str<strong>on</strong>g> removal effort in 2004 was not sufficient to removeall <str<strong>on</strong>g>the</str<strong>on</strong>g> S. anglica.The excavator and in situ burial used in 2004 proved toFig. 6. Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica <strong>on</strong> Roberts Bank and Boundary Bay.- 239 -


Chapter 4: Spartina C<strong>on</strong>trol and Management<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinabe a more efficient removal method for larger cl<strong>on</strong>es. It isunlikely that S. anglica will grow from a depth <str<strong>on</strong>g>of</str<strong>on</strong>g> 2–3 m.Total plant material disposed <str<strong>on</strong>g>of</str<strong>on</strong>g> in 2004 was about8,000 kilograms (kg) and it is estimated that approximatelyfive times that amount was removed using in situ burial. Thetotal weight included plants and some sediment.Hovercraft Survey <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Outer Fraser EstuaryA hovercraft provides an efficient survey method forcovering large areas <str<strong>on</strong>g>of</str<strong>on</strong>g> tidal flats, especially where mudsubstrates make walking difficult. Seedlings are easilyobserved from ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r inside or from <str<strong>on</strong>g>the</str<strong>on</strong>g> foredeck. The <strong>on</strong>boarddigital charts and GPS provide accurate locating. Thecraft can travel ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r rapidly or at a very low speed, and iscapable <str<strong>on</strong>g>of</str<strong>on</strong>g> stopping if <str<strong>on</strong>g>the</str<strong>on</strong>g>re is a need to obtain plantspecimens.Outreach and Educati<strong>on</strong>The outreach comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> VPA Roberts Bankprogram included PowerPoint presentati<strong>on</strong>s, localnewspaper and radio, and printed/electr<strong>on</strong>ic publicati<strong>on</strong>s.The PowerPoint presentati<strong>on</strong>s were well received and <str<strong>on</strong>g>of</str<strong>on</strong>g>tenled to invitati<strong>on</strong>s from o<str<strong>on</strong>g>the</str<strong>on</strong>g>r groups. The newspaper articlesprovided broad local coverage, which appeared to reach alarger audience than radio. The Vancouver Natural HistorySociety (VNHS) newsletter article led to a request to preparea more detailed article for <str<strong>on</strong>g>the</str<strong>on</strong>g> VNHS journal, Discovery.The electr<strong>on</strong>ic publicati<strong>on</strong> in Botantical Electr<strong>on</strong>ic News(BEN), being available <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> web, led to communicati<strong>on</strong>sand exchange <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong> with scientists in France andOreg<strong>on</strong>.As well as increasing awareness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> S. anglica threat,<str<strong>on</strong>g>the</str<strong>on</strong>g> outreach was effective in recruiting volunteers. Duringc<strong>on</strong>versati<strong>on</strong>s with removal volunteers, many said <str<strong>on</strong>g>the</str<strong>on</strong>g>y weremotivated to provide assistance after seeing <str<strong>on</strong>g>the</str<strong>on</strong>g> PowerPointpresentati<strong>on</strong> or attending local World Oceans Day eventswhere informati<strong>on</strong> about <str<strong>on</strong>g>the</str<strong>on</strong>g> problem was presented.Program CostsThe 2003 VPA S. anglica management program wasdeveloped and coordinated by <str<strong>on</strong>g>the</str<strong>on</strong>g> author (GW), andvolunteers c<strong>on</strong>ducted <str<strong>on</strong>g>the</str<strong>on</strong>g> actual removal. The total budgetwas approximately $15,000, covering c<strong>on</strong>sultant fees,disposal trucking, incinerati<strong>on</strong>, and supplies (e.g. plasticbags, gloves, etc.). The hovercraft survey cost about $1500,including reporting and mapping. There were also in-kindc<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> hovercraft fuel (provided by Fisheries andOceans Canada) and staff salaries.The 2004 program costs were over $50,000 plus amatching amount in-kind from many agencies involved in<str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina removal program.DISCUSSION AND RECOMMENDATIONSThe management efforts in 2003 and 2004 were usefulin developing strategeies to effectively c<strong>on</strong>trol S. anglica inFig. 7. Fraser Spartina Busters <strong>on</strong> Roberts Bank in October 2003.<str<strong>on</strong>g>the</str<strong>on</strong>g> Fraser estuary. Spartina. anglica was fully c<strong>on</strong>trolled atRoberts Bank by <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> October 2004, althoughc<strong>on</strong>tinued management will be required to address newrecuitment from existing seedbank and new invasi<strong>on</strong>s. Thedistributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica in Boundary Bay has been greatlyreduced, but <str<strong>on</strong>g>the</str<strong>on</strong>g>re is still a substantial amount remaining east<str<strong>on</strong>g>of</str<strong>on</strong>g> 112 th St., and scattered new seedlings were observedthroughout Boundary Bay in November 2004. The Fraserestuary program shows that c<strong>on</strong>trol is possible without <str<strong>on</strong>g>the</str<strong>on</strong>g>use <str<strong>on</strong>g>of</str<strong>on</strong>g> herbicides, provided that <str<strong>on</strong>g>the</str<strong>on</strong>g> infestati<strong>on</strong> is caughtearly and aggressive removal programs implemented(Daehler and Str<strong>on</strong>g 1996; An<strong>on</strong> 2002).Manual effort was effective in removing S. anglica in<str<strong>on</strong>g>the</str<strong>on</strong>g> Fraser estuary, but in situ burial is more effective forlarge cl<strong>on</strong>es exceeding 1 m. Digging and bagging plants isefficient for seedlings and tussocks, but <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> all-terrainvehicles for collecti<strong>on</strong> and transport to shore for disposal isrequired for large scale programs. Firmer substrates permit<str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanized equipment and are generally easier towork <strong>on</strong> than muddy sediments.The Fraser estuary Spartina programs depended <strong>on</strong>volunteer manpower, but dedicated work crews arerecommended for Boundary Bay. Boundary Bay will requirea greater effort than 107 pers<strong>on</strong>-days <str<strong>on</strong>g>of</str<strong>on</strong>g> removal to reach <str<strong>on</strong>g>the</str<strong>on</strong>g>status <str<strong>on</strong>g>of</str<strong>on</strong>g> Roberts Bank. However, much <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> S. anglica inBoundary Bay c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> seedlings, which can be easilyremoved. Denser coverage occurs in localized areas, such as<str<strong>on</strong>g>the</str<strong>on</strong>g> six, 3 m-diameter cl<strong>on</strong>es west <str<strong>on</strong>g>of</str<strong>on</strong>g> 104 th Street or mixedwithin native marsh west <str<strong>on</strong>g>of</str<strong>on</strong>g> 112 th Street.Mapping was a critical comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 2003 and 2004programs. Handheld GPS units provide sufficient accuracyfor mapping S. anglica, and classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> growth asseedling, tussock (0.1–0.3 m), small cl<strong>on</strong>e (0.3–1m) or largecl<strong>on</strong>e (>1 m) provides sufficient detail for planning manual- 240 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 4: Spartina C<strong>on</strong>trol and Managementor mechanical removal. Seedlings and tussocks can beremoved manually, while large cl<strong>on</strong>es will requiremechanical, in situ burial. Mapping should be c<strong>on</strong>ducted inJune when <str<strong>on</strong>g>the</str<strong>on</strong>g> plants have matured and are easily located,and removal efforts should be c<strong>on</strong>ducted during July.Flowering occurs from June to September, but may be aslate as November, and most seed is set in September(Dethier and Hacker 2004).Following <str<strong>on</strong>g>the</str<strong>on</strong>g> summer removals, FOC participati<strong>on</strong> in<str<strong>on</strong>g>the</str<strong>on</strong>g> program was disc<strong>on</strong>tinued and Envir<strong>on</strong>ment Canadaassumed <str<strong>on</strong>g>the</str<strong>on</strong>g> chair <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> steering committee. Senior agenciesshould make a higher commitment to S. anglicamanagement and provide sufficient manpower and financialsupport to bring <str<strong>on</strong>g>the</str<strong>on</strong>g> infestati<strong>on</strong> under c<strong>on</strong>trol. Withoutsufficient follow-up S. anglica will spread and make c<strong>on</strong>troland removal much more difficult and expensive in <str<strong>on</strong>g>the</str<strong>on</strong>g>future.Training is an important comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglicaremoval. Some volunteers had difficulty distinguishing itfrom native salt marsh species. Although complete removal<str<strong>on</strong>g>of</str<strong>on</strong>g> above-ground plants and below-ground roots andrhizomes was stressed during site dem<strong>on</strong>strati<strong>on</strong>s, someremovals were incomplete. These c<strong>on</strong>cerns can beminimized by providing better training and by implementinginspecti<strong>on</strong>s by qualified supervisors during removal efforts.During both 2003 and 2004 <str<strong>on</strong>g>the</str<strong>on</strong>g>re were substantial inkindc<strong>on</strong>tributi<strong>on</strong>s from many particpating agencies. Forexample, FOC covered <str<strong>on</strong>g>the</str<strong>on</strong>g> hovercraft fuel costs; Deltaprovided <str<strong>on</strong>g>the</str<strong>on</strong>g> all-terrain vehicle, bag collecti<strong>on</strong>, and dikeaccess; FOC provided GPS and GIS support, a Spartina factsheet, and meeting rooms; MWLAP arranged for <str<strong>on</strong>g>the</str<strong>on</strong>g>excavator; and DUC arranged for portable toilets in <str<strong>on</strong>g>the</str<strong>on</strong>g> field,GIS mapping, and press releases.Increased surveillance is required, which benefits frombetter outreach. Providing presentati<strong>on</strong>s to interested partiesis useful for increasing awareness and building support for<str<strong>on</strong>g>the</str<strong>on</strong>g> program. Attempts were made to enlist <str<strong>on</strong>g>the</str<strong>on</strong>g> help <str<strong>on</strong>g>of</str<strong>on</strong>g>birders from <str<strong>on</strong>g>the</str<strong>on</strong>g> VNHS, but <str<strong>on</strong>g>the</str<strong>on</strong>g>re was no active follow-up tomake it more effective. A Spartina c<strong>on</strong>tact teleph<strong>on</strong>enumber should established. Material should be prepared toassist in <str<strong>on</strong>g>the</str<strong>on</strong>g> identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r species(e.g. S. alterniflora and S. densiflora). Outreach should alsobe extended to Vancouver Island and <str<strong>on</strong>g>the</str<strong>on</strong>g> Gulf Islands, wheresuitable c<strong>on</strong>diti<strong>on</strong>s exist for establishment.POST PRESENTATION UPDATE:To manage Spartina infestati<strong>on</strong>s in British Columbia,<str<strong>on</strong>g>the</str<strong>on</strong>g> BC Spartina Working Group (BCSWG) was formed, ledby Ducks Unlimited Canada. The BCSWG has preparedannual reports and commissi<strong>on</strong>ed <str<strong>on</strong>g>the</str<strong>on</strong>g> BC Spartina Resp<strong>on</strong>sePlan (Dresen et al. 2010). Spartina mapping and relatedinformati<strong>on</strong> pertaining to <str<strong>on</strong>g>the</str<strong>on</strong>g> BCSWG efforts are provided<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Community Mapping Network websitewww.Spartina.ca.ACKNOWLEDGEMENTSThe authors would like to thank all <str<strong>on</strong>g>the</str<strong>on</strong>g> volunteers forparticipating in <str<strong>on</strong>g>the</str<strong>on</strong>g> 2003 and 2004 Fraser Spartina Bustersremoval efforts, including <str<strong>on</strong>g>the</str<strong>on</strong>g> Langley Envir<strong>on</strong>mentalPartners Society, Vancouver Aquarium RiverWorks, TheNature Trust, Tsawwassen First Nati<strong>on</strong>s, NorthwestWildlife, American partipants from Whatcom County,Whatcom County Noxious Weed Board, Puget SoundActi<strong>on</strong> Team, and many agency staff and individuals.Cheryl Lynch and Kay Kennes, FOC, c<strong>on</strong>ducted GPSsurveys and GIS mapping <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina infestati<strong>on</strong>s and<str<strong>on</strong>g>the</str<strong>on</strong>g>ir c<strong>on</strong>tributi<strong>on</strong> is appreciated. FOC librarians MarciaCroy VanWely, Louise Archibald and John Alexander,researched <str<strong>on</strong>g>the</str<strong>on</strong>g> eology <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica for <str<strong>on</strong>g>the</str<strong>on</strong>g> fact sheet.We gratefully acknowledge Dr. Adolf Ceska, Dr. DebraAyres, Dr. Sally Hacker, Shar<strong>on</strong> Riggs, Dave Heimer, KyleMurphy, and Cindy Sayre for providing informati<strong>on</strong> andassisting with plant identificati<strong>on</strong>.The authors appreciate <str<strong>on</strong>g>the</str<strong>on</strong>g> financial c<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>Western Regi<strong>on</strong>al Panel <strong>on</strong> Aquatic Nuisance Species;Darrell Desjardin, VPA; Ted Lea; MWLAP, for funding S.anglica removal and surveillance; GVRD and Envir<strong>on</strong>mentCanada for funding 2003 surveillance efforts; and B. Naitoand B. Mas<strong>on</strong>, FOC, for arranging <str<strong>on</strong>g>the</str<strong>on</strong>g> hovercraft surveys.The authors thank <str<strong>on</strong>g>the</str<strong>on</strong>g> Galiano C<strong>on</strong>servancy forpermissi<strong>on</strong> to use <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary satellite image in Fig. 1. Theeditorial comments from Kristy Williams were appreciated.REFERENCESAdams, M.A., and G.L. Williams. 2004. Tidal marshes <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> FraserRiver estuary: compositi<strong>on</strong>, structure, and a history <str<strong>on</strong>g>of</str<strong>on</strong>g> marshcreati<strong>on</strong> efforts to 1997: In: B.J. Groulx, D.C. Mosher, J.L.Luternauer, and D.E. Bilderback , eds. Fraser River Delta, BritishColumbia: Issues <str<strong>on</strong>g>of</str<strong>on</strong>g> an Urban Estuary, Geol. Surv. Can. Bull.567:147-172.An<strong>on</strong>. 2002. Strategy for <str<strong>on</strong>g>the</str<strong>on</strong>g> management <str<strong>on</strong>g>of</str<strong>on</strong>g> rice grass (Spartinaanglica) in Tasmania, Australia. Natural Heritage Trust andTasmania Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Primary Industries, Water and Envir<strong>on</strong>ment,Hobart, Tasmania.Ayres, D.R., University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Evoluti<strong>on</strong> and Ecology,Davis, pers<strong>on</strong>al communicati<strong>on</strong>.Ayres, D. R., and D. R. Str<strong>on</strong>g. 2001. Origin and genetic diversity<str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglica (Poaceae) using nuclear DNA markers.American Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Botany. 88(10): 1863-1867.Barkworth, M.E. 2003. Spartina Schreb., pp. 240-251. In: Barkworth,M.E., K.M. Carpels, S. L<strong>on</strong>g, and M. B. Piep, eds., Flora<str<strong>on</strong>g>of</str<strong>on</strong>g> North America North <str<strong>on</strong>g>of</str<strong>on</strong>g> Mexico, Vol. 25: Magnoliophyta:Commelinidae (in part): Poaceae, part 2, Oxford UniversityPress.Butler, R.W., and W. Campbell. 1987. The birds <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> FraserRiver delta: populati<strong>on</strong>s, ecology and internati<strong>on</strong>al significance.Canadian Wildlife Service Occasi<strong>on</strong>al Paper 65. Envir<strong>on</strong>mentCanada.- 241 -


Chapter 4: Spartina C<strong>on</strong>trol and Management<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaDaehler, C.C., and D. R. Str<strong>on</strong>g. 1996. Status, predicti<strong>on</strong> and preventi<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> introduced cordgrass Spartina spp. Invasi<strong>on</strong>s in Pacificestuaries, USA. Biological C<strong>on</strong>servati<strong>on</strong> 78:51-58.Dethier, M.N., and S.D. Hacker. 2004. Improving managementpractices for invasive cordgrass in <str<strong>on</strong>g>the</str<strong>on</strong>g> Pacific Northwest: a casestudy <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglica. Washingt<strong>on</strong> Sea Grant Program, College<str<strong>on</strong>g>of</str<strong>on</strong>g> Ocean and Fishery Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Washingt<strong>on</strong>,WSG-AS-04-05, Seattle, WA.Dresen, K., L. (EDI Envir<strong>on</strong>mental Dynamics Ltd.), L. Scott (Eco-Matters C<strong>on</strong>sulting), and G. L. Williams (GL Williams & AssociatesLtd.) 2010. BC Spartina resp<strong>on</strong>se plan 2010. Prepared forDucks Unlimited Canada, Surrey, BC: 73 p.Goss-Custrad, J.D., and M.E. Moser. 1988. Rates <str<strong>on</strong>g>of</str<strong>on</strong>g> change in <str<strong>on</strong>g>the</str<strong>on</strong>g>numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> dunlin, Calidris alpine, wintering in British estuariesin relati<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina anglica. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> AppliedEcology 25:95-109.Gray, A.J., D.F. Marshall, and A.F. Raybould. 1991. A century <str<strong>on</strong>g>of</str<strong>on</strong>g>evoluti<strong>on</strong> in Spartina anglica. Advances in Ecological Research21:1-62.Hacker S.D., D. Heimer, C.E. Hellquist, T.G. Reeder, B. Reeves,T.J. Riordan, and M.N. Dethier. 2001. A marine plant (Spartinaanglica) invades widely varying habitats: potential mechanisms<str<strong>on</strong>g>of</str<strong>on</strong>g> invasi<strong>on</strong> and c<strong>on</strong>trol. Biological Invasi<strong>on</strong>s 3: 211-217.Harris<strong>on</strong>, P.G., and M. Dunn. 2004. Fraser River delta seagrassecosystems, <str<strong>on</strong>g>the</str<strong>on</strong>g>ir distributi<strong>on</strong>s and importance to migratorybirds. In: Groulx, B.J., D.C. Mosher, J.L. Luternauer, and D.E.Bilderback, eds. Fraser River Delta, British Columbia: Issues <str<strong>on</strong>g>of</str<strong>on</strong>g>an Urban Estuary, Geol. Surv. Can. Bull. 567:173-188.Hedge, P., and L. Kriwoken. 2000. Evidence for effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartinaanglica invasi<strong>on</strong> <strong>on</strong> benthic macr<str<strong>on</strong>g>of</str<strong>on</strong>g>auna in Little Swanport estuary,Tasmania. Applied Ecology 25:150-159.Hoos, L.M., and G.A. Packman. 1974. The Fraser River estuarystatus <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental knowledge to 1974. Envir<strong>on</strong>ment CanadaSpecial Estuary Series No. 1.Huckle, J.M., J.A. Potter, and R.H Marrs. 2000. Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mentalfactors <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> growth and interacti<strong>on</strong>s between saltmarsh plants: effects <str<strong>on</strong>g>of</str<strong>on</strong>g> salinity and waterlogging. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g>Ecology 88: 492-505.Important Bird Area IBS Site Summary, BC017,www.ibacanada.com.Jacks<strong>on</strong>, D., C.F. Mas<strong>on</strong>, and S.P. L<strong>on</strong>g. 1985. Macro-invertebratepopulati<strong>on</strong>s and producti<strong>on</strong> <strong>on</strong> salt-marsh in east England dominatedby Spartina anglica. Oecologia 65:406-411.Levings, C.D. 2004. Knowledge <str<strong>on</strong>g>of</str<strong>on</strong>g> fish ecology and its applicati<strong>on</strong>to habitat management. In: Groulx, B.J., D.C. Mosher, J.L.Luternauer, and D.E. Bilderback, eds. Fraser River Delta, BritishColumbia: Issues <str<strong>on</strong>g>of</str<strong>on</strong>g> an Urban Estuary, Geol. Surv. Can. Bull.567:213-236.Murphy, K.C. 2003. Report to <str<strong>on</strong>g>the</str<strong>on</strong>g> Legislature: progress <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>2003 Spartina eradicati<strong>on</strong> program. Washingt<strong>on</strong> State Department<str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, Pub. 805-110 (N/1/04), Olympia, WA: 58 p.Nairn, R.G.W. 1986. Spartina anglica in Ireland and its potential<strong>on</strong> wildfowl and waders – a review. Irish Birds 3:215-228.Pacific Estuary C<strong>on</strong>servati<strong>on</strong> Program, www.ramsar.com.Ranwell, D.S., 1964. Spartina saltmarshes in Sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn England, II.Rate and seas<strong>on</strong>al pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> sediment accreti<strong>on</strong>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g>Ecology 52:79-94.Schaefer, V. 2004. Ecological settings <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Fraser River delta andits urban estuary. In: Groulx, B.J., D.C. Mosher, J.L. Luternauer,and D.E. Bilderback, eds. Fraser River Delta, British Columbia:Issues <str<strong>on</strong>g>of</str<strong>on</strong>g> an Urban Estuary, Geol. Surv. Can. Bull. 567:35-47.Sullivan, A.J. 2001. A comparis<strong>on</strong> between fish assemblages in ricegrass (Spartina anglica) and adjacent mudflat habitats in <str<strong>on</strong>g>the</str<strong>on</strong>g>Tamar estuary, Tasmania. B.App.Sc. Thesis, Australian MaritimeCollege.Thomps<strong>on</strong>, J.D. 1991. The biology <str<strong>on</strong>g>of</str<strong>on</strong>g> an invasive plant: whatmakes Spartina anglica so successful? BioScience 41(6):393-401.Williams, G.L. 2004. English cordgrass (Spartina anglica). VancouverNaturalist 6(1):15.Williams, G.L. 2004a. Discovery <str<strong>on</strong>g>of</str<strong>on</strong>g> a new salt marsh invasive toBritish Columbia, English cordgrass (Spartina anglica C.E.Hubb.) and management initiatives in 2003. Botanical Electr<strong>on</strong>icNews No.324.- 242 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 4: Spartina C<strong>on</strong>trol and ManagementIMPLEMENTING A STRATEGY FOR MANAGEMENT OF RICE GRASS, SPARTINA ANGLICA, INTASMANIA,AUSTRALIAP. HEDGE 1 ,C.SHEPHERD 2 AND C. DYKE 31 Nati<strong>on</strong>al Oceans Office, GPO Box 2139 Hobart Tasmania Australia 7001; Paul.Hedge@oceans.gov.au2 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Primary Industries, Water and Envir<strong>on</strong>ment, GPO Box 44 Hobart Tasmania Australia 70013 Rice Grass Advisory Group, PO Box 83 Triabunna Tasmania Australia, 7190INTRODUCTIONSpartina anglica, comm<strong>on</strong>ly referred to in Australia asrice grass, was intenti<strong>on</strong>ally introduced to Tasmania in <str<strong>on</strong>g>the</str<strong>on</strong>g>1930s because <str<strong>on</strong>g>of</str<strong>on</strong>g> its potential value for coastal engineeringand agriculture. Many decades later, however, <str<strong>on</strong>g>the</str<strong>on</strong>g> vastmajority <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> benefits provided by rice grass have beenovershadowed by <str<strong>on</strong>g>the</str<strong>on</strong>g> ecological, social and ec<strong>on</strong>omic costs<str<strong>on</strong>g>of</str<strong>on</strong>g> its c<strong>on</strong>tinued spread (Hedge and Kriwoken 2000;Kriwoken and Hedge 2000). In 1996 <str<strong>on</strong>g>the</str<strong>on</strong>g> Rice GrassAdvisory Group (RGAG) was established to provide adviceto <str<strong>on</strong>g>the</str<strong>on</strong>g> Tasmanian Government <strong>on</strong> future managementopti<strong>on</strong>s for rice grass infestati<strong>on</strong>s. The RGAG facilitated <str<strong>on</strong>g>the</str<strong>on</strong>g>formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a partnership between <str<strong>on</strong>g>the</str<strong>on</strong>g> AustralianGovernment, Tasmanian Government, Tasmanian FishingIndustry Council and <str<strong>on</strong>g>the</str<strong>on</strong>g> broader community to fund <str<strong>on</strong>g>the</str<strong>on</strong>g>development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Strategy for <str<strong>on</strong>g>the</str<strong>on</strong>g> Management <str<strong>on</strong>g>of</str<strong>on</strong>g> RiceGrass (Spartina anglica) in Tasmania, Australia (DPIWE2002).The Management Strategy set out a range <str<strong>on</strong>g>of</str<strong>on</strong>g> broadobjectives and associated tasks to reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> area <str<strong>on</strong>g>of</str<strong>on</strong>g> ricegrass infestati<strong>on</strong>s in Tasmania and identified <str<strong>on</strong>g>the</str<strong>on</strong>g> Department<str<strong>on</strong>g>of</str<strong>on</strong>g> Primary Industries, Water and Envir<strong>on</strong>ment (DPIWE) aslead management agency. It also identified area-basedobjectives for each <str<strong>on</strong>g>of</str<strong>on</strong>g> Tasmania’s infested regi<strong>on</strong>s andpointed to Fusilade® (active c<strong>on</strong>stituent: 212 grams per liter(g/L) fluazifop-P present as butyl ester) as <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly costeffectiveand practicable technique for c<strong>on</strong>trolling anderadicating infestati<strong>on</strong>s. It recommended <str<strong>on</strong>g>the</str<strong>on</strong>g> establishment<str<strong>on</strong>g>of</str<strong>on</strong>g> a small, multi-disciplinary team to strategically reducerice grass infestati<strong>on</strong>s in collaborati<strong>on</strong> with affectedindustries and communities.In 1997 DPIWE sought funds to implement <str<strong>on</strong>g>the</str<strong>on</strong>g>Management Strategy. After c<strong>on</strong>siderable lobbying by <str<strong>on</strong>g>the</str<strong>on</strong>g>RGAG, <str<strong>on</strong>g>the</str<strong>on</strong>g> Natural Heritage Trust Fisheries Acti<strong>on</strong> Programprovided US $690,000 in funding, including US $487,000 <str<strong>on</strong>g>of</str<strong>on</strong>g>in-kind support. The DPIWE was charged with <str<strong>on</strong>g>the</str<strong>on</strong>g>resp<strong>on</strong>sibility to administer <str<strong>on</strong>g>the</str<strong>on</strong>g> project and a steeringcommittee was established to guide its development.This paper focuses <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>Management Strategy during <str<strong>on</strong>g>the</str<strong>on</strong>g> period from 1998 to 2002.It initially identifies <str<strong>on</strong>g>the</str<strong>on</strong>g> priority risks to program success andlinks <str<strong>on</strong>g>the</str<strong>on</strong>g>se to key management tasks, including <str<strong>on</strong>g>the</str<strong>on</strong>g>development <str<strong>on</strong>g>of</str<strong>on</strong>g> area-based management plans,envir<strong>on</strong>mental m<strong>on</strong>itoring programs and targeted research.The tools and approaches used to develop and maintainstakeholder support, envir<strong>on</strong>mental m<strong>on</strong>itoring programsand reduce rice grass infestati<strong>on</strong>s are also identified anddiscussed. Less<strong>on</strong>s learned and current challenges for ricegrass management in Tasmania are summarized.IDENTIFICATION OF KEY RISKS TO THE MANAGEMENTPROGRAMReducing rice grass infestati<strong>on</strong>s presents a vast range <str<strong>on</strong>g>of</str<strong>on</strong>g>challenges to managers, including complexities associatedwith identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> suitable c<strong>on</strong>trol techniques, logistics <str<strong>on</strong>g>of</str<strong>on</strong>g>field-based operati<strong>on</strong>s, and stakeholder support for c<strong>on</strong>trolprograms (Kriwoken and Hedge 2000; Hedge et al. 2003).Understanding and effectively addressing <str<strong>on</strong>g>the</str<strong>on</strong>g>se challengeswas recognized by <str<strong>on</strong>g>the</str<strong>on</strong>g> steering committee as being critical toprogram success. Table 1 lists <str<strong>on</strong>g>the</str<strong>on</strong>g> priority risks to programsuccess and links <str<strong>on</strong>g>the</str<strong>on</strong>g>se to key management resp<strong>on</strong>ses.An essential approach to understanding and effectivelyaddressing priority program risks involved learning frompast and current experiences <str<strong>on</strong>g>of</str<strong>on</strong>g> rice grass management ino<str<strong>on</strong>g>the</str<strong>on</strong>g>r locati<strong>on</strong>s. Ga<str<strong>on</strong>g>the</str<strong>on</strong>g>ring published informati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>ecology and management <str<strong>on</strong>g>of</str<strong>on</strong>g> rice grass provided c<strong>on</strong>siderableinformati<strong>on</strong> about rice grass ecology, biology, ecologicalimpacts and overviews <str<strong>on</strong>g>of</str<strong>on</strong>g> various approaches to c<strong>on</strong>trolprograms in o<str<strong>on</strong>g>the</str<strong>on</strong>g>r regi<strong>on</strong>s, including Australia, New Zealandand <str<strong>on</strong>g>the</str<strong>on</strong>g> United States. Such informati<strong>on</strong> was useful forunderstanding <str<strong>on</strong>g>the</str<strong>on</strong>g> range <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol techniques and strategiesused to manage rice grass. Extensive collaborati<strong>on</strong> andcommunicati<strong>on</strong>s with experienced rice grass managementteams in Victoria, Australia and Washingt<strong>on</strong> State, USAprovided particularly useful insights into <str<strong>on</strong>g>the</str<strong>on</strong>g>se risks andchallenges in <str<strong>on</strong>g>the</str<strong>on</strong>g> field.KEY ELEMENTS OF THE MANAGEMENT PROGRAMEngaging and working with stakeholdersA high level <str<strong>on</strong>g>of</str<strong>on</strong>g> stakeholder engagement was critical to<str<strong>on</strong>g>the</str<strong>on</strong>g> success <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> management program. The Rice GrassAdvisory Group, established in 1996, provided an importantmechanism to bring toge<str<strong>on</strong>g>the</str<strong>on</strong>g>r relevant stakeholder groups sothat <str<strong>on</strong>g>the</str<strong>on</strong>g>ir c<strong>on</strong>cerns, perspectives and ideas could be sharedand understood. The Management Strategy recognized thisgroup as <str<strong>on</strong>g>the</str<strong>on</strong>g> central integrating and advisory body for ricegrass management in Tasmania.The Management Strategy required area-basedManagement Plans to be developed, in close collaborati<strong>on</strong>with local stakeholders, to meet <str<strong>on</strong>g>the</str<strong>on</strong>g> recommendedmanagement objectives for each infested area. Three main- 243 -


Chapter 4: Spartina C<strong>on</strong>trol and Management<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaTable 1: Priority risks to <str<strong>on</strong>g>the</str<strong>on</strong>g> Tasmanian Rice Grass Management Program and summary <str<strong>on</strong>g>of</str<strong>on</strong>g> key management resp<strong>on</strong>ses.Priority Risks to Program SuccessLack <str<strong>on</strong>g>of</str<strong>on</strong>g> key stakeholder support formanagement programEfficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol techniques is lessthan 90%Actual and perceived toxicologicalimpact <str<strong>on</strong>g>of</str<strong>on</strong>g> herbicide <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>envir<strong>on</strong>mentActual and perceived impact <str<strong>on</strong>g>of</str<strong>on</strong>g> ricegrass removal to envir<strong>on</strong>mentActual and perceived impact <str<strong>on</strong>g>of</str<strong>on</strong>g>herbicide <strong>on</strong> survival growth andmarketing <str<strong>on</strong>g>of</str<strong>on</strong>g> commercial Pacificoysters, Crassostrea gigasLack <str<strong>on</strong>g>of</str<strong>on</strong>g> funds to c<strong>on</strong>tinueimplementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> managementprogramExp<strong>on</strong>ential increases in area <str<strong>on</strong>g>of</str<strong>on</strong>g> ricegrass infestati<strong>on</strong>sManagement Resp<strong>on</strong>ses• Develop and review area-based Management Plans with stakeholders• Establish regi<strong>on</strong>al ‘champi<strong>on</strong>s’ and establish appropriate mechanisms for<strong>on</strong>going communicati<strong>on</strong>• Include experienced weed management pers<strong>on</strong>s in management team• Identify key variables and establish system to m<strong>on</strong>itor performance or teammembers and c<strong>on</strong>duct annual review <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol technique efficacy• Commissi<strong>on</strong> risk assessment <strong>on</strong> toxicological risks <str<strong>on</strong>g>of</str<strong>on</strong>g> herbicide to <str<strong>on</strong>g>the</str<strong>on</strong>g>envir<strong>on</strong>ment• Develop targeted m<strong>on</strong>itoring program• Provide scholarships/funding to encourage student research <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> impact <str<strong>on</strong>g>of</str<strong>on</strong>g>herbicide to n<strong>on</strong>-target organisms• Commissi<strong>on</strong> risk assessment that c<strong>on</strong>siders toxicological effects <str<strong>on</strong>g>of</str<strong>on</strong>g> herbicide<strong>on</strong> juvenile and adult C. gigas• C<strong>on</strong>duct field and laboratory-based research <strong>on</strong> effects <str<strong>on</strong>g>of</str<strong>on</strong>g> herbicide <strong>on</strong> C.gigas• Dem<strong>on</strong>strate commitment to program objectives, wise use <str<strong>on</strong>g>of</str<strong>on</strong>g> funds andaccountability• Seek key opportunities for media releases• Identify priority areas for c<strong>on</strong>trol• Develop realistic seas<strong>on</strong>al goals for priority c<strong>on</strong>trol areas and developsystematic approach to reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> infestati<strong>on</strong>smechanisms were used to engage stakeholders in developing<str<strong>on</strong>g>the</str<strong>on</strong>g>se plans: 1) identifying and involving champi<strong>on</strong>s, 2)c<strong>on</strong>vening regi<strong>on</strong>al meetings, and 3) holding targetedstakeholder meetings. Trusted community members whowere well-informed <strong>on</strong> coastal natural resource managementissues assisted with outreach to <str<strong>on</strong>g>the</str<strong>on</strong>g> local communities wheregrass infestati<strong>on</strong>s occurred, and identified <str<strong>on</strong>g>the</str<strong>on</strong>g> range <str<strong>on</strong>g>of</str<strong>on</strong>g> localstakeholder interests to be c<strong>on</strong>sidered in developing <str<strong>on</strong>g>the</str<strong>on</strong>g>seplans. Champi<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g> intertidal oyster industry were alsoidentified and involved to ensure that <str<strong>on</strong>g>the</str<strong>on</strong>g>ir interests,c<strong>on</strong>cerns and potential c<strong>on</strong>tributi<strong>on</strong>s were clearlyrecognized/understood.In collaborati<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g>se champi<strong>on</strong>s, regi<strong>on</strong>almeetings were organized to seek community and industry, inparticular <str<strong>on</strong>g>the</str<strong>on</strong>g> oyster industry, support for recommendedmanagement objectives, proposed c<strong>on</strong>trol techniques andfield-based operati<strong>on</strong>s. Stakeholder c<strong>on</strong>tributi<strong>on</strong>s during<str<strong>on</strong>g>the</str<strong>on</strong>g>se meetings were very useful for identifying coastalaccess points, preferred periods for c<strong>on</strong>trol activities andpriority areas for c<strong>on</strong>trol. Regi<strong>on</strong>al meetings providedvaluable input to <str<strong>on</strong>g>the</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> area-basedmanagement plans, including agreement <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> roles andresp<strong>on</strong>sibilities <str<strong>on</strong>g>of</str<strong>on</strong>g> relevant stakeholders.In some cases regi<strong>on</strong>al meetings were followed up withmore targeted stakeholder meetings to better understandspecific stakeholder c<strong>on</strong>cerns about <str<strong>on</strong>g>the</str<strong>on</strong>g> potential ecologicaleffects <str<strong>on</strong>g>of</str<strong>on</strong>g> various c<strong>on</strong>trol techniques. These meetings <str<strong>on</strong>g>of</str<strong>on</strong>g>tenrequired substantial preparati<strong>on</strong> and time but were importantfor generating broad stakeholder support for <str<strong>on</strong>g>the</str<strong>on</strong>g> program.Media releases and a quarterly newsletter keptstakeholders informed <str<strong>on</strong>g>of</str<strong>on</strong>g> rice grass management progress.Media opportunities were sought to highlight <str<strong>on</strong>g>the</str<strong>on</strong>g>achievement <str<strong>on</strong>g>of</str<strong>on</strong>g> key management program milest<strong>on</strong>es.Envir<strong>on</strong>mental m<strong>on</strong>itoring and targeted research.During <str<strong>on</strong>g>the</str<strong>on</strong>g> mid 1990s <str<strong>on</strong>g>the</str<strong>on</strong>g> Department <str<strong>on</strong>g>of</str<strong>on</strong>g> NaturalResources, Victoria, Australia, c<strong>on</strong>ducted a range <str<strong>on</strong>g>of</str<strong>on</strong>g> studiesthat investigated <str<strong>on</strong>g>the</str<strong>on</strong>g> efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol techniques and <str<strong>on</strong>g>the</str<strong>on</strong>g>irecological impacts. The studies collectively pointed to <str<strong>on</strong>g>the</str<strong>on</strong>g>highly selective post-emergent herbicide Fusilade as <str<strong>on</strong>g>the</str<strong>on</strong>g>preferred means <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trolling rice grass infestati<strong>on</strong>s.Similar studies by <str<strong>on</strong>g>the</str<strong>on</strong>g> DPIWE in Tasmania also pointed toFusilade as an envir<strong>on</strong>mentally resp<strong>on</strong>sible, safe, and costeffectivetechnique. However, Fusilade is not licensed foruse in <str<strong>on</strong>g>the</str<strong>on</strong>g> coastal envir<strong>on</strong>ment. In 1998 <str<strong>on</strong>g>the</str<strong>on</strong>g> DPIWE used<str<strong>on</strong>g>the</str<strong>on</strong>g>se research findings to support an applicati<strong>on</strong> for an <str<strong>on</strong>g>of</str<strong>on</strong>g>flabelpermit to use Fusilade to c<strong>on</strong>trol rice grass inTasmania, which was later approved that year by <str<strong>on</strong>g>the</str<strong>on</strong>g>Nati<strong>on</strong>al Registrati<strong>on</strong> Authority for Agricultural andVeterinary Chemicals.Initially, DPIWE voluntarily restricted its use <str<strong>on</strong>g>of</str<strong>on</strong>g>Fusilade to <str<strong>on</strong>g>the</str<strong>on</strong>g> very small infestati<strong>on</strong>s (e.g., Derwent Riverand St Helens sites) pending <str<strong>on</strong>g>the</str<strong>on</strong>g> completi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> anindependent envir<strong>on</strong>mental risk assessment <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g>- 244 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 4: Spartina C<strong>on</strong>trol and ManagementFusilade to c<strong>on</strong>trol rice grass (Davies 1999). This assessmentfound that although <str<strong>on</strong>g>the</str<strong>on</strong>g> available informati<strong>on</strong> was limited,<str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> Fusilade to c<strong>on</strong>trol rice grass represents a lowenvir<strong>on</strong>mental risk. The report also c<strong>on</strong>tained a range <str<strong>on</strong>g>of</str<strong>on</strong>g>recommendati<strong>on</strong>s that DPIWE <str<strong>on</strong>g>the</str<strong>on</strong>g>n used to refine itsmanagement program (e.g. initially limiting spray events to0.5 hectares per day as a precauti<strong>on</strong>ary approach in view <str<strong>on</strong>g>of</str<strong>on</strong>g>limited available informati<strong>on</strong>), design an envir<strong>on</strong>mentalm<strong>on</strong>itoring program, and target future research.The risk assessment recommended that fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r studiesbe c<strong>on</strong>ducted to better understand <str<strong>on</strong>g>the</str<strong>on</strong>g> potential effects <str<strong>on</strong>g>of</str<strong>on</strong>g>Fusilade <strong>on</strong> Crassostrea gigas. Laboratory-based researchwas c<strong>on</strong>ducted, in collaborati<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> Pacific oysteraquaculture industry, to investigate <str<strong>on</strong>g>the</str<strong>on</strong>g> potential effects <str<strong>on</strong>g>of</str<strong>on</strong>g>Fusilade <strong>on</strong> survival and development <str<strong>on</strong>g>of</str<strong>on</strong>g> C. gigas (Hedge etal. 1999). The investigati<strong>on</strong> also included a laboratory/fieldcomp<strong>on</strong>ent that examined ingesti<strong>on</strong> and depurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>Fusilade active ingredient (fluazifop-P-butyl) and its primarydegradati<strong>on</strong> product (flauzifop-P) in C. gigas when exposedto expected field c<strong>on</strong>centrati<strong>on</strong>s. The findings <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>investigati<strong>on</strong> provided fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r evidence that Fusiladepresented a low envir<strong>on</strong>mental risk and was also animportant factor in securing <str<strong>on</strong>g>the</str<strong>on</strong>g> support <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Pacific oysteraquaculture industry for <str<strong>on</strong>g>the</str<strong>on</strong>g> management program.In 1999, an envir<strong>on</strong>mental m<strong>on</strong>itoring program wasdesigned to include <str<strong>on</strong>g>the</str<strong>on</strong>g> following comp<strong>on</strong>ents:• Water quality m<strong>on</strong>itoring to assess fluazifop-P butyl andfluazifop-P c<strong>on</strong>centrati<strong>on</strong>s at a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> locati<strong>on</strong>s ineach estuary during and following initial c<strong>on</strong>troloperati<strong>on</strong>s;• Shellfish sampling to m<strong>on</strong>itor ingesti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> fluazifop-Pbutyl in C. gigas;• Small-scale, comprehensively designed biom<strong>on</strong>itoringprogram <str<strong>on</strong>g>of</str<strong>on</strong>g> benthic macroinvertebrates in areas sprayed;and• Mapping <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> and size <str<strong>on</strong>g>of</str<strong>on</strong>g> rice grass infestati<strong>on</strong>sfollowing treatments with Fusilade.Collectively, results from research <strong>on</strong> C. gigas and <str<strong>on</strong>g>the</str<strong>on</strong>g>envir<strong>on</strong>mental m<strong>on</strong>itoring program provided additi<strong>on</strong>alassurance <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental safety; c<strong>on</strong>sequently <str<strong>on</strong>g>the</str<strong>on</strong>g>management program increased <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> Fusilade to allowtreatment <str<strong>on</strong>g>of</str<strong>on</strong>g> up to <strong>on</strong>e hectare per day.More recently, two research projects are underway toinvestigate <str<strong>on</strong>g>the</str<strong>on</strong>g> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> rice grass removal <strong>on</strong> benthiccommunities in <str<strong>on</strong>g>the</str<strong>on</strong>g> Rubic<strong>on</strong>/Port Sorell estuary and <str<strong>on</strong>g>the</str<strong>on</strong>g>potential effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> release <str<strong>on</strong>g>of</str<strong>on</strong>g> sediments resulting fromlarge-scale rice grass removal in <str<strong>on</strong>g>the</str<strong>on</strong>g> Tamar River. Theseprojects will provide useful informati<strong>on</strong> to decisi<strong>on</strong> makerswhen reviewing management objectives for <str<strong>on</strong>g>the</str<strong>on</strong>g> tworemaining large infestati<strong>on</strong>s (i.e. Rubic<strong>on</strong>/Port Sorell andTamar River).Reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> infestati<strong>on</strong>sThe Management Strategy provided clear directi<strong>on</strong> forprioritizing <str<strong>on</strong>g>the</str<strong>on</strong>g> reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> infestati<strong>on</strong>s. The generalapproach was to focus <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> smallest infestati<strong>on</strong>s (i.e.Derwent River, St Helens, Little Swanport estuary andBridport infestati<strong>on</strong>s) progressively building up to largerinfestati<strong>on</strong>s (i.e. Circular Head, Rubic<strong>on</strong>/Port Sorell andTamar River). A small, multi-disciplinary management teamwas used to reduce all targeted infestati<strong>on</strong>s to <str<strong>on</strong>g>the</str<strong>on</strong>g> pointwhere <str<strong>on</strong>g>the</str<strong>on</strong>g> efforts <str<strong>on</strong>g>of</str<strong>on</strong>g> local communities and industry becameimportant for locating remnant patches or isolated plants.Area-based Management Plans c<strong>on</strong>tained <str<strong>on</strong>g>the</str<strong>on</strong>g> specific details<str<strong>on</strong>g>of</str<strong>on</strong>g> how each infestati<strong>on</strong> would be reduced (i.e. managementobjectives and resp<strong>on</strong>sibilities, c<strong>on</strong>trol techniques andc<strong>on</strong>trol period). This was an important planning tool thatwas used to synchr<strong>on</strong>ize <str<strong>on</strong>g>the</str<strong>on</strong>g> efforts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> DPIWE, localcommunities and industry.The management team c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> a core <str<strong>on</strong>g>of</str<strong>on</strong>g> threepeople, <strong>on</strong>e management <str<strong>on</strong>g>of</str<strong>on</strong>g>ficer and two technical <str<strong>on</strong>g>of</str<strong>on</strong>g>ficers.A hovercraft and operator were c<strong>on</strong>tracted and <str<strong>on</strong>g>the</str<strong>on</strong>g> vesselfitted with a 50-liter spray tank, low spray equipment and100-meter remote-c<strong>on</strong>trolled, retractable hose. O<str<strong>on</strong>g>the</str<strong>on</strong>g>requipment used included all terrain vehicles fitted with lowpressurespray equipment and backpack low-pressure sprayunits. The primary c<strong>on</strong>trol technique was applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Fusilade (applicati<strong>on</strong> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 1000 litres/hectare <str<strong>on</strong>g>of</str<strong>on</strong>g> 1%Fusilade soluti<strong>on</strong> mixed with freshwater and <str<strong>on</strong>g>the</str<strong>on</strong>g> surfactantBS1000 at 0.2% vol/vol to maximize efficiency). A review<str<strong>on</strong>g>of</str<strong>on</strong>g> field-work data sheets showed <str<strong>on</strong>g>the</str<strong>on</strong>g> management teamtypically achieved efficacies <str<strong>on</strong>g>of</str<strong>on</strong>g> 90-99%. In 2002, <str<strong>on</strong>g>the</str<strong>on</strong>g>DPIWE decided to engage commercial weed managementc<strong>on</strong>tractors to assist with treatment in <str<strong>on</strong>g>the</str<strong>on</strong>g> Circular Headregi<strong>on</strong>. A comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> costs and efficacies between <str<strong>on</strong>g>the</str<strong>on</strong>g>management team and commercial weed c<strong>on</strong>tractors isprovided in Table 2.Table 3 provides a summary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> infestati<strong>on</strong>s, <str<strong>on</strong>g>the</str<strong>on</strong>g>ircurrent management objectives and size in 2002 relative to1997. The area <str<strong>on</strong>g>of</str<strong>on</strong>g> infestati<strong>on</strong> at Derwent River, St Helens,Little Swanport estuary and Bridport have all been reducedby 99% and are <strong>on</strong> target for achieving <str<strong>on</strong>g>the</str<strong>on</strong>g> managementobjective. The Circular Head infestati<strong>on</strong> has been reduced byapproximately 50% and is also <strong>on</strong> target to achieve <str<strong>on</strong>g>the</str<strong>on</strong>g>management objective. The Rubic<strong>on</strong>/Port Sorell infestati<strong>on</strong>,although having increased in total area, has beensuccessfully c<strong>on</strong>fined to <str<strong>on</strong>g>the</str<strong>on</strong>g> upper half <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary. TheTamar River infestati<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> largest in Tasmania, appears tohave increased its area but is thought to be c<strong>on</strong>fined to <str<strong>on</strong>g>the</str<strong>on</strong>g>Table 2: Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> costs and efficacies between <str<strong>on</strong>g>the</str<strong>on</strong>g> management teamand commercial weed c<strong>on</strong>tractors for <str<strong>on</strong>g>the</str<strong>on</strong>g> applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Fusilade in <str<strong>on</strong>g>the</str<strong>on</strong>g>Circular Head regi<strong>on</strong> in 2002 (estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> costs provided by DPIWE).C<strong>on</strong>trol CrewManagementTeamAveragearea treated(ha./day)Efficacy(%)CostUS $/ha0.5 ~95 2,500C<strong>on</strong>tractors 1.0 >90 1,120- 245 -


Chapter 4: Spartina C<strong>on</strong>trol and Management<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinaestuary. Management opti<strong>on</strong>s and objectives for <str<strong>on</strong>g>the</str<strong>on</strong>g>Rubic<strong>on</strong>/Port Sorell and Tamar River may be revised ifsignificant developments in large-scale c<strong>on</strong>trol techniquesare forthcoming.CONCLUSIONSBetween 1998 and 2002 Tasmania’s rice grassManagement Strategy used <str<strong>on</strong>g>the</str<strong>on</strong>g> experiences <str<strong>on</strong>g>of</str<strong>on</strong>g> rice grassmanagement programs in o<str<strong>on</strong>g>the</str<strong>on</strong>g>r regi<strong>on</strong>s, particularly those inVictoria, Australia, and Washingt<strong>on</strong> State, USA, to identifypriority program risks and to develop its approach to <str<strong>on</strong>g>the</str<strong>on</strong>g>reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> infestati<strong>on</strong>s. The management program placed ahigh degree <str<strong>on</strong>g>of</str<strong>on</strong>g> importance <strong>on</strong> stakeholder participati<strong>on</strong> andengagement at all stages <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> management program.Targeted research and envir<strong>on</strong>mental m<strong>on</strong>itoring programshave also been strategically used in developing andprogressively scaling up <str<strong>on</strong>g>the</str<strong>on</strong>g> management program fromsmall-scale to medium-scale c<strong>on</strong>trol efforts.The Management Strategy and area-based ManagementPlans set specific objectives for each <str<strong>on</strong>g>of</str<strong>on</strong>g> Tasmania’s infestedregi<strong>on</strong>s. In light <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> progress made toward <str<strong>on</strong>g>the</str<strong>on</strong>g>seobjectives <str<strong>on</strong>g>the</str<strong>on</strong>g> implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Management Strategybetween 1998 and 2002 was successful. This achievementwas acknowledged in 2001 when <str<strong>on</strong>g>the</str<strong>on</strong>g> Rice Grass AdvisoryGroup was awarded <str<strong>on</strong>g>the</str<strong>on</strong>g> Australian Water Associati<strong>on</strong>Envir<strong>on</strong>ment Award for its c<strong>on</strong>tributi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> restorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>aquatic habitat. Factors that significantly c<strong>on</strong>tributed toprogram success include:• Development <str<strong>on</strong>g>of</str<strong>on</strong>g> a management strategy with clearobjectives and directi<strong>on</strong> for management;• Establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Rice Grass Advisory Groupinvolving key stakeholder interests and <str<strong>on</strong>g>the</str<strong>on</strong>g> appointment<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> DPIWE as lead management agency;• Effective engagement <str<strong>on</strong>g>of</str<strong>on</strong>g> relevant regi<strong>on</strong>al and industrystakeholders at all stages <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> management process;• Development <str<strong>on</strong>g>of</str<strong>on</strong>g> a management program that integratestargeted research and adequate envir<strong>on</strong>mentalm<strong>on</strong>itoring; and• A method <str<strong>on</strong>g>of</str<strong>on</strong>g> rice grass c<strong>on</strong>trol that can be dem<strong>on</strong>stratedto be envir<strong>on</strong>mentally resp<strong>on</strong>sible, safe, practicable andcost-effective.It is worth pointing out, however, that <str<strong>on</strong>g>the</str<strong>on</strong>g> battle against <str<strong>on</strong>g>the</str<strong>on</strong>g>spread <str<strong>on</strong>g>of</str<strong>on</strong>g> rice grass in Tasmania is far from over. There aresome important challenges still to be faced including:• A clear understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> what is required to achieveeradicati<strong>on</strong> as opposed to just c<strong>on</strong>trolling rice grass, andensuring that those more stringent requirements are met(e.g. local communities and industries will play animportant role in eradicati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir c<strong>on</strong>tinued supportand commitment is vital);• Maintaining effective, practicable and cost-effectivearrangements to c<strong>on</strong>tain large infestati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>gterm;• Procurement <str<strong>on</strong>g>of</str<strong>on</strong>g> sufficient <strong>on</strong>going funding to meet <str<strong>on</strong>g>the</str<strong>on</strong>g>expense <str<strong>on</strong>g>of</str<strong>on</strong>g> reducing rice grass infestati<strong>on</strong>s, particularlyin <str<strong>on</strong>g>the</str<strong>on</strong>g> Circular Head regi<strong>on</strong>.Table 3: Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> all infestati<strong>on</strong>s in Tasmania, including size andcurrent management objectives in 2003 relative to 1997.Infestati<strong>on</strong>DerwentRiver*LittleSwanport*ManagementObjectiveInfestati<strong>on</strong>area 1997(ha)Infestati<strong>on</strong>area2002 (ha)eradicate 1 0.0001eradicate 10 0.0003St Helens* eradicate 1 0.0001Bridport* eradicate 5 0.0002Tamar RiverRubic<strong>on</strong>/Port SorellCircularHeadc<strong>on</strong>tain toestuaryc<strong>on</strong>tain to upperhalf <str<strong>on</strong>g>of</str<strong>on</strong>g> estuary415 415109 141eradicate 50 25* Priority infestati<strong>on</strong>s treated in 1999, 2000 and 2002ACKNOWLEDGEMENTSThe authors would like to acknowledge <str<strong>on</strong>g>the</str<strong>on</strong>g> NaturalHeritage Trust Fisheries Acti<strong>on</strong> Program, <str<strong>on</strong>g>the</str<strong>on</strong>g> Department <str<strong>on</strong>g>of</str<strong>on</strong>g>Primary Industries, Water and Envir<strong>on</strong>ment, TasmanianFishing Industry Council and participating oyster growersfor c<strong>on</strong>tributing <str<strong>on</strong>g>the</str<strong>on</strong>g> resources for developing andimplementing <str<strong>on</strong>g>the</str<strong>on</strong>g> Management Strategy. We would also liketo thank numerous o<str<strong>on</strong>g>the</str<strong>on</strong>g>r people who provided advice anddirecti<strong>on</strong> <strong>on</strong> c<strong>on</strong>trol techniques, m<strong>on</strong>itoring programs andcollaborati<strong>on</strong> with regi<strong>on</strong>al communities. I would pers<strong>on</strong>allylike to thank all <str<strong>on</strong>g>the</str<strong>on</strong>g> field crew, including <str<strong>on</strong>g>the</str<strong>on</strong>g> oyster growerswho lived “in sync” with <str<strong>on</strong>g>the</str<strong>on</strong>g> tidal cycle to make it happen<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ground.REFERENCES:Davies, P.E. 1999. Use <str<strong>on</strong>g>of</str<strong>on</strong>g> Fusilade® to C<strong>on</strong>trol Rice Grass:Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental risks. Unpublished report preparedfor <str<strong>on</strong>g>the</str<strong>on</strong>g> Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Primary Industries, Water andEnvir<strong>on</strong>ment, Tasmania, Australia.DPIWE 2002. Strategy for <str<strong>on</strong>g>the</str<strong>on</strong>g> Management <str<strong>on</strong>g>of</str<strong>on</strong>g> Rice Grass(Spartina anglica) in Tasmania, Australia. Department <str<strong>on</strong>g>of</str<strong>on</strong>g>Primary Industries, Water and Envir<strong>on</strong>ment, Tasmania,Australia.Hedge, P.T., Summers, D., Dittmann and Davies, P. 1999.Toxicological Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Fusilade® <strong>on</strong> Pacific Oysters,Crassostrea gigas. Unpublished technical report for <str<strong>on</strong>g>the</str<strong>on</strong>g>Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Primary Industries, Water and Envir<strong>on</strong>ment,Tasmania, Australia.Hedge, P.T. and Kriwoken, L.K. 2000. Evidence for effects <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina anglica invasi<strong>on</strong> <strong>on</strong> benthic macr<str<strong>on</strong>g>of</str<strong>on</strong>g>auna in LittleSwanport estuary, Tasmania. Austral Ecology 25:150-159.Hedge, P.T., Kriwoken, L.K. and Patten. K. 2003. A Review <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina Management in Washingt<strong>on</strong> State, US. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g>Aquatic Plant Management 41:82-89Kriwoken and Hedge 2000. Exotic species and estuaries: managingSpartina anglica in Tasmania, Australia. Ocean and CoastalManagement 43:573-584.- 246 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 4: Spartina C<strong>on</strong>trol and ManagementCONTROLLING INVASIVE SPARTINA SPP.: THE NEW ZEALAND SUCCESS STORYG. MILLERRanger – Biodiversity, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> C<strong>on</strong>servati<strong>on</strong>, Southland, New ZealandSpartina is being successfully c<strong>on</strong>trolled in <str<strong>on</strong>g>the</str<strong>on</strong>g> estuaries <str<strong>on</strong>g>of</str<strong>on</strong>g> sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn New Zealand. With anestimated 800 hectares (ha) (2000 acres [ac]) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> New River estuary near Invercargill beingaffected by Spartina in 1988, this has now been reduced to less than 1 ha (2.5 ac). Within <str<strong>on</strong>g>the</str<strong>on</strong>g> nexttwo years, we expect Spartina to have been eradicated in <str<strong>on</strong>g>the</str<strong>on</strong>g>se estuaries. Spartina was originallyplanted in <str<strong>on</strong>g>the</str<strong>on</strong>g> Invercargill district in <str<strong>on</strong>g>the</str<strong>on</strong>g> 1930s to reclaim land in <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary for <str<strong>on</strong>g>the</str<strong>on</strong>g> increasedindustrial activities in <str<strong>on</strong>g>the</str<strong>on</strong>g> area. It wasn’t until <str<strong>on</strong>g>the</str<strong>on</strong>g> 1970s that Spartina was first acknowledged as aserious problem causing significant impacts <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> estuarine values, including wading birds andshellfish habitats, and thus declared an invasive weed to <str<strong>on</strong>g>the</str<strong>on</strong>g> area. Various c<strong>on</strong>trol techniques weretrialled starting in <str<strong>on</strong>g>the</str<strong>on</strong>g> early 1970s producing some good results but were disc<strong>on</strong>tinued in <str<strong>on</strong>g>the</str<strong>on</strong>g> mid1980s. In 1988 <str<strong>on</strong>g>the</str<strong>on</strong>g> newly formed Department <str<strong>on</strong>g>of</str<strong>on</strong>g> C<strong>on</strong>servati<strong>on</strong> took over <str<strong>on</strong>g>the</str<strong>on</strong>g> resp<strong>on</strong>sibility for <str<strong>on</strong>g>the</str<strong>on</strong>g>c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina and trials began to find a method to c<strong>on</strong>trol its spread.Trials with different chemicals show Haloxyfop (registered as Gallant nf ) to be <str<strong>on</strong>g>the</str<strong>on</strong>g> most successfulherbicide with up to 95% kill <strong>on</strong> first applicati<strong>on</strong>. Trials <strong>on</strong> applicati<strong>on</strong> techniques have seen <str<strong>on</strong>g>the</str<strong>on</strong>g>combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> helicopter boom spraying <str<strong>on</strong>g>of</str<strong>on</strong>g> meadows and follow-up with an eight-wheeledamphibious-tracked vehicle (Argo), fitted with tracks and spray unit, as <str<strong>on</strong>g>the</str<strong>on</strong>g> most efficient methods<str<strong>on</strong>g>of</str<strong>on</strong>g> applying this chemical. These methods are now being used extensively around New Zealand.The New Zealand Department <str<strong>on</strong>g>of</str<strong>on</strong>g> C<strong>on</strong>servati<strong>on</strong> has beeninvolved with <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina in Southland for <str<strong>on</strong>g>the</str<strong>on</strong>g>past 16 years and has had some significant successes in <str<strong>on</strong>g>the</str<strong>on</strong>g>fight against this invasive weed. This document summarizes<str<strong>on</strong>g>the</str<strong>on</strong>g> lead-up to <str<strong>on</strong>g>the</str<strong>on</strong>g> department’s involvement, <str<strong>on</strong>g>the</str<strong>on</strong>g> trial workundertaken, <str<strong>on</strong>g>the</str<strong>on</strong>g> results achieved to <str<strong>on</strong>g>the</str<strong>on</strong>g> present and <str<strong>on</strong>g>the</str<strong>on</strong>g> plansfor <str<strong>on</strong>g>the</str<strong>on</strong>g> future.Planting <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina started in <str<strong>on</strong>g>the</str<strong>on</strong>g> New River Estuaryduring <str<strong>on</strong>g>the</str<strong>on</strong>g> early 1930s to help reclaim parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> estuaryfor industrial development. The initial plantings were <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>sterile hybrid Spartina x townsendii, but <str<strong>on</strong>g>the</str<strong>on</strong>g>se plantings didnot prove very successful. In 1947, plantings <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> speciesSpartina anglica were undertaken. These plantingsc<strong>on</strong>tinued until 1954 and proved to be very successful. In <str<strong>on</strong>g>the</str<strong>on</strong>g>following decades, <str<strong>on</strong>g>the</str<strong>on</strong>g> area covered by Spartina c<strong>on</strong>tinuedto increase in an unc<strong>on</strong>trolled manner and spread to o<str<strong>on</strong>g>the</str<strong>on</strong>g>restuary envir<strong>on</strong>ments within Southland.In <str<strong>on</strong>g>the</str<strong>on</strong>g> 1960s and early 1970s, c<strong>on</strong>cern was first raised<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> increasing spread <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> infestati<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> effect itwas having <strong>on</strong> wading bird habitat. In 1972, a committeewas established to look at <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina issue, and withfunding from <str<strong>on</strong>g>the</str<strong>on</strong>g> Invercargill City Council, trials wereundertaken to try to c<strong>on</strong>trol <str<strong>on</strong>g>the</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina.Early work using <str<strong>on</strong>g>the</str<strong>on</strong>g> herbicide Tandex (activeingredient karbutilate) by spray applicati<strong>on</strong> provedsuccessful, but later work was less so, possibly due to siltbuild-up <strong>on</strong> Spartina leaves reducing <str<strong>on</strong>g>the</str<strong>on</strong>g> herbicide’seffectiveness. A method <str<strong>on</strong>g>of</str<strong>on</strong>g> soil injecti<strong>on</strong> was developed;although successful, it was very difficult, time-intensivework. Successes achieved during <str<strong>on</strong>g>the</str<strong>on</strong>g>se early c<strong>on</strong>trolapplicati<strong>on</strong>s were due mainly to <str<strong>on</strong>g>the</str<strong>on</strong>g> dedicati<strong>on</strong>, perseveranceand plain hard work <str<strong>on</strong>g>of</str<strong>on</strong>g> a few key people.Aerial trials with <str<strong>on</strong>g>the</str<strong>on</strong>g> herbicides Herbex and Phytazol Awere undertaken, but <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>sistency <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> results wasdisappointing. Due to <str<strong>on</strong>g>the</str<strong>on</strong>g> restructuring <str<strong>on</strong>g>of</str<strong>on</strong>g> local authoritieswithin Southland in <str<strong>on</strong>g>the</str<strong>on</strong>g> mid 1980s, fewer resources wereallocated to <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina c<strong>on</strong>trol program. Infestati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina again grew in an unc<strong>on</strong>trolled manner and so some<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> earlier successes were lost.By <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> late 1980s, it was estimated thatinfestati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina within New River Estuary affectedsome 800 hectares (ha), approximately 20% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> entireestuarine area. In 1987, <str<strong>on</strong>g>the</str<strong>on</strong>g> newly formed Department <str<strong>on</strong>g>of</str<strong>on</strong>g>C<strong>on</strong>servati<strong>on</strong> took resp<strong>on</strong>sibility for <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartinawithin Southland.A new interagency partnership was developed betweenInvercargill City Council, Envir<strong>on</strong>ment Southland (a publicenvir<strong>on</strong>mental m<strong>on</strong>itoring organizati<strong>on</strong>), and <str<strong>on</strong>g>the</str<strong>on</strong>g> Department<str<strong>on</strong>g>of</str<strong>on</strong>g> C<strong>on</strong>servati<strong>on</strong>. With this approach, efforts could again befocused <strong>on</strong> methods to c<strong>on</strong>trol Spartina, not <strong>on</strong>ly in <str<strong>on</strong>g>the</str<strong>on</strong>g> NewRiver Estuary but also in all Southland estuaries. Thispartnership c<strong>on</strong>tinues to this day and is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> reas<strong>on</strong>sfor <str<strong>on</strong>g>the</str<strong>on</strong>g> success <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> program. As some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> previouslyused herbicides were now unavailable, this led to a newseries <str<strong>on</strong>g>of</str<strong>on</strong>g> trials being undertaken with new herbicides andapplicati<strong>on</strong> methods.One <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> first herbicides tried was glyphosate. Whilstthis herbicide proved fairly successful and was used for a- 247 -


Chapter 4: Spartina C<strong>on</strong>trol and Management<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinanumber <str<strong>on</strong>g>of</str<strong>on</strong>g> years, its effectiveness was <str<strong>on</strong>g>of</str<strong>on</strong>g>ten reduced whensilt and dirt covered Spartina leaves, although kill rates <str<strong>on</strong>g>of</str<strong>on</strong>g>50% to 60% were still achieved. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r trials wereundertaken using <str<strong>on</strong>g>the</str<strong>on</strong>g> herbicide Gallant? (Haloxyfop-Rmethyl).This grass-selective herbicide was being used by<str<strong>on</strong>g>the</str<strong>on</strong>g> Department <str<strong>on</strong>g>of</str<strong>on</strong>g> C<strong>on</strong>servati<strong>on</strong> at that time for <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol<str<strong>on</strong>g>of</str<strong>on</strong>g> marram grass (Ammophila arenaria) <strong>on</strong> sand dunesystems al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> Southland coast. Gallant proved veryeffective at penetrating silt and dirt with at least 90% killrates being achieved with a single applicati<strong>on</strong>. Thissubsequently became <str<strong>on</strong>g>the</str<strong>on</strong>g> herbicide <str<strong>on</strong>g>of</str<strong>on</strong>g> choice and its use hasc<strong>on</strong>tinued to this day.Whilst an effective herbicide was now available, earlyapplicati<strong>on</strong> methods left something to be desired, provingcostly in time and resources. Initial work with a highpressurespray gun and 200 meter (m) hose mounted <strong>on</strong> atruck was slow and difficult, needing a team <str<strong>on</strong>g>of</str<strong>on</strong>g> six people tohaul a hose across mudflats. Trials using a hovercraft in1995 proved successful in allowing quick access to scatteredSpartina patches that previously had to be approached <strong>on</strong>foot. This machine was fitted with a small spray unit andproved very effective. However, this form <str<strong>on</strong>g>of</str<strong>on</strong>g> transport wasnot able to travel across <str<strong>on</strong>g>the</str<strong>on</strong>g> now vast Spartina meadows. Soeven though <str<strong>on</strong>g>the</str<strong>on</strong>g> hovercraft had made work easier, <str<strong>on</strong>g>the</str<strong>on</strong>g>re werestill shortcomings. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r trials were undertaken using anArgo, an all-wheel-drive amphibious vehicle, with extremelysuccessful results. When fitted with a small spray unit, thisvehicle allows <strong>on</strong>e pers<strong>on</strong> to undertake c<strong>on</strong>trol work across<str<strong>on</strong>g>the</str<strong>on</strong>g> vast majority <str<strong>on</strong>g>of</str<strong>on</strong>g> areas within <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary envir<strong>on</strong>ment.When fitted with tracks, this vehicle is capable <str<strong>on</strong>g>of</str<strong>on</strong>g> travellingover waist-deep mud. Whilst <str<strong>on</strong>g>the</str<strong>on</strong>g> Argo was an extremelyefficient vehicle, an effective method <str<strong>on</strong>g>of</str<strong>on</strong>g> herbicideapplicati<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> vast Spartina meadows was still sought.Trials with a helicopter fitted with a boom and valsecolfoaming nozzles, flying at a height <str<strong>on</strong>g>of</str<strong>on</strong>g> 1-2 m above <str<strong>on</strong>g>the</str<strong>on</strong>g> tops<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plant and at very slow speeds, proved very effectivefor this task.As a result <str<strong>on</strong>g>of</str<strong>on</strong>g> our experience acquired during all <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g>se trials, we now had <str<strong>on</strong>g>the</str<strong>on</strong>g> right tools in <str<strong>on</strong>g>the</str<strong>on</strong>g> fight againstSpartina. These tools were:• an herbicide that was extremely successful in <str<strong>on</strong>g>the</str<strong>on</strong>g> harshestuarine envir<strong>on</strong>ment,• a helicopter that could attack <str<strong>on</strong>g>the</str<strong>on</strong>g> vast meadows, and• <str<strong>on</strong>g>the</str<strong>on</strong>g> Argo to c<strong>on</strong>trol smaller areas <strong>on</strong> mud and to followup <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> helicopter work.The correct use <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> right herbicide by <str<strong>on</strong>g>the</str<strong>on</strong>g> mostappropriate method at <str<strong>on</strong>g>the</str<strong>on</strong>g> right time has had tremendousresults, which we were able to replicate in all estuarieswithin Southland.Sixteen years ago, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol and eradicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina seemed an impossible task. However, previousless<strong>on</strong>s and <str<strong>on</strong>g>the</str<strong>on</strong>g> development <str<strong>on</strong>g>of</str<strong>on</strong>g> some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> early pi<strong>on</strong>eeringwork has led to <str<strong>on</strong>g>the</str<strong>on</strong>g> eliminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Southland’s Spartinainfestati<strong>on</strong>.To achieve eradicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina, it is crucial for anactive surveillance program to be undertaken to c<strong>on</strong>tinue tosearch for previously unrecorded infestati<strong>on</strong>s. At <str<strong>on</strong>g>the</str<strong>on</strong>g> presenttime, <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina meadows and patches have beeneradicated from all estuaries within Southland—sparselyscattered individual plants are all that remain.Where such plants are discovered, <str<strong>on</strong>g>the</str<strong>on</strong>g> appropriatec<strong>on</strong>trol acti<strong>on</strong> needs to be taken at <str<strong>on</strong>g>the</str<strong>on</strong>g> appropriate time. Theuse <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Argo is now <str<strong>on</strong>g>the</str<strong>on</strong>g> mainstay <str<strong>on</strong>g>of</str<strong>on</strong>g> our treatmentoperati<strong>on</strong>s because it is time and resource-effective.In additi<strong>on</strong> to present eradicati<strong>on</strong> work, m<strong>on</strong>itoring <str<strong>on</strong>g>the</str<strong>on</strong>g>effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina removal <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> estuary will need toc<strong>on</strong>tinue.ACKNOWLEDGMENTSThis has been a brief overview <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> work that has beenundertaken over <str<strong>on</strong>g>the</str<strong>on</strong>g> past 30 years to enable estuaries withinSouthland to approach <str<strong>on</strong>g>the</str<strong>on</strong>g> eradicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-nativeSpartina. This would not have been achievable without <str<strong>on</strong>g>the</str<strong>on</strong>g>c<strong>on</strong>tinuing support and cooperati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> our partnerorganisati<strong>on</strong>s: Envir<strong>on</strong>ment Southland, Invercargill CityCouncil, and Dow AgroSciences.In additi<strong>on</strong>, a number <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals have given support,advice and assistance from <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> this program.My thanks go to all who have been a part <str<strong>on</strong>g>of</str<strong>on</strong>g> it.- 248 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 4: Spartina C<strong>on</strong>trol and ManagementCOMPARISON OF CHEMICAL AND MECHANICAL CONTROL EFFORTS FOR INVASIVESPARTINA IN WILLAPA BAY,WASHINGTONK. PATTENWashingt<strong>on</strong> State University L<strong>on</strong>g Beach Research and Extensi<strong>on</strong> Unit, 2907 Pi<strong>on</strong>eer Road, L<strong>on</strong>g Beach, WA 98631;pattenk@wsu.eduWillapa Bay, Washingt<strong>on</strong>, hosts <str<strong>on</strong>g>the</str<strong>on</strong>g> largest invasive Spartina populati<strong>on</strong> in North America. Stateand federal agencies have been c<strong>on</strong>ducting large-scale mechanical and chemical c<strong>on</strong>trol efforts <strong>on</strong><str<strong>on</strong>g>the</str<strong>on</strong>g> affected lands during <str<strong>on</strong>g>the</str<strong>on</strong>g> past decade with varying degrees <str<strong>on</strong>g>of</str<strong>on</strong>g> success. Assessments <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>gtermefficacy, cost effectiveness and ecological risk <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> various c<strong>on</strong>trol tools are presented. Nol<strong>on</strong>g-term c<strong>on</strong>trol was achieved with multiple years <str<strong>on</strong>g>of</str<strong>on</strong>g> disking. Crushing Spartina was <strong>on</strong>lysuccessful when <str<strong>on</strong>g>the</str<strong>on</strong>g> plant was driven well below <str<strong>on</strong>g>the</str<strong>on</strong>g> surface sediment. This occurred <strong>on</strong> s<str<strong>on</strong>g>of</str<strong>on</strong>g>tsediment and a thin root mat. Winter tilling provided good c<strong>on</strong>trol, but spring and summer tilling<strong>on</strong>ly marginal c<strong>on</strong>trol. In sites where seed stalks were tilled into <str<strong>on</strong>g>the</str<strong>on</strong>g> sediment during <str<strong>on</strong>g>the</str<strong>on</strong>g> winter,<str<strong>on</strong>g>the</str<strong>on</strong>g>re was a solid stand <str<strong>on</strong>g>of</str<strong>on</strong>g> seedlings <str<strong>on</strong>g>the</str<strong>on</strong>g> following spring. Spartina c<strong>on</strong>trol with glyphosate at <str<strong>on</strong>g>the</str<strong>on</strong>g>high hand-sprayed rates (5–8% v/v) averaged approximately 50%, with permanent c<strong>on</strong>trol takingseveral years <str<strong>on</strong>g>of</str<strong>on</strong>g> re-treatment. C<strong>on</strong>trol from late seas<strong>on</strong> (September/October) hand-sprayedglyphosate was poor. C<strong>on</strong>trol with broadcast applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> glyphosate (8.4 kilograms activeingredient per hectare (kg ai/ha)) was highly variable. Although brown-down was usually observed,<str<strong>on</strong>g>the</str<strong>on</strong>g>re was no permanent c<strong>on</strong>trol except under ideal c<strong>on</strong>diti<strong>on</strong>s (clean leaves, clean spray water andseveral days <str<strong>on</strong>g>of</str<strong>on</strong>g> dry time), in which case up to 74% c<strong>on</strong>trol was achieved. Based <strong>on</strong> same seas<strong>on</strong>observati<strong>on</strong>s, large-scale c<strong>on</strong>trol appears promising using broadcast (aerial and ground) and handsprayedimazapyr. Most variability with imazapyr occurred when hand-sprayed applicati<strong>on</strong>s failedto achieve good canopy coverage. Best c<strong>on</strong>trol, lowest l<strong>on</strong>g-term cost and least ecological riskoccurred with broadcast imazapyr applicati<strong>on</strong> in June.Keywords: glyphosate, imazapyr, tilling, crushing, modeling, eradicati<strong>on</strong>, SpartinaINTRODUCTIONResearch to develop better c<strong>on</strong>trol methods for invasiveSpartina has been <strong>on</strong>-going <strong>on</strong> a global scale for many years(Frid et al. 1999; Garnett et al. 1992; Kilbride et al. 1995;Major et al. 2003; Patten 2002; Patten and Stenvall 2002;Pritchards 1995; Shaw et al. 1995). How well <str<strong>on</strong>g>the</str<strong>on</strong>g>se variousmethods work when implemented by large-scale c<strong>on</strong>trolprograms has been poorly documented. In additi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>re islittle informati<strong>on</strong> about how successful <str<strong>on</strong>g>the</str<strong>on</strong>g>se programs are inachieving <str<strong>on</strong>g>the</str<strong>on</strong>g>ir c<strong>on</strong>trol or eradicati<strong>on</strong> goals.Willapa Bay, Washingt<strong>on</strong> State, USA currently hosts<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> largest Spartina alterniflora infestati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g>world. In 1993 <str<strong>on</strong>g>the</str<strong>on</strong>g> state legislators unanimously passed <str<strong>on</strong>g>the</str<strong>on</strong>g>Revised Code <str<strong>on</strong>g>of</str<strong>on</strong>g> Washingt<strong>on</strong> 17.26 which mandates thatSpartina shall be eradicated. To accomplish this goal, <str<strong>on</strong>g>the</str<strong>on</strong>g>rehave been large-scale c<strong>on</strong>trol efforts <strong>on</strong> Spartina in WillapaBay since 1995. Those efforts have included an array <str<strong>on</strong>g>of</str<strong>on</strong>g>mechanical and chemical practices implemented by state,federal and private stakeholders. Treating Spartina,however, has not led to eradicati<strong>on</strong>. C<strong>on</strong>trol has not comeclose to keeping pace with <str<strong>on</strong>g>the</str<strong>on</strong>g> 15 to 20% annual rate <str<strong>on</strong>g>of</str<strong>on</strong>g>spread (Hedge et al. 2002), despite state and federal agencyexpenditures <str<strong>on</strong>g>of</str<strong>on</strong>g> $500,000-$1 milli<strong>on</strong> to treat thousands <str<strong>on</strong>g>of</str<strong>on</strong>g>acres <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina per year (WSDA 1999 to 2003). Asuccessful eradicati<strong>on</strong> strategy requires that <str<strong>on</strong>g>the</str<strong>on</strong>g> specificc<strong>on</strong>trol practices being utilized have adequate efficacy toaccomplish <str<strong>on</strong>g>the</str<strong>on</strong>g> task. Unfortunately, according to a study by<str<strong>on</strong>g>the</str<strong>on</strong>g> Government Accounting Office (GAO 2002), mostinvasive species management programs fail to objectivelyassess, improve and realign <str<strong>on</strong>g>the</str<strong>on</strong>g>ir c<strong>on</strong>trol strategies torealistically corresp<strong>on</strong>d to <str<strong>on</strong>g>the</str<strong>on</strong>g>ir eradicati<strong>on</strong> goals. TheSpartina c<strong>on</strong>trol effort in Willapa Bay is no excepti<strong>on</strong> to thisfailure <str<strong>on</strong>g>of</str<strong>on</strong>g> management strategies (Hedge et al. 2002).The objectives <str<strong>on</strong>g>of</str<strong>on</strong>g> this study were to m<strong>on</strong>itor andevaluate <str<strong>on</strong>g>the</str<strong>on</strong>g> most comm<strong>on</strong>ly used Spartina c<strong>on</strong>trol efforts inWillapa Bay and to determine if <str<strong>on</strong>g>the</str<strong>on</strong>g> efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> those effortsis sufficient to allow state and federal agencies toaccomplish <str<strong>on</strong>g>the</str<strong>on</strong>g>ir eradicati<strong>on</strong> goals.MATERIALS AND METHODSMajor mechanical and chemical c<strong>on</strong>trol effortsc<strong>on</strong>ducted by Washingt<strong>on</strong> State Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture(WSDA), Washingt<strong>on</strong> State Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Fish andWildlife (WDFW), Washingt<strong>on</strong> State Department <str<strong>on</strong>g>of</str<strong>on</strong>g> NaturalResources (WDNR), Willapa Nati<strong>on</strong>al Wildlife Refuge(WNWR) and private tideland owners in Willapa Bay from2001 to 2004 were identified and selected for evaluati<strong>on</strong>.- 249 -


Chapter 4: Spartina C<strong>on</strong>trol and Management<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinacrushing 2 yrscrushing + glyphosate38 kg/ha 1 yrglyphosate 9 kg/ha 1 yr0 20 40 60 80 100% Spartina-free quadratscrushing 1 yrcrushing +glyphosate38 kg/ha 2 yrsglyphosate 2 yrsglyphosate 38 kg/ha 1 yrFig. 1 Box whisker graphs <str<strong>on</strong>g>of</str<strong>on</strong>g> percent Spartina-free quadrats from differentmechanical and chemical c<strong>on</strong>trols used in Willapa Bay from 2001 to 2003.Box whisker graphs <strong>on</strong>ly presented for treatments with five or more datapoints. (mean = dotted line, median = solid line, box = 25 th and 75 thpercentiles, whiskers = 5 th and 95 th percentiles, data point = outliers).Three mechanical c<strong>on</strong>trol practices (tilling, crushing anddisking) and four chemical c<strong>on</strong>trol practices (glyphosate attwo rates, crush and spray, and imazapyr) were assessed.Tilling was d<strong>on</strong>e by <str<strong>on</strong>g>the</str<strong>on</strong>g> WNWR in <str<strong>on</strong>g>the</str<strong>on</strong>g> winter <strong>on</strong> largemeadows that were previously mowed (2000/2001) oruntreated (2004). Crushing was d<strong>on</strong>e by WSDA, WDNR orWDFW using tracked amphibious vehicles. Disking wasd<strong>on</strong>e with a tandem disk. Crushing timing and frequencyvaried by site while disking was d<strong>on</strong>e <strong>on</strong>ly in <str<strong>on</strong>g>the</str<strong>on</strong>g> winter.Sites usually received multiple crushing or disking eventsper year. Imazapyr and <str<strong>on</strong>g>the</str<strong>on</strong>g> low rate <str<strong>on</strong>g>of</str<strong>on</strong>g> glyphosate (9kilograms per hectare (kg/ha)) were applied by boom usingapproximately 500 liters per hectare (l/ha) spray volume.The high glyphosate rate was applied by hand using highpressure spray guns. A 5 to 8% v/v <str<strong>on</strong>g>of</str<strong>on</strong>g> product was appliedwith a spray volume <str<strong>on</strong>g>of</str<strong>on</strong>g> about 1,500 l/ha. The estimatedglyphosate rate for hand applicati<strong>on</strong>s averaged 38 kg/ha.Spraying <str<strong>on</strong>g>of</str<strong>on</strong>g> crushed sites occurred <strong>on</strong>ce Spartina had regrownenough to provide adequate canopy coverage.Treatment sites ranged from 0.25 ha to 500 ha in size with<str<strong>on</strong>g>the</str<strong>on</strong>g> majority larger than 10 ha.Attempts were made to assure that <str<strong>on</strong>g>the</str<strong>on</strong>g> treatment sitesselected for m<strong>on</strong>itoring were relatively free <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>foundingfactors from previous c<strong>on</strong>trol efforts at <str<strong>on</strong>g>the</str<strong>on</strong>g> sites, and thateach site had a discrete treatment that was identifiable.M<strong>on</strong>itoring was d<strong>on</strong>e al<strong>on</strong>g multiple transects in eachtreatment site. Spartina stem and seedling density countsfrom 0.25m 2 quadrats were taken al<strong>on</strong>g transects. Thenumber <str<strong>on</strong>g>of</str<strong>on</strong>g> quadrats and type <str<strong>on</strong>g>of</str<strong>on</strong>g> transect varied depending <strong>on</strong><str<strong>on</strong>g>the</str<strong>on</strong>g> size and shape <str<strong>on</strong>g>of</str<strong>on</strong>g> each treatment area, with a range <str<strong>on</strong>g>of</str<strong>on</strong>g> 40to 2,600 quadrats per site. Methods are fully detailedelsewhere (Patten 2003, 2004). Stem density data wereclassified as follows:1) excellent Spartina c<strong>on</strong>trol – 0 stems/0.25m 2 ;2) good to moderate c<strong>on</strong>trol – 1 to 5 stems/0.25m 2 ;3) fair to poor c<strong>on</strong>trol – 6 to 20 stems/0.25m 2 , and4) poor to no c<strong>on</strong>trol – 21 stems/0.25m 2 . Mean stemdensity before treatment was typically >50 stems/0.25m 2 .Pooled and disaggregated data for each site were analyzedfor stem density and overall stem density frequencydistributi<strong>on</strong>. Means and standard error values are presented.The percent <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina-free quadrats was used as ac<strong>on</strong>servative method to assess treatment efficacy. This valueindicates a treatment’s ability to prevent vegetative recol<strong>on</strong>izati<strong>on</strong>and to minimize <str<strong>on</strong>g>the</str<strong>on</strong>g> cost <str<strong>on</strong>g>of</str<strong>on</strong>g> re-treatment. Forexample, a thinned-out Spartina canopy with a mean density<str<strong>on</strong>g>of</str<strong>on</strong>g> 5 stems/0.25m 2 could represent a greater than 90%decrease in stem density, but would cost almost <str<strong>on</strong>g>the</str<strong>on</strong>g> same totreat as a solid canopy; without re-treatment this wouldbecome a solid infestati<strong>on</strong> again within a year. For this paper,<str<strong>on</strong>g>the</str<strong>on</strong>g> percent <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina-free quadrats was also assumed toapproximate <str<strong>on</strong>g>the</str<strong>on</strong>g> extincti<strong>on</strong> coefficient or <str<strong>on</strong>g>the</str<strong>on</strong>g> percent c<strong>on</strong>trol.Years to achieve eradicati<strong>on</strong> for a given treatment, assumingminor re-infestati<strong>on</strong>, was calculated as years = log 0.01/log (1-extincti<strong>on</strong> coefficient). A discrete time, logistic growth model,with growth rate and outside seedling input parameters, wasused to predict <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina meadow remainingafter four years <str<strong>on</strong>g>of</str<strong>on</strong>g> a given treatment.Parametric comparis<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> treatment efficacy were notfeasible because treatments lacked true replicati<strong>on</strong>. That is,even sites with <str<strong>on</strong>g>the</str<strong>on</strong>g> same general treatment were treated bydifferent agencies under vastly different c<strong>on</strong>diti<strong>on</strong>s.Therefore to make inferences about overall treatmenteffectiveness from a management perspective, treatmentvariati<strong>on</strong> is presented in box whisker format (mean, median,5 th , 25 th , 75 th and 95 th percentiles, and outliers) for alltreatments where <str<strong>on</strong>g>the</str<strong>on</strong>g>re were more than five data sets.For comparative purposes, box whisker graphs <str<strong>on</strong>g>of</str<strong>on</strong>g>efficacy <strong>on</strong> Spartina across selected herbicides are shown;this research was c<strong>on</strong>ducted by <str<strong>on</strong>g>the</str<strong>on</strong>g> author between 1998 and2003 (Patten 2002; Patten & Stenvall 2002). Percent c<strong>on</strong>troldata were pooled across each experimental unit forglyphosate at 18 kg/ha rate and imazapyr at 1.7 kg/ha.RESULTSIndividual and pooled results are shown in Tables 1 and2, and Fig. 1. C<strong>on</strong>trol with <str<strong>on</strong>g>the</str<strong>on</strong>g> broadcast rate <str<strong>on</strong>g>of</str<strong>on</strong>g> glyphosate(9 kg/ha) was highly variable (14% to 56%) and averagedhalf <str<strong>on</strong>g>the</str<strong>on</strong>g> efficacy achieved at <str<strong>on</strong>g>the</str<strong>on</strong>g> much higher hand-sprayedrates (38 kg/ha) (Table 1 and Fig. 1). There was less- 250 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 4: Spartina C<strong>on</strong>trol and ManagementTable 1. Summary <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical c<strong>on</strong>trol efficacy for Spartina in Willapa Bay from 1999 to 2003.C<strong>on</strong>trol methodYearGeneral locati<strong>on</strong>in Willapa BayStem density Percent stem density frequency(#/0.25m 2 )±std. error <str<strong>on</strong>g>of</str<strong>on</strong>g> mean. 0 1 to 5 6 to 20 >20Glyphosate 9 kg/ha 2003 SE 21.0±3.0 20 13 22 44Glyphosate 9 kg/ha 2003 S 27.0±1.5 14 13 19 54Glyphosate 9 kg/ha 2003 SE 7.0±1.0 25 27 35 13Glyphosate 9 kg/ha 2002 S 16.8±2.8 25 15 25 35Glyphosate 9 kg/ha 2002 S 7.5±2.0 56 16 15 15Glyphosate 9 kg/ha 2002 S 13.0±1.3 19 15 31 35Glyphosate 9 kg/ha 2002 S 1.6±0.2 55 23 15 7Glyphosate 9 kg/ha 2002/03 S 6.0±0.7 59 16 16 9Glyphosate 38 kg/ha 2002 NE 7.0±1.0 75 7 5 18Glyphosate 38 kg/ha 2002 Mid Peninsula 1.7±0.3 60 30 10 0Glyphosate 38 kg/ha 2002 N. Peninsula 2.3±1.2 57 37 3 3Glyphosate 38 kg/ha 2002 N. Peninsula 5.0±1.8 53 27 12 8Glyphosate 38 kg/ha 2002 SE 2.7±1.1 74 14 7 5Glyphosate 38 kg/ha 2003 N 5.0±1.0 32 13 42 13Glyphosate 38 kg/ha 2003 Mid Peninsula 16.0±4.0 35 10 20 35Glyphosate 38 kg/ha 2003 Mid Peninsula 5.0±1.0 58 12 18 12Glyphosate 38 kg/ha 2003 SE 0.5 ±0.5 68 32 0 0Glyphosate 38 kg/ha 2002 SE 3.4±1.1 54 28 10 8Glyphosate 38 kg/ha 2002 N. Peninsula 6.8±2.1 60 20 15 0Glyphosate 38 kg/ha 2002/03 N 9.0±2.0 35 18 33 14Glyphosate 38 kg/ha 1999/02/03 N. Peninsula 1.3±0.5 83 10 8 0Glyphosate 38 kg/ha 2000/02 S. Peninsula 5.2±0.7 63 7 18 12Crushing+glyphosate 9 kg/ha 2003 E 8.0±2.0 47 13 25 15Crushing+glyphosate 9 kg/ha 2003 E 2.0±3.0 8 8 43 41Crushing+glyphosate 9 kg/ha 2002 SE 3.1±1.2 44 46 7 2Crushing+glyphosate 9 kg/ha 2002 SE 1.5±0.5 71 19 10 0Crushing+glyphosate 9 kg/ha 2002 SE 1.6±0.5 53 40 7 0Crushing+glyphosate 9 kg/ha 2002 SE 1.9±0.6 60 20 15 0Crushing+glyphosate 9 kg/ha 2002 N. Peninsula 6.8±1.7 53 40 7 0Crushing+glyphosate 9 kg/ha 2002 SE 2.8±1.0 73 15 15 7Crushing+glyphosate 9 kg/ha 2002/03 SE 0.5±0.5 85 15 10 0Crushing+glyphosate 9 kg/ha 2002/03 SE 2.0±2.0 100 0 0 0Crushing+glyphosate 9 kg/ha 2002/03 SE 6.0±1.0 51 18 22 9Crushing+glyphosate 9 kg/ha 2002/03 N. Peninsula 8.0±1.0 35 15 40 10Crushing+glyphosate 9 kg/ha 2002/03 SE 1.0±0.2 76 8 14 2Crushing+glyphosate 9 kg/ha 2002/03 SE 5.0±1.0 43 15 37 5Imazapyr 1.7 kg/ha 2003 E 1.0±0.7 82 15 0 3variability in c<strong>on</strong>trol at <str<strong>on</strong>g>the</str<strong>on</strong>g> high applicati<strong>on</strong> rate.Glyphosate applied at <str<strong>on</strong>g>the</str<strong>on</strong>g> same site in c<strong>on</strong>secutive years didnot provide any marked improvement in overall c<strong>on</strong>trol overa single year <str<strong>on</strong>g>of</str<strong>on</strong>g> treatment (Fig. 1). Crushing followed by <str<strong>on</strong>g>the</str<strong>on</strong>g>applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> high glyphosate rate did not provide anybetter c<strong>on</strong>trol than glyphosate al<strong>on</strong>e (Table 1 and Fig. 1).Similarly, multiple years <str<strong>on</strong>g>of</str<strong>on</strong>g> this treatment did not improvec<strong>on</strong>trol over that <str<strong>on</strong>g>of</str<strong>on</strong>g> a single year <str<strong>on</strong>g>of</str<strong>on</strong>g> treatment. C<strong>on</strong>trol withimazapyr was <str<strong>on</strong>g>the</str<strong>on</strong>g> highest achieved by any treatment (82%).Although <str<strong>on</strong>g>the</str<strong>on</strong>g>se results were obtained from a very limiteddata set, <str<strong>on</strong>g>the</str<strong>on</strong>g>y are very similar to those obtained over sevenyears <str<strong>on</strong>g>of</str<strong>on</strong>g> small plot research (Fig. 2). In c<strong>on</strong>trast, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trollevel found at m<strong>on</strong>itoring sites where resource agencies usedglyphosate was c<strong>on</strong>siderably less than that obtained fromresearch trials.- 251 -


Chapter 4: Spartina C<strong>on</strong>trol and Management<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaWinter tilling provided <str<strong>on</strong>g>the</str<strong>on</strong>g> highest level <str<strong>on</strong>g>of</str<strong>on</strong>g> uniformc<strong>on</strong>trol across all sites <str<strong>on</strong>g>of</str<strong>on</strong>g> any mechanical effort (77%).C<strong>on</strong>trol achieved with crushing was highly variable (rangingfrom 0 to 92% Spartina-free quadrats), depending <strong>on</strong> type <str<strong>on</strong>g>of</str<strong>on</strong>g>sediment and locati<strong>on</strong> (Table 2). Highest c<strong>on</strong>trol (92%)occurred <strong>on</strong> <strong>on</strong>e site where <str<strong>on</strong>g>the</str<strong>on</strong>g> crushing pushed <str<strong>on</strong>g>the</str<strong>on</strong>g> crown <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> plant well below <str<strong>on</strong>g>the</str<strong>on</strong>g> surface <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sediment. No c<strong>on</strong>trolwas recorded at several sites with firm sediment. Averagec<strong>on</strong>trol was achieved from crushing <strong>on</strong> s<str<strong>on</strong>g>of</str<strong>on</strong>g>t and firmsediment at 52% and 26%, respectively (Table 2). Crushing<str<strong>on</strong>g>the</str<strong>on</strong>g> same site repeatedly over c<strong>on</strong>secutive years did notprovide any marked improvement in c<strong>on</strong>trol over a singleyear <str<strong>on</strong>g>of</str<strong>on</strong>g> treatment (Fig. 1). C<strong>on</strong>trol with disking wascomparable to c<strong>on</strong>trol from a good crushing event (Table 2).C<strong>on</strong>trol results from multiple years <str<strong>on</strong>g>of</str<strong>on</strong>g> crushing or diskingsites have a level <str<strong>on</strong>g>of</str<strong>on</strong>g> uncertainty because <strong>on</strong>ly a few siteswere available for comparis<strong>on</strong>.Seedling density data were also collected at all sites(data not shown). With two excepti<strong>on</strong>s, density was low (20Winter tilling – silt 2004 SE 0.4± 0.1 75 25 0 0Winter tilling – silt 2001 S 1.5±0.3 77 13 8 2Winter tilling – silt 2001/02 S 3.2±0.6 67 19 10 4Crushing –sand 2002 N. Peninsula 6.7±1.0 34 31 6 1Crushing – sand 2002 N. Peninsula 4.0±0.6 47 29 21 4Crushing – sand 2002, 2003 N. Peninsula 5.0±2.0 55 27 8 10Crushing- sand 2002, 2003 N. Peninsula 3.0±1.0 60 15 22 3Crushing- sand 2001, 2002, 2003 N. Peninsula 32.0±3.0 5 3 25 67Crushing- s<str<strong>on</strong>g>of</str<strong>on</strong>g>t silt 2002, 2003 NE 37.0± 2.0 0 0 5 95Crushing- s<str<strong>on</strong>g>of</str<strong>on</strong>g>t silt 2002, 2003 NE 7.0± 2.0 45 8 33 5Crushing - s<str<strong>on</strong>g>of</str<strong>on</strong>g>t silt 2001, 2002, 2003 N 3.0±1.0 50 33 13 3Crushing - s<str<strong>on</strong>g>of</str<strong>on</strong>g>t silt 2002, 2003 N 5.0±1.0 55 17 20 8Crushing- firm silt 2003 N 10.0±2.0 54 20 20 6Crushing -firm silt 2001 SE 46.0±3.0 0 0 0 100Crushing- firm silt 2001 SE 25.0±3.0 22 16 29 33Crushing- firm silt 2001 N. Peninsula 41.0±7.0 0 4 17 80Crushing- s<str<strong>on</strong>g>of</str<strong>on</strong>g>t silt 2001 SE 6.1± 0.6 37 30 28 6Crushing- s<str<strong>on</strong>g>of</str<strong>on</strong>g>t silt 2002 SE 5.8± 1.0 26 31 38 5Crushing- s<str<strong>on</strong>g>of</str<strong>on</strong>g>t silt 2001 SE 0.2± 0.1 92 8 0 0Crushing- s<str<strong>on</strong>g>of</str<strong>on</strong>g>t silt 2001 SE 4.0± 0.5 53 15 30 2Disking + crushing 2001, 2002 SE 4.0± 0.7 71 19 10 0Disking- s<str<strong>on</strong>g>of</str<strong>on</strong>g>t silt 2001 N. Peninsula 3.8±1.2 53 30 10 7- 252 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 4: Spartina C<strong>on</strong>trol and Managementglyphosate and crushing <strong>on</strong> firm surfaces extend <str<strong>on</strong>g>the</str<strong>on</strong>g> timeperiod well bey<strong>on</strong>d 10 years. If a more realistic andc<strong>on</strong>servative approach to modeling is used that includesgrowth and seedling inputs, <str<strong>on</strong>g>the</str<strong>on</strong>g>n <strong>on</strong>ly <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> imazapyrapproaches 100% c<strong>on</strong>trol after four years <str<strong>on</strong>g>of</str<strong>on</strong>g> treatment.Treatment cost per hectare is <strong>on</strong>ly a minor comp<strong>on</strong>ent<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total cost <str<strong>on</strong>g>of</str<strong>on</strong>g> a c<strong>on</strong>trol effort. Efficacy governs <str<strong>on</strong>g>the</str<strong>on</strong>g>majority <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> total cost. For example, treating 100 hectares<str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina with imazapyr or glyphosate at 38 kg/ha, wouldcost approximately $60,000/ha and $120,000/ha, respectivelyat current chemical prices. These values change dramaticallywhen <str<strong>on</strong>g>the</str<strong>on</strong>g> modeling results shown in Table 1 are factored in.To c<strong>on</strong>trol 99% <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina using imazapyr, a total <str<strong>on</strong>g>of</str<strong>on</strong>g> 130 hawould need to be treated over four years at a cost <str<strong>on</strong>g>of</str<strong>on</strong>g>approximately $78,000/ha, whereas to achieve that c<strong>on</strong>trolwith glyphosate, a total <str<strong>on</strong>g>of</str<strong>on</strong>g> 208 ha would need to be treatedover seven years at a cost <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately $250,000/ha.DISCUSSIONThe objectives <str<strong>on</strong>g>of</str<strong>on</strong>g> this study were to evaluate <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartinac<strong>on</strong>trol efforts in Willapa Bay and to determine if <str<strong>on</strong>g>the</str<strong>on</strong>g> efficacy<str<strong>on</strong>g>of</str<strong>on</strong>g> those efforts was sufficient to accomplish eradicati<strong>on</strong>.Developing inferences about treatment efficacy based <strong>on</strong>m<strong>on</strong>itoring data from a few sites is problematic. Unlikeresearch plots, <str<strong>on</strong>g>the</str<strong>on</strong>g>se treatment sites lack replicati<strong>on</strong> andcomplete records <strong>on</strong> all <str<strong>on</strong>g>the</str<strong>on</strong>g> envir<strong>on</strong>mental and site c<strong>on</strong>diti<strong>on</strong>s,and in general lack applicati<strong>on</strong> precisi<strong>on</strong>. Traditi<strong>on</strong>al “inhouse”m<strong>on</strong>itoring also lacks objectivity. These c<strong>on</strong>cerns wereminimized within this study by pooling data collected by animpartial party (WSU) across as many similar treatment sitesand times as possible and using a very c<strong>on</strong>servative estimate<str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trol (percent Spartina-free quadrats). The tremendousvariability across sites found in this m<strong>on</strong>itoring effort is notatypical <str<strong>on</strong>g>of</str<strong>on</strong>g> that found in o<str<strong>on</strong>g>the</str<strong>on</strong>g>r Spartina c<strong>on</strong>trol efforts (Patten2002). Due to <str<strong>on</strong>g>the</str<strong>on</strong>g> lack <str<strong>on</strong>g>of</str<strong>on</strong>g> background data, however, <str<strong>on</strong>g>the</str<strong>on</strong>g>variati<strong>on</strong>s in this study are difficult to account for. Detaileddata collecti<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> variables that affect Spartina c<strong>on</strong>trolefficacy, such as herbicide dry time, tidal c<strong>on</strong>diti<strong>on</strong>s, canopyquality (dirtiness, height, intactness/health, growth stage, andcl<strong>on</strong>al age), spray water quality, and sediment type (Patten2002), are usually not collected by field crews doing <str<strong>on</strong>g>the</str<strong>on</strong>g>c<strong>on</strong>trol work.Several observati<strong>on</strong>s <strong>on</strong> specific treatments should benoted. Tilling, although a superlative method formechanically c<strong>on</strong>trolling Spartina, is costly, requiring anexpensive ($250,000) amphibious tiller and is slow (~0.25ha/hr). It has a limited window during <str<strong>on</strong>g>the</str<strong>on</strong>g> winter when itworks, and unless it is preceded by summer mowing, itresults in massive seedling density <str<strong>on</strong>g>of</str<strong>on</strong>g> more than 200seedlings/m 2 . Crushing is relatively less expensive(~$40,000 to $80,000 for <str<strong>on</strong>g>the</str<strong>on</strong>g> equipment) and is faster (1-2ha/hr) than tilling, but it requires multiple crushing eventsper year. The greatest success in crushing appears to beTable 3. Years to achieve 99% Spartina-free tideland using repeated annualtreatment <str<strong>on</strong>g>of</str<strong>on</strong>g> different c<strong>on</strong>trol practices.TreatmentExtincti<strong>on</strong>coefficient±std. errormean *Calculatedtime toreach 99%Spartinafreetideflat**(years)Amount <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 hameadow Spartinaremaining at <str<strong>on</strong>g>the</str<strong>on</strong>g>start <str<strong>on</strong>g>of</str<strong>on</strong>g> year 5, after 4years <str<strong>on</strong>g>of</str<strong>on</strong>g> treatmentand total amount <str<strong>on</strong>g>of</str<strong>on</strong>g>area treated duringthat time***haremainingtotal hatreatedWinter tilling 0.73±0.03 3.6 1 145Crushing <strong>on</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g>tsediment0.52±0.14 6.3 11 211Crushing <strong>on</strong>sand or firmsilt sedimentGlyphosate9 kg/haGlyphosate38 kg/haCrushing +glyphosate38 kg/haImazapyr 1.7kg/ha0.26±0.09 15.4 73 3600.31±0.06 12.5 52 3230.57±0.04 5.4 7 1920.59±0.04 5.3 6 1850.82 2.7 0.3 127* Extincti<strong>on</strong> coefficient equals <str<strong>on</strong>g>the</str<strong>on</strong>g> mean % Spartina-free quadrats for <str<strong>on</strong>g>the</str<strong>on</strong>g>given treatment.** Assumes that treatment is repeated annually, that <str<strong>on</strong>g>the</str<strong>on</strong>g> equati<strong>on</strong> log0.01/log (1- extincti<strong>on</strong> coefficient) approximates <str<strong>on</strong>g>the</str<strong>on</strong>g> system’s resp<strong>on</strong>se,and that <str<strong>on</strong>g>the</str<strong>on</strong>g>re are no inputs from spread and seedlings.*** Discrete time, logistic growth model, with growth rate parameter0.15, carrying capacity 100 ha and additi<strong>on</strong>al seedling input from outsidesources equal to 0.1% <str<strong>on</strong>g>of</str<strong>on</strong>g> carrying capacity per year. Developed by Dr.Caz Taylor, UC Davis.limited to sites with certain sediment characteristics, such asareas with young Spartina <strong>on</strong> s<str<strong>on</strong>g>of</str<strong>on</strong>g>t sediment. Crushing wellestablishedSpartina meadows with a thick root mat orSpartina <strong>on</strong> sand provides marginal c<strong>on</strong>trol. Disking is alsorelatively inexpensive and comparable to crushing, but wasproblematic in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> secti<strong>on</strong>ing and uprooting large mats<str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina, which re-established in deeper tidal z<strong>on</strong>es. Thebroadcast rate <str<strong>on</strong>g>of</str<strong>on</strong>g> glyphosate, although very inexpensive,<strong>on</strong>ly provided c<strong>on</strong>trol under ideal c<strong>on</strong>diti<strong>on</strong>s (>48 hour drytime and a clean, intact canopy). These c<strong>on</strong>diti<strong>on</strong>s were rarein <str<strong>on</strong>g>the</str<strong>on</strong>g> field. The hand-sprayed rate <str<strong>on</strong>g>of</str<strong>on</strong>g> glyphosate (with orwithout previous crushing) provided fairly c<strong>on</strong>sistentc<strong>on</strong>trol, but accurate rates and cost analysis are difficult toassess. Tank mixes ranged from 5 to 8% v/v <str<strong>on</strong>g>of</str<strong>on</strong>g> product withspray volumes from 1,000 to 3,000 l/ha spray volume.Applicati<strong>on</strong> from airboats is limited to a few hectares perday. Variability in efficacy from hand applicati<strong>on</strong>s largelyreflected plants that were missed or <strong>on</strong>ly partially covered.Although large-site m<strong>on</strong>itoring data is lacking, <str<strong>on</strong>g>the</str<strong>on</strong>g> broadcast- 253 -


Chapter 4: Spartina C<strong>on</strong>trol and Management<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinaapplicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> imazapyr c<strong>on</strong>ducted in 2004 was relativelyinexpensive (~$600/ha), fast (>100 ha/day), and fairlyefficacious.Repeated c<strong>on</strong>trol measures c<strong>on</strong>ducted year after year <strong>on</strong><str<strong>on</strong>g>the</str<strong>on</strong>g> same site should result in an overall reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina at <str<strong>on</strong>g>the</str<strong>on</strong>g> site. This overall reducti<strong>on</strong> in Spartinaoccupati<strong>on</strong> over time (two years) was not evident from <str<strong>on</strong>g>the</str<strong>on</strong>g>pooled m<strong>on</strong>itoring data for ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r chemical or mechanicalc<strong>on</strong>trol. These results are not inc<strong>on</strong>sistent with those foundin Puget Sound (Hacker et al. 2001). They report that sitesrequired c<strong>on</strong>sistent c<strong>on</strong>trol for four years to obtain an 86%decrease in Spartina. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sites m<strong>on</strong>itored in thisstudy were also large (>10 ha) and, according to Hacker etal. (2001), less likely to show decline in Spartina densityover time than small sites. Examples <str<strong>on</strong>g>of</str<strong>on</strong>g> this spatial scaleeffect were evident in this study. For three discrete sites thatwere smaller than five hectares and sprayed for twoc<strong>on</strong>secutive years, <str<strong>on</strong>g>the</str<strong>on</strong>g> percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina-free quadratswent from 73% to 85%, 60% to 90% and 60% to 95%.Evidently <strong>on</strong> large sites, re-growth and seedling reinfestati<strong>on</strong>compensated for any additi<strong>on</strong>al c<strong>on</strong>trol achievedin subsequent years. This c<strong>on</strong>curs with results from <str<strong>on</strong>g>the</str<strong>on</strong>g>discrete time, logistic growth model. When parameters forgrowth rate are set at 0.15, seedling input at 0.01, andc<strong>on</strong>trol rates at 50%, 10 ha <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina within a 100-hamudflat would still have 50% <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina left in <str<strong>on</strong>g>the</str<strong>on</strong>g>beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> third year. On <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r hand, when ac<strong>on</strong>trol rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 73% is used and <str<strong>on</strong>g>the</str<strong>on</strong>g> parameter for outsideseedling input is reduced to 0.005, <str<strong>on</strong>g>the</str<strong>on</strong>g> site is projected to be81% Spartina-free in <str<strong>on</strong>g>the</str<strong>on</strong>g> beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> third year (this issimilar to <str<strong>on</strong>g>the</str<strong>on</strong>g> 85% found at <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> our m<strong>on</strong>itoring sites).Three major c<strong>on</strong>clusi<strong>on</strong>s can be reached from thism<strong>on</strong>itoring study. First, real world c<strong>on</strong>trol data are highlyvariable between sites and years, and tend to show resultsthat are less effective than what would be expected underideal c<strong>on</strong>diti<strong>on</strong>s. Efficacy can vary by at least 20% from <str<strong>on</strong>g>the</str<strong>on</strong>g>expected level. Sec<strong>on</strong>d, with <str<strong>on</strong>g>the</str<strong>on</strong>g> excepti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> tilling andimazapyr, n<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> treatments provided efficacyanywhere near <str<strong>on</strong>g>the</str<strong>on</strong>g> level <str<strong>on</strong>g>of</str<strong>on</strong>g> that which would be required toachieve eradicati<strong>on</strong> in a reas<strong>on</strong>able time frame. Based <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>political landscape, it is not prudent to expect funding for alarge-scale c<strong>on</strong>trol effort to go bey<strong>on</strong>d a six to eight-yeartime period. Thus, unless <str<strong>on</strong>g>the</str<strong>on</strong>g> average c<strong>on</strong>trol rate for a givenmethod can be expected to be greater than 75%, that methodhas minimal practical value. The tenfold expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina in Willapa Bay during <str<strong>on</strong>g>the</str<strong>on</strong>g> last decade <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trolefforts testifies to this maxim. <str<strong>on</strong>g>Third</str<strong>on</strong>g>, even if <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol rateis 75%, as l<strong>on</strong>g as <str<strong>on</strong>g>the</str<strong>on</strong>g>re is significant seedling input fromoutside sources, eradicati<strong>on</strong> can not be achieved. The c<strong>on</strong>trolefforts should be mounted over a scale large enough tominimize threats from new seedlings. Similarly, unless <str<strong>on</strong>g>the</str<strong>on</strong>g>sites c<strong>on</strong>tinue to be treated year after year, no appreciablegains toward eradicati<strong>on</strong> can be achieved.ACKNOWLEDGEMENT:Funding was provided by Willapa Nati<strong>on</strong>al WildlifeRefuge and Washingt<strong>on</strong> State Commissi<strong>on</strong> for PesticideRegistrati<strong>on</strong>. The discrete time, logistic growth model wasdeveloped and provided by Dr. Caz Taylor, UC Davis.REFERENCESFrid, C., W. Chandrasekara, and P. Davey, 1999. The restorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>mud flats invaded by comm<strong>on</strong> cordgrass (Spartina anglica)using mechanical disturbance and its effects <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> macrobenthicfauna. Aquatic C<strong>on</strong>servati<strong>on</strong>: Marine and FreshwaterEcosystems 9:47-61.Garnett, R.P., G. Hir<strong>on</strong>s, C. Evans, and D. O’C<strong>on</strong>nor. 1992. Thec<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina (cord-grass) using glyphosate. Aspects <str<strong>on</strong>g>of</str<strong>on</strong>g>Applied Biology 29:359-364.Government Accounting Office. 2002. <strong>Invasive</strong> Species: Clearerfocus and greater commitment needed to effectively manage <str<strong>on</strong>g>the</str<strong>on</strong>g>problem. GAO-03-1; www.gao.gov/cgi-bin/getrpt?GAO-03-01.Hacker, S.D., D. Heimer, S. E. Hellquist, T.G. Reeder, B. Reeves,T.J. Riord<strong>on</strong>, and M.N. Dethier, 2001. A marine plant (Spartinaanglica) invades widely varying habitats: potential mechanisms<str<strong>on</strong>g>of</str<strong>on</strong>g> invasi<strong>on</strong> and c<strong>on</strong>trol. Biological Invasi<strong>on</strong>s 3: 211-217.Hedge P., L. Kriwoken and K. Patten, 2003. A review <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartinamanagement in Washingt<strong>on</strong> State, US. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Aquatic PlantManagement 41: 82-90.Kilbride, K.M., F.L. Paveglio and C.E. Grue, 1995. C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g>smooth cordgrass with Rodeo in a southwestern Washingt<strong>on</strong>estuary. Wildlife Society Bulletin 23:53-524.Major, W.W., III, C.E. Grue, J.M. Grassley and L.L. C<strong>on</strong>quest,2003. Mechanical and chemical c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> smooth cordgrass inWillapa Bay, Washingt<strong>on</strong>. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Aquatic PlantManagement 41: 6-12.Patten, K. 2002. Smooth cordgrass c<strong>on</strong>trol with imazapyr. WeedTechnology 16: 826-832.Patten, K. 2003. The efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanical treatment efforts in2001 <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina in Willapa Bay in 2002. Progressreport submitted to <str<strong>on</strong>g>the</str<strong>on</strong>g> Willapa Nati<strong>on</strong>al Wildlife Refuge.(Available from <str<strong>on</strong>g>the</str<strong>on</strong>g> author via email [pattenk@wsu.edu].)Patten, K. 2004. The efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical and mechanical treatmentefforts in 2002 <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina in Willapa Bay in 2003.Progress report submitted to <str<strong>on</strong>g>the</str<strong>on</strong>g> Willapa Nati<strong>on</strong>al WildlifeRefuge. (Available from <str<strong>on</strong>g>the</str<strong>on</strong>g> author via email[pattenk@wsu.edu].)Patten, K. and C. Stenvall. 2002. C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> smooth cordgrass(Spartina alterniflora): a comparis<strong>on</strong> between variousmechanical and chemical c<strong>on</strong>trol methods for efficacy, cost andaquatic toxicity. Proc. <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 11th <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong>Aquatic <strong>Invasive</strong> Species. pp. 340-350.Pritchard, G. H. (1995). Herbicide trials <strong>on</strong> Spartina. In: J.E. Rash,R.C. Williams<strong>on</strong>, and S.J. Taylor, eds. How green is yourmudflat? <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Australasian <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong>Spartina C<strong>on</strong>trol. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> C<strong>on</strong>servati<strong>on</strong> and NaturalResources, Yarram, Victoria, pp. 66.Shaw, W. B. and D.S. Gosling. 1995. Spartina c<strong>on</strong>trol in NewZealand—an overview. In: J.E. Rash, R.C. Williams<strong>on</strong>, and S.J.Taylor, eds. <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Australasian <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong>Spartina C<strong>on</strong>trol Melbourne, Australia: Victorian GovernmentPublicati<strong>on</strong>. pp. 43-60.WSDA. 1999-2003, Spartina Eradicati<strong>on</strong> Program—LegislativeReports, http://agr.wa.gov/PlantsInsects/Weeds/Spartina.- 254 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 4: Spartina C<strong>on</strong>trol and ManagementFRAGMENT PROPAGULES OF SPARTINA ALTERNIFLORA AND POTENTIAL EASTERNPACIFIC DISPERSALV. H. MORGAN 1 AND M. SYTSMA 21, 2Portland State University, Dept <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Science and Management, Center for Lakes & Reservoirs, P.O. Box 751,Portland, OR 97207-0751;1vhoward@pdx.eduComm<strong>on</strong>ly used mechanical c<strong>on</strong>trol methods for Spartina alterniflora involve varying levels <str<strong>on</strong>g>of</str<strong>on</strong>g>disturbance to rhizomes and roots. We examined <str<strong>on</strong>g>the</str<strong>on</strong>g> viability <str<strong>on</strong>g>of</str<strong>on</strong>g> rhizome fragments and <str<strong>on</strong>g>the</str<strong>on</strong>g>irpotential role in dispersal. Producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rhizome fragments by rototilling in Willapa Bay,Washingt<strong>on</strong>, USA was studied. The top 10 centimeters (cm) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sediment c<strong>on</strong>tained an average <str<strong>on</strong>g>of</str<strong>on</strong>g>310 fragments per square meter (m 2 ). Median rhizome length was 3.7 cm. Eighty-seven percent <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> rhizome fragments had at least <strong>on</strong>e vegetative shoot attached. Survivorship <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflorarhizome fragments from Willapa Bay and San Francisco Bay populati<strong>on</strong>s was investigated using athree-way factorial design. Treatments included two fragment sizes, approximating those found inWillapa Bay, immersed in ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r freshwater, 15 parts per thousand (ppt) saltwater, or 35 pptsaltwater for 3, 8 or 15 days. Fragments were <str<strong>on</strong>g>the</str<strong>on</strong>g>n individually planted and grown in greenhousep<strong>on</strong>ds for four m<strong>on</strong>ths. Rhizome survivorship was low (8.6% or less) in all 35 ppt treatments.Survivorship was 37.3% and 87.5% in 15 ppt and freshwater treatments, respectively. Largerhizomes had higher survivorship than small rhizomes at all salinities, and <str<strong>on</strong>g>the</str<strong>on</strong>g> length <str<strong>on</strong>g>of</str<strong>on</strong>g> time <str<strong>on</strong>g>the</str<strong>on</strong>g>rhizome fragments were immersed prior to planting had a variable effect <strong>on</strong> survivorship. Resultssuggest rototilling for c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina may spread <str<strong>on</strong>g>the</str<strong>on</strong>g> infestati<strong>on</strong> within an estuary but isunlikely to result in spread to o<str<strong>on</strong>g>the</str<strong>on</strong>g>r estuaries by ocean transport. Thus, tilling should be used withcauti<strong>on</strong> in estuaries with small, isolated populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina.Although ocean transport <str<strong>on</strong>g>of</str<strong>on</strong>g> rhizome fragments appears to be a small risk, ocean transport <str<strong>on</strong>g>of</str<strong>on</strong>g> wrackand viable S. alterniflora seed is likely. A drift card study was begun in late September 2004 tobetter understand potential dispersal from invaded west coast estuaries. M<strong>on</strong>thly releases <str<strong>on</strong>g>of</str<strong>on</strong>g> cardsfrom Humboldt and San Francisco bays in California, as well as Willapa Bay, Washingt<strong>on</strong> will aididentificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> wrack depositi<strong>on</strong> sites. Data from <str<strong>on</strong>g>the</str<strong>on</strong>g> first two m<strong>on</strong>ths <str<strong>on</strong>g>of</str<strong>on</strong>g> this year-l<strong>on</strong>g studyindicate that l<strong>on</strong>g distance dispersal <str<strong>on</strong>g>of</str<strong>on</strong>g> up to 270 kilometers (km) over a four-week period can occur.Keywords: Spartina alterniflora, rhizome fragment, propagule dispersal, drift card simulati<strong>on</strong>INTRODUCTIONEffective invasive plant management c<strong>on</strong>siders potentialvectors <str<strong>on</strong>g>of</str<strong>on</strong>g> propagules as well as how to minimize propaguleproducti<strong>on</strong>. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflora, earlydetecti<strong>on</strong> and treatment efficacy are high priorities for manystakeholders wanting to preserve historic habitat, indigenousspecies, and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r beneficial uses <str<strong>on</strong>g>of</str<strong>on</strong>g> mudflats and native saltmarshes in <str<strong>on</strong>g>the</str<strong>on</strong>g> Pacific Northwest. Within <str<strong>on</strong>g>the</str<strong>on</strong>g> core infestati<strong>on</strong>sites, thousands <str<strong>on</strong>g>of</str<strong>on</strong>g> hectares have already been col<strong>on</strong>izedincluding an estimated 790 net hectares (ha) (1,960 acres[ac]) in San Francisco Bay, California (Zaremba andMcGowan 2004) and 3,200 net ha (8,000 ac) in WillapaBay, Washingt<strong>on</strong>. Additi<strong>on</strong>ally, thousands <str<strong>on</strong>g>of</str<strong>on</strong>g> hectares in 31Pacific estuaries are at risk for future col<strong>on</strong>izati<strong>on</strong> by <strong>on</strong>e ormore invasive Spartina spp. (Daehler & Str<strong>on</strong>g 1996; Pfau<str<strong>on</strong>g>the</str<strong>on</strong>g>t al. 2003). In Oreg<strong>on</strong> al<strong>on</strong>e, approximately 13,622 ha(33,660 ac) <str<strong>on</strong>g>of</str<strong>on</strong>g> intertidal mudflats and aquatic beds arevulnerable to invasi<strong>on</strong> (Pfauth et al. 2003). Understandingboth <str<strong>on</strong>g>the</str<strong>on</strong>g> potential risks and <str<strong>on</strong>g>the</str<strong>on</strong>g> efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> any c<strong>on</strong>trolmethod is critical to refining management choices and earlydetecti<strong>on</strong> efforts.Efficacy and cost data have been evaluated for a widearray <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical and mechanical treatments, (Patten 2002;Hedge et al. 2003; Pfauth et al. 2003); however <str<strong>on</strong>g>the</str<strong>on</strong>g> riskassessments <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-target effects have focused morenarrowly <strong>on</strong> chemical c<strong>on</strong>trols. Mechanical treatments suchas rototilling, disking, crushing, pulverizing and digginghave been problematic due <str<strong>on</strong>g>the</str<strong>on</strong>g>ir slow pace, variableefficacy, and high cost per area treated (Patten 2002). Yetrototilling and disking are still used in some situati<strong>on</strong>s t<str<strong>on</strong>g>of</str<strong>on</strong>g>acilitate <str<strong>on</strong>g>the</str<strong>on</strong>g> decompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> below-ground biomass aftersuccessful chemical treatment, which allows for more rapidrestorati<strong>on</strong> to usable shorebird habitat (Patten & Stenvall2002); <str<strong>on</strong>g>the</str<strong>on</strong>g>se mechanical methods have also been employedwhere landowners oppose chemical treatment opti<strong>on</strong>s.- 255 -


Chapter 4: Spartina C<strong>on</strong>trol and Management<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaCordgrasses are capable <str<strong>on</strong>g>of</str<strong>on</strong>g> reproducing by vegetativefragments (Landin 1990; Stiller & Dent<strong>on</strong> 1995; Daehler &Str<strong>on</strong>g 1996; Sayce et al. 1997; Patten & Stenvall 2002).Disturbances to Spartina’s extensive below-groundstructure, such as those caused by rototilling, couldpotentially produce rhizome fragments. While invasivecordgrasses are known for <str<strong>on</strong>g>the</str<strong>on</strong>g> resiliency <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir rhizomes(Reeder & Hacker 2004; Patten 2003), <str<strong>on</strong>g>the</str<strong>on</strong>g> viability <str<strong>on</strong>g>of</str<strong>on</strong>g>mechanically produced rhizome fragments and <str<strong>on</strong>g>the</str<strong>on</strong>g>ir role indispersal has not been closely examined (i.e., evidence isanecdotal) (Randall & Milne unpublished; Pfauth et al.2003).Research has focused <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> sexual reproductivecapacity <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina (Broome et al. 1974; Sayce 1988;Daehler 1996; Plyer & Proseus 1996; Sayce & Dumbauld1997; Daehler 1999; Davis et al. 2004), ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than asexualproducti<strong>on</strong>, since this is c<strong>on</strong>sidered to be <str<strong>on</strong>g>the</str<strong>on</strong>g> primary source<str<strong>on</strong>g>of</str<strong>on</strong>g> new cl<strong>on</strong>es (Stiller and Dent<strong>on</strong> 1995; Sayce et al. 1997).Seed as well as rhizome fragments could disperse Spartinalocally or across l<strong>on</strong>g distances if carried by tides and oceancurrents (Daehler and Str<strong>on</strong>g 1996; Stenvall and Patten2002, Pfauth et al. 2003). Repeated reports <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartinafragments washing ashore near Ft. Stevens (near Astoria,Oreg<strong>on</strong>) suggest transport <str<strong>on</strong>g>of</str<strong>on</strong>g> wrack from nearby WillapaBay, Washingt<strong>on</strong> (Grevstad and Graves pers. comm.;Howard et al. unpublished report 2004). Huiskes et al.(1995) collected seeds <str<strong>on</strong>g>of</str<strong>on</strong>g> S. anglica in floating and standingnets in a tidal salt marsh in <str<strong>on</strong>g>the</str<strong>on</strong>g> Ne<str<strong>on</strong>g>the</str<strong>on</strong>g>rlands. Eighty-eightpercent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> seeds collected were captured in floating nets,indicating that tidal transport <str<strong>on</strong>g>of</str<strong>on</strong>g> seed was primarily <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>water surface ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> sediment. In an earlierstudy in <str<strong>on</strong>g>the</str<strong>on</strong>g> same locati<strong>on</strong>, Koutsaal et al. (1987) releaseddyed sunflower seeds <strong>on</strong> outgoing and incoming tides totrack tidal movement <str<strong>on</strong>g>of</str<strong>on</strong>g> seeds in <str<strong>on</strong>g>the</str<strong>on</strong>g> salt marsh. Seeds werefound as far as 45 km away within <strong>on</strong>e week <str<strong>on</strong>g>of</str<strong>on</strong>g> release. Thefinal locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> seeds was determined by <str<strong>on</strong>g>the</str<strong>on</strong>g> wind velocityand directi<strong>on</strong> as well as by tidal currents.Oreg<strong>on</strong>’s Spartina Resp<strong>on</strong>se Plan (Pfauth et al. 2003)was developed to prevent <str<strong>on</strong>g>the</str<strong>on</strong>g> introducti<strong>on</strong> and spread <str<strong>on</strong>g>of</str<strong>on</strong>g> anySpartina species in Oreg<strong>on</strong>. Areas requiring fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r researchwere identified , including an investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> likelihood<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> ability <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina fragments to resprout and anexaminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> potential transport <str<strong>on</strong>g>of</str<strong>on</strong>g> propagules via oceancurrents.Preliminary results from three studies addressing <str<strong>on</strong>g>the</str<strong>on</strong>g>seresearch needs are presented here. First, a field study wasperformed to assess <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina fragments byrototillng. Sec<strong>on</strong>dly, a greenhouse experiment examined <str<strong>on</strong>g>the</str<strong>on</strong>g>ability <str<strong>on</strong>g>of</str<strong>on</strong>g> rhizome fragments to resprout. <str<strong>on</strong>g>Third</str<strong>on</strong>g>ly,preliminary data from a propagule dispersal study arepresented.MATERIALS AND METHODSField Study <str<strong>on</strong>g>of</str<strong>on</strong>g> Rototilling EffectsSamples were collected <strong>on</strong> January 16, 2004 al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g>south shore <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Naselle River, which flows into <str<strong>on</strong>g>the</str<strong>on</strong>g>sou<str<strong>on</strong>g>the</str<strong>on</strong>g>astern end <str<strong>on</strong>g>of</str<strong>on</strong>g> Willapa Bay, Washingt<strong>on</strong>. Staff <str<strong>on</strong>g>of</str<strong>on</strong>g>Willapa Nati<strong>on</strong>al Wildlife Refuge (NWR) was mechanicallytreating <str<strong>on</strong>g>the</str<strong>on</strong>g> site between high tides with a rototillingattachment towed by a Wilco amphibious vehicle. TheWilco operator made single passes within a solid meadow <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina alterniflora and tilled to a depth <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately15 cm. Immediately following rototilling, three quadrats(0.25 m 2 ) were randomly chosen approximately 30 m apartand excavated to a depth <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 cm. Excavated material wasrinsed clean and all fragments were measured for culmlength, number <str<strong>on</strong>g>of</str<strong>on</strong>g> culms, and rhizome diameter and length.Fragments were divided into two rhizome sizes, small andlarge, by <str<strong>on</strong>g>the</str<strong>on</strong>g> median value for rhizome length. The meanvalue <str<strong>on</strong>g>of</str<strong>on</strong>g> each <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se rhizome class sizes was <str<strong>on</strong>g>the</str<strong>on</strong>g>n roundedto <str<strong>on</strong>g>the</str<strong>on</strong>g> nearest half centimeter and used as <str<strong>on</strong>g>the</str<strong>on</strong>g> experimentalrhizome sizes for <str<strong>on</strong>g>the</str<strong>on</strong>g> greenhouse study <str<strong>on</strong>g>of</str<strong>on</strong>g> fragment viability.Greenhouse StudyA 2x3x3 factorial design was used to evaluatesurvivorship <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora fragments. Factors were initialrhizome size (large or small), immersi<strong>on</strong> durati<strong>on</strong> (3, 8 or 15days), and salinity (freshwater, 15 ppt, or 35 ppt). Samplesfrom two populati<strong>on</strong>s were compared. Rhizome fragmentsfrom San Francisco were collected <strong>on</strong> March 26, 2004 from<str<strong>on</strong>g>the</str<strong>on</strong>g> shoreline <str<strong>on</strong>g>of</str<strong>on</strong>g> Elsie Roemer Bird Sanctuary <strong>on</strong> AlamedaIsland (San Francisco Bay, California). Two to threesamples were dug from each <str<strong>on</strong>g>of</str<strong>on</strong>g> ten cl<strong>on</strong>es. Samples fromWillapa Bay were collected <strong>on</strong> April 5, 2004 from fourriverbank locati<strong>on</strong>s (two al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> Naselle River, <strong>on</strong>e <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>Niawiakum River, and <strong>on</strong>e <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Palix River). Seven to tensamples were dug from each locati<strong>on</strong>. Sampling locati<strong>on</strong>shad not been subjected to any previous chemical ormechanical treatment.Samples were returned to Portland State University andrinsed clean <str<strong>on</strong>g>of</str<strong>on</strong>g> all mud and organic matter within two days<str<strong>on</strong>g>of</str<strong>on</strong>g> field collecti<strong>on</strong>. Within 20 minutes <str<strong>on</strong>g>of</str<strong>on</strong>g> rinsing, fragmentswere cut to fit <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> two rhizome class sizes (large ~7.5 cmor small ~2.5 cm). Fragments were <str<strong>on</strong>g>the</str<strong>on</strong>g>n placed in openplastic tubs c<strong>on</strong>taining water at 0 ppt, 15 ppt or 35 ppt(Instant Ocean ® aquarium salts). Tubs were maintainedunder ambient greenhouse c<strong>on</strong>diti<strong>on</strong>s. Salinityc<strong>on</strong>centrati<strong>on</strong>s were m<strong>on</strong>itored daily and adjusted as needed.After floating for a period <str<strong>on</strong>g>of</str<strong>on</strong>g> 3, 8 or 15 days (referred to asimmersi<strong>on</strong> durati<strong>on</strong>), each fragment was measured todetermine rhizome length, rhizome diameter, number <str<strong>on</strong>g>of</str<strong>on</strong>g>attached culms and culm length. The 8-day immersi<strong>on</strong>durati<strong>on</strong> was eliminated from <str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco treatmentdesign due to limited plant material. Fragments were <str<strong>on</strong>g>the</str<strong>on</strong>g>nindividually potted in six-inch diameter pots with a sterile- 256 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 4: Spartina C<strong>on</strong>trol and Managementpotting medium and each pot placed into a wet bed (1.83 mx 2.44 m wood-framed beds lined with three layers <str<strong>on</strong>g>of</str<strong>on</strong>g> 6 mmclear plastic) c<strong>on</strong>taining ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r 0 ppt, 15 ppt or 35 ppt salinewater to a depth <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 cm. A total <str<strong>on</strong>g>of</str<strong>on</strong>g> six wet beds werecreated (two at each salinity level) with three utilized for <str<strong>on</strong>g>the</str<strong>on</strong>g>San Francisco fragments and three for <str<strong>on</strong>g>the</str<strong>on</strong>g> Willapa Bayfragments. Salinity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> wet beds was m<strong>on</strong>itored every <strong>on</strong>eto three days and adjusted with saline or fresh water asneeded.A total <str<strong>on</strong>g>of</str<strong>on</strong>g> 234 fragments, all having at least <strong>on</strong>e culm,were potted from <str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco samples. A total <str<strong>on</strong>g>of</str<strong>on</strong>g> 353fragments having at least <strong>on</strong>e culm were potted from <str<strong>on</strong>g>the</str<strong>on</strong>g>Willapa Bay samples. An additi<strong>on</strong>al 116 fragments with noculms attached were created from <str<strong>on</strong>g>the</str<strong>on</strong>g>se samples. Thepurpose <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se fragments was to test if survival wasdependent up<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> at least <strong>on</strong>e culm assuggested by Randall and Milne (unpublished). Small andlarge rhizome fragments were immersed in <str<strong>on</strong>g>the</str<strong>on</strong>g> saline baths(0 ppt, 15 ppt or 35 ppt) for ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r 4 or 16 days. Theimmersi<strong>on</strong> durati<strong>on</strong> treatments for <str<strong>on</strong>g>the</str<strong>on</strong>g>se culmless fragmentsTable 1: S. alterniflora rhizome fragment metrics following single-pass,winter rototilling effects in Willapa Bay.MeasureMean ± SDNumber <str<strong>on</strong>g>of</str<strong>on</strong>g> fragments per 0.25 m 2 x 0.1m deep 77.7 ± 13.7Percentage with ≥ 1 culm 87.8 ± 3.86Rhizome length (cm) 4.96 ± 3.38Rhizome diameter (cm) 0.58 ± 0.29Culm length (cm) 5.37 ± 3.58Culms per fragment 1.31 ± 0.89were extended by 1 day to allow adequate time for planting<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> culm treatment groups. They were <str<strong>on</strong>g>the</str<strong>on</strong>g>n individuallypotted in <str<strong>on</strong>g>the</str<strong>on</strong>g> same sterile potting medium and placed in <str<strong>on</strong>g>the</str<strong>on</strong>g>wet beds.Pots were randomly positi<strong>on</strong>ed within <str<strong>on</strong>g>the</str<strong>on</strong>g> wet beds. All6.50.8Rhizome Length (cm)6.05.55.04.5Rhizome diameter (cm)0.70.60.54.00.412Quadrat312Quadrat381.6Culm Length (cm)765# <str<strong>on</strong>g>of</str<strong>on</strong>g> culms1.51.41.31.241.112Quadrat31.012Quadrat3Fig. 1: Interval plots by quadrat (with 95% C.I.) <str<strong>on</strong>g>of</str<strong>on</strong>g> rhizome length, rhizome diameter, culm length and number <str<strong>on</strong>g>of</str<strong>on</strong>g> culms per rhizome fragment foundimmediately following single pass, winter rototilling in Willapa Bay, WA.- 257 -


Chapter 4: Spartina C<strong>on</strong>trol and Management<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaFrequency60504030202.47.5a% survivalSan Francisco1008060402000 30 60 90 120days post-planting100plants were exposed to ambient light and temperaturec<strong>on</strong>diti<strong>on</strong>s for 132 days after planting. Survival, culm lengthand <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> culms were recorded at 30, 51, 74, 95,116 and 132 days after planting. Survival was defined as <str<strong>on</strong>g>the</str<strong>on</strong>g>presence <str<strong>on</strong>g>of</str<strong>on</strong>g> at least <strong>on</strong>e green culm. Roots, rhizomes, culmsand inflorescences were separated 132 days after plantingand <str<strong>on</strong>g>the</str<strong>on</strong>g>ir fresh weight (fw) recorded. Dry weight (dw) wasobtained after drying <str<strong>on</strong>g>the</str<strong>on</strong>g> roots, culms and inflorescences to ac<strong>on</strong>stant weight in <str<strong>on</strong>g>the</str<strong>on</strong>g> greenhouse and oven drying <str<strong>on</strong>g>the</str<strong>on</strong>g>rhizomes at 65-70°C for 48 hours.Propagule Dispersal StudyM<strong>on</strong>thly releases <str<strong>on</strong>g>of</str<strong>on</strong>g> buoyant, biodegradable woodendrift cards began in September 2004 from <str<strong>on</strong>g>the</str<strong>on</strong>g> mouths <str<strong>on</strong>g>of</str<strong>on</strong>g>Willapa Bay in Washingt<strong>on</strong> and Humboldt and SanFrancisco bays in California. A total <str<strong>on</strong>g>of</str<strong>on</strong>g> 600 cards arereleased each m<strong>on</strong>th—200 each per bay. Releases occurredwithin two hours after high tide to ensure an outgoingcurrent. Each batch <str<strong>on</strong>g>of</str<strong>on</strong>g> cards was printed with a unique codedenoting <str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong>, m<strong>on</strong>th and year <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> release as wellas reporting instructi<strong>on</strong>s and c<strong>on</strong>tact informati<strong>on</strong>. Velocityestimates were made under <str<strong>on</strong>g>the</str<strong>on</strong>g> assumpti<strong>on</strong> that <str<strong>on</strong>g>the</str<strong>on</strong>g> recoverydate was <str<strong>on</strong>g>the</str<strong>on</strong>g> same as date <str<strong>on</strong>g>the</str<strong>on</strong>g> card washed ashore and that<str<strong>on</strong>g>the</str<strong>on</strong>g> card followed a straight line <str<strong>on</strong>g>of</str<strong>on</strong>g> travel.RESULTS36Field Study <str<strong>on</strong>g>of</str<strong>on</strong>g> Rototilling EffectsThe mean fragment density was 310 (± 54.8)/m 2 within10 cm <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> surface. Of <str<strong>on</strong>g>the</str<strong>on</strong>g>se, 87.7% had at least <strong>on</strong>e culmattached (Table 1). No plant material o<str<strong>on</strong>g>the</str<strong>on</strong>g>r than S.alterniflora was present in any <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plots.One-way Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Variance (ANOVA) (α=0.05)comparing quadrats were performed <strong>on</strong> rhizome length andculm length (log(x+1) transformed) and rhizome diameter91215Rhizome Length (cm)Fig. 2 Rhizome sizes found immediately following single-pass winterrototilling in Willapa Bay, WA.b% survivalWillapa Bay1008060402000 30 60 90 120days post-plantingFig. 3. Percent S. alterniflora fragment survival over time for (a) SanFrancisco and (b) Willapa Bay plants. Treatment groups are delineated bysalinity (- - - - - for 0 ppt, ––––– for 15 ppt, and –– - - –– for 35 ppt), andrhizome size (plain line = small, = large).((x+1) 1/2 transformed) and number <str<strong>on</strong>g>of</str<strong>on</strong>g> culms per fragment.The quadrats did not vary significantly in rhizome length(p=0.240) or <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> culms per rhizome fragment(p=0.322). There were significant differences betweenquadrats with regard to culm length (p


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 4: Spartina C<strong>on</strong>trol and Managementab% survival% survival100806040200100806040200San Francisco3 day 15 day 3 day 15 daysmallWillapa Baylarge3 day 8 day 15 day 3 day 8 day 15 daysmalllargeFig. 4: Percent fragment survival 132 days after planting <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflorafrom a) San Francisco and b) Willapa Bay. White = 0 ppt, striped = 15 ppt,black = 35 ppt. All fragments represented here were planted with at least<strong>on</strong>e attached culm.The proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> surviving fragments per treatmentgroup stabilized by <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> growing period (Fig. 3).For San Francisco (SF) plants, survival 132 days afterplanting ranged from 45-100% in <str<strong>on</strong>g>the</str<strong>on</strong>g> freshwater treatments,55-90.0% in 15 ppt water and 0 to 5.56% in 35 ppt water.For WB plants, survival ranged from 26.3-81.8% in <str<strong>on</strong>g>the</str<strong>on</strong>g>freshwater treatments, 27.8-88.9% in 15 ppt water and0-11.1% in 35 ppt water.For nearly all SF groups, rhizome fragments immersedfor 3 days prior to planting showed lower rates <str<strong>on</strong>g>of</str<strong>on</strong>g> survivalthan those immersed for 15 days (Figure 4). The samepattern emerged with <str<strong>on</strong>g>the</str<strong>on</strong>g> WB 15 ppt fragments where <str<strong>on</strong>g>the</str<strong>on</strong>g>three-day immersi<strong>on</strong> groups showed much lower survivalthan <str<strong>on</strong>g>the</str<strong>on</strong>g> eight-day immersi<strong>on</strong> groups. Large rhizomefragments c<strong>on</strong>sistently had higher viability than smallrhizome fragments. For SF plants, 80.3% <str<strong>on</strong>g>of</str<strong>on</strong>g> large fragmentssurvived compared to <strong>on</strong>ly 62.5% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> small fragments.For WB plants, <str<strong>on</strong>g>the</str<strong>on</strong>g> difference was more pr<strong>on</strong>ounced with74.8% <str<strong>on</strong>g>of</str<strong>on</strong>g> large and 36.2% <str<strong>on</strong>g>of</str<strong>on</strong>g> small fragments surviving. SFand WB populati<strong>on</strong>s were compared using a two-tailed test<str<strong>on</strong>g>of</str<strong>on</strong>g> two proporti<strong>on</strong>s; <str<strong>on</strong>g>the</str<strong>on</strong>g>re were significant differencesbetween <str<strong>on</strong>g>the</str<strong>on</strong>g> proporti<strong>on</strong>s surviving in both freshwater (72.5%vs. 55.5%, respectively, p=0.012, α=0.05) and 15 ppt water(70.1% vs. 56.0%, p=0.043, α=0.05). In both <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>secomparis<strong>on</strong>s, SF fragments had higher survivorship. Therewas no notable difference between survival rates for <str<strong>on</strong>g>the</str<strong>on</strong>g> twoTable 2: Summary data for two m<strong>on</strong>ths <str<strong>on</strong>g>of</str<strong>on</strong>g> drift card releases from three S.alterniflora infested bays.Release Date Willapa HumboldtSeptember 2004SanFranciscoRecovery Rate 57.5% 21.5% 30.5%Quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> recovered cardsNorthSouthInside bayMax distance traveled (km)NorthSouthOctober 20047934295351031275651219304520Recovery Rate 29.5% 0.5% 24.0%Quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> recovered cardsNorthSouthInside bayMax distance traveled (km)NorthSouth563022335locati<strong>on</strong>s (3.9% vs. 5.1%) in <str<strong>on</strong>g>the</str<strong>on</strong>g> high salinity treatment (p=0.691, α=0.05).PROPAGULE DISPERSAL STUDYDrift card return rates have been over 20% for five <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> six releases performed as <str<strong>on</strong>g>of</str<strong>on</strong>g> November 11, 2004 (Table2). Cards have c<strong>on</strong>sistently been found both to <str<strong>on</strong>g>the</str<strong>on</strong>g> north andsouth <str<strong>on</strong>g>of</str<strong>on</strong>g> each release locati<strong>on</strong>. In four <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> six releasesperformed to date, cards have been found inside <str<strong>on</strong>g>the</str<strong>on</strong>g>estuaries. The majority <str<strong>on</strong>g>of</str<strong>on</strong>g> cards are staying within 25 km <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> release locati<strong>on</strong>s, although a few have traveled l<strong>on</strong>gerdistances.In Willapa Bay, over 69% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> September releasecards and 95% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> October release cards were found to<str<strong>on</strong>g>the</str<strong>on</strong>g> north <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bay. Maximum northward velocities forSeptember and October releases were 6.9 and 11.2centimeters per sec<strong>on</strong>d (cm/s) respectively, while maximumsouthward velocities reached 6.7 and 3.4 cm/s.In Humboldt Bay, approximately 72% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Septembercards were carried south. Maximum velocity for Septemberrelease was approximately 3.4 cm/s both to <str<strong>on</strong>g>the</str<strong>on</strong>g> north andsouth. Only <strong>on</strong>e card, found after six days approximately sixkm north <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Humboldt Bay entrance, was recovered fromHumboldt’s October release.1006na64117530- 259 -


Chapter 4: Spartina C<strong>on</strong>trol and Management<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaThe highest number <str<strong>on</strong>g>of</str<strong>on</strong>g> cards found within an estuaryoccurred in <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco September releasewhen thirty cards were recovered <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> eastern edge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>bay, mainly near <str<strong>on</strong>g>the</str<strong>on</strong>g> Berkeley and Albany shoreline.Observed winds at <str<strong>on</strong>g>the</str<strong>on</strong>g> time <str<strong>on</strong>g>of</str<strong>on</strong>g> that release were from <str<strong>on</strong>g>the</str<strong>on</strong>g>west at approximately 7.7 – 10.3 m/s. Recoveries <str<strong>on</strong>g>of</str<strong>on</strong>g> SanFrancisco cards not blown back into <str<strong>on</strong>g>the</str<strong>on</strong>g> bay after <str<strong>on</strong>g>the</str<strong>on</strong>g>September release showed 61% were carried south.Maximum velocities for this release were approximately 2.4cm/s to both <str<strong>on</strong>g>the</str<strong>on</strong>g> north and south. Eighty-seven percent <str<strong>on</strong>g>of</str<strong>on</strong>g>October cards were found to <str<strong>on</strong>g>the</str<strong>on</strong>g> south. Maximum velocitieswere 5.4 cm/s to <str<strong>on</strong>g>the</str<strong>on</strong>g> north and 6.9 cm/s to <str<strong>on</strong>g>the</str<strong>on</strong>g> south.DISCUSSIONRototilling appears to have fairly uniform cutting acti<strong>on</strong><strong>on</strong> solid meadows; it produces rhizome fragments <str<strong>on</strong>g>of</str<strong>on</strong>g>c<strong>on</strong>sistent size and with similar numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> attached culms.A high percentage (87.8%) <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> S. alterniflora fragmentsproduced by rototilling in Willapa Bay had at least <strong>on</strong>eattached culm. The observed difference in culm length andrhizome diameter between quadrats was likely a result <str<strong>on</strong>g>of</str<strong>on</strong>g>variati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> age <str<strong>on</strong>g>of</str<strong>on</strong>g> coalesced cl<strong>on</strong>es, ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r thanvariable tearing acti<strong>on</strong> by <str<strong>on</strong>g>the</str<strong>on</strong>g> tilling blades. Assuminguniformity in <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rhizome fragments(approximately 312 fragments/m 2 within <str<strong>on</strong>g>the</str<strong>on</strong>g> top 10 cm) wecould make a c<strong>on</strong>servative estimate that 0.5% <str<strong>on</strong>g>of</str<strong>on</strong>g> fragmentsmight be loosened by wave or tidal acti<strong>on</strong>, becomingsuspended in <str<strong>on</strong>g>the</str<strong>on</strong>g> water column. Based <strong>on</strong> those assumpti<strong>on</strong>s,as many as 15,600 fragments might be distributed in <str<strong>on</strong>g>the</str<strong>on</strong>g>open water for every hectare rototilled (~6,300 per acre).Viability <str<strong>on</strong>g>of</str<strong>on</strong>g> rhizomes after floating at <str<strong>on</strong>g>the</str<strong>on</strong>g> water surfaceseems to be primarily dependent <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> at least<strong>on</strong>e culm. Randall and Milne (unpublished) found thatrhizome fragments 2.5 to 15 cm l<strong>on</strong>g with no attached culmshad 100% mortality regardless <str<strong>on</strong>g>of</str<strong>on</strong>g> positi<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> mud-flatsubstrate or beneath it at various depths. The presence <str<strong>on</strong>g>of</str<strong>on</strong>g>attached culms should allow <str<strong>on</strong>g>the</str<strong>on</strong>g> fragment to respire and<str<strong>on</strong>g>the</str<strong>on</strong>g>reby increase its chance <str<strong>on</strong>g>of</str<strong>on</strong>g> survival. In fact, repeatedmowing to remove vegetative shoots caused a reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>oxygen to <str<strong>on</strong>g>the</str<strong>on</strong>g> root system and was initially utilized as ac<strong>on</strong>trol method for Spartina (Ebasco Envir<strong>on</strong>mental 1993;Hedge et al. 1997). Of <str<strong>on</strong>g>the</str<strong>on</strong>g> 116 rhizomes planted withoutattached culms during <str<strong>on</strong>g>the</str<strong>on</strong>g> greenhouse study, n<strong>on</strong>e survived.Compared to fragments planted with culms, this findingseems to support <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ory that at least <strong>on</strong>e vegetative shootis needed for survival <str<strong>on</strong>g>of</str<strong>on</strong>g> vegetative propagules.For fragments having culms, salinity and initial rhizomesize determined survival. The 35 ppt treatment resulted innotably poorer survival rates compared to <str<strong>on</strong>g>the</str<strong>on</strong>g> lower salinitytreatments. Differences in 0 ppt and 15 ppt treatmentsappeared largely due to initial rhizome size. Larger rhizomeswould logically have higher chances <str<strong>on</strong>g>of</str<strong>on</strong>g> survival since <str<strong>on</strong>g>the</str<strong>on</strong>g>ywould be likely to have more nodes, a greater number <str<strong>on</strong>g>of</str<strong>on</strong>g>established roots and more n<strong>on</strong>-structural carbohydrates t<str<strong>on</strong>g>of</str<strong>on</strong>g>uel new growth.The length <str<strong>on</strong>g>of</str<strong>on</strong>g> immersi<strong>on</strong> was a less importantdeterminant <str<strong>on</strong>g>of</str<strong>on</strong>g> survival and establishment or rhizomefragments than salinity or rhizome size. L<strong>on</strong>ger immersi<strong>on</strong>durati<strong>on</strong>s may increase viability, although this effect was notc<strong>on</strong>sistent. Three to four m<strong>on</strong>ths <str<strong>on</strong>g>of</str<strong>on</strong>g> wet, cool c<strong>on</strong>diti<strong>on</strong>s mayhelp break seed dormancy and increase germinati<strong>on</strong> rates byleaching a germinati<strong>on</strong> inhibitor. Similarly, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>sthat fragments are exposed to while floating in open watermay retard growth <str<strong>on</strong>g>of</str<strong>on</strong>g> pathogens, encourage shoot producti<strong>on</strong>or el<strong>on</strong>gati<strong>on</strong> or o<str<strong>on</strong>g>the</str<strong>on</strong>g>rwise increase chances <str<strong>on</strong>g>of</str<strong>on</strong>g> survival.Repeated m<strong>on</strong>itoring <str<strong>on</strong>g>of</str<strong>on</strong>g> treated sites in Willapa Bay hasshown that mechanical treatments such as rototilling anddisking have higher efficacy during <str<strong>on</strong>g>the</str<strong>on</strong>g> period <str<strong>on</strong>g>of</str<strong>on</strong>g> Decemberthrough February (Patten & Stenvall 2002). All <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plantsused for this study were collected four to five weeks after <str<strong>on</strong>g>the</str<strong>on</strong>g>normal rototilling period in Willapa Bay. Increased culmlength, as well as higher air, soil and water temperatures at<str<strong>on</strong>g>the</str<strong>on</strong>g> time <str<strong>on</strong>g>of</str<strong>on</strong>g> collecti<strong>on</strong>, may have increased survival rates.Additi<strong>on</strong>ally, <str<strong>on</strong>g>the</str<strong>on</strong>g> vigorous acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rototilling producesmore ragged edges and somewhat damaged culms than werereproduced in <str<strong>on</strong>g>the</str<strong>on</strong>g> greenhouse. This might also elevate rates<str<strong>on</strong>g>of</str<strong>on</strong>g> survival shown here.Preliminary results from <str<strong>on</strong>g>the</str<strong>on</strong>g> first two m<strong>on</strong>ths <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> driftcard study suggest propagule depositi<strong>on</strong> from infestedestuaries lessens with increased distance. Flow over <str<strong>on</strong>g>the</str<strong>on</strong>g>coastal shelf is predominantly poleward in <str<strong>on</strong>g>the</str<strong>on</strong>g> winter andearly spring, with mean current velocities <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 cm/s.Summertime flow is typically southward with meanvelocities <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 cm/s. Dispersal patterns seen from <str<strong>on</strong>g>the</str<strong>on</strong>g>sepreliminary findings may be due to a seas<strong>on</strong>al transiti<strong>on</strong>period between <str<strong>on</strong>g>the</str<strong>on</strong>g>se predominant currents. Recoverypatterns may also reflect wind forcing and local eddies from<str<strong>on</strong>g>the</str<strong>on</strong>g> mouths <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> release estuaries. Frequent recoveries inbeaches al<strong>on</strong>g L<strong>on</strong>g Beach peninsula, where Spartina wrackis comm<strong>on</strong>ly found in <str<strong>on</strong>g>the</str<strong>on</strong>g> fall, suggests that <str<strong>on</strong>g>the</str<strong>on</strong>g> cardssimulate wrack dispersal with some accuracy.CONCLUSIONSThe estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> 15,600 fragments per hectare may seeminc<strong>on</strong>sequential when compared to estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> seedgerminati<strong>on</strong> rates for S. alterniflora which range from nineto nineteen milli<strong>on</strong> seeds per hectare (3.7 milli<strong>on</strong> to 7.7milli<strong>on</strong> seeds per acre) (Callaway 1990; Daehler and Str<strong>on</strong>g1994). However, understanding <str<strong>on</strong>g>the</str<strong>on</strong>g> risks associated with allc<strong>on</strong>trol methods is necessary when site-specific treatmentdecisi<strong>on</strong>s are made. Rototilling or o<str<strong>on</strong>g>the</str<strong>on</strong>g>r mechanicaldisturbance that produces fragments larger than 2.5 cmshould be used with cauti<strong>on</strong> in areas with fresh tomoderately brackish (mesohaline) waters. Mechanicaldisturbance following some o<str<strong>on</strong>g>the</str<strong>on</strong>g>r treatment method, such asherbicide applicati<strong>on</strong>, may pose less <str<strong>on</strong>g>of</str<strong>on</strong>g> a risk <str<strong>on</strong>g>of</str<strong>on</strong>g> starting new- 260 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 4: Spartina C<strong>on</strong>trol and Managementcl<strong>on</strong>es. If <str<strong>on</strong>g>the</str<strong>on</strong>g> infestati<strong>on</strong> is isolated and/or <str<strong>on</strong>g>the</str<strong>on</strong>g> populati<strong>on</strong> isnot setting seed, cauti<strong>on</strong> may be warranted in usingrototilling or similar mechanical treatments since it couldproduce viable propagules in areas with few o<str<strong>on</strong>g>the</str<strong>on</strong>g>r loci <str<strong>on</strong>g>of</str<strong>on</strong>g>dispersal.A greater understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> dispersal patterns frominfested bays should help to identify <str<strong>on</strong>g>the</str<strong>on</strong>g> risk <str<strong>on</strong>g>of</str<strong>on</strong>g> seed orvegetative propagule transport. This data, combined withknown characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> susceptible habitat, will helpidentify natural depositi<strong>on</strong> sites <str<strong>on</strong>g>of</str<strong>on</strong>g> invasive Spartina spp.ACKNOWLEDGEMENTSThanks to Debra Ayres, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California DavisDepartment <str<strong>on</strong>g>of</str<strong>on</strong>g> Evoluti<strong>on</strong> & Ecology, and Erik Grijalva, SanFrancisco Estuary <strong>Invasive</strong> Spartina Project for <str<strong>on</strong>g>the</str<strong>on</strong>g>irassistance in California; Terri Butler and J<strong>on</strong>athan Bates <str<strong>on</strong>g>of</str<strong>on</strong>g>Willapa Nati<strong>on</strong>al Wildlife Refuge, Fritzi Grevstad and KimPatten <str<strong>on</strong>g>of</str<strong>on</strong>g> Washingt<strong>on</strong> State University for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir suggesti<strong>on</strong>sand field assistance in Washingt<strong>on</strong>. For volunteering torelease drift cards, we thank David Heimer, Les Holcomband Travis Haring <str<strong>on</strong>g>of</str<strong>on</strong>g> Washingt<strong>on</strong> State Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Fish& Wildlife; Bill Pinnix, U.S. Fish and Wildlife Service inArcata, CA and Kristen Ward, Nati<strong>on</strong>al Park Service,Golden Gate Recreati<strong>on</strong> Area. Additi<strong>on</strong>ally, <str<strong>on</strong>g>the</str<strong>on</strong>g> staff andmany students at <str<strong>on</strong>g>the</str<strong>on</strong>g> Center for Lakes & Reservoirs,Portland State University have been immensely helpfulsuggesti<strong>on</strong>s and field/greenhouse work.REFERENCESBroome, S.W., W.W. Woodhouse, and E.D. Seneca. 1974. Propagati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> smooth cordgrass, Spartina alterniflora, from seed inNorth Carolina. Chesapeake Science 15(4):214-221.Daehler, C.C. 1999. Inbreeding depressi<strong>on</strong> in smooth cordgrass(Spartina alterniflora, Poaceae) Invading San Francisco Bay.American Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Botany 86(1):131-139.Daehler, C.C. and D.R. Str<strong>on</strong>g. 1996. Status, predicti<strong>on</strong> and preventi<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> introduced cordgrass Spartina spp. invasi<strong>on</strong>s in Pacificestuaries, USA. Biological C<strong>on</strong>servati<strong>on</strong> 78:51-58.Davis, H.G., C.M. Taylor, J.C. Civille and D.S. Str<strong>on</strong>g. 2004. AnAllee effect at <str<strong>on</strong>g>the</str<strong>on</strong>g> fr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> a plant invasi<strong>on</strong>: Spartina in a Pacificestuary. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology 92:321-327.Hedge, P., L.K. Kriwoken, and K. Patten. 2003. A review <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina Management in Washingt<strong>on</strong> State, US. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g>Aquatic Plant Management 41:82-90.Howard, V., D. Isaacs<strong>on</strong>, and M. Sytsma. 2004.: Detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina spp. <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Oreg<strong>on</strong> Coast in 2003. Oreg<strong>on</strong> Department<str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture Report (unpublished).Huiskes A.H.L., B.P. Koutstaal, P.M.J. Herman, W.G. Beeftink,M.M. Markusse and W. De Munck. 1995. Seed dispersal <str<strong>on</strong>g>of</str<strong>on</strong>g> halophytesin tidal salt marshes. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Ecology 83:559–567Koutstaal, B.P., M.M. Markusse, and W. de Munck. 1987. Aspects<str<strong>on</strong>g>of</str<strong>on</strong>g> seed dispersal by tidal movements. In: Huiskes, A.H.L.,C.W.P.M. Blom and J. Rozema, eds. Vegetati<strong>on</strong> Between Landand Sea. Bost<strong>on</strong>: Dr. W. Junk Publishers.Landin, M. 1990. Growth habits and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r c<strong>on</strong>siderati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>smooth cordgrass, Spartina alterniflora Loisel. In: Mumford Jr.,T.F., P. Peyt<strong>on</strong>, J.R. Sayce and S. Harbell, eds. Spartina WorkshopRecord. Seattle, WA: pp. 15-20.Patten, K. and C. Stenvall. 2002. Nothin’ could be fina’ than <str<strong>on</strong>g>the</str<strong>on</strong>g>killin’ o Spartina.” Agrichemical and Envir<strong>on</strong>mental News,Washingt<strong>on</strong> State Cooperative Extensi<strong>on</strong> Newsletter. 196.Patten, K. 2002. The efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> mechanical treatment efforts in2001 <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina in Willapa Bay in 2002. Progressreport to <str<strong>on</strong>g>the</str<strong>on</strong>g> Willapa Nati<strong>on</strong>al Wildlife Refuge.Patten, K. 2003. Persistence and n<strong>on</strong>-target impact <str<strong>on</strong>g>of</str<strong>on</strong>g> imazapyrassociated with smooth cordgrass c<strong>on</strong>trol in an estuary. Journal<str<strong>on</strong>g>of</str<strong>on</strong>g> Aquatic Plant Management 41:1-6.Pfauth, M., M. Sytsma and D. Isaacs<strong>on</strong>. 2003. Oreg<strong>on</strong> SpartinaResp<strong>on</strong>se Plan. Portland State University, Oreg<strong>on</strong>.Plyler, D.B. and T.E. Proseus. 1996. A comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> seeddormancy characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina patens and Spartina alterniflora(Poaceae). American Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Botany 83(1):11-14.Randall, P. and D. Milne. 1996. Loose Spartina alterniflora rhizomesd<strong>on</strong>’t sprout new plants. Unpublished report. EvergreenState College, Washingt<strong>on</strong>.Reeder, T.G., and S.D. Hacker. 2004. Factors c<strong>on</strong>tributing to <str<strong>on</strong>g>the</str<strong>on</strong>g>removal <str<strong>on</strong>g>of</str<strong>on</strong>g> a marine grass invader (Spartina anglica) and subsequentpotential for habitat restorati<strong>on</strong>. Estuaries 27(2):244-252.Sayce, K. 1988. Introduced cordgrass, Spartina alternifloraLoisel., in salt marshes and tidelands <str<strong>on</strong>g>of</str<strong>on</strong>g> Willapa Bay, Washingt<strong>on</strong>.Illwaco, WA: U.S. Fish and Wildlife Service.Sayce, K., B. Dumbauld, and J. Hidy. 1997. Seed dispersal in drift<str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflora. Presented at <str<strong>on</strong>g>the</str<strong>on</strong>g> Sec<strong>on</strong>d <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g>Spartina <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g>, Olympia, WA.Stiller, J.W. and A.L. Dent<strong>on</strong>. 1995. One hundred years <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartinaalterniflora (Poaceae) in Willapa Bay, Washingt<strong>on</strong>: random amplifiedpolymorphic DNA analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> an invasive populati<strong>on</strong>.Molecular Ecology 4:355-363.Zaremba, K. and M.F. McGowan. 2004. San Francisco Estuary<strong>Invasive</strong> Spartina Project M<strong>on</strong>itoring Report for 2003. Oakland:California State Coastal C<strong>on</strong>servancy.- 261 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 4: Spartina C<strong>on</strong>trol and ManagementCOVERING THE SPARTINA THREAT: AN ALTERNATIVE CONTROL METHOD FOR NON-NATIVE SPARTINA PATENS IN A WEST COAST SALT MARSHD.L. PICKERING2499 North Bank Rd., Otis, Oreg<strong>on</strong> 97368; dpickering@tnc.orgOn Oreg<strong>on</strong>’s central coast, <str<strong>on</strong>g>the</str<strong>on</strong>g> Nature C<strong>on</strong>servancy’s Cox Island Preserve harbors <str<strong>on</strong>g>the</str<strong>on</strong>g> introducedsalt marsh grass Spartina patens (saltmeadow cordgrass), <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>on</strong>ly known infestati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> state.The 187-acre preserve lies in <str<strong>on</strong>g>the</str<strong>on</strong>g> Siuslaw River, seven miles inland from <str<strong>on</strong>g>the</str<strong>on</strong>g> Pacific Coast. Spartinapatens is native to <str<strong>on</strong>g>the</str<strong>on</strong>g> east coast <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> United States, found from Newfoundland to Texas. It wasprobably introduced to <str<strong>on</strong>g>the</str<strong>on</strong>g> west coast in <str<strong>on</strong>g>the</str<strong>on</strong>g> early 1900s. Spartina. patens invades mid-marshcommunities at elevati<strong>on</strong>s ranging from 1.83 to 2.05 meters (m) above mean low water (Frenkel andBoss 1988). Initially, it spreads primarily by rhizomes and forms circular, m<strong>on</strong>otypic stands whichcrowd out native plants and eliminate wildlife habitat. These Spartina patches accumulate sedimentand litter at a faster rate than <str<strong>on</strong>g>the</str<strong>on</strong>g> surrounding marsh vegetati<strong>on</strong>, thus altering <str<strong>on</strong>g>the</str<strong>on</strong>g> natural successi<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> site. To restore Cox Island and prevent S. patens from spreading to o<str<strong>on</strong>g>the</str<strong>on</strong>g>r estuaries, we fieldtestedmethods that have shown promise at c<strong>on</strong>trolling S. patens elsewhere. Covering with heavydutylandscaping fabric anchored by spikes was <str<strong>on</strong>g>the</str<strong>on</strong>g> most effective c<strong>on</strong>trol method <str<strong>on</strong>g>of</str<strong>on</strong>g> those we tried.Leaving <str<strong>on</strong>g>the</str<strong>on</strong>g> fabric <strong>on</strong> for two years kills <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina. After removal, native salt-marsh vegetati<strong>on</strong>re-col<strong>on</strong>izes <strong>on</strong> its own. To date, 0.81 hectares (ha) (2 acres [ac]) have been restored and ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r1.62 ha (4 ac) are now covered. This methodology may not be feasible for large-scale c<strong>on</strong>trol efforts<strong>on</strong> well-established infestati<strong>on</strong>s, but it is a very viable opti<strong>on</strong> for c<strong>on</strong>trol efforts at <str<strong>on</strong>g>the</str<strong>on</strong>g> most effectivetime to eliminate invasive n<strong>on</strong>-native species, during <str<strong>on</strong>g>the</str<strong>on</strong>g> early stages <str<strong>on</strong>g>of</str<strong>on</strong>g> an infestati<strong>on</strong>.Keywords: Spartina patens, n<strong>on</strong>-chemical c<strong>on</strong>trol, salt marsh management, geotextile coveringTHE SPARTINA THREATThe <strong>on</strong>ly known Oreg<strong>on</strong> occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> introducedsalt marsh grass Spartina patens (saltmeadow cordgrass)occurs <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Nature C<strong>on</strong>servancy’s 187-acre Cox IslandPreserve located in <str<strong>on</strong>g>the</str<strong>on</strong>g> Siuslaw River. Spartina patens isnative to <str<strong>on</strong>g>the</str<strong>on</strong>g> east coast <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> United States, found fromNewfoundland to Texas. It was probably introduced to <str<strong>on</strong>g>the</str<strong>on</strong>g>west coast around <str<strong>on</strong>g>the</str<strong>on</strong>g> turn <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 20 th century.Spartina. patens invades mid-marsh communities atelevati<strong>on</strong>s ranging from 1.83 to 2.05 meters (m) above meanlow water (Frenkel and Boss 1988). Initially, it spreadsprimarily by rhizomes and forms circular, m<strong>on</strong>otypic standswhich crowd out native plants and eliminate wildlife habitat.These Spartina patches accumulate sediment and litter at afaster rate than <str<strong>on</strong>g>the</str<strong>on</strong>g> surrounding marsh vegetati<strong>on</strong>, thusaltering <str<strong>on</strong>g>the</str<strong>on</strong>g> natural successi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> site.At Cox Island, S. patens apparently established inundisturbed vegetati<strong>on</strong> before 1939. Since <str<strong>on</strong>g>the</str<strong>on</strong>g>n, it spread tocover approximately 1.1 hectares (ha) (2.7 acres [ac]) by1996. If unc<strong>on</strong>trolled, it could c<strong>on</strong>tinue to spread until allavailable habitat is occupied (Frenkel and Boss 1988).EARLY DETECTION PARTNERSHIPO<str<strong>on</strong>g>the</str<strong>on</strong>g>r invasive species <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina from <str<strong>on</strong>g>the</str<strong>on</strong>g> east coasthave become established in Washingt<strong>on</strong> and California. Forexample, S. alterniflora has infested Willapa Bay inWashingt<strong>on</strong> where it is eliminating an important feedingarea for migratory waterfowl by invading mudflats andforming a Spartina m<strong>on</strong>oculture (Aberle 1993).Studies indicate that 13 Oreg<strong>on</strong> estuaries are at risk <str<strong>on</strong>g>of</str<strong>on</strong>g>invasi<strong>on</strong> by n<strong>on</strong>-native Spartina species (Daehler and Str<strong>on</strong>g1996). Seeds or o<str<strong>on</strong>g>the</str<strong>on</strong>g>r propagules could be dispersed to newareas by migratory waterfowl, dredging operati<strong>on</strong>s, shellfishharvesting or movement <str<strong>on</strong>g>of</str<strong>on</strong>g> materials between oysterproducingareas. Early detecti<strong>on</strong> is essential to prevent newinfestati<strong>on</strong>s in Oreg<strong>on</strong> (Pfauth et al. 2003).The Nature C<strong>on</strong>servancy has partnered with <str<strong>on</strong>g>the</str<strong>on</strong>g> Oreg<strong>on</strong>Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture (ODA) and <str<strong>on</strong>g>the</str<strong>on</strong>g> SiuslawWatershed Council to c<strong>on</strong>trol Spartina <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Cox IslandPreserve and to detect any new infestati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> state. In2003, ODA developed a Spartina Resp<strong>on</strong>se Plan to protectOreg<strong>on</strong> estuaries from Spartina invasi<strong>on</strong>s (Pfauth et al.2003). Nature C<strong>on</strong>servancy and Watershed Councilmembers have volunteered to survey salt marsh areas in twoestuaries for invasive Spartina species. Two patches <str<strong>on</strong>g>of</str<strong>on</strong>g> S.patens were found in <str<strong>on</strong>g>the</str<strong>on</strong>g> Siuslaw Estuary <strong>on</strong> propertyadjacent to Cox Island and were c<strong>on</strong>trolled. No o<str<strong>on</strong>g>the</str<strong>on</strong>g>rSpartina was found.RESTORING COX ISLANDTo restore Cox Island and prevent S. patens fromspreading to o<str<strong>on</strong>g>the</str<strong>on</strong>g>r estuaries in Oreg<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> NatureC<strong>on</strong>servancy field-tested several c<strong>on</strong>trol methods from 1996- 263 -


Chapter 4: Spartina C<strong>on</strong>trol and Management<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinato 1998 that have shown promise at o<str<strong>on</strong>g>the</str<strong>on</strong>g>r sites, includingcovering with heavy-duty landscape fabric, repeatedmowing, artificial inundati<strong>on</strong> and removal by manualdigging.Results <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se tests indicated that covering <str<strong>on</strong>g>the</str<strong>on</strong>g>Spartina with landscaping fabric (Mirafi 500 or Amoco2002) anchored by gutter spikes pushed into <str<strong>on</strong>g>the</str<strong>on</strong>g> sedimentwas <str<strong>on</strong>g>the</str<strong>on</strong>g> most effective and least envir<strong>on</strong>mentally detrimentalmethod, <str<strong>on</strong>g>of</str<strong>on</strong>g> those that were tried, for c<strong>on</strong>trolling this invasivespecies at Cox Island. Leaving <str<strong>on</strong>g>the</str<strong>on</strong>g> fabric <strong>on</strong> for two yearseffectively kills <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina, leaving behind bare ground.After removal <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fabric, native salt-marsh vegetati<strong>on</strong> recol<strong>on</strong>izes<str<strong>on</strong>g>the</str<strong>on</strong>g>se bare patches <strong>on</strong> its own so active planting <str<strong>on</strong>g>of</str<strong>on</strong>g>native vegetati<strong>on</strong> is not necessary.The landscaping fabric we use (Amoco 2002) is a tough,woven black plastic fabric (geotextile) that resists UV lightand holds up well in a saltwater envir<strong>on</strong>ment. We havesuccessfully used pieces <str<strong>on</strong>g>of</str<strong>on</strong>g> this fabric for six c<strong>on</strong>secutiveyears (<strong>on</strong> three different patches for two years each) before itbecame too thin to block light. Since <str<strong>on</strong>g>the</str<strong>on</strong>g> fabric is woven, cutedges need to be folded under so <str<strong>on</strong>g>the</str<strong>on</strong>g> wind does not unravel<str<strong>on</strong>g>the</str<strong>on</strong>g> edges. This fabric is available from ACF West Inc. inPortland, Oreg<strong>on</strong> (1-800-878-5115 or 503-771-5115). Itscost ranged from $315/roll (picked up) to $385/roll (locallydelivered). These rolls c<strong>on</strong>tain 6,300 square feet (ft 2) <str<strong>on</strong>g>of</str<strong>on</strong>g>fabric and measure 18 ft x 350 ft.To install <str<strong>on</strong>g>the</str<strong>on</strong>g> fabric, we identify <str<strong>on</strong>g>the</str<strong>on</strong>g> spatial limits <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>patch, mow <str<strong>on</strong>g>the</str<strong>on</strong>g> vegetati<strong>on</strong> around <str<strong>on</strong>g>the</str<strong>on</strong>g> boundary <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> patchso <str<strong>on</strong>g>the</str<strong>on</strong>g> fabric lays flat, cut a piece <str<strong>on</strong>g>of</str<strong>on</strong>g> fabric <str<strong>on</strong>g>of</str<strong>on</strong>g> sufficient sizeto extend well bey<strong>on</strong>d <str<strong>on</strong>g>the</str<strong>on</strong>g> border <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> patch, and pin inplace with gutter spikes every two to three feet al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g>edges while pulling <str<strong>on</strong>g>the</str<strong>on</strong>g> fabric taut. The fabric should extenda minimum <str<strong>on</strong>g>of</str<strong>on</strong>g> two feet bey<strong>on</strong>d <str<strong>on</strong>g>the</str<strong>on</strong>g> edge <str<strong>on</strong>g>of</str<strong>on</strong>g> patches to helpprevent any rhizomes from growing out bey<strong>on</strong>d <str<strong>on</strong>g>the</str<strong>on</strong>g>covering. We fold <str<strong>on</strong>g>the</str<strong>on</strong>g> edge <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> fabric under and push aspike with a washer (to keep <str<strong>on</strong>g>the</str<strong>on</strong>g> head <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> spike fromgoing through <str<strong>on</strong>g>the</str<strong>on</strong>g> fabric) through <str<strong>on</strong>g>the</str<strong>on</strong>g> fabric and pound itinto <str<strong>on</strong>g>the</str<strong>on</strong>g> substrate. If <str<strong>on</strong>g>the</str<strong>on</strong>g> ground is too s<str<strong>on</strong>g>of</str<strong>on</strong>g>t in places to get agood grip with <str<strong>on</strong>g>the</str<strong>on</strong>g> gutter spikes, we use nine-inch nailsinstead. (These also tend to last l<strong>on</strong>ger in <str<strong>on</strong>g>the</str<strong>on</strong>g> saltwaterenvir<strong>on</strong>ment and do not need washers.). We angle <str<strong>on</strong>g>the</str<strong>on</strong>g> spikestoward <str<strong>on</strong>g>the</str<strong>on</strong>g> center <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> covering as we drive <str<strong>on</strong>g>the</str<strong>on</strong>g>m in to helpprevent <str<strong>on</strong>g>the</str<strong>on</strong>g> tidal currents and wind from pulling up <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>edges. If additi<strong>on</strong>al anchoring is needed, for example wheretwo pieces <str<strong>on</strong>g>of</str<strong>on</strong>g> fabric overlap, two spikes can be driven in atopposite angles in <str<strong>on</strong>g>the</str<strong>on</strong>g> same spot.In <str<strong>on</strong>g>the</str<strong>on</strong>g> fall <str<strong>on</strong>g>of</str<strong>on</strong>g> 1998, we began efforts to c<strong>on</strong>trol <str<strong>on</strong>g>the</str<strong>on</strong>g> smalloutlier patches <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina before <str<strong>on</strong>g>the</str<strong>on</strong>g>y could turn into largepatches. This strategy <str<strong>on</strong>g>of</str<strong>on</strong>g> beginning with small outliers hasproven to be <str<strong>on</strong>g>the</str<strong>on</strong>g> most effective way to c<strong>on</strong>tain a n<strong>on</strong>-nativespecies invasi<strong>on</strong> (Moody and Mack 1988). As <str<strong>on</strong>g>of</str<strong>on</strong>g> 2004, wehave c<strong>on</strong>trolled all <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> outliers and are making progress<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> main infestati<strong>on</strong> area. The Spartina in this area hasgrown from three patches in 1939 to a Spartina meadowtoday. We are covering <str<strong>on</strong>g>the</str<strong>on</strong>g> perimeters <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se meadows tohalt <str<strong>on</strong>g>the</str<strong>on</strong>g>ir spread and will work towards <str<strong>on</strong>g>the</str<strong>on</strong>g>ir interiors insuccessive years. Each year we mow flowering patches thathave not yet been covered to prevent seed set. The patchesare mowed from mid- to late-August with gas-poweredstring trimmers and are cut well above <str<strong>on</strong>g>the</str<strong>on</strong>g> ground surface toavoid tearing out rhizomes that might spread <str<strong>on</strong>g>the</str<strong>on</strong>g> infestati<strong>on</strong>.Overall, we have successfully restored about 0.81 ha (2ac) <str<strong>on</strong>g>of</str<strong>on</strong>g> former Spartina patches to native salt marsh. At leastano<str<strong>on</strong>g>the</str<strong>on</strong>g>r 1.62 ha (4 ac) are currently covered with fabric. Weestimate that 0.43 ha (1.1 ac) <str<strong>on</strong>g>of</str<strong>on</strong>g> large Spartina patchesremain unc<strong>on</strong>trolled <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> island, which we hope to coverby <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> 2005. C<strong>on</strong>trolling this invasive species <strong>on</strong> CoxIsland will not <strong>on</strong>ly restore native salt marsh to <str<strong>on</strong>g>the</str<strong>on</strong>g> island,but will also help to prevent Spartina's spread to o<str<strong>on</strong>g>the</str<strong>on</strong>g>r parts<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Siuslaw Estuary and to o<str<strong>on</strong>g>the</str<strong>on</strong>g>r estuaries in Oreg<strong>on</strong> andWashingt<strong>on</strong>.I believe this weed c<strong>on</strong>trol method shows promise foruse <strong>on</strong> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r invasive species as well (we are currently tryingit <strong>on</strong> upland grasses and reed canarygrass [Phalarisarundinacea]). While it may not be practical for wellestablished invasive species populati<strong>on</strong>s that cover morethan 4-8 ha (~10-20 ac), it is a viable n<strong>on</strong>-chemical c<strong>on</strong>trolmethod for outlier patches and small pi<strong>on</strong>eering infestati<strong>on</strong>s<strong>on</strong> a site.ACKNOWLEDGEMENTSWe are very grateful to <str<strong>on</strong>g>the</str<strong>on</strong>g> following for providingfunding for this project: NOAA/TNC Community-basedRestorati<strong>on</strong> Program; Oreg<strong>on</strong> Watershed EnhancementBoard; Oreg<strong>on</strong> Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture's Oreg<strong>on</strong> StateWeed Board, Noxious Weed C<strong>on</strong>trol Grant Program; andU.S. Fish and Wildlife Service, North American WetlandsC<strong>on</strong>servati<strong>on</strong> Act, Small Grants Program.REFERENCESAberle, B.L. 1993. The biology and c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> introduced Spartina(cordgrass) worldwide and recommendati<strong>on</strong>s for its c<strong>on</strong>trol inWashingt<strong>on</strong>. Master's Thesis, Olympia, WA: The EvergreenState College.Daehler, C.C. and D.R. Str<strong>on</strong>g. 1996. Status, predicti<strong>on</strong>, and preventi<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> introduced cordgrass Spartina spp. invasi<strong>on</strong>s in Pacificestuaries, USA. Biological C<strong>on</strong>servati<strong>on</strong> 78:51-58.Frenkel, R.E. and T.R. Boss. 1988. Introducti<strong>on</strong>, establishment andspread <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina patens <strong>on</strong> Cox Island, Siuslaw Estuary, Oreg<strong>on</strong>.Wetlands 8:33-49.Moody, M.E. and R.N. Mack. 1988. C<strong>on</strong>trolling <str<strong>on</strong>g>the</str<strong>on</strong>g> spread <str<strong>on</strong>g>of</str<strong>on</strong>g> plantinvasi<strong>on</strong>s: <str<strong>on</strong>g>the</str<strong>on</strong>g> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> nascent foci. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> AppliedEcology 25:1009-1021.Pfauth, M., M. Sytsma, and D. Isaacs<strong>on</strong>. 2003. Oreg<strong>on</strong> SpartinaResp<strong>on</strong>se Plan. Portland State University, Center for Lakes andReservoirs report prepared for Oreg<strong>on</strong> Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture.- 264 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 4: Spartina C<strong>on</strong>trol and ManagementCOMMUNITY SPARTINA EDUCATION AND STEWARDSHIP PROJECTK. O’CONNELLRestorati<strong>on</strong> Ecologist, People For Puget Sound, 911 Western Ave., Ste. 580, Seattle, WA 98104; koc<strong>on</strong>nell@pugetsound.orgPeople For Puget Sound’s Community Spartina Educati<strong>on</strong> and Stewardship Project is a communitybasedSpartina c<strong>on</strong>trol program targeted at small groups <str<strong>on</strong>g>of</str<strong>on</strong>g> private property owners and select publicbeaches. The goals <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> program are to: 1) educate and mobilize shoreline property ownersthrough stewardship to eradicate Spartina from <str<strong>on</strong>g>the</str<strong>on</strong>g>ir beaches, and 2) educate and involve all citizensin <str<strong>on</strong>g>the</str<strong>on</strong>g> Puget Sound-wide Spartina c<strong>on</strong>trol effort through participati<strong>on</strong> in large, organized communitySpartina-removal dig events. This project includes a str<strong>on</strong>g comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>itoring and l<strong>on</strong>g-termstewardship driven by property owners and partnering organizati<strong>on</strong>s/agencies.Keywords: Community, stewardship, educati<strong>on</strong>INTRODUCTION:In Washingt<strong>on</strong> State, Spartina is an invasive, salttolerantweed that threatens our natural shorelineecosystems. It aggressively displaces native habitat, and leftuntreated could cause irreversible damage to <str<strong>on</strong>g>the</str<strong>on</strong>g> nearshoreenvir<strong>on</strong>ment <str<strong>on</strong>g>of</str<strong>on</strong>g> Puget Sound. State agencies andorganizati<strong>on</strong>s involved in Spartina c<strong>on</strong>trol agree thateducati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> public is key to <str<strong>on</strong>g>the</str<strong>on</strong>g> weed’s eradicati<strong>on</strong> fromPuget Sound. The goal <str<strong>on</strong>g>of</str<strong>on</strong>g> People For Puget Sound’sCommunity Spartina Educati<strong>on</strong> and Stewardship Program,launched in 2004, is to enhance community educati<strong>on</strong>,involvement and stewardship in <str<strong>on</strong>g>the</str<strong>on</strong>g> Puget Sound bytargeting areas <str<strong>on</strong>g>of</str<strong>on</strong>g> small Spartina infestati<strong>on</strong>s, generallyunder <strong>on</strong>e acre, in sites with multiple private shorelineproperty owners.Research indicates that if eradicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina is tooccur in an effective manner, individual infestati<strong>on</strong>s must betreated simultaneously and in a coordinated effort. Inadditi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g> m<strong>on</strong>itoring <str<strong>on</strong>g>of</str<strong>on</strong>g> sites post-eradicati<strong>on</strong> isnecessary to ensure that re-invasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina does notoccur. This educati<strong>on</strong> and stewardship project will act as aninvestment in <str<strong>on</strong>g>the</str<strong>on</strong>g> future <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina-free beaches in PugetSound, by focusing <strong>on</strong> community involvement andhighlighting <str<strong>on</strong>g>the</str<strong>on</strong>g> importance <str<strong>on</strong>g>of</str<strong>on</strong>g> stewardship. The projectenhances our own current programs, o<str<strong>on</strong>g>the</str<strong>on</strong>g>r local stewardshipprograms, and builds <str<strong>on</strong>g>the</str<strong>on</strong>g> key link between <str<strong>on</strong>g>the</str<strong>on</strong>g> agenciescommitted to Spartina removal and <str<strong>on</strong>g>the</str<strong>on</strong>g> citizens who depend<strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> health <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> sound.The project works in close partnership with variousregi<strong>on</strong>al, state, local and tribal agencies in Puget Sound tomaximize <str<strong>on</strong>g>the</str<strong>on</strong>g> effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> our efforts. Washingt<strong>on</strong> StateDepartment <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture (WSDA), Skagit and IslandCounty Noxious Weed c<strong>on</strong>trol boards, <str<strong>on</strong>g>the</str<strong>on</strong>g> Northwest StraitsCommissi<strong>on</strong>, Washingt<strong>on</strong> State University “BeachWatchers” program, and tribal communities assist inbuilding c<strong>on</strong>necti<strong>on</strong>s with <str<strong>on</strong>g>the</str<strong>on</strong>g> wider community and instaging large public dig events to raise awareness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>Spartina problem.METHODSThree to five priority shoreline communities aretargeted for outreach each year <str<strong>on</strong>g>of</str<strong>on</strong>g> this project. The projectmanager works with <str<strong>on</strong>g>the</str<strong>on</strong>g> state agencies, especially WSDA, toprioritize sites for outreach, and works with o<str<strong>on</strong>g>the</str<strong>on</strong>g>r localpartners to identify an interested neighbor in <str<strong>on</strong>g>the</str<strong>on</strong>g> target areato act as a community steward. The manager <str<strong>on</strong>g>the</str<strong>on</strong>g>n assists <str<strong>on</strong>g>the</str<strong>on</strong>g>steward in hosting a ‘Spartina Social’ with neighbors toeducate <str<strong>on</strong>g>the</str<strong>on</strong>g>m <strong>on</strong> Spartina’s envir<strong>on</strong>mental impacts, c<strong>on</strong>trolmethods, eradicati<strong>on</strong> strategies, m<strong>on</strong>itoring and stewardship,as well as roles community members can play in <str<strong>on</strong>g>the</str<strong>on</strong>g> project.Generally two to six additi<strong>on</strong>al neighbors are also interestedin becoming stewards for <str<strong>on</strong>g>the</str<strong>on</strong>g> community following thisinitial meeting.Community stewards are trained to c<strong>on</strong>duct baselinesurveys and m<strong>on</strong>itoring at <str<strong>on</strong>g>the</str<strong>on</strong>g> site twice a year, and areequipped and supported in hopes that <str<strong>on</strong>g>the</str<strong>on</strong>g>y will c<strong>on</strong>tinuem<strong>on</strong>itoring for up to 15+ years. We opted to use <str<strong>on</strong>g>the</str<strong>on</strong>g> protocolfor photo-point m<strong>on</strong>itoring and photo-plot m<strong>on</strong>itoringoutlined by Portland State University’s Envir<strong>on</strong>mentalSciences and Resources Program Student WatershedResearch Project (www.swrp.org). Photo-point m<strong>on</strong>itoringinvolves taking landscape photos <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> area <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>cern tom<strong>on</strong>itor overall changes at <str<strong>on</strong>g>the</str<strong>on</strong>g> site each year, including <str<strong>on</strong>g>the</str<strong>on</strong>g>presence <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina. In additi<strong>on</strong>, <strong>on</strong>e or two photo plotswere established in each site to capture an area <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e squaremeter (1 m 2 ) <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina to m<strong>on</strong>itor <str<strong>on</strong>g>the</str<strong>on</strong>g> percent coverage peryear in those plots. Baseline m<strong>on</strong>itoring was c<strong>on</strong>ducted ineach community between August and October 2004.Community stewards will c<strong>on</strong>tinue m<strong>on</strong>itoring each year inlate May and again post-c<strong>on</strong>trol (September or October).Community stewards were provided with all necessarym<strong>on</strong>itoring materials. Each community received a photom<strong>on</strong>itoringinstructi<strong>on</strong> manual, including m<strong>on</strong>itoringguidelines, data entry sheets, photo marker tags, m<strong>on</strong>itoringequipment, a copy <str<strong>on</strong>g>of</str<strong>on</strong>g> People For Puget Sound’s SoundStewardship native and invasive plant ID guide, and c<strong>on</strong>tactinformati<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> Island County Noxious Weed C<strong>on</strong>trolBoard. In additi<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> manual, stewards received a 1 m 2- 265 -


Chapter 4: Spartina C<strong>on</strong>trol and Management<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaPVC photo plot, rebar stakes for marking photo points, and acompass for calculating directi<strong>on</strong>al bearings for photos. Thecommunities provided <str<strong>on</strong>g>the</str<strong>on</strong>g>ir own digital cameras for <str<strong>on</strong>g>the</str<strong>on</strong>g>m<strong>on</strong>itoring.RESULTS AND DISCUSSIONPeople For Puget Sound’s project manager establishedan initial steward in each community in July and August2004 through our 2003 outreach efforts and with <str<strong>on</strong>g>the</str<strong>on</strong>g>assistance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Washingt<strong>on</strong> State University Extensi<strong>on</strong>Beach Watchers Program. To date, <str<strong>on</strong>g>the</str<strong>on</strong>g> project has c<strong>on</strong>ductedoutreach to <str<strong>on</strong>g>the</str<strong>on</strong>g> communities <str<strong>on</strong>g>of</str<strong>on</strong>g> Juniper Beach and EagleTree Estates <strong>on</strong> Camano Island, and Harringt<strong>on</strong> Lago<strong>on</strong> <strong>on</strong>Whidbey Island. A neighbor from a fourth community,Cavelero Country Club <strong>on</strong> Camano Island, attended ano<str<strong>on</strong>g>the</str<strong>on</strong>g>rcommunity’s meeting and has been working with <str<strong>on</strong>g>the</str<strong>on</strong>g> projectmanager to get her community involved in <str<strong>on</strong>g>the</str<strong>on</strong>g> project.The project manager met with <str<strong>on</strong>g>the</str<strong>on</strong>g> community stewardsbetween August and October to c<strong>on</strong>duct Spartina surveys <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> neighborhood’s shoreline, and training <strong>on</strong> m<strong>on</strong>itoringtechniques. Baseline visual and photographic surveys werec<strong>on</strong>ducted at this time, al<strong>on</strong>g with photo m<strong>on</strong>itoring. Theproject manager also began training <str<strong>on</strong>g>the</str<strong>on</strong>g> stewards in nativeplant identificati<strong>on</strong>, focusing <strong>on</strong> plants comm<strong>on</strong>ly c<strong>on</strong>fusedwith Spartina.People For Puget Sound and its partners also hostedthree large, public Spartina dig events from June throughAugust 2004. These events focused <strong>on</strong> manual removal inareas where chemical c<strong>on</strong>trol is not desired. Volunteers weretrained in manual removal techniques including digging andseedling removal with an emphasis <strong>on</strong> removing allrhizomatous roots to prevent regrowth.The project manager worked with partners to educate<str<strong>on</strong>g>the</str<strong>on</strong>g> general public about Spartina through <str<strong>on</strong>g>the</str<strong>on</strong>g>se communitydig events. The 6th Annual Skagit Dig Days was held <strong>on</strong>June 19th at <str<strong>on</strong>g>the</str<strong>on</strong>g> Swinomish Casino lago<strong>on</strong>. This event drew38 volunteers for four hours <str<strong>on</strong>g>of</str<strong>on</strong>g> manual removal. Twoadditi<strong>on</strong>al dig events were held in Island County: OakHarbor <strong>on</strong> Whidbey Island had 14 volunteers for three hours<strong>on</strong> August 14, and Ivers<strong>on</strong> Spit <strong>on</strong> Camano Island drew 22volunteers for four hours <strong>on</strong> August 28.M<strong>on</strong>itoring surveys <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately 20 hectares (48acres) <str<strong>on</strong>g>of</str<strong>on</strong>g> area affected by Spartina were c<strong>on</strong>ducted betweenMay 1 and October 31 This number was estimated from datain WSDA’s 2003 Spartina Eradicati<strong>on</strong> Program Report to<str<strong>on</strong>g>the</str<strong>on</strong>g> Legislature, PUB 805-110 (available <strong>on</strong>line athttp://agr.wa.gov/PlantsInsects/Weeds/Spartina/default.htm).It is projected that this same area will be m<strong>on</strong>itored <strong>on</strong>eadditi<strong>on</strong>al time during <str<strong>on</strong>g>the</str<strong>on</strong>g> course <str<strong>on</strong>g>of</str<strong>on</strong>g> this grant period, endingMay 2005. The three dig events resulted in an estimated 0.6hectares (1.5 acres) <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina removed from <str<strong>on</strong>g>the</str<strong>on</strong>g> nearshore.Outreach to <str<strong>on</strong>g>the</str<strong>on</strong>g> private communities was not intended toresult in direct c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina, since <str<strong>on</strong>g>the</str<strong>on</strong>g> Island CountyNoxious Weed C<strong>on</strong>trol Progrram is currently managingc<strong>on</strong>trol efforts throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> county. We expect that WSDAwill report <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> acres treated at <str<strong>on</strong>g>the</str<strong>on</strong>g>se sites in its2004 report to <str<strong>on</strong>g>the</str<strong>on</strong>g> Legislature.Thus far this project has trained over 70 citizens inproper identificati<strong>on</strong> and manual removal methods forinvasive Spartina through <str<strong>on</strong>g>the</str<strong>on</strong>g> large community dig events.We have educated over 60 private shoreline property owners<strong>on</strong> Spartina’s envir<strong>on</strong>mental impacts, c<strong>on</strong>trol methods,identificati<strong>on</strong>, and opti<strong>on</strong>s for community-based eradicati<strong>on</strong>through community meetings and presentati<strong>on</strong>s. The projectmanager has trained 11 stewards from <str<strong>on</strong>g>the</str<strong>on</strong>g> three communitiesin proper m<strong>on</strong>itoring techniques. The stewards have agreedto c<strong>on</strong>duct photo m<strong>on</strong>itoring <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir community beachestwice a year, c<strong>on</strong>duct visual m<strong>on</strong>itoring throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> year,report all m<strong>on</strong>itoring activities to <str<strong>on</strong>g>the</str<strong>on</strong>g> project manager,provide copies <str<strong>on</strong>g>of</str<strong>on</strong>g> all m<strong>on</strong>itoring photos, work with <str<strong>on</strong>g>the</str<strong>on</strong>g>project manager and Island County Noxious Weed C<strong>on</strong>trolBoard to organize c<strong>on</strong>trol efforts, and commit to l<strong>on</strong>g-termstewardship <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir community beaches for hopefully 20years or more.We have received very positive feedback from <str<strong>on</strong>g>the</str<strong>on</strong>g>public for this project and we feel that this first year hasbeen a great success. The project will c<strong>on</strong>tinue to c<strong>on</strong>ductoutreach to three to five additi<strong>on</strong>al communities each year,while maintaining <str<strong>on</strong>g>the</str<strong>on</strong>g> necessary level <str<strong>on</strong>g>of</str<strong>on</strong>g> involvement incurrent communities’ activities. The project manager islooking into expanding <str<strong>on</strong>g>the</str<strong>on</strong>g> project in upcoming years inseveral areas. There is a distinct need to c<strong>on</strong>duct yearly GPSsurveys <str<strong>on</strong>g>of</str<strong>on</strong>g> each community’s infestati<strong>on</strong> and to acquire GIScapabilities that would allow for <str<strong>on</strong>g>the</str<strong>on</strong>g> producti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> maps ando<str<strong>on</strong>g>the</str<strong>on</strong>g>r visuals.The project manager is also investigating opti<strong>on</strong>s for an<strong>on</strong>line database that can be accessed by our staff, communitystewards and neighbors, and our partnering agencies andorganizati<strong>on</strong>s. The project manager will also be workingwith WSDA, NOAA, and Restore America’s Estuaries todevelop a Spartina stewardship manual and a regi<strong>on</strong>alSpartina informati<strong>on</strong> and identificati<strong>on</strong> flyer.ACKNOWLEDGEMENTSNati<strong>on</strong>al Oceanic and Atmospheric Administrati<strong>on</strong>(NOAA), Restore America’s Estuaries (RAE), SkagitCounty Marine Resources Committee, Island County MarineResources Committee and Island County Noxious WeedC<strong>on</strong>trol Board have provided funding support for thisproject. I would also like to thank Kyle Murphy at WSDAfor his support and assistance in this project. Susan Hort<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Island County Noxious Weeds C<strong>on</strong>trol Program andSusan Moreno <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Swinomish Tribe Planning Departmentprovided hours <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>ir time in <str<strong>on</strong>g>the</str<strong>on</strong>g> planning and executi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> three dig events. Dot Irvin and John Custer <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> WSUExtensi<strong>on</strong> Beach Watchers Program assisted in c<strong>on</strong>tactingpotential stewards in new communities. Lastly, a verygenerous thank you to Adrianna Erics<strong>on</strong> who provided atleast 15 hours a week during <str<strong>on</strong>g>the</str<strong>on</strong>g> summer m<strong>on</strong>ths to assist infield work and steward training.- 266 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 4: Spartina C<strong>on</strong>trol and ManagementBIOLOGICAL CONTROL OF SPARTINAF. S. GREVSTAD 1 ,M.S.WECKER 1 , AND D. R. STRONG 21 Olympic Natural Resources Center, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Washingt<strong>on</strong>, P.O. Box 1628, Forks, WA 98331;grevstad@u.washingt<strong>on</strong>.edu2 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Evoloti<strong>on</strong> and Ecology, University <str<strong>on</strong>g>of</str<strong>on</strong>g> California, Davis, CA 95616Biological c<strong>on</strong>trol using introduced natural enemies can be an effective approach to <str<strong>on</strong>g>the</str<strong>on</strong>g> l<strong>on</strong>g termc<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> widespread weeds. A biological c<strong>on</strong>trol program against Spartina spp. is underway inWashingt<strong>on</strong> State, where more than 10,000 hectares (ha) <str<strong>on</strong>g>of</str<strong>on</strong>g> intertidal mudflat are affected bySpartina alterniflora and Spartina anglica. Releases <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> planthopper Prokelisia marginata havebeen made into Willapa Bay each year since 2000 and into Puget Sound since 2003. Prior tointroducing this insect, rigorous host specificity testing and a review by <str<strong>on</strong>g>the</str<strong>on</strong>g> Technical AdvisoryGroup <strong>on</strong> Biological C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Weeds c<strong>on</strong>firmed that <str<strong>on</strong>g>the</str<strong>on</strong>g> risk to n<strong>on</strong>-target plants was minute.Populati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bioc<strong>on</strong>trol agent were initially slow to establish and grow. However, earlyproblems with high winter mortality have been remedied through a combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> improved releasesite selecti<strong>on</strong> and <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> cold-hardy east coast biotypes. At least two populati<strong>on</strong>s in Willapa Bayare well established and expanding. At a localized scale, we have measured 50 percent reducti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina biomass and 90 percent reducti<strong>on</strong> in viable seed set due to P. marginata. The full extent <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> impact will <strong>on</strong>ly be known with time.While <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> biological c<strong>on</strong>trol in California may pose a risk to <str<strong>on</strong>g>the</str<strong>on</strong>g> closely related nativeSpartina foliosa, it would be an excellent opti<strong>on</strong> in o<str<strong>on</strong>g>the</str<strong>on</strong>g>r o<str<strong>on</strong>g>the</str<strong>on</strong>g>r parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world where Spartina hasinvaded and where <str<strong>on</strong>g>the</str<strong>on</strong>g>re are no closely related native Spartina species. In additi<strong>on</strong> to P. marginata,o<str<strong>on</strong>g>the</str<strong>on</strong>g>r candidate bioc<strong>on</strong>trol agents from <str<strong>on</strong>g>the</str<strong>on</strong>g> Atlantic Coast are currently being investigated.Keywords: Biological c<strong>on</strong>trol, Spartina alterniflora, Spartina anglica, Prokelisia marginata,Willapa Bay, Puget SoundINTRODUCTIONClassical biological c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> a pest or weed involves<str<strong>on</strong>g>the</str<strong>on</strong>g> introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a natural enemy (bioc<strong>on</strong>trol agent) fromano<str<strong>on</strong>g>the</str<strong>on</strong>g>r geographic regi<strong>on</strong>. The goal is to establish apermanent populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> bioc<strong>on</strong>trol agent that willprovide l<strong>on</strong>g-term c<strong>on</strong>trol. During <str<strong>on</strong>g>the</str<strong>on</strong>g> last century, close to1,000 biological c<strong>on</strong>trol introducti<strong>on</strong>s for weeds were madethroughout <str<strong>on</strong>g>the</str<strong>on</strong>g> world (Julien and Griffiths 1998). Modernweed bioc<strong>on</strong>trol projects in <str<strong>on</strong>g>the</str<strong>on</strong>g> United States proceed <strong>on</strong>lyafter extensive testing <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> natural enemy followed by areview by <str<strong>on</strong>g>the</str<strong>on</strong>g> federal Technical Advisory Group <strong>on</strong>Biological C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Weeds to ensure that it will not harmo<str<strong>on</strong>g>the</str<strong>on</strong>g>r organisms. Weed bioc<strong>on</strong>trol has proven to be a safeand <str<strong>on</strong>g>of</str<strong>on</strong>g>ten very effective method <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g term c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g>widespread invasive plants (Cruttwell-McFadyen 1998).Biological c<strong>on</strong>trol has both advantages anddisadvantages over traditi<strong>on</strong>al c<strong>on</strong>trol. Unlike most chemicaland mechanical approaches, biological c<strong>on</strong>trol is highlyspecific to <str<strong>on</strong>g>the</str<strong>on</strong>g> target weed. Since biological c<strong>on</strong>trol agentshave been chosen for <str<strong>on</strong>g>the</str<strong>on</strong>g>ir host specificity, <str<strong>on</strong>g>the</str<strong>on</strong>g>y will notharm o<str<strong>on</strong>g>the</str<strong>on</strong>g>r plant species intermixed with <str<strong>on</strong>g>the</str<strong>on</strong>g> weed.Biological c<strong>on</strong>trol is ec<strong>on</strong>omical over large areas. Onceestablished, <str<strong>on</strong>g>the</str<strong>on</strong>g> biological c<strong>on</strong>trol agent will reproduce,spread to new sites, and c<strong>on</strong>tinue to damage <str<strong>on</strong>g>the</str<strong>on</strong>g> plant withlittle or no additi<strong>on</strong>al input. Biological c<strong>on</strong>trols have notoxic residues or health hazards as do some herbicides.When it is successful, biological c<strong>on</strong>trol can provide apermanent soluti<strong>on</strong> to a weed problem, although it usuallymaintains a very low level <str<strong>on</strong>g>of</str<strong>on</strong>g> infestati<strong>on</strong> ra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than bringingabout full eradicati<strong>on</strong>.The disadvantages <str<strong>on</strong>g>of</str<strong>on</strong>g> biological c<strong>on</strong>trol include <str<strong>on</strong>g>the</str<strong>on</strong>g>large amount <str<strong>on</strong>g>of</str<strong>on</strong>g> pre-release research that is required.Moreover, even with careful selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> host-specificagents, <str<strong>on</strong>g>the</str<strong>on</strong>g>re will always be some small risk to n<strong>on</strong>-targetorganisms from ei<str<strong>on</strong>g>the</str<strong>on</strong>g>r direct or indirect interacti<strong>on</strong>s.Biological c<strong>on</strong>trol is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten slow in its acti<strong>on</strong>, taking severalyears and even up to a decade for an impact to be seen.Finally, <str<strong>on</strong>g>the</str<strong>on</strong>g> complexities <str<strong>on</strong>g>of</str<strong>on</strong>g> ecological interacti<strong>on</strong>s mean that<str<strong>on</strong>g>the</str<strong>on</strong>g> effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> biological c<strong>on</strong>trol is difficult to predictahead <str<strong>on</strong>g>of</str<strong>on</strong>g> time. The probability <str<strong>on</strong>g>of</str<strong>on</strong>g> successful c<strong>on</strong>trolincreases when multiple bioc<strong>on</strong>trol agents are used (Deno<str<strong>on</strong>g>the</str<strong>on</strong>g>t al. 2003).A biological c<strong>on</strong>trol program for Spartina alternifloraand Spartina anglica in Washingt<strong>on</strong> State was developedduring <str<strong>on</strong>g>the</str<strong>on</strong>g> late 1990s. The bioc<strong>on</strong>trol agent Prokelisiamarginata, a sapsucking planthopper, was introducedbeginning in 2000. In this paper, we provide backgroundinformati<strong>on</strong> about this biological c<strong>on</strong>trol program. Then wepresent results <str<strong>on</strong>g>of</str<strong>on</strong>g> a comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> performance <str<strong>on</strong>g>of</str<strong>on</strong>g> four- 267 -


Chapter 4: Spartina C<strong>on</strong>trol and Management<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinapopulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> P. marginata imported from differentgeographic locati<strong>on</strong>s. Finally, we present possible futuredirecti<strong>on</strong>s for <str<strong>on</strong>g>the</str<strong>on</strong>g> bioc<strong>on</strong>trol program including <str<strong>on</strong>g>the</str<strong>on</strong>g> screening<str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong>al agents from S. alterniflora’s native range.BACKGROUND ON SPARTINA BIOCONTROL INWASHINGTON STATETo date <strong>on</strong>ly <strong>on</strong>e biological c<strong>on</strong>trol agent has beenintroduced into Washingt<strong>on</strong> for c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina spp. Thedelphacid planthopper, Prokelisia marginata, wasintroduced from California into Willapa Bay beginning in2000 and into north Puget Sound in 2003. The introducti<strong>on</strong>swere made <strong>on</strong>ly after extensive testing dem<strong>on</strong>strated its highlevel <str<strong>on</strong>g>of</str<strong>on</strong>g> host specificity (Grevstad et al. 2003) and afterruling out <str<strong>on</strong>g>the</str<strong>on</strong>g> possibility that it could vector a disease (Daviset al. 2002). The project was reviewed and approved by <str<strong>on</strong>g>the</str<strong>on</strong>g>Technical Advisory Group <strong>on</strong> Biological C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Weedsand permitted by <str<strong>on</strong>g>the</str<strong>on</strong>g> Washingt<strong>on</strong> State Department <str<strong>on</strong>g>of</str<strong>on</strong>g>Agriculture and <str<strong>on</strong>g>the</str<strong>on</strong>g> U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture’sAnimal and Plant Health Inspecti<strong>on</strong> Service (USDA-APHIS).P. marginata is native to <str<strong>on</strong>g>the</str<strong>on</strong>g> Atlantic and Gulf Coasts <str<strong>on</strong>g>of</str<strong>on</strong>g>North America and also occurs in San Francisco Bay,California. Genetic analyses (R. Denno and D. Hawthorne,University <str<strong>on</strong>g>of</str<strong>on</strong>g> Maryland, pers. comm.) indicate that P.marginata was probably introduced to California from <str<strong>on</strong>g>the</str<strong>on</strong>g>East Coast in recent decades. The absence <str<strong>on</strong>g>of</str<strong>on</strong>g> Prokelisia spp.in an early 1970’s survey <str<strong>on</strong>g>of</str<strong>on</strong>g> insects <strong>on</strong> Spartina foliosa inSan Francisco Bay also supports a recent introducti<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g>West Coast (Camer<strong>on</strong> 1972). P. marginata was selected as apromising bioc<strong>on</strong>trol agent because <str<strong>on</strong>g>of</str<strong>on</strong>g> its narrow host rangeand its known potency against S. alterniflora and S. anglica(Daehler and Str<strong>on</strong>g 1997; Wu et al. 1999). P. marginataadults and nymphs feed by sucking <str<strong>on</strong>g>the</str<strong>on</strong>g> sap from <str<strong>on</strong>g>the</str<strong>on</strong>g> plant,draining its energy supply. Spartina is also damaged by <str<strong>on</strong>g>the</str<strong>on</strong>g>scars that arise <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> leaf surface where adult females inserteggs. If high enough densities <str<strong>on</strong>g>of</str<strong>on</strong>g> P. marginata are attained,feeding and ovipositi<strong>on</strong> scars cause <str<strong>on</strong>g>the</str<strong>on</strong>g> leaves to turn brownand eventually kill <str<strong>on</strong>g>the</str<strong>on</strong>g> plant.The Spartina bioc<strong>on</strong>trol program is unique in being <str<strong>on</strong>g>the</str<strong>on</strong>g>first classical bioc<strong>on</strong>trol program to target a grass, althougho<str<strong>on</strong>g>the</str<strong>on</strong>g>rs are being c<strong>on</strong>sidered (Tewksbury et al. 2002; Wittand McC<strong>on</strong>nachie 2004). It is also <str<strong>on</strong>g>the</str<strong>on</strong>g> first applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>classical weed bioc<strong>on</strong>trol in a marine intertidal envir<strong>on</strong>ment.This project differs from most classical bioc<strong>on</strong>trol projectsin that <str<strong>on</strong>g>the</str<strong>on</strong>g> targeted weed is invasive in <str<strong>on</strong>g>the</str<strong>on</strong>g> same country towhich it is native (although a different regi<strong>on</strong>). Thebioc<strong>on</strong>trol agents are likewise transferred between statesra<str<strong>on</strong>g>the</str<strong>on</strong>g>r than between countries.To <str<strong>on</strong>g>the</str<strong>on</strong>g> advantage <str<strong>on</strong>g>of</str<strong>on</strong>g> a biological c<strong>on</strong>trol program,invasive Spartina in Washingt<strong>on</strong> appears to have lostresistance to herbivory since its introducti<strong>on</strong>. In greenhouseexperiments (Daehler and Str<strong>on</strong>g 1997; Wu et al. 1999;Garcia-Rossi et al. 2003), plants from <str<strong>on</strong>g>the</str<strong>on</strong>g> invasivepopulati<strong>on</strong>s in Washingt<strong>on</strong> suffer much greater biomassreducti<strong>on</strong> and mortality from P. marginata than plants fromnative locati<strong>on</strong>s. Herbivore exclusi<strong>on</strong> and additi<strong>on</strong>experiments in <str<strong>on</strong>g>the</str<strong>on</strong>g> field also dem<strong>on</strong>strate this difference inresp<strong>on</strong>se (compare Daehler and Str<strong>on</strong>g 1996 with Grevstadet al. 2003). The vulnerability <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Washingt<strong>on</strong>populati<strong>on</strong>s may be due to an evolved loss <str<strong>on</strong>g>of</str<strong>on</strong>g> resistance in<str<strong>on</strong>g>the</str<strong>on</strong>g> absence <str<strong>on</strong>g>of</str<strong>on</strong>g> herbivores (Garcia-Rossi et al. 2003). Themechanism <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina vulnerability is unknown, but it maybe related to <str<strong>on</strong>g>the</str<strong>on</strong>g> structural breakdown <str<strong>on</strong>g>of</str<strong>on</strong>g> vascular cells as aresult <str<strong>on</strong>g>of</str<strong>on</strong>g> piercing by <str<strong>on</strong>g>the</str<strong>on</strong>g> planthopper during feeding andovipositi<strong>on</strong> (Wu et al. 1999). The possibility that <str<strong>on</strong>g>the</str<strong>on</strong>g>vulnerability is due to a disease vectored by <str<strong>on</strong>g>the</str<strong>on</strong>g> planthopperwas ruled out by Davis et al. (2002).Over <str<strong>on</strong>g>the</str<strong>on</strong>g> past few years, P. marginata has been releasedat 40 locati<strong>on</strong>s in Willapa Bay and Puget Sound. Resultshave been encouraging, but not without setbacks. Followingrelease, P. marginata populati<strong>on</strong>s typically grow explosivelyduring <str<strong>on</strong>g>the</str<strong>on</strong>g>ir first summer and cause visible damage to <str<strong>on</strong>g>the</str<strong>on</strong>g>plants by fall (Grevstad et al. 2003). Local densities in somesites have exceeded 50,000 insects per m 2 . A 50% reducti<strong>on</strong>in local biomass was measured in an early field cageexperiment (Grevstad et al. 2003). A 90% reducti<strong>on</strong> in fieldseed viability was found in localized areas where P.marginata density was greater than 30 per stem (Grevstad,unpublished data). However, low survival <str<strong>on</strong>g>of</str<strong>on</strong>g> nymphs over<str<strong>on</strong>g>the</str<strong>on</strong>g> winter has prevented <str<strong>on</strong>g>the</str<strong>on</strong>g>se populati<strong>on</strong>s from building to<str<strong>on</strong>g>the</str<strong>on</strong>g> high densities over large areas required to have largescaleimpacts <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina populati<strong>on</strong>. In spite <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>summer boom, P. marginata populati<strong>on</strong>s are typically muchsmaller <str<strong>on</strong>g>the</str<strong>on</strong>g> following spring than <str<strong>on</strong>g>the</str<strong>on</strong>g>y were at <str<strong>on</strong>g>the</str<strong>on</strong>g> time <str<strong>on</strong>g>of</str<strong>on</strong>g>release. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se populati<strong>on</strong>s eventually build updensities, but many have g<strong>on</strong>e extinct and o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs aredwindling or growing <strong>on</strong>ly slowly.Determining <str<strong>on</strong>g>the</str<strong>on</strong>g> best geographic source <str<strong>on</strong>g>of</str<strong>on</strong>g> P. marginataIn selecting a geographic source <str<strong>on</strong>g>of</str<strong>on</strong>g> a bioc<strong>on</strong>trol agent, itis important to c<strong>on</strong>sider <str<strong>on</strong>g>the</str<strong>on</strong>g> ways that herbivore populati<strong>on</strong>smay be locally adapted. Classical biological c<strong>on</strong>trolprograms <str<strong>on</strong>g>of</str<strong>on</strong>g>ten seek an agent source populati<strong>on</strong> from alocati<strong>on</strong> that has a climate similar to <str<strong>on</strong>g>the</str<strong>on</strong>g> regi<strong>on</strong> where it willbe introduced. However, in <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartinabioc<strong>on</strong>trol program, a close match to <str<strong>on</strong>g>the</str<strong>on</strong>g> Willapa Bayclimate does not exist. The San Francisco Bay area has asimilarly moderate climate but temperatures areapproximately 5ºC warmer at all times <str<strong>on</strong>g>of</str<strong>on</strong>g> year. East Coastlocati<strong>on</strong>s have more extreme seas<strong>on</strong>ality and no locati<strong>on</strong> canmatch both winter and summer temperatures. A nor<str<strong>on</strong>g>the</str<strong>on</strong>g>asternlocati<strong>on</strong> such as Rhode Island has <str<strong>on</strong>g>the</str<strong>on</strong>g> best match during <str<strong>on</strong>g>the</str<strong>on</strong>g>summer m<strong>on</strong>ths, but a mid-Atlantic locati<strong>on</strong>, such asVirginia, has <str<strong>on</strong>g>the</str<strong>on</strong>g> best match during <str<strong>on</strong>g>the</str<strong>on</strong>g> winter.- 268 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 4: Spartina C<strong>on</strong>trol and ManagementIn additi<strong>on</strong> to climate and host plant adaptati<strong>on</strong>s,seas<strong>on</strong>al adaptati<strong>on</strong>s affecting <str<strong>on</strong>g>the</str<strong>on</strong>g> phenology <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>bioc<strong>on</strong>trol agent are also likely to vary am<strong>on</strong>g potentialagent source populati<strong>on</strong>s. Many insects use photoperiod as acue for synchr<strong>on</strong>izing life history events with seas<strong>on</strong>alchange in envir<strong>on</strong>mental c<strong>on</strong>diti<strong>on</strong>s. When an insect ismoved from <strong>on</strong>e geographic locati<strong>on</strong> to ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r, itsphenology may not be synchr<strong>on</strong>ized to <str<strong>on</strong>g>the</str<strong>on</strong>g> new seas<strong>on</strong>alschedule. In Willapa Bay, <str<strong>on</strong>g>the</str<strong>on</strong>g> California populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> P.marginata has been observed to emerge in late February, atime that may be too early for nymph survival in <str<strong>on</strong>g>the</str<strong>on</strong>g> coolerand l<strong>on</strong>ger winters <str<strong>on</strong>g>of</str<strong>on</strong>g> coastal Washingt<strong>on</strong>. Based <strong>on</strong> a match<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> timing <str<strong>on</strong>g>of</str<strong>on</strong>g> arrival <str<strong>on</strong>g>of</str<strong>on</strong>g> warm temperatures, a RhodeIsland source may be <str<strong>on</strong>g>the</str<strong>on</strong>g> best match. However, <str<strong>on</strong>g>the</str<strong>on</strong>g>possibility that late emergence could reduce <str<strong>on</strong>g>the</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g>generati<strong>on</strong>s produced each year makes this outcomeuncertain.Ano<str<strong>on</strong>g>the</str<strong>on</strong>g>r c<strong>on</strong>siderati<strong>on</strong> in choosing a source is potentialvariati<strong>on</strong> in ability to compensate for plant defenses. Apopulati<strong>on</strong> from a locati<strong>on</strong> far<str<strong>on</strong>g>the</str<strong>on</strong>g>r south, such as Georgia,while poorly adapted climatically, could be better adaptedfor overcoming plant defenses to herbivory, which areknown to be greater in sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rn Spartina plants (seePennings et al. 2005 and Katz et al. 2005 in <str<strong>on</strong>g>the</str<strong>on</strong>g>seproceedings). A “new associati<strong>on</strong>” between a sou<str<strong>on</strong>g>the</str<strong>on</strong>g>rnherbivore and nor<str<strong>on</strong>g>the</str<strong>on</strong>g>rn plant could make bioc<strong>on</strong>trol moreeffective.In <str<strong>on</strong>g>the</str<strong>on</strong>g> spring <str<strong>on</strong>g>of</str<strong>on</strong>g> 2004, after obtaining permits fromUSDA-APHIS and <str<strong>on</strong>g>the</str<strong>on</strong>g> Washingt<strong>on</strong> State Department <str<strong>on</strong>g>of</str<strong>on</strong>g>Agriculture, four populati<strong>on</strong>s P. marginata were introducedinto Willapa Bay. The source populati<strong>on</strong>s were (1) Sausalito,San Francisco Bay, California, (2) Grayville, Rhode Island,(3) Quinby, Virginia, and (4) Jekyll Island, Georgia. Allpopulati<strong>on</strong>s passed through a period <str<strong>on</strong>g>of</str<strong>on</strong>g> quarantine in alaboratory in Davis, California before being imported intoWashingt<strong>on</strong> for rearing in a greenhouse.At each <str<strong>on</strong>g>of</str<strong>on</strong>g> five sites in Willapa Bay, we set up four 4x4-meter (m) release plots located at similar tidal elevati<strong>on</strong>swithin <str<strong>on</strong>g>the</str<strong>on</strong>g> same Spartina meadow, but separated by at least100 m. Each plot was randomly assigned <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> foursource populati<strong>on</strong>s. Five thousand insects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> assignedpopulati<strong>on</strong> were released into each plot by placing heavilyinfested Spartina stems clipped from five rearing plantsuniformly throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> plot. A 100 m distance betweenrelease plots ensures that populati<strong>on</strong>s will remain separatel<strong>on</strong>g enough to compare <str<strong>on</strong>g>the</str<strong>on</strong>g>ir phenology and performance.P. marginata were sampled in late September using aninsect vacuum c<strong>on</strong>verted from a leaf blower. Eightuniformly spaced sample points 21-cm in diameter(corresp<strong>on</strong>ding to <str<strong>on</strong>g>the</str<strong>on</strong>g> vacuum tube’s diameter) within eachrelease area were vacuumed. Adults and nymphs werecounted separately and adults were scored for wing form;P. marginata per m 2Proporti<strong>on</strong> in adult stagePercent macropterous18000160001400012000100000.300.250.200.150.100.050.0080006000400020001008060402000ABGA VA CA RISource <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong>GA VA CA RICSource <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong>GA VA CA RISource <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong>Fig. 1. (A) Densities <str<strong>on</strong>g>of</str<strong>on</strong>g> Prokelisia marginata measured at <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> Septemberfollowing introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 5,000 individuals from each <str<strong>on</strong>g>of</str<strong>on</strong>g> four geographicsources. (B) The proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each source populati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> adult stage at <str<strong>on</strong>g>the</str<strong>on</strong>g>end <str<strong>on</strong>g>of</str<strong>on</strong>g> September. (C) The percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> adults in each populati<strong>on</strong> that weremacropterous (l<strong>on</strong>g-winged). Each bar represents <str<strong>on</strong>g>the</str<strong>on</strong>g> mean and standard errorfor five replicate populati<strong>on</strong>s from each source.- 269 -


Chapter 4: Spartina C<strong>on</strong>trol and Management<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinaei<str<strong>on</strong>g>the</str<strong>on</strong>g>r brachypterous (rudimentary or abnormally small) ormacropterous (l<strong>on</strong>g or large).We found striking differences am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> fourpopulati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> densities attained by <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g> summer(Fig. 1A; ANOVA F=9.227, P=0.002). The best performinggeographic source, in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> densities <str<strong>on</strong>g>of</str<strong>on</strong>g> P. marginataobtained by end <str<strong>on</strong>g>of</str<strong>on</strong>g> summer, was Rhode Island, which is also<str<strong>on</strong>g>the</str<strong>on</strong>g> locati<strong>on</strong> with <str<strong>on</strong>g>the</str<strong>on</strong>g> best summer temperature match toWillapa Bay. In post-hoc tests, Rhode Island populati<strong>on</strong>ssignificantly differed from Georgia and Virginia, but did notsignificantly differ from California. California did notsignificantly differ from Georgia and Virginia.The populati<strong>on</strong>s also differed in <str<strong>on</strong>g>the</str<strong>on</strong>g> proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>populati<strong>on</strong> that was in <str<strong>on</strong>g>the</str<strong>on</strong>g> adult stage at <str<strong>on</strong>g>the</str<strong>on</strong>g> end <str<strong>on</strong>g>of</str<strong>on</strong>g>September (Fig. 1B; ANOVA F=3.637, P=0.030). Californiapopulati<strong>on</strong>s had four to five times <str<strong>on</strong>g>the</str<strong>on</strong>g> proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> adultsfound in <str<strong>on</strong>g>the</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r populati<strong>on</strong>s. This may indicate differencesin phenology although fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r data is needed.Finally, we found differences am<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> fourpopulati<strong>on</strong>s in <str<strong>on</strong>g>the</str<strong>on</strong>g> proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> individuals that weremacropterous (Fig. 4C; ANOVA F=8.71, P


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 4: Spartina C<strong>on</strong>trol and Managementlarvae <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se flies develop inside young S. alterniflorashoots, feeding <strong>on</strong> meristem tissue and developing leaves.The result is death <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> shoot tip and no flower producti<strong>on</strong>in nearly 100% <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> stems that are infested. Both speciesoccur from Florida to Maine. The potency <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se flies liesin <str<strong>on</strong>g>the</str<strong>on</strong>g> fact that a single larva can kill a shoot. Bycomparis<strong>on</strong>, it takes approximately 200 planthoppers to killa shoot (Daehler and Str<strong>on</strong>g 1997). In our surveys, we foundseveral sites where <str<strong>on</strong>g>the</str<strong>on</strong>g> rate <str<strong>on</strong>g>of</str<strong>on</strong>g> shoot death due to this insectwas greater than 50%.O<str<strong>on</strong>g>the</str<strong>on</strong>g>r promising candidates include <str<strong>on</strong>g>the</str<strong>on</strong>g> sapsuckinginsects, Trig<strong>on</strong>otylus uhleri, Haliaspis spartinae, andProkelisia dolas. All three <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>se species have <str<strong>on</strong>g>the</str<strong>on</strong>g>advantage that <str<strong>on</strong>g>the</str<strong>on</strong>g>y already occur in California, where <str<strong>on</strong>g>the</str<strong>on</strong>g>native Spartina foliosa occurs. Thus, introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>seinsects to Washingt<strong>on</strong> does not pose a risk to S. foliosa if<str<strong>on</strong>g>the</str<strong>on</strong>g>y were to disperse from Washingt<strong>on</strong> to California. T.uhleri is a mirid bug that feeds primarily <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> tips <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>leaves. H. spartinae is a scale insect that occurs in lowdensities <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Atlantic Coast but can be found at very highdensities in San Francisco Bay. P. dolas is a close relative <str<strong>on</strong>g>of</str<strong>on</strong>g>our current bioc<strong>on</strong>trol agent. P. dolas has been shown to bemore tolerant <str<strong>on</strong>g>of</str<strong>on</strong>g> low host quality than P. marginata (Dennoet al. 2000), which suggests that it could be a potentbioc<strong>on</strong>trol agent. However, this species has been shown tooutcompete P. marginata (Denno et al. 2000). This could bedetrimental to <str<strong>on</strong>g>the</str<strong>on</strong>g> overall bioc<strong>on</strong>trol program because unlikeP. marginata, P. dolas is unable to exploit <str<strong>on</strong>g>the</str<strong>on</strong>g> majority <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina occuring in mid to lower tidal elevati<strong>on</strong>s.UPDATE ON BIOCONTROL PROGRAMMuch has happened with regard to c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartinain Willapa Bay and Puget Sound since this report was originallyprepared in 2004. In particular, <str<strong>on</strong>g>the</str<strong>on</strong>g> state and federalagencies involved in <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>trol program increased capacityand improved <str<strong>on</strong>g>the</str<strong>on</strong>g> effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> herbicide c<strong>on</strong>trol treatmentsand eventually sprayed all Spartina-infested areas inWashingt<strong>on</strong> including bioc<strong>on</strong>trol sites in an effort to eradicate<str<strong>on</strong>g>the</str<strong>on</strong>g> plant. As <str<strong>on</strong>g>of</str<strong>on</strong>g> 2007, prior to herbicide treatment <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> last remaining bioc<strong>on</strong>trol site, <str<strong>on</strong>g>the</str<strong>on</strong>g> P. marginata populati<strong>on</strong>was increasing and spreading in <str<strong>on</strong>g>the</str<strong>on</strong>g> north end <str<strong>on</strong>g>of</str<strong>on</strong>g> WillapaBay with measured densities <str<strong>on</strong>g>of</str<strong>on</strong>g> more than 10,000 perm 2 , sufficient to cause browning <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> plants over a twoacrearea. The full impact <str<strong>on</strong>g>of</str<strong>on</strong>g> biological c<strong>on</strong>trol may never beknown. If P. marginata is capable <str<strong>on</strong>g>of</str<strong>on</strong>g> persisting <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> sparseshoots that remain, it may help suppress any reinvasi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Spartina if traditi<strong>on</strong>al c<strong>on</strong>trol methods are disc<strong>on</strong>tinued.CONCLUSIONSThe biological c<strong>on</strong>trol agent, Prokelisia marginata, hasa dem<strong>on</strong>strated capacity for reducing Spartina biomass andseed set in Washingt<strong>on</strong>. In <str<strong>on</strong>g>the</str<strong>on</strong>g> first few years <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>bioc<strong>on</strong>trol program, poor overwintering survival <str<strong>on</strong>g>of</str<strong>on</strong>g> nymphskept populati<strong>on</strong>s from growing from year to year. With <str<strong>on</strong>g>the</str<strong>on</strong>g>introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> P. marginata ecotypes from <str<strong>on</strong>g>the</str<strong>on</strong>g> East Coast,we are c<strong>on</strong>fident that we have provided <str<strong>on</strong>g>the</str<strong>on</strong>g> best opportunityfor P. marginata to be successful. P. marginata from RhodeIsland outperformed P. marginata from o<str<strong>on</strong>g>the</str<strong>on</strong>g>r locati<strong>on</strong>s in<str<strong>on</strong>g>the</str<strong>on</strong>g> first summer after release. Impacts to Spartina in <str<strong>on</strong>g>the</str<strong>on</strong>g> lab(Daehler and Str<strong>on</strong>g 1997) and in field cages (Grevstad et al.2003) have been clearly dem<strong>on</strong>strated. Impacts <strong>on</strong> a muchlarger scale were beginning to be seen in 2007 prior toherbicide treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> bioc<strong>on</strong>tol sites.The success <str<strong>on</strong>g>of</str<strong>on</strong>g> a biological c<strong>on</strong>trol program for Spartinacould be fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r improved with <str<strong>on</strong>g>the</str<strong>on</strong>g> screening andintroducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> additi<strong>on</strong>al bioc<strong>on</strong>trol agents. Severalpromising candidate agents have been selected from adiverse community <str<strong>on</strong>g>of</str<strong>on</strong>g> insects and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r organisms that use S.alterniflora as a host in <str<strong>on</strong>g>the</str<strong>on</strong>g>ir native range. Biological c<strong>on</strong>trolcould be a valuable tool in o<str<strong>on</strong>g>the</str<strong>on</strong>g>r parts <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> world whereSpartina has invaded, especially where complete eradicati<strong>on</strong>is too expensive or not feasible. Even where traditi<strong>on</strong>alc<strong>on</strong>trol programs are underway, biological c<strong>on</strong>trol canc<strong>on</strong>tribute to Spartina reducti<strong>on</strong> in an integrated weedmanagement approach, or it can serve as a backup in <str<strong>on</strong>g>the</str<strong>on</strong>g>case that complete eradicati<strong>on</strong> is not achieved.Unfortunately, San Francisco Bay is not a good targetlocati<strong>on</strong> for biological c<strong>on</strong>trol because <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> risk to <str<strong>on</strong>g>the</str<strong>on</strong>g>native S. foliosa. However, it would be an excellent opti<strong>on</strong> inChina, New Zealand, and Australia where <str<strong>on</strong>g>the</str<strong>on</strong>g>re are no nativeSpartina species.ACKNOWLDEGMENTSWe would like to acknowledge <str<strong>on</strong>g>the</str<strong>on</strong>g> following agenciesand sp<strong>on</strong>sors who have made <str<strong>on</strong>g>the</str<strong>on</strong>g> Spartina bioc<strong>on</strong>trolprogram possible: Nati<strong>on</strong>al Sea Grant Program, U.S. Fishand Wildlife Service, U.S. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Fish and Wildlife,Coastal Resource Alliance, Washingt<strong>on</strong> State Department <str<strong>on</strong>g>of</str<strong>on</strong>g>Agriculture, Washingt<strong>on</strong> State Department <str<strong>on</strong>g>of</str<strong>on</strong>g> NaturalResources, and <str<strong>on</strong>g>the</str<strong>on</strong>g> Willapa Nati<strong>on</strong>al Wildlife Refuge. Wewould also like to thank <str<strong>on</strong>g>the</str<strong>on</strong>g> following individuals who havec<strong>on</strong>tributed to <str<strong>on</strong>g>the</str<strong>on</strong>g> program in a wide variety <str<strong>on</strong>g>of</str<strong>on</strong>g> ways: BobDenno, Dino Garcia-Rossi, Robin Switzer, Carol O’Casey,Deanna McQuarrie, Hea<str<strong>on</strong>g>the</str<strong>on</strong>g>r Davis, Allis<strong>on</strong> Fisher, KimPatten, Kathleen Sayce, Janie Civille, Todd Brownlee,Wendy Brown, Charlie Stenvall, Teri Butler, Dave Heimer,Kyle Murphy, Sue Moreno, Dick Casagrande, David Viola,and Lisa Tewksbury.REFERENCESCruttwell-McFayden, R.E. 1998. Biological c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> weeds. AnnualReview <str<strong>on</strong>g>of</str<strong>on</strong>g> Entomology 43:369-393.Davis, L.V. and I.E. Gray. 1966. Z<strong>on</strong>al and seas<strong>on</strong>al distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>insects in North Carolina salt marshes. Ecological M<strong>on</strong>ographs36:275-295.Davis, H.G., D.R. Str<strong>on</strong>g and D. Garcia-Rossi. 2002. The use <str<strong>on</strong>g>of</str<strong>on</strong>g>molecular assays to identify plant pathogenic organisms vectoredby biological c<strong>on</strong>trol agents. BioC<strong>on</strong>trol 47: 487-497.- 271 -


Chapter 4: Spartina C<strong>on</strong>trol and Management<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaDaehler, C.C. and D.R. Str<strong>on</strong>g. 1995. Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> high herbivoredensities <strong>on</strong> introduced smooth cordgrass, Spartina alterniflora,invading San Francisco Bay, California. Estuaries 18:409-417.Daehler, C.C. and D.R. Str<strong>on</strong>g. 1997. Reduced herbivore resistancein introduced smooth cordgrass (S. alterniflora) after a century <str<strong>on</strong>g>of</str<strong>on</strong>g>herbivore-free growth. Oecologia 110:99-108.Denno, R.F. 1977. Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> assemblages <str<strong>on</strong>g>of</str<strong>on</strong>g> sap-feedinginsects (Homoptera-Hemiptera) inhabiting two structurally differentsalt marsh grasses in <str<strong>on</strong>g>the</str<strong>on</strong>g> genus Spartina. Envir<strong>on</strong>mentalEntomology 6:359-372.Denno, R.F., L.W. Douglass, and D. Jacobs. 1985. Crowding andhost plant nutriti<strong>on</strong>, envir<strong>on</strong>mental determinants <str<strong>on</strong>g>of</str<strong>on</strong>g> wing-form inProkelisia marginata. Ecology 66:1588-1596.Denno, R.F., M.A. Peters<strong>on</strong>, C. Gratt<strong>on</strong>, J. Cheng, G.A. Langellotto,A.F. Huberty, and D.L. Finke. 2000. Feeding-inducedchanges in plant quality mediate interspecific competiti<strong>on</strong> betweensap-feeding herbivores. Ecology 81:1814-1827.Denoth, M., L. Frid, and J.H. Myers. 2002. Multiple agents in biologicalc<strong>on</strong>trol: improving <str<strong>on</strong>g>the</str<strong>on</strong>g> odds? Biological C<strong>on</strong>trol24:20-30.Garcia-Rossi, D., N. Rank, and D.R. Str<strong>on</strong>g. Potential for selfdefeatingbioc<strong>on</strong>trol? variati<strong>on</strong> in herbivore vulnerability am<strong>on</strong>ginvasive Spartina genotypes. Ecological Applicati<strong>on</strong>s 13:1640-1649.Grevstad, F.S., D.R. Str<strong>on</strong>g, D. Garcia-Rossi, R.W. Switzer, andM.S. Wecker. 2003. Biological c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflora inWillapa Bay, Washingt<strong>on</strong> using <str<strong>on</strong>g>the</str<strong>on</strong>g> planthopper Prokelisia marginata:agent specificity and early results. Biological C<strong>on</strong>trol27:32-42.Grevstad, F.S., M.S. Wecker, and R.W. Switzer. 2004 Habitattrade<str<strong>on</strong>g>of</str<strong>on</strong>g>fs in <str<strong>on</strong>g>the</str<strong>on</strong>g> summer and winter performance <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> planthopperProkelisia marginata introduced against <str<strong>on</strong>g>the</str<strong>on</strong>g> intertidal grassSpartina alterniflora in Willapa Bay, WA. In: J. Cullen, ed. <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g><str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> XI <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> Symposium <strong>on</strong> Biological C<strong>on</strong>trol<str<strong>on</strong>g>of</str<strong>on</strong>g> Weeds, April 27 – May 3, 2003. CSIRO, Canberra, Australia.Harris, P. 1981. Stress as a strategy in <str<strong>on</strong>g>the</str<strong>on</strong>g> biological c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g>weeds. In: Papavisa, G.C., ed. Biological C<strong>on</strong>trol in Crop Producti<strong>on</strong>,Beltsville Agricultural Research Center (BARC). Allanhead,Osman and Co., Totowa, New Jersey, pp. 333-340.McCoy, E.D. and J.R. Rey. 1981. Terrestrial arthropods <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>northwest Florida salt marshes: Coleoptera. Florida Entomologist64(2):405-411.M<strong>on</strong>tague, C.L., S.M. Bunker, E.B. Haines, M.L. Pace, and R.L.Wetzel. 1981. Aquatic Macroc<strong>on</strong>sumers. In: Pomeroy, L.R. andR.G. Wiegert, eds. The ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> a saltmarsh. Springer-Verlag,New York, pp. 69-85.Myers, J.H. 1985. How many insects are necessary for successfulbioc<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> weeds? In: Delfosse, E.S., ed. <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>VI <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> Symposium <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> Biological C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Weeds.Vancouver, Canada, pp. 19-25.Newt<strong>on</strong>, N.H. 1984. Stem-Boring Insect Larvae <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alternifloraLoisel. (Poaceae): Distributi<strong>on</strong>, Biology and Influence<strong>on</strong> Seed Producti<strong>on</strong>. Ph.D. Dissertati<strong>on</strong>, North Carolina StateUniversity, Raleigh.Nowierski, R.M., Z. Zeng, D. Schroeder, A. Gassmann, B.C. Fitzgerald,and M. Crist<str<strong>on</strong>g>of</str<strong>on</strong>g>aro. 2002. Habitat associati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Euphorbiaand Aphth<strong>on</strong>a species from Europe: Development <str<strong>on</strong>g>of</str<strong>on</strong>g> predictivemodels for natural enemy release with ordinati<strong>on</strong> analysis.Biological C<strong>on</strong>trol 23:1-17.Pembert<strong>on</strong>, R.W. 2000. Predictable risk to native plants in weedbiological c<strong>on</strong>trol. Oecologia 125: 489-494.Pringle, A.W. 1993. Spartina anglica col<strong>on</strong>izati<strong>on</strong> and physicaleffects in <str<strong>on</strong>g>the</str<strong>on</strong>g> Tamar Estuary, Tasmania 1971-91. Papers and<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> Royal Society <str<strong>on</strong>g>of</str<strong>on</strong>g> Tasmania 127:1-10Stiling, P.D. and D.R. Str<strong>on</strong>g. 1983. Weak competiti<strong>on</strong> am<strong>on</strong>g stemborers, by means <str<strong>on</strong>g>of</str<strong>on</strong>g> murder. Ecology 64:770-778.Tauber, M.J., C. A. Tauber, and S. Masaki. 1986. Seas<strong>on</strong>al Adaptati<strong>on</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g> Insects. Oxford University Press.Tewksbury, L., R. Casagrande, B. Blossey, P. Häfliger, and M.Schwärzlander. 2002. Potential for biological c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Phragmitesaustralis in North America. Biological C<strong>on</strong>trol 23:191-212.Vince, S.W., I. Valiela, and J.M. Teal. 1981. An experimentalstudy <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> herbivorous insect communities in a saltmarsh. Ecology 62:1662-1678.Witt, A.B.R. and A.J. McC<strong>on</strong>nachie. 2004. The potential for classicalbiological c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> invasive grass species with special referenceto invasive Sporobolus spp. (Poaceae) in Australia. In:Cullen, J. ed. <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> XI <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> Symposium <strong>on</strong>Biological C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Weeds. April 27 – May 3, 2003. CSIRO,Canberra, Australia.Wu, M., S. Hacker, D. Ayres, and D.R. Str<strong>on</strong>g. 1999. Potential <str<strong>on</strong>g>of</str<strong>on</strong>g>Prokelisia spp. as Biological C<strong>on</strong>trol Agents <str<strong>on</strong>g>of</str<strong>on</strong>g> EnglishCordgrass, Spartina anglica. Biological C<strong>on</strong>trol 16(3):267-273.- 272 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 4: Spartina C<strong>on</strong>trol and ManagementECOLOGICAL INVESTIGATIONS OF NATURAL ENEMIES FOR AN INTERSTATE BIOLOGICALCONTROL PROGRAM AGAINST SPARTINA GRASSESD. VIOLA 1,2 ,L.TEWKSBURY 1 AND R. CASAGRANDE 11Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Plant Sciences, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Rhode Island, Kingst<strong>on</strong>, RI 028812dviola@myrealbox.comSpartina alterniflora (smooth cordgrass) is a dominant member <str<strong>on</strong>g>of</str<strong>on</strong>g> salt marsh communities in itsnative range al<strong>on</strong>g <str<strong>on</strong>g>the</str<strong>on</strong>g> East Coast <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> United States as well as an introduced invasive in severalWest Coast intertidal areas. In 2000, a biological c<strong>on</strong>trol agent, Prokelisia marginata, was releasedin Willapa Bay, Washingt<strong>on</strong>, USA where S. alterniflora was rapidly spreading. Despiteestablishment <str<strong>on</strong>g>of</str<strong>on</strong>g> this agent, <str<strong>on</strong>g>the</str<strong>on</strong>g> invasive populati<strong>on</strong> was not brought under c<strong>on</strong>trol. Although <str<strong>on</strong>g>the</str<strong>on</strong>g>natural enemies <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora have been previously catalogued, little has been written regarding<str<strong>on</strong>g>the</str<strong>on</strong>g>ir ecology, with <str<strong>on</strong>g>the</str<strong>on</strong>g> excepti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> P. marginata. The purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> this study was to provideadditi<strong>on</strong>al informati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> insect herbivores <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora in Rhode Island insupport <str<strong>on</strong>g>of</str<strong>on</strong>g> a larger effort to develop biological c<strong>on</strong>trol agents for <str<strong>on</strong>g>the</str<strong>on</strong>g> West Coast.An intensive survey <str<strong>on</strong>g>of</str<strong>on</strong>g> insect species found <strong>on</strong> S. alterniflora in Rhode Island was c<strong>on</strong>ducted todescribe <str<strong>on</strong>g>the</str<strong>on</strong>g> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> insect herbivore community. Vacuum samples taken at both highand low marsh locati<strong>on</strong>s facilitated <str<strong>on</strong>g>the</str<strong>on</strong>g> characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> species assemblages. Our results suggestthat <str<strong>on</strong>g>the</str<strong>on</strong>g>re is little variati<strong>on</strong> in insect herbivore species richness am<strong>on</strong>g Rhode Island salt marshes.Damage due to Chaetopsis spp. is easily observed in <str<strong>on</strong>g>the</str<strong>on</strong>g> field, but <str<strong>on</strong>g>the</str<strong>on</strong>g> frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> damaged stemsvaries greatly am<strong>on</strong>g sites. Additi<strong>on</strong>al research is needed to determine <str<strong>on</strong>g>the</str<strong>on</strong>g> factors resp<strong>on</strong>sible forthis variati<strong>on</strong>.Keywords: Spartina alterniflora, Chaetopsis, biological c<strong>on</strong>trol, natural enemies, invasive speciesINTRODUCTIONSpartina grasses have become serious invasive pests inWest Coast intertidal regi<strong>on</strong>s since <str<strong>on</strong>g>the</str<strong>on</strong>g>ir introducti<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g>late 1800s. Many Pacific intertidal areas are predominantlyexposed mudflats at low tide, and Spartina is rapidlycol<strong>on</strong>izing <str<strong>on</strong>g>the</str<strong>on</strong>g>se areas. Its effects range from <str<strong>on</strong>g>the</str<strong>on</strong>g> reducti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> valuable feeding habitat for migratory shorebirds to <str<strong>on</strong>g>the</str<strong>on</strong>g>possible collapse <str<strong>on</strong>g>of</str<strong>on</strong>g> some areas’ shellfishing industries.Traditi<strong>on</strong>al c<strong>on</strong>trol methods such as mowing, tilling, andherbicide applicati<strong>on</strong> were not yet effective or ec<strong>on</strong>omical at<str<strong>on</strong>g>the</str<strong>on</strong>g> writing <str<strong>on</strong>g>of</str<strong>on</strong>g> this article, and a l<strong>on</strong>g-term soluti<strong>on</strong> was stillbeing sought. In 2000, a biological c<strong>on</strong>trol agent, <str<strong>on</strong>g>the</str<strong>on</strong>g>planthopper Prokelisia marginata Van Duzee (Homoptera:Delphacidae), was released in Willapa Bay, Washingt<strong>on</strong>, toc<strong>on</strong>trol Spartina alterniflora Loisel. (Grevstad et al. 2003),but <str<strong>on</strong>g>the</str<strong>on</strong>g> invasive populati<strong>on</strong> was not brought under c<strong>on</strong>troldespite establishment <str<strong>on</strong>g>of</str<strong>on</strong>g> this c<strong>on</strong>trol agent.Past studies documenting <str<strong>on</strong>g>the</str<strong>on</strong>g> insect fauna in Spartinamarshes (Davis and Gray 1966; Denno 1977; Vince et al.1981; Newt<strong>on</strong> 1984) have dem<strong>on</strong>strated <str<strong>on</strong>g>the</str<strong>on</strong>g> diversity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>associated insect communities, but relatively few havefocused <strong>on</strong> New England marshes. The purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> this studywas to ga<str<strong>on</strong>g>the</str<strong>on</strong>g>r informati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> ecology <str<strong>on</strong>g>of</str<strong>on</strong>g> insec<str<strong>on</strong>g>the</str<strong>on</strong>g>rbivores <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora in Rhode Island in support <str<strong>on</strong>g>of</str<strong>on</strong>g> alarger effort to develop biological c<strong>on</strong>trol agents for releasein Willapa Bay.METHODSThirteen Rhode Island salt marshes (Fig. 1) wereFig. 1: Vacuum samples were collected at sites marked with a circle.Vacuum and stem samples were collected at sites marked with a star.- 273 -


Chapter 4: Spartina C<strong>on</strong>trol and Management<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaTable 1: Vacuum Survey Results: Number <str<strong>on</strong>g>of</str<strong>on</strong>g> salt marshes, <str<strong>on</strong>g>of</str<strong>on</strong>g> 13 sampled,inhabited by known Spartina herbivores by z<strong>on</strong>e. Feeding Guilds: (LC)Leaf-chewer; (SS) Sap-sucker; (SB) Stem-borer.SpeciesFeedingGuildLowMarshZ<strong>on</strong>eHighMarshOrchelimum spp. LC 2 5Prokelisia dolus SS 3 13Prokelisia marginata SS 10 10Trig<strong>on</strong>otylus uhleri SS 11 10Chaetopsis aenea SB 11 11Chaetopsis apicalis SB 12 10sampled <strong>on</strong>ce from mid July to late September using aHomelite ® gas-powered leaf blower/vacuum with a finemesh net fitted inside <str<strong>on</strong>g>the</str<strong>on</strong>g> intake tube. Samples were taken bywalking al<strong>on</strong>g transects (approximately 30 meters (m) atboth low and high marsh elevati<strong>on</strong>s) and sweeping <str<strong>on</strong>g>the</str<strong>on</strong>g>vacuum over S. alterniflora plants from base to tip. Sampleswere frozen prior to being sorted. Specimens <str<strong>on</strong>g>of</str<strong>on</strong>g> interest were<str<strong>on</strong>g>the</str<strong>on</strong>g>n mounted and identified.At a subset <str<strong>on</strong>g>of</str<strong>on</strong>g> five marshes, <str<strong>on</strong>g>the</str<strong>on</strong>g> frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> damagedue to specific species or feeding guild was measured. Thetotal number <str<strong>on</strong>g>of</str<strong>on</strong>g> stems in a square meter quadrat was countedinitially. Fifty stems chosen at random were harvested aswell as every stem showing apical leaf damage. Fourreplicates were sampled at each site. Stem height anddiameter were recorded before <str<strong>on</strong>g>the</str<strong>on</strong>g> stem was scored forexternal feeding damage and <str<strong>on</strong>g>the</str<strong>on</strong>g>n dissected for stem-boringlarvae. Data were analyzed using Micros<str<strong>on</strong>g>of</str<strong>on</strong>g>t Excel andAnalyse-it ® supplementary s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware.RESULTSSpecimens collected in vacuum samples representedfour genera <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina herbivores in three feeding guilds(Table 1; Fig. 2). Of <str<strong>on</strong>g>the</str<strong>on</strong>g> three guilds, sap-sucking and stemboringspecies were collected at all but a few sites, while <str<strong>on</strong>g>the</str<strong>on</strong>g>sole leaf-chewing genus, Orchelimum Serville (Orthoptera:Tettig<strong>on</strong>iidae), was recovered rarely. Prokelisia dolusWils<strong>on</strong> was also anomalous in that it was found much morefrequently at high marsh than at low marsh. Additi<strong>on</strong>alspecies observed during stem dissecti<strong>on</strong>s were not recoveredat all in vacuum samples.Harvested stem analysis revealed disparities in <str<strong>on</strong>g>the</str<strong>on</strong>g>infestati<strong>on</strong> rates across species or feeding guild (Fig. 3).Number <str<strong>on</strong>g>of</str<strong>on</strong>g> Species8765432Leaf-chewerStem-borerSap-sucker10FoglandEmilie RueckerTouissetNagP<strong>on</strong>dMarsh MeadowsSheffield CoveFox HillRome PointNarrow RiverGalileeSuccotashWest BeachLathropFig. 2: Compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflora herbivore feeding guilds based <strong>on</strong> vacuum samples collected at thirteen marshes.- 274 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 4: Spartina C<strong>on</strong>trol and ManagementInfestati<strong>on</strong> Rate ± SE1.0000.8000.6000.4000.200Emilie RueckerFox HillGreenwich CoveSuccotashTouisset0.000ChaetopsisLanguria taedataCalamomyia alternifloraeHaliaspisProkelisia / Trig<strong>on</strong>otylusOrchelimumFig. 3: Infestati<strong>on</strong> rates <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina herbivores at five marshes. Feeding damage caused by Prokelisia spp. and that caused byTrig<strong>on</strong>otylus uhleri were not distinguishable.There were significant differences am<strong>on</strong>g sites in <str<strong>on</strong>g>the</str<strong>on</strong>g> rates <str<strong>on</strong>g>of</str<strong>on</strong>g>infestati<strong>on</strong> by Chaetopsis spp. Loew (Diptera: Otitidae) (p =0.0007), Languria taedata LeC<strong>on</strong>te (Coleoptera:Languriidae) (p = 0.0025), Calamomyia alterniflorae Gagne(Diptera: Cecidomyiidae) (p < 0.0001), Haliaspis spp.Takagi (Homoptera: Diaspididae) (p < 0.05), and <str<strong>on</strong>g>of</str<strong>on</strong>g> leafchewingdamage (p < 0.0001). Infestati<strong>on</strong> by Chaetopsisspp. was associated with an average stem height reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>24.8%, although <str<strong>on</strong>g>the</str<strong>on</strong>g>se results were not significant.DISCUSSIONThe results <str<strong>on</strong>g>of</str<strong>on</strong>g> vacuum sampling suggest that <str<strong>on</strong>g>the</str<strong>on</strong>g>re islittle variati<strong>on</strong> in S. alterniflora herbivore communitycompositi<strong>on</strong> am<strong>on</strong>g Rhode Island marshes. The apparentrarity <str<strong>on</strong>g>of</str<strong>on</strong>g> Orchelimum spp. and <str<strong>on</strong>g>the</str<strong>on</strong>g> absence <str<strong>on</strong>g>of</str<strong>on</strong>g> o<str<strong>on</strong>g>the</str<strong>on</strong>g>r speciesin vacuum samples was likely due to limitati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>sampling methods. Vacuum sampling used in this surveymay have provided more opportunity for evasi<strong>on</strong> than sweepnetting used in previous studies (Davis and Gray 1966;Vince et al. 1981). Seas<strong>on</strong>al variati<strong>on</strong> in communitystructure is also <str<strong>on</strong>g>of</str<strong>on</strong>g> importance as adult forms <str<strong>on</strong>g>of</str<strong>on</strong>g> many stemboringspecies are <strong>on</strong>ly present in limited intervals (Newt<strong>on</strong>1984). To alleviate <str<strong>on</strong>g>the</str<strong>on</strong>g> inherent biases <str<strong>on</strong>g>of</str<strong>on</strong>g> this samplingmethod, surveys <str<strong>on</strong>g>of</str<strong>on</strong>g> community compositi<strong>on</strong> should include awider array <str<strong>on</strong>g>of</str<strong>on</strong>g> sampling methods and increased frequency <str<strong>on</strong>g>of</str<strong>on</strong>g>sampling throughout <str<strong>on</strong>g>the</str<strong>on</strong>g> seas<strong>on</strong>.Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> feeding damage to S. alterniflora stemsprovides sufficient evidence to warrant fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r investigati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> some species as possible biological c<strong>on</strong>trol agents.Although sap-sucking insects caused <str<strong>on</strong>g>the</str<strong>on</strong>g> highest frequency<str<strong>on</strong>g>of</str<strong>on</strong>g> damage, <str<strong>on</strong>g>the</str<strong>on</strong>g>y did not cause <str<strong>on</strong>g>the</str<strong>on</strong>g> severity <str<strong>on</strong>g>of</str<strong>on</strong>g> damageassociated with <str<strong>on</strong>g>the</str<strong>on</strong>g> infestati<strong>on</strong> by Chaetopsis aeneaWiedemann and C. apicalis Johns<strong>on</strong>. The larvae <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>seflies destroy <str<strong>on</strong>g>the</str<strong>on</strong>g> shoot apical meristem <str<strong>on</strong>g>of</str<strong>on</strong>g> all infested stems,effectively stopping growth and preventing flowering. Thereexists, however, significant variati<strong>on</strong> in <str<strong>on</strong>g>the</str<strong>on</strong>g> proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>stems damaged by Chaetopsis spp. both am<strong>on</strong>g sites andwithin sites. This variati<strong>on</strong> may be explained by differencesin variables such as plant nutriti<strong>on</strong>, plant resistance, tidalfluctuati<strong>on</strong>, and water salinity. Newt<strong>on</strong> (1984) dem<strong>on</strong>stratedthat salinity was str<strong>on</strong>gly correlated to <str<strong>on</strong>g>the</str<strong>on</strong>g> infestati<strong>on</strong> rates <str<strong>on</strong>g>of</str<strong>on</strong>g>several stem borers. Denno et al. (2000) investigated- 275 -


Chapter 4: Spartina C<strong>on</strong>trol and Management<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartinachanges in intra-guild competiti<strong>on</strong> am<strong>on</strong>g sap-suckingspecies due to variati<strong>on</strong>s in plant resistance. Until <str<strong>on</strong>g>the</str<strong>on</strong>g> degree<str<strong>on</strong>g>of</str<strong>on</strong>g> niche overlap between Chaetopsis species is betterunderstood, this sort <str<strong>on</strong>g>of</str<strong>on</strong>g> interacti<strong>on</strong> ought to be c<strong>on</strong>sideredpossible.Future studies should focus <strong>on</strong> ga<str<strong>on</strong>g>the</str<strong>on</strong>g>ring additi<strong>on</strong>alinformati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> potential effectiveness <str<strong>on</strong>g>of</str<strong>on</strong>g> Chaetopsis spp.as biological c<strong>on</strong>trol agents. A major comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> thisresearch should seek to explain <str<strong>on</strong>g>the</str<strong>on</strong>g> variati<strong>on</strong> in Chaetopsisinfestati<strong>on</strong> rates in an attempt to understand what factors arelimiting <str<strong>on</strong>g>the</str<strong>on</strong>g> species where it is found at lower densities. Itwill be important to quantify <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Chaetopsisinfestati<strong>on</strong> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> productivity <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora genets andto learn which ecological traits distinguish C. aenea from C.apicalis. Lab rearing techniques using a modified protocolfrom Allen & Foote (1992) currently in development at <str<strong>on</strong>g>the</str<strong>on</strong>g>University <str<strong>on</strong>g>of</str<strong>on</strong>g> Rhode Island should aid future work.ACKNOWLEDGEMENTSThis research was supported by <str<strong>on</strong>g>the</str<strong>on</strong>g> Coastal FellowsProgram and <str<strong>on</strong>g>the</str<strong>on</strong>g> Biological C<strong>on</strong>trol Laboratory at <str<strong>on</strong>g>the</str<strong>on</strong>g>University <str<strong>on</strong>g>of</str<strong>on</strong>g> Rhode Island.REFERENCESAllen, E.J. and B.A. Foote. 1992. Biology and immature stages <str<strong>on</strong>g>of</str<strong>on</strong>g>Chaetopsis massyla (Diptera: Otitidae), a sec<strong>on</strong>dary invader <str<strong>on</strong>g>of</str<strong>on</strong>g>herbaceous stems <str<strong>on</strong>g>of</str<strong>on</strong>g> wetland m<strong>on</strong>ocots. <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> EntomologicalSociety <str<strong>on</strong>g>of</str<strong>on</strong>g> Washingt<strong>on</strong> 94: 320-328.Davis, L.V. and I.E. Gray. 1966. Z<strong>on</strong>al and seas<strong>on</strong>al distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>insects in North Carolina salt marshes. Ecological M<strong>on</strong>ographs36: 275-295.Denno, R.F. 1977. Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> assemblages <str<strong>on</strong>g>of</str<strong>on</strong>g> sap feedinginsects (Homoptera-Hemiptera) inhabiting two structurallydifferent salt marsh grasses in <str<strong>on</strong>g>the</str<strong>on</strong>g> genus Spartina. Envir<strong>on</strong>mentalEntomology 6: 359-372.Denno, R.F., M.A. Peters<strong>on</strong>, C. Gratt<strong>on</strong>, J. Cheng, G.A. Langellotto,A.F. Huberty, and D.L. Finke. 2000. Feeding-inducedchanges in plant quality mediate interspecific competiti<strong>on</strong> betweensap-feeding herbivores. Ecology 81: 1814-1827.Grevstad, F.S., D.R. Str<strong>on</strong>g, D. Garcia-Rossi, R.W. Switzer andM.S. Wecker. 2003. Biological c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflora inWillapa Bay, Washingt<strong>on</strong> using <str<strong>on</strong>g>the</str<strong>on</strong>g> planthopper Prokelisiamarginata: agent specificity and early results. Biological C<strong>on</strong>trol27: 32-42.Newt<strong>on</strong>, N.H. 1984. Stem-Boring Insect Larvae <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alternifloraLoisel (Poaceae): Distributi<strong>on</strong>, Biology and Influence<strong>on</strong> Seed Producti<strong>on</strong>. Ph.D. Dissertati<strong>on</strong>, North Carolina StateUniversity, Raleigh.Vince S.W., I. Valiela and J.M. Teal. 1981. An experimental study<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> herbivorous insect communities in a saltmarsh. Ecology 62: 1662-1678.- 276 -


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> SpartinaChapter 4: Spartina C<strong>on</strong>trol and ManagementPOTENTIAL FOR SEDIMENT-APPLIED ACETIC ACID FOR CONTROL OF SPARTINAALTERNIFLORAL.W.J. ANDERSONUSDA-Agricultural Research Service, Exotic and <strong>Invasive</strong> Weed Research, One Shields Ave., Davis, CA 95616;lwanders<strong>on</strong>@ucdavis.eduNote: This paper, presented at <str<strong>on</strong>g>the</str<strong>on</strong>g> <str<strong>on</strong>g>Third</str<strong>on</strong>g> <str<strong>on</strong>g>Internati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Invasive</strong> Spartina, was subsequently published in 2007. Thecitati<strong>on</strong> and abstract <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> published paper is provided below.Citati<strong>on</strong>Anders<strong>on</strong>, L.W.J. 2007. Potential for Sediment-Applied Acetic Acid for C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Spartina alterniflora.J. Aquat. Plant Manage. 45:100-105 [http://www.apms.org/japm/vol45/v45p100.pdf]AbstractSmooth cordgrass (Spartina alterniflora), a tall grass native to <str<strong>on</strong>g>the</str<strong>on</strong>g> east coast, has invaded Willapa Bay,Washingt<strong>on</strong>, and <str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco Bay, California. Management with glyphosate and imazapyr can beeffective, but in <str<strong>on</strong>g>the</str<strong>on</strong>g> San Francisco populati<strong>on</strong>s, applicati<strong>on</strong>s in several sites are c<strong>on</strong>fined to short periodsin <str<strong>on</strong>g>the</str<strong>on</strong>g> fall in order to protect nesting habitats <str<strong>on</strong>g>of</str<strong>on</strong>g> Clapper rails (Rallus l<strong>on</strong>girostris). Use <str<strong>on</strong>g>of</str<strong>on</strong>g> efficacioussoil-active herbicides could mitigate this restricti<strong>on</strong>. Acetic acid, a readily degraded natural product, hasbeen shown to kill sediment-borne propagules <str<strong>on</strong>g>of</str<strong>on</strong>g> aquatic plants such as Hydrilla verticillata andStuckenia pectinatus. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> acetic acid <strong>on</strong> sediment-free rhizomes <str<strong>on</strong>g>of</str<strong>on</strong>g> S. alterniflora were examined.Exposure <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.1, 1.0, 1.5% vol/vol acetic acid for a few hours to several hours resulted in increasedc<strong>on</strong>ductivity in distilled water compared to unexposed c<strong>on</strong>trols, indicating loss <str<strong>on</strong>g>of</str<strong>on</strong>g> cellular integrity andleakage <str<strong>on</strong>g>of</str<strong>on</strong>g> electrolytes. Regrowth from exposed rhizomes was significantly inhibited at higher (1.0% and1.5%) c<strong>on</strong>centrati<strong>on</strong>s applied for 2 or 4 hr. When rhizomes that had been directly exposed to 1.5% aceticacid were transferred to outdoor c<strong>on</strong>diti<strong>on</strong>s in Albany, CA, both new shoot number and average plan<str<strong>on</strong>g>the</str<strong>on</strong>g>ight were reduced by over 90% at nine m<strong>on</strong>ths post-treatment. The exposure to all c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>acetic acid for 4 hr also led to reduced frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> inflorescence producti<strong>on</strong>, thus potentiallydiminishing <str<strong>on</strong>g>the</str<strong>on</strong>g> dispersal capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> treated plants. Field trials are needed to determine if judiciousdrenching <str<strong>on</strong>g>of</str<strong>on</strong>g> sediments with acetic acid (e.g., at low tide) may have utility as an alternative to foliarapplied herbicides such as imazapyr and glyphosate.Keywords: soil-active herbicide, electrolyte, pore-water, HPLC, seawater, smooth cordgrass, vinegar.- 277 -

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!