01.12.2014 Views

quality assurance and quality control plan - Tampa Bay Water

quality assurance and quality control plan - Tampa Bay Water

quality assurance and quality control plan - Tampa Bay Water

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Tampa</strong> Bypass Canal/Alafia River <strong>Water</strong> Supply Projects<br />

Hydrobiological Monitoring Program<br />

QUALITY ASSURANCE AND QUALITY CONTROL PLAN<br />

VERSION 2.1<br />

Prepared For:<br />

<strong>Tampa</strong> <strong>Bay</strong> <strong>Water</strong><br />

2535 L<strong>and</strong>mark Drive, Suite 211<br />

Clearwater, FL 33761-3930<br />

Prepared By:<br />

PBS&J<br />

5300 West Cypress Street<br />

<strong>Tampa</strong>, FL 33607<br />

Subconsultants:<br />

University of South Florida<br />

Fish <strong>and</strong> Wildlife Research Institute<br />

Terra Environmental Services Inc<br />

FINAL DRAFT<br />

April 2008


<strong>Tampa</strong> Bypass Canal/Alafia River <strong>Water</strong> Supply Projects<br />

Hydrobiological Monitoring Program<br />

QUALITY ASSURANCE AND QUALITY CONTROL PLAN<br />

VERSION 2.1<br />

Prepared For:<br />

<strong>Tampa</strong> <strong>Bay</strong> <strong>Water</strong><br />

2535 L<strong>and</strong>mark Drive, Suite 211<br />

Clearwater, FL 33761-3930<br />

Prepared By:<br />

PBS&J<br />

5300 West Cypress Street<br />

<strong>Tampa</strong>, FL 33607<br />

Subconsultants:<br />

University of South Florida<br />

Fish <strong>and</strong> Wildlife Research Institute<br />

Terra Environmental Services Inc<br />

FINAL DRAFT<br />

April 2008


Page i<br />

Section i<br />

April 2008<br />

Version 2.1FINAL DRAFT<br />

SIGNATURE PAGE<br />

The assigned parties have read <strong>and</strong> agree that the included Quality Assurance <strong>and</strong> Quality<br />

Control Plan procedures will be utilized to meet the goals of the <strong>Tampa</strong> Bypass<br />

Canal/Alafia <strong>Water</strong> Supply Projects Hydrobiological Monitoring Program.<br />

____________________________________<br />

South Florida <strong>Water</strong> Management District<br />

____________________________________<br />

<strong>Tampa</strong> <strong>Bay</strong> <strong>Water</strong><br />

__________________________________<br />

PBS&J<br />

__________________________________<br />

University of South Florida<br />

Marine Science Department<br />

__________________________________<br />

Fish <strong>and</strong> Wildlife Research Institute<br />

___________________<br />

Date<br />

___________________<br />

Date<br />

__________________<br />

Date<br />

__________________<br />

Date<br />

__________________<br />

Date<br />

__________________________________<br />

Terra Environmental Services Inc<br />

___________________<br />

Date


Page ii<br />

Section i<br />

April 2008<br />

Version 2.1FINAL DRAFT<br />

Table of Contents<br />

Signature Page............................................................................................................................. i<br />

Table of Contents ....................................................................................................................... ii<br />

List of Tables ........................................................................................................................... viii<br />

List of Figures..............................................................................................................................x<br />

List of Appendices.................................................................................................................... xii<br />

List of Acronyms <strong>and</strong> Abbreviations .................................................................................... xiii<br />

Definitions..................................................................................................................................xv<br />

Glossary .................................................................................................................................. xvii<br />

1.0 Introduction<br />

1.1 Overview of Quality Assurance/Quality Control Plan.................................................... 2<br />

1.2 Regulatory Requirements of HBMP ............................................................................... 2<br />

1.3 Goals of the HBMP .........................................................................................................3<br />

1.4 HBMP Scope ................................................................................................................ 4<br />

1.4.1 Reporting Units...................................................................................................... 4<br />

1.4.2 Indicators............................................................................................................. 5<br />

1.4.3. Sampling Design................................................................................................. 5<br />

1.4.4 Monitoring Objectives ........................................................................................ 6<br />

1.4.5 Baseline Conditions ............................................................................................ 7<br />

1.4.6 Determination of Adverse Impact....................................................................... 8<br />

1.4.7 Additional HBMP Information ........................................................................... 8<br />

1.5 Statement of Policy.......................................................................................................... 9<br />

1.6 Project Organization <strong>and</strong> Responsibility......................................................................... 9<br />

1.7 Document Organization................................................................................................. 11<br />

2.0 Overview of Quality Assurance/Quality Control Plan<br />

2.1 Sampling Procedures <strong>and</strong> Protocols ................................................................................ 1<br />

2.2 Sample Custody <strong>and</strong> Documentation .............................................................................. 1<br />

2.3 Analytical Procedures...................................................................................................... 2<br />

2.4 Targets for Precision, Accuracy <strong>and</strong> Method Detection Limits ...................................... 3<br />

2.5 Calibration Procedures <strong>and</strong> Frequency ............................................................................ 3<br />

2.6 Preventative Maintenance ............................................................................................... 4<br />

2.7 Quality Control <strong>and</strong> Assessment of Precision, Accuracy <strong>and</strong> Method Detection ........... 4<br />

2.8 Data Reduction, Validation <strong>and</strong> Storage/Retrieval ......................................................... 5<br />

2.9 Corrective Action ............................................................................................................ 6<br />

2.10 Performance <strong>and</strong> System Audits ..................................................................................... 7<br />

2.11 Quality Assurance Reporting .......................................................................................... 7<br />

2.12 Reporting <strong>and</strong> Analysis ................................................................................................... 7<br />

2.13 The General Process of Quality Control <strong>and</strong> Assurance ................................................ 8<br />

2.13.1 Review Procedures <strong>and</strong> Protocols...................................................................... 9<br />

2.13.2 St<strong>and</strong>ard Five-Step Quality Assurance <strong>and</strong> Control Review Process.............. 11


Page iii<br />

Section i<br />

April 2008<br />

Version 2.1FINAL DRAFT<br />

2.13.3 Calculations ...................................................................................................... 11<br />

2.13.4 Documentation.................................................................................................. 12<br />

2.13.5 Outside Peer Review......................................................................................... 13<br />

2.13.6 Reviews by Subconsultants............................................................................... 14<br />

3.0 HBMP Sampling Strategies<br />

3.1 HBMP Design - General Considerations ........................................................................ 1<br />

3.2 General Design Criteria Associated with HBMP Study Elements.................................. 2<br />

3.3 Indicators ......................................................................................................................... 5<br />

3.3.1 Desirable Indicator Criteria................................................................................. 5<br />

3.3.2 Critical Indicator Criteria.................................................................................... 5<br />

3.4 Reporting Units ............................................................................................................... 6<br />

3.4.1 Lower Hillsborough River .................................................................................. 6<br />

3.4.2 Lower Alafia River ............................................................................................. 7<br />

3.4.3 TBC/Palm River.................................................................................................. 7<br />

3.4.4 McKay <strong>Bay</strong> ......................................................................................................... 7<br />

3.4.5 Hillsborough <strong>Bay</strong>................................................................................................ 8<br />

3.5 Spatial R<strong>and</strong>omization ....................................................................................................8<br />

3.6 Temporal Strata ............................................................................................................. 10<br />

3.6.1 Lower Hillsborough River ................................................................................ 10<br />

3.6.2 Lower Alafia River ........................................................................................... 10<br />

3.6.3 TBC/Palm River................................................................................................ 11<br />

3.6.4 McKay <strong>Bay</strong> ....................................................................................................... 11<br />

4.0 Data Quality <strong>and</strong> Management<br />

4.1 Data Quality Objectives ..................................................................................................1<br />

4.1.1 Representativeness.............................................................................................. 2<br />

4.1.2 Completeness ...................................................................................................... 2<br />

4.1.3 Comparability ..................................................................................................... 3<br />

4.1.4 Accuracy, Precision, <strong>and</strong> Total Error.................................................................. 3<br />

4.2 Routine Methods Used to Assess Precision <strong>and</strong> Accuracy.............................................. 4<br />

4.2.1 Field Measurements ............................................................................................. 4<br />

4.2.2 Laboratory <strong>Water</strong> Quality Parameters ................................................................ 5<br />

4.3 Method Detection Limits................................................................................................. 5<br />

4.4 Data Reduction <strong>and</strong> Validation ....................................................................................... 6<br />

4.4.1 HBMP Data Sources ........................................................................................... 6<br />

4.4.2 Outside Data Sources.......................................................................................... 8<br />

4.4.3 Data Dictionary................................................................................................... 9<br />

4.5 Data Methodologies....................................................................................................... 10<br />

4.5.1 Field Data ......................................................................................................... 10<br />

4.5.2 Laboratory Data ................................................................................................ 11<br />

4.6 Data Storage .................................................................................................................. 12<br />

4.6.1 Field Data.......................................................................................................... 12<br />

4.6.2 <strong>Water</strong> Chemistry Data....................................................................................... 12<br />

4.6.3 HBMP Database................................................................................................ 13


Page iv<br />

Section i<br />

April 2008<br />

Version 2.1FINAL DRAFT<br />

4.7 Electronic Data Records ................................................................................................ 13<br />

4.8 Performance <strong>and</strong> System Audits.................................................................................... 14<br />

4.8.1 Internal Field System Audits ............................................................................. 14<br />

4.8.2 External Field System Audits ............................................................................ 15<br />

4.8.3 Internal Laboratory System Audits.................................................................... 15<br />

4.8.4 External Laboratory Systems <strong>and</strong> Performance Audits .................................... 15<br />

5.0 <strong>Water</strong> Quality <strong>and</strong> Hydrology<br />

5.1 Objectives ......................................................................................................................... 1<br />

5.2 Hydrology/<strong>Water</strong> Quality Indicators................................................................................. 2<br />

5.3 Sample Collection Techniques.......................................................................................... 2<br />

5.3.1 Pre-Mobilization ................................................................................................. 2<br />

5.3.2 Same Day Field Mobilization .............................................................................. 4<br />

5.3.3 Surface <strong>Water</strong> Sampling ...................................................................................... 4<br />

5.3.4 In-situ Multi-parameter Sonde Surface <strong>Water</strong> Sampling..................................... 7<br />

5.4 Duplicates, Field Blanks <strong>and</strong> Split Sampling .................................................................. 8<br />

5.5 Field Preservation ............................................................................................................ 9<br />

5.6 Chlorophyll a <strong>and</strong> “Field Filtration”............................................................................... 9<br />

5.7 Sample Container <strong>and</strong> Equipment Cleaning Procedures ............................................... 11<br />

5.7.1 Laboratory.......................................................................................................... 11<br />

5.7.2 Decontamination of Field Equipment................................................................ 11<br />

5.8 Sample Transportation <strong>and</strong> Shipping Procedures.......................................................... 11<br />

5.9 Sample Custody ............................................................................................................. 12<br />

5.9.1 Objectives .......................................................................................................... 12<br />

5.9.2 Sample Custody – Overview ............................................................................. 13<br />

5.10 Field Sample Control Officer......................................................................................... 15<br />

5.11 Field Custody <strong>and</strong> Documentation................................................................................. 15<br />

5.12 Laboratory Sample Control............................................................................................ 17<br />

5.13 Laboratory Custody ....................................................................................................... 17<br />

5.14 Preventative Maintenance.............................................................................................. 18<br />

5.14.1 Field Instruments/Equipment............................................................................. 18<br />

5.15 Multi-parameter Sonde Operation <strong>and</strong> Calibration........................................................ 29<br />

5.15.1 Introduction ....................................................................................................... 29<br />

5.15.2 Objectives .......................................................................................................... 20<br />

5.15.3 Procedures.......................................................................................................... 20<br />

5.16 Hydrology – Permanent Station Continuous Recorders ................................................ 33<br />

5.16.1 Introduction........................................................................................................ 33<br />

5.16.2 Continuous Recorders........................................................................................ 34<br />

5.16.3 Downloading, Calibration, <strong>and</strong> maintenance..................................................... 35<br />

5.16.4 Electronics Box, Solar Voltaic Panels, <strong>and</strong> Batteries ........................................ 35<br />

5.16.5 Data Loggers...................................................................................................... 36<br />

5.16.6 Specific Conductance (Conductivity)................................................................ 37<br />

5.16.7 <strong>Water</strong> Levels ...................................................................................................... 38


Page v<br />

Section i<br />

April 2008<br />

Version 2.1FINAL DRAFT<br />

6.0 Benthic Macroinvertebrates<br />

6.1 Field Sampling................................................................................................................. 1<br />

6.1.1 Equipment.............................................................................................................. 1<br />

6.1.2 Pre-Mobilization.................................................................................................... 2<br />

6.1.3 Same Day Field Mobilization................................................................................ 3<br />

6.1.4 Sampling................................................................................................................3<br />

6.2 Sample Analyses.............................................................................................................. 8<br />

6.2.1 Macroinvertebrate Analysis................................................................................... 8<br />

6.2.2 Sediment Analysis............................................................................................... 11<br />

7.0 Adult <strong>and</strong> Juvenile Fish .........................................................................................1<br />

7.1 Project Management........................................................................................................ 1<br />

7.2 HBMP Adult <strong>and</strong> Juvenile Fish Monitoring.................................................................... 1<br />

7.2.1 Site Selection ......................................................................................................... 1<br />

7.2.2 Sampling Protocol.................................................................................................. 2<br />

7.2.3 Data Management.................................................................................................. 3<br />

7.3 St<strong>and</strong>ard Fisheries Independent Monitoring Procedures <strong>and</strong> Protocols ........................... 3<br />

7.3.1 Overview of Fisheries-Independent Monitoring Program .................................... 3<br />

7.3.2 Principal Investigator’s Duties............................................................................... 5<br />

7.3.2.1 Objectives ............................................................................................. 5<br />

7.3.2.2 Pre-Sampling Trip ................................................................................. 5<br />

7.3.2.3 Post-Sampling Trip ................................................................................ 6<br />

7.3.2.4 Responsibilities...................................................................................... 7<br />

7.3.3 Stratified-R<strong>and</strong>om Sampling ................................................................................. 7<br />

7.3.3.1 Objectives .............................................................................................. 8<br />

7.3.3.2 Procedure ............................................................................................... 8<br />

7.3.4 Sampling Gears...................................................................................................... 9<br />

7.3.4.1 21.3-m Center-Bag Seine...................................................................... 9<br />

7.3.4.2 Center-bag Seine (21.3-m bay seine technique) .................................. 10<br />

7.3.4.3 21.3-m River Seine Technique ........................................................... 11<br />

7.3.4.4 6.1-m Otter Trawl ............................................................................... 13<br />

7.3.5 Field Sampling..................................................................................................... 17<br />

7.3.5.1 Sample Work Up................................................................................... 17<br />

7.3.5.2 Subsampling......................................................................................... 21<br />

7.3.5.3 Instructions for Filling Out Data Sheets <strong>and</strong> Labels............................ 25<br />

7.3.5.4 Representative <strong>and</strong> Unidentified Sample Collection ........................... 34<br />

7.3.5.5 Hydrolab Operation <strong>and</strong> Calibration.................................................... 36<br />

7.3.5.6 Secchi Disk .......................................................................................... 48<br />

7.3.6 Laboratory Work-Up.......................................................................................... 48<br />

7.3.6.1 Representative <strong>and</strong> Unidentified Sample Work-Up <strong>and</strong> Reference<br />

Collection ............................................................................................. 48<br />

7.3.7 Data...................................................................................................................... 51<br />

7.3.7.1 Data Processing.................................................................................... 51


Page vi<br />

Section i<br />

April 2008<br />

Version 2.1FINAL DRAFT<br />

8.0 Ichthyo<strong>plan</strong>kton And Zoo<strong>plan</strong>kton<br />

8.1 Project Management ......................................................................................................... 2<br />

8.2 Key Professional <strong>and</strong> Technical Staff............................................................................... 2<br />

8.2.1 Principal Investigator ............................................................................................ 2<br />

8.2.2 Lab Manager.......................................................................................................... 2<br />

8.2.3 Research Assistant................................................................................................. 2<br />

8.2.4 Lab Technician ...................................................................................................... 2<br />

8.2.5 Field Operations Manager ..................................................................................... 2<br />

8.2.6 Marine Technician................................................................................................. 2<br />

8.2.7 Database Manager ................................................................................................. 3<br />

8.3 Problem Definition/Background....................................................................................... 3<br />

8.4 Element Description.......................................................................................................... 3<br />

8.5 Quality Objectives <strong>and</strong> Criteria for Measurement Data ................................................... 3<br />

8.6 Special Training................................................................................................................4<br />

8.7 Documents <strong>and</strong> Records ................................................................................................... 4<br />

8.8 Data Generation And Acquisition..................................................................................... 5<br />

8.8. 1 Sampling Process Design...................................................................................... 5<br />

8.8.1.1 Minimum Sample Size............................................................................. 5<br />

8.8.1.2 Collection Dates <strong>and</strong> Times.................................................................... 5<br />

8.8.1.3 Collection Locations ............................................................................... 5<br />

8.8.2 Sampling Methods ................................................................................................. 6<br />

8.8.3 Sample H<strong>and</strong>ling <strong>and</strong> Custody............................................................................... 7<br />

8.8.4 Analytical Methods ............................................................................................... 7<br />

8.8.5 Quality Control...................................................................................................... 8<br />

8.8.5.1 Sample Collection................................................................................... 8<br />

8.8.5.2 Sample Analysis...................................................................................... 9<br />

8.8.5.3 Instrument/Equipment Inspection <strong>and</strong> Maintenance ............................. 10<br />

8.8.5.4 Instrument/Equipment Calibration........................................................ 10<br />

8.8.5.5 Inspection/Acceptance of Supplies <strong>and</strong> Consumables.......................... 11<br />

8.8.5.6 Data Management ................................................................................. 11<br />

8.9 Scope of Work ................................................................................................................ 12<br />

8.9.1 QA/QC Plan Preparation...................................................................................... 12<br />

8.9.2 Zoo<strong>plan</strong>kton Sample Collection <strong>and</strong> Processing ................................................. 12<br />

8.9.3 Data Management ................................................................................................ 13<br />

8.9.4 Project Management ............................................................................................ 13<br />

8.9.5 Meetings............................................................................................................... 14<br />

9.0 <strong>Water</strong>-Dependent Birds<br />

9.1 Introduction....................................................................................................................... 1<br />

9.2 Monitoring Overview........................................................................................................ 1<br />

9.3 Field Observations ............................................................................................................ 2<br />

9.3.1 Pre-Mobilization .................................................................................................... 2<br />

9.3.2 Survey Preparation Tasks...................................................................................... 2<br />

9.3.3 Survey Time <strong>and</strong> Tide Criteria .............................................................................. 3<br />

9.3.4 Miscellaneous Materials ........................................................................................ 4


Page vii<br />

Section i<br />

April 2008<br />

Version 2.1FINAL DRAFT<br />

9.4 Avifauna Survey Data Collection .................................................................................... 4<br />

9.4.1 Survey Day Field Mobilization ............................................................................. 4<br />

9.4.2 Biotic Data Protocol .............................................................................................. 4<br />

9.4.3 Biotic Data Recording Logistics............................................................................ 5<br />

9.4.4 Field Data Recording Procedures .......................................................................... 5<br />

9.4.4.1 St<strong>and</strong>ard Species Surveys (Low <strong>and</strong> High Tides).................................... 5<br />

9.4.4.2 Determination of Mean Feeding Rates .................................................... 6<br />

9.4.5 Abiotic Data Protocol............................................................................................ 6<br />

9.5 Instrument & Equipment Maintenance............................................................................. 7<br />

10.0 Vegetation<br />

10.1 Introduction..................................................................................................................... 1<br />

10.2 Organization <strong>and</strong> Personnel ............................................................................................ 1<br />

10.3 HBMP Vegetation Monitoring Components .................................................................. 2<br />

10.3.1 Alafia River Transitional Fixed Station Area Vegetation Sampling................... 2<br />

10.3.2 Floodplain Vegetation Polygon Mapping ........................................................... 4<br />

10.3.3 Linear Vegetation Mapping <strong>and</strong> Shoreline Surveys ........................................... 5<br />

10.4 GIS Data .......................................................................................................................... 5<br />

10.4.1 Metadata.............................................................................................................. 5<br />

10.4.2 File naming ......................................................................................................... 5<br />

10.4.3 Directory Structure.............................................................................................. 5<br />

`0.4.4 Map St<strong>and</strong>ards .................................................................................................... 7<br />

10.4.5 Map Revisions .................................................................................................... 7<br />

10.4.6 Map Review ........................................................................................................ 7<br />

10.4.7 Automated Verification Procedures.................................................................... 7<br />

10.4.8 Electronic Submittal St<strong>and</strong>ards........................................................................... 8<br />

11.0 References <strong>and</strong> Relevant Literature<br />

Appendix A HBMP Program Modifications <strong>and</strong> Changes to the<br />

HBMP QA/QC Plan<br />

Appendix B Data Upload to STORET


Page viii<br />

Section i<br />

April 2008<br />

Version 2.1FINAL DRAFT<br />

List of Tables<br />

Section 1.0<br />

Table 1.1.<br />

HBMP strata boundaries in the Alafia, Palm, <strong>and</strong> Hillsborough River<br />

reporting units .................................................................................................... 12<br />

Table 1.2. HBMP elements <strong>and</strong> critical indicators by reporting unit ................................. 13<br />

Table 1.3. Key PBS&J HBMP Staff................................................................................... 14<br />

Section 2.0<br />

Table 2.1. HBMP Quality Control Checklist – Documents................................................ 15<br />

Table 2.2. HBMP QA/QC – Project Element Review........................................................ 16<br />

Table 2.3. Hydrobiological Monitoring Program Quality Assurance/Control – Project<br />

Element Review................................................................................................. 17<br />

Section 3.0<br />

Table 3.1. Hillsborough River Strata .................................................................................. 12<br />

Table 3.2. Sampling program summary for the lower Hillsborough River reporting<br />

unit ..................................................................................................................... 13<br />

Table 3.3. Alafia River Strata ............................................................................................. 14<br />

Table 3.4. Sampling program summary for the lower Alafia River reporting unit ............ 15<br />

Table 3.5. Palm River Strata (<strong>Tampa</strong> Bypass Canal) ......................................................... 16<br />

Table 3.6. Sampling program summary for the TBC/Palm River reporting unit ............... 17<br />

Table 3.7. McKay <strong>Bay</strong> Strata.............................................................................................. 18<br />

Table 3.8. Sampling program summary for the McKay <strong>Bay</strong> reporting unit....................... 19<br />

Table 3.9. HBMP strata boundaries in the Alafia, Palm, <strong>and</strong> Hillsborough<br />

River reporting units .......................................................................................... 20<br />

Section 4.0<br />

Table 4.1. Measurement Quality Objectives for Indicators................................................ 17<br />

Table 4.2. St<strong>and</strong>ardized Units Of Measure......................................................................... 18<br />

Table 4.3. Field <strong>and</strong> Laboratory MDLs for HBMP <strong>Water</strong> Quality Parameters.................. 19<br />

Section 5.0<br />

Table 5.1 HBMP <strong>Water</strong> Quality Sampling Study Elements.............................................. 40<br />

Table 5.2 Hydrology/<strong>Water</strong> Quality Indicators, Units Of Measure, Sources of<br />

Variability, <strong>and</strong> Potential Effects of Surface <strong>Water</strong> Withdrawals ..................... 41<br />

Table 5.3. Selected critical hydrologic <strong>and</strong> water <strong>quality</strong> indicators specified<br />

for each waterbody............................................................................................. 42<br />

Table 5.4 St<strong>and</strong>ard Formats & Information Requirements For Field Notebooks.............. 43<br />

Table 5.5. Required Containers, Preservation, Holding Times <strong>and</strong> Sample Volumes ....... 44


Page ix<br />

Section i<br />

April 2008<br />

Version 2.1FINAL DRAFT<br />

Table 5.6 In Situ Hydrolab <strong>Water</strong> Quality Indicators, Units Of Measure Accuracy,<br />

Resolution And Range ....................................................................................... 45<br />

Table 5.7. Temperature (°C) Versus Dissolved 0xygen (mg/l) Saturation at<br />

760 mm hg ......................................................................................................... 46<br />

Table 5.8. HBMP Continuous recorder locations <strong>and</strong> sensors ........................................... 47<br />

Table 5.9. Specifications for the sensors as reported by manufacturers............................. 47<br />

Table 5.10. Stevens encoder LCD menu options summary.................................................. 48<br />

Section 6.0<br />

Table 6.1. HBMP Benthic Macroinvertebrate Sampling Study Element ........................... 12<br />

Table 6.2. Benthic Sampling Checklist............................................................................... 13<br />

Table 6.3. Number of HBMP Benthic-Samples per Month by Reporting Unit ................. 14<br />

Table 6.4. Outline of Sampling Activities Performed at each Station................................ 15<br />

Table 6.5. Benthic Indicators, Units of Measure, <strong>and</strong> Sources of Variability .................... 15<br />

Section 7.0<br />

Table 7.1. Summary of Adult <strong>and</strong> Juvenile Fish HBMP Sampling Element...................... 53<br />

Table 7.2. Gear Deployment And Types ............................................................................ 54<br />

Table 7.3. Maximum bag depths <strong>and</strong> wing depths for 213-m seine techniques................. 54<br />

Table 7.4. Freshwater Oxygen Solubility with a Barometric Pressure of 760 mm Hg ...... 55<br />

Section 8.0<br />

Table 8.1. Form LFD .......................................................................................................... 15<br />

Table 8.2. Estimates of Organism Number using Three Methods, Presented<br />

as the Mean <strong>and</strong> St<strong>and</strong>ard Deviation of Five Independent Trials...................... 16<br />

Table 8.3. Summary of Ichthyo<strong>plan</strong>kton <strong>and</strong> Zoo<strong>plan</strong>kton HBMP Sampling Elements.... 17<br />

Section 9.0<br />

Table 9.1. Avifauna Survey Equipment Checklist................................................................ 8<br />

Table 9.2. Alafia River (Banks) Bird Survey Data Collection Form: Sample...................... 9<br />

Table 9.3. Foraging Survey Data Form............................................................................... 10<br />

Section 10.0<br />

Table 10.1. Vegetation Indicators, Units of Measure <strong>and</strong> Sources of Variability .................. 9<br />

Table 10.2. The Braun-Blanquet Vegetation Classification Scale.......................................... 9<br />

Table 10.3. Shoreline <strong>and</strong> Wetl<strong>and</strong> Mapping Classification System.................................... 10


Page x<br />

Section i<br />

April 2008<br />

Version 2.1FINAL DRAFT<br />

List of Figures<br />

Section 1.0<br />

Figure 1.1 The HBMP spatial reporting units ........................................................................ 15<br />

Figure 1.2 Organizational Chart for the <strong>Tampa</strong> Bypass Canal/Alafia River<br />

Hydrobiological Monitoring Program Implementation........................................ 16<br />

Section 3.0<br />

Figure 3.1 Lower Hillsborough River Reporting Unit........................................................... 21<br />

Figure 3.2 Alafia River Reporting Unit.................................................................................. 22<br />

Figure 3.3<br />

Illustration of the Alafia River HBMP strata <strong>and</strong> extended area for FIM<br />

monthly fish sampling........................................................................................... 23<br />

Figure 3.3 The Palm River <strong>and</strong> McKay <strong>Bay</strong> Reporting Unit................................................. 23<br />

Figure 3.4 McKay <strong>Bay</strong> Reporting Unit.................................................................................. 24<br />

Figure 3.5 Hillsborough <strong>Bay</strong> Reporting Unit......................................................................... 25<br />

Section 4.0<br />

Figure 4.1 Overview of the HBMP Data Management Process............................................. 20<br />

Figure 4.2 Overview of the Contents of the HBMP Database ............................................... 21<br />

Section 5.0<br />

Figure 5.1 Organizational Chart of Hydrology <strong>and</strong> <strong>Water</strong> Quality HBMP elements ............ 49<br />

Figure 5.2a LoggerNet Startup screen showing CONNECT button........................................ 50<br />

Figure 5.2b LoggerNet Connect screen.................................................................................... 50<br />

Figure 5.3 YSI 600R sonde .................................................................................................... 51<br />

Figure 5.4 Stevens SDI-12 Encoder....................................................................................... 52<br />

Section 6.0<br />

Figure 6.1 Organization of the Benthic Macroinvertebrate study element ............................ 16<br />

Figure 6.2 Basic benthic sampling equipment ....................................................................... 17<br />

Section 7.0<br />

Figure 7.1 Project Organization Adult <strong>and</strong> Juvenile Fishes................................................... 56<br />

Figure 7.2 Float <strong>plan</strong> to be faxed to the Marine Patrol on the morning of sampling ............. 57<br />

Figure 7.3 21.3-m bay seine technique................................................................................... 58<br />

Figure 7.4 Organism Measurement Techniques..................................................................... 59<br />

Figure 7.5 Field Data Sheet.................................................................................................... 60<br />

Figure 7.6 Length Data Sheet................................................................................................. 61<br />

Figure 7.7 Sample Labels....................................................................................................... 62<br />

Figure 7.8 Hydrolab Calibration Sheet................................................................................... 63<br />

Figure 7.9 Representative Sample Work Sheet...................................................................... 64


Page xi<br />

Section i<br />

April 2008<br />

Version 2.1FINAL DRAFT<br />

Figure 7.10 Identification Sample Work Sheet........................................................................ 65<br />

Section 8.0<br />

Figure 8.1 Organization of the USF Ichthyo<strong>plan</strong>kton/Other Zoo<strong>plan</strong>kton Monitoring<br />

Element ................................................................................................................. 18<br />

Figure 8.2 Pairing of beakers <strong>and</strong> labeled cod-end jars in staging area ................................. 19<br />

Section 9.0<br />

Figure 9.1 The location of the Alafia Banks monitoring site................................................. 11<br />

Figure 9.2 Organization of the <strong>Water</strong>-Dependent Bird element ............................................ 12<br />

Section 10.0<br />

Figure 10.1 Organization of Vegetation Elements................................................................... 11


Page xii<br />

Section i<br />

April 2008<br />

Version 2.1FINAL DRAFT<br />

List of Section Appendices<br />

Appendix 3-A<br />

Appendix 4-A<br />

Appendix 4-B<br />

Appendix 5-A<br />

Appendix 5-B<br />

Appendix 5-C<br />

Appendix 6-A<br />

Appendix 6-B<br />

Appendix 7-A<br />

Appendix 8-A<br />

Appendix 9-A<br />

Appendix 9-B<br />

Appendix 10-A<br />

Appendix 10-B<br />

Appendix 10-C<br />

Detailed Maps of the HBMP Strata.<br />

Applicable DEP/EPA Data Qualifier Codes<br />

Data Dictionary for each of the HBMP Study Components<br />

Hydrolab Diagrams <strong>and</strong> Forms<br />

LoggerNet Datalogger Support Software Instruction Manual<br />

ACT Performance Verification Statement for YSI Rapid Pulse<br />

Dissolved Oxygen Sensor<br />

Example Forms<br />

Benthic Macroinvertebrates Collected by HBMP<br />

Code Lists for Data Collection<br />

Master Ichthyo<strong>plan</strong>kton <strong>and</strong> Zoo<strong>plan</strong>kton HBMP Species List<br />

Example of Equipment Repair Form<br />

Bird Species Observed at the HBMP Stations<br />

Example of Vegetation Monitoring Forms<br />

Plant Species Observed at the HBMP Fixed Stations<br />

HBMP Alafia River Vegetation Monitoring Fixed Station Locations


Page xiii<br />

Section i<br />

April 2008<br />

Version 2.1FINAL DRAFT<br />

List Acronyms <strong>and</strong> Abbreviations<br />

AGWMP<br />

BACI<br />

DMS<br />

DOC<br />

DO<br />

EAV<br />

EMAP<br />

EPA<br />

EPCHC<br />

FDEP<br />

FFWCC<br />

FMRI<br />

GIS<br />

HBMP<br />

HTML<br />

LAR<br />

LHR<br />

LPR<br />

NOS<br />

NRC<br />

NWS<br />

Ambient Ground <strong>Water</strong> Monitoring Program<br />

Before/After/Control/Impact<br />

Department of Marine Sciences<br />

Dissolved Organic Carbon<br />

Dissolved Oxygen<br />

Emergent Aquatic Vegetation<br />

Environmental Monitoring <strong>and</strong> Assessment Program<br />

Environmental Protection Agency (U.S.)<br />

Environmental Protection Commission of Hillsborough County<br />

Florida Department of Environmental Protection<br />

Florida Fish <strong>and</strong> Wildlife Conservation Commission<br />

Florida Marine Research Institute<br />

Geographic Information System<br />

<strong>Tampa</strong> Bypass Canal/Alafia River <strong>Water</strong> Supply Projects<br />

Hydrobiological Monitoring Program<br />

Hyper Text Makeup Language<br />

Lower Alafia River<br />

Lower Hillsborough River<br />

Lower Palm River<br />

National Oceanic Service<br />

National Research Council<br />

National Weather Service


Page xiv<br />

Section i<br />

April 2008<br />

Version 2.1FINAL DRAFT<br />

PBS&J<br />

QA/QC<br />

RKm<br />

SAV<br />

SAS<br />

SOP<br />

SWAMP<br />

SWFWMD<br />

SWIM<br />

TBC<br />

TBW<br />

TOC<br />

TSS<br />

USF<br />

USGS<br />

WUP<br />

Post, Buckley, Schuh, <strong>and</strong> Jernigan, Inc.<br />

Quality Assurance/ Quality Control<br />

River Kilometer<br />

Submerged Aquatic Vegetation<br />

software system developed by the SAS Institute, Cary, NC.<br />

St<strong>and</strong>ard Operating Procedures<br />

Surface <strong>Water</strong> Monitoring Program<br />

Southwest Florida <strong>Water</strong> Management District<br />

Surface <strong>Water</strong> Improvement <strong>and</strong> Management<br />

<strong>Tampa</strong> Bypass Canal<br />

<strong>Tampa</strong> <strong>Bay</strong> <strong>Water</strong><br />

Total Organic Carbon<br />

Total Suspended Solids<br />

University of South Florida<br />

U.S. Geological Survey<br />

<strong>Water</strong> Use Permit


Page xv<br />

Section i<br />

April 2008<br />

Version 2.1FINAL DRAFT<br />

Definitions<br />

Coordination Review - A review of combined work elements to identify <strong>and</strong> resolve any<br />

conflicts that may exist among the various project elements.<br />

Deliverables - All written <strong>and</strong> electronic documents <strong>and</strong> reports which are products of<br />

professional service, <strong>and</strong> which are identified to be furnished to SWFWMD as permit<br />

conditions <strong>and</strong> within the scope of contract services.<br />

Program Manager- The Program Manager is responsible for communicating <strong>and</strong><br />

enforcing compliance with all provisions of the Project Quality Control Plan.<br />

Project Manager - The project team leader responsible for the overall administration,<br />

management, production coordination. The Project Manager will serve as the primary<br />

point of contact for all project elements with both <strong>Tampa</strong> <strong>Bay</strong> <strong>Water</strong> <strong>and</strong> SWFWMD.<br />

Project Quality Assurance/Quality Control Officer - The Senior Manager with<br />

project-wide responsibility for administering the Quality Assurance <strong>and</strong> Control Plan.<br />

Project Team - Technical <strong>and</strong> support staff <strong>and</strong> sub-consultants responsible for<br />

completion of each HBMP project element <strong>and</strong> tasks as required by <strong>Tampa</strong> <strong>Bay</strong> <strong>Water</strong>.<br />

Team member activities are under the direct supervision <strong>and</strong> direction of the Project<br />

Manager.<br />

QC Review - The process for reviewing <strong>and</strong> correcting work products before they are<br />

released as Final Work or Task Products to <strong>Tampa</strong> <strong>Bay</strong> <strong>Water</strong> (<strong>and</strong>/or subsequently to<br />

SWFWMD).<br />

QC Reviewers - The designated project team member responsible for performing <strong>quality</strong><br />

<strong>control</strong> review associated with tasks in accordance with the Project QA/QC Plan; the QC<br />

Reviewers have the necessary technical knowledge <strong>and</strong> qualifications to serve as the<br />

Lead Technical Professional for the work products being reviewed.<br />

Quality Assurance - Procedures to determine that <strong>quality</strong> <strong>control</strong> is being or has been<br />

performed effectively <strong>and</strong> appropriately.<br />

Quality Assurance/Quality Control Plan - A document that details the activities, staff,<br />

specific methods <strong>and</strong> procedures for each of the data gathering, reduction <strong>and</strong> reporting<br />

element of the HBMP. In addition, this project specific <strong>plan</strong> prescribes specific QA/QC<br />

procedures <strong>and</strong> schedules for each project element.


Page xvi<br />

Section i<br />

April 2008<br />

Version 2.1FINAL DRAFT<br />

Quality Control - Prescribed procedures by which all work elements <strong>and</strong> products are<br />

st<strong>and</strong>ardized (to the greatest extent possible) reviewed <strong>and</strong>, where necessary, brought into<br />

compliance to conform to permit conditions, professional st<strong>and</strong>ards, contractual<br />

obligations, <strong>and</strong> client commitments.<br />

Subconsultant - A firm or individual working under contract to PBS&J to provide<br />

responsible technical services on a project under PBS&J's direction.


Page xvii<br />

Section i<br />

April 2008<br />

Version 2.1FINAL DRAFT<br />

Glossary<br />

Alpha - the reference probability or significance level chosen which <strong>control</strong>s the<br />

probability making a type III error.<br />

Archived Data Set - includes the original version of the raw data set, verified data set<br />

<strong>and</strong> final version of the validated set.<br />

Benthic Macroinvertebrate Epifauna - animals living on the surfaces of sediments,<br />

<strong>plan</strong>ts, or other surfaces.<br />

Benthos - organisms associated with the sediment-water interface.<br />

Data Dictionary -<br />

provides definitions of all variables in the HBMP data base.<br />

Focus Group -the group of representatives of numerous federal, state, <strong>and</strong> local<br />

environmental regulatory <strong>and</strong> resource management agencies, as well as national<br />

<strong>and</strong> local environmental activist organizations who provided input to the HBMP<br />

during public workshops.<br />

Habitat - physical extent of area available, including vegetation, bottom type <strong>and</strong><br />

shoreline characteristics.<br />

Header Record - portion of the data set which contains the information necessary for<br />

linking all data, spatially <strong>and</strong> temporally.<br />

Hypoxia - low dissolved oxygen conditions.<br />

In Situ - under natural conditions; typically refers to measures made in the field as<br />

opposed to in the library.<br />

Indicator - units of measure that describe the status of the statistical populations, or<br />

subpopulations, of interest, usually in response to some environmental factor.<br />

Infauna - animals living within the sediments.<br />

Inset Reporting Unit - a subset of a larger reporting unit in area, but with adequate<br />

samples to be used as a reporting unit alone.<br />

Macroinvertebrate - animals typically retained on 500 micron (>0.5 mm) mesh sieves<br />

Monitoring Element - groups of indicators of environmental change.


Page xviii<br />

Section i<br />

April 2008<br />

Version 2.1FINAL DRAFT<br />

Monitoring Objectives - developed as the first step in the HBMP design process <strong>and</strong><br />

used to pose questions which are meaningful to the public <strong>and</strong> provide the basis<br />

for scientific investigation.<br />

Nonprobabilistic Sampling - alternatives to probability sampling that are not strictly<br />

r<strong>and</strong>om.<br />

Percent Cover - the estimated proportion of a sample quadrat in which a particular<br />

species or taxon.<br />

Population - the aggregate from which the sample is chosen.<br />

Probabilistic Sampling - sampling strategy in which samples are selected through a<br />

r<strong>and</strong>om process <strong>and</strong> each sample receives the appropriate probability of being<br />

sampled.<br />

Raw Data Set - the initial data set compiled following primary data collection <strong>and</strong> initial<br />

<strong>quality</strong> <strong>assurance</strong> checks.<br />

Reporting Unit - the spatial <strong>and</strong> temporal extent of the target population, i.e. that portion<br />

of the study area about which inferences can be made.<br />

Sampling Population - that portion of the total population from which samples are<br />

selected.<br />

Spatial Stratification - allocation of samples to ensure that key sources of spatial<br />

variation within that area are accommodated.<br />

Species Composition - the list of occurring species in a sample; it is the list of species<br />

found in either a sample or a population.<br />

Species Richness - typically refers to the number of species in a sample <strong>and</strong> can be<br />

applied to other taxonomic hierarchies, e.g. taxa richness.<br />

Stratified R<strong>and</strong>om Sampling - common sampling strategy in which r<strong>and</strong>om samples are<br />

taken from subpopulations or strata of the target population.<br />

Stratum - a subpopulation of the target population that results from dividing the sampled<br />

population either spatially or temporally; these strata are non-overlapping <strong>and</strong><br />

together comprise the whole population.<br />

Subpopulation - see stratum.<br />

Target Population - the population about which inferences are to be made or<br />

information is desired.<br />

Temporal Stratification - allocation of samples to ensure that key sources of temporal


Page xix<br />

Section i<br />

April 2008<br />

Version 2.1FINAL DRAFT<br />

variation within that area are accommodated.<br />

Type I Error - rejection of the null hypothesis when it is actually true.<br />

Type II Error - failure to reject the null hypothesis when it is false.<br />

Validated Data Set - final data set resulting from review of the verified data set which<br />

can include cross comparisons between field <strong>and</strong> laboratory data or between<br />

taxonomic experts.<br />

Verified Data Set - a data set resulting from error <strong>and</strong> range checking of the raw data<br />

set.<br />

Zoo<strong>plan</strong>kton - the animal components of the <strong>plan</strong>kton community that are generally<br />

recognized to move passively in the water.


Page 1<br />

Section 1.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

1.0 Introduction<br />

This Quality Assurance/Quality Control Plan (QA/QC Plan) is one of two documents that<br />

describe the sampling protocol for <strong>Tampa</strong> <strong>Bay</strong> <strong>Water</strong>’s Hydrobiological Monitoring<br />

Program (HBMP). The HBMP is required to meet conditions of certain <strong>Water</strong> Use<br />

Permits issued to <strong>Tampa</strong> <strong>Bay</strong> <strong>Water</strong> by the Southwest Florida <strong>Water</strong> Management<br />

District (SWFWMD) for the <strong>Tampa</strong> Bypass Canal/Hillsborough River <strong>and</strong> Alafia River<br />

<strong>Water</strong> Supply Projects. The HBMP monitors conditions in four waterbodies in<br />

Hillsborough County, Florida: 1) the lower Alafia River; 2) the <strong>Tampa</strong> Bypass Canal<br />

(also known as the Palm River); 3) McKay <strong>Bay</strong>; <strong>and</strong> 4) the lower reaches of the<br />

Hillsborough River (below the City of <strong>Tampa</strong> Dam).<br />

In May 1999, <strong>Tampa</strong> <strong>Bay</strong> <strong>Water</strong> selected PBS&J to design <strong>and</strong> implement the HBMP.<br />

A consensus-based process was used to develop the program. This approach created a<br />

coordinated, interactive forum from which critical input was provided by a team of<br />

consultant <strong>and</strong> university experts, as well as representatives of federal, state, <strong>and</strong> local<br />

environmental regulatory <strong>and</strong> resource management agencies, <strong>and</strong> various environmental<br />

organizations. This cooperative body was subsequently designated as the HBMP Focus<br />

Group. The consensus-based process allowed for input into the HBMP design by all<br />

interested parties, resulting in a more robust technical design, <strong>and</strong> an enhanced level of<br />

interagency <strong>and</strong> intergovernmental communication. This group also meets annually to<br />

review data collected <strong>and</strong> potential monitoring program changes.<br />

The HBMP design document, <strong>Tampa</strong> Bypass Canal/Alafia River <strong>Water</strong> Supply Projects<br />

Hydrobiological Monitoring Program – Final Report (PBS&J, 2000), provides an<br />

overview of the design process <strong>and</strong> specifications for the monitoring program. This<br />

QA/QC Plan provides more detailed descriptions of the monitoring program <strong>and</strong> methods<br />

<strong>and</strong> procedures for implementation.<br />

Four separate entities conduct sampling <strong>and</strong> analysis (PBS&J, University of South<br />

Florida (USF), Florida Fish <strong>and</strong> Wildlife Research Institute (FWRI), <strong>and</strong> Terra<br />

Environmental Services, Inc.). Each of these entities has individual QA/QC <strong>plan</strong>s that<br />

are consistent with this Plan <strong>and</strong> are incorporated by reference.<br />

When changes to the HBMP are warranted based on sampling conditions or other<br />

requirements, they are reviewed by the Focus Group <strong>and</strong> approved by the SWFWMD.<br />

The original design document is not modified to reflect these changes, but the QA/QC<br />

Plan is updated as needed to account for modifications to the monitoring program. All<br />

modifications to the initial HBMP design are noted in Appendix A of this QA/QC Plan.<br />

This document is Version 2.1 of the HBMP QA/QC Plan.


1.1 Overview of Quality Assurance/Quality Control Plan<br />

Page 2<br />

Section 1.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

One of the most important aspects of a monitoring program is the development of<br />

project-specific protocols <strong>and</strong> procedures that assure:<br />

• The <strong>quality</strong> of all data collected is both known <strong>and</strong> acceptable;<br />

• All study element methods are documented <strong>and</strong> st<strong>and</strong>ardized (to the greatest extent<br />

possible) to other HBMP data sources so that statistically valid comparisons can be<br />

made among data collected by different project elements;<br />

• Both the accuracy <strong>and</strong> precision of all data sources are known, measured, <strong>and</strong><br />

documented throughout the project to ensure compatibility;<br />

• Known potential sources of error are identified <strong>and</strong> documented; <strong>and</strong><br />

• Procedures are established by which errors are quickly identified <strong>and</strong> corrective<br />

actions taken to minimize data losses (e.g., analyzing laboratory samples quickly so<br />

that questionable sample results can be re-analyzed within designated holding times).<br />

Implementation of this QA/QC Plan will ensure that the project meets these goals. The<br />

QA/QC Plan documents the overall project approach, the rationale behind specific<br />

monitoring elements, the study element objectives, <strong>and</strong> overall project objectives. Items<br />

specific to the HBMP study design that are presented as part of this QA/QC Plan include:<br />

• Site study maps;<br />

• Lists of sampling methods <strong>and</strong> frequencies for all variables to be sampled;<br />

• A detailed, conceptual framework describing all aspects of the monitoring efforts; <strong>and</strong><br />

• Project schedules.<br />

This section briefly outlines some of the most important aspects of components for each<br />

of the HBMP elements included in this QA/QC Plan.<br />

1.2 Regulatory Requirements of HBMP<br />

Development <strong>and</strong> implementation of a set of comprehensive hydrobiological monitoring<br />

programs for the Alafia <strong>and</strong> <strong>Tampa</strong> Bypass Canal <strong>Water</strong> Supply Projects are required as<br />

conditions of approval for <strong>Water</strong> Use Permits 2011794.00 (special conditions 8A <strong>and</strong> 8B)<br />

<strong>and</strong> 2011796.00 (special conditions 10A <strong>and</strong> 10B), respectively. Because of the similar<br />

schedule for development <strong>and</strong> the close proximity of the two water supply projects, the<br />

Southwest Florida <strong>Water</strong> Management District agreed that a single integrated HBMP


Page 3<br />

Section 1.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

could be jointly developed to simultaneously address the permit requirements for both<br />

projects. As specified in the permits, the primary areas within which monitoring <strong>and</strong><br />

evaluation is required include: the lower Alafia River (downstream of Aldermans Ford<br />

Park); the <strong>Tampa</strong> Bypass Canal/Palm River below Structure 160; McKay <strong>Bay</strong>; <strong>and</strong> the<br />

lower reaches of the Hillsborough River from the City of <strong>Tampa</strong> Dam to Upper<br />

Hillsborough <strong>Bay</strong>.<br />

As part of the <strong>Water</strong> Use Permit review process, all applicants must demonstrate that the<br />

proposed withdrawals or water uses:<br />

Will not cause adverse environmental impacts to wetl<strong>and</strong>s, lakes, streams,<br />

estuaries, fish <strong>and</strong> wildlife, or other natural resources (40D-2.301(c)).<br />

The SWFWMD’s Basis for Review for <strong>Water</strong> Use Permit approvals of withdrawals from<br />

natural surface waterbodies also includes the following specific performance st<strong>and</strong>ards:<br />

Flow rates shall not deviate from the normal rate <strong>and</strong> range of fluctuation to the<br />

extent that:<br />

A. <strong>Water</strong> <strong>quality</strong>, vegetation, <strong>and</strong> animal populations are adversely impacted<br />

in streams <strong>and</strong> estuaries;<br />

B. Salinity distributions in tidal streams <strong>and</strong> estuaries are significantly<br />

altered as a result of withdrawals; or<br />

C. Recreational use or aesthetic qualities of the resource are adversely<br />

impacted.<br />

With regard to the <strong>Tampa</strong> Bypass Canal <strong>and</strong> Alafia River <strong>Water</strong> Supply Projects,<br />

reasonable <strong>assurance</strong> that the above cited performance st<strong>and</strong>ards would be met was<br />

provided by <strong>Tampa</strong> <strong>Bay</strong> <strong>Water</strong> during the permit review process. As a condition of<br />

permit approval, however, the SWFWMD subsequently required that HBMPs be<br />

developed <strong>and</strong> implemented to monitor the potential impacts of the projects. Therefore,<br />

this requirement essentially dictates that <strong>Tampa</strong> <strong>Bay</strong> <strong>Water</strong> must demonstrate continued<br />

compliance with the SWFWMD’s performance st<strong>and</strong>ards following the construction <strong>and</strong><br />

operation of the permitted facilities, for the duration of the permit.<br />

Modifications to the WUP for the <strong>Tampa</strong> Bypass Canal <strong>Water</strong> Supply Project were<br />

approved by the SWFWMD in August 2007 (20011796.001). These modifications<br />

increased allowable withdrawal quantities, but did not change conditions related to data<br />

collection for the required HBMP.<br />

1.3 Goals of the HBMP<br />

As required under the SWFWMD’s Basis for Review, the minimum goal of the HBMP is<br />

to generate information at an appropriate scale <strong>and</strong> resolution to determine if the<br />

permitted water supply projects are in compliance with SWFWMD rules. Accordingly,<br />

the programmatic goal of the HBMP was articulated in the design document:


Page 4<br />

Section 1.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

The goal of the HBMP is to ensure that, following the implementation of<br />

the permitted surface water withdrawals, flows in the <strong>Tampa</strong> Bypass<br />

Canal, Hillsborough River <strong>and</strong> Alafia River do not deviate from the<br />

normal rate <strong>and</strong> range of fluctuation to the extent that:<br />

• water <strong>quality</strong>, vegetation, <strong>and</strong> animal populations are adversely<br />

impacted in streams <strong>and</strong> estuaries;<br />

• salinity distributions in tidal streams <strong>and</strong> estuaries are significantly<br />

altered as a result of withdrawals; or<br />

• recreational use or aesthetic qualities of the resource are adversely<br />

impacted.<br />

In addition to the above stated goals, the Focus Group recommended programmatic<br />

objectives to address the SWFWMD’s process for evaluating compliance with <strong>Water</strong> Use<br />

Permits. Accordingly, the programmatic objectives of the HBMP were articulated by the<br />

Focus Group as follows:<br />

The objectives of the HBMP are to:<br />

• document existing conditions in the potentially affected waterbodies;<br />

• enable the detection of changed conditions in the potentially affected<br />

waterbodies;<br />

• determine if the detected changed conditions are attributable to<br />

reductions in freshwater inflows;<br />

• provide a scientifically defensible means to evaluate whether the<br />

permitted surface water withdrawals are causing or significantly<br />

contributing to the detected changed conditions;<br />

• determine whether the detected changed conditions constitute, or<br />

could result in, unacceptable adverse impacts; <strong>and</strong><br />

• recommend appropriate management actions or operational changes<br />

designed to eliminate or mitigate unacceptable adverse impacts, if they<br />

occur or are expected to occur.<br />

As reflected in these objectives, the overall purpose <strong>and</strong> scope of the HBMP extend<br />

beyond just data acquisition, analysis <strong>and</strong> reporting. The HBMP also incorporates<br />

programmatic criteria that have been designed to ensure that the permitted withdrawals<br />

do not result in violations of SWFWMD rules throughout the lifetime of the permits.<br />

1.4 HBMP Scope<br />

1.4.1 Reporting Units<br />

The Focus Group concluded that any potential impacts from the permitted surface water<br />

withdrawals would likely first be manifested in the river systems where surface water<br />

withdrawals will take place, <strong>and</strong> possibly Hillsborough <strong>Bay</strong>. Therefore, the potentially<br />

affected waterbodies were defined to include: the lower reaches of the Alafia River (AR);


Page 5<br />

Section 1.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

the <strong>Tampa</strong> Bypass Canal/Palm River (PR); McKay <strong>Bay</strong> (M); <strong>and</strong> the tidal or lower<br />

Hillsborough River (HR). These geographic areas of concern, or study areas, were<br />

subsequently termed as reporting units. Table 1.1 lists the reporting units <strong>and</strong> their<br />

respective geographic boundaries. Figure 1.1 shows the location <strong>and</strong> extent of each of<br />

the reporting units.<br />

In addition, the Focus Group concluded that Hillsborough <strong>Bay</strong> proper could be<br />

potentially affected by the permitted water supply projects, but that potential impacts<br />

related to withdrawals should be detected first in the rivers themselves, <strong>and</strong> that the<br />

Environmental Protection Commission of Hillsborough County (EPCHC) <strong>and</strong> the Florida<br />

Fish <strong>and</strong> Wildlife Research Institute (FWRI) have programs in place to monitor changes<br />

in Hillsborough <strong>Bay</strong>. Data currently being collected in Hillsborough <strong>Bay</strong> include water<br />

<strong>quality</strong> <strong>and</strong> benthos (EPCHC) <strong>and</strong> fish (FWRI).<br />

1.4.2 Indicators<br />

The HBMP defines three monitoring program elements including hydrology/water<br />

<strong>quality</strong>, biota, <strong>and</strong> habitat/vegetation. For each program element, a list of critical<br />

indicators was specified. Indicators are units of measure that describe the status of the<br />

statistical populations or subpopulations of interest, usually in response to some<br />

environmental stressor. Table 1.2 below lists the critical indicators identified for each of<br />

the HBMP elements, <strong>and</strong> their application to the four primary reporting units. Due to<br />

structural <strong>and</strong> hydrobiological differences among the four primary reporting units, the list<br />

of critical indicators adopted for each varies somewhat. For example, color was<br />

considered important for the TBC/Palm River, McKay <strong>Bay</strong>, <strong>and</strong> the lower Alafia River,<br />

but not for the lower Hillsborough River.<br />

1.4.3 Sampling Design<br />

Two sampling designs were considered for application on the HBMP: probability<br />

sampling, <strong>and</strong> non-probability sampling. Probability sampling requires that each possible<br />

sample has a known <strong>and</strong> equal probability of selection, <strong>and</strong> the places <strong>and</strong>/or times to be<br />

sampled are selected using a r<strong>and</strong>om process. Employing this approach requires a<br />

definition of the set of distinct samples that the program is capable of collecting with<br />

respect to a specific population. Non-probability sampling, on the other h<strong>and</strong>, typically<br />

involves sampling a restricted portion of a population that is readily accessible (e.g., fixed<br />

station sampling of salinity from a bridge), or the selection of “typical” or<br />

“representative” sample units that are close to the samplers perception of the average of<br />

the target population (e.g., sampling only in the middle of a river channel to the exclusion<br />

of the channel sides).<br />

A probability sampling approach allows for inferences to be drawn about the target<br />

populations (e.g., fish abundance in the lower Alafia River), as well as a variety of<br />

subpopulations (e.g., fish abundance in a particular segment of the lower Alafia River,<br />

during a particular season) if those subpopulations, or strata, are designed into the


Page 6<br />

Section 1.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

sampling approach. For practical purposes, strata refer to spatial <strong>and</strong>/or temporal<br />

partitions across which the sampling effort is distributed in order to characterize<br />

subpopulations. The use of strata within a sampling design enhances the power to detect<br />

differences because it optimizes the design based on the natural variability of the<br />

indicators being measured. Incorporating strata into the sampling design, <strong>and</strong> r<strong>and</strong>omly<br />

selecting sampling locations across the various strata is referred to as a stratified r<strong>and</strong>om<br />

sampling approach.<br />

The Focus Group considered the ability to characterize the status of, <strong>and</strong> draw inferences<br />

about, the various critical indicators in particular reporting units, during particular time<br />

periods, to be critical to evaluating potential impacts. Therefore, after considering the<br />

merits of both probability <strong>and</strong> non-probability sampling designs, it was concluded that a<br />

probability-based design was best suited to meet most of the programmatic goals <strong>and</strong><br />

objectives of the HBMP. A probability-based sampling design was considered to be most<br />

appropriate for discerning spatial <strong>and</strong> temporal variability in the abundance <strong>and</strong><br />

distribution of water <strong>quality</strong> constituents (e.g., salinity, dissolved oxygen) <strong>and</strong> biological<br />

populations (e.g., benthos, <strong>plan</strong>kton, fish) within the potentially affected waterbodies. It<br />

should be noted, however, that certain other data needs were identified that could best be<br />

addressed using a non-probability sampling approach (e.g., fixed station measurements of<br />

water level <strong>and</strong> bird populations).<br />

The theory of stratified sampling deals with properties of population estimates derived<br />

from stratified samples, <strong>and</strong> with the optimal number of samples needed to obtain a level<br />

of precision <strong>and</strong> statistical power adequate to meet defined monitoring objectives. In<br />

consideration of these factors, a spatial <strong>and</strong> temporal stratification scheme for the primary<br />

reporting units was adopted, <strong>and</strong> the minimum number of samples needed to estimate the<br />

status of the various indicators within the defined spatial <strong>and</strong> temporal strata of interest<br />

was determined.<br />

1.4.4 Monitoring Objectives<br />

Once the reporting units <strong>and</strong> critical indicators were defined, <strong>and</strong> the sampling design<br />

was determined, specific monitoring objectives for each of the three HBMP elements<br />

were articulated <strong>and</strong> adopted by the HBMP, as listed below:<br />

Hydrology/<strong>Water</strong> Quality<br />

• Estimate the daily freshwater inflows, freshwater withdrawals, <strong>and</strong><br />

water levels in each reporting unit.<br />

• Estimate the distribution of water <strong>quality</strong> indicators by reporting unit<br />

on an appropriate temporal basis.<br />

Estimates of freshwater inflows <strong>and</strong> withdrawals, <strong>and</strong> water levels, are to be made on a<br />

daily basis. The temporal basis is consistent for all water <strong>quality</strong> indicators; however, the<br />

temporal basis differs among the spatial reporting units. All reporting units have


Page 7<br />

Section 1.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

adequate sample size to ensure both annual <strong>and</strong> seasonal estimates of water <strong>quality</strong><br />

conditions.<br />

Biota<br />

• Estimate by reporting unit on an appropriate temporal basis, the<br />

species composition (to the lowest practical identifiable level), <strong>and</strong><br />

abundance <strong>and</strong> distribution of:<br />

o juvenile <strong>and</strong> adult fishes;<br />

o benthic macroinvertebrate infauna <strong>and</strong> epifauna; <strong>and</strong><br />

o ichthyo<strong>plan</strong>kton <strong>and</strong> other macrozoo<strong>plan</strong>kton.<br />

• Estimate the species composition (to the lowest practical identifiable<br />

level) <strong>and</strong> abundance of water-dependent birds at the Alafia Banks on<br />

an appropriate temporal basis.<br />

As with water <strong>quality</strong>, the temporal basis is consistent for all biotic indicators, however,<br />

the temporal basis differs among the spatial reporting units. All reporting units have<br />

adequate sample size to ensure both annual <strong>and</strong> seasonal estimates of biotic conditions in<br />

all reporting units.<br />

Habitat/Vegetation<br />

• Vegetation<br />

o Estimate the areal extent <strong>and</strong> upstream/downstream limits of,<br />

emergent vegetation communities by reporting unit on a 5-year<br />

basis.<br />

o Estimate species composition <strong>and</strong> relative abundance of<br />

submerged aquatic vegetation communities in the Alafia River<br />

on a 5-year basis.<br />

o Monitor species composition <strong>and</strong> relative abundance of<br />

emergent vegetation in fixed locations on the Alafia River on<br />

an annual basis.<br />

• Estimate the distribution of sediment grain size <strong>and</strong> sediment total<br />

organic matter by reporting unit on an appropriate temporal basis<br />

(derived from benthic sampling program).<br />

The temporal basis is consistent for all habitat indicators across all spatial reporting units.<br />

All reporting units have adequate sample size to ensure annual estimates of habitat<br />

conditions.<br />

1.4.5 Baseline Conditions<br />

The assessment of data collected by the HBMP focuses on detecting differences or trends<br />

in the status of critical indicators within the delineated reporting units relative to changes<br />

in freshwater flow attributable to the surface water projects. As such, an assessment of<br />

trends or change will rely upon the definition of a defensible <strong>and</strong> meaningful baseline<br />

against which future conditions will be compared.


Page 8<br />

Section 1.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

The Focus Group discussed the alternatives to defining baseline conditions. There are two<br />

basic sources of data available to define baseline conditions. The data collected under the<br />

proposed HBMP during the pre-operational period will be the most applicable data for<br />

comparison, given they will have been collected using the same design <strong>and</strong> protocols<br />

employed in the post-operational period. However, there are two drawbacks to solely<br />

using these data. First, the influence of inter- <strong>and</strong> intra- annual variation in rainfall <strong>and</strong><br />

other meteorological conditions could be such that the pre-operational data are collected<br />

under unusually wet or dry conditions. Secondly, the estimate of inter-annual variability<br />

will be limited due to the short pre-operational period. Therefore, the exclusive use of<br />

pre-operational HBMP data for defining baseline conditions is not technically defensible.<br />

Existing data collected by other monitoring programs for the reporting units are the<br />

second source of data available to define baseline conditions. Clearly, these data provide<br />

a more long-term depiction of conditions, at least for those data that have been collected<br />

over many years or decades. These data are useful for underst<strong>and</strong>ing how variation in<br />

rainfall <strong>and</strong> other meteorological conditions affects environmental conditions in the areas<br />

of concern. However, the existing data are limited in scope. For example, much of the<br />

biological data available for analysis have only been collected during recent years. Also,<br />

much of the geographical areas of concern are not currently sampled. Again, as was<br />

concluded for the pre-operational data collected under the current HBMP, existing data<br />

have limited value for defining baseline conditions.<br />

The HBMP Focus Group, therefore, concluded that the most defensible approach to<br />

defining baseline conditions would entail use of both historical information <strong>and</strong> data<br />

collected from existing monitoring programs, <strong>and</strong> pre-operational data collected as part of<br />

the HBMP.<br />

1.4.6 Determination of Adverse Impact<br />

As mentioned above, the overall scope <strong>and</strong> purpose of the HBMP extend beyond just data<br />

acquisition, analysis <strong>and</strong> reporting. The HBMP also incorporates programmatic criteria<br />

that have been designed to ensure that the permitted withdrawals do not result in<br />

violations of SWFWMD rules throughout the duration of the permits. The HBMP<br />

defines a process by which adverse impact could be determined. This process also<br />

establishes a hierarchy of management actions that could be implemented in response to<br />

detected hydrobiological changes in the reporting units to avoid or minimize the full<br />

realization of an adverse environmental impact resulting from the permitted surface water<br />

withdrawals.<br />

1.4.7 Additional HBMP Information<br />

The HBMP design also addresses several other aspects of a comprehensive monitoring<br />

program including: methods <strong>and</strong> protocols; special studies; data management; data<br />

analysis; <strong>quality</strong> <strong>control</strong>; <strong>and</strong> reporting (see <strong>Tampa</strong> Bypass Canal/Alafia River <strong>Water</strong>


Page 9<br />

Section 1.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Supply Projects Hydrobiological Monitoring Program – Final Report (PBS&J, 2000)).<br />

Results of HBMP monitoring efforts are presented in annual data reports as well as multiyear<br />

interpretive reports submitted to the SWFWMD.<br />

1.5 Statement of Policy<br />

As the prime consultant, PBS&J is responsible for the integration of each of the study<br />

elements that comprise the <strong>Tampa</strong> Bypass Canal/Alafia River HBMP. The overall<br />

success of this complex monitoring effort is ultimately dependent upon the dedication of<br />

each member of the project team to maintaining the highest professional st<strong>and</strong>ards of<br />

<strong>quality</strong>.<br />

The project team members are committed to producing the most accurate <strong>and</strong> precise<br />

results possible. The intended use of this document is to provide strict QA/QC<br />

procedures for each of the project elements. Strict conformance <strong>and</strong> adherence will<br />

provide the basis of st<strong>and</strong>ards for all monitoring <strong>and</strong> sampling activities as well as<br />

provide a reference for evaluating <strong>and</strong> verifying the <strong>quality</strong> <strong>and</strong> validity of all data. The<br />

adoption of the performance st<strong>and</strong>ards contained within this document will ensure strict<br />

conformance with all permit requirements <strong>and</strong> eliminate, or reduce to the greatest extent<br />

possible, the collection of unacceptable data. Strict adherence to the procedures <strong>and</strong><br />

protocols presented in this document will ensure that all data generated are correct,<br />

legally defensible <strong>and</strong> fulfill all regulatory requirements.<br />

The specific project sections of this document are also intended to serve as reference<br />

manuals, training guides, <strong>and</strong> statement of required procedures <strong>and</strong> protocols for each of<br />

the HBMP study elements. Where noted, these specific sections are presented as<br />

supplements to existing, more generic QA/QC documents which have been adopted by<br />

each of the parties responsible for those study elements.<br />

Through the adoption of this QA/QC Plan, all parties have confirmed their commitment<br />

to the collection, analysis, documentation <strong>and</strong> verification of the highest <strong>quality</strong> data<br />

possible. All project team members <strong>and</strong> participants realize that such <strong>quality</strong> is<br />

paramount to all subsequent evaluations <strong>and</strong> statistical implications derived from the<br />

sample data.<br />

1.6 Project Organization <strong>and</strong> Responsibility<br />

This section provides an overview of the integrated approach that will be utilized to<br />

implement QA/QC procedures <strong>and</strong> protocols during all aspects of the HBMP. The<br />

following describes the general goals <strong>and</strong> objectives of this Quality Assurance <strong>and</strong><br />

Control Plan. In subsequent sections of this document, detailed QA/QC criteria are<br />

presented for each of the HBMP project study elements.


Page 10<br />

Section 1.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

• Project Management - an overall organizational chart depicting the structure <strong>and</strong><br />

responsibilities of key staff <strong>and</strong> subconsultants is presented in Figure 1.2.<br />

• Key Professional <strong>and</strong> Technical Staff - Table 1.3 documents the experience,<br />

capabilities, <strong>and</strong> project-specific responsibilities of key members of the project team.<br />

Any significant changes in staff (<strong>and</strong>/or responsibilities) will be documented during<br />

subsequent updates of this document.<br />

• Project Training <strong>and</strong> Review of Procedures - all members of the project team will<br />

undergo both initial training in, as well as periodic reviews, of the purpose, methods,<br />

<strong>and</strong> protocols of data collection <strong>and</strong> <strong>quality</strong> <strong>assurance</strong> for all project elements with<br />

which they are associated. Such training <strong>and</strong> review will emphasize the ongoing need<br />

for strict adherence to all written protocols <strong>and</strong> QA/QC procedures. Written records<br />

of such training <strong>and</strong> reviews will be maintained as part of st<strong>and</strong>ard QA/QC<br />

documentation. These training <strong>and</strong> review procedures are viewed as a key<br />

component necessary to minimize known sources of variability in sample collection<br />

<strong>and</strong> data acquisition.<br />

• Project Quality Control <strong>and</strong> Assurance Officer - The QA/QC Officer should be<br />

provided with maximum independence from the direct supervision of day-to-day<br />

project operations. This individual will actively participate in all aspects of personnel<br />

training <strong>and</strong> data source auditing. It will be the QA Officer’s responsibility to<br />

conduct both scheduled <strong>and</strong> unannounced audits of all project protocols <strong>and</strong><br />

procedures, <strong>and</strong> to prepare reports of all findings <strong>and</strong> document corrective actions<br />

taken.<br />

Dr. Ralph Montgomery, senior scientist with PBS&J, currently serves as the overall<br />

QA/QC Officer of all of the HBMP study elements. The Project QA/QC Officer will<br />

ultimately be responsible for ensuring that all elements of the QA/QC <strong>plan</strong> are both<br />

implemented <strong>and</strong> followed. It is imperative that the individual selected for this<br />

responsibility have extensive experience in all aspects of the types of data collection,<br />

analysis, h<strong>and</strong>ling <strong>and</strong> reduction that will be conducted as part of these HBMP study<br />

elements. Dr. Montgomery has over 20 years of experience conducting<br />

environmental <strong>and</strong> water <strong>quality</strong> studies in estuarine systems in southwest Florida. He<br />

has been a QA/QC officer for both field <strong>and</strong> laboratory studies, <strong>and</strong> has prepared<br />

generic <strong>and</strong> site specific QA/QC <strong>plan</strong>s. In addition, he is currently serving as the<br />

QA/QC Officer for the ongoing HBMP studies being conducted in the Lower Peace<br />

River/Upper Charlotte Harbor estuary for the Peace River/Manasota Regional <strong>Water</strong><br />

Supply Authority.<br />

1.7 Document Organization<br />

This document is divided into a preface <strong>and</strong> eleven sections with associated appendices.


Page 11<br />

Section 1.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Section<br />

i Preface<br />

1.0 Introduction<br />

2.0 Overview of Quality Assurance/Quality Control Plan<br />

3.0 HBMP Sampling Strategies<br />

4.0 Data Quality <strong>and</strong> Management<br />

5.0 <strong>Water</strong> Quality <strong>and</strong> Hydrology<br />

6.0 Benthic Macroinvertebrates<br />

7.0 Adult <strong>and</strong> Juvenile Fish<br />

8.0 Ichthyo<strong>plan</strong>kton <strong>and</strong> Zoo<strong>plan</strong>kton<br />

9.0 <strong>Water</strong>-Dependent Birds<br />

10.0 Vegetation<br />

11.0 References


Page 12<br />

Section 1.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Table 1.1 HBMP strata boundaries in the Alafia River, TBC/Palm River, <strong>and</strong><br />

Hillsborough River reporting units<br />

Stratum<br />

Down-Stream<br />

Limit (km)<br />

Upstream<br />

Limit (km)<br />

Description<br />

AR-1 0 River mouth<br />

AR-2 2.33 Near end of no-wake zone above marina<br />

AR-3 4.67 Approx. 200 m upstream of Alafia Marina<br />

AR-4 7.00 Near utility crossing between I75 & 301<br />

AR-5 9.33 Near sharp bend in Alafia River at mouth of Rice Creek<br />

AR-6 11.67 In straightaway a little over 1 km downstream from Buckhorn Springs<br />

AR-7 14.00 Near Kings Avenue Boat Ramp<br />

AR-7 18.50 Approx. 200 m upstream of Bell Shoals Road<br />

PR-1 2.20 River mouth where northern bank meets natural McKay <strong>Bay</strong> shoreline<br />

PR-2 3.95 Approx. 200 m upstream of downstream railroad bridge<br />

PR-3 5.69 Near sharp bend in river at 68 St South - between Maydell Drive <strong>and</strong> trailer park<br />

PR-3 7.44 Just downstream of structure S-160 Dam<br />

HR-1 0 Platt Street Bridge<br />

HR-2 2.55 Just downstream of North Blvd. Bridge<br />

HR-3 5.09 Just upstream of Duran Playground (between Columbus & MLK bridges)<br />

HR-4 7.64 Approx. 150 m downstream of Hillsborough Ave. Bridge<br />

HR-5 10.18 Near Epps Park (approx 250 m downstream of Sligh Ave. Bridge)<br />

HR-6 12.73 Just upstream of I275 Bridge at Sulphur Springs<br />

HR-6 16.34 Just downstream of Hillsborough River Dam


Table 1.2 HBMP elements <strong>and</strong> critical indicators by reporting unit<br />

Page 13<br />

Section 1.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

HBMP Element Critical Indicators AR PR MB HR HB<br />

Hydrology/<strong>Water</strong><br />

Quality<br />

Biota<br />

Freshwater Withdrawals X X X<br />

Streamflow X X X<br />

<strong>Water</strong> Level X X X X<br />

Salinity X X X X X<br />

Conductivity X X X X X<br />

Temperature X X X X X<br />

Dissolved Oxygen X X X X X<br />

Secchi Disk Depth X X X X X<br />

Chlorophyll-a X X X X X<br />

Color X X X X<br />

Total Suspended Solids<br />

Ammonium NH4 * * * * *<br />

Nitrate-Nitrite Nitrogen * * * * *<br />

Total Kjeldahl Nitrogen * * * * *<br />

Orthophosphate Phosphorus * * * * *<br />

Total Phosphorus * * * * *<br />

Benthic Macroinvertebrate Infauna X X X X X<br />

Benthic Macroinvertebrate Epifauna X X X X X<br />

Ichthyo<strong>plan</strong>kton <strong>and</strong> Zoo<strong>plan</strong>kton X X X X<br />

Adult <strong>and</strong> Juvenile Fishes X X X X X<br />

<strong>Water</strong>-Dependent Birds<br />

Emergent Aquatic Vegetation X X X X<br />

Submerged Aquatic Vegetation<br />

Vegetation/Habitat Sediment Grain Size X X X X<br />

Sediment Organic Matter X X X X<br />

*These non-HBMP parameters are sampled as part of other <strong>Tampa</strong> <strong>Bay</strong> <strong>Water</strong> projects.<br />

X<br />

X<br />

X


Page 14<br />

Section 1.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Table 1.3 Key PBS&J HBMP Staff<br />

Name<br />

Years<br />

Degrees & Certifications<br />

Relevant<br />

Experience<br />

Anamisis, K. 12 MS Urban & Regional Planning; BS Environmental Science<br />

Davidowicz, T. 16 BS Biology<br />

Jordan, J. 1 BS Marine Science<br />

Latham, P. 21 PhD Ecology & Environmental Science; MS & BS Biology<br />

Maki, K. 10 MS Marine Science; BS Zoology/Environmental Science<br />

Mann, T. 3 BS Environmental Science &Policy<br />

Montgomery, R. 30 PhD Biology; BS Biology/Zoology,<br />

Robison, D. 27 MS Marine Science; BS Environmental Science; Professional Wetl<strong>and</strong>s<br />

Scientist<br />

Willis, A. 6 MPA Environmental Science <strong>and</strong> Policy; BS Aquatic Biology<br />

Winter, J. 10 BS Environmental Science<br />

Woithe, R. 19.5 PhD & MS Ecology & Environmental Science; BA Biology; Professional<br />

Wetl<strong>and</strong>s Scientist; Certified Ecologist; Graduate Certificate in Wetl<strong>and</strong>s


Page 15<br />

Section 1.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT


Page 16<br />

Section 1.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

SWFWMD<br />

J. Emery<br />

Resource Regulation<br />

Project Supervision<br />

PBS&J<br />

D. Robison<br />

Senior Staff Oversight<br />

<strong>Tampa</strong> <strong>Bay</strong> <strong>Water</strong><br />

R. McConnell<br />

Project Manager<br />

Project Management<br />

PBS&J<br />

B. Woithe<br />

Project Manager<br />

Figure 1.2<br />

Organizational Chart<br />

<strong>Tampa</strong> Bypass Canal / Alafia River<br />

Hydrobiological Monitoring<br />

Program Implementation<br />

Quality Assurance & Control<br />

PBS&J<br />

R. Montgomery<br />

QA/QC Officer<br />

Data Management<br />

PBS&J<br />

K. Maki<br />

Data Base Manager<br />

<strong>Water</strong> Quality &<br />

Hydrology<br />

PBS&J<br />

B. Woithe<br />

R. Montgomery<br />

Benthic<br />

Macroinvertebrates<br />

PBS&J<br />

B. Woithe<br />

Adult <strong>and</strong> Juvenile<br />

Fishes<br />

FWRI<br />

T. MacDonald<br />

Ichthyo<strong>plan</strong>kton <strong>and</strong><br />

Zoo<strong>plan</strong>kton<br />

USF<br />

E. Peebles<br />

<strong>Water</strong>-Dependent<br />

Birds<br />

PBS&J<br />

T. Davidowicz<br />

Aquatic Vegetation<br />

PBS&J<br />

B. Woithe<br />

Chemistry<br />

Southern Analytical<br />

Laboratories<br />

P. De Andino<br />

Benthic Taxonomy<br />

Terra Environmental<br />

Services, Inc.<br />

B. Barber<br />

Sediment Analysis<br />

Mote Marine Laboratory


Page 1<br />

Section 2.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

2.0 Overview of Quality Assurance/Quality Control Plan<br />

This section provides a general overview of the Quality Assurance/Quality Control Plan<br />

(QA/QC Plan) <strong>and</strong> its implementation. Sections 2.1 through 2.11 describe general<br />

QA/QC concepts for field sampling <strong>and</strong> sample analysis. Sections 2.12 <strong>and</strong> 2.13 describe<br />

general QA/QC concepts for data management <strong>and</strong> data analysis.<br />

2.1 Sampling Procedures <strong>and</strong> Protocols<br />

One of the primary functions of this QA/QC Plan is the establishment of St<strong>and</strong>ard<br />

Operating Procedures (SOPs) for all field sampling <strong>and</strong> laboratory protocols employed<br />

during the collection <strong>and</strong> analysis of data under each of the HBMP study elements. The<br />

protocols <strong>and</strong> procedures for each HBMP task are presented in Sections 3.0 through 10.0<br />

of this document.<br />

To the greatest extent possible, these procedures have been developed to conform to<br />

those currently used by agencies collecting similar data in the <strong>Tampa</strong> <strong>Bay</strong> estuarine<br />

system. Subsequent revisions of this document will address any changes in these<br />

procedures that may be made during the course of the programs. Potential differences in<br />

detection limits, accuracy, <strong>and</strong> precision of the resulting data that may result from any<br />

such changes will be specifically addressed.<br />

General topics within SOPs for individual HBMP elements may include:<br />

• Detailed specific procedures <strong>and</strong> protocols (physical, chemical, biological);<br />

• Specific use <strong>and</strong> types of field <strong>and</strong> laboratory equipment;<br />

• Sampling techniques for the measurement of ambient physical/chemical parameters;<br />

• Use of automated samplers <strong>and</strong> recorders (hydrological <strong>and</strong> meteorological);<br />

• Sampling of biological communities <strong>and</strong> sample analysis;<br />

• Field, equipment, <strong>and</strong> laboratory duplicates <strong>and</strong> blanks;<br />

• Decontamination, cleaning, <strong>and</strong> maintenance of field equipment;<br />

• Use of split sampling; <strong>and</strong><br />

• Preservation <strong>and</strong> holding times.<br />

Each section also includes those figures, diagrams, <strong>and</strong> forms needed to provide reference<br />

guides for each of the HBMP study elements. Other general topics are included within<br />

each of these sections as appropriate.<br />

2.2 Sample Custody <strong>and</strong> Documentation<br />

All data collected as part of the HBMP must have verifiable trails of documentation for<br />

each step in their progress, from the time of sample collection through analysis <strong>and</strong> final<br />

reporting <strong>and</strong> archiving. The purpose of sample custody is to provide a clear, traceable


Page 2<br />

Section 2.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

description of a sample’s history <strong>and</strong> to identify the parties responsible for each step in<br />

the process of data collection <strong>and</strong> analysis. Both originals <strong>and</strong> copies of all field <strong>and</strong><br />

laboratory sheets <strong>and</strong> tracking records must be maintained in project files. In each of the<br />

following sections, procedures specific to each sampling effort are established. Specific<br />

protocols addressed in these sections include:<br />

• Documenting the preparation, use, <strong>and</strong> maintenance of all field sampling equipment;<br />

• Field records from all sampling efforts <strong>and</strong> data acquisition;<br />

• Sample custody, transport, tracking <strong>and</strong> other documentation;<br />

• Chain-of-custody records;<br />

• Sample security, accessibility, <strong>and</strong> storage;<br />

• Electronic records;<br />

• Security <strong>and</strong> electronic transfer of data; <strong>and</strong><br />

• Data documentation <strong>and</strong> verification.<br />

The following sections of the QA/QC Plan include detailed documentation appropriate<br />

for each of the above items, <strong>and</strong> address the customized forms required for each of the<br />

specific types of data gathered as part of the HBMP study elements.<br />

2.3 Analytical Procedures<br />

As previously stated, all methods utilized as part of the HBMP conform to the greatest<br />

extent possible with procedures currently being used by agencies <strong>and</strong> investigators<br />

collecting similar data in the <strong>Tampa</strong> <strong>Bay</strong> estuarine system.<br />

• Laboratory – a laboratory certified to analyze each of the required HBMP analytes,<br />

<strong>and</strong> having a currently approved general Laboratory QA/QC Plan must be used to do<br />

all water chemistry analyses. The Laboratory’s QA/QC Plan should, at a minimum,<br />

include specific information regarding:<br />

- Maintenance <strong>and</strong> cleaning of glassware,<br />

- Laboratory reagents <strong>and</strong> storage,<br />

- Cleaning <strong>and</strong> documentation of sampling containers,<br />

- Preservation <strong>and</strong> holding times,<br />

- Transportation <strong>and</strong> shipping,<br />

- Analytical methods by sample matrix,<br />

- Detection limits by sample matrix,<br />

- Analysis of duplicates <strong>and</strong> blanks, <strong>and</strong><br />

- Spike additions <strong>and</strong> recoveries.<br />

• Biological - the HBMP study includes the analysis of several types of biological data<br />

collected in separate monitoring efforts, including the collection of information on<br />

benthic invertebrates, zoo<strong>plan</strong>kton <strong>and</strong> ichthyo<strong>plan</strong>kton, juvenile <strong>and</strong> adult fishes,<br />

vegetation, <strong>and</strong> wading birds. While some of these data will be gathered directly in


Page 3<br />

Section 2.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

the field, other data collection efforts will require considerable laboratory sorting <strong>and</strong><br />

taxonomic identification efforts. Appropriate QA/QC documentation associated with<br />

these efforts should include:<br />

- Protocols for sample splitting <strong>and</strong> sorting,<br />

- Methods of taxonomic identification,<br />

- Use of reference collections,<br />

- Use of voucher specimens (except for birds),<br />

- Methods employed to assure consistency of identification, <strong>and</strong><br />

- Estimation of accuracy (duplication/recounts).<br />

2.4 Targets for Precision, Accuracy <strong>and</strong> Method Detection Limits<br />

As appropriate to each section, tabular forms are presented summarizing the <strong>quality</strong><br />

<strong>assurance</strong> objectives associated with both field <strong>and</strong> laboratory data. Whenever possible,<br />

the values chosen as objectives are based on historical data collected using similar or<br />

identical methods to those used for each of the HBMP study elements. Such specific<br />

HBMP data elements include:<br />

• Field Data Measures<br />

- Hydrology - gaged flow, rainfall, gage height;<br />

- In Situ water <strong>quality</strong> - temperature, specific conductance, pH, dissolved oxygen;<br />

- <strong>Water</strong> Column - Secchi disc, light extinction; <strong>and</strong><br />

- Physical - sampling location, time, date, weather conditions, tide stage.<br />

• Laboratory<br />

- Chemistry – chlorophyll-a, total suspended solids, ammonia/ammonium nitrogen,<br />

nitrite+nitrate nitrogen, total Kjeldahl nitrogen, orthophosphorus, total phosphorus.<br />

• Biological<br />

- Sampling - vegetation, benthic invertebrates, zoo<strong>plan</strong>kton <strong>and</strong> ichthyo<strong>plan</strong>kton,<br />

juvenile <strong>and</strong> adult fishes.<br />

- Taxonomic identification - vegetation, benthic invertebrate, juvenile fishes, adult<br />

fishes.<br />

2.5 Calibration Procedures <strong>and</strong> Frequency<br />

Within the study element protocols developed for the QA/QC Plan are detailed<br />

descriptions for establishing calibration procedures for each piece of analytical equipment<br />

used as part of each HBMP program element. These protocols specify both the<br />

procedures to be used as well as the required frequency of documentation. The specific<br />

elements differ for each piece of field <strong>and</strong> laboratory equipment, but general topics<br />

include:


Page 4<br />

Section 2.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

• The receipt <strong>and</strong> tracking requirements of st<strong>and</strong>ards;<br />

• The preparation <strong>and</strong> storage of st<strong>and</strong>ards;<br />

• Initial calibration requirements;<br />

• Instrument calibration requirements;<br />

• Criteria for continuing calibration; <strong>and</strong><br />

• Documentation <strong>and</strong> records.<br />

2.6 Preventative Maintenance<br />

Thorough preventative maintenance programs are vital components of any successful<br />

QA/QC Plan. Without proper cleaning <strong>and</strong> maintenance, neither field nor laboratory<br />

equipment can be expected to provide accurate, reliable results. The following are<br />

described for each key piece of equipment within the sections of this <strong>plan</strong> describing each<br />

of the HBMP project elements:<br />

• Specific, preventative-maintenance procedures <strong>and</strong> their required frequency;<br />

• Maintenance documentation procedures for each piece of equipment; <strong>and</strong><br />

• Contingency <strong>plan</strong>s (both short <strong>and</strong> long-term).<br />

2.7 Quality Control <strong>and</strong> Assessment of Precision, Accuracy <strong>and</strong><br />

Method Detection<br />

Data <strong>quality</strong> <strong>assurance</strong> for many parameters depends on the use of <strong>quality</strong>-<strong>control</strong> check<br />

samples for both field <strong>and</strong> laboratory analytical procedures. Specific elements typically<br />

include:<br />

• Quality <strong>control</strong> check methods;<br />

• Routines used to assess precision <strong>and</strong> accuracy;<br />

• Method detection <strong>and</strong> practical quantification limits; <strong>and</strong><br />

• Documentation.<br />

Field <strong>quality</strong>-<strong>control</strong> checks are used to confirm the precision of the sampling techniques,<br />

verify the cleanliness of the sampling equipment <strong>and</strong> sampling containers, <strong>and</strong> address<br />

potential effects of sample h<strong>and</strong>ling <strong>and</strong> transportation. Such checks of field equipment<br />

are provided by:<br />

• Field blanks;<br />

• Replicate samples;<br />

• Split samples;<br />

• Equipment blanks; <strong>and</strong><br />

• Trip blanks.


Page 5<br />

Section 2.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Quality <strong>control</strong> checks for laboratory procedures typically utilize the following<br />

methodologies:<br />

• Method reagent blanks;<br />

• Matrix spikes;<br />

• Check samples;<br />

• Duplicate samples; <strong>and</strong><br />

• Continuing calibration st<strong>and</strong>ards.<br />

Biological checks of taxonomic identification may utilize:<br />

• Reference collections;<br />

• Photographic catalogs;<br />

• Verification of identifications by outside experts;<br />

• 10% of samples also counted by second staff member; <strong>and</strong><br />

• 10% of samples counted by outside expert.<br />

2.8 Data Reduction, Validation <strong>and</strong> Storage/Retrieval<br />

Each of the HBMP study elements has somewhat unique requirements that are addressed<br />

in each specific section. General considerations include:<br />

• Data Reduction - Physical, in situ data can be directly read from most field<br />

instrumentation without the need for calculation routines. Examples would be the<br />

automated temperature compensation by st<strong>and</strong>ard multiprobe meters of pH, specific<br />

conductance <strong>and</strong> dissolved oxygen. By comparison, laboratory analytical methods<br />

are generally based on multi-point st<strong>and</strong>ard curves <strong>and</strong> require significant calculations<br />

to determine appropriate sample-parameter concentrations. In both instances, the<br />

QA/QC protocols within each of the following sections require specific<br />

documentation of all raw data; including how <strong>and</strong> by whom the raw data were<br />

recorded; <strong>and</strong> how <strong>and</strong> by whom any subsequent calculations were made. All field<br />

entries should be: 1) made with waterproof ink; 2) be in waterproof notebooks; <strong>and</strong> 3)<br />

be signed. Any errors should be corrected by crossing a single line through the error,<br />

writing the corrected value <strong>and</strong> then initialing the change.<br />

• Data Validation - In general, there should be at least three levels of responsibility for<br />

checking both raw data entries <strong>and</strong> any subsequent calculations. The first level is the<br />

individual(s) (field technician, chemist, or biologist) who recorded the raw numbers.<br />

It is his/her responsibility to follow all procedures correctly, perform required <strong>quality</strong><br />

<strong>control</strong> checks, <strong>and</strong> report any discrepancies to the QA/QC Officer designated for<br />

each of the HBMP study elements. It is the initial responsibility of these individuals<br />

to check all data entries for transcription <strong>and</strong> other types of errors. All data are to be<br />

checked against expected ranges, <strong>and</strong> any discrepancies resolved in a time frame<br />

conducive to allowing the re-analysis of samples yielding unusual values.


Page 6<br />

Section 2.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Next, a second, similar check of all raw data should be undertaken by the immediate<br />

supervisor <strong>and</strong>/or study element QA/QC Officer. It is this person’s initial<br />

responsibility to investigate <strong>and</strong> determine the cause of any discrepancies. In<br />

addition, it is the supervisor/manager’s responsibility to determine if collected data<br />

fall within observed, historic ranges. The Project Quality Assurance Officer is<br />

ultimately responsible for checking all sample preparation logs, raw data, calculated<br />

values, <strong>and</strong> final databases to assure adherence with project protocols. The Project<br />

QA/QC Officer is also ultimately responsible for checking all calibrations (field <strong>and</strong><br />

laboratory), determining instrument responses, establishing <strong>quality</strong> <strong>control</strong> limits, <strong>and</strong><br />

comparing reported values to similar, historical records. The Project QA/QC Officer<br />

is responsible for presenting all findings to both the Project Manager <strong>and</strong> Project<br />

Director.<br />

• Data Storage <strong>and</strong> Retrieval - Only after final data validation is complete are results<br />

to be entered into the permanent, project databases. All preliminary databases,<br />

(which reflect initial, reported values), any changes to the databases, <strong>and</strong><br />

documentation of who made the changes, <strong>and</strong> the justifications for changes must also<br />

be documented <strong>and</strong> maintained. Permanent record files are to be kept of all field<br />

notebooks, laboratory notebooks, equipment logs (e.g., calibration records), chemist<br />

data logs, strip charts, <strong>and</strong> raw chemistry data files. Backup copies of all records<br />

should also be made <strong>and</strong> kept in a separate location.<br />

2.9 Corrective Action<br />

Corrective action is undertaken when established criteria for specific <strong>quality</strong> <strong>control</strong><br />

measures are not met. Such corrective actions may result from:<br />

• Performance evaluations or system audits;<br />

• Divergent results from split or duplicate samples; or<br />

• Comparative studies of both laboratory <strong>and</strong>/or field data.<br />

Sample results outside historic ranges may also lead to re-analysis of samples <strong>and</strong><br />

subsequent corrective actions. Corrective action elements may include:<br />

• Appropriate modifications of acceptance criteria;<br />

• Increased <strong>quality</strong> <strong>control</strong> measures;<br />

• Identification of problems <strong>and</strong> corrective actions; <strong>and</strong><br />

• Notification <strong>and</strong> documentation.<br />

It is the responsibility of the Project QA/QC Officer to determine if proposed corrective<br />

actions are adequate <strong>and</strong> to document all such actions taken.


Page 7<br />

Section 2.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

2.10 Performance <strong>and</strong> System Audits<br />

Periodic checks <strong>and</strong> reviews of each of the various components of the HBMP program<br />

will be employed to assure compliance with all procedures <strong>and</strong> protocols specified in this<br />

QA/QC Plan. Such QA/QC reviews will not only guarantee compliance with all<br />

prescribed methods, but they will also afford opportunities to discuss potential changes<br />

<strong>and</strong> additions to further reduce potential errors. Based on evaluations of such suggested<br />

changes, updates to this document will be made on an as-needed basis. Minor changes<br />

will be noted as sequential point numbers to the Version Number found in the upper right<br />

h<strong>and</strong> corner of each page. Major reviews <strong>and</strong>/or changes in sections of this document<br />

will be tracked using major version numbers (i.e., Version 1.2 updated to Version 2.1).<br />

Performance audits are an essential element of any QA/QC Plan. Both field <strong>and</strong><br />

laboratory audits will be conducted to determine <strong>and</strong> measure compliance with all aspects<br />

of this QA/QC Plan. In addition, performance audits will be used to evaluate the <strong>quality</strong><br />

of project data with respect to established limits <strong>and</strong> st<strong>and</strong>ards. Appropriate topics are<br />

further discussed as part of the HBMP study element specific protocols presented in<br />

Sections 3.0 through 10.0. Topics include:<br />

• Field audits;<br />

• Laboratory audits; <strong>and</strong><br />

• Control procedures.<br />

2.11 Quality Assurance Reporting<br />

The Project QA/QC officer shall keep detailed records of all HBMP data-related issues<br />

identified, especially problems resulting in either significant or repeated corrective<br />

actions, the findings of performance <strong>and</strong> system audits, <strong>and</strong> internal procedural reviews.<br />

<strong>Tampa</strong> <strong>Bay</strong> <strong>Water</strong> will be notified immediately of any substantial issues affecting data<br />

<strong>quality</strong> or usability. All other review, audit, <strong>and</strong> corrective action records will be made<br />

available to <strong>Tampa</strong> <strong>Bay</strong> <strong>Water</strong> <strong>and</strong> SWFWMD upon request.<br />

2.12 Reporting <strong>and</strong> Analysis<br />

The scope of this QA/QC Plan is to establish <strong>and</strong> define specific goals, objectives,<br />

methods, processes, project staff, organization, <strong>and</strong> QA/QC requirements that will be met<br />

during the development <strong>and</strong> execution of the HBMP required under SWFWMD’s <strong>Water</strong><br />

Use Permits (WUP). Specific elements within this QA/QC Plan may be updated as<br />

necessary, with the concurrence of <strong>Tampa</strong> <strong>Bay</strong> <strong>Water</strong>’s (<strong>and</strong> SWFWMD’s) Project<br />

Manager, as the project proceeds.<br />

This QA/QC Plan contains the following elements:


Page 8<br />

Section 2.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

• General information for each of the HBMP project elements, including background<br />

information with regard to expectations, goals <strong>and</strong> objectives<br />

• A list <strong>and</strong> description of each task <strong>and</strong> key milestones<br />

• A list <strong>and</strong> description of deliverables required for each project element<br />

• Project schedules for completion of specific programs tasks<br />

• Staffing, by name, for each project element<br />

• A schedule for specific QA/QC review<br />

• Communication procedures, including <strong>Tampa</strong> <strong>Bay</strong> <strong>Water</strong> contact information <strong>and</strong><br />

provisions for progress reports<br />

• Document <strong>and</strong> record specifications identifying document status, archive <strong>and</strong><br />

recording procedures<br />

2.13 The General Process of Quality Control <strong>and</strong> Assurance<br />

This QA/QC Plan will have as one of its basic primary tenets the requirement that at least<br />

two responsible <strong>and</strong> qualified members of the project team review <strong>and</strong> agree on the<br />

correctness of each Project Document, or any other deliverable, before its release to<br />

<strong>Tampa</strong> <strong>Bay</strong> <strong>Water</strong> as a final work product. To accomplish this, specific Quality<br />

Control/Assurance reviews <strong>and</strong> verifications will take place as follows:<br />

• The project Quality Control Officer will be responsible for compliance of the<br />

elements within this QA/QC Plan. Within this <strong>plan</strong> are designated the Lead<br />

Technical Professionals <strong>and</strong> QA/QC Reviewers according to the technical<br />

requirements of the project. Major scheduled reviews are specifically identified as<br />

work tasks. Any additional review that may be needed during the duration of each<br />

project element will be integrated into the overall project schedule with the<br />

concurrence of <strong>Tampa</strong> <strong>Bay</strong> <strong>Water</strong>.<br />

• This QA/QC Plan will be presented to <strong>Tampa</strong> <strong>Bay</strong> <strong>Water</strong>’s Project Manager <strong>and</strong><br />

discussed with appropriate members of the project team <strong>and</strong> SWFWMD.<br />

• As work progresses on each of the defined Project Tasks, the Quality Control<br />

Reviewers will work as integral members of the project team under the direction of<br />

the Project Manager. The Project Manager <strong>and</strong> Quality Assurance Officer will<br />

ultimately be responsible for seeing that all elements within the Project Quality<br />

Control Plan are met.<br />

• During the review process of each deliverable, it will be the responsibility of the Lead<br />

Technical Professional responsible for completion of that Task to assemble all<br />

documents necessary for the QA/QC reviewers, <strong>and</strong> deliver them to the Project<br />

Manager.<br />

• Upon completion of the Quality Control reviews, the Project Manager, Quality<br />

Control Officer <strong>and</strong> Lead Technical Professionals will perform a coordinated review


Page 9<br />

Section 2.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

to determine that the work products for each specific task required for each project<br />

element are compatible, complete <strong>and</strong> meet both the SWFWMD’s permit<br />

requirements <strong>and</strong> the commitments under <strong>Tampa</strong> <strong>Bay</strong> <strong>Water</strong>’s contract.<br />

• Before release of deliverables to <strong>Tampa</strong> <strong>Bay</strong> <strong>Water</strong>, the Project Manager <strong>and</strong> Quality<br />

Control Officer will be responsible for determining that all steps within the required<br />

Quality Control Procedures have been accomplished. Only after this Quality<br />

Assurance Verification will deliverables be submitted to <strong>Tampa</strong> <strong>Bay</strong> <strong>Water</strong>. Under<br />

extenuating circumstances, such as direct requests by authorized <strong>Tampa</strong> <strong>Bay</strong> <strong>Water</strong><br />

staff, “Draft” documents which have not completed this internal review process will<br />

be released “For Information Only.”<br />

• Quality Control <strong>and</strong> Assurance documentation, which is developed during the review<br />

process, will be properly recorded <strong>and</strong> filed in the Project files in order to<br />

demonstrate that the requirements of this document have been met.<br />

Quality Assurance <strong>and</strong> Control elements within this <strong>plan</strong>:<br />

• Specify the requirements for each subconsultant;<br />

• Identify specific milestones <strong>and</strong> Tasks conducted during the HBMP where Quality<br />

Control Reviews will be required;<br />

• Identify the level of detail to be applied on each review;<br />

• Identify the QA/QC Reviewers responsible for each project element, as well as the<br />

Project Manager responsible for verification.<br />

• Specify logs <strong>and</strong> other forms that will be utilized by each of the technical staff<br />

responsible for each project element <strong>and</strong> the project Quality Control Officer for<br />

tracking <strong>and</strong> documenting the Quality Control <strong>and</strong> Assurance procedures. These<br />

forms, logs, <strong>and</strong> reviews will provide documentation <strong>and</strong> chronicle the scope <strong>and</strong><br />

timing of each stage of <strong>quality</strong> <strong>control</strong> <strong>and</strong> review.<br />

2.13.1 Review Procedures <strong>and</strong> Protocols<br />

Work products which fall within Quality Control <strong>and</strong> Assurance Protocols include:<br />

• Calculations<br />

• Results from various Computerized Software<br />

• Written Studies <strong>and</strong> Reports<br />

• Maps <strong>and</strong> Figures developed using GIS <strong>and</strong> other computer software


Page 10<br />

Section 2.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

This QA/QC Plan specifies the review procedures <strong>and</strong> protocols to be used during the<br />

preparation of both Draft <strong>and</strong> Final work products as well as the responsibilities of the<br />

Lead Technical Professionals <strong>and</strong> Reviewers performing such Quality Controls.<br />

Generally, all Project Team reviews will be performed on each work product before it is<br />

used as a further basis for associated elements of the study, <strong>and</strong> prior to submittal to<br />

either <strong>Tampa</strong> <strong>Bay</strong> <strong>Water</strong> or the SWFWMD.<br />

Quality Assurance <strong>and</strong> Control reviews will generally follow a st<strong>and</strong>ardized outlined set<br />

of internal/external procedures. These procedures are purposefully general to afford<br />

sufficient flexibility so they can be applied to the wide range of deliverable documents<br />

<strong>and</strong> work products required by the SWFWMD’s permit conditions for each of the HBMP<br />

Project Tasks. The checklists contained within this document will be utilized on an<br />

initial basis for developing st<strong>and</strong>ardized review protocols (Table 2.1). It is expected that<br />

these initial checklists will be modified as required to meet the needs of <strong>Tampa</strong> <strong>Bay</strong><br />

<strong>Water</strong>, SWFWMD <strong>and</strong> the Project Team.<br />

In each instance, the Quality Control Reviewer(s) will need to know the technical basis<br />

on which the specific deliverable work products have been produced, including: 1) the<br />

project's objectives; 2) constraints; <strong>and</strong> 3) requirements. It will be the responsibility of<br />

each Lead Technical Professional responsible for each HBMP study element to furnish<br />

the reviewer(s) with a complete package of background information with the work<br />

product to be reviewed. This QC review package will include items such as:<br />

• The specific scope of the project element <strong>and</strong> tasks to be reviewed.<br />

• All completed work products.<br />

• Any specific directives from <strong>Tampa</strong> <strong>Bay</strong> <strong>Water</strong> or the SWFWMD regarding the<br />

HBMP study elements as required by the specific permit conditions.<br />

• Criteria, assumptions, technical st<strong>and</strong>ards, codes, etc.<br />

• Exceptions or variances that may have occurred since the initiation of each task <strong>and</strong><br />

documentation of concurrences, as appropriate, by <strong>Tampa</strong> <strong>Bay</strong> <strong>Water</strong> (or the<br />

SWFWMD).<br />

• Applicable data.<br />

• Test computations <strong>and</strong>/or computer model calibrations.<br />

• Alternative analyses <strong>and</strong> selected alternative justification.<br />

• Previous review comments, if any, <strong>and</strong> documentation of substantive changes made<br />

to preceding Draft documents.


Page 11<br />

Section 2.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

2.13.2 St<strong>and</strong>ard Five-Step Quality Assurance <strong>and</strong> Control Review Process<br />

As a general condition, the following five-step process will be used as a basis for<br />

reviewing work products prepared under this QA/QC Plan for work conducted as part of<br />

the HBMP Study Elements.<br />

1. All documents <strong>and</strong> deliverables will be prepared under the direct supervision of the<br />

Lead Technical Professional specified as responsible for each HBMP Study Element.<br />

The document, unattached figures, maps, etc., as well as supporting documentation<br />

will be delivered to the Project Manager by the responsible Lead Technical<br />

Professional for distribution to the Reviewer(s).<br />

2. The Reviewer(s) will mark in “red” (either on hard copy or through the use of<br />

tracking in software programs such as Microsoft Word) those items that may require<br />

correction or additional ex<strong>plan</strong>ation. Marks or comments by the Reviewer(s) should<br />

be clearly distinguished from those of the originator. The Reviewer(s) will then return<br />

the document to the Project Manager for review <strong>and</strong> concurrence with the Lead<br />

Technical Professional.<br />

3. The Lead Technical Professional will indicate concurrence as to changes<br />

recommended by the Reviewer(s). If they cannot initially agree, they resolve the<br />

differences with a third qualified technical resource. Comments determined to be<br />

inappropriate, or not applicable, should be crossed out the by the Lead Technical<br />

Professional <strong>and</strong> Reviewer(s).<br />

4. The agreed-upon changes will then be made, reviewed by the Lead Technical<br />

Professional <strong>and</strong> a clean (revised) document will be sent back to the Project Manager<br />

<strong>and</strong> subsequently to the Reviewer(s) along with the revised (marked up) review<br />

document for verification of changes.<br />

5. The Reviewer(s) verifies by a re-review that the appropriate changes were made to<br />

the document.<br />

2.13.3 Calculations<br />

All calculations used in preparing both raw <strong>and</strong> final data will be reviewed before<br />

proceeding to subsequent steps or stages of a project task that relies on their accuracy.<br />

Such a progressive review of calculations will be used to avoid unnecessary "redos" to<br />

interim <strong>and</strong> final work products that depend on successive calculations or modeled<br />

results.<br />

In general, only accepted, verified software is to be used in technical work, <strong>and</strong> only<br />

under the direction of personnel that are skilled in its use. Only software acceptable to<br />

<strong>Tampa</strong> <strong>Bay</strong> <strong>Water</strong> (<strong>and</strong> the SWFWMD if applicable) will be used on the project. In the


Page 12<br />

Section 2.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

absence of specific acceptance, the program may be used only after sufficient verification<br />

runs have demonstrated the reliability <strong>and</strong> the limitations of the software <strong>and</strong> after the<br />

verification procedure has been documented <strong>and</strong> reviewed.<br />

The technical Reviewer(s) must be knowledgeable about the software's capabilities <strong>and</strong><br />

limitations as well as the technical subject to which the software is applied. The QC<br />

Reviewer must confirm the following:<br />

• The software is either accepted by <strong>Tampa</strong> <strong>Bay</strong> <strong>Water</strong> (<strong>and</strong> the SWFWMD) or the<br />

necessary verification process has been followed, including documentation;<br />

• The software was properly applied;<br />

• The input data were accurate <strong>and</strong> in the format required by the program; <strong>and</strong><br />

• The output meets the test of reasonableness, based on a sufficient number of spot<br />

checks<br />

2.13.4 Documentation<br />

Keeping track of a project’s QA/QC activities <strong>and</strong> properly documenting <strong>and</strong> retaining a<br />

record of these activities is essential to demonstrate compliance with this QA/QC Plan.<br />

This section establishes st<strong>and</strong>ard procedures as minimum st<strong>and</strong>ards for such tracking,<br />

documentation, <strong>and</strong> retention of the documentation.<br />

The Project QA/QC Officer will be responsible for tracking Quality Control <strong>and</strong> Quality<br />

Assurance activities during the completion of this project. A key element during this<br />

process will be confirming that the process is properly documented, <strong>and</strong> compiling <strong>and</strong><br />

retaining the documentation in a central project Quality Control file. During this study,<br />

the QA/QC Officer will be responsible for maintaining a Log of all Quality Assurance<br />

<strong>and</strong> Control Reviews, by Task (Table 2-2) along with a list of actions necessary for<br />

compliance with the Plan (Table 2.3). These ongoing Logs will further provide a record<br />

of the status of all Quality Control Reviews in progress over the project’s duration.<br />

Quality Control files maintained by the QA/QC Officer will include:<br />

• The most current QA/ QC Plan as well as documentation of previous revisions<br />

• Copies of all subconsultant Quality Control Plans <strong>and</strong>/or letters acknowledging<br />

conformance with this document<br />

• Approvals <strong>and</strong> all correspondences with both <strong>Tampa</strong> <strong>Bay</strong> <strong>Water</strong> <strong>and</strong> the SWFWMD<br />

regarding this <strong>plan</strong> <strong>and</strong> all revisions<br />

• A Log depicting the status of QA/QC review procedures


Page 13<br />

Section 2.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

• All completed Quality Control Checklists<br />

• Quality Control <strong>and</strong> Assurance Review comments <strong>and</strong> responses not contained on<br />

reviewed documents<br />

• Any outside Peer Review comments <strong>and</strong> responses not contained on reviewed<br />

documents<br />

• Copies of all Quality Control correspondence<br />

• All additional internal review documentation.<br />

During all work on each task for each HBMP Project Element, <strong>and</strong> subsequent Quality<br />

Control Reviews, the responsible Lead Technical Professionals will compile <strong>and</strong> retain<br />

(file) all relevant technical information pertaining to the work for which they are<br />

responsible. When the five-step Review Process has been completed for each<br />

Deliverable Task Element, the Lead Technical Professional will gather all documents<br />

utilized <strong>and</strong>/or generated by the Reviewer(s) <strong>and</strong> others involved in the process <strong>and</strong><br />

forward such Quality Control Documentation “Package" to the Project QA/QC Officer<br />

for the Quality Control Files. The Project Manager will then:<br />

• Compile all of the Quality Control documentation packages for the project (identified<br />

in the QC Review Log)<br />

• Evaluate documentation for completeness, <strong>and</strong> follow up with the responsible Lead<br />

Technical Professional to correct any noted deficiencies<br />

• Incorporate this information into QC file<br />

Any additional Quality Control documentation arising from further reviews by the<br />

Project Team, <strong>Tampa</strong> <strong>Bay</strong> <strong>Water</strong> <strong>and</strong>/or SWFWMD will be added to this file to create a<br />

complete record of all Project Quality Control <strong>and</strong> Assurance activities.<br />

2.13.5 Outside Peer Review<br />

Peer reviews are a normal element of QA/QC procedures for project elements that<br />

involve unusual complexity, importance, innovative requirements, or other similar<br />

"sensitive" characteristics. In this instance it will be through discussions with <strong>Tampa</strong> <strong>Bay</strong><br />

<strong>Water</strong> <strong>and</strong> the SWFWMD to determine which work products, <strong>and</strong> at what point of<br />

completion, project designs <strong>and</strong>/or completed documents will be submitted for external<br />

review. Under normal circumstances, such Peer Reviews will usually take place after the<br />

st<strong>and</strong>ard Quality Control review processes have been completed <strong>and</strong> the work products<br />

have been submitted to both <strong>Tampa</strong> <strong>Bay</strong> <strong>Water</strong> <strong>and</strong> the SWFWMD. Peer Reviews are


Page 14<br />

Section 2.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

expected to cover all the technical aspects of the project deliverables. Critical reviews are<br />

expected to include examination of typical items, such as:<br />

• Assumptions <strong>and</strong> criteria;<br />

• Judgment, methods, <strong>and</strong> procedures;<br />

• Methodology of analytical alternatives;<br />

• Adequacy <strong>and</strong> accuracy of analyses;<br />

• Design <strong>and</strong> economy of proposed actions; <strong>and</strong><br />

• How well conclusions <strong>and</strong> any recommended actions meet the project objectives.<br />

2.13.6 Reviews by Subconsultants<br />

All subconsultants will be required to have comparable Quality Control systems <strong>and</strong><br />

procedures acceptable to PBS&J, <strong>Tampa</strong> <strong>Bay</strong> <strong>Water</strong> <strong>and</strong> the SWFWMD. If not, the<br />

subconsultants will revise or develop their procedures to be equivalent to those specified<br />

within this document. Subconsultants are to follow the approved procedures, document<br />

their Quality Control activities, <strong>and</strong> make their documentation available to the PBS&J<br />

Project Manager for Quality Assurance verification. If substantially different, copies of<br />

subconsultants’ individual QA/QC Plans will be included as appendices to this QA/QC<br />

Plan. Subconsultants must submit documentation to PBS&J showing that their work was<br />

performed in accordance with the final approved QA/QC Plan.


Page 15<br />

Section 2.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Table 2.1. HBMP Quality Control Checklist – Documents<br />

Project Element: _____________________________________________________<br />

Project Task: _______________________________________________________<br />

QC Review Confirms That:<br />

Criteria<br />

Done<br />

1. The established scope <strong>and</strong> objectives of the Task have been achieved<br />

2. Appropriate technical criteria have been utilized<br />

3. The approach satisfies the expressed goals of the task<br />

4. Appropriate data have been acquired, referenced <strong>and</strong> utilized<br />

5. Data have been properly checked, analyzed <strong>and</strong> interpreted<br />

6. Method <strong>and</strong> procedures used during analytical procedures were appropriate<br />

7. Assumptions were clearly defined <strong>and</strong> appropriate<br />

8. Presented theories are properly supported (<strong>and</strong> potential flaws identified)<br />

9. Reasonable alternatives were investigated <strong>and</strong> weighed<br />

10. Conclusions presented are reasonable, based on sound professional judgment<br />

11. Conclusions are supported by presented lines of evidence<br />

12. The report format meets the criteria established by <strong>Tampa</strong> <strong>Bay</strong> <strong>Water</strong> (<strong>and</strong>/or<br />

SWFWMD)<br />

13. Tables, figures <strong>and</strong> graphics are clearly presented<br />

14. The text is grammatically correct <strong>and</strong> has been checked<br />

15. Calculations, models <strong>and</strong> data inputs have been checked for accuracy<br />

16. Maps <strong>and</strong> other graphics have been checked for accuracy<br />

QC Reviewer: __________________<br />

Date: _______________________


Page 16<br />

Section 2.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Table 2.2. HBMP QA/QC – Project Element Review<br />

Project Element Task:<br />

___________________________________________________________________<br />

Review: Quarterly Semi-Annual Annual Other<br />

Review Of Compliance With SOP Protocols And Procedures:<br />

Findings:<br />

QA/QC Officer: ___________________ Date: _______________________


Page 17<br />

Section 2.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Table 2.3. Hydrobiological Monitoring Program<br />

Quality Assurance/Control – Project Element Review<br />

Project Element Task:<br />

___________________________________________________________________<br />

Review: Quarterly Semi-Annual Annual Other<br />

Actions Necessary for Compliance With SOP Protocols And<br />

Procedures:<br />

Required:<br />

Recommended:<br />

Lead Technical Professional: __________________________<br />

_______________________<br />

QA/QC Officer: __________________________________<br />

___________________________<br />

Date: ____<br />

Date:


Page 1<br />

Section 3.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

3.0 HBMP Sampling Strategies<br />

This section provides an overview of the sampling techniques <strong>and</strong> strategies used in the<br />

HBMP. Sections 3.1 <strong>and</strong> 3.2 discuss the general design of the program. Section 3.3<br />

discusses the indicators used in the program. Section 3.4 describes the geographic<br />

reporting units of the HBMP. Sections 3.5 <strong>and</strong> 3.6 discuss spatial <strong>and</strong> temporal<br />

r<strong>and</strong>omization <strong>and</strong> considerations within the sampling program.<br />

3.1 HBMP Design - General Considerations<br />

Appropriate environmental monitoring programs are critical components of effective<br />

resource management. According to the National Research Council (1990) effective<br />

environmental monitoring:<br />

• Provides the information needed to evaluate the effectiveness of, <strong>and</strong> to appropriately<br />

adjust, resource management actions;<br />

• Provides an early warning system, allowing for lower cost solutions to environmental<br />

problems;<br />

• Contributes to the knowledge of ecosystems <strong>and</strong> how they are affected by human<br />

activity, <strong>and</strong> such knowledge allows for the establishment of priorities for<br />

environmental protection <strong>and</strong> for the assessment of status <strong>and</strong> trends;<br />

• Provides information that helps to answer layperson questions;<br />

• Is essential for the construction, adjustment, <strong>and</strong> verification of quantitative predictive<br />

models, which are an important basis for evaluating, developing, <strong>and</strong> selecting<br />

environmental management strategies;<br />

• Provides resource managers the scientific rationale for setting environmental<br />

st<strong>and</strong>ards; <strong>and</strong><br />

• Determines legal compliance with established environmental st<strong>and</strong>ards <strong>and</strong><br />

conditions as set forth in regulatory programs.<br />

Environmental monitoring programs need to have clearly articulated goals <strong>and</strong> objectives<br />

to minimize data gaps <strong>and</strong> unanswered critical questions. Therefore, monitoring<br />

programs need to be properly designed at the outset, <strong>and</strong> monitoring methods<br />

appropriately applied, if they are to meet the multiple expectations of all those who rely<br />

on the information generated. Even when monitoring programs are technically sound, it<br />

is their overall design <strong>and</strong> institutional context that often limits the usefulness of the


Page 2<br />

Section 3.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

resulting information. The National Research Council (1990) has identified the following<br />

factors for sound program design <strong>and</strong> objective implementation of monitoring programs.<br />

• The goals <strong>and</strong> objectives of the monitoring program must be clearly articulated in<br />

terms that pose questions that are meaningful to the public <strong>and</strong> that provide the basis<br />

for scientific investigation.<br />

• Not only must data be gathered, but attention must also be paid to their management,<br />

synthesis, interpretation, <strong>and</strong> analysis.<br />

• Procedures for <strong>quality</strong> <strong>assurance</strong> are needed, including multiple levels of peer review.<br />

• Well-designed monitoring programs often result in unanswered questions about<br />

environmental processes or human impacts. Therefore, where feasible, supportive<br />

research should be provided.<br />

• Adequate resources are needed not only for data collection but also for detailed<br />

analysis, evaluation, <strong>and</strong> reporting over the long term.<br />

• Programs should be sufficiently flexible to allow for their modification when <strong>and</strong><br />

where changes in conditions or new information suggests the need.<br />

• Provision should be made to ensure that monitoring information is made available to<br />

all interested parties in a form that is useful to them.<br />

3.2 General Design Criteria Associated with HBMP Study Elements<br />

The initial step undertaken in the development of the HBMP was to define those<br />

parameters that were thought to provide the greatest opportunities of detection of any<br />

significant change in each of the potentially affected water bodies. The next step was to<br />

define the geographical areas where data collection should be implemented. It was<br />

agreed that the HBMP sampling design should provide technically sound <strong>and</strong> practical<br />

methods for collecting the data needed to obtain unbiased population, subpopulation, <strong>and</strong><br />

variance estimates.<br />

Unbiased population <strong>and</strong> subpopulation estimates are metrics whose average value,<br />

taken over all possible samples, is equal to the population parameter value of the metric.<br />

In other words, the estimate gives the correct value for some measure of the population.<br />

Here, the term population refers to the totality of individual observations about which<br />

inferences are to be made within a definitely specified sampling area limited in space <strong>and</strong><br />

time. Cochran et al. (1954) point out that the population to be sampled (the sampled<br />

population) should coincide with the population about which inferences are to be drawn<br />

(the target population). Cochran (1977) further states that at times, for reasons of<br />

practicability or convenience, the sampled population is more restricted than the target


Page 3<br />

Section 3.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

population. In such cases, it should be noted that conclusions drawn from the sample<br />

apply to the sampled population. Judgment must be used to determine the extent to<br />

which the conclusions will also apply to the target population. One way in which this<br />

problem can be avoided is to ensure at the design phase that the sampled population is<br />

carefully defined to closely agree with the target population definition.<br />

A subpopulation is a specific portion of the population, defined either in space or time.<br />

For example, the subpopulation may be the shallow portion (defined by some specific<br />

depth) of the waterbody of concern. A subpopulation could also be all measurements<br />

made in a particular season of the year (e.g., wet or dry season subpopulations).<br />

Sampling theory was employed to determine the best design for the HBMP sampling<br />

strategy. There are basically two common types of sampling strategies (Cochran, 1977):<br />

• Probability Sampling - Employing this approach requires a definition of the set of<br />

distinct samples that the sampling program is capable of sampling if applied to a<br />

specific population. Each possible sample must have a known probability of<br />

selection. The samples are selected by a r<strong>and</strong>om process in which each sample<br />

receives its appropriate probability of being selected.<br />

• Nonprobability Sampling - Common approaches include: sampling a restricted<br />

portion of the population that is readily accessible (e.g., fixed station sampling of<br />

salinity from a bridge); haphazard sample selection without conscious <strong>plan</strong>ning; <strong>and</strong> a<br />

selection of “typical” or “representative” sample units that are close to the sampler’s<br />

impression of the average of the target population.<br />

If conditions are sufficient, each of the methods can provide useful results. However, the<br />

only way to verify if an estimate is unbiased is to compare it with the actual population<br />

values or an estimate derived from a probability sampling approach. Even if such a test<br />

comparison demonstrates that the nonprobability sampling estimate is unbiased, this does<br />

not necessarily mean that method will continue to give unbiased results under all<br />

circumstances. For example, future changes in drainage patterns in a watershed may<br />

cause more or less runoff to enter the waterbody of concern at the same points that it<br />

currently enters. Therefore, in this example, checks of the unbiased nature of the<br />

nonprobability sample estimate would have to continue throughout the length of the<br />

monitoring program. A probability sampling approach will yield unbiased estimates<br />

regardless of changing conditions.<br />

Unbiased variance estimates will provide a measure of uncertainty in the population <strong>and</strong><br />

subpopulation estimates. In order to ensure that variance estimates are unbiased, it is<br />

recommended that the sampling design follow the basic rules for probability sampling<br />

<strong>and</strong> variance estimation. Thus, for all elements of the sampling design, at least two<br />

samples must be collected from each subpopulation for which an unbiased estimate of<br />

variance is required, <strong>and</strong> each sampling unit in the subpopulation must have a known,<br />

non-zero probability of inclusion in the sample. In addition, the pairwise inclusion


Page 4<br />

Section 3.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

probabilities of all possible combinations of the two samples must be known <strong>and</strong> nonzero.<br />

Logistical constraints may require that some sampling units have a lower inclusion<br />

probability than others, <strong>and</strong> can be incorporated into the sampling design, if necessary.<br />

The inclusion probabilities used to select sampling units will be specified quantitatively,<br />

introduced as weights in all computations of estimates <strong>and</strong> associated variances, <strong>and</strong><br />

hence allow all estimates to be unbiased.<br />

Given the above conditions, <strong>and</strong> based on the efforts of the HBMP Focus Group, it was<br />

concluded that a probability-based design was best suited to meet the programmatic goals<br />

<strong>and</strong> objectives of the HBMP. It should, however, be noted that several other data needs<br />

were also identified that would not be best addressed using a probability-based approach.<br />

These informational needs will be addressed separately as “special studies” (see HBMP<br />

design document for additional information).<br />

To implement the design approach, a series of decisions must be made regarding the<br />

specifics of the monitoring program design. First, specific monitoring objectives must<br />

be defined. Second, the indicators of the status of the population (or subpopulations)<br />

must be defined. Third, the reporting units must be defined, with respect to both space<br />

<strong>and</strong> time.<br />

The general probability sampling approach will allow inferences to be drawn not only<br />

about the target populations but also a variety of subpopulations. As a general rule of<br />

thumb, if it is desired to draw an inference with regard to a particular subpopulation, then<br />

that subpopulation or stratum should be designed into the overall monitoring <strong>plan</strong><br />

(Summers <strong>and</strong> Maddox, 1999). The use of strata within a sampling design enhances the<br />

power to detect differences because it optimizes the design based on the natural<br />

variability characteristics of the indicators being measured. Cochran (1977) concludes<br />

that incorporating strata into the sampling design, referred to as stratified r<strong>and</strong>om<br />

sampling, is a common <strong>and</strong> indicated technique if:<br />

• Data of known precision are wanted for certain subpopulations, in which case it is<br />

advisable to treat each such subdivision as a “population” in its own right;<br />

• Convenience dictates the use of stratification;<br />

• Sampling problems differ markedly in different parts of the population; <strong>and</strong><br />

• It is desired to increase the precision of estimates of the characteristics of the<br />

population as a whole.


Page 5<br />

Section 3.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

3.3 Indicators<br />

Following the identification of specific measurable monitoring objectives, the next step in<br />

the monitoring design process is the definition of appropriate indicators. Indicators are<br />

units of measure that describe the status of the statistical populations, or subpopulations,<br />

of interest, usually in response to some environmental stressor. The term indicator in<br />

this context is somewhat analogous to the term parameter, as it is applied in<br />

environmental monitoring jargon; however, it is broader in scope.<br />

Indicators can be generally broken down into two classes: 1) desirable indicators; <strong>and</strong> 2)<br />

critical indicators. These two classes are characterized as follows:<br />

3.3.1 Desirable Indicator Criteria<br />

• Sampling Unit Stable - measurements of the response indicator taken at a sampling<br />

unit should be stable over the course of the sampling period.<br />

• Available Method - should have a generally accepted, st<strong>and</strong>ardized method of<br />

measurement that can be applied on a regional scale.<br />

• Historical Record - has a historical database, or a historical database can be generated<br />

from acceptable data sources.<br />

• Retrospective - can be related to past conditions via retrospective analyses.<br />

• Anticipatory - provides an early warning of widespread changes in ecosystem<br />

processes or conditions.<br />

• Cost-Effective - has low incremental cost relative to its information value.<br />

• New Information - provides new information; does not merely duplicate data already<br />

collected by other agencies or investigators.<br />

3.3.2 Critical Indicator Criteria<br />

• Regionally Responsive - must reflect changes in ecosystem conditions <strong>and</strong> respond to<br />

stressors of concern across most resource classes <strong>and</strong> habitats in a region.<br />

• Unambiguously Interpretable - must be related to an assessment endpoint or relative<br />

exposure or habitat variable that forms part of the investigators’ overall conceptual<br />

model of ecological structure <strong>and</strong> function.<br />

• Low Measurement Error - exhibits low measurement error <strong>and</strong> stability of regional<br />

cumulative frequency distribution during the index period.


Page 6<br />

Section 3.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

• Simple Quantification - can be quantified by cost-effective synoptic or automated<br />

monitoring.<br />

• Environmental Impact - sampling must have minimal environmental impact.<br />

• Low Year-to-Year Variability - must have sufficiently low natural inter-annual<br />

variation to detect ecologically significant changes within a reasonable time frame.<br />

It is important to note that, with respect to surface water supply projects, all potentially<br />

applicable response indicators must have either a direct relationship to changes in<br />

freshwater inflows, or an indirect relationship (e.g., center of fish population<br />

distribution). Indicators with a direct relationship to freshwater inflows are typically<br />

physical or chemical in nature (e.g., salinity), <strong>and</strong> respond more or less instantaneously to<br />

changing inflows. Indicators with an indirect relationship to freshwater inflows are<br />

typically biological in nature (e.g., center of fish population distribution), are mediated by<br />

physical <strong>and</strong> chemical changes, <strong>and</strong> generally respond on a slower time scale (e.g., days,<br />

months, <strong>and</strong> seasons).<br />

The HBMP Focus Group deliberated on critical <strong>and</strong> desirable indicators over the course<br />

of several workshops, applied the criteria described above, <strong>and</strong> generated a list of<br />

potential indicators for each of the three identified monitoring elements: hydrology/water<br />

<strong>quality</strong>, biota, <strong>and</strong> habitat. This list was ultimately reduced to a final recommended suite<br />

of critical indicators for each monitoring element that is summarized in the following<br />

subsections.<br />

3.4 Reporting Units<br />

The spatial <strong>and</strong> temporal extents, statistically often referred to as the target population, of<br />

the sampling program were defined during the development of the HBMP. Five annual<br />

reporting units were used to define the spatial <strong>and</strong> temporal extent for each of the<br />

sampling program elements. These spatial reporting units are:<br />

• Lower Hillsborough River – Figure 3.1<br />

• Lower Alafia River – Figures 3.2 <strong>and</strong> 3.3<br />

• Palm River (<strong>Tampa</strong> Bypass Canal) - Figure 3.4<br />

• McKay <strong>Bay</strong> – Figure 3.5<br />

• Hillsborough <strong>Bay</strong> – Figure 3.6<br />

3.4.1 Lower Hillsborough River - The lower Hillsborough River (HR) reporting unit<br />

extends from the mouth of the river at Platt Street to the City of <strong>Tampa</strong> Dam. This<br />

distance in river kilometers is 16.34. This spatial reporting unit was divided into six<br />

strata, five of equal length (2.55 km) below Sulphur Springs, <strong>and</strong> one of 3.61 km in<br />

length from Sulphur Springs upstream to the dam. The river kilometer (km) locations of


Page 7<br />

Section 3.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

the upstream <strong>and</strong> downstream extents of each stratum are indicated in Table 3.1. These<br />

strata will be used for all of the HBMP study elements (i.e., water <strong>quality</strong>, benthos, adult<br />

& juvenile fish, <strong>plan</strong>kton, <strong>and</strong> vegetation). A sampling program summary for this area is<br />

summarized in Table 3.2.<br />

3.4.2 Lower Alafia River - The current lower Alafia River (AR) spatial reporting unit<br />

is about 18.5 kilometers long. The estuarine portion of the river extends from the mouth<br />

to approximately river kilometer 14 (RKm 14). This estuarine portion of the river was<br />

divided into 6 strata of equal length (2.33 km). The remaining 4.5 kilometers of the<br />

reporting unit, from kilometer 14 to kilometer 18.5 slightly upstream of Bell Shoals<br />

Road, is generally considered to be a freshwater system. An additional freshwater<br />

segment, upstream of the intake (stratum AR-8 RKm 18.5 to 21.0) was removed from the<br />

HBMP (see the <strong>Water</strong> Year 2000 Annual Data Report (PBS&J, 2001)). The river<br />

kilometer locations of the strata boundaries are shown in Table 3.3.<br />

These strata will be used for all of the HBMP study elements except benthos <strong>and</strong><br />

vegetation. An insert stratum for benthos sampling was defined in consultation with<br />

Hillsborough County <strong>and</strong> the SWFWMD. This stratum extends approximately 1 km<br />

upstream (river meter 13000) <strong>and</strong> 1 km downstream (river meter 7000) of the freshwater<br />

interface <strong>and</strong> includes stations for portions of strata AR4 <strong>and</strong> AR6 <strong>and</strong> all of AR5. For<br />

the vegetation studies, two transitional areas, i.e., areas at the approximate upstream <strong>and</strong><br />

downstream limits of the center of distribution of black needlerush (Juncus roemerianus)<br />

will be defined as strata. A sampling program summary for this area is summarized in<br />

Table 3.4.<br />

3.4.3 TBC/Palm River - The TBC/Palm River (PR) reporting unit extends from the<br />

mouth upstream to Structure S-160. As indicated in Table 3.5, this spatial reporting unit<br />

is divided into 3 strata of equal length (1.75 km). The river kilometers of the upstream<br />

<strong>and</strong> downstream extents of the strata are shown in Table 3.5.<br />

In addition to these longitudinal strata, it was also recognized that significant variation in<br />

both water <strong>quality</strong> <strong>and</strong> benthos might exist due to differences in depth. Therefore, both<br />

shallow <strong>and</strong> deep water substrata within each longitudinal stratum were defined in the<br />

Palm River for both water <strong>quality</strong> <strong>and</strong> benthos study elements. A sampling program<br />

summary for this area is summarized in Table 3.6.<br />

3.4.4 McKay <strong>Bay</strong> - The McKay <strong>Bay</strong> (MB) reporting unit extends from the 22 nd Street<br />

Causeway to the mouth of the Palm River. This spatial reporting unit was divided into 2<br />

strata: 1) the channel that runs approximately along the centerline of the bay; <strong>and</strong> 2) the<br />

shallow remainder of the bay. The channel portion was further divided into 2 strata of<br />

equal length (1.1 km) as depicted in Table 3.7.<br />

Sample selection for water <strong>quality</strong> <strong>and</strong> benthic sampling locations will be based on a<br />

hexagonal grid framework, similar to that used by the Environmental Protection<br />

Commission of Hillsborough County (EPCHC), except using a finer grid scale of


Page 8<br />

Section 3.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

approximately 0.2 km 2 . These hexagons were then divided into a 1-m 2 grid <strong>and</strong> potential<br />

sample stations established at the 1-m 2 grid nodes. The hexagons, grids, <strong>and</strong> stations<br />

were generated by Janicki Environmental. A sampling program summary for this area is<br />

summarized in Table 3.8.<br />

3.4.5 Hillsborough <strong>Bay</strong> - The HBMP conducts limited sampling in Hillsborough <strong>Bay</strong><br />

proper. HBMP data collection sites are located near the mouth of each primary reporting<br />

unit. In <strong>Water</strong> Year 2005, the Fisheries Independent Monitoring Program of the Fish <strong>and</strong><br />

Wildlife Research Institute (FWRI, formerly FMRI) began HBMP-specific sampling in<br />

Hillsborough <strong>Bay</strong> at the mouth of the Alafia River. The Environmental Protection<br />

Commission of Hillsborough County (EPCHC) <strong>and</strong> the FWRI have long-term monitoring<br />

programs in Hillsborough <strong>Bay</strong> which are independent of the HBMP. Results from these<br />

programs comprise the majority of the data reported by the HBMP for Hillsborough <strong>Bay</strong>.<br />

3.5 Spatial R<strong>and</strong>omization<br />

A r<strong>and</strong>omized method for choosing monthly sampling sites was used for each of the<br />

spatial strata within each reporting unit. The centerlines of the linear reporting units were<br />

generated using an ARCINFO function that interpolates intermediate topographic<br />

contours. The function used the riverbanks as contours <strong>and</strong> interpolated the centerlines as<br />

intermediate contours between the banks. The centerlines were then divided into 1-meter<br />

long segments, <strong>and</strong> each of these was defined as a potential sampling station <strong>and</strong> named<br />

according to its distance from the river mouth <strong>and</strong> the strata in which it was located. The<br />

boundaries of the strata are listed in Table 3.9.<br />

Monthly sampling stations for the linear reporting units are selected by stratum. Each<br />

station in the stratum is assigned a unique, consecutive, whole number. A series of<br />

r<strong>and</strong>om numbers is then created using the SAS ranuni() statement. These r<strong>and</strong>om<br />

numbers are matched with the numbers assigned to the stations, <strong>and</strong> the corresponding<br />

stations are selected. Lists of primary <strong>and</strong> alternate stations by stratum are provided to the<br />

field staff. In the event that a primary station cannot be sampled, field staff must choose<br />

the first alternate station (not the closest station). If an alternate station cannot be<br />

sampled, field staff must choose the next alternate station in the sequence.<br />

A “right,” “left,” or “center” (“shallow right,” “shallow left,” or “deep” in the Palm<br />

River) designation is also chosen in the monthly sample selection process. A “left”<br />

designation instructs the field staff to take a sample on the left 33% of the river (with left<br />

defined as the left side looking upstream). A “center” designation instructs the crew to<br />

sample in the center 33% of the river <strong>and</strong> a “right” designation in the right 33%. The<br />

designations are the same for the Palm River except that the “shallow” stations are<br />

sampled in water less than 2 meters deep. The lateral positions are r<strong>and</strong>omly selected<br />

using the SAS ranuni() statement. Each portion of a river has an equal chance of being<br />

selected for any given station. The depth strata of the Palm River are treated as<br />

substrata. Lateral position is not r<strong>and</strong>omly selected in the deep Palm River substrata.<br />

“Left” or “right” lateral positions are r<strong>and</strong>omly selected in the Palm River shallow strata.


Page 9<br />

Section 3.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Stations for water <strong>quality</strong>, benthos, <strong>and</strong> fish sampling are r<strong>and</strong>omly selected each month.<br />

Stations for ichthyo<strong>plan</strong>kton sampling were r<strong>and</strong>omly selected one time at the beginning<br />

of the program. These ichthyo<strong>plan</strong>kton stations are used every month <strong>and</strong> can be<br />

considered r<strong>and</strong>omly selected, fixed stations.<br />

There are single, fixed, water <strong>quality</strong> sampling stations at the mouths of the Alafia <strong>and</strong><br />

Hillsborough rivers. These roughly correspond to EPCHC fixed stations #8 <strong>and</strong> #52 in<br />

Hillsborough <strong>Bay</strong>. The Alafia fixed station is located at the Green #11 channel marker of<br />

the Alafia River channel. The Hillsborough fixed station is located at the northern Cut D<br />

Range Marker for the Cut D Channel. This marker is located just west of Pendola Point<br />

off Port Sutton.<br />

McKay <strong>Bay</strong> monthly stations are grouped by hexagon or cell. Initially a cell is r<strong>and</strong>omly<br />

selected for sampling. Then the stations (primary <strong>and</strong> alternates) within the selected cell<br />

are selected in a manner consistent with the technique described above for the linear<br />

reporting units. Lists of the primary <strong>and</strong> alternate stations for each selected cell are<br />

provided to the field staff. There is only one primary station in each cell. If that station<br />

cannot be sampled, field staff must select the first alternate station in that cell. If an<br />

alternate station cannot be sampled, crews must select the next alternate station in that<br />

cell. There are no lateral sample station designations in McKay <strong>Bay</strong>.<br />

McKay <strong>Bay</strong> cells are selected using a method weighted for the number of stations in each<br />

cell. Each of the McKay <strong>Bay</strong> cells is the same size, but some of the cells on the edge of<br />

the bay overlap l<strong>and</strong> areas. These overlap areas do not constitute valid stations. McKay<br />

<strong>Bay</strong> cells are selected using a weighted formula in SAS. Each cell is assigned a<br />

sequential percentage of the values from 0 to 1 in accordance with the proportion of the<br />

total stations in McKay <strong>Bay</strong> located in that cell. For instance, if Cell 1 contains 15% of<br />

the total stations it would be assigned values from 0.00001 to 0.15000 in the formula. If<br />

Cell 2 contained 5% of the stations in McKay <strong>Bay</strong>, it would be assigned values from<br />

0.15001 to 0.20000 in the formula. Though the water <strong>quality</strong>, benthos, fish, <strong>and</strong> <strong>plan</strong>kton<br />

efforts may sample the same cell during a given month, a single sampling element is<br />

never sampled twice within one cell in a given month.


Page 10<br />

Section 3.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

3.6 Temporal Strata<br />

Temporal strata are specific to each of the four reporting units. In general, these strata<br />

were defined to ensure that the key within-year sources of variation were taken into<br />

account. Specifically, two sources of within-year variation were considered critical. One<br />

source dealt with the within-year variation in flows due to the seasonal differences in<br />

rainfall. Typically, flows are higher in the normal wet season period (July through<br />

September) when compared to flows observed in the dry season (October through June).<br />

Flows in the months of April <strong>and</strong> May in particular can be extremely low due to<br />

prolonged periods of low rainfall. The second within-year source of expected variation in<br />

flows would be the manifestation of the permitted withdrawal schedules. Since the<br />

withdrawal schedules vary as a function of ambient flow, then the reductions in<br />

freshwater flow due to the withdrawals will not be consistent throughout the year.<br />

Analysis indicates that the potential for the greatest daily withdrawals should occur<br />

during the months of July through September.<br />

Two other sources of temporal variation, tides <strong>and</strong> diel variability, were discussed during<br />

the development of the sampling program but were dropped due to other sampling<br />

criteria <strong>and</strong> constraints.<br />

3.6.1 Lower Hillsborough River - The general temporal sampling strategy for the<br />

lower Hillsborough River ensures that an adequate sample size is available for drawing<br />

inferences about river-wide status on a quarterly basis. A relatively equal sampling effort<br />

is proposed for water <strong>quality</strong>, fish, <strong>and</strong> <strong>plan</strong>kton sampling. By comparison, the benthic<br />

sampling program includes two different sampling intensities. Benthic sampling in both<br />

the wet season (i.e., July through September) <strong>and</strong> in the late dry season (April through<br />

June) is greater than that extended during the periods of October through December <strong>and</strong><br />

January through March. Thus, the Lower Hillsborough River sampling strategy will<br />

allow inferences to be drawn on a quarterly basis for water <strong>quality</strong>, fish, <strong>and</strong> <strong>plan</strong>kton;<br />

<strong>and</strong> on a wet season/dry season basis for benthos.<br />

In addition, continuous monitoring (every 15 minutes) of conductivity will be<br />

implemented at three permanent fixed locations. These stations will provide information<br />

on short responses in water <strong>quality</strong> to changes in freshwater flow. Rainfall <strong>and</strong> flow<br />

measurements will be determined on a daily basis. Vegetation sampling will be limited<br />

to aerial photography <strong>and</strong> shoreline surveys conducted every five years during the month<br />

of October.<br />

3.6.2 Lower Alafia River - The temporal sampling strategy for the lower Alafia River<br />

is very similar to that defined for the lower Hillsborough River. Equal sampling<br />

intensities will be employed across all months for water <strong>quality</strong>, benthos, fish, <strong>and</strong><br />

<strong>plan</strong>kton sampling. The sampling intensity will be sufficient to allow meaningful riverwide<br />

inferences regarding each of these HBMP elements to be drawn on a quarterly<br />

basis. An additional fish sampling effort will occur once annually in the freshwater<br />

stratum.


Page 11<br />

Section 3.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

The HBMP Focus Group recommended that an inset stratum for benthic sampling be<br />

specifically addressed, extending approximately 1 km upstream <strong>and</strong> 1 km downstream of<br />

the freshwater interface based on an analysis of pre-operational water <strong>quality</strong> data.<br />

Benthic sampling in the inset stratum will be sufficiently intense to allow inferences to be<br />

drawn about the status of this stratum during the wet season.<br />

Continuous monitoring (every 15 minutes) of conductivity will be implemented at one<br />

permanent site. In addition, the SWFWMD is currently collecting data from two<br />

additional fixed sites on the Alafia River. These data will provide information on short<br />

responses in water <strong>quality</strong> to changes in freshwater flow. The frequency of rainfall <strong>and</strong><br />

flow measurements will be daily. Vegetation sampling will be limited to aerial<br />

photography <strong>and</strong> shoreline surveys conducted every five years during the month of<br />

October. Emergent aquatic vegetation will be monitored every year in two strata.<br />

Submerged aquatic vegetation is monitored ever five years in two strata.<br />

3.6.3 TBC/Palm River - The temporal sampling strategy for the TBC/Palm River (PR)<br />

focuses on the expected differences in river status that are likely to occur between the wet<br />

<strong>and</strong> dry seasons. Sampling for benthos <strong>and</strong> water <strong>quality</strong> during the wet season, when<br />

mean daily withdrawals will be largest, will be more intense than during the dry season.<br />

To this end, there are two temporal sampling strata for both water <strong>quality</strong> <strong>and</strong> benthos,<br />

with adequate sampling intensity for inferences to be made regarding the status of water<br />

<strong>quality</strong> or benthos in the river for both the wet <strong>and</strong> dry seasons. Equivalent sampling<br />

intensities will be employed across all months of the year for both fish <strong>and</strong> zoo<strong>plan</strong>kton<br />

sampling.<br />

Continuous monitoring (every 15 minutes) of conductivity will be implemented at<br />

Maydell Drive. This monitoring will provide information on short responses in water<br />

<strong>quality</strong> to changes in freshwater flow. The frequency of rainfall <strong>and</strong> flow measurements<br />

will be daily. Vegetation sampling will be limited to aerial photography <strong>and</strong> shoreline<br />

surveys conducted every five years during the month of October.<br />

3.6.4 McKay <strong>Bay</strong> - The temporal sampling strategy for McKay <strong>Bay</strong> closely follows<br />

that for the TBC/Palm River <strong>and</strong> focuses on the expected differences in the status of<br />

McKay <strong>Bay</strong> between the wet <strong>and</strong> dry seasons. Continuous monitoring (every 15<br />

minutes) of conductivity will be implemented at the 22 nd Street Causeway. Sampling of<br />

benthos <strong>and</strong> water <strong>quality</strong> will be more intense during the wet season, when mean daily<br />

withdrawals will be largest. Equivalent sampling intensities are to be employed across all<br />

months for both fish <strong>and</strong> <strong>plan</strong>kton sampling.<br />

The sampling schedule will be based on a temporal r<strong>and</strong>omization around a selected day<br />

within each month. This method will provide estimates of within-temporal stratum<br />

variability, increase the power of any tests of significance, <strong>and</strong> also best represent the<br />

range of antecedent flow conditions observed during this period.


Page 12<br />

Section 3.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Table 3.1 Hillsborough River Strata<br />

Stratum Downstream Limit (km) Upstream Limit (km)<br />

HR 1 0 2.55<br />

HR 2 2.55 5.09<br />

HR 3 5.09 7.64<br />

HR 4 7.64 10.18<br />

HR 5 10.18 12.73<br />

HR 6 12.73 16.20


Page 13<br />

Section 3.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Table 3.2 Sampling program summary for the lower Hillsborough River reporting unit.<br />

Element<br />

Spatial Strata<br />

Month<br />

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec.<br />

Total<br />

<strong>Water</strong><br />

Quality<br />

6 strata<br />

1 fixed bay<br />

station<br />

1/stratum<br />

1/station<br />

1/stratum<br />

1/station<br />

1/stratum<br />

1/station<br />

1/stratum<br />

1/station<br />

1/stratum<br />

1/station<br />

1/stratum<br />

1/station<br />

1/stratum<br />

1/station<br />

1/stratum<br />

1/station<br />

1/stratum<br />

1/station<br />

1/stratum<br />

1/station<br />

1/stratum<br />

1/station<br />

1/stratum<br />

1/station<br />

72<br />

12<br />

Benthos 6 strata 2/stratum 2/stratum 2/stratum 2/stratum 2/stratum 2/stratum 2/stratum 2/stratum 2/stratum 2/stratum 2/stratum 2/stratum 144 1<br />

Fish -<br />

Adult/Juveniles 2<br />

6 longitudinal<br />

strata with<br />

shallow (seine)<br />

<strong>and</strong> deep<br />

(trawl)<br />

substrata<br />

2 seines/<br />

stratum<br />

1 trawl/<br />

stratum<br />

2 seines/<br />

stratum<br />

1 trawl/<br />

stratum<br />

2 seines/<br />

stratum<br />

1 trawl/<br />

stratum<br />

2 seines/<br />

stratum<br />

1 trawl/<br />

stratum<br />

2 seines/<br />

stratum<br />

1 trawl/<br />

stratum<br />

2 seines/<br />

stratum<br />

1 trawl/<br />

stratum<br />

2 seines/<br />

stratum<br />

1 trawl/<br />

stratum<br />

2 seines/<br />

stratum<br />

1 trawl/<br />

stratum<br />

2 seines/<br />

stratum<br />

1 trawl/<br />

stratum<br />

2 seines/<br />

stratum<br />

1 trawl/<br />

stratum<br />

2 seines/<br />

stratum<br />

1 trawl/<br />

stratum<br />

2 seines/<br />

stratum<br />

1 trawl/<br />

stratum<br />

144<br />

seines<br />

72<br />

trawls<br />

Ichthyo<strong>plan</strong>kton <strong>and</strong><br />

other Zoo<strong>plan</strong>kton<br />

6 strata 2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

144<br />

hauls<br />

Hydrology<br />

Vegetation/Habitat<br />

Temperature, conductivity <strong>and</strong> salinity (bottom <strong>and</strong> surface) at Sligh Ave., Columbus Ave., <strong>and</strong> Crosstown Expressway<br />

Entire<br />

reporting unit<br />

aerial<br />

1<br />

photo. 3<br />

shoreline<br />

1<br />

survey 3<br />

Birds None<br />

1 Only samples collected from January through March, <strong>and</strong> July through September, are processed; remaining samples are archived.<br />

2 One trawl is collected in each stratum, HR1 – HR5, each month. Since trawling in stratum HR6 has proven to be prohibitive, the sixth trawl site each month is r<strong>and</strong>omly selected from one of the lower five strata (HR1 –<br />

HR5).<br />

3 Conducted every five years.


Page 14<br />

Section 3.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Table 3.3<br />

Alafia River Strata<br />

Stratum Downstream Limit (km) Upstream Limit (km)<br />

Outer Alafia 1 NA NA<br />

AR 1 0 2.33<br />

AR 2 2.33 4.67<br />

AR 3 4.67 7.00<br />

AR 4 7.00 9.33<br />

AR 5 9.33 11.67<br />

AR 6 11.67 14.00<br />

AR 7 14.00 18.50<br />

AR 8 2 18.50 21.00<br />

1 The Outer Alafia is the area of Hillsborough <strong>Bay</strong> outside the mouth of the Alafia River. Fish sampling is<br />

the only HBMP element conducted in this stratum.<br />

2 Stratum AR 8 was included in the initial design but has been subsequently dropped from the HBMP<br />

sampling


Page 15<br />

Section 3.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Table 3.4 Sampling program summary for the lower Alafia River reporting unit.<br />

Element<br />

Spatial Strata<br />

Month<br />

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec.<br />

Total<br />

6 estuarine strata<br />

2/stratum<br />

2/stratum<br />

2/stratum<br />

2/stratum<br />

2/stratum<br />

2/stratum<br />

2/stratum<br />

2/stratum<br />

2/stratum<br />

2/stratum<br />

2/stratum<br />

2/stratum<br />

144<br />

<strong>Water</strong><br />

Quality<br />

1 fixed bay station<br />

1 fixed river station<br />

(profile only)<br />

1 station<br />

1 station<br />

1 station<br />

1 station<br />

1 station<br />

1 station<br />

1 station<br />

1 station<br />

1 station<br />

1 station<br />

1 station<br />

1 station<br />

1 station<br />

1 station<br />

1 station<br />

1 station<br />

1 station<br />

1 station<br />

1 station<br />

1 station<br />

1 station<br />

1 station<br />

1 station<br />

1 station<br />

12<br />

12<br />

1 freshwater<br />

stratum (AR7)<br />

2/stratum<br />

3/stratum<br />

2/stratum<br />

3/stratum<br />

2/stratum<br />

3/stratum<br />

2/stratum<br />

3/stratum<br />

2/stratum<br />

3/stratum<br />

2/stratum<br />

3/stratum<br />

30<br />

Benthos<br />

6 estuarine strata<br />

1 inset stratum<br />

1 freshwater<br />

stratum (AR7)<br />

2/stratum<br />

3/stratum<br />

2/stratum<br />

3/stratum<br />

2/stratum<br />

3/stratum<br />

2/stratum<br />

3/stratum<br />

2/stratum<br />

3/stratum<br />

2/stratum<br />

7/stratum<br />

3/stratum<br />

2/stratum<br />

6/stratum<br />

3/stratum<br />

2/stratum<br />

7/stratum<br />

3/stratum<br />

2/stratum<br />

3/stratum<br />

2/stratum<br />

3/stratum<br />

1 SCI/<br />

stratum<br />

2/stratum<br />

3/stratum<br />

2/stratum<br />

3/stratum<br />

144<br />

20<br />

36<br />

1 SCI<br />

Fish -<br />

Adult/Juveniles 1<br />

6 longitudinal,<br />

estuarine strata with<br />

shallow (seine) <strong>and</strong><br />

deep (trawl)<br />

substrata<br />

1 freshwater<br />

stratum (AR7)<br />

Seines<br />

2 bay strata outside<br />

of river<br />

2 seines/<br />

stratum<br />

1 trawl/<br />

stratum<br />

2 seines &<br />

2 trawls /<br />

stratum<br />

2 seines/<br />

stratum<br />

1 trawl/<br />

stratum<br />

2 seines &<br />

2 trawls /<br />

stratum<br />

2 seines/<br />

stratum<br />

1 trawl/<br />

stratum<br />

2 seines &<br />

2 trawls /<br />

stratum<br />

2 seines/<br />

stratum<br />

1 trawl/<br />

stratum<br />

2 seines &<br />

2 trawls /<br />

stratum<br />

2 seines/<br />

stratum<br />

1 trawl/<br />

stratum<br />

2 seines &<br />

2 trawls /<br />

stratum<br />

2 seines/<br />

stratum<br />

1 trawl/<br />

stratum<br />

2 seines &<br />

2 trawls /<br />

stratum<br />

2 seines/<br />

stratum<br />

1 trawl/<br />

stratum<br />

2 seines &<br />

2 trawls /<br />

stratum<br />

2 seines/<br />

stratum<br />

1 trawl/<br />

stratum<br />

2 seines &<br />

2 trawls /<br />

stratum<br />

2 seines/<br />

stratum<br />

1 trawl/<br />

stratum<br />

2 seines &<br />

2 trawls /<br />

stratum<br />

2 seines/<br />

stratum<br />

1 trawl/<br />

stratum<br />

10 seines/<br />

stratum<br />

2 seines &<br />

2 trawls /<br />

stratum<br />

2 seines/<br />

stratum<br />

1 trawl/<br />

stratum<br />

2 seines &<br />

2 trawls /<br />

stratum<br />

2 seines/<br />

stratum<br />

1 trawl/<br />

stratum<br />

2 seines &<br />

2 trawls /<br />

stratum<br />

144<br />

seines<br />

72<br />

trawls<br />

10<br />

seines<br />

48<br />

seines<br />

48<br />

trawls<br />

Ichthyo<strong>plan</strong>kton <strong>and</strong><br />

other Zoo<strong>plan</strong>kton<br />

6 estuarine 2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

144<br />

hauls<br />

Hydrology<br />

Vegetation/Habitat<br />

Temperature, conductivity <strong>and</strong> salinity (bottom <strong>and</strong> surface) 1km downstream of Buckhorn Springs.<br />

Entire reporting unit<br />

2 strata<br />

(transition zones)<br />

aerial<br />

photo. 2<br />

1<br />

shoreline<br />

survey<br />

1<br />

32 cells/<br />

stratum for<br />

EAV 3 <strong>and</strong><br />

SAV 2 64<br />

Birds<br />

Survey of shoreline<br />

<strong>and</strong> subtidal flats<br />

1 1 1 1 1 1 6<br />

1<br />

One trawl is collected in each stratum, AR1 – AR5, each month. Since trawling in stratum AR6 has proven to be prohibitive, the sixth trawl site each month is r<strong>and</strong>omly selected from one of the lower four strata (AR1 –<br />

AR4). While a portion of AR5 can be sampled with trawls, it is excluded from selection for the sixth trawl haul because of the limited amount of area that can be trawled.<br />

2<br />

Conducted every five years. 3 Conducted annually.


Page 16<br />

Section 3.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Table 3.5 Palm River Strata (<strong>Tampa</strong> Bypass Canal)<br />

Stratum Downstream Limit (km) Upstream Limit (km)<br />

PR 1 2.2 3.95<br />

PR 2 3.95 5.69<br />

PR 3 5.69 7.44


Page 17<br />

Section 3.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Table 3.6 Sampling program summary for the TBC/Palm River reporting unit.<br />

Element<br />

Spatial Strata<br />

Month<br />

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec.<br />

Total<br />

<strong>Water</strong><br />

Quality<br />

3 longitudinal<br />

strata with<br />

Deep (D)<br />

channel &<br />

shallow (S)<br />

substrata<br />

1 D &<br />

1 S /<br />

stratum<br />

1 D &<br />

1 S /<br />

stratum<br />

1 D &<br />

1 S /<br />

stratum<br />

1 D &<br />

1 S /<br />

stratum<br />

1 D &<br />

1 S /<br />

stratum<br />

1 D &<br />

1 S /<br />

stratum<br />

2 D &<br />

2 S /<br />

stratum<br />

2 D &<br />

2 S /<br />

stratum<br />

2 D &<br />

2 S /<br />

stratum<br />

1 D &<br />

1 S /<br />

stratum<br />

1 D &<br />

1 S /<br />

stratum<br />

1 D &<br />

1 S /<br />

stratum<br />

90<br />

1 Fixed Station<br />

on upstream side<br />

of S-160<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

12<br />

Benthos<br />

3 strata with<br />

Deep (D)<br />

channel / shallow<br />

(S) substrata<br />

PR1: 1D<br />

PR2: 1S<br />

PR3: 1S<br />

PR1: 1S<br />

PR2: 1D<br />

PR3: 1D<br />

PR1: 1S<br />

PR2: 1D<br />

PR3: 1S<br />

PR1: 1D<br />

PR2: 1S<br />

PR3: 1S<br />

PR1: 1S/1D<br />

PR2: 1S<br />

PR3: 1D<br />

PR1: 1D<br />

PR2: 1S/1D<br />

PR3: 1S/1D<br />

PR1: 2S/2D<br />

PR2: 2S/2D<br />

PR3: 1S/1D<br />

PR1: 1S/1D<br />

PR2: 2S/2D<br />

PR3: 2S/2D<br />

PR1: 2S/2D<br />

PR2: 1S/1D<br />

PR3: 2S/2D<br />

PR1: 1S<br />

PR2: 1D<br />

PR3: 1S<br />

PR1: 1D<br />

PR2: 1S<br />

PR3: 1D<br />

PR1: 1S<br />

PR2: 1D<br />

PR3: 1D<br />

60<br />

Fish -<br />

Adult/Juveniles<br />

3 longitudinal<br />

strata with<br />

shallow (seine)<br />

<strong>and</strong> deep (trawl)<br />

substrata<br />

2 seines/<br />

stratum<br />

1 trawl/<br />

stratum<br />

2 seines/<br />

stratum<br />

1 trawl/<br />

stratum<br />

2 seines/<br />

stratum<br />

1 trawl/<br />

stratum<br />

2 seines/<br />

stratum<br />

1 trawl/<br />

stratum<br />

2 seines/<br />

stratum<br />

1 trawl/<br />

stratum<br />

2 seines/<br />

stratum<br />

1 trawl/<br />

stratum<br />

2 seines/<br />

stratum<br />

1 trawl/<br />

stratum<br />

2 seines/<br />

stratum<br />

1 trawl/<br />

stratum<br />

2 seines/<br />

stratum<br />

1 trawl/<br />

stratum<br />

2 seines/<br />

stratum<br />

1 trawl/<br />

stratum<br />

2 seines/<br />

stratum<br />

1 trawl/<br />

stratum<br />

2 seines/<br />

stratum<br />

1 trawl/<br />

stratum<br />

72<br />

seines<br />

36<br />

trawls<br />

Ichthyo<strong>plan</strong>kton<br />

<strong>and</strong><br />

other Zoo<strong>plan</strong>kton<br />

3 strata - channel 2 hauls/<br />

stratum<br />

2 hauls/<br />

Stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

72<br />

hauls<br />

Hydrology<br />

Vegetation/Habitat<br />

Maydell Drive (temperature, conductivity, <strong>and</strong> salinity @ surface <strong>and</strong> bottom).<br />

Entire reporting<br />

unit<br />

aerial<br />

1<br />

photo. 1<br />

shoreline<br />

1<br />

survey 1<br />

1 Conducted every five years.


Table 3.7 McKay <strong>Bay</strong> Strata<br />

Stratum Downstream Limit (km) Upstream Limit (km)<br />

MB1 0 1.1<br />

MB2 1.1 2.2<br />

Page 18<br />

Section 3.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT


Page 19<br />

Section 3.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Table 3.8 Sampling program summary for the McKay <strong>Bay</strong> reporting unit.<br />

Element<br />

Spatial Strata<br />

Month<br />

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec.<br />

Total<br />

<strong>Water</strong><br />

Quality<br />

34 cells 3 4 3 4 3 3 10 10 10 3 4 3 60<br />

Benthos 34 cells 3 4 3 4 3 3 10 10 10 3 4 3 60<br />

Fish -<br />

Adult/Juveniles<br />

1 shallow<br />

(seine: 26 cells)<br />

<strong>and</strong> 1 deep<br />

(trawl: 18 cells)<br />

strata<br />

1 seine in<br />

each of<br />

10 cells<br />

1 trawl in<br />

each of<br />

4 cells<br />

1 seine in<br />

each of<br />

10 cells<br />

1 trawl in<br />

each of<br />

4 cells<br />

1 seine in<br />

each of<br />

10 cells<br />

1 trawl in<br />

each of<br />

4 cells<br />

1 seine in<br />

each of<br />

10 cells<br />

1 trawl in<br />

each of<br />

4 cells<br />

1 seine in<br />

each of<br />

10 cells<br />

1 trawl in<br />

each of<br />

4 cells<br />

1 seine in<br />

each of<br />

10 cells<br />

1 trawl in<br />

each of<br />

4 cells<br />

1 seine in<br />

each of<br />

10 cells<br />

1 trawl in<br />

each of<br />

4 cells<br />

1 seine in<br />

each of<br />

10 cells<br />

1 trawl in<br />

each of<br />

4 cells<br />

1 seine in<br />

each of<br />

10 cells<br />

1 trawl in<br />

each of<br />

4 cells<br />

1 seine in<br />

each of<br />

10 cells<br />

1 trawl in<br />

each of<br />

4 cells<br />

1 seine in<br />

each of<br />

10 cells<br />

1 trawl in<br />

each of<br />

4 cells<br />

1 seine in<br />

each of<br />

10 cells<br />

1 trawl in<br />

each of<br />

4 cells<br />

120<br />

seines<br />

48<br />

trawls<br />

Ichthyo<strong>plan</strong>kton<br />

<strong>and</strong> other<br />

Zoo<strong>plan</strong>kton<br />

6 cells –<br />

shallow<br />

2 strata -<br />

channel<br />

1 haul/<br />

cell<br />

2 hauls/<br />

stratum<br />

1 haul/<br />

cell<br />

2 hauls/<br />

Stratum<br />

1 haul/<br />

cell<br />

2 hauls/<br />

stratum<br />

1 haul/<br />

cell<br />

2 hauls/<br />

stratum<br />

1 haul/<br />

cell<br />

2 haul/s<br />

stratum<br />

1 haul/<br />

cell<br />

2 hauls/<br />

stratum<br />

1 haul/<br />

cell<br />

2 hauls/<br />

stratum<br />

1 haul/<br />

cell<br />

2 hauls/<br />

stratum<br />

1 haul/<br />

cell<br />

2 hauls/<br />

stratum<br />

1 haul/<br />

cell<br />

2 hauls/<br />

stratum<br />

1 haul/<br />

cell<br />

2 hauls/<br />

stratum<br />

1 haul/<br />

cell<br />

2 hauls/<br />

stratum<br />

72<br />

hauls<br />

48<br />

hauls<br />

Hydrology<br />

22 nd Street Causeway (temperature, conductivity, <strong>and</strong> salinity @ surface <strong>and</strong> bottom).<br />

Vegetation/Habitat<br />

1 Conducted every five years.<br />

Entire reporting<br />

unit<br />

aerial<br />

1<br />

photo. 1<br />

shoreline<br />

1<br />

survey 1


Page 20<br />

Section 3.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Table 3.9 HBMP strata boundaries in the Alafia, Palm, <strong>and</strong> Hillsborough River reporting units.<br />

Stratum<br />

Down-<br />

Stream Limit<br />

(km)<br />

Upstream<br />

Limit (km)<br />

HBMP Station<br />

Number<br />

Lat_D Lat_M Long_D Long_M Description<br />

AR-1 0 AR100000 27 51.236 82 23.870 River mouth<br />

AR-1 2.33 AR102330 27 51.464 82 22.661 Near end of no-wake zone above marina<br />

AR-2 2.33 AR202331 27 51.464 82 22.661 Near end of no-wake zone above marina<br />

AR-2 4.67 AR204670 27 51.443 82 21.267 Approx. 200 m upstream of Alafia Marina<br />

AR-3 4.67 AR304671 27 51.443 82 21.266 Approx. 200 m upstream of Alafia Marina<br />

AR-3 7.00 AR307000 27 51.848 82 20.066 Near utility crossing between I75 & 301<br />

AR-4 7.00 AR407001 27 51.848 82 20.065 Near utility crossing between I75 & 301<br />

AR-4 9.33 AR409330 27 51.881 82 18.856 Near sharp bend in Alafia River at mouth of Rice Creek<br />

AR-5 9.33 AR509331 27 51.881 82 18.856 Near sharp bend in Alafia River at mouth of Rice Creek<br />

AR-5 11.67 AR511670 27 52.859 82 18.695 In straightaway a little over 1 km downstream from Buckhorn Springs<br />

AR-6 11.67 AR611671 27 52.859 82 18.694 In straightaway a little over 1 km downstream from Buckhorn Springs<br />

AR-6 14 AR614000 27 52.681 82 17.824 Near Kings Avenue Boat Ramp<br />

AR-7 14.00 AR714001 27 52.681 82 17.824 Near Kings Avenue Boat Ramp<br />

AR-7 18.50 AR718500 27 51.548 82 15.997 Approx. 200 m upstream of Bell Shoals Road<br />

PR-1 2.20 PR102200 27 56.548 82 24.677 River mouth where northern bank meets natural McKay <strong>Bay</strong> shoreline<br />

PR-1 3.95 PR103949 27 56.747 82 23.681 Approx. 200 m upstream of downstream railroad bridge<br />

PR-2 3.95 PR203950 27 56.747 82 23.681 Approx. 200 m upstream of downstream railroad bridge<br />

PR-2 5.69 PR205689 27 56.753 82 22.752 Near sharp bend in river at 68 St South - between Maydell Drive <strong>and</strong> trailer park<br />

PR-3 5.69 PR305690 27 56.753 82 22.751 Near sharp bend in river at 68 St South - between Maydell Drive <strong>and</strong> trailer park<br />

PR-3 7.44 PR307438 27 57.425 82 22.161 Just downstream of structure S-160 Dam<br />

HR-1 0 HR100001 27 56.495 82 27.518 Platt Street Bridge<br />

HR-1 2.55 HR102549 27 57.609 82 28.033 Just downstream of North Blvd. Bridge<br />

HR-2 2.55 HR202550 27 57.609 82 28.034 Just downstream of North Blvd. Bridge<br />

HR-2 5.09 HR205089 27 58.567 82 28.804 Just upstream of Duran Playground (between Columbus & MLK bridges)<br />

HR-3 5.09 HR305090 27 58.567 82 28.804 Just upstream of Duran Playground (between Columbus & MLK bridges)<br />

HR-3 7.64 HR307639 27 59.667 82 27.923 Approx. 150 m downstream of Hillsborough Ave. Bridge<br />

HR-4 7.64 HR407640 27 59.667 82 27.923 Approx. 150 m downstream of Hillsborough Ave. Bridge<br />

HR-4 10.18 HR410179 28 0.451 82 27.894 Near Epps Park (approx 250 m downstream of Sligh Ave. Bridge)<br />

HR-5 10.18 HR510180 28 0.451 82 27.894 Near Epps Park (approx 250 m downstream of Sligh Ave. Bridge)<br />

HR-5 12.73 HR512729 28 1.226 82 27.201 Just upstream of I275 Bridge at Sulphur Springs<br />

HR-6 12.73 HR612730 28 1.226 82 27.201 Just upstream of I275 Bridge at Sulphur Springs<br />

HR-6 16.20 HR616198 28 1.462 82 25.691 Just downstream of Hillsborough River Dam


Page 21<br />

Section 3.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT


Figure 3.2<br />

The Alafia River reporting unit.<br />

Page 22<br />

Section 3.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT


Figure 3.3. Illustration of the Alafia River HBMP strata <strong>and</strong> extended area for FIM monthly fish sampling.<br />

Page 23<br />

Section 3.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT


Figure 3.4<br />

The Palm River <strong>and</strong> McKay <strong>Bay</strong><br />

reporting units.<br />

Page 24<br />

Section 3.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT


Figure 3.5<br />

McKay <strong>Bay</strong> reporting unit.<br />

Page 25<br />

Section 3.0<br />

October 2007<br />

Version 2.1 DRAFT


Figure 3.6<br />

Hillsborough <strong>Bay</strong> Reporting Unit<br />

Page 26<br />

Section 3.0<br />

October 2007<br />

Version 2.1 DRAFT


Appendix 3-A<br />

Detailed Maps of the HBMP Strata


Page1<br />

Section 4.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

4.0 Data Quality <strong>and</strong> Management<br />

Data <strong>quality</strong> <strong>and</strong> effective data management are critical components of all monitoring<br />

programs. Data management activities including data collection, h<strong>and</strong>ling, evaluation,<br />

verification, validation, <strong>and</strong> reporting, are described in this section. Given the complexity<br />

of the HBMP, meeting data <strong>quality</strong> <strong>and</strong> management objectives will be crucial for<br />

effective <strong>and</strong> accurate data interpretation <strong>and</strong> report preparation.<br />

4.1 Data Quality Objectives<br />

An important goal of the HBMP is the development of data <strong>quality</strong> objectives (DQOs)<br />

that are integrated with environmental data collection activities. Data <strong>quality</strong> objectives<br />

are statements that describe in precise quantitative terms the level of uncertainty that can<br />

be associated with collected environmental data, <strong>and</strong> as such provide insight into the level<br />

of certainty that can be applied without compromising the intended use of the data. Use<br />

of data <strong>quality</strong> objectives also provides statistical criteria that can aid the design of<br />

sampling strategy elements, balancing costs, <strong>and</strong>/or resource constraints.<br />

Typically, DQOs are best developed by those identified as potential users of the data. In<br />

the absence of specific decision criteria, <strong>and</strong> the wide variety of potential uses to which<br />

the HMBP data may eventually be applied, the initial set of target DQOs are based on<br />

professional judgment, <strong>and</strong> are intended only to provide a starting point for a long-term,<br />

iterative DQO process. Consequently, these preliminary DQOs do not necessarily<br />

constitute definitive rules for accepting or rejecting results, but rather provide guidelines<br />

for continued improvement. Several iterations of the DQO process may be required as<br />

potential HBMP data users further define their specific needs.<br />

During the collection of data under the HBMP it will be extremely important to both<br />

<strong>control</strong> <strong>and</strong> determine measurement error to the greatest extent possible. Measurement<br />

<strong>quality</strong> objectives (MQOs) need to be established for each sampling field method <strong>and</strong><br />

laboratory analysis procedure. MQOs essentially represent data <strong>quality</strong> objectives based<br />

on internal <strong>and</strong> external <strong>control</strong>s (variability) associated with each type of data<br />

measurement. As such, they can be used to establish criteria for data acceptability until<br />

reliable error bounds are established for each measured response variable (Table 4.1). As<br />

data are accumulated during the HBMP, error rates associated with each measurement<br />

will be established, <strong>and</strong> refinement of the initial target DQOs can be accomplished to<br />

determine the need for modifications to the sampling design <strong>and</strong>/or QA/QC Plan.<br />

Initial measurements of data <strong>quality</strong> objectives for each of the various parameters can be<br />

expressed in terms of accuracy, precision, <strong>and</strong> completeness goals. These preliminary<br />

MQOs are based on estimates of the most likely data <strong>quality</strong> achievable, based on:<br />

instrument manufacturer’s specifications; scientific experience; or data collected during<br />

other similar studies. In general, DQOs or MQOs are used to establish five aspects of


Page2<br />

Section 4.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

data <strong>quality</strong>: representativeness; completeness; comparability; accuracy; <strong>and</strong> precision.<br />

Until actual study data are obtained, the MQOs used as <strong>quality</strong> <strong>control</strong> criteria for both<br />

field <strong>and</strong> laboratory measurements will be used to set the bounds of acceptable<br />

measurement error.<br />

4.1.1 Representativeness<br />

Representativeness is defined as “the degree to which the data accurately <strong>and</strong> precisely<br />

represent a characteristic of a population parameter, variation of a property, a process<br />

characteristic, or an operational condition” (Stanley <strong>and</strong> Verner 1985). The concept of<br />

representativeness within the context of the biological monitoring program refers to the<br />

ability of the sampling effort to accurately <strong>and</strong> precisely characterize the selected<br />

environmental indicators effectively both temporally <strong>and</strong> spatially.<br />

The design of the sampling program <strong>and</strong> the location of sampling sites provide the<br />

primary focus for defining the “representativeness” of population estimates for each<br />

reporting unit <strong>and</strong> strata. The HBMP employs a probability sampling approach that<br />

samples resources in proportion to their abundance <strong>and</strong> distribution to obtain unbiased<br />

estimates of resource characteristics <strong>and</strong> variability. The probability sampling approach<br />

applies systematic sampling to facilitate characterizations of spatial patterns <strong>and</strong> to<br />

encourage geographic coverage.<br />

Once unbiased quantitative information on the kinds, extent, condition <strong>and</strong> distribution of<br />

resources <strong>and</strong> associated estimates of uncertainty are known, a baseline of the status of<br />

existing conditions will be established. This baseline information will be used to develop<br />

criteria for identifying “representativeness,” the processes <strong>and</strong> magnitude of change<br />

associated with natural variation, <strong>and</strong> changes with time.<br />

The data <strong>quality</strong> attribute of “representativeness” applies not only to the overall sampling<br />

design, but also to individual measurements <strong>and</strong> samples obtained during all temporal<br />

<strong>and</strong> spatial aspects of the monitoring effort. Holding time requirements for different<br />

types of samples ensure that analytical results are representative of conditions at the time<br />

of sampling; these requirements are specified in the individual indicator sections of this<br />

document. In addition, the use of QA/QC samples, which are similar in composition to<br />

samples being measured, provides estimates of precision <strong>and</strong> bias that are representative<br />

of sample measurements. Therefore, as a general program objective, the types of QA<br />

samples (i.e., performance evaluation material) used to assess the <strong>quality</strong> of analytical<br />

data will be as representative as possible of the natural samples collected during the<br />

project with respect to both composition <strong>and</strong> concentration.<br />

4.1.2 Completeness<br />

Completeness is defined as “a measure of the amount of data collected from a<br />

measurement process compared to the amount that was expected to be obtained under the<br />

conditions of measurement” (Stanley <strong>and</strong> Verner 1985). All study elements within the


Page3<br />

Section 4.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

HBMP have established completeness goals of 100% for each of the various indicators<br />

being measured. However, given the probability-based sampling design being employed,<br />

failure to achieve this goal will not preclude the within-year or between-year assessment<br />

of ecosystem condition. The major consequence of having less than 100% complete data<br />

from all expected stations is a relatively minor loss of statistical power in the areal<br />

estimate of condition, as depicted using Cumulative Distribution Functions (CDFs). The<br />

100% completeness goal is established in an attempt to derive the maximum statistical<br />

power from the present sampling design. Based on experience of other monitoring<br />

programs, failure to achieve this goal usually results from the field staff’s inability to<br />

sample at some stations due to logistical barriers such as insufficient depth, impenetrable<br />

substrate, or adverse weather conditions. In the limited number of instances where these<br />

conditions may be encountered, extensive efforts will be made to re-locate the station or<br />

re-sample the station at a later date. In this way, the field personnel must always strive to<br />

achieve the 100% completeness goal. In addition, established protocols for tracking<br />

samples during shipment <strong>and</strong> laboratory processing will be followed to minimize data<br />

loss following successful sample collection.<br />

4.1.3 Comparability<br />

Comparability is defined as “the confidence with which one data set can be compared to<br />

another” (Stanley <strong>and</strong> Verner 1985). Comparability of reporting units <strong>and</strong> calculations,<br />

database management processes, <strong>and</strong> interpretative procedures must be assured if the<br />

overall goals of the HBMP monitoring program are to be realized. A goal of the HBMP<br />

program is to generate extensive documentation to ensure that all future efforts can be<br />

made comparable. All field <strong>and</strong> laboratory methods are described in detail <strong>and</strong> available<br />

to all field personnel <strong>and</strong> analytical laboratory staff. In addition, the comparability of<br />

laboratory measurements will be established <strong>and</strong> monitored through duplicates <strong>and</strong>/or the<br />

use of field split <strong>and</strong> duplicate performance evaluation samples. The sampling design for<br />

each of the HBMP study elements has been made flexible enough to allow for analytical<br />

adjustments, if necessary, to ensure data comparability.<br />

4.1.4 Accuracy, Precision, <strong>and</strong> Total Error<br />

The term “accuracy”, is used synonymously with the term bias within this QA/QC <strong>plan</strong>,<br />

<strong>and</strong> is defined as the difference between a measured value <strong>and</strong> the true or expected value.<br />

Precision, by comparison, is defined as the degree of mutual agreement among individual<br />

repeated measurements. Collectively, accuracy <strong>and</strong> precision can provide an estimate of<br />

the total error or uncertainty associated with any individual measured value (Kirchner<br />

1983; Hunt <strong>and</strong> Wilson 1986; Taylor 1987). Measurement <strong>quality</strong> objectives for the<br />

various indicators are expressed separately as goals for both accuracy <strong>and</strong> precision.<br />

Accuracy <strong>and</strong> precision goals may not be definable for all parameters due to the nature of<br />

the measurement type. In order to evaluate the MQOs for accuracy <strong>and</strong> precision,<br />

various QA/QC samples will be collected <strong>and</strong> analyzed for most data collection activities.


Page4<br />

Section 4.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

4.2 Routine Methods Used to Assess Precision <strong>and</strong> Accuracy<br />

4.2.1 Field Measurements<br />

1. Duplicate sets of field measurements are to be taken once per reporting unit per<br />

sampling day. These values (i.e., temperature, pH, DO, conductivity) will be<br />

documented as duplicates in the field notebooks <strong>and</strong> specifically used for<br />

determinations of instrument/sampling precision.<br />

2. Measurements of accuracy will be based on QA/QC checks of st<strong>and</strong>ards at the end of<br />

each sampling event. St<strong>and</strong>ardized units of measure for critical indicators are shown<br />

in Table 4.2<br />

3. The precision of field measurements will be determined using the statistic “Relative<br />

Percent Difference” (RPD).<br />

RPD = {(|R1-R2|)/[(R1+R2)/2]} x 100<br />

Where:<br />

R1 = value of sample<br />

R2 = value of sample duplicate<br />

The RPD will be calculated for each duplicated pair of observations. The average or<br />

mean RPD is calculated by the formula:<br />

Mean RPD = Sum (RPDs) / n<br />

where n = number of duplicate pairs<br />

The st<strong>and</strong>ard deviation of the mean will be used to quantify precision measurements.<br />

The st<strong>and</strong>ard deviation of the mean is calculated by:<br />

s 2 RPD = [Sum(X i 2 ) - (Sum(X i ) 2 /n)] / (n-1)<br />

Where:<br />

X i = Each calculated RPD<br />

n = number of duplicate pairs<br />

Hence:<br />

s RPD = (S 2 RPD) ½<br />

The s RPD will be calculated for the previous 20 duplicates for each in situ field<br />

parameter. Based on such duplicate pairs, <strong>control</strong> <strong>and</strong> warning limits for precision<br />

will be calculated. St<strong>and</strong>ard protocol is to define the “Control Limit” as 2 times the<br />

s RPD , with the “Warning Limit” as 3 times the s RPD . Using these procedures, <strong>control</strong><br />

<strong>and</strong> warning charts can be generated to flag observations that exceed either Warning<br />

<strong>and</strong>/or Control Limits.


Page5<br />

Section 4.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

4.2.2 Laboratory <strong>Water</strong> Quality Parameters<br />

1. The procedures that will be used to determine water <strong>quality</strong> precision <strong>and</strong> accuracy<br />

targets for the HBMP are outlined below <strong>and</strong> listed in detail in the Quality Manual for<br />

Southern Analytical Laboratories, Inc. (July, 2001).<br />

2. Duplicate water <strong>quality</strong> grab samples will be taken at a rate of 5% of samples with a<br />

minimum of one duplicate per sampling day. Estimates of precision will be based on<br />

duplicate analyses of each parameter. Relative percent differences will be calculated<br />

using the statistic outlined above.<br />

3. Estimates of accuracy will be determined using the calculation:<br />

[(A-B)/C] X 100 = % Recovery<br />

Where:<br />

A = concentration of spiked sample<br />

B = concentration of sample<br />

C = concentration of spike added to sample<br />

Control charts can then be produced on % recovery data to show the upper <strong>and</strong> lower<br />

warning <strong>and</strong> <strong>control</strong> limits. Calculations of warning <strong>and</strong> <strong>control</strong> limits for accuracy<br />

are similar to those for precision with mean % recovery <strong>and</strong> st<strong>and</strong>ard deviation of the<br />

mean calculated by st<strong>and</strong>ard statistical formulas used above.<br />

4. Precision <strong>and</strong> accuracy targets will be obtained using matrix spikes, sample<br />

duplicates, duplicate matrix spikes, <strong>and</strong> QC check samples. These procedures are<br />

conducted on various concentration levels defined as:<br />

• Low Level: Concentrations between the method Minimum Detection Limit<br />

<strong>and</strong> 5 times the MDL<br />

• Mid Level: Concentrations between the method Minimum Detection Limit<br />

<strong>and</strong> the upper end of the linear response<br />

• High Level: Concentration at the upper end of the linear range.<br />

4.3 Method Detection Limits<br />

1. Method Detection Limit (MDL) - Reagent blank water is used to prepare a laboratory<br />

st<strong>and</strong>ard in a concentration range 1 to 5 times the estimated MDL of the specific<br />

compound of interest (Table 4.3). If the estimated MDL is found to be correct then<br />

seven aliquots of the st<strong>and</strong>ard are analyzed using the complete analytical method.


Page6<br />

Section 4.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

The following calculations are then used to determine the MDL, <strong>and</strong> the Practical<br />

Quantification Limit (PQL).<br />

As per EPA procedures in 40 CFR 136 Appendix B, the MDL <strong>and</strong> PQL are determined<br />

by the following:<br />

where: SD = st<strong>and</strong>ard deviation of 7 replicate measurements<br />

MDL = 3.14 times the SD<br />

PQL = 12 times the SD<br />

2. MDLs are required to be recalculated when there are substantial changes in either the<br />

instrumentation or technique used.<br />

4.4 Data Reduction <strong>and</strong> Validation<br />

Figure 4.1 presents a simplified overview of the data management processes that will be<br />

utilized during the HBMP. Figure 4.2 further details the major components which will be<br />

included within specific sections of the overall HBMP database.<br />

The HBMP database will be implemented using Microsoft Access®, a fully relational<br />

database that is readily available to many users. Export of data from Access to other<br />

software applications such as Excel (or other spreadsheets), SAS, <strong>and</strong> HTML for Internet<br />

applications will be facilitated through the use of this st<strong>and</strong>ardized data application. The<br />

use of a relational database will ensure that many different data types can be effectively<br />

linked using common variable names <strong>and</strong> values.<br />

At the beginning of each year, the process will be initiated by choosing sampling sites<br />

<strong>and</strong> sampling dates for the upcoming year. These sampling sites will be made available<br />

to all pertinent parties, including: the Project Manager; QA/QC Officer; the Field Control<br />

Officers for each of the sampling program elements; the PBS&J Sample Custody Officer;<br />

<strong>and</strong> the Database Manager.<br />

4.4.1 HBMP Data Sources<br />

The HBMP is comprised of a number of separate <strong>and</strong> unique sampling efforts being<br />

conducted by each of the various members of the Project Team. Certain members of the<br />

Project Team have ongoing, st<strong>and</strong>ardized data h<strong>and</strong>ling processes <strong>and</strong> verification <strong>and</strong><br />

data storage methodologies (Southern Analytical Laboratories, Florida Fish <strong>and</strong> Wildlife<br />

Research Institute, Terra Environmental, <strong>and</strong> the University of South Florida). For this<br />

reason, the initial: 1) logging of field <strong>and</strong> laboratory records; 2) data checking steps; 3)<br />

data review; <strong>and</strong> 4) internal QA/QC documentation, will follow the existing established<br />

protocols <strong>and</strong> will address the particularly unique criteria of each of these study elements<br />

(see appropriate sections of this document). Raw hard copy data will be permanently


Page7<br />

Section 4.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

maintained, <strong>and</strong> after being visually form checked for errors, will be entered into<br />

electronic format using appropriate protocols <strong>and</strong> multiple levels of checks to assure that<br />

all data <strong>quality</strong> goals are satisfied.<br />

Data from each HBMP study element, as well as other outside sources (SWFWMD,<br />

USGS, EPCHC, etc.), will contain a st<strong>and</strong>ardized, unique header record containing all of<br />

the information necessary to subsequently link each of the types of data, spatially <strong>and</strong><br />

temporally, within the final validated Access database (see Figure 4.2). Such header<br />

information will include, but not be limited to: sampling group; date; time; reporting unit;<br />

substratum; <strong>and</strong> station location (such as river kilometer). Typically, the data for a given<br />

HBMP program element will be aggregated by year <strong>and</strong> month within the data set. In<br />

addition, other data types will be formatted for inclusion into the HBMP Access database<br />

(such as USGS flow data <strong>and</strong> SWFWMD rainfall data).<br />

The “condition field” of all HBMP data which has been entered, checked through at least<br />

two steps for errors, <strong>and</strong> received the application of any necessary reduction<br />

methodologies (dilutions, calculations of species numbers, etc.) will remain designated as<br />

“raw” until undergoing further steps in the data validation protocol (see Figure 4.1).<br />

Following the development, logging, <strong>and</strong> checking of all “raw” data, error <strong>and</strong> range<br />

checking procedures for data verification purposes will be performed. During the<br />

verification process, specific data conditions will be noted using appropriate “data<br />

qualifier” designations. St<strong>and</strong>ard DEP/EPA data qualifier codes will be used, as needed,<br />

in the appropriately identified database field (Appendix 4-A). Only after all such<br />

appropriate levels of data validation have been completed, will the “condition field”<br />

within each specific data record be changed from “raw” to “verified.” Only the database<br />

manager <strong>and</strong> his/her designees will have read/write abilities at this level. All other<br />

database users will be provided with read-only access to data that has been listed as<br />

“raw” <strong>and</strong> is in the verification process. Any errors <strong>and</strong>/or other changes of data made<br />

between the “raw” <strong>and</strong> “verified” status must be fully explained in the appropriate “note<br />

field,” <strong>and</strong> a permanent written record of any such changes will be maintained by the<br />

QA/QC Officer.<br />

Cross comparison of “verified” data from the different HBMP elements will allow<br />

further, subsequent, “validation” of each specific data entry. Final review of the data in<br />

this Verified Data Set will also include any other cross comparisons, for example,<br />

between field <strong>and</strong> laboratory data, or between taxonomic experts. Only after final<br />

QA/QC review of each specific subset of data (monthly for water <strong>quality</strong>, quarterly for<br />

most other project study elements) will the QA/QC Officer update the “verified” status of<br />

the data to “validated.” Only the QA/QC Officer will have secure password access to the<br />

data at this level. Only under unusual circumstances will data not designated as<br />

“validated” be made available for general dissemination. The QA/QC Officer, after final<br />

review with the appropriate specific project leaders, will be responsible for applying the<br />

final “data qualifier” <strong>and</strong> “data flags” within the database. These will be used to inform<br />

the end-users of the data of any problems that may have been found to exist in the data


Page8<br />

Section 4.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

that could not be reconciled during the verification <strong>and</strong> validation checks of the data. In<br />

addition to the st<strong>and</strong>ard “data qualifiers,” three levels of “data flags” will be used in a<br />

separate data field. These include:<br />

• accepted - this type of designation will be used to designate data that has successfully<br />

met all established QA/QC protocols, procedures <strong>and</strong> st<strong>and</strong>ards. End users should<br />

encounter few, if any, difficulties utilizing data with this designation.<br />

• rejected - this designation will be used to indicate data which did not meet a<br />

significant element of the established QA/QC protocols, procedures or st<strong>and</strong>ards.<br />

Specific notes within the database will explain all such designations (i.e., chlorophyll<br />

a filters were not appropriately frozen <strong>and</strong> arrived at the Laboratory in an<br />

unacceptable condition). End users should never use any data with such a<br />

designation.<br />

• provisional - such data was collected, passed almost all of the required QA/QC<br />

protocols, but failed some minor QA/QC procedure or st<strong>and</strong>ard. Such problems will<br />

be noted in the database (i.e., the water chemistry sample for color was analyzed 1<br />

hour outside its required hold time). Even though such values have a high<br />

probability of being representative of actual conditions, such data should probably<br />

be used with caution.<br />

4.4.2 Outside Data Sources<br />

Some of the data that will be utilized by the HBMP will come from other outside sources.<br />

Examples include daily river flows, withdrawal rates, rainfall, other meteorological data,<br />

aerial photos, <strong>and</strong> GIS data that will be obtained on a relatively routine basis. In addition,<br />

the majority of the data to be used in assessing the status of Hillsborough <strong>Bay</strong> will come<br />

from sources, such as EPCHC, FWRI, <strong>and</strong> SWFWMD. The schedule for downloading<br />

data from other sources will clearly depend upon when these data are available.<br />

Data transfer formats will be defined in consultation with the data providers. Care will be<br />

taken to ensure that all data received will be appropriately documented, to the greatest<br />

extent possible. This documentation will include definitions of variables <strong>and</strong> variable<br />

codes, units of measure, methods, <strong>and</strong> spatial definition of samples (e.g., latitude <strong>and</strong><br />

longitude of sampling point). When possible, cross-comparisons of these data <strong>and</strong> the<br />

data collected by the HBMP will be made as an additional <strong>quality</strong> <strong>assurance</strong> check.<br />

Historical data from other sources will also be used in the analysis of the HBMP data.<br />

The HBMP data management process will support data retrieval <strong>and</strong> documentation from<br />

all of these other sources to ensure the data from these sources are correctly linked with<br />

the primary HBMP data sources.


Page9<br />

Section 4.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

4.4.3 Data Dictionary<br />

A critical step in overall data management is the development <strong>and</strong> maintenance of an<br />

accurate data dictionary, which defines specific characteristics of all variables within the<br />

HBMP database. Specific details regarding the HBMP Data Dictionary will be<br />

maintained within the developed Access database. The structure of the HBMP Data<br />

Dictionary (Appendix 4-B depicts its initial structure) will include the following types of<br />

information:<br />

• Field - the name of the variable whose data are reported in this field.<br />

• Description - a definition of the variable.<br />

• Units - specific units of measure used.<br />

• MDL - minimum detection limit, all water chemistry data values reported as detection<br />

limit will be entered into the database as the actual detection limit. For example, the<br />

laboratory reports the chlorophyll a concentration for a particular sample as < 1.0<br />

mg/l. Since the field is designated as numeric, it will be identified as below detection<br />

limit by entering the value 1.0, <strong>and</strong> an appropriate data qualifier. This will allow the<br />

end user to easily identify all detection limit values in the database <strong>and</strong> use whatever<br />

convention they choose for analyzing such data. This procedure will also clearly<br />

indicate any potential changes in detection limits during the course of the HBMP.<br />

• Format - digital or alphanumeric format.<br />

• Typical values - range of typical values (data entry criteria can be established to<br />

automatically query entries outside normal ranges).<br />

• Legal values - may be general or specific (i.e. only positive numeric values).<br />

• Missing values - defines how missing values are coded or in some cases no missing<br />

value may be allowable (e.g., date of sample will always have some value before data<br />

are accepted into the database).<br />

• Condition - status during QA/QC review regarding level of data entry, checking,<br />

verification <strong>and</strong> validation.<br />

• Data Qualifiers - DEP/EPA st<strong>and</strong>ardized, designated codes that address specific<br />

QA/QC limitations to field <strong>and</strong> laboratory data.<br />

• Data Flags - specific designation of all values within the final “validated” data set.<br />

• Notes - a placeholder for any notes that the dictionary user may find useful.


Page10<br />

Section 4.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

• The HBMP database dictionary will be updated every year to ensure that all database<br />

users are kept fully abreast of the database contents <strong>and</strong> their use.<br />

4.5 Data Methodologies<br />

4.5.1 Field Data<br />

All collections of in situ field data are to be under the direct <strong>control</strong> of the Field QA/QC<br />

Officer. A key responsibility of the field staff will be to continually monitor <strong>and</strong> check<br />

the status <strong>and</strong> performance of all equipment. Calibrations of all field instruments are to<br />

be performed prior to the beginning of each sampling event (see relevant sections of the<br />

QA/QC Plan for each HBMP element).<br />

All field in situ measurements of depth, temperature, pH, specific conductance, <strong>and</strong><br />

dissolved oxygen measurements are by their very nature non-repeatable. As such,<br />

corrective actions for non-repeatable measurements are severely limited to:<br />

• detecting <strong>and</strong> discarding invalid data at the time of collection; <strong>and</strong><br />

• eliminating a potential situation which could result in creating invalid data.<br />

Detecting <strong>and</strong> checking potentially questionable or invalid data in the field at the time of<br />

measurement provides the highest opportunity to correct problems without losing data.<br />

The Field Control Officer will be responsible for making all on-site decisions about the<br />

measurement data. Outliers or otherwise unusual data are only to be accepted after the<br />

instruments have been checked for malfunction, the calibration has been verified, <strong>and</strong> the<br />

reading verified by re-submerging the probe. For this reason, it is extremely important<br />

that the field staff be familiar with the project, the instruments <strong>and</strong> expected range of data<br />

values, thus allowing them to effectively screen nearly all abnormal values <strong>and</strong>/or<br />

questionable field water <strong>quality</strong> values. Instrument “drift” will be monitored by<br />

comparison of pre- <strong>and</strong> post-field calibrations for each multi-parameter sonde. In<br />

addition, field <strong>and</strong> project management staff will continually evaluate performance<br />

aspects to determine if changes in calibration, sampling <strong>and</strong> measurement procedure<br />

could be utilized to further reduce the risk of collecting invalid data.<br />

Outliers will be accepted only after the instrument has been checked for malfunction, the<br />

calibration verified, <strong>and</strong> the water column profile run in duplicate. Corrective action for<br />

field measurements may also be initiated using known st<strong>and</strong>ards for pH <strong>and</strong> conductivity<br />

<strong>and</strong> field duplicates for all field parameters. Should the difference between duplicates or<br />

the value of known samples be greater than 5%, then corrective action will be initiated.<br />

If instrument malfunction occurs in the field, options for corrective action from most<br />

desirable to least include:<br />

1. Use a backup instrument if available. Should the primary field instrument fail, a<br />

calibrated backup instrument should be substituted if at all possible.


Page11<br />

Section 4.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

2. Recalibrate the primary instrument <strong>and</strong> frequently check to assure that the problem<br />

has been corrected.<br />

3. Postpone the sampling event <strong>and</strong> return with a working multi-parameter sonde at<br />

another time.<br />

All pertinent field notes <strong>and</strong> in situ data from the field instruments (multi-parameter<br />

sonde, Secchi disk, etc.) are to be directly entered from the field notebooks into the<br />

PBS&J HBMP Access database.<br />

The Field Control Officer <strong>and</strong> technical staff will be responsible for correctly entering all<br />

field notes <strong>and</strong> in situ readings into the field notebooks (see Section 5 of the QA/QC<br />

Plan). Prior to returning from the field, the Field Control Officer will be responsible for<br />

checking all data entered into the field notebooks. The Field Control Officer will also be<br />

responsible for seeing that all responsible field staff review the data <strong>and</strong> obtain signatures<br />

certifying to the completeness <strong>and</strong> validity of all data entered into the notebooks. Upon<br />

returning from the field, the Field Control Officer will be responsible for storing field<br />

notebooks in a secure location. The Field Control Officer is responsible for ensuring<br />

copies of newly collected data in field logbooks are made at least once per week. This set<br />

of field notes will be placed sequentially in a three ring binder as a secondary,<br />

permanently maintained set of backup field notes.<br />

After the completion of each month’s sampling (or sooner if a notebook is full), the Field<br />

Control Officer will give the original field notebook to the data entry staff for entry of<br />

field parameters into the Access Data Management System. After the field<br />

measurements have been entered into the database, the data entry staff will again check<br />

all entries (<strong>and</strong> correct, if necessary). After all values have been proofed by the data<br />

entry staff, the original field notebook will be stored in a secured location. All data<br />

entered for the current month will be automatically marked as “Provisional” at this point.<br />

In addition, it will be the responsibility of the QA/QC officer to check the reasonableness<br />

of all data based on both historic ranges <strong>and</strong> values collected from upstream <strong>and</strong><br />

downstream sampling locations. Based on these reviews, the Project QA/QC Officer will<br />

be responsible for changing the status codes in the database from “Provisional” to either<br />

“Accepted” or “Rejected.” The values of any rejected data will be recorded in the<br />

comment field. The Project QA/QC Officer will be responsible for informing the Project<br />

Manager as to the status of all data within the project database.<br />

4.5.2 Laboratory Data<br />

Field staff will collect sub-surface samples at each of the sampling locations for the<br />

analysis of selected water <strong>quality</strong> parameters. Each sample container is to be identified<br />

through the use of printed labels. Information required on the labels will include:<br />

• date;


Page12<br />

Section 4.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

• time of sample collection;<br />

• initials of the field personnel who collected the sample;<br />

• project identification;<br />

• sample location identification; <strong>and</strong><br />

• list of water <strong>quality</strong> parameters to be analyzed.<br />

As each container is filled, sampling data are also logged into a field notebook. Specific<br />

procedures for the h<strong>and</strong>ling, tracking <strong>and</strong> shipping of water chemistry samples to the<br />

Laboratory are described in detail in Section 5 of this QA/QC Plan. When each set of<br />

samples reaches the laboratory, the Sample Custody Officer will check all accompanying<br />

sample custody/tracking forms to assure completeness. All water <strong>quality</strong> samples will be<br />

analyzed using the units, methods <strong>and</strong> detection limits presented in Table 4.3. St<strong>and</strong>ard<br />

laboratory protocols <strong>and</strong> sample tracking procedures are outlined in Section 5 <strong>and</strong><br />

specified in detail in the Quality Manual for Southern Analytical Laboratories, Inc. (July,<br />

2001). All monthly water chemistry data will be transmitted, as soon as it is available,<br />

from the Laboratory to the Project Manager <strong>and</strong> Project QA/QC Officer. It will be the<br />

responsibility of the QA/QC officer to check the reasonableness of all data based on:<br />

• laboratory QA/QC documentation, including duplicates, spike additions, <strong>and</strong><br />

compliance with <strong>control</strong> limits;<br />

• historic ranges; <strong>and</strong><br />

• similar data collected during the same day from upstream <strong>and</strong> downstream locations.<br />

Based on these reviews, the Project QA/QC Officer will be responsible for ensuring data<br />

entry staff import electronic files provided by the laboratory into the project database,<br />

assuring that all parameters were imported correctly, <strong>and</strong> assigning an appropriate status<br />

code for each parameter in the database (“Provisional,” “Accepted,” “Rejected”).<br />

4.6 Data Storage<br />

4.6.1 Field Data<br />

All original field data will be permanently maintained in the field notebooks. All original<br />

field notebooks will be under the <strong>control</strong> of the Project Manager while not actually out in<br />

the field. The notebooks are to be kept in a secure location. Two sets of copies of the<br />

field notes from each sampling event will be made <strong>and</strong> maintained separately in the<br />

PBS&J files/archives <strong>and</strong> by the Project Manager (may be maintained electronically as<br />

scanned images).<br />

4.6.2 <strong>Water</strong> Chemistry Data<br />

All original chemistry results, st<strong>and</strong>ard curves, duplicate <strong>and</strong> spike addition results, etc.<br />

will be permanently maintained within chemistry bench laboratory notebooks as<br />

prescribed in the Quality Manual for Southern Analytical Laboratories, Inc. (July, 2001).


Page13<br />

Section 4.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

All final chemistry results will be entered into the Laboratory’s computer database.<br />

System-wide archive copies of all data contained within this database are backed-up on a<br />

minimum of a weekly basis.<br />

4.6.3 HBMP Database<br />

All data will be entered into the HBMP Access Database (see above). Daily <strong>and</strong> weekly<br />

backups are made of all data within the PBS&J system as part of normal network system<br />

protocols. In addition, both the Project Manager <strong>and</strong> Project QA/QC Officer will<br />

maintain backup copies of all HBMP data on compact disks on an ongoing basis during<br />

the course of the project. Yearly summary data sets of all data will be submitted to<br />

<strong>Tampa</strong> <strong>Bay</strong> <strong>Water</strong> in conjunction with the annual reporting process. These procedures<br />

will be utilized to assure that all historical records, both written <strong>and</strong> electronic, are to be<br />

maintained in perpetuity.<br />

4.7 Electronic Data Records<br />

PBS&J uses a Local Area Network system comprised of IBM Compatible microcomputers<br />

<strong>and</strong> peripherals. All field data, analytical results, <strong>and</strong> QA/QC data are to be<br />

stored within the Access database on the fixed disk of the file server. Daily <strong>and</strong> weekly<br />

database backups are performed <strong>and</strong> maintained.<br />

Data integrity <strong>and</strong> strict computer system security will be maintained at all times. Each<br />

computer in PBS&J’s local network system is password protected, limiting access to the<br />

computer system to only authorized employees. Within the database, a second level of<br />

security is maintained through a password system. Project staff, other than the QA/QC<br />

Officer <strong>and</strong> lead database personnel, may browse data or print reports with a read-only<br />

access code. Password coding does not permit the changing or alteration of any data<br />

entered in the database, without proper authorization.<br />

Copies of all database application programs are reprinted <strong>and</strong> maintained each time there<br />

is a modification. Software documentation sections consist of:<br />

• a complete list of relational data storage tables in the database;<br />

• a list of data column names <strong>and</strong> descriptions for each column in a data storage table;<br />

• a hierarchically arranged printout of the database menu system;<br />

• a printout of each application program with internal documentation describing the<br />

function <strong>and</strong> variable definitions for subroutines within the application program;<br />

• a hierarchically arranged printout of all data entry screens;


Page14<br />

Section 4.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

• a printout of any calculation routines; <strong>and</strong><br />

• examples of all reports <strong>and</strong> any forms generated by the computer system. As new<br />

routines are added or applications reprogrammed, the appropriate pages in the<br />

documentation are either inserted or substituted as needed.<br />

4.8 Performance <strong>and</strong> System Audits<br />

4.8.1 Internal Field System Audits<br />

Audits will be performed on a regular basis to assure compliance of established practices<br />

consistent with the QA/QC Plan. At that time, problems <strong>and</strong>/or deficiencies will be noted<br />

<strong>and</strong> improvements addressed. The basis for review will be the SOPs <strong>and</strong> protocols<br />

specified in this Project Specific QA/QC Plan. Internal review of field activities will be<br />

divided into the following major categories:<br />

• Field instrument calibrations <strong>and</strong> QA/QC checks;<br />

• Field instrument <strong>and</strong> equipment maintenance;<br />

• Methods utilized to locate designated sampling sites;<br />

• In situ sampling protocols, measurements (i.e. multi-parameter sonde readings)<br />

including corrective actions;<br />

• Sample collection methods including preservation, filtration, h<strong>and</strong>ling <strong>and</strong><br />

transportation;<br />

• Field documentation; <strong>and</strong><br />

• Field <strong>and</strong> sample chain of custody.<br />

Upon completion of each QA/QC review by the Project QA/QC Officer, the Project<br />

Manager will be provided with a brief written summary of all observed deficiencies. The<br />

Project Manager will then implement <strong>and</strong> document all actions taken to correct any<br />

observed deficiencies. At least annually, all technical staff will meet to review <strong>and</strong><br />

discuss all procedures <strong>and</strong> protocols in detail. However, any significant changes in<br />

personnel or major version changes to the protocols will require additional formal<br />

reviews.


Page15<br />

Section 4.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

4.8.2 External Field System Audits<br />

All work performed under the HBMP may be subject to on-site systems audits conducted<br />

by outside agency staff (potentially including DEP, SWFWMD, <strong>and</strong> EPCHC). All<br />

members of the project team will accommodate such on-site systems audits with notice.<br />

4.8.3 Internal Laboratory System Audits<br />

Southern Analytical participates in the Southwest Florida Regional Ambient Monitoring<br />

Program (RAMP). This program consists of a group of professionals from around the<br />

region involved in water <strong>quality</strong> sampling <strong>and</strong> analysis of surface waters. The objectives<br />

of the group are to produce accurate <strong>and</strong> compatible water <strong>quality</strong> data among the groups<br />

monitoring water <strong>quality</strong> in southwest Florida <strong>and</strong> to reduce redundancy in sampling<br />

sites. PBS&J receives quarterly reports resulting from RAMP meetings that illustrate<br />

how lab analyses conducted at Southern Analytical compare with other laboratories in<br />

southwest Florida. The HBMP Project QA/QC Officer will meet with the Laboratory<br />

Quality Assurance Officer as needed to review any issues that may arise as a result of<br />

RAMP.<br />

Additionally, the Project QA/QC officer may conduct an audit to evaluate those<br />

components of the laboratory’s Comprehensive Quality Assurance Manual pertinent to<br />

the HBMP. At that time, any problems or potential deficiencies will be documented <strong>and</strong><br />

corrective actions addressed. Items for the Laboratory System Audits can be divided<br />

into the following categories:<br />

• Sample container preparation;<br />

• Laboratory glassware cleaning <strong>and</strong> storage;<br />

• Instrument calibrations <strong>and</strong> QA/QC checks;<br />

• Sample check-in, distribution <strong>and</strong> chain of custody;<br />

• Data reduction, validation <strong>and</strong> reporting;<br />

• Laboratory notebook documentation; <strong>and</strong><br />

• Database management<br />

4.8.4 External Laboratory Systems <strong>and</strong> Performance Audits<br />

The Laboratory receives on-site evaluations <strong>and</strong>/or inspections by the Department of<br />

Health on an annual basis. This is a complete system audit. At the completion of the<br />

inspection any deficiencies discovered are noted in writing <strong>and</strong> corrections documented.


Page16<br />

Section 4.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Internal performance audits are coordinated by the Laboratory Quality Control Officer to<br />

evaluate accuracy of particular chemical analyses. This is to be done by introducing<br />

blind samples of known st<strong>and</strong>ards (unknown to the analyst) into the normal flow of<br />

chemistry analysis <strong>and</strong> checked for accuracy. External performance audits comprise<br />

participation in the EPA <strong>Water</strong> Supply <strong>and</strong> <strong>Water</strong> Pollution evaluation performance<br />

studies which are conducted on a semiannual basis.


Page17<br />

Section 4.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Table 4.1 Measurement Quality Objectives for Indicators<br />

Indicator/Data Type Accuracy (Bias) Precision Completeness<br />

<strong>Water</strong> Quality:<br />

Goal Goal Goal<br />

Physical In Situ 5 % 10 % 100 %<br />

Inorganics 5 % 10 % 100 %<br />

Species composition:<br />

Sorting 10 % NA 100 %<br />

Counting 10 % NA 100 %<br />

Taxonomy 10 % NA 100 %<br />

* Accuracy (bias) goals are expressed either as absolute difference (∀ value) or percent deviation from<br />

the "true" value. Precision goals are expressed as relative percent difference (RPD) or relative st<strong>and</strong>ard<br />

deviation (RSD) between two or more replicate measurements. Completeness goal is the percentage of<br />

expected results that are obtained successfully.


Page18<br />

Section 4.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Table 4.2 St<strong>and</strong>ardized Units of Measure<br />

Critical Indicator<br />

Units<br />

Stream Flow<br />

cubic feet/second<br />

<strong>Water</strong> Level<br />

m<br />

Salinity<br />

PSU<br />

Specific Conductance<br />

umhos/cm<br />

Temperature<br />

pH<br />

Dissolved Oxygen<br />

Sample Depth<br />

Secchi Disk Depth<br />

Light Transmission<br />

Color<br />

Total Suspended Solids<br />

Orthophosphate Phosphorus<br />

Total Phosphorus<br />

Ammonia Nitrogen<br />

Ammonium NH4<br />

Nitrate-Nitrite Nitrogen<br />

Total Kjeldahl Nitrogen<br />

Total Nitrogen<br />

Chlorophyll a<br />

o C<br />

st<strong>and</strong>ard pH units<br />

mg/L<br />

m<br />

m<br />

k d<br />

PCU<br />

mg/L<br />

mg/L - P<br />

mg/L - P<br />

mg/L - N<br />

mg/L - N<br />

mg/L - N<br />

mg/L - N<br />

mg/L - N<br />

ug/L


Page19<br />

Section 4.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Table 4.3 Field <strong>and</strong> Laboratory MDLs for<br />

HBMP <strong>Water</strong> Quality Parameters<br />

Indicator Units of Measure Method MDL<br />

Field Measurements – PBS&J, USF <strong>and</strong> FWRI<br />

<strong>Water</strong> Temperature DEP FT1400 deg C 0.01<br />

pH DEP FT1100 St<strong>and</strong>ard Units 0.01<br />

Conductivity DEP FT1300 umhos/cm 0.1<br />

Salinity DEP FT1300 ppt 0.1<br />

Laboratory Methods – Southern Analytical Laboratory<br />

Color SM 2120 B PCU 5<br />

Total Suspended Solids EPA 160.2 mg/L 2<br />

Orthophosphate Phosphorus EPA 365.2 mg/L - P 0.01<br />

Total Phosphorus EPA 365.2 mg/L - P 0.03<br />

Ammonia Nitrogen EPA 350.1 mg/L - N 0.01<br />

Ammonium NH4 Calculation mg/L - N 0.01<br />

Nitrate-Nitrite Nitrogen EPA 353.2 mg/L - N 0.01<br />

Total Kjeldahl Nitrogen EPA 351.2 mg/L - N 0.05<br />

Total Nitrogen Calculation mg/L - N 0.05<br />

Chlorophyll a SM 10200H ug/L 2


Figure 4.1 Overview of the HBMP Data Management Process<br />

Page20<br />

Section 4.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT


Figure 4.2 Overview of the Major Contents of the HBMP Database<br />

Page21<br />

Section 4.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT


Appendix 4-A<br />

Applicable DEP/EPA Data Qualifier Codes<br />

Symbol<br />

Meaning<br />

A<br />

D<br />

E<br />

F<br />

J<br />

Value reported is the mean (average) of two or more determinations. This code<br />

shall be used if the results of two or more discrete <strong>and</strong> separate samples are<br />

averaged. These samples shall have been processed <strong>and</strong> analyzed (e.g. laboratory<br />

replicate samples, field duplicates, etc.) independently. Do not use this code if the<br />

data are the result of replicate analysis on the same sample aliquot, extract or<br />

digestate. Under most conditions, replicate values shall be reported as individual<br />

analyses.<br />

Measurement was made in the field (i.e. in situ). This applies to any value (ex. pH,<br />

specific conductance, etc.) that was obtained under field conditions using approved<br />

analytical methods. Note: When data is to be entered into STORET, <strong>and</strong><br />

parameter code specifies a field measurement (e.g. "Field pH"), this code is not<br />

required.<br />

Indicates that extra samples were taken at composite stations.<br />

When reporting species: F indicates the female sex<br />

Estimated value; value not accurate. This code shall be used in the following<br />

instances:<br />

1. surrogate recovery limits have been exceeded;<br />

2. no known <strong>quality</strong> <strong>control</strong> criteria exists for the component;<br />

3. the reported value failed to meet the established <strong>quality</strong> <strong>control</strong> criteria for<br />

either precision or accuracy;<br />

4. the sample matrix interfered with the ability to make any accurate<br />

determination;<br />

5. if the data is questionable because of improper laboratory or field protocols<br />

(e.g. composite sample was collected instead of a grab sample).<br />

Note a "J" value shall be accompanied by justification for its use.<br />

A "J" value shall not be used if another code applies (e.g., K, L, M, T, V, Y,<br />

I)<br />

K<br />

Off-scale low. Actual value is known to be less that the value given. This code<br />

shall be used if:<br />

1. The value is less than the lowest calibration st<strong>and</strong>ard <strong>and</strong> the calibration<br />

curve is known to be non-linear; or


2. The value is known to be less than the reported value based on sample size,<br />

dilution or some other variable.<br />

L<br />

M<br />

M<br />

O<br />

Q<br />

R<br />

T<br />

U<br />

V<br />

Y<br />

This code shall not be used to report values that are less than the laboratory<br />

practical quantitation limit or laboratory method detection limit.<br />

Off-scale high. Actual value is known to be greater than value given. To be used<br />

when the concentration of the analyte is above the acceptable level for quantitation<br />

(exceeds the linear range or highest calibration st<strong>and</strong>ard) <strong>and</strong> the calibration curve<br />

is known to exhibit a negative deflection.<br />

When reporting chemical analyses: presence of material is verified but not<br />

quantified; the actual value is less than the value given. The reported value shall<br />

be the laboratory practical quantitation limit. This code shall be used if the level is<br />

too low to permit accurate quantification, but the estimated concentration is<br />

greater than the method detection limit. If the value is less than the method<br />

detection limit use "T" below.<br />

When reporting Species: indicates male sex.<br />

Sampled, but analysis lost or not performed. Note: If reporting data to the U.S.<br />

Environmental Protection Agency <strong>Water</strong> Quality Storage <strong>and</strong> Retrieval (STORET)<br />

database, a numerical value must be entered. Such values are not meaningful <strong>and</strong><br />

shall not be used.<br />

Sample held beyond the accepted holding time. This code shall be used if the<br />

value is derived from a sample that was prepared or analyzed after the approved<br />

holding time restrictions for sample preparation or analysis. The number of days<br />

beyond the designated holding time will be report following the letter designation.<br />

Significant rain in the past 48 hours. This code shall be used where the rainfall<br />

might contribute to a lower than normal value.<br />

Value reported is less that the laboratory method detection limit. The value is<br />

reported for informational purposes, only <strong>and</strong> shall not be used in statistical<br />

analysis.<br />

Indicates that the compound was analyzed for but not detected. This shall be used<br />

to indicate that the specified component was not detected. The value associated<br />

with the qualifier shall be the laboratory method detection limit. Less than the<br />

method detection limit values shall not be reported (see "T" above).<br />

Indicates that analyte was detected in both the sample <strong>and</strong> the associated method<br />

blank. Note: The value in the blank shall not be subtracted from associated<br />

samples.<br />

The laboratory analysis was from an unpreserved or improperly preserved sample.<br />

The data may not be accurate.


I<br />

The reported value is between the laboratory method detection limit <strong>and</strong> the<br />

laboratory practical quantitation limit.<br />

! Data deviates from historically established concentration ranges.<br />

? Data is rejected <strong>and</strong> should not be used. Some of all of the <strong>quality</strong> <strong>control</strong> data for<br />

the analyte were outside criteria, <strong>and</strong> the presence or absence of the analyte cannot<br />

be determined from the data.<br />

Χ<br />

Not analyzed due to interference. Note: If reporting data to the U.S.<br />

Environmental Protection Agency <strong>Water</strong> Quality Storage <strong>and</strong> Retrieval (STORET)<br />

date base, a numerical value must be entered. Such values are not meaningful <strong>and</strong><br />

shall not be used.<br />

Note:<br />

If more than one code applies, all will be noted within the HBMP database<br />

in the QA/QC notes. However, in the “data qualifier field”, as if the data<br />

were to be entered in STORET, only one code shall be reported. The code<br />

shall be selected based on the following hierarchy:<br />

1) ?<br />

2) *, O<br />

3) Y<br />

4) V<br />

5) H<br />

6) B, K, L, M, I, T, Z, U, N, Q<br />

7) A, F<br />

8) J


Appendix 4-B Data Dictionaries for each of the HBMP Study Components<br />

Data Dictionary - Primary Linkages (Headers)<br />

Variable<br />

Name<br />

Linkage Format Acceptable Values Additional Ex<strong>plan</strong>ation<br />

group Project Team alpha PBSJ, UF, USF, FRMI, USGS, EPC, DISTRICT, etc. Other codes will be added fro additional data sources as they become available<br />

year Year numeric 00 <strong>and</strong> ongoing Current contract extends from 00 through 05<br />

month Month numeric 01 through 12 January through December<br />

unit Reporting Unit alpha HR, AF, MB, PR HR = Hillsborough River AF = Alafia River<br />

MB = McKay <strong>Bay</strong> PR = Palm River (Bypass)<br />

strat Stratum numeric 0 through 8 Number of strata varies with Reporting Unit<br />

site Sampling Location alpha - numeric two letters followed by 5 digits HR101480 - means: Hillsborough River Reporting unit; stratum #1; river meters 01480 (from mouth of river)


Data Dictionary - Field Notes<br />

Variable<br />

Name<br />

Format Acceptable Values Additional Ex<strong>plan</strong>ation<br />

lat Latitude numeric two digits, space, two digits, three decimal places degrees, minutes, decimal seconds (27 52.758)<br />

long Longitude numeric two digits, space, two digits, three decimal places degrees, minutes, decimal seconds (82 18.754)<br />

Tide Tidal Stage numeric 1 through 8 1 =high slack 2 = high outgoing 3= mid outgoing<br />

4 = low outgoing 5 = low slack 6 = low incoming<br />

7 = mid incoming 8 =high incoming<br />

Temp Air Temperature numeric 0 to 35 Approximate air temperature at the time of sampling<br />

Wind Wind alpha - numeric 0 to 50 mph Direction (compass heading) <strong>and</strong> Speed (approximate mph)<br />

Cloud Percent Cloud Coverage numeric 0 to 100 % by units of 5 Approximate level of cloud coverage within general area<br />

note Field Observations text Any unusual observations or other notes made in the field


Data Dictionary - Hydrology & <strong>Water</strong> Quality Parameters<br />

Variable<br />

Name<br />

Critical Indicator Units Format Expected<br />

Range<br />

Legal<br />

Values<br />

MDL<br />

Missing Data<br />

(Values)<br />

rain Rainfall inches/day Numeric 0 10 0 < & < 25 0.01 -9999 raw, verified<br />

or validated<br />

flow Stream Flow cubic feet/second numeric 0 10000 0 < & < 25000 1 -9999 raw, verified<br />

or validated<br />

gauge height <strong>Water</strong> Level m numeric -1 2 -3 < &


Variable<br />

Name<br />

Critical Indicator Units Format Expected<br />

Range<br />

Legal<br />

Values<br />

MDL<br />

Missing Data<br />

(Values)<br />

TOC Total Organic Carbon mg/L numeric 1 100 -1< &


Page 1<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

5.0 <strong>Water</strong> Quality <strong>and</strong> Hydrology<br />

This section describes the protocols, methods, <strong>and</strong> procedures that comprise the <strong>Water</strong><br />

Quality <strong>and</strong> Hydrology elements of the HBMP. It is imperative that the field <strong>and</strong> water<br />

<strong>quality</strong> sampling methods <strong>and</strong> procedures used by HBMP personnel correspond to those<br />

contained in this portion of the QA/QC Plan. These st<strong>and</strong>ardized sampling procedures<br />

<strong>and</strong> techniques will ensure data that can then be combined or compared as appropriate.<br />

Figure 5.1 provides an overview of the organizational management of this study element,<br />

while Table 5.1 summarizes both the number <strong>and</strong> frequency of samples collected yearly<br />

in each of the sampling strata.<br />

Members of the teams conducting these elements of the HBMP must read, underst<strong>and</strong><br />

<strong>and</strong> follow all steps in each procedure outlined below. If questions or suggestions arise,<br />

the Project Manager must be consulted for clarification before any further actions can be<br />

taken. Under no circumstance should a procedure or steps within a procedure be omitted<br />

or modified.<br />

5.1 Objectives<br />

The objectives of the hydrologic monitoring elements of the HBMP include:<br />

• Estimating daily freshwater inflows for each of three reporting units (lower Alafia,<br />

lower Hillsborough <strong>and</strong> TBC/Palm Rivers);<br />

• Estimating daily total freshwater withdrawals from each of these reporting units; <strong>and</strong><br />

• Measuring water levels for each of these reporting units.<br />

A significant portion of these data are or will be collected by other governmental<br />

agencies. To the greatest extent possible, PBS&J will work to see that the methods <strong>and</strong><br />

procedures used to collect hydrologic parameters as part of the HBMP are comparable<br />

with similar data being gathered by other agencies.<br />

The objectives associated with the ambient water <strong>quality</strong> monitoring elements of the<br />

HBMP are to:<br />

• Estimate the spatial distribution <strong>and</strong> variance of both in situ water column profiles<br />

<strong>and</strong> surface water <strong>quality</strong> indicators within each of the reporting units; <strong>and</strong><br />

• Develop estimates of variation of these water <strong>quality</strong> indicators on a temporal basis<br />

for each of the reporting units.


Page 2<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

5.2 Hydrology/<strong>Water</strong> Quality Indicators<br />

A thorough <strong>and</strong> comprehensive discussion of desirable <strong>and</strong> critical indicators is presented<br />

in Section 3 of this document, as well as in the HBMP design document <strong>Tampa</strong> Bypass<br />

Canal/Alafia River <strong>Water</strong> Supply Projects Hydrobiological Monitoring Program<br />

(PBS&J, 2000). Table 5.2 provides a summary of the selected hydrology/water <strong>quality</strong><br />

critical indicators, their primary sources of variability, <strong>and</strong> the potential effects of the<br />

permitted surface water withdrawals for each.<br />

Due to both the natural <strong>and</strong> anthropogenic differences among the three reporting units<br />

(e.g., hydrologic <strong>and</strong> ecologic characteristics, the degree of previous impacts, identified<br />

data gaps, etc.) not all of the selected critical indicators were determined to be applicable<br />

to all waterbodies. Therefore, a specific suite of critical hydrology/water <strong>quality</strong><br />

indicators (Table 5.3) was selected for implementation in each respective reporting unit.<br />

5.3 Sample Collection Techniques<br />

Field sampling will normally be conducted by at least two PBS&J staff whenever<br />

possible with the senior member having extensive experience in field data collection.<br />

Field crews will be trained in all sampling procedures <strong>and</strong> will have copies of all the<br />

pertinent chapters of the HBMP Project Specific QA/QC Document to consult in the<br />

field.<br />

5.3.1 Pre-Mobilization<br />

Whenever possible all initial field mobilization <strong>and</strong> preparation should be completed by<br />

the end of the day prior to each sampling event, in order to reduce potential mistakes.<br />

Dissolved oxygen membranes should be checked at least 24 hours prior to calibration in<br />

order to allow sufficient time for stabilization should the membrane need to be replaced.<br />

1. Prior to leaving for each field sampling event, the field staff will check all Sample<br />

Custody Forms <strong>and</strong> the Project Logs <strong>and</strong> Checklists to make sure that they have:<br />

• properly cleaned <strong>and</strong> labeled sampling containers for each parameter group to be<br />

collected from each of the designated sampling locations. Pre-cleaned, unpreserved<br />

sampling containers for each chemistry parameter group must be<br />

arranged, checked <strong>and</strong> bagged (by sampling unit <strong>and</strong> location) for transport.<br />

Containers are to be checked against project pre-logs for correctness. Each<br />

container should be marked with the appropriate project number, ID number,<br />

station number, sample number, <strong>and</strong> chemistry parameters or groups to be<br />

collected.<br />

• Sample bottles for both field duplicates <strong>and</strong> field blanks.


Page 3<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

• At least two complete sets of duplicate sample containers which could be used in<br />

the event that any of the normal samples containers are lost or contaminated<br />

during the field collection.<br />

• All appropriate Sample Custody <strong>and</strong> Tracking Forms.<br />

2. The field staff must check to see that all needed gear is functional (Project Checklist),<br />

<strong>and</strong> that all water sampling devices have been pre-cleaned as necessary. If field<br />

cleaning of equipment will be required, Liquinox, analyte-free water, washing <strong>and</strong><br />

waste collection containers must be taken. If possible, backup sampling gear should<br />

be included to preclude possible problems in the field<br />

3. Check measurements of all depth marks on calibrated lines (multi-parameter sondes<br />

<strong>and</strong> Secchi Disk) <strong>and</strong> repair any damaged marks. (All lines will be recalibrated after<br />

any repairs, such as after sending sonde cables back for replacement of connectors, or<br />

other problems with the cables).<br />

4. If sampling at depths other than the surface is required, a pre-cleaned Kemmerer<br />

water sampler or the Wheaton grab sampler will be used.<br />

5. Field preservation kits should be checked to verify that fresh preservatives have been<br />

obtained from chemistry stocks. Field preservation kits should contain the<br />

preservation acids to be used (in plastic measuring bottles), narrow range pH Litmus<br />

paper, <strong>and</strong> clean disposable plastic cups for measuring pH.<br />

6. The boat(s) should be fueled <strong>and</strong> clean, <strong>and</strong> all necessary safety gear packed. Boat<br />

batteries should be checked <strong>and</strong> placed on slow charge. All electrical (trim <strong>and</strong> tilt)<br />

<strong>and</strong> mechanical (steering) systems should be checked.<br />

7. The GPS unit should be checked <strong>and</strong> backup batteries secured.<br />

8. Station lists for each of the appropriate sampling units should be checked, <strong>and</strong> lists of<br />

sampling locations transferred to field notebooks.<br />

9. The field notebooks should be set up for the upcoming field collection activities (see<br />

Table 5.4).<br />

10. Field notebooks, list of potential sampling sites for each stratum in each reporting<br />

unit, waterproof pens, pencils, <strong>and</strong> markers should be placed in waterproof bags or<br />

containers.<br />

11. Enter the coordinates (longitudes <strong>and</strong> latitudes) of each of the upcoming sampling<br />

unit locations into GPS as way points.<br />

12. Charge multi-parameter sonde batteries.


Page 4<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

13. Check to see that there is sufficient water, prepared in one-gallon containers, of<br />

isotonic water in 5 ppt increments ranging from 0 to 35 ppt (if field staff is<br />

performing chlorophyll filtrations).<br />

5.3.2 Same Day Field Mobilization<br />

1. Check to see GPS is set for Eastern St<strong>and</strong>ard Time.<br />

2. Calibrate multi-parameter sonde <strong>and</strong> complete all calibration sheets. If possible, a<br />

backup unit should be taken, as well as a complete calibration kit <strong>and</strong> minor repair<br />

kit.<br />

3. Field vehicle <strong>and</strong> boat should be filled with gas, <strong>and</strong> coolers filled with enough ice to<br />

transport samples during the course of collection.<br />

4. Dry Ice <strong>and</strong>/or freezer ice packs should be picked up for storage of the chlorophyll a<br />

samples (if field staff is performing chlorophyll filtrations).<br />

5.3.3 Surface <strong>Water</strong> Sampling<br />

1. Identification <strong>and</strong> documentation of sampling location - using the GPS unit use the<br />

GO TO function to sequentially proceed to each of the reporting unit sampling<br />

locations. (If the coordinates of the waypoints were not previously entered then input<br />

at this time.)<br />

2. The methodology used to locate the exact sampling site locations will differ slightly<br />

between the river segments <strong>and</strong> McKay <strong>Bay</strong>.<br />

• River Segments - Within each of the three reporting units (Hillsborough River,<br />

TBC/Palm River, <strong>and</strong> the Alafia River) the initial “go to” coordinates will be for<br />

r<strong>and</strong>omly selected points along the centerlines of each river segment. Upon<br />

arriving at a point in the Hillsborough or Alafia River reporting unit, the field<br />

staff will visually divide the river cross-section into three equal segments from<br />

shoreline to shoreline. Based on predetermined r<strong>and</strong>om assignments for each<br />

river segment sampling location, the field staff will move the boat to either the<br />

left third (facing upstream), the middle segment, or the right third (facing<br />

upstream). After securely anchoring the boat, the field staff will then record the<br />

longitude <strong>and</strong> latitude coordinates in the field book <strong>and</strong> mark the location on the<br />

field map prior to beginning sampling.<br />

• TBC/Palm River - The field staff will follow a similar midline river segment<br />

procedure in locating the approximate upstream/downstream location. However,<br />

in this reporting unit the field staff will select either a shallow sampling stratum,<br />

less than 2 meters in depth (either Right or Left facing upstream), or a deep


Page 5<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

stratum. Depths are to be determined using a depth recorder or calibrated<br />

weighted line.<br />

• McKay <strong>Bay</strong> - Sampling locations will be based on r<strong>and</strong>omly selected coordinates<br />

with predetermined assigned hexagons. If a hexagon sampling site cannot be<br />

collected (such as limitations due to depth restrictions), the field staff will select<br />

another location from the r<strong>and</strong>omized list of potential sampling sites.<br />

3. If the sampling site cannot be sampled due to some unforeseen difficulty, move 20<br />

meters. If the site still cannot be sampled, move 20 more meters. If you have moved<br />

100 meters, implement the following step.<br />

4. If the area within 100 meters of the sampling site cannot be sampled due to some<br />

unforeseen difficulty, select the NEXT (NOT THE CLOSEST) station number for<br />

that stratum from the list of potential sampling sites provided for the current month.<br />

If the next station cannot be sampled, continue to select stations in the order they<br />

appear on the list, until a viable station is located. If no stations in a stratum can be<br />

sampled, proceed to the next stratum. Contact the project manager as soon as<br />

possible.<br />

5. Upon arrival at the sampling location: securely anchor the boat, place the multiparameter<br />

sonde over the side to equilibrate, <strong>and</strong> check the proper sample containers<br />

(as designated on the Chain-of-Custody Forms) for completeness.<br />

6. Record the actual site location (longitude <strong>and</strong> latitude in DDMM.MMM format) <strong>and</strong><br />

arrival time in the field notebook (see Table 5.4).<br />

7. Provide a complete description of the station location <strong>and</strong> weather conditions, tide<br />

stage, <strong>and</strong> time (in Military/Eastern St<strong>and</strong>ard) for each of the following sampling<br />

operations in the field notebook (see Table 5.4). Any unusual conditions are also to<br />

be noted (i.e. large numbers of dead fish floating, including species <strong>and</strong> approximate<br />

size range).<br />

Tidal stage will be listed as:<br />

• outgoing<br />

• incoming<br />

• high slack<br />

• low slack<br />

List wind speed as direction <strong>and</strong> approximate speed, mph will be converted to metric<br />

by computer.<br />

example: 10-15 mph NNW


Page 6<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

List cloud cover as percent:<br />

example: 30 % cloud cover, light rain<br />

Obtain air temperature using a separate thermometer<br />

example: 25 °C<br />

8. All water chemistry samples are to be collected from the upstream (<strong>and</strong> upwind, if<br />

possible) side of the boat, away from the motor. Chlorophyll a samples are to be<br />

collected in one liter, opaque polyethylene wide mouth bottles.<br />

9. Pre-cleaned bottles (as are typically received from Southern Analytical Laboratory)<br />

do not need to be rinsed prior to collecting the sample. <strong>Water</strong> samples from surface<br />

waters are to be collected by plunging the inverted container (neck down) quickly<br />

through the surface film to a depth of 0.2 meters (6 inches) <strong>and</strong> then tipping the<br />

container below the surface so the mouth faces up current until the bottle is filled <strong>and</strong><br />

retrieving quickly to the surface. If sample bottles have not been pre-cleaned they<br />

should be rinsed twice with ample amounts of site water prior to collecting the sample<br />

(unless the bottle contains preservatives). Discard rinsate away from or downstream<br />

of the sampling location. If the sample bottle contains pre-measured preservative,<br />

submerge the unopened sample container to the appropriate level. Turn the container<br />

so that the opening is upright <strong>and</strong> the mouth faces up current. Open the container <strong>and</strong><br />

allow the water to run into the container until almost full (leave an air space). Cap the<br />

container <strong>and</strong> return to the surface. Invert the container several times to ensure<br />

mixing of sample <strong>and</strong> preservatives.<br />

10. Should water samples at depths other than the surface be required, such samples are<br />

to be collected with a Kemmerer water sampler of sufficient size to collect enough<br />

water to both rinse <strong>and</strong> fill all of the sample bottles. If this is not possible, then a<br />

large pre-cleaned Teflon compositing container should first be filled, mixed <strong>and</strong> then<br />

used to fill the sample bottles.<br />

11. In collecting each group of chemistry parameters, the sample bottle number should be<br />

entered in the field notebook along with any additional notes regarding the sampling<br />

including preservatives <strong>and</strong>/or field filtration. Verify that the station number entered<br />

in the field book matches the sample number on the collection bottle. The collection<br />

time on the custody form should match the time of collection in the data book. The<br />

samples, other than chlorophyll a, should then immediately be place on ice in a<br />

designated cooler. Chlorophyll a samples must immediately be placed in a dark,<br />

cool, well-insulated ice chest. They must not be cooled below 4 °C (as a result,<br />

avoid direct contact with ice).<br />

12. Collect water column profile data (procedure outlined below) for: temperature; pH;<br />

specific conductance; salinity; <strong>and</strong> dissolved oxygen using the water column profiling


Page 7<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

methodology specified below. Note: water column profiles are to be done at half<br />

meter intervals except in: 1) the deep ship channel in Alafia River segment one <strong>and</strong> 2)<br />

the deep strata of the TBC/Palm River where profiles are to be taken at one meter<br />

intervals.<br />

13. Sample duplicates, both water column profiles <strong>and</strong> water chemistry, must be collected<br />

at the frequency described below (Section 5.4).<br />

14. Check multi-parameter sonde calibrations EVERY 4 HOURS for pH, specific<br />

conductance <strong>and</strong> DO. Record values in sonde calibration book.<br />

15. The Field Control Officer (FCO) should check all entries in the field notebook prior<br />

to the field staff leaving the sampling location. The FCO should also make sure that<br />

all recorded sample bottle numbers match those designated for each sampling<br />

location. Each member of the field staff should check all entries after completion of<br />

each sampling event, <strong>and</strong> sign <strong>and</strong> date each page of the field notebook.<br />

16. If “field filtration” of chlorophyll a samples is required, it should be done following<br />

the procedures outlined below after the completion of the day’s sampling run. The<br />

filtration should be done as soon as possible once the field staff has reached an<br />

appropriate low light environment. Both the time (Military/EST) of filtration <strong>and</strong> the<br />

volume filtered must be entered into the field notebook. Samples must be filtered <strong>and</strong><br />

analyzed or frozen within 24 hours of collection.<br />

5.3.4 In-situ Multi-parameter Sonde Surface <strong>Water</strong> Sampling<br />

In-situ water column profile readings for temperature, dissolved oxygen, specific<br />

conductance, salinity, <strong>and</strong> pH are to be made from just beneath the surface (0.2 m) to just<br />

above the bottom (0.2 m) at 0.5 m intervals (unless otherwise specified). Unless weather<br />

conditions prohibit, calibrations will be checked every four hours during the sampling<br />

effort. If the values differ by more than 5% from the initial calibration st<strong>and</strong>ards then: 1)<br />

the sonde must be recalibrated; or 2) a calibrated backup unit should be used. All sondes<br />

used during field collections must be checked at the completion of each sampling run as<br />

part of the calibration procedures (see calibration sheet in Appendix 5-A).<br />

1. In the field notebook, record the date, time (Military/EST), sonde serial number,<br />

reporting unit, assigned sampling location <strong>and</strong> description.<br />

2. The sonde unit should be in the water stabilizing while the surface water <strong>quality</strong><br />

chemistry is being collected. Arrange the sonde unit so that the probes are<br />

completely submerged at a depth of 0.2 meters. This depth must be based on<br />

previous markings made on the sonde unit.<br />

3. Wait until temperature has stabilized, then read <strong>and</strong> record: temperature, pH, specific<br />

conductance <strong>and</strong> salinity.


Page 8<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

4. Wait <strong>and</strong> verify the values for dissolved oxygen have stabilized before recording (this<br />

may take from 2 to 5 minutes depending on previous readings). Typically, dissolved<br />

oxygen levels will slowly decline when the sonde is lowered into waters with lower<br />

dissolved oxygen levels. Wait until the readings have stopped declining <strong>and</strong> have<br />

begun to fluctuate.<br />

5. Using pre-marked units on the sonde cable, frequently checking against depth<br />

recorded by the sonde, lower unit to required water column depths <strong>and</strong> repeat<br />

measurements.<br />

6. Conduct replicate water column profiles if required (see Section 5.4).<br />

7. The member of the field staff who records the entries in the field notebook should<br />

check all entries before proceeding to the next station. This person should also make<br />

sure that all sampling stations have been sampled <strong>and</strong> properly recorded. The Field<br />

Control Officer should review <strong>and</strong> sign each page of the field notebook before the<br />

pages are photocopied or entered in the database.<br />

5.4 Duplicates, Field Blanks <strong>and</strong> Split Sampling<br />

1. Conduct replicate water column profiles at a rate of at least 5% (1 out of every 20 or<br />

1 time per reporting unit per sampling day, whichever is greater).<br />

2. Duplicate surface water <strong>quality</strong> grab samples will be collected at a rate of 5% or once<br />

per sampling event, whichever is greater, in order to estimate field sampling<br />

precision.<br />

3. Field Blanks will be prepared using analyte free water, to assess both potential infield<br />

contamination <strong>and</strong> reported minimum laboratory detection limits.<br />

4. Split Samples may be collected as part of the overall <strong>quality</strong> <strong>assurance</strong> <strong>plan</strong> <strong>and</strong> used<br />

to assess the accuracy of reported laboratory results. The collection of split samples<br />

will be from consecutive sample volumes from the same sampling device to attain<br />

two samples as identical as possible. All other variables of collection <strong>and</strong> analysis<br />

will be held as constant as possible including the same types of containers cleaned in<br />

the same manner, the same preservatives in equal amounts, <strong>and</strong> the same method of<br />

analysis <strong>and</strong> instrumentation. Additionally, staff members participate in quarterly<br />

Southwest Florida Regional Ambient Monitoring Program (RAMP) sampling where<br />

split samples are obtained <strong>and</strong> analyzed by multiple laboratories in the region.


Page 9<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

5.5 Field Preservation<br />

1. If preservation is required preservative should be added from the marked dropper<br />

bottle at the approximate rate of 2 ml per liter 4N H2SO4 (reagent grade or better) for<br />

nutrients, 2 ml per liter 4N HNO3 (reagent grade or better) for metals <strong>and</strong> 0.2 ml of<br />

6N HCL (technical grade) for carbons.<br />

2. After adding 1.0 ml, the sample bottle should be thoroughly shaken, a small<br />

subsample taken in a small clean sampling cup <strong>and</strong> the pH checked using narrow<br />

range pH paper. DO NOT insert the pH paper into the sample bottle. This step<br />

may be repeated if necessary until the proper pH range (normally < 2) is reached.<br />

3. The same amount of preservative should be added to the equipment blank <strong>and</strong><br />

recorded in the field notebook. If extra acid is used, the amount is to be noted in the<br />

field notebook.<br />

4. Additional chemical used to augment field preservation will be from the same source<br />

as the chemical used to preserve the sample.<br />

5. Samples will not usually be collected in pre-preserved containers. In general, samples<br />

requiring preservation will have parameter specific preservatives added in the field.<br />

Under certain weather conditions, <strong>control</strong>led preservation cannot be accomplished<br />

without contamination of the sample or risk to the field sampler working with acids,<br />

i.e., during rain, in the dark, in rough waters. When these conditions exist, the<br />

samples will be held on ice in coolers <strong>and</strong> preservation will be done as soon as the<br />

collection is completed <strong>and</strong> the boat has returned to the dock. The time of collection<br />

<strong>and</strong> the time of preservation will be noted in the field book.<br />

5.6 Chlorophyll a <strong>and</strong> “Field Filtration”<br />

Under normal sampling procedures, chlorophyll a samples will be collected <strong>and</strong><br />

couriered (or shipped) to arrive at the laboratory on the same day that they are collected.<br />

However, if there are any problems getting the samples to the laboratory for filtration on<br />

the same day as collection, additional steps must be taken with the chlorophyll a samples.<br />

Due to their very short holding time, samples must be immediately frozen, using the<br />

following procedures, if they cannot be delivered to the laboratory <strong>and</strong> filtered on the<br />

same day as they are collected.<br />

1. A one-liter subsurface sample will be collected in accordance with the water <strong>quality</strong><br />

chemistry procedures specified above. Sampling must be done using opaque or<br />

“dark” polyethylene bottles to eliminate exposure to light after sample collection.<br />

2. The chlorophyll a samples will immediately be placed in a cool, dark ice chest.<br />

Under no conditions should the chlorophyll a sample containers come into direct


Page 10<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

contact with ice water (since this could cause the rupture of phyto<strong>plan</strong>kton cells due<br />

to temperature stress).<br />

3. Samples will be delivered to, <strong>and</strong> filtered by, the laboratory on the same day that they<br />

are collected. However, if this is not possible, then the chlorophyll a samples must be<br />

field filtered, in a low light environment, <strong>and</strong> frozen prior to being shipped to the<br />

laboratory. This must be done as soon as possible after completion of the sampling<br />

event.<br />

4. Prior to filtering, the one-liter sample will be gently shaken by repeated inverting of<br />

the container in order to resuspend any settled phyto<strong>plan</strong>kton.<br />

5. A sub-volume will then be taken using a 500 ml polypropylene graduated cylinder.<br />

The volume that can be filtered will depend on the amount of <strong>plan</strong>kton <strong>and</strong> other<br />

suspended materials in the water column. The amount filtered should be the greatest<br />

amount that can practically be filtered, up to a sub-volume of 500 ml.<br />

6. This volume will then be gently filtered through a 47 mm diameter, 0.45 micron<br />

cellulose nitrate membrane filter using a st<strong>and</strong>ard one-liter polypropylene filtering<br />

flask, a 500 ml Gelman magnetic filter holder, <strong>and</strong> a Nalgene h<strong>and</strong> pump for suction.<br />

The vacuum applied using the h<strong>and</strong> pump should never exceed 10- 20 inches Hg (50-<br />

68 kPa).<br />

7. The sides of the filtering flask will then be rinsed using an approximately isotonic<br />

solution made from analyte free water <strong>and</strong> commercial grade salt. (One-gallon<br />

containers of isotonic water will have been previously prepared in 5 ppt increments<br />

over a range of 0 to 35 ppt.)<br />

8. Two drops of saturated magnesium carbonate solution will be added to the final rinse,<br />

immediately prior to the completion of filtering.<br />

9. The filter, with the trapped phyto<strong>plan</strong>kton, will then be quickly removed, folded, <strong>and</strong><br />

placed in 15 cm coarse paper filter that is then also folded in half. The larger filter<br />

paper must be pre-labeled in pencil, with the sample ID, date, time, initials of<br />

sampler, <strong>and</strong> the exact volume filtered. A paper clip can then be used to hold the<br />

filters together.<br />

10. All of the filters are then to be placed in a re-sealable plastic bag <strong>and</strong> placed between<br />

two frozen freezer packs, <strong>and</strong> placed in an appropriate cooler.<br />

If surface water <strong>quality</strong> parameters such as dissolved concentrations of trace metals or<br />

ortho-phosphates are required in the future, these samples cannot be preserved until<br />

filtered. Such samples should be field filtered using a clean syringe <strong>and</strong> 0.45 micron glass<br />

filter contained in a Teflon filter holder (with stainless steel screen) that has been cleaned<br />

<strong>and</strong> prepared at the laboratory. At least one cleaned filter <strong>and</strong> syringe combination with


Page 11<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

extra filter papers should be provided for each station, when possible, to avoid field<br />

cleaning. Samples should then be preserved after filtering.<br />

5.7 Sample Container <strong>and</strong> Equipment Cleaning Procedures<br />

The specific procedures outlined herein will be taken to assure appropriately prepared<br />

sample containers, <strong>and</strong> provide for the necessary cleaning <strong>and</strong> decontamination of<br />

sampling equipment for each chemistry parameter.<br />

5.7.1 Laboratory<br />

All sample containers used will be obtained from Southern Analytical Laboratory after<br />

they have been pre-cleaned for each of the specific water chemistry parameters to be<br />

collected. All such containers will be cleaned <strong>and</strong> certified as such following the<br />

procedures specified in the laboratory’s Quality Manual.<br />

5.7.2 Decontamination of Field Equipment<br />

After each field trip, multi-parameter sondes will be checked, cleaned <strong>and</strong> stored as<br />

detailed in the calibration procedures.<br />

It is anticipated that all subsurface water <strong>quality</strong> samples will be collected without the use<br />

of any equipment, thus eliminating the need for cleaning <strong>and</strong> decontamination of field<br />

equipment between sampling locations. However, decontamination will be required in<br />

the event that future or special monitoring of water chemistry parameters requires the use<br />

of sampling equipment, such as Kemmerer samplers, buckets, dredges, etc. In<br />

accordance with the EPA SOP <strong>and</strong> QAM (1996), Section No. B. 8.2, such sampling<br />

equipment used for routine sample collection may be cleaned with sample water or deionized<br />

water between sampling locations. If necessary, a brush may be used to remove<br />

deposits of material or sediment. If de-ionized water is used, the rinse should occur at the<br />

next sampling location before the sample is collected.<br />

Such field cleaning procedures will be used to clean the Field Filtration apparatus used to<br />

filter samples for chlorophyll a analysis between sampling locations.<br />

5.8 Sample Transportation <strong>and</strong> Shipping Procedures<br />

In general, field personnel will be responsible for sampling <strong>and</strong> either transferring the<br />

samples to a courier service or transporting the water <strong>quality</strong> samples back to the PBS&J<br />

<strong>Tampa</strong> office. In almost all instances, samples will be transported either under the direct<br />

<strong>control</strong> of the field crews or the courier service to Southern Analytical Laboratory.<br />

However, in those rare instances where the field crews use other methods to meet<br />

required holding times, the procedures outlined below will be followed.


Page 12<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

1. Prior to leaving the sampling site, the field crews will check to make sure that the<br />

sample bottles are sorted by sampling location <strong>and</strong> parameter group <strong>and</strong> that<br />

identifications on the bottles match those recorded in the field notebook.<br />

2. Bottle types, preservation, etc. are to be checked in accordance with the procedures<br />

outlined in Table 5.5.<br />

3. The time of sample collection, etc. should be documented as required in both the<br />

Field Data Sheets (Table 5.4) <strong>and</strong> Chain-of-Custody Forms (Appendix 5-A).<br />

4. All bottle tops will be checked to make sure they are tight.<br />

5. Samples will be secured in appropriate coolers on sufficient wet-ice to insure proper<br />

cooling. However, in no instance shall bottles be placed in such a manner as to allow<br />

floating once the ice begins to melt.<br />

6. Coolers will be transported back to the PBS&J staging area in secured vehicles under<br />

the direct <strong>control</strong> of the field staff. Vehicles will be locked whenever unattended,<br />

even for brief periods of time, to assure possession by field crews.<br />

7. Field notebooks <strong>and</strong> Chain-of-Custody records for each group of samples must<br />

accompany the appropriate coolers.<br />

8. Field crews must check the condition of the coolers periodically (at least once every<br />

two hours). Any water should be drained from the bottom of the coolers <strong>and</strong><br />

sufficient new wet-ice added to insure proper cooling.<br />

9. Field crews are responsible for checking in all samples <strong>and</strong> transferring Chain-of-<br />

Custody records to Southern Analytical Laboratory, either directly at the lab or via a<br />

courier for the lab. Field crews are responsible for documenting specific<br />

conductance, pH, temperature, <strong>and</strong> collection time for each sample on the Chain-of-<br />

Custody form.<br />

5.9 Sample Custody<br />

5.9.1 Objectives<br />

• To provide a detailed <strong>and</strong> legally defensible Chain-of-Custody through the entire<br />

process of preparing sample containers, shipment to the field staff, sample collection,<br />

shipment back to the laboratory, <strong>and</strong> chemical analysis.<br />

• To provide the field staff complete sets of certified pre-cleaned, pre-labeled sample<br />

containers for each required sampling site.


Page 13<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

• To be able to accurately track the time, date <strong>and</strong> location of all water <strong>quality</strong> samples<br />

collected during the HBMP.<br />

• To assure that all analytical results are matched correctly to the appropriate sample<br />

containers.<br />

5.9.2 Sample Custody - Overview<br />

PBS&J field <strong>and</strong> Southern Analytical Laboratory staff will maintain Chain-of-Custody<br />

procedures in order to document that all samples are in possession, view, or stored<br />

securely at all times.<br />

Prior to each sampling event, unique identification numbers will be assigned to each<br />

sampling location within each of the estuarine/riverine systems. All station locations,<br />

parameters, <strong>and</strong> sampling schedules will be pre-determined as part of the r<strong>and</strong>omized<br />

temporal <strong>and</strong> spatial monitoring design, <strong>and</strong> will be entered into the Laboratory’s<br />

Information Management System. The Laboratory’s software package is used for the<br />

routine pre-logging of samples, calculation <strong>and</strong> storing of analytical results, generating<br />

reports, <strong>and</strong> reporting <strong>quality</strong> <strong>control</strong> data. After the pre-logging procedure is proofed,<br />

labels are affixed to the necessary types of sample containers.<br />

Sample labels may be preprinted for the following fields of information:<br />

1. Date collected<br />

2. Client<br />

3. Project name<br />

4. Site description<br />

5. Analysis requested<br />

6. Type of sample that should be collected in the container (Nutrients, Metals, etc.)<br />

7. Type of preservative that is in the container e.g. HNO3, H2SO4, HCL, No Chemical<br />

Preservative, etc.<br />

Southern Analytical Laboratory in Oldsmar will originate appropriate Chain-of-Custody<br />

Forms (Appendix 5-A) for each of the sampling events for each of the estuarine systems<br />

prior to sample collection. Based on this Chain-of-Custody, pre-cleaned containers will<br />

be prepared <strong>and</strong> made ready for sample collection. A Sample Kit Request form directs<br />

the preparation of all sample containers, labeling of such, documentation of sample bottle<br />

<strong>and</strong> preservative lot identifications, shipment information, <strong>and</strong> any ancillary comments.<br />

Sample containers for all of the water <strong>quality</strong> parameters to be collected at each sampling<br />

location will be packaged separately. These sample containers, including those required<br />

for both duplicate <strong>and</strong> field blanks will be placed in individually marked coolers specific<br />

for each of the estuarine systems. These coolers will then be picked up by or shipped to<br />

the field collection staff at the PBS&J <strong>Tampa</strong> office.


Page 14<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Prior to sample collection, all of the sample containers for each of the estuarine systems<br />

will be checked for both completeness <strong>and</strong> label accuracy by the personnel responsible<br />

for the field collections. Any problems will immediately be reported to both the<br />

Laboratory <strong>and</strong> project QA/QC Officer. The field leader will be responsible for<br />

confirming that complete, prepared containers have been received from the Laboratory by<br />

acknowledging receipt on the appropriate Sample Tracking/Chain-of Custody Forms.<br />

The field leader will also be responsible for making sure that additional information<br />

required on these forms is completed <strong>and</strong> correct.<br />

This additional information should include:<br />

1. What containers are field preserved <strong>and</strong> with what preservative.<br />

2. What parameters <strong>and</strong>/or containers are field filtered.<br />

3. How the samples are to be transported.<br />

All samples arriving at the Southern Analytical Laboratory will be immediately checked<br />

for potential problems, such as:<br />

1. Leaking, broken or empty sample containers.<br />

2. Missing containers.<br />

3. Damaged or otherwise unreadable labels.<br />

4. Improperly preserved containers.<br />

Any problems will be noted on a St<strong>and</strong>ard Quality Control Form by the sample<br />

custodian. This form is signed by the originator, the Laboratory Quality Assurance<br />

Officer, <strong>and</strong> the laboratory project manager. The Form is then transmitted to the PBS&J<br />

Project Manager <strong>and</strong>/or HBMP QA/QC Officer. It will be the responsibility of the<br />

Project Manager or QA/QC Officer to determine the feasibility <strong>and</strong>/or appropriateness of<br />

recollecting damaged or lost samples, or proceeding with laboratory testing.<br />

Once the Laboratory Sample Custodian has established that all samples documented on<br />

the Chain-of-Custody/Sample Tracking Forms have reached the Laboratory intact, they<br />

will countersign the Chain-of-Custody taking responsibility from the Field Sample<br />

Control Officer.<br />

Collection data from both the Chain-of-Custody <strong>and</strong> copies of the Sample Field<br />

Notebook will also be entered into the Laboratory Information Management System<br />

(LIMS) <strong>and</strong> a Laboratory Confirmation of Work Received will be generated with the<br />

unique log-in identifier.<br />

Sample containers will then be distributed to the appropriate sample storage area, <strong>and</strong><br />

appropriate Internal Sample Tracking Forms will be generated by the LIMS. The<br />

samples are stored, <strong>and</strong> documented as such, in a designated storage location, under<br />

appropriate storage conditions, until all the measurements are complete. All sample<br />

preparation <strong>and</strong> analyses are recorded in individual staff laboratory notebooks, <strong>and</strong> also


Page 15<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

on extraction/digestion/analyses preparation <strong>and</strong> run logs. The internal sample tracking<br />

procedures also contain information on final sample disposal. This system ensures that<br />

all samples in existence in the laboratory are either in identifiable storage areas or in the<br />

possession of an identifiable chemist.<br />

5.10 Field Sample Control Officer<br />

The designated Field Sample Control Officer will be designated as the senior staff in<br />

charge of a specific sampling run. In the field, the designated Field Sample Control<br />

Officer ensures that:<br />

1. Upon arrival at the sampling location: the boat is securely anchored, the multiparameter<br />

sonde is placed over the side to equilibrate, <strong>and</strong> the proper sample<br />

containers (as designated on the Chain-of-Custody Forms) are taken out <strong>and</strong> checked<br />

for completeness. Sampling crews should always carry at least two complete sets of<br />

labeled backup sample containers, which can be used if any of the designated sample<br />

containers are lost or contaminated during the sample run.<br />

2. Proper sample collection, h<strong>and</strong>ling <strong>and</strong> preservation methods are observed.<br />

3. All appropriate containers are filled at each sampling site.<br />

4. Collection times <strong>and</strong> each sample number are written into the field notebook.<br />

5. All necessary written documentation, including weather notes, tide stage, etc. are<br />

recorded at each station location.<br />

6. Upon completion of collection of the water chemistry samples, all container lids are<br />

securely closed <strong>and</strong> the sample containers are properly stored in the appropriate<br />

coolers.<br />

7. In situ water <strong>quality</strong> measurements are made, recorded <strong>and</strong> checked for<br />

reasonableness.<br />

8. All equipment is properly stored <strong>and</strong> the field notebook is placed in a secure location<br />

before leaving the sampling site.<br />

Strict adherence to these procedures will assure that sample container mix-up in the field<br />

is nearly impossible.<br />

5.11 Field Custody <strong>and</strong> Documentation<br />

All field records are to be kept in bound, waterproof field notebooks. Notes are made in<br />

permanent waterproof ink or pencil if necessary. Wet weather conditions often preclude<br />

use of ink in the field <strong>and</strong> pencil must be used. Corrections are accomplished by crossing<br />

out the incorrect data with a single line <strong>and</strong> writing in the correct data. Records in the<br />

field notebook are never to be erased or altered other than by making a single mark<br />

through them. This includes any data collected during sampling runs that are<br />

discontinued (such as for mechanical failures or the development of dangerous weather<br />

conditions). Corrections are initialed by the personnel making the correction <strong>and</strong> dated,<br />

if not made on the same date as the collection. Field records include:


Page 16<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

1. Collection date <strong>and</strong> time.<br />

2. Total water depth.<br />

3. Sampling location identification (station number).<br />

4. Sequential sample numbers (the samples may not be sampled in sequential order but<br />

as a sample is collected the collection data is recorded for that sample number).<br />

5. Field measurement data.<br />

6. Depth(s) of measurement(s).<br />

7. The number <strong>and</strong> types of QC samples collected.<br />

8. Collection time reflecting the sequence of sample collection.<br />

9. Designation of multi-parameter sonde used.<br />

10. Any filtering <strong>and</strong>/or sampling equipment used.<br />

11. If field filtration is required <strong>and</strong> a record of which sample containers were filled for<br />

each station.<br />

12. Weather <strong>and</strong> tide data.<br />

13. Equipment problems.<br />

14. Notes about the sampling location, including station maps as necessary<br />

15. Type of preservative used <strong>and</strong> sample pH checked to see if additional preservative is<br />

required.<br />

Field notebooks are to be signed by all personnel involved in a sampling event <strong>and</strong> all<br />

visitors on site must be identified. All sample containers are pre-labeled with project<br />

number, station number, sample number <strong>and</strong> lab identification number; this information<br />

is to be transferred into the field notebook at the time of collection.<br />

When boats with fuel powered engines are used, the samples are always collected<br />

upstream/tide of the engines <strong>and</strong> from the bow of the boat away from the engine.<br />

Upon return from the field all notebook pages will be checked for completeness <strong>and</strong><br />

signed by the Field Sample Control Officer. This person is also responsible for checking<br />

to make sure that all samples have been collected, are tightly sealed, <strong>and</strong> properly packed<br />

for transfer to Southern Analytical Laboratory. The Field Sample Control Officer will<br />

then sign the Chain-of-Custody/Sample Tracking Forms <strong>and</strong> see that the coolers are<br />

properly sealed <strong>and</strong> immediately transferred to the Laboratory so that all water <strong>quality</strong><br />

parameters can be analyzed within their designated holding times. If the samples are<br />

picked-up in the field during a long-term study in which the field notebook will stay in<br />

the field, the person transporting the samples to the laboratory will sign both the Chainof-Custody<br />

<strong>and</strong> the field notebook.<br />

After appropriate information from the Chain-of-Custody Forms has been entered into<br />

the computer database, two separate sets of files will be maintained. An original Chainof-Custody<br />

(COC) Record will be kept in the Laboratory Data Management files. If the<br />

COC is a multipart form, one of the copies is returned to the designated “report to”<br />

project person with the Certificate of Analysis, <strong>and</strong> a copy of the COC is also transmitted<br />

with the Confirmation of Work Received. The <strong>Tampa</strong> office of PBS&J, will be<br />

maintaining this information separately as part of the permanent project files.


Page 17<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

5.12 Laboratory Sample Control<br />

Laboratory sample integrity is the charge of a designated Sample Custodian. These<br />

duties include:<br />

1. Initiating Chain-of-Custody Forms required for shipment with each set of sample<br />

containers.<br />

2. Assuring that pre-logged <strong>and</strong> pre-labeled sample containers are prepared <strong>and</strong> shipped<br />

with appropriate Chain-of-Custody <strong>and</strong> Tracking Forms to the field sampling<br />

personnel. (In specific instances include adding any required preservatives to<br />

containers.)<br />

3. Verifying <strong>and</strong> signing for incoming field samples, signing Chain-of-Custody Form<br />

from field staff.<br />

4. Beginning Internal Chain-of-Custody forms for each batch of samples.<br />

5. Logging samples into appropriate storage areas where they are then available for<br />

chemistry analysts <strong>and</strong> technicians.<br />

6. Maintaining complete files of all the Chain-of-Custody records.<br />

7. Overseeing the collection <strong>and</strong> maintenance of the sample custody sheets after<br />

individual Chemists have disposed of their samples.<br />

5.13 Laboratory Custody<br />

Samples arriving at Southern Analytical Laboratory will first be checked for proper<br />

identification, completeness, preservative, documentation on Chain-of-Custody Forms,<br />

<strong>and</strong> sample integrity (leaks, temperature, etc.). If any problems exist the Sample<br />

Custodian initiates a sample custody <strong>quality</strong> <strong>control</strong> protocol, <strong>and</strong> this information is<br />

immediately brought to the Laboratory QA Officer for review, as well as to the attention<br />

of the Laboratory Project Manger. The Project Manager <strong>and</strong>/or the Project QA/QC<br />

Officer in the <strong>Tampa</strong> office is then contacted, <strong>and</strong> documented determinations as to the<br />

need for re-sampling will then be made. Once the samples have passed this initial check,<br />

the sampling information will be recorded into the Receiving Records of the LIMS.<br />

Information recorded includes: collection date <strong>and</strong> time, field sampler identification,<br />

project number, station descriptors, type of sample, <strong>and</strong> parameters to be analyzed, field<br />

measurements, special notes. Using this information the computer then generates a<br />

Laboratory Confirmation of Work Received for that sampling event’s log-in. Additional<br />

information such as date (time also if


Page 18<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

The log-in unique identifier with field samples received is then immediately associated<br />

with the daily work group records available to each Technical Coordinator <strong>and</strong><br />

Analyst/Technician in the laboratory. Each log-in identifies when samples were taken in<br />

the field so that recommended holding times are not exceeded. Assigned completion<br />

dates are listed on the log-in, along with any project specific requirements. Batch Quality<br />

Control samples, such as method blanks, laboratory <strong>control</strong> samples, matrix spike <strong>and</strong><br />

matrix spike duplicate samples are also assigned. Technical Coordinators <strong>and</strong> laboratory<br />

Project Managers review daily sample backlogs for status on project log-ins.<br />

When a specific parameter for a sample is completed the value is entered into the<br />

computer database either directly or for further calculation if necessary. Once entered, it<br />

is proofed by the respective Technical Coordinator against the raw <strong>and</strong> summary data to<br />

validate the original entry. If the entered data are not correct, the necessary changes are<br />

made <strong>and</strong> the results returned for data editing. If a problem is found to exist, the QA/QC<br />

Officer <strong>and</strong> the laboratory Project Manager are notified. Each summary data package<br />

contains an example of each calculation performed for data reporting. When all the<br />

analyses have been completed for a specific set of samples, a report is generated. A<br />

cover letter attesting to the authenticity of the results is attached to this report, which will<br />

be sent to the <strong>Tampa</strong> office of PBS&J. The Laboratory will also maintain secure copies<br />

of the report. The Southern Analytical Laboratory’s Information Management System is<br />

designed around, <strong>and</strong> operates on Good Automated Laboratory Procedures.<br />

Complete <strong>and</strong> detailed descriptions of all Southern Analytical Laboratory operating<br />

procedures <strong>and</strong> protocols are contained in the most recent Department of Environmental<br />

Protection (DEP) approved Laboratory’s Comprehensive Quality Assurance Plan, <strong>and</strong><br />

documentation associated with the Laboratory’s certification (E84129) by the Florida<br />

Department of Environmental Protection (FDEP) <strong>and</strong> Health (FDOH) for the analyses of<br />

environmental water <strong>quality</strong> samples.<br />

5.14 Preventative Maintenance<br />

5.14.1 Field Instruments/Equipment<br />

Most of the field sampling equipment <strong>and</strong> instruments are to be used frequently enough<br />

that normal maintenance will be done in conjunction with pre-mobilization <strong>and</strong><br />

calibration procedures. In addition, all equipment is to be cleaned <strong>and</strong> checked after each<br />

use <strong>and</strong> any required maintenance done at that time.<br />

• Routine maintenance of multi-parameter sondes will be documented on the<br />

calibration sheets <strong>and</strong> permanently kept on file by the QA/QC Officer.<br />

• All non-routine repairs are to be documented in staff personal field books. Any<br />

invoices/receipts will be kept on file in the project office.


Page 19<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

In the event of a major equipment failure, the options to be followed are prioritized in the<br />

order enumerated below. Decisions are to be based on the highest level of data collection<br />

attainable as assessed by the Field Sample Control Officer present at the time <strong>and</strong> place<br />

of the failure. (Any such activities must be noted in the field notebook.)<br />

1. Use backup equipment. PBS&J <strong>and</strong> other members of the HBMP study team will<br />

each maintain a full array of field sampling equipment (boats, GPS units, multiparameter<br />

sondes, etc.). All field crews will carry cell phones <strong>and</strong> a list of contacts<br />

able to provide backup sampling equipment in order to reduce down time from<br />

equipment failure.<br />

2. Postpone sampling, if appropriate backup equipment is not readily available, until<br />

repairs are made on the equipment or other sampling arrangements can be made.<br />

3. Collect grab samples <strong>and</strong> analyze using laboratory instruments upon return to the lab.<br />

(Example: conductivity probe fails <strong>and</strong> cannot be corrected in the field. Grab samples<br />

are to be collected near the surface <strong>and</strong> near the bottom.)<br />

4. Invalidate data. Repeat or report as N/A any invalidated data from the field.<br />

5.15 Multi-parameter Sonde Operation <strong>and</strong> Calibration<br />

5.15.1 Introduction<br />

The multi-parameter sondes must be checked <strong>and</strong> calibrated immediately prior to their<br />

use to assure both the accuracy <strong>and</strong> precision of in situ field readings (see Table 5.6). At a<br />

minimum, the units must be thoroughly checked <strong>and</strong> calibrated within 24 hours of use. If<br />

during calibration, the readings of known solutions are found to be outside the<br />

predetermined range of accuracy, the calibration must be repeated <strong>and</strong> the instrument<br />

readings determined to be stable <strong>and</strong> reliable prior to use. All calibration sheets must be<br />

permanently maintained in a three ring binder.<br />

The in situ parameters that are measured by these instruments include:<br />

• temperature<br />

• salinity<br />

• specific conductance<br />

• dissolved oxygen<br />

• pH<br />

• depth (values should be checked prior to each reading against predetermined<br />

measurements marked on the data sonde cable)


Page 20<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

The accurate recording of these data is important because they will be used to assess<br />

long-term temporal <strong>and</strong> spatial variations in water <strong>quality</strong> within the sampled<br />

estuarine/riverine systems.<br />

5.15.2 Objectives<br />

• Calibrate units properly to ensure accurate readings.<br />

• Accurately record hydrologic data at each sampling site.<br />

• Check in situ data after entry into project database.<br />

5.15.3 Procedures<br />

A) General multi-parameter sonde Operation Procedures<br />

1. Before leaving the office, check the voltage on the display of the unit. A fully<br />

charged unit should have approximately 14 volts. However, as a battery gets older, a<br />

fully charged battery may not reach 14 volts. All units should be evaluated on an<br />

individual basis. Calibration sheets <strong>and</strong> written records should specify the voltage<br />

each unit will hold <strong>and</strong>, most importantly, the approximate voltage when each unit<br />

will stop working. Always take spare batteries.<br />

Note: Whenever possible bring a complete (<strong>and</strong> calibrated) spare unit on all sampling<br />

events. The units can <strong>and</strong> do become inoperable. At a minimum, salinity (specific<br />

conductance) <strong>and</strong> temperature should be taken at all sampling sites. If these two<br />

parameters cannot be measured all sampling should be discontinued until a<br />

replacement unit is obtained.<br />

2. Keep the probes immersed in water at all times. Exposure to air will dry out the<br />

membranes, which, in turn, will give false readings.<br />

3. Once on station, turn the unit on <strong>and</strong> allow it to equilibrate before taking the readings.<br />

4. Take in situ water <strong>quality</strong> readings at the surface (0.2 meters below) <strong>and</strong> bottom (0.2<br />

meters above), <strong>and</strong> at 0.5 meter intervals in between (unless otherwise noted).<br />

5. Rinse <strong>and</strong> wipe down the units upon returning to the office. Rinse the probes with<br />

clean, de-ionized water. Fill the probe storage cup with de-ionized water, <strong>and</strong> clean<br />

all cables <strong>and</strong> the surface units.<br />

6. Allow units to thoroughly dry before being packed in their storage cases.


Page 21<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

B) YSI Setup, Calibration <strong>and</strong> Maintenance<br />

1. Do Membrane Installation (YSI 600 Series) - position the sonde in a vertical<br />

position such that the sensors are upright. Remove the probe guard from the sonde.<br />

Remove the old DO membrane <strong>and</strong> clean the probe tip with water <strong>and</strong> lens cleaning<br />

tissue. Make sure to remove any debris or deposits from the O-ring groove. Using a<br />

dropper bottle, fill the DO probe with new electrolyte.<br />

Hold the membrane so that all four corners are supported, but do not stretch the<br />

membrane laterally. Position the membrane over the probe, keeping it parallel to the<br />

probe face as shown above. With one continuous downward motion, stretch the<br />

membrane over the probe face as shown in the pictures. Do not hesitate to stretch the<br />

membrane.<br />

Install a new O-ring by placing one side of the O-ring in the groove <strong>and</strong> rolling into place<br />

across the membrane <strong>and</strong> into the groove on the opposite side of the probe face. Avoid<br />

touching the probe face with your fingers. Once the O-ring is in position, squeeze it every<br />

90 degrees to equalize the tension. Do not use grease or lubricant of any kind on the<br />

O-ring.<br />

Observe the following cautions to assure that the membrane is installed properly:


Page 22<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

• Secure the sonde tightly so that it will not move during membrane installation.<br />

• Wash h<strong>and</strong>s before installation <strong>and</strong> do not allow finger oils or O-ring lubricant to<br />

touch the probe face or the membrane.<br />

• Use caution when replacing the probe guard that you do not touch the membrane. If<br />

you suspect that the membrane has been damage, replace it immediately.<br />

2. Sonde Calibration - the calibration cup that comes with the sonde serves as a<br />

calibration chamber for all calibrations <strong>and</strong> minimizes the volume of calibration reagents<br />

required. If a sonde with a wiper is being used it should be visually inspected to assure<br />

proper movement of the mechanism before beginning the calibration procedures.<br />

Instead of the calibration cup, st<strong>and</strong>ard laboratory glassware may be used to perform<br />

calibrations. However, if the calibration cup that is designed for the sonde is not used, the<br />

following cautions should be used:<br />

• Perform all calibrations with the Probe Guard installed. This will protect the probes<br />

from possible physical damage.<br />

• Secure the sonde body to prevent the sonde from falling over.<br />

• Ensure that all sensors are immersed in calibration solutions. Many of the calibrations<br />

require immersion of other probes (e.g., the temperature probe). The top vent hole of<br />

the conductivity sensor must also be immersed during calibrations.<br />

The following tips should be employed as necessary during calibration using the YSI<br />

calibration cup:<br />

• Remove the probe guard, if it is installed.<br />

• Sonde calibration can be accomplished either with the sonde upright or upside down.<br />

However, it should be supported to prevent damage during calibration.<br />

• Make certain that port plugs are installed in all ports where probes are not installed. It<br />

is extremely important to keep these electrical connectors dry.<br />

• Ensure that a gasket is installed in the gasket groove of the calibration cup bottom<br />

cap, <strong>and</strong> that the bottom cap is securely tightened. Note: Do not over-tighten as this<br />

could cause damage to the threaded portions of the bottom cap <strong>and</strong> tube.<br />

• When calibrating for dissolved oxygen (DO) utilizing the saturated air method, make<br />

sure to loosen the seal of the calibration cup <strong>and</strong> allow the pressure to equilibrate<br />

before calibration, since DO calibration requires water-saturated air.


Page 23<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

• Using the Calibration Cup for dissolved oxygen calibration, make certain that the<br />

vessel is vented to the atmosphere by loosening the bottom cap or cup assembly <strong>and</strong><br />

that approximately 1/8” of water is present in the cup.<br />

• Other than during DO calibration, be sure that the sensors are completely submersed<br />

when calibration values are entered.<br />

• Be sure to use sufficient volumes of solution when performing calibrations.<br />

• When available, utilize previously used, stored calibration solutions to rinse the<br />

sonde, prior to each calibration procedure.<br />

• Ambient temperature freshwater can also be used to rinse the sonde between<br />

calibration solutions.<br />

• Be sure to remove the stainless steel weight from the bottom of the sonde prior to<br />

calibration in order to reduce both amount of calibration solutions <strong>and</strong> the amount of<br />

liquid that is carried between calibrations.<br />

• Be sure to shake excess rinse water off of the sonde, especially when the probe guard<br />

is installed. Additionally, carry-over can be further reduced by using clean, absorbent<br />

paper towels or cotton cloths to dry the sonde between rinses <strong>and</strong> calibration<br />

solutions.<br />

The following outlines normal calibration procedures for the sensors commonly used<br />

during the HBMP monitoring program. In order to ensure accurate calibration, rinse the<br />

calibration cup with water first <strong>and</strong> then rinse it again with a small amount of the<br />

appropriate calibration solution. Discard the rinse solution <strong>and</strong> add sufficient fresh<br />

solution. Carefully immerse the probes into the solution <strong>and</strong> rotate the calibration cup to<br />

engage enough threads to prevent leaking (Do not over tighten).<br />

The appearance of the menu will vary depending upon the sensors enabled on the sonde.<br />

To select the parameter from the Calibrate menu, simply input the number that is next to<br />

the parameter. Once you have chosen a parameter, some of the parameters will have a<br />

number that appears in parentheses. These are the default values <strong>and</strong> will be used during


Page 24<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

calibration if you press Enter without inputting another value. Be sure not to accept<br />

default values unless you have assured that they are correct. If no default value appears,<br />

type a numerical value <strong>and</strong> press Enter. A real-time display will appear on the screen.<br />

Carefully observe the stabilization of the readings of the parameter that is being<br />

calibrated. When the readings have been stable for approximately 30 seconds, press<br />

Enter to accept the calibration. Press Enter again to return to the Calibrate menu, <strong>and</strong><br />

proceed to the next calibration.<br />

3. Conductivity - this procedure calibrates conductivity, specific conductance, salinity,<br />

<strong>and</strong> total dissolved solids. Before proceeding insure that the sensor is as dry as possible.<br />

Ideally, rinse the conductivity sensor with a small amount of st<strong>and</strong>ard that can be<br />

discarded. Be certain that you avoid cross-contamination of st<strong>and</strong>ard solutions with other<br />

solutions. Make certain that there are no salt deposits around the oxygen <strong>and</strong> pH probes,<br />

particularly if you are employing st<strong>and</strong>ards of low conductivity.<br />

Place sufficient conductivity st<strong>and</strong>ard into a clean, dry or pre-rinsed calibration cup. Be<br />

certain to immerse the entire sonde in solution st<strong>and</strong>ards for calibration of all<br />

parameters. Most calibrations require readings not only from the sensor being calibrated<br />

but also from the temperature sensor. Carefully immerse the probe end of the sonde into<br />

the solution. Gently rotate <strong>and</strong>/or move the sonde up <strong>and</strong> down to remove any bubbles<br />

from the conductivity cell. The probe must be completely immersed past its vent hole.<br />

Allow at least one minute for temperature equilibration before proceeding.<br />

From the Calibrate menu (as shown above), press 1-Conductivity <strong>and</strong> the following<br />

display will be shown calling for your numerical input.<br />

The number in parentheses is the default value of this parameter <strong>and</strong> will be used in the<br />

calibration only if Enter is pressed without typing in another value. Similar prompts will<br />

be displayed during the calibration of all parameters, but for some sensors, such as pH, no<br />

default values are provided. In these cases, the user must input a numerical value <strong>and</strong><br />

then press Enter.<br />

After the calibration value is inputted <strong>and</strong> Enter is pressed, a real-time display similar to<br />

the following will appear on the screen.


Page 25<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

All of the parameters that have been enabled will appear - not just the one being<br />

calibrated at the moment. Carefully observe the stabilization of the readings of the<br />

parameter that is being calibrated <strong>and</strong>, when the readings are stable for approximately 30<br />

seconds, press Enter to implement the calibration <strong>and</strong> the following message will appear.<br />

If an ERROR message appears, begin the calibration procedure again. Be certain that the<br />

value entered for the calibration st<strong>and</strong>ard is correct.<br />

Conductivity should be calibrated with a st<strong>and</strong>ard at the high end of the range of field<br />

values expected. An additional check of conductivity should be completed using a<br />

st<strong>and</strong>ard at the low end of the range of expected field values.<br />

4. Dissolved Oxygen<br />

600 Series with Rapid Pulse Polarographic Dissolved Oxygen (Membrane)<br />

If the DO sensor has just been resurfaced, it is recommend the probe be run continuously<br />

for 15-30 minutes or until good stability has been achieved. After simply changing a DO<br />

membrane (not resurfacing), it is usually only necessary to run the probe continuously for<br />

3-4 minutes to achieve stability.<br />

To calibrate with the saturated air method, place approximately 3 mm (1/8 inch) of water<br />

in the bottom of the calibration cup. Place the probe end of the sonde into the cup. Make<br />

certain that the DO <strong>and</strong> temperature probes are not immersed in the water. Engage only 1<br />

or 2 threads of the calibration cup to insure the DO probe is vented to the atmosphere.<br />

Wait approximately 10 minutes for the air in the calibration cup to become water<br />

saturated <strong>and</strong> for the temperature to equilibrate.<br />

All of the sonde sensors (except temperature) require periodic calibration to assure<br />

required accuracy. However, the calibration protocols for dissolved oxygen are<br />

significantly different depending on whether the sonde is being set up for spot sampling<br />

or longer term unattended monitoring studies. This difference is selectable <strong>and</strong> is required<br />

primarily because the optimal performance of the Rapid Pulse dissolved oxygen sensor<br />

cannot be attained unless the <strong>control</strong> of this sensor varies from short term to long term<br />

applications. When spot sampling is required, it is best to pulse the sensor continuously<br />

during the Run mode to attain the most accurate results <strong>and</strong> optimize the response time.<br />

However, this continuous pulsing is not ideal for longer term logging studies in which the<br />

sonde data is captured to sonde memory or to a data collection platform at much less<br />

frequent intervals (e.g. 15 minutes). Continuous pulsing not only shortens the time<br />

between required probe maintenance, but consumes more power. With proper selection<br />

of the “Auto sleep” option the sonde software can be configured to either run<br />

continuously or “go to sleep” between samples to prevent DO probe wear <strong>and</strong> conserve<br />

power. The effect of this choice on the user interface relative to dissolved oxygen


Page 26<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

calibration is significant. If the instrument is being used in sampling applications where<br />

the dissolved oxygen is “on” continuously during the sampling (such as during<br />

conducting in situ water column profiles) deactivate “Autosleep RS232”.<br />

If “Auto sleep” is deactivated, the sonde runs continuously no matter what sample<br />

interval has been selected. Under these conditions, the user retains manual <strong>control</strong> of the<br />

dissolved oxygen calibration routine, viewing the stabilization of the readings in real time<br />

<strong>and</strong> confirming the calibration with keyboard entries.<br />

If “Auto sleep” is activated, the sonde will ‘warm up’ the sensors for the period of time<br />

selected for the DO sensor. Under these conditions, the user loses manual <strong>control</strong> of the<br />

DO calibration routine. DO will automatically calibrate after the selected time for warm<br />

up of the DO sensor has expired. In this mode of calibration, you do not observe<br />

stabilization of the readings in real time, but instead will observe a countdown of the<br />

warm up period followed by a message indicating that the DO calibration is complete.<br />

Only the calibration of dissolved oxygen is affected by whether “Auto sleep” is on or off;<br />

the user retains manual <strong>control</strong> of the calibration of all other parameters regardless of the<br />

“Auto sleep” setting. Once a particular warm up time (in seconds) has been utilized in<br />

DO calibration, the length of that time should not be changed during a study. A new<br />

calibration should be performed whenever the value of the warm up time is altered.<br />

Remember, the Calibration Cup is designed to be air-tight <strong>and</strong> must be loosened if it is<br />

used as a calibration chamber. From the Calibrate menu, select Dissolved Oxy, then<br />

select DO % to access the DO percent calibration procedure. Calibration of dissolved<br />

oxygen in the DO % procedure also results in calibration of the DO mg/L mode.<br />

For the percent saturation mode, be certain that the sensor has been thermally equilibrated<br />

in water-saturated air <strong>and</strong> that the sensor shows stable readings prior to beginning the<br />

calibration routine. This is particularly important after changing the membrane. It is<br />

important that the sensor be “off” for at least 5 minutes before initiating a calibration<br />

procedure with “Autosleep” active. Ideally the sensor should be “off” for a period of time<br />

equal to the sample interval that will be used over a long-term deployment.<br />

Enter the current barometric pressure in mm of Hg. (Inches of Hg x 25.4 = mm Hg).<br />

Laboratory barometer readings are usually “true” (uncorrected) values of air pressure <strong>and</strong><br />

can be used “as is” for oxygen calibration. Weather Service readings are usually not<br />

“true” since they are corrected to sea level, <strong>and</strong> therefore cannot be used until they are<br />

“uncorrected” ( for example True BP = [Corrected BP] – [2.5 * (Local Altitude/100)]).<br />

However, since all <strong>Tampa</strong> HBMP data is collected very near sea level either actual field<br />

or local Weather Service barometric values may be used.<br />

The DOsat % (percent air saturation) value will reflect the entered barometer value. For<br />

example, if a barometric pressure of 720 mm is entered, the DOsat % value will change<br />

to 94.7 % (720/760 x 100). A “DOsat %Local” option is also available to set their percent<br />

air saturation value to 100%, no matter what barometer value is entered. Remember that


Page 27<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

no matter which convention (DOsat % or DOsat %Local) is selected, the mg/L value<br />

ultimately should remain the same.<br />

Press Enter <strong>and</strong> the current values of all enabled sensors will appear on the screen <strong>and</strong><br />

change with time as they stabilize. Observe the readings under DO%. When they show no<br />

significant change for approximately 30 seconds, press Enter. The screen will indicate<br />

that the calibration has been accepted <strong>and</strong> prompt you to press Enter again to return to<br />

the Calibrate menu.<br />

If your instrument will be used in monitoring applications where data is being captured at<br />

a longer interval (e.g. 15 – 60 minutes) to internal sonde memory or data collection<br />

platform activate “Autosleep RS232”. With Autosleep active, the calibration will occur<br />

automatically with a display similar to that shown below.<br />

YSI 6920 with Rox Optical Dissolved Oxygen<br />

Place the sensor either (a) into a calibration cup containing about 1/8 inch of water which<br />

is vented by loosening the threads or (b) into a container of water which is being<br />

continuously sparged with an aquarium pump <strong>and</strong> air stone. Wait approximately 10<br />

minutes before proceeding to allow the temperature <strong>and</strong> oxygen pressure to equilibrate.<br />

Select ODOsat % <strong>and</strong> then 1-Point to access the DO calibration procedure. Calibration of<br />

your Optical dissolved oxygen sensor in the DO % procedure also results in calibration of<br />

the DO mg/L mode <strong>and</strong> vice versa.<br />

Enter the current barometric pressure in mm of Hg. (Inches of Hg x 25.4 = mm Hg).<br />

Note: Laboratory barometer readings are usually “true” (uncorrected) values of air<br />

pressure <strong>and</strong> can be used “as is” for oxygen calibration. Weather service readings are<br />

usually not “true”, i.e., they are corrected to sea level, <strong>and</strong> therefore cannot be used until<br />

they are “uncorrected”. An approximate formula for this “uncorrection” (where the BP<br />

readings MUST be in mm Hg) is:<br />

True BP = [Corrected BP] – [2.5 * (Local Altitude in ft above sea level/100)]<br />

Press Enter <strong>and</strong> the current values of all enabled sensors will appear on the screen <strong>and</strong><br />

change with time as they stabilize. Observe the readings under ODOsat %. When they


Page 28<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

show no significant change for approximately 30 seconds, press Enter. The screen will<br />

indicate that the calibration has been accepted <strong>and</strong> prompt you to press Enter again to<br />

return to the Calibrate menu.<br />

As opposed to the 6562 Rapid Pulse Polarographic DO sensor (membrane) described<br />

above, there is no difference between the calibration routine for sensors which will be<br />

used for sampling or monitoring applications. Usually the Autosleep RS-232 feature in<br />

the Advanced|Setup menu will be activated for ROX calibrations, but there is no problem<br />

if it is not active.<br />

4. pH - using sufficient pH 7 buffer st<strong>and</strong>ard in a clean, dry or pre-rinsed calibration cup,<br />

carefully immerse the probe end of the sonde into the solution. Allow at least 1 minute<br />

for temperature equilibration before proceeding. From the Calibrate menu, select pH to<br />

access the pH calibration choices <strong>and</strong> then press 2-Point.<br />

Press Enter <strong>and</strong> input the value of the buffer (7 in this case) at the prompt. Press Enter<br />

again <strong>and</strong> the current values of all enabled sensors will appear on the screen <strong>and</strong> change<br />

with time as they stabilize in the solution. Observe the readings under pH <strong>and</strong> when they<br />

show no significant change for approximately 30 seconds, press Enter. The display will<br />

indicate that the calibration is accepted. After the pH 7 calibration is complete, press<br />

Enter again, as instructed on the screen, to continue. Rinse the sonde in water <strong>and</strong> dry the<br />

sonde before proceeding to the next step.<br />

Using an additional pH 10 buffer st<strong>and</strong>ard in a pre-rinsed calibration cup, carefully<br />

immerse the probe end of the sonde into the solution. Allow at least 1 minute for<br />

temperature equilibration before proceeding. Press Enter <strong>and</strong> input the value of the<br />

second buffer at the prompt. Press Enter <strong>and</strong> the current values of all enabled sensors<br />

will appear on the screen <strong>and</strong> will change with time as they stabilize in the solution.<br />

Observe the readings under pH <strong>and</strong> when they show no significant change for<br />

approximately 30 seconds, press Enter. After the second calibration point is complete,<br />

press Enter again, as instructed on the screen, to return to the Calibrate menu.<br />

The majority of waters sampled in conjunction with the <strong>Tampa</strong> <strong>Bay</strong> HBMP should be<br />

expected to have pH values between 7 <strong>and</strong> 10. Therefore, unless it is anticipated (or<br />

observed) that pH values of less than 7 occur, a two-point calibration using pH 7 <strong>and</strong> pH<br />

10 buffers is sufficient.<br />

Under unusual conditions where low pH values are expected, select the 3-point option to<br />

calibrate the pH probe using three calibration solutions. Using this procedure, the pH<br />

sensor is calibrated with a pH 7 buffer <strong>and</strong> two additional buffers (one higher <strong>and</strong> one<br />

lower). The 3-point calibration method assures maximum pH accuracy over a wider<br />

range of potential observations. The 3-point procedure is the same as that for a 2-point<br />

calibration, except that the software will prompt the selection of a third pH buffer to<br />

complete the 3-point procedure.


Page 29<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

5. Depth Sensor – Make certain that the depth sensor module is in air <strong>and</strong> not immersed<br />

in any solution. From the Calibrate menu, select Pressure-Abs (or Pressure-Gage if you<br />

have a vented level sensor) to access the depth calibration procedure. Input 0.00 or some<br />

known sensor offset in feet. Press Enter <strong>and</strong> monitor the stabilization of the depth<br />

readings with time. When no significant change occurs for approximately 30 seconds,<br />

press Enter to confirm the calibration. This zeros the sensor with regard to current<br />

barometric pressure. Then press Enter again to return to the Calibrate menu. For best<br />

performance of depth measurements, users should ensure that the sonde’s orientation<br />

remains constant while taking readings. This is especially important for vented level<br />

measurements <strong>and</strong> for sondes with side mounted pressure sensors.<br />

6. Calibration Record – Calibration constants can be viewed by accessing the path<br />

Advanced|Cal Constants (from the Main sonde menu). Additionally, when any sensor is<br />

calibrated, YSI series-6 sondes automatically create a file in sonde memory that provides<br />

details of the calibration coefficients before <strong>and</strong> after the calibration. The file will have a<br />

.glp extension <strong>and</strong> will have the Circuit Board Serial # as the default filename. The file<br />

can be viewed by following the path File|Directory|File Details|View from the Main<br />

sonde menu. Pressing 1-View file will show the calibration record for the sonde, as<br />

shown below:<br />

Calibration records for all sensors will automatically be stored in the .glp file until the<br />

Delete All Files comm<strong>and</strong> is used from the File menu. However, if the Delete comm<strong>and</strong><br />

is issued, all files, including the .glp (calibration record) file will be lost. Therefore, it is<br />

extremely important to remember to upload the .glp prior to deleting files from the sonde.


Page 30<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

7. Preventative Maintenance - The following briefly summarizes key items regarding<br />

continuing preventive maintenance of YSI series-6 sondes. Further detailed information<br />

is available from the YSI manual or the associated web site.<br />

a. O-Ring Care - Series-6 sondes utilize user-accessible o-rings as seals to<br />

prevent water from entering the battery compartment <strong>and</strong> the sensor ports. The<br />

following procedures will prevent water from entering the sonde. If the o-rings<br />

<strong>and</strong> sealing surfaces on the sondes are not maintained properly, it is possible that<br />

water can enter the battery compartment <strong>and</strong>/or sensor ports. When the battery<br />

compartment lid is removed from battery version sondes, the o-rings that provide<br />

the seal should be carefully inspected for contamination <strong>and</strong> cleaned if necessary.<br />

The same inspection should be made of the o-rings associated with the probes,<br />

port plugs, <strong>and</strong> field cable connectors when they are removed. If no dirt or<br />

damage to the o-rings is evident, then they should be lightly greased without<br />

removal from their groove. However, if there is any indication at all of damage,<br />

the o-ring should be replaced.


Page 31<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Use a small, flat-bladed screwdriver or similar blunt-tipped tool to remove the o-<br />

ring from its groove. Check the o-ring <strong>and</strong> the groove for any excess grease or<br />

contamination. If contamination is evident, clean the o-ring <strong>and</strong> nearby plastic<br />

parts with lens cleaning tissue or equivalent lint-free cloth. Alcohol can be used to<br />

clean the plastic parts, but use only water <strong>and</strong> mild detergent on the o-ring itself.<br />

Also, inspect the o-rings for nicks <strong>and</strong> imperfections. Using alcohol on o-rings<br />

may cause a loss of elasticity <strong>and</strong> may promote cracking. Do not use a sharp<br />

object to remove the o-rings. Damage to the o-ring or the groove itself may result.<br />

Before re-installing the o-rings, make sure that you are using a clean workspace,<br />

clean h<strong>and</strong>s <strong>and</strong> are avoiding contact with anything that may leave fibers on the o-<br />

ring or grooves. Even a very small bit of contamination can cause a leak.<br />

To re-install the o-rings, place a small amount of Teflon stopcock grease between<br />

your thumb <strong>and</strong> index finger. (More grease is NOT BETTER!) Draw the o-ring<br />

through the grease while pressing the fingers together. Use this action to place a<br />

VERY LIGHT covering of grease to all sides of the o-ring. Place the o-ring into<br />

its groove making sure that it does not twist or roll. Use the previously greasecoated<br />

finger to once again lightly go over the mating surface of the o-ring. DO<br />

NOT apply excess grease on the o-ring or the o-ring groove. The excess grease<br />

may collect grit particles that can compromise the seal. Excess grease can also<br />

cause the waterproofing capabilities of the o-ring to diminish, potentially causing<br />

leaks into the compartment. If excess grease is present, remove it using lens cloth<br />

or lint-free cloth.<br />

b. Sonde Probe Ports - Whenever installing, removing or replacing a probe, it is<br />

extremely important that the entire sonde <strong>and</strong> all probes be thoroughly dried. This<br />

is extremely important to prevent water from entering the sonde through the port.<br />

Once you remove a probe or plug, examine the connector inside the sonde probe<br />

port. If any moisture is present, use compressed air to completely dry the<br />

connector. If the connector is corroded, return the sonde to YSI Customer Service.<br />

c. Cable Connector Port - The cable connector port at the top of the sonde<br />

should be covered at all times. While communicating with the sonde, a cable<br />

should be installed <strong>and</strong> tightened in place. This will assure that a proper<br />

connection is being made <strong>and</strong> prevent moisture <strong>and</strong> contaminants from entering.<br />

When a communications cable is not connected to the cable connector port, the<br />

pressure cap supplied with the instrument should be securely tightened in place. If<br />

moisture has entered the connector, dry the connector completely using<br />

compressed air, a clean cloth, or paper towel. Apply a very thin coat of lubricant<br />

to the O-ring inside the connector cap before each installation.<br />

d. Rapid Pulse DO Probes (with membranes) - Once the probes have been<br />

properly installed, remember that periodic cleaning <strong>and</strong> DO membrane changes<br />

are required. For best results, the KCl solution <strong>and</strong> the Teflon membrane at the tip


Page 32<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

of the DO probe should be changed prior to each extended sonde deployment<br />

<strong>and</strong>/or at least once every 30 days during the use of the sonde in sampling studies.<br />

In addition, the KCl solution <strong>and</strong> membrane should be changed if:<br />

• Bubbles are visible under the membrane.<br />

• Significant deposits of dried electrolyte are visible on the membrane or the O-<br />

ring.<br />

• The probe shows unstable readings or other probe-related symptoms.<br />

After removing the used membrane from the tip of the DO probe, examine the<br />

electrodes at the tip of the probe. If either or both of the silver electrodes are black<br />

in color, the probe should be resurfaced using the fine s<strong>and</strong>ing disks provided by<br />

YSI in the reconditioning kit. To resurface the probe using the fine s<strong>and</strong>ing disk,<br />

follow the instructions below.<br />

First dry the probe tip completely with lens cleaning tissue. Next, hold the probe<br />

in a vertical position, place one of the s<strong>and</strong>ing disks under your thumb, <strong>and</strong> stroke<br />

the probe face in a direction parallel to the gold electrode (located between the<br />

two silver electrodes). The motion is similar to that used in striking a match.<br />

Usually 10-15 strokes of the s<strong>and</strong>ing disk are sufficient to remove black deposits<br />

on the silver electrodes. However, in extreme cases, more s<strong>and</strong>ing may be<br />

required to regenerate the original silver surface. After completing the s<strong>and</strong>ing<br />

procedure, repeatedly rinse the probe face with clean water <strong>and</strong> wipe with lens<br />

cleaning tissue to remove any grit left by the s<strong>and</strong>ing disk. After cleaning,<br />

thoroughly rinse the entire tip of the probe with distilled or de-ionized water <strong>and</strong><br />

install a new membrane.<br />

It is extremely important to:<br />

• Use only the fine s<strong>and</strong>ing disks provided in the maintenance kit.


Page 33<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

• S<strong>and</strong> in a direction parallel to the gold electrode.<br />

Not following either of these instructions can seriously damage the electrodes. If<br />

this procedure is unsuccessful, as indicated by improper probe performance, it<br />

may be necessary to return the probe to the YSI service center.<br />

e. Conductivity/Temperature Probes – The openings that allow fluid access to<br />

the conductivity electrodes must be cleaned regularly. The small cleaning brush<br />

included in the YSI Maintenance Kit is ideal for this purpose. Dip the brush in<br />

clean water <strong>and</strong> insert it into each hole 15-20 times. In the event that deposits<br />

have formed on the electrodes, it may be necessary to use a mild detergent with<br />

the brush. After cleaning, check the response <strong>and</strong> accuracy of the conductivity cell<br />

with a calibration st<strong>and</strong>ard. If this procedure is unsuccessful, or if probe<br />

performance is impaired, it may be necessary to return the probe for service.<br />

f. Depth Sensor - The depth sensor modules are factory installed options that are<br />

located between the bulkhead <strong>and</strong> the sonde tube. For 600XL <strong>and</strong> 600XLM<br />

sondes, there is a circular protective cap with two small holes. The cap can not be<br />

removed, but a syringe is supplied in the maintenance kit to aid in cleaning the<br />

pressure port. Fill the syringe with clean water, place the tip of the syringe into<br />

one of the holes <strong>and</strong> gently force water through the pressure port. Ensure that the<br />

water comes out of the other hole. Continue flushing the pressure port until the<br />

water comes out clean. Never try to remove the circular pressure port cap. For<br />

6920, 6600 <strong>and</strong> 6820 sondes, the depth sensor is exposed to the water by either a<br />

circular access port on the side of the sonde or a through-hole on a module just<br />

above the sonde bulkhead. A syringe is supplied in the maintenance kit to aid<br />

cleaning the pressure port. Fill the syringe with clean water, place the tip of the<br />

syringe into one of the holes <strong>and</strong> gently force water through the access port.<br />

Ensure that the water comes out of the other hole. Continue flushing the pressure<br />

port until the water comes out clean. Do not attempt to remove the depth module<br />

from the sonde body.<br />

5.16 Hydrology - Permanent Station Continuous Recorders<br />

5.16.1 Introduction<br />

The TBC/Alafia HBMP employs permanently deployed water <strong>quality</strong> <strong>and</strong> water level<br />

monitoring equipment at six sites within the study area (Table 5.8). The objectives of<br />

these “continuous recorder”/permanent stations are to:<br />

• Estimate the daily freshwater inflows <strong>and</strong> water levels in each reporting<br />

unit.


Page 34<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

• Estimate the trend of water <strong>quality</strong> indicators by reporting unit on an<br />

appropriate temporal basis.<br />

The permanently deployed equipment records specific conductance <strong>and</strong>/or water levels at<br />

15-minute intervals. A different array of sensors is deployed at each site in accordance<br />

with recommendations of the Focus Group. The specific sensors deployed at each site<br />

are listed in Table 5.8.<br />

5.16.2 Continuous Recorders<br />

There is one continuous recorder site each in the Alafia River, Palm River (<strong>Tampa</strong><br />

Bypass Canal), <strong>and</strong> McKay <strong>Bay</strong> Reporting Units. The Alafia site is located on a piling<br />

about a kilometer below Buckhorn Springs. The Palm River site is on the bridge fenders<br />

for Maydell Drive. The McKay <strong>Bay</strong> site is located on one of the pilings for the 22 nd<br />

Street Causeway at the mouth of McKay <strong>Bay</strong>. The remaining three sites are in the<br />

Hillsborough River Reporting Unit. The Crosstown Expressway site is located on one of<br />

the bridge pilings. The Columbus Avenue site is located on the bridge fender. The Sligh<br />

Avenue site is attached to one of the pilings that protect the Sligh Avenue Bridge.<br />

The permanent stations are comprised of seven main pieces of equipment:<br />

• Campbell Scientific CR10X Measurement <strong>and</strong> Control Modules or Stevens Data<br />

Online Telemetry (DOT) Loggers<br />

• YSI 600R Sondes,<br />

• Stevens SDI-12 Shaft Encoders (at select sites),<br />

• Solar voltaic panels,<br />

• Batteries,<br />

• Stilling wells, <strong>and</strong><br />

• Electronics boxes.<br />

Specifications for the sensors on these pieces of equipment are listed in Table 5.9.<br />

Several users <strong>and</strong> operations manuals for these pieces of equipment are referenced below.<br />

A copy of each of these manuals is maintained in the PBS&J <strong>Tampa</strong> office.<br />

Specific conductance <strong>and</strong> temperature are recorded at all sites. Salinity is calculated from<br />

specific conductance <strong>and</strong> temperature. <strong>Water</strong> level is also measured at two sites.<br />

The specific conductance sensor is deployed in a single stilling well. The water level<br />

float is deployed in a second stilling well. All equipment is powered by a battery charged<br />

by the solar voltaic panel. Each Shaft encoders also has a backup battery.<br />

Specific conductance is measured at two fixed elevations, nominally called “surface” <strong>and</strong><br />

“bottom.” The bottom measurement is a good approximation of the water <strong>quality</strong><br />

conditions near the bottom of the water column. The surface measurements are


Page 35<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

indicative of the conditions in the upper part of the water column, but not necessarily of<br />

conditions at the surface of the water column. The surface probes are occasionally<br />

exposed during very low tides. The data collected by exposed probes should be given<br />

invalid data qualifiers.<br />

5.16.3 Downloading, Calibration, <strong>and</strong> Maintenance<br />

St<strong>and</strong>ard operating procedures for continuously deployed water <strong>quality</strong> monitoring<br />

equipment require that calibration <strong>and</strong> maintenance logs be kept. The basic download,<br />

calibration, <strong>and</strong> maintenance procedure consists of five major steps:<br />

1. Perform a profile cast.<br />

2. Download Campbell data recorder (data on Stevens data loggers are downloaded<br />

by <strong>Tampa</strong> <strong>Bay</strong> <strong>Water</strong> staff.<br />

3. Maintain sensors, probes, recorders, stilling wells, <strong>and</strong> power systems.<br />

4. Check calibration of sensors, probes, <strong>and</strong> level recorders.<br />

5. Recalibrate equipment as necessary.<br />

These steps can be preformed in any order. Whenever time allows, a profile cast should<br />

be preformed. These casts are used to characterize conditions across the entire water<br />

column, relative to those at the levels of the sensors.<br />

5.16.4 Electronics Box, Solar Voltaic Panels, <strong>and</strong> Batteries.<br />

Each site contains at least one electronics box, one solar panel, <strong>and</strong> one battery. The type<br />

<strong>and</strong> model of solar voltaic panel used on each station varies. Some stations have two<br />

panels. The panel charges the internal battery that powers the data logger <strong>and</strong> YSI<br />

sondes. A separate battery that must be replaced periodically powers the shaft encoder.<br />

Panel maintenance consists of wiping off the panel surface <strong>and</strong> making certain that the<br />

connections <strong>and</strong> wiring are in good condition <strong>and</strong> functional.<br />

The electronics should be checked <strong>and</strong> maintained once every two to four weeks. The<br />

electronics maintenance procedure consists of six steps<br />

1. Clean solar panel.<br />

2. Open box.<br />

3. Check wiring.<br />

4. Replace stage recorder battery if present <strong>and</strong> if necessary.<br />

5. Close <strong>and</strong> lock box once downloading <strong>and</strong> other maintenance are complete.


Page 36<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

5.16.5 Data Loggers<br />

Campbell Scientific CR10X Measurement <strong>and</strong> Control Module<br />

CR10X Measurement <strong>and</strong> Control Modules are the primary datalogger/<strong>control</strong>ler for the<br />

continuous recorders. The manufacturer may be reached by phone at 435-753-2342 or on<br />

the Internet at www.campbellsci.com.<br />

The CR10X Modules are running software that should not be modified by field crews<br />

without consultation from the project manager. Software formulation is beyond the<br />

scope of this document. The CR10X Module is fully described in the CR10X<br />

Measurement <strong>and</strong> Control Module Operator’s Manual (Campbell Scientific, 1997).<br />

LoggerNet Data Logger Support Software is used to download data from the CR10X.<br />

The software is described in the LoggerNet Version 3.2 Instruction Manual (Campbell<br />

Scientific, Inc, December, 2005). This manual is included as an appendix at the end of<br />

this document.<br />

The CRX10 should be maintained <strong>and</strong> downloaded once every two to four weeks. The<br />

download procedure is as follows:<br />

CRX10 DOWNLOAD PROCEDURE<br />

1. Connect serial cable (SC929) between battery operated laptop & CR10X.<br />

2. Open LoggerNet.<br />

3. Click on CONNECT button (Figure 5.2a).<br />

4. Choose station from list on left side of screen (Figure 5.2b).<br />

5. “Connected” message should appear on right bottom corner of screen.<br />

6. Click NUMERIC button to check probe status (Figure 5.2b).<br />

7. Click COLLECT button to download data since last download or COLLECT<br />

ALL to collect all data stored (Figure 5.2b).<br />

8. Manual Data Collection indicator will show percent complete.<br />

9. If necessary, proceed to calibration procedures below.<br />

10. Check all values to ensure that all sensors are reading.<br />

11. Click DISCONNECT button.<br />

Stevens Data Online Telemetry (DOT) Loggers<br />

Stevens <strong>Water</strong> Quality Monitoring Systems data loggers have been utilized for at least<br />

one water <strong>quality</strong> monitoring station in place of a CR10X. The manufacturer may be<br />

reached by phone at 1-800-452-5272 or on the Internet at www.stevenswater.com.


Page 37<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

The Stevens loggers have been programmed prior to deployment <strong>and</strong> should not be<br />

altered by field staff. Data recorded by Stevens data loggers are downloaded by <strong>Tampa</strong><br />

<strong>Bay</strong> <strong>Water</strong> staff <strong>and</strong> transmitted to PBS&J office staff. Thus no maintenance or<br />

downloading of the Stevens data loggers is required by PBS&J staff.<br />

5.16.6 Specific Conductance (Conductivity)<br />

Specific conductance (conductivity) measurements are made using YSI 600R Sondes<br />

(Figure 5.3). YSI technical support may be reached by phone at 800 897-4151 or on the<br />

Internet at www.ysi.com.<br />

The operation <strong>and</strong> maintenance procedures for the 600R Sondes are described in the 6-<br />

Series YSI Environmental Operations Manual (YSI, 1999). The sondes are powered by<br />

the main station battery. Even when sondes are attached to external devices such as a<br />

laptop computer, they must be powered by an external battery.<br />

The sondes should be maintained <strong>and</strong> have their calibrations checked <strong>and</strong> be recalibrated<br />

once every two to four weeks. Sonde check-calibration <strong>and</strong> maintenance requires the<br />

following materials:<br />

• Laptop computer <strong>and</strong> software.<br />

• 9-pin serial cable.<br />

• YSI Sonde calibration cup.<br />

• Non-metallic brush (toothbrush or similar).<br />

• <strong>Water</strong>.<br />

• Conductivity st<strong>and</strong>ards (two st<strong>and</strong>ards that bracket the expected range of in situ<br />

values).<br />

• Calibration <strong>and</strong> Maintenance Log.<br />

The sonde check-calibration <strong>and</strong> maintenance procedure consists of nine steps.<br />

CONDUCTIVITY CHECK CALIBRATION & MAINTENANCE PROCEDURE<br />

1. Remove sondes from stilling well.<br />

2. Inspect sondes <strong>and</strong> wiring for damage.<br />

3. Disconnect sonde from CR10X.<br />

4. Attach sonde to computer.<br />

5. Check sonde for calibration using both high <strong>and</strong> low st<strong>and</strong>ards.<br />

6. Clean sondes.<br />

7. Recalibrate sondes using YSI sonde calibration procedure outlined above<br />

(recalibrate utilizing the higher conductivity st<strong>and</strong>ard <strong>and</strong> check with lower<br />

st<strong>and</strong>ard).<br />

8. Reattach sonde to CR10X.<br />

9. Place sondes in stilling well.


Page 38<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

The sondes are calibrated using a YSI 650 or ECOWATCH FOR WINDOWS software<br />

<strong>and</strong> a laptop computer (connected to power source), conductivity st<strong>and</strong>ard, <strong>and</strong> a YSI<br />

calibration cup. Calibration procedures essentially follow those outlined for the YSI<br />

earlier in this chapter.<br />

5.16.7 <strong>Water</strong> Levels<br />

<strong>Water</strong> level readings are measured by a Stevens SDI-12 Shaft Encoder. The<br />

manufacturer may be contacted by phone at 800-452-5272.<br />

The Stevens SDI Encoder is a float-operating level sensing device that outputs data to the<br />

CRX10. The encoder measures water level by recording the level of a float suspended<br />

from a punched tape or beaded wire. A counter weight is suspended from the other side<br />

of the tape. The punched tape runs over a pulley, <strong>and</strong> the encoder records the movement<br />

of the pulley.<br />

The Stevens Recorder (Figure 5.4) is equipped with an LCD display, <strong>and</strong> can be fully<br />

programmed by the user without the use of any external device or computer. The LCD<br />

display can be used for device setup utilizing two push buttons. The display can also be<br />

set to continuously output the current level reading. Operation of the SDI Encoder is<br />

described in the SDI Encoder Instruction 91196 (Stevens <strong>Water</strong> Monitoring Systems,<br />

Inc., 1999).<br />

Maintenance <strong>and</strong> calibration of the water level recorder requires:<br />

• Tape measurer.<br />

• 9-volt alkaline battery.<br />

An LCD display is located on the top of the encoder. This is used to calibrate the<br />

encoder. One side of the encoder has three buttons. Two buttons, the left <strong>and</strong> right<br />

buttons, are set closely together. The third button is separated from the other two. This<br />

third button is the voltage display button. The LCD displays the options listed in Table<br />

5.10. These options are selected using the right <strong>and</strong> left buttons as indicated in Table<br />

5.10.<br />

The encoder has a backup 9-volt alkaline battery. The backup battery voltage can be read<br />

by pressing the button on the side of the unit near the LCD display. The battery should<br />

be replaced when the reading is below 8 volts.<br />

The encoder maintenance <strong>and</strong> calibration procedure is as follows:<br />

1. Inspect the stilling well to ensure that the float moves freely <strong>and</strong> without<br />

obstructions.<br />

2. Inspect float tape to ensure that it moves correctly on pulley.<br />

3. Clean the float if fouling influences its movement.


Page 39<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

4. Clean or replace stilling well if fouling influences float movement.<br />

5. Clean, repair, <strong>and</strong>/or replace tape if fouling influences float movement.<br />

6. Record encoder reading.<br />

7. Drop tape into stilling well to measure current water level relative to datum.<br />

8. Record current water level.<br />

9. Set encoder to current water level using the ADJUST function<br />

i. To enter programming mode, press both right <strong>and</strong> left buttons for<br />

approximately 2 seconds.<br />

ii. The LCD should display “ADJUST”.<br />

iii. Press right button to decrease LCD reading to correspond to water level OR<br />

press left button to increase LCD reading to correspond to water level.<br />

iv. Press both buttons until LCD displays “Good”.<br />

v. Press left button to exit programming.<br />

10. Press battery voltage key to check battery voltage<br />

11. Record battery voltage.<br />

12. Replace battery if voltage is below 8 volts.


Page 40<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Table 5.1<br />

HBMP <strong>Water</strong> Quality Sampling Study Elements.<br />

Study<br />

Element<br />

Spatial Strata<br />

Month<br />

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec<br />

Total<br />

Hillsborough River<br />

<strong>Water</strong><br />

Quality<br />

6 strata<br />

1 fixed bay<br />

station<br />

1/stratum<br />

1/station<br />

1/stratum<br />

1/station<br />

1/stratum<br />

1/station<br />

1/stratum<br />

1/station<br />

1/stratum<br />

1/station<br />

1/stratum<br />

1/station<br />

1/stratum<br />

1/station<br />

1/stratum<br />

1/station<br />

1/stratum<br />

1/station<br />

1/stratum<br />

1/station<br />

1/stratum<br />

1/station<br />

1/stratum<br />

1/station<br />

72<br />

12<br />

Alafia River<br />

<strong>Water</strong><br />

Quality<br />

6 estuarine strata<br />

1 fixed bay<br />

station<br />

2/stratum<br />

1/station<br />

2/stratum<br />

1/station<br />

2/stratum<br />

1/station<br />

2/stratum<br />

1/station<br />

2/stratum<br />

1/station<br />

2/stratum<br />

1/station<br />

2/stratum<br />

1/station<br />

2/stratum<br />

1/station<br />

2/stratum<br />

1/station<br />

2/stratum<br />

1/station<br />

2/stratum<br />

1/station<br />

2/stratum<br />

1/station<br />

144<br />

12<br />

1 freshwater<br />

stratum (AR7)<br />

2/stratum<br />

3/stratum<br />

2/stratum<br />

3/stratum<br />

2/stratum<br />

3/stratum<br />

2/stratum<br />

3/stratum<br />

2/stratum<br />

3/stratum<br />

2/stratum<br />

3/stratum<br />

30<br />

McKay <strong>Bay</strong><br />

<strong>Water</strong><br />

Quality<br />

<strong>Water</strong><br />

Quality<br />

34 cells 3 4 3 4 3 3 10 10 10 3 4 3 60<br />

3 longitudinal<br />

strata with<br />

Deep (D)<br />

channel / shallow<br />

(S) substrata<br />

1 D &<br />

1 S /<br />

stratum<br />

1 D &<br />

1 S /<br />

stratum<br />

1 D &<br />

1 S /<br />

stratum<br />

1 D &<br />

1 S /<br />

stratum<br />

TBC/Palm River<br />

1 D &<br />

1 S /<br />

stratum<br />

1 D &<br />

1 S /<br />

stratum<br />

2 D &<br />

2 S /<br />

stratum<br />

2 D &<br />

2 S /<br />

stratum<br />

2 D &<br />

2 S /<br />

stratum<br />

1 D &<br />

1 S /<br />

stratum<br />

1 D &<br />

1 S /<br />

stratum<br />

1 D &<br />

1 S /<br />

stratum<br />

90<br />

1 fixed station on<br />

upstream side of<br />

S-160<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

1<br />

12


Page 41<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Table 5.2<br />

Critical Indicator<br />

Hydrology/<strong>Water</strong> Quality Indicators, Units Of Measure, Sources of<br />

Variability, <strong>and</strong> Potential Effects of Surface <strong>Water</strong> Withdrawals<br />

Units of<br />

Measure<br />

Sources of Variability<br />

Stream Flow cubic feet/second rainfall, runoff coefficient,<br />

groundwater seepage<br />

Potential Effects of<br />

Withdrawals<br />

decreased streamflows<br />

<strong>Water</strong> Level m tide stage, freshwater inflow decreased surface water<br />

elevations in upper reaches<br />

Salinity psu freshwater inflow, rainfall, tide stage,<br />

currents, wind<br />

Specific Conductance μmhos/cm freshwater inflow, rainfall, tide stage,<br />

currents, wind<br />

Temperature °C freshwater inflow, rainfall, depth, solar<br />

radiation, air temperature<br />

pH st<strong>and</strong>ard pH units freshwater inflow, rainfall, diel<br />

photosynthesis <strong>and</strong> respiration<br />

Dissolved Oxygen mg/L freshwater inflow, rainfall, diel<br />

photosynthesis <strong>and</strong> respiration, wind,<br />

current, sediment oxygen dem<strong>and</strong><br />

Secchi Disk Depth m freshwater inflow, suspended solids,<br />

color, solar radiation<br />

Chlorophyll-a μg/L freshwater inflow, nutrients, trace<br />

elements, solar radiation, light<br />

transmission<br />

Color<br />

Total Suspended<br />

Solids<br />

Cobalt Platinum<br />

Units<br />

mg/L<br />

freshwater inflow<br />

freshwater inflow, sediment grain size,<br />

velocity<br />

increased salinity<br />

increased specific conductance<br />

increased or decreased<br />

temperatures<br />

increased pH values<br />

increased or decreased<br />

dissolved oxygen<br />

concentrations<br />

increased or decreased Secchi<br />

disk depth<br />

increased or decreased<br />

chlorophyll-a concentrations<br />

decreased color<br />

increased or decreased TSS<br />

concentrations<br />

Orthophosphate* mg/L freshwater inflow, algal production decreased orthophosphate<br />

Total Phosphorus* mg/L freshwater inflow, algal production decreased total phosphorus<br />

Ammonia<br />

Nitrogen*<br />

mg/L<br />

freshwater inflow, algal production<br />

decreased ammonia<br />

Ammonium NH4* mg/L freshwater inflow, algal production decreased ammonium<br />

Nitrate-Nitrite<br />

freshwater inflow, algal production decreased nitrogen<br />

mg/L<br />

Nitrogen*<br />

Total Kjeldahl<br />

freshwater inflow, algal production<br />

decreased nitrogen<br />

mg/L<br />

Nitrogen*<br />

Total Nitrogen* mg/L freshwater inflow, algal production<br />

decreased nitrogen<br />

*Nutrients are not required by the original HBMP design. These parameters have been<br />

collected, <strong>and</strong> may be again in the future, for non-HBMP <strong>Tampa</strong> <strong>Bay</strong> <strong>Water</strong> projects.


Page 42<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Table 5.3<br />

Lower Hillsborough<br />

River<br />

Selected Critical Hydrologic <strong>and</strong> <strong>Water</strong> Quality Indicators Specified for<br />

each <strong>Water</strong>body<br />

Lower Palm River<br />

<strong>Tampa</strong> Bypass Canal<br />

McKay <strong>Bay</strong><br />

Lower Alafia River<br />

stream flow<br />

stream flow<br />

stream flow<br />

stream flow<br />

surface water<br />

surface water<br />

surface water<br />

surface water<br />

elevation<br />

elevation<br />

elevation<br />

elevation<br />

salinity<br />

salinity<br />

salinity<br />

salinity<br />

specific conductance<br />

specific conductance<br />

specific conductance<br />

specific conductance<br />

temperature<br />

temperature<br />

temperature<br />

temperature<br />

pH<br />

pH<br />

pH<br />

pH<br />

dissolved oxygen<br />

dissolved oxygen<br />

dissolved oxygen<br />

dissolved oxygen<br />

chlorophyll a<br />

chlorophyll a<br />

chlorophyll a<br />

chlorophyll a<br />

----------------<br />

color<br />

color<br />

color<br />

orthophosphorus*<br />

Orthophosphorus*<br />

Orthophosphorus*<br />

Orthophosphorus*<br />

total phosphorus*<br />

total phosphorus*<br />

total phosphorus*<br />

total phosphorus*<br />

ammonia/ammonium *<br />

ammonia/ammonium *<br />

ammonia/ammonium *<br />

ammonia/ammonium*<br />

nitrate+nitrite*<br />

nitrate+nitrite*<br />

nitrate+nitrite*<br />

nitrate+nitrite*<br />

total Kjeldahl nitrogen*<br />

total Kjeldahl nitrogen*<br />

total Kjeldahl nitrogen*<br />

total Kjeldahl nitrogen*<br />

total nitrogen*<br />

total nitrogen*<br />

total nitrogen*<br />

total nitrogen*<br />

----------------<br />

----------------<br />

----------------<br />

total suspended solids<br />

*Sampling for these parameters is not specified or required in the original or the current HBMP<br />

design. These parameters have been collected during certain water years for other <strong>Tampa</strong> <strong>Bay</strong><br />

<strong>Water</strong> projects.


Table 5.4 St<strong>and</strong>ard Formats & Information Requirements for Field Notebooks<br />

Notebook #: Project: _________________ Task: Page #: ________________<br />

Date: ____________________________ (yy/mm/dd)<br />

Hydrolab/YSI Unit #: __________________<br />

Air Temperature: __________________________ Wind: ______________________________<br />

Tide Stage: ______________________________ Cloud Cover: ________________________<br />

Reporting Unit<br />

Geo Stratum: _____________________ Temp- Specific Dissolved<br />

erature Cond. Salinity pH Oxygen<br />

Time On<br />

Depth (m) ( C) ( mS/cm) ( ppt) (mg/L)<br />

Station _______________ 0.2 _________ _________ __________ _______ ________<br />

24 hr. / EST<br />

0.5 _________ _________ __________ _______ ________<br />

Stratum/ _______________ 1.0 _________ _________ __________ _______ ________<br />

1.5 _________ _________ __________ _______ ________<br />

Station # _______________ 2.0 _________ _________ __________ _______ ________<br />

2.5 _________ _________ __________ _______ ________<br />

Lateral Position _________ 3.0 _________ _________ __________ _______ ________<br />

3.5 _________ _________ __________ _______ ________<br />

Secchi depth _____________ 4.0 _________ _________ __________ _______ ________<br />

(meters)<br />

4.5 _________ _________ __________ _______ ________<br />

Secchi @ bottom Yes 5.0 _________ _________ __________ _______ ________<br />

5.5 _________ _________ __________ _______ ________<br />

<strong>Water</strong> depth _____________ 6.0 _________ _________ __________ _______ ________<br />

(meters)<br />

(water column depth) 6.5 _________ _________ __________ _______ ________<br />

Latitude<br />

Longitude<br />

Degrees Decimal Minutes Degrees Decimal Minutes<br />

Projected: ___________ ___________________ 82 __________________<br />

Actual: ___________ ___________________ 82 __________________<br />

Samples: Check Container Numbers Check Custody Forms <br />

Sample Taken Samples Processed Samples Preserved Sediment Sample Taken<br />

(check): <br />

Field Notes: __________________________________________________________________________________<br />

____________________________________________________________________________________________<br />

____________________________________________________________________________________________<br />

____________________________________________________________________________________________<br />

____________________________________________________________________________________________<br />

____________________________________________________________________________________________<br />

_______________ ______________ _____________ ______________<br />

____________________________________________________________________________________________<br />

Signed Date Signed Date<br />

_______________<br />

Copied- Initial & date<br />

________________<br />

Entered- Initial & date


Page 44<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Table 5.5<br />

Required Containers, Preservation, Holding Times <strong>and</strong><br />

Sample Volumes<br />

Parameter<br />

Container<br />

Type<br />

Preservation<br />

Holding Time<br />

Chlorophyll a<br />

1 L Amber<br />

Glass<br />

(Filter)<br />

Cool Dark; if filtered<br />

freeze until extraction.<br />

48 hours (Low<br />

light<br />

environment)<br />

15 days frozen<br />

filter<br />

Color 1 L Plastic¹ Cool 4°C 48 hrs<br />

Conductivity 1 L Plastic¹ Cool 4°C 28 days<br />

TSS 1 L Plastic¹ Cool 4°C 7 days<br />

Orthophosphate Phosphorus 1 L Plastic¹ Cool 4°C 48 hours<br />

Total Phosphorus<br />

250 mL Plastic²<br />

H 2 SO 4 pH


Page 45<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Table 5.6 In-situ YSI <strong>Water</strong> Quality Indicators, Units Of Measure, Accuracy,<br />

Resolution <strong>and</strong> Range<br />

Indicator Units Accuracy Resolution Range<br />

Temperature °C +/- 0.01 °C 0.01 °C -5 °C to 50 °C<br />

Specific Conductance µmhos/cm +/- 1% of reading<br />

+/- 1 µmhos/cm<br />

four digits 0 to 10000<br />

µmhos/cm<br />

Salinity ppt +/- 0.2 ppt 0.01 ppt 0 to 70 ppt<br />

pH st<strong>and</strong>ard pH units +/- 0.2 units 0.01 units 0 to 14 units<br />

Dissolved Oxygen mg/L +/- 0.2 mg/L 0.01 mg/L 0 to 20 mg/L<br />

Depth m +/- 0.08 m 0.01 m 0 to 25 m


Page 46<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Table 5.7 Freshwater Temperature (°C) Versus Dissolved 0xygen (mg/L) Saturation at<br />

760 mm hg<br />

Temperature<br />

Dissolved Oxygen<br />

19.00 9.24<br />

19.25 9.20<br />

19.50 9.15<br />

19.75 9.10<br />

20.00 9.06<br />

20.25 9.02<br />

20.50 8.97<br />

20.75 8.92<br />

21.00 8.88<br />

21.25 8.84<br />

21.50 8.80<br />

21.75 8.75<br />

22.00 8.71<br />

22.25 8.67<br />

22.50 8.63<br />

22.75 8.59<br />

23.00 8.55<br />

23.25 8.51<br />

23.50 8.47<br />

23.75 8.43<br />

24.00 8.39<br />

24.25 8.35<br />

24.50 8.31<br />

24.75 8.28<br />

25.00 8.24


Page 47<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Reporting Unit<br />

Table 5.8 HBMP Continuous Recorder Locations <strong>and</strong> Sensors<br />

Site<br />

<strong>Water</strong><br />

Level<br />

Specific<br />

Conductance<br />

Temperature<br />

Alafia Buckhorn Springs X X<br />

Palm Maydell Dr. X X<br />

McKay 22 nd St. Causeway X X X<br />

Hillsborough Crosstown Expressway X X X<br />

Hillsborough Columbus Ave. X X<br />

Hillsborough Sligh Ave. X X<br />

Table 5.9 Specifications for the Sensors as Reported by Manufacturers<br />

Parameter Sensor Range Accuracy Resolution<br />

YSI 600R Sonde<br />

Conductivity<br />

4 electrode cell with<br />

autoranging<br />

0 to 100<br />

mS/cm<br />

Salinity none (calculated) 0 – 70 ppt<br />

+/- 0.5% of reading + 0.001<br />

mS/cm<br />

The greater of +/- 1% of<br />

reading or 0.1 ppt<br />

0.001 to 0.1<br />

mS/cm<br />

0.01 ppt<br />

Temperature Thermistor -5 to 45 C +/- 0.15 C 0.01 C<br />

Stevens SDI-12 Shaft Encoder<br />

<strong>Water</strong> Level<br />

Float<br />

-999.99 to<br />

999.99<br />

+/- 0.01 foot 0.001 m


Page 48<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Table 5.10 Stevens Encoder LCD Menu Options Summary<br />

Option Description Selection Button Actions<br />

ADJUST<br />

ADDRESS<br />

UNITS<br />

AVERAGE<br />

LCD<br />

Sets the current reading up or<br />

down<br />

Do Not Use for this Project<br />

Sets the measurement units<br />

Do Not Use for this Project<br />

Set low power mode. Either<br />

determined by switch, always<br />

ON, or auto OFF in 15 seconds.<br />

ZERO Zero shaft encoder CLEAR<br />

SCALE<br />

EEPROM<br />

VERSION<br />

Set pulley wheel scale factor.<br />

Two part process. First scale is<br />

entered. Then scale units are<br />

entered.<br />

Reset EEPROM to factory<br />

defaults<br />

Display firmware version<br />

-999.99 to 999.99<br />

“M” display<br />

meters; “F” display<br />

feet<br />

RIGHT<br />

LEFT<br />

Scroll up<br />

BOTH Enter<br />

5 seconds Exit<br />

RIGHT<br />

BOTH<br />

LEFT<br />

Scroll down<br />

Select M or F<br />

Enter<br />

Exit<br />

SWITCH RIGHT Select option<br />

ON BOTH Enter<br />

OFF LEFT Exit<br />

-999.99 to 999.99;<br />

“M” display<br />

meters; “F” display<br />

feet<br />

INIT<br />

BOTH<br />

RIGHT<br />

LEFT<br />

RIGHT<br />

LEFT<br />

BOTH<br />

Zero reading<br />

Exit<br />

Exit<br />

Scroll up<br />

Scroll down<br />

Enter<br />

5 seconds Leave unchanged<br />

BOTH<br />

RIGHT<br />

LEFT<br />

BOTH<br />

RIGHT<br />

LEFT<br />

Set defaults<br />

Exit<br />

Exit<br />

Exit<br />

Exit<br />

Exit


Page 49<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Figure 5.1 Organizational chart for hydrology <strong>and</strong> water <strong>quality</strong> HBMP elements


Page 50<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Figure 5.2a LoggerNet Startup screen showing CONNECT button<br />

Figure 5.2b LoggerNet Connect screen


Figure 5.3 YSI 600R sonde. Note perforated <strong>and</strong> weighted sonde guard<br />

at base of sonde.<br />

Page 51<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT


Figure 5.4 Stevens SDI-12 Encoder. The <strong>control</strong> buttons are located<br />

on the far side.<br />

Page 52<br />

Section 5.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT


Appendix 5-A<br />

Forms


Sample chain of custody form


Equipment description:<br />

Equipment Repair Form<br />

Date reported:<br />

Signature:<br />

Problem description:<br />

Action taken:<br />

Repair description:<br />

Date resolved:<br />

Resolved by (signature):<br />

Project Manager (signature):<br />

QA/QC Check (signature):


Notebook # Project: _________________ Task: Page # _____<br />

Date: _____________________________ (yy/mm/dd)<br />

Hydrolab/YSI Unit #: ___________________<br />

Calibration Book Number:__________________<br />

Calibration Book Page #:_________________<br />

Air Temperature: ___________________________ Wind: ________________________________<br />

Tide Stage: _______________________________ Cloud Cover: __________________________<br />

Reporting Unit<br />

Geo Stratum: ______________________ Temp- Specific Dissolved Check<br />

erature Cond. Salinity pH Oxygen If<br />

Depth (m) ( C) ( mS/cm) ( ppt) (mg/L) Bottom<br />

Time On<br />

Station ________________ 0.2 __________ __________ ___________ ________ _________ <br />

24 hr. / EST<br />

0.5 __________ __________ ___________ ________ _________ <br />

Stratum/ ________________ 1.0 __________ __________ ___________ ________ _________ <br />

1.5 __________ __________ ___________ ________ _________ <br />

Station # ________________ 2.0 __________ __________ ___________ ________ _________ <br />

2.5 __________ __________ ___________ ________ _________ <br />

Lateral Position __________ 3.0 __________ __________ ___________ ________ _________ <br />

3.5 __________ __________ ___________ ________ _________ <br />

Secchi depth ______________ 4.0 __________ __________ ___________ ________ _________ <br />

(meters)<br />

4.5 __________ __________ ___________ ________ _________ <br />

Secchi @ bottom Yes 5.0 __________ __________ ___________ ________ _________ <br />

5.5 __________ __________ ___________ ________ _________ <br />

<strong>Water</strong> depth ______________ 6.0 __________ __________ ___________ ________ _________ <br />

(meters)<br />

(water column depth) 6.5 __________ __________ ___________ ________ _________ <br />

Latitude<br />

Longitude<br />

Degrees Decimal Minutes Degrees Decimal Minutes<br />

Projected: ____________ ____________________ 82 ____________________<br />

Actual: ____________ ____________________ 82 ____________________<br />

Samples: Check Container Numbers Check Custody Forms <br />

Sample Taken Samples Processed Samples Preserved Sediment Sample Taken<br />

(check): <br />

Field Notes: ____________________________________________________________________________________<br />

_______________________________________________________________________________________________<br />

_______________________________________________________________________________________________<br />

___________________ _________________ ________________ ________________<br />

Signed Date Signed Date<br />

_______________<br />

Copied- Initial & date<br />

________________<br />

Entered- Initial & date


HYDROLAB/YSI CALIBRATION SHEET Book # Page # ______<br />

Project _____________________________<br />

Display Model ________________________<br />

Sonde Model ________________________<br />

Task ____________________________________<br />

Display Name____________________________<br />

Sonde Name _____________________________<br />

Name of Calibrator ___________________ Date _______________ Time ___________<br />

1. CONDUCTIVITY:<br />

a. Rinse twice with st<strong>and</strong>ard (use st<strong>and</strong>ards greater & less than expected field conditions)<br />

b. Fill cup with conductivity st<strong>and</strong>ard<br />

St<strong>and</strong>ard mS/cm St<strong>and</strong>ard Temp Before After Cal. Constant<br />

Hi<br />

Lo<br />

c. Rinse twice with D.I. water<br />

2. pH<br />

a. Replace pH junction & solution, if necessary<br />

Replaced by:_____________ Date:_____________ Time:_____________<br />

b. Rinse twice with pH 7 st<strong>and</strong>ard<br />

c. Fill cup with pH 7 st<strong>and</strong>ard<br />

St<strong>and</strong>ard St<strong>and</strong>ard Temp Before After<br />

d. Rinse twice with D.I. water<br />

e. Rinse twice with pH 10 st<strong>and</strong>ard<br />

f. Fill cup with pH 10 st<strong>and</strong>ard<br />

St<strong>and</strong>ard St<strong>and</strong>ard Temp Before After<br />

g. Rinse twice with D.I. water<br />

h. Repeat steps b <strong>and</strong> c <strong>and</strong> check ph 7 again<br />

St<strong>and</strong>ard St<strong>and</strong>ard Temp Before After Cal. Constant<br />

i. Rinse twice with D.I. water<br />

3. DISSOLVED OXYGEN:<br />

a. Check DO membrane.<br />

b. Replace DO Electrolyte <strong>and</strong> membrane, if necessary<br />

Replaced by:_____________ Date:_____________ Time:_____________<br />

c. Blot away water drops on membrane with lens tissue.<br />

Temp Bar. Press Before After DO Charge Cal. Constant<br />

d. Rinse twice with D.I. water<br />

___________________<br />

Copied – Initial & Date<br />

___________________<br />

Entered – Initial & Date


HYDROLAB/YSI CALIBRATION SHEET Book # Page # ______<br />

4. DEPTH (at surface): Depth before ____________ Depth after __________________<br />

5. BATTERY CHECK: Surface Unit Voltage ____________________<br />

Were batteries charged/replaced? ____________________<br />

6. Notes: ________________________________________________________________________<br />

______________________________________________________________________________________<br />

______________________________________________________________________________________<br />

______________________________________________________________________________________<br />

7.0 Status of Unit: Good Minor Repairs Major Repairs<br />

1) Sonde 0 0 0<br />

2) Surface Unit 0 0 0<br />

3) Cables 0 0 0<br />

8.0 CALIBRATION CHECKS<br />

4-Hour 8-Hour After Use<br />

Date<br />

Time<br />

Name of Calibrator<br />

Parameter<br />

4-Hour<br />

Solution<br />

4-Hour<br />

Solution<br />

Temp.<br />

4-Hour<br />

Check<br />

8-Hour<br />

Solution<br />

8-Hour<br />

Solution<br />

Temp.<br />

8-Hour<br />

Check<br />

After Use<br />

Solution<br />

After Use<br />

Solution<br />

Temp.<br />

After Use<br />

Check<br />

Conductivity (high)<br />

Conductivity (low)<br />

pH<br />

Dissolved Oxygen<br />

DO Charge<br />

Depth<br />

Does Unit Pass Post Calibration Check? Yes 0 No 0 *<br />

• Note: If the unit does not pass post calibration check then data can not be entered into the data<br />

base without approval of QA/QC Office <strong>and</strong>/or Project Manager. Also, call Lab <strong>and</strong> put hold on<br />

chemistry parameters with long holding times.<br />

__________________________<br />

Signature <strong>and</strong> Date<br />

___________________<br />

Copied – Initial & Date<br />

____________________________<br />

Signature <strong>and</strong> Date<br />

___________________<br />

Entered – Initial & Date


Appendix 5-B<br />

LoggerNet Datalogger<br />

Support Software Instruction Manual


Appendix 5-C<br />

ACT Performance Verification Statement for<br />

YSI Rapid Pulse Dissolved Oxygen Sensor


Page 1<br />

Section 6.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

6.0 Benthic Macroinvertebrates<br />

This section describes the protocols, methods, <strong>and</strong> procedures that comprise the benthic<br />

macroinvertebrate monitoring elements of the HBMP. It is imperative that the field <strong>and</strong><br />

laboratory methods used by HBMP personnel correspond to those contained in this<br />

portion of the QA/QC Plan. Use of the st<strong>and</strong>ardized sampling procedures, sampling<br />

techniques, species identification, data recording, <strong>and</strong> other associated tasks will ensure<br />

that these data can then be appropriately analyzed with previously collected baseline data.<br />

Figure 6.1 provides an overview of the organizational management of this study element,<br />

while Table 6.1 summarizes both the number <strong>and</strong> frequency of samples collected<br />

annually in each of the sampling strata.<br />

Members of the team conducting these elements of the HBMP must read, underst<strong>and</strong> <strong>and</strong><br />

follow all of the steps in each procedure outlined below. If questions or suggestions<br />

arise, the Project Manager must be consulted for clarification before any further actions<br />

can be taken. Under no circumstance should a procedure or steps within a procedure be<br />

omitted or modified in the field.<br />

6.1 Field Sampling<br />

Field sampling will normally be conducted by at least two PBS&J staff whenever<br />

possible. Field staff will be trained in all sampling procedures <strong>and</strong> will have copies of all<br />

the pertinent chapters of the HBMP Project Specific QA/QC Document to consult in the<br />

field.<br />

6.1.1 Equipment<br />

The navigation <strong>and</strong> water <strong>quality</strong> profiling equipment (including GPS, multi-parameter<br />

sondes, Secchi disk, etc.) are described in Chapter 5. A checklist of all benthic-sampling<br />

equipment is provided in Table 6.2.<br />

A Young-modified Van Veen grab-sampler is used to collect benthic sediment samples.<br />

The device is composed of a bell-shaped frame surrounding a two-door, hinged sampling<br />

bucket. The Van-Veen grab-sampler is the inner clamshell-like mechanism (Figure 6.2).<br />

It samples an area of approximately 0.04 m 2 . It is a st<strong>and</strong>ard marine-sediment sampling<br />

device. The Young modification is the bell-shaped frame that surrounds the grab<br />

sampler. With the Young modifications, the gear is self-leveling <strong>and</strong> has two, hinged<br />

doors on its top surface to allow sediments to be removed (for grain-size-analysis) before<br />

the sample is sieved.<br />

The frame also stabilizes the bucket so that the angle <strong>and</strong> depth of penetration remains<br />

consistent between samples. Several options are available to assure consistent<br />

penetration into different sediment types. The frame is constructed to accept bar weights


Page 2<br />

Section 6.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

that can be used while sampling in hard substrates to allow for proper grab penetration.<br />

St<strong>and</strong>ard dive-weights are the simplest to use, but any form of weight that will attach to<br />

the frame may be employed. When working in shallow seagrass beds, a crewmember can<br />

st<strong>and</strong> on the frame to provide the extra weight. This technique is often required in turtle<br />

grass (Thalassia) beds where the grass tubers are difficult to cut.<br />

When working in soft sediments, Plexiglas or plywood panels can be fastened to the<br />

bottom of the grab in order to prevent it from sinking too deep in the sediments. The gear<br />

may also be deployed without the frame in soft-sediment areas, but this is not the<br />

preferred option.<br />

A 500-µm Wildco sieve bucket (Figure 6.2) is used to sieve the benthic sediment sample<br />

<strong>and</strong> remove organisms from the surrounding sediment. A 500-µm Fisher sieve is also<br />

carried on board as backup <strong>and</strong> a supplement to the sieve bucket.<br />

6.1.2 Pre-Mobilization<br />

Whenever possible, initial field mobilization <strong>and</strong> preparation should be completed by the<br />

end of the day before each sampling event, in order to reduce potential mistakes.<br />

Dissolved oxygen membranes should be checked <strong>and</strong>/or changed at least 24 hours prior<br />

to calibration in order to allow sufficient time for stabilization should the membrane need<br />

to be replaced. Multi-parameter sonde calibration, maintenance, <strong>and</strong> operation will<br />

follow the procedures outlined in Chapter 5.<br />

Before leaving for each field-sampling event, the field crew will check all Sample<br />

Custody Forms <strong>and</strong> Checklists to make sure that they have:<br />

• An adequate number of clean sampling containers for both benthos <strong>and</strong> sediment.<br />

The relevant station number <strong>and</strong> date will be marked on each container as it is filled.<br />

• An adequate amount of borax-buffered formaldehyde. The formaldehyde should be<br />

buffered by adding laundry-grade borax to the formaldehyde container until the borax<br />

no longer dissolves. The formaldehyde will be considered to be fully buffered when<br />

un-dissolved borax is present in the formaldehyde container. Rose Bengal dye should<br />

be added to the buffered formaldehyde at a rate of 0.5 grams/liter.<br />

• Formaldehyde is a flammable <strong>and</strong> corrosive material that is probably carcinogenic.<br />

Care should be taken to extinguish all flames, prevent all contact with skin, <strong>and</strong> avoid<br />

inhaling fumes when working with formaldehyde.<br />

• Appropriate field notebooks, sampling station list-sheets, waterproof pens, pencils,<br />

<strong>and</strong> markers placed in waterproof bags or containers.<br />

• Tide predictions for the sampling period should be taken from the GPS or obtained<br />

from another appropriate source.<br />

• All appropriate Sample Custody <strong>and</strong> Tracking Forms.


Page 3<br />

Section 6.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

• GPS loaded with sample-station coordinates.<br />

• Transferred sample-station list to the appropriate field notebook (an example of a<br />

page from the field notebook was presented in Table 5.4). The number <strong>and</strong><br />

distribution of stations on the sample station list must match the number <strong>and</strong><br />

distribution of stations in Table 6.3. If the two do not match, do not proceed with<br />

field work until the problem is corrected.<br />

The field staff must check to see that all needed gear is functional (see Benthic Sampling<br />

Checklist), <strong>and</strong> that all sampling devices have been cleaned as necessary. If possible,<br />

backup sampling gear should be included to preclude possible problems in the field.<br />

Check measurements of all depth marks on calibrated lines (sondes <strong>and</strong> Secchi disk) <strong>and</strong><br />

repair any damaged marks. (Remember: all lines must be recalibrated after any repairs,<br />

such as after sending sonde cables back for replacement of connectors, or other problems<br />

with the cables).<br />

The boat should be fueled <strong>and</strong> clean, <strong>and</strong> all necessary safety gear packed. Boat batteries<br />

should be checked <strong>and</strong> placed on slow charge. All electrical (trim <strong>and</strong> tilt) <strong>and</strong><br />

mechanical (steering) systems should be checked. Boat usage <strong>and</strong> maintenance logs<br />

should be checked <strong>and</strong> updated.<br />

6.1.3 Same Day Field Mobilization<br />

• Calibrate all multi-parameter sampling units <strong>and</strong> complete relevant calibration sheets.<br />

If possible, a backup unit should be taken, as well as a complete calibration kit <strong>and</strong><br />

minor repair kit.<br />

• Field vehicle <strong>and</strong> boat should be filled with gas, <strong>and</strong> coolers filled with enough ice to<br />

transport sediment samples during the course of collection.<br />

• If the sample station coordinates have not been previously entered into the GPS, they<br />

should be entered now.<br />

6.1.4 Sampling<br />

An outline of the sampling procedure is given in Table 6.4. Several methods <strong>and</strong><br />

procedures used in the benthic sampling program are identical to those used in the water<br />

<strong>quality</strong> program (Chapter 5). The water-column profiles collected during benthic<br />

sampling will be combined with those collected in the water <strong>quality</strong>, fish, <strong>and</strong><br />

ichthyo<strong>plan</strong>kton sampling programs <strong>and</strong> analyzed as a single data set.<br />

Locating the Sample-Station<br />

The sample stations will be located using the procedure described in Chapter 5. If the<br />

sampling site cannot be sampled due to some unforeseen difficulty, the field staff will


Page 4<br />

Section 6.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

follow the alternate-station procedure outlined in Chapter 5. Upon arrival at the sampling<br />

location: the boat is securely anchored from the bow, <strong>and</strong> the multi-parameter sonde is<br />

placed over the side to equilibrate. A pole should be used to confirm the presence of<br />

sediment at the station location. If the bottom is rock <strong>and</strong> there is no sediment present, do<br />

not deploy the multi-parameter sonde until sediment is located.<br />

Station <strong>and</strong> climatic data are recorded <strong>and</strong> a water-column profile is measured as<br />

specified in Chapter 5. If the current is such that the collection of a grab-sample will not<br />

influence the water column profile, the grab-sampler may be deployed while the multiparameter<br />

sonde is deployed. Otherwise, the grab-sampler should not be deployed until<br />

the water-column profile is complete.<br />

If the water-column profile is collected while the grab-sampler is deployed, the profile<br />

must be collected upstream of <strong>and</strong> on the opposite side of the boat from the deployed<br />

grab-sampler. Note: as in the water <strong>quality</strong> sampling procedure, water-column profile<br />

measurements are made at 0.5-meter intervals except in: 1) the deep ship channel in<br />

Alafia River segment one, <strong>and</strong> 2) the deep strata of the Palm River where they are<br />

collected at 1.0 meter intervals.<br />

As with the water <strong>quality</strong> procedure, profile duplicates must be collected at either a 5%<br />

frequency (once per 20 profiles) or once per reporting unit per day, whichever is greater.<br />

Multi-parameter sonde calibrations are also checked every four hours, <strong>and</strong> the values are<br />

recorded in the calibration field book.<br />

Procedure if Sediment or Substrate Sample Cannot Be Collected<br />

If the station can be sampled, but a sediment or substrate sample cannot be obtained from<br />

the location, field staff should let out 5 meters of anchor line <strong>and</strong> attempt to retrieve a<br />

sample. If a sample cannot be obtained there, the crew should let out another 5 meters of<br />

anchor line <strong>and</strong> attempt to retrieve a sample. If these two attempts fail, the crew should<br />

retrieve the anchor <strong>and</strong> proceed in the direction of the next station while using a pole to<br />

test the bottom for loose substrate. If loose sediment or substrate cannot be found within<br />

100 meters of the original station, the crew should proceed to the alternate station as<br />

described in Chapter 5.<br />

The Field Control Officer (FCO) should check all entries to the field notebook prior to<br />

the field crew leaving the sampling location. The FCO should also make sure that all<br />

recorded sample container numbers match those designated for each sampling location.<br />

Each member of the field crew should check all entries after completion of each sampling<br />

event, <strong>and</strong> sign each page of the field notebook. The date of review must be recorded if<br />

different from the date sampled.<br />

Sampling Process<br />

Sampling begins once the boat is anchored. In certain situations (particularly for reasons<br />

of safety when sampling in a navigation channel), the crew may opt not to anchor the


Page 5<br />

Section 6.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

boat. In these cases, the boat operator must make certain the boat is held on station so<br />

that the water-column profile, sediment grab, <strong>and</strong> GPS position are all taken in the same<br />

location.<br />

The field sampling procedures below are summarized in Table 6.4.<br />

1. Record the station coordinates, time, date, Secchi depth, <strong>and</strong> conditions on<br />

station in the field book as described in Chapter 5.<br />

2. Place the sieve bucket in the sieving tub.<br />

3. Secure the grab doors with the setscrews <strong>and</strong> cock the grab.<br />

4. Connect the grab-sampler to the davit-line (if necessary), lift the sampler, <strong>and</strong><br />

swing it overboard. Thoroughly rinse <strong>and</strong> clean the inside of the grab with the<br />

wash down pump <strong>and</strong> a brush if necessary.<br />

5. Lower the grab sampler at a <strong>control</strong>led rate. This will both prevent injuries<br />

among the crew <strong>and</strong> minimize wave disturbance effects on the sediment<br />

surface.<br />

6. When the grab has settled on the bottom, pull on the connecting line several<br />

times to ensure the grab’s trip mechanism has released.<br />

7. Retrieve the grab-sampler. Swing the davit to bring the sampler on board, <strong>and</strong><br />

lower the sampler onto the tub directly above the sieve bucket. The sampler<br />

must be situated so that all material will fall directly into the sieve bucket when<br />

the grab is opened. If the grab cannot be situated properly, a large, plastic bag<br />

(instead of the sieve bucket) should be used as the receiving container.<br />

8. Open the hinged, top door <strong>and</strong> determine if the sampling deployment was a<br />

success. A successful sample will be relatively level, contain intact sediment<br />

over the entire area of the grab, <strong>and</strong> have a depth of at least 6.9 cm in the center<br />

of the grab. Samples that contain no sediments, partially filled grabs, or grabs<br />

with grossly slumped surfaces are unacceptable. Grabs with grossly slumped<br />

surfaces are assumed to have contacted the sediment surface at an angle <strong>and</strong><br />

may contain a disproportionate percentage of immediate surficial sediments.<br />

Grabs completely filled to the top, where a significant amount of sediment has<br />

escaped from the hinged door are also unacceptable for the same reason. It may<br />

take several attempts to obtain acceptable samples. If necessary, two or more<br />

grabs may be combined to create a composite sample in order to have a volume<br />

equal to at least 70% of the grab volume.<br />

9. Collect a core sample of sediment from the grab <strong>and</strong> place it in a labeled,<br />

sediment sample-bag. A core sample is collected by opening one of the grab<br />

doors <strong>and</strong> taking a vertical sample of sediment with a syringe or a trowel. The


Page 6<br />

Section 6.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

sample should be representative of the entire contents of the grab (as opposed to<br />

the surface or bottom-most layers).<br />

10. Record notes on the condition of the sample as necessary in the field book.<br />

Notes should include sample consolidation, the presence of large objects,<br />

organisms, etc.<br />

11. Open the jaws of the grab-sampler <strong>and</strong> transfer the contents to the sieve bucket.<br />

It is essential that the entire contents of the grab are transferred to the bucket. If<br />

a significant amount of sediment is lost at any time, a new grab should be<br />

collected <strong>and</strong> the original grab discarded. Rinse the inside of the grab with a<br />

spray bottle or a GENTLE spray from the wash down pump making certain that<br />

all washings fall into the sieve bucket. Inspect the grab to see that all contents<br />

have been transferred to the sieve bucket.<br />

12. Partly submerge sieve-bucket in the water <strong>and</strong> agitate it to wash away the<br />

sediment from the organisms <strong>and</strong> other particles larger than 500 um screening.<br />

If the water is rough, the bucket should be sieved in the sieving tub to prevent<br />

the loss of sample material from wave action. If large clumps of mud or clay<br />

are present, carefully break them up by h<strong>and</strong>. Be sure to rinse the sediment<br />

from h<strong>and</strong>s into the sieve. If vegetation, wood, or other objects are in the<br />

sieve gently wash them with a squirt bottle (do not try to dislodge attached<br />

organisms), record in field book, then discard vegetation or object. Be<br />

extremely careful not to lose any of the bucket contents over the top rim. If the<br />

multi-parameter sonde is in the water, sieving must occur downstream of the<br />

sonde, regardless of whether measurements are being recorded.<br />

13. After the majority of the sediment is sieved off, gently rinse the remaining<br />

sample to one edge of the sieve by partial immersion <strong>and</strong>/or a GENTLE water<br />

spray. Using either fingers or a spoon, transfer most of the sample to an<br />

appropriately labeled (date <strong>and</strong> station number) container. Rinse any of the<br />

sample that falls on the outside of the sample container during transfer back<br />

into the sieve. Rinse the remaining sediments on the sieve into the jar with a<br />

GENTLE water spray. The final wash down should take place over a bucket or<br />

basin so spilled material can be recovered. Carefully inspect the sieve to ensure<br />

that all organisms, especially polychaete worms, are removed. Fine forceps<br />

may be used to transfer organisms from the sieve to the container if necessary.<br />

14. In some cases, particularly deep areas in the Palm River with clay substrate, the<br />

entire sample may sieve through leaving no remaining material or organisms.<br />

In this case, make a detailed note in the field book describing the occurrence.<br />

Note the occurrence on the custody form as well. These are still adequately<br />

sampled stations. There is no need to sample an alternate station.<br />

15. Place an internal tag containing the station number <strong>and</strong> sample date into the<br />

container. Preserve the sample by filling the container with buffered, Rose


Page 7<br />

Section 6.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Bengal-treated formaldehyde until the sample is submersed or the seawaterformaldehyde<br />

solution is 10% formaldehyde or more (whichever is greater).<br />

The strength of the formaldehyde solution needs to be known before it is added<br />

to the container. Assume that recycled formaldehyde is slightly stronger than<br />

10%. There should be adequate liquid to assure that the entire sample will<br />

always be submersed.<br />

16. Gently invert the container several times to mix the formaldehyde solution<br />

throughout the sample.<br />

17. Log the sieving <strong>and</strong> preservation in the field book <strong>and</strong> custody form, <strong>and</strong> place<br />

the container in a cooler or other secure place for transportation.<br />

18. Wash the Van-Veen sampler, lower the sampler to the deck, <strong>and</strong> secure the grab<br />

doors. Do not place the sampler on any sonde cables. Severe <strong>and</strong>/or<br />

potentially expensive damage may result.<br />

19. Set the GPS to navigate to the next station, <strong>and</strong> retrieve the sonde, anchor <strong>and</strong><br />

other equipment.<br />

20. Proceed to the next sample station.<br />

Safety Considerations<br />

The Young-modified Van-Veen sampler is a large, heavy, <strong>and</strong> potentially dangerous<br />

piece of equipment. Once the device is cocked, it can release at any time. The operators<br />

must be careful not to place h<strong>and</strong>s, fingers, feet, or other limbs <strong>and</strong> objects in a position<br />

where they could be caught if the device releases accidentally. Similarly, the operators<br />

must take precautions when deploying or retrieving the gear <strong>and</strong> at other times when the<br />

sampler is suspended above the deck. The sampler is heavy <strong>and</strong> has sufficient<br />

momentum when moving or swinging at the end of davit to injure or knock crew<br />

members overboard.<br />

Lost Equipment<br />

Losing gear might severely affect the efficiency, accuracy, <strong>and</strong> cost-basis of the sampling<br />

program. Crews should take every precaution against the loss of gear by properly<br />

tightening shackles <strong>and</strong> other connectors. If a piece of equipment is lost, attempts to<br />

recover it as described below should be followed. If the gear cannot be retrieved<br />

immediately, <strong>and</strong> a spare is present on board, the recovery effort should not extend past<br />

several hours. Attempts to recover gear are as follows.<br />

If the grab sampler or sonde are lost, immediately mark the area with the on-board buoy<br />

<strong>and</strong> record the GPS coordinates. Attempt to recover by grappling in the area where the<br />

sampler was dropped using an anchor or a grappling hook. If the gear is successfully<br />

recovered, continue with sampling. If it cannot be recovered, remain on station <strong>and</strong>


Page 8<br />

Section 6.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

contact the PBSJ office (813- 282-7275) to mobilize a diver. If you must leave the losslocation<br />

to pick up a diver, mark the location a second time with another buoy (if<br />

available).<br />

6.2 Sample Analyses<br />

6.2.1 Macroinvertebrate Analysis<br />

Terra Environmental Services Inc (Terra Environmental) has been contracted by PBS&J<br />

to conduct laboratory processing, data management, <strong>quality</strong> <strong>control</strong>, <strong>and</strong> project<br />

management associated with the sample sorting <strong>and</strong> taxonomic identification of the<br />

benthic monitoring component of the HBMP. As stipulated in the contract, Terra<br />

Environmental will maintain an up-to-date, project-specific Quality Assurance/Quality<br />

Control (QA/QC) Plan describing all procedures to be followed in the completion of the<br />

contracted work. The goals of the <strong>plan</strong> are to maximize the precision <strong>and</strong> accuracy of<br />

laboratory procedures, so as to obtain the most information possible from the sampling<br />

effort. The procedures to be employed are consistent with those utilized by previous<br />

laboratories contracted under the HBMP as stipulated in Version 1.1 of the HBMP<br />

QA/QC Plan (PBS&J 2002) <strong>and</strong> referenced in Florida Department of Environmental<br />

Protection SOP-002/01, LQ 7400, “Laboratory Quality Control for Macroinvertebrate<br />

Taxonomic Identification”. Species identification of benthic infauna <strong>and</strong> epifauna to the<br />

lowest practical taxonomic levels will be undertaken using the procedures <strong>and</strong> protocols<br />

outlined below (adapted from Terra Environmental’s QA/QC Plan for the Benthic<br />

Monitoring Component of the HBMP (Terra Environmental, 2007)). The resulting data<br />

will be used in assessing indicator measurements (Table 6.5) with respect to both<br />

seasonal <strong>and</strong> long-term variations in freshwater inflows.<br />

Sample Custody<br />

Upon receipt by Terra Environmental, all samples will be checked for leakage <strong>and</strong><br />

inventoried. Custody forms provided by PBS&J will be signed by Terra Environmental<br />

staff <strong>and</strong> a sample log will be maintained. Terra Environmental staff will sign <strong>and</strong> date<br />

the sample log when samples are opened <strong>and</strong> sorted, <strong>and</strong> when taxonomic analysis is<br />

complete.<br />

Sorting<br />

Samples will remain in formalin (or buffered formaldehyde) for a minimum of 48 hours.<br />

After this minimum holding time, samples will be re-sieved (500-μm) <strong>and</strong> rinsed in the<br />

laboratory such that the formalin (formaldehyde), along with the “first flush” of rinse<br />

water will be collected in a hazardous waste storage container <strong>and</strong> returned to PBS&J for<br />

recycling. Terra Environmental staff will observe safety measures (wearing safety gear<br />

such as latex gloves, lab coats, <strong>and</strong> safety glasses; working in a ventilated area) while<br />

h<strong>and</strong>ling formalin (formaldehyde). All sample containers will be inspected to ensure all


Page 9<br />

Section 6.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

organisms have been removed <strong>and</strong> after resieving in the laboratory, sieves will be<br />

visually inspected <strong>and</strong> thoroughly rinsed with tap water between samples.<br />

The material remaining on the sieve will be placed (by aliquots if necessary) onto 18” x<br />

14” fiberglass sorting trays. Using an illuminated 5X magnifier, all organisms (stained<br />

pink by the Rose Bengal) will be carefully removed with forceps <strong>and</strong> placed into one of<br />

four labeled vials (Annelids, Mollusks, Arthropods, <strong>and</strong> Other) containing 70% ethanol.<br />

This process will be repeated until the entire sample is sorted.<br />

Sorting <strong>quality</strong> <strong>control</strong> will be achieved as follows. After a sample has been sorted<br />

(organisms separated as outlined above), remaining material will be placed back into a<br />

labeled container <strong>and</strong> held until a total of ten samples have been similarly sorted <strong>and</strong><br />

stored. One of the ten sorted samples will be chosen r<strong>and</strong>omly<br />

(http://www.r<strong>and</strong>omizer.org/form.htm) for re-sorting by another analyst. Percent sorting<br />

efficiency will be calculated as:<br />

(Total # organisms) – ( #QC organisms) X 100<br />

(Total # organisms)<br />

where total # organisms = total number of organisms counted (sorted) in the sample, <strong>and</strong><br />

#QC organisms = total number of organisms counted (sorted) in the QC check.<br />

An efficiency of 90% will be the minimum st<strong>and</strong>ard for sample sorting. If sorting<br />

efficiency of the QC sample is below 90%, the remaining nine samples also will be resorted.<br />

Documentation of sorting QA/QC will be made in the laboratory log book <strong>and</strong> on<br />

separate Sorting QA/QC forms (see Appendix 6-A).<br />

Taxonomic Identification<br />

Following sorting, all organisms will be enumerated <strong>and</strong> identified to the lowest practical<br />

taxonomic level using appropriate taxonomic keys, <strong>and</strong> all results will be recorded on<br />

laboratory bench sheets.<br />

When appropriate, oligochaetes <strong>and</strong> chironomids will be enumerated <strong>and</strong> identified as<br />

follows. If the number of organisms in either group exceeds 100, the entire sample will<br />

be placed into a gridded Petri dish. Organisms will be removed from r<strong>and</strong>omly selected<br />

sections of the grid until 100 organisms have been obtained. These will be mounted on<br />

microscope slides <strong>and</strong> cleared for accurate identification using a compound microscope.<br />

The remaining organisms will be enumerated based on these results.<br />

Taxonomic identification <strong>quality</strong> <strong>control</strong> will be achieved as follows. The taxonomist<br />

will separate sorted organisms from each sample (as described above) by “species”. All<br />

individuals of a “species” (or closely related taxon) will be placed into a labeled sample


Page 10<br />

Section 6.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

vial filled with 70% ethanol. The sample number <strong>and</strong> “species” name will be included on<br />

each label. For each new “species” encountered, voucher specimens will be retained for<br />

confirmation by an outside expert a . After a particular identification has been confirmed<br />

by an outside expert, individuals of that species no longer need to be saved for<br />

verification when encountered in future samples. A list of confirmed species will thus be<br />

developed <strong>and</strong> maintained for each taxonomist. Representative individuals of each<br />

species confirmed by an outside expert will be retained in the Terra Environmental<br />

Invertebrate Reference Collection. Collection specimens will be stored in 70% ethanol<br />

with labels that include the taxonomic identification, station number, station location, <strong>and</strong><br />

date collected.<br />

Organisms sorted <strong>and</strong> identified from all samples will be retained for at least three years.<br />

Data Management<br />

Data management includes data collection, documentation, h<strong>and</strong>ling, evaluation,<br />

verification, validation, <strong>and</strong> reporting. Raw data (taxonomic identification <strong>and</strong> number of<br />

individuals) are recorded on laboratory bench sheets that also include sample ID number,<br />

date of collection, location of collection, <strong>and</strong> substrate type (see Appendix 6-A). Data<br />

will then be entered into a computer database <strong>and</strong> a facsimile bench sheet will be printed<br />

out <strong>and</strong> used to verify (validate) data entry. All deliverable laboratory data then will be<br />

entered into tables (Excel or Access) provided by PBS&J. Terra Environmental will<br />

ensure proper <strong>quality</strong> <strong>control</strong> of the data prior to delivery of final datasets to PBS&J. In<br />

addition, Terra Environmental will develop <strong>and</strong> update an electronic taxonomic list <strong>and</strong><br />

electronic data dictionary so that HBMP master-database users have access to benthic<br />

taxonomy data. Terra Environmental will be responsible for the following database<br />

deliverables:<br />

1. Phylogenetic taxonomic list<br />

2. Data dictionary<br />

3. Total number of individuals of each taxon in each sample<br />

Performance And Systems Audits<br />

Performance <strong>and</strong>/or systems audits will be performed as required. These audits will<br />

involve the QA/QC Officer <strong>and</strong> the Project Manager.<br />

Performance audits are conducted by reviewing project output regarding data accuracy,<br />

comparison of field <strong>and</strong> laboratory QA results, estimates of completeness, <strong>and</strong><br />

recommendations for corrective actions.<br />

a Names of outside experts will be provided upon request


Page 11<br />

Section 6.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Systems audits involve a complete review of all <strong>plan</strong>ned tasks <strong>and</strong> will generally include<br />

a spot check of sample custody, adequacy of documentation, <strong>and</strong> overall data traceability.<br />

Corrective Action<br />

Any corrective action deemed necessary will be reported immediately, in writing, to the<br />

QA Officer. The potential need for corrective action could be identified through either<br />

internal or external <strong>quality</strong> <strong>assurance</strong> procedures during the course of conducting systems<br />

or performance audits. Alternatively, a potential need could be identified by field or<br />

laboratory personnel based on observation <strong>and</strong> work experience. If corrective action is<br />

deemed necessary, the details of implementing such action would be discussed <strong>and</strong><br />

agreed upon by the QA Officer <strong>and</strong> Project Manager.<br />

6.2.2 Sediment Analysis<br />

PBS&J is responsible for the field collection of the sediment samples <strong>and</strong> for the delivery<br />

of the collected samples to Mote Marine Laboratory (Mote) for processing. Sediment<br />

samples collected during the benthic sampling efforts will be delivered to Mote monthly.<br />

Mote data <strong>quality</strong> st<strong>and</strong>ards include continuing calibration st<strong>and</strong>ards falling within 90-<br />

110% of known values, <strong>and</strong> precision targets with 20%RSD or less or within 2 detection<br />

limits. Mote utilizes data qualifier codes consisting of DEP-accepted designations,<br />

including “U” for less than the stated detection limit <strong>and</strong> PQL to indicate that the stated<br />

value is between the detection limit <strong>and</strong> a value four times greater.<br />

Samples are held frozen until analysis. Granulometry is performed using a laser<br />

diffraction instrument (Coulter, 1994) <strong>and</strong> the 93 size distribution channels consolidated<br />

into 26 individual channels corresponding with the Wentworth scale of half phi sizes <strong>and</strong><br />

with st<strong>and</strong>ard %s<strong>and</strong>-silt-clay designations (Folk, 1974). Samples for grain size<br />

determination are first sieved of material greater than 2 mm, <strong>and</strong> a qualitative assessment<br />

is also made as to the amount of >2mm material present. Designations are 0-none, 1-<br />

minimal, 2-moderate, <strong>and</strong> 3-substantial. Percent organics are determined by ashing<br />

sediments at 500°C, St<strong>and</strong>ard Methods 2540G, 18 th Edition (APHA,1992).<br />

Results of the percent organics <strong>and</strong> grain size analyses are provided in hard copy <strong>and</strong><br />

electronically in an Excel format. Samples are disposed of 30 days from the time of data<br />

report delivery to PBS&J unless otherwise specified by PBS&J.


Page 12<br />

Section 6.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Table 6.1 HBMP Benthic Macroinvertebrate Sampling Study Element<br />

Study<br />

Element<br />

Spatial<br />

Strata<br />

Month<br />

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec<br />

Total<br />

Hillsborough River<br />

Benthos 6 strata 2/stratum 2/stratum 2/stratum 2/stratum 2/stratum 2/stratum 2/stratum 2/stratum 2/stratum 2/stratum 2/stratum 2/stratum 144*<br />

* Only samples collected from January through March, <strong>and</strong> July through September, will be processed.<br />

McKay <strong>Bay</strong><br />

Benthos 34 Cells 3 4 3 4 3 3 10 10 10 3 4 3 60<br />

Alafia River<br />

6 estuarine strata<br />

2/stratum<br />

2/stratum<br />

2/stratum<br />

2/stratum<br />

2/stratum<br />

2/stratum<br />

2/stratum<br />

2/stratum<br />

2/stratum<br />

2/stratum<br />

2/stratum<br />

2/stratum<br />

144<br />

Benthos<br />

1 inset stratum<br />

(Rkm 7-13)<br />

7/stratum<br />

6/stratum<br />

7/stratum<br />

20<br />

1 freshwater<br />

stratum (AR7)<br />

3/stratum<br />

3stratum<br />

3stratum<br />

3/stratum<br />

3/stratum<br />

3/stratum<br />

3/stratum<br />

3/stratum<br />

3/stratum<br />

3/stratum<br />

1 SCI/<br />

3/stratum<br />

3/stratum<br />

36<br />

1 SCI<br />

stratum<br />

Palm River<br />

Benthos<br />

3 strata with<br />

deep channel /<br />

shallow<br />

substrata<br />

PR1: 1D<br />

PR2: 1S<br />

PR3: 1S<br />

PR1: 1S<br />

PR2: 1D<br />

PR3: 1D<br />

PR1: 1S<br />

PR2: 1D<br />

PR3: 1S<br />

PR1: 1D<br />

PR2: 1S<br />

PR3: 1S<br />

PR1: 1S/1D<br />

PR2: 1S<br />

PR3: 1D<br />

PR1: 1D<br />

PR2: 1S/1D<br />

PR3: 1S/1D<br />

PR1: 2S/2D<br />

PR2: 2S/2D<br />

PR3: 1S/1D<br />

PR1: 1S/1D<br />

PR2: 2S/2D<br />

PR3: 2S/2D<br />

PR1: 2S/2D<br />

PR2: 1S/1D<br />

PR3: 2S/2D<br />

PR1: 1S<br />

PR2: 1D<br />

PR3: 1S<br />

PR1: 1D<br />

PR2: 1S<br />

PR3: 1D<br />

PR1: 1S<br />

PR2: 1D<br />

PR3: 1D<br />

60<br />

D=deep, S=shallow


Page 13<br />

Section 6.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Table 6.2 Benthic Sampling Checklist<br />

HBMP Benthic Sampling Field Checklist<br />

Field Gear<br />

Buoy & line<br />

Brushes (for cleaning gear)<br />

Cellular phone<br />

Clear tape<br />

Conductivity Solution (High <strong>and</strong> Low)<br />

Coolers<br />

Custody sheets<br />

Data field book<br />

Data field book, extra<br />

Davit<br />

De-ionized <strong>Water</strong><br />

Downrigger<br />

Downrigger ball<br />

Duct tape<br />

Formaldehyde, w/ stain & buffered<br />

GPS preferably with stations entered<br />

GPS extra batteries (AA)<br />

Sonde Calibration Book<br />

Sonde display extra batteries (AA)<br />

Multi-parameter Sonde with Display Unit<br />

Leave In Office<br />

DO sensor Electrolyte Solution<br />

Station number & coordinate list<br />

Float <strong>plan</strong><br />

Before Starting Sampling Effort (first day)<br />

Calibrate multi-parameter sonde<br />

Change DO membrane<br />

Charge hydrolabs<br />

Check COMPS system for observed tides<br />

Fill out custody forms<br />

Create station field sheet<br />

Load stations in GPS<br />

Make field notebook pages<br />

Complete field notebook pages<br />

Before Leaving for Field (second day)<br />

Disconnect chargers<br />

Calibrate multi-parameter sonde<br />

Get ice<br />

Ice<br />

Internal labels (tree tags)<br />

After Sampling<br />

Measuring tape 1. Complete custody forms<br />

Pens 2. Post-calibrate sonde(s)<br />

pH 10 Solution 3. Review & sign field notebooks<br />

pH 7 Solution 4. Photocopy field notebooks<br />

Quality Assurance Program Plan Manual<br />

5. Place sediment samples in freezer<br />

Sample bottle labels<br />

Sample bottles<br />

At Completion<br />

Sample bottles, extra 1. Deliver sediment samples<br />

Sample station field book with alternate list 2. Deliver benthic samples<br />

Secchi Disk 3. Send field notes to QAQC Officer<br />

Sediment bags 4. File field notes<br />

Sieve wash bucket, 500 um 5. Replenish supplies<br />

Sieve, 500 um 6. Store archived samples<br />

Squirt bottles 7. File custody forms<br />

Thermometer (generally attached to boat)<br />

Tide Predictions<br />

Trowel<br />

Weather forecast<br />

Young-modified Van Veen sampler


Page 14<br />

Section 6.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Table 6.3 Number of HBMP Benthic-Samples per Month by Reporting Unit<br />

Reporting Unit<br />

Alafia Hillsborough Hillsborough McKay Palm Total<br />

Month<br />

Collected &<br />

Analyzed<br />

Collected &<br />

Analyzed<br />

Collected &<br />

Archived<br />

Collected &<br />

Analyzed<br />

Collected &<br />

Analyzed<br />

Collected<br />

January 15 12 3 3 33<br />

February 15 12 4 3 34<br />

March 15 12 3 3 33<br />

April 15 12 4 3 34<br />

May 15 12 3 4 34<br />

June 22 12 3 5 42<br />

July 21 12 10 10 53<br />

August 22 12 10 10 54<br />

September 15 12 10 10 47<br />

October 15 12 3 3 33<br />

November 15 12 4 3 34<br />

December 15 12 3 3 33<br />

Total 200 72 72 60 60 464<br />

Note: Hillsborough River samples are archived during the April through June <strong>and</strong> October<br />

through December sampling periods.


Page 15<br />

Section 6.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Table 6.4 Outline of Sampling Activities Performed at each Station<br />

1. Locate Station <strong>and</strong> anchor.<br />

2. Log station information, weather, tide, etc.<br />

3. Perform water column profile.<br />

4. Wash grab-sampler, if necessary, <strong>and</strong> check to see that doors are secure <strong>and</strong> grab is cocked.<br />

5. Lower grab-sampler, collect sample, <strong>and</strong> retrieve grab-sampler.<br />

6. Open grab-sampler lid <strong>and</strong> remove a core of sample for sediment analysis<br />

7.<br />

Label sediment-bag (date & station number) <strong>and</strong> transfer sediment core to bag. Place bag on ice<br />

in cooler.<br />

8. Open grab-sampler jaws <strong>and</strong> empty contents of sampler into sieve bucket.<br />

9. Sieve sample.<br />

10. Label appropriate size sample container (date & station number).<br />

11. Transfer sieved sample to container.<br />

12. Preserve sample with buffered formaldehyde.<br />

13. Place filled container in cooler or other transportation-storage location.<br />

14. Record sieving <strong>and</strong> preservation in field book, <strong>and</strong> record sample on custody forms.<br />

15. Wash, lower, <strong>and</strong> secure grab-sampler <strong>and</strong> secure doors.<br />

16. Move to next station.<br />

Table 6.5 Benthic Indicators, Units of Measure, <strong>and</strong> Sources of Variability<br />

Critical Indicator<br />

Benthic Macroinvertebrate Epifauna & Infauna<br />

- Species Composition<br />

- Abundance<br />

- Distribution<br />

Units of<br />

Measure<br />

Species<br />

% composition<br />

# / unit area<br />

# / river km<br />

Sources of Variability<br />

depth, sediment grain size,<br />

sediment organic matter,<br />

dissolved oxygen, salinity,<br />

temperature, pH, submerged<br />

aquatic vegetation, season


Page 16<br />

Section 6.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Project<br />

Management<br />

Bob Woithe, Ph.D.<br />

Field Data<br />

Collection<br />

Field Staff<br />

Taxonomic<br />

Identification<br />

Terra Environmental<br />

Physical<br />

<strong>Water</strong> Column<br />

Measurements<br />

Benthic<br />

Macroinvertebrate<br />

Sampling<br />

Species<br />

Counts<br />

Data Preparation<br />

QA/QC<br />

Summary Tables<br />

Figure 6.1. Organization of the benthic macroinvertebrate study element.


Page 17<br />

Section 6.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

A<br />

B<br />

C<br />

Figure 6.2 Basic benthic sampling equipment: A.) Van Veen grab; B.) Wildco wash<br />

bucket (500 um sieve); C.) Fisher sieves


Appendix 6-A<br />

Example Forms


Example Custody Form for Benthic Field Sampling<br />

December 2000 <strong>Tampa</strong> HBMP Benthic Sample Custody Form<br />

GPS Name Stratum Station Date Collected Date Delivered<br />

BA1 AR7 AR717737<br />

BA2 AR7 AR715643<br />

BA3 AR7 AR714246<br />

BA4 AR6 AR613930<br />

BA5 AR6 AR612909<br />

BA6 AR5 AR511615<br />

BA7 AR5 AR510502<br />

BA8 AR4 AR409054<br />

BA9 AR4 AR408054<br />

BA10 AR3 AR306212<br />

BA11 AR3 AR305910<br />

BA12 AR2 AR203655<br />

BA13 AR2 AR202845<br />

BA14 AR1 AR101682<br />

BA15 AR1 AR100783<br />

BH1 HR1 HR100397 Archived<br />

BH2 HR1 HR101496 Archived<br />

BH3 HR2 HR202840 Archived<br />

BH4 HR2 HR204954 Archived<br />

BH5 HR3 HR305736 Archived<br />

BH6 HR3 HR306446 Archived<br />

BH7 HR4 HR408061 Archived<br />

BH8 HR4 HR408524 Archived<br />

BH9 HR5 HR510285 Archived<br />

BH10 HR5 HR512638 Archived<br />

BH11 HR6 HR615055 Archived<br />

BH12 HR6 HR615568 Archived<br />

BM1 M16 M1600411<br />

BM2 M14 M1410806<br />

BM3 M21 M2104201<br />

BP1 PR1 PR102266<br />

BP2 PR2 PR205134<br />

BP3 PR3 PR306430<br />

Signatures:<br />

Delivered by:<br />

Received by:<br />

Date:<br />

Date:


Terra Environmental Sorting QA/QC Form<br />

Sample ID Date Sorted Sorted By No. Organisms QC Organisms Sorting Eff. Date Completed Completed By<br />

worms<br />

shells<br />

bugs<br />

other<br />

total<br />

worms<br />

shells<br />

bugs<br />

other<br />

total<br />

worms<br />

shells<br />

bugs<br />

other<br />

total<br />

worms<br />

shells<br />

bugs<br />

other<br />

total<br />

worms<br />

shells<br />

bugs<br />

other<br />

total<br />

worms<br />

shells<br />

bugs<br />

other<br />

total<br />

worms<br />

shells<br />

bugs<br />

other<br />

total<br />

worms<br />

shells<br />

bugs<br />

other<br />

total<br />

worms<br />

shells<br />

bugs<br />

other<br />

total


Terra Environmental Laboratory Bench Sheet Page 1<br />

Sample No.:<br />

Date Collected:<br />

Location:<br />

Substrate:<br />

Taxon<br />

PHYLUM PORIFERA<br />

No.<br />

Notes<br />

PHYLUM PLATYHELMINTHES<br />

PHYLUM NEMERTEA<br />

PHYLUM ANNELIDA<br />

Class Hirudinea<br />

Class Oligochaeta<br />

Class Polychaeta<br />

PHYLUM SIPUNCULA<br />

PHYLUM MOLLUSCA<br />

Class Gastropoda<br />

Class Bivalvia


Terra Environmental Laboratory Bench Sheet Page 2<br />

Sample No.:<br />

Date Collected:<br />

Taxon<br />

PHYLUM ARTHROPODA<br />

Class Insecta<br />

Order Diptera<br />

No.<br />

Notes<br />

Order Trichoptera<br />

Order Plecoptera<br />

Order Coleoptera<br />

Order Odonata<br />

Class Crustacea<br />

Order Tanaidacea<br />

Order Cumacea<br />

Order Isopoda<br />

Order Amphipoda<br />

Order Decapoda<br />

Subclass Cirripedia<br />

Subclass Copepoda<br />

PHYLUM BRACHIOPODA<br />

Glottidia pyramidata<br />

PHYLUM BRYZOA<br />

PHYLUM ECHINODERMATA<br />

PHYLUM CHORDATA<br />

Subphylum Cephalochordata<br />

Brachiostoma floridae<br />

OTHER


Appendix 6-B<br />

Benthic Macroinvertebrates Collected by HBMP<br />

Updated for data through 2005<br />

Note: All HBMP benthic identifications are based on a twelve digit identification based on<br />

the criteria shown below.<br />

HBMP-ID#<br />

Phylum#<br />

Class#<br />

Order#<br />

Family#<br />

Genus#<br />

Species#<br />

020101010101 02 01 01 01 01 01


HBMP Benthic Species Identification Master List - 2005<br />

HBMP-ID# Scientific Name Description Common Name<br />

000000000000 No organisms present . .<br />

000000000001 no sample . .<br />

010201000101 Athenaria sp. Cnidaria .<br />

010201000102 Athenaria sp. a Cnidaria .<br />

010202000000 Thenaria sp. Thenaria .<br />

010202000000 Thenaria sp. . .<br />

020101010101 Stylochus cf. ellipticus Platyhelminthes Oyster Flatworm<br />

020101010101 Stylochus cf. ellipticus Platyhelminthes Oyster Flatworm<br />

020101020101 Eu<strong>plan</strong>a gracilis Platyhelminthes .<br />

020102000000 Tricladida Platyhelminthes .<br />

030000000001 Nemertea sp. Nemertea Ribbon Worm<br />

030101010101 Tubulanus palucidus Nemertea Ribbon Worm<br />

040000000000 Megalomma heterops Annelid .<br />

040101010101 Leitoscoloplos sp. Annelid .<br />

040101010102 Leitoscoloplos robustus Annelid .<br />

040101010103 Leitoscoloplos fragilis Annelid .<br />

040101010201 Scoloplos rubra Annelid Red Threadworm<br />

040101020100 Aricidea sp. Annelid .<br />

040101020101 Aricidea taylori Annelid .<br />

040101020102 Aricidea philbinae Annelid Unicorn Worm<br />

040102010101 Ctenodrilus cirrratus Annelid .<br />

040105020001 Spionidae sp. Annelid .<br />

040105020101 Carazziella hobsonae Annelid .<br />

040105020200 Prionospio sp. Annelid .<br />

040105020201 Prionospio perkinsi Annelid .<br />

040105020202 Prionospio heterobranchia Annelid .<br />

040105020301 Scolelepis texana Annelid Palp Worm<br />

040105020401 Streblospio benedicti Annelid .<br />

040105020501 Paraprionospio pinnata Annelid .<br />

040105020600 Polydora ligni Annelid .<br />

040105020601 Polydora socialis Annelid .<br />

040105020701 Apoprionospio pygmaea Annelid .<br />

040105020801 Scolecolepis viridis Annelid .<br />

040105020901 Spio pettiboneae Annelid .<br />

040105021001 Spiophanes bombyx Annelid Bee spionid<br />

040105030101 Magelona pettiboneae Annelid Shovel Headed Worm<br />

040105070101 Spiochaetopterus c. oculatus Annelid .<br />

040105080000 Cirratulidae sp. Annelid .<br />

040105080101 Monticellina dorsobranchialis Annelid .<br />

040105080200 Caulleriella sp. Annelid .<br />

040105080300 Cirriformia sp. Annelid .<br />

040105080301 . . .<br />

040106010101 Capitella capitata Annelid .<br />

040106010102 Capitella jonesi Annelid .


HBMP Benthic Species Identification Master List - 2005<br />

HBMP-ID# Scientific Name Description Common Name<br />

040106010201 Heteromastus filiformis Annelid Capitellid Thread Worm<br />

040106010300 Mediomastus sp. Annelid .<br />

040106010301 Mediomastus californiensis Annelid .<br />

040106010302 Mediomastus ambiseta Annelid .<br />

040106010400 Notomastus sp. Annelid Maitre D' Dorm<br />

040106010401 Notomastus latericeus Annelid Maitre D' Dorm<br />

040106010402 Nototmastus hemipodus Annelid .<br />

040106010403 Notomastus sp. A Annelid .<br />

040106010501 cf. Decamastus sp. A Annelid<br />

040106020101 Arenicola cristata Annelid Lugworm<br />

040106030101 Asychis elongatus Annelid .<br />

040106030201 Clymenella torquata Annelid .<br />

040107010101 Arm<strong>and</strong>ia maculata Annelid Lancelet Worm<br />

040108010001 Phyllodocidae sp. Annelid .<br />

040108010101 Eteone heteropoda Annelid Eteone Worm<br />

040108010201 Genetyllis castanea Annelid .<br />

040108010301 Phyllodoce arenae Annelid .<br />

040108010401 Anaitides longipes Annelid .<br />

040108010402 Anaitides mucosa Annelid .<br />

040108010501 Paranaitis polynoides Annelid .<br />

040108060101 Harmothoe sp.C Annelid .<br />

040108060102 Malmgreniella sp. B Annelid .<br />

040108060201 Malmgreniella sp.A Annelid .<br />

040108070101 Polyodontes lupinus Annelid .<br />

040108090101 Grubeulepis mexicana Annelid .<br />

040108100101 Sthenelais sp. A Annelid .<br />

040108110101 Bhwania heteroseta Annelid .<br />

040108140001 Hesionidae sp. Annelid .<br />

040108140101 Podarkeopsis levifuscina Annelid .<br />

040108140201 Parahesione luteola Annelid .<br />

040108140301 Podarke obscura Annelid Swift-Footed Worm<br />

040108140401 Gyptis vittata Annelid .<br />

040108150101 Sigambra bassi Annelid .<br />

040108150102 Sigambra tentaculata Annelid .<br />

040108150201 Synelmis sp. b Annelid .<br />

040108150301 Ancystrosyllis jonesi Annelid .<br />

040108160101 Typosyllis cf. amica Annelid .<br />

040108160102 Typosyllis armillaris Annelid .<br />

040108160201 Exogone dispar Annelid .<br />

040108180000 Nereidae sp. Annelid .<br />

040108180101 Laeonereis culveri Annelid Culver's S<strong>and</strong>worm<br />

040108180201 Neanthes micromma Annelid .<br />

040108180202 Neanthes succinea Annelid Pile worm<br />

040108180301 Steninonereis martini Annelid .<br />

040108180401 Nereis falsa Annelid .<br />

040108200100 Glycera sp. Annelid .


HBMP Benthic Species Identification Master List - 2005<br />

HBMP-ID# Scientific Name Description Common Name<br />

040108200101 Glycera americana Annelid Blood Worm<br />

040108210101 Glycinde solitaria Annelid .<br />

040108240101 Nephtys picta Annelid .<br />

040108240102 Nephtys simoni Annelid .<br />

040108240201 Aglaophamus verrilli Annelid Dwarf S<strong>and</strong>worm<br />

040109010101 Pseudeurythoe ambigua Annelid .<br />

040109010201 Paramphinome sp.b Annelid .<br />

040111010000 Onuphidae sp. Annelid .<br />

040111010101 Diopatra cuprea Annelid Plumed Worm<br />

040111010201 Mooreonuphis cf. nebulosa Annelid .<br />

040111010301 Kinbergonuphis cf. simoni Annelid .<br />

040111020101 Lysidice sp. a Annelid .<br />

040111020201 Marphysa sp. b Annelid .<br />

040111020202 Marphysa sanguinea Annelid Rockworm<br />

040111020203 Marphysa cf. belli Annelid .<br />

040111020301 Nematonereis hebes Annelid .<br />

040111030101 Lumbrineris sp. d Annelid .<br />

040111030102 Lumbrineris verrilli Annelid .<br />

040111070101 Schistomeringos cf. rudolphi Annelid .<br />

040114010101 Piromis roberti Annelid Bristlecage Worm<br />

040116020101 Pectinaria gouldii Annelid Ice Cream Cone Worm<br />

040116030001 Ampharetidae sp. Annelid .<br />

040116030101 Hobsonia florida Annelid .<br />

040116030201 Melinna maculata Annelid Spaghetti Mouth Worm<br />

040116030301 Isolda pulchella Annelid .<br />

040116040100 Pista sp. Annelid .<br />

040116040101 Streblosoma hartmanae Annelid .<br />

040116040301 Polycirrus sp. Annelid .<br />

040117010000 Sabellidae sp. Annelid .<br />

040117010101 Branchiomma sp. Annelid .<br />

040117010200 Potamilla sp. Annelid .<br />

040117010301 Megalomma pigmentum Annelid .<br />

040117010302 Megalomma heterops Annelid .<br />

040117010401 Chone cf. americana Annelid .<br />

040117020101 cf. Hydroides dianthus Annelid .<br />

040117020101 Hydroides dianthus Annelid .<br />

040201010100 Eclipidrilus sp. Oligochaete .<br />

040201020101 Thalassodrilides gurwitschi Oligochaete .<br />

040201020201 Tubificidae sp. w/out hairs Oligochaete .<br />

040201020202 Tubificidae with hairs Oligochaete .<br />

040201020301 Monopylephorus rubroniveus Oligochaete .<br />

040201020302 Monopylephorus cf parvus Oligochaete .<br />

040201020302 Monopylephorus parvus Oligochaete .<br />

040201020401 Tubificoides brownae Oligochaete .<br />

040201020402 Tubificodes motei Oligochaete .<br />

040201020403 Tubificodes ? Oligochaete .


HBMP Benthic Species Identification Master List - 2005<br />

HBMP-ID# Scientific Name Description Common Name<br />

040201020501 Ilyodrilus templetoni Oligochaete .<br />

040201020601 Limnodrilus hoffmeisteri Oligochaete Tubificid Worm<br />

040201020701 Aulodrilus pluriseta Oligochaete .<br />

040201020702 Aulodrilus pigueti Oligochaete .<br />

040201020801 Limnodriloides barnardi Oligochaete .<br />

040201020802 Limnodriloides rubicundis Oligochaete .<br />

040201020901 Tectidrilus squalidus Oligochaete .<br />

040201021201 Branchiura sowerbyi Oligochaete .<br />

040201030101 Pristina proboscidea Oligochaete .<br />

040201030201 Nais communis Oligochaete .<br />

040201030202 Nais variabilis Oligochaete .<br />

040201030301 Dero digitata Oligochaete .<br />

040201030401 Paranais litoralis Oligochaete .<br />

040202010101 Eclipidrilus palustris Oligochaete .<br />

040202010201 Lumbriculus variegatus Oligochaete .<br />

040301010101 Myzobdella uraguayensis Annelid Fish Leech<br />

040302010101 Glossiphoniidae sp.a Annelid Fish Leech<br />

040302010201 Helobdella elongata Annelid .<br />

040302010202 Helobdella stagnalis Annelid .<br />

040302010203 Helobdella triserialis Annelid .<br />

050100000000 Gastropoda sp. Gastropod .<br />

050103030101 Cyclostremiscus pentagonus Gastropod .<br />

050103030102 Cyclostremiscus suppressus Gastropod .<br />

050103030201 Vitrinella helicoidea Gastropod .<br />

050103030202 Vitrinella floridana Gastropod Florida Vitrinella<br />

050103040101 Cyclostromella humilis Gastropod .<br />

050103060101 Assiminea succinea Gastropod Atlantic Assiminea<br />

050104010101 Neritina usnea Gastropod Olive Nerite<br />

050108010100 Crepidula sp. Gastropod Slippersnail<br />

050108010101 Crepidula maculosa Gastropod Spotted Slippersnail<br />

050108010102 Crepidula fornicata Gastropod Common Atlantic Slippersnail<br />

050108010103 Crepidula <strong>plan</strong>a Gastropod Flat slipper snail<br />

050109010000 Ancyllidae sp. Gastropod .<br />

050109010101 Hebetancylis excentricus Gastropod .<br />

050109010201 Laevapex fuscus Gastropod .<br />

050109020101 Helisoma anceps Gastropod .<br />

050110010101 Bittium cf. varium Gastropod Grass cerith<br />

050111010101 Tectonatica pusilla Gastropod .<br />

050111010201 Polynices duplicatus Gastropod Moon Snail<br />

050114010101 Epitonium angulatum Gastropod Angled wentletrap<br />

050115010101 Microeulimia hemphilli Gastropod .<br />

050115010201 ? Gastropod .<br />

050116010701 Eupleura sulcidentata Gastropod Sharp-Rib Drill<br />

050116011101 Stramonita haemostoma Gastropod .<br />

050116020101 Pisania tincta Gastropod .<br />

050116020201 Cantharus cancellarius Gastropod Cancellate Lesser Whelk


HBMP Benthic Species Identification Master List - 2005<br />

HBMP-ID# Scientific Name Description Common Name<br />

050116030101 Astyris lunatus Gastropod .<br />

050116030201 Parvanchis obesa Gastropod Common Eastern Nassa<br />

050116040101 Nassarius vibex Gastropod Mottled Dog Whelk<br />

050116040102 Nassarius albus Gastropod Variable Nassa<br />

050116050101 Melangena corona Gastropod .<br />

050116080101 Oliva sayana Gastropod Lettered Olive<br />

050116080201 Olivella floralia Gastropod .<br />

050116080202 Olivella ? Gastropod .<br />

050116080301 Jaspidella blanesi Gastropod .<br />

050116090101 Prunum apicinum Gastropod Common Atlantic Marginella<br />

050116090201 Gibberula lavalleena Gastropod Common Atlantic Marginella<br />

050120010101 Boonea impressa Gastropod Impressed Odostome<br />

050120010201 Turbonilla cf. punicea Gastropod .<br />

050120010202 Turbonilla incisa Gastropod Etched Turbonille<br />

050120010203 Turbonilla cf. viridimaris Gastropod .<br />

050120010301 Odostomia laevigata Gastropod .<br />

050120010302 Odostomia cf. gibbosa Gastropod .<br />

050120010401 Sayella laevigata Gastropod .<br />

050120010402 Sayella fusca Gastropod .<br />

050121010101 Rictaxis punctostriatus Gastropod Pitted Baby-Bubble<br />

050121010201 Bullina cf. torrei Gastropod .<br />

050121020101 Bulla striata Gastropod Atlantic Bubble<br />

050121030101 Haminoea succinea Gastropod Amber Glassy-Bubble Snail<br />

050121030102 Haminoea elegans Gastropod Elegant Glassy-Bubble Snail<br />

050121030201 Atys riiseana Gastropod .<br />

050121040101 Acteocina canaliculata Gastropod Channeled Barrel-Bubble<br />

050122020101 Cyerce cf. cristallina Gastropod .<br />

050123010101 Hydrobiidae sp. Gastropod Hydrobiid<br />

050123010201 Pyrgophorus platyrachis Gastropod .<br />

050123020101 Melanoides tuberculata Gastropod .<br />

050124000001 Nudibranchia sp. Gastropod .<br />

050125010101 Menetus dilatatus Gastropod Trumpet Ram's-horn<br />

050200000001 Bivalvia sp. Bivalve Bivalve<br />

050201010101 Nucula proxima Bivalve Atlantic Nutclam<br />

050202010101 Anadara transversa Bivalve Transverse Ark<br />

050204010101 Amygdalum papyrium Bivalve Atlantic Paper Mussel<br />

050204010201 Ischadium recurvum Bivalve Hooked Mussel<br />

050204010301 Geukensia granosissma Bivalve .<br />

050204010401 Perna viridis Bivalve Green Mussel<br />

050204020201 Mytilopsis leucophaeta Bivalve Dark False Mussel<br />

050208010101 Crassostrea virginica Bivalve Eastern Oyster<br />

050211010101 Parvilucina multilineata Bivalve Many-lined Lucine<br />

050212010101 Anomia simplex Bivalve Common Jingle Shell<br />

050215010101 Laevacardium mortoni Bivalve Morton Eggcockle<br />

050216010101 Mulinia lateralis Bivalve Dwarf Surfclam<br />

050216010201 Mactra fragilis Bivalve Fragile Surfclam


HBMP Benthic Species Identification Master List - 2005<br />

HBMP-ID# Scientific Name Description Common Name<br />

050218010001 Tellinidae sp. Bivalve Tellin Clam<br />

050218010101 Macoma constricta Bivalve Constricted Macoma Clam<br />

050218010102 Macoma tenta Bivalve Elongate Macoma Clam<br />

050218010201 Tellina cf. alternata Bivalve Alternate Tellin<br />

050218010202 Tellina cf. versicolor Bivalve Many-Colored Tellin<br />

050218010203 Tellina tampaensis Bivalve <strong>Tampa</strong> Tellin<br />

050218010204 Tellina mera Bivalve Pure Tellin<br />

050218010301 Ensis minor Bivalve Dwarf razor clam<br />

050218010401 Donax variabilis Bivalve .<br />

050218020101 Tagelus divisus Bivalve Purplish Tagelus<br />

050218020102 Tagelus plebius Bivalve Stout Razor Clam<br />

050218040101 Semele proficua Bivalve Atlantic Semele<br />

050218040201 Abra aequalis Bivalve .<br />

050219010101 Polymesoda carolinae Bivalve Carolina Marsh Clam<br />

050219010201 Corbicula fluminea Bivalve Asian Clam<br />

050219020100 Sphaerium sp. Bivalve Clam<br />

050219020101 Byssanodonta cubensis Bivalve mottled fingernailclam<br />

050219020200 Pisidium sp. Bivalve .<br />

050220010101 Parastarte triquetra Bivalve Brown Gemclam<br />

050220010201 Dosinia elegans Bivalve Elegant Dosinia<br />

050220010202 Dosinia discus Bivalve Disk Dosinia<br />

050220010301 Anomalocardia auberiana Bivalve Pointed-Venus<br />

050220010401 Mercenaria campechiensis Bivalve Southern Qahog<br />

050220010501 Cyclinella tenuis Bivalve Thin Cyclinella<br />

050220010601 Chione cancellata Bivalve Cross-barred venus<br />

050220010602 Chione cf. paphia Bivalve .<br />

050220020101 Petricola pholadiformis Bivalve False angel wing<br />

050220030101 Cyrenoidea floridana Bivalve Florida Marsh Clam<br />

050220040101 Mysella <strong>plan</strong>ulata Bivalve Plate Mysella<br />

050221010101 Corbula contracta Bivalve Contracted Corbula<br />

050221010102 Corbula swiftiana Bivalve Corbula<br />

050221010103 Corbula chittyana Bivalve Corbula<br />

050221020101 Sphenia antillensis Bivalve .<br />

050221030101 Hiatella cf. azaria Bivalve .<br />

050221040101 Pholas campechiensis Bivalve .<br />

050222010101 Cyrtopleura costata Bivalve Angelwing Clam<br />

050223010101 Lyonsia floridana Bivalve Florida Lyonsia<br />

050223020101 Bushia elegans Bivalve .<br />

050223020201 Asthenothaerus hemphilli Bivalve Hemphill Thracid<br />

060101010101 Hargeria repax Arthropod .<br />

060101020101 Halmyrapseudes bahamensis Arthropod .<br />

060102000000 Cumacea sp. Arthropod .<br />

060102010101 Oxyurostylus cf. smithi Arthropod .<br />

060102010102 Oxyurostylus lecroyae Arthropod .<br />

060102030101 Cyclaspis cf. varians Arthropod .<br />

060102040101 Almyracuma proximoculae Arthropod .


HBMP Benthic Species Identification Master List - 2005<br />

HBMP-ID# Scientific Name Description Common Name<br />

060103010101 Cyathura polita Isopod Sowbug<br />

060103010201 Xenanthura brevitelson Isopod Sowbug<br />

060103010301 Amakusanthura magnifica Isopod Sowbug<br />

060103020101 Exosphaeroma diminuta Isopod Sowbug<br />

060103020201 Harrieta faxoni Isopod Sowbug<br />

060103020301 Cassidinidea ovalis Isopod Sowbug<br />

060103020401 Sphaeroma quadridentatum Isopod Sowbug<br />

060103020402 Sphaeroma walkeri Isopod .<br />

060103030100 Asellus sp. Isopod Sowbug<br />

060103040101 Uromunna hayesi Isopod Sowbug<br />

060103040102 Uromunna reynoldsi Isopod Sowbug<br />

060103050101 Edotea triloba Isopod Sowbug<br />

060103060101 Erichisonella attenuata Isopod Sowbug<br />

060103070100 Cirolana parva Isopod .<br />

060104010101 Gammarus mucronatus Amphipod Keeled Scud<br />

060104010102 Gammarus cf. tigrinis Amphipod Scud<br />

060104020101 Melita elongata Amphipod Scud<br />

060104020102 Melita nitida complex Amphipod Scud<br />

060104020103 cf. melita dentata Amphipod Scud<br />

060104020201 Elasmopus levis Amphipod Scud<br />

060104030101 Listriella barnardi Amphipod Scud<br />

060104030201 Microdeutopus sp. a Amphipod Scud<br />

060104040101 Batea catharinensis Amphipod Scud<br />

060104070101 Monoculodes nyei Amphipod Scud<br />

060104070102 Monoculodes cf. edwardsi Amphipod Scud<br />

060104070102 Monoculodes edwardsi Amphipod Scud<br />

060104100101 Eobrolgus spinosus Amphipod Scud<br />

060104100201 Repoxinius epistomus Amphipod Scud<br />

060104120101 Ampelisca cf. abdita Amphipod Scud<br />

060104120102 Ampelisca cf. holmesi Amphipod Scud<br />

060104120103 Ampelisca vadorum Amphipod Scud<br />

060104120104 Ampelisca sp. d Amphipod Scud<br />

060104130101 Lysianopsis alba Amphipod Scud<br />

060104140101 Acuminodeutopus naglei Amphipod Scud<br />

060104140201 Gr<strong>and</strong>idierella bonnieroides Amphipod Scud<br />

060104140301 Lembos smithi Amphipod Scud<br />

060104150101 Cymadusa compta Amphipod Scud<br />

060104160101 Gitanopsis cf.lagunae Amphipod Scud<br />

060104170001 Corophiidae sp. Amphipod Scud<br />

060104170100 Corophium sp. Amphipod Scud<br />

060104170101 Corophium louisianum Amphipod Scud<br />

060104170102 Corophium lacustre Amphipod Scud<br />

060104170103 Corophium ellisi Amphipod Scud<br />

060104170201 Erichthonius brasiliensis Amphipod Scud<br />

060104170202 Erichthonius rubicornis Amphipod Scud<br />

060104170300 Cerapus sp. Amphipod Scud


HBMP Benthic Species Identification Master List - 2005<br />

HBMP-ID# Scientific Name Description Common Name<br />

060104170301 Cerapus cf. tubularis Amphipod Scud<br />

060104170401 Monocorophium acherusicum Amphipod Scud<br />

060104180101 Hyale sp. a Amphipod Scud<br />

060104190101 Microprotopus raneyi Amphipod Scud<br />

060104200000 Caprellidae sp. Amphipod Scud<br />

060104200101 Caprella cf. penantis Amphipod Scud<br />

060104200201 Paracaprella tenuis Amphipod Scud<br />

060104210101 Orchestia cf. grillus Amphipod Scud<br />

060104210101 Eudevenopus honduranus Amphipod Scud<br />

060104230101 Hyalella azteca Amphipod .<br />

060105010000 Penaeidae sp. Decopod Shrimp<br />

060105010101 Penaeus duorarum Decopod American Pink Shrimp<br />

060105010102 Penaeus cf. aztecus Decopod American Pink Shrimp<br />

060105020100 Procambarus sp. Decopod .<br />

060105030000 Palaemonidae Decopod Prawn<br />

060105030100 Palaemonetes sp. Decopod Prawn<br />

060105030101 Palaemonetes paludosus Decopod Prawn<br />

060105030200 Periclimenes sp. Decopod Prawn<br />

060105040000 Alpheidae sp. Decopod Snapping Shrimp<br />

060105040101 Alpheus cf. estuariensis Decopod Snapping Shrimp<br />

060105040201 Leptalpheus forceps Decopod Snapping Shrimp<br />

060105050101 Hippolyte zostericola Decopod .<br />

060105060101 Ambidexter symmetricus Decopod .<br />

060105070101 Ogyrides alphaerostris Decopod .<br />

060105090101 Euceramus praelongus Decopod Porcelain Crab<br />

060105090201 Petrolisthes cf. armatus Decopod .<br />

060105100000 Paguridae sp. Decopod Hermit Crab<br />

060105100101 Pagurus piercei Decopod Hermit Crab<br />

060105100102 Pagurus ? Decopod Hermit Crab<br />

060105110100 Clibanarius sp. Decopod<br />

060105120101 Persephona mediterranea Decopod Purse Crab<br />

060105130000 Xanthidae sp. Decopod Crab<br />

060105130101 Rhithropanopeus harrisii Decopod Estuarine Mud Crab<br />

060105130201 Panopeus herbstii Decopod Common Mud Crab<br />

060105130301 Eurytium limosum Decopod White-Clawed Mud Crab<br />

060105130401 Eurypanopeus depressus Decopod Flatback Mud Crab<br />

060105140101 Pinnixa sp. Decopod Pea crab<br />

060105140102 Pinnixa sayana Decopod Pea crab<br />

060105140103 Pinnixa chaetopterana Decopod Pea crab<br />

060105140201 Pinnotheres ostreum Decopod Pea crab<br />

060105150100 Uca sp. Decopod Fiddler Crab<br />

060105160101 Callinectes sapidus Decopod Blue crab<br />

060106010000 Mysidacea sp. Mysid Opossum Shrimp<br />

060106010100 Bowmaniella sp. Mysid Opossum Shrimp<br />

060106010201 Mysidopsis bahia Mysid Opossum Shrimp<br />

060106010202 Mysidopsis bigelowi Mysid Opossum Shrimp


HBMP Benthic Species Identification Master List - 2005<br />

HBMP-ID# Scientific Name Description Common Name<br />

060106010203 Mysidopsis almyra Mysid .<br />

060106010301 Taphromysis bowmani Mysid Opossum Shrimp<br />

060107010101 Balanus improvisus Arthropod <strong>Bay</strong> Barnacle<br />

060107010102 Balanus eburneus Arthropod Ivory barnacle<br />

060107010103 Balanus amphitrite Arthropod Barnacle<br />

060202010000 Entomobryidae sp. Insect .<br />

060203010100 Brachycercus sp. Insect Mayfly<br />

060203010200 Caenis sp. Insect Mayfly<br />

060203010300 Tricorythodes sp. Insect Mayfly<br />

060203020000 Baetidae sp. Insect Mayfly<br />

060203030000 Heptageniidae sp. Insect Mayfly<br />

060204000000 Odonata sp. Insect Dragonfly/Damselfly<br />

060204020000 Gomphidae sp. Insect Clubtail<br />

060204020100 Gomphus sp. Insect Clubtail<br />

060204020201 Aphylla williamsoni Insect .<br />

060204030100 Macromia sp. Insect .<br />

060204040100 Epitheca sp. Insect .<br />

060204050100 Coenagrionidae sp. Insect .<br />

060204050201 Argia moesta Insect .<br />

060204060000 Libellulidae sp. Insect .<br />

060210010100 Polycentropus sp. Insect Trumpetnet Caddisfly<br />

060210010201 Cyrnellus fraternus Insect Trumpetnet Caddisfly<br />

060210020000 Leptoceridae sp. Insect Caddisfly<br />

060210020100 Oecetis sp. Insect<br />

Long Horned Casemaker<br />

Caddisfly<br />

060210020200 Nectopsyche sp. Insect Caddisfly<br />

060210030100 Cheumatopsyche sp. Insect Net-Spinning Caddisfly<br />

060210040000 Hyproptilidae sp. Insect Caddisfly<br />

060210040100 Orthotrichia Sp. Insect .<br />

060211010000 Pyralidae sp. Insect .<br />

060213010100 Dubiraphia sp. Insect .<br />

060213010200 Stenelmis sp. Insect Riffle Bettle<br />

060213020101 Dinuetis sp. Insect Riffle Bettle<br />

060214010101 Chaoborus punctipennis Insect Phantom Midge<br />

060214020000 Chironomidae sp. Insect Midge<br />

060214020100 Chironomus sp. Insect .<br />

060214020200 Cladotanytarsus sp. Insect .<br />

060214020300 Tanytarsus sp. Insect .<br />

060214020400 Cryptochironomus sp. Insect .<br />

060214020500 Polypedilum sp. Insect .<br />

060214020501 Polypedilum halterale Insect .<br />

060214020502 Polypedilum scalaenum Insect .<br />

060214020503 Polypedilum tritum Insect .<br />

060214020504 Polypedilum convictum Insect .<br />

060214020600 Procladius sp. Insect .<br />

060214020700 Coelotanypus sp. Insect .


HBMP Benthic Species Identification Master List - 2005<br />

HBMP-ID# Scientific Name Description Common Name<br />

060214020701 Coelotanypus tricolor Insect .<br />

060214020800 Djalmabatista sp. Insect .<br />

060214020900 Rheotanytarsus sp. Insect .<br />

060214021000 Fissimentum sp. Insect .<br />

060214021100 Glyptotendipes sp Insect .<br />

060214021201 Ablabesmyia cinctipes Insect .<br />

060214021202 Ablabesmyia mallochi Insect .<br />

060214021203 Ablabesmyia ramphe Insect .<br />

060214021301 Tanypus clavatus Insect .<br />

060214021302 Tanypus neopunctipennis Insect .<br />

060214021400 Tribelos sp. Insect .<br />

060214021401 Tribelos fuscicorne Insect .<br />

060214021402 Tribelos jucundum Insect .<br />

060214021500 Dicrotendipes sp. Insect .<br />

060214021600 Pagastiella sp. Insect .<br />

060214021700 Kiefferulus sp. Insect .<br />

060214021800 Cryptotendipes sp. Insect .<br />

060214021900 Paralauterborniella sp. Insect .<br />

060214022000 Goeldichironomus sp. Insect .<br />

060214022100 Pentaneura sp. Insect .<br />

060214022200 Stempellina sp. Insect .<br />

060214022300 Stenochironomus sp. Insect .<br />

060214022400 Cricotopus sp. Insect .<br />

060214022500 Clinotanypus sp. Insect .<br />

060214022600 Nilothauma sp. Insect .<br />

060214022700 Paracladopelma sp. Insect .<br />

060214022800 Corynoneura sp. Insect .<br />

060214022901 Asheum beckae Insect .<br />

060214023001 Axarus sp. Insect .<br />

060214023100 Psuedochironomus sp. Insect .<br />

060214023200 Larsia sp. Insect .<br />

060214030100 Palpomyia/Bezzia sp. Insect .<br />

060214030200 Cuculoides sp. . .<br />

060214040000 Dolichopodidae sp. Insect .<br />

060301010101 Limulus polyphemus . Atlantic Horseshoe Crab<br />

070203010101 Mellita isometra Echinoderm .<br />

070301010001 Amphiuridae sp. Echinoderm .<br />

070301010101 Amphioplus squamata Echinoderm Brittle Star<br />

070301010102 Amphioplus thromboides Echinoderm Brittle Star<br />

070301010103 Amphioplus sepultus Echinoderm Brittle Star<br />

070301010201 Ophiophragmus filograneus Echinoderm Brittle Star<br />

070301010301 Micropholus atra Echinoderm .<br />

070301010400 Amphilochus sp. Echinoderm .<br />

070400000001 Holothuroidea sp. Echinoderm Sea Cucumber<br />

070401010101 Thyone cf. crassidisca Echinoderm Sea Cucumber<br />

070402010101 Synaptula hydriformis Echinoderm Sea Cucumber


HBMP Benthic Species Identification Master List - 2005<br />

HBMP-ID# Scientific Name Description Common Name<br />

070402010201 Leptosynapta tenuis Echinoderm Sea Cucumber<br />

090000000000 Phoronida Phoronids Horseshoe Worm<br />

090101010101 Phoronis archectecta Phoronida Horseshoe Worm<br />

100100000000 Ascidiacea sp. Chordata .<br />

100100000001 Enteropneusta sp. Chordata .<br />

100201010101 cf. mogula occidentalis Chordata S<strong>and</strong>y Sea Squirt<br />

140101010101 Glottidea pyramidata Brachiopod Lamp Shell<br />

150000000000 Sipunculida sp. Sipunculida .<br />

-99999-1 Lab Error #1


Master EPCHC Benthic Species Identification List<br />

Nodccode Name Phylum Class Order Infraord Family<br />

360000000000 1 PORIFERA<br />

360000009500 Porifera Sp. E Porifera<br />

360000009600 Porifera Sp. D Porifera<br />

360000009700 Porifera Sp. C Porifera<br />

360000009800 Porifera Sp. B Porifera<br />

360000009900 Porifera Sp. A Porifera<br />

370000000001 Cnidaria Sp. B<br />

370100000000 2 HYDROZOA<br />

374000000000 Anthozoa<br />

375800000000 Actiniaria<br />

375800000010 Actiniaria Sp. A<br />

375800000020 Actiniaria Sp. B<br />

375900000000 Athenaria<br />

376000000000 Thenaria<br />

376000000001 Thenaria A<br />

376000000002 Thenaria B<br />

376000000003 Thenaria C<br />

376000000004 Thenaria D<br />

390100000000 Turbellaria Platyhelminthes Turbellaria<br />

390100000095 Turbellaria F Platyhelminthes Turbellaria<br />

390100000096 Turbellaria E Platyhelminthes Turbellaria<br />

390100000097 Turbellaria C Platyhelminthes Turbellaria<br />

390100000098 Turbellaria B Platyhelminthes Turbellaria<br />

390100000099 Turbellaria A Platyhelminthes Turbellaria<br />

390603010000 Stylochus Sp.<br />

430000000000 Nemertea Sp.<br />

430000007800 Nemertea Y<br />

430000007900 Nemertea X<br />

430000008000 Nemertea W


Master EPCHC Benthic Species Identification List<br />

Nodccode Name Phylum Class Order Infraord Family<br />

430000008100 Prostoma Sp.<br />

430000008200 Nemertea V<br />

430000008300 Nemertea U<br />

430000008400 Nemertea T<br />

430000008500 Nemertea S<br />

430000008600 Nemertea R<br />

430000008700 Nemertea O<br />

430000008800 Nemertea Q<br />

430000008900 Nemertea N<br />

430000009000 Nemertea P<br />

430000009100 Nemertea L<br />

430000009200 Nemertea M<br />

430000009300 Nemertea G<br />

430000009400 Nemertea F<br />

430000009500 Nemertea E<br />

430000009600 Nemertea I<br />

430000009700 Nemertea K<br />

430000009800 Nemertea B<br />

430000009900 Nemertea A<br />

430000010000 Nemertea J<br />

500000000000 ANNELIDA<br />

500100000000 3 POLYCHAETA Annelida Polychaeta<br />

500100000001 Polychaeta Sp. 1 Annelida Polychaeta<br />

500102000000 4 POLYNOIDAE Annelida Polychaeta Polynoidae<br />

500102000001 Polynoidae A Annelida Polychaeta Polynoidae<br />

500102000002 Polynoidae B Annelida Polychaeta Polynoidae<br />

500102080000 Harmothoe Sp. Annelida Polychaeta Polynoidae<br />

500102081000 Harmothoe Lunulata Annelida Polychaeta Polynoidae<br />

500102081200 Harmothoe Aculeata Annelida Polychaeta Polynoidae<br />

500102110400 Lepidonotus Sublevis Annelida Polychaeta Polynoidae<br />

500102110500 Lepidonotus Variabilis Annelida Polychaeta Polynoidae


Master EPCHC Benthic Species Identification List<br />

Nodccode Name Phylum Class Order Infraord Family<br />

500102190100 Lepidasthenia Commensalis Annelida Polychaeta Polynoidae<br />

500102260200 Malmgreniella Maccraryae Annelida Polychaeta Polynoidae<br />

500102260300 Malmgreniella Taylori Annelida Polychaeta Polynoidae<br />

500102410100 Phyllohartmania Taylori Annelida Polychaeta Polynoidae<br />

500102960000 Polynoidae Genus D Annelida Polychaeta Polynoidae<br />

500103000000 5 POLYODONTIDAE Annelida Polychaeta Polyodontidae<br />

500103020000 Polyodontes Sp. Annelida Polychaeta Polyodontidae<br />

500103020100 Polyodontes Lupinus Annelida Polychaeta Polyodontidae<br />

500105000000 6 EULEPETHIDAE Annelida Polychaeta<br />

500105010200 Grubeulepis Mexicana Annelida Polychaeta<br />

500106000000 7 SIGALIONIDAE Annelida Polychaeta Sigalionidae<br />

500106009000 Sigalion Sp. Annelida Polychaeta Sigalionidae<br />

500106009900 Sigalion A Annelida Polychaeta Sigalionidae<br />

500106030200 Sthenelais Boa Annelida Polychaeta Sigalionidae<br />

500106039000 Sthenelais Sp. Annelida Polychaeta Sigalionidae<br />

500106039900 Sthenelais A Annelida Polychaeta Sigalionidae<br />

500106069800 Thalenessa B Annelida Polychaeta Sigalionidae<br />

500106069900 Sigalion B Annelida Polychaeta Sigalionidae<br />

500108030200 Bhawania Heteroseta Annelida Polychaeta Chrysopetalidae<br />

500110000000 8 AMPHINOMIDAE Annelida Polychaeta Amphinomidae<br />

500110030200 Pseudeurythoe Ambigua Annelida Polychaeta Amphinomidae<br />

500110049800 Paramphinome B Annelida Polychaeta Amphinomidae<br />

500111010800 Euphrosine Triloba Annelida Polychaeta<br />

500113000000 9 PHYLLODOCIDAE Annelida Polychaeta Phyllodocidae<br />

500113010200 Phyllodoce Groenl<strong>and</strong>ica Annelida Polychaeta Phyllodocidae<br />

500113011200 Phyllodoce Longipes Annelida Polychaeta Phyllodocidae<br />

500113020700 Eteone Heteropoda Annelida Polychaeta Phyllodocidae<br />

500113020800 Eteone Lactea Annelida Polychaeta Phyllodocidae<br />

500113021100 Eteone Foliasa Annelida Polychaeta Phyllodocidae<br />

500113070100 Nereiphylla Castanea Annelida Polychaeta Phyllodocidae


Master EPCHC Benthic Species Identification List<br />

Nodccode Name Phylum Class Order Infraord Family<br />

500113080100 Paranaitis Speciosa Annelida Polychaeta Phyllodocidae<br />

500113080300 Paranaitis Gardineri Annelida Polychaeta Phyllodocidae<br />

500113100100 Nereiphylla Fragilis Annelida Polychaeta Phyllodocidae<br />

500113100400 Nereiphylla A Annelida Polychaeta Phyllodocidae<br />

500113110000 Eumida A Annelida Polychaeta Phyllodocidae<br />

5001131101cf Eumida Cf. Sanguinea Annelida Polychaeta Phyllodocidae<br />

500113141000 Phyllodoce Arenae Annelida Polychaeta Phyllodocidae<br />

500121000000 10 HESIONIDAE Annelida Polychaeta Hesionidae<br />

500121010000 Gyptis Sp. Annelida Polychaeta Hesionidae<br />

500121010800 Gyptis Crypta Annelida Polychaeta Hesionidae<br />

500121011000 Gyptis Plurisetis Annelida Polychaeta Hesionidae<br />

500121070100 Parahesione Luteola Annelida Polychaeta Hesionidae<br />

500121150200 Ophiodromus Obscura Annelida Polychaeta Hesionidae<br />

500121160000 Hesione Sp. Annelida Polychaeta Hesionidae<br />

500121160100 Hesione Picta Annelida Polychaeta Hesionidae<br />

500121190200 Podarkeopsis Levifuscina Annelida Polychaeta Hesionidae<br />

500122010003 Ancistrosyllis C Annelida Polychaeta Pilargiidae<br />

500122010200 Ancistrosyllis Hartmanae Annelida Polychaeta Pilargiidae<br />

500122010300 Ancistrosyllis Jonesi Annelida Polychaeta Pilargiidae<br />

500122010600 Ancistrosyllis Carolinensis Annelida Polychaeta Pilargiidae<br />

500122020000 Sigambra Sp. Annelida Polychaeta Pilargiidae<br />

500122020100 Sigambra Tentaculata Annelida Polychaeta Pilargiidae<br />

500122020400 Sigambra Bassi Annelida Polychaeta Pilargiidae<br />

500122030100 Pilargis Berkeleyae Annelida Polychaeta Pilargiidae<br />

500122030200 Pilargis Pacifica Annelida Polychaeta Pilargiidae<br />

500122040100 Cabira Incerta Annelida Polychaeta Pilargiidae<br />

500122059800 Synelmis Ewingi Annelida Polychaeta Pilargiidae<br />

500122090200 Litocorsa Antennata Annelida Polychaeta Pilargiidae<br />

500122099900 Litocorsa A Annelida Polychaeta Pilargiidae<br />

500123000000 11 SYLLIDAE Annelida Polychaeta Syllidae<br />

500123000001 Autolytinae Annelida Polychaeta Syllidae


Master EPCHC Benthic Species Identification List<br />

Nodccode Name Phylum Class Order Infraord Family<br />

500123010000 Autolytus Sp. Annelida Polychaeta Syllidae<br />

500123010001 Procerae A Annelida Polychaeta Syllidae<br />

500123010100 Procerae Cornuta Annelida Polychaeta Syllidae<br />

500123020000 Pionosyllis Sp. Annelida Polychaeta Syllidae<br />

500123020700 Pionosyllis Gesae Annelida Polychaeta Syllidae<br />

500123021200 Pionosyllis D Annelida Polychaeta Syllidae<br />

500123021300 Pionosyllis B Annelida Polychaeta Syllidae<br />

500123021500 Pionosyllis Nr. Ehlersiaeformis Annelida Polychaeta Syllidae<br />

500123030001 Syllis A Annelida Polychaeta Syllidae<br />

500123030002 Syllis B Annelida Polychaeta Syllidae<br />

500123030003 Haplosyllis Sp. Annelida Polychaeta Syllidae<br />

500123030200 Syllis Gracilis Annelida Polychaeta Syllidae<br />

500123030300 Haplosyllis Spongicola Annelida Polychaeta Syllidae<br />

500123030600 Syllis Cornuta Annelida Polychaeta Syllidae<br />

500123031300 Syllis Beneliahuae Annelida Polychaeta Syllidae<br />

500123040000 Trypanosyllis Sp. Annelida Polychaeta Syllidae<br />

500123040500 Trypanosyllis Coeliaca Annelida Polychaeta Syllidae<br />

500123040900 Trypanosyllis Parvidentata Annelida Polychaeta Syllidae<br />

500123050000 Syllis Sp. Annelida Polychaeta Syllidae<br />

500123050100 Syllis Alternata Annelida Polychaeta Syllidae<br />

500123050200 Syllis Armillaris Annelida Polychaeta Syllidae<br />

500123050201 Syllis Ferrugina Annelida Polychaeta Syllidae<br />

500123051200 Syllis Prolifera Annelida Polychaeta Syllidae<br />

5001230515cf Syllis Cf. Lutea Annelida Polychaeta Syllidae<br />

500123051600 Syllis Aciculata Annelida Polychaeta Syllidae<br />

500123052300 Syllis Vittata Annelida Polychaeta Syllidae<br />

500123055000 Syllis Annularis Annelida Polychaeta Syllidae<br />

500123070000 Exogone Sp. Annelida Polychaeta Syllidae<br />

500123070001 Exogone A Annelida Polychaeta Syllidae<br />

500123070100 Exogone Dispar Annelida Polychaeta Syllidae<br />

500123070300 Exogone Lourei Annelida Polychaeta Syllidae<br />

500123070900 Exogone Arenosa Annelida Polychaeta Syllidae


Master EPCHC Benthic Species Identification List<br />

Nodccode Name Phylum Class Order Infraord Family<br />

500123071000 Exogone Atlantica Annelida Polychaeta Syllidae<br />

500123071100 Exogone Breviantennata Annelida Polychaeta Syllidae<br />

500123072000 Exogone C Annelida Polychaeta Syllidae<br />

500123080000 Sphaerosyllis Sp. Annelida Polychaeta Syllidae<br />

500123080700 Sphaerosyllis Aciculata Annelida Polychaeta Syllidae<br />

500123081000 Sphaerosyllis Gl<strong>and</strong>ulata Annelida Polychaeta Syllidae<br />

500123081100 Sphaerosyllis Taylori Annelida Polychaeta Syllidae<br />

500123081600 Sphaerosyllis Bilobata Annelida Polychaeta Syllidae<br />

500123081700 Sphaerosyllis Longicauda Annelida Polychaeta Syllidae<br />

5001230817nr Sphaerosyllis Nr. Longicauda Annelida Polychaeta Syllidae<br />

500123081800 Sphaerosyllis Piriferopsis Annelida Polychaeta Syllidae<br />

500123081900 Sphaerosyllis Riseri? Annelida Polychaeta Syllidae<br />

500123082000 Sphaerosyllis Labyrinthophila Annelida Polychaeta Syllidae<br />

500123089800 Sphaerosyllis B Annelida Polychaeta Syllidae<br />

500123089900 Sphaerosyllis A Annelida Polychaeta Syllidae<br />

500123090000 Brania Sp. Annelida Polychaeta Syllidae<br />

500123090001 Grubeosyllis Sp. Annelida Polychaeta Syllidae<br />

500123090200 Grubeosyllis Clavata Annelida Polychaeta Syllidae<br />

500123090300 Brania Wellfleetensis Annelida Polychaeta Syllidae<br />

500123090800 Grubeosyllis Swedmarki Annelida Polychaeta Syllidae<br />

500123099400 Grubeosyllis A Annelida Polychaeta Syllidae<br />

500123099500 Grubeosyllis Nitidula Annelida Polychaeta Syllidae<br />

500123099600 Grubeosyllis Mediodentata Annelida Polychaeta Syllidae<br />

500123099700 Grubeosyllis Rugulosa Annelida Polychaeta Syllidae<br />

500123099800 Grubeosyllis Vietezi Annelida Polychaeta Syllidae<br />

500123099900 Brania A Annelida Polychaeta Syllidae<br />

500123130000 Odontosyllis Sp. Annelida Polychaeta Syllidae<br />

500123130700 Odontosyllis Enopla Annelida Polychaeta Syllidae<br />

500123150700 Syllides Fulvus? Annelida Polychaeta Syllidae<br />

500123151000 Syllides Floridanus Annelida Polychaeta Syllidae<br />

500123160500 Streptosyllis Pettiboneae Annelida Polychaeta Syllidae<br />

500123170000 Parapionosyllis Sp. Annelida Polychaeta Syllidae


Master EPCHC Benthic Species Identification List<br />

Nodccode Name Phylum Class Order Infraord Family<br />

500123170100 Parapionosyllis Longicirrata Annelida Polychaeta Syllidae<br />

500123179500 Parapionosyllis Uelebackerae Annelida Polychaeta Syllidae<br />

500123179800 Parapionosyllis Floridana Annelida Polychaeta Syllidae<br />

500123250301 Opistosyllis A Annelida Polychaeta Syllidae<br />

500123260200 Plakosyllis Quadrioculata Annelida Polychaeta Syllidae<br />

500123270100 Branchiosyllis Oculata Annelida Polychaeta Syllidae<br />

500123270200 Branchiosyllis Exilis Annelida Polychaeta Syllidae<br />

500123310100 Dentatisyllis Carolinae Annelida Polychaeta Syllidae<br />

500123320000 Myrianida Annelida Polychaeta Syllidae<br />

500124000000 12 NEREIDIDAE Annelida Polychaeta Nereididae<br />

500124000001 Nereis Sp. Annelida Polychaeta Nereididae<br />

500124010000 Ceratonereis Sp. Annelida Polychaeta Nereididae<br />

500124010300 Ceratonereis Irritabilis Annelida Polychaeta Nereididae<br />

500124011200 Ceratonereis (Composetia?) A Annelida Polychaeta Nereididae<br />

500124030500 Nereis Arenaceodentata Annelida Polychaeta Nereididae<br />

500124030600 Nereis (Neanthes) Sp. Annelida Polychaeta Nereididae<br />

500124030700 Nereis Acuminata Annelida Polychaeta Nereididae<br />

500124030900 Nereis Succinea Annelida Polychaeta Nereididae<br />

500124040301 Nereis Pelagica Occidentalis Annelida Polychaeta Nereididae<br />

500124041400 Nereis Falsa Annelida Polychaeta Nereididae<br />

500124041500 Neanthes Micromma Annelida Polychaeta Nereididae<br />

500124041600 Nereis Lamellosa Annelida Polychaeta Nereididae<br />

500124041800 Nereis Riisei Annelida Polychaeta Nereididae<br />

500124050300 Platynereis Dumerilii Annelida Polychaeta Nereididae<br />

500124060001 Ceratocephale A Annelida Polychaeta Nereididae<br />

500124080100 Laeonereis Culveri Annelida Polychaeta Nereididae<br />

500124100100 Websterinereis Tridentata Annelida Polychaeta Nereididae<br />

500124120100 Stenoninereis Martini Annelida Polychaeta Nereididae<br />

500124130000 Nicon Sp. Annelida Polychaeta Nereididae<br />

500124130100 Nicon Lackeyi Annelida Polychaeta Nereididae<br />

500124140500 Perinereis Floridana Annelida Polychaeta Nereididae


Master EPCHC Benthic Species Identification List<br />

Nodccode Name Phylum Class Order Infraord Family<br />

500124180100 Rullierinereis Mexicana Annelida Polychaeta Nereididae<br />

500124250100 Namalycastis Abiuma Annelida Polychaeta Nereididae<br />

500124980000 Nereididae 1A Annelida Polychaeta Nereididae<br />

500125000000 NEPHTYIDAE Annelida Polychaeta Nephtyidae<br />

5001250112cf Nephtys Cf. Hombergii Annelida Polychaeta Nephtyidae<br />

500125011400 Nephtys Bucera Annelida Polychaeta Nephtyidae<br />

500125011600 Nephtys Magellanica Annelida Polychaeta Nephtyidae<br />

500125011700 Nephtys Picta Annelida Polychaeta Nephtyidae<br />

500125011800 Nephtys Squamosa Annelida Polychaeta Nephtyidae<br />

500125012300 Nephtys Incisa Annelida Polychaeta Nephtyidae<br />

500125012500 Nephtys Simoni Annelida Polychaeta Nephtyidae<br />

500125012600 Nephtys Cryptomma Annelida Polychaeta Nephtyidae<br />

500125030300 Aglaophamus Verrilli Annelida Polychaeta Nephtyidae<br />

500127000000 13 GLYCERIDAE Annelida Polychaeta Glyceridae<br />

500127010100 Glycera Capitata Annelida Polychaeta Glyceridae<br />

500127010400 Glycera Americana Annelida Polychaeta Glyceridae<br />

500127010500 Glycera Dibranchiata Annelida Polychaeta Glyceridae<br />

500127019500 Glycera E Annelida Polychaeta Glyceridae<br />

500127019600 Glycera B Annelida Polychaeta Glyceridae<br />

500127020100 Hemipodus Roseus Annelida Polychaeta Glyceridae<br />

500128000000 14 GONIADIDAE Annelida Polychaeta Goniadidae<br />

500128010400 Glycinde Solitaria Annelida Polychaeta Goniadidae<br />

500128020500 Goniada Littorea Annelida Polychaeta Goniadidae<br />

500128030000 Goniadella Sp. Annelida Polychaeta Goniadidae<br />

500128049800 Ophioglycera B Annelida Polychaeta Goniadidae<br />

500128050100 Goniadides Carolinae Annelida Polychaeta Goniadidae<br />

500128050200 Goniadides A Annelida Polychaeta Goniadidae<br />

500129000000 15 ONUPHIDAE Annelida Polychaeta Onuphidae<br />

500129010000 Onuphis Sp. Annelida Polychaeta Onuphidae<br />

500129010001 Mooreonuphis Sp. Annelida Polychaeta Onuphidae<br />

500129010701 Onuphis Ememita Oculata Annelida Polychaeta Onuphidae


Master EPCHC Benthic Species Identification List<br />

Nodccode Name Phylum Class Order Infraord Family<br />

500129010900 Mooreonuphis Pallidula Annelida Polychaeta Onuphidae<br />

500129012000 Onuphis A Annelida Polychaeta Onuphidae<br />

500129020100 Diopatra Cuprea Annelida Polychaeta Onuphidae<br />

500129070100 Americonuphis Magna Annelida Polychaeta Onuphidae<br />

5001291401cf Mooreonuphis Cf. Nebulosa Annelida Polychaeta Onuphidae<br />

500129140200 Mooreonuphis A Annelida Polychaeta Onuphidae<br />

500129150000 Kinbergonuphis Sp. Annelida Polychaeta Onuphidae<br />

500129150100 Kinbergonuphis Simoni Annelida Polychaeta Onuphidae<br />

500129159800 Kinbergonuphis A Annelida Polychaeta Onuphidae<br />

500129159900 Kinbergonuphis C Annelida Polychaeta Onuphidae<br />

500130011900 Eunice Rubra Annelida Polychaeta Eunicidae<br />

500130020100 Marphysa Sanguinea? Annelida Polychaeta Eunicidae<br />

500130020202 Marphysa Nr. Belli Annelida Polychaeta Eunicidae<br />

500130030000 Lysidice Sp. Annelida Polychaeta Eunicidae<br />

500130030100 Lysidice Ninetta Annelida Polychaeta Eunicidae<br />

500130050200 Nematonereis Hebes Annelida Polychaeta Eunicidae<br />

500131010000 Lumbrineris Sp. Annelida Polychaeta Lumbrineridae<br />

500131010400 Lumbrineris Latreilli Annelida Polychaeta Lumbrineridae<br />

500131011300 Lumbrineris Tenuis Annelida Polychaeta Lumbrineridae<br />

500131011500 Lumbrineris Impatiens Annelida Polychaeta Lumbrineridae<br />

500131012300 Lumbrineris Ernesti Annelida Polychaeta Lumbrineridae<br />

500131012400 Lumbrineris Verrilli Annelida Polychaeta Lumbrineridae<br />

500131012500 Lumbrineris Coccinea Annelida Polychaeta Lumbrineridae<br />

500131012600 Lumbrineris Januarii Annelida Polychaeta Lumbrineridae<br />

500131019000 Lumbrineris E Annelida Polychaeta Lumbrineridae<br />

500131019600 Lumbrineris D Annelida Polychaeta Lumbrineridae<br />

500131019800 Lumbrineris B Annelida Polychaeta Lumbrineridae<br />

500131019900 Lumbrineris A Annelida Polychaeta Lumbrineridae<br />

500133010300 Drilonereis Longa Annelida Polychaeta Arabellidae<br />

500133010500 Drilonereis Magna Annelida Polychaeta Arabellidae<br />

500133010815 Drilonereis Cylindrica Annelida Polychaeta Arabellidae<br />

500133010900 Drilonereis E Annelida Polychaeta Arabellidae


Master EPCHC Benthic Species Identification List<br />

Nodccode Name Phylum Class Order Infraord Family<br />

500133020000 Arabella Sp. Annelida Polychaeta Arabellidae<br />

500133020001 Arabella Multidentata Annelida Polychaeta Arabellidae<br />

500133020100 Arabella Iricolor Annelida Polychaeta Arabellidae<br />

500133020200 Arabella Mutans Annelida Polychaeta Arabellidae<br />

500134000000 16 OENONIDAE Annelida Polychaeta<br />

500134010100 Lysarete Brasiliensis Annelida Polychaeta<br />

500136000001 Dorvilleidae A Annelida Polychaeta Dorvilleidae<br />

500136010000 Dorvillea Sp. Annelida Polychaeta Dorvilleidae<br />

500136020500 Protodorvillea Bifida Annelida Polychaeta Dorvilleidae<br />

500136040000 Ophryotrocha Sp. Annelida Polychaeta Dorvilleidae<br />

500136040100 Ophryotrocha Puerilis Annelida Polychaeta Dorvilleidae<br />

500136049900 Ophryotrocha A Annelida Polychaeta Dorvilleidae<br />

500136050000 Schistomeringos Sp. Annelida Polychaeta Dorvilleidae<br />

500136050300 Schistomeringos Pectinata Annelida Polychaeta Dorvilleidae<br />

5001360504cf Schistomeringos Rudolphi Annelida Polychaeta Dorvilleidae<br />

500136070000 Pettiboneia Sp. Annelida Polychaeta Dorvilleidae<br />

500136070200 Pettiboneia Duofurca Annelida Polychaeta Dorvilleidae<br />

500140000000 17 ORBINIIDAE Annelida Polychaeta Orbiniidae<br />

500140010400 Leitoscoloplos Robustus Annelida Polychaeta Orbiniidae<br />

500140020000 Naineris Sp. Annelida Polychaeta Orbiniidae<br />

500140020800 Naineris Setosa Annelida Polychaeta Orbiniidae<br />

500140030000 Scoloplos Sp. Annelida Polychaeta Orbiniidae<br />

500140030700 Scoloplos Rubra Annelida Polychaeta Orbiniidae<br />

500140030900 Scoloplos Texana Annelida Polychaeta Orbiniidae<br />

500140039600 Scoloplos D Annelida Polychaeta Orbiniidae<br />

500140039700 Scoloplos C Annelida Polychaeta Orbiniidae<br />

500140050400 Orbinia Riseri Annelida Polychaeta Orbiniidae<br />

500140050500 Orbinia Americana Annelida Polychaeta Orbiniidae<br />

500140160000 Leitoscoloplos Sp. Annelida Polychaeta Orbiniidae<br />

500140160300 Leitoscoloplos Fragilis Annelida Polychaeta Orbiniidae<br />

500141000000 18 PARAONIDAE Annelida Polychaeta Paraonidae


Master EPCHC Benthic Species Identification List<br />

Nodccode Name Phylum Class Order Infraord Family<br />

500141020000 Aricidea Sp. Annelida Polychaeta Paraonidae<br />

500141020010 Aricidea (Allia) A Annelida Polychaeta Paraonidae<br />

500141020100 Aricidea Suecica Annelida Polychaeta Paraonidae<br />

5001410206cf Aricidea Cf. Catherinae Annelida Polychaeta Paraonidae<br />

500141021400 Aricidea Fragilis Annelida Polychaeta Paraonidae<br />

500141021500 Aricidea Lopezi Annelida Polychaeta Paraonidae<br />

500141021700 Aricidea Quadrilobata Annelida Polychaeta Paraonidae<br />

500141022100 Aricidea Philbinae Annelida Polychaeta Paraonidae<br />

500141022200 Aricidea Taylori Annelida Polychaeta Paraonidae<br />

500141022700 Aricidea Allisdari Annelida Polychaeta Paraonidae<br />

500141030200 Paraonis Fulgens Annelida Polychaeta Paraonidae<br />

500141050200 Paraonella Sp. Annelida Polychaeta Paraonidae<br />

500141060000 Cirrophorus Sp. Annelida Polychaeta Paraonidae<br />

500141060300 Cirrophorus Lyra? Annelida Polychaeta Paraonidae<br />

500141060500 Cirrophorus Branchiatus? Annelida Polychaeta Paraonidae<br />

500141060600 Cirrophorus Furcatus? Annelida Polychaeta Paraonidae<br />

500141130100 Aricidea Cerrutii Annelida Polychaeta Paraonidae<br />

500143000000 19 SPIONIDAE Annelida Polychaeta Spionidae<br />

500143020100 Laonice Cirrata Annelida Polychaeta Spionidae<br />

500143040000 Polydora Sp. Annelida Polychaeta Spionidae<br />

500143040200 Dipolydora Socialis Annelida Polychaeta Spionidae<br />

500143041100 Polydora Cornuta Annelida Polychaeta Spionidae<br />

500143041200 Polydora Websteri Annelida Polychaeta Spionidae<br />

500143050000 Prionospio Sp. Annelida Polychaeta Spionidae<br />

500143050200 Prionospio Multibranchiata Annelida Polychaeta Spionidae<br />

500143050300 Prionospio Heterobranchia Annelida Polychaeta Spionidae<br />

500143050600 Prionospio Steenstrupi Annelida Polychaeta Spionidae<br />

500143050700 Apoprionospio Pygmaea Annelida Polychaeta Spionidae<br />

500143051000 Prionospio Cristata Annelida Polychaeta Spionidae<br />

500143051100 Apoprionospio Dayi Annelida Polychaeta Spionidae<br />

500143051700 Prionospio Perkinsi Annelida Polychaeta Spionidae


Master EPCHC Benthic Species Identification List<br />

Nodccode Name Phylum Class Order Infraord Family<br />

500143070000 Spio Sp. Annelida Polychaeta Spionidae<br />

500143070400 Spio Setosa Annelida Polychaeta Spionidae<br />

500143070600 Spio Pettiboneae Annelida Polychaeta Spionidae<br />

500143070700 Spio Limnicola Annelida Polychaeta Spionidae<br />

500143070900 Spio Armata Annelida Polychaeta Spionidae<br />

500143100100 Spiophanes Bombyx Annelida Polychaeta Spionidae<br />

500143100500 Spiophanes Wigleyi? Annelida Polychaeta Spionidae<br />

500143100600 Spiophanes Missionensis Annelida Polychaeta Spionidae<br />

500143150000 Pseudopolydora Sp. Annelida Polychaeta Spionidae<br />

500143150001 Pseudopolydora A Annelida Polychaeta Spionidae<br />

500143150002 Pseudopolydora B Annelida Polychaeta Spionidae<br />

500143159900 Pseudopolydora Antennata? Annelida Polychaeta Spionidae<br />

500143170100 Paraprionospio Pinnata Annelida Polychaeta Spionidae<br />

500143170200 Paraprionospio A Annelida Polychaeta Spionidae<br />

500143180100 Streblospio Benedicti Annelida Polychaeta Spionidae<br />

500143190100 Dispio Uncinata Annelida Polychaeta Spionidae<br />

500143200000 Scolelepis Sp. Annelida Polychaeta Spionidae<br />

500143200600 Scolelepis Texana Annelida Polychaeta Spionidae<br />

500143220200 Aonides Mayaguezensis Annelida Polychaeta Spionidae<br />

500143230100 Microspio Pigmentata Annelida Polychaeta Spionidae<br />

500143260000 Minuspio (Prionospio) Sp. Annelida Polychaeta Spionidae<br />

500143270600 Carazziella Hobsonae Annelida Polychaeta Spionidae<br />

500144000000 MAGELONIDAE Annelida Polychaeta Magelonidae<br />

500144010000 Magelona Sp. Annelida Polychaeta Magelonidae<br />

500144010600 Magelona Pettiboneae Annelida Polychaeta Magelonidae<br />

500144010700 Magelona Riojai Annelida Polychaeta Magelonidae<br />

500144019000 Magelona B Annelida Polychaeta Magelonidae<br />

500144019100 Magelona A Annelida Polychaeta Magelonidae<br />

500144019200 Magelona H Annelida Polychaeta Magelonidae<br />

500144019300 Magelona I Annelida Polychaeta Magelonidae<br />

500144019400 Magelona C Annelida Polychaeta Magelonidae<br />

500144019500 Magelona G Annelida Polychaeta Magelonidae


Master EPCHC Benthic Species Identification List<br />

Nodccode Name Phylum Class Order Infraord Family<br />

500146010000 Poecilochaetus Sp. Annelida Polychaeta Poecilochaetidae<br />

500146010100 Poecilochaetus Johnsoni Annelida Polychaeta Poecilochaetidae<br />

500149010100 Chaetopterus Pergamentaceus Annelida Polychaeta Chaetopteridae<br />

500149030200 Spiochaetopterus Costarum Annelida Polychaeta Chaetopteridae<br />

500149040000 Mesochaetopterus Sp. Annelida Polychaeta Chaetopteridae<br />

500149040300 Mesochaetopterus Capensis Annelida Polychaeta Chaetopteridae<br />

500150000000 20 CIRRATULIDAE Annelida Polychaeta Cirratulidae<br />

500150010000 Cirratulus Sp. Annelida Polychaeta Cirratulidae<br />

500150010400 Cirriformia Gr<strong>and</strong>is Annelida Polychaeta Cirratulidae<br />

500150020000 Caulleriella Sp. Annelida Polychaeta Cirratulidae<br />

500150020200 Caulleriella Cf. Alata Annelida Polychaeta Cirratulidae<br />

500150020600 Caulleriella Zetl<strong>and</strong>ica Annelida Polychaeta Cirratulidae<br />

500150029400 Caulleriella C Annelida Polychaeta Cirratulidae<br />

500150029500 Caulleriella E Annelida Polychaeta Cirratulidae<br />

500150029600 Caulleriella D Annelida Polychaeta Cirratulidae<br />

500150029700 Caulleriella A Annelida Polychaeta Cirratulidae<br />

500150029800 Caulleriella 1 Annelida Polychaeta Cirratulidae<br />

500150029900 Caulleriella B Annelida Polychaeta Cirratulidae<br />

500150030000 Tharyx Sp. Annelida Polychaeta Cirratulidae<br />

500150030100 Aphelochaeta Sp? Annelida Polychaeta Cirratulidae<br />

500150030600 Tharyx Annulosus Annelida Polychaeta Cirratulidae<br />

500150031000 Monticellina Dorsobranchialis Annelida Polychaeta Cirratulidae<br />

500150039900 Tharyx E Annelida Polychaeta Cirratulidae<br />

500150040000 Chaetozone Sp. Annelida Polychaeta Cirratulidae<br />

500150049600 Chaetozone D Annelida Polychaeta Cirratulidae<br />

500150049800 Chaetozone B Annelida Polychaeta Cirratulidae<br />

500150049900 Chaetozone A Annelida Polychaeta Cirratulidae<br />

500150060000 Cirriformia Sp. Annelida Polychaeta Cirratulidae<br />

500150069400 Cirriformia C Annelida Polychaeta Cirratulidae<br />

500150069500 Cirriformia Sp. 1 Annelida Polychaeta Cirratulidae<br />

500150069600 Cirriformia D Annelida Polychaeta Cirratulidae


Master EPCHC Benthic Species Identification List<br />

Nodccode Name Phylum Class Order Infraord Family<br />

500150069800 Cirriformia B Annelida Polychaeta Cirratulidae<br />

500150069900 Cirriformia A Annelida Polychaeta Cirratulidae<br />

500151000000 21 ACROCIRRIDAE Annelida Polychaeta<br />

5001510202cf Macrochaeta Cf. Clavicornis Annelida Polychaeta<br />

500154050400 Piromis Roberti Annelida Polychaeta Flabelligeridae<br />

500158000000 22 OPHELIIDAE Annelida Polychaeta Opheliidae<br />

500158010100 Ophelina Cf. Acuminata Annelida Polychaeta Opheliidae<br />

500158020000 Arm<strong>and</strong>ia Sp. Annelida Polychaeta Opheliidae<br />

500158020300 Arm<strong>and</strong>ia Agilis Annelida Polychaeta Opheliidae<br />

500158020400 Arm<strong>and</strong>ia Maculata Annelida Polychaeta Opheliidae<br />

500158040600 Travisia Hobsonae Annelida Polychaeta Opheliidae<br />

500158080000 Polyopthalmus Sp. Annelida Polychaeta Opheliidae<br />

500160000000 23 CAPITELLIDAE Annelida Polychaeta Capitellidae<br />

500160010100 Capitella Capitata Annelida Polychaeta Capitellidae<br />

500160010101 Capitella Jonesi (=Sp. A) Annelida Polychaeta Capitellidae<br />

500160020100 Heteromastus Filiformis Annelida Polychaeta Capitellidae<br />

500160030000 Notomastus Sp. Annelida Polychaeta Capitellidae<br />

5001600302cf Notomastus Cf. Tenuis Annelida Polychaeta Capitellidae<br />

500160030300 Notomastus Lineatus Annelida Polychaeta Capitellidae<br />

500160030600 Notomastus Latericeus Annelida Polychaeta Capitellidae<br />

500160030700 Notomastus Hemipodus Annelida Polychaeta Capitellidae<br />

500160031000 Notomastus Americanus Annelida Polychaeta Capitellidae<br />

500160031100 Notomastus Daueri Annelida Polychaeta Capitellidae<br />

500160032000 Notomastus Lobatus Annelida Polychaeta Capitellidae<br />

500160039700 Notomastus A Annelida Polychaeta Capitellidae<br />

500160039800 Notomastus B Annelida Polychaeta Capitellidae<br />

500160040000 Mediomastus Sp. Annelida Polychaeta Capitellidae<br />

500160040100 Mediomastus Ambiseta Annelida Polychaeta Capitellidae<br />

500160040200 Mediomastus Californiensis Annelida Polychaeta Capitellidae<br />

500160070100 Capitella Jonesi Annelida Polychaeta Capitellidae<br />

500160160000 Scyphoproctus Sp. Annelida Polychaeta Capitellidae


Master EPCHC Benthic Species Identification List<br />

Nodccode Name Phylum Class Order Infraord Family<br />

500160160001 Scyphoproctus A Annelida Polychaeta Capitellidae<br />

500160240000 Capitomastus Sp. Annelida Polychaeta Capitellidae<br />

500160980000 Capitellidae Genus A2 Annelida Polychaeta Capitellidae<br />

500160990000 Capitellidae Genus A Annelida Polychaeta Capitellidae<br />

500160991000 Capitellidae Genus A1 Annelida Polychaeta Capitellidae<br />

500162020100 Arenicola Cristata Annelida Polychaeta<br />

500163000000 24 MALDANIDAE Annelida Polychaeta Maldanidae<br />

500163010000 Asychis Sp. Annelida Polychaeta Maldanidae<br />

500163010300 Sabaco Americanus Annelida Polychaeta Maldanidae<br />

500163010600 Asychis Elongatus Annelida Polychaeta Maldanidae<br />

500163010800 Asychis Lunulata Annelida Polychaeta Maldanidae<br />

500163020200 Clymenella Torquata Annelida Polychaeta Maldanidae<br />

500163070000 Petaloproctus Sp. Annelida Polychaeta Maldanidae<br />

500163080300 Axiothella Mucosa Annelida Polychaeta Maldanidae<br />

500163080900 Axiothella A Annelida Polychaeta Maldanidae<br />

500163100001 Rhodine A Annelida Polychaeta Maldanidae<br />

500163110700 Dasybranchus Lumbricoides Annelida Polychaeta Maldanidae<br />

500163111000 Euclymene Sp. A Annelida Polychaeta Maldanidae<br />

500163180000 Lumbriclymenae (Praxillura?) Annelida Polychaeta Maldanidae<br />

500163220100 Branchioasychis Americana Annelida Polychaeta Maldanidae<br />

500164000000 25 OWENIIDAE Annelida Polychaeta Oweniidae<br />

500164019900 Owenia Fusiformis Annelida Polychaeta Oweniidae<br />

500164040200 Galathowenia Oculata Annelida Polychaeta Oweniidae<br />

500165000000 SABELLARIIDAE Annelida Polychaeta Sabellariidae<br />

500165020000 Sabellaria Sp. Annelida Polychaeta Sabellariidae<br />

500165029800 Sabellaria C Annelida Polychaeta Sabellariidae<br />

500165029900 Sabellaria A Annelida Polychaeta Sabellariidae<br />

500166030200 Pectinaria Gouldii Annelida Polychaeta Pectinariidae<br />

500167000000 26 AMPHARETIDAE Annelida Polychaeta Ampharetidae<br />

500167000001 Ampharetidae A Annelida Polychaeta Ampharetidae<br />

500167030300 Amphicteis Gunneri Annelida Polychaeta Ampharetidae


Master EPCHC Benthic Species Identification List<br />

Nodccode Name Phylum Class Order Infraord Family<br />

500167030900 Hobsonia Florida Annelida Polychaeta Ampharetidae<br />

500167050000 Melinna Sp. Annelida Polychaeta Ampharetidae<br />

500167050100 Melinna Cristata Annelida Polychaeta Ampharetidae<br />

500167050400 Melinna Maculata Annelida Polychaeta Ampharetidae<br />

500167210100 Isolda Pulchella Annelida Polychaeta Ampharetidae<br />

500168000000 27 TEREBELLIDAE Annelida Polychaeta Terebellidae<br />

500168000001 Terebellidae A Annelida Polychaeta Terebellidae<br />

500168020500 Eupolymnia Nebulosa Annelida Polychaeta Terebellidae<br />

500168070100 Pista Cristata Annelida Polychaeta Terebellidae<br />

500168070200 Pista Fasciata Annelida Polychaeta Terebellidae<br />

500168071100 Pista Quadrilobata Annelida Polychaeta Terebellidae<br />

500168080000 Polycirrus Sp. Annelida Polychaeta Terebellidae<br />

500168080500 Polycirrus Hematodes Annelida Polychaeta Terebellidae<br />

500168080900 Polycirrus Carolinensis Annelida Polychaeta Terebellidae<br />

500168081200 Polycirrus Plumosa Annelida Polychaeta Terebellidae<br />

500168089500 Polycirrus E Annelida Polychaeta Terebellidae<br />

500168089600 Polycirrus D Annelida Polychaeta Terebellidae<br />

500168089700 Polycirrus C Annelida Polychaeta Terebellidae<br />

500168089800 Polycirrus B Annelida Polychaeta Terebellidae<br />

500168089900 Polycirrus A Annelida Polychaeta Terebellidae<br />

500168130000 Lanassa Sp. Annelida Polychaeta Terebellidae<br />

500168160000 Lysilla Sp. Annelida Polychaeta Terebellidae<br />

500168160anr Lysilla Nr. Sp. A Annelida Polychaeta Terebellidae<br />

500168170000 Proclea Sp. Annelida Polychaeta Terebellidae<br />

500168200000 Loimia Sp. Annelida Polychaeta Terebellidae<br />

500168200100 Loimia Medusa Annelida Polychaeta Terebellidae<br />

500168200200 Loimia Viridis Annelida Polychaeta Terebellidae<br />

500168220300 Terebella Rubra Annelida Polychaeta Terebellidae<br />

500168250400 Streblosoma Hartmanae Annelida Polychaeta Terebellidae<br />

500168250500 Streblosoma Verrilli Annelida Polychaeta Terebellidae<br />

500168990000 Polycirrinae Annelida Polychaeta Terebellidae


Master EPCHC Benthic Species Identification List<br />

Nodccode Name Phylum Class Order Infraord Family<br />

500169010100 Terebellides Stroemi Annelida Polychaeta<br />

500169020100 Trichobranchus Glacialis Annelida Polychaeta<br />

500170000000 28 SABELLIDAE Annelida Polychaeta Sabellidae<br />

500170010000 Chone Sp. Annelida Polychaeta Sabellidae<br />

5001700107cf Chone Cf. Americana Annelida Polychaeta Sabellidae<br />

500170019900 Chone A Annelida Polychaeta Sabellidae<br />

500170040000 Megalomma Sp. Annelida Polychaeta Sabellidae<br />

500170040100 Branchiomma Sp. Annelida Polychaeta Sabellidae<br />

500170040200 Megalomma Bioculatum Annelida Polychaeta Sabellidae<br />

500170040600 Megalomma Pigmentum Annelida Polychaeta Sabellidae<br />

500170049900 Megalomma A Annelida Polychaeta Sabellidae<br />

500170060000 Potamilla Sp. Annelida Polychaeta Sabellidae<br />

500170060001 Potamilla A Annelida Polychaeta Sabellidae<br />

500170070000 Pseudopomatilla Sp. Annelida Polychaeta Sabellidae<br />

500170070300 Potamilla Cf. Reniformis Annelida Polychaeta Sabellidae<br />

500170080002 Sabella B Annelida Polychaeta Sabellidae<br />

500170080500 Sabella Melanostigma Annelida Polychaeta Sabellidae<br />

500170130001 Fabricia A Annelida Polychaeta Sabellidae<br />

500170190700 Fabricinuda Trilobata Annelida Polychaeta Sabellidae<br />

500170270000 Dialychone Sp? Annelida Polychaeta Sabellidae<br />

500170280000 Demonax Sp. Annelida Polychaeta Sabellidae<br />

500170280100 Demonax Micropthalma Annelida Polychaeta Sabellidae<br />

500170300000 Pseudobranchiomma Sp. Annelida Polychaeta Sabellidae<br />

500170990000 Fabriciinae Annelida Polychaeta Sabellidae<br />

500173000000 29 SERPULIDAE Annelida Polychaeta Serpulidae<br />

500173040000 Serpula Sp. Annelida Polychaeta Serpulidae<br />

500173060200 Spirorbis Spirillum Annelida Polychaeta Serpulidae<br />

500173060400 Neodexiospira Steueri Annelida Polychaeta Serpulidae<br />

500173090100 Hydroides Dianthus Annelida Polychaeta Serpulidae<br />

500173150000 Pomatoceros Sp. Annelida Polychaeta Serpulidae<br />

500173150100 Pomatoceros Americanus Annelida Polychaeta Serpulidae


Master EPCHC Benthic Species Identification List<br />

Nodccode Name Phylum Class Order Infraord Family<br />

500174029900 Questa Sp. A Annelida Polychaeta Questidae<br />

500174990000 Questidae Genus A Annelida Polychaeta Questidae<br />

500176010000 Boguea Sp. Annelida Polychaeta Bogueidae<br />

500176010100 Boguea Enigmatica Annelida Polychaeta Bogueidae<br />

500178000000 SPIRORBIDAE Annelida Polychaeta<br />

500200009800 Polygordius Sp. (Archiannelida<br />

500200009900 Archiannelida Sp. A<br />

500300000000 30 OLIGOCHAETA<br />

500300000002 Oligochaeta B<br />

500300000003 Oligochaeta C<br />

500300000004 Oligochaeta A<br />

500901000000 31 ENCHYTRAEIDAE Annelida Oligochaeta Enchytraeidae<br />

500901030000 Grania Sp. Annelida Oligochaeta Enchytraeidae<br />

500902000000 32 TUBIFICIDAE Annelida Oligochaeta Tubificidae<br />

500902009800 Tubificidae W/O Cap. Setae Annelida Oligochaeta Tubificidae<br />

500902020800 Tubificoides Motei Annelida Oligochaeta Tubificidae<br />

500902049800 Tubificoides B Annelida Oligochaeta Tubificidae<br />

500902049900 Tubificoides A Annelida Oligochaeta Tubificidae<br />

500902070000 Limnodriloides Sp. Annelida Oligochaeta Tubificidae<br />

500902070200 Limnodriloides Vespertinus Annelida Oligochaeta Tubificidae<br />

500902070300 Limnodriloides Rubicundus Annelida Oligochaeta Tubificidae<br />

500902070400 Limnodriloides Barnardi Annelida Oligochaeta Tubificidae<br />

500902070500 Limnodriloides Baculatus Annelida Oligochaeta Tubificidae<br />

500902070600 Limnodriloides Monothecus Compl Annelida Oligochaeta Tubificidae<br />

500902070700 Limnodriloides Uniampulatus Annelida Oligochaeta Tubificidae<br />

500902079900 Limnodriloides Anxius Annelida Oligochaeta Tubificidae<br />

500902090100 Tubificoides Brownae Annelida Oligochaeta Tubificidae<br />

500902090400 Tubificoides Wasselli Annelida Oligochaeta Tubificidae<br />

500902140100 Thalassodrilides Eneri Annelida Oligochaeta Tubificidae<br />

500902140200 Thalassodrilides Gurwitschi Annelida Oligochaeta Tubificidae<br />

500902150100 Tectidrilus Bari Annelida Oligochaeta Tubificidae


Master EPCHC Benthic Species Identification List<br />

Nodccode Name Phylum Class Order Infraord Family<br />

500902160000 Heterodrilus Sp. Annelida Oligochaeta Tubificidae<br />

500902160100 Heterodrilus Bulbiporus Annelida Oligochaeta Tubificidae<br />

500902160200 Heterodrilus Occidentalis Annelida Oligochaeta Tubificidae<br />

500902169700 Heterodrilus Pentcheffi Annelida Oligochaeta Tubificidae<br />

500902169800 Heterodrilus B Annelida Oligochaeta Tubificidae<br />

500902169900 Heterodrilus A Annelida Oligochaeta Tubificidae<br />

500902179800 Bathydrilus Adriaticus Annelida Oligochaeta Tubificidae<br />

500902179900 Bathydrilus A Annelida Oligochaeta Tubificidae<br />

500902180100 Parakaketio Longipustatus Annelida Oligochaeta Tubificidae<br />

500902209600 Inanidrilus Leukodermatus Annelida Oligochaeta Tubificidae<br />

500902209700 Inanidrilus Bulbosus Annelida Oligochaeta Tubificidae<br />

500902209800 Inanidrilus Sp. B Annelida Oligochaeta Tubificidae<br />

500902209900 Inanidrilus Sp. A Annelida Oligochaeta Tubificidae<br />

500902230100 Pectinodrilus Molestus Annelida Oligochaeta Tubificidae<br />

500902260000 Smithsonidrilus Sp. Annelida Oligochaeta Tubificidae<br />

500902260100 Smithsonidrilus Marina Complex Annelida Oligochaeta Tubificidae<br />

500902269900 Smithsonidrilus Sp. A Annelida Oligochaeta Tubificidae<br />

500902280100 Tectidrilus Squalidus Annelida Oligochaeta Tubificidae<br />

500902310000 Olavius Sp. Annelida Oligochaeta Tubificidae<br />

500902310100 Olavius Caudatus Annelida Oligochaeta Tubificidae<br />

500902490000 Coralliodrilus Sp. A Annelida Oligochaeta Tubificidae<br />

500902990000 Phallodrilinae Annelida Oligochaeta Tubificidae<br />

500902999800 Phallodrilinae Sp. B Annelida Oligochaeta Tubificidae<br />

500902999900 Phallodrilinae Sp. A Annelida Oligochaeta Tubificidae<br />

500903000000 33 NAIDIDAE Annelida Oligochaeta Naididae<br />

500903090100 Stephensonia Triv<strong>and</strong>rana? Annelida Oligochaeta Naididae<br />

501200000000 34 HIRUDINEA Annelida Hirudinea<br />

501401070100 Myzobdella Lugubris<br />

501601020100 Mooreobdella Melanostoma<br />

501601030100 Erpobdella Puncta<br />

510000000000 35 GASTROPODA Mollusca Gastropoda


Master EPCHC Benthic Species Identification List<br />

Nodccode Name Phylum Class Order Infraord Family<br />

510212000000 TURBINIDAE Mollusca Gastropoda<br />

510212010100 Didianema Pauli Mollusca Gastropoda<br />

510306010000 Viviparus Sp. Mollusca Gastropoda<br />

510306010200 Viviparus Georgianus Mollusca Gastropoda<br />

510308000000 36 VALVATIDAE Mollusca Gastropoda<br />

510308010000 Valvata Sp. Mollusca Gastropoda<br />

510310010000 Littorina Mollusca Gastropoda<br />

510313000000 37 HYDROBIIDAE Mollusca Gastropoda Hydrobiidae<br />

510313050100 Littoridinops Palustris Mollusca Gastropoda Hydrobiidae<br />

510313070000 Lyogyrus Sp. Mollusca Gastropoda Hydrobiidae<br />

510313210100 Pyrgophorus Platyrachis Mollusca Gastropoda Hydrobiidae<br />

510317010000 Amnicola Mollusca Gastropoda<br />

510320050300 Schwartziella Catesbyana Mollusca Gastropoda<br />

510320060000 Sayella Sp. Mollusca Gastropoda<br />

510320060300 Sayella Fusca Mollusca Gastropoda<br />

510320060600 Sayella Hemphilli Mollusca Gastropoda<br />

510321010300 Assiminea Succinea Mollusca Gastropoda<br />

510323000000 38 VITRINELLIDAE Mollusca Gastropoda<br />

510323009900 Vitrinellidae Sp. A Mollusca Gastropoda<br />

510323020500 Vitrinella Floridana Mollusca Gastropoda<br />

510323030000 Cyclostremiscus Sp. Mollusca Gastropoda<br />

510323030100 Cyclostremiscus ?Pentagonus Mollusca Gastropoda<br />

510323040100 Solariorbis Infracarinata Mollusca Gastropoda<br />

510323050000 Teinostoma Sp. Mollusca Gastropoda<br />

510323050700 Teinostoma ?Nesacum Mollusca Gastropoda<br />

510323090200 Cochliolepis Striata Mollusca Gastropoda<br />

510323120200 Cyclostremiscus Suppressus Mollusca Gastropoda<br />

510323130100 Macromphalina Floridanus Mollusca Gastropoda<br />

510336030000 Caecum Sp. Mollusca Gastropoda Caecidae<br />

510336030100 Caecum Pulchellum Mollusca Gastropoda Caecidae<br />

510336030300 Caecum Imbricatum Mollusca Gastropoda Caecidae


Master EPCHC Benthic Species Identification List<br />

Nodccode Name Phylum Class Order Infraord Family<br />

510336030400 Caecum Johnsoni Mollusca Gastropoda Caecidae<br />

510336030700 Caecum Nitidum Mollusca Gastropoda Caecidae<br />

510336031500 Caecum Strigosum Mollusca Gastropoda Caecidae<br />

510336031600 Caecum Nr. Insularum Mollusca Gastropoda Caecidae<br />

510336031700 Caecum Nr. Carolinianum Mollusca Gastropoda Caecidae<br />

510338010100 Melanoides Tuberculatus Mollusca Gastropoda<br />

510340010000 Elima Sp. Mollusca Gastropoda<br />

510343010100 Modulus Modulus Mollusca Gastropoda<br />

510344020200 Cerithidea Scalariformis Mollusca Gastropoda<br />

510346000000 Cerithiidae Mollusca Gastropoda Cerithiidae<br />

510346013000 Bittiolum Varium Mollusca Gastropoda Cerithiidae<br />

510346060100 Cerithium Atratum Mollusca Gastropoda Cerithiidae<br />

510346061300 Cerithium Muscarum Mollusca Gastropoda Cerithiidae<br />

510350010000 Epitonium Sp. Mollusca Gastropoda<br />

510350010800 Epitonium Rupicolum Mollusca Gastropoda<br />

510350011000 Epitonium Angulatum Mollusca Gastropoda<br />

510353000000 39 EULIMIDAE Mollusca Gastropoda Eulimidae<br />

510353010000 Melanella Sp. Mollusca Gastropoda Eulimidae<br />

510353010200 Melanella B Mollusca Gastropoda Eulimidae<br />

510353010500 Melanella ?Intermedia Mollusca Gastropoda Eulimidae<br />

510353010800 Melanella Cf. Arcuata Mollusca Gastropoda Eulimidae<br />

510353011000 Melanella Gracilis Mollusca Gastropoda Eulimidae<br />

510353019900 Melanella A Mollusca Gastropoda Eulimidae<br />

510353020200 Strombiformis Bilineatus Mollusca Gastropoda Eulimidae<br />

510353020400 Microeulima Hemphilli Mollusca Gastropoda Eulimidae<br />

510353020500 Eulima Bifasciatus Mollusca Gastropoda Eulimidae<br />

510353040100 Niso Aglees Mollusca Gastropoda Eulimidae<br />

510353060100 Vitreolina Arcuata Mollusca Gastropoda Eulimidae<br />

510353990100 Oceanida Inglei Mollusca Gastropoda Eulimidae<br />

510358010100 Strombus Alatus Mollusca Gastropoda<br />

510364010200 Calyptraea Centralis Mollusca Gastropoda Calyptraeidae


Master EPCHC Benthic Species Identification List<br />

Nodccode Name Phylum Class Order Infraord Family<br />

510364020000 Crepidula Sp. Mollusca Gastropoda Calyptraeidae<br />

510364020400 Crepidula Fornicata Mollusca Gastropoda Calyptraeidae<br />

510364020700 Crepidula Plana Mollusca Gastropoda Calyptraeidae<br />

510364020800 Crepidula Aculeata Mollusca Gastropoda Calyptraeidae<br />

510364021000 Crepidula Maculosa Mollusca Gastropoda Calyptraeidae<br />

510376020400 Tectonatica Pusilla Mollusca Gastropoda Naticidae<br />

510376040000 Euspira Sp. Mollusca Gastropoda Naticidae<br />

510376040700 Neverita Duplicata Mollusca Gastropoda Naticidae<br />

510376050100 Sinum Perspectivum Mollusca Gastropoda Naticidae<br />

510501060100 Eupleura Caudata Mollusca Gastropoda<br />

510501060200 Eupleura Sulcidentata Mollusca Gastropoda<br />

510501100300 Chicoreus Pomum Mollusca Gastropoda<br />

510503020700 Astrys Lunulata Mollusca Gastropoda Columbellidae<br />

510503030000 Anachis Mollusca Gastropoda Columbellidae<br />

510503030300 Parvanachis Obesa Mollusca Gastropoda Columbellidae<br />

510503030600 Costoanachis Lafresnayi Mollusca Gastropoda Columbellidae<br />

510503032800 Costoanachis Semiplicata Mollusca Gastropoda Columbellidae<br />

510503040500 Aesopus Stearnsii Mollusca Gastropoda Columbellidae<br />

510504040100 Cantharus Multangulus Mollusca Gastropoda<br />

510507010801 Busycotypus Spiratus Pyruloides Mollusca Gastropoda<br />

510507030000 Melongena Sp. Mollusca Gastropoda<br />

510507030100 Melongena Corona Mollusca Gastropoda<br />

510508010000 Nassarius Sp. Mollusca Gastropoda<br />

510508010200 Nassarius Vibex Mollusca Gastropoda<br />

510508010800 Nassarius Albus Mollusca Gastropoda<br />

510510010000 Olivella Sp. Mollusca Gastropoda Olividae<br />

510510010001 Jaspidella Blanesi Mollusca Gastropoda Olividae<br />

510510010300 Olivella Dealbata (=Pusilla) Mollusca Gastropoda Olividae<br />

510510010800 Olivella Floralia Mollusca Gastropoda Olividae<br />

510510010900 Olivella Mutica Mollusca Gastropoda Olividae<br />

510510011000 Olivella Pusilla Mollusca Gastropoda Olividae<br />

510510011200 Olivella Nivea Mollusca Gastropoda Olividae


Master EPCHC Benthic Species Identification List<br />

Nodccode Name Phylum Class Order Infraord Family<br />

510510020100 Oliva Sayana Mollusca Gastropoda Olividae<br />

510515010200 Granulina Hadria Mollusca Gastropoda Marginellidae<br />

510515020300 Dentimargo Aureocinctus Mollusca Gastropoda Marginellidae<br />

510515020600 Gibberula Lavalleenana Mollusca Gastropoda Marginellidae<br />

510515021400 Prunum Apicinum Mollusca Gastropoda Marginellidae<br />

510602000000 TURRIDAE Mollusca Gastropoda<br />

510602110400 Kurtziella Limonitella Mollusca Gastropoda<br />

510602110500 Rubellatoma Diomedea Mollusca Gastropoda<br />

510602140400 Pilsbryspira Leucosyoma Mollusca Gastropoda<br />

510602180800 Pyrgocythara Plicosa Mollusca Gastropoda<br />

510602260100 Stellatoma Stellata Mollusca Gastropoda<br />

510603010601 Conus Stearnsi Mollusca Gastropoda<br />

510604010100 Terebra Dislocata Mollusca Gastropoda<br />

510604010200 Terebra Protexta Mollusca Gastropoda<br />

510622401000 Pyrgospira <strong>Tampa</strong>ensis Mollusca Gastropoda<br />

510622402000 Pyrgospira Ostrearum Mollusca Gastropoda<br />

510801010000 Odostomia Spp. Mollusca Gastropoda Pyramidellidae<br />

510801012700 Odostomia Cf. Bisultralis Mollusca Gastropoda Pyramidellidae<br />

510801013200 Odostomia Gibbosa Mollusca Gastropoda Pyramidellidae<br />

510801013500 Boonea Seminuda Mollusca Gastropoda Pyramidellidae<br />

510801014000 Odostomia Laevigata Mollusca Gastropoda Pyramidellidae<br />

510801014600 Odostomia Sp. A Mollusca Gastropoda Pyramidellidae<br />

510801014800 Odostomia Producta Mollusca Gastropoda Pyramidellidae<br />

510801015000 Eulimastoma Weberi Mollusca Gastropoda Pyramidellidae<br />

510801015100 Eulimastoma Teres Mollusca Gastropoda Pyramidellidae<br />

510801015500 Eulimastoma Engonium Mollusca Gastropoda Pyramidellidae<br />

510801015600 Eulimastoma Ergonia? Mollusca Gastropoda Pyramidellidae<br />

510801020000 Turbonilla Sp. Mollusca Gastropoda Pyramidellidae<br />

510801020900 Turbonilla Interrupta Mollusca Gastropoda Pyramidellidae<br />

510801021300 Turbonilla Conradi Mollusca Gastropoda Pyramidellidae<br />

510801021400 Turbonilla Cf. Dalli Mollusca Gastropoda Pyramidellidae<br />

510801021500 Turbonilla Hemphilli Mollusca Gastropoda Pyramidellidae


Master EPCHC Benthic Species Identification List<br />

Nodccode Name Phylum Class Order Infraord Family<br />

510801021600 Turbonilla Incisa Mollusca Gastropoda Pyramidellidae<br />

510801022000 Turbonilla Constricta Mollusca Gastropoda Pyramidellidae<br />

5108010225nr Turbonilla Nr. Mighelsi Mollusca Gastropoda Pyramidellidae<br />

510801030300 Pyramidella Crenulata Mollusca Gastropoda Pyramidellidae<br />

510801050100 Eulimastoma Sp. Mollusca Gastropoda Pyramidellidae<br />

510801108900 Turbonilla Sp. K Mollusca Gastropoda Pyramidellidae<br />

510801109100 Turbonilla Sp. I Mollusca Gastropoda Pyramidellidae<br />

510801112300 Turbonilla Viridaria Mollusca Gastropoda Pyramidellidae<br />

510801140200 Boonea Impressa Mollusca Gastropoda Pyramidellidae<br />

511000000001 Lephalapsidea Sp. Mollusca Gastropoda<br />

511001040300 Rictaxis Punctostriatus Mollusca Gastropoda Acteonidae<br />

511004000000 40 CYLICHNIDAE Mollusca Gastropoda<br />

511004000001 Acteocinidae Sp. A Mollusca Gastropoda<br />

511004010000 Acteocina Sp. Mollusca Gastropoda<br />

511004010300 Acteocina Canaliculata Mollusca Gastropoda<br />

511004010500 Acteocina ?Atriata Mollusca Gastropoda<br />

511004010600 Acteocina Bidentata Mollusca Gastropoda<br />

511004012400 Tornatina Inconspicua Mollusca Gastropoda<br />

511004020000 Cylichna Sp. Mollusca Gastropoda<br />

511011010100 Bulla Striata Mollusca Gastropoda Bullidae<br />

511012010000 Haminoea Sp. Mollusca Gastropoda<br />

511012010400 Haminoea Succinea Mollusca Gastropoda<br />

511012010500 Haminoea Elegans Mollusca Gastropoda<br />

511012011100 Haminoea Antillarum Mollusca Gastropoda<br />

511411030100 Hebetoncylus Excentricus Mollusca Gastropoda Ancylidae<br />

511412010000 Gyraulus Sp. Mollusca Gastropoda Planorbidae<br />

511412020000 Heliosoma Mollusca Gastropoda Planorbidae<br />

511413060100 Physa Mollusca Gastropoda Physidae<br />

512402000001 Aplysiidae Sp. A Mollusca Gastropoda<br />

512402020100 Aplysia Sp. Mollusca Gastropoda<br />

512402050000 Anaspidea Sp. Mollusca Gastropoda


Master EPCHC Benthic Species Identification List<br />

Nodccode Name Phylum Class Order Infraord Family<br />

513003010200 Doris Verrucosa Mollusca Gastropoda<br />

513409000001 Polyceratidae Sp. Mollusca Gastropoda<br />

514107000000 41 TERGIPODIDAE Mollusca Gastropoda<br />

514107040100 Tenellia Fuscata Mollusca Gastropoda<br />

518100000000 42 OPISTHOBRANCHIA Mollusca Gastropoda<br />

530302030100 Ischnochiton Papillosus Mollusca Polyplacophor A<br />

530401020300 Acanthochitona Pygmaea Mollusca Polyplacophor A<br />

530501010000 Acanthopleura Granulata Mollusca Polyplacophor A<br />

540000000000 43 APLACOPHORA<br />

540105010100 Meiomenia Arenicola<br />

550000000000 44 BIVALVIA Mollusca Bivalvia<br />

550000000001 Bivalvia Sp. 1 (M Lat?) Mollusca Bivalvia<br />

550000000002 Bivalvia Sp 2 (Nucula?) Mollusca Bivalvia<br />

550000000003 Bivalvia Sp. C Mollusca Bivalvia<br />

550000000004 Bivalvia Sp. A Mollusca Bivalvia<br />

550202021400 Nucula Crenulata Mollusca Bivalvia Nuculidae<br />

550204020400 Nuculana Acuta Mollusca Bivalvia Nuculanidae<br />

550401010400 Solemya Occidentalis Mollusca Bivalvia Solemyidae<br />

550601020100 Anadara Transversa Mollusca Bivalvia<br />

550601050200 Barbatia ?C<strong>and</strong>ida Mollusca Bivalvia<br />

550701000000 45 MYTILIDAE Mollusca Bivalvia Mytilidae<br />

550701020500 Crenella Decussata Mollusca Bivalvia Mytilidae<br />

550701041300 Musculus Lateralis Mollusca Bivalvia Mytilidae<br />

550701090200 Brachidontes Exustus Mollusca Bivalvia Mytilidae<br />

550701100100 Amygdalum Papyrium Mollusca Bivalvia Mytilidae<br />

550702000000 46 PINNIDAE Mollusca Bivalvia<br />

550702010100 Atrina Seminuda Mollusca Bivalvia<br />

550902000000 47 ISOGNOMIDAE Mollusca Bivalvia<br />

550902010100 Isognomon Radiatus Mollusca Bivalvia<br />

550909020200 Anomia Simplex Mollusca Bivalvia


Master EPCHC Benthic Species Identification List<br />

Nodccode Name Phylum Class Order Infraord Family<br />

551002020200 Ostrea Equestris Mollusca Bivalvia<br />

551202010000 Alasmidonta Mollusca Bivalvia Unionidae<br />

551501000001 Lucinidae Sp. Mollusca Bivalvia Lucinidae<br />

551501010200 Parvilucina Multilineata Mollusca Bivalvia Lucinidae<br />

551501020200 Lucinoma Filosa Mollusca Bivalvia Lucinidae<br />

551501030500 Lucinisca Nassula Mollusca Bivalvia Lucinidae<br />

551501030600 Lucinisca Muricata Mollusca Bivalvia Lucinidae<br />

551501060100 Lucina Amianta Mollusca Bivalvia Lucinidae<br />

551501080100 Parvilucina Costata Mollusca Bivalvia Lucinidae<br />

551501080200 Codakia Orbiculata Mollusca Bivalvia Lucinidae<br />

551502001020 Crassostrea Virginica Mollusca Bivalvia<br />

551505010300 Diplodonta Semiaspera Mollusca Bivalvia Ungulinidae<br />

551505010500 Diplodonta Punctata Mollusca Bivalvia Ungulinidae<br />

551509010100 Neaeromya Sp. Mollusca Bivalvia Lasaeidae<br />

551509010300 Orobitella Floridana Mollusca Bivalvia Lasaeidae<br />

551509010900 Orobitella Limpida Mollusca Bivalvia Lasaeidae<br />

551510011000 Mysella Planulata Mollusca Bivalvia<br />

551510019900 Erycina Floridana Mollusca Bivalvia<br />

551517060100 Pteromeris Per<strong>plan</strong>na Mollusca Bivalvia<br />

551517070100 Pleuromeris Tridentata Mollusca Bivalvia<br />

551517080100 Carditamera Floridana Mollusca Bivalvia<br />

551520010200 Crassinella Lunulata Mollusca Bivalvia<br />

551522040000 Laevicardium Sp. Mollusca Bivalvia Cardiidae<br />

551522040100 Laevicardium Mortoni Mollusca Bivalvia Cardiidae<br />

551522070200 Trachycardium Egmontianum Mollusca Bivalvia Cardiidae<br />

551525030100 Mulinia Lateralis Mollusca Bivalvia Mactridae<br />

551525040100 Rangia Cuneata Mollusca Bivalvia Mactridae<br />

551525050100 Anatina Anatina Mollusca Bivalvia Mactridae<br />

551525060100 Mactrotoma Fragilis Mollusca Bivalvia Mactridae<br />

551525070100 Raeta Plicatella Mollusca Bivalvia Mactridae<br />

551528010100 Ervilia Concentrica Mollusca Bivalvia<br />

551529020200 Solen Viridis Mollusca Bivalvia


Master EPCHC Benthic Species Identification List<br />

Nodccode Name Phylum Class Order Infraord Family<br />

551529030200 Ensis Minor Mollusca Bivalvia<br />

551531000000 48 TELLINIDAE Mollusca Bivalvia Tellinidae<br />

551531010000 Macoma Sp. Mollusca Bivalvia Tellinidae<br />

551531012000 Macoma Tenta Mollusca Bivalvia Tellinidae<br />

551531012100 Macoma Constricta Mollusca Bivalvia Tellinidae<br />

551531012500 Macoma Brevifrons Mollusca Bivalvia Tellinidae<br />

551531020000 Tellina Sp. Mollusca Bivalvia Tellinidae<br />

551531020700 Tellina Iris Mollusca Bivalvia Tellinidae<br />

551531020800 Tellina Lineata Mollusca Bivalvia Tellinidae<br />

551531020900 Tellina Versicolor Mollusca Bivalvia Tellinidae<br />

551531021000 Tellina Alternata Mollusca Bivalvia Tellinidae<br />

551531021200 Tellina Texana Mollusca Bivalvia Tellinidae<br />

551531021400 Tellina <strong>Tampa</strong>ensis Mollusca Bivalvia Tellinidae<br />

551531021600 Tellina Nitens? Mollusca Bivalvia Tellinidae<br />

551531021800 Tellina Sybaritica Mollusca Bivalvia Tellinidae<br />

551531022800 Tellina Tenella Mollusca Bivalvia Tellinidae<br />

551531023100 Tellina Exerythra? Mollusca Bivalvia Tellinidae<br />

551531024000 Tellina Similis Mollusca Bivalvia Tellinidae<br />

551531029900 Tellina Sp. A Mollusca Bivalvia Tellinidae<br />

551531040100 Tellidora Cristata Mollusca Bivalvia Tellinidae<br />

551533020000 Tagelus Sp. Mollusca Bivalvia Psammobiidae<br />

551533020100 Tagelus Plebeius Mollusca Bivalvia Psammobiidae<br />

551533020200 Tagelus Divisus Mollusca Bivalvia Psammobiidae<br />

551535020100 Abra Aequalis Mollusca Bivalvia Semelidae<br />

551535030201 Cumingia Tellinoides Vanhyningi Mollusca Bivalvia Semelidae<br />

551535060100 Semelina Nuculoides Mollusca Bivalvia Semelidae<br />

551535060200 Semele Bellastriata Mollusca Bivalvia Semelidae<br />

551535060300 Semele Sp. A Mollusca Bivalvia Semelidae<br />

551537020100 Mytilopsis Leucophaeata Mollusca Bivalvia<br />

551545010100 Polymesoda Caroliniana Mollusca Bivalvia<br />

551545020100 Corbicula Fluminea Mollusca Bivalvia


Master EPCHC Benthic Species Identification List<br />

Nodccode Name Phylum Class Order Infraord Family<br />

551546010000 Sphaerium Mollusca Bivalvia Sphaeriidae<br />

551547000000 49 VENERIDAE Mollusca Bivalvia Veneridae<br />

551547000001 Veneridae Sp. A Mollusca Bivalvia Veneridae<br />

551547010300 Transennella Conradina Mollusca Bivalvia Veneridae<br />

551547010400 Transenella Stimpsoni Mollusca Bivalvia Veneridae<br />

551547090100 Dosinia Discus Mollusca Bivalvia Veneridae<br />

551547090200 Dosinia Eleganis Mollusca Bivalvia Veneridae<br />

551547100100 Cyclinella Tenuis Mollusca Bivalvia Veneridae<br />

551547110000 Mercenaria Mollusca Bivalvia Veneridae<br />

551547120000 Pitar Sp. Mollusca Bivalvia Veneridae<br />

551547120200 Pitar Cordatus Mollusca Bivalvia Veneridae<br />

551547120400 Pitar Fulminatus Mollusca Bivalvia Veneridae<br />

551547130100 Gemma Gemma Mollusca Bivalvia Veneridae<br />

551547140100 Agriopoma Texasianum Mollusca Bivalvia Veneridae<br />

551547150200 Timoclea Grus Mollusca Bivalvia Veneridae<br />

551547150300 Chione Cancellata Mollusca Bivalvia Veneridae<br />

551547180200 Macrocallista Nimbosa Mollusca Bivalvia Veneridae<br />

551547230100 Anomalocardia Auberiana Mollusca Bivalvia Veneridae<br />

551547280100 Parastarte Triquetra Mollusca Bivalvia Veneridae<br />

551701040300 Sphenia Antillensis Mollusca Bivalvia<br />

551702020100 Corbula Contracta Mollusca Bivalvia Corbulidae<br />

551702020200 Caryocorbula Barrattiana Mollusca Bivalvia Corbulidae<br />

551702020500 Corbula Swiftiana Mollusca Bivalvia Corbulidae<br />

551801030100 Cyrtopleura Costata Mollusca Bivalvia<br />

551801061000 Martesia Striata Mollusca Bivalvia<br />

552002010600 P<strong>and</strong>ora Trilineata Mollusca Bivalvia<br />

552005020601 Lyonsia Floridana Mollusca Bivalvia Lyonsiidae<br />

552007010600 Periploma Margaritaceum Mollusca Bivalvia<br />

552008000001 50 THRACIIDAE Mollusca Bivalvia<br />

552008010200 Asthenothaerus Hemphilli Mollusca Bivalvia<br />

552008019800 Asthenothaerus Sp. B Mollusca Bivalvia


Master EPCHC Benthic Species Identification List<br />

Nodccode Name Phylum Class Order Infraord Family<br />

552008019900 Asthenothaerus Sp. A Mollusca Bivalvia<br />

560001010400 Graptacme Eborea Mollusca Scaphopoda<br />

560001011200 Antalus Antillarum Mollusca Scaphopoda<br />

560001012600 Graptacme Calamus Mollusca Scaphopoda<br />

560101010000 Dentalium Sp. Mollusca Scaphopoda<br />

560101010500 Dentalium Texasianum (=American Mollusca Scaphopoda<br />

560101010600 Dentalium Laqueatum Mollusca Scaphopoda<br />

580201010100 Limulus Polyphemus<br />

592201000000 Hydracarina<br />

593400000000 Hydrachnellae<br />

600000000000 Pycnogonida<br />

613000000000 Cirripedia Arthropoda Crustacea Cirripedia<br />

613402012100 Balanus Venustus Arthropoda Crustacea Cirripedia<br />

614510100000 Nebalia Arthropoda Crustacea<br />

615301210000 Mysidopsis Spp. Arthropoda Crustacea Mysidacea<br />

615301210100 Americamysis Bigelowi Arthropoda Crustacea Mysidacea<br />

615301210300 Mysidopsis Almyra Arthropoda Crustacea Mysidacea<br />

615301210500 Mysidopsis Furca Arthropoda Crustacea Mysidacea<br />

615301260000 Bowmaniella Sp. Arthropoda Crustacea Mysidacea<br />

615301260100 Bowmaniella Brasiliensis Arthropoda Crustacea Mysidacea<br />

615301260300 Bowmaniella Floridana Arthropoda Crustacea Mysidacea<br />

615301270200 Taphromysis Bowmani Arthropoda Crustacea Mysidacea<br />

615301290000 Brasilomysis Sp. Arthropoda Crustacea Mysidacea<br />

615301290100 Brasilomysis Castroi Arthropoda Crustacea Mysidacea<br />

615303150000 Americamysis Spp. Arthropoda Crustacea Mysidacea<br />

615303150100 Americamysis Alleni Arthropoda Crustacea Mysidacea<br />

615303150200 Americamysis Bahia Arthropoda Crustacea Mysidacea<br />

615303150300 Americamysis Stucki Arthropoda Crustacea Mysidacea<br />

615400000001 51 CUMACEA Arthropoda Crustacea Cumacea<br />

615404011000 Leucon Americanus Arthropoda Crustacea Cumacea<br />

615404019900 Leucon Sp. A Arthropoda Crustacea Cumacea


Master EPCHC Benthic Species Identification List<br />

Nodccode Name Phylum Class Order Infraord Family<br />

615405080000 Oxyurostylis Spp. Arthropoda Crustacea Cumacea<br />

615405089800 Oxyurostylis Smithi Arthropoda Crustacea Cumacea<br />

615405089900 Oxyurostylis Lecroyae Arthropoda Crustacea Cumacea<br />

615408000001 Nannastacidae Arthropoda Crustacea Cumacea<br />

6154080103cf Cumella Cf. Garrityi Arthropoda Crustacea Cumacea<br />

615408020100 Almyracuma Proximoculi Arthropoda Crustacea Cumacea<br />

615409020000 Cyclaspis Spp. Arthropoda Crustacea Cumacea<br />

615409020100 Cyclaspis Pustulata Arthropoda Crustacea Cumacea<br />

6154090202cf Cyclaspis Cf. Varians Arthropoda Crustacea Cumacea<br />

615409029700 Cyclaspis Sp. C Arthropoda Crustacea Cumacea<br />

615409029800 Cyclaspis Sp. B Arthropoda Crustacea Cumacea<br />

615409029900 Cyclaspis Sp. D Arthropoda Crustacea Cumacea<br />

615603019900 Apseudes Sp. A Arthropoda Crustacea Isopoda<br />

615603020100 Halmyrapseudes Bahamensis Arthropoda Crustacea Isopoda<br />

615606019900 Kalliapseudes Sp. A Arthropoda Crustacea Isopoda<br />

615701010400 Sinelobus Stanfordi Arthropoda Crustacea Isopoda<br />

615715020000 Leptochelia Sp. Arthropoda Crustacea Isopoda<br />

615715021200 Leptochelia (Hargeria) Rapax Arthropoda Crustacea Isopoda<br />

616000000000 52 ISOPODA Arthropoda Crustacea Isopoda<br />

616001000000 ANTHURIDEA Arthropoda Crustacea Isopoda<br />

616001020100 Cyathura Polita Arthropoda Crustacea Isopoda<br />

616001070100 Xenanthura Brevitelson Arthropoda Crustacea Isopoda<br />

616001110100 Horolanthura Irpex Arthropoda Crustacea Isopoda<br />

616001200100 Amakusanthura Magnifica Arthropoda Crustacea Isopoda<br />

616100000000 53 FLABELLIFERA Arthropoda Crustacea Isopoda<br />

616101010800 Cirolana Parva Arthropoda Crustacea Isopoda<br />

616101020800 Eurydice Personata Arthropoda Crustacea Isopoda<br />

616102000000 54 SPHAEROMATIDAE Arthropoda Crustacea Isopoda<br />

616102020200 Paracerceis Caudata Arthropoda Crustacea Isopoda<br />

616102070200 Sphaeroma Quadridentata Arthropoda Crustacea Isopoda<br />

616102080200 Cassidinidea Ovalis Arthropoda Crustacea Isopoda


Master EPCHC Benthic Species Identification List<br />

Nodccode Name Phylum Class Order Infraord Family<br />

616102110100 Harrieta Faxoni Arthropoda Crustacea Isopoda<br />

616103010100 Serolis Mgrayi Arthropoda Crustacea Isopoda<br />

616202060100 Erichsonella Attenuata Arthropoda Crustacea Isopoda<br />

616202060200 Erichsonella Filiformis Arthropoda Crustacea Isopoda<br />

616202070300 Edotia Triloba Arthropoda Crustacea Isopoda<br />

616300000000 55 ASELLOTA Arthropoda Crustacea Isopoda<br />

616312000000 Munnidae? Arthropoda Crustacea Isopoda<br />

616312010000 Munna Sp. N. Arthropoda Crustacea Isopoda<br />

616312040100 Uromunna Hayesi Arthropoda Crustacea Isopoda<br />

616312040200 Uromunna Reynoldsi Arthropoda Crustacea Isopoda<br />

616501000000 Cryptoniscidae? Arthropoda Crustacea Isopoda<br />

616900000000 56 AMPHIPODA Arthropoda Crustacea Gammaridea<br />

616900000002 GAMMARIDEA Arthropoda Crustacea Gammaridea<br />

616900000003 Gammaridea A [Dam] Arthropoda Crustacea Gammaridea<br />

616900000004 Gammaridea B [Dam] Arthropoda Crustacea Gammaridea<br />

616902000000 57 AMPELISCIDAE Arthropoda Crustacea Gammaridea Ampeliscidae<br />

616902010000 Ampelisca Spp. Arthropoda Crustacea Gammaridea Ampeliscidae<br />

616902010800 Ampelisca Abdita Arthropoda Crustacea Gammaridea Ampeliscidae<br />

616902010900 Ampelisca Vadorum Arthropoda Crustacea Gammaridea Ampeliscidae<br />

616902011100 Ampelisca Agassizi Arthropoda Crustacea Gammaridea Ampeliscidae<br />

616902012300 Ampelisca Holmesi Arthropoda Crustacea Gammaridea Ampeliscidae<br />

616902013900 Ampelisca Bicarinata Arthropoda Crustacea Gammaridea Ampeliscidae<br />

616902019700 Ampelisca Sp. C Arthropoda Crustacea Gammaridea Ampeliscidae<br />

616902019800 Ampelisca Sp. B Arthropoda Crustacea Gammaridea Ampeliscidae<br />

616902019900 Ampelisca Sp. A Arthropoda Crustacea Gammaridea Ampeliscidae<br />

616902020000 Ampelisca Abdita/Vadorum Arthropoda Crustacea Gammaridea Ampeliscidae<br />

616903000000 58 AMPHILOCIDAE Arthropoda Crustacea Gammaridea Amphilocidae<br />

616903020100 Amphilochus Neopolitanus Arthropoda Crustacea Gammaridea Amphilocidae<br />

6169030203cf Amphilochus Cf. Casahoya Arthropoda Crustacea Gammaridea Amphilocidae<br />

616903029800 Amphilochus B Arthropoda Crustacea Gammaridea Amphilocidae<br />

616903029900 Amphilochus A Arthropoda Crustacea Gammaridea Amphilocidae


Master EPCHC Benthic Species Identification List<br />

Nodccode Name Phylum Class Order Infraord Family<br />

616903040000 Gitanopsis Sp. Arthropoda Crustacea Gammaridea Amphilocidae<br />

616903040300 Gitanopsis Laguna Arthropoda Crustacea Gammaridea Amphilocidae<br />

616904000001 59 AMPITHOIDAE Arthropoda Crustacea Gammaridea Ampithoidae<br />

616904010000 Ampithoe Sp. Arthropoda Crustacea Gammaridea Ampithoidae<br />

616904011500 Ampithoe Longimana Arthropoda Crustacea Gammaridea Ampithoidae<br />

616904011600 Ampithoe Valida Arthropoda Crustacea Gammaridea Ampithoidae<br />

616904012100 Ampithoe ?Ramondi Arthropoda Crustacea Gammaridea Ampithoidae<br />

616904020100 Cymadusa Compta Arthropoda Crustacea Gammaridea Ampithoidae<br />

616906000001 60 AORIDAE Arthropoda Crustacea Gammaridea Aoridae<br />

616906030300 Globosolembos Smithi Arthropoda Crustacea Gammaridea Aoridae<br />

616906030600 Bemlos Brunneamaculatus Arthropoda Crustacea Gammaridea Aoridae<br />

616906030601 Bemlos Brunneamaculatus Mackinn Arthropoda Crustacea Gammaridea Aoridae<br />

616906030602 Bemlos Brunneamaculatus Setosus Arthropoda Crustacea Gammaridea Aoridae<br />

616906030700 Bemlos Unifasciatus Arthropoda Crustacea Gammaridea Aoridae<br />

616906030800 Bemlos Spinicarpus Arthropoda Crustacea Gammaridea Aoridae<br />

616906031300 Bemlos Setosus Arthropoda Crustacea Gammaridea Aoridae<br />

6169060404cf Paramicrodeutopus Cf. Myersi Arthropoda Crustacea Gammaridea Aoridae<br />

616906120100 Rudilemboides Naglei Arthropoda Crustacea Gammaridea Aoridae<br />

616906160000 Bemlos Sp. Arthropoda Crustacea Gammaridea Aoridae<br />

616906160100 Bemlos Rectangulatus Arthropoda Crustacea Gammaridea Aoridae<br />

616906160200 Bemlos Unicornis Arthropoda Crustacea Gammaridea Aoridae<br />

616907010100 Argissa Hamatipes Arthropoda Crustacea Gammaridea<br />

616910010100 Batea Catharinensis Arthropoda Crustacea Gammaridea Bateidae<br />

616910010300 Batea Cuspidata Arthropoda Crustacea Gammaridea Bateidae<br />

616915000000 61 COROPHIIDAE Arthropoda Crustacea Gammaridea Corophiidae<br />

616915010000 Cerapus Spp. Arthropoda Crustacea Gammaridea Corophiidae<br />

616915010200 Cerapus Sp. C (="Tubularis") Arthropoda Crustacea Gammaridea Corophiidae<br />

616915019600 Cerapus Sp. D Arthropoda Crustacea Gammaridea Corophiidae<br />

616915019900 Cerapus Sp. A Arthropoda Crustacea Gammaridea Corophiidae<br />

616915020100 Monocorophium Acherusicum Arthropoda Crustacea Gammaridea Corophiidae<br />

616915020700 Monocorophium Tuberculatum Arthropoda Crustacea Gammaridea Corophiidae


Master EPCHC Benthic Species Identification List<br />

Nodccode Name Phylum Class Order Infraord Family<br />

6169150214cf Laticorophium Cf. Baconi Arthropoda Crustacea Gammaridea Corophiidae<br />

616915021500 Apocorophium Louisianum Arthropoda Crustacea Gammaridea Corophiidae<br />

616915021800 Americorophium Ellisi Arthropoda Crustacea Gammaridea Corophiidae<br />

616915030200 Erichthonius Brasiliensis Arthropoda Crustacea Gammaridea Corophiidae<br />

616915090100 Gr<strong>and</strong>idierella Bonnieroides Arthropoda Crustacea Gammaridea Corophiidae<br />

616920120000 62 PONTOGENEIDAE Arthropoda Crustacea Gammaridea<br />

616920121100 Pontogenia Bartschi Arthropoda Crustacea Gammaridea<br />

616920121101 Tethygeneia Longleyi Arthropoda Crustacea Gammaridea<br />

616921000000 GAMMARIDAE Arthropoda Crustacea Gammaridea Melitidae<br />

616921029900 Ceradocus Sp. A Arthropoda Crustacea Gammaridea Melitidae<br />

616921030100 Elasmopus Laevis Arthropoda Crustacea Gammaridea Melitidae<br />

616921030400 Elasmopus Procellimanus Arthropoda Crustacea Gammaridea Melitidae<br />

616921070800 Gammarus Palustris Arthropoda Crustacea Gammaridea Melitidae<br />

616921070900 Mucrogammarus Mucronatus Arthropoda Crustacea Gammaridea Melitidae<br />

616921080000 Maera Sp. Arthropoda Crustacea Gammaridea Melitidae<br />

616921089900 Maera Sp. N Arthropoda Crustacea Gammaridea Melitidae<br />

616921100000 Melita Sp. Arthropoda Crustacea Gammaridea Melitidae<br />

616921100700 Dulichiella Appendiculata Arthropoda Crustacea Gammaridea Melitidae<br />

616921101400 Melita Elongata Arthropoda Crustacea Gammaridea Melitidae<br />

616922060700 Acanthohaustorius Uncinus Arthropoda Crustacea Gammaridea Haustoriidae<br />

616922139900 Pseudohaustorius Sp. A Arthropoda Crustacea Gammaridea Haustoriidae<br />

616923040100 Hyalella Azteca Arthropoda Crustacea Gammaridea Hyalellidae<br />

616926000000 63 PHOTIDAE Arthropoda Crustacea Gammaridea Photidae<br />

616926020000 Photis Sp. Arthropoda Crustacea Gammaridea Photidae<br />

616926021400 Photis Sp. C Arthropoda Crustacea Gammaridea Photidae<br />

616926090000 Microprotopus Arthropoda Crustacea Gammaridea Photidae<br />

616926090100 Microprotopus Raneyi Arthropoda Crustacea Gammaridea Photidae<br />

616926090200 Microprotopus Shoemakeri Arthropoda Crustacea Gammaridea Photidae<br />

616932010100 Leucothoe Spinicarpa Arthropoda Crustacea Gammaridea<br />

616933030100 Listriella Barnardi Arthropoda Crustacea Gammaridea Liljeborgiidae<br />

616934000000 64 LYSIANASSIDAE Arthropoda Crustacea Gammaridea Lysianassidae


Master EPCHC Benthic Species Identification List<br />

Nodccode Name Phylum Class Order Infraord Family<br />

616934009800 Shoemakerella (Lysian.Sp.B) Arthropoda Crustacea Gammaridea Lysianassidae<br />

616934530900 Shoemakerella Lowreyi Arthropoda Crustacea Gammaridea Lysianassidae<br />

616934970000 Lysianassidae Genus C Arthropoda Crustacea Gammaridea Lysianassidae<br />

616935000000 65 MELPHIDIPPIDAE Arthropoda Crustacea Gammaridea<br />

6169350301cf Gibberosus Cf. Myersi Arthropoda Crustacea Gammaridea<br />

616937000000 66 OEDICEROTIDAE Arthropoda Crustacea Gammaridea Oedicerotidae<br />

616937082300 Monoculodes Nyei Arthropoda Crustacea Gammaridea Oedicerotidae<br />

616937140100 Synchelidium Americanum Arthropoda Crustacea Gammaridea Oedicerotidae<br />

616942000000 67 PHOXOCEPHALIDAE Arthropoda Crustacea Gammaridea<br />

616942140300 Metharpinia Floridana Arthropoda Crustacea Gammaridea<br />

616942159900 Rhepoxynius Sp. A Arthropoda Crustacea Gammaridea<br />

616942190100 Eobrolgus Spinosus Arthropoda Crustacea Gammaridea<br />

616942210100 Eudevenopus Honduranus Arthropoda Crustacea Gammaridea<br />

616948000000 68 STENOTHOIDAE Arthropoda Crustacea Gammaridea Stenothoidae<br />

616948070300 Parametopella Texensis Arthropoda Crustacea Gammaridea Stenothoidae<br />

616948079900 Parametopella Sp. A Arthropoda Crustacea Gammaridea Stenothoidae<br />

616948100000 Stenothoe Sp. Arthropoda Crustacea Gammaridea Stenothoidae<br />

616948100100 Stenothoe Gallensis Arthropoda Crustacea Gammaridea Stenothoidae<br />

616948100200 Stenothoe Minuta Arthropoda Crustacea Gammaridea Stenothoidae<br />

616948100900 Stenothoidae A Arthropoda Crustacea Gammaridea Stenothoidae<br />

616948109900 Stenothoe Sp. A Arthropoda Crustacea Gammaridea Stenothoidae<br />

616950050000 Tiron Sp. Arthropoda Crustacea Gammaridea Synopiidae<br />

616950050500 Tiron Tropakis Arthropoda Crustacea Gammaridea Synopiidae<br />

616950050600 Tiron Triocellatus Arthropoda Crustacea Gammaridea Synopiidae<br />

617010000000 69 CAPRELLIDEA Arthropoda Crustacea<br />

617010000010 Caprellidae-Unid. Arthropoda Crustacea<br />

617101020200 Deutella Incerta Arthropoda Crustacea Caprellidea<br />

617101072700 Caprella Penantis Arthropoda Crustacea Caprellidea<br />

617101090000 Paracaprella Sp. Arthropoda Crustacea Caprellidea<br />

617101090100 Paracaprella Tenuis Arthropoda Crustacea Caprellidea


Master EPCHC Benthic Species Identification List<br />

Nodccode Name Phylum Class Order Infraord Family<br />

617101090200 Paracaprella Pusilla Arthropoda Crustacea Caprellidea<br />

617101150100 Hemiaegina Minuta Arthropoda Crustacea Caprellidea<br />

617201011600 Ingolfiellidia Fuscina Arthropoda Crustacea Ingolfiellidea<br />

617201019900 Ingolfiellidia Sp. A Arthropoda Crustacea Ingolfiellidea<br />

617202000000 Ingolfiellidea Arthropoda Crustacea Ingolfiellidea<br />

617600000000 70 DECAPODA Arthropoda Crustacea Decapoda<br />

617700000000 PENAEOIDEA Arthropoda Crustacea Decapoda Penaeidea<br />

617701010200 Penaeus Duorarum Arthropoda Crustacea Decapoda Penaeidea<br />

617701020000 Trachypenaeus Arthropoda Crustacea Decapoda Penaeidea<br />

617701020100 Trachypenaeus Constrictus Arthropoda Crustacea Decapoda Penaeidea<br />

617701030000 Metapenaeopsis Sp. Arthropoda Crustacea Decapoda Penaeidea<br />

617701040300 Sicyonia Typica Arthropoda Crustacea Decapoda Penaeidea<br />

617701040400 Sicyonia Laevigata Arthropoda Crustacea Decapoda Penaeidea<br />

617704010000 Sicyonia Sp. Arthropoda Crustacea Decapoda Penaeidea<br />

617900000000 71 CARIDEA Arthropoda Crustacea Decapoda Caridea<br />

617905020100 Leptochela Serratorbita Arthropoda Crustacea Decapoda Caridea<br />

617905020200 Leptochela Bermudensis Arthropoda Crustacea Decapoda Caridea<br />

617911000000 72 PALAEMONIDAE Arthropoda Crustacea Decapoda Caridea<br />

617911040100 Periclimenes Americanus Arthropoda Crustacea Decapoda Caridea<br />

617911040300 Periclimenes Longicaudatus Arthropoda Crustacea Decapoda Caridea<br />

617911050000 Pontonia Sp. Arthropoda Crustacea Decapoda Caridea<br />

617914000000 73 ALPHEIDAE Arthropoda Crustacea Decapoda Caridea<br />

617914010000 Alpheus Sp. Arthropoda Crustacea Decapoda Caridea<br />

617914010100 Alpheus Heterochaelis Arthropoda Crustacea Decapoda Caridea<br />

617914010200 Alpheus Normanni Arthropoda Crustacea Decapoda Caridea<br />

617914011100 Alpheus Angulatus Arthropoda Crustacea Decapoda Caridea<br />

617914014300 Alpheus Armillatus Arthropoda Crustacea Decapoda Caridea<br />

617914030000 Automate Sp. Arthropoda Crustacea Decapoda Caridea<br />

617914030100 Automate Evermanni Arthropoda Crustacea Decapoda Caridea<br />

617914030300 Automate Rectifrons Arthropoda Crustacea Decapoda Caridea<br />

617914030400 Automate Dolicognatha Arthropoda Crustacea Decapoda Caridea


Master EPCHC Benthic Species Identification List<br />

Nodccode Name Phylum Class Order Infraord Family<br />

617914039900 Automate Sp. A Arthropoda Crustacea Decapoda Caridea<br />

617914060000 Synalpheus Sp. Arthropoda Crustacea Decapoda Caridea<br />

617914061600 Synalpheus Normanni Arthropoda Crustacea Decapoda Caridea<br />

617915010100 Ogyrides Alphaerostris Arthropoda Crustacea Decapoda Caridea<br />

617916000000 74 HIPPOLYTIDAE Arthropoda Crustacea Decapoda Caridea<br />

617916010000 Hippolyte Sp. Arthropoda Crustacea Decapoda Caridea<br />

617916010300 Hippolyte Pleuracantha Arthropoda Crustacea Decapoda Caridea<br />

617916010400 Hippolyte Zostericola Arthropoda Crustacea Decapoda Caridea<br />

617916060100 Latreutes Fucorum Arthropoda Crustacea Decapoda Caridea<br />

617916060200 Latreutes Parvulus Arthropoda Crustacea Decapoda Caridea<br />

617916110000 Lysmata Sp. Arthropoda Crustacea Decapoda Caridea<br />

617916120100 Tozeuma Carolinense Arthropoda Crustacea Decapoda Caridea<br />

617916140000 Thor Sp. Arthropoda Crustacea Decapoda Caridea<br />

617917000000 75 PROCESSIDAE Arthropoda Crustacea Decapoda Caridea<br />

617917010000 Processa Sp. Arthropoda Crustacea Decapoda Caridea<br />

617917010100 Processa Hemphilli Arthropoda Crustacea Decapoda Caridea<br />

617917010200 Processa Bermudensis Arthropoda Crustacea Decapoda Caridea<br />

617917030100 Ambidexter Symmetricus Arthropoda Crustacea Decapoda Caridea<br />

618301000000 76 THALASSINIDEA Arthropoda Crustacea Decapoda Anomura<br />

618304000000 CALLIANASSIDAE Arthropoda Crustacea Decapoda Anomura Callianassidae<br />

618304040001 Callichirinae Sp. Arthropoda Crustacea Decapoda Anomura Callianassidae<br />

618305000000 PAGUROIDEA Arthropoda Crustacea Decapoda Anomura<br />

618306000001 PAGURIDAE Arthropoda Crustacea Decapoda Anomura Paguridae<br />

618306000002 DIOGENIDAE Arthropoda Crustacea Decapoda Anomura Paguridae<br />

618306010000 Paguristes Sp. Arthropoda Crustacea Decapoda Anomura Paguridae<br />

618306010400 Paguristes Hummi Arthropoda Crustacea Decapoda Anomura Paguridae<br />

618306011600 Paguristes Nr. Tortugae Arthropoda Crustacea Decapoda Anomura Paguridae<br />

618306020000 Pagurus Sp. Arthropoda Crustacea Decapoda Anomura Paguridae<br />

618306024600 Pagurus Stimpsoni Arthropoda Crustacea Decapoda Anomura Paguridae<br />

618306024700 Pagurus Gymnodactylus Arthropoda Crustacea Decapoda Anomura Paguridae<br />

618306025100 Pagurus Maclaughlinae Arthropoda Crustacea Decapoda Anomura Paguridae


Master EPCHC Benthic Species Identification List<br />

Nodccode Name Phylum Class Order Infraord Family<br />

618312000000 77 PORCELLANIDAE Arthropoda Crustacea Decapoda Anomura Porcellanidae<br />

618312010000 Petrolisthes Sp. Arthropoda Crustacea Decapoda Anomura Porcellanidae<br />

618312010300 Petrolisthes Armatus Arthropoda Crustacea Decapoda Anomura Porcellanidae<br />

618312020000 Pachycheles Sp. Arthropoda Crustacea Decapoda Anomura Porcellanidae<br />

618312030100 Euceramus Praelongus Arthropoda Crustacea Decapoda Anomura Porcellanidae<br />

618312040100 Polyonyx Gibbesi Arthropoda Crustacea Decapoda Anomura Porcellanidae<br />

618313020100 Albunea Paretii Arthropoda Crustacea Decapoda Anomura<br />

618317010000 Upogebia Arthropoda Crustacea Decapoda Anomura<br />

618317010200 Upogebia Affinis Arthropoda Crustacea Decapoda Anomura<br />

618400000000 78 BRACHYURA Arthropoda Crustacea Decapoda Brachyura<br />

618400009900 Brachyura A Arthropoda Crustacea Decapoda Brachyura<br />

618502010100 Hypoconcha Arcuata Arthropoda Crustacea Decapoda<br />

618602030000 Osachila Sp. Arthropoda Crustacea Decapoda<br />

618603010400 Persephona Mediterranea Arthropoda Crustacea Decapoda<br />

618603030300 Iliacantha Subglobosa Arthropoda Crustacea Decapoda<br />

618701090100 Libinia Dubia Arthropoda Crustacea Decapoda<br />

618701130100 Pelia Mutica Arthropoda Crustacea Decapoda<br />

618701320000 Pitho Sp. Arthropoda Crustacea Decapoda<br />

618701320100 Pitho Lherminieri Arthropoda Crustacea Decapoda<br />

618701320200 Pitho Laevigata Arthropoda Crustacea Decapoda<br />

618701320300 Pitho Anisodon Arthropoda Crustacea Decapoda<br />

618701320400 Pitho Aculeata Arthropoda Crustacea Decapoda<br />

618702080100 Heterocrypta Granulata Arthropoda Crustacea Decapoda<br />

618901060000 Portunus Sp. Arthropoda Crustacea Decapoda<br />

618901060300 Portunus Spinicarpus Arthropoda Crustacea Decapoda<br />

618901060800 Portunus Ordwayi Arthropoda Crustacea Decapoda<br />

618902000001 79 PANOPEIDAE Arthropoda Crustacea Decapoda Brachyura Panopeidae<br />

618902050000 Eurypanopeus Sp. Arthropoda Crustacea Decapoda Brachyura Panopeidae<br />

618902060000 Hexapanopeus Sp. Arthropoda Crustacea Decapoda Brachyura Panopeidae<br />

618902060100 Hexapanopeus Angustifrons Arthropoda Crustacea Decapoda Brachyura Panopeidae<br />

618902080000 Panopeus Sp. Arthropoda Crustacea Decapoda Brachyura Panopeidae


Master EPCHC Benthic Species Identification List<br />

Nodccode Name Phylum Class Order Infraord Family<br />

618902080100 Panopeus Herbstii Arthropoda Crustacea Decapoda Brachyura Panopeidae<br />

618902080500 Panopeus Bermudensis Arthropoda Crustacea Decapoda Brachyura Panopeidae<br />

618902080600 Panopeus Rugosus? Arthropoda Crustacea Decapoda Brachyura Panopeidae<br />

618902090100 Rhithropanopeus Harrisii Arthropoda Crustacea Decapoda Brachyura Panopeidae<br />

618902130100 Menippe Mercenaria Arthropoda Crustacea Decapoda Brachyura Panopeidae<br />

618902140000 Pilumnus Sp. Arthropoda Crustacea Decapoda Brachyura Panopeidae<br />

618902420000 Dyspanopeus Sp. Arthropoda Crustacea Decapoda Brachyura Panopeidae<br />

618902420200 Dyspanopeus Texanus Arthropoda Crustacea Decapoda Brachyura Panopeidae<br />

618905000001 80 GONEPLACIDAE Arthropoda Crustacea Decapoda<br />

618906000000 PINNOTHERIDAE Arthropoda Crustacea Decapoda Brachyura Pinnotheridae<br />

618906010000 Dissodactylus Sp. Arthropoda Crustacea Decapoda Brachyura Pinnotheridae<br />

618906010100 Dissodactylus Mellitae Arthropoda Crustacea Decapoda Brachyura Pinnotheridae<br />

618906020000 Pinnotheres Sp. Arthropoda Crustacea Decapoda Brachyura Pinnotheridae<br />

618906020100 Tumidotheres Maculatus Arthropoda Crustacea Decapoda Brachyura Pinnotheridae<br />

618906040000 Pinnixa Spp. Arthropoda Crustacea Decapoda Brachyura Pinnotheridae<br />

618906040500 Pinnixa Chaetopterana Arthropoda Crustacea Decapoda Brachyura Pinnotheridae<br />

618906040600 Pinnixa Cylindrica Arthropoda Crustacea Decapoda Brachyura Pinnotheridae<br />

618906040800 Pinnixa Retinens Arthropoda Crustacea Decapoda Brachyura Pinnotheridae<br />

618906040900 Pinnixa Sayana Arthropoda Crustacea Decapoda Brachyura Pinnotheridae<br />

618906041200 Pinnixa Cf. Chacei Arthropoda Crustacea Decapoda Brachyura Pinnotheridae<br />

6189060413cf Pinnixa Cf. Pearsei Arthropoda Crustacea Decapoda Brachyura Pinnotheridae<br />

6189060414cf Pinnixa Cf. Floridana Arthropoda Crustacea Decapoda Brachyura Pinnotheridae<br />

618906049800 Pinnixa B Arthropoda Crustacea Decapoda Brachyura Pinnotheridae<br />

618906049900 Pinnixa A Arthropoda Crustacea Decapoda Brachyura Pinnotheridae<br />

618906050100 Pinnixa D Arthropoda Crustacea Decapoda Brachyura Pinnotheridae<br />

618906050400 Pinnixa G Arthropoda Crustacea Decapoda Brachyura Pinnotheridae<br />

618906050500 Pinnixa E Arthropoda Crustacea Decapoda Brachyura Pinnotheridae<br />

619100000000 81 STOMATOPODA Arthropoda Crustacea Decapoda<br />

619101000000 SQUILLIDAE Arthropoda Crustacea Decapoda<br />

619101010100 Squilla Cf. Empusa Arthropoda Crustacea Decapoda<br />

619105000000 82 NANNOSQUILLIDAE Arthropoda Crustacea Decapoda


Master EPCHC Benthic Species Identification List<br />

Nodccode Name Phylum Class Order Infraord Family<br />

619105010000 Nannosquilla Sp. Arthropoda Crustacea Decapoda<br />

619105010100 Nannosquilla Taylori Arthropoda Crustacea Decapoda<br />

621602000000 BATEIDAE Arthropoda Insecta Ephemeroptera<br />

621602130000 Pseudocloeon Sp. Arthropoda Insecta Ephemeroptera<br />

621602180000 Neocloeon Sp. Arthropoda Insecta Ephemeroptera<br />

621602990000 Callibaetis Sp. Arthropoda Insecta Ephemeroptera<br />

621802000000 83 CAENIDAE Arthropoda Insecta Ephemeroptera<br />

621802010000 Bracycercus Sp. Arthropoda Insecta Ephemeroptera<br />

621802020000 Caenis Sp. Arthropoda Insecta Ephemeroptera<br />

621802030100 Cercobrachys Etowah Arthropoda Insecta Ephemeroptera<br />

630504020000 Peltodytes Sp. Arthropoda Insecta Coleoptera<br />

631604020000 Dubiraphia Sp. Arthropoda Insecta Coleoptera<br />

641800000000 84 TRICHOPTERA Arthropoda Insecta Trichoptera<br />

641803030000 Cyrnellus Sp. Arthropoda Insecta Trichoptera<br />

641803030100 Cyrnellus Fraternus Arthropoda Insecta Trichoptera<br />

641812010000 Oecetis Sp. Arthropoda Insecta Trichoptera<br />

641812010100 Oecetis Nocturna Arthropoda Insecta Trichoptera<br />

641812010200 Oecetis Inconspicus Arthropoda Insecta Trichoptera<br />

650503010000 Chaoborus Punctipennis Arthropoda Insecta Diptera Culicidae<br />

650504050000 Probezzia Sp. Arthropoda Insecta Diptera Heleidae<br />

650504080000 Dasyhelea Sp. Arthropoda Insecta Diptera Heleidae<br />

650504090000 Mallochohela Sp.? Arthropoda Insecta Diptera Heleidae<br />

650504100000 Bezzia/Palmpomyia Arthropoda Insecta Diptera Heleidae<br />

650508000000 85 CHIRONOMIDAE Arthropoda Insecta Diptera Chironomidae<br />

650508020800 Coelotanypus Scapularis Arthropoda Insecta Diptera Chironomidae<br />

650508030000 Stenochironomus Arthropoda Insecta Diptera Chironomidae<br />

650508040000 Procladius Sp. Arthropoda Insecta Diptera Chironomidae<br />

650508049900 Procladius (Holotanypus) Sp. 1 Arthropoda Insecta Diptera Chironomidae<br />

650508260000 Cricotopus Sp. Arthropoda Insecta Diptera Chironomidae<br />

650508310000 Tanytarsus Sp. Arthropoda Insecta Diptera Chironomidae<br />

650508310500 Tanytarsus E Arthropoda Insecta Diptera Chironomidae


Master EPCHC Benthic Species Identification List<br />

Nodccode Name Phylum Class Order Infraord Family<br />

650508310700 Tanytarsus G Arthropoda Insecta Diptera Chironomidae<br />

650508311500 Tanytarsus O Arthropoda Insecta Diptera Chironomidae<br />

650508311700 Tanytarsus Q Arthropoda Insecta Diptera Chironomidae<br />

650508330000 Chironomus Sp. Arthropoda Insecta Diptera Chironomidae<br />

650508360000 Cryptochironomus Sp. Arthropoda Insecta Diptera Chironomidae<br />

650508370000 Polypedilum Sp. Arthropoda Insecta Diptera Chironomidae<br />

650508371100 Polypedilum Convictum Arthropoda Insecta Diptera Chironomidae<br />

650508371700 Polypedilum Halterale Grp. Arthropoda Insecta Diptera Chironomidae<br />

650508372300 Polypedilum Simulans Arthropoda Insecta Diptera Chironomidae<br />

650508379900 Polypedilum Scalaneum Group Arthropoda Insecta Diptera Chironomidae<br />

650508380000 Pseudochironomus Sp. Arthropoda Insecta Diptera Chironomidae<br />

650508390000 Glyptotendipes Sp. Arthropoda Insecta Diptera Chironomidae<br />

650508430000 Cladotanytarsus Sp. Arthropoda Insecta Diptera Chironomidae<br />

650508430300 Cladotanytarsus Daviesi Arthropoda Insecta Diptera Chironomidae<br />

650508440000 Ablabesmyia Sp. Arthropoda Insecta Diptera Chironomidae<br />

650508441400 Ablabesmyia Mallochi Arthropoda Insecta Diptera Chironomidae<br />

650508442000 Ablabesmyia Rhamphe Arthropoda Insecta Diptera Chironomidae<br />

650508442100 Ablabesmyia (Karelia) Sp. Arthropoda Insecta Diptera Chironomidae<br />

650508450900 Dicrotendipes Neomodestus Arthropoda Insecta Diptera Chironomidae<br />

650508451200 Dicrotendipes Simpsoni Arthropoda Insecta Diptera Chironomidae<br />

650508461000 Nanocladius Distinctus Arthropoda Insecta Diptera Chironomidae<br />

650508570100 Djalmabatista Pulchra Arthropoda Insecta Diptera Chironomidae<br />

650508580100 Fissimentum Sp. A Arthropoda Insecta Diptera Chironomidae<br />

650508590000 Stempellina Sp. Arthropoda Insecta Diptera Chironomidae<br />

650508920000 Pagastiella Sp. Arthropoda Insecta Diptera Chironomidae<br />

650508930000 Axarus Sp. Arthropoda Insecta Diptera Chironomidae<br />

650508940100 Asheum Beckae Arthropoda Insecta Diptera Chironomidae<br />

650508950100 Goeldichironomus Amazonicus Arthropoda Insecta Diptera Chironomidae<br />

650508960100 Paracladopelma Cf. Doris Arthropoda Insecta Diptera Chironomidae<br />

650508970000 Lopescaldius Sp. Arthropoda Insecta Diptera Chironomidae<br />

650508980000 Cryptotendipes Sp. Arthropoda Insecta Diptera Chironomidae<br />

650508990000 Chironomini Genus A Arthropoda Insecta Diptera Chironomidae


Master EPCHC Benthic Species Identification List<br />

Nodccode Name Phylum Class Order Infraord Family<br />

720000000000 86 SIPUNCULA Sipuncula<br />

720000009500 Sipuncula Sp. A Sipuncula<br />

720000009600 Sipuncula Sp. B Sipuncula<br />

720000009700 Sipuncula Sp. C Sipuncula<br />

720002040100 Phascolion Crypta Sipuncula<br />

720003000000 Aspidosiphonidae Sipuncula<br />

740000000000 Priapula Sp.<br />

740001010000 Priapulus Sp.<br />

770001020000 Phoronis Sp. Phoronida<br />

770001020300 Phoronis ?Architecta Phoronida<br />

770001029600 Phoronis D Phoronida<br />

770001029700 Phoronis A Phoronida<br />

770001029800 Phoronis C Phoronida<br />

770001029900 Phoronida B Phoronida<br />

780000000000 BRYOZOA<br />

780000009300 Bryozoa G<br />

780000009400 Bryozoa F<br />

780000009500 Bryozoa E<br />

780000009600 Bryozoa D<br />

781504010000 Membranipora<br />

781515020000 Discoporella Sp.<br />

800201010100 Glottidia Pyramidata Brachiopoda<br />

810400000000 87 ASTEROIDEA Echinodermata<br />

812000000000 OPHIUROIDEA Echinodermata<br />

812701100100 Ophiolepis Elegans Echinodermata<br />

812705010100 Ophioderma Brevispinum Echinodermata<br />

812902020100 Hemipholis Elongata Echinodermata<br />

812902030100 Ophiactis Savignyi Echinodermata<br />

812903000000 AMPHIUROIDEA Echinodermata<br />

812903010600 Amphiodia Pulchella Echinodermata<br />

8129030117nr Amphiodia Nr. Riisei Echinodermata


Master EPCHC Benthic Species Identification List<br />

Nodccode Name Phylum Class Order Infraord Family<br />

812903020000 Amphipholis Sp. Echinodermata<br />

812903020200 Amphipholis Squamata Echinodermata<br />

812903020500 Amphipholis Gracillima Echinodermata<br />

812903060000 Ophiophragmus Sp. Echinodermata<br />

812903060300 Ophiophragmus Wurdemanii Echinodermata<br />

812903060400 Ophiophragmus Pulcher Echinodermata<br />

812903060600 Ophiophragmus Filograneus Echinodermata<br />

812903060900 Ophiphragmus Brachyactus Echinodermata<br />

812903090000 Amphioplus Sp. Echinodermata<br />

812903090100 Amphioplus Abditus Echinodermata<br />

812903090400 Amphioplus Thrombodes Echinodermata<br />

812903090500 Amphioplus Sepultus Echinodermata<br />

812903091100 Amphioplus Cuneatus Echinodermata<br />

812903099900 Amphioplus A Echinodermata<br />

812903101100 Amphiura Flexuosa Echinodermata<br />

812903120000 Micropholis Sp. Echinodermata<br />

812903120100 Amphipholis Atra Echinodermata<br />

812903129900 Amphipholis Sp. A Echinodermata<br />

812904010200 Ophiothrix Angulata Echinodermata<br />

813600000000 88 ECHINOIDEA Echinodermata<br />

815504010100 Mellita Tenuis Echinodermata<br />

817000000000 89 HOLOTHUROIDEA Echinodermata<br />

817000000002 Holothuroidea B Echinodermata<br />

817000000003 Holothuroidea C Echinodermata<br />

817203000000 Psolidae A Echinodermata<br />

817400000000 Aspidochirotacea Echinodermata<br />

817401010100 Eostichopus Regalis Echinodermata<br />

817801000001 Synaptidae Sp. Echinodermata<br />

817801009500 Synaptidae A Echinodermata<br />

817801009700 Synaptidae C Echinodermata<br />

817801020000 Leptosynapta Echinodermata


Master EPCHC Benthic Species Identification List<br />

Nodccode Name Phylum Class Order Infraord Family<br />

820100000000 90 ENTEROPNEUSTA<br />

820100000001 Enteropneusta A<br />

820100000002 Enteropneusta B<br />

820100000003 Enteropneusta C<br />

820101030300 Saccoglossus A<br />

821010201000 Stereobalanus Canadensis<br />

840100000000 ASCIDIACEA<br />

850001010000 Branchiostoma Floridae


Page 1<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

7.0 Adult <strong>and</strong> Juvenile Fish<br />

The primary objective of this HBMP element is to develop comprehensive, long-term<br />

measurements of species composition (to the lowest practical identifiable level),<br />

abundance <strong>and</strong> distribution of adult <strong>and</strong> juvenile fishes within each of the four major<br />

reporting units. This section describes activities being conducted by the Florida Fish <strong>and</strong><br />

Wildlife Conservation Commission’s Fisheries-Independent Monitoring (FIM) section of<br />

the Fish <strong>and</strong> Wildlife Research Institute (FWRI), formerly known as the Florida Marine<br />

Research Institute (FMRI), in St. Petersburg.<br />

7.1 Project Management<br />

The overall general organization of the adult <strong>and</strong> juvenile fishes HBMP monitoring<br />

element is outlined in Figure 7.1. There are three critical points for QA/QC feedback: at<br />

the Project Manager position; at the Sampling Operations Manager position; <strong>and</strong> at the<br />

Data Management position. The Project Manager is ultimately responsible for all<br />

internal QA/QC aspects of the field sampling, species identification <strong>and</strong> data<br />

management facets of the sampling program. It is the initial responsibility of the<br />

Sampling Operations Manager to oversee the implementation of all QA/QC protocols<br />

associated with the collection of field data <strong>and</strong> species identification.<br />

7.2 HBMP Adult <strong>and</strong> Juvenile Fish Monitoring<br />

Sampling will be conducted monthly as outlined in Table 7.1, <strong>and</strong> the data submitted to<br />

the primary contractor (PBS&J) on a quarterly basis. Each of the tributaries (Alafia,<br />

Palm <strong>and</strong> Hillsborough Rivers) <strong>and</strong> bays (McKay <strong>Bay</strong> <strong>and</strong> Hillsborough <strong>Bay</strong>) are<br />

considered separate reporting units. Each of the tributaries has been subdivided into<br />

relatively equal length strata, ensuring that the entire salinity gradient is sampled each<br />

month. Within each tributary stratum, two 21-m seines <strong>and</strong> one 6.1-m otter trawl<br />

samples will be collected as outlined in Table 7.2. The sampling sites, sampling dates,<br />

<strong>and</strong> order in which reporting units are sampled within a designated sampling period are<br />

r<strong>and</strong>omly chosen.<br />

7.2.1 Site Selection<br />

Sampling site selection will be made following a stratified-r<strong>and</strong>om design. In each of the<br />

rivers, primary sample sites within each stratum will be selected from a universe of points<br />

that define a line down the middle of the river. An octagonal grid system has been<br />

overlaid on McKay <strong>Bay</strong> to create a universe of sampling sites in this system. In 2005,<br />

sampling began in a portion of Hillsborough <strong>Bay</strong> that is immediately outside of the Alafia<br />

River; a universe of sampling sites in this area has been divided into two strata based<br />

upon distance from the river mouth. In the rivers, a lateral position (left or right) will be<br />

r<strong>and</strong>omly chosen for each r<strong>and</strong>omly selected sampling site. If the sampling site is to be a<br />

seine site, the field manager should locate the site <strong>and</strong>, while facing upriver, turn 90º in


Page 2<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

the direction of the lateral position. The field manager will then travel perpendicular to<br />

the river’s midline until the shoreline is encountered; this is the site to be sampled. For<br />

trawl sites, once the r<strong>and</strong>omly selected point is located, the trawl will be pulled into the<br />

current along the river’s midline. In McKay <strong>and</strong> Hillsborough <strong>Bay</strong>s, the selected site is<br />

the site to be sampled.<br />

If a primary site cannot be sampled (e.g., too deep, submerged obstructions, docks or<br />

bridges in the way, etc.) an alternate site is to be sampled. A list of alternate sampling<br />

sites for each sampling period, stratum, <strong>and</strong> gear is generated by FIM program personnel<br />

prior to each sampling event. When the primary site cannot be sampled, the field<br />

manager will work sequentially down the list of alternate sites until a site that can be<br />

sampled is identified. Sites that cannot be sampled at any time will be noted to better<br />

define the sampling universe.<br />

7.2.2 Sampling Protocol<br />

The HBMP adult <strong>and</strong> juvenile fish sampling will follow st<strong>and</strong>ard FIM protocols (see<br />

below), with a few additions. Trawls in the rivers <strong>and</strong> bays will follow procedures<br />

detailed for river trawls, with five minute (~0.1nm) tows. Seining with the 21-m seine<br />

will be conducted using boat set seine procedures in the rivers, <strong>and</strong> offshore seine<br />

procedures in McKay <strong>and</strong> Hillsborough bays. Processing of biological samples will<br />

follow procedures outlined in: 1) Sample Work-up; 2) Subsampling <strong>and</strong>; 3)<br />

Representative <strong>and</strong> Unidentified Sample Collection. Biological data will be recorded on<br />

the FIM program’s length data sheets.<br />

All field data will be recorded using the FIM program’s field data sheet following<br />

st<strong>and</strong>ard FIM procedures. Vertical profile Hydrolab casts will be taken at all sampling<br />

sites. Surface measurement will be taken such that the Hydrolab’s probes are 150 mm<br />

from the surface. Additional recordings will be taken at 1-m intervals from the surface to<br />

the bottom. A final Hydrolab reading <strong>and</strong> depth will be recorded at the bottom. A<br />

measured rope, attached to the Hydrolab Sonde, will be used to demarcate the depth<br />

intervals. If the water depth is less than a meter, both surface <strong>and</strong> bottom readings will<br />

still be recorded. Hydrolabs must be pre-calibrated the day of sampling <strong>and</strong> postcalibration<br />

must occur within 24 hours of completing a day of sampling; all calibrations<br />

will be in accordance with st<strong>and</strong>ard procedures. Station numbers that identify the<br />

reporting unit <strong>and</strong> the location within that system will be recorded on the data sheet.<br />

Additionally, all latitude/longitude coordinates will be recorded to the third decimal<br />

minute using a GPS. If vertical profiling of temperature <strong>and</strong> salinity or if location<br />

information cannot be completed, biological sampling will be terminated. Representative<br />

<strong>and</strong> unidentified samples will be brought back to the lab <strong>and</strong> worked up following<br />

st<strong>and</strong>ard FIM program protocols.


Page 3<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

7.2.3 Data Management<br />

Data sheets will be filled out by the Principal Investigator (“PI” i.e. the person in charge<br />

of a sampling trip) in the field <strong>and</strong> coded upon return to the lab. Additionally, the sheets<br />

will be independently reviewed by a second crewmember prior to being submitted for<br />

data entry. All physical <strong>and</strong> biotic data will be h<strong>and</strong>led following the st<strong>and</strong>ard FIM<br />

program data entry, management, <strong>and</strong> processing protocols. Once the data have been<br />

entered, proofed, <strong>and</strong> completed, corrections based upon the representative <strong>and</strong><br />

unidentified samples will be made to the database. The data will then undergo the FIM<br />

program error checking <strong>and</strong> data summary procedures. Documented data will be turned<br />

over to the project consultant (PBS&J) in Microsoft Access format when the data from<br />

each quarter has been completely processed <strong>and</strong> error checked.<br />

7.3 St<strong>and</strong>ard Fisheries Independent Monitoring Procedures <strong>and</strong> Protocols<br />

The following protocols <strong>and</strong> procedures are designed to define the variables concerning<br />

the Fisheries-Independent Monitoring elements of the HBMP. Methods <strong>and</strong> sampling<br />

protocols used in the fish studies must follow the procedures contained within this<br />

portion of the QA/QC Plan. These st<strong>and</strong>ardized sampling procedures, sampling<br />

techniques, data recording, etc. will ensure data that can then be combined or compared<br />

as appropriate.<br />

Members of the Fisheries-Independent Monitoring elements of the HBMP must read,<br />

underst<strong>and</strong> <strong>and</strong> follow all steps in each procedure outlined below. If questions or<br />

suggestions arise, the Project Manager must be consulted for clarification before any<br />

further actions can be taken. Under no circumstance should a procedure or steps within a<br />

procedure be omitted or modified.<br />

The major protocols <strong>and</strong> procedures associated with the fisheries elements of the HBMP<br />

monitoring program are listed below in the order they are presented.<br />

7.3.1 Overview of Fisheries-Independent Monitoring Program<br />

7.3.2 Principal Investigator’s Duties<br />

7.3.3 Stratified-R<strong>and</strong>om Sampling<br />

7.3.4. Sampling Gears<br />

7.3.5 Field Sampling<br />

7.3.6 Laboratory Work-Up<br />

7.3.7 Data<br />

7.3.1 Overview of Fisheries-Independent Monitoring Program<br />

Since the early 1980s, the Fish & Wildlife Research Institute (FWRI) has been<br />

developing a systematic <strong>and</strong> continuous fisheries program with the purpose of monitoring<br />

commercial <strong>and</strong> recreational marine fisheries <strong>and</strong> to collect <strong>and</strong> integrate essential<br />

information used in the management <strong>and</strong> enhancement of Florida’s marine resources.


Page 4<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Two basic components compose Florida’s Marine Fisheries Monitoring Program: the<br />

Fisheries-Independent Monitoring (FIM) program <strong>and</strong> the Fisheries-Dependent<br />

Monitoring (FDM) program. The FDM program is composed of three parts: the Florida<br />

Marine Fisheries Information System ("trip ticket"), the Trip Interview Program (TIP),<br />

<strong>and</strong> the National Marine Fisheries Service’s (NMFS) Marine Recreational Fishery<br />

Statistics Survey (MRFSS). The Fisheries-Independent Monitoring <strong>and</strong> Fisheries-<br />

Dependent Monitoring programs use different strategies to monitor the status of Florida’s<br />

marine fisheries. The FIM program assesses fish stocks by directly sampling the fish<br />

population independent of either the commercial or recreational fisheries, whereas the<br />

FDM program estimates fishing pressure <strong>and</strong> l<strong>and</strong>ings (commercial or recreational) <strong>and</strong><br />

uses those data as indicators of stock structure.<br />

The design phase of the FIM program began in 1985 with initial funding provided by a<br />

federal Sport Fish Restoration grant. Between 1985 <strong>and</strong> 1988, the FIM program’s<br />

sampling design, gear types, methodologies, <strong>and</strong> philosophies were developed.<br />

Preliminary sampling in <strong>Tampa</strong> <strong>Bay</strong> was conducted in 1988 <strong>and</strong> routine monitoring of<br />

fishery stocks in <strong>Tampa</strong> <strong>Bay</strong> <strong>and</strong> Charlotte Harbor commenced during 1989. Although<br />

funding under the federal grant continues, the majority of the program is now supported<br />

by Florida saltwater recreational fishing license fees.<br />

The FIM program was initially developed to assess the recruitment of young-of-the-year<br />

resource species into the estuary. This approach allows researchers to be more predictive<br />

in stock estimates than estimates determined from fisheries-dependent monitoring. Longterm<br />

fisheries-independent monitoring of juvenile life stages of finfish stocks should<br />

allow fishery managers to formulate policies proactively rather than reactively, which has<br />

often been the traditional approach.<br />

The FIM program’s current objectives are to: 1) establish baseline data on the relative<br />

abundance of inshore fishes <strong>and</strong> select macroinvertebrates; 2) detect seasonal <strong>and</strong> annual<br />

trends in abundances <strong>and</strong> determine the underlying environmental factors influencing<br />

these trends; 3) identify critical habitats utilized by fishes <strong>and</strong> select macroinvertebrates;<br />

4) provide data to be used in the determination of critical life history parameters (age <strong>and</strong><br />

growth, maturity, <strong>and</strong> reproductive cycle) of select species; <strong>and</strong> 5) provide data for<br />

developing <strong>and</strong> assessing the efficacy of fishery management <strong>plan</strong>s. To achieve these<br />

objectives, the FIM program employs a holistic approach to sampling, using a multispecies,<br />

multi-gear sampling design to collect information on all species, not just those of<br />

recreational or commercial importance. The FIM program also records extensive sitespecific<br />

information on environmental <strong>and</strong> biological variables that allows researchers to<br />

evaluate species interactions, habitat dependencies, <strong>and</strong> the effects of environmental<br />

influences on fishery recruitment processes. These data, therefore, are not only<br />

invaluable for traditional stock assessments but can also be used for habitat-suitability<br />

modeling (HSI), identification of essential fish habitat (EFH), multi-species stock<br />

assessments, <strong>and</strong> ecosystem modeling.


Page 5<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

7.3.2 Principal Investigator’s Duties<br />

This procedure should be used by the Principal Investigator to ensure that all<br />

responsibilities of the PI are completed. Responsibilities include items that must be done<br />

before <strong>and</strong> after a sampling trip. Tasks can be delegated by the PI to other crewmembers,<br />

as necessary.<br />

7.3.2.1 Objectives<br />

1. To ensure that all aspects of a sampling trip are conducted safely.<br />

2. To ensure that all sampling is completed according to the st<strong>and</strong>ard Fisheries-<br />

Independent Monitoring (FIM) program procedures.<br />

3. To ensure that each sampling trip is completed to the fullest extent possible.<br />

4. To ensure that all data sheets, reports <strong>and</strong> forms are filled out correctly <strong>and</strong><br />

completely.<br />

7.3.2.2 Pre-Sampling Trip<br />

1. Obtain sampling dates, collection numbers, sampling type, zone, grid, microgrid,<br />

spiral directions, <strong>and</strong> names of crew members from the <strong>Bay</strong> System Coordinator<br />

or designee.<br />

2. Reserve a vehicle <strong>and</strong> boat for appropriate time period.<br />

3. Review sampling sites on a gridded chart or topographic map to determine if an<br />

alternate site is needed. Be aware of areas closed to boats/motors <strong>and</strong> Submerged<br />

Aquatic Vegetation policy.<br />

4. Submit a float <strong>plan</strong> to the <strong>Bay</strong> System Coordinator or designee at least three days<br />

prior to the sampling trip. The float <strong>plan</strong> should contain grid <strong>and</strong> microgrid<br />

information, departure time, <strong>and</strong> other pertinent information.<br />

5. Load the boat with all sampling gear needed to complete the sampling trip<br />

(Appendix 7-A). Check to make sure all needed gear is on board <strong>and</strong> in good<br />

working condition.<br />

6. Procure data books with a sufficient number of data sheets, appropriate safety<br />

equipment (e.g., first aid box <strong>and</strong> flares), electronics (e.g., depth meter, GPS <strong>and</strong><br />

cell phone or VHF radio), <strong>and</strong> Hydrolab.<br />

7. Check boat <strong>and</strong> truck for gas <strong>and</strong> oil.<br />

8. Notify Marine Patrol of sampling schedule. Before any sampling trip the PI must<br />

FAX the Marine Patrol <strong>and</strong> any other relevant agencies using the FWRI field<br />

activity notification form (Figure 7.2). The Marine Patrol should be faxed the<br />

morning of the trip.


Page 6<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

9. Obtain personal gear (e.g., foul weather gear <strong>and</strong> booties).<br />

10. Obtain <strong>and</strong> fill cooler(s) with ice.<br />

11. Go through the trip equipment checklist with the crew before departing.<br />

12. Complete sampling using st<strong>and</strong>ardized FIM program procedures.<br />

13. It is the responsibility of the PI to be aware of <strong>and</strong> attempt to fill any Species<br />

Action Notices.<br />

7.3.2.3 Post-Sampling Trip<br />

1. Following every sampling trip, fill the truck <strong>and</strong> boat gas tanks <strong>and</strong> check the oil<br />

levels.<br />

2. Upon returning to the lab, rinse the boat, trailer <strong>and</strong> vehicle with freshwater, <strong>and</strong><br />

run the boat engine with fresh water to flush out s<strong>and</strong> <strong>and</strong> salt water.<br />

3. Fish brought back to the lab for identification or as a representative sample should<br />

be placed in the proper freezer location.<br />

4. Ensure that all damaged gear has been tagged.<br />

5. Ensure all gear <strong>and</strong> electronics have been properly cleaned <strong>and</strong> stored.<br />

6. Inform the proper personnel of any problems associated with the boat, electronics<br />

or gear, <strong>and</strong> follow up on all repair problems to ensure they have been corrected.<br />

7. Communicate any problems to the PI in charge of the next sampling trip so<br />

alternative arrangements can be made if the repairs cannot be finished prior to the<br />

scheduled sampling.<br />

8. Make sure all samples brought back to the lab are completely worked up (age <strong>and</strong><br />

growth specimens) or delivered to the appropriate sections (fish health <strong>and</strong><br />

genetic specimens). Make sure all Species Action Notice specimens collected for<br />

others are stored appropriately <strong>and</strong> the contact person is notified.<br />

9. Check the field <strong>and</strong> length sheets to make sure they are properly filled out. Have<br />

an experienced crewmember review data sheets against the original selected grids,<br />

the float <strong>plan</strong>, <strong>and</strong> the trip report. This will reduce the number of errors in the<br />

data set <strong>and</strong> make analysis much easier.<br />

10. Submit completed data sheets for data entry within four working days of the trip<br />

completion.<br />

11. Submit any public interactions to the FWRI Intranet using the info request<br />

electronic form.<br />

12. A trip summary report must be completed for each sampling trip within two<br />

working days of the trip. Discuss highlights <strong>and</strong> identify problems that occurred<br />

during the trip. These should be turned in to the <strong>Bay</strong> System Coordinator.


Page 7<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

7.3.2.4 Responsibilities<br />

1. The PI has the responsibility for the safety of the rest of the crew.<br />

2. The PI is responsible for completing the sampling trip to the fullest extent<br />

possible.<br />

3. The PI is responsible for ensuring the collection of representative samples,<br />

unidentified specimens, <strong>and</strong> Species Action Notice specimens.<br />

4. It is the PI’s responsibility to ensure that all equipment has been cleaned <strong>and</strong> put<br />

away following completion of a trip.<br />

5. The PI has the final decision in matters of continuing sampling, aborting samples,<br />

or adjusting the sampling regime. The PI may also receive input from the crew.<br />

The PI does not have the authority to modify, omit, or knowingly sample counter<br />

to procedures. It is the responsibility of the PI to conform to all FIM program<br />

procedures.<br />

6. FWRI Field Activity Notification (see Figure 7.2). This is to serve as Notification<br />

that the following described field activities will be conducted by employees of the<br />

Florida Fish <strong>and</strong> Wildlife Conservation Commission/ Fish & Wildlife Research<br />

Institute.<br />

7.3.3 Stratified-R<strong>and</strong>om Sampling<br />

The Fisheries-Independent Monitoring program uses a stratified-r<strong>and</strong>om sampling (SRS)<br />

technique to monitor fish populations in estuarine systems throughout the state of Florida.<br />

To ensure sampling protocols are the same in all estuarine systems, a set of st<strong>and</strong>ardized<br />

procedures has been developed. To maintain the integrity of the program, it is essential<br />

that these procedures be adhered<br />

Stratified-r<strong>and</strong>om sampling is conducted throughout the year. Sampling is conducted<br />

each month in as tight a window as possible to provide a synoptic overview of fish<br />

abundances throughout the estuaries. For logistical reasons, sampling with the 183-m<br />

seine <strong>and</strong> purse net are sometimes combined with the 21.3-m seine <strong>and</strong> 6.1-m otter trawl<br />

sampling. All sampling is completed during Period 2 (daytime).<br />

The selection of sample grids for both juvenile <strong>and</strong> adult SRS are made by zone, with the<br />

number of samples taken in each zone proportional to the number of grids that can be<br />

sampled by that gear baywide. After sample sites have been selected, zone boundaries<br />

are removed <strong>and</strong> samples grouped to enhance sampling logistics. The order in which<br />

these groups of sites are sampled during the sampling period is then r<strong>and</strong>omly selected.<br />

Sampling sites will be selected <strong>and</strong> visited as described in Section 7.2.1.


Page 8<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

7.3.3.1 Objectives<br />

1. To monitor fishes <strong>and</strong> selected macroinvertebrate populations using stratifiedr<strong>and</strong>om<br />

sampling techniques.<br />

2. To r<strong>and</strong>omly sample various locations within the reporting units of the HBMP.<br />

3. To ensure that the methods of sampling are st<strong>and</strong>ardized.<br />

4. To utilize the most efficient sampling gear for each specific habitat type.<br />

7.3.3.2 Procedure<br />

Principal Investigator’s (PI) Duties<br />

See Section 7.3.2<br />

Crew Duties<br />

1. Assist PI in sampling trip preparation.<br />

2. Verify that all necessary gear has been loaded prior to departure.<br />

3. Find out meeting time for departure from the lab.<br />

4. Collect samples according to established protocols.<br />

5. Notify PI of any problems encountered.<br />

6. Upon completion of the trip, ensure that all gear is cleaned <strong>and</strong> properly stored.<br />

7. Make sure that all damaged gear has been tagged <strong>and</strong> that the PI notifies the<br />

proper personnel of the damage.<br />

8. Flush the boat motor with fresh water <strong>and</strong> wash the boat, trailer <strong>and</strong> vehicle<br />

thoroughly with fresh water.<br />

SRS Monitoring<br />

1. 21.3-m Seines: Following the procedure specified in sections 7.3.4.2 <strong>and</strong> 7.3.4.3,<br />

collect samples at r<strong>and</strong>omly selected seine sites. If site selection is by stratum,<br />

ensure that samples are collected in the pre-determined stratum, or that proper<br />

alternate site selection criteria are followed.<br />

2. 6.1-m Otter Trawls: Following Procedure 7.3.4.4, collect samples at the<br />

r<strong>and</strong>omly selected trawl sites.


Page 9<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

7.3.4 Sampling Gears<br />

7.3.4.1 21.3-m Center-Bag Seine<br />

A 21.3-m center bag seine is used to collect juvenile <strong>and</strong> small adult fish <strong>and</strong><br />

macrocrustaceans along bay edges, river banks, shallow tidal flats <strong>and</strong> most areas where<br />

water depth is less than 1.5 m (1.8 m in rivers). Two techniques are employed by the<br />

FIM program to cover specific habitats. The bay technique is used where the water depth<br />

is less than 1.5 m, such as tidal flats, mangrove fringes, sea wall habitats, sloping beaches<br />

<strong>and</strong> banks. The river technique samples riverine areas <strong>and</strong> tidal creeks where water depth<br />

typically increases rapidly (to not more than 1.8 m) from the shoreline, making it<br />

impossible to use the bay or beach techniques.<br />

Gear Description<br />

21.3-m center-bag seine, 1.8-m deep with 3.2-mm #35 knotless nylon Delta mesh.<br />

Objectives<br />

1. To produce an accurate, quantitative sample of juvenile <strong>and</strong> small adult fishes<br />

which utilize shallow-water habitats.<br />

2. To estimate relative abundance of small fishes <strong>and</strong> macrocrustaceans that use<br />

shallow water regions of the estuary.<br />

Procedure<br />

1. Obtain sampling site locations, coordinates, <strong>and</strong> seining methodology from the<br />

<strong>Bay</strong> System Coordinator.<br />

2. Ensure the starting bag depth is greater than 0.3 m. Note: If at all possible, avoid<br />

deployment in areas where submerged obstructions (logs, oysters, rocks, etc.) may<br />

snag the net allowing fish to escape underneath the lead line as the net is<br />

retrieved. If there are many snags, the sample must be aborted.<br />

3. Physical data should be taken at the original bag location <strong>and</strong> recorded following<br />

the data sheet procedure.<br />

4. For bay <strong>and</strong> beach seine techniques, record the percent submerged aquatic<br />

vegetation (SAV) cover (BOTTOM VEG) as a quantitative estimate over the<br />

entire area seined.<br />

5. For river seine technique, record the percent overhanging vegetation cover<br />

(SHORE TYPE) as a quantitative estimate over the entire shoreline seined.<br />

Table 7.3 lists the minimum <strong>and</strong> maximum bag depths <strong>and</strong> the maximum wing depth for<br />

the different 21.3-m seine techniques. If the depths do not meet the minimum or<br />

maximum depth requirements, an alternate sampling site should be selected following<br />

st<strong>and</strong>ard FIM procedures.


Page 10<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

7.3.4.2 Center-bag Seine (21.3-m bay seine technique)<br />

The 21.3-m bay (previously called offshore) seine technique is currently being used for<br />

stratified-r<strong>and</strong>om sampling in <strong>Tampa</strong> <strong>Bay</strong>.<br />

Objective<br />

To effectively sample areas within Florida estuaries where the water depth is less than 1.5<br />

m, such as tidal flats, mangrove fringes, seawall habitats, <strong>and</strong> shallow sloping beaches<br />

<strong>and</strong> banks.<br />

Procedure<br />

1. Locate designated site to be sampled.<br />

2. Attach the 15.5-m (51’) line to the top of the seine poles. Separate the poles until<br />

the 15.5-m line is taut (Figure 7.3A).<br />

3. Stretch the seine out perpendicular to the current, with the mouth of the bag<br />

facing into the current. However, if the wind is strong, <strong>and</strong> has more influence on<br />

the seine than the current, stretch the seine out perpendicular to the wind. The<br />

bag depth (START DEPTH) should be noted at this time. Gear-specific START<br />

DEPTH guidelines are listed in Table 7.3.<br />

4. Pull the leads <strong>and</strong> floats of the bag back until the seine is in a fishing position.<br />

5. Angle seine poles so that the lead line is slightly ahead of the float line. The<br />

person walking with the 9.1-m (30’) distance line (<strong>and</strong> the pivot pole) will walk at<br />

the same pace as the seiners; walking ahead of the seine may scare fish into or out<br />

of the net.<br />

6. Seine into the current or wind. Keep the 15.5-m line taut at all times.<br />

7. Use the 9.1-m line to measure the distance traveled.<br />

8. At the end of the 9.1-m line, the two seiners walk directly toward each other as<br />

rapidly as possible.<br />

9. Plant a third pole (pivot pole) at the point where the two seiners meet (Figure<br />

7.3B) <strong>and</strong> angle the pivot pole to help keep the leads down.<br />

10. The WING DEPTH should be noted when the two seine poles come together.<br />

Gear-specific WING DEPTH guidelines for are listed in Table 7.3.<br />

11. Orient the mouth of the bag into the current/wind to keep the bag open <strong>and</strong> ensure<br />

the movement of fish into the bag.<br />

12. One of the two seiners takes both seine poles <strong>and</strong> pulls the seine around the pivot<br />

pole at an angle sufficient to avoid gaps between the pole <strong>and</strong> the netting (Figure<br />

7.3C).


Page 11<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

13. The second seiner helps the pivot person hold the pole <strong>and</strong> guide the seine around<br />

the pole, keeping the lead line on the bottom at all times by “footing”. The<br />

second seiner <strong>and</strong> the pivot person will also push the wings firmly against the<br />

pivot pole to prevent fish from escaping. In shallow water (


Page 12<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

3. Slowly approach the sampling site, running the boat parallel to shore at the<br />

shallowest depth possible. Turn the boat away from the shore as the first person<br />

jumps on or close to shore.<br />

NOTE: River seines set against an inundated shoreline have a maximum wing depth of 0.5 m<br />

unless the seine is set along a seawall, where the maximum wing depth is 1.0 m. The minimum<br />

<strong>and</strong> maximum bag depth for river seines is 0.3 m <strong>and</strong> 1.8 m, respectively. If the depths do not<br />

meet the minimum or maximum depth requirements, an alternate sampling site should be selected<br />

following st<strong>and</strong>ard FIM procedures.<br />

4. The first person on shore waits while the remainder of the net is deployed. This<br />

person ensures that there are no escape routes either under the lead line or along<br />

the shore edge.<br />

5. The boat operator increases speed <strong>and</strong> steers a semi-circular course along the<br />

shoreline, paying out the net until the bag is overboard.<br />

6. Once the bag is deployed the driver should be notified <strong>and</strong> the water depth at the<br />

bag (START DEPTH) should be noted.<br />

7. The boat operator then turns the boat toward shore, slowing the boat <strong>and</strong> lifting<br />

the engine as the boat approaches shore <strong>and</strong> the end of the seine.<br />

8. A second person jumps overboard <strong>and</strong> quickly drags the second pole to shore.<br />

9. When both seine poles are on shore, they are pulled toward each other, keeping<br />

the leads on the bottom.<br />

NOTE: Be sure to get the seine poles as close to the l<strong>and</strong>-water interface as possible.<br />

10. When the poles are about 1 m apart, drop the poles to begin working the net to<br />

shore. Note the WING DEPTH at this time. The WING DEPTH is the average<br />

depth of water, to the nearest 0.1 m, along the path fished by the seine end(s)<br />

closest to shore.<br />

11. One crew member begins pulling in the leads while the other two assist by<br />

holding the wings up <strong>and</strong> pulling them toward shore. Any fish remaining in the<br />

wings should be put inside the net.<br />

12. When the leading edge of the bag’s lead line is on shore, trip the net by lifting at<br />

the bag/wing junctions. If the sample is muddy, pull the bag offshore <strong>and</strong> rinse in<br />

deeper, clearer water.<br />

13. Reduce the bag size by slowly inverting the bag to concentrate the fish.<br />

14. Place the sample into a bucket or tub. Large fish may be measured <strong>and</strong> released<br />

at this time.


Page 13<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

15. Collect fish that remained in the wings or on the beach <strong>and</strong> place in the sample.<br />

Most of the fish should have been put into the bag as it was retrieved. Subsample<br />

using proper procedures if necessary.<br />

16. Follow proper sample work-up (Section 7.3.5.1).<br />

17. Physical data should be taken at the original bag location <strong>and</strong> recorded following<br />

the data sheet procedure.<br />

7.3.4.4 6.1-m Otter Trawl<br />

A 6.1-m otter trawl is used in the Fisheries-Independent Monitoring (FIM) program to<br />

sample areas of the estuarine system between 1.8 m <strong>and</strong> 7.6 m in depth. In addition to<br />

sampling areas of the bay not accessible to seines, trawls tend to collect epibenthic fish<br />

<strong>and</strong> macrocrustaceans that are larger than those typically collected in seines.<br />

Gear Description<br />

6.1-m otter trawl with 38-mm stretch mesh <strong>and</strong> 3-mm mesh liner.<br />

Objective<br />

To collect an accurate quantitative sample of epibenthic fish found in deeper (1.8 - 7.6 m)<br />

portions of the bay <strong>and</strong> rivers.<br />

Procedure<br />

1. Preliminary procedures<br />

A. Obtain sampling site locations <strong>and</strong> coordinates from the <strong>Bay</strong> System<br />

Coordinator.<br />

B. Arrive at the site safely <strong>and</strong> without disturbing the area to be sampled.<br />

C. Record physical data at each site sampled.<br />

D. Ensure starting depth is less than 7.6 m <strong>and</strong> greater than 1.8 m.<br />

NOTE: If water depths shallower than 1.8 m are encountered during a trawl, an<br />

alternate sampling site should be selected. Exceptions to this rule include sampling<br />

in rivers <strong>and</strong> basins (Florida <strong>Bay</strong>) where an arc tow can be completed in lieu of a<br />

straight tow (Section 8). Preference, however, should always be given to completing<br />

a straight-towed trawl when possible. Obtain sampling site locations <strong>and</strong> coordinates<br />

from the <strong>Bay</strong> System Coordinator.<br />

2. Trawl preparation<br />

A. Attach the trawl harness to the cleats on each gunwale.


Page 14<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

B. Coil the tow line <strong>and</strong> bridle forward of the gas tank bulkhead so they<br />

will deploy without tangling.<br />

C. Attach the ends of the bridle lines to the trawl doors.<br />

D. Tie the cod-end of the trawl <strong>and</strong> ensure a crab float is securely<br />

attached to the net.<br />

E. Unfold the net, with the doors separated in the net well, <strong>and</strong> make sure<br />

it is not tangled.<br />

3. Trawl deployment<br />

A. Position the boat into the current (or wind if no current is detected),<br />

while keeping forward momentum.<br />

NOTE: The current within a river can flow backwards (upstream) if a dam is<br />

holding water back during a rising tide. Open bays may also experience currents that<br />

flow contrary to predicted tables. Therefore, the current direction should be assessed<br />

at the sampling site to determine tow direction.<br />

B. Toss the crab float <strong>and</strong> cod end over the stern of the boat.<br />

C. Motor the boat forward at an appropriate speed to deploy the net<br />

(except the doors) off the stern.<br />

D. Check the trawl doors to make sure the lead line <strong>and</strong> float line are not<br />

crossed.<br />

E. Swing the trawl doors out <strong>and</strong> over the stern of the boat.<br />

F. Record the START DEPTH. If the depth to be sampled is less than 1.8<br />

m or greater than 7.6 m, choose an alternate site or go to section 8<br />

below (Special trawl procedures).<br />

G. Feed doors out at the same speed <strong>and</strong> watch to make sure they are<br />

vertical <strong>and</strong> pulling the net open.<br />

CAUTION: Stay outside of the bridle <strong>and</strong> keep feet clear of lines!<br />

H. Continue to deploy the bridle lines, while keeping equal tension on<br />

both lines at all times.<br />

I. When bridle lines are out, the crew should step forward of the bullet<br />

buoy. One person should maintain tension <strong>and</strong> continue to guide the<br />

tow line out.<br />

J. Deploy the bullet buoy at the end of the tow line.<br />

K. Tell the boat operator that the net is deployed.


Page 15<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

4. Fishing procedure<br />

A. Save starting waypoint using a GPS after the tow line has been<br />

extended <strong>and</strong> the trawl begins fishing.<br />

B. Record START TIME: all trawl tows should last 10 minutes, except<br />

on rivers where a 5 minute tow time is st<strong>and</strong>ard.<br />

C. Set boat speed to tow approximately 0.2 nm in 10 minutes during bay<br />

sampling or 0.1 nm in 5 minutes during river sampling (1.2 knots <strong>and</strong><br />

~1200-1400 rpm).<br />

D. Fill out the remaining portion of the field data sheet.<br />

E. Before the end of the tow, the boat operator should alert the crew so<br />

that the area near the rear of the boat is clear <strong>and</strong> ready to receive the<br />

trawl. A tub with water should be ready to receive the sample.<br />

5. Trawl retrieval<br />

A. At the end of the tow, save the present position (ending waypoint),<br />

using the GPS.<br />

B. Place the boat in reverse, as needed, while one crew member retrieves<br />

the tow line as quickly as possible. The tow line <strong>and</strong> bridle lines<br />

should be kept taut at all times. Another crew member should coil the<br />

line forward of the gas tank bulkhead, so the trawl will be ready to be<br />

deployed.<br />

C. At the first appearance of the bridle lines, the person coiling the tow<br />

line should stop coiling <strong>and</strong> help in retrieving the bridle lines.<br />

D. Place the boat out of gear or in forward to prevent the boat from<br />

drifting over the trawl. Record END DEPTH.<br />

E. Recover the doors <strong>and</strong> remove any fouling on the net, chain, or doors.<br />

F. After the doors are in the boat, the wings <strong>and</strong> the tickler chain should<br />

be pulled into the boat together to retrieve the net quicker <strong>and</strong> thus<br />

help eliminate fish escapement.<br />

G. Concentrate the sample by shaking it down to the cod end taking care<br />

not to shake gilled fish out of the net. Remove any remaining gilled<br />

fish once the trawl is on board. Gilled fish are to be considered part of<br />

the sample. After removing the catch from the cod end, inspect the<br />

cod end liner for small fish <strong>and</strong> invertebrates that may not have been<br />

removed by shaking down the net.<br />

H. At some point during trawl retrieval or sample collection the PI should<br />

determine the DISTANCE TOWED <strong>and</strong> the BEARING. The distance<br />

towed is measured from when the tow line becomes taut <strong>and</strong> the net is<br />

fishing to when the boat is stopped to begin retrieving the tow line.<br />

When sampling in the bay, this distance should equal 0.2 nautical


Page 16<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

miles (acceptable range is 0.15 to 0.25 nautical miles) for a 10 minute<br />

tow. If it does not fall within this guideline, the sample should be<br />

aborted <strong>and</strong> speed adjusted accordingly on subsequent trawls. For<br />

river sampling, see section 8 below.<br />

NOTE: If the distance towed is not properly taken, the tow has to be repeated. If the<br />

GPS is inoperative, abort the trip. No trawl tows will be made without a GPS.<br />

6. Determination of acceptable sample<br />

A. After several aborts, trawls with a minimum of 60% of the original<br />

tow time for bay trawls (6 minutes) <strong>and</strong> river trawls (3 minutes) are<br />

acceptable. Tow times below these levels should be aborted.<br />

B. If the bycatch appears to have affected the fishing ability of the trawl,<br />

the sample must be aborted. Unacceptable bycatch that may affect the<br />

fishing ability of the trawl include any natural or man-made debris that<br />

creates a barrier near the mouth, body, or cod end of the net. A large<br />

volume of bycatch (i.e., exceeding ~50 gallons) may also affect how a<br />

trawl fishes such that the pressure wave created during towing<br />

prevents the trawl from fishing properly.<br />

C. In some cases, a net that gets hung up while towing can indicate the<br />

point where unacceptable quantities of bycatch have been collected. If<br />

any of the previously mentioned bycatch types are collected after an<br />

acceptable period of time (see Step 1) the tow will be discontinued at<br />

that point <strong>and</strong> the sample would be accepted, barring any obstructions<br />

within the net as described in Step 2. In cases where the net gets hung<br />

momentarily prior to an acceptable tow time, the tow should be<br />

completed, <strong>and</strong> a determination of acceptability should be made upon<br />

retrieval <strong>and</strong> examination of the net.<br />

D. Bycatch that includes small portions of crab traps <strong>and</strong> other manmade<br />

items that do not appear to affect the trawl opening or otherwise hinder<br />

normal operation (e.g. twisting of trawl body) would be acceptable.<br />

E. Trawls will be aborted anytime the gear fails to fish in the manner it is<br />

intended (i.e. twisted bridle lines, doors flying or not on the bottom,<br />

mechanical failure).<br />

F. Samples in which traps or debris are snagged on the outside of the<br />

trawl body or trawl doors will be aborted if the trawl has become<br />

twisted, if debris has impeded the flow through the mouth of the trawl,<br />

if debris is tangled in the bridle, or if debris has changed the shape of<br />

the opening or body of the trawl.


Page 17<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

7. Sample collection<br />

A. Empty the sample into the tub <strong>and</strong> examine the liner to recover any<br />

fish remaining in the net webbing.<br />

B. Determine <strong>and</strong> record bycatch <strong>and</strong> quantity.<br />

C. Subsample using proper procedures if appropriate.<br />

D. Follow proper sample work-up (Section 7.3.5.1).<br />

8. Special trawl procedures<br />

A. When trawling in a river, follow normal trawling procedures except<br />

that the duration of the trawl should be 5 minutes <strong>and</strong> the distance<br />

traveled should equal 0.1 nautical miles (acceptable range is 0.08 to<br />

0.12 nautical miles).<br />

B. When trawling in water shallower than 1.8 m but greater than 1.0 m,<br />

execute an arc tow. During an arc tow, the boat should be turned (1/3<br />

total turning radius) to prevent the trawl from sampling an area<br />

possibly disturbed by the boat propeller.<br />

NOTE: If water depths shallower than 1.0 m are encountered during a trawl, the<br />

trawl should be aborted <strong>and</strong> an alternate sampling site should be selected. Arc-towed<br />

trawls should be used as a last resort (i.e., Florida <strong>Bay</strong> <strong>and</strong> river sampling).<br />

9. Trawl storage. When all tows have been completed, the following steps should<br />

be taken in storing the trawl:<br />

A. Place the tarp on the deck of the boat <strong>and</strong> the doors on top of the tarp.<br />

B. Detach the bridle lines from the doors.<br />

C. Fold the body of the net onto a door.<br />

D. Place the chain <strong>and</strong> crab float over the net.<br />

E. Place the other trawl door over the net, chain, <strong>and</strong> float <strong>and</strong> close the<br />

tarp.<br />

F. Wrap tarp over net <strong>and</strong> secure.<br />

G. Coil the harness into a gray tub.<br />

7.3.5 Field Sampling<br />

7.3.5.1 Sample Work Up<br />

Introduction<br />

All fishery samples collected by the Fisheries-Independent Monitoring (FIM) program<br />

are processed following a st<strong>and</strong>ard set of protocols. These protocols ensure that an


Page 18<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

accurate size representation <strong>and</strong> number collected are recorded for each species in each<br />

sample <strong>and</strong> that the data taken reflect the entire catch. All species of fish, select<br />

macroinvertebrates (Callinectes sapidus, C. similis, C. bocourti, C. ornatus, Menippe<br />

spp., Limulus polyphemus, Portunus spp., Charybdis hellerii, Platychirograpsus<br />

spectabilis, Farfantepenaeus aztecus, Farfantepenaeus braziliensis, Farfantepenaeus<br />

duorarum, Litopenaeus setiferus, Rimapenaeus constrictus, Xiphopenaeus kroyeri,<br />

Sicyonia brevirostris, S. laevigata, S. parri, Macrobrachium spp., Panulirus argus,<br />

Stomolophus meleagris, Argopecten spp. <strong>and</strong> Mercenaria spp.), <strong>and</strong> turtles are worked up<br />

for each sample. Additionally, grass shrimp are identified to their lowest practical<br />

taxonomic level during sampling trips for the HBMP.<br />

Objective<br />

To ensure that all fish, selected macroinvertebrates, <strong>and</strong> turtles collected are counted <strong>and</strong><br />

measured according to a st<strong>and</strong>ardized method, the measurements taken are reflective of<br />

the size structure of the entire sample, <strong>and</strong> accurate counts of all species are recorded.<br />

Procedure<br />

This procedure applies to all stratified-r<strong>and</strong>om sampling only for work-up procedure of<br />

directed sampling specimens.<br />

1. Cull the sample thoroughly for all fish <strong>and</strong> selected macroinvertebrates.<br />

Specimens should be separated by species, selected r<strong>and</strong>omly to be measured<br />

<strong>and</strong> counted according to the guidelines listed below. Special care should be<br />

taken to remove vegetation <strong>and</strong> other bycatch that may interfere with the workup<br />

of the sample. Record the type, amount <strong>and</strong> ratio of bycatch on the field<br />

data sheet. The 21.3-m seine <strong>and</strong> 6.1-m otter trawl samples that contain large<br />

numbers of specimens (>1000) may be split according to procedures<br />

(Subsampling).<br />

2. Selected Species<br />

A. “Selected Species” are species that the FIM program considers to be of<br />

recreational or commercial importance. These fish should be processed<br />

first <strong>and</strong> released alive whenever possible. Not all recreationally <strong>and</strong><br />

commercially important species are included in this list.<br />

B. If a sample is to be subsampled, a conscious <strong>and</strong> deliberate effort to<br />

cull all Selected Species from the sample prior to subsampling must be<br />

accomplished.<br />

C. Cull through the entire sample <strong>and</strong> r<strong>and</strong>omly select up to 40<br />

individuals for each species designated as Selected Species (100<br />

individuals prior to 10/97).


Page 19<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

i. If multiple size classes of a particular Selected Species exist,<br />

then 40 specimens from each size class should be measured.<br />

More than 40 specimens should be measured when a large size<br />

range exists with no clear size classes.<br />

ii.<br />

If a sample has been subsampled <strong>and</strong> the species is present in<br />

both the split <strong>and</strong> unsplit portions, up to 40 specimens will be<br />

measured from each size class within both the split <strong>and</strong> unsplit<br />

portions.<br />

D. Count all individuals that were not measured. If different size classes<br />

were measured, then the number collected within each size class must<br />

be counted separately. Record numbers on a length data sheet.<br />

E. Any Selected Species that die should be included in the representative<br />

sample or brought back for the reference collection.<br />

3. Common Teleosts<br />

A. Identify specimens to the species or species-complex level. If unable<br />

to do so, identify to the lowest taxa possible <strong>and</strong> return the specimen(s)<br />

to the lab for further identification.<br />

i. The following species are only identified to genus level when<br />

under a certain size:<br />

a. Eucinostomus spp.


Page 20<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

C. Number of common specimens to measure<br />

i. 21.3-m seine <strong>and</strong> 6.1-m otter trawl samples<br />

a.


Page 21<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

B. Separate Callinectes sapidus <strong>and</strong> Limulus polyphemus into different<br />

classifications, i.e., male, female, parasitized (presence of parasitic<br />

barnacles - C. sapidus only), <strong>and</strong> unsexed.<br />

C. For C. sapidus, measure <strong>and</strong> record 10 (150<br />

mm CW) specimens of each classification. This measurement should<br />

be made from tip to tip of the carapace (maximum carapace width;<br />

Figure 7.4).<br />

D. For L. polyphemus, measure <strong>and</strong> record 10 specimens from each<br />

classification. This measurement should be made at the widest part of<br />

the prosoma (the front dome-shaped part of the carapace). This is<br />

generally across the large compound eyes.<br />

E. Count <strong>and</strong> record the number of remaining individuals for each species<br />

<strong>and</strong> classification (i.e., male, female, parasitized <strong>and</strong> unsexed).<br />

6. Penaeid Shrimp<br />

A. Measure <strong>and</strong> record post-orbital head length (Figure 7.4) of 10 (40<br />

prior to 10/97) penaeid shrimp. This measurement should be made<br />

from the edge of the carapace to the posterior edge of the eye socket.<br />

B If there is some doubt as to whether the shrimp is a penaeid, treat it as<br />

an unidentified species.<br />

7. Cannonball Jellyfish (Stomolophus meleagris)<br />

A. Measure <strong>and</strong> record bell diameter of up to 10 cannonball jellyfish in<br />

21.3-m seines <strong>and</strong> 6.1-m otter trawls <strong>and</strong> up to 20 cannonball jellyfish<br />

in 183-m purse <strong>and</strong> haul seines.<br />

B. Count <strong>and</strong> record the number of remaining individuals.<br />

8. Grass shrimp<br />

A. No measurements are taken.<br />

B. R<strong>and</strong>omly select ten specimens for identification in the lab.<br />

C. Count <strong>and</strong> record the number of remaining individuals.<br />

7.3.5.2 Subsampling<br />

Introduction<br />

Subsampling devices (splitters) or techniques are used to divide samples that contain<br />

large quantities of organisms or algae into smaller, more manageable subsamples. Data<br />

from these subsamples can then be multiplied by 2 to the power of the number of splits,<br />

thus estimating the quantity of the original samples. The time spent removing specimens<br />

from large quantities of algae or measuring <strong>and</strong> counting all of the specimens in a large


Page 22<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

sample can affect the success <strong>and</strong> timely completion of a field trip, making it logistically<br />

necessary to subsample. Subsampling reduces the time required to work up samples <strong>and</strong><br />

reduces the amount of fish mortality per sample. However, the splitting process must be<br />

done correctly in order to estimate abundances in the original sample.<br />

Subsampling can be a source of considerable error in the estimation of original sample<br />

totals. There are several possible sources contributing to this error: presence of inanimate<br />

materials limiting the mixing of the sample, presence of rare or unusually large<br />

specimens, variance of splitting technique, interference (clumping) of organisms, over or<br />

under-dilution of sample, edge effects, <strong>and</strong> the repeated subdivision of a sample. Many<br />

of these factors can be eliminated or <strong>control</strong>led by splitter design <strong>and</strong> st<strong>and</strong>ardization of<br />

the subsampling protocol/technique.<br />

The following procedures outline the guidelines for subsampling in the field. These<br />

guidelines are based upon several years of testing the Motoda box splitter by the FIM<br />

program <strong>and</strong> should be followed as closely as possible to ensure the validity of<br />

subsampled data.<br />

Objective<br />

1. Establish <strong>and</strong> maintain a subsampling protocol that will accurately <strong>and</strong><br />

precisely estimate abundance in the original sample while allowing for timely<br />

sample work-up.<br />

2. Reduce fish mortality caused by field sampling.<br />

Procedure<br />

1. Motoda Box Split<br />

A. Sample Preparation. This part of the subsampling process is just as<br />

important as the actual splitting of the sample. It is the responsibility<br />

of the PI <strong>and</strong> crew to ensure that the following guidelines are followed.<br />

The PI <strong>and</strong> crew must ascertain whether time will be saved by<br />

subsampling <strong>and</strong> if the sample can be effectively <strong>and</strong> accurately<br />

subsampled. If the sample does not meet these requirements, then<br />

proceed to work up the entire sample. Samples should contain no less<br />

than 1000 individuals of a particular species before being considered<br />

for subsampling. Testing has shown that splitting error increases with<br />

decreasing sample size.<br />

i. Remove all vegetation <strong>and</strong> foreign material from the sample<br />

(i.e., drift algae, seagrass, sticks, detritus, etc.).<br />

ii. Cull out specimens:<br />

a. With a st<strong>and</strong>ard length of greater than 100 mm.


Page 23<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

b. That are designated as Selected Species by the FIM<br />

Program. If there are over 1000 specimens of a<br />

particular Selected Species, cull 40 <strong>and</strong> split the rest.<br />

c. "Rare" species (n


Page 24<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

vii. Pour the split portion of the sample, retained in the receptacle,<br />

into a net or bucket for work-up or further splitting. If you<br />

conduct multiple splits on a large sample <strong>and</strong> split it in portions,<br />

you should try to maintain the same amount of fish being split.<br />

This can be accomplished by combining split portions after the<br />

first or second levels (when the proportions themselves are too<br />

small to split alone) <strong>and</strong> splitting them together for the<br />

remaining split levels. The portions must be at the same split<br />

level prior to combining.<br />

viii. Enter the fish from the split portion on a separate length data<br />

sheet from the unsplit portion. This sheet should have the same<br />

collection number as the unsplit portion but should indicate the<br />

SPLIT TYPE (Type 2 for the Motoda Box) <strong>and</strong> the LEVEL<br />

(number of times a sample was split).<br />

ix. Work up sample according to st<strong>and</strong>ard procedures.<br />

2. Table Split Technique<br />

This splitting technique should only be used in extreme situations (e.g.<br />

large quantities of drift algae caught in a 21.3-m seine).<br />

A. Place the entire sample on the sorting table, making sure it is evenly<br />

distributed <strong>and</strong> of similar depth throughout.<br />

B. Measure the long side of the sorting table <strong>and</strong> divide the sample into<br />

two equal halves.<br />

C. R<strong>and</strong>omly select one half <strong>and</strong> discard the selected half.<br />

D. If further subsampling is required, measure the short side of the sorting<br />

table <strong>and</strong> divide the sample into two equal halves.<br />

E. R<strong>and</strong>omly select one half <strong>and</strong> discard the selected half.<br />

F. Work up sample according to st<strong>and</strong>ard procedures.<br />

G. Enter the fish from the split portion on a separate length data sheet<br />

from the unsplit portion. This sheet should have the same field<br />

number as the unsplit portion but should indicate the SPLIT TYPE<br />

(Type 2) <strong>and</strong> the LEVEL (number of times a sample was split).<br />

3. Bag Split Technique<br />

This splitting technique should only be used in extreme situations (e.g.<br />

large quantities of drift algae caught in the 21.3-m seine) when a table<br />

split cannot be completed.<br />

A. After completing the appropriate seining technique, harden the bag<br />

until all empty space is removed.


Page 25<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

B. Run the 9.1-m seining line from one side, under the bag, <strong>and</strong> through<br />

to the other side of the bag, making sure it is in the center, equally<br />

splitting the sample into two equal halves.<br />

C. Raise the seine line up until it splits the bag into two equal halves.<br />

D. R<strong>and</strong>omly select which half will be removed <strong>and</strong> discard the selected<br />

half.<br />

E. Split again, if necessary, using the same technique.<br />

F. Work up sample according to st<strong>and</strong>ard procedures.<br />

7.3.5.3 Instructions for Filling Out Data Sheets <strong>and</strong> Labels<br />

Introduction<br />

The success of the Fisheries-Independent Monitoring (FIM) program depends upon<br />

accurate <strong>and</strong> complete data being recorded for each sample. All applicable data fields<br />

must be filled out for each sample collected.<br />

Objective<br />

1. To accurately describe the sampling site <strong>and</strong> conditions at the time a sample is<br />

taken.<br />

2. To record taxa, associated lengths, <strong>and</strong> number of fish <strong>and</strong> selected<br />

macroinvertebrates collected in each sample.<br />

Procedure<br />

1. The upper left box of the field data sheet <strong>and</strong> the top line of the length data<br />

sheet must be filled out for every sample.<br />

2. Each sample should have its own field <strong>and</strong> length data sheets.<br />

Note: If a sample requires additional length data sheets, write ‘1 of<br />

X’, ‘2 of X’, etc. at the top of the data sheet.<br />

3. Draw a line through variables to indicate that data were not recorded.<br />

4. Draw a line through any variable or section of the data sheet that should not<br />

have data recorded. Any variable left blank will have the previously entered<br />

data carried over.<br />

5. If the water depth is less than 1.0 m, take the Hydrolab/YSI data at mid-depth<br />

<strong>and</strong> record in the SURFACE row. If water depth is greater than or equal to 1.0<br />

m, take the Hydrolab/YSI data at both the surface <strong>and</strong> bottom <strong>and</strong> record in the<br />

designated variable.<br />

6. Ensure that the person recording the data initials all data sheets.


Page 26<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

7. FIELD NUMBER - Because there are so many different sampling projects, care<br />

must be taken when recording field numbers in the field <strong>and</strong> lab. This data field<br />

comprises the “Primary key” that ties all subsequently collected data together.<br />

The following variables are used, collectively, to create a unique field number.<br />

All data fields that comprise the field number need to be filled out completely<br />

on all data sheets <strong>and</strong> labels. Variable values for each of these data fields can<br />

be found in Appendix A.<br />

A. BAY - A two-letter code designating the estuarine system being<br />

sampled.<br />

B. TYPE - A one-letter code used to describe the type of sampling.<br />

C. YEAR - A two-digit numeric code designated to specify the calendar<br />

year (e.g., 99 = 1999, 00 = 2000). LEADING ZEROS MUST BE<br />

USED WHERE APPLICABLE.<br />

D. MONTH – a two-digit numeric code for the month during which<br />

sampling occurred (01=January, 02=February, etc). LEADING<br />

ZEROS MUST BE USED WHERE APPLICABLE.<br />

E. TRIP NUMBER – a two-digit numeric code that uniquely identifies<br />

each sampling trip within a given month (e.g., 01 is the first sampling<br />

trip for the month, 99 would be the 99 th sampling trip of the month).<br />

LEADING ZEROS MUST BE USED WHERE APPLICABLE.<br />

F. SEQ. NUMBER – a two digit numeric code that uniquely identifies<br />

each sample collected within a given sampling trip (e.g., 01 is the first<br />

sample collected, 20 is the 20 th sample collected). LEADING ZEROS<br />

MUST BE USED WHERE APPLICABLE.<br />

8. Ex<strong>plan</strong>ation of data sheets<br />

A. Field Data Sheets (Figure 7.5)<br />

• FIELD NUMBER - This must be filled out completely <strong>and</strong><br />

accurately.<br />

• GEAR - A numeric code that describes the gear <strong>and</strong> the<br />

deployment method.<br />

• REP - A numeric value describing the replicate sample number<br />

within a grid or fixed station site. Replicate sampling was<br />

discontinued 04/96. Rep should now always be recorded as 1,<br />

except for the replicate hydrolab vertical profile collected during<br />

the HBMP.<br />

• DAY - Day of the month (USE LEADING ZEROS)


Page 27<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

• STATION - A numeric code that identifies the fixed station<br />

sampled (see Appendix C in archive manual), the sampling areas<br />

for the HBMP study, <strong>and</strong> the sampling areas for directed mullet<br />

sampling.<br />

• START TIME - Recorded on a 24-hour time clock in hours <strong>and</strong><br />

minutes (HH:MM). Record at the beginning of a set. USE<br />

LEADING ZEROS TO FILL ALL BOXES.<br />

• START DEPTH - A numeric value designating the water depth at<br />

the beginning of sampling. Recorded to the nearest 0.1 meter.<br />

• For 21.3-m the water depth should be taken at the<br />

bag.<br />

• For trawls, the water depth should be taken as the<br />

trawl is first deployed.<br />

• STRATA - A one-character, alphabetic variable to describe the<br />

habitat sampled.<br />

• NAV INST - The type of navigation equipment used to determine<br />

sampling location. Recorded in the box to the left of "LOCATION<br />

DATA".<br />

• LATITUDE / LONGITUDE - Read these numeric values from the<br />

GPS upon arrival at a sampling site.<br />

• ZONE - A letter code designating the major subdivisions of an<br />

estuarine system (refer to labeled charts).<br />

• GRID - A numeric value designating one of the 1x1 nautical mile<br />

subdivisions in a zone (refer to labeled charts).<br />

• MICROGRID - A numeric value designating one of the 100<br />

subdivisions in a grid (refer to microgrid templates). A discrete<br />

microgrid is to be recorded for each sample.<br />

• PI/CREW - Record the initials or the name of each crewmember.<br />

• BOAT - A letter designating the specific boat used. If no boat is<br />

used, draw a line through field.<br />

• NOTES - Any additional information the PI wishes to note, such as<br />

unusual occurrences, habitat interpretations, grid rotations, etc.


Page 28<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

• PROJECTS - A four-character variable that identifies the projects<br />

to which a collected sample can be applied.<br />

• INST - Instrument used to measure water <strong>quality</strong>. Record<br />

separately for each water <strong>quality</strong> measurement taken.<br />

• DO - Read from Hydrolab, record in mg/l to 1/10th increments.<br />

• pH - Read from Hydrolab, record to 1/10th increments.<br />

• TEMP - Read from Hydrolab, record in °C to 1/10th increments.<br />

• SALIN - Read from Hydrolab, record in ppt to 1/10th increments.<br />

• COND - Read from Hydrolab, record in umhos/cm to 1/10th<br />

increments.<br />

• TURB - Read from Hydrolab, record to 1/10th increments.<br />

• SECCHI - Depth at which secchi disc was still visible on the nonshaded<br />

side of the boat. Recorded to the nearest 0.1 of a meter.<br />

• BOTTOM VISIBLE - A yes (Y) or no (N) variable to indicate<br />

whether the secchi disk was on the bottom when the reading was<br />

taken.<br />

• START WIND - An alphanumeric code designating the direction<br />

the wind was coming from <strong>and</strong> speed in miles per hour. Record at<br />

the beginning of a set. E.g., wind coming from the northwest at 5<br />

m.p.h. = NW 05. If there was no wind, the direction is 0 <strong>and</strong> the<br />

speed is 0.<br />

• START CLOUDS - A numeric value designating the percentage of<br />

cloud cover, rain, or fog. Record at the beginning of a set.<br />

• START TIDE - A letter code designating the tidal stage. Record at<br />

the beginning of a set.<br />

• PERIOD - A numeric value designating the period of a 24 hour<br />

day.<br />

• BOTTOM - Single-letter codes designating the most abundant<br />

bottom types (composition of the bottom being sampled). Up to<br />

four bottom types, in decreasing order of percent composition may<br />

be recorded.


Page 29<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

• BOTTOM VEG - Single-character codes designating the most<br />

abundant types of attached submerged aquatic vegetation (SAV).<br />

Up to four bottom vegetation types, in decreasing order of percent<br />

composition may be recorded.<br />

• RATIO - The ratio of primary bottom veg, shore type or bycatch to<br />

secondary bottom veg, shore type or bycatch. For example, if a<br />

shore type consists of 60% red mangroves <strong>and</strong> 40% Brazilian<br />

peppers, the ratio would be 6:4. If there is only one shore type,<br />

<strong>and</strong> it covers 70% of the shoreline sampled, the ratio would be 7:0.<br />

• BOTTOM VEG % COVER - A percentage (0 - 100%) of the<br />

sampled area that is covered by SAV: 0 if no SAV sampled to 100<br />

if area is completely covered.<br />

• BANK - A one-character code designating the general slope of the<br />

bank <strong>and</strong> the inundation of the shore type.<br />

• SHORE TYPE - Two-character codes that designate the prominent<br />

features on the shoreline. Up to four shore types, listed as one<br />

moves from water onto l<strong>and</strong>, can be recorded at each sampling site.<br />

• BYCATCH - Two-character codes that designate the composition<br />

of the bycatch in a sample, including noncommercial invertebrate<br />

fauna, algae, grass, etc. Up to four bycatch types, in decreasing<br />

order of percent composition may be recorded.<br />

• QUANTITY - Estimate of the amount of bycatch in tenths-ofgallon<br />

increments. Quantity = 0.0 if there is no bycatch.<br />

• CURRENT REL - A numeric value recorded in degrees<br />

designating the degrees from facing current.<br />

• WIND REL - A numeric value recorded in degrees designating<br />

orientation with respect to the wind.<br />

• WING DEPTH - Depth of water (nearest 0.1 m) at the point where<br />

the bag will be retrieved. Used for all seines. Gear-specific WING<br />

DEPTH guidelines are listed in Table 7.3.<br />

• NET WIDTH - Currently recorded only for the purse seine;<br />

describes the circumference of the set. Used to calculate the area<br />

of the set.


Page 30<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

• DISTANCE TO BAG - Currently recorded only for the purse<br />

seine. This variable is used to describe how twisted the net is<br />

around the purse line once the net has been pursed.<br />

• SHORE DISTANCE - Distance from the water-l<strong>and</strong> interface to<br />

the net wing closest to shore, recorded to the nearest whole meter.<br />

• BANK DISTANCE - Distance from the mean high water mark to<br />

the net wing closest to shore, recorded to the nearest whole meter.<br />

• SOAKTIME - A numeric value, recorded in hours <strong>and</strong> minutes<br />

(HH:MM), equal to the amount of time a gear was fishing.<br />

Currently recorded for trawls only. USE LEADING ZEROS TO<br />

FILL ALL BOXES.<br />

• END DEPTH - A numeric value recorded to the nearest 0.1 meter<br />

designating the water depth at the end of a set. Currently recorded<br />

for trawls only.<br />

• DISTANCE TOWED - A numeric value calculated using the GPS<br />

(nautical miles). Record to the hundredth place. This must be<br />

recorded for each trawl tow or the tow must be repeated. Recorded<br />

for trawls only.<br />

• BEARING - A numeric code designating the direction (in degrees)<br />

towed during trawling; supplied by GPS when calculating distance<br />

towed. Recorded for trawls only.<br />

• SEARCH TIME - The time between the start of a search <strong>and</strong> the<br />

set of a net. Used during directed sampling only.<br />

• END TIME - Recorded on a 24-hour time clock in hours <strong>and</strong><br />

minutes (HH:MM). Currently recorded during directed sampling<br />

only. Record as the time the net is set or when searching is<br />

terminated. USE LEADING ZEROS TO FILL ALL BOXES.<br />

• NUMBER OF PANELS -The total number of panels that were<br />

deployed during a set, rounded to the nearest half panel. Used<br />

during directed mullet sampling only.<br />

• GEAR DESCRIPTION - Record the gear type, number, <strong>and</strong> any<br />

damages for gears used during a sampling trip.<br />

• RECORDED - The initials of the person who took the data.


Page 31<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

• REVIEWED - The initials of the person who reviewed the data<br />

prior to entry.<br />

• ENTERED - The initials of the person who entered the data.<br />

• PROOFED - The initials of the people who proofed the data.<br />

• COMPLETE - The initials of the person who made the final<br />

corrections.<br />

Note: It is the PI’s responsibility to ensure that all data are recorded<br />

correctly <strong>and</strong> that all appropriate data fields are filled out in the field.<br />

B. Length Data Sheets (Figure 7.6)<br />

• FIELD NUMBER - This must be filled out completely <strong>and</strong><br />

accurately <strong>and</strong> must exactly match the field data sheet at each<br />

sampling site.<br />

• DAY - Day of the month (USE LEADING ZEROS)<br />

• REP - A numeric value describing the replicate sample number<br />

within a grid or fixed station site. Replicate sampling was<br />

discontinued 4/96. Rep should now always be recorded as 1.<br />

• STATION NUMBER - A numeric code that identifies the station<br />

sampled (see Appendix C in archive manual), the sampling areas<br />

for the HBMP study, <strong>and</strong> the sampling areas for directed mullet<br />

sampling.<br />

• SPLIT TYPE - A numeric description of the type of splitter device<br />

used for sub-sampling (e.g., 2 is a two-way splitter).<br />

• LEVEL - A numeric value defining the total number of times a<br />

sample was split. If a sample is put through the splitter twice, then<br />

the level would be 2.<br />

• GENUS/SPECIES - Abbreviate the genus with the first letter<br />

(capital) <strong>and</strong> spell out completely the species name (lower case),<br />

i.e., P. cromis. For unidentified fish follow specified procedures.<br />

• LENGTHS - Numeric values reflecting the size in millimeters for a<br />

particular species/taxon. See procedures for specific measurement<br />

guidelines.<br />

• N - A numeric value representing the total number of animals<br />

counted for a particular species, in that specific record.


Page 32<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Note: When splitting a sample, the actual number of fish counted<br />

should be recorded. Do not multiply values by split level; a computer<br />

program has been written to make these adjustments.<br />

• SEX - Record for all specimens collected in which a positive sex<br />

identification can be made (e.g., elasmobranchs, Callinectes spp.,<br />

etc.). Do not use drumming to determine sex.<br />

• USE - A letter code designating the use of specimens.<br />

• SC - (Size Class) When more than one size class is collected in a<br />

single sample (e.g., 10-30 mm <strong>and</strong> 40-70 mm F. majalis) a value of<br />

A is given for the first size class <strong>and</strong> B for the second (additional<br />

letters can be used to denote additional size classes as necessary).<br />

If only one size class is collected, then no size class designator is<br />

used.<br />

• FHC - (Fish Health Code) Designates injured or sick fish that were<br />

brought back to the lab for fish health evaluation (see Appendix 7-<br />

A for code list).<br />

• TALLY LINE - The blank line below the 20 st<strong>and</strong>ard length boxes<br />

is used for keeping a tally of the number of animals counted for a<br />

particular species/taxon.<br />

• RECORDED - The initials of the person who took the data.<br />

• REVIEWED - The initials of the person who reviewed the data<br />

prior to entry.<br />

• ENTERED - The initials of the person who entered the data.<br />

• PROOFED - The initials of the people who proofed the data.<br />

• COMPLETE - The initials of the person who made the final<br />

corrections.<br />

• REP SAMPLE CHECKED - The date <strong>and</strong> initials of the person<br />

who checked / changed the representative samples <strong>and</strong> length data<br />

diskette.<br />

• ID CHECKED - The date <strong>and</strong> initials of the person who checked /<br />

changed the identification samples <strong>and</strong> length data diskette.


Page 33<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

C. Sample Labels (Figure 7.7)<br />

• FIELD NUMBER - This must be filled out completely <strong>and</strong><br />

accurately <strong>and</strong> must exactly match the field data sheet at each<br />

sampling site.<br />

• DATE - Complete date including month, day, <strong>and</strong> year.<br />

• GRID - The grid number of the sample area.<br />

• GEAR - Either the gear code or a short description of the sampling<br />

gear.<br />

• REP / ID - Circle REP if the specimen is being brought back as a<br />

representative sample. Circle ID if the specimen is being brought<br />

back as an identification sample <strong>and</strong> write down what the specimen<br />

was called in the field.<br />

• CULLED FOR - If the specimen is not being brought back for an<br />

identification or rep sample, write the reason why the specimen is<br />

being brought back.<br />

• TO BE CONFIRMED? - Used if the specimen needs to be<br />

identified a second time.<br />

9. Data Tracking<br />

A. All data sheets should be turned in to the <strong>Bay</strong> System Coordinator<br />

within four working days following the completion of a sampling<br />

event. This provides adequate time for coding <strong>and</strong> peer review of the<br />

sheets. If this is not sufficient time, notify the <strong>Bay</strong> System<br />

Coordinator <strong>and</strong> provide some estimated time for completion. It is<br />

very important that the data sheets be turned in quickly <strong>and</strong> correctly,<br />

making sure that the data tracking sheets are completed. All data will<br />

be processed (entered, proofed, corrected, re-proofed, <strong>and</strong> recorrected)<br />

at the lab that collected the data.<br />

B. Completed data should be turned over to the FIM program’s database<br />

manager quarterly in April (January - March data), July (April - June<br />

data), October (July - September data) <strong>and</strong> January (October -<br />

December data). Emergency use of the data may necessitate the<br />

acceleration of this timetable at certain times for certain labs.


Page 34<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

7.3.5.4 Representative <strong>and</strong> Unidentified Sample Collection<br />

Introduction<br />

Accurate field identification is essential to the success of the Fisheries-Independent<br />

Monitoring program. Specimens that represent the catch from a specific area<br />

(Representative Samples) are brought back to the lab to verify the accuracy of field<br />

identifications. Specimens that cannot be identified to the lowest possible taxonomic<br />

level in the field are returned as Unidentified Samples. The procedures for bringing back<br />

samples are described below <strong>and</strong> should be followed under all circumstances. It is the<br />

PI’s responsibility to ensure that adequate representative samples <strong>and</strong> unidentified<br />

samples are brought back as often as needed.<br />

Objective<br />

1. To confirm the accuracy of field identification.<br />

2. To correctly identify specimens that are difficult to identify in the field.<br />

3. To correctly identify specimens which are unidentifiable in the field.<br />

Procedure<br />

1. REPRESENTATIVE SAMPLES: The representative sample should be an<br />

accurate representation of the actual catch of each day in each habitat or area. A<br />

representative sample of each species should be brought back the first time each<br />

species is collected during a sampling trip within a general habitat or area.<br />

A. Complete a representative sample label <strong>and</strong> place it in a plastic sample<br />

bag.<br />

B. Measure specimens to be retained for the representative sample <strong>and</strong><br />

place specimens in the sample bag.<br />

i. Representative samples should only include specimens identified<br />

to their lowest possible taxonomic level (e.g., Anchoa mitchilli<br />

or Menidia spp.). The identification should represent the lowest<br />

classification the field crew is comfortable making. Specimens<br />

that can be classified to a lower taxonomic level (e.g., Mugil<br />

spp.) in the lab should NOT be placed in the representative<br />

sample. These specimens should be brought back for<br />

identification <strong>and</strong> are h<strong>and</strong>led as indicated in the "Unidentified<br />

Samples" section of this procedure.<br />

C. Record the lengths of the specific specimens placed in the specimen<br />

bag on a separate line from the rest of that species <strong>and</strong> place an ‘S’ in<br />

the USE box on the length data sheet. This makes it easier for the<br />

person correcting the database to locate the sample.


Page 35<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

i. Representative samples represent all specimens for that area/day.<br />

Any mis-identifications that are made will be reflected<br />

throughout that entire day’s sampling.<br />

D. A minimum of 3 specimens from each species should be retained for<br />

the representative sample when they are first collected in a particular<br />

day, gear, <strong>and</strong> area. If only 1 specimen of a particular species is<br />

present when it is first collected, retain 2 more specimens from<br />

subsequent samples for the representative sample. It is always better<br />

to keep more than less, <strong>and</strong> to keep problematic specimens as ID<br />

samples.<br />

i. No samples are taken from large, healthy specimens of<br />

distinctive species that can be unequivocally identified in the<br />

field. The following list shows size limits of species that do not<br />

need to be brought back.<br />

a. Carapace length >30 mm<br />

(1) Callinectes sapidus<br />

(2) Menippe mercenaria<br />

b. St<strong>and</strong>ard Length >75 mm<br />

(1) All Selected Species<br />

(2) All Elasmobranchs<br />

(3) Lactophrys quadricornis<br />

(4) Chilomycterus schoepfi<br />

(5) Bagre marinus<br />

(6) Arius felis<br />

(7) Selene vomer<br />

(8) Lagodon rhomboides<br />

(9) Chaetodipterus faber<br />

E. Put representative samples on ice.<br />

F. After returning to the lab, place the representative sample in its correct<br />

location in the freezer for work-up, following procedures outlined in<br />

Section 7.3.6.<br />

2. UNIDENTIFIED SAMPLES: The unidentified sample (ID sample) represents<br />

specimens that are unidentifiable to their lowest taxonomic level in the field.<br />

These samples should include both specimens that can’t be identified to any<br />

taxonomic level in the field <strong>and</strong> specimens that can be classified to a lower<br />

taxonomic level in the lab.<br />

A. Complete an ID sample label <strong>and</strong> place it in a plastic sample bag.


Page 36<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

B. Identify specimens to their lowest level that the field crew is<br />

comfortable making. ID samples should only include specimens that<br />

have not been identified to their lowest possible taxonomic level.<br />

C. Record the lengths of the specific ID specimens placed in the sample<br />

bag on a separate line for each species <strong>and</strong> record an “I” in the “USE”<br />

box on the length data sheet. This makes it easier for the person<br />

correcting the database to locate the sample.<br />

i. Only those fish actually returned to the lab will be adjusted in<br />

the database. If the sample you are returning to the lab<br />

represents only part of the unidentified specimens, it should be<br />

indicated on the data sheet ("Same as ID") that these specimens<br />

represent all similar specimens captured in that sample.<br />

a. For species that are problematic or very small, a<br />

minimum of 10 individuals should be retained.<br />

b. If there is any indication that more than one species has<br />

been collected (e.g., A. mitchilli <strong>and</strong> A. hepsetus), at least<br />

20 individuals should be included in the ID sample.<br />

c. If more than one size class of a problematic species<br />

(e.g., M. cephalus <strong>and</strong> M. curema) exists, up to 20<br />

individuals should be retained from each size class <strong>and</strong><br />

indicated by an “A” <strong>and</strong> “B” recorded in the “SIZE<br />

CLASS” box.<br />

ii. If similar specimens are captured in subsequent samples, another<br />

ID sample should be taken or it must be indicated on the data<br />

sheet. The label should show that these specimens are similar to<br />

those brought back earlier in the ID sample ("Same as ID from<br />

field number ####").<br />

D. Place ID sample in bag <strong>and</strong> put sample on ice.<br />

E. After returning to the lab place the ID sample in the correct location in<br />

the freezer for work-up, following procedures outlined in Section<br />

7.3.6.<br />

7.3.5.5 Hydrolab Operation <strong>and</strong> Calibration<br />

Introduction<br />

The Hydrolab units must be calibrated routinely to assure the accuracy of their field<br />

readings. At a minimum, the units must be calibrated monthly. If during calibration, the<br />

readings in known solutions are outside the desired range of accuracy, the calibration<br />

interval should be reduced. The parameters that are measured include temperature,


Page 37<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

salinity, conductivity, dissolved oxygen, <strong>and</strong> pH. The accurate recording of these data is<br />

important because it can indicate the water <strong>quality</strong> at the sampling site <strong>and</strong> may reflect<br />

trends in water conditions.<br />

For the HBMP, each hydrolab unit is calibrated in the morning on which the sampling<br />

trip is to be conducted <strong>and</strong> is post calibrated within 24hrs of the completion of the<br />

sampling trip. Calibration instructions for specific Hydrolab models are listed below.<br />

These instructions may differ slightly from those outlined in Section 5 which describes<br />

calibration methodologies for YSI models. When utilizing one of the specified Hydrolab<br />

models listed below, follow the specific calibration methods for that model.<br />

Objective<br />

1. To accurately record hydrologic data at sampling sites.<br />

2. To calibrate Hydrolab units properly to ensure accurate readings during field<br />

sampling.<br />

Procedure<br />

1. Operation<br />

A. Before leaving the lab, check the voltage on the display of the<br />

Hydrolab unit. A fully charged unit should have ~14 volts. However,<br />

as a Hydrolab gets older, a fully charged battery may not reach 14<br />

volts. Take each unit on an individual basis <strong>and</strong> know what each unit<br />

will hold <strong>and</strong> when it will stop working. Always bring a thermometer<br />

<strong>and</strong> refractometer on sampling trips. The Hydrolab units can <strong>and</strong> do<br />

become inoperable. At a minimum, salinity <strong>and</strong> temperature should be<br />

taken at all sampling sites or the sampling should not be done.<br />

B. Keep the probes immersed in water at all times. Exposure to air will<br />

dry out the membranes, which, in turn, will give false readings.<br />

C. Once on station, turn the unit on <strong>and</strong> allow it to equilibrate for at least<br />

5 minutes before taking the readings.<br />

D. The Hydrolab readings should be taken at the farthest point from shore<br />

(i.e., at the seine bag or at the outside pole for shoreline seines).<br />

E. Take vertical profiles as outlined in Section 7.2.2.<br />

F. Wipe down the unit upon returning to the lab. Rinse the probes with<br />

clean, fresh water <strong>and</strong> replace the water in the Hydrolab storage cup<br />

with clean tap water.<br />

G. Leave the Hydrolab carrying case open to allow the unit to air dry.<br />

2. Surveyor II Calibration


Page 38<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

NOTE: Do not turn off the display unit during calibration. You will<br />

lose any changes that you have made.<br />

A. Calibration: Conductivity. The parameters are salinity compensated.<br />

Therefore, conductivity must be calibrated first.<br />

i. When calibrating for use in seawater a 0.5 Molar KCL solution<br />

(58.640 millimoles/cm) is prepared by adding 37.28 grams of<br />

KCL (Fisher Scientific P217- 500, Potassium Chloride) to 1000<br />

ml of de-ionized (DI) water.<br />

ii.<br />

iii.<br />

Fill the calibration cup with conductivity solution until the<br />

conductivity probe is covered completely. Cover the calibration<br />

cup with the soft cap <strong>and</strong> allow 1-2 minutes for temperature<br />

equilibrium to be reached.<br />

Record initial conductivity reading on the calibration sheet (1bbefore;<br />

Figure 7.8).<br />

iv. Use the SLOPE function to calibrate conductivity value to<br />

st<strong>and</strong>ard used <strong>and</strong> record value (1b-after; Figure 7.8).<br />

v. Rinse twice with DI water<br />

B. Calibration: pH<br />

i. Remove the calibration cup <strong>and</strong> gently pull the pH probe off<br />

while holding sonde unit with probes down.<br />

ii.<br />

iii.<br />

iv.<br />

Empty the probe of reference solution <strong>and</strong> replace with fresh<br />

st<strong>and</strong>ard (Reference Electrode Filling Solution, 3 Molar KCL<br />

solution buffered to pH 7. This solution can be made by adding<br />

55.91 grams of KCL (Fisher Scientific P217- 500, Potassium<br />

Chloride) <strong>and</strong> 1/2 of a packet of yellow pH 7 buffer powder<br />

(Hydrion Buffer Chemvelope) to 250-ml of DI water.<br />

While holding the sonde with probes down, reattach the probe.<br />

Flip the sonde unit so probes are up <strong>and</strong> screw the calibration<br />

cup back on the sonde unit. Rinse with pH 7 solution.<br />

v. Fill the calibration cup with pH 7 solution (above D.O.<br />

membrane) <strong>and</strong> cover with soft cap. (Allow 1-2 minutes for<br />

temperature equilibrium).<br />

vi.<br />

Switch to pH <strong>and</strong> record initial value on calibration sheet (2c-pH<br />

before; Figure 7.8).<br />

vii. Calibrate to 7.00 using ZERO function <strong>and</strong> record value (2c-pH<br />

after; Figure 7.8).<br />

viii. Rinse twice with DI water.<br />

ix. Rinse the probe with pH 10 solution.


Page 39<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

x. Fill the calibration cup with pH 10 solution (above D.O.<br />

membrane) <strong>and</strong> cover with soft cap. Allow 1-2 minutes for<br />

temperature equilibrium.<br />

xi.<br />

Record initial pH value on calibration sheet (2f-pH before;<br />

Figure 7.8).<br />

xii. Calibrate to 10.00 using SLOPE function <strong>and</strong> record value (2fpH<br />

after; Figure 7.8).<br />

xiii. Rinse twice with DI water<br />

xiv. Recheck pH 7 value <strong>and</strong> recalibrate, if necessary (2h-pH before /<br />

pH after; Figure 7.8).<br />

C. Calibration: Dissolved Oxygen (D.O.)<br />

i. Check the dissolved oxygen membrane. Replace D.O.<br />

electrolyte <strong>and</strong> membrane, if necessary.<br />

NOTE: If the D.O. membrane was changed, the unit must sit<br />

overnight before calibration.<br />

ii.<br />

iii.<br />

iv.<br />

Fill the calibration cup with DI water so the tip of the D.O.<br />

sensor is ~5 mm above liquid surface.<br />

Blot away any moisture on the membrane surface.<br />

Place the hard cap on the calibration cup, switch to temperature,<br />

<strong>and</strong> let equilibrate. Allow five minutes for water saturation <strong>and</strong><br />

temperature to equilibrate. At this time, temperature should<br />

change less than one tenth of a degree in five seconds.<br />

v. Record temperature on the Hydrolab Calibration Sheet (Figure<br />

7.8).<br />

vi.<br />

Record barometric pressure (760 mm Hg at sea level) on the<br />

Hydrolab Calibration Sheet (Figure 7.8).<br />

vii. Refer to Table 7.4 for D.O. value corresponding with the<br />

temperature at 760 mm Hg barometric pressure <strong>and</strong> record (3-<br />

Table D.O.; Figure 7.8).<br />

viii. Switch to D.O., let equilibrate, <strong>and</strong> record value (3-D.O. before;<br />

Figure 7.8).<br />

ix. Use the Slope function to calibrate D.O. to Table value <strong>and</strong><br />

record new value (3-D.O. after; Figure 7.8).<br />

D. Calibration: Depth (if installed)<br />

i. Empty calibration cup <strong>and</strong> leave open (no cap needed).<br />

ii.<br />

Switch to depth <strong>and</strong> record initial value (4-Depth before; Figure<br />

7.8).


Page 40<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

iii. Calibrate to 000.0 using ZERO function <strong>and</strong> record new value<br />

(4-Depth after; Figure 7.8).<br />

E. Battery <strong>and</strong> Save<br />

i. Record value (volts) <strong>and</strong> save calibration by pulling both the<br />

ZERO <strong>and</strong> SLOPE toggles toward you simultaneously (the word<br />

SAVE will appear on the display).<br />

ii. Charge the battery, if necessary.<br />

3. Surveyor III Calibration<br />

NOTE: The calibration of a Surveyor III is automatically saved after<br />

each calibration step.<br />

A. Calibration: Conductivity. The parameters are salinity compensated.<br />

Therefore, conductivity must be calibrated first.<br />

i. When calibrating for use in seawater, a 0.5 Molar KCl solution<br />

(58.640 millimoles/cm) is prepared by adding 37.28 grams of<br />

KCl (Fisher Scientific P217-500, Potassium Chloride) to 1000<br />

ml of de-ionized (DI) water.<br />

ii. Fill the calibration cup with conductivity solution until D.O.<br />

membrane is covered completely. Cover calibration cup with<br />

the soft cap <strong>and</strong> allow 1-2 minutes for temperature equilibrium.<br />

iii. Record initial conductivity reading on the Hydrolab Calibration<br />

Sheet (1b-before; Figure 7.8).<br />

iv. Press CALIBRATE <strong>and</strong> SpC/S keys. Select C for specific<br />

conductance <strong>and</strong> press ENTER.<br />

v. Type in the value of the conductivity st<strong>and</strong>ard used (58.64<br />

mmho/cm), then press ENTER. The conductivity is calibrated<br />

<strong>and</strong> the unit returns to st<strong>and</strong>ard operating mode (SOM). Record<br />

calibrated conductivity value (1b-after; Figure 7.8).<br />

vi. Rinse the probe twice with DI water.<br />

B. Calibration: pH<br />

i. Remove the calibration cup <strong>and</strong> gently pull pH probe off while<br />

holding the sonde unit with probes facing down.<br />

ii. Empty the probe of reference solution <strong>and</strong> replace with fresh<br />

st<strong>and</strong>ard (Reference Electrode Filling Solution, Fisher Scientific<br />

SP135-500, 4 Molar KCl saturated with Silver Chloride).<br />

iii. While holding the sonde with probes facing down, reattach the<br />

probe.


Page 41<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

iv. Flip the sonde unit so probes are facing up <strong>and</strong> screw the<br />

calibration cup back on the sonde unit. Rinse the probe twice<br />

with pH 7 solution.<br />

v. Fill the calibration cup with pH 7 solution (above D.O.<br />

membrane) <strong>and</strong> cover with soft cap. Allow 1-2 minutes for<br />

temperature equilibrium.<br />

vi. Monitor the display in SOM <strong>and</strong> record initial value (2c-pH<br />

before; Figure 7.8).<br />

vii. Press CALIBRATE <strong>and</strong> pH keys.<br />

viii. Type in 7.00 for the value of the pH, then press ENTER. The<br />

unit returns to SOM. Record pH value (2c-pH after; Figure 7.8).<br />

ix. Rinse the probe twice with DI water.<br />

x. Rinse the probe twice with pH 10 solution.<br />

xi. Fill the calibration cup with pH 10 solution (above the D.O.<br />

membrane) <strong>and</strong> cover with the soft cap. Allow 1-2 minutes for<br />

temperature equilibrium.<br />

xii. Monitor the display in SOM <strong>and</strong> record initial value (2f-pH<br />

before; Figure 7.8).<br />

xiii. Press CALIBRATE <strong>and</strong> pH keys.<br />

xiv. Type in 10.00 for the value of the pH, then press ENTER. The<br />

pH system is calibrated <strong>and</strong> the unit returns to SOM. Record pH<br />

value (2f-pH after; Figure 7.8).<br />

xv. Rinse twice with DI water.<br />

xvi. Recheck pH 7 value <strong>and</strong> recalibrate, if necessary (2h-pH before /<br />

pH after; Figure 7.8).<br />

C. Calibration: Dissolved Oxygen (D.O.)<br />

i. Check the dissolved oxygen membrane. Replace D.O.<br />

electrolyte <strong>and</strong> membrane, if necessary. If the D.O. membrane<br />

was changed, the unit must sit overnight before calibration.<br />

ii. Fill the calibration cup with DI water so the tip of the D.O.<br />

sensor is ~5 mm above liquid surface.<br />

iii. Blot away any moisture on the membrane surface.<br />

iv. Place the hard cap on the calibration cup. Allow five minutes<br />

for water saturation <strong>and</strong> temperature to equilibrate. At this time,<br />

temperature should change less than one tenth of a degree in five<br />

seconds.


Page 42<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

v. Record temperature on the Hydrolab Calibration Sheet (3c-<br />

Temp; Figure 7.8).<br />

vi.<br />

Record barometric pressure on the Hydrolab Calibration Sheet<br />

(3c-Barometric Pressure; Figure 7.8).<br />

vii. Check Table 7.4 for D.O. value corresponding with the<br />

temperature at 760 mm Hg barometric pressure <strong>and</strong> record (3c-<br />

Table D.O. ; Figure 7.8).<br />

viii. Monitor the D.O. in st<strong>and</strong>ard operating mode (SOM), let<br />

equilibrate, <strong>and</strong> record value (3c-D.O. before; Figure 7.8).<br />

ix. Press CALIBRATE <strong>and</strong> %S/DO keys. Select O for D(O) <strong>and</strong><br />

press ENTER.<br />

x. Enter the local barometric pressure in mm of mercury (760 mm<br />

Hg at sea level), then press ENTER.<br />

xi. Type in the D.O. value from Table 7.4 then press ENTER. The<br />

D.O. is calibrated <strong>and</strong> the unit returns to SOM. Record<br />

calibrated D.O. value (3-D.O. after; Figure 7.8).<br />

D. Calibration: Depth (if installed)<br />

i. Empty the calibration cup <strong>and</strong> leave open (no cap needed).<br />

Record initial depth (4-Depth before; Figure 7.8).<br />

ii. Press CALIBRATE <strong>and</strong> DEPTH keys.<br />

iii. Type in 0.0 <strong>and</strong> press ENTER.<br />

iv. The depth is calibrated <strong>and</strong> the unit returns to SOM. Record<br />

new depth value (4-Depth after; Figure 7.8).<br />

E. 5) Battery<br />

i. In SOM, press SCREEN to display screen 2 <strong>and</strong> record the<br />

internal battery voltage. If there is an external battery, check its<br />

voltage.<br />

ii. Charge the batteries, if necessary.<br />

4. Surveyor IV Calibration<br />

A. When using a Minisonde attached to the Surveyor IV, the circulator<br />

must be turned off before calibration.<br />

i. To turn the stirrer off, press SETUP/CAL. Then press SETUP.<br />

ii. Press SONDE, arrow down to Circltr: OFF/ON, <strong>and</strong> press<br />

SELECT.


Page 43<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

iii. Arrow over to the correct number <strong>and</strong> press SELECT, then press<br />

DONE.<br />

iv. Repeat steps i-iii to turn stirrer back on.<br />

B. Calibration: Conductivity. The parameters are salinity compensated.<br />

Therefore, conductivity must be calibrated first.<br />

i. When calibrating for use in seawater, a 0.5 Molar KCl solution<br />

(58.640 millimoles/cm) is prepared by adding 37.28 grams of<br />

KCl (Fisher Scientific P-217, Potassium Chloride) to 1000 ml of<br />

de-ionized (DI) water.<br />

ii. Fill the calibration cup with conductivity solution until D.O.<br />

membrane is covered completely. Cover calibration cup with<br />

the soft cap <strong>and</strong> allow 1-2 minutes for temperature equilibrium.<br />

iii. Record initial conductivity reading on the Hydrolab Calibration<br />

Sheet (1b-Before; Figure 7.8).<br />

iv. Press the SETUP/CAL key. Press CALIBRATE <strong>and</strong> SONDE.<br />

Arrow down to SpCond:mS/cm <strong>and</strong> press SELECT.<br />

v. Type in the value of the conductivity st<strong>and</strong>ard used (58.64<br />

mmho/cm), then press SELECT. The conductivity is calibrated<br />

<strong>and</strong> the unit returns to the main screen. Record the new<br />

conductivity value (1b-After; Figure 7.8).<br />

vi. Rinse the probe twice with DI water.<br />

C. Calibration: pH<br />

i. Remove the calibration cup.<br />

a. With an H20 or Reporter Sonde, gently pull the pH probe<br />

off while holding the sonde unit with probes facing<br />

down.<br />

b. With a Minisonde, unscrew the reference electrode<br />

housing screw.<br />

ii. Empty the probe of reference solution <strong>and</strong> replace with fresh<br />

st<strong>and</strong>ard (Reference Electrode Filling Solution, Fisher Scientific<br />

S35-500, 3 Molar KCl saturated with Silver Chloride). Reattach<br />

the probe cover.<br />

a. With an H20 or Reported Sonde, hold the sonde unit with<br />

probes facing down <strong>and</strong> reattach the probe cover until<br />

flush with sonde.<br />

b. With a Minisonde, reattach the reference electrode<br />

housing screw until flush with sonde.


Page 44<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

iii.<br />

Position the sonde unit so the probes are facing up <strong>and</strong> screw the<br />

calibration cup back on the sonde unit. Rinse the probe twice<br />

with pH 7 solution.<br />

iv. Fill the calibration cup with pH 7 solution (above D.O.<br />

membrane) <strong>and</strong> cover with soft cap. Allow 1-2 minutes for<br />

temperature equilibrium.<br />

v. Record initial pH value (2c-pH before; Figure 7.8).<br />

vi.<br />

Press the SETUP/CAL key. Press CALIBRATE <strong>and</strong> SONDE<br />

keys. Arrow down to pH:Units <strong>and</strong> press SELECT.<br />

vii. Type in 7.00 for the value of the pH, then press SELECT. The<br />

pH is calibrated <strong>and</strong> the unit returns to the main menu. Record<br />

new pH value (2c-pH after; Figure 7.8).<br />

viii. Rinse the probe twice with DI water.<br />

ix. Rinse the probe twice with pH 10 solution.<br />

x. Fill the calibration cup with pH 10 solution (above the D.O.<br />

membrane) <strong>and</strong> cover with the soft cap. Allow 1-2 minutes for<br />

temperature equilibrium.<br />

xi.<br />

Monitor the display on the main screen <strong>and</strong> record the initial<br />

value (2f-pH before; Figure 7.8).<br />

xii. Press the SETUP/CAL key. Then press CALIBRATE <strong>and</strong><br />

SONDE keys. Arrow down to pH:Units <strong>and</strong> press SELECT.<br />

xiii. Type 10.00 for the value of the pH, then press SELECT. The<br />

pH system is calibrated <strong>and</strong> the unit returns to the main screen.<br />

Record new pH value (2f-pH after; Figure7.8).<br />

xiv. Rinse the probe twice with DI water.<br />

xv. Recheck pH 7 value <strong>and</strong> recalibrate, if necessary (2h-pH before /<br />

pH after; Figure 7.8).<br />

D. Calibration: Dissolved Oxygen (D.O.)<br />

i. Before beginning the calibration process, check the D.O.<br />

membrane. Replace D.O. electrolyte <strong>and</strong> membrane, if<br />

necessary. If the D.O. membrane was changed, the unit must sit<br />

overnight before calibration.<br />

ii.<br />

iii.<br />

iv.<br />

Rinse the probe twice with DI water, then fill the calibration cup<br />

with DI water so the tip of the D.O. sensor is ~5 mm above the<br />

liquid surface.<br />

Blot away any moisture on the membrane surface.<br />

Place the hard cap on the calibration cup. Allow five minutes<br />

for water saturation <strong>and</strong> temperature to equilibrate. At this time,


Page 45<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

temperature should change less than one tenth of a degree in five<br />

seconds.<br />

v. Record temperature <strong>and</strong> barometric pressure (760 mm Hg at sea<br />

level) on the Hydrolab Calibration Sheet (Figure 7.8).<br />

vi. Check Table 7.4 for D.O. value corresponding with the<br />

temperature at 760 mm Hg barometric pressure <strong>and</strong> record value<br />

(3c-Table D.O. ; Figure 7.8).<br />

vii. Let the dissolved oxygen value equilibrate, <strong>and</strong> record value (3c-<br />

D.O. before; Figure 7.8).<br />

viii. Press the SETUP/CAL key. Then press the CALIBRATE <strong>and</strong><br />

SONDE keys. Arrow down to DO:mg/l <strong>and</strong> press SELECT.<br />

ix. Type in the D.O. value from Table 7.4 <strong>and</strong> press SELECT.<br />

Record the new D.O. value on the Hydrolab Calibration Sheet<br />

(3c-D.O. after; Figure 7.8).<br />

E. Turn the circulator back on following steps Ai-iii.<br />

F. Battery<br />

i. Record the voltage on the Hydrolab Calibration Sheet (Figure<br />

7.8) <strong>and</strong> recharge, if necessary.<br />

5. Scout II Calibration<br />

NOTE: The calibration of a Scout II is automatically saved after each<br />

calibration step.<br />

A. Calibration: Conductivity. The parameters are salinity compensated.<br />

Therefore, conductivity must be calibrated first.<br />

i. For seawater, a 0.5 Molar KCl solution (58.640 millimoles/cm)<br />

is prepared by adding 37.28 grams of KCl (Fisher Scientific P-<br />

217, Potassium Chloride) to 1000 ml of de-ionized (DI) water.<br />

ii. Fill the calibration cup with conductivity solution until D.O.<br />

membrane is covered completely. Cover the calibration cap<br />

with the soft cup <strong>and</strong> allow 1-2 minutes for temperature<br />

equilibrium.<br />

iii. Record initial conductivity reading on the Hydrolab Calibration<br />

Sheet (1b-before; Figure 7.8).<br />

iv. Press CALIBRATE, select C:Cond, <strong>and</strong> press ENTER.<br />

v. Type in the value of the conductivity st<strong>and</strong>ard used (58.64<br />

mmho/cm), then press ENTER.<br />

vi. Select Y to save calibration. The conductivity is calibrated <strong>and</strong><br />

the unit returns to the main screen. Record new conductivity<br />

value (1b-after; Figure 7.8).


Page 46<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

vii. Rinse the probe twice with DI water.<br />

B. Calibration: pH<br />

i. Remove the calibration cup <strong>and</strong> gently pull the pH probe off<br />

while holding the sonde unit with probes facing down.<br />

ii. Empty the probe of reference solution <strong>and</strong> replace with fresh<br />

st<strong>and</strong>ard (Reference Electrode Filling Solution, Fisher Scientific<br />

SP135-500, 4 Molar KCl saturated with Silver Chloride).<br />

iii. While holding the sonde with probes facing down, reattach the<br />

probe.<br />

iv. Flip the sonde unit so the probes are facing up <strong>and</strong> screw the<br />

calibration cup back on the sonde unit. Rinse twice with pH 7<br />

solution.<br />

v. Fill the calibration cup with pH 7 solution (above D.O.<br />

membrane) <strong>and</strong> cover with soft cap. Allow 1-2 minutes for<br />

temperature equilibrium.<br />

vi. Record initial pH value (2c-pH before; Figure 7.8).<br />

vii. Press CALIBRATE, select p:pH, <strong>and</strong> press ENTER.<br />

viii. Type in 7.00 for the value of the pH, then press ENTER. Select<br />

Y to save calibration. The conductivity is calibrated <strong>and</strong> the unit<br />

returns to the main menu. Record new pH value (2c-pH after;<br />

Figure 7.8).<br />

ix. Rinse the probe twice with DI water.<br />

x. Rinse the probe twice with pH 10 solution.<br />

xi. Fill the calibration cup with pH 10 solution (above the D.O.<br />

membrane) <strong>and</strong> cover with the soft cap. Allow 1-2 minutes for<br />

temperature equilibrium.<br />

xii. Record the initial value (2f-pH before; Figure 7.8).<br />

xiii. Press CALIBRATE, select p:pH, <strong>and</strong> press ENTER.<br />

xiv. Type 10.00 for the value of the pH, then press ENTER. Select Y<br />

to save calibration. The pH system is calibrated <strong>and</strong> the unit<br />

returns to the main screen. Record new pH value (2f-pH after;<br />

Figure 7.8).<br />

xv. Rinse the probe twice with DI water.<br />

xvi. Recheck pH 7 value <strong>and</strong> recalibrate, if necessary (2h-pH before /<br />

pH after; Figure 7.8).<br />

C. Calibration: Dissolved Oxygen (D.O.)


Page 47<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

i. Before beginning the calibration process, check the D.O.<br />

membrane. Replace D.O. electrolyte <strong>and</strong> membrane, if<br />

necessary. If the D.O. membrane was changed, the unit must sit<br />

overnight before calibration.<br />

ii. Rinse the probe twice with DI water, then fill the calibration cup<br />

with DI water so the tip of the D.O. sensor is ~5 mm above the<br />

liquid surface.<br />

iii. Blot away any moisture on the membrane surface.<br />

iv. Place the hard cap on the calibration cup. Allow five minutes<br />

for water saturation <strong>and</strong> temperature to equilibrate. At this time,<br />

temperature should change less than one tenth of a degree in five<br />

seconds.<br />

v. Record temperature <strong>and</strong> barometric pressure (760 mm Hg at sea<br />

level) on the Hydrolab Calibration Sheet (Figure 7.8).<br />

vi. Check Table 7.4 for D.O. value corresponding with the<br />

temperature <strong>and</strong> barometric pressure <strong>and</strong> record value (3c-Table<br />

D.O. ; Figure 7.8).<br />

vii. Let the dissolved oxygen value equilibrate, <strong>and</strong> record value (3c-<br />

D.O. before; Figure 7.8).<br />

viii. Press CALIBRATE <strong>and</strong> arrow over to O:DO mg/L <strong>and</strong> press<br />

ENTER.<br />

ix. Type in the D.O. value from Table 7-5 <strong>and</strong> press ENTER.<br />

x. Select Y to save calibration. The D.O. is calibrated <strong>and</strong> the unit<br />

returns to the main screen. Record new D.O. value (3c-D.O.<br />

after; Figure 7.8).<br />

D. Calibration: Depth (if installed)<br />

i. Empty the calibration cup <strong>and</strong> leave open (no cap needed).<br />

Record initial depth (4-Depth before; Figure 7.8).<br />

ii. Press CALIBRATE, select D:Depth, <strong>and</strong> press ENTER.<br />

iii. Type in 0.0 <strong>and</strong> press ENTER.<br />

iv. Select Y to save calibration. The depth is calibrated <strong>and</strong> the unit<br />

returns to the main menu. Record new depth value (4-Depth<br />

after; Figure 7.8).<br />

E. Battery<br />

i. Record the voltage from the top right corner of the alt screen.<br />

ii. Change the batteries, if necessary.


Page 48<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

7.3.5.6 Secchi Disk<br />

Introduction<br />

A secchi disk provides an easy, economical <strong>and</strong> reliable measure of water clarity <strong>and</strong><br />

light penetration. Turbidity <strong>and</strong> available light may be expected to have significant<br />

effects on the visual perception of fishes, <strong>and</strong> hence affect catchability.<br />

Gear Description<br />

203-mm diameter disc with alternating black <strong>and</strong> white quarters.<br />

Objective<br />

To provide a measurement of visibility within the water column that integrates water<br />

clarity <strong>and</strong> ambient light level.<br />

Procedure<br />

1. This procedure is performed during daytime only.<br />

2. Locate an area that is free from turbidity generated by the boat or sampling<br />

operations. Local shadow effects caused by boat, shore vegetation, structures,<br />

or yourself should also be avoided. Remove sunglasses if worn. During<br />

nearshore sampling operations (i.e., boat seines, beach seines, haul seines, etc.)<br />

readings should be taken at maximal depth of gear deployment.<br />

3. Slowly lower disk into water using distance calibrated (meters <strong>and</strong> tenths) line.<br />

When the disk is lost to sight, note the point on the line at water surface.<br />

4. Lower disk additional 0.2 - 0.3 m, then slowly begin to retrieve to surface.<br />

When the disk first becomes visible, again note point of line at surface. If this<br />

varies from the first measurement, average these two values <strong>and</strong> record to the<br />

nearest 0.1 m.<br />

5. If disk settles on bottom before being lost to sight, record water depth <strong>and</strong> ‘Y’<br />

in appropriate boxes on data sheet (‘N’ otherwise).<br />

7.3.6 Laboratory Work-Up<br />

7.3.6.1 Representative <strong>and</strong> Unidentified Sample Work-Up <strong>and</strong> Reference<br />

Collection.<br />

Introduction<br />

In the field, some fish are collected that are too small, uncommon or difficult to identify<br />

to their lowest taxonomic level. Therefore, it is necessary to bring these specimens back


Page 49<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

to the lab for further identification. Fish are also brought back as representative samples<br />

to confirm field identifications <strong>and</strong> to augment the specimen reference collection.<br />

Objectives<br />

1. To confirm the accuracy of field identifications.<br />

2. To identify specimens to the lowest possible taxonomic level.<br />

Procedure<br />

1. Species Identification / Representative Samples<br />

A. Initial ID<br />

i. Locate samples, usually found in freezers.<br />

ii. Locate appropriate sample worksheet book (Identification or<br />

Representative Samples; SRS or River study).<br />

iii. Record the field number, collection date, gear, <strong>and</strong> grid from the<br />

tag in the sample bag in the appropriate location on the<br />

worksheet (Figures 7.9 <strong>and</strong> 7.10).<br />

iv. Identify specimens to the lowest taxa possible.<br />

v. Record the species identification <strong>and</strong> corresponding length<br />

measurements.<br />

vi. Record the method used to determine the species identification<br />

in the ‘I.D. Method’ column (i.e., fin ray counts or other<br />

distinguishing characteristics).<br />

vii. Record the date of sample work-up <strong>and</strong> the initials of the<br />

individual who completed the initial identification.<br />

viii. Representative samples: Only one identification is required. If<br />

specimens are difficult to identify, get a second opinion. New<br />

employees should identify specimens <strong>and</strong> then have an<br />

experienced FIM staff member confirm their identifications.<br />

ix. Identification samples require at least two identifications.<br />

a. Place the specimen(s) back in the bag with the label <strong>and</strong><br />

place in the ‘To Be Confirmed’ section of the freezer. If<br />

possible have another individual complete the<br />

confirmation (see below) instead of re-freezing the<br />

sample. This not only saves room in the freezer but also<br />

makes the confirmation easier since the specimen(s) are<br />

relatively fresh.


Page 50<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

B. Confirmation: To ensure proper identification of specimens, a<br />

confirmation identification is needed by a second independent FIM<br />

staff member.<br />

i. Remove fish from the ‘To Be Confirmed’ section of the freezer<br />

<strong>and</strong> thaw the sample(s).<br />

ii. Identify specimens to the lowest taxa possible.<br />

iii.<br />

Locate the corresponding collection number in the appropriate<br />

sample worksheet book.<br />

iv. Determine whether confirmation identification matches initial<br />

identification.<br />

a. If the identifications match, record the date of<br />

confirmation <strong>and</strong> your initials in the ‘CONFIRM<br />

INITIAL’ column of the worksheet (Figures 7.9 <strong>and</strong><br />

7.10).<br />

b. If the identification does not match the original<br />

identification, the sample must be saved for a third<br />

independent identification.<br />

(1) Place the specimen(s) back in the bag with the label<br />

<strong>and</strong> place back in the ‘To Be Confirmed’ section of the<br />

freezer. If possible, have another individual complete<br />

the third identification instead of refreezing the sample.<br />

(2) Record the new identification on the same line as<br />

the original identification.<br />

(3) Record ‘Needs Third ID’ in the ‘Confirm Initial’<br />

column of the worksheet.<br />

(4) Record the date <strong>and</strong> initials of the individual<br />

making the new identification in or near the ‘Confirm<br />

Initial’ column of the worksheet.<br />

v. Upon confirmation of a sample, the specimens may be discarded<br />

unless needed for other research projects or incorporation into<br />

the reference collection.<br />

C. The last column on the Representative / Identification Samples<br />

Worksheet (Field ID) should be left blank. A FIM staff member uses<br />

this column when completing the fish id tabulation. A FIM staff<br />

member checks the laboratory identifications against field<br />

identifications to calculate percent accuracy for a 6-month period.<br />

2. Reference Collection<br />

A. Fixing specimens: Specimens should be fixed in 10% formalin for<br />

about one week, thoroughly rinsed in fresh water, then preserved in


Page 51<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

7.3.7 Data<br />

50% isopropyl alcohol. Tags should be attached to all samples in<br />

formalin, stating ‘in 10% formalin’ <strong>and</strong> the date of fixation. When<br />

transferring samples, decant clean used formalin into the reusable<br />

formalin carboy or discard down the drain, flushing with plenty of<br />

water.<br />

Note: Formalin is a carcinogen. Consult safety manual or safety<br />

officer for proper procedure whenever h<strong>and</strong>ling formalin or specimens<br />

stored in formalin.<br />

B. Addition to reference collection: After preserving the specimens<br />

properly, place the sample jar on the shelf within the area designated<br />

by its family. Each sample jar should be labeled with the field number,<br />

species name, date collected, <strong>and</strong> location of the collection. The above<br />

information along with the st<strong>and</strong>ard lengths of each specimen should<br />

be recorded in the ‘REFERENCE COLLECTION’ book.<br />

C. Make sure all labels are legible <strong>and</strong> complete.<br />

7.3.7.1 Data Processing<br />

Accurate <strong>and</strong> timely data entry <strong>and</strong> processing is vital to the success of the Fisheries-<br />

Independent Monitoring (FIM) program. Data go through a formal process that includes<br />

data entry, proofing, editing, re-proofing, re-editing, <strong>and</strong> check program verification prior<br />

to being considered complete. All data processing is completed using a MS Access<br />

database application developed by the FIM program. This relational database allows data<br />

to be easily shared within HBMP groups <strong>and</strong> with outside agencies that have an interest<br />

in the data.<br />

Data entry always begins with the field data sheet for a given sampling trip. This<br />

establishes the “Primary Key” (Field Number) that ties all underlying data tables (water<br />

<strong>quality</strong>, biological, <strong>and</strong> habitat data) together. Following entry of the field data, the<br />

biological data may be entered, <strong>and</strong> then any subsequent wetlab data may be entered.<br />

Following data entry, proofing reports that mimic the data sheets are printed. Data<br />

proofing is conducted by two people, one of whom must be capable of acting as PI on a<br />

sampling trip. There is much more to proofing than simply verifying that the values for<br />

each variable were entered correctly. The proofers must be aware of the procedures <strong>and</strong><br />

guidelines related to the data <strong>and</strong> recognize situations where the variables entered do not<br />

seem reasonable. For example, the proofers should question situations where the wind<br />

seems too strong, the bank, gear, period or zone seems wrong, or the soaktime or distance<br />

towed seems excessive. They should spot check the addition for number of fish (e.g.,<br />

was a length left empty <strong>and</strong> number of fish entered as 20, or were the 20 measured fish<br />

added into the total?). These are common errors that cannot easily be caught by check<br />

programs.


Page 52<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Errors identified during the proofing phase are corrected using the MS Access database<br />

application, after which additional proofing reports, for the re-proofing phase, are printed.<br />

Reproofing can be completed by one person, but should not be the same person who<br />

made the corrections. This process verifies that the errors identified on the initial<br />

proofing sheet were corrected during the correction process. Any remaining errors are recorrected<br />

using the MS Access database application.<br />

The final phase of the data processing is a series of check programs, written in the<br />

Statistical Analysis System (SAS). These programs look for data fields that have values<br />

that seem unlikely. They check against known or expected data ranges, <strong>and</strong> against<br />

historical data values. A listing of potential errors is output <strong>and</strong> researched against both<br />

the MS Access database <strong>and</strong> the original data sheets. Identified errors are corrected in the<br />

MS Access database application.


Page 53<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Table 7.1. Summary of Adult <strong>and</strong> Juvenile Fish HBMP Sampling Element<br />

Sampling Program Summary for the lower Hillsborough River<br />

Element # Strata Jan Feb March April May June July August September October November December Total<br />

Fish -<br />

Adult /<br />

Juveniles<br />

6 strata<br />

2 seines &<br />

1 trawl /<br />

stratum<br />

2 seines &<br />

1 trawl /<br />

stratum<br />

2 seines &<br />

1 trawl /<br />

stratum<br />

Sampling program summary for the lower Alafia River<br />

Fish -<br />

Adult /<br />

Juveniles<br />

6 strata<br />

2 seines &<br />

1 trawl /<br />

stratum<br />

2 seines &<br />

1 trawl /<br />

stratum<br />

Sampling program summary for McKay <strong>Bay</strong><br />

2 seines &<br />

1 trawl /<br />

stratum<br />

2 seines &<br />

1 trawl /<br />

stratum<br />

2 seines &<br />

1 trawl /<br />

stratum<br />

2 seines &<br />

1 trawl /<br />

stratum<br />

2 seines &<br />

1 trawl /<br />

stratum<br />

2 seines &<br />

1 trawl /<br />

stratum<br />

2 seines &<br />

1 trawl /<br />

stratum<br />

2 seines &<br />

1 trawl /<br />

stratum<br />

2 seines &<br />

1 trawl /<br />

stratum<br />

2 seines<br />

1 trawl /<br />

stratum<br />

2 seines<br />

1 trawl /<br />

stratum<br />

2 seines &<br />

1 trawl /<br />

stratum<br />

2 seines &<br />

1 trawl /<br />

stratum<br />

2 seines<br />

1 trawl /<br />

stratum<br />

2 seines<br />

1 trawl /<br />

stratum<br />

2 seines &<br />

1 trawl /<br />

stratum<br />

2 seines &<br />

1 trawl /<br />

stratum<br />

2 seines &<br />

1 trawl /<br />

Stratum<br />

2 seines &<br />

1 trawl /<br />

Stratum<br />

144<br />

seines<br />

72<br />

trawls<br />

144<br />

seines<br />

72<br />

trawls<br />

Fish -<br />

Adult /<br />

Juveniles<br />

10 cells<br />

shallow<br />

4 cells<br />

deep<br />

1 seine/<br />

cell<br />

1 trawl/<br />

cell<br />

1 seine/<br />

cell<br />

1 trawl/<br />

cell<br />

1 seine/<br />

cell<br />

1 trawl/<br />

cell<br />

1 seine/<br />

cell<br />

1 trawl/<br />

cell<br />

1 seine/<br />

cell<br />

1 trawl/<br />

cell<br />

1 seine/<br />

cell<br />

1 trawl/<br />

cell<br />

1 seine/<br />

cell<br />

1 trawl/<br />

cell<br />

1 seine/<br />

cell<br />

1 trawl/<br />

cell<br />

1 seine/<br />

cell<br />

1 trawl/<br />

cell<br />

1 seine/<br />

cell<br />

1 trawl/<br />

cell<br />

1 seine/<br />

cell<br />

1 trawl/<br />

cell<br />

1 seine/<br />

cell<br />

1 trawl/<br />

cell<br />

120<br />

seines<br />

48<br />

trawls<br />

Sampling program summary for the TBC/Palm River<br />

Fish -<br />

Adult /<br />

Juveniles<br />

3 strata<br />

2 seines &<br />

1 trawl /<br />

stratum<br />

2 seines &<br />

1 trawl /<br />

stratum<br />

2 seines &<br />

1 trawl /<br />

stratum<br />

2 seines &<br />

1 trawl /<br />

stratum<br />

2 seines &<br />

1 trawl /<br />

stratum<br />

2 seines &<br />

1 trawl /<br />

stratum<br />

2 seines &<br />

1 trawl /<br />

stratum<br />

2 seines<br />

1 trawl /<br />

stratum<br />

Sampling program summary for portion of Hillsborough <strong>Bay</strong> that is immediately outside of the Alafia River<br />

2 seines &<br />

1 trawl /<br />

stratum<br />

2 seines<br />

1 trawl /<br />

stratum<br />

2 seines &<br />

1 trawl /<br />

stratum<br />

2 seines &<br />

1 trawl /<br />

Stratum<br />

72<br />

seines<br />

36<br />

trawls<br />

Fish -<br />

Adult /<br />

Juveniles<br />

2 strata<br />

2 seines &<br />

2 trawls /<br />

stratum<br />

2 seines &<br />

2 trawls /<br />

stratum<br />

2 seines &<br />

2 trawls /<br />

stratum<br />

2 seines &<br />

2 trawls /<br />

stratum<br />

2 seines &<br />

2 trawls /<br />

stratum<br />

2 seines &<br />

2 trawls /<br />

stratum<br />

2 seines &<br />

2 trawls /<br />

stratum<br />

2 seines &<br />

2 trawls /<br />

stratum<br />

2 seines &<br />

2 trawls /<br />

stratum<br />

2 seines &<br />

2 trawls /<br />

stratum<br />

2 seines &<br />

2 trawls /<br />

stratum<br />

2 seines &<br />

2 trawls /<br />

stratum<br />

48<br />

seines<br />

48<br />

trawls


Page 54<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Table 7.2 Gear Deployment And Types<br />

Shallow Areas (< 1.5m)<br />

Deep Areas (> 1.8m)<br />

Indicator<br />

Sampling Gear<br />

21-m center bag seine, with 3.2 mm mesh (offshore,<br />

<strong>and</strong> boat sets)<br />

6.1-m Otter trawl with 39-mm stretch mesh <strong>and</strong> 3.1<br />

mesh liner<br />

Table 7.3 Maximum bag depths <strong>and</strong> wing depths for 21.3-m seine techniques<br />

Sampling Technique<br />

Minimum Bag<br />

(start) Depth (m)<br />

Maximum Bag<br />

(start) Depth (m)<br />

Maximum Wing Depth (m)<br />

Non-Seawall Seawall<br />

Set<br />

Set<br />

<strong>Bay</strong> 0.3 1.5 N/A N/A<br />

River 0.3 1.8 0.3 1.0


Page 55<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Table 7.4 Freshwater Oxygen<br />

Solubility with a Barometric Pressure<br />

of 760 mm Hg<br />

Temperature ( 0 C)<br />

D.O. In mg/L<br />

19.00 9.24<br />

19.25 9.20<br />

19.50 9.15<br />

19.75 9.10<br />

20.00 9.06<br />

20.25 9.02<br />

20.50 8.97<br />

20.75 8.92<br />

21.00 8.88<br />

21.25 8.84<br />

21.50 8.80<br />

21.75 8.75<br />

22.00 8.71<br />

22.25 8.67<br />

22.50 8.63<br />

22.75 8.59<br />

23.00 8.55<br />

23.25 8.51<br />

23.50 8.47<br />

23.75 8.43<br />

24.00 8.39<br />

24.25 8.35<br />

24.50 8.31<br />

24.75 8.28<br />

25.00 8.24


Page 56<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT


Page 57<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Sampling Dates <strong>and</strong> Locations. Dates & Estimated Time in Area to be<br />

Sampled.<br />

Date(S):<br />

Arrival<br />

Time:___________________<br />

Departure<br />

Time:_________________<br />

Site Description (s):<br />

Location To Be Sampled (Be Specific)<br />

(circle types of gear or describe if other)<br />

Sampling Gear Activity<br />

70 ft. seine / 600 ft. seine / 600 ft. purse seine / 20 ft. Otter trawl / 400 yd. Trammel net/ 600<br />

yd trammel net / other:<br />

Vessel Information<br />

(circle length) 22 / 24 / 26 ft. Net Skiff<br />

(circle type of console) Center / Bow<br />

REGISTRATION #: FL-<br />

Captain/Field PI:<br />

FWRI Personnel Information<br />

Crew/Other Staff:<br />

1. 4.<br />

2. 5.<br />

3. 6.<br />

FWRI Contact Person:<br />

Number:<br />

Form Faxed By:<br />

Date/Time:<br />

Section: Fisheries Independent Monitoring<br />

Figure 7.2 Float <strong>plan</strong> to be faxed to the Marine Patrol on the morning of sampling


Seiner # 1 (S1)<br />

Page 58<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Bag<br />

Width 15.5-m<br />

Pull 9.1-m<br />

Bag<br />

S1<br />

S2<br />

Pivot pole<br />

Pivot pole person (P)<br />

Seiner # 2 (S2)<br />

A. Center bag seine deployed offshore B. Seine wings brought together <strong>and</strong><br />

pivot pole set<br />

Bag<br />

S1<br />

Bag<br />

S1<br />

P<br />

P<br />

C. Net wings pulled around pivot pole.<br />

Seiner # 1 (S1) <strong>and</strong> pivot pole person<br />

(P) foot the lead line <strong>and</strong> push the net<br />

wings together.<br />

S2<br />

D. When top of the bag reaches pivot<br />

pole, seiner # 2 (S2) stops pulling on<br />

the net wings.<br />

S2<br />

Bag<br />

P<br />

S1<br />

End of bag<br />

Bag<br />

S1<br />

S2 P<br />

Pivot pole<br />

S2<br />

E. Seiner # 2 (S2) pulls lead line of each<br />

net wing approximately 4 feet to move<br />

the lead lines at the front of the bag past<br />

the pivot pole.<br />

F. Pivot pole person (P) <strong>and</strong> seiner # 1<br />

(S1) use the pivot pole to pull the<br />

seine’s bag opening out of the water.<br />

Figure 7.3 21.3-m bay seine technique


Figure 7.4. Organism Measurement Techniques<br />

Page 59<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT


Sample Identification Data<br />

Location Data<br />

Latitude<br />

Page 60<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

<strong>Bay</strong> Type Year Month Trip number Seq. number Day Inst.<br />

Longitude<br />

Degrees<br />

Minutes<br />

Projects Rep Work up<br />

(S/N)<br />

PI Crew 1 Crew 2 Crew 3 Crew 4<br />

Zone Sub Grid<br />

Gear Stratum Start time (24hr) Start depth (m)<br />

Station<br />

Weather<br />

Direction<br />

Wind<br />

Speed<br />

Clouds Precipitation Tide Minutes Seconds<br />

Current<br />

Period<br />

<strong>Water</strong> Quality Parameters<br />

Temperature Dissolved Oxygen Conductivity pH Salinity Secchi Disk<br />

Depth (m) Inst Inst Inst Inst Inst<br />

Depth (m)<br />

On bottom?<br />

(Y/N)<br />

Habitat<br />

Bottom Bottom Vegetation Shore Type Shoreline Bycatch<br />

Line drawing of sampling area<br />

%<br />

%<br />

4 o 4 o 4 o<br />

Type<br />

Type comp Level Type Inund. Over. cover<br />

1 o 1 o 1 o<br />

2 o 2 o 2 o<br />

3 o 3 o 3 o<br />

Type<br />

%<br />

comp<br />

Percent cover<br />

Total % shoreline<br />

covered<br />

Int. L<strong>and</strong> to Shore to Shore Type to MHTM<br />

Distance (meters) from net<br />

Quantity (gal)<br />

Seines<br />

Notes:<br />

Current relation Wind relation Wing depth (m)<br />

Event?<br />

(Y/N)<br />

Proc. Except.?<br />

(Y/N)<br />

Trawls<br />

Current relation Wind relation End depth (m)<br />

Soaktime (HH:MM) Bearing Distance towed (nm)<br />

Trammel Nets<br />

Gear Damage?<br />

End time (24hr) Search time (HH:MM) # of panels deployed<br />

Recorded Reviewed Entered Proofed Corrected Completed<br />

field data sheet 2005; 7/20/05<br />

h:\data\data_sheets\field_sheet_2005_two_sided.doc<br />

Figure 7.5. Field Data Sheet


Page 61<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Label Info: Grid Gear Location Page<br />

<strong>Bay</strong> Type Year Month Trip Number Seq. number Day Rep Method<br />

Genus/Species Lengths (mm) Genus/Species Lengths (mm)<br />

Spp. Spp.<br />

N Use S ex S C N U se S ex SC<br />

T ag FH C AH C T ag FH C<br />

Spp. Spp.<br />

N Use S ex S C N U se S ex SC<br />

T ag FH C AH C T ag FH C<br />

Spp. Spp.<br />

N Use S ex S C N U se S ex SC<br />

T ag FH C AH C T ag FH C<br />

Spp. Spp.<br />

N Use S ex S C N U se S ex SC<br />

T ag FH C AH C T ag FH C<br />

Spp. Spp.<br />

N Use S ex S C N U se S ex SC<br />

T ag FH C AH C T ag FH C<br />

Spp. Spp.<br />

N Use S ex S C N U se S ex SC<br />

T ag FH C AH C T ag FH C<br />

Spp. Spp.<br />

N Use S ex S C N U se S ex SC<br />

T ag FH C AH C T ag FH C<br />

Spp. Spp.<br />

N Use S ex S C N U se S ex SC<br />

T ag FH C AH C T ag FH C<br />

Spp. Spp.<br />

N Use S ex S C N U se S ex SC<br />

T ag FH C AH C T ag FH C<br />

Spp. Spp.<br />

N Use S ex S C N U se S ex SC<br />

T ag FH C AH C T ag FH C<br />

Recorded Reviewed Entered Proofed Corrected Completed Rep Smpl Chk Id Smpl Chk<br />

Length Data Sheet 2001.1, 01/30/2001, len_data_sht.doc<br />

Figure 7.6. Length Data Sheet


Page 62<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Field Number:<br />

Date:<br />

Grid:<br />

Projects:<br />

Gear:<br />

Use:<br />

FHC:<br />

PI:<br />

Species:<br />

Culled for:<br />

Rep ID Genetics<br />

Life history Mercury Len/wt<br />

Fish Health<br />

Other:<br />

Notes:<br />

Completed: 1 st ID 2 nd ID Final<br />

Figure 7.7 Sample Labels


Figure 7.8 Hydrolab Calibration Sheet<br />

Page 63<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT


Figure 7.9 Representative Sample Work Sheet<br />

Page 64<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT


Figure 7.10 Identification Sample Work Sheet<br />

Page 65<br />

Section 7.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT


Appendix 7-A<br />

Code Lists for Data Collection


Exhibit 7.1 Field Code Lists <strong>and</strong><br />

Gear Descriptions for Fisheries-<br />

Independent Monitoring<br />

FIELD NUMBER<br />

FIELD_NO’s are ten digit variables comprised<br />

of five distinct parts designed to give every<br />

sample taken a unique, identifying number. The<br />

parts are:<br />

SAMPLING TYPE<br />

Code Sampling Type<br />

A Adult Monitoring<br />

B Bought (09/94)<br />

C Cryptic Mortality<br />

D Directed<br />

Part<br />

XX<br />

T<br />

XXTYY####M<br />

Description<br />

The BAY system sampled<br />

The SAMPLING TYPE<br />

YY YEAR sample was taken (e.g., 94)<br />

####<br />

M<br />

Unique identifying collection number for every<br />

sample taken in a year. For dropnets this<br />

number is the same for a series of three<br />

simultaneously dropped nets. For gillnets this<br />

number is the same for each panel (mesh size)<br />

in a single net.<br />

MODIFIER<br />

F<br />

G<br />

H<br />

K<br />

M<br />

N<br />

O<br />

P<br />

R<br />

S<br />

V<br />

V<br />

Fixed-Station Sampling<br />

Gear Testing<br />

Hatchery Release Sampling<br />

Alafia River Acid Spill Sampling<br />

Stratified-R<strong>and</strong>om Sampling<br />

Nutrients<br />

Oil spill sampling<br />

Photosynthesis<br />

Reconnaissance<br />

Seagrass<br />

Visual Survey (Used with ‘KY’<br />

only)<br />

River Study (Used with ‘RI’ only)<br />

BAY<br />

Code <strong>Bay</strong><br />

AP Apalachicola<br />

CH Charlotte Harbor<br />

CK Cedar Key<br />

EV Everglades (06/96)*<br />

FW Fort Walton (10/92 – 04/97)<br />

IR Indian River<br />

KY Florida Keys<br />

JX Jacksonville (12/94)<br />

RI River study<br />

SR St. Sebastian River<br />

TB <strong>Tampa</strong> <strong>Bay</strong><br />

TQ Tequesta (01/97)<br />

VC<br />

Volusia County<br />

Code<br />

A-E<br />

L, M, R<br />

X, Y, Z<br />

X Extra (09/94)<br />

Z<br />

Zoology<br />

MODIFIER<br />

Description<br />

Identifies each panel (mesh size) in a gillnet. A<br />

is the smallest mesh size in a given net while E<br />

represents the largest mesh size.<br />

Designates the Left, Middle, <strong>and</strong> Right net in a<br />

series of three dropnets when samples removed<br />

by the internal seine.<br />

Correspond to dropnets L, M, <strong>and</strong> R<br />

(respectively) when samples removed with a<br />

dipnet.


GEAR CODES<br />

Code<br />

Gear Description<br />

*20 21.3m center-bag seine, 3.1mm mesh, leads spaced every 150mm, offshore-circular set.<br />

*23 21.3 center-bag seine, 3.1mm mesh, leads spaced every 150mm, boat set.<br />

*300 6.1m otter trawl w/ 3.1mm liner & tickler chain. A straight tow.<br />

*301 6.1m otter trawl w/ 3.1mm liner & tickler chain. An arc tow.


Exhibit 7.2 Codes used for instruments<br />

WATER QUALITY INSTRUMENT<br />

(INST_TEM, INST_DO, INST_CON, INST_TUR, INST_SAL, <strong>and</strong> INST_PH)<br />

Code<br />

Instrument<br />

Common codes used at all labs:<br />

N Nephalometer (02/94)<br />

R Refractometer (02/94)<br />

Y YSI SCT-Meter (02/94)<br />

Z Thermometer (05/96)<br />

4 PHep pH tester (09/96)<br />

5 YSI D.O. Meter (10/96)<br />

6 YSI Model 85 (SCTD-Meter) (10/96)<br />

<strong>Tampa</strong> <strong>Bay</strong><br />

A Hydrolab Surveyor 4/H20 Sonde, #23<br />

B Hydrolab Surveyor 4/Minisonde, #25<br />

J Hydrolab Scout 2/H20 Sonde, #10 (03/96)<br />

L Hydrolab Surveyor 3/H20 Sonde, #12 (03/96)<br />

O Hydrolab Scout 2/Reporter Sonde #15 (03/96)<br />

T YSI 610D/600 Sonde, #20 (03/96)<br />

U YSI 610D/600 Sonde, #21 (03/96)<br />

V Hydrolab Scout 2//Reporter Sonde, #14 (03/96)<br />

9 Hydrolab Scout 2/H20 Sonde, #22<br />

Incorporated into the data base on 01/01/94<br />

TIME<br />

(STARTIME <strong>and</strong> ENDTIME in Physical databases)<br />

Start time, End time, Sunrise, <strong>and</strong> Sunset are recorded in HH:MM format using the 24 hour clock.


DEPTH<br />

(STARTDEPTH <strong>and</strong> ENDDEPTH in Physical databases)<br />

Start Depth <strong>and</strong> End Depth are recorded in meters rounded off to the nearest 1/10th.<br />

LOCATION INSTRUMENT<br />

(INST_LOC in Physical databases)<br />

Code<br />

Instrument<br />

C Chart (03/96)<br />

D Differential GPS (02/94)<br />

G<br />

GPS (Not Differential)<br />

(02/94)<br />

L LORAN (02/94)<br />

Incorporated into the data base on 01/01/94<br />

PROJECTS<br />

Code<br />

M<br />

H<br />

Projects<br />

Regular FIM program<br />

sampling<br />

Hatchery release sampling<br />

R<br />

HBMP sampling<br />

Incorporated into the database on 01/01/00<br />

DISSOLVED OXYGEN<br />

(SFST_DO, SFE_DO, BTST_DO <strong>and</strong> BTE_DO in Physical databases)<br />

Recorded in milligrams per liter (mg/l) rounded off to the nearest 1/10th.<br />

TEMPERATURE<br />

(SFST_TEM, SFE_TEM, BTST_TEM, BTE_TEM in Physical databases)<br />

Recorded in degrees Celsius ( o C) rounded off to the<br />

nearest 1/10th.<br />

SALINITY<br />

(SFST_SAL, SFE_SAL, BTST_SAL, BTE_SAL in Physical databases)<br />

Recorded in parts per thous<strong>and</strong> (λ) rounded off to the nearest 1/10th.


Code<br />

BOAT<br />

Boat<br />

- no boat used (line through field)<br />

A 24’ Atlas—Voodoo, AP (12/93)<br />

B 22’ Overton—Jubilee II, TB (09/95)<br />

C<br />

23’ Sheffield—CZM, CH<br />

D 26’ Overton Purse Seine, TB (12/98)<br />

E<br />

F<br />

G<br />

23’ Sheffield—EC&P, IR<br />

24’ Tremblay—Fireball, CK<br />

22’ Overton—Jubilee, TB<br />

H 22’ Tremblay—Fish Health, CK (12/93)<br />

I<br />

J<br />

22’ Tremblay—Miaz Dragon, TB<br />

(12/98)<br />

22’ Tremblay—Miss Joan, IR<br />

K 24’ Atlas—Rhino, KY (12/93)<br />

L<br />

23’ Sheffield—Lightning Rod, CK<br />

M 26’ World Cat, KY (03/99)<br />

N<br />

O<br />

P<br />

Q<br />

R<br />

22’ Tremblay—Sea Neb, CH<br />

26’ Franklin Purse—Rhombo, CH<br />

(06/96)<br />

24’ Franklin Purse—Pearlfish, AP<br />

(02/96)<br />

24’ Overton—Millennium Falcon, TB<br />

(11/98)<br />

22’ Tremblay—Road Warrior, TB<br />

S 19’ Scheffield—Squalus, CK (12/93)<br />

T 22’ Tremblay—Adult boat, TB (04/95)<br />

U 22’ Tremblay—Limnatus, TB (12/99)<br />

V 21’ Parker, KY (03/99)<br />

W 18’ Parker, KY (03/99)<br />

X 26’ Atlantic—Cujo, AP (10/96)<br />

Y 22’ Grey Boat—Mallotus, IR (03/99)<br />

Z 24’ Overton—<strong>Water</strong>dawg, AP (09/96)<br />

1 18’ Electrofishing Boat, TB (03/99)<br />

2 24’ Overton, CH (01/00)<br />

3 17’ Proline, TB (01/00)<br />

4 Upside-down Tremblay (02/00)


SECCHI DISK<br />

(SCHI_DSK)<br />

Depth recorded to the nearest tenth of a meter<br />

Incorporated into the data base on 01/01/94<br />

Code<br />

Y<br />

N<br />

BOTTOM<br />

(SCHI_BOT)<br />

Definition<br />

Yes. Secchi disk sighted on bottom<br />

No. Secchi disk not sighted on bottom<br />

Incorporated into the data base on 02/01/94<br />

WIND DIRECTION<br />

(STWINDDR, EWINDDR)<br />

Code Direction<br />

E East<br />

N North<br />

NE Northeast<br />

NW Northwest<br />

S South<br />

SE Southeast<br />

SW Southwest<br />

W West<br />

0 No wind<br />

WIND SPEED<br />

(STWINDSP, EWINDSP)<br />

Estimated wind speed recorded in miles per hour (MPH).<br />

% CLOUD COVER<br />

(STCLOUDS, ECLOUDS)<br />

Code<br />

Percent Cloud Cover<br />

0 No clouds (clear)<br />

1-100 Visual estimation<br />

101 Fog<br />

102 Rain


Code<br />

1<br />

PERIOD<br />

Period Of The Day<br />

dawn crepuscular, one hour before sunrise to one hour<br />

after sunrise<br />

2 day, one hour after sunrise to one hour before sunset<br />

3<br />

dusk crepuscular, one hour before sunset to one hour after<br />

sunset<br />

4 night, one hour after sunset to one hour before sunrise<br />

BOTTOM TYPE<br />

(B1 <strong>and</strong> B2 in Physical databases)<br />

Code<br />

C<br />

D<br />

H<br />

M<br />

O<br />

P<br />

R<br />

S<br />

T<br />

U<br />

Bottom Type<br />

Corals: Hard<br />

(06/97)<br />

Detritus<br />

Shell<br />

Mud<br />

Oysters<br />

Sponge<br />

Rocks<br />

S<strong>and</strong><br />

Tunicates<br />

Unknown<br />

BANK<br />

Bank is defined as the shoreline slope at the l<strong>and</strong>-water interface during a normal high tide.<br />

Code<br />

A<br />

B<br />

C<br />

D<br />

E<br />

F<br />

Bank Description<br />

Gentle sloping bank inundated<br />

Gentle sloping bank not inundated<br />

Steep bank inundated<br />

Steep bank not inundated<br />

Shoreline that periodically inundates so that the location of<br />

the bank cannot be determined. This code should be used<br />

whether or not the shoreline is currently inundated. (10/96)<br />

Flood conditions. <strong>Water</strong> is higher than the mean high water<br />

mark. This code should be used under unusual conditions<br />

only. (04/98)<br />

U Unknown. Too far away to tell. (02/96)<br />

Incorporated into the data base on 09/29/92<br />

CURRENT RELATION<br />

(CURRELAT)<br />

Recorded in degrees from 0-359Ε; 0Ε is into the current, 90Ε is perpendicular to the current <strong>and</strong> 180Ε is with the current.


WIND RELATION<br />

(WINRELAT)<br />

Recorded in degrees from 0-359Ε; 0Ε is into the wind, 90Ε is perpendicular to the wind <strong>and</strong> 180Ε is with the wind.<br />

SOAK TIME<br />

Recorded in HH:MM format representing the total number of hours <strong>and</strong> minutes that the net has been set.<br />

DISTANCE TOWED<br />

(DIST_TOW)<br />

Recorded in nautical miles (nm), for trawls, using the start <strong>and</strong> end waypoint recorded by a Loran or GPS.<br />

CURRENT<br />

(STCURRNT, ECURRNT)<br />

Recorded in centimeters per second (cm/s).<br />

PERCENT COVER<br />

(P_COVER)<br />

A visual or tactile estimation of the amount of seagrass or attached algae covering the area sampled.<br />

Ranges from 0 to 100%.<br />

BOTTOM VEGETATION<br />

Code<br />

A<br />

B<br />

C<br />

F<br />

(BV1 <strong>and</strong> BV2 in Physical databases)<br />

Bottom Vegetation<br />

Acanthophora spp.<br />

Acetabularia spp.<br />

Caulerpa spp.<br />

Algae: Filamentous red<br />

Algae: Filamentous<br />

G<br />

green<br />

2 Algae: Mixed<br />

3 Algae: Unidentified<br />

4 Seagrasses: Mixed<br />

5 Seagrasses: Unidentified<br />

H<br />

I<br />

N<br />

R<br />

S<br />

T<br />

U<br />

Halodule spp.<br />

Halophila spp.<br />

None<br />

Ruppia spp.<br />

Syringodium spp.<br />

Thalassia spp.<br />

Unknown<br />

V Valisneria spp. (10/94)


SHORE ORIENTATION<br />

Code<br />

0Ε<br />

90Ε<br />

180Ε<br />

(SHORORNT)<br />

Orientation<br />

Opening facing shore<br />

Opening perpendicular to<br />

shore<br />

Opening opposite shore<br />

This variable was not recorded after 07/01/93.<br />

RATIO<br />

(BVR1, BVR2, SVR1, SVR2, BYR1, <strong>and</strong> BYR2 in Physical databases)<br />

Code Ratio<br />

0 None<br />

1 1-10%<br />

2 11-20%<br />

3 21-30%<br />

4 31-40%<br />

5 41-50%<br />

6 51-60%<br />

7 61-70%<br />

8 71-80%<br />

9 81-90%<br />

X 91-100%<br />

Incorporated into the data base on 09/14/95<br />

SHORE TYPE RATIO<br />

If the bank is not 100% covered, this reflects the percentage of the bank covered by each shore type. If the bank is 100% covered, this reflects the<br />

ratio of the primary to the secondary shore type. The primary <strong>and</strong> secondary shore type ratios do not have to add up to ten, but cannot be greater<br />

than ten.


STRATA<br />

Overhanging Vegetation is defined as a tree or shrub that extends over the water, close (~1-m) to the water surface, so that it provides permanent shade <strong>and</strong>/or structure during<br />

a majority of the time to the water through prop roots, branches, or fronds. Floating weed mats, which provide shade <strong>and</strong> structure to the water, are considered overhanging<br />

vegetation. Emergent vegetation (Juncus spp., Spartina spp., <strong>and</strong> cattails) are not classified as overhanging.<br />

Code<br />

A<br />

B<br />

C<br />

D<br />

S<br />

Offshore seine over grass<br />

Offshore seine not over grass<br />

Strata Description<br />

Boat seine with overhanging vegetation<br />

Boat seine without overhanging vegetation<br />

Shoreline habitat sampled using the offshore seine<br />

technique (01/98)<br />

Incorporated into the data base on 02/01/96<br />

SHORE DISTANCE<br />

(SHOR_DIS in physical databases)<br />

Distance, recorded to the nearest meter, from the l<strong>and</strong>-water interface to the seine wing closest to shore. When the l<strong>and</strong>-water interface<br />

cannot be determined because the shoreline is completely inundated (bank type E), the distance is measured from the edge of the shore type to the<br />

seine wing closest to shore. On s<strong>and</strong> bars <strong>and</strong> oyster reefs that are not vegetated, the distance should be recorded from the center of the reef or<br />

bar.<br />

Incorporated into the database on 01/01/96<br />

BANK DISTANCE<br />

(BANK_DIS in Physical databases)<br />

Distance, recorded to the nearest meter, from the mean high water mark to the seine wing closest to shore. When the bank cannot be<br />

determined because the shoreline completely inundates at high tide (bank type E), the distance is measured from the edge to the shore type to the<br />

seine wing closest to shore. On s<strong>and</strong> bars <strong>and</strong> oyster reefs that are not vegetated, the distance is recorded from the center of the reef or bar.<br />

Incorporated into the database on 01/01/96


Code<br />

AP<br />

AV<br />

SHORE TYPE<br />

(SV1 <strong>and</strong> SV2 in Physical databases)<br />

Shore Vegetation<br />

Australian Pines<br />

Aquatic Vegetation; mixed<br />

BB Bamboo (12/96)<br />

BM<br />

BP<br />

BW<br />

CS<br />

Black Mangrove<br />

Brazilian Pepper<br />

Buttonwood<br />

Cattails<br />

EL Eleocharis spp. (06/95)<br />

JU<br />

Juncus spp.<br />

LF Leather Fern (12/93)<br />

MA<br />

MG<br />

NO<br />

OS<br />

OY<br />

PA<br />

RM<br />

RO<br />

RR<br />

Mangrove<br />

Marsh Grasses<br />

None<br />

Overhanging shrubs/trees<br />

Oysters<br />

Palmetto<br />

Red Mangrove<br />

Rocks<br />

Rip Rap<br />

SD Sedge (01/00)<br />

SG Seagrapes (06/97)<br />

SN<br />

SW<br />

TG<br />

TO<br />

TP<br />

TV<br />

UN<br />

WM<br />

WR<br />

WX<br />

Spartina spp.<br />

Seawall<br />

Terrestrial Grasses<br />

Trees: Oak<br />

Trees: Pine<br />

Terrestrial Vegetation<br />

Unknown—Too far away to tell<br />

(02/96)<br />

White Mangrove<br />

Algal mat (Wrack)<br />

Wax Myrtle<br />

Halodule (HA), S<strong>and</strong> (SA), Unidentified Seagrass (SG), Shell (SH), Mixed Seagrasses (SM), Syringodium (SY), <strong>and</strong> Thalassia (TH) were omitted from the variable list on 1 Feb<br />

1996.


WING DEPTH<br />

(WNG_DPTH in physical databases)<br />

For boat, beach, offshore, <strong>and</strong> 183-m seines: the water depth, recorded to the nearest tenth of a meter, where the two seine ends<br />

were brought together.<br />

For offshore seines with shoreline strata: the water depth, recorded to the nearest tenth of a meter, of the net wing closest to shore.<br />

For purse seines: the water depth, recorded to the nearest tenth of a meter, at the deepest part of the purse seine set. Used to<br />

describe purse seine sets on a slope.<br />

BEARING<br />

Directional unit to indicate the direction the trawl was<br />

towed (0 - 359°)


BYCATCH<br />

(BY1 <strong>and</strong> BY2 in Physical databases)<br />

Code<br />

Bycatch Type<br />

AB Acetabularia spp.<br />

AD Algae: Drift<br />

AF Algae: Floating Mat<br />

AG Algae: Filamentous green<br />

AM Algae: Mixed<br />

AR Algae: Filamentous red<br />

AT Acanthophora spp.<br />

AU Algae: Unknown<br />

AV Floating aquatic vegetation (01/00)<br />

BR Bryozoans<br />

CA Caulerpa spp.<br />

CG Corals: Gorgonian<br />

CO Corals: Hard (06/97)<br />

CH Crabs: Horseshoe<br />

CI Crabs: Spider<br />

CL Clay<br />

CM Crabs: Mixed<br />

CP Crabs: portunid<br />

CQ Crab Traps (12/93)<br />

CS Grasses: Cattails/Marsh<br />

CT Ctenophores<br />

DT Detritus<br />

DW Duck Weed (01/94)<br />

EM Egg mass: gelatinous<br />

ES Egg cases: snail<br />

FT Freshwater turtles (01/96)<br />

GA Gastropods (03/95)<br />

GM Grasses: Mixed<br />

GR Gracilaria spp.<br />

GU Grasses: Unknown<br />

HA Halodule spp.<br />

HI Halophila spp.<br />

HY Hyacinth<br />

JF Jellyfish<br />

JU Juncus spp.<br />

LL Leaf Litter<br />

LO Logs (12/98)<br />

MI Mixed Invertebrates


Code<br />

MM<br />

MS<br />

MU<br />

NO<br />

NU<br />

OC<br />

OY<br />

PC<br />

PN<br />

PR<br />

QH<br />

RO<br />

RU<br />

SA<br />

SD<br />

SF<br />

Bycatch Type<br />

Man-made objects other than crab<br />

traps.(12/93)<br />

Mangrove seeds/propogules<br />

Mud<br />

None<br />

Nudibranch/Seahares<br />

Oil Contaminated sample<br />

Oysters<br />

Pine Cones<br />

Pine Needles<br />

Palm Root<br />

Quohogs<br />

Rocks<br />

Ruppia spp.<br />

S<strong>and</strong><br />

S<strong>and</strong> Dollars<br />

Starfish<br />

SG Sargassum spp. (06/95)<br />

SH<br />

SR<br />

SN<br />

SP<br />

Shell<br />

Shrimp; noncommercial<br />

Spartina spp.<br />

Sponges<br />

SQ Squid (06/95)<br />

ST<br />

SY<br />

Sticks <strong>and</strong> branches<br />

Syringodium spp.<br />

TA Tubes; amphipod (09/94)<br />

TD Tadpoles (01/00)<br />

TH<br />

TU<br />

UL<br />

UR<br />

UU<br />

WT<br />

Thalassia spp.<br />

Tunicates<br />

Ulva spp.<br />

Sea Urchins<br />

Unknown<br />

Worm Tubes<br />

QUANTITY<br />

Recorded in gallons; an estimation of the amount of<br />

total bycatch.


Code<br />

SPLITTER<br />

(SPLTTYPE in Length database)<br />

Splitter Type<br />

2 Two-way splitter<br />

3 Three-way splitter<br />

5<br />

Twenty-five-way<br />

splitter<br />

6 Six-way splitter<br />

SEX<br />

Code<br />

Sex<br />

. No attempt made to determine sex<br />

F Female<br />

L Leptocephalus Larvae<br />

M Male<br />

N Sex not checked, but should have been.<br />

P Parasitized crabs<br />

U Unsexed; sex could not be determined.<br />

Incorporated into the database on 09/29/92<br />

SIZE CLASS (SC)<br />

Alphabetic variable designed to identify different size classes of a single species. A designates the first size class measured, B designates<br />

the second size class, etc.<br />

Code<br />

C<br />

USE<br />

(Length database)<br />

Use Description<br />

Fish Culled for various studies, r<strong>and</strong>om selected<br />

G Fish culled for genetics only (11/99)<br />

I<br />

M<br />

N<br />

R<br />

S<br />

T<br />

UnIdentified specimen<br />

Fish dead when measured (Mortality)<br />

Fish culled for various studies, non-r<strong>and</strong>omly selected<br />

(10/96)<br />

Fish Recaptured with tag<br />

Fish kept for representative Sample<br />

Fish Tagged <strong>and</strong> released<br />

Incorporated into the data base on 06/25/94


Code<br />

FISH HEALTH CODES “FHC”<br />

Fhc Description<br />

B Animal with red or bloody areas (5/98)<br />

Animal with scale loss or erosion (erosion = epidermis or<br />

E<br />

dermis involved, muscle tissue not involved) (06/99)<br />

Animal with fin erosion (fin rot = inflammation of fins,<br />

F<br />

frayed fins) (5/98)<br />

Other (animal with conditions not specifically listed –<br />

O<br />

describe condition in comments) (06/99)<br />

Animal with skeletal malformation (vertebral, opercular, or<br />

S<br />

fin deformities) (06/99)<br />

T Animal with raised area (tumor, cyst) (06/99)<br />

Animal with depressed area (ulcer or lesion with<br />

U inflammation, redness, swelling—muscle tissue involved)<br />

(4/98)


Exhibit 7.3 - NODC SPECIES CODE LIST<br />

(Alphabetized on scientific name)<br />

NODCCODE TSN FIM species code Scientific Name Common Name<br />

8803020101 165548 Abl. hians Ablennes hians Flat needlefish<br />

8803020100 165547 Ablennes spp. Ablennes spp.<br />

8835620101 170046 Abu. saxatilis Abudefduf saxatilis Sergeant major<br />

8835620100 170045 Abudefduf spp. Abudefduf spp.<br />

8835620102 170047 Abu. taurus Abudefduf taurus Night sergeant<br />

8835160101 168095 Aca. pomotis Acantharchus pomotis Mud sunfish<br />

8835160100 168094 Acantharchus spp. Acantharchus spp.<br />

8842090801 171450 Aca. aspera Acanthemblemaria aspera Roughhead blenny<br />

8842090803 171452 Aca. chaplini Acanthemblemaria chaplini Papillose blenny<br />

8842090800 171449 Acanthemblemaria spp. Acanthemblemaria spp.<br />

8850030601 172451 Aca. sol<strong>and</strong>ri Acanthocybium sol<strong>and</strong>ri Wahoo<br />

8850030600 172450 Acanthocybium spp. Acanthocybium spp.<br />

8860030202 173246 Aca. polygonia Acanthostracion polygonia Honeycomb cowfish<br />

8860030201 173245 Aca. quadricornis Acanthostracion quadricornis Scrawled cowfish<br />

8849010000 172250 Acanthuridae spp. Acanthuridae spp.<br />

8849010101 172252 Aca. bahianus Acanthurus bahianus Ocean surgeon<br />

8849010102 172253 Aca. chirurgus Acanthurus chirurgus Doctorfish<br />

8849010103 172254 Aca. coeruleus Acanthurus coeruleus Blue tang<br />

8849010100 172251 Acanthurus spp. Acanthurus spp.<br />

8820022502 166616 Ace. dendritica Acentronura dendritica Pipehorse<br />

8820022500 166613 Acentronura spp. Acentronura spp.<br />

8858010000 172980 Achiridae spp. Achiridae spp.<br />

8858030202 172986 Ach. lineatus Achirus lineatus Lined sole<br />

8858030200 172984 Achirus spp. Achirus spp.<br />

8729010104 161069 Aci. brevirostrum Acipenser brevirostrum Shortnose sturgeon<br />

8729010105 573257 Aci. oxyrinchus Acipenser oxyrinchus Atlantic sturgeon<br />

8729010100 161065 Acipenser spp. Acipenser spp.<br />

8729010000 161064 Acipenseridae spp. Acipenseridae spp.<br />

8784010401 164472 Acy. beryllinus Acyrtops beryllinus Emerald clingfish<br />

8784010400 164471 Acyrtops spp. Acyrtops spp.<br />

8804040400 165681 Adinia spp. Adinia spp.<br />

8804040401 165682 Adi. xenica Adinia xenica Diamond killifish<br />

8713070101 160978 Aet. narinari Aetobatus narinari Spotted eagle ray<br />

8713070100 160977 Aetobatus spp. Aetobatus spp.<br />

8836010401 170355 Ago. monticola Agonostomus monticola Mountain mullet<br />

8836010400 170354 Agonostomus spp. Agonostomus spp.<br />

8741130101 161421 Ahl. egmontis Ahlia egmontis Key worm eel<br />

8741130100 161420 Ahlia spp. Ahlia spp.


NODCCODE TSN FIM species code Scientific Name Common Name<br />

8739010100 161120 Albula spp. Albula spp.<br />

8739010101 161121 Alb. vulpes Albula vulpes Bonefish<br />

8739010000 161119 Albulidae spp. Albulidae spp.<br />

8835280202 168602 Ale. ciliaris Alectis ciliaris African Pompano<br />

8835280200 168600 Alectis spp. Alectis spp.<br />

8762090102 162527 Ale. ferox Alepisaurus ferox<br />

8707040402 159921 Alo. superciliosus Alopias superciliosus<br />

8707040401 159916 Alo. vulpinus Alopias vulpinus<br />

8747010102 161703 Alo. aestivalis Alosa aestivalis Blueback herring<br />

8747010104 161705 Alo. alabamae Alosa alabamae Alabama shad<br />

8747010106 161707 Alo. chrysochloris Alosa chrysochloris Skipjack herring<br />

8747010103 161704 Alo. mediocris Alosa mediocris Hickory shad<br />

8747010101 161702 Alo. sapidissima Alosa sapidissima American shad<br />

8747010100 161701 Alosa spp. Alosa spp.<br />

6179140000 96600 Alpheidae spp. Alpheidae spp. Snapping shrimp<br />

8835020441 167746 Alp. afer Alphestes afer Mutton hamlet<br />

8860020102 173132 Alu. heudelotii Aluterus heudelotii Dotterel filefish<br />

8860020103 173133 Alu. monoceros Aluterus monoceros Unicorn filefish<br />

8860020101 173131 Alu. schoepfii Aluterus schoepfii Orange filefish<br />

8860020104 173134 Alu. scriptus Aluterus scriptus Scrawled filefish<br />

8860020100 173129 Aluterus spp. Aluterus spp.<br />

6179170300 96962 Ambidexter spp. Ambidexter spp.<br />

6179170301 96963 Amb. symmetricus Ambidexter symmetricus<br />

8835160203 168099 Amb. ariommus Ambloplites ariommus Shadow bass<br />

8835160200 168096 Ambloplites spp. Ambloplites spp.<br />

8835640101 170224 Amb. pinos Amblycirrhitus pinos Redspotted hawkfish<br />

8835640100 170223 Amblycirrhitus spp. Amblycirrhitus spp.<br />

8777020601 164035 Ame. brunneus Ameiurus brunneus Snail bullhead<br />

8777020602 164037 Ame. catus Ameiurus catus White catfish<br />

8777020604 164041 Ame. natalis Ameiurus natalis Yellow bullhead<br />

8777020605 164043 Ame. nebulosus Ameiurus nebulosus Brown bullhead<br />

8777020607 164047 Ame. serracanthus Ameiurus serracanthus Spotted bullhead<br />

8777020600 164034 Ameiurus spp. Ameiurus spp. Bullheads<br />

8734010101 161104 Ami. calva Amia calva Bowfin<br />

8734010100 161103 Amia spp. Amia spp.<br />

8734010000 161102 Amiidae spp. Amiidae spp.<br />

8835200503 168514 Amm. bifascia Ammocrypta bifascia Florida s<strong>and</strong> darter<br />

8835200500 168511 Ammocrypta spp. Ammocrypta spp.<br />

8500010100 159689 Amphioxus spp. Amphioxus spp. Lancelet<br />

8852010000 172583 Anabantidae spp. Anabantidae spp.<br />

8713040701 564154 Ana. folirostris Anacanthobatis folirostris<br />

8713040202 160905 Ana. longirostris Anacanthobatis longirostris


NODCCODE TSN FIM species code Scientific Name Common Name<br />

8713040200 160903 Anacanthobatis spp. Anacanthobatis spp.<br />

8741050107 161169 Ana. similis Anarchias similis Pygmy moray<br />

8741050100 161161 Anarchias spp. Anarchias spp.<br />

8820023901 166653 Ana. criniger Anarchopterus criniger Fringed pipefish<br />

8820023902 166655 Ana. tectus Anarchopterus tectus<br />

5124000000 78015 Anaspidea spp. Anaspidea spp. Sea hare<br />

8747020209 161846 Anc. cayorum Anchoa cayorum Key anchovy<br />

8747020203 161840 Anc. cubana Anchoa cubana Cuban anchovy<br />

8747020201 161838 Anc. hepsetus Anchoa hepsetus Striped anchovy<br />

8747020204 161841 Anc. lamprotaenia Anchoa lamprotaenia Bigeye anchovy<br />

8747020205 161842 Anc. lyolepis Anchoa lyolepis Dusky anchovy<br />

8747020202 161839 Anc. mitchilli Anchoa mitchilli <strong>Bay</strong> anchovy<br />

8747020200 161837 Anchoa spp. Anchoa spp.<br />

8747020304 161857 Anc. perfasciata Anchoviella perfasciata Flat anchovy<br />

8857030503 172754 Anc. dilecta Ancylopsetta dilecta Three-eye flounder<br />

8857030506 172757 Anc. quadrocellata Ancylopsetta quadrocellata Ocellated flounder<br />

8857030500 172751 Ancylopsetta spp. Ancylopsetta spp.<br />

8741010101 161127 Ang. rostrata Anguilla rostrata American eel<br />

8741010100 161126 Anguilla spp. Anguilla spp.<br />

8741010000 161125 Anguillidae spp. Anguillidae spp.<br />

8835400300 169080 Anisotremus spp. Anisotremus spp.<br />

8835400304 169084 Ani. surinamensis Anisotremus surinamensis Black margate<br />

8835400306 169086 Ani. virginicus Anisotremus virginicus Porkfish<br />

8774110000 163160 Anostomidae spp. Anostomidae spp.<br />

8787020000 164518 Antennariidae spp. Antennariidae spp.<br />

8787020201 164523 Ant. multiocellatus Antennarius multiocellatus Longlure frogfish<br />

8787020202 164524 Ant. ocellatus Antennarius ocellatus Ocellated frogfish<br />

8787020208 164530 Ant. pauciradiatus Antennarius pauciradiatus<br />

8787020203 164525 Ant. radiosus Antennarius radiosus<br />

8787020200 164522 Antennarius spp. Antennarius spp.<br />

8787020234 164556 Ant. striatus Antennarius striatus Splitlure frogfish<br />

8835020702 167771 Ant. nicholsi Anthias nicholsi Yellowfin bass<br />

8835020700 167769 Anthias spp. Anthias spp.<br />

8835020703 167772 Ant. tenuis Anthias tenuis Threadnose bass<br />

8811060101 166311 Ant. capros Antigonia capros Deepbody boarfish<br />

8811060102 166312 Ant. combatia Antigonia combatia Shortspine boarfish<br />

8811060100 166310 Antigonia spp. Antigonia spp.<br />

9002060201 208675 Apa. ferox Apalone ferox Florida softshell<br />

9002060203 208680 Apa. spinifera Apalone spinifera Spiny softshell<br />

9002060200 208674 Apalone spp. Apalone spp. Softshell turtles<br />

8781010000 164403 Aphredoderidae spp. Aphredoderidae spp.<br />

8781010101 164405 Aph. sayanus Aphredoderus sayanus Pirate perch


NODCCODE TSN FIM species code Scientific Name Common Name<br />

8781010100 164404 Aphredoderus spp. Aphredoderus spp.<br />

8835180101 168198 Apo. affinis Apogon affinis Bigtooth cardinalfish<br />

8835180104 168201 Apo. aurolineatus Apogon aurolineatus<br />

8835180105 168202 Apo. binotatus Apogon binotatus Barred cardinalfish<br />

8835180115 168212 Apo. lachneri Apogon lachneri Whitestar cardinalfish<br />

8835180125 168224 Apo. leptocaulus Apogon leptocaulus<br />

8835180107 168204 Apo. maculatus Apogon maculatus Flamefish<br />

8835180116 168213 Apo. phenax Apogon phenax Mimic cardinalfish<br />

8835180117 168214 Apo. pillionatus Apogon pillionatus Broadsaddle cardinalfish<br />

8835180109 168206 Apo. <strong>plan</strong>ifrons Apogon <strong>plan</strong>ifrons Pale cardinalfish<br />

8835180110 168207 Apo. pseudomaculatus Apogon pseudomaculatus Twospot cardinalfish<br />

8835180111 168208 Apo. quadrisquamatus Apogon quadrisquamatus Sawcheek cardinalfish<br />

8835180100 168197 Apogon spp. Apogon spp.<br />

8835180113 168210 Apo. townsendi Apogon townsendi Belted cardinalfish<br />

8835180000 168196 Apogonidae spp. Apogonidae spp.<br />

8741131601 161490 Apr. platyventris Aprognathodon platyventris Stripe eel<br />

8741131600 161489 Aprognathodon spp. Aprognathodon spp.<br />

8835360201 168899 Aps. dentatus Apsilus dentatus<br />

8741132602 161534 Apt. ansp Apterichtus ansp Academy eel<br />

8741132603 161536 Apt. kendalli Apterichtus kendalli Finless eel<br />

8741132600 161531 Apterichtus spp. Apterichtus spp.<br />

8835430301 169189 Arc. probatocephalus Archosargus probatocephalus Sheepshead<br />

8835430302 169190 Arc. rhomboidalis Archosargus rhomboidalis Sea bream<br />

8835430300 169188 Archosargus spp. Archosargus spp.<br />

8756010205 162067 Arg. striata Argentina striata<br />

5509051201 79734 Arg. gibbus Argopecten gibbus<br />

5509051202 79737 Arg. irradians Argopecten irradians<br />

5509051203 79742 Arg. nucleus Argopecten nucleus<br />

5509051200 79732 Argopecten spp. Argopecten spp.<br />

8777180000 164157 Ariidae spp. Ariidae spp.<br />

8851020101 172537 Ari. bondi Ariomma bondi Silver-rag<br />

8851020102 172538 Ari. melanum Ariomma melanum Brown driftfish<br />

8851020104 172540 Ari. regulus Ariomma regulus Spotted driftfish<br />

8851020100 172536 Ariomma spp. Ariomma spp.<br />

8777180202 164165 Ari. felis Ariopsis felis Hardhead catfish<br />

8777180200 164162 Ariopsis spp. Ariopsis spp.<br />

8741120205 161349 Ari. anale Ariosoma anale Longtrunk conger<br />

8741120201 161344 Ari. balearicum Ariosoma balearicum B<strong>and</strong>tooth conger<br />

8741120200 161343 Ariosoma spp. Ariosoma spp.<br />

8835180201 168285 Ast. alutus Astrapogon alutus<br />

8835180202 168286 Ast. puncticulatus Astrapogon puncticulatus Blackfin cardinalfish<br />

8835180200 168284 Astrapogon spp. Astrapogon spp.


NODCCODE TSN FIM species code Scientific Name Common Name<br />

8835180203 168287 Ast. stellatus Astrapogon stellatus Conchfish<br />

8835610101 169772 Ast. ocellatus Astronotus ocellatus Oscar<br />

8835610100 169771 Astronotus spp. Astronotus spp.<br />

8840140100 171054 Astroscopus spp. Astroscopus spp.<br />

8840140102 171056 Ast. y-graecum Astroscopus y-graecum Southern stargazer<br />

8805020000 165984 Atherinidae spp. Atherinidae spp.<br />

8805020500 166005 Atherinomorus spp. Atherinomorus spp.<br />

8805020501 166006 Ath. stipes Atherinomorus stipes Hardhead silverside<br />

8732010201 201897 Atr. spatula Atractosteus spatula Alligator gar<br />

8762010101 162371 Aul. filamentosus Aulopus filamentosus<br />

8819010000 166409 Aulostomidae spp. Aulostomidae spp.<br />

8819010101 166411 Aul. maculatus Aulostomus maculatus Trumpetfish<br />

8819010100 166410 Aulostomus spp. Aulostomus spp.<br />

8850030701 172455 Aux. rochei Auxis rochei Bullet mackerel<br />

8850030700 172454 Auxis spp. Auxis spp.<br />

8850030702 172456 Aux. thazard Auxis thazard Frigate mackerel<br />

8847012104 553409 Awa. banana Awaous banana<br />

8777180101 164159 Bag. marinus Bagre marinus Gafftopsail catfish<br />

8777180100 164158 Bagre spp. Bagre spp.<br />

8835440304 169262 Bai. batabana Bairdiella batabana Blue croaker<br />

8835440301 169259 Bai. chrysoura Bairdiella chrysoura Silver perch<br />

8835440305 169263 Bai. sanctaeluciae Bairdiella sanctaeluciae Striped croaker<br />

8835440300 169258 Bairdiella spp. Bairdiella spp.<br />

8860020201 173138 Bal. capriscus Balistes capriscus Gray triggerfish<br />

8860020200 173137 Balistes spp. Balistes spp.<br />

8860020202 173139 Bal. vetula Balistes vetula Queen triggerfish<br />

8860020000 173128 Balistidae spp. Balistidae spp.<br />

8847010801 171815 Bar. ceuthoecus Barbulifer ceuthoecus<br />

8741130203 161425 Bas. bascanium Bascanichthys bascanium Sooty eel<br />

8741130201 161423 Bas. scuticaris Bascanichthys scuticaris Whip eel<br />

8741130200 161422 Bascanichthys spp. Bascanichthys spp.<br />

8835022402 167868 Bat. mexicanus Bathyanthias mexicanus Yellowtail bass<br />

8835022400 167866 Bathyanthias spp. Bathyanthias spp.<br />

8741121301 621137 Bat. bullisi Bathycongrus bullisi<br />

8741121302 621138 Bat. dubius Bathycongrus dubius<br />

8741121303 621139 Bat. vicinalis Bathycongrus vicinalis<br />

8847010901 171818 Bat. curacao Bathygobius curacao Notchtongue goby<br />

8847010902 171819 Bat. mystacium Bathygobius mystacium Isl<strong>and</strong> frillfin<br />

8847010903 171820 Bat. soporator Bathygobius soporator Frillfin goby<br />

8847010900 171817 Bathygobius spp. Bathygobius spp.<br />

8768010101 162829 Bat. marionae Bathytyphlops marionae<br />

8768010100 162828 Bathytyphlops spp. Bathytyphlops spp.


NODCCODE TSN FIM species code Scientific Name Common Name<br />

8826020201 166998 Bel. brachychir Bellator brachychir<br />

8826020202 166999 Bel. egretta Bellator egretta<br />

8826020203 167000 Bel. militaris Bellator militaris Horned searobin<br />

8826020200 166997 Bellator spp. Bellator spp. Searobin<br />

8804080301 165913 Bel. belizanus Belonesox belizanus Pike killifish<br />

8804080300 165912 Belonesox spp. Belonesox spp.<br />

8803020000 165546 Belonidae spp. Belonidae spp.<br />

8840070101 170997 Bem. anatirostris Bembrops anatirostris Duckbill flathead<br />

8840070102 170998 Bem. gobioides Bembrops gobioides Goby flathead<br />

8840070100 170996 Bembrops spp. Bembrops spp.<br />

8713030201 160840 Ben. marcida Benthobatis marcida<br />

8713030200 160839 Benthobatis spp. Benthobatis spp.<br />

8852020101 172611 Bet. splendens Betta splendens<br />

8852020100 172610 Betta spp. Betta spp.<br />

8842010000 171124 Blenniidae spp. Blenniidae spp.<br />

8839010301 170483 Bod. pulchellus Bodianus pulchellus Spotfin hogfish<br />

8839010302 170484 Bod. rufus Bodianus rufus Spanish hogfish<br />

8839010300 170482 Bodianus spp. Bodianus spp.<br />

8847011602 171872 Bol. boqueronensis Bollmannia boqueronensis<br />

8847011601 171871 Bol. communis Bollmannia communis Ragged goby<br />

8847011603 171873 Bol. eigenmanni Bollmannia eigenmanni<br />

8847011600 171870 Bollmannia spp. Bollmannia spp.<br />

8857030000 172714 Bothidae spp. Bothidae spp.<br />

8857030601 172759 Bot. lunatus Bothus lunatus Peacock flounder<br />

8857030603 172761 Bot. ocellatus Bothus ocellatus Eyed flounder<br />

8857030604 172762 Bot. robinsi Bothus robinsi Twospot flounder<br />

6179111301 96545 Bra. biunguiculatus Brachycarpus biunguiculatus twoclaw shrimp<br />

6179111300 96544 Brachycarpus spp. Brachycarpus spp.<br />

8835710102 170290 Bra. brama Brama brama Atlantic pomfret<br />

8835710103 170291 Bra. caribbea Brama caribbea Caribbean pomfret<br />

8835710104 170292 Bra. dussumieri Brama dussumieri Lowfin pomfret<br />

8835710100 170288 Brama spp. Brama spp.<br />

8835710000 170287 Bramidae spp. Bramidae spp.<br />

8791020101 164696 Bre. atlanticus Bregmaceros atlanticus<br />

8791020105 164700 Bre. houdei Bregmaceros houdei<br />

8747010403 161734 Bre. patronus Brevoortia patronus Gulf menhaden<br />

8747010404 161735 Bre. smithi Brevoortia smithi Yellowfin menhaden<br />

8747010400 161731 Brevoortia spp. Brevoortia spp.<br />

8747010401 161732 Bre. tyrannus Brevoortia tyrannus Atlantic menhaden<br />

8792010401 164818 Bro. barbata Brotula barbata Bearded brotula<br />

8792010400 164817 Brotula spp. Brotula spp.<br />

8820024001 166658 Bry. dunckeri Bryx dunckeri Pugnose pipefish


NODCCODE TSN FIM species code Scientific Name Common Name<br />

8792040000 165140 Bythitidae spp. Bythitidae spp.<br />

8794010405 165373 Cae. caelorhincus Caelorinchus caelorhincus<br />

8794010401 165364 Cae. caribbaeus Caelorinchus caribbaeus<br />

8835430501 169196 Cal. arctifrons Calamus arctifrons Grass porgy<br />

8835430502 169197 Cal. bajonado Calamus bajonado Jolthead porgy<br />

8835430503 169198 Cal. calamus Calamus calamus Saucereye porgy<br />

8835430505 169200 Cal. leucosteus Calamus leucosteus Whitebone porgy<br />

8835430506 169201 Cal. nodosus Calamus nodosus Knobbed porgy<br />

8835430510 169205 Cal. penna Calamus penna Sheepshead porgy<br />

8835430507 169202 Cal. pennatula Calamus pennatula<br />

8835430508 169203 Cal. proridens Calamus proridens Littlehead porgy<br />

8835430500 169195 Calamus spp. Calamus spp.<br />

6186020101 98342 Cal. flammea Calappa flammea Flame box crab<br />

8741130307 161435 Cal. guineensis Callechelys guineensis Shorttail snake eel<br />

8741130301 161427 Cal. muraena Callechelys muraena Blotched snake eel<br />

8741130300 161426 Callechelys spp. Callechelys spp.<br />

8741130305 161431 Cal. springeri Callechelys springeri Ridgefin eel<br />

8777290000 164279 Callichthyidae spp. Callichthyidae spp.<br />

6189010308 98703 Cal. bocourti Callinectes bocourti Bocourt swimming crab<br />

6189010304 98699 Cal. ornatus Callinectes ornatus Shelligs<br />

6189010301 98696 Cal. sapidus Callinectes sapidus Blue crab<br />

6189010302 98697 Cal. similis Callinectes similis Lesser blue crab<br />

6189010300 98695 Callinectes spp. Callinectes spp.<br />

8846010000 171691 Callionymidae spp. Callionymidae spp.<br />

8860020401 173157 Can. macrocerus Cantherhines macrocerus Whitespotted filefish<br />

8860020402 173158 Can. pullus Cantherhines pullus Orangespotted filefish<br />

8860020400 173156 Cantherhines spp. Cantherhines spp.<br />

8860020501 173169 Can. maculata Canthidermis maculata Rough triggerfish<br />

8860020500 173168 Canthidermis spp. Canthidermis spp.<br />

8860020502 173170 Can. sufflamen Canthidermis sufflamen Ocean triggerfish<br />

8861010419 621162 Can. jamestyleri Canthigaster jamestyleri<br />

8861010401 173320 Can. rostrata Canthigaster rostrata Sharpnose puffer<br />

8861010400 173319 Canthigaster spp. Canthigaster spp.<br />

8741131701 161492 Car. loxochila Caralophia loxochila Slantlip eel<br />

8741131700 161491 Caralophia spp. Caralophia spp.<br />

8835280000 168584 Carangidae spp. Carangidae spp.<br />

8835280301 168606 Car. bartholomaei Caranx bartholomaei Yellow jack<br />

8835280306 168612 Car. crysos Caranx crysos Blue runner<br />

8835280303 168609 Car. hippos Caranx hippos Crevalle jack<br />

8835280304 168610 Car. latus Caranx latus Horse-eye jack<br />

8835280307 168613 Car. lugubris Caranx lugubris<br />

8835280308 168614 Car. ruber Caranx ruber Bar jack


NODCCODE TSN FIM species code Scientific Name Common Name<br />

8835280300 168605 Caranx spp. Caranx spp.<br />

8792020000 165094 Carapidae spp. Carapidae spp.<br />

8792020101 165096 Car. bermudensis Carapus bermudensis Pearlfish<br />

8792020100 165095 Carapus spp. Carapus spp.<br />

8776010301 163350 Car. auratus Carassius auratus Goldfish<br />

8776010300 163349 Carassius spp. Carassius spp.<br />

8708020000 160178 Carcharhinidae spp. Carcharhinidae spp.<br />

8708020504 160304 Car. acronotus Carcharhinus acronotus Blacknose shark<br />

8708020505 160307 Car. altimus Carcharhinus altimus<br />

8708020530 160401 Car. brevipinna Carcharhinus brevipinna Spinner shark<br />

8708020506 160310 Car. falciformis Carcharhinus falciformis Silky shark<br />

8708020515 160345 Car. galapagensis Carcharhinus galapagensis<br />

8708020531 160409 Car. isodon Carcharhinus isodon Finetooth shark<br />

8708020502 160275 Car. leucas Carcharhinus leucas Bull shark<br />

8708020507 160318 Car. limbatus Carcharhinus limbatus Blacktip shark<br />

8708020508 160330 Car. longimanus Carcharhinus longimanus Oceanic whitetip<br />

8708020501 160268 Car. obscurus Carcharhinus obscurus Dusky shark<br />

8708020511 160336 Car. perezii Carcharhinus perezii Reef shark<br />

8708020503 160289 Car. plumbeus Carcharhinus plumbeus S<strong>and</strong>bar shark<br />

8708020512 160340 Car. porosus Carcharhinus porosus Smalltail shark<br />

8708020532 160413 Car. signatus Carcharhinus signatus<br />

8708020500 160267 Carcharhinus spp. Carcharhinus spp.<br />

8707030202 159888 Car. taurus Carcharias taurus S<strong>and</strong> tiger shark<br />

8707040101 159903 Car. carcharias Carcharodon carcharias White shark<br />

8707040100 159902 Carcharodon spp. Carcharodon spp.<br />

9002040101 173830 Car. caretta Caretta caretta Loggerhead sea turtle<br />

9002040100 173829 Caretta spp. Caretta spp. Loggerhead sea turtles<br />

8776040201 163917 Car. cyprinus Carpiodes cyprinus Quillback<br />

8776040200 163916 Carpiodes spp. Carpiodes spp.<br />

8776040203 163920 Car. velifer Carpiodes velifer Highfin carpsucker<br />

8776040000 163892 Catostomidae spp. Catostomidae spp.<br />

8835220105 168544 Cau. chrysops Caulolatilus chrysops<br />

8835220102 168541 Cau. cyanops Caulolatilus cyanops Blackline tilefish<br />

8835220103 168542 Cau. intermedius Caulolatilus intermedius<br />

8835220104 168543 Cau. microps Caulolatilus microps Blueline tilefish<br />

8835220100 168539 Caulolatilus spp. Caulolatilus spp.<br />

8835160000 168093 Centrarchidae spp. Centrarchidae spp.<br />

8835160301 168102 Cen. macropterus Centrarchus macropterus Flier<br />

8835160300 168101 Centrarchus spp. Centrarchus spp.<br />

8819040000 166433 Centriscidae spp. Centriscidae spp.<br />

8851010000 172508 Centrolophidae spp. Centrolophidae spp.<br />

8710010301 160633 Cen. granulosus Centrophorus granulosus


NODCCODE TSN FIM species code Scientific Name Common Name<br />

8710010303 160637 Cen. uyato Centrophorus uyato<br />

8788070000 164650 Centrophrynidae spp. Centrophrynidae spp.<br />

8835010000 167642 Centropomidae spp. Centropomidae spp.<br />

8835010102 167645 Cen. ensiferus Centropomus ensiferus Swordspine snook<br />

8835010103 167646 Cen. parallelus Centropomus parallelus Fat snook<br />

8835010104 167647 Cen. pectinatus Centropomus pectinatus Tarpon snook<br />

8835010100 167643 Centropomus spp. Centropomus spp.<br />

8835010105 167648 Cen. undecimalis Centropomus undecimalis Snook<br />

8835020302 167688 Cen. fuscula Centropristis fuscula Twospot sea bass<br />

8835020304 167690 Cen. ocyurus Centropristis ocyurus bank sea bass<br />

8835020305 167691 Cen. philadelphica Centropristis philadelphica Rock sea bass<br />

8835020300 167686 Centropristis spp. Centropristis spp.<br />

8835020301 167687 Cen. striata Centropristis striata Black sea bass<br />

8835550201 169611 Cen. argi Centropyge argi Cherubfish<br />

8835550200 169610 Centropyge spp. Centropyge spp.<br />

8710010901 160703 Cen. fabricii Centroscyllium fabricii<br />

8710011201 160724 Cen. coelolepis Centroscymnus coelolepis<br />

8835024611 181220 Cep. cruentata Cephalopholis cruentata Graysby<br />

8835020438 167740 Cep. fulva Cephalopholis fulva Coney<br />

8847060301 172169 Cer. floridana Cerdale floridana Pugjaw wormfish<br />

8847060300 172168 Cerdale spp. Cerdale spp.<br />

8707120101 159907 Cet. maximus Cetorhinus maximus Basking shark<br />

8707120100 159906 Cetorhinus spp. Cetorhinus spp.<br />

8842100000 171550 Chaenopsidae spp. Chaenopsidae spp.<br />

8842091003 171469 Cha. limbaughi Chaenopsis limbaughi Yellowface pikeblenny<br />

8842091002 171468 Cha. ocellata Chaenopsis ocellata Bluethroat pikeblenny<br />

8842091004 171470 Cha. roseola Chaenopsis roseola<br />

8842091000 171466 Chaenopsis spp. Chaenopsis spp.<br />

8835520101 169539 Cha. faber Chaetodipterus faber Atlantic spadefish<br />

8835520100 169538 Chaetodipterus spp. Chaetodipterus spp.<br />

8835550103 169558 Cha. capistratus Chaetodon capistratus Foureye butterflyfish<br />

8835550101 169556 Cha. ocellatus Chaetodon ocellatus Spotfin butterflyfish<br />

8835550107 169562 Cha. sedentarius Chaetodon sedentarius Reef butterflyfish<br />

8835550100 169555 Chaetodon spp. Chaetodon spp.<br />

8835550108 169563 Cha. striatus Chaetodon striatus B<strong>and</strong>ed butterflyfish<br />

8835550000 169554 Chaetodontidae spp. Chaetodontidae spp.<br />

8821010102 166663 Cha. marulius Channa marulius<br />

8774010000 162848 Characidae spp. Characidae spp.<br />

6189011101 199969 Cha. hellerii Charybdis hellerii<br />

6189011100 199968 Charybdis spp. Charybdis spp.<br />

8857030701 172773 Cha. lugubris Chascanopsetta lugubris<br />

8842010301 171164 Cha. bosquianus Chasmodes bosquianus Striped blenny


NODCCODE TSN FIM species code Scientific Name Common Name<br />

8842010303 621155 Cha. longimaxilla Chasmodes longimaxilla<br />

8842010302 171165 Cha. saburrae Chasmodes saburrae Florida blenny<br />

8842010300 171163 Chasmodes spp. Chasmodes spp.<br />

8787030102 164572 Cha. stigmaeus Chaunax stigmaeus<br />

8803010103 616680 Che. cyanopterus Cheilopogon cyanopterus Margined flyingfish<br />

8803010104 165437 Che. exsiliens Cheilopogon exsiliens B<strong>and</strong>wing flyingfish<br />

8803010105 616681 Che. furcatus Cheilopogon furcatus Spotfin flyingfish<br />

8803010114 616682 Che. melanurus Cheilopogon melanurus Atlantic flyingfish<br />

9002040201 173833 Che. mydas Chelonia mydas Green sea turtle<br />

9002040200 173832 Chelonia spp. Chelonia spp. Green sea turtles<br />

9002040000 173828 Cheloniidae spp. Cheloniidae spp. Sea turtles<br />

9002010101 208558 Che. serpentina osceola Chelydra serpentina osceola Florida snapping turtle<br />

9002010100 173751 Chelydra spp. Chelydra spp. Snapping turtles<br />

9002010000 173750 Chelydridae spp. Chelydridae spp. Snapping turtles<br />

8861030102 173385 Chi. antennatus Chilomycterus antennatus Bridled burrfish<br />

8861030103 173386 Chi. antillarum Chilomycterus antillarum Web burrfish<br />

8861030104 615845 Chi. atringa Chilomycterus atringa Spotted burrfish<br />

8861030101 615846 Chi. schoepfii Chilomycterus schoepfii Striped burrfish<br />

8861030100 173383 Chilomycterus spp. Chilomycterus spp.<br />

8741040100 161148 Chilorhinus spp. Chilorhinus spp.<br />

8741040101 161149 Chi. suensonii Chilorhinus suensonii Seagrass eel<br />

8737010000 621135 Chi. ornata Chitala ornata<br />

8741040000 161147 Chlopsidae spp. Chlopsidae spp.<br />

8741040501 161158 Chl. bicolor Chlopsis bicolor Bicolor eel<br />

8741040500 161157 Chlopsis spp. Chlopsis spp.<br />

8762040101 162430 Chl. agassizi Chlorophthalmus agassizi<br />

8835280401 168670 Chl. chrysurus Chloroscombrus chrysurus Atlantic bumper<br />

8835280400 168669 Chloroscombrus spp. Chloroscombrus spp.<br />

8803010401 165499 Chr. atherinoides Chriodorus atherinoides Hardhead halfbeak<br />

8803010400 165498 Chriodorus spp. Chriodorus spp.<br />

8847011703 621159 Chr. vespa Chriolepis vespa<br />

8835620301 170080 Chr. cyanea Chromis cyanea Blue chromis<br />

8835620302 613242 Chr. enchrysura Chromis enchrysura Yellowtail reeffish<br />

8835620303 170082 Chr. insolata Chromis insolata Sunshinefish<br />

8835620305 170084 Chr. multilineata Chromis multilineata Brown chromis<br />

8835620307 170086 Chr. scotti Chromis scotti Purple reeffish<br />

8835620300 170079 Chromis spp. Chromis spp.<br />

8835610901 169857 Cic. ocellaris Cichla ocellaris<br />

8835610902 169858 Cic. temensis Cichla temensis<br />

8835610201 169775 Cic. bimaculatum Cichlasoma bimaculatum Black acara<br />

8835610224 201999 Cic. citrinellum Cichlasoma citrinellum<br />

8835610202 169776 Cic. cyanoguttatum Cichlasoma cyanoguttatum Rio gr<strong>and</strong>e cichlid


NODCCODE TSN FIM species code Scientific Name Common Name<br />

8835610207 169784 Cic. managuense Cichlasoma managuense Jaguar guapote<br />

8835610208 169786 Cic. meeki Cichlasoma meeki<br />

8835610203 169777 Cic. nigrofasciatum Cichlasoma nigrofasciatum Convict cichlid<br />

8835610204 169779 Cic. octofasciatum Cichlasoma octofasciatum Jack dempsey<br />

8835610209 169788 Cic. salvini Cichlasoma salvini<br />

8835610200 169774 Cichlasoma spp. Cichlasoma spp.<br />

8835610221 169802 Cic. urophthalmus Cichlasoma urophthalmus Mayan cichlid<br />

8835610000 169770 Cichlidae spp. Cichlidae spp.<br />

8710011902 621033 Cir. asper Cirrhigaleus asper<br />

8835640000 170222 Cirrhitidae spp. Cirrhitidae spp.<br />

8857030104 172719 Cit. arctifrons Citharichthys arctifrons Gulf stream flounder<br />

8857030105 172720 Cit. arenaceus Citharichthys arenaceus S<strong>and</strong> whiff<br />

8857030106 172721 Cit. cornutus Citharichthys cornutus Horned whiff<br />

8857030107 172722 Cit. dinoceros Citharichthys dinoceros<br />

8857030108 172723 Cit. gymnorhinus Citharichthys gymnorhinus Anglefin whiff<br />

8857030109 172724 Cit. macrops Citharichthys macrops Spotted whiff<br />

8857030110 172725 Cit. spilopterus Citharichthys spilopterus <strong>Bay</strong> whiff<br />

8857030100 172715 Citharichthys spp. Citharichthys spp.<br />

8777120101 164120 Cla. batrachus Clarias batrachus Walking catfish<br />

8777120100 164119 Clarias spp. Clarias spp.<br />

8777120000 164118 Clariidae spp. Clariidae spp.<br />

8839010401 170496 Cle. parrae Clepticus parrae Creole wrasse<br />

8839010400 170495 Clepticus spp. Clepticus spp.<br />

8747010000 161700 Clupeidae spp. Clupeidae spp.<br />

8741120101 161326 Con. oceanicus Conger oceanicus Conger eel<br />

8741120100 161325 Conger spp. Conger spp.<br />

8741120102 161327 Con. triporiceps Conger triporiceps Manytooth conger<br />

8741120000 161324 Congridae spp. Congridae spp.<br />

8835400401 169090 Con. nobilis Conodon nobilis Barred grunt<br />

8835400400 169089 Conodon spp. Conodon spp.<br />

8835170302 168195 Coo. japonicus Cookeolus japonicus<br />

8810080601 166251 Cor. spinosus Corniger spinosus<br />

8835290102 168792 Cor. equiselis Coryphaena equiselis Pompano dolphin<br />

8835290101 168791 Cor. hippurus Coryphaena hippurus Dolphin<br />

8835290100 168790 Coryphaena spp. Coryphaena spp.<br />

8847010202 171751 Cor. alloides Coryphopterus alloides Barfin goby<br />

8847010203 171752 Cor. dicrus Coryphopterus dicrus Colon goby<br />

8847010204 171753 Cor. eidolon Coryphopterus eidolon Pallid goby<br />

8847010205 171754 Cor. glaucofraenum Coryphopterus glaucofraenum Bridled goby<br />

8847010206 171755 Cor. hyalinus Coryphopterus hyalinus Glass goby<br />

8847010207 171756 Cor. lipernes Coryphopterus lipernes Peppermint goby<br />

8847010208 171757 Cor. personatus Coryphopterus personatus Masked goby


NODCCODE TSN FIM species code Scientific Name Common Name<br />

8847010209 171758 Cor. punctipectophorus<br />

Coryphopterus<br />

punctipectophorus<br />

Spotted goby<br />

8847010200 171749 Coryphopterus spp. Coryphopterus spp.<br />

8847010210 171759 Cor. thrix Coryphopterus thrix Bartail goby<br />

8847010211 171760 Cor. tortugae Coryphopterus tortugae<br />

8820022301 166597 Cos. albirostris Cosmocampus albirostris Whitenose pipefish<br />

8820022303 166601 Cos. brachycephalus Cosmocampus brachycephalus Crested pipefish<br />

8820022305 166605 Cos. elucens Cosmocampus elucens<br />

8820022306 166607 Cos. hildebr<strong>and</strong>i Cosmocampus hildebr<strong>and</strong>i<br />

8820022302 166599 Cos. profundus Cosmocampus profundus Deepwater pipefish<br />

8820022300 166596 Cosmocampus spp. Cosmocampus spp.<br />

8713040400 160917 Cruriraja spp. Cruriraja spp.<br />

8713040401 160918 Cru. atlantis Cruriraja atlantis<br />

8713040402 160919 Cru. poeyi Cruriraja poeyi<br />

8713040403 160920 Cru. rugosa Cruriraja rugosa<br />

8839030201 170857 Cry. roseus Cryptotomus roseus Bluelip parrotfish<br />

8839030200 170856 Cryptotomus spp. Cryptotomus spp.<br />

8835161101 201982 Cry. asprella Crystallaria asprella Crystal darter<br />

8847010501 171768 Cte. boleosoma Ctenogobius boleosoma Darter goby<br />

8847013603 621160 Cte. fasciatus Ctenogobius fasciatus<br />

8847010513 171780 Cte. pseudofasciatus Ctenogobius pseudofasciatus Slashcheek goby<br />

8847010510 171777 Cte. saepepallens Ctenogobius saepepallens Dash goby<br />

8847010504 171772 Cte. shufeldti Ctenogobius shufeldti Freshwater goby<br />

8847010511 171778 Cte. smaragdus Ctenogobius smaragdus Emerald goby<br />

8847013600 171926 Ctenogobius spp. Ctenogobius spp.<br />

8847010506 171774 Cte. stigmaticus Ctenogobius stigmaticus Marked goby<br />

8847010507 171775 Cte. stigmaturus Ctenogobius stigmaturus Spottail goby<br />

8776012301 163537 Cte. idella Ctenopharyngodon idella Grass carp<br />

8776012300 163536 Ctenopharyngodon spp. Ctenopharyngodon spp.<br />

8851020202 172546 Cub. pauciradiatus Cubiceps pauciradiatus Bigeye cigarfish<br />

8851020200 172545 Cubiceps spp. Cubiceps spp.<br />

8857030801 172776 Cyc. chittendeni Cyclopsetta chittendeni Mexican flounder<br />

8857030802 172777 Cyc. fimbriata Cyclopsetta fimbriata Spotfin flounder<br />

8857030800 172775 Cyclopsetta spp. Cyclopsetta spp.<br />

8858020000 173060 Cynoglossidae spp. Cynoglossidae spp.<br />

8835440106 169243 Cyn. arenarius Cynoscion arenarius S<strong>and</strong> seatrout<br />

8835440102 169239 Cyn. nebulosus Cynoscion nebulosus Spotted seatrout<br />

8835440103 169240 Cyn. nothus Cynoscion nothus Silver seatrout<br />

8835440104 169241 Cyn. regalis Cynoscion regalis Atlantic weakfish<br />

8835440100 169238 Cynoscion spp. Cynoscion spp.<br />

8776017605 163774 Cyp. callitaenia Cyprinella callitaenia Bluestripe shiner<br />

8776017612 163788 Cyp. leedsi Cyprinella leedsi Bannerfin shiner


NODCCODE TSN FIM species code Scientific Name Common Name<br />

8776017600 163765 Cyprinella spp. Cyprinella spp.<br />

8776017621 163809 Cyp. venusta Cyprinella venusta Blacktail shiner<br />

8776010000 163342 Cyprinidae spp. Cyprinidae spp.<br />

8804040100 165630 Cyprinodon spp. Cyprinodon spp.<br />

8804040101 165631 Cyp. variegatus Cyprinodon variegatus Sheepshead minnow<br />

8804040000 165629 Cyprinodontidae spp. Cyprinodontidae spp.<br />

8776010101 163344 Cyp. carpio Cyprinus carpio Common carp<br />

8776010100 163343 Cyprinus spp. Cyprinus spp.<br />

8803010102 165435 Cyp. comatus Cypselurus comatus Clearwing flyingfish<br />

8803010100 165432 Cypselurus spp. Cypselurus spp.<br />

8713040501 160922 Dac. armatus Dactylobatus armatus<br />

8713040500 160921 Dactylobatus spp. Dactylobatus spp.<br />

8832010000 167622 Dactylopteridae spp. Dactylopteridae spp.<br />

8832010100 167623 Dactylopterus spp. Dactylopterus spp.<br />

8832010101 167624 Dac. volitans Dactylopterus volitans Flying gurnard<br />

8840130000 171036 Dactyloscopidae spp. Dactyloscopidae spp.<br />

8840130202 171043 Dac. crossotus Dactyloscopus crossotus Bigeye stargazer<br />

8840130205 621154 Dac. foraminosus Dactyloscopus foraminosus<br />

8840130204 171045 Dac. moorei Dactyloscopus moorei Speckled stargazer<br />

8840130200 171041 Dactyloscopus spp. Dactyloscopus spp.<br />

8840130201 171042 Dac. tridigitatus Dactyloscopus tridigitatus S<strong>and</strong> stargazer<br />

8710010401 160651 Dal. licha Dalatias licha<br />

8713050000 160946 Dasyatidae spp. Dasyatidae spp.<br />

8713050103 160951 Das. americana Dasyatis americana Southern stingray<br />

8713050104 160952 Das. centroura Dasyatis centroura Roughtail stingray<br />

8713050105 160953 Das. sabina Dasyatis sabina Atlantic stingray<br />

8713050106 160954 Das. say Dasyatis say Bluntnose stingray<br />

8713050100 160947 Dasyatis spp. Dasyatis spp.<br />

8835281201 168724 Dec. macarellus Decapterus macarellus Mackerel scad<br />

8835281202 168725 Dec. punctatus Decapterus punctatus Round scad<br />

8835281200 168723 Decapterus spp. Decapterus spp.<br />

8835281203 168726 Dec. tabl Decapterus tabl<br />

8839010501 170498 Dec. puellaris Decodon puellaris<br />

9002030501 173786 Dei. reticularia Deirochelys reticularia Chicken turtle<br />

9002030500 173785 Deirochelys spp. Deirochelys spp. Chicken turtles<br />

8835020440 167744 Der. inermis Dermatolepis inermis Marbled grouper<br />

9002050000 173841 Dermochelyidae spp. Dermochelyidae spp. Leatherback sea turtles<br />

9002050101 173843 Der. coriacea Dermochelys coriacea Leatherback sea turtle<br />

9002050100 173842 Dermochelys spp. Dermochelys spp. Leatherback sea turtles<br />

8815020201 166350 Des. polystictum Desmodema polystictum<br />

8835390204 169029 Dia. auratus Diapterus auratus Irish pompano<br />

8835390202 169027 Dia. rhombeus Diapterus rhombeus


NODCCODE TSN FIM species code Scientific Name Common Name<br />

8835390200 169026 Diapterus spp. Diapterus spp.<br />

8861030202 173392 Dio. holocanthus Diodon holocanthus Balloonfish<br />

8861030201 173391 Dio. hystrix Diodon hystrix Porcupinefish<br />

8861030200 173390 Diodon spp. Diodon spp.<br />

8861030000 173382 Diodontidae spp. Diodontidae spp.<br />

8835021005 167796 Dip. bivittatum Diplectrum bivittatum Dwarf s<strong>and</strong> perch<br />

8835021002 167793 Dip. formosum Diplectrum formosum S<strong>and</strong> perch<br />

8835021000 167791 Diplectrum spp. Diplectrum spp.<br />

8835430402 169193 Dip. argenteus Diplodus argenteus Silver porgy<br />

8835430401 169192 Dip. holbrookii Diplodus holbrookii Spottail pinfish<br />

8835430400 169191 Diplodus spp. Diplodus spp.<br />

8846010702 171737 Dip. pauciradiatus Diplogrammus pauciradiatus Spotted dragonet<br />

8846010700 171735 Diplogrammus spp. Diplogrammus spp.<br />

8850011001 172376 Dip. multistriatus Diplospinus multistriatus<br />

8713040160 564127 Dip. bullisi Dipturus bullisi<br />

8713040127 564146 Dip. olseni Dipturus olseni Spreadfin skate<br />

8839010601 170500 Dor. megalepis Doratonotus megalepis Dwarf wrasse<br />

8839010600 170499 Doratonotus spp. Doratonotus spp.<br />

8847013302 171919 Dor. maculatus Dormitator maculatus Fat sleeper<br />

8847013300 171917 Dormitator spp. Dormitator spp.<br />

8747010501 161737 Dor. cepedianum Dorosoma cepedianum Gizzard shad<br />

8747010502 161738 Dor. petenense Dorosoma petenense Threadfin shad<br />

8747010500 161736 Dorosoma spp. Dorosoma spp.<br />

8741170101 161597 Dys. anguillare Dysomma anguillare Shortbelly eel<br />

8741170100 161596 Dysomma spp. Dysomma spp.<br />

8835270000 168567 Echeneidae spp. Echeneidae spp.<br />

8835270201 168575 Ech. naucrates Echeneis naucrates Sharksucker<br />

8835270202 168576 Ech. neucratoides Echeneis neucratoides Whitefin sharksucker<br />

8835270200 168574 Echeneis spp. Echeneis spp.<br />

8741050201 161171 Ech. catenata Echidna catenata Chain moray<br />

8741050200 161170 Echidna spp. Echidna spp.<br />

8710030101 160713 Ech. brucus Echinorhinus brucus<br />

8792020204 165118 Ech. dawsoni Echiodon dawsoni<br />

8741133101 161551 Ech. intertinctus Echiophis intertinctus Spotted spoon-nose eel<br />

8741133102 161553 Ech. punctifer Echiophis punctifer Stippled spoon-nose eel<br />

8741133100 161550 Echiophis spp. Echiophis spp.<br />

8847010605 171793 Ela. horsti Elacatinus horsti Yellowline goby<br />

8847010607 171795 Ela. macrodon Elacatinus macrodon Tiger goby<br />

8847010608 171796 Ela. oceanops Elacatinus oceanops Neon goby<br />

8847010609 171797 Ela. xanthiprora Elacatinus xanthiprora Yellowprow goby<br />

8835281301 168738 Ela. bipinnulata Elagatis bipinnulata Rainbow runner<br />

8835281300 168737 Elagatis spp. Elagatis spp.


NODCCODE TSN FIM species code Scientific Name Common Name<br />

8835740101 168169 Ela. evergladei Elassoma evergladei Everglades pygmy sunfish<br />

8835740102 168170 Ela. okefenokee Elassoma okefenokee<br />

Okefenokee pygmy<br />

sunfish<br />

8835740100 168168 Elassoma spp. Elassoma spp.<br />

8835740103 168171 Ela. zonatum Elassoma zonatum B<strong>and</strong>ed pygmy sunfish<br />

8835740000 202000 Elassomatidae spp. Elassomatidae spp.<br />

8847070000 172171 Eleotridae spp. Eleotridae spp.<br />

8847013708 621157 Ele. amblyopsis Eleotris amblyopsis<br />

8847013709 621158 Ele. perniger Eleotris perniger<br />

8847013700 171929 Eleotris spp. Eleotris spp.<br />

8738010000 161109 Elopidae spp. Elopidae spp.<br />

8738010101 161111 Elo. saurus Elops saurus Ladyfish<br />

8738010100 161110 Elops spp. Elops spp.<br />

8842090201 171404 Emb. atlantica Emblemaria atlantica<br />

8842090202 171405 Emb. p<strong>and</strong>ionis Emblemaria p<strong>and</strong>ionis Sailfin blenny<br />

8842090203 171406 Emb. piratula Emblemaria piratula Pirate blenny<br />

8842090200 171403 Emblemaria spp. Emblemaria spp.<br />

8842093101 171547 Emb. bahamensis Emblemariopsis bahamensis Blackhead blenny<br />

8842093102 171549 Emb. diaphana Emblemariopsis diaphana Glass blenny<br />

8835350101 168830 Emm. atlanticus Emmelichthyops atlanticus Bonnetmouth<br />

8835350100 168829 Emmelichthyops spp. Emmelichthyops spp.<br />

9002030000 173769 Emydidae spp. Emydidae spp. Sliders<br />

8741050901 161266 Enc. anatina Enchelycore anatina<br />

8741050302 161181 Enc. carychroa Enchelycore carychroa Chestnut moray<br />

8741050301 161180 Enc. nigricans Enchelycore nigricans Viper moray<br />

8741050300 161179 Enchelycore spp. Enchelycore spp.<br />

8791031501 164748 Enc. cimbrius Enchelyopus cimbrius Fourbeard rockling<br />

8791031500 164747 Enchelyopus spp. Enchelyopus spp.<br />

8747020000 553173 Engraulidae spp. Engraulidae spp.<br />

8747020103 161830 Eng. eurystole Engraulis eurystole Silver anchovy<br />

8747020100 161827 Engraulis spp. Engraulis spp.<br />

8857030901 172779 Eng. senta Engyophrys senta Spiny flounder<br />

8857030900 172778 Engyophrys spp. Engyophrys spp.<br />

8835160401 168108 Enn. chaetodon Enneacanthus chaetodon Blackb<strong>and</strong>ed sunfish<br />

8835160402 168113 Enn. gloriosus Enneacanthus gloriosus Bluespotted sunfish<br />

8835160403 168117 Enn. obesus Enneacanthus obesus B<strong>and</strong>ed sunfish<br />

8835160400 168107 Enneacanthus spp. Enneacanthus spp.<br />

8842080101 171366 Enn. altivelis Enneanectes altivelis Lofty triplefin<br />

8842080102 171367 Enn. boehlkei Enneanectes boehlkei Roughhead triplefin<br />

8842080103 171368 Enn. pectoralis Enneanectes pectoralis Redeye triplefin<br />

8842080100 171365 Enneanectes spp. Enneanectes spp.<br />

8842010401 171167 Ent. nigricans Entomacrodus nigricans Pearl blenny


NODCCODE TSN FIM species code Scientific Name Common Name<br />

8842010400 171166 Entomacrodus spp. Entomacrodus spp.<br />

8835520000 169537 Ephippidae spp. Ephippidae spp.<br />

8835020402 167696 Epi. adscensionis Epinephelus adscensionis Rock hind<br />

8835020404 167698 Epi. drummondhayi Epinephelus drummondhayi Speckled hind<br />

8835020405 167699 Epi. flavolimbatus Epinephelus flavolimbatus Yellowedge grouper<br />

8835020406 167700 Epi. guttatus Epinephelus guttatus Red hind<br />

8835020401 167695 Epi. itajara Epinephelus itajara Jewfish<br />

8835020408 167702 Epi. morio Epinephelus morio Red grouper<br />

8835020409 167703 Epi. mystacinus Epinephelus mystacinus Misty grouper<br />

8835020410 167704 Epi. nigritus Epinephelus nigritus Warsaw grouper<br />

8835020411 167705 Epi. niveatus Epinephelus niveatus Snowy grouper<br />

8835020400 167694 Epinephelus spp. Epinephelus spp.<br />

8835020412 167706 Epi. striatus Epinephelus striatus Nassau grouper<br />

8835441202 169314 Equ. lanceolatus Equetus lanceolatus Jackknife-fish<br />

8835441205 169317 Equ. punctatus Equetus punctatus<br />

8835441200 169312 Equetus spp. Equetus spp.<br />

9002040301 173836 Ere. imbricata Eretmochelys imbricata Hawksbill sea turtle<br />

9002040300 173835 Eretmochelys spp. Eretmochelys spp. Hawksbill sea turtles<br />

8776040302 163924 Eri. oblongus Erimyzon oblongus<br />

8776040300 163921 Erimyzon spp. Erimyzon spp.<br />

8776040301 163922 Eri. sucetta Erimyzon sucetta Lake chubsucker<br />

8776040303 163926 Eri. tenuis Erimyzon tenuis Sharpfin chubsucker<br />

8847011801 171878 Ero. smaragdus Erotelis smaragdus Emerald sleeper<br />

8847011800 171877 Erotelis spp. Erotelis spp.<br />

8835350403 168840 Ery. monodi Erythrocles monodi Crimson rover<br />

8835350400 168837 Erythrocles spp. Erythrocles spp.<br />

8758010000 162137 Esocidae spp. Esocidae spp.<br />

8758010102 162140 Eso. americanus Esox americanus Pickerel<br />

8758010103 162143 Eso. niger Esox niger Chain pickerel<br />

8758010100 162138 Esox spp. Esox spp.<br />

8835360301 168902 Ete. oculatus Etelis oculatus Queen snapper<br />

8835360300 168901 Etelis spp. Etelis spp.<br />

8741132803 161545 Eth. akkistikos Ethadophis akkistikos<br />

8835200706 201986 Eth. colorosum Etheostoma colorosum<br />

8835200128 168387 Eth. davisoni Etheostoma davisoni Choctawhatchee darter<br />

8835200131 168390 Eth. edwini Etheostoma edwini Brown darter<br />

8835200101 168358 Eth. fusiforme Etheostoma fusiforme Swamp darter<br />

8835200139 168398 Eth. histrio Etheostoma histrio Harlequin darter<br />

8835200158 168417 Eth. okaloosae Etheostoma okaloosae Okaloosa darter<br />

8835200102 168360 Eth. olmstedi Etheostoma olmstedi Tessellated darter<br />

8835200162 168421 Eth. parvipinne Etheostoma parvipinne Goldstripe darter<br />

8835200165 168424 Eth. proeliare Etheostoma proeliare Cypress darter


NODCCODE TSN FIM species code Scientific Name Common Name<br />

8835200100 168357 Etheostoma spp. Etheostoma spp.<br />

8835200176 168437 Eth. stigmaeum Etheostoma stigmaeum Speckled darter<br />

8835200178 168439 Eth. swaini Etheostoma swaini Gulf darter<br />

8710010509 160669 Etm. gracilispinis Etmopterus gracilispinis<br />

8710010506 160664 Etm. virens Etmopterus virens<br />

8857030201 172729 Etr. crossotus Etropus crossotus Fringed flounder<br />

8857030205 172733 Etr. cyclosquamus Etropus cyclosquamus<br />

8857030202 172730 Etr. microstomus Etropus microstomus Smallmouth flounder<br />

8857030204 172732 Etr. rimosus Etropus rimosus Gray flounder<br />

8857030200 172728 Etropus spp. Etropus spp.<br />

8747010600 161742 Etrumeus spp. Etrumeus spp.<br />

8747010601 161743 Etr. teres Etrumeus teres Round herring<br />

8835390101 169015 Euc. argenteus Eucinostomus argenteus Spotfin mojarra<br />

8835390102 169016 Euc. gula Eucinostomus gula Silver jenny<br />

8835390111 169025 Euc. harengulus Eucinostomus harengulus Tidewater mojarra<br />

8835390108 169022 Euc. havana Eucinostomus havana Bigeye mojarra<br />

8835390109 169023 Euc. jonesii Eucinostomus jonesii Slender mojarra<br />

8835390104 169018 Euc. lefroyi Eucinostomus lefroyi Mottled mojarra<br />

8835390105 169019 Euc. melanopterus Eucinostomus melanopterus Flagfin mojarra<br />

8835390100 169014 Eucinostomus spp. Eucinostomus spp.<br />

8835390203 169028 Eug. plumieri Eugerres plumieri Striped mojarra<br />

8803010600 165502 Euleptorhamphus spp. Euleptorhamphus spp.<br />

8803010601 165503 Eul. velox Euleptorhamphus velox Flying halfbeak<br />

8815010201 166338 Eum. fiski Eumecichthys fiski Unicornfish<br />

8815010200 166337 Eumecichthys spp. Eumecichthys spp.<br />

8850030102 172402 Eut. alletteratus Euthynnus alletteratus Little tunny<br />

8850030100 172399 Euthynnus spp. Euthynnus spp.<br />

8847011002 171826 Eve. spongicola Evermannichthys spongicola Sponge goby<br />

8847011000 171824 Evermannichthys spp. Evermannichthys spp.<br />

8847010401 171764 Evo. lyricus Evorthodus lyricus Lyre goby<br />

8847010400 171763 Evorthodus spp. Evorthodus spp.<br />

8850020501 172395 Evo. taeniatus Evoxymetopon taeniatus<br />

8803010000 165431 Exocoetidae spp. Exocoetidae spp.<br />

8803010701 165507 Exo. obtusirostris Exocoetus obtusirostris<br />

Oceanic two-wing<br />

flyingfish<br />

8803010700 165506 Exocoetus spp. Exocoetus spp.<br />

8803010702 165508 Exo. volitans Exocoetus volitans<br />

Tropical two-wing<br />

flyingfish<br />

8741100100 161302 Facciolella spp. Facciolella spp.<br />

6177010101 551570 Far. aztecus Farfantepenaeus aztecus Brown shrimp<br />

6177010104 551571 Far. brasiliensis Farfantepenaeus brasiliensis<br />

6177010102 551574 Far. duorarum Farfantepenaeus duorarum Pink shrimp<br />

6177010100 95604 Farfantepenaeus spp. Farfantepenaeus spp. Commercial shrimp


NODCCODE TSN FIM species code Scientific Name Common Name<br />

8713040161 564119 Fen. sinusmexicanus Fenestraja sinusmexicanus<br />

8819020102 166417 Fis. petimba Fistularia petimba Red cornetfish<br />

8819020100 166415 Fistularia spp. Fistularia spp.<br />

8819020101 166416 Fis. tabacaria Fistularia tabacaria Bluespotted cornetfish<br />

8804040501 165685 Flo. carpio Floridichthys carpio Goldspotted killifish<br />

8804040500 165684 Floridichthys spp. Floridichthys spp.<br />

8846010801 171740 Foe. agassizii Foetorepus agassizii Spotfin dragonet<br />

8846010802 621156 Foe. goodenbeani Foetorepus goodenbeani<br />

8804040233 201973 Fun. blairae Fundulus blairae<br />

8804040208 165652 Fun. chrysotus Fundulus chrysotus Golden topminnow<br />

8804040217 165661 Fun. cingulatus Fundulus cingulatus<br />

8804040201 165645 Fun. confluentus Fundulus confluentus Marsh killifish<br />

8804040229 165675 Fun. escambiae Fundulus escambiae<br />

8804040207 165651 Fun. gr<strong>and</strong>is Fundulus gr<strong>and</strong>is Gulf killifish<br />

8804040203 165647 Fun. heteroclitus Fundulus heteroclitus Mummichog<br />

8804040209 165653 Fun. jenkinsi Fundulus jenkinsi Saltmarsh topminnow<br />

8804040218 165662 Fun. lineolatus Fundulus lineolatus Lined topminnow<br />

8804040205 165649 Fun. majalis Fundulus majalis Striped killifish<br />

8804040211 165655 Fun. olivaceus Fundulus olivaceus Blackspotted topminnow<br />

8804040212 165656 Fun. pulvereus Fundulus pulvereus<br />

8804040234 201974 Fun. rubrifrons Fundulus rubrifrons<br />

8804040223 165667 Fun. seminolis Fundulus seminolis Seminole killifish<br />

8804040213 165657 Fun. similis Fundulus similis Longnose killifish<br />

8804040200 165644 Fundulus spp. Fundulus spp. Assorted killifish<br />

8708020201 160189 Gal. cuvier Galeocerdo cuvier Tiger shark<br />

8708020200 160188 Galeocerdo spp. Galeocerdo spp.<br />

8708010201 160030 Gal. arae Galeus arae<br />

8804080101 165878 Gam. affinis Gambusia affinis<br />

8804080116 165896 Gam. holbrooki Gambusia holbrooki Eastern mosquito fish<br />

8804080102 165882 Gam. rhizophorae Gambusia rhizophorae Mangrove gambusia<br />

8804080100 165877 Gambusia spp. Gambusia spp.<br />

8857031001 172781 Gas. frontalis Gastropsetta frontalis Shrimp flounder<br />

8857031000 172780 Gastropsetta spp. Gastropsetta spp.<br />

8850010000 172354 Gempylidae spp. Gempylidae spp.<br />

8850010201 172360 Gem. serpens Gempylus serpens Snake mackerel<br />

8850010200 172359 Gempylus spp. Gempylus spp.<br />

8835612104 169919 Geo. surinamensis Geophagus surinamensis<br />

8810050000 615855 Gep. darwinii Gephyroberyx darwinii<br />

8835390000 169013 Gerreidae spp. Gerreidae spp.<br />

8835390301 169032 Ger. cinereus Gerres cinereus Yellowfin mojarra<br />

8835390300 169031 Gerres spp. Gerres spp.<br />

8840130101 171038 Gil. greyae Gillellus greyae Arrow stargazer


NODCCODE TSN FIM species code Scientific Name Common Name<br />

8840130104 171040 Gil. healae Gillellus healae<br />

8840130100 171037 Gillellus spp. Gillellus spp.<br />

8840130103 171039 Gil. uranidea Gillellus uranidea Warteye stargazer<br />

8707100101 159977 Gin. cirratum Ginglymostoma cirratum Nurse shark<br />

8707100100 159976 Ginglymostoma spp. Ginglymostoma spp.<br />

8756010302 162074 Glo. pygmaeus Glossanodon pygmaeus<br />

8840140201 171058 Gna. egregius Gnathagnus egregius<br />

8847011100 171827 Gnatholepis spp. Gnatholepis spp.<br />

8847011101 171828 Gna. thompsoni Gnatholepis thompsoni Goldspot goby<br />

8741120402 161361 Gna. bathytopos Gnathophis bathytopos<br />

8741120403 161362 Gna. bracheatopos Gnathophis bracheatopos<br />

8784010000 164457 Gobiesocidae spp. Gobiesocidae spp.<br />

8784010105 164463 Gob. punctulatus Gobiesox punctulatus Stippled clingfish<br />

8784010100 164458 Gobiesox spp. Gobiesox spp.<br />

8784010102 164460 Gob. strumosus Gobiesox strumosus Skilletfish<br />

8847010000 171746 Gobiidae spp. Gobiidae spp.<br />

8847011201 171832 Gob. broussonetii Gobioides broussonetii Violet goby<br />

8847011200 171831 Gobioides spp. Gobioides spp.<br />

8847013401 171921 Gob. dormitor Gobiomorus dormitor Bigmouth sleeper<br />

8847013400 171920 Gobiomorus spp. Gobiomorus spp.<br />

8847010503 171769 Gob. oceanicus Gobionellus oceanicus Highfin goby<br />

8847010500 171767 Gobionellus spp. Gobionellus spp.<br />

8847010601 171789 Gob. bosc Gobiosoma bosc Naked goby<br />

8847010602 171790 Gob. ginsurgi Gobiosoma ginsurgi Seaboard goby<br />

8847010604 171792 Gob. grosvenori Gobiosoma grosvenori Rockcut goby<br />

8847010606 171794 Gob. longipala Gobiosoma longipala Twoscale goby<br />

8847010603 171791 Gob. robustum Gobiosoma robustum Code goby<br />

8847010600 171788 Gobiosoma spp. Gobiosoma spp.<br />

8847012201 171890 Gob. myersi Gobulus myersi<br />

8741130503 161438 Gor. ergodes Gordiichthys ergodes<br />

8741130501 161437 Gor. irretitus Gordiichthys irretitus Horsehair eel<br />

8741130504 161439 Gor. leibyi Gordiichthys leibyi<br />

8741130500 161436 Gordiichthys spp. Gordiichthys spp.<br />

8835060000 168012 Grammatidae spp. Grammatidae spp.<br />

8811040000 166296 Grammicolepidae spp. Grammicolepidae spp.<br />

8811040101 166298 Gra. brachiusculus Grammicolepis brachiusculus<br />

8811040100 166297 Grammicolepis spp. Grammicolepis spp.<br />

8792042501 164973 Gra. claudei Grammonus claudei Reef-cave brotula<br />

8792042500 164972 Grammonus spp. Grammonus spp.<br />

9002030701 173791 Gra. barbouri Graptemys barbouri Barbour's map turtle<br />

900203070902 173800 Gra. psuedo. kohnii<br />

Graptemys pseudogeographica<br />

kohnii


NODCCODE TSN FIM species code Scientific Name Common Name<br />

9002030700 173790 Graptemys spp. Graptemys spp. Map Turtles<br />

8847013303 553315 Gua. guavina Guavina guavina<br />

8792012301 164964 Gun. longipenis Gunterichthys longipenis Gold brotula<br />

8792012300 164963 Gunterichthys spp. Gunterichthys spp.<br />

8858030301 172991 Gym. melas Gymnachirus melas Naked sole<br />

8858030300 172990 Gymnachirus spp. Gymnachirus spp.<br />

8858030303 172993 Gym. texae Gymnachirus texae Fringed sole<br />

8741050401 161186 Gym. funebris Gymnothorax funebris Green moray<br />

8741050430 161218 Gym. hubbsi Gymnothorax hubbsi Lichen moray<br />

8741050446 161235 Gym. kolpos Gymnothorax kolpos<br />

8741050436 161224 Gym. maderensis Gymnothorax maderensis<br />

8741050448 161237 Gym. miliaris Gymnothorax miliaris Goldentail moray<br />

8741050403 161188 Gym. moringa Gymnothorax moringa Spotted moray<br />

8741050404 161189 Gym. nigromarginatus Gymnothorax nigromarginatus Blackedge moray<br />

8741050406 161191 Gym. polygonius Gymnothorax polygonius<br />

8741050407 161192 Gym. saxicola Gymnothorax saxicola Ocellated moray<br />

8741050400 161185 Gymnothorax spp. Gymnothorax spp.<br />

8741050408 161193 Gym. vicinus Gymnothorax vicinus Purplemouth moray<br />

8713050201 160961 Gym. altavela Gymnura altavela Spiny butterfly ray<br />

8713050202 160962 Gym. micrura Gymnura micrura Smooth butterfly ray<br />

8713050200 160960 Gymnura spp. Gymnura spp.<br />

8835400000 169055 Haemulidae spp. Haemulidae spp.<br />

8835400103 169060 Hae. album Haemulon album Margate<br />

8835400101 169058 Hae. aurolineatum Haemulon aurolineatum Tomtate<br />

8835400106 169063 Hae. carbonarium Haemulon carbonarium Caesar grunt<br />

8835400107 169064 Hae. chrysargyreum Haemulon chrysargyreum Smallmouth grunt<br />

8835400108 169065 Hae. flavolineatum Haemulon flavolineatum French grunt<br />

8835400110 169066 Hae. macrostomum Haemulon macrostomum Spanish grunt<br />

8835400111 169067 Hae. melanurum Haemulon melanurum Cottonwick<br />

8835400117 169074 Hae. parra Haemulon parra Sailors choice<br />

8835400102 613026 Hae. plumierii Haemulon plumierii White grunt<br />

8835400113 169069 Hae. sciurus Haemulon sciurus Bluestriped grunt<br />

8835400100 169057 Haemulon spp. Haemulon spp.<br />

8835400116 169073 Hae. striatum Haemulon striatum Striped grunt<br />

8820020501 166524 Hal. crinitus Halicampus crinitus B<strong>and</strong>ed pipefish<br />

8820020500 166523 Halicampus spp. Halicampus spp.<br />

8839010701 170502 Hal. bathyphilus Halichoeres bathyphilus<br />

8839010702 170503 Hal. bivittatus Halichoeres bivittatus Slippery dick<br />

8839010703 170504 Hal. caudalis Halichoeres caudalis Painted wrasse<br />

8839010704 170505 Hal. cyanocephalus Halichoeres cyanocephalus<br />

8839010705 170506 Hal. garnoti Halichoeres garnoti Yellowhead wrasse<br />

8839010706 170507 Hal. maculipinna Halichoeres maculipinna Clown wrasse


NODCCODE TSN FIM species code Scientific Name Common Name<br />

8839010707 170508 Hal. pictus Halichoeres pictus Rainbow wrasse<br />

8839010708 170509 Hal. poeyi Halichoeres poeyi Blackear wrasse<br />

8839010709 170510 Hal. radiatus Halichoeres radiatus Puddingwife<br />

8839010700 170501 Halichoeres spp. Halichoeres spp.<br />

8787040301 164594 Hal. aculeatus Halieutichthys aculeatus Pancake batfish<br />

8787040300 164593 Halieutichthys spp. Halieutichthys spp.<br />

8747010801 161753 Har. clupeola Harengula clupeola<br />

8747010802 161754 Har. humeralis Harengula humeralis Redear sardine<br />

8747010803 161755 Har. jaguana Harengula jaguana Scaled sardine<br />

8747010800 161752 Harengula spp. Harengula spp.<br />

8826010301 166787 Hel. dactylopterus Helicolenus dactylopterus<br />

8835021204 167803 Hem. aureorubens Hemanthias aureorubens<br />

8835281401 168740 Hem. amblyrhynchus Hemicaranx amblyrhynchus Bluntnose jack<br />

8835281400 168739 Hemicaranx spp. Hemicaranx spp.<br />

8835610301 169806 Hem. letourneuxi Hemichromis letourneuxi Jewelfish<br />

8835610300 169805 Hemichromis spp. Hemichromis spp.<br />

8842091201 171474 Hem. simula Hemiemblemaria simula Wrasse blenny<br />

8842091200 171473 Hemiemblemaria spp. Hemiemblemaria spp.<br />

8803010202 165461 Hem. balao Hemiramphus balao Balao<br />

8803010201 165460 Hem. brasiliensis Hemiramphus brasiliensis Ballyhoo<br />

8803010200 165459 Hemiramphus spp. Hemiramphus spp.<br />

8831021503 167289 Hem. americanus Hemitripterus americanus Sea raven<br />

8705020301 159844 Hep. perlo Heptranchias perlo<br />

8835611601 169895 Her. severus Heros severus<br />

8804080401 165915 Het. formosa Heter<strong>and</strong>ria formosa Least killifish<br />

8804080400 165914 Heter<strong>and</strong>ria spp. Heter<strong>and</strong>ria spp.<br />

8741121401 621140 Het. longissimus Heteroconger longissimus<br />

8741121203 161398 Het. luteolus Heteroconger luteolus<br />

8835170102 168179 Het. cruentatus Heteropriacanthus cruentatus Glasseye snapper<br />

8705020101 159819 Hex. griseus Hexanchus griseus<br />

8705020103 564645 Hex. nakamurai Hexanchus nakamurai<br />

8788030000 164620 Himantolophidae spp. Himantolophidae spp.<br />

8788030201 164624 Him. groenl<strong>and</strong>icus Himantolophus groenl<strong>and</strong>icus Atlantic footballfish<br />

8788030200 164623 Himantolophus spp. Himantolophus spp.<br />

8820020201 166488 Hip. erectus Hippocampus erectus Lined seahorse<br />

8820020204 166492 Hip. reidi Hippocampus reidi Longsnout seahorse<br />

8820020200 166487 Hippocampus spp. Hippocampus spp.<br />

8820020205 166493 Hip. zosterae Hippocampus zosterae Dwarf seahorse<br />

6179160100 96747 Hippolyte spp. Hippolyte spp.<br />

6179160104 96751 Hip. zostericola Hippolyte zostericola Zostera shrimp<br />

6179160000 96746 Hippolytidae spp. Hippolytidae spp.<br />

8803010901 165516 Hir. affinis Hirundichthys affinis Fourwing flyingfish


NODCCODE TSN FIM species code Scientific Name Common Name<br />

8803010903 616693 Hir. rondeletii Hirundichthys rondeletii Blackwing flyingfish<br />

8803010900 165515 Hirundichthys spp. Hirundichthys spp.<br />

8787020101 164520 His. histrio Histrio histrio Sargassumfish<br />

8787020100 164519 Histrio spp. Histrio spp.<br />

8835550304 169626 Hol. bermudensis Holacanthus bermudensis Blue angelfish<br />

8835550301 169623 Hol. ciliaris Holacanthus ciliaris Queen angelfish<br />

8835550300 169622 Holacanthus spp. Holacanthus spp.<br />

8835550303 169625 Hol. tricolor Holacanthus tricolor Rock beauty<br />

8860010101 173116 Hol. hollardi Hollardia hollardi<br />

8860010102 173117 Hol. meadi Hollardia meadi Spotted spikefish<br />

8860010100 173115 Hollardia spp. Hollardia spp.<br />

8810080000 166170 Holocentridae spp. Holocentridae spp.<br />

8810080101 166172 Hol. adscensionis Holocentrus adscensionis Squirrelfish<br />

8810080103 166173 Hol. rufus Holocentrus rufus Longspine squirrelfish<br />

8810080100 166171 Holocentrus spp. Holocentrus spp.<br />

8777300301 164351 Hop. littorale Hoplosternum littorale<br />

8777300300 553264 Hoplosternum spp. Hoplosternum spp.<br />

8741080101 161290 Hop. diomediana Hoplunnis diomediana<br />

8741080102 161291 Hop. macrura Hoplunnis macrura<br />

8741080103 161292 Hop. tenuis Hoplunnis tenuis<br />

8776010506 163364 Hyb. hayi Hybognathus hayi Cypress minnow<br />

8776010500 163358 Hybognathus spp. Hybognathus spp.<br />

8776011200 163495 Hybopsis spp. Hybopsis spp.<br />

8776011220 201918 Hyb. winchelli Hybopsis winchelli<br />

8851010202 172513 Hyp. bythites Hyperoglyphe bythites Black driftfish<br />

8851010201 172512 Hyp. perciformis Hyperoglyphe perciformis Barrelfish<br />

8851010200 172511 Hyperoglyphe spp. Hyperoglyphe spp.<br />

8842010599 171205 Hyp. multifilis Hypeurochilus multifilis Plumed blenny<br />

8842010503 171200 Hyp. bermudensis Hypleurochilus bermudensis Barred blenny<br />

8842010598 171204 Hyp. caudovittatus Hypleurochilus caudovittatus<br />

8842010501 171198 Hyp. geminatus Hypleurochilus geminatus Crested blenny<br />

8842010502 171199 Hyp. pseudoaequipinnis<br />

Hypleurochilus<br />

pseudoaequipinnis<br />

Oyster blenny<br />

8842010500 171197 Hypleurochilus spp. Hypleurochilus spp.<br />

8842010504 171201 Hyp. springeri Hypleurochilus springeri Orangespotted blenny<br />

8805021201 166038 Hyp. harringtonensis Hypoatherina harringtonensis Reef silverside<br />

8805021200 166037 Hypoatherina spp. Hypoatherina spp.<br />

8835021302 167807 Hyp. aberrans Hypoplectrus aberrans<br />

8835021303 167808 Hyp. chlorurus Hypoplectrus chlorurus<br />

8835021304 167809 Hyp. gemma Hypoplectrus gemma<br />

8835021305 167810 Hyp. guttavarius Hypoplectrus guttavarius<br />

8835021306 167811 Hyp. indigo Hypoplectrus indigo


NODCCODE TSN FIM species code Scientific Name Common Name<br />

8835021307 167812 Hyp. nigricans Hypoplectrus nigricans<br />

8835021308 167813 Hyp. puella Hypoplectrus puella<br />

8835021300 167805 Hypoplectrus spp. Hypoplectrus spp.<br />

8835021301 167806 Hyp. unicolor Hypoplectrus unicolor Butter hamlet<br />

8803010399 616683 Hyp. meeki Hyporhamphus meeki<br />

8803010300 165473 Hyporhamphus spp. Hyporhamphus spp.<br />

8803010301 165474 Hyp. unifasciatus Hyporhamphus unifasciatus Halfbeak<br />

8777300101 164342 Hyp. plecostomus Hypostomus plecostomus Suckermouth catfish<br />

8777300100 164341 Hypostomus spp. Hypostomus spp.<br />

8842010201 171156 Hyp. hentz Hypsoblennius hentz Feather blenny<br />

8842010202 171157 Hyp. ionthas Hypsoblennius ionthas Freckled blenny<br />

8842010200 171155 Hypsoblennius spp. Hypsoblennius spp.<br />

8741132502 161529 Ich. ophioneus Ichthyapus ophioneus<br />

8603010404 159727 Ich. gagei Ichthyomyzon gagei<br />

8777020000 163995 Ictaluridae spp. Ictaluridae spp.<br />

8777020102 163997 Ict. furcatus Ictalurus furcatus Blue catfish<br />

8777020105 163998 Ict. punctatus Ictalurus punctatus Channel catfish<br />

8777020100 163996 Ictalurus spp. Ictalurus spp.<br />

8835350200 168831 Inermia spp. Inermia spp.<br />

8835350201 168832 Ine. vittata Inermia vittata Boga<br />

8835350000 168828 Inermiidae spp. Inermiidae spp.<br />

8768010000 162827 Ipnopidae spp. Ipnopidae spp.<br />

8710010601 160683 Isi. brasiliensis Isistius brasiliensis<br />

8850060000 172486 Istiophoridae spp. Istiophoridae spp.<br />

8850060101 172488 Ist. platypterus Istiophorus platypterus Sailfish<br />

8850060100 172487 Istiophorus spp. Istiophorus spp.<br />

8707040501 159924 Isu. oxyrinchus Isurus oxyrinchus Shortfin mako<br />

8707040502 159926 Isu. paucus Isurus paucus<br />

8707040500 159923 Isurus spp. Isurus spp. Mako<br />

8747010901 161759 Jen. lamprotaenia Jenkinsia lamprotaenia Dwarf herring<br />

8747010902 161760 Jen. majua Jenkinsia majua Little-eye herring<br />

8747010900 161758 Jenkinsia spp. Jenkinsia spp.<br />

8747010903 161761 Jen. stolifera Jenkinsia stolifera Shortb<strong>and</strong> herring<br />

8804040801 165694 Jor. floridae Jordanella floridae Flagfish<br />

8804040800 165693 Jordanella spp. Jordanella spp.<br />

8840140301 171061 Kat. albigutta Kathetostoma albigutta Lancer stargazer<br />

8840140300 171060 Kathetostoma spp. Kathetostoma spp.<br />

8850030101 172401 Kat. pelamis Katsuwonus pelamis Skipjack tuna<br />

8741040201 161152 Kau. hyoproroides Kaupichthys hyoproroides False moray<br />

8741040202 161153 Kau. nuchalis Kaupichthys nuchalis Collared eel<br />

8741040200 161151 Kaupichthys spp. Kaupichthys spp.<br />

9002020000 173756 Kinosternidae spp. Kinosternidae spp. Musk turtles


NODCCODE TSN FIM species code Scientific Name Common Name<br />

9002020202 173765 Kin. baurii Kinosternon baurii Striped mud turtle<br />

9002020200 173762 Kinosternon spp. Kinosternon spp. Mud turtles<br />

900202020103 208573 Kin. sub. steindachneri<br />

Kinosternon subrubrum<br />

steindachneri<br />

Florida mud turtle<br />

8835510000 169503 Kyphosidae spp. Kyphosidae spp.<br />

8835510101 169505 Kyp. incisor Kyphosus incisor Yellow chub<br />

8835510102 169506 Kyp. sectatrix Kyphosus sectatrix Bermuda chub<br />

8835510100 169504 Kyphosus spp. Kyphosus spp.<br />

8805020801 166016 Lab. sicculus Labidesthes sicculus Brook silverside<br />

8805020800 166015 Labidesthes spp. Labidesthes spp.<br />

8839010000 170477 Labridae spp. Labridae spp.<br />

8842090000 171396 Labrisomidae spp. Labrisomidae spp.<br />

8842090301 171409 Lab. bucciferus Labrisomus bucciferus Puffcheek blenny<br />

8842090303 171411 Lab. gobio Labrisomus gobio Palehead blenny<br />

8842090304 171412 Lab. guppyi Labrisomus guppyi Mimic blenny<br />

8842090305 171413 Lab. haitiensis Labrisomus haitiensis Longfin blenny<br />

8842090308 171416 Lab. kalisherae Labrisomus kalisherae Downy blenny<br />

8842090306 171414 Lab. nigricinctus Labrisomus nigricinctus Spotcheek blenny<br />

8842090307 171415 Lab. nuchipinnis Labrisomus nuchipinnis Hairy blenny<br />

8842090300 171408 Labrisomus spp. Labrisomus spp.<br />

8839010901 170566 Lac. maximus Lachnolaimus maximus Hogfish<br />

8860030102 173238 Lac. bicaudalis Lactophrys bicaudalis Spotted trunkfish<br />

8860030100 173236 Lactophrys spp. Lactophrys spp.<br />

8860030101 173237 Lac. trigonus Lactophrys trigonus Trunkfish<br />

8860030103 173239 Lac. triqueter Lactophrys triqueter Smooth trunkfish<br />

8791010201 164675 Lae. barbatulum Laemonema barbatulum<br />

8861010101 173285 Lag. laevigatus Lagocephalus laevigatus Smooth puffer<br />

8861010100 173284 Lagocephalus spp. Lagocephalus spp.<br />

8835430201 169187 Lag. rhomboides Lagodon rhomboides Pinfish<br />

8835430200 169186 Lagodon spp. Lagodon spp.<br />

8707040000 159901 Lamnidae spp. Lamnidae spp.<br />

8813010000 615903 Lamprididae spp. Lamprididae spp.<br />

8813010102 166326 Lam. guttatus Lampris guttatus Opah<br />

8813010100 166324 Lampris spp. Lampris spp.<br />

8835440501 169269 Lar. fasciatus Larimus fasciatus B<strong>and</strong>ed drum<br />

8835440500 169268 Larimus spp. Larimus spp.<br />

6179160602 96871 Lat. parvulus Latreutes parvulus<br />

6179160600 96869 Latreutes spp. Latreutes spp.<br />

6179110105 96219 Lea. paulensis Le<strong>and</strong>er paulensis<br />

6179110100 96214 Le<strong>and</strong>er spp. Le<strong>and</strong>er spp.<br />

6179110101 96215 Lea. tenuicornis Le<strong>and</strong>er tenuicornis Brown grass shrimp<br />

8835440400 169266 Leiostomus spp. Leiostomus spp.


NODCCODE TSN FIM species code Scientific Name Common Name<br />

8835440401 169267 Lei. xanthurus Leiostomus xanthurus Spot<br />

9002040401 551770 Lep. kempii Lepidochelys kempii Kemps Ridley sea turtle<br />

9002040402 173840 Lep. olivacea Lepidochelys olivacea Olive Ridley sea turtle<br />

9002040400 173838 Lepidochelys spp. Lepidochelys spp. Ridley sea turtles<br />

8850010301 172362 Lep. flavobrunneum Lepidocybium flavobrunneum<br />

8732010000 161092 Lepisosteidae spp. Lepisosteidae spp.<br />

8732010102 161095 Lep. oculatus Lepisosteus oculatus Spotted gar<br />

8732010101 161094 Lep. osseus Lepisosteus osseus Longnose gar<br />

8732010105 161098 Lep. platyrhincus Lepisosteus platyrhincus Florida gar<br />

8732010100 161093 Lepisosteus spp. Lepisosteus spp.<br />

8835160501 168131 Lep. auritus Lepomis auritus Redbreast sunfish<br />

8835160502 168132 Lep. cyanellus Lepomis cyanellus Green sunfish<br />

8835161001 168138 Lep. gulosus Lepomis gulosus Warmouth<br />

8835160506 168151 Lep. humilis Lepomis humilis<br />

8835160504 168141 Lep. macrochirus Lepomis macrochirus Bluegill<br />

8835160507 168152 Lep. marginatus Lepomis marginatus Dollar sunfish<br />

8835160508 168153 Lep. megalotis Lepomis megalotis Longear sunfish<br />

8835160509 168154 Lep. microlophus Lepomis microlophus Redear sunfish<br />

8835160510 168155 Lep. punctatus Lepomis punctatus Spotted sunfish<br />

8835160500 168130 Lepomis spp. Lepomis spp.<br />

8792010502 164825 Lep. brevibarbe Lepophidium brevibarbe<br />

8792010505 164827 Lep. jeannae Lepophidium jeannae<br />

8792010509 164831 Lep. profundorum Lepophidium profundorum<br />

8792010500 164823 Lepophidium spp. Lepophidium spp.<br />

8792010510 164833 Lep. staurophor Lepophidium staurophor<br />

8804040901 165696 Lep. ommata Leptolucania ommata Pygmy killifish<br />

8804040900 165695 Leptolucania spp. Leptolucania spp.<br />

8741130600 161440 Letharchus spp. Letharchus spp.<br />

8741130601 161441 Let. velifer Letharchus velifer Sailfin eel<br />

8713040124 564136 Leu. garmani Leucoraja garmani Rosette skate<br />

8713040126 564140 Leu. lentiginosa Leucoraja lentiginosa<br />

5802010101 82703 Lim. polyphemus Limulus polyphemus Horseshoe crab<br />

8835021408 167827 Lio. carmabi Liopropoma carmabi<br />

8835021402 167818 Lio. eukrines Liopropoma eukrines<br />

8835021403 167819 Lio. mowbrayi Liopropoma mowbrayi<br />

8835021404 167820 Lio. rubre Liopropoma rubre<br />

8835060102 168015 Lip. anabantoides Lipogramma anabantoides<br />

8835060100 168013 Lipogramma spp. Lipogramma spp.<br />

8835060101 168014 Lip. trilineatum Lipogramma trilineatum Threeline basslet<br />

6177010103 551680 Lit. setiferus Litopenaeus setiferus White shrimp<br />

8835380100 169006 Lobotes spp. Lobotes spp.<br />

8835380101 169007 Lob. surinamensis Lobotes surinamensis Tripletail


NODCCODE TSN FIM species code Scientific Name Common Name<br />

8835380000 169005 Lobotidae spp. Lobotidae spp.<br />

5706010000 82369 Loliginidae spp. Loliginidae spp. Squid<br />

5706010100 82370 Loligo spp. Loligo spp. Squid<br />

8840020103 170924 Lon. micrognathus Lonchopisthus micrognathus Swordtail jawfish<br />

8840020100 170921 Lonchopisthus spp. Lonchopisthus spp.<br />

8786010202 164505 Lop. reticulatus Lophiodes reticulatus<br />

8786010101 164499 Lop. americanus Lophius americanus<br />

8847012501 171896 Lop. cyprinoides Lophogobius cyprinoides Crested goby<br />

8847012500 171895 Lophogobius spp. Lophogobius spp.<br />

8835220201 168546 Lop. chamaeleonticeps Lopholatilus chamaeleonticeps Tilefish<br />

8835220200 168545 Lopholatilus spp. Lopholatilus spp. Tilefish<br />

8815040101 621143 Lop. lacepede Lophotus lacepede<br />

8777300000 164340 Loricariidae spp. Loricariidae spp. Suckermouth catfish<br />

8804040302 165680 Luc. goodei Lucania goodei Bluefin killifish<br />

8804040301 165679 Luc. parva Lucania parva Rainwater killifish<br />

8804040300 165678 Lucania spp. Lucania spp.<br />

8792011701 164938 Luc. corethromycter Luciobrotula corethromycter<br />

8792011700 164937 Luciobrotula spp. Luciobrotula spp.<br />

8842011402 171256 Lup. nicholsi Lupinoblennius nicholsi Highfin blenny<br />

8842011400 171254 Lupinoblennius spp. Lupinoblennius spp.<br />

8842011401 171255 Lup. vinctus Lupinoblennius vinctus Mangrove blenny<br />

8835360000 168845 Lutjanidae spp. Lutjanidae spp.<br />

8835360103 168849 Lut. analis Lutjanus analis Mutton snapper<br />

8835360104 168850 Lut. apodus Lutjanus apodus Schoolmaster<br />

8835360106 168852 Lut. buccanella Lutjanus buccanella Blackfin snapper<br />

8835360107 168853 Lut. campechanus Lutjanus campechanus Red snapper<br />

8835360101 168847 Lut. cyanopterus Lutjanus cyanopterus Cubera snapper<br />

8835360102 168848 Lut. griseus Lutjanus griseus Gray snapper<br />

8835360109 168857 Lut. jocu Lutjanus jocu Dog snapper<br />

8835360110 168858 Lut. mahogoni Lutjanus mahogoni Mahogany snapper<br />

8835360111 168859 Lut. purpureus Lutjanus purpureus<br />

8835360100 168846 Lutjanus spp. Lutjanus spp.<br />

8835360112 168860 Lut. synagris Lutjanus synagris Lane snapper<br />

8835360113 168861 Lut. vivanus Lutjanus vivanus Silk snapper<br />

8850050000 172483 Luvaridae spp. Luvaridae spp.<br />

8850050101 172485 Luv. imperialis Luvarus imperialis Louvar<br />

8850050100 172484 Luvarus spp. Luvarus spp.<br />

8776017804 163832 Lux. chrysocephalus Luxilus chrysocephalus Striped shiner<br />

8776017809 163843 Lux. zonistius Luxilus zonistius B<strong>and</strong>fin shiner<br />

6179161109 621164 Lys. amboinensis Lysmata amboinensis<br />

6179161103 96895 Lys. rathbunae Lysmata rathbunae<br />

6179161100 96892 Lysmata spp. Lysmata spp.


NODCCODE TSN FIM species code Scientific Name Common Name<br />

6179161101 96893 Lys. wurdemanni Lysmata wurdemanni Peppermint shrimp<br />

8776017902 163849 Lyt. atrapiculus Lythrurus atrapiculus Blacktip shiner<br />

8847012606 171904 Lyt. elasson Lythrypnus elasson<br />

8847012602 171900 Lyt. nesiotes Lythrypnus nesiotes Isl<strong>and</strong> goby<br />

8847012603 171901 Lyt. phorellus Lythrypnus phorellus Convict goby<br />

8847012604 171902 Lyt. spilus Lythrypnus spilus Bluegold goby<br />

8847012600 171898 Lythrypnus spp. Lythrypnus spp.<br />

8743030102 161688 Mac. rostrata Macdonaldi rostrata<br />

8776018000 163863 Macrhybopsis spp. Macrhybopsis spp. Florida chub<br />

6179110201 96221 Mac. ohione Macrobrachium ohione Ohio shrimp<br />

6179110200 96220 Macrobrachium spp. Macrobrachium spp. Prawns<br />

9002010200 173754 Macrochelys spp. Macrochelys spp. alligator snapping turtles<br />

9002010201 173755 Mac. temminckii Macrochelys temminckii alligator snapping turtle<br />

8854010102 621146 Mac. siamensis Macrognathus siamensis<br />

8854010100 172688 Macrognathus spp. Macrognathus spp.<br />

8852020401 172642 Mac. opercularis Macropodus opercularis<br />

8852020400 172641 Macropodus spp. Macropodus spp.<br />

8819030102 551496 Mac. gracilis Macroramphosus gracilis Slender snipefish<br />

8819030101 551497 Mac. scolopax Macroramphosus scolopax Longspine snipefish<br />

8819030100 166422 Macroramphosus spp. Macroramphosus spp.<br />

8794010000 165332 Macrouridae spp. Macrouridae spp.<br />

8850060201 172491 Mak. nigricans Makaira nigricans Blue marlin<br />

8850060200 172490 Makaira spp. Makaira spp.<br />

8835220000 168537 Malacanthidae spp. Malacanthidae spp.<br />

8835220301 168548 Mal. plumieri Malacanthus plumieri S<strong>and</strong> tilefish<br />

8835220300 168547 Malacanthus spp. Malacanthus spp.<br />

9002030300 173779 Malaclemys spp. Malaclemys spp. Terrapin<br />

9002030301 173780 Mal. terrapin Malaclemys terrapin Diamondback terrapin<br />

8794010601 165389 Mal. laevis Malacocephalus laevis<br />

8794010602 165390 Mal. occidentalis Malacocephalus occidentalis<br />

8794010600 165388 Malacocephalus spp. Malacocephalus spp.<br />

8842090401 171420 Mal. aurolineatus Malacoctenus aurolineatus Goldline blenny<br />

8842090403 171422 Mal. macropus Malacoctenus macropus Rosy blenny<br />

8842090400 171419 Malacoctenus spp. Malacoctenus spp.<br />

8842090404 171423 Mal. triangulatus Malacoctenus triangulatus Saddled blenny<br />

8787040500 164599 Malthopsis spp. Malthopsis spp.<br />

8713080101 160992 Man. birostris Manta birostris Atlantic manta<br />

8713080100 160991 Manta spp. Manta spp.<br />

8854010000 172687 Mastacembelidae spp. Mastacembelidae spp.<br />

8738020000 161114 Megalopidae spp. Megalopidae spp.<br />

8738020201 161116 Meg. atlanticus Megalops atlanticus Tarpon<br />

8738020200 161115 Megalops spp. Megalops spp.


NODCCODE TSN FIM species code Scientific Name Common Name<br />

8860020601 173174 Mel. niger Melichthys niger Black durgon<br />

8860020600 173173 Melichthys spp. Melichthys spp.<br />

8805020201 165989 Mem. martinica Membras martinica Rough silverside<br />

8805020200 165988 Membras spp. Membras spp.<br />

8805020301 165993 Men. beryllina Menidia beryllina Inl<strong>and</strong> silverside<br />

8805020303 165995 Men. conchorum Menidia conchorum Key silverside<br />

8805020302 165994 Men. menidia Menidia menidia Atlantic silverside<br />

8805020304 165996 Men. peninsulae Menidia peninsulae Tidewater silverside<br />

8805020300 165992 Menidia spp. Menidia spp.<br />

6189021302 98812 Men. adina Menippe adina<br />

6189021301 98811 Men. mercenaria Menippe mercenaria<br />

6189021303 98813 Men. nodifrons Menippe nodifrons<br />

6189021300 98810 Menippe spp. Menippe spp.<br />

8835440601 169274 Men. americanus Menticirrhus americanus Southern kingfish<br />

8835440602 169275 Men. littoralis Menticirrhus littoralis Gulf kingfish<br />

8835440603 169276 Men. saxatilis Menticirrhus saxatilis Northern kingfish<br />

8835440600 169273 Menticirrhus spp. Menticirrhus spp.<br />

5515471102 81499 Mer. campechiensis Mercenaria campechiensis<br />

5515471101 81496 Mer. mercenaria Mercenaria mercenaria<br />

5515471100 81495 Mercenaria spp. Mercenaria spp.<br />

8791040101 164791 Mer. bilinearis Merluccius bilinearis<br />

8847060000 172161 Microdesmidae spp. Microdesmidae spp.<br />

8847060102 172164 Mic. lanceolatus Microdesmus lanceolatus Lancetail wormfish<br />

8847060103 172165 Mic. longipinnis Microdesmus longipinnis Pink wormfish<br />

8847060100 172163 Microdesmus spp. Microdesmus spp.<br />

8847010703 171810 Mic. carri Microgobius carri Seminole goby<br />

8847010701 171808 Mic. gulosus Microgobius gulosus Clown goby<br />

8847010704 171811 Mic. microlepis Microgobius microlepis Banner goby<br />

8847010700 171807 Microgobius spp. Microgobius spp.<br />

8847010702 171809 Mic. thalassinus Microgobius thalassinus Green goby<br />

8820020601 166533 Mic. brachyurus Microphis brachyurus Opposum pipefish<br />

8820020600 166532 Microphis spp. Microphis spp.<br />

8835440700 169282 Micropogonias spp. Micropogonias spp.<br />

8835440701 169283 Mic. undulatus Micropogonias undulatus Atlantic croaker<br />

8835160607 564610 Mic. cataractae Micropterus cataractae<br />

8835160606 168164 Mic. notius Micropterus notius<br />

8835160603 168161 Mic. punctulatus Micropterus punctulatus Spotted bass<br />

8835160602 168160 Mic. salmoides Micropterus salmoides Largemouth bass<br />

8835160600 168158 Micropterus spp. Micropterus spp.<br />

8835620401 170116 Mic. chrysurus Microspathodon chrysurus Yellowtail damselfish<br />

8835620400 170115 Microspathodon spp. Microspathodon spp.<br />

8776040801 163959 Min. melanops Minytrema melanops Spotted sucker


NODCCODE TSN FIM species code Scientific Name Common Name<br />

8776040800 163958 Minytrema spp. Minytrema spp. Suckers<br />

8776060101 163978 Mis. anguillicaudatus Misgurnus anguillicaudatus Weatherfish<br />

8776060100 163977 Misgurnus spp. Misgurnus spp.<br />

8713080202 160997 Mob. hypostoma Mobula hypostoma Devil ray<br />

8713080200 160995 Mobula spp. Mobula spp.<br />

8713080000 160990 Mobulidae spp. Mobulidae spp.<br />

8861040102 621163 Mol. lanceolata Mola lanceolata<br />

8861040101 173414 Mol. mola Mola mola Ocean sunfish<br />

8861040100 173413 Mola spp. Mola spp. Ocean sunfish<br />

8860040000 203428 Monacanthidae spp. Monacanthidae spp.<br />

8860020701 173179 Mon. ciliatus Monacanthus ciliatus Fringed filefish<br />

8860020700 173178 Monacanthus spp. Monacanthus spp.<br />

8860020702 173180 Mon. tuckeri Monacanthus tuckeri Slender filefish<br />

8857031201 172786 Mon. antillarum Monolene antillarum<br />

8857031204 172789 Mon. sessilicauda Monolene sessilicauda<br />

8824010201 166697 Mon. albus Monopterus albus<br />

8741020101 161138 Mor. edwardsi Moringua edwardsi<br />

8835750204 167682 Mor. chrysops Morone chrysops White bass<br />

8835750203 167681 Mor. chrysops x saxatilis Morone chrysops x saxatilis<br />

8835750205 167683 Mor. mississippiensis Morone mississippiensis Yellow bass<br />

8835750202 167680 Mor. saxatilis Morone saxatilis Striped bass<br />

8835750200 167676 Morone spp. Morone spp.<br />

8776040407 163936 Mox. carinatum Moxostoma carinatum River redhorse<br />

8776040403 163932 Mox. poecilurum Moxostoma poecilurum Blacktail redhorse<br />

8776040400 163927 Moxostoma spp. Moxostoma spp.<br />

8836010101 170335 Mug. cephalus Mugil cephalus Striped mullet<br />

8836010102 170336 Mug. curema Mugil curema White mullet<br />

8836010117 170351 Mug. gyrans Mugil gyrans Fantail mullet<br />

8836010104 170338 Mug. liza Mugil liza Liza<br />

8836010103 170337 Mug. sp. (redeye mullet) Mugil sp. (redeye mullet) Redeye mullet<br />

8836010100 170334 Mugil spp. Mugil spp.<br />

8836010105 170339 Mug. trichodon Mugil trichodon<br />

8836010000 170333 Mugilidae spp. Mugilidae spp.<br />

8835450000 169406 Mullidae spp. Mullidae spp.<br />

8835450101 169408 Mul. martinicus Mulloidichthys martinicus Yellow goatfish<br />

8835450100 169407 Mulloidichthys spp. Mulloidichthys spp.<br />

8835450201 169417 Mul. auratus Mullus auratus Red goatfish<br />

8835450200 169416 Mullus spp. Mullus spp.<br />

8741050502 161240 Mur. retifera Muraena retifera Reticulate moray<br />

8741050504 161242 Mur. robusta Muraena robusta<br />

8741050500 161238 Muraena spp. Muraena spp.<br />

8741050000 161160 Muraenidae spp. Muraenidae spp.


NODCCODE TSN FIM species code Scientific Name Common Name<br />

8708040201 160230 Mus. canis Mustelus canis Smooth dogfish<br />

8708040203 160234 Mus. norrisi Mustelus norrisi Florida smoothhound<br />

8708040222 621134 Mus. sinusmexicanus Mustelus sinusmexicanus<br />

8708040200 160226 Mustelus spp. Mustelus spp.<br />

8835020502 167760 Myc. bonaci Mycteroperca bonaci Black grouper<br />

8835020504 167762 Myc. interstitialis Mycteroperca interstitialis Yellowmouth grouper<br />

8835020501 167759 Myc. microlepis Mycteroperca microlepis Gag<br />

8835020505 167763 Myc. phenax Mycteroperca phenax Scamp<br />

8835020500 167758 Mycteroperca spp. Mycteroperca spp.<br />

8835020509 167767 Myc. tigris Mycteroperca tigris Tiger grouper<br />

8835020506 167764 Myc. venenosa Mycteroperca venenosa Yellowfin grouper<br />

8713070000 160976 Myliobatidae spp. Myliobatidae spp.<br />

8713070201 564391 Myl. freminvillii Myliobatis freminvillii Bullnose ray<br />

8713070203 160982 Myl. goodei Myliobatis goodei Southern eagle ray<br />

8713070200 160979 Myliobatis spp. Myliobatis spp.<br />

8741130707 161449 Myr. breviceps Myrichthys breviceps<br />

8741130708 161450 Myr. ocellatus Myrichthys ocellatus<br />

8810080201 166211 Myr. jacobus Myripristis jacobus<br />

8741130802 161453 Myr. punctatus Myrophis punctatus Speckled worm eel<br />

8741130800 161451 Myrophis spp. Myrophis spp.<br />

8713120101 160844 Nar. bancroftii Narcine bancroftii Lesser electric ray<br />

8713120100 160843 Narcine spp. Narcine spp.<br />

8835281501 168742 Nau. ductor Naucrates ductor<br />

8708020801 160433 Neg. brevirostris Negaprion brevirostris Lemon shark<br />

8708020800 160432 Negaprion spp. Negaprion spp.<br />

8842091501 171482 Nem. atelestos Nemaclinus atelestos Threadfin blenny<br />

8842091500 171481 Nemaclinus spp. Nemaclinus spp.<br />

8741020201 161143 Neo. mucronatus Neoconger mucronatus<br />

8837020101 550874 Neo. americana Neoepinnula americana<br />

8826010402 166794 Neo. hemingwayi Neomerinthe hemingwayi<br />

8810080105 166175 Neo. marianus Neoniphon marianus Longjaw squirrelfish<br />

8847012701 171908 Nes. longus Nes longus<br />

8850010701 172370 Nes. nasutus Nesiarchus nasutus<br />

8741080201 621141 Net. pygmaea Nettenchelys pygmaea<br />

8794010802 165395 Nez. bairdii Nezumia bairdii<br />

8839030300 170859 Nicholsina spp. Nicholsina spp.<br />

8839030301 170860 Nic. usta Nicholsina usta Emerald parrotfish<br />

9998000000 9998 No fish No fish<br />

0000000000 0 No gear set No gear set<br />

8776011002 163393 Noc. leptocephalus Nocomis leptocephalus Bluehead chub<br />

8776011000 163391 Nocomis spp. Nocomis spp.<br />

8851020000 172535 Nomeidae spp. Nomeidae spp.


NODCCODE TSN FIM species code Scientific Name Common Name<br />

8851020301 172554 Nom. gronovii Nomeus gronovii Man-of-war fish<br />

8851020300 172553 Nomeus spp. Nomeus spp.<br />

1111000000 1111 Non-st<strong>and</strong>ard work up Non-st<strong>and</strong>ard work up<br />

8743030301 161690 Not. chemnitzii Notacanthus chemnitzii<br />

8776010601 163368 Not. crysoleucas Notemigonus crysoleucas Golden shiner<br />

8776010600 163367 Notemigonus spp. Notemigonus spp.<br />

8776011137 163427 Not. baileyi Notropis baileyi Rough shiner<br />

8776015012 163479 Not. buccatus Notropis buccatus Silverjaw minnow<br />

8776011104 163403 Not. chalybaeus Notropis chalybaeus Ironcolor shiner<br />

8776011157 163438 Not. cummingsae Notropis cummingsae Dusky shiner<br />

8776011166 163444 Not. harperi Notropis harperi Redeye chub<br />

8776011176 163452 Not. longirostris Notropis longirostris Longnose shiner<br />

8776011178 163454 Not. maculatus Notropis maculatus Taillight shiner<br />

8776015016 163485 Not. melanostomus Notropis melanostomus<br />

8776011185 163460 Not. petersoni Notropis petersoni Coastal shiner<br />

8776011100 163399 Notropis spp. Notropis spp.<br />

8776011124 163420 Not. texanus Notropis texanus Weed shiner<br />

8777020212 164014 Not. funebris Noturus funebris Black madtom<br />

8777020201 164003 Not. gyrinus Noturus gyrinus Tadpole madtom<br />

8777020217 164019 Not. leptacanthus Noturus leptacanthus Speckled madtom<br />

8777020200 164002 Noturus spp. Noturus spp.<br />

8835360401 168907 Ocy. chrysurus Ocyurus chrysurus Yellowtail snapper<br />

8835360400 168906 Ocyurus spp. Ocyurus spp.<br />

8707030000 159875 Odontaspididae spp. Odontaspididae spp.<br />

8835441301 169325 Odo. dentex Odontoscion dentex Reef croaker<br />

8835441300 169324 Odontoscion spp. Odontoscion spp.<br />

8787040000 164573 Ogcocephalidae spp. Ogcocephalidae spp.<br />

8787040109 164584 Ogc. corniger Ogcocephalus corniger<br />

8787040113 164581 Ogc. cubifrons Ogcocephalus cubifrons<br />

8787040108 164583 Ogc. declivirostris Ogcocephalus declivirostris<br />

8787040103 164576 Ogc. nasutus Ogcocephalus nasutus Shortnose batfish<br />

8787040106 164580 Ogc. pantostictus Ogcocephalus pantostictus<br />

8787040105 164578 Ogc. parvus Ogcocephalus parvus Roughback batfish<br />

8787040110 164585 Ogc. rostellum Ogcocephalus rostellum<br />

8787040100 164574 Ogcocephalus spp. Ogcocephalus spp.<br />

8792012401 164966 Ogi. cayorum Ogilbia cayorum Key brotula<br />

8792012400 164965 Ogilbia spp. Ogilbia spp.<br />

8835280501 168673 Oli. saurus Oligoplites saurus Leatherjacket<br />

8835280500 168672 Oligoplites spp. Oligoplites spp.<br />

8741130000 161419 Ophichthidae spp. Ophichthidae spp.<br />

8741131010 161473 Oph. cruentifer Ophichthus cruentifer<br />

8741131001 161462 Oph. gomesii Ophichthus gomesii Shrimp eel


NODCCODE TSN FIM species code Scientific Name Common Name<br />

8741131013 161479 Oph. hyposagmatus Ophichthus hyposagmatus<br />

8741131002 161463 Oph. melanoporus Ophichthus melanoporus Blackpored eel<br />

8741131016 621136 Oph. menezesi Ophichthus menezesi<br />

8741131014 161480 Oph. omorgmus Ophichthus omorgmus<br />

8741131004 161465 Oph. ophis Ophichthus ophis Spotted snake eel<br />

8741131015 161481 Oph. puncticeps Ophichthus puncticeps Palespotted eel<br />

8741131009 161472 Oph. rex Ophichthus rex<br />

8741131000 161458 Ophichthus spp. Ophichthus spp.<br />

8792010000 164807 Ophidiidae spp. Ophidiidae spp.<br />

8792010601 164840 Oph. antipholus Ophidion antipholus Long nosed cusk ell<br />

8792010619 621144 Oph. dromio Ophidion dromio<br />

8792010602 164841 Oph. grayi Ophidion grayi Blotched cusk-eel<br />

8792010603 164842 Oph. holbrookii Ophidion holbrookii Bank cusk-eel<br />

8792010605 164844 Oph. josephi Ophidion josephi Crested cusk-eel<br />

8792010613 164852 Oph. marginatum Ophidion marginatum Striped cusk-eel<br />

8792010604 164843 Oph. selenops Ophidion selenops<br />

8792010600 164839 Ophidion spp. Ophidion spp.<br />

8842010601 171203 Oph. macclurei Ophioblennius macclurei Redlip blenny<br />

8842010600 171202 Ophioblennius spp. Ophioblennius spp.<br />

8747010701 161748 Opi. oglinum Opisthonema oglinum Atlantic thread herring<br />

8747010700 161747 Opisthonema spp. Opisthonema spp.<br />

8840020000 170920 Opistognathidae spp. Opistognathidae spp.<br />

8840020203 170928 Opi. aurifrons Opistognathus aurifrons Yellowhead jawfish<br />

8840020201 170926 Opi. lonchurus Opistognathus lonchurus Moustache jawfish<br />

8840020206 170931 Opi. macrognathus Opistognathus macrognathus B<strong>and</strong>ed jawfish<br />

8840020202 170927 Opi. maxillosus Opistognathus maxillosus Mottled jawfish<br />

8840020211 621148 Opi. nothus Opistognathus nothus<br />

8840020299 170933 Opi. robinsi Opistognathus robinsi Spotfin jawfish<br />

8840020200 170925 Opistognathus spp. Opistognathus spp. Spotfin jawfishes<br />

8840020207 170932 Opi. whitehursti Opistognathus whitehursti Dusky jawfish<br />

8783010202 164424 Ops. beta Opsanus beta Gulf toadfish<br />

8783010203 164425 Ops. pardus Opsanus pardus Leopard toadfish<br />

8783010200 164422 Opsanus spp. Opsanus spp.<br />

8783010201 164423 Ops. tau Opsanus tau Oyster toadfish<br />

8776018201 163876 Ops. emiliae Opsopoeodus emiliae Pugnose minnow<br />

8835610401 169810 Ore. aureus Oreochromis aureus Blue tilapia<br />

8835614001 170015 Ore. mossambicus Oreochromis mossambicus Mozambique tilapia<br />

8835614003 553310 Ore. niloticus Oreochromis niloticus<br />

8835400201 169077 Ort. chrysoptera Orthopristis chrysoptera Pigfish<br />

8835400200 169076 Orthopristis spp. Orthopristis spp.<br />

8810080300 166239 Ostichthys spp. Ostichthys spp.<br />

8810080301 166240 Ost. trachypoma Ostichthys trachypoma Bigeye soldierfish


NODCCODE TSN FIM species code Scientific Name Common Name<br />

8860030000 173235 Ostraciidae spp. Ostraciidae spp.<br />

8792010703 164862 Oto. dormitator Otophidium dormitator Sleeper cusk-eel<br />

8792010701 164859 Oto. omostigma Otophidium omostigma Polka-dot cusk-eel<br />

8792010700 164858 Otophidium spp. Otophidium spp.<br />

8803011001 165520 Oxy. micropterus Oxyporhamphus micropterus Smallwing flyingfish<br />

8803011000 165519 Oxyporhamphus spp. Oxyporhamphus spp.<br />

8847010505 171773 Oxy. stigmalophius Oxyurichthys stigmalophius Spotfin goby<br />

8835430601 169207 Pag. pagrus Pagrus pagrus Red porgy<br />

8835430600 169206 Pagrus spp. Pagrus spp.<br />

6179110803 96465 Pal. floridanus Palaemon floridanus<br />

6179110800 96449 Palaemon spp. Palaemon spp.<br />

6179110301 96384 Pal. intermedius Palaemonetes intermedius<br />

6179110302 96385 Pal. paludosus Palaemonetes paludosus<br />

6179110303 96390 Pal. pugio Palaemonetes pugio<br />

6179110300 96383 Palaemonetes spp. Palaemonetes spp. Grass shrimp<br />

6179110304 96391 Pal. vulgaris Palaemonetes vulgaris<br />

6179110000 96213 Palaemonidae spp. Palaemonidae spp.<br />

8847014801 171969 Pal. paradoxus Palatogobius paradoxus Mauve goby<br />

8847014800 171968 Palatogobius spp. Palatogobius spp.<br />

6182010000 97646 Palinuridae spp. Palinuridae spp.<br />

6182010101 97648 Pan. argus Panulirus argus Spiny lobster<br />

6182010100 97647 Panulirus spp. Panulirus spp.<br />

8842012501 171304 Par. marmoreus Parablennius marmoreus Seaweed blenny<br />

8842012500 171303 Parablennius spp. Parablennius spp.<br />

8842090502 171429 Par. cingulatus Paraclinus cingulatus Coral blenny<br />

8842090503 171430 Par. fasciatus Paraclinus fasciatus B<strong>and</strong>ed blenny<br />

8842090501 171428 Par. gr<strong>and</strong>icomis Paraclinus gr<strong>and</strong>icomis Horned blenny<br />

8842090504 171431 Par. infrons Paraclinus infrons<br />

8842090506 171433 Par. marmoratus Paraclinus marmoratus Marbled blenny<br />

8842090507 171434 Par. nigripinnis Paraclinus nigripinnis Blackfin blenny<br />

8842090500 171427 Paraclinus spp. Paraclinus spp.<br />

8741120501 161369 Par. caudilimbatus Paraconger caudilimbatus Margintail conger<br />

8741120500 161368 Paraconger spp. Paraconger spp.<br />

8846010901 171743 Par. bairdi Paradiplogrammus bairdi Lancer dragonet<br />

8860010301 173121 Par. lineata Parahollardia lineata<br />

8857030302 172736 Par. albigutta Paralichthys albigutta Gulf flounder<br />

8857030301 172735 Par. dentatus Paralichthys dentatus Summer flounder<br />

8857030304 172738 Par. lethostigma Paralichthys lethostigma Southern flounder<br />

8857030305 172739 Par. oblongus Paralichthys oblongus Fourspot flounder<br />

8857030300 172734 Paralichthys spp. Paralichthys spp.<br />

8857030306 172740 Par. squamilentus Paralichthys squamilentus Broad flounder<br />

8835021701 167838 Par. furcifer Paranthias furcifer Creole-fish


NODCCODE TSN FIM species code Scientific Name Common Name<br />

8835021700 167837 Paranthias spp. Paranthias spp.<br />

8762040200 162434 Parasudis spp. Parasudis spp.<br />

8762040201 162435 Par. truculenta Parasudis truculenta Longnose greeneye<br />

8835441401 169313 Par. acuminatus Pareques acuminatus High-hat<br />

8835441403 621151 Par. iwamotoi Pareques iwamotoi<br />

8835441402 169318 Par. umbrosus Pareques umbrosus Cubbyu<br />

8803011101 165522 Par. brachypterus Parexocoetus brachypterus Sailfin flyingfish<br />

8803011100 165521 Parexocoetus spp. Parexocoetus spp.<br />

8792012601 164981 Par. schmidti Parophidion schmidti Dusky cusk-eel<br />

8792012600 164980 Parophidion spp. Parophidion spp.<br />

8835470000 169470 Pempheridae spp. Pempheridae spp.<br />

8835470101 169472 Pem. schomburgkii Pempheris schomburgkii Glassy sweeper<br />

8835470100 169471 Pempheris spp. Pempheris spp.<br />

6177010000 95602 Penaeidae spp. Penaeidae spp.<br />

8851030104 172568 Pep. burti Peprilus burti Gulf butterfish<br />

8851030106 172570 Pep. paru Peprilus paru Harvestfish<br />

8851030100 172564 Peprilus spp. Peprilus spp.<br />

8851030103 172567 Pep. triacanthus Peprilus triacanthus Butterfish<br />

8835200201 168469 Per. flavescens Perca flavescens<br />

8835200000 168356 Percidae spp. Percidae spp.<br />

8835200335 553384 Per. austroperca Percina austroperca<br />

8835200319 168490 Per. nigrofasciata Percina nigrofasciata Blackb<strong>and</strong>ed darter<br />

8835200333 168503 Per. vigil Percina vigil<br />

6179110401 96415 Per. americanus Periclimenes americanus American grass shrimp<br />

6179110403 96417 Per. longicaudatus Periclimenes longicaudatus Longtail grass shrimp<br />

6179110400 96414 Periclimenes spp. Periclimenes spp.<br />

8826020313 167016 Per. brevirostre Peristedion brevirostre<br />

8826020303 167006 Per. gracile Peristedion gracile<br />

8826020304 167007 Per. greyae Peristedion greyae<br />

8826020307 167010 Per. miniatum Peristedion miniatum<br />

8826020311 167014 Per. thompsoni Peristedion thompsoni<br />

8603010301 159722 Pet. marinus Petromyzon marinus<br />

8792012701 164985 Pet. sanguineus Petrotyx sanguineus<br />

8835180501 168309 Pha. conklini Phaeoptyx conklini Freckled cardinalfish<br />

8835180503 168311 Pha. pigmentaria Phaeoptyx pigmentaria Dusky cardinalfish<br />

8835180500 168308 Phaeoptyx spp. Phaeoptyx spp.<br />

8835180502 168310 Pha. xenus Phaeoptyx xenus Sponge cardinalfish<br />

8835270301 168578 Pht. lineatus Phtheirichthys lineatus<br />

8791010308 550838 Phy. fulvus Physiculus fulvus<br />

8776011602 163517 Pim. promelas Pimephales promelas Fathead minnow<br />

8776011600 163515 Pimephales spp. Pimephales spp.<br />

8803020401 165585 Pla. argalus Platybelone argalus Keeltail needlefish


NODCCODE TSN FIM species code Scientific Name Common Name<br />

8803020400 165584 Platybelone spp. Platybelone spp.<br />

6189071701 99076 Pla. spectabilis Platychirograpsus spectabilis Saber crab<br />

6189071700 99075 Platychirograpsus spp. Platychirograpsus spp. Saber crab<br />

8840130501 171051 Pla. rubrocinctus Platygillellus rubrocinctus Saddle stargazer<br />

8835022601 167873 Ple. garrupellus Plectranthias garrupellus<br />

8810080401 166245 Ple. retrospinis Plectrypops retrospinis Cardinal soldierfish<br />

8810080400 166244 Plectrypops spp. Plectrypops spp.<br />

8857040000 615937 Pleuronectidae spp. Pleuronectidae spp.<br />

8855000000 172702 Pleuronectiformes spp. Pleuronectiformes spp flatfishes<br />

8804080201 165898 Poe. latipinna Poecilia latipinna Sailfin molly<br />

8804080205 165903 Poe. reticulata Poecilia reticulata Guppy<br />

8804080206 165904 Poe. sphenops Poecilia sphenops<br />

8804080200 165897 Poecilia spp. Poecilia spp.<br />

8804080000 165876 Poeciliidae spp. Poeciliidae spp.<br />

8835440801 169288 Pog. cromis Pogonias cromis Black drum<br />

8835440800 169287 Pogonias spp. Pogonias spp.<br />

8838010101 170447 Pol. octonemus Polydactylus octonemus Atlantic threadfin<br />

8838010104 170450 Pol. oligodon Polydactylus oligodon Littlescale threadfi<br />

8838010100 170446 Polydactylus spp. Polydactylus spp.<br />

8838010102 170448 Pol. virginicus Polydactylus virginicus Barbu<br />

8809010101 166126 Pol. lowei Polymixia lowei Beardfish<br />

8809010102 166127 Pol. nobilis Polymixia nobilis<br />

8809010100 166125 Polymixia spp. Polymixia spp.<br />

8809010000 166124 Polymixiidae spp. Polymixiidae spp.<br />

8838010000 170445 Polynemidae spp. Polynemidae spp.<br />

8729020101 161088 Pol. spathula Polyodon spathula<br />

8835580101 167914 Pol. americanus Polyprion americanus Wreckfish<br />

8835580100 167913 Polyprion spp. Polyprion spp. Wreckfish<br />

8835550401 169632 Pom. arcuatus Pomacanthus arcuatus Gray angelfish<br />

8835550404 169635 Pom. imperator Pomacanthus imperator<br />

8835550402 169633 Pom. paru Pomacanthus paru French angelfish<br />

8835550400 169631 Pomacanthus spp. Pomacanthus spp.<br />

8835620000 170044 Pomacentridae spp. Pomacentridae spp.<br />

8835400502 169093 Pom. crocro Pomadasys crocro Burro grunt<br />

8835400500 169091 Pomadasys spp. Pomadasys spp.<br />

8835250000 168557 Pomatomidae spp. Pomatomidae spp.<br />

8835250101 168559 Pom. saltatrix Pomatomus saltatrix Bluefish<br />

8835250100 168558 Pomatomus spp. Pomatomus spp.<br />

8835160701 168166 Pom. annularis Pomoxis annularis White crappie<br />

8835160702 168167 Pom. nigromaculatus Pomoxis nigromaculatus Black crappie<br />

8835160700 168165 Pomoxis spp. Pomoxis spp.<br />

8826010501 166799 Pon. castor Pontinus castor Longsnout scorpionfish


NODCCODE TSN FIM species code Scientific Name Common Name<br />

8826010503 166801 Pon. longispinis Pontinus longispinis Longspine scorpionfish<br />

8826010506 166804 Pon. nematophthalmus Pontinus nematophthalmus Spinythroat scorpion<br />

8826010505 166803 Pon. rathbuni Pontinus rathbuni Highfin scorpionfish<br />

8826010500 166798 Pontinus spp. Pontinus spp.<br />

8783010108 164421 Por. plectrodon Porichthys plectrodon Atlantic midshipman<br />

8783010100 164413 Porichthys spp. Porichthys spp.<br />

6189010000 98689 Portunidae spp. Portunidae spp. Swimming crabs<br />

6189010601 98718 Por. gibbesii Portunus gibbesii<br />

6189010604 98721 Por. spinimanus Portunus spinimanus Blotched swimming crab<br />

6189010600 98717 Portunus spp. Portunus spp.<br />

8835170000 168176 Priacanthidae spp. Priacanthidae spp.<br />

8835170101 168178 Pri. arenatus Priacanthus arenatus Bigeye<br />

8835170100 168177 Priacanthus spp. Priacanthus spp.<br />

8847082701 172234 Pri. hipoliti Priolepis hipoliti<br />

8708020601 160424 Pri. glauca Prionace glauca<br />

8826020105 166978 Pri. alatus Prionotus alatus<br />

8826020101 166974 Pri. carolinus Prionotus carolinus Northern searobin<br />

8826020102 166975 Pri. evolans Prionotus evolans Striped searobin<br />

8826020123 166996 Pri. longispinosus Prionotus longispinosus Bigeye Searobin<br />

8826020111 166984 Pri. martis Prionotus martis Barred searobin<br />

8826020113 166986 Pri. ophryas Prionotus ophryas B<strong>and</strong>tail searobin<br />

8826020117 166990 Pri. roseus Prionotus roseus Bluespotted searobin<br />

8826020118 166991 Pri. rubio Prionotus rubio Blackfin searobin<br />

8826020103 166976 Pri. scitulus Prionotus scitulus Leopard searobin<br />

8826020100 166973 Prionotus spp. Prionotus spp.<br />

8826020121 166994 Pri. stearnsi Prionotus stearnsi Shortwing searobin<br />

8826020104 166977 Pri. tribulus Prionotus tribulus Bighead searobin<br />

8713010000 160807 Pristidae spp. Pristidae spp.<br />

8835170201 168190 Pri. alta Pristigenys alta Short bigeye<br />

8835170200 168188 Pristigenys spp. Pristigenys spp.<br />

8835360701 168913 Pri. aquilonaris Pristipomoides aquilonaris Wenchman<br />

8835360702 168914 Pri. freemani Pristipomoides freemani<br />

8835360700 168912 Pristipomoides spp. Pristipomoides spp.<br />

8713010101 160809 Pri. pectinata Pristis pectinata Smalltooth sawfish<br />

8713010103 160810 Pri. pristis Pristis pristis Largetooth sawfish<br />

8713010100 160808 Pristis spp. Pristis spp.<br />

8835550135 169592 Pro. aculeatus Prognathodes aculeatus Longsnout butterflyfish<br />

8835550102 169557 Pro. aya Prognathodes aya Bank butterflyfish<br />

8835550501 621153 Pro. guyanensis Prognathodes guyanensis<br />

8803011201 165524 Pro. occidentalis Prognichthys occidentalis Bluntnose flyingfish<br />

8803011200 165523 Prognichthys spp. Prognichthys spp.<br />

8835023401 167931 Pro. martinicensis Pronotogrammus martinicensis Roughtongue bass


NODCCODE TSN FIM species code Scientific Name Common Name<br />

8835023400 167930 Pronotogrammus spp. Pronotogrammus spp.<br />

8851020401 172556 Pse. cyanophrys Psenes cyanophrys Freckled driftfish<br />

8851020402 172557 Psen. maculatus Psenes maculatus Silver driftfish<br />

8851020403 172558 Pse. pellucidus Psenes pellucidus Bluefin driftfish<br />

8851020400 172555 Psenes spp. Psenes spp.<br />

9002030804 173813 Pse. nelsoni Pseudemys nelsoni Florida redbelly turtle<br />

9002030803 208648 Pse. peninsularis Pseudemys peninsularis Peninsula cooter<br />

9002030800 173803 Pseudemys spp. Pseudemys spp. Cooters - turtles<br />

9002030802 208646 Pse. suwanniensis Pseudemys suwanniensis Suwannee cooter<br />

8835030502 168001 Pse. gregoryi Pseudogramma gregoryi Reef bass<br />

8835030500 167999 Pseudogramma spp. Pseudogramma spp.<br />

8741131402 161486 Pse. fugesae Pseudomyrophis fugesae<br />

8835450301 169421 Pse. maculatus Pseudupeneus maculatus Spotted goatfish<br />

8835450300 169420 Pseudupeneus spp. Pseudupeneus spp. Goatfish<br />

8847011401 171866 Pte. calliura Ptereleotris calliura Blue dartfish<br />

8847014304 621161 Pte. helenae Ptereleotris helenae<br />

8847011400 171865 Ptereleotris spp. Ptereleotris spp. Dartfishes<br />

8826011401 166883 Pte. volitans Pterois volitans<br />

8776018906 621142 Pte. gr<strong>and</strong>ipinnis Pteronotropis gr<strong>and</strong>ipinnis<br />

8776018903 201941 Pte. hypselopterus Pteronotropis hypselopterus Sailfin shiner<br />

8776018904 201942 Pte. signipinnis Pteronotropis signipinnis Flagfin shiner<br />

8776018905 201943 Pte. welaka Pteronotropis welaka Bluenose shiner<br />

8713050112 621026 Pte. violacea Pteroplatytrygon violacea<br />

8835710301 170297 Pte. brama Pterycombus brama Atlantic fanfish<br />

8835710300 170296 Pterycombus spp. Pterycombus spp.<br />

8777302001 553392 Pte. disjunctivus Pterygoplichthys disjunctivus<br />

8777301002 164375 Pte. multiradiatus Pterygoplichthys multiradiatus Armoured catfish<br />

8777301000 164372 Pterygoplichthys spp. Pterygoplichthys spp. Armoured catfish<br />

8777020301 164029 Pyl. olivaris Pylodictis olivaris Flathead catfish<br />

8777020300 164028 Pylodictis spp. Pylodictis spp.<br />

8835260000 168564 Rachycentridae spp. Rachycentridae spp.<br />

8835260101 168566 Rac. canadum Rachycentron canadum Cobia<br />

8835260100 168565 Rachycentron spp. Rachycentron spp.<br />

8713040117 160859 Raj. ackleyi Raja ackleyi Ocellate skate<br />

8713040113 160855 Raj. eglanteria Raja eglanteria Clearnose skate<br />

8713040100 160846 Raja spp. Raja spp.<br />

8713040133 160875 Raj. texana Raja texana Roundel skate<br />

8713040000 160845 Rajidae spp. Rajidae spp.<br />

8815030101 166356 Reg. glesne Regalecus glesne<br />

8835270501 168582 Rem. albescens Remora albescens White suckerfish<br />

8835270104 168572 Rem. brachyptera Remora brachyptera Spearfish remora<br />

8835270102 168570 Rem. osteochir Remora osteochir Marlinsucker


NODCCODE TSN FIM species code Scientific Name Common Name<br />

8835270103 168571 Rem. remora Remora remora Remora<br />

8835270100 168568 Remora spp. Remora spp.<br />

8713020000 160813 Rhinobatidae spp. Rhinobatidae spp.<br />

8713020101 160815 Rhi. lentiginosus Rhinobatos lentiginosus<br />

8713020100 160814 Rhinobatos spp. Rhinobatos spp.<br />

8713070301 160985 Rhi. bonasus Rhinoptera bonasus Cownose ray<br />

8713070300 160984 Rhinoptera spp. Rhinoptera spp.<br />

8708020303 160206 Rhi. porosus Rhizoprionodon porosus<br />

8708020300 160199 Rhizoprionodon spp. Rhizoprionodon spp.<br />

8708020301 160200 Rhi. terraenovae Rhizoprionodon terraenovae Atlantic sharpnose shark<br />

8835360501 168909 Rho. aurorubens Rhomboplites aurorubens Vermilion snapper<br />

8835360500 168908 Rhomboplites spp. Rhomboplites spp.<br />

8741121001 161388 Rhy. flavus Rhynchoconger flavus Yellow conger<br />

8741121002 161390 Rhy. gracilior Rhynchoconger gracilior Whiptail conger<br />

8741121000 161387 Rhynchoconger spp. Rhynchoconger spp.<br />

6177010201 551662 Rim. constrictus Rimapenaeus constrictus Roughneck shrimp<br />

6177010200 551562 Rimapenaeus spp. Rimapenaeus spp.<br />

8847011501 171869 Ris. ruber Risor ruber Tusked goby<br />

8847011500 171868 Risor spp. Risor spp.<br />

8804041001 165698 Riv. marmoratus Rivulus marmoratus Rivulus<br />

8804041000 165697 Rivulus spp. Rivulus spp.<br />

8850010401 172364 Ruv. pretiosus Ruvettus pretiosus<br />

8835030202 167985 Ryp. bistrispinus Rypticus bistrispinus Freckled soapfish<br />

8835030204 167987 Ryp. maculatus Rypticus maculatus Whitespotted soapfish<br />

8835030207 167990 Ryp. saponaceus Rypticus saponaceus Greater soapfish<br />

8835030200 167983 Rypticus spp. Rypticus spp.<br />

8835030208 167991 Ryp. subbifrenatus Rypticus subbifrenatus Spotted soapfish<br />

8835200402 168509 San. canadense S<strong>and</strong>er canadense Sauger<br />

8835200400 168505 S<strong>and</strong>er spp. S<strong>and</strong>er spp.<br />

8850030202 172409 Sar. sarda Sarda sarda Atlantic bonito<br />

8850030200 172407 Sarda spp. Sarda spp.<br />

8747011001 161763 Sar. aurita Sardinella aurita Spanish sardine<br />

8747011000 161762 Sardinella spp. Sardinella spp.<br />

8810080110 166178 Sar. bullisi Sargocentron bullisi Deepwater squirrelfish<br />

8810080111 166180 Sar. coruscum Sargocentron coruscum Reef squirrelfish<br />

8810080112 166182 Sar. poco Sargocentron poco Saddle squirrelfish<br />

8810080113 166184 Sar. vexillarium Sargocentron vexillarium Dusky squirrelfish<br />

8835610403 169812 Sar. melanotheron Sarotherodon melanotheron Blackchin tilapia<br />

8741100302 161314 Sau. cognita Saurenchelys cognita<br />

8762020301 162408 Sau. brasiliensis Saurida brasiliensis Largescale lizardfish<br />

8762020302 162410 Sau. caribbaea Saurida caribbaea Smallscale lizardfish<br />

8762020303 162411 Sau. normani Saurida normani Shortjaw lizardfish


NODCCODE TSN FIM species code Scientific Name Common Name<br />

8762020300 162407 Saurida spp. Saurida spp.<br />

8839030000 170809 Scaridae spp. Scaridae spp.<br />

8842012601 171307 Sca. cristata Scartella cristata Molly miller<br />

8842012600 171306 Scartella spp. Scartella spp.<br />

8839030102 170812 Sca. coelestinus Scarus coelestinus Midnight parrotfish<br />

8839030101 170811 Sca. coeruleus Scarus coeruleus Blue parrotfish<br />

8839030104 170814 Sca. guacamaia Scarus guacamaia Rainbow parrotfish<br />

8839030103 614740 Sca. iseri Scarus iseri Striped parrotfish<br />

8839030100 170810 Scarus spp. Scarus spp.<br />

8839030105 170815 Sca. taeniopterus Scarus taeniopterus Princess parrotfish<br />

8839030106 170816 Sca. vetula Scarus vetula Queen parrotfish<br />

8835022101 167846 Sch. beta Schultzea beta<br />

8835440000 169237 Sciaenidae spp. Sciaenidae spp.<br />

8835440901 169290 Sci. ocellatus Sciaenops ocellatus Red drum<br />

8835440900 169289 Sciaenops spp. Sciaenops spp.<br />

8850030301 172412 Sco. colias Scomber colias Chub mackerel<br />

8850030300 172411 Scomber spp. Scomber spp.<br />

8850030501 172435 Sco. cavalla Scomberomorus cavalla King mackerel<br />

8850030502 172436 Sco. maculatus Scomberomorus maculatus Spanish mackerel<br />

8850030503 172437 Sco. regalis Scomberomorus regalis Cero<br />

8850030500 172434 Scomberomorus spp. Scomberomorus spp.<br />

8850030000 172398 Scombridae spp. Scombridae spp.<br />

8835250302 621149 Sco. oculatus Scombrops oculatus<br />

8857020000 172713 Scophthalmidae spp. Scophthalmidae spp.<br />

8857030401 172746 Sco. aquosus Scophthalmus aquosus Windowpane<br />

8857030400 172745 Scophthalmus spp. Scophthalmus spp.<br />

8826010601 166812 Sco. agassizii Scorpaena agassizii Longfin scorpionfish<br />

8826010602 166813 Sco. albifimbria Scorpaena albifimbria Coral scorpionfish<br />

8826010603 166814 Sco. bergii Scorpaena bergii Goosehead scorpionfish<br />

8826010604 166815 Sco. brachyptera Scorpaena brachyptera Shortfin scorpionfish<br />

8826010605 166816 Sco. brasiliensis Scorpaena brasiliensis Barbfish<br />

8826010606 166817 Sco. calcarata Scorpaena calcarata Smoothhead scorpionfish<br />

8826010607 166818 Sco. dispar Scorpaena dispar Hunchback scorpionfish<br />

8826010608 166819 Sco. elachys Scorpaena elachys Dwarf scorpionfish<br />

8826010609 166820 Sco. gr<strong>and</strong>icornis Scorpaena gr<strong>and</strong>icornis Plumed scorpionfish<br />

8826010610 166821 Sco. inermis Scorpaena inermis Mushroom scorpionfisf<br />

8826010611 166822 Sco. isthmensis Scorpaena isthmensis Smoothcheek scorpionfish<br />

8826010614 166825 Sco. plumieri Scorpaena plumieri Spotted scorpionfish<br />

8826010600 166811 Scorpaena spp. Scorpaena spp.<br />

8826010000 166704 Scorpaenidae spp. Scorpaenidae spp.<br />

8826011201 166862 Sco. caribbaeus Scorpaenodes caribbaeus Reef scorpionfish<br />

8826011200 166861 Scorpaenodes spp. Scorpaenodes spp.


NODCCODE TSN FIM species code Scientific Name Common Name<br />

8826011202 166863 Sco. tredecimspinosus<br />

Scorpaenodes<br />

tredecimspinosus<br />

Deepreef scorpionfish<br />

8708010000 159985 Scyliorhinidae spp. Scyliorhinidae spp.<br />

8708010304 160060 Scy. retifer Scyliorhinus retifer<br />

6182020000 97660 Scyllaridae spp. Scyllaridae spp.<br />

6182020203 97676 Scy. aequinoctialis Scyllarides aequinoctialis<br />

6182020202 97673 Scy. nodifer Scyllarides nodifer<br />

6182020200 97671 Scyllarides spp. Scyllarides spp.<br />

6182020104 97667 Scy. americanus Scyllarus americanus<br />

6182020102 97665 Scy. chacei Scyllarus chacei<br />

6182020101 97662 Scy. depressus Scyllarus depressus<br />

6182020105 97670 Scy. faxoni Scyllarus faxoni<br />

6182020100 97661 Scyllarus spp. Scyllarus spp.<br />

8835280601 168677 Sel. crumenophthalmus Selar crumenophthalmus Bigeye scad<br />

8835280600 168676 Selar spp. Selar spp.<br />

8835280705 168684 Sel. setapinnis Selene setapinnis Atlantic moonfish<br />

8835280700 168679 Selene spp. Selene spp.<br />

8835280701 168680 Sel. vomer Selene vomer Lookdown<br />

8776010800 163374 Semotilus spp. Semotilus spp.<br />

8776010802 163376 Sem. thoreauianus Semotilus thoreauianus Creek chub<br />

8835280801 168689 Ser. dumerili Seriola dumerili Greater amberjack<br />

8835280802 168690 Ser. fasciata Seriola fasciata Lesser amberjack<br />

8835280803 168691 Ser. rivoliana Seriola rivoliana Almaco jack<br />

8835280800 168688 Seriola spp. Seriola spp.<br />

8835280804 168693 Ser. zonata Seriola zonata B<strong>and</strong>ed rudderfish<br />

8835022201 167848 Ser. pumilio Serraniculus pumilio Pygmy sea bass<br />

8835022200 167847 Serraniculus spp. Serraniculus spp.<br />

8835020000 167674 Serranidae spp. Serranidae spp.<br />

8835022301 167850 Ser. annularis Serranus annularis Orangeback bass<br />

8835022302 167851 Ser. atrobranchus Serranus atrobranchus Blackear bass<br />

8835022303 167852 Ser. baldwini Serranus baldwini Lantern bass<br />

8835022304 167853 Ser. chionaraia Serranus chionaraia Snow bass<br />

8835022307 167856 Ser. notospilus Serranus notospilus<br />

8835022308 167857 Ser. phoebe Serranus phoebe Tattler<br />

8835022300 167849 Serranus spp. Serranus spp.<br />

8835022309 167858 Ser. subligarius Serranus subligarius Belted s<strong>and</strong>fish<br />

8835022310 167859 Ser. tabacarius Serranus tabacarius Tobaccofish<br />

8835022311 167860 Ser. tigrinus Serranus tigrinus Harlequin bass<br />

8835022312 167861 Ser. tortugarum Serranus tortugarum Chalk bass<br />

6177040101 96028 Sic. brevirostris Sicyonia brevirostris Rock Shrimp<br />

6177040102 96030 Sic. dorsalis Sicyonia dorsalis Lesser rock shrimp<br />

6177040104 96033 Sic. laevigata Sicyonia laevigata Hardback


NODCCODE TSN FIM species code Scientific Name Common Name<br />

6177040107 96036 Sic. parri Sicyonia parri<br />

6177040100 96027 Sicyonia spp. Sicyonia spp. Rock Shrimp<br />

6177040103 96031 Sic. typica Sicyonia typica Kinglet rock shrimp<br />

8777000000 163992 Siluriformes spp. Siluriformes spp. Catfish<br />

8835430000 169180 Sparidae spp. Sparidae spp.<br />

8839030401 170862 Spa. atomarium Sparisoma atomarium Green blotch parrotfish<br />

8839030402 170863 Spa. aurofrenatum Sparisoma aurofrenatum Redbanned parrotfish<br />

8839030403 170864 Spa. chrysopterum Sparisoma chrysopterum Redtail parrotfish<br />

8839030404 170865 Spa. radians Sparisoma radians Bucktooth parrotfish<br />

8839030405 170866 Spa. rubripinne Sparisoma rubripinne Redfin parrotfish<br />

8839030400 170861 Sparisoma spp. Sparisoma spp.<br />

8839030406 170867 Spa. viride Sparisoma viride Spotlight parrotfish<br />

8861010205 173294 Sph. dorsalis Sphoeroides dorsalis Marbled puffer<br />

8861010201 173290 Sph. maculatus Sphoeroides maculatus Northern puffer<br />

8861010208 173297 Sph. nephelus Sphoeroides nephelus Southern puffer<br />

8861010209 173298 Sph. pachygaster Sphoeroides pachygaster Blunthead puffer<br />

8861010210 173299 Sph. parvus Sphoeroides parvus Least puffer<br />

8861010211 173300 Sph. spengleri Sphoeroides spengleri B<strong>and</strong>tail puffer<br />

8861010200 173289 Sphoeroides spp. Sphoeroides spp.<br />

8861010202 173291 Sph. testudineus Sphoeroides testudineus Checkered puffer<br />

8837010104 170429 Sph. barracuda Sphyraena barracuda Great barracuda<br />

8837010102 170427 Sph. borealis Sphyraena borealis Northern sennet<br />

8837010103 170428 Sph. guachancho Sphyraena guachancho Guaguanche<br />

8837010105 170430 Sph. picudilla Sphyraena picudilla Southern sennet<br />

8837010100 170425 Sphyraena spp. Sphyraena spp.<br />

8837010000 170424 Sphyraenidae spp. Sphyraenidae spp.<br />

8708030103 160508 Sph. lewini Sphyrna lewini Scalloped hammerhead<br />

8708030104 160515 Sph. mokarran Sphyrna mokarran Great hammerhead<br />

8708030100 160499 Sphyrna spp. Sphyrna spp.<br />

8708030101 160502 Sph. tiburo Sphyrna tiburo Bonnethead<br />

8708030102 160505 Sph. zygaena Sphyrna zygaena Smooth hammerhead<br />

8708030000 160497 Sphyrnidae spp. Sphyrnidae spp.<br />

8710010000 160604 Squalidae spp. Squalidae spp.<br />

8710010201 160617 Squ. acanthias Squalus acanthias Spiny dogfish<br />

8710010203 160623 Squ. cubensis Squalus cubensis<br />

8710010205 160625 Squ. mitsukurii Squalus mitsukurii<br />

8710010200 160616 Squalus spp. Squalus spp.<br />

8711010102 160787 Squ. dumeril Squatina dumeril<br />

6191010101 99143 Squ. empusa Squilla empusa Rough mantis shrimp<br />

6191010100 99142 Squilla spp. Squilla spp. Mantis shrimp<br />

6191010000 99141 Squillidae spp. Squillidae spp.<br />

8842090602 171439 Sta. ocellata Starksia ocellata Checkered blenny


NODCCODE TSN FIM species code Scientific Name Common Name<br />

8842090600 171437 Starksia spp. Starksia spp.<br />

8842090603 171440 Sta. starcki Starksia starcki Key blenny<br />

8842090701 171446 Sta. hemphilli Stathmonotus hemphilli Blackbelly blenny<br />

8842090700 171445 Stathmonotus spp. Stathmonotus spp.<br />

8842090702 171447 Sta. stahli Stathmonotus stahli Eelgrass blenny<br />

8835621229 615332 Ste. adustus Stegastes adustus Dusky damselfish<br />

8835621202 615394 Ste. diencaeus Stegastes diencaeus Longfin damselfish<br />

8835621230 615345 Ste. leucostictus Stegastes leucostictus Beaugregory<br />

8835621234 615416 Ste. partitus Stegastes partitus Bicolor damselfish<br />

8835621232 615485 Ste. <strong>plan</strong>ifrons Stegastes <strong>plan</strong>ifrons Threespot damselfish<br />

8835621200 170150 Stegastes spp. Stegastes spp.<br />

8835621233 615412 Ste. variabilis Stegastes variabilis Cocoa damselfish<br />

8791040201 164802 Ste. argentea Steindachneria argentea<br />

8835441001 169292 Ste. lanceolatus Stellifer lanceolatus Star drum<br />

8835441000 169291 Stellifer spp. Stellifer spp.<br />

8835430102 169183 Ste. caprinus Stenotomus caprinus Longspine porgy<br />

8835430101 169182 Ste. chrysops Stenotomus chrysops Scup<br />

8835430100 169181 Stenotomus spp. Stenotomus spp.<br />

8860020703 173183 Ste. hispidus Stephanolepis hispidus Planehead filefish<br />

8860020704 173184 Ste. setifer Stephanolepis setifer Pygmy filefish<br />

9002020104 173761 Ste. minor Sternotherus minor Loggerhead musk turtle<br />

9002020101 173758 Ste. odoratus Sternotherus odoratus Stinkpot<br />

9002020100 173757 Sternotherus spp. Sternotherus spp. Musk turtles<br />

3737040301 51926 Sto. meleagris Stomolophus meleagris Cannonball jellyfish<br />

8851030000 172563 Stromateidae spp. Stromateidae spp.<br />

8803020201 165551 Str. marina Strongylura marina Atlantic needlefish<br />

8803020202 165553 Str. notata Strongylura notata Redfin needlefish<br />

8803020200 165550 Strongylura spp. Strongylura spp.<br />

8803020203 165554 Str. timucu Strongylura timucu Timucu<br />

8792012801 164988 Sty. latebricola Stygnobrotula latebricola Black brotula<br />

8792012800 164987 Stygnobrotula spp. Stygnobrotula spp.<br />

8816010000 166358 Stylephoridae spp. Stylephoridae spp.<br />

8816010101 166360 Sty. chordatus Stylephorus chordatus Tube-eye<br />

8816010100 166359 Stylephorus spp. Stylephorus spp.<br />

8857031301 172791 Sya. gunteri Syacium gunteri Shoal flounder<br />

8857031302 172792 Sya. micrurum Syacium micrurum Channel flounder<br />

8857031303 172793 Sya. papillosum Syacium papillosum Dusky flounder<br />

8857031300 172790 Syacium spp. Syacium spp.<br />

8858020113 173074 Sym. arawak Symphurus arawak Caribbean tonguefish<br />

8858020102 616615 Sym. civitatium Symphurus civitatium Offshore tonguefish<br />

8858020103 616664 Sym. diomedeanus Symphurus diomedeanus Spottedfin tonguefish<br />

8858020104 173065 Sym. marginatus Symphurus marginatus


NODCCODE TSN FIM species code Scientific Name Common Name<br />

8858020105 173066 Sym. minor Symphurus minor Largescale tonguefish<br />

8858020114 173075 Sym. nebulosus Symphurus nebulosus<br />

8858020106 173067 Sym. parvus Symphurus parvus Pygmy tonguefish<br />

8858020115 173076 Sym. pelicanus Symphurus pelicanus Longtail tonguefish<br />

8858020107 173068 Sym. piger Symphurus piger<br />

8858020101 173062 Sym. plagiusa Symphurus plagiusa Blackcheek tonguefish<br />

8858020100 173061 Symphurus spp. Symphurus spp.<br />

8858020121 616519 Sym. stigmosus Symphurus stigmosus<br />

8858020110 173071 Sym. urospilus Symphurus urospilus Spottail tonguefish<br />

8741170000 161595 Synaphobranchidae spp. Synaphobranchidae spp.<br />

8824010000 166692 Synbranchidae spp. Synbranchidae spp. Swamp eels<br />

8820020000 166443 Syngnathidae spp. Syngnathidae spp.<br />

8820020102 166446 Syn. floridae Syngnathus floridae Dusky pipefish<br />

8820020103 166451 Syn. fuscus Syngnathus fuscus Northern pipefish<br />

8820020104 166452 Syn. louisianae Syngnathus louisianae Chain pipefish<br />

8820020108 166454 Syn. pelagicus Syngnathus pelagicus Sargassum pipefish<br />

8820020113 166458 Syn. scovelli Syngnathus scovelli Gulf pipefish<br />

8820020100 166444 Syngnathus spp. Syngnathus spp.<br />

8820020109 166455 Syn. springeri Syngnathus springeri Bull pipefish<br />

8762020000 162374 Synodontidae spp. Synodontidae spp.<br />

8762020101 162376 Syn. foetens Synodus foetens Inshore lizardfish<br />

8762020102 162377 Syn. intermedius Synodus intermedius S<strong>and</strong> diver<br />

8762020104 162379 Syn. poeyi Synodus poeyi<br />

8762020105 162380 Syn. saurus Synodus saurus<br />

8762020100 162375 Synodus spp. Synodus spp.<br />

8762020106 162382 Syn. synodus Synodus synodus Red lizardfish<br />

8835710701 170311 Tar. longipinnis Taractichthys longipinnis Bigscale pomfret<br />

8835710700 170310 Taractichthys spp. Taractichthys spp.<br />

9002000000 173749 Testudines spp. Testudines spp. Turtles<br />

8851040102 172581 Tet. atlanticus Tetragonurus atlanticus<br />

8861010000 173283 Tetraodontidae spp. Tetraodontidae spp.<br />

8850060301 172499 Tet. albidus Tetrapturus albidus White marlin<br />

8850060305 172503 Tet. angustirostris Tetrapturus angustirostris Shortbill spearfish<br />

8850060304 172502 Tet. pfluegeri Tetrapturus pfluegeri Longbill spearfish<br />

8850060300 172498 Tetrapturus spp. Tetrapturus spp.<br />

8839011001 170568 Tha. bifasciatum Thalassoma bifasciatum<br />

6179161404 96921 Tho. dobkini Thor dobkini Squat grass shrimp<br />

6179161402 96919 Tho. manningi Thor manningi Manning grass shrimp<br />

8850030401 172419 Thu. alalunga Thunnus alalunga Albacore<br />

8850030403 172423 Thu. albacares Thunnus albacares Yellowfin tuna<br />

8850030404 172427 Thu. atlanticus Thunnus atlanticus Blackfin tuna<br />

8850030405 172428 Thu. obesus Thunnus obesus Bigeye tuna


NODCCODE TSN FIM species code Scientific Name Common Name<br />

8850030400 172418 Thunnus spp. Thunnus spp.<br />

8850030402 172421 Thu. thynnus Thunnus thynnus Bluefin tuna<br />

8835610402 169811 Til. mariae Tilapia mariae Spotted tilapia<br />

8835610400 169809 Tilapia spp. Tilapia spp.<br />

8713030000 160829 Torpedinidae spp. Torpedinidae spp.<br />

8713030103 160835 Tor. <strong>and</strong>ersoni Torpedo <strong>and</strong>ersoni<br />

8713030102 160834 Tor. nobiliana Torpedo nobiliana Atlantic torpedo<br />

8713030100 160830 Torpedo spp. Torpedo spp.<br />

6179161201 96912 Toz. carolinense Tozeuma carolinense Arrow shrimp<br />

6179161200 96911 Tozeuma spp. Tozeuma spp. Arrow shrimp<br />

900203090102 173823 Tra. scripta elegans Trachemys scripta elegans Red-eared turtle<br />

900203090101 173821 Tra. scripta scripta Trachemys scripta scripta Yellow bellied turtle<br />

9002030900 173818 Trachemys spp. Trachemys spp. Sliders<br />

8762020401 162420 Tra. myops Trachinocephalus myops Snakefish<br />

8762020400 162419 Trachinocephalus spp. Trachinocephalus spp.<br />

8835280901 168708 Tra. carolinus Trachinotus carolinus Florida pompano<br />

8835280902 168709 Tra. falcatus Trachinotus falcatus Permit<br />

8835280903 168710 Tra. goodei Trachinotus goodei Palometa<br />

8835280900 168707 Trachinotus spp. Trachinotus spp.<br />

8815020000 166339 Trachipteridae spp. Trachipteridae spp.<br />

8815020102 166342 Tra. arcticus Trachipterus arcticus Dealfish<br />

8815020100 166340 Trachipterus spp. Trachipterus spp.<br />

8835280102 168587 Tra. lathami Trachurus lathami Rough scad<br />

8835280100 168585 Trachurus spp. Trachurus spp.<br />

8826011101 166859 Tra. cristulata Trachyscorpia cristulata<br />

8708040000 160529 Triakidae spp. Triakidae spp.<br />

8850020000 172378 Trichiuridae spp. Trichiuridae spp.<br />

8850020201 172385 Tri. lepturus Trichiurus lepturus Atlantic cutlassfish<br />

8850020200 172384 Trichiurus spp. Trichiurus spp.<br />

8857031400 172794 Trichopsetta spp. Trichopsetta spp.<br />

8857031404 172798 Tri. ventralis Trichopsetta ventralis Sash flounder<br />

8852021003 553301 Tri. vittata Trichopsis vittata<br />

8858030102 172983 Tri. inscriptus Trinectes inscriptus Scrawled sole<br />

8858030101 172982 Tri. maculatus Trinectes maculatus Hogchoker<br />

8858030100 172981 Trinectes spp. Trinectes spp.<br />

9002060000 173845 Trionychidae spp. Trionychidae spp. Softshell turtles<br />

8803020301 165571 Tyl. acus Tylosurus acus Agujon<br />

8803020302 165577 Tyl. crocodilus Tylosurus crocodilus Houndfish<br />

8803020300 165570 Tylosurus spp. Tylosurus spp.<br />

8758020101 162148 Umb. pygmaea Umbra pygmaea<br />

8835441101 169298 Umb. coroides Umbrina coroides S<strong>and</strong> drum<br />

8835441100 169297 Umbrina spp. Umbrina spp.


NODCCODE TSN FIM species code Scientific Name Common Name<br />

9999000000 9999 Unidentified species Unidentified species<br />

8835450402 169441 Upe. parvus Upeneus parvus Dwarf goatfish<br />

8835450400 169439 Upeneus spp. Upeneus spp.<br />

8840140000 171053 Uranoscopidae spp. Uranoscopidae spp.<br />

8835281701 168746 Ura. secunda Uraspis secunda Cottonmouth jack<br />

8835281700 168745 Uraspis spp. Uraspis spp.<br />

8713050301 621035 Uro. jamaicensis Urobatis jamaicensis Yellow stingray<br />

8713050300 160964 Urobatis spp. Urobatis spp.<br />

8741120800 161382 Uroconger spp. Uroconger spp.<br />

8741120801 161383 Uro. syringinus Uroconger syringinus Threadtail conger<br />

8791031004 164733 Uro. chesteri Urophycis chesteri<br />

8791031005 164735 Uro. cirrata Urophycis cirrata<br />

8791031006 164736 Uro. earllii Urophycis earllii Carolina hake<br />

8791031007 164737 Uro. floridana Urophycis floridana Southern hake<br />

8791031002 164731 Uro. regia Urophycis regia Spotted hake<br />

8791031000 164729 Urophycis spp. Urophycis spp.<br />

8741050715 161262 Uro. macularius Uropterygius macularius Marbled moray<br />

8741050700 161246 Uropterygius spp. Uropterygius spp.<br />

8847040102 172157 Var. marilynae Varicus marilynae<br />

8860020801 173187 Xan. ringens Xanthichthys ringens Sargassum triggerfish<br />

8860020800 173186 Xanthichthys spp. Xanthichthys spp.<br />

8811040202 166302 Xen. dalgleishi Xenolepidichthys dalgleishi<br />

8741120902 161386 Xen. congroides Xenomystax congroides<br />

8850040101 172482 Xip. gladius Xiphias gladius Swordfish<br />

8850040100 172481 Xiphias spp. Xiphias spp. Swordfishes<br />

6177010701 95750 Xip. kroyeri Xiphopenaeus kroyeri Atlantic seabob<br />

6177010700 95749 Xiphopenaeus spp. Xiphopenaeus spp. Seabob<br />

8804080601 165920 Xip. hellerii Xiphophorus hellerii<br />

8804080602 165922 Xip. maculatus Xiphophorus maculatus<br />

8804080600 165919 Xiphophorus spp. Xiphophorus spp.<br />

8804080603 165925 Xip. variatus Xiphophorus variatus<br />

8839010801 614502 Xyr. martinicensis Xyrichtys martinicensis Rosy razorfish<br />

8839010802 614513 Xyr. novacula Xyrichtys novacula Pearly razorfish<br />

8839010804 614546 Xyr. splendens Xyrichtys splendens Green razorfish<br />

8839010800 613036 Xyrichtys spp. Xyrichtys spp.<br />

8787040401 164597 Zal. mcgintyi Zalieutes mcgintyi<br />

8811020101 166277 Zen. hololepis Zenion hololepis<br />

8811020100 166276 Zenion spp. Zenion spp.<br />

8811020000 166275 Zenionidae spp. Zenionidae spp.<br />

8811030202 166284 Zen. conchifera Zenopsis conchifera<br />

8815020301 166353 Zu. cristatus Zu cristatus Scalloped ribbonfish<br />

8815020300 166352 Zu spp. Zu spp.


Page 1<br />

Section 8.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

8.0 Ichthyo<strong>plan</strong>kton <strong>and</strong> Zoo<strong>plan</strong>kton<br />

The primary objective of this HBMP element is to develop comprehensive, long-term<br />

measurements of species composition (to the lowest practical identifiable level),<br />

abundance <strong>and</strong> distribution of ichthyo<strong>plan</strong>kton <strong>and</strong> zoo<strong>plan</strong>kton within each of the<br />

HBMP reporting units. This section describes activities being conducted by Dr. Ernst<br />

Peebles <strong>and</strong> his research staff at the University of South Florida.<br />

Patterns in the distribution of ichthyo<strong>plan</strong>kton (fish eggs, larvae, <strong>and</strong> small juveniles)<br />

reflect local fish spawning activity <strong>and</strong> also the ingression of larvae <strong>and</strong> juveniles into<br />

inshore nursery habitats from more distant spawning locations. Ingression takes the form<br />

of passive transport, active migration, or a combination of the two processes. Freshwater<br />

inflows influence spawning activity, larval transport mechanisms, <strong>and</strong> the distribution of<br />

larvae <strong>and</strong> juveniles within estuarine nursery habitats. Upon arrival in the estuarine<br />

nursery, some fish species prefer structured, stationary habitats (e.g., mangrove roots,<br />

seagrasses, oyster reefs, marsh edges, etc.) <strong>and</strong> exhibit relatively small distributional<br />

responses to inflow variation, whereas others, particularly those that occupy unstructured<br />

channel areas, shift position readily as inflows vary.<br />

In the process of monitoring the distribution <strong>and</strong> abundance responses of ichthyo<strong>plan</strong>kton<br />

to freshwater inflows, large numbers of invertebrate zoo<strong>plan</strong>kton are also collected. Diet<br />

studies have shown that many of these organisms serve as important prey for the young<br />

fishes that occupy estuarine nursery habitats. The distributions <strong>and</strong> numbers of many of<br />

these invertebrate prey groups may also change in response to freshwater inflow<br />

variation. Distributional shifts, in turn, may cause prey to be centered upstream or<br />

downstream of the fishes’ preferred habitat, particularly with species that are strongly<br />

associated with stationary habitats. Using regression models, the spatial overlap between<br />

predator <strong>and</strong> prey can be estimated as a function of either freshwater inflow or a<br />

surrogate parameter such as isohaline position. This process incorporates data from both<br />

the juvenile/adult fish monitoring task (conducted by FWRI) <strong>and</strong> the<br />

ichthyo<strong>plan</strong>kton/other zoo<strong>plan</strong>kton task. Over the past two decades, Dr. Peebles has<br />

gained extensive experience investigating these relationships within tidal rivers on<br />

Florida’s west coast.<br />

8.1 Project Management<br />

The overall general organization of the USF zoo<strong>plan</strong>kton monitoring element of the<br />

HBMP is outlined in Figure 8.1. There are three critical points for QA/QC feedback: at<br />

the Lab Manager position, at the Field Operations Manager position, <strong>and</strong> at the Database<br />

Manager position. The Lab Manager position is responsible for QA/QC at the Research<br />

Assistant <strong>and</strong> Lab Technician positions. The Field Operations Manager is responsible for<br />

QA/QC at the Marine Technician position. The specific responsibilities for each of the


Page 2<br />

Section 8.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

key positions are described below with regard to project-specific portions of the<br />

described st<strong>and</strong>ard operating procedures (SOP).<br />

8.2 Key Professional <strong>and</strong> Technical Staff<br />

8.2.1 Principal Investigator<br />

USF title:<br />

Current Personnel:<br />

8.2.2 Lab Manager<br />

USF title:<br />

Current Personnel:<br />

Research Associate (Staff) or Faculty<br />

Ernst Peebles, Ph.D. (Marine Science), 24 years of experience with<br />

ichthyo<strong>plan</strong>kton <strong>and</strong> fish diet surveys (19 years as PI, 3 years as<br />

Research Assistant, 2 years as Marine Technician). Specialist in<br />

identification of estuarine fish eggs, larvae, juveniles, <strong>and</strong> fish<br />

stomach contents.<br />

Research Associate (Staff ) or Faculty<br />

Ernst Peebles, Ph.D. (Marine Science), 17 years of experience with<br />

analysis of zoo<strong>plan</strong>kton samples. Specialist in identification of<br />

estuarine fish eggs, larvae, <strong>and</strong> juveniles. Supervisor for 10<br />

employees at USF.<br />

8.2.3 Research Assistant<br />

Scott Burghart, Ph.D. (Marine Science), 14 years of experience<br />

with collection <strong>and</strong> analysis of zoo<strong>plan</strong>kton <strong>and</strong> micronekton<br />

samples. Specialist in identification of copepods <strong>and</strong> decapod<br />

larvae.<br />

USF title:<br />

Current Personnel:<br />

Research Assistant (Staff or OPS Staff)<br />

Ralph Kitzmiller, B.S. (Zoology), 10 years of laboratory<br />

experience with zoo<strong>plan</strong>kton surveys.<br />

8.2.4 Lab Technician<br />

USF title:<br />

Current Personnel:<br />

Research Assistant (OPS Staff)<br />

James Locascio, B.S. (Marine Biology), Ph.D. student<br />

8.2.5 Field Operations Manager<br />

USF title:<br />

Current Personnel:<br />

Research Assistant (Staff or OPS Staff)<br />

Ralph Kitzmiller, B.S. (Biology), 10 years of field experience with<br />

zoo<strong>plan</strong>kton surveys, including use of water <strong>quality</strong> instruments.


Page 3<br />

Section 8.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

8.2.6 Marine Technician<br />

USF title :<br />

Current Personnel:<br />

Research Assistant (Staff)<br />

Scott Stahl, B.S. (Biology)<br />

Keith Fischer, B.S. (Biology)<br />

James Locascio, B.S. (Biology)<br />

Jenna Tortorelli, B.S. pending (Marine Biology)<br />

8.2.7 Database Manager<br />

USF title:<br />

Current Personnel:<br />

Research Associate (Staff or OPS Staff)<br />

Ernst Peebles, Ph.D. (Marine Science), 17 years of experience with<br />

environmental monitoring databases.<br />

8.3 Problem Definition/Background<br />

Quantitative sampling of ichthyo<strong>plan</strong>kton <strong>and</strong> zoo<strong>plan</strong>kton is being implemented as one<br />

of the elements of the HBMP. The overall objective of this element is to assess the role<br />

of freshwater inflows on estuarine ecosystems, particularly larval stage fishes <strong>and</strong><br />

associated prey, <strong>and</strong> to detect any ecological change in such ecosystems that result, either<br />

directly or indirectly, from freshwater regulation practices.<br />

8.4 Element Description<br />

Monthly collections with a <strong>plan</strong>kton net will be made in accordance with the Scope of<br />

Work (see Section 8.9) defined in contracts between PBS&J <strong>and</strong> the University of South<br />

Florida College of Marine Science (USF). The samples produced by these collections<br />

will be processed for taxonomic composition, as described in the Scope of Work, <strong>and</strong> the<br />

resulting data will be verified <strong>and</strong> submitted to PBS&J. The verified data will include<br />

taxonomic composition data <strong>and</strong> water <strong>quality</strong> data associated with individual collections.<br />

Application of the data to resolving the problem defined above will be the responsibility<br />

of PBS&J, <strong>and</strong> is therefore not included within this project description.<br />

8.5 Quality Objectives <strong>and</strong> Criteria for Measurement Data<br />

The following <strong>quality</strong> objectives <strong>and</strong> criteria have been established for this element <strong>and</strong><br />

include:<br />

1. <strong>Water</strong> <strong>quality</strong> measurements associated with <strong>plan</strong>kton collections - the objective is to<br />

achieve levels of accuracy that are of the same level as measurement resolutions for<br />

the instruments being used to make the measurements. This objective includes<br />

preventing inaccuracies due to improper calibration, maintenance, or deployment of<br />

the instruments. The criteria for this objective are the accuracy specifications<br />

provided by instruments’ manufacturer, which will be verified in the laboratory using


Page 4<br />

Section 8.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

reference st<strong>and</strong>ards traceable to N.I.S.T. st<strong>and</strong>ards. Selection of the instruments <strong>and</strong><br />

their associated, established levels of accuracy will be approved by PBS&J. Postcalibration<br />

errors >10% will result in data rejection.<br />

2. Taxonomic composition - the objective is to minimize errors in taxonomic<br />

identification <strong>and</strong> enumeration methods. The implicit criterion for acceptable<br />

taxonomic accuracy is attainment of 100% accuracy. Periodic independent review of<br />

taxonomic designations will be used to assess actual accuracy. Any exposed errors<br />

will be resolved by re-sorting or by reduction or correction of the expressed<br />

taxonomic resolution for the questioned taxa. Because the natural variability in the<br />

instantaneous abundances of most <strong>plan</strong>ktonic organisms spans several orders of<br />

magnitude, enumeration within <strong>plan</strong>kton samples frequently requires occasional,<br />

periodic, or routine application of sample splitting procedures for particular taxa. Reenumeration<br />

of split samples will be used to establish the degree of variability in this<br />

process, <strong>and</strong> maintenance of enumeration variability below 20% will be the criterion<br />

used for split-sample enumeration accuracy. This percentage is based on studies of<br />

this type of error for similar data that were collected by USF.<br />

8.6 Special Training<br />

Training will be performed through personal instruction <strong>and</strong> will be maintained through<br />

review of written SOPs, this QA/QC Plan <strong>and</strong> reference materials. The Primary<br />

Taxonomist position requires a considerable amount of specialized training that is largely<br />

obtained through first-h<strong>and</strong> experience. Development of written <strong>and</strong> photographic<br />

materials relevant to taxonomic training will continue at USF during this project,<br />

facilitating: 1) specialized taxonomic training, 2) attainment of QA/QC objectives such as<br />

the independent review of taxonomic designations, <strong>and</strong> 3) a record of taxonomic<br />

identities that can be maintained in the event of personnel replacement at the Primary<br />

Taxonomist position.<br />

8.7 Documents <strong>and</strong> Records<br />

Dated, current copies of this QA/QC Plan, project-specific SOPs, <strong>and</strong> a Data Dictionary<br />

will be maintained in the Estuarine Ecology Laboratory (EEL) at USF. All personnel<br />

will be instructed as to the availability of these documents as well as to the requirement<br />

for all personnel to maintain familiarity with the contents of these documents. Document<br />

version supercession will conform to date of publication. Current copies of the QA/QC<br />

Plan, relevant SOPs, <strong>and</strong> the Data Dictionary will be made available to PBS&J as<br />

required <strong>and</strong> upon delivery of data to PBS&J.<br />

Data will be reported as Microsoft Access electronic files. The reported data will<br />

include verified water <strong>quality</strong> data <strong>and</strong> field collection information, including calculated<br />

volumes filtered by the <strong>plan</strong>kton net <strong>and</strong> numbers of individual taxa identified from each<br />

sample. Original field logs, laboratory data logs, instrument calibration logs, <strong>and</strong> QC<br />

check logs will be maintained as hard copies in the EEL.


Page 5<br />

Section 8.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Progress reports will be submitted to PBS&J at intervals corresponding to invoicing<br />

periods, unless otherwise specified in the contract between USF <strong>and</strong> PBS&J. Difficulties<br />

encountered in such reports will be described in language that can be readily interpreted<br />

using terminology that is defined in the Scope of Work, project-specific SOPs, the Data<br />

Dictionary, or this QA/QC Plan.<br />

Records relevant to this project, including original logs, will be retained for a period of 5<br />

years after completion of the project.<br />

8.8 Data Generation And Acquisition<br />

8.8. 1 Sampling Process Design<br />

8.8.1.1 Minimum Sample Size<br />

A <strong>plan</strong>kton net will be used to collect zoo<strong>plan</strong>kton samples from each of four reporting<br />

units defined in the HBMP: the lower Hillsborough River, the TBC/Palm River, McKay<br />

<strong>Bay</strong>, <strong>and</strong> the lower Alafia River. During HBMP development, a minimum of 30 samples<br />

per quarter from each reporting unit was identified as the number of samples required to<br />

permit meaningful statistical inference on a quarterly basis. When possible, the minimum<br />

number of samples is to be distributed among the three months composing each quarter.<br />

In effect, this results in continuous monthly sampling that can be post-stratified into<br />

quarterly data sets having the desired minimum sample size of 30.<br />

8.8.1.2 Collection Dates <strong>and</strong> Times<br />

Many types of zoo<strong>plan</strong>kton <strong>and</strong> vertically migrating epibenthos have been shown to<br />

selectively move into the water column at certain times of day <strong>and</strong>/or tide stages. Effort<br />

was made to hold these known causes of variation in organism abundance constant<br />

during zoo<strong>plan</strong>kton sampling, thereby removing trends in apparent abundance that are<br />

related to these behaviors instead of the effects of freshwater inflows. Nighttime<br />

zoo<strong>plan</strong>kton catches are known to be generally larger than daytime catches. This<br />

phenomenon was confirmed during preliminary sampling of the lower Alafia River.<br />

Similarly, existing data indicate that, during flood tides, the estuarine water column tends<br />

to contain more organisms that are moving upstream or are trying to maintain position<br />

within the estuary, whereas ebb tidal waters tend to contain more organisms that are in<br />

the process of leaving the estuary. Night-time flood tides were therefore chosen as the<br />

st<strong>and</strong>ard conditions for zoo<strong>plan</strong>kton sampling. Dates of sampling, as a result, are<br />

<strong>control</strong>led by the occurrence of nighttime flood tides.<br />

8.8.1.3 Collection Locations<br />

The sampled locations within each reporting unit were selected using a one time<br />

stratified-r<strong>and</strong>om approach. Stratification was designed to encourage sampling from all


Page 6<br />

Section 8.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

parts of each reporting unit. R<strong>and</strong>omization was not repeated for each collection date due<br />

to logistic constraints on gear deployment. Collection locations are located using a GPS<br />

plotter.<br />

8.8.2 Sampling Methods<br />

The st<strong>and</strong>ard collection gear consists of a 500 µm Nitex mesh, 0.5 m mouth diameter,<br />

conical (3:1) <strong>plan</strong>kton net, equipped with a three-point nylon bridle, a 1-liter plastic codend<br />

jar, 20 kg of weight suspended from the mouth ring by a stainless steel carabiner, <strong>and</strong><br />

a mechanical flowmeter suspended at the center of the net’s mouth by a snap-on<br />

monofilament bridle. The net’s panel seams are calibrated in liters using permanent ink<br />

to indicate volumes in excess of the cod-end jar’s capacity.<br />

St<strong>and</strong>ard deployment consists of a three-step oblique tow that divides the net’s fishing<br />

time equally between bottom, mid-depth, <strong>and</strong> surface waters. Tow duration is 5 minutes<br />

<strong>and</strong> tow speed is 1.0-1.5 m/s. Net position in the water column is maintained using a<br />

gunnel-mounted boat trailer winch modified to provide a 1:1 gear ratio. The tow line is<br />

marked with heat-shrink tubing to indicate collection depth (in meters) <strong>and</strong> is also<br />

marked with a reference point that can be used to calibrate the speed of the tow vessel.<br />

Tow lines are calibrated for specific tow speeds. Flowmeter readings are recorded before<br />

<strong>and</strong> after deployment. Upon retrieval, the net is suspended vertically <strong>and</strong> the meshes are<br />

systematically <strong>and</strong> thoroughly rinsed from the outside using ambient water delivered via<br />

a high pressure, on-dem<strong>and</strong> washdown pump <strong>and</strong> hose equipped with an adjustable spray<br />

nozzle. The final volume within the cod-end jar is reduced by draining excess water<br />

through a small area of mesh in the throat of the net followed by a second rinse of the<br />

throat area using approximately 500-800 ml of water. The sample is preserved by adding<br />

50 ml of formaldehyde solution (37% V/V) to the 500-800 sample volume.<br />

Ctenophore (comb jelly) volume occasionally exceeds the cod-end jar’s capacity. In such<br />

cases, markings on the net panel seams are used to estimate the total volume of<br />

ctenophores. If the ctenophore volume is _3.0 liters, then a second 800 ml sample is taken from the<br />

“upper” part of the catch. The actual volume of the preserved ctenophore catch is<br />

determined at a later time in the laboratory, <strong>and</strong> a multiplier is then calculated to correct<br />

for the discarded portion of the sample.<br />

Leaves, sticks, mangrove seedlings, <strong>and</strong> other non-animal items that will not fit into the<br />

cod-end jar are removed from the lower part of the net <strong>and</strong> placed in a 4 mm mesh sieve<br />

for rinsing. The cod-end jar is re-attached to the net if necessary <strong>and</strong> the contents of the<br />

sieve are thoroughly rinsed, with the rinse water falling into the interior of the <strong>plan</strong>kton<br />

net. The rinsed items are then discarded <strong>and</strong> the net is processed in the st<strong>and</strong>ard method<br />

described above.


Page 7<br />

Section 8.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

The samples are preserved in the plastic cod-end jars in which they were originally<br />

collected. This reduces both processing time in the field <strong>and</strong> the potential for<br />

contaminating samples with organisms from other locations. Two methods are used to<br />

mark the cod-end jars with unique identifiers: a computer-generated adhesive label is<br />

placed on the cod-end jar lid, <strong>and</strong> the same unique identifier is copied onto the side of the<br />

jar using permanent ink. All jars are pre-labeled in the laboratory to avoid moisturerelated<br />

problems with label or ink adhesion. The unique identifiers consist of alternating<br />

alphabetic <strong>and</strong> numeric characters. This alternation provides a place-holding<br />

characteristic in the identifier that would not be provided by an entirely alphabetic or<br />

entirely numeric identifier system. The place-holding feature greatly facilitates<br />

consistent sample recognition in the field <strong>and</strong> laboratory.<br />

<strong>Water</strong> <strong>quality</strong> profiles are taken in association with each <strong>plan</strong>kton net deployment.<br />

Temperature, conductivity, pH <strong>and</strong> dissolved oxygen are measured electronically at onemeter<br />

intervals between surface <strong>and</strong> bottom. The electronic meters are calibrated before<br />

<strong>and</strong> after use according to the manufacturers’ specifications.<br />

8.8.3 Sample H<strong>and</strong>ling <strong>and</strong> Custody<br />

The preserved samples are stored in ice chests as they are collected <strong>and</strong> are returned<br />

directly to the laboratory immediately after sampling, where they are stored in a fume<br />

hood. After a minimum of four days in formalin, the samples are transferred to a 250 µm<br />

mesh sieve (one half the mesh size opening of the collection gear), rinsed with tap water,<br />

<strong>and</strong> then returned to their original cod-end jar using a rinse of 50% 2-propanol in deionized<br />

water. At this point the samples are transferred from the fume hood to a shelf<br />

near the staging area, which is a dedicated bench top where samples are prepared for<br />

analysis.<br />

8.8.4 Analytical Methods<br />

At a sink near the staging area, the samples are divided into two size fractions using tap<br />

water <strong>and</strong> two stacked sieves having 4 mm <strong>and</strong> 250 µm mesh openings. This process<br />

removes larger items to prevent them from obscuring smaller items during subsequent<br />

analysis. Sample analysis consists of determining taxonomic composition, which is<br />

typically expressed as the number of each taxon per unit volume of ambient water<br />

filtered. The >4 mm fraction can usually be analyzed without the aid of a microscope.<br />

After sieving, the contents of the 4 mm sieve are returned to the original cod-end jar <strong>and</strong><br />

the contents of the 250 µm sieve are transferred to a numbered beaker (Fig. 8.2). The<br />

unique sample identifier (the sample number), the number of the beaker containing the<br />

250 µm - 4 mm fraction, <strong>and</strong> the taxonomic composition of the >4 mm fraction are<br />

recorded on a pre-formatted data sheet (Form LFD, see Table 8.1). Confusion of sample<br />

identity after fractionation is prevented by a redundant system of sample arrangement<br />

(Fig. 8.2) <strong>and</strong> record keeping on Form LFD.


Page 8<br />

Section 8.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

A zoom 7-90X stereomicroscope equipped with a brightfield/darkfield illumination base<br />

<strong>and</strong> an accessory fiber optic light source is used by the Primary Taxonomist to analyze<br />

the 250 µm - 4 mm fraction. Successive aliquots are poured from the numbered beaker<br />

into a 90 mm square petri dish delineated into 6 x 6, 13.5 mm square grids. Each aliquot<br />

is methodically examined by the Primary Taxonomist, who uses the grid delineations to<br />

define the processing path. The petri dish is marked with arrows to indicate processing<br />

direction within the dish. After each aliquot has been processed, the contents of the dish<br />

are rinsed into a 1000 ml graduated cylinder using 50% 2-propanol in de-ionized water.<br />

Taxonomic data for each sample are entered into a Lotus 1-2-3 spreadsheet directly<br />

from the microscope workstation. As each sample is processed, a list of encountered taxa<br />

is constructed within a specialized template area of the spreadsheet. The list is compiled<br />

as a subset of a master list of taxonomic descriptions <strong>and</strong> associated numeric codes.<br />

Macros allow the Primary Taxonomist to select individual taxonomic descriptions/codes<br />

from the master list for copying to the template area. The template area is divided into<br />

two regions: 1) the direct enumeration region; <strong>and</strong> 2) the measured-aliquot split sample<br />

region (see Quality Control - Sample Analysis). The Primary Taxonomist determines<br />

which taxa are abundant enough within a given sample to warrant enumeration after<br />

splitting, <strong>and</strong> uses a macro to construct a list of such taxa within region 2. All other taxa<br />

in the sample are added to a list in region 1 as they are encountered. The Primary<br />

Taxonomist processes the sample by methodically examining successive aliquots,<br />

directly enumerating the taxa in region 1 <strong>and</strong> ignoring the taxa in region 2. Each aliquot<br />

is rinsed into a 1000 ml graduated cylinder after examination <strong>and</strong> enumeration are<br />

complete. After all aliquots have been processed, the cylinder is covered <strong>and</strong> inverted six<br />

times <strong>and</strong> a 30-50 ml aliquot is quickly poured off. Beginning <strong>and</strong> ending volumes<br />

within the graduated cylinder are entered into specific cells within region 2, <strong>and</strong> a<br />

multiplier value is automatically calculated. Region 2 of the template is printed,<br />

complete with the multiplier value. The printout of region 2 is transferred to the<br />

Secondary Taxonomist along with the measured aliquot <strong>and</strong> the remainder of the sample,<br />

which has been rinsed from the graduated cylinder back into its original, labeled cod-end<br />

jar. The Secondary Taxonomist enumerates the listed taxa in the measured aliquot using<br />

a second zoom stereomicroscope. At the computer, the Primary Taxonomist examines<br />

the region 1 <strong>and</strong> region 2 lists for errors <strong>and</strong> then executes a macro that transposes the<br />

lists to the database region of the spreadsheet. Counts from the direct enumeration <strong>and</strong><br />

Form LFD are included within this data transposition. After the Secondary Taxonomist<br />

has processed the measured aliquot, the measured aliquot is returned to its original codend<br />

jar <strong>and</strong> numbers estimated for region 2 taxa are entered into the database. All<br />

template areas are automatically cleared of data after use.<br />

8.8.5 Quality Control<br />

8.8.5.1 Sample Collection<br />

The collection vessel’s position is tracked by a GPS plotter, providing the QA Officer<br />

with a record of collection locations visited by the vessel during individual collection


Page 9<br />

Section 8.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

efforts. The recorded cruise track is inspected routinely. Flowmeter readings record<br />

inconsistencies in tow speed or tow duration. Filtered volumes are calculated after each<br />

collection effort, <strong>and</strong> any discrepancies in volumes filtered are investigated. In most<br />

cases, discrepancies are caused by reduction of the net’s filtration efficiency due to<br />

clogging by ctenophores, hydromedusae, diatoms, or larvacean houses. Any<br />

unexplainable discrepancy or undue variation in filtered volume is brought to the<br />

attention of the Field Operations Manager, who is responsible for future corrective action.<br />

8.8.5.2 Sample Analysis<br />

Very little has been published regarding the repeatability, accuracy <strong>and</strong> efficiency of<br />

different <strong>plan</strong>kton enumeration methods. The characteristics of different methods were<br />

examined as part of the process of establishing st<strong>and</strong>ard analytical protocols. Three<br />

enumeration methods were evaluated using copepods <strong>and</strong> cumaceans as test subjects: 1)<br />

direct enumeration of the entire sample; 2) measured-aliquot subsampling of a repeatedly<br />

inverted sample; <strong>and</strong> 3) subsampling with a Motoda box. Five trials with each method<br />

produced the estimates in Table 8.2.<br />

The Motoda box is the most commonly used means of splitting <strong>plan</strong>kton samples, but this<br />

method was found to have the poorest repeatability <strong>and</strong> accuracy. Before conducting the<br />

above experiment, the ability of the Motoda box to evenly split tap water samples<br />

(without organisms) was confirmed in five trials, in which the mean split was 49.7 vs.<br />

50.3% for the two sides of the box. When organisms were included, the accuracy of each<br />

split with the Motoda box depended on the homogeneity of the organism distribution<br />

prior to each splitting step. If the distribution was not homogeneous, then the associated<br />

error was quickly compounded with each additional split. This effect produced<br />

consistently high estimates in the case of the cumacean Cyclaspis. The circulation<br />

characteristics within the Motoda box do not guarantee a homogenous distribution of all<br />

taxa in the sample. The measured aliquot method appears to be superior to the Motoda<br />

box method because 1) the sample is actively homogenized through repeated inversion<br />

immediately prior to subsampling; <strong>and</strong> 2) the subsampling is completed in a single step,<br />

eliminating the error propagation problem. The measured aliquot method was selected as<br />

the st<strong>and</strong>ard method for enumerating abundant <strong>plan</strong>ktonic organisms (n>100,<br />

approximately). Direct enumeration is used for less abundant taxa, which typically<br />

constitute more than two-thirds of the taxa encountered in an individual <strong>plan</strong>kton sample.<br />

Quality <strong>control</strong> for sample analysis is achieved by routine re-analysis of 5% of the<br />

samples. The fit (r²) of linear regressions of the log-transformed counts (the counts have<br />

a lognormal distribution) is used as a measure of repeatability, with agreement below<br />

95% being considered unacceptable.<br />

Taxonomic <strong>quality</strong> <strong>control</strong> is achieved through maintenance of a photographic reference<br />

collection <strong>and</strong> through collaboration with other researchers. The latter effort includes<br />

both visits to the EEL by recognized taxonomic experts <strong>and</strong> shipment of specimens to<br />

other laboratories for independent identification. In some cases, reference specimens are


Page 10<br />

Section 8.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

supplied by collaborating laboratories in order to confirm organism identities. In the<br />

event that a taxonomic error is discovered, one of two corrective actions will be taken: 1)<br />

all relevant specimens will be reexamined <strong>and</strong> reclassified; or 2) taxonomic designations<br />

will be revised, either through simple substitution or through a reduction of taxonomic<br />

resolution (e.g., from species level to genus level).<br />

8.8.5.3 Instrument/Equipment Inspection <strong>and</strong> Maintenance<br />

Between deployments, the <strong>plan</strong>kton nets <strong>and</strong> sieves are soaked in a detergent solution<br />

containing protease enzyme (Terg-A-Zyme) to remove deposits from the meshes. The<br />

net is inspected for mesh damage during each wash down (i.e., after each deployment).<br />

In the event of damage or loss of the primary collection gear, which consists of the net,<br />

flowmeter, weights, calibrated tow line, bridles <strong>and</strong> cod-end-jar, reserve collection gear<br />

of identical specifications is available for immediate substitution. The reserve collection<br />

gear is maintained in the same condition as the primary collection gear. During the latter<br />

part of each tow, the collection gear is visible from the boat <strong>and</strong> is routinely inspected to<br />

confirm correct deployment.<br />

8.8.5.4 Instrument/Equipment Calibration<br />

All instruments requiring calibration are uniquely identifiable to allow tracing of<br />

calibration records to individual instruments. These instruments consist of 1) water<br />

<strong>quality</strong> instruments; <strong>and</strong> 2) flowmeters designed to be deployed in the mouths of <strong>plan</strong>kton<br />

nets.<br />

<strong>Water</strong> <strong>quality</strong> instruments are used to measure water temperature, specific conductance,<br />

pH <strong>and</strong> dissolved oxygen <strong>and</strong> are calibrated before <strong>and</strong> after deployment according to the<br />

manufacturer’s specifications.<br />

• A YSI 556 Multiprobe is the primary instrument used to make water <strong>quality</strong><br />

measurements.<br />

• Reserve, or back-up, water <strong>quality</strong> instruments are other YSI 556s.<br />

The buffer solutions used to calibrate the pH sensor at 7.00 <strong>and</strong> 10.00 are traceable to<br />

N.I.S.T. 187C:186IF:186IIF, <strong>and</strong> are certified to be accurate to within ∀0.02 pH units at<br />

25°C. A conductivity st<strong>and</strong>ard reference solution (8,759 ppm KCl) of 15,000 µS<br />

conductivity at 25°C, traceable to N.I.S.T. Aqueous Electrolytic Conductivity St<strong>and</strong>ard<br />

Reference Solution 3193, is used to st<strong>and</strong>ardize KCl reference solutions produced within<br />

the EEL. All reference st<strong>and</strong>ards are stored in tightly sealed containers <strong>and</strong> are not used<br />

after their expiration date. St<strong>and</strong>ard solutions that have been used for calibration are<br />

retained in separate, labeled containers for one-time re-use as sensor rinse. Used<br />

calibration solutions are never returned to their original containers. Project-specific<br />

calibration forms are used to record calibration data <strong>and</strong> are kept in the EEL.


Page 11<br />

Section 8.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Individual mechanical flowmeters are numbered with permanent ink. New flowmeters<br />

are calibrated before initial deployment. The primary <strong>and</strong> reserve flowmeters are<br />

calibrated approximately every four months. If average error exceeds +/−5%, a new rotor<br />

constant is calculated <strong>and</strong> substituted for the manufacturer’s constant during filtered<br />

volume calculation. Error >10%, as calculated using the manufacturer’s rotor constant,<br />

results in discontinued use of the flowmeter until it can be repaired or replaced.<br />

Completed flowmeter calibration forms are kept in the EEL.<br />

8.8.5.5 Inspection/Acceptance of Supplies <strong>and</strong> Consumables<br />

After expiration of sample archival periods, plastic cod-end jars <strong>and</strong> lids may be cleaned<br />

in protease solution <strong>and</strong> re-used. The criteria for re-use of individual jars include 1)<br />

absence of all foreign material or deposits inside the jar <strong>and</strong> lid <strong>and</strong> 2) successful removal<br />

of any existing sample identifiers that would obscure the identity of the new sample.<br />

Surplus 50% 2-propanol solution left over after sample processing may be re-used after<br />

filtering through a 63 µm or finer sieve. Chemicals used to prepare st<strong>and</strong>ard solutions are<br />

A.C.S. certified <strong>and</strong> are accepted from the supplier only if the container’s seal is<br />

unbroken at the time of delivery. As described above, st<strong>and</strong>ard solutions prepared within<br />

the EEL are tested against N.I.S.T. traceable st<strong>and</strong>ards, further guaranteeing the precision<br />

of prepared st<strong>and</strong>ards.<br />

8.8.5.6 Data Management<br />

St<strong>and</strong>ardized field data forms are completed in the field by the Field Operations Manager.<br />

Upon returning from the field, the Field Operations Manager reviews each form to<br />

confirm that all necessary data have been recorded. The forms are then placed in a threering<br />

binder in the EEL.<br />

The database manager enters the field data into a Lotus 1-2-3 spreadsheet that contains<br />

specialized macros <strong>and</strong> data entry templates. The data entry template for the water<br />

<strong>quality</strong> data simulates the appearance of the field data form. This facilitates comparison<br />

of data on the field data sheet with newly entered data. Once the data entry has been<br />

verified, the database manager executes a macro that transposes each column of the<br />

template grid to the next available row in the database region of the spreadsheet,<br />

automatically aligning the data within the proper columns.<br />

Six-digit flowmeter readings from the field data forms are also entered using a<br />

specialized template. The template contains a formula that calculates the filtered volume.<br />

The database manager examines each calculated volume before it is copied to the<br />

database region of the spreadsheet. This step flags errors in entry of the flowmeter<br />

readings.<br />

Taxonomic data are entered into the database directly from the microscope workstation<br />

(see Analytical Methods). All data are stored on a hard drive <strong>and</strong> are backed up onto<br />

either a Zip disk, flash drive or CD at the end of each sample processing session. The


Page 12<br />

Section 8.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

database will be provided to PBS&J on a quarterly basis, providing further database<br />

back-up.<br />

8.9 Scope of Work<br />

The Subcontract for Professional Services <strong>and</strong> Scope of Work specifically address field<br />

sampling, sample processing, data management, <strong>quality</strong> <strong>control</strong>, <strong>and</strong> project management<br />

associated with the implementation of the Zoo<strong>plan</strong>kton <strong>and</strong> Fish Monitoring Components<br />

of the final HBMP design, as described in the HBMP design document (PBS&J, 2000).<br />

The Subconsultant - University of South Florida, College of Marine Science, Dr. Ernst<br />

Peebles (with the Florida Marine Resources Institute serving as a Subcontractor) shall<br />

perform the following professional services under this Agreement.<br />

8.9.1 QA/QC Plan Preparation<br />

The Subconsultant shall prepare a project-specific QA/QC Plan describing all <strong>quality</strong><br />

<strong>control</strong> <strong>and</strong> <strong>quality</strong> <strong>assurance</strong> procedures to be conducted throughout the implementation<br />

of the Zoo<strong>plan</strong>kton <strong>and</strong> Fish Monitoring Components of the HBMP. The QA/QC Plan<br />

will address the overall project approach <strong>and</strong> rationale, <strong>and</strong> specify <strong>quality</strong> <strong>control</strong> <strong>and</strong><br />

<strong>quality</strong> <strong>assurance</strong> protocols <strong>and</strong> procedures, appropriate to each monitoring component.<br />

The format for the QA/QC Plan shall generally be as described in Chapter 8 of the final<br />

HBMP design document. Detailed specifications for the adult <strong>and</strong> juvenile fishes HBMP<br />

monitoring element are provided in Section 7 of this QA/QC Plan.<br />

8.9.2 Zoo<strong>plan</strong>kton Sample Collection <strong>and</strong> Processing<br />

This task will entail the collection of zoo<strong>plan</strong>kton samples, <strong>and</strong> the laboratory processing<br />

<strong>and</strong> analysis of those samples for species composition <strong>and</strong> abundance of ichthyo<strong>plan</strong>kton<br />

<strong>and</strong> invertebrate zoo<strong>plan</strong>kton, including vertically migrating epibenthos. Sample<br />

collection, processing <strong>and</strong> analysis will be conducted throughout the 5-year study period.<br />

The total number of samples, as well as the spatial <strong>and</strong> temporal stratification of the<br />

sample events in each reporting unit is defined in Table 8.3. PBS&J shall be responsible<br />

for providing to the Subconsultant a sampling schedule indicating when <strong>and</strong> where to<br />

sample in each of the reporting units.<br />

The Subconsultant shall conduct field sample collection <strong>and</strong> laboratory processing of<br />

biological samples following the protocols employed by the University of South Florida<br />

College of Marine Science, as conducted for SWFWMD on similar studies.<br />

Ichthyo<strong>plan</strong>kton <strong>and</strong> other zoo<strong>plan</strong>kton will be sampled using a 0.5 meter mouth<br />

diameter, 500 µm mesh, conical (3:1) <strong>plan</strong>kton net. All other specifications <strong>and</strong><br />

protocols for the Zoo<strong>plan</strong>kton Monitoring Component shall be as generally described in<br />

the HBMP design document, <strong>and</strong> as detailed in the project specific QA/QC Plan.


Page 13<br />

Section 8.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

8.9.3 Data Management<br />

The Subconsultant shall be responsible for the proper management of all data generated<br />

from the Zoo<strong>plan</strong>kton <strong>and</strong> Fish Monitoring Components of the HBMP, <strong>and</strong> shall develop<br />

<strong>and</strong> implement a rigorous data management process throughout the entire study period.<br />

Data management includes data collection, h<strong>and</strong>ling, evaluation, verification, validation,<br />

<strong>and</strong> reporting activities.<br />

The Subconsultant shall use Microsoft Access, a fully relational database that is readily<br />

available to many users, to develop the HBMP database. Export of data from Access to<br />

other software applications such as Excel (or other spreadsheets), SAS, <strong>and</strong> HTML for<br />

Internet applications will be facilitated by this approach. The use of a relational database<br />

will ensure that many different data types can be effectively <strong>and</strong> correctly linked using<br />

common variable names <strong>and</strong> values.<br />

A Data Dictionary shall be developed <strong>and</strong> annually updated by the Subconsultant to<br />

ensure that all database users are kept fully abreast of the database contents <strong>and</strong> their<br />

applications. The primary data collected in either the field or in the laboratory will be<br />

copied, either in hard copy or digital format, <strong>and</strong> provided to the designated Data<br />

Manager as identified in the project specific QA/QC Plan. Hard copy data, after a visual<br />

form check, will be entered into the computer database in an appropriate manner to<br />

assure data <strong>quality</strong> goals are satisfied. The resulting data set will be stored <strong>and</strong> provided<br />

with a unique file name identifier, which contains all of the information necessary for<br />

linking data spatially <strong>and</strong> temporally. This data set will be the raw data set. Only the<br />

project Data Manager <strong>and</strong> their designees will have read/write abilities for this <strong>and</strong> any<br />

future data set resulting from this data collection effort. All other database users will be<br />

provided with read-only access to the database. The original versions of all raw data sets<br />

will be archived.<br />

Following storage of the raw data set, error <strong>and</strong> range checking procedures for data<br />

verification purposes will be performed. The resulting data set will again be provided a<br />

unique file name identifier <strong>and</strong> will be stored as the verified data set for a given HBMP<br />

program element, year, <strong>and</strong> month. Cross comparison of verified data sets from the<br />

different HBMP elements will allow further validation of the data sets. Final review of<br />

the data in the verified data sets will also include any other cross comparisons, for<br />

example, between field <strong>and</strong> laboratory data, or between taxonomic experts. The resulting<br />

validated data set will be stored, given a unique file name, <strong>and</strong> provided to PBS&J for<br />

inclusion in the master HBMP database.<br />

8.9.4 Project Management<br />

The Subconsultant shall provide the necessary project management activities necessary to<br />

ensure the successful completion of all tasks described in this Scope of Work in a timely<br />

<strong>and</strong> efficient manner. The Subconsultant will collect the financial <strong>and</strong> management data


Page 14<br />

Section 8.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

necessary for evaluating work progress compared to the requirements of this agreement<br />

for the duration of the contract.<br />

8.9.5 Meetings<br />

The Subconsultant shall attend <strong>and</strong> participate in the annual meeting of the HBMP Focus<br />

Group at the end of each full calendar year covered under this Agreement. Specifically,<br />

the Subconsultant shall prepare <strong>and</strong> present to the Focus Group an annual summary of the<br />

data collected under the Zoo<strong>plan</strong>kton <strong>and</strong> Fish Monitoring Components of the HBMP.<br />

The purpose of the Focus Group meetings will be to review the HBMP data generated<br />

during the current year, to evaluate the effectiveness of the HBMP design, <strong>and</strong> to make<br />

recommendations with regard to modifications to the sampling design or to the data<br />

analysis procedures.<br />

The Subconsultant may be asked to attend <strong>and</strong> participate in other project related<br />

meetings, on an as needed basis throughout the duration of this Agreement. The<br />

Subconsultant shall be reimbursed on a time <strong>and</strong> materials basis for attendance <strong>and</strong><br />

participation in meetings other than the annual Focus Group meetings.


Page 15<br />

Section 8.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Table 8.1 Form LFD<br />

Sample Number __________Form ____ of ____ Beaker No. ________<br />

Taxon Stage Number<br />

Sample Number __________Form ____ of ____<br />

Beaker No. ________<br />

Taxon Stage Number


Page 16<br />

Section 8.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Table 8.2 Estimates of Organism Number using Three Methods, Presented as the<br />

Mean <strong>and</strong> St<strong>and</strong>ard Deviation of Five Independent Trials<br />

Direct Enumeration<br />

Measured Aliquot<br />

Motoda Box<br />

Taxa<br />

(All Specimens<br />

Counted)<br />

(12-17% Volumetric<br />

Subsample<br />

Counted)<br />

(12.5% Volumetric<br />

Subsample<br />

Counted)<br />

Acartia tonsa<br />

(copepod)<br />

Error! = 1,334<br />

s.d. = 157<br />

x = 1,379<br />

s.d. = 179<br />

x = 1,290<br />

s.d. = 214<br />

Cyclaspis sp.<br />

(cumacean)<br />

x = 15,077<br />

s.d. = 1,908<br />

x = 15,387<br />

s.d. = 1,655<br />

x = 21,747<br />

s.d. = 3,307


Page 17<br />

Section 8.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Table 8.3 Summary of Ichthyo<strong>plan</strong>kton <strong>and</strong> Zoo<strong>plan</strong>kton HBMP Sampling Elements<br />

Sampling Program Summary For The lower Hillsborough River.<br />

Element # Strata Jan Feb March April May June July August September October November December Total<br />

Ichthyo<strong>plan</strong>kton<br />

<strong>and</strong> other<br />

Zoo<strong>plan</strong>kton<br />

6 strata 2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

144<br />

hauls<br />

Sampling program summary for the lower Alafia River<br />

Ichthyo<strong>plan</strong>kton<br />

<strong>and</strong> other<br />

Zoo<strong>plan</strong>kton<br />

6 strata 2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

144<br />

hauls<br />

Sampling program summary for McKay <strong>Bay</strong><br />

Ichthyo<strong>plan</strong>kton<br />

<strong>and</strong> other<br />

Zoo<strong>plan</strong>kton<br />

6 cells<br />

shallow<br />

2 strata -<br />

channel<br />

1 haul/<br />

cell<br />

2 hauls/<br />

stratum<br />

1 haul/<br />

cell<br />

2 hauls/<br />

stratum<br />

1 haul/<br />

cell<br />

2 hauls/<br />

stratum<br />

1 haul/<br />

cell<br />

2 hauls/<br />

stratum<br />

1 haul/<br />

cell<br />

2 hauls/<br />

stratum<br />

1 hauls/<br />

cell<br />

2 hauls/<br />

stratum<br />

1 haul/<br />

cell<br />

2 hauls/<br />

stratum<br />

1 haul/<br />

cell<br />

2 hauls/<br />

stratum<br />

1 haul/<br />

cell<br />

2 hauls/<br />

stratum<br />

1 haul/<br />

cell<br />

2 hauls/<br />

stratum<br />

1 haul/<br />

cell<br />

2 hauls/<br />

stratum<br />

1 haul/<br />

cell<br />

2 hauls/<br />

stratum<br />

72<br />

hauls<br />

48<br />

hauls<br />

Sampling program summary for the lower Palm River.<br />

Ichthyo<strong>plan</strong>kton<br />

<strong>and</strong> other<br />

Zoo<strong>plan</strong>kton<br />

3 strata -<br />

channel<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

2 hauls/<br />

stratum<br />

72<br />

hauls


Page 18<br />

Section 8.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT


Page 19<br />

Section 8.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Figure 8.2. Pairing of beakers <strong>and</strong> labeled cod-end jars in staging area. Small fraction<br />

identity is also maintained by Form LFD.


Appendix 8-A<br />

Master Ichthyo<strong>plan</strong>kton <strong>and</strong> Zoo<strong>plan</strong>kton HBMP Species List<br />

Updated for data through January, 2007


Master Ichthyo<strong>plan</strong>kton <strong>and</strong> Zoo<strong>plan</strong>kton HBMP Species List<br />

Taxcode PhyloOrder Description Common Name<br />

12100 516 Lepisosteus sp. eggs gar<br />

12101 517 Lepisosteus sp. preflexion larvae gar<br />

12102 518 Lepisosteus sp. flexion larvae gar<br />

12103 519 Lepisosteus sp. postflexion larvae gar<br />

12104 520 Lepisosteus sp. juveniles gar<br />

12110 510 Lepisosteus platyrhincus eggs Florida gar<br />

12111 511<br />

Lepisosteus platyrhincus preflexion<br />

larvae<br />

Florida gar<br />

12112 512<br />

Lepisosteus platyrhincus flexion<br />

larvae<br />

Florida gar<br />

12113 513<br />

Lepisosteus platyrhincus postflexion<br />

larvae<br />

Florida gar<br />

12114 514 Lepisosteus platyrhincus juveniles Florida gar<br />

12115 515 Lepisosteus platyrhincus adults Florida gar<br />

12120 504 Lepisosteus osseus eggs longnose gar<br />

12121 505 Lepisosteus osseus preflexion larvae longnose gar<br />

12122 506 Lepisosteus osseus flexion larvae longnose gar<br />

12123 507 Lepisosteus osseus postflexion larvae longnose gar<br />

12124 508 Lepisosteus osseus juveniles longnose gar<br />

12125 509 Lepisosteus osseus adults longnose gar<br />

14110 524 Elops saurus eggs ladyfish<br />

14111 525 Elops saurus preflexion larvae ladyfish<br />

14112 526 Elops saurus flexion larvae ladyfish<br />

14113 527 Elops saurus postflexion larvae ladyfish<br />

14113.5 528 Elops saurus metamorphs ladyfish<br />

14114 529 Elops saurus juveniles ladyfish<br />

14115 530 Elops saurus adults ladyfish<br />

15113 521 Albula vulpes postflexion larvae bonefish<br />

15114 522 Albula vulpes juveniles bonefish<br />

15115 523 Albula vulpes adults bonefish<br />

16114 531 Anguilla rostrata juveniles American eel<br />

18210 532 Myrophis punctatus eggs speckled worm eel<br />

18211 533 Myrophis punctatus preflexion larvae speckled worm eel<br />

18212 534 Myrophis punctatus flexion larvae speckled worm eel<br />

18213 535 Myrophis punctatus postflexion larvae speckled worm eel<br />

18213.5 536 Myrophic punctatus metamorphs speckled worm eel<br />

18214 537 Myrophis punctatus juveniles speckled worm eel<br />

18215 538 Myrophis punctatus adults speckled worm eel<br />

19000 563 clupeid eggs herrings<br />

19001 564 clupeid preflexion larvae herrings<br />

19002 565 clupeid flexion larvae herrings<br />

19003 566 clupeid postflexion larvae herrings<br />

19100 579 Brevoortia spp. eggs menhaden


Master Ichthyo<strong>plan</strong>kton <strong>and</strong> Zoo<strong>plan</strong>kton HBMP Species List<br />

Taxcode PhyloOrder Description Common Name<br />

19101 580 Brevoortia spp. preflexion larvae menhaden<br />

19102 581 Brevoortia spp. flexion larvae menhaden<br />

19103 582 Brevoortia spp. postflexion larvae menhaden<br />

19103.5 583 Brevoortia spp. metamorphs menhaden<br />

19104 584 Brevoortia spp. juveniles menhaden<br />

19105 585 Brevoortia spp. adults menhaden<br />

19110 567 Brevoortia patronus eggs gulf menhaden<br />

19111 568 Brevoortia patronus preflexion larvae gulf menhaden<br />

19112 569 Brevoortia patronus flexion larvae gulf menhaden<br />

19113 570 Brevoortia patronus postflexion larvae gulf menhaden<br />

19114 571 Brevoortia patronus juveniles gulf menhaden<br />

19115 572 Brevoortia patronus adults gulf menhaden<br />

19120 573 Brevoortia smithi eggs gulf menhaden<br />

19121 574 Brevoortia smithi preflexion larvae yellowfin menhaden<br />

19122 575 Brevoortia smithi flexion larvae yellowfin menhaden<br />

19123 576 Brevoortia smithi postflexion larvae yellowfin menhaden<br />

19124 577 Brevoortia smithi juveniles yellowfin menhaden<br />

19125 578 Brevoortia smithi adults yellowfin menhaden<br />

19200 592 Dorosoma spp. eggs shads<br />

19201 593 Dorosoma spp. preflexion larvae shads<br />

19202 594 Dorosoma spp. flexion larvae shads<br />

19203 595 Dorosoma spp. postflexion larvae shads<br />

19203.5 596 Dorosoma spp. metamorphs shads<br />

19213.5 589 Dorosoma petenense metamorphs threadfin shad<br />

19214 590 Dorosoma petenense juveniles threadfin shad<br />

19215 591 Dorosoma petenense adults threadfin shad<br />

19223.5 586 Dorosoma cepedianum metamorphs gizzard shad<br />

19224 587 Dorosoma cepedianum juveniles gizzard shad<br />

19225 588 Dorosoma cepedianum adults gizzard shad<br />

19310 597 Harengula jaguana eggs scaled sardine<br />

19311 598 Harengula jaguana preflexion larvae scaled sardine<br />

19312 599 Harengula jaguana flexion larvae scaled sardine<br />

19313 600 Harengula jaguana postflexion larvae scaled sardine<br />

19313.5 601 Harengula jaguana metamorphs scaled sardine<br />

19314 602 Harengula jaguana juveniles scaled sardine<br />

19315 603 Harengula jaguana adults scaled sardine<br />

19410 604 Opisthonema oglinum eggs Atlantic thread herring<br />

19411 605<br />

Opisthonema oglinum preflexion<br />

larvae<br />

Atlantic thread herring<br />

19412 606 Opisthonema oglinum flexion larvae Atlantic thread herring<br />

19413 607<br />

Opisthonema oglinum postflexion<br />

larvae<br />

Atlantic thread herring<br />

19413.5 608 Opisthonema oglinum metamorphs Atlantic thread herring<br />

19414 609 Opisthonema oglinum juveniles Atlantic thread herring


Master Ichthyo<strong>plan</strong>kton <strong>and</strong> Zoo<strong>plan</strong>kton HBMP Species List<br />

Taxcode PhyloOrder Description Common Name<br />

19415 610 Opisthonema oglinum adults Atlantic thread herring<br />

19510 611 Sardinella aurita eggs Spanish sardine<br />

19511 612 Sardinella aurita preflexion larvae Spanish sardine<br />

19512 613 Sardinella aurita flexion larvae Spanish sardine<br />

19513 614 Sardinella aurita postflexion larvae Spanish sardine<br />

19513.5 615 Sardinella aurita metamorphs Spanish sardine<br />

19514 616 Sardinella aurita juveniles Spanish sardine<br />

19515 617 Sardinella aurita adults Spanish sardine<br />

20100 558 Anchoa spp. eggs anchovies<br />

20101 559 Anchoa spp. preflexion larvae anchovies<br />

20102 560 Anchoa spp. flexion larvae anchovies<br />

20103 561 Anchoa spp. postflexion larvae anchovies<br />

20104 562 Anchoa spp. juveniles anchovies<br />

20105 557 Anchoa spp. adults anchovies<br />

20110 545 Anchoa hepsetus eggs striped anchovy<br />

20111 546 Anchoa hepsetus preflexion larvae striped anchovy<br />

20112 547 Anchoa hepsetus flexion larvae striped anchovy<br />

20113 548 Anchoa hepsetus postflexion larvae striped anchovy<br />

20114 549 Anchoa hepsetus juveniles striped anchovy<br />

20115 550 Anchoa hepsetus adults striped anchovy<br />

20120 551 Anchoa mitchilli eggs bay anchovy<br />

20121 552 Anchoa mitchilli preflexion larvae bay anchovy<br />

20122 553 Anchoa mitchilli flexion larvae bay anchovy<br />

20123 554 Anchoa mitchilli postflexion larvae bay anchovy<br />

20124 555 Anchoa mitchilli juveniles bay anchovy<br />

20125 556 Anchoa mitchilli adults bay anchovy<br />

20130 539 Anchoa cubana eggs Cuban anchovy<br />

20131 540 Anchoa cubana preflexion larvae Cuban anchovy<br />

20132 541 Anchoa cubana flexion larvae Cuban anchovy<br />

20133 542 Anchoa cubana postflexion larvae Cuban anchovy<br />

20134 543 Anchoa cubana juveniles Cuban anchovy<br />

20135 544 Anchoa cubana adults Cuban anchovy<br />

21110 721 Synodus foetens eggs inshore lizardfish<br />

21111 722 Synodus foetens preflexion larvae inshore lizardfish<br />

21112 723 Synodus foetens flexion larvae inshore lizardfish<br />

21113 724 Synodus foetens postflexion larvae inshore lizardfish<br />

21114 725 Synodus foetens juveniles inshore lizardfish<br />

21115 726 Synodus foetens adults inshore lizardfish<br />

22110 684 Ariopsis felis eggs hardhead catfish<br />

22111 685 Ariopsis felis preflexion larvae hardhead catfish<br />

22112 686 Ariopsis felis flexion larvae hardhead catfish<br />

22113 687 Ariopsis felis postflexion larvae hardhead catfish<br />

22114 688 Ariopsis felis juveniles hardhead catfish


Master Ichthyo<strong>plan</strong>kton <strong>and</strong> Zoo<strong>plan</strong>kton HBMP Species List<br />

Taxcode PhyloOrder Description Common Name<br />

22115 689 Ariopsis felis adults hardhead catfish<br />

22210 696 Bagre marinus eggs gafftopsail sea catfish<br />

22211 697 Bagre marinus preflexion larvae gafftopsail sea catfish<br />

22212 698 Bagre marinus flexion larvae gafftopsail sea catfish<br />

22213 699 Bagre marinus postflexion larvae gafftopsail sea catfish<br />

22214 700 Bagre marinus juveniles gafftopsail sea catfish<br />

22215 701 Bagre marinus adults gafftopsail sea catfish<br />

23110 733 Opsanus beta eggs gulf toadfish<br />

23111 734 Opsanus beta preflexion larvae gulf toadfish<br />

23112 735 Opsanus beta flexion larvae gulf toadfish<br />

23113 736 Opsanus beta postflexion larvae gulf toadfish<br />

23114 737 Opsanus beta juveniles gulf toadfish<br />

23115 738 Opsanus beta adults gulf toadfish<br />

24110 1177 Gobiesox strumosus eggs skilletfish<br />

24111 1178 Gobiesox strumosus preflexion larvae skilletfish<br />

24112 1179 Gobiesox strumosus flexion larvae skilletfish<br />

24113 1180 Gobiesox strumosus postflexion larvae skilletfish<br />

24114 1181 Gobiesox strumosus juveniles skilletfish<br />

24115 1182 Gobiesox strumosus adults skilletfish<br />

27110 727 Urophycis floridana eggs southern hake<br />

27111 728 Urophycis floridana preflexion larvae southern hake<br />

27112 729 Urophycis floridana flexion larvae southern hake<br />

27113 730 Urophycis floridana postflexion larvae southern hake<br />

27114 731 Urophycis floridana juveniles southern hake<br />

27115 732 Urophycis floridana adults southern hake<br />

29210 808 Hyporhamphus unifasciatus eggs silverstripe halfbeak<br />

29211 809<br />

Hyporhamphus unifasciatus preflexion<br />

larvae<br />

silverstripe halfbeak<br />

29212 810<br />

Hyporhamphus unifasciatus flexion<br />

larvae<br />

silverstripe halfbeak<br />

29213 811<br />

Hyporhamphus unifasciatus<br />

postflexion larvae<br />

silverstripe halfbeak<br />

29214 812 Hyporhamphus unifasciatus juveniles silverstripe halfbeak<br />

29215 813 Hyporhamphus unifasciatus adults silverstripe halfbeak<br />

30100 790 Strongylura spp. eggs needlefishes<br />

30101 791 Strongylura spp. preflexion larvae needlefishes<br />

30102 792 Strongylura spp. flexion larvae needlefishes<br />

30103 793 Strongylura spp. postflexion larvae needlefishes<br />

30104 794 Strongylura spp. juveniles needlefishes<br />

30105 795 Strongylura spp. adults needlefishes<br />

30110 778 Strongylura marina eggs Atlantic needlefish<br />

30111 779 Strongylura marina preflexion larvae Atlantic needlefish<br />

30112 780 Strongylura marina flexion larvae Atlantic needlefish<br />

30113 781 Strongylura marina postflexion larvae Atlantic needlefish


Master Ichthyo<strong>plan</strong>kton <strong>and</strong> Zoo<strong>plan</strong>kton HBMP Species List<br />

Taxcode PhyloOrder Description Common Name<br />

30114 782 Strongylura marina juveniles Atlantic needlefish<br />

30115 783 Strongylura marina adults Atlantic needlefish<br />

30120 784 Strongylura notata eggs redfin needlefish<br />

30121 785 Strongylura notata preflexion larvae redfin needlefish<br />

30122 786 Strongylura notata flexion larvae redfin needlefish<br />

30123 787 Strongylura notata postflexion larvae redfin needlefish<br />

30124 788 Strongylura notata juveniles redfin needlefish<br />

30125 789 Strongylura notata adults redfin needlefish<br />

30200 796 Tylosurus acus eggs agujon<br />

30201 797 Tylosurus acus preflexion larvae agujon<br />

30202 798 Tylosurus acus flexion larvae agujon<br />

30203 799 Tylosurus acus postflexion larvae agujon<br />

30204 800 Tylosurus acus juveniles agujon<br />

30205 801 Tylosurus acus adults agujon<br />

31210 858 Cyprinodon variegatus eggs sheepshead minnow<br />

31211 859<br />

Cyprinodon variegatus preflexion<br />

larvae<br />

sheepshead minnow<br />

31212 860 Cyprinodon variegatus flexion larvae sheepshead minnow<br />

31213 861<br />

Cyprinodon variegatus postflexion<br />

larvae<br />

sheepshead minnow<br />

31214 862 Cyprinodon variegatus juveniles sheepshead minnow<br />

31215 863 Cyprinodon variegatus adults sheepshead minnow<br />

31400 832 Fundulus spp. eggs killifishes<br />

31401 833 Fundulus spp. preflexion larvae killifishes<br />

31402 834 Fundulus spp. flexion larvae killifishes<br />

31403 835 Fundulus spp. postflexion larvae killifishes<br />

31404 836 Fundulus spp. juveniles killifishes<br />

31405 837 Fundulus spp. adults killifishes<br />

31410 826 Fundulus seminolis eggs Seminole killifish<br />

31411 827 Fundulus seminolis preflexion larvae Seminole killifish<br />

31412 828 Fundulus seminolis flexion larvae Seminole killifish<br />

31413 829 Fundulus seminolis postflexion larvae Seminole killifish<br />

31414 830 Fundulus seminolis juveniles Seminole killifish<br />

31415 831 Fundulus seminolis adults Seminole killifish<br />

31420 814 Fundulus gr<strong>and</strong>is eggs gulf killifish<br />

31421 815 Fundulus gr<strong>and</strong>is preflexion larvae gulf killifish<br />

31422 816 Fundulus gr<strong>and</strong>is flexion larvae gulf killifish<br />

31423 817 Fundulus gr<strong>and</strong>is postflexion larvae gulf killifish<br />

31424 818 Fundulus gr<strong>and</strong>is juveniles gulf killifish<br />

31425 819 Fundulus gr<strong>and</strong>is adults gulf killifish<br />

31430 820 Fundulus majalis eggs striped killifish<br />

31431 821 Fundulus majalis preflexion larvae striped killifish<br />

31432 822 Fundulus majalis flexion larvae striped killifish<br />

31433 823 Fundulus majalis postflexion larvae striped killifish


Master Ichthyo<strong>plan</strong>kton <strong>and</strong> Zoo<strong>plan</strong>kton HBMP Species List<br />

Taxcode PhyloOrder Description Common Name<br />

31434 824 Fundulus majalis juveniles striped killifish<br />

31435 825 Fundulus majalis adults striped killifish<br />

31510 844 Lucania parva eggs rainwater killifish<br />

31511 845 Lucania parva preflexion larvae rainwater killifish<br />

31512 846 Lucania parva flexion larvae rainwater killifish<br />

31513 847 Lucania parva postflexion larvae rainwater killifish<br />

31514 848 Lucania parva juveniles rainwater killifish<br />

31515 849 Lucania parva adults rainwater killifish<br />

31520 838 Lucania goodei eggs bluefin killifish<br />

31521 839 Lucania goodei preflexion larvae bluefin killifish<br />

31522 840 Lucania goodei flexion larvae bluefin killifish<br />

31523 841 Lucania goodei postflexion larvae bluefin killifish<br />

31524 842 Lucania goodei juveniles bluefin killifish<br />

31525 843 Lucania goodei adults bluefin killifish<br />

31610 802 Rivulus marmoratus eggs mangrove rivulus<br />

31611 803 Rivulus marmoratus preflexion larvae mangrove rivulus<br />

31612 804 Rivulus marmoratus flexion larvae mangrove rivulus<br />

31613 805 Rivulus marmoratus postflexion larvae mangrove rivulus<br />

31614 806 Rivulus marmoratus juveniles mangrove rivulus<br />

31615 807 Rivulus marmoratus adults mangrove rivulus<br />

31710 864 Jordanella floridae eggs flagfish<br />

31711 865 Jordanella floridae preflexion larvae flagfish<br />

31712 866 Jordanella floridae flexion larvae flagfish<br />

31713 867 Jordanella floridae postflexion larvae flagfish<br />

31714 868 Jordanella floridae juveniles flagfish<br />

31715 869 Jordanella floridae adults flagfish<br />

32114 852 Gambusia holbrooki juveniles eastern mosquitofish<br />

32115 853 Gambusia holbrooki adults eastern mosquitofish<br />

32214 854 Heter<strong>and</strong>ria formosa juveniles least killifish<br />

32215 855 Heter<strong>and</strong>ria formosa adults least killifish<br />

32314 856 Poecilia latipinna juveniles sailfin molly<br />

32315 857 Poecilia latipinna adults sailfin molly<br />

32414 850 Belonesox belizanus juveniles pike killifish<br />

32415 851 Belonesox belizanus adults pike killifish<br />

33000 1360 fish eggs, atherinomorph silversides<br />

33100 772 Menidia spp. eggs silversides<br />

33101 773 Menidia spp. preflexion larvae silversides<br />

33102 774 Menidia spp. flexion larvae silversides<br />

33103 775 Menidia spp. postflexion larvae silversides<br />

33104 776 Menidia spp. juveniles silversides<br />

33105 777 Menidia spp. adults silversides<br />

33110 769 Menidia beryllina eggs inl<strong>and</strong> silverside<br />

33114 770 Menidia beryllina juveniles inl<strong>and</strong> silverside


Master Ichthyo<strong>plan</strong>kton <strong>and</strong> Zoo<strong>plan</strong>kton HBMP Species List<br />

Taxcode PhyloOrder Description Common Name<br />

33115 771 Menidia beryllina adults inl<strong>and</strong> silverside<br />

33210 763 Membras martinica eggs rough silverside<br />

33211 764 Membras martinica preflexion larvae rough silverside<br />

33212 765 Membras martinica flexion larvae rough silverside<br />

33213 766 Membras martinica postflexion larvae rough silverside<br />

33214 767 Membras martinica juveniles rough silverside<br />

33215 768 Membras martinica adults rough silverside<br />

33310 757 Labidesthes sicculus eggs brook silverside<br />

33311 758 Labidesthes sicculus preflexion larvae brook silverside<br />

33312 759 Labidesthes sicculus flexion larvae brook silverside<br />

33313 760<br />

Labidesthes sicculus postflexion<br />

larvae<br />

brook silverside<br />

33314 761 Labidesthes sicculus juveniles brook silverside<br />

33315 762 Labidesthes sicculus adults brook silverside<br />

34114 870 Hippocampus erectus juveniles lined seahorse<br />

34115 871 Hippocampus erectus adults lined seahorse<br />

34124 872 Hippocampus zosterae juveniles dwarf seahorse<br />

34125 873 Hippocampus zosterae adults dwarf seahorse<br />

34214 874 Syngnathus floridae juveniles dusky pipefish<br />

34215 875 Syngnathus floridae adults dusky pipefish<br />

34224 876 Syngnathus louisianae juveniles chain pipefish<br />

34225 877 Syngnathus louisianae adults chain pipefish<br />

34234 878 Syngnathus scovelli juveniles gulf pipefish<br />

34235 879 Syngnathus scovelli adults gulf pipefish<br />

35110 900 Centropomus undecimalis eggs snook<br />

35111 901<br />

Centropomus undecimalis preflexion<br />

larvae<br />

snook<br />

35112 902<br />

Centropomus undecimalis flexion<br />

larvae<br />

snook<br />

35113 903<br />

Centropomus undecimalis postflexion<br />

larvae<br />

snook<br />

35114 904 Centropomus undecimalis juveniles snook<br />

35115 905 Centropomus undecimalis adults snook<br />

37230 906 Epinephelus itajara eggs goliath grouper<br />

37231 907 Epinephelus itajara preflexion larvae goliath grouper<br />

37232 908 Epinephelus itajara flexion larvae goliath grouper<br />

37233 909 Epinephelus itajara postflexion larvae goliath grouper<br />

37234 910 Epinephelus itajara juveniles goliath grouper<br />

37235 911 Epinephelus itajara adults goliath grouper<br />

43210 981 Chloroscombrus chrysurus eggs Atlantic bumper<br />

43211 982<br />

Chloroscombrus chrysurus preflexion<br />

larvae<br />

Atlantic bumper<br />

43212 983<br />

Chloroscombrus chrysurus flexion<br />

larvae<br />

Atlantic bumper


Master Ichthyo<strong>plan</strong>kton <strong>and</strong> Zoo<strong>plan</strong>kton HBMP Species List<br />

Taxcode PhyloOrder Description Common Name<br />

43213 984<br />

Chloroscombrus chrysurus postflexion<br />

larvae<br />

Atlantic bumper<br />

43214 985 Chloroscombrus chrysurus juveniles Atlantic bumper<br />

43215 986 Chloroscombrus chrysurus adults Atlantic bumper<br />

43410 987 Hemicaranx amblyrhynchus eggs bluntnose jack<br />

43411 988<br />

Hemicaranx amblyrhynchus<br />

preflexion larvae<br />

bluntnose jack<br />

43412 989<br />

Hemicaranx amblyrhynchus flexion<br />

larvae<br />

bluntnose jack<br />

43413 990<br />

Hemicaranx amblyrhynchus<br />

postflexion larvae<br />

bluntnose jack<br />

43414 991 Hemicaranx amblyrhynchus juveniles bluntnose jack<br />

43415 992 Hemicaranx amblyrhynchus adults bluntnose jack<br />

43510 993 Oligoplites saurus eggs leatherjack<br />

43511 994 Oligoplites saurus preflexion larvae leatherjack<br />

43512 995 Oligoplites saurus flexion larvae leatherjack<br />

43513 996 Oligoplites saurus postflexion larvae leatherjack<br />

43514 997 Oligoplites saurus juveniles leatherjack<br />

43515 998 Oligoplites saurus adults leatherjack<br />

43810 999 Uraspis secunda eggs cottonmouth jack<br />

43811 1000 Uraspis secunda preflexion larvae cottonmouth jack<br />

43812 1001 Uraspis secunda flexion larvae cottonmouth jack<br />

43813 1002 Uraspis secunda postflexion larvae cottonmouth jack<br />

43814 1003 Uraspis secunda juveniles cottonmouth jack<br />

43815 1004 Uraspis secunda adults cottonmouth jack<br />

44120 1005 Lutjanus griseus eggs gray snapper<br />

44121 1006 Lutjanus griseus preflexion larvae gray snapper<br />

44122 1007 Lutjanus griseus flexion larvae gray snapper<br />

44123 1008 Lutjanus griseus postflexion larvae gray snapper<br />

44124 1009 Lutjanus griseus juveniles gray snapper<br />

44125 1010 Lutjanus griseus adults gray snapper<br />

46000 1029 gerreid eggs mojjaras<br />

46001 1030 gerreid preflexion larvae mojjaras<br />

46002 1031 gerreid flexion larvae mojjaras<br />

46003 1032 gerreid postflexion larvae mojjaras<br />

46004 1033 gerreid juveniles mojjaras<br />

46100 1034 Eugerres plumieri eggs striped mojarra<br />

46101 1035 Eugerres plumieri preflexion larvae striped mojarra<br />

46102 1036 Eugerres plumieri flexion larvae striped mojarra<br />

46103 1037 Eugerres plumieri postflexion larvae striped mojarra<br />

46104 1038 Eugerres plumieri juveniles striped mojarra<br />

46105 1039 Eugerres plumieri adults striped mojarra<br />

46200 1023 Eucinostomus spp. eggs mojarras<br />

46201 1024 Eucinostomus spp. preflexion larvae mojarras


Master Ichthyo<strong>plan</strong>kton <strong>and</strong> Zoo<strong>plan</strong>kton HBMP Species List<br />

Taxcode PhyloOrder Description Common Name<br />

46202 1025 Eucinostomus spp. flexion larvae mojarras<br />

46203 1026 Eucinostomus spp. postflexion larvae mojarras<br />

46204 1027 Eucinostomus spp. juveniles mojarras<br />

46205 1028 Eucinostomus spp. adults mojarras<br />

46210 1011 Eucinostomus gula eggs silver jenny<br />

46211 1012 Eucinostomus gula preflexion larvae silver jenny<br />

46212 1013 Eucinostomus gula flexion larvae silver jenny<br />

46213 1014 Eucinostomus gula postflexion larvae silver jenny<br />

46214 1015 Eucinostomus gula juveniles silver jenny<br />

46215 1016 Eucinostomus gula adults silver jenny<br />

46220 1017 Eucinostomus harengulus eggs tidewater mojarra<br />

46221 1018<br />

Eucinostomus harengulus preflexion<br />

larvae<br />

tidewater mojarra<br />

46222 1019<br />

Eucinostomus harengulus flexion<br />

larvae<br />

tidewater mojarra<br />

46223 1020<br />

Eucinostomus harengulus postflexion<br />

larvae<br />

tidewater mojarra<br />

46224 1021 Eucinostomus harengulus juveniles tidewater mojarra<br />

46225 1022 Eucinostomus harengulus adults tidewater mojarra<br />

47110 1040 Haemulon plumieri eggs white grunt<br />

47111 1041 Haemulon plumieri preflexion larvae white grunt<br />

47112 1042 Haemulon plumieri flexion larvae white grunt<br />

47113 1043 Haemulon plumieri postflexion larvae white grunt<br />

47114 1044 Haemulon plumieri juveniles white grunt<br />

47115 1045 Haemulon plumieri adults white grunt<br />

47210 1054 Orthopristis chrysoptera eggs pigfish<br />

47211 1055<br />

Orthopristis chrysoptera preflexion<br />

larvae<br />

pigfish<br />

47212 1056 Orthopristis chrysoptera flexion larvae pigfish<br />

47213 1057<br />

Orthopristis chrysoptera postflexion<br />

larvae<br />

pigfish<br />

47214 1058 Orthopristis chrysoptera juveniles pigfish<br />

47215 1059 Orthopristis chrysoptera adults pigfish<br />

48110 1046 Archosargus probatocephalus eggs sheepshead<br />

48111 1047<br />

Archosargus probatocephalus<br />

preflexion larvae<br />

sheepshead<br />

48112 1048<br />

Archosargus probatocephalus flexion<br />

larvae<br />

sheepshead<br />

48113 1049<br />

Archosargus probatocephalus<br />

postflexion larvae<br />

sheepshead<br />

48114 1050<br />

Archosargus probatocephalus<br />

juveniles<br />

sheepshead<br />

48115 1051 Archosargus probatocephalus adults sheepshead<br />

48410 1066 Lagodon rhomboides eggs pinfish


Master Ichthyo<strong>plan</strong>kton <strong>and</strong> Zoo<strong>plan</strong>kton HBMP Species List<br />

Taxcode PhyloOrder Description Common Name<br />

48411 1067 Lagodon rhomboides preflexion larvae pinfish<br />

48412 1068 Lagodon rhomboides flexion larvae pinfish<br />

48413 1069<br />

Lagodon rhomboides postflexion<br />

larvae<br />

pinfish<br />

48414 1070 Lagodon rhomboides juveniles pinfish<br />

48415 1071 Lagodon rhomboides adults pinfish<br />

49000 1072 sciaenid eggs drums <strong>and</strong> seatrout<br />

49110 1060 Bairdiella chrysoura eggs silver perch<br />

49111 1061 Bairdiella chrysoura preflexion larvae silver perch<br />

49112 1062 Bairdiella chrysoura flexion larvae silver perch<br />

49113 1063 Bairdiella chrysoura postflexion larvae silver perch<br />

49114 1064 Bairdiella chrysoura juveniles silver perch<br />

49115 1065 Bairdiella chrysoura adults silver perch<br />

49210 1073 Cynoscion arenarius eggs s<strong>and</strong> seatrout<br />

49211 1074 Cynoscion arenarius preflexion larvae s<strong>and</strong> seatrout<br />

49212 1075 Cynoscion arenarius flexion larvae s<strong>and</strong> seatrout<br />

49213 1076<br />

Cynoscion arenarius postflexion<br />

larvae<br />

s<strong>and</strong> seatrout<br />

49214 1077 Cynoscion arenarius juveniles s<strong>and</strong> seatrout<br />

49215 1078 Cynoscion arenarius adults s<strong>and</strong> seatrout<br />

49220 1079 Cynoscion nebulosus eggs spotted seatrout<br />

49221 1080 Cynoscion nebulosus preflexion larvae spotted seatrout<br />

49222 1081 Cynoscion nebulosus flexion larvae spotted seatrout<br />

49223 1082<br />

Cynoscion nebulosus postflexion<br />

larvae<br />

spotted seatrout<br />

49224 1083 Cynoscion nebulosus juveniles spotted seatrout<br />

49225 1084 Cynoscion nebulosus adults spotted seatrout<br />

49410 1085 Leiostomus xanthurus eggs spot<br />

49411 1086<br />

Leiostomus xanthurus preflexion<br />

larvae<br />

spot<br />

49412 1087 Leiostomus xanthurus flexion larvae spot<br />

49413 1088<br />

Leiostomus xanthurus postflexion<br />

larvae<br />

spot<br />

49414 1089 Leiostomus xanthurus juveniles spot<br />

49415 1090 Leiostomus xanthurus adults spot<br />

49500 1097 Menticirrhus spp. eggs kingfishes<br />

49501 1098 Menticirrhus spp. preflexion larvae kingfishes<br />

49502 1099 Menticirrhus spp. flexion larvae kingfishes<br />

49503 1100 Menticirrhus spp. postflexion larvae kingfishes<br />

49504 1101 Menticirrhus spp. juveniles kingfishes<br />

49505 1102 Menticirrhus spp. adults kingfishes<br />

49520 1091 Menticirrhus americanus eggs southern kingfish<br />

49521 1092<br />

Menticirrhus americanus preflexion<br />

larvae<br />

southern kingfish


Master Ichthyo<strong>plan</strong>kton <strong>and</strong> Zoo<strong>plan</strong>kton HBMP Species List<br />

Taxcode PhyloOrder Description Common Name<br />

49522 1093<br />

Menticirrhus americanus flexion<br />

larvae<br />

southern kingfish<br />

49523 1094<br />

Menticirrhus americanus postflexion<br />

larvae<br />

southern kingfish<br />

49524 1095 Menticirrhus americanus juveniles southern kingfish<br />

49525 1096 Menticirrhus americanus adults southern kingfish<br />

49610 1106 Micropogonias undulatus eggs Atlantic croaker<br />

49611 1107<br />

Micropogonias undulatus preflexion<br />

larvae<br />

Atlantic croaker<br />

49612 1108<br />

Micropogonias undulatus flexion<br />

larvae<br />

Atlantic croaker<br />

49613 1109<br />

Micropogonias undulatus postflexion<br />

larvae<br />

Atlantic croaker<br />

49614 1110 Micropogonias undulatus juveniles Atlantic croaker<br />

49615 1111 Micropogonias undulatus adults Atlantic croaker<br />

49710 1112 Pogonias cromis eggs black drum<br />

49711 1113 Pogonias cromis preflexion larvae black drum<br />

49712 1114 Pogonias cromis flexion larvae black drum<br />

49713 1115 Pogonias cromis postflexion larvae black drum<br />

49714 1116 Pogonias cromis juveniles black drum<br />

49715 1117 Pogonias cromis adults black drum<br />

49810 1118 Sciaenops ocellatus eggs red drum<br />

49811 1119 Sciaenops ocellatus preflexion larvae red drum<br />

49812 1120 Sciaenops ocellatus flexion larvae red drum<br />

49813 1121 Sciaenops ocellatus postflexion larvae red drum<br />

49814 1122 Sciaenops ocellatus juveniles red drum<br />

49815 1123 Sciaenops ocellatus adults red drum<br />

49901 1105<br />

unident. sciaenid (Equetus) preflexion<br />

larvae<br />

drum<br />

49902 1103<br />

unident. sciaenid (Equetus) flexion<br />

larvae<br />

drum<br />

49903 1104<br />

unident. sciaenid (Equetus)<br />

postflexion larvae<br />

drum<br />

51110 1277 Chaetodipterus faber eggs Atlantic spadefish<br />

51111 1278 Chaetodipterus faber preflexion larvae Atlantic spadefish<br />

51112 1279 Chaetodipterus faber flexion larvae Atlantic spadefish<br />

51113 1280<br />

Chaetodipterus faber postflexion<br />

larvae<br />

Atlantic spadefish<br />

51114 1281 Chaetodipterus faber juveniles Atlantic spadefish<br />

51115 1282 Chaetodipterus faber adults Atlantic spadefish<br />

56110 739 Mugil cephalus eggs striped mullet<br />

56111 740 Mugil cephalus preflexion larvae striped mullet<br />

56112 741 Mugil cephalus flexion larvae striped mullet<br />

56113 742 Mugil cephalus postflexion larvae striped mullet


Master Ichthyo<strong>plan</strong>kton <strong>and</strong> Zoo<strong>plan</strong>kton HBMP Species List<br />

Taxcode PhyloOrder Description Common Name<br />

56114 743 Mugil cephalus juveniles striped mullet<br />

56115 744 Mugil cephalus adults striped mullet<br />

56120 745 Mugil curema eggs white mullet<br />

56121 746 Mugil curema preflexion larvae white mullet<br />

56122 747 Mugil curema flexion larvae white mullet<br />

56123 748 Mugil curema postflexion larvae white mullet<br />

56124 749 Mugil curema juveniles white mullet<br />

56125 750 Mugil curema adults white mullet<br />

56130 751 Mugil gyrans eggs fantail mullet<br />

56131 752 Mugil gyrans preflexion larvae fantail mullet<br />

56132 753 Mugil gyrans flexion larvae fantail mullet<br />

56133 754 Mugil gyrans postflexion larvae fantail mullet<br />

56134 755 Mugil gyrans juveniles fantail mullet<br />

56135 756 Mugil gyrans adults fantail mullet<br />

60110 1148 Astroscopus y-graecum eggs southern stargazer<br />

60111 1149<br />

Astroscopus y-graecum preflexion<br />

larvae<br />

southern stargazer<br />

60112 1150 Astroscopus y-graecum flexion larvae southern stargazer<br />

60113 1151<br />

Astroscopus y-graecum postflexion<br />

larvae<br />

southern stargazer<br />

60114 1152 Astroscopus y-graecum juveniles southern stargazer<br />

60115 1153 Astroscopus y-graecum adults southern stargazer<br />

61000 1160 clinid eggs clinids<br />

61001 1161 clinid prefelxion larvae clinids<br />

61002 1162 clinid flexion larvae clinids<br />

61003 1163 clinid postflexion larvae clinids<br />

61100 1154 Paraclinus fasciatus eggs b<strong>and</strong>ed blenny<br />

61101 1155 Paraclinus fasciatus preflexion larvae b<strong>and</strong>ed blenny<br />

61102 1156 Paraclinus fasciatus flexion larvae b<strong>and</strong>ed blenny<br />

61103 1157 Paraclinus fasciatus postflexion larvae b<strong>and</strong>ed blenny<br />

61104 1158 Paraclinus fasciatus juveniles b<strong>and</strong>ed blenny<br />

61105 1159 Paraclinus fasciatus adults b<strong>and</strong>ed blenny<br />

62001 1164 blenniid preflexion larvae blennies<br />

62210 1165 Chasmodes saburrae eggs Florida blenny<br />

62211 1166 Chasmodes saburrae preflexion larvae Florida blenny<br />

62212 1167 Chasmodes saburrae flexion larvae Florida blenny<br />

62213 1168<br />

Chasmodes saburrae postflexion<br />

larvae<br />

Florida blenny<br />

62214 1169 Chasmodes saburrae juveniles Florida blenny<br />

62215 1170 Chasmodes saburrae adults Florida blenny<br />

62300 1171 Hypsoblennius spp. eggs blennies<br />

62301 1172 Hypsoblennius spp. preflexion larvae blennies<br />

62302 1173 Hypsoblennius spp. flexion larvae blennies<br />

62303 1174 Hypsoblennius spp. postflexion larvae blennies


Master Ichthyo<strong>plan</strong>kton <strong>and</strong> Zoo<strong>plan</strong>kton HBMP Species List<br />

Taxcode PhyloOrder Description Common Name<br />

62304 1175 Hypsoblennius spp. juveniles blennies<br />

62305 1176 Hypsoblennius spp. adults blennies<br />

62410 1183 Lupinoblennius nicholsi eggs highfin blenny<br />

62411 1184<br />

Lupinoblennius nicholsi preflexion<br />

larvae<br />

highfin blenny<br />

62412 1185 Lupinoblennius nicholsi flexion larvae highfin blenny<br />

62413 1186<br />

Lupinoblennius nicholsi postflexion<br />

larvae<br />

highfin blenny<br />

62414 1187 Lupinoblennius nicholsi juveniles highfin blenny<br />

62415 1188 Lupinoblennius nicholsi adults highfin blenny<br />

63000 1207 gobiid eggs gobies<br />

63001 1208 gobiid preflexion larvae gobies<br />

63002 1209 gobiid flexion larvae gobies<br />

63003 1210 gobiid postflexion larvae gobies<br />

63110 1201 Bathygobius soporator eggs frillfin goby<br />

63111 1202<br />

Bathygobius soporator preflexion<br />

larvae<br />

frillfin goby<br />

63112 1203 Bathygobius soporator flexion larvae frillfin goby<br />

63113 1204<br />

Bathygobius soporator postflexion<br />

larvae<br />

frillfin goby<br />

63114 1205 Bathygobius soporator juveniles frillfin goby<br />

63115 1206 Bathygobius soporator adults frillfin goby<br />

63200 1223 Gobionellus spp. eggs gobies<br />

63201 1224 Gobionellus spp. preflexion larvae gobies<br />

63202 1225 Gobionellus spp. flexion larvae gobies<br />

63203 1226 Gobionellus spp. postflexion larvae gobies<br />

63204 1227 Gobionellus spp. juveniles gobies<br />

63205 1228 Gobionellus spp. adults gobies<br />

63210 1211 Gobionellus boleosoma eggs darter goby<br />

63211 1212<br />

Gobionellus boleosoma preflexion<br />

larvae<br />

darter goby<br />

63212 1213 Gobionellus boleosoma flexion larvae darter goby<br />

63213 1214<br />

Gobionellus boleosoma postflexion<br />

larvae<br />

darter goby<br />

63214 1215 Gobionellus boleosoma juveniles darter goby<br />

63215 1216 Gobionellus boleosoma adults darter goby<br />

63220 1217 Gobionellus oceanicus eggs highfin goby<br />

63221 1218<br />

Gobionellus oceanicus preflexion<br />

larvae<br />

highfin goby<br />

63222 1219 Gobionellus oceanicus flexion larvae highfin goby<br />

63223 1220<br />

Gobionellus oceanicus postflexion<br />

larvae<br />

highfin goby<br />

63224 1221 Gobionellus oceanicus juveniles highfin goby<br />

63225 1222 Gobionellus oceanicus adults highfin goby


Master Ichthyo<strong>plan</strong>kton <strong>and</strong> Zoo<strong>plan</strong>kton HBMP Species List<br />

Taxcode PhyloOrder Description Common Name<br />

63300 1241 Gobiosoma spp. eggs gobies<br />

63301 1242 Gobiosoma spp. preflexion larvae gobies<br />

63302 1243 Gobiosoma spp. flexion larvae gobies<br />

63303 1244 Gobiosoma spp. postflexion larvae gobies<br />

63304 1245 Gobiosoma spp. juveniles gobies<br />

63305 1246 Gobiosoma spp. adults gobies<br />

63310 1229 Gobiosoma bosc eggs naked goby<br />

63311 1230 Gobiosoma bosc preflexion larvae naked goby<br />

63312 1231 Gobiosoma bosc flexion larvae naked goby<br />

63313 1232 Gobiosoma bosc postflexion larvae naked goby<br />

63314 1233 Gobiosoma bosc juveniles naked goby<br />

63315 1234 Gobiosoma bosc adults naked goby<br />

63320 1235 Gobiosoma robustum eggs code goby<br />

63321 1236<br />

Gobiosoma robustum preflexion<br />

larvae<br />

code goby<br />

63322 1237 Gobiosoma robustum flexion larvae code goby<br />

63323 1238<br />

Gobiosoma robustum postflexion<br />

larvae<br />

code goby<br />

63324 1239 Gobiosoma robustum juveniles code goby<br />

63325 1240 Gobiosoma robustum adults code goby<br />

63400 1253 Microgobius spp. eggs gobies<br />

63401 1254 Microgobius spp. preflexion larvae gobies<br />

63402 1255 Microgobius spp. flexion larvae gobies<br />

63403 1256 Microgobius spp. postflexion larvae gobies<br />

63404 1257 Microgobius spp. juveniles gobies<br />

63405 1258 Microgobius spp. adults gobies<br />

63410 1247 Microgobius gulosus eggs clown goby<br />

63411 1248 Microgobius gulosus preflexion larvae clown goby<br />

63412 1249 Microgobius gulosus flexion larvae clown goby<br />

63413 1250<br />

Microgobius gulosus postflexion<br />

larvae<br />

clown goby<br />

63414 1251 Microgobius gulosus juveniles clown goby<br />

63415 1252 Microgobius gulosus adults clown goby<br />

63420 1259 Microgobius thalassinus eggs clown goby<br />

63421 1260<br />

Microgobius thalassinus preflexion<br />

larvae<br />

green goby<br />

63422 1261 Microgobius thalassinus flexion larvae green goby<br />

63423 1262<br />

Microgobius thalassinus postflexion<br />

larvae<br />

green goby<br />

63424 1263 Microgobius thalassinus juveniles green goby<br />

63425 1264 Microgobius thalassinus adults green goby<br />

63500 1195 Dormitator maculatus eggs fat sleeper<br />

63501 1196<br />

Dormitator maculatus preflexion<br />

larvae<br />

fat sleeper


Master Ichthyo<strong>plan</strong>kton <strong>and</strong> Zoo<strong>plan</strong>kton HBMP Species List<br />

Taxcode PhyloOrder Description Common Name<br />

63502 1197 Dormitator maculatus flexion larvae fat sleeper<br />

63503 1198<br />

Dormitator maculatus postflexion<br />

larvae<br />

fat sleeper<br />

63504 1199 Dormitator maculatus juveniles fat sleeper<br />

63505 1200 Dormitator maculatus adults fat sleeper<br />

64000 1271 Microdesmus spp. eggs wormfishes<br />

64001 1272 Microdesmus spp. preflexion larvae wormfishes<br />

64002 1273 Microdesmus spp. flexion larvae wormfishes<br />

64003 1274 Microdesmus spp. postflexion larvae wormfishes<br />

64004 1275 Microdesmus spp. juveniles wormfishes<br />

64005 1276 Microdesmus spp. adults wormfishes<br />

64110 1265 Microdesmus longipinnis eggs pink wormfish<br />

64111 1266<br />

Microdesmus longipinnis preflexion<br />

larvae<br />

pink wormfish<br />

64112 1267<br />

Microdesmus longipinnis flexion<br />

larvae<br />

pink wormfish<br />

64113 1268<br />

Microdesmus longipinnis postflexion<br />

larvae<br />

pink wormfish<br />

64114 1269 Microdesmus longipinnis juveniles pink wormfish<br />

64115 1270 Microdesmus longipinnis adults pink wormfish<br />

69100 888 Prionotus spp. eggs searobins<br />

69101 889 Prionotus spp. preflexion larvae searobins<br />

69102 890 Prionotus spp. flexion larvae searobins<br />

69103 891 Prionotus spp. postflexion larvae searobins<br />

69104 892 Prionotus spp. juveniles searobins<br />

69105 893 Prionotus spp. adults searobins<br />

69110 882 Prionotus scitulus eggs leopard searobin<br />

69111 883 Prionotus scitulus preflexion larvae leopard searobin<br />

69112 884 Prionotus scitulus flexion larvae leopard searobin<br />

69113 885 Prionotus scitulus postflexion larvae leopard searobin<br />

69114 886 Prionotus scitulus juveniles leopard searobin<br />

69115 887 Prionotus scitulus adults leopard searobin<br />

69120 894 Prionotus tribulus eggs bighead searobin<br />

69121 895 Prionotus tribulus preflexion larvae bighead searobin<br />

69122 896 Prionotus tribulus flexion larvae bighead searobin<br />

69123 897 Prionotus tribulus postflexion larvae bighead searobin<br />

69124 898 Prionotus tribulus juveniles bighead searobin<br />

69125 899 Prionotus tribulus adults bighead searobin<br />

69130 881 triglid eggs searobins<br />

70400 1283 Paralichthys spp. eggs flounders<br />

70401 1284 Paralichthys spp. preflexion larvae flounders<br />

70402 1285 Paralichthys spp. flexion larvae flounders<br />

70403 1286 Paralichthys spp. postflexion larvae flounders<br />

70404 1287 Paralichthys spp. juveniles flounders


Master Ichthyo<strong>plan</strong>kton <strong>and</strong> Zoo<strong>plan</strong>kton HBMP Species List<br />

Taxcode PhyloOrder Description Common Name<br />

70405 1288 Paralichthys spp. adults flounders<br />

71110 1289 Achirus lineatus eggs lined sole<br />

71111 1290 Achirus lineatus preflexion larvae lined sole<br />

71112 1291 Achirus lineatus flexion larvae lined sole<br />

71113 1292 Achirus lineatus postflexion larvae lined sole<br />

71114 1293 Achirus lineatus juveniles lined sole<br />

71115 1294 Achirus lineatus adults lined sole<br />

71210 1301 Trinectes maculatus eggs hogchoker<br />

71211 1302 Trinectes maculatus preflexion larvae hogchoker<br />

71212 1303 Trinectes maculatus flexion larvae hogchoker<br />

71213 1304 Trinectes maculatus postflexion larvae hogchoker<br />

71214 1305 Trinectes maculatus juveniles hogchoker<br />

71215 1306 Trinectes maculatus adults hogchoker<br />

72110 1295 Symphurus plagiusa eggs blackcheek tonguefish<br />

72111 1296 Symphurus plagiusa preflexion larvae blackcheek tonguefish<br />

72112 1297 Symphurus plagiusa flexion larvae blackcheek tonguefish<br />

72113 1298 Symphurus plagiusa postflexion larvae blackcheek tonguefish<br />

72114 1299 Symphurus plagiusa juveniles blackcheek tonguefish<br />

72115 1300 Symphurus plagiusa adults blackcheek tonguefish<br />

73220 1313 Monacanthus hispidus eggs <strong>plan</strong>ehead filefish<br />

73221 1314<br />

Monacanthus hispidus preflexion<br />

larvae<br />

<strong>plan</strong>ehead filefish<br />

73222 1315 Monacanthus hispidus flexion larvae <strong>plan</strong>ehead filefish<br />

73223 1316<br />

Monacanthus hispidus postflexion<br />

larvae<br />

<strong>plan</strong>ehead filefish<br />

73224 1317 Monacanthus hispidus juveniles <strong>plan</strong>ehead filefish<br />

73225 1318 Monacanthus hispidus adults <strong>plan</strong>ehead filefish<br />

73230 1319 Monacanthus setifer eggs pygmy filefish<br />

73231 1320 Monacanthus setifer preflexion larvae pygmy filefish<br />

73232 1321 Monacanthus setifer flexion larvae pygmy filefish<br />

73233 1322 Monacanthus setifer postflexion larvae pygmy filefish<br />

73234 1323 Monacanthus setifer juveniles pygmy filefish<br />

73235 1324 Monacanthus setifer adults pygmy filefish<br />

74220 1307 Acanthostrocion quadricornis eggs scrawled cowfish<br />

74221 1308<br />

Acanthostrocion quadricornis<br />

preflexiuon larvae<br />

scrawled cowfish<br />

74222 1309<br />

Acanthostrocion quadricornis flexion<br />

larvae<br />

scrawled cowfish<br />

74223 1310<br />

Acanthostrocion quadricornis<br />

postflexion larvae<br />

scrawled cowfish<br />

74224 1311<br />

Acanthostrocion quadricornis<br />

juveniles<br />

scrawled cowfish<br />

74225 1312 Acanthostrocion quadricornis adults scrawled cowfish<br />

75100 1349 Sphoeroides spp. eggs puffers


Master Ichthyo<strong>plan</strong>kton <strong>and</strong> Zoo<strong>plan</strong>kton HBMP Species List<br />

Taxcode PhyloOrder Description Common Name<br />

75101 1350 Sphoeroides spp. preflexion larvae puffers<br />

75102 1351 Sphoeroides spp. flexion larvae puffers<br />

75103 1352 Sphoeroides spp. postflexion larvae puffers<br />

75104 1353 Sphoeroides spp. juveniles puffers<br />

75105 1354 Sphoeroides spp. adults puffers<br />

75110 1331 Sphoeroides nephelus eggs southern puffer<br />

75111 1332<br />

Sphoeroides nephelus preflexion<br />

larvae<br />

southern puffer<br />

75112 1333 Sphoeroides nephelus flexion larvae southern puffer<br />

75113 1334<br />

Sphoeroides nephelus postflexion<br />

larvae<br />

southern puffer<br />

75114 1335 Sphoeroides nephelus juveniles southern puffer<br />

75115 1336 Sphoeroides nephelus adults southern puffer<br />

75120 1343 Sphoeroides spengleri eggs b<strong>and</strong>tail puffer<br />

75121 1344<br />

Sphoeroides spengleri preflexion<br />

larvae<br />

b<strong>and</strong>tail puffer<br />

75122 1345 Sphoeroides spengleri flexion larvae b<strong>and</strong>tail puffer<br />

75123 1346<br />

Sphoeroides spengleri postflexion<br />

larvae<br />

b<strong>and</strong>tail puffer<br />

75124 1347 Sphoeroides spengleri juveniles b<strong>and</strong>tail puffer<br />

75125 1348 Sphoeroides spengleri adults b<strong>and</strong>tail puffer<br />

75130 1337 Sphoeroides parvus eggs least puffer<br />

75131 1338 Sphoeroides parvus preflexion larvae least puffer<br />

75132 1339 Sphoeroides parvus flexion larvae least puffer<br />

75133 1340 Sphoeroides parvus postflexion larvae least puffer<br />

75134 1341 Sphoeroides parvus juveniles least puffer<br />

75135 1342 Sphoeroides parvus adults least puffer<br />

76110 1325 Chilomycterus schoepfi eggs striped burrfish<br />

76111 1326<br />

Chilomycterus schoepfi preflexion<br />

larvae<br />

striped burrfish<br />

76112 1327 Chilomycterus schoepfi flexion larvae striped burrfish<br />

76113 1328<br />

Chilomycterus schoepfi postflexion<br />

larvae<br />

striped burrfish<br />

76114 1329 Chilomycterus schoepfi juveniles striped burrfish<br />

76115 1330 Chilomycterus schoepfi adults striped burrfish<br />

77110 618 Notemigonus crysoleucas eggs golden shiner<br />

77111 619<br />

Notemigonus crysoleucas preflexion<br />

larvae<br />

golden shiner<br />

77112 620<br />

Notemigonus crysoleucas flexion<br />

larvae<br />

golden shiner<br />

77113 621<br />

Notemigonus crysoleucas postflexion<br />

larvae<br />

golden shiner<br />

77114 622 Notemigonus crysoleucas juveniles golden shiner<br />

77115 623 Notemigonus crysoleucas adults golden shiner


Master Ichthyo<strong>plan</strong>kton <strong>and</strong> Zoo<strong>plan</strong>kton HBMP Species List<br />

Taxcode PhyloOrder Description Common Name<br />

77200 636 Notropis spp. eggs minnows<br />

77201 637 Notropis spp. preflexion larvae minnows<br />

77202 638 Notropis spp. flexion larvae minnows<br />

77203 639 Notropis spp. postflexion larvae minnows<br />

77204 640 Notropis spp. juveniles minnows<br />

77205 641 Notropis spp. adults minnows<br />

77210 624 Notropis maculatus eggs taillight shiner<br />

77211 625 Notropis maculatus preflexion larvae taillight shiner<br />

77212 626 Notropis maculatus flexion larvae taillight shiner<br />

77213 627 Notropis maculatus postflexion larvae taillight shiner<br />

77214 628 Notropis maculatus juveniles taillight shiner<br />

77215 629 Notropis maculatus adults taillight shiner<br />

77220 630 Notropis petersoni eggs taillight shiner<br />

77221 631 Notropis petersoni preflexion larvae coastal shiner<br />

77222 632 Notropis petersoni flexion larvae coastal shiner<br />

77223 633 Notropis petersoni postflexion larvae coastal shiner<br />

77224 634 Notropis petersoni juveniles coastal shiner<br />

77225 635 Notropis petersoni adults coastal shiner<br />

80100 957 Lepomis spp. eggs sunfishes<br />

80101 958 Lepomis spp. preflexion larvae sunfishes<br />

80102 959 Lepomis spp. flexion larvae sunfishes<br />

80103 960 Lepomis spp. postflexion larvae sunfishes<br />

80104 961 Lepomis spp. juveniles sunfishes<br />

80105 962 Lepomis spp. adults sunfishes<br />

80110 927 Lepomis gulosus eggs warmouth<br />

80111 928 Lepomis gulosus preflexion larvae warmouth<br />

80112 929 Lepomis gulosus flexion larvae warmouth<br />

80113 930 Lepomis gulosus postflexion larvae warmouth<br />

80114 931 Lepomis gulosus juveniles warmouth<br />

80115 932 Lepomis gulosus adults warmouth<br />

80120 933 Lepomis macrochirus eggs bluegill<br />

80121 934<br />

Lepomis macrochirus preflexion<br />

larvae<br />

bluegill<br />

80122 935 Lepomis macrochirus flexion larvae bluegill<br />

80123 936<br />

Lepomis macrochirus postflexion<br />

larvae<br />

bluegill<br />

80124 937 Lepomis macrochirus juveniles bluegill<br />

80125 938 Lepomis macrochirus adults bluegill<br />

80130 945 Lepomis microlophus eggs redear sunfish<br />

80131 946<br />

Lepomis microlophus preflexion<br />

larvae<br />

redear sunfish<br />

80132 947 Lepomis microlophus flexion larvae redear sunfish<br />

80133 948<br />

Lepomis microlophus postflexion<br />

larvae<br />

redear sunfish


Master Ichthyo<strong>plan</strong>kton <strong>and</strong> Zoo<strong>plan</strong>kton HBMP Species List<br />

Taxcode PhyloOrder Description Common Name<br />

80134 949 Lepomis microlophus juveniles redear sunfish<br />

80135 950 Lepomis microlophus adults redear sunfish<br />

80140 921 Lepomis auritus eggs redbreast sunfish<br />

80141 922 Lepomis auritus preflexion larvae redbreast sunfish<br />

80142 923 Lepomis auritus flexion larvae redbreast sunfish<br />

80143 924 Lepomis auritus postflexion larvae redbreast sunfish<br />

80144 925 Lepomis auritus juveniles redbreast sunfish<br />

80145 926 Lepomis auritus adults redbreast sunfish<br />

80150 951 Lepomis punctatus eggs spotted sunfish<br />

80151 952 Lepomis punctatus preflexion larvae spotted sunfish<br />

80152 953 Lepomis punctatus flexion larvae spotted sunfish<br />

80153 954 Lepomis punctatus postflexion larvae spotted sunfish<br />

80154 955 Lepomis punctatus juveniles spotted sunfish<br />

80155 956 Lepomis punctatus adults spotted sunfish<br />

80160 939 Lepomis marginatus eggs dollar sunfish<br />

80161 940 Lepomis marginatus preflexion larvae dollar sunfish<br />

80162 941 Lepomis marginatus flexion larvae dollar sunfish<br />

80163 942<br />

Lepomis marginatus postflexion<br />

larvae<br />

dollar sunfish<br />

80164 943 Lepomis marginatus juveniles dollar sunfish<br />

80165 944 Lepomis marginatus adults dollar sunfish<br />

80210 963 Micropterus salmoides eggs largemouth bass<br />

80211 964<br />

Micropterus salmoides preflexion<br />

larvae<br />

largemouth bass<br />

80212 965 Micropterus salmoides flexion larvae largemouth bass<br />

80213 966<br />

Micropterus salmoides postflexion<br />

larvae<br />

largemouth bass<br />

80214 967 Micropterus salmoides juveniles largemouth bass<br />

80215 968 Micropterus salmoides adults largemouth bass<br />

80310 969 Pomoxis nigromaculatus eggs black crappie<br />

80311 970<br />

Pomoxis nigromaculatus preflexion<br />

larvae<br />

black crappie<br />

80312 971<br />

Pomoxis nigromaculatus flexion<br />

larvae<br />

black crappie<br />

80313 972<br />

Pomoxis nigromaculatus postflexion<br />

larvae<br />

black crappie<br />

80314 973 Pomoxis nigromaculatus juveniles black crappie<br />

80315 974 Pomoxis nigromaculatus adults black crappie<br />

80410 1124 Elassoma evergladei eggs Everglades pygmy sunfish<br />

80411 1125 Elassoma evergladei preflexion larvae Everglades pygmy sunfish<br />

80412 1126 Elassoma evergladei flexion larvae Everglades pygmy sunfish<br />

80413 1127<br />

Elassoma evergladei postflexion<br />

larvae<br />

Everglades pygmy sunfish<br />

80414 1128 Elassoma evergladei juveniles Everglades pygmy sunfish


Master Ichthyo<strong>plan</strong>kton <strong>and</strong> Zoo<strong>plan</strong>kton HBMP Species List<br />

Taxcode PhyloOrder Description Common Name<br />

80415 1129 Elassoma evergladei adults Everglades pygmy sunfish<br />

80420 1130 Elassoma okefenoke eggs Okefenokee pygmy sunfish<br />

80421 1131 Elassoma okefenoke preflexion larvae Okefenokee pygmy sunfish<br />

80422 1132 Elassoma okefenoke flexion larvae Okefenokee pygmy sunfish<br />

80423 1133<br />

Elassoma okefenoke postflexion<br />

larvae<br />

Okefenokee pygmy sunfish<br />

80424 1134 Elassoma okefenoke juveniles Okefenokee pygmy sunfish<br />

80425 1135 Elassoma okefenoke adults Okefenokee pygmy sunfish<br />

80510 915 Enneacanthus gloriosus eggs bluespotted sunfish<br />

80511 916<br />

Enneacanthus gloriosus preflexion<br />

larvae<br />

bluespotted sunfish<br />

80512 917 Enneacanthus gloriosus flexion larvae bluespotted sunfish<br />

80513 918<br />

Enneacanthus gloriosus postflexion<br />

larvae<br />

bluespotted sunfish<br />

80514 919 Enneacanthus gloriosus juveniles bluespotted sunfish<br />

80515 920 Enneacanthus gloriosus adults bluespotted sunfish<br />

81001 912 centrarchid preflexion larvae sunfishes<br />

81002 913 centrarchid flexion larvae sunfishes<br />

81003 914 centrarchid postflexion larvae sunfishes<br />

82100 1142 Tilapia spp. eggs tilapias<br />

82101 1147 Tilapia spp. preflexion larvae tilapias<br />

82102 1143 Tilapia spp. flexion larvae tilapias<br />

82103 1146 Tilapia spp. postflexion larvae tilapias<br />

82104 1144 Tilapia spp. juveniles tilapias<br />

82105 1145 Tilapia spp. adults tilapias<br />

82114 1140 Tilapia melanotheron juveniles blackchin tilapia<br />

82115 1141 Tilapia melanotheron adults blackchin tilapia<br />

82204 1052 Oreochromis mossambicus juveniles Mozambique tilapia<br />

82205 1053 Oreochromis mossambicus adults Mozambique tilapia<br />

82304 1138 Oreochromis mossambicus juveniles Mozambique tilapia<br />

82305 1139 Oreochromis mossambicus adults Mozambique tilapia<br />

85110 660 Ameiurus natalis eggs yellow bullhead<br />

85111 661 Ameiurus natalis preflexion larvae yellow bullhead<br />

85112 662 Ameiurus natalis flexion larvae yellow bullhead<br />

85113 663 Ameiurus natalis postflexion larvae yellow bullhead<br />

85114 664 Ameiurus natalis juveniles yellow bullhead<br />

85115 665 Ameiurus natalis adults yellow bullhead<br />

85120 654 Ameiurus catus eggs white catfish<br />

85121 655 Ameiurus catus preflexion larvae white catfish<br />

85122 656 Ameiurus catus flexion larvae white catfish<br />

85123 657 Ameiurus catus postflexion larvae white catfish<br />

85124 658 Ameiurus catus juveniles white catfish<br />

85125 659 Ameiurus catus adults white catfish<br />

85130 672 Ictalurus punctatus eggs channel catfish


Master Ichthyo<strong>plan</strong>kton <strong>and</strong> Zoo<strong>plan</strong>kton HBMP Species List<br />

Taxcode PhyloOrder Description Common Name<br />

85131 673 Ictalurus punctatus preflexion larvae channel catfish<br />

85132 674 Ictalurus punctatus flexion larvae channel catfish<br />

85133 675 Ictalurus punctatus postflexion larvae channel catfish<br />

85134 676 Ictalurus punctatus juveniles channel catfish<br />

85135 677 Ictalurus punctatus adults channel catfish<br />

85140 666 Ameiurus nebulosus eggs brown bullhead<br />

85141 667 Ameiurus nebulosus preflexion larvae brown bullhead<br />

85142 668 Ameiurus nebulosus flexion larvae brown bullhead<br />

85143 669<br />

Ameiurus nebulosus postflexion<br />

larvae<br />

brown bullhead<br />

85144 670 Ameiurus nebulosus juveniles brown bullhead<br />

85145 671 Ameiurus nebulosus adults brown bullhead<br />

85190 690 Clarias batrachus eggs walking catfish<br />

85191 691 Clarias batrachus preflexion larvae walking catfish<br />

85192 692 Clarias batrachus flexion larvae walking catfish<br />

85193 693 Clarias batrachus postflexion larvae walking catfish<br />

85194 694 Clarias batrachus juveniles walking catfish<br />

85195 695 Clarias batrachus adults walking catfish<br />

85200 678 Noturus gyrinus eggs tadpole madtom<br />

85201 679 Noturus gyrinus preflexion larvae tadpole madtom<br />

85202 680 Noturus gyrinus flexion larvae tadpole madtom<br />

85203 681 Noturus gyrinus postflexion larvae tadpole madtom<br />

85204 682 Noturus gyrinus juveniles tadpole madtom<br />

85205 683 Noturus gyrinus adults tadpole madtom<br />

86000 702 loricariid eggs suckermouth catfishes<br />

86001 703 loricariid preflexion larvae suckermouth catfishes<br />

86002 704 loricariid flexion larvae suckermouth catfishes<br />

86003 705 loricariid postflexion larvae suckermouth catfishes<br />

86004 706 loricariid juveniles suckermouth catfishes<br />

86005 707 loricariid adults suckermouth catfishes<br />

86100 715 Liposarcus spp. eggs suckermouth catfish<br />

86101 716 Liposarcus spp. preflexion larvae suckermouth catfish<br />

86102 717 Liposarcus spp. flexion larvae suckermouth catfish<br />

86103 718 Liposarcus spp. postflexion larvae suckermouth catfish<br />

86104 719 Liposarcus spp. juveniles suckermouth catfish<br />

86105 720 Liposarcus spp. adults suckermouth catfish<br />

86114 708 loricariid sp. b juveniles suckermouth catfish<br />

86200 709 Hoplosternum littorale eggs brown hoplo catfish<br />

86201 710<br />

Hoplosternum littorale preflexion<br />

larvae<br />

brown hoplo catfish<br />

86202 711 Hoplosternum littorale flexion larvae brown hoplo catfish<br />

86203 712<br />

Hoplosternum littorale postflexion<br />

larvae<br />

brown hoplo catfish<br />

86204 713 Hoplosternum littorale juveniles brown hoplo catfish


Master Ichthyo<strong>plan</strong>kton <strong>and</strong> Zoo<strong>plan</strong>kton HBMP Species List<br />

Taxcode PhyloOrder Description Common Name<br />

86205 714 Hoplosternum littorale adults brown hoplo catfish<br />

87000 648 Misgurnus anguillicaudatus eggs oriental weatherfish<br />

87001 649<br />

Misgurnus anguillicaudatus preflexion<br />

larvae<br />

oriental weatherfish<br />

87002 650<br />

Misgurnus anguillicaudatus flexion<br />

larvae<br />

oriental weatherfish<br />

87003 651<br />

Misgurnus anguillicaudatus<br />

postflexion larvae<br />

oriental weatherfish<br />

87004 652 Misgurnus anguillicaudatus juveniles oriental weatherfish<br />

87005 653 Misgurnus anguillicaudatus adults oriental weatherfish<br />

87100 975 Etheostoma fusiforme eggs swamp darter<br />

87101 976<br />

Etheostoma fusiforme preflexion<br />

larvae<br />

swamp darter<br />

87102 977 Etheostoma fusiforme flexion larvae swamp darter<br />

87103 978<br />

Etheostoma fusiforme postflexion<br />

larvae<br />

swamp darter<br />

87104 979 Etheostoma fusiforme juveniles swamp darter<br />

87105 980 Etheostoma fusiforme adults swamp darter<br />

88110 642 Erimyzon sucetta eggs lake chubsucker<br />

88111 643 Erimyzon succeta preflexion larvae lake chubsucker<br />

88112 644 Erimyzon sucetta flexion larvae lake chubsucker<br />

88113 645 Erimyzon sucetta postflexion larvae lake chubsucker<br />

88114 646 Erimyzon sucetta juveniles lake chubsucker<br />

88115 647 Erimyzon sucetta adults lake chubsucker<br />

100000 1355 tetraodontid eggs puffers<br />

100001 1356 tetraodontid preflexion larvae puffers<br />

100002 1358 tetraodontid flexion larvae puffers<br />

100003 1359 tetraodontid postflexion larvae puffers<br />

101000 1189 Diplogrammus pauciradiatus eggs spotted dragonet<br />

101001 1190<br />

Diplogrammus pauciradiatus<br />

preflexion larvae<br />

spotted dragonet<br />

101002 1191<br />

Diplogrammus pauciradiatus flexion<br />

larvae<br />

spotted dragonet<br />

101003 1192<br />

Diplogrammus pauciradiatus<br />

postflexion larvae<br />

spotted dragonet<br />

101004 1193 Diplogrammus pauciradiatus juveniles spotted dragonet<br />

101005 1194 Diplogrammus pauciradiatus adults spotted dragonet<br />

110101 1361 unidentified preflexion larvae fish<br />

110102 1362 unidentified flexion larvae fish<br />

110103 1363 unidentified postflexion larvae fish<br />

200000 880 fish eggs, percomorph sciaenid eggs (primarily)<br />

202000 172 amphipods, gammaridean amphipods<br />

202100 173 Ampelisca spp. amphipods<br />

202200 174 Cerapus sp. amphipod


Master Ichthyo<strong>plan</strong>kton <strong>and</strong> Zoo<strong>plan</strong>kton HBMP Species List<br />

Taxcode PhyloOrder Description Common Name<br />

202300 175 Corophium spp. amphipods<br />

202400 176 Gr<strong>and</strong>idierella bonnieroides amphipod<br />

202500 177 Gammarus nr. tigrinus amphipod<br />

202600 178 Cymadusa compta amphipod<br />

202700 179 Mononuclodes sp. amphipod<br />

202800 180 Gammarus mucronatus amphipod<br />

202900 181 Gammarus macromucronatus amphipod<br />

203000 212 cumaceans cumaceans<br />

203100 213 Almyracuma sp. cumacean<br />

203200 214 Cyclaspis varians cumacean<br />

203300 215 Oxyurostylus smithi cumacean<br />

204000 184 isopods, unidentified isopods<br />

204010 185 isopod sp. a isopod<br />

204023 206 Isopod, sp. b isopod<br />

204100 186 Munna reynoldsi isopod<br />

204200 187 Xenanthura brevitelson isopod<br />

204300 188 Cyathura polita isopod<br />

204400 189 isopods, unidentified sphaeromatids isopods<br />

204410 190 Sphaeroma quadridentata isopod<br />

204420 191 Harrieta faxoni isopod<br />

204430 192 Cassidinidea ovalis isopod<br />

204440 193 Sphaeroma walkeri isopod<br />

204450 194 Sphaeroma terebrans isopod<br />

204460 207 Isopod, Paracerceis caudata isopod<br />

204500 195 Edotea triloba isopod<br />

204510 196 Erichsonella attenuata isopod<br />

204511 197 Erichsonella filiforme isopod<br />

204600 198 cymothoid sp. a (Lironeca) juveniles isopod<br />

204610 199 cymothoid sp. b juveniles isopod<br />

204620 200 cymothoid sp. c juveniles isopod<br />

204630 201 Olencira praegustator (in mouth) isopod<br />

204640 202 cymothoid sp. d juveniles isopod<br />

204700 203 Anopsilana jonesi isopod<br />

204800 204 Probopyrus sp. (attached ) isopod<br />

204803 142 Alteutha sp. copepod<br />

204900 205 Serolis mcgrayi isopod<br />

205000 158 unidentified Americamysis juveniles opossum shrimps, mysids<br />

205110 159 Americamysis almyra opossum shrimp, mysid<br />

205120 160 Americamysis bahia opossum shrimp, mysid<br />

205130 161 Americamysis stucki opossum shrimp, mysid<br />

205200 162 Bowmaniella sp. opossum shrimp, mysid<br />

205210 163 Bowmaniella dissimilis opossum shrimp, mysid<br />

205310 164 Brasilomysis castroi opossum shrimp, mysid


Master Ichthyo<strong>plan</strong>kton <strong>and</strong> Zoo<strong>plan</strong>kton HBMP Species List<br />

Taxcode PhyloOrder Description Common Name<br />

205410 165 Metamysidopsis swifti opossum shrimp, mysid<br />

205510 166 Mysidopsis furca opossum shrimp, mysid<br />

205520 167 Mysidopsis mortenseni opossum shrimp, mysid<br />

205610 168 Taphromysis bowmani opossum shrimp, mysid<br />

205700 169 Spelaeomysis sp. opossum shrimp, mysid<br />

206000 114 copepod nauplii copepod larvae<br />

206100 115 unidentified calanoids copepods<br />

206110 116 Labidocera aestiva copepod<br />

206120 117 Acartia tonsa copepod<br />

206121 118 calanoid sp. a copepod<br />

206130 119 Centropages velificatus copepod<br />

206140 120 Pseudodiaptomus coronatus copepod<br />

206150 121 Centropages hamatus copepod<br />

206160 122 paracalanids copepods<br />

206170 123 Diaptomus spp. copepods<br />

206180 124 Eucalanus sp. copepod<br />

206190 125 Calanopia americana copepod<br />

206200 131 unidentified freshwater cyclopoids copepods<br />

206210 132 Oithona spp. copepods<br />

206220 133 Mesocyclops edax copepod<br />

206230 134 Orthocyclops modestus copepod<br />

206240 135 Halicyclops sp. copepod<br />

206250 136 Macrocyclops albidus copepods<br />

206260 137 Mesocyclops leuckarti copepod<br />

206270 138 Cyclops spp. copepods<br />

206280 139 Saphirella spp. copepods<br />

206290 140 Eucyclops speratus copepod<br />

206300 143 unidentified harpacticoids copepods<br />

206400 147 siphonostomatids parasitic copepods<br />

206410 144 Sapphirina spp. copepods<br />

206500 148 Monstrilla sp. copepod<br />

206600 126 Tortanus setacaudatus copepod<br />

206610 127 Eurytemora affinis copepod<br />

206620 128 Temora turbinata copepod<br />

206630 129 Osphranticum labronectum copepod<br />

206700 141 Ergasilus spp. parasitic copepods<br />

206800 130 diaptomids copepods<br />

206810 145 Oncaea spp. copepods<br />

206820 146 Corycaeus spp. copepods<br />

207000 83 cladocerans, unidentified water fleas<br />

207200 84 Evadne tergestina water flea<br />

207300 85 Penilia avirostris water flea<br />

207400 86 cladocerans, daphniid water fleas


Master Ichthyo<strong>plan</strong>kton <strong>and</strong> Zoo<strong>plan</strong>kton HBMP Species List<br />

Taxcode PhyloOrder Description Common Name<br />

207410 87 cladocerans, Daphnia spp. water fleas<br />

207420 88 Simocephalus vetulus water flea<br />

207430 89 Scaphroleberis kingi water flea<br />

207440 90 Ceridodaphnia sp. water flea<br />

207500 91 Ilyocryptus sp. water flea<br />

207510 92 Bunops sp. water flea<br />

207520 93 Grimaldina brazzai water flea<br />

207600 94 Diaphanosoma brachyurum water flea<br />

207610 95 Latona setifera water flea<br />

207620 96 Pseudosida bidentata water flea<br />

207630 97 Sida crystallina water flea<br />

207640 98 Latonopsis fasciculata water flea<br />

207700 99 Bosminopsis deitersi water flea<br />

207710 100 Bosmina sp. water flea<br />

207800 101 Euryalona occidentalis water flea<br />

207810 110 Eurycercus lamellatus water flea<br />

207900 102 Leydigia sp. water flea<br />

207910 103 Moinadaphnia macleayii water flea<br />

207920 104 Eurycercus lamellatus water flea<br />

207930 105 Dadaya macrops water flea<br />

207940 106 Camptocercus rectirostris water flea<br />

207950 107 Anchistropus minor water flea<br />

207960 108 Alona monacantha water flea<br />

207970 109 Kurzia longirostris water flea<br />

208100 67 dipterans, pupae flies, mosquitoes<br />

208200 68<br />

dipteran, Chaoborus punctipennis<br />

larvae<br />

phantom midge<br />

208300 69 dipterans, chironomid larvae midges<br />

208400 70 dipterans, tabanid larvae deer flies<br />

208500 71 dipterans, ceratopogonid larvae biting midges<br />

208600 72 dipterans, simuliid larvae black flies<br />

208700 73 dipterans, tipulid larvae crane flies<br />

208800 74 dipterans, muscid larvae muscid flies<br />

208900 75 dipterans, stratiomyid larvae soldier flies<br />

208910 76 dipterans, sciomyzid larvae marsh flies<br />

208920 77 dipterans, dolichopodid larvae dolichopodid flies<br />

208921 79 dipterans, ephydrid larvae shore flies<br />

208930 78 dipterans, syrphid larvae hoverflies<br />

209000 482 decapod zoeae crab larvae<br />

209100 477 decapod zoeae, pinnotherid crab larvae<br />

209101 483 decapod zoeae, spineless crab larvae<br />

209200 350 decapod zoeae, porcellanid crab larvae<br />

209300 415 decapod zoeae, xanthid crab larvae<br />

210000 149 ostracods, unidentified ostracods, seed shrimps


Master Ichthyo<strong>plan</strong>kton <strong>and</strong> Zoo<strong>plan</strong>kton HBMP Species List<br />

Taxcode PhyloOrder Description Common Name<br />

210100 150 Parasterope pollex ostracod, seed shrimp<br />

210200 154 ostracods, podocopid ostracods, seed shrimps<br />

210300 151 Sarsiella zostericola ostracod, seed shrimp<br />

210400 152 Euconchoecia chierchiae ostracod, seed shrimp<br />

210500 153 myodocopod sp. a ostracod, seed shrimp<br />

211000 20 Mnemiopsis mccradyi comb jelly, ctenophore<br />

211100 21 Beroe ovata sea walnut, ctenophore<br />

213000 484 decapod megalopae post-zoea crab larvae<br />

213100 417<br />

decapod megalops larvae type 1<br />

(xanthid)<br />

post-zoea crab larvae<br />

213200 351 decapod megalops larvae, porcellanid post-zoea crab larvae<br />

213300 400 decapod megalops larvae, portunid post-zoea crab larvae<br />

213301 401 Cancer spp. zoea larvae crabs<br />

213303 402 Cancer spp. megalops larvae crabs<br />

213304 403 Cancer spp. juveniles crabs<br />

213305 404 Cancer spp. adults crabs<br />

213400 416 decapod megalops larvae, xanthid post-zoea crab larvae<br />

214000 339 decapod mysis shrimp larvae<br />

214200 323 decapod mysis, callianassid shrimp larvae<br />

214300 248 decapod mysis, palaemonid shrimp larvae<br />

214500 342 decapod mysis, pagurid hermit crab larvae<br />

214800 310 decapod mysis, Ogyrides shrimp larvae<br />

215000 216 Lucifer faxoni juveniles <strong>and</strong> adults shrimp<br />

215002 217 Lucifer faxoni mysis shrimp<br />

216000 496 chaetognaths, sagittid arrow worms<br />

216100 497 Chaetognaths, Ferrosagitta hispida arrow worm<br />

216200 498 Chaetognaths, Flaccisagitta enflata arrow worm<br />

216300 499 Chaetognaths, Sagitta tenuis arrow worm<br />

217000 25 polychaetes s<strong>and</strong> worms, tube worms<br />

218000 16 Clytia sp. hydromedusa<br />

218100 18 Liriope tetraphylla hydromedusa<br />

218200 15 Craspedacusta sowberii hydromedusa<br />

218300 6 medusa sp. a hydromedusa<br />

218400 7 medusa sp. b hydromedusa<br />

218500 8 medusa sp. c hydromedusa<br />

218600 9 medusa sp. d hydromedusa<br />

218700 10 medusa sp. e hydromedusa<br />

218800 11 medusa, Obelia sp. hydromedusa<br />

218900 13 medusa, Bougainvillia sp. hydromedusa<br />

219000 488 pelecypods clams, mussels, oysters<br />

220100 489 gastropods, prosobranch snails<br />

220200 490 gastropods, opisthobranch sea slugs<br />

221000 26 oligochaetes freshwater worms<br />

222100 35 odonates, zygopteran larvae damselflies


Master Ichthyo<strong>plan</strong>kton <strong>and</strong> Zoo<strong>plan</strong>kton HBMP Species List<br />

Taxcode PhyloOrder Description Common Name<br />

222200 36 odonates, anisopteran larvae dragonflies<br />

223002 249 Palaemonetes spp. mysis larvae grass shrimps<br />

223003 250 Palaemonetes spp. postlarvae grass shrimps<br />

223104 251 Palaemonetes pugio juveniles daggerblade grass shrimp<br />

223105 252 Palaemonetes pugio adults daggerblade grass shrimp<br />

223114 253 Palaemonetes vulgaris juveniles grass shrimp<br />

223115 254 Palaemonetes vulgaris adults grass shrimp<br />

223124 255 Palaemonetes paludosus juveniles grass shrimp<br />

223125 256 Palaemonetes paludosus adults grass shrimp<br />

223134 257 Palaemonetes intermedius juveniles grass shrimp<br />

223135 258 Palaemonetes intermedius adults grass shrimp<br />

224002 218 penaeid protozoeae penaeid shrimps<br />

224003 220 penaeid postlarvae penaeid shrimps<br />

224003.5 221 penaeid metamorphs penaeid shrimps<br />

224104 222 Farfantepenaeus duorarum juveniles pink shrimp<br />

224105 223 Farfantepenaeus duorarum adults pink shrimp<br />

225000 113 branchiurans, Argulus spp. fish lice<br />

226000 182 amphipods, caprellid skeleton shrimps<br />

227100 486 Lolliguncula brevis juveniles bay squid<br />

227105 487 Lolliguncula brevis adults bay squid<br />

228000 111 cirriped nauplius stage barnacles<br />

228003 112 cirriped cypris stage barnacles<br />

229000 495 appendicularian, Oikopleura dioica larvacean<br />

230101 430 grapsid zoea larvae crabs<br />

230103 431 grapsid megalops larvae crabs<br />

230104 432 grapsid juveniles crabs<br />

230113 433 Aratus pisonii megalops larvae mangrove tree crab<br />

230114 434 Aratus pisonii juveniles mangrove tree crab<br />

230115 435 Aratus pisonii adults mangrove tree crab<br />

230201 405 xanthid zoea larvae mud crabs<br />

230203 406 xanthid megalops larvae mud crabs<br />

230204 407 xanthid juveniles mud crabs<br />

230205 408 xanthid adults mud crabs<br />

230211 436 Rhithropanopeus harrisii zoea larvae Harris mud crab<br />

230213 437<br />

Rhithropanopeus harrisii megalops<br />

larvae<br />

Harris mud crab<br />

230214 438 Rhithropanopeus harrisii juveniles Harris mud crab<br />

230215 439 Rhithropanopeus harrisii adults Harris mud crab<br />

230221 409 Eurypanopeus depressus zoea larvae flatback mud crab<br />

230223 410<br />

Eurypanopeus depressus megalops<br />

larvae<br />

flatback mud crab<br />

230224 411 Eurypanopeus depressus juveniles flatback mud crab<br />

230225 412 Eurypanopeus depressus adults flatback mud crab<br />

230231 418 Panopeus herbstii complex zoea larvae mud crab


Master Ichthyo<strong>plan</strong>kton <strong>and</strong> Zoo<strong>plan</strong>kton HBMP Species List<br />

Taxcode PhyloOrder Description Common Name<br />

230233 419<br />

Panopeus herbstii complex megalops<br />

larvae<br />

mud crab<br />

230234 420 Panopeus herbstii complex juveniles mud crab<br />

230235 421 Panopeus herbstii complex adults mud crab<br />

230241 422 Menippe mercenaria zoea larvae Florida stone crab<br />

230243 423 Menippe mercenaria megalops larvae Florida stone crab<br />

230244 424 Menippe mercenaria juveniles Florida stone crab<br />

230245 425 Menippe mercenaria adults Florida stone crab<br />

230251 413 xanthid type a zoea larvae mud crab<br />

230253 414 xanthid type a megalops larvae mud crab<br />

230254 428 Neopanope spp. juveniles crabs<br />

230255 429 Neopanope spp. adults crabs<br />

230301 388 Callinectes sapidus zoea larvae blue crab<br />

230303 389 Callinectes sapidus megalops larvae blue crab<br />

230304 390 Callinectes sapidus juveniles blue crab<br />

230305 391 Callinectes sapidus adults blue crab<br />

230311 392 Portunus spp. zoea larvae swimming crabs<br />

230313 393 Portunus spp. megalops larvae swimming crabs<br />

230314 394 Portunus sp. juveniles swimming crab<br />

230315 395 Portunus sp. adults swimming crab<br />

230321 396 portunid zoea larvae swimming crab<br />

230323 397 portunid megalops larvae swimming crabs<br />

230324 398 portunid juveniles swimming crabs<br />

230325 399 portunid adults swimming crabs<br />

230401 452 pinnotherid zoea larvae pea crabs<br />

230403 453 pinnotherid megalops larvae pea crabs<br />

230404 454 pinnotherid juveniles pea crabs<br />

230405 455 pinnotherid adults pea crabs<br />

230411 456 Pinnotheres maculatus zoea larvae squatter pea crab<br />

230413 457<br />

Pinnotheres maculatus megalops<br />

larvae<br />

squatter pea crab<br />

230414 458 Pinnotheres maculatus juveniles squatter pea crab<br />

230415 459 Pinnotheres maculatus adults squatter pea crab<br />

230421 460 Pinnixa sayana zoea larvae pea crab<br />

230423 461 Pinnixa sayana megalops larvae pea crab<br />

230424 462 Pinnixa sayana juveniles pea crab<br />

230425 463 Pinnixa sayana adults pea crab<br />

230431 464 Pinnotheres hemphilli zoea larvae pea crab<br />

230433 465 Pinnotheres hemphilli megalops larvae pea crab<br />

230434 466 Pinnotheres hemphilli juveniles pea crab<br />

230435 467 Pinnotheres hemphilli adults pea crab<br />

230441 468 Pinnixa sp. a zoea larvae pea crab<br />

230443 469 Pinnixa sp. a megalops larvae pea crab<br />

230444 470 Pinnixa sp. a juveniles pea crab


Master Ichthyo<strong>plan</strong>kton <strong>and</strong> Zoo<strong>plan</strong>kton HBMP Species List<br />

Taxcode PhyloOrder Description Common Name<br />

230445 471 Pinnixa sp. a adults pea crab<br />

230451 472 Pinnixa sp. b zoea larvae pea crab<br />

230453 473 Pinnixa sp. b megalops larvae pea crab<br />

230454 474 Pinnixa sp. b juveniles pea crab<br />

230455 475 Pinnixa sp. b adults pea crab<br />

230461 476 Pinnotheres spp. zoea larvae pea crab<br />

230503 378 majid megalops larvae spider crabs<br />

230504 379 majid juveniles spider crabs<br />

230511 380 Libinia dubia zoea larvae longnose spider crab<br />

230513 381 Libinia dubia megalops larvae longnose spider crab<br />

230514 382 Libinia dubia juveniles longnose spider crab<br />

230515 383 Libinia dubia adults longnose spider crab<br />

230701 343 paguroid zoea larvae hermit crabs<br />

230703 344 paguroid megalops larvae hermit crabs<br />

230704 345 paguroid juveniles hermit crabs<br />

230711 346 Pagurus longicarpus zoea larvae long-clawed hermit crab<br />

230713 347 Pagurus longicarpus megalops larvae long-clawed hermit crab<br />

230714 348 Pagurus longicarpus juveniles long-clawed hermit crab<br />

230715 349 Pagurus longicarpus adults long-clawed hermit crab<br />

230801 352<br />

porcellanid (not P. armatus) zoea<br />

larvae<br />

porcelain crabs<br />

230803 353<br />

porcellanid (not P. armatus) megalops<br />

larvae<br />

porcelain crabs<br />

230804 354 porcellanid (not P. armatus) juveniles porcelain crabs<br />

230805 355 porcellanid (not P. armatus) adults porcelain crabs<br />

230811 356 Petrolisthes armatus zoea larvae porcelain crab<br />

230813 357 Petrolisthes armatus megalops larvae porcelain crab<br />

230814 358 Petrolisthes armatus juveniles porcelain crab<br />

230815 359 Petrolisthes armatus adults porcelain crab<br />

230821 360 Euceramus praelongus zoea larvae olivepit porcelain crab<br />

230823 361<br />

Euceramus praelongus megalops<br />

larvae<br />

olivepit porcelain crab<br />

230824 362 Euceramus praelongus juveniles olivepit porcelain crab<br />

230825 363 Euceramus praelongus adults olivepit porcelain crab<br />

230834 364 Petrolisthes galathinus juveniles b<strong>and</strong>ed porcelain crab<br />

230835 365 Petrolisthes galathinus adults b<strong>and</strong>ed porcelain crab<br />

230901 479 Uca spp. zoea larvae fiddler crabs<br />

230903 480 Uca spp. megalops larvae fiddler crabs<br />

230904 481 Uca spp. juveniles fiddler crabs<br />

230911 440 Sesarma reticulatum zoea larvae marsh crab<br />

230913 441 Sesarma reticulatum megalops larvae marsh crab<br />

230914 442 Sesarma reticulatum juveniles marsh crab<br />

230915 443 Sesarma reticulatum adults marsh crab<br />

230921 444 Sesarma cinereum zoea larvae marsh crab


Master Ichthyo<strong>plan</strong>kton <strong>and</strong> Zoo<strong>plan</strong>kton HBMP Species List<br />

Taxcode PhyloOrder Description Common Name<br />

230923 445 Sesarma cinereum megalops larvae marsh crab<br />

230924 446 Sesarma cinereum juveniles marsh crab<br />

230925 447 Sesarma cinereum adults marsh crab<br />

230931 448 Sesarma spp. zoea larvae marsh crab<br />

230933 449 Sesarma spp. megalops larvae marsh crab<br />

230934 450 Sesarma spp. juveniles marsh crab<br />

230935 451 Sesarma spp. adults marsh crab<br />

231000 156 Squilla empusa larvae mantis shrimp<br />

231004 157 Squilla empusa juveniles mantis shrimp<br />

232000 1364 anuran larvae tadpoles<br />

233000 208 tanaids, unidentified tanaids<br />

233100 209 Hargeria rapax tanaid<br />

233200 210 Sinelobus stanfordi tanaid<br />

233300 211 Apseudes sp. tanaid<br />

234000 63 coleopterans, unident. larvae beetles<br />

234100 47 coleopterans, noterid larvae burrowing water beetles<br />

234105 48 coleopterans, noterid adults burrowing water beetles<br />

234200 49 coleopterans, elmid larvae riffle beetles<br />

234205 50 coleopterans, elmid adults riffle beetles<br />

234210 51 coleopterans, lutrochid larvae beetles<br />

234305 52 coleopterans, curculionid adults beetles<br />

234400 53 coleopterans, dytiscid larvae predaceous diving beetles<br />

234405 54 coleopterans, dytiscid adults predaceous diving beetles<br />

234505 56 coleopterans, haliplid adults crawling water beetles<br />

234520 55 coleopterans, haliplid larvae crawling water beetles<br />

234600 57 coleopterans, gyrinid larvae whirligig beetles<br />

234605 58 coleopterans, gyrinid adults whirligig beetles<br />

234700 59 coleopterans, scirtid larvae marsh beetles<br />

234705 60 coleopterans, scirtid adults marsh beetles<br />

234800 61 coleopterans, chrysomelid larvae beetles<br />

234900 62 coleopterans, dryopid larvae long-toed water beetles<br />

235000 31 acari water mites<br />

236003 29 Limulus polyphemus larvae horsehoe crab<br />

237002 331 Upogebia spp. mysis larvae mud shrimps<br />

237003 332 Upogebia spp. postlarvae mud shrimps<br />

237004 333 Upogebia spp. juveniles mud shrimps<br />

237005 334 Upogebia spp. adults mud shrimps<br />

238000 1 foraminiferans foraminiferans<br />

239000 30 pycnogonids sea spiders<br />

240000 491<br />

brachiopod, Glottidia pyramidata<br />

larvae<br />

lamp shell<br />

242000 312<br />

Ogyrides alphaerostris juveniles <strong>and</strong><br />

adults<br />

estuarine longeye shrimp<br />

242002 311 Ogyrides alphaerostris mysis larvae estuarine longeye shrimp


Master Ichthyo<strong>plan</strong>kton <strong>and</strong> Zoo<strong>plan</strong>kton HBMP Species List<br />

Taxcode PhyloOrder Description Common Name<br />

243002 279 alphaeid mysis larvae snapping shrimps<br />

243003 280 alphaeid postlarvae snapping shrimps<br />

243004 281 alphaeid juveniles snapping shrimps<br />

243112 282 Leptalpheus forceps mysis larvae snapping shrimp<br />

243113 283 Leptalpheus forceps postlarvae snapping shrimp<br />

243114 284 Leptalpheus forceps juveniles snapping shrimp<br />

243115 285 Leptalpheus forceps adults snapping shrimp<br />

243202 286 Alpheus viridari mysis larvae snapping shrimp<br />

243203 287 Alpheus viridari postlarvae snapping shrimp<br />

243204 288 Alpheus viridari juveniles snapping shrimp<br />

243205 289 Alpheus viridari adults snapping shrimp<br />

243212 290 Alpheus estuariensis mysis snapping shrimp<br />

243213 291 Alpheus estuariensis postlarvae snapping shrimp<br />

243214 292 Alpheus estuariensis juveniles snapping shrimp<br />

243215 293 Alpheus estuariensis adults snapping shrimp<br />

244000 22 turbellarians flatworms<br />

245000 170 mysid free embryos opossum shrimps, mysids<br />

246000 24 nematodes roundworms, threadworms<br />

247000 500 Branchiostoma floridae lancelet<br />

249105 38 hemipterans, corixid adults water boatmen<br />

249205 37 hemipterans, corixid juveniles water boatmen<br />

249304 39 hemipterans, naucorid juveniles creeping water bugs<br />

249305 40 hemipterans, naucorid adults creeoing water bugs<br />

249405 41 hemipterans, pleid adults pygmy backswimmers<br />

249505 42 hemipterans, gerrid adults water striders<br />

249605 43 hemipterans, belostomatid adults giant water bugs<br />

249715 44 hemipterans, veliid adults short-legged water striders<br />

249800 45 hemipterans, nepid adults water scorpions<br />

249900 46 hemipterans, notonectid adults backswimmers<br />

250002 294 Hippolyte zostericola mysis larvae zostera shrimp<br />

250003 295 Hippolyte zostericola postlarvae zostera shrimp<br />

250004 296 Hippolyte zostericola juveniles zostera shrimp<br />

250005 297 Hippolyte zostericola adults zostera shrimp<br />

250102 298 Thor sp. mysis larvae shrimp<br />

250103 299 Thor sp. postlarvae shrimp<br />

250104 300 Thor sp. juveniles shrimp<br />

250105 301 Thor sp. adults shrimp<br />

252000 81 trichopteran larvae caddisflies<br />

253000 33 ephemeropteran larvae mayflies<br />

253100 34 ephemeropterans, potamanthid larvae mayflies<br />

254002 302 Tozeuma carolinense mysis larvae arrow shrimp<br />

254003 303 Tozeuma carolinense postlarvae arrow shrimp<br />

254004 304 Tozeuma carolinense juveniles arrow shrimp


Master Ichthyo<strong>plan</strong>kton <strong>and</strong> Zoo<strong>plan</strong>kton HBMP Species List<br />

Taxcode PhyloOrder Description Common Name<br />

254005 305 Tozeuma carolinense adults arrow shrimp<br />

255004 224 Sicyonia laevigata juveniles rock shrimp<br />

255005 225 Sicyonia laevigata adults rock shrimp<br />

255102 226 sicyoniid mysis larvae rock shrimps<br />

255103 227 sicyoniid postlarvae rock shrimps<br />

255104 228 sicyoniid juveniles rock shrimps<br />

256000 64 neuropterans, Climacia spp. larvae spongillaflies<br />

257000 82 lepidopterans, pyralid larvae aquatic caterpillars<br />

258000 493 ophiuroidean juveniles brittlestars<br />

258100 494 ophiopluteus larvae brittlestars<br />

259002 259 Periclimenes spp. mysis larvae shrimps<br />

259003 260 Periclimenes spp. postlarvae shrimps<br />

259004 261 Periclimenes spp. juveniles shrimps<br />

259005 262 Periclimenes spp. adults shrimps<br />

259102 263 Periclimenes americanus mysis larvae American grass shrimp<br />

259103 264 Periclimenes americanus postlarvae American grass shrimp<br />

259104 265 Periclimenes americanus juveniles American grass shrimp<br />

259105 266 Periclimenes americanus adults American grass shrimp<br />

259112 267<br />

Periclimenes longicaudatus mysis<br />

larvae<br />

longtail grass shrimp<br />

259113 268 Periclimenes longicaudatus postlarvae longtail grass shrimp<br />

259114 269 Periclimenes longicaudatus juveniles longtail grass shrimp<br />

259115 270 Periclimenes longicaudatus adults longtail grass shrimp<br />

260000 3 Chrysaora quinquecirrha sea nettle<br />

260100 5 Scyphozoan, Rhopilema verrilli jellyfish<br />

261000 23 nemerteans ribbon worms<br />

262002 335 Upogebia affinis mysis larvae coastal mud shrimp<br />

262003 336 Upogebia affinis postlarvae coastal mud shrimp<br />

262004 337 Upogebia affinis juveniles coastal mud shrimp<br />

262005 338 Upogebia affinis adults coastal mud shrimp<br />

263003 340 shrimps, unidentified postlarvae shrimps<br />

263004 341 shrimps, unidentified juveniles shrimps<br />

265112 229 Acetes americanus mysis larvae shrimp<br />

265113 230 Acetes americanus postlarvae shrimp<br />

265114 231 Acetes americanus juveniles shrimp<br />

265115 232 Acetes americanus adults shrimp<br />

266003 233 Rimapenaeus spp. postlarvae shrimps<br />

266004 234 Rimapenaeus spp. juveniles shrimps<br />

266005 235 Rimapenaeus spp. adults shrimps<br />

267003 320 astacidean postlarvae crayfish<br />

267004 321 astacidean juveniles crayfish<br />

267005 322 astacidean adults crayfish<br />

269000 32 collembolas, podurid springtails<br />

272000 4 Aurelia aurita moon jellyfish


Master Ichthyo<strong>plan</strong>kton <strong>and</strong> Zoo<strong>plan</strong>kton HBMP Species List<br />

Taxcode PhyloOrder Description Common Name<br />

273002 244 Leptochela serratorbita mysis larvae combclaw shrimp<br />

273003 245 Leptochela serratorbita postlarvae combclaw shrimp<br />

273004 246 Leptochela serratorbita juveniles combclaw shrimp<br />

273005 247 Leptochela serratorbita adults combclaw shrimp<br />

275002 313 Ambidexter symmetricus mysis larvae shrimp<br />

275003 314 Ambidexter symmetricus postlarvae shrimp<br />

275004 315 Ambidexter symmetricus juveniles shrimp<br />

275005 316 Ambidexter symmetricus adults shrimp<br />

276000 155 leptostracan, Nebalia sp. nebaliid<br />

277000 27 hirudinoideans leeches<br />

278002 317 processid mysis larvae night shrimps<br />

278003 318 processid postlarvae night shrimps<br />

278004 319 processid juveniles night shrimps<br />

279002 324 callianassid mysis larvae ghost shrimps<br />

279003 325 callianassid postlarvae ghost shrimps<br />

279004 326 callianassid juveniles ghost shrimps<br />

279102 327 Callianassa spp. mysis larvae ghost shrimps<br />

279103 328 Callianassa spp. postlarvae ghost shrimps<br />

279104 329 Callianassa spp. juveniles ghost shrimps<br />

279105 330 Callianassa spp. adults ghost shrimps<br />

280002 306 Latreutes parvulus mysis larvae sargassum shrimp<br />

280003 307 Latreutes parvulus postlarvae sargassum shrimp<br />

280004 308 Latreutes parvulus juveniles sargassum shrimp<br />

280005 309 Latreutes parvulus adults sargassum shrimp<br />

281000 183 Lestrigonus bengalensis hyperiid amphipod<br />

282000 501 thaliaceans salps<br />

282001 502 ascidiacean larvae tunicate larvae<br />

283000 2 scyphozoan ephyrae jellyfish larvae<br />

284002 236<br />

Trachypenaeopsis mobilispinus mysis<br />

larvae<br />

shrimps<br />

284003 237<br />

Trachypenaeopsis mobilispinus<br />

postlarvae<br />

shrimps<br />

284004 238<br />

Trachypenaeopsis mobilispinus<br />

juveniles<br />

shrimps<br />

284005 239 Trachypenaeopsis mobilispinus adults shrimps<br />

285000 65 megalopterans, corydalid larvae dobsonflies<br />

285100 66 megalopterans, sialid larvae alderflies<br />

287000 503 hemichordate larvae acorn worms<br />

293000 28 sipunculids peanut worms<br />

294000 492 chitons chitons<br />

295000 19 siphonophores siphonophores<br />

296002 271 Palaemon floridanus mysis larvae Florida grass shrimp<br />

296003 272 Palaemon floridanus postlarvae Florida grass shrimp<br />

296004 273 Palaemon floridanus juveniles Florida grass shrimp


Master Ichthyo<strong>plan</strong>kton <strong>and</strong> Zoo<strong>plan</strong>kton HBMP Species List<br />

Taxcode PhyloOrder Description Common Name<br />

296005 274 Palaemon floridanus adults Florida grass shrimp<br />

297102 275 Le<strong>and</strong>er paulensis mysis larvae grass shrimp<br />

297103 276 Le<strong>and</strong>er paulensis postlarvae grass shrimp<br />

297104 277 Le<strong>and</strong>er paulensis juveniles grass shrimp<br />

297105 278 Le<strong>and</strong>er paulensis adults grass shrimp<br />

298100 14<br />

medusa (Hydrocodon forbesi or<br />

Corymorpha sp.)<br />

hydromedusa<br />

298101 374 Crab, Emerita sp. zoea larvae mole crab<br />

298103 375 Crab, Emerita sp. megalops larvae mole crab<br />

298104 376 Crab, Emerita sp. juveniles mole crab<br />

298105 377 Crab, Emerita sp. adults mole crab<br />

298201 366 Albunia sp. zoea larvae crab<br />

298203 367 Albunia sp. megalops larvae crab<br />

298204 368 Albunia sp. juveniles crab<br />

298205 369 Albunia sp. adults crab<br />

299000 17 medusa, Eutima sp. hydromedusa<br />

299001 384 Crab, Persephona sp. zoea larvae crab<br />

299002 240 Lysmata sp. mysis larvae shrimp<br />

299003 241 Lysmata sp. postlarvae shrimp<br />

299004 242 Lysmata sp. juveniles shrimp<br />

299005 243 Lysmata sp. adults shrimp<br />

301001 370 Crab, Lepidopa sp. zoea larvae crab<br />

301003 371 Crab, Lepidopa sp. megalops larvae crab<br />

301004 372 Crab, Lepidopa sp. juveniles crab<br />

301005 373 Crab, Lepidopa sp. adults crab


Page 1<br />

Section 9.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

9.0 <strong>Water</strong>-Dependent Birds<br />

9.1 Introduction<br />

McKay <strong>Bay</strong> <strong>and</strong> the Alafia Banks are recognized as important areas for a number of<br />

water-dependent resident <strong>and</strong> migrating bird species. To address concerns regarding<br />

potential impacts on bird populations resulting from decreased freshwater flows, a bird<br />

survey monitoring element was included as part of the initial HBMP design. Avifaunal<br />

data collection <strong>and</strong> analysis efforts were initiated after PBS&J obtained technical input<br />

<strong>and</strong> guidance from The National Audubon Society <strong>and</strong> independent ornithologists/field<br />

biologists.<br />

As a linkage between bird populations <strong>and</strong> withdrawals was not determined with the<br />

initial survey efforts in WY 2000-2003, a new refined HBMP special study was<br />

developed beginning in WY 2004-2005. The redesigned study discontinued surveys at<br />

all locations except near the mouth of the Alafia River (i.e., Alafia Banks) where a more<br />

detailed HBMP special study was initiated to evaluate potential changes in feeding<br />

patterns of bird species that have some potential to be affected by deceased freshwater<br />

inflows through Alafia River withdrawals for public water supply.<br />

9.2 Monitoring Overview<br />

The Alafia Banks monitoring site (Figure 9.1) is located at the mouth of the Alafia River.<br />

Monitoring is performed within the mud flats adjacent <strong>and</strong> proximal to the isl<strong>and</strong>s. The<br />

isl<strong>and</strong>s in this area are bird sanctuaries managed by the National Audubon Society. For<br />

the new special study, feeding surveys are performed for two species, the willet<br />

(Catoptrophorus semipalmatus) <strong>and</strong> white ibis (Eudocimus albus). These key indicator<br />

bird species were identified based on feeding characteristics <strong>and</strong> historical data through<br />

consultation with Audubon Society ornithologists.<br />

This special study includes data collection from the same general area as the previous<br />

bird element surveys (in particular, the east end of the Alafia Banks <strong>and</strong> the western<br />

shoreline immediately east of the Alafia Banks), but also reflect field conditions <strong>and</strong> the<br />

availability <strong>and</strong> location of white ibis <strong>and</strong> willet as they forage. The surveys continue to<br />

include the low <strong>and</strong> high tide surveys on the Alafia Banks as described in Section 9.4. In<br />

addition, benthic samples are collected to attempt to determine prey availability, in <strong>and</strong><br />

around areas in which feeding ibis <strong>and</strong> willets are observed. Benthic sampling activities<br />

reflect weather <strong>and</strong> tide conditions, but are intended to occur in conjunction with bird<br />

surveys. Benthic samples are collected <strong>and</strong> analyzed in accordance with the methods <strong>and</strong><br />

procedures described in Section 6.0 of this QA/QC Plan.


Page 2<br />

Section 9.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

9.3 Field Observations<br />

Surveys are performed to determine the number of bird species present <strong>and</strong> numbers of<br />

individuals by species. Surveys are conducted at high <strong>and</strong> low tides, during one day<br />

every other month (six times per year). Surveys to determine mean feeding rates occur<br />

six times per year on low tides only.<br />

The objectives of the avifauna survey element of the HBMP are as follows:<br />

• Estimate diversity <strong>and</strong> richness of selected water-dependent bird species in the<br />

vicinity of the Alafia River Reporting Unit (i.e., Alafia Banks).<br />

• Determine if species diversity <strong>and</strong> richness changes significantly over time.<br />

• Determine if significant changes to diversity <strong>and</strong> richness can be related to changes in<br />

benthos <strong>and</strong> fish species diversity <strong>and</strong> richness through analysis of appropriate taxa<br />

level(s) or guilds.<br />

• Identify foraging rates of the willet <strong>and</strong> white ibis, <strong>and</strong> determine if changes occur<br />

over time.<br />

• If changes to foraging rates occur, determine if feeding rate changes can be related to<br />

prey-base changes.<br />

• Determine prey species diversity within foraging areas.<br />

Avifauna surveys will be conducted by a minimum of two PBS&J staff biologists,<br />

whenever possible, including the Principle Investigator (PI) with a strong background in<br />

bird identification <strong>and</strong> surveying techniques (Figure 9.2). Field staff will be trained in all<br />

collection procedures <strong>and</strong> will have copies of all the pertinent chapters of the HBMP<br />

Project Specific QA/QC Document to consult. In addition to regular quarterly QA/QC<br />

reviews of field procedures, training workshops will be held from time to time to review<br />

all data collection protocols. This workshop may also be held in conjunction with an<br />

annual review of the HBMP field safety program.<br />

9.3.1 Pre-Mobilization<br />

Initial field mobilization <strong>and</strong> preparation should be completed the day before the survey.<br />

A checklist (Table 9.1) of all necessary supplies <strong>and</strong> equipment should be used to assure<br />

field personnel are properly prepared.<br />

9.3.2 Survey Preparation Tasks<br />

1. Check <strong>and</strong> clean the binoculars <strong>and</strong> spotting scope to ensure that they are in proper<br />

working order.


Page 3<br />

Section 9.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

2. Review an updated Florida Statewide Rare Bird Alert or other pertinent sources to be<br />

aware of unusual or rare birds that may be encountered during surveys. This<br />

information can be accessed at http://listserv.admin.usf.edu/archives/brdbrain.html.<br />

3. Identify <strong>and</strong> schedule at least three field days for both low <strong>and</strong> high tide surveys.<br />

Predictive tides can be obtained at web sites such as:<br />

http://tidesonline.nos.noaa.gov or<br />

http://co-ops.nos.noaa.gov/tides05/2ec3e.html#102<br />

The species <strong>and</strong> abundance survey events should be completed in two morning<br />

periods (primary days) for the Alafia River study area, every other month. The<br />

feeding survey is to be conducted every month, twice per month or as conditions<br />

permit.<br />

Any scheduled additional days will provide flexibility in the survey schedule in the<br />

event inclement weather prevents access to survey areas. All other PBS&J field<br />

personnel will be notified of scheduled field days <strong>and</strong> changes to primary survey<br />

days.<br />

4. Anticipate unpredicted changes in tide levels by evaluating weather forecasts for<br />

frontal activity <strong>and</strong> predominant wind conditions. This information should be<br />

evaluated no more than two days before scheduled field days so that appropriate<br />

adjustments to the survey effort can be made.<br />

5. Fuel <strong>and</strong> clean the boat <strong>and</strong> pack all necessary safety gear. Boat batteries should be<br />

checked <strong>and</strong> placed on slow charge.<br />

6. Prepare benthic samplers days prior to a suitable survey event to assure they are in<br />

working order to collect samples.<br />

9.3.3 Survey Time <strong>and</strong> Tide Criteria<br />

1. High Tide Survey (Species count survey only): peak local high tide levels must meet<br />

or exceed 2.0 feet or are identified as high tide by tide prediction charts referenced in<br />

section 9.3.2. Survey start time should be as early in the morning as possible,<br />

preferably at dawn <strong>and</strong> should coincide closely with the peak of the tide cycle.<br />

Surveys should not occur past 1130 hours Eastern St<strong>and</strong>ard Time.<br />

2. Low Tide Survey (both survey types): peak local low tide levels must be 1.0 foot or<br />

less, preferably to negative tide levels. Survey start time should be as early in the<br />

morning as possible, preferably at dawn, <strong>and</strong> should coincide closely with the peak of<br />

the tide cycle in the Alafia River study area. Morning surveys should not occur past<br />

1130 hours Eastern St<strong>and</strong>ard Time. Afternoon surveys should be concluded before


Page 4<br />

Section 9.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

sunset conditions to avoid low light conditions that would inhibit accurate bird<br />

identification.<br />

3. Feeding surveys, in general, will coincide with low tide events. These tides will be<br />

selected based on anticipated tide levels on site <strong>and</strong> are not based on a particular<br />

elevation as a range of elevations is anticipated for this type of survey.<br />

4. Special concessions should be made in the unusual event that not all of the abovedescribed<br />

criteria can be met for a survey month. In these instances, the PI should<br />

select a date that meets as many of these criteria as possible. Additionally, severe<br />

weather conditions on selected survey days (that meet time <strong>and</strong> tide criteria) may<br />

cause the rescheduling of survey date(s). If this occurs, the dates available for<br />

rescheduling may not meet the time <strong>and</strong> tide criteria. Again, the PI should use the<br />

same guidance described above.<br />

9.3.4 Miscellaneous Materials<br />

Data forms, list of potential survey sites, waterproof pens, pencils <strong>and</strong> markers should be<br />

placed in waterproof containers.<br />

A complete set of large <strong>and</strong> small-scale maps should be organized <strong>and</strong> appropriately<br />

packed for each reporting unit until data collector becomes familiar with site conditions.<br />

9.4 Avifauna Survey Data Collection<br />

9.4.1 Survey Day Field Mobilization<br />

1. Check timepieces for accuracy <strong>and</strong> consistency.<br />

2. Verify that all equipment on the checklist has been placed in the boat <strong>and</strong>/or vehicle<br />

for transport to survey sites<br />

9.4.2 Biotic Data Protocol<br />

Data collection will include observing <strong>and</strong> recording all bird species present, if possible,<br />

<strong>and</strong> the number of individuals per species. Higher taxon levels should be recorded if<br />

species cannot be determined (e.g., genus or family – see Table 9.2).<br />

For feeding surveys, foraging individuals of the willet <strong>and</strong>/or white ibis shall be<br />

identified <strong>and</strong> observed. During observations, data related to foraging period for<br />

individuals <strong>and</strong> number of prey captures per individual shall be recorded.


Page 5<br />

Section 9.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

9.4.3 Biotic Data Recording Logistics<br />

Surveys will be conducted by boat. The boat must be anchored <strong>and</strong> secured at the<br />

sampling station prior to surveying. Occasionally, wave conditions may prevent use of<br />

either the spotting scope or binoculars. In this instance surveying can be performed by<br />

st<strong>and</strong>ing in the water <strong>and</strong> using the spotting scope. Hip boots, waders, or a wet suit<br />

should be used during periods of cool water temperatures.<br />

9.4.4 Field Data Recording Procedures<br />

Data forms will be used to record all observations during field surveys. Table 9.2<br />

presents a sample data recording form for this survey <strong>and</strong> also lists all species that may<br />

occur within the three recording units during a calendar year. A sample data form for<br />

feeding survey is also provided as Table 9.3. Species were selected based upon<br />

previously known occurrences. Vagrant <strong>and</strong> rarely observed species were not included in<br />

this list, but can be recorded under “additional species.” These species are not<br />

considered valuable indicators of environmental conditions, but will be recorded for other<br />

uses (e.g., local birding records, Florida Rare Bird Alert).<br />

9.4.4.1 St<strong>and</strong>ard Species Surveys (Low <strong>and</strong> High Tides)<br />

1. Upon arrival at each survey station, record the start time, tidal stage, wind speed,<br />

wind direction <strong>and</strong> current weather conditions.<br />

2. A minimum of 15 minutes of observations <strong>and</strong> recording for both the st<strong>and</strong>ard <strong>and</strong><br />

duplicate surveys is required. Efforts should target recording all taxa <strong>and</strong> numbers<br />

within a reasonable period.<br />

3. Begin recording one species at a time. First, identify a species (or closest taxon<br />

level), then survey <strong>and</strong> count the number of individuals observed within the<br />

designated survey boundary. Repeat this process until all species have been recorded<br />

<strong>and</strong> counted.<br />

4. Limits of survey areas are identified on color infrared aerial photographs.<br />

Duplicate sampling must also occur at every survey station in order to estimate field<br />

sampling precision <strong>and</strong>, possibly, to determine an average number of species <strong>and</strong> total<br />

individuals for each station. Surveying <strong>and</strong> recording for the duplicate sampling should<br />

begin approximately five minutes after the completion of the initial recording at that<br />

station. To perform duplicate sampling follow the procedures described in Subsection 3<br />

above.<br />

Special Note: Observers should be conscious of minimizing disturbance of birds.<br />

Minimize movement <strong>and</strong> noise to the greatest extent possible. Such actions will reduce


Page 6<br />

Section 9.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

the chance of accidentally “flushing” birds from the sampling area, thereby adversely<br />

affecting data collection.<br />

9.4.4.2 Determination of Mean Feeding Rates<br />

The methodology used to estimate mean feeding rates is based upon that described in<br />

Moreira (1993) <strong>and</strong> Goss-Custard (1967). The target species, willet (Catoptrophourus<br />

semipalmatus) <strong>and</strong> white ibis (Eudocimus albus) were selected based upon the following<br />

criteria:<br />

1. These species are year-round residents.<br />

2. These species are known to feed on benthic organisms in s<strong>and</strong> <strong>and</strong> mud flats near<br />

the Alafia Banks.<br />

3. These species have been consistently counted at the Alafia Banks, throughout the<br />

year, for each of the prior four years of this study.<br />

4. No other bird species meet the above stated criteria.<br />

Mean feeding rates will be determined by counting the amount of food-captures a bird<br />

performs in a given area during short measuring periods. The study areas are the s<strong>and</strong><br />

<strong>and</strong> mud flats near the Alafia Banks. The surveys will focus primarily on foraging areas<br />

at the eastern tip of the Banks <strong>and</strong> nearby shoreline areas.<br />

Benthic samples shall be evaluated to determine species available as prey. During bird<br />

feeding observations, attempts should be made to determine what prey species are being<br />

captured by the birds once that data is available. Prey species <strong>and</strong> availability may<br />

change throughout the year, so efforts to identify prey base changes should be conducted.<br />

9.4.5 Abiotic Data Protocol<br />

Efforts will be made to record current time, date, tide stage <strong>and</strong> weather conditions for<br />

each station. Any unusual conditions will also be noted (i.e. large numbers of dead fish<br />

or other animals, including species <strong>and</strong> approximate size range) in the field notebook.<br />

1. Tide Stage Nomenclature<br />

• Descriptions of tide stages have been st<strong>and</strong>ardized for the HBMP. The following list<br />

presents these descriptors as they are to be recorded on the data forms.<br />

• high slack<br />

• high outgoing<br />

• mid outgoing<br />

• low outgoing<br />

• low slack<br />

• low incoming


Page 7<br />

Section 9.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

• mid incoming<br />

• high incoming<br />

2. Weather Conditions<br />

• Wind speed will be listed as both direction <strong>and</strong> approximate speed in mph which will<br />

be converted to metric by computer at a later time. example: 10-15 mph NNW<br />

• Cloud cover will be listed as a percent. example: 30 % cloud cover, light rain<br />

• Air temperature will be estimated based upon the most recently received forecast<br />

from the National Weather Service. example: 25.4 C<br />

9.5 Instrument & Equipment Maintenance<br />

Most of the field sampling equipment <strong>and</strong> instruments are to be used frequently enough<br />

that normal maintenance will be done in conjunction with pre-mobilization <strong>and</strong><br />

calibration procedures. In addition, all equipment is to be cleaned <strong>and</strong> checked after each<br />

use <strong>and</strong> any required maintenance performed at that time.<br />

All non-routine repairs are to be documented on appropriate Equipment Repair Forms as<br />

soon as a sampling run is completed. These are to be given to the Project Manager, who<br />

will transfer them to the QA/QC Officer’s records as soon as corrective action has taken<br />

place<br />

In the event of a major equipment failure, options to be implemented are listed below in<br />

order of priority. Decisions regarding options are to be based on the highest level of data<br />

collection attainable as assessed by the PI present at the time <strong>and</strong> place of the failure (any<br />

such activities must be noted in the field notebook).<br />

1. Use backup equipment. Both PBS&J <strong>and</strong> other members of the HBMP study team<br />

will each maintain a full array of field sampling equipment (boats, GPS units,<br />

binoculars, etc.). All field crews will carry cellular telephones <strong>and</strong> a list of contacts<br />

that will provide backup sampling equipment in order to reduce downtime due to<br />

equipment failure.<br />

2. Postpone sampling if appropriate backup equipment is not readily available, until<br />

repairs are made to the equipment or other sampling arrangements can be made.<br />

3. Record observations using the best available equipment <strong>and</strong> methods.<br />

4. Invalidate data. Repeat or report as N/A any invalidated data.


Page 8<br />

Section 9.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Table 9.1. Avifauna Survey Equipment Checklist<br />

Name:<br />

Equipment Type<br />

Date:<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

<br />

Data record forms<br />

Binoculars (7-9 power)<br />

Lens cleaner<br />

Field Guides (other references)<br />

Spotting scope (20 power or greater)<br />

Tripod<br />

Boat<br />

H<strong>and</strong>-held Tally Counter<br />

Compass or Geographic Positioning System Unit<br />

Survey Area Infrared Aerial Photographs <strong>and</strong> other maps<br />

Sunscreen<br />

Insect repellent<br />

Note: Required field guides include Peterson Field Guide: Birds (eastern) or National Geographic’s Field<br />

Guide to Birds of North America, <strong>and</strong> Peterson Field Guide: Advanced Birding. See endnotes for other<br />

reference documents.


Page 9<br />

Section 9.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Table 9.2. Alafia River (Banks) Bird Survey Data Collection Form: Sample<br />

ID# Species Name Station 1 Station 2 Station 3 Station 4<br />

Time on: Time on: Time on: Time on:<br />

Sample Time Record<br />

Time off: Time off: Time off: Time off:<br />

Time on: (dup) Time on: (dup) Time on: (dup) Time on: (dup)<br />

Time off: (dup) Time off: (dup) Time off: (dup) Time off: (dup)<br />

Tide Stage: Tide Stage: Tide Stage: Tide Stage:<br />

Envir. Condition<br />

Wind: Wind: Wind: Wind:<br />

Weather (Temp): Weather (Temp): Weather (Temp): Weather (Temp):<br />

1 American Avocet<br />

duplicate sample<br />

2 American Coot<br />

duplicate sample<br />

3 American Oystercatcher<br />

duplicate sample<br />

4 American Wigeon<br />

duplicate sample<br />

5 Black Skimmer<br />

duplicate sample<br />

6 Black-bellied Plover<br />

7<br />

duplicate sample<br />

Black-crowned Night<br />

Heron<br />

duplicate sample<br />

8 Black-necked Stilt<br />

duplicate sample<br />

9 Blue-winged Teal<br />

duplicate sample<br />

10 Bonaparte's Gull<br />

duplicate sample<br />

11 Brown Pelican<br />

duplicate sample<br />

12 Caspian Tern<br />

duplicate sample<br />

13 Cattle Egret<br />

duplicate sample<br />

14 Clapper Rail<br />

duplicate sample<br />

15 Common Loon<br />

duplicate sample<br />

16 Common Moorhen<br />

duplicate sample<br />

17 Common Tern<br />

18<br />

duplicate sample<br />

Double-crested<br />

Cormorant


Page 10<br />

Section 9.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Table 9.3<br />

Foraging Survey Data Form<br />

Date (YY/MM/DD) ____________________ Time on ____________________ Time off ____________________<br />

Species<br />

Duratio<br />

n (sec)<br />

Capture<br />

s<br />

Lat<br />

(deg)<br />

Lat<br />

(min)<br />

Lon<br />

(deg)<br />

Lon<br />

(min) Tide Wind Temp<br />

Cloud<br />

cover<br />

Notes


Page 11<br />

Section 9.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Alafia Banks<br />

Figure 9.1. The location of the Alafia Banks monitoring sites.


Page 12<br />

Section 9.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Figure 9.2. Organization of the <strong>Water</strong>-Dependent Birds Element.<br />

Project<br />

Management<br />

Bob Woithe, Ph.D.<br />

Principal<br />

Investigator<br />

Tom Davidowicz<br />

Tim Mann<br />

Field Observations<br />

Tom Davidowicz<br />

Tim Mann<br />

Jeff Winter<br />

Samantha Symon<br />

Data Analyses<br />

& Reporting<br />

Tom Davidowicz


Appendix 9-A<br />

Example of Equipment Repair Form


Equipment Repair Form<br />

Equipment description: ________________________________________________________<br />

Date reported: _______________________________<br />

Signature: _____________________________________<br />

Problem description:<br />

___________________________________________________________<br />

Action taken: _________________________________________________________________<br />

Repair description: ____________________________________________________________<br />

Date resolved: _____________________________<br />

Resolved by (signature): ______________________________<br />

Project Manager (signature): ___________________________


Appendix 9-B<br />

Bird Species Observed at the HBMP Stations Through<br />

September 2001


BirdID Common Name Genus Species Family Name Order Name Notes<br />

1 American Avocet Recurvirostra americana Recurvirostridae Charadriiformes<br />

2 American Coot Fulica americana Rallidae Gruiformes<br />

3 American Oystercatcher Haematopus palliatus Haematopodidae Charadriiformes<br />

4 American Wigeon Anas americana Anatidae Anseriformes<br />

5 Black Skimmer Rynchops niger Laridae Charadriiformes<br />

6 Black-bellied Plover Pluvialis squatarola Charadriidae Charadriiformes<br />

Black-crowned Night<br />

7 Heron Nycticorax nycticorax Ardeidae Ciconiiformes<br />

8 Black-necked Stilt Himantopus mexicanus Recurvirostridae Charadriiformes<br />

9 Blue-winged Teal Anas discors Anatidae Anseriformes<br />

10 Bonaparte's Gull Larus philadelphia Laridae Charadriiformes<br />

11 Brown Pelican Pelecanus occidentalis Pelecanidae Pelecaniformes<br />

12 Caspian Tern Sterna caspia Laridae Charadriiformes<br />

13 Cattle Egret Bubulcus ibis Ardeidae Ciconiiformes<br />

14 Clapper Rail Rallus longirostris Rallidae Gruiformes<br />

15 Common Loon Gavia immer Gaviidae Gaviiformes<br />

16 Common Moorhen Gallinula chloropus Rallidae Gruiformes<br />

17 Common Tern Sterna hirundo Laridae Charadriiformes<br />

18<br />

Double-crested<br />

Cormorant Phalacrocorax auritus Phalacrocoracidae Pelecaniformes<br />

19 Dunlin Calidris alpina Scolopacidae Charadriiformes<br />

20 Forster's Tern Sterna forsteri Laridae Charadriiformes<br />

21 Glossy Ibis Plegadis falcinellus Threskiornithidae Ciconiiformes<br />

22 Great Blue Heron Ardea herodias Ardeidae Ciconiiformes<br />

23 Great Egret Ardea alba Ardeidae Ciconiiformes<br />

24 Greater Yellowlegs Tringa melanoleuca Scolopacidae Charadriiformes<br />

25 Green Heron Butorides virescens Ardeidae Ciconiiformes<br />

26 Green-winged Teal Anas crecca Anatidae Anseriformes<br />

27 Herring Gull Larus argentatus Laridae Charadriiformes<br />

28 Hooded Meganser Lophodytes cucullatus Laridae Charadriiformes<br />

29 Killdeer Charadrius vociferus Charadriidae Charadriiformes<br />

30 Laughing Gull Larus atricilla Laridae Charadriiformes<br />

31 Least S<strong>and</strong>piper Calidris minutila Scolopacidae Charadriiformes<br />

32 Least Tern Sterna antillarum Laridae Charadriiformes<br />

33 Lesser Scaup Aythya affinis Anatidae Anseriformes<br />

34 Lesser Yellowlegs Tringa flavipes Scolopacidae Charadriiformes<br />

35 Little Blue Heron Egretta caerulea Ardeidae Ciconiiformes<br />

36 Long-billed Dowitcher Limnodromus scolopaceus Scolopacidae Charadriiformes<br />

37 Marbled Godwit Limosa fedoa Scolopacidae Charadriiformes<br />

38 Mottled Duck Anas fulvigula Anatidae Anseriformes<br />

39 Pied billed Grebe Podilymbus podiceps Podicipedidae Podicipediformes<br />

40 Piping Plover Charadrius melodus Charadriidae Charadriiformes<br />

41 Red Knot Calidris canutus Scolopacidae Charadriiformes<br />

42 Red-breasted Merganser Mergus serrator Anatidae Anseriformes<br />

43 Reddish Egret Egretta rufescens Ardeidae Ciconiiformes<br />

44 Redhead Aythya americana Anatidae Anseriformes<br />

45 Ringbilled Gull Larus delawarensis Laridae Charadriiformes<br />

46 Ring-necked Duck Aythya collaris Anatidae Anseriformes<br />

47 Roseate Spoonbill Ajaia ajaia Threskiornithidae Ciconiiformes


BirdID Common Name Genus Species Family Name Order Name Notes<br />

48 Royal Tern Sterna maxima Laridae Charadriiformes<br />

49 Ruddy Turnstone Arenaria interpres Scolopacidae Charadriiformes<br />

50 S<strong>and</strong>erling calidris alba Scolopacidae Charadriiformes<br />

51 S<strong>and</strong>wich Tern Sterna s<strong>and</strong>vicensis Laridae Charadriiformes<br />

52 Semipalmated Plover Charadrius semipalmatus Charadriidae Charadriiformes<br />

53 Semipalmated S<strong>and</strong>piper Calidris pusilla Scolopacidae Charadriiformes<br />

54 Short-billed Dowitcher Limnodromus griseus Scolopacidae Charadriiformes<br />

55 Snowy Egret Egretta thula Ardeidae Ciconiiformes<br />

56 Snowy plover Charadrius alex<strong>and</strong>rinus Charadriidae Charadriiformes<br />

57 Solitary S<strong>and</strong>piper Tringa solitaria Scolopacidae Charadriiformes<br />

58 Sora Porzana carolina Rallidae Gruiformes<br />

59 Spotted S<strong>and</strong>piper Actitus macularia Scolopacidae Charadriiformes<br />

60 Tricolored Heron Egretta tricolor Ardeidae Ciconiiformes<br />

61 Western S<strong>and</strong>piper Calidris mauri Scolopacidae Charadriiformes<br />

62 Whimbrel Numenius phaeopus Scolopacidae Charadriiformes<br />

63 White Ibis Eudocimus albus Threskiornithidae Ciconiiformes<br />

64 White Pelican Pelecanus erythrorhynchos Pelecanidae Pelecaniformes<br />

65 Willet Catoptrophorus semipalmatus Scolopacidae Charadriiformes<br />

66 Wood Stork Mycteria americana Ciconiidae Ciconiiformes<br />

67<br />

Yellow-crowned Night<br />

Heron Nyctanassa violacea Ardeidae Ciconiiformes<br />

68 Bald Eagle Haliaeetus leucocephalus Accipitridae Falconiformes<br />

69 Long Billed Curlew Numenium americanus Scolopacidae Charadriiformes<br />

70<br />

71 Royal/Caspianten Sterna sp. Laridae Charadriiformes<br />

72 Black Tern Chlidonias niger Laridae Charadriiformes<br />

73 Wilson's Plover Charadrius wilsonia Charadriidae Charadriiformes<br />

74 Fish Crow Corvus ossifragus Corvidae<br />

75 Mallard Anas platyrhynchos Anatidae Anseriformes<br />

70 was previously<br />

given as s<strong>and</strong>pipers;<br />

changed to 76<br />

76 Scolopacldae Scolopacldae Charadriiformes s<strong>and</strong>pipers<br />

77 Least Bittern Ixobrychus exilis Ardeidae Ciconiiformes<br />

78 Black Vulture Coragyps atratus Cathartidae Ciconiiformes<br />

79 Boat-tailed Grackle Quiscalus major Icteridae<br />

80 Turkey Vulture Cathartes aura Cathartidae Ciconiiformes<br />

82 Laridae Laridae Charadriiformes gulls/terns<br />

83 Northern Shoveler Anas clypeata Anatidae Anseriformes<br />

84 Anhinga Anhinga anhinga Anhingidae Ciconiiformes<br />

Immature Ibis (glossy or<br />

85 white) Threskiornithidae Ciconiiformes


Page 1<br />

Section 10.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

10.0 Vegetation<br />

10.1 Introduction<br />

This section describes the st<strong>and</strong>ard protocols, methods <strong>and</strong> procedures to be utilized during<br />

the vegetation monitoring elements of the HBMP.<br />

Habitat indicators, like biotic indicators, typically have indirect relationships to changes in<br />

freshwater inflow that are mediated by physical <strong>and</strong> chemical changes. The changes resulting<br />

from these relationships are generally manifested over a long term time scale. For example,<br />

changes in vegetation <strong>and</strong> sediment distribution patterns in response to small changes in<br />

freshwater inflows are likely to occur over a period of several years. Table 10.1 provides a<br />

summary of relative critical indicators, associated units of measure, <strong>and</strong> the primary sources<br />

of variability for each.<br />

During the initial design phase, the HBMP Focus Group agreed to the importance of tracking<br />

both submergent <strong>and</strong> emergent aquatic vegetation within the Alafia River in assessing<br />

potential long-term changes in habitat characteristics. The inclusion of quantitative<br />

vegetation monitoring in the lower Hillsborough River <strong>and</strong> Palm River/TBC systems was not<br />

recommended by the Focus Group because these areas lack natural vegetation.<br />

Based on submergent vegetation data collected in the Alafia River during initial HBMP<br />

implementation, the District approved a request in October 2001 to modify the frequency of<br />

submerged aquatic vegetation surveys in the Alafia River from once per year to once every<br />

five years.<br />

10.2 Organization <strong>and</strong> Personnel<br />

At a minimum, field staff should have degrees in an appropriate field of biology or<br />

environmental science, <strong>and</strong> at least two years of experience that include field<br />

identification/delineation of vegetation in Florida. Senior <strong>and</strong> supervisory staff should have<br />

significant additional specific relative experience <strong>and</strong>/or education. Figure 10.1 outlines the<br />

organizational responsibilities of the PBS&J staff with regard to this HBMP monitoring<br />

element.<br />

Field sampling will be conducted by at least two PBS&J staff whenever possible. Field<br />

crews will be trained in all sampling procedures <strong>and</strong> will have copies of all the pertinent<br />

chapters of the HBMP Project Specific QA/QC Document for consultation in the field. An<br />

annual training workshop will be held to review all sampling protocols, as well as field <strong>and</strong><br />

sampling procedures. This workshop will be held in conjunction with an annual review of<br />

the HBMP field safety program. Field sampling will occur in the late summer or fall.


Page 2<br />

Section 10.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

It is imperative that the methods used by HBMP vegetation monitoring personnel correspond<br />

to those contained in this portion of the QA/QC Plan. These st<strong>and</strong>ardized monitoring<br />

procedures, interpretation techniques, data recording methods, etc. will ensure that the<br />

collected data can be combined or compared, as appropriate.<br />

Members of the vegetation monitoring team for the HBMP must read, underst<strong>and</strong> <strong>and</strong> follow<br />

all steps in each procedure outlined below. If questions or suggestions arise, the Project<br />

Manager must be consulted for clarification before any further actions can be taken. Under<br />

no circumstance should a procedure or steps within a procedure be omitted or modified.<br />

10.3 HBMP Vegetation Monitoring Components<br />

The HBMP design calls for the following three different data collection activities for the<br />

habitat/vegetation element.<br />

• In the Alafia River only - Species composition <strong>and</strong> abundance of emergent <strong>and</strong><br />

submerged aquatic vegetation at fixed stations within the marine/brackish <strong>and</strong><br />

brackish/freshwater transition zones.<br />

• Aerial photographic interpretation <strong>and</strong> mapping to estimate total cover of vegetation<br />

types in each of the four reporting units.<br />

• Shoreline survey to estimate areal extent, <strong>and</strong> upstream/downstream limits of emergent<br />

aquatic vegetation communities in each of the four reporting units.<br />

Vegetation will be assessed along portions of the Alafia River where transitions in <strong>plan</strong>t<br />

species dominance occur. Percent cover at fixed stations <strong>and</strong> the upstream/downstream<br />

extent of black needlerush (Juncus roemerianus) will be determined <strong>and</strong> compared with<br />

salinity <strong>and</strong> other data to establish baseline conditions of existing vegetation communities<br />

<strong>and</strong> to monitor potential changes in those communities.<br />

10.3.1 Alafia River Transitional Area Fixed Station Vegetation Sampling<br />

Vegetation in the lower Alafia River will be monitored annually at fixed stations in two<br />

reporting units defined as the marine/brackish transitional area, <strong>and</strong> the brackish/fresh<br />

transitional area. These reporting units were identified from aerial photointerpretation <strong>and</strong><br />

field reconnaissance of the existing first <strong>and</strong> last occurrence of black needlerush. The<br />

original design called for midpoints of the marine/brackish <strong>and</strong> the brackish/fresh reporting<br />

units to be defined as the observed downstream <strong>and</strong> upstream last occurrence of needlerush,<br />

respectively. The respective reporting units were to extend 2 km upstream <strong>and</strong> 2 km<br />

downstream from these two midpoints, <strong>and</strong> both the marine/brackish <strong>and</strong> the brackish/fresh<br />

reporting units would have been 4 river-km in length. Each reporting unit was to have been<br />

divided into four spatial strata, each 1 km in length.


Page 3<br />

Section 10.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

In the initial HBMP survey (November 2001), mangroves dominated the area downstream of<br />

the downstream-most occurrence of needlerush. During this same survey, there was less<br />

than 2 km of emergent vegetation upstream of the upstream-most occurrence of needlerush.<br />

As a result, the downstream boundary of the marine/brackish unit was established as the<br />

downstream-most occurrence of needlerush. The marine/brackish reporting unit extends 4<br />

km upstream from this boundary. The upstream boundary of the brackish/fresh unit was<br />

established as the last occurrence of significant emergent vegetation. The brackish/fresh<br />

reporting unit extends 4 km downstream from this boundary.<br />

There is a 0.7-kilometer gap between the upstream boundary of the marine/brackish unit, <strong>and</strong><br />

the downstream boundary of the brackish/fresh unit. This gap was treated as an intermediate<br />

stratum. Seven stations (70% of the ten stations used in the 1 km-long strata) were<br />

established in the intermediate stratum to give complete fixed-station coverage throughout<br />

the emergent vegetation areas of the lower Alafia River.<br />

Species composition <strong>and</strong> abundance will be measured at fixed stations for emergent<br />

vegetation (annually) <strong>and</strong> r<strong>and</strong>omly selected stations or a series of transects for submerged<br />

vegetation (every five years). These efforts will occur only on the lower Alafia River. The<br />

field data form used for vegetation sampling is shown in Appendix 10-A, Exhibit 10.1.<br />

Station locations are shown in Appendix 10-C. The HBMP vegetation sampling will follow<br />

the format detailed below. In order to minimize observer bias, sampling personnel will carry<br />

copies of the previous sampling results in the field. Before recording observations, field<br />

sampling personnel will compare current observations to results from the previous sampling<br />

efforts. Before recording observations that are different from previous sampling results,<br />

personnel will make conscious decisions that the differences could not be the result of<br />

different cover interpretations by previous observers instead of real differences in vegetation<br />

cover.<br />

Marine/Brackish Reporting Unit – beginning at downstream edge of needlerush<br />

distribution upstream 4 km:<br />

1) 4 strata – each 1-km long.<br />

2) 36 permanent sample stations within the unit for emergent vegetation<br />

3) 4 r<strong>and</strong>omly selected transects (each a minimum of 100 meters long <strong>and</strong><br />

located in areas with less than 2-meter water depth) within the unit for<br />

submerged aquatic vegetation (SAV) using a submerged video camera. If<br />

conditions prevent using a video camera, then 36 r<strong>and</strong>omly selected sample<br />

stations will be monitored within the unit for submerged aquatic vegetation.<br />

SAV stations will be located in areas with less than 2-meter water depth.<br />

4) Emergent stations were established, marked, <strong>and</strong> GPS-located in Year 1.<br />

5) SAV transects/stations are r<strong>and</strong>omly selected each year they are sampled<br />

(sampled once every 5 years).<br />

6) For emergent vegetation stations, measure species present <strong>and</strong> percent cover<br />

by dominant species.


Page 4<br />

Section 10.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

7) Relative percent cover of emergent vegetation will be calculated as a<br />

database procedure from reported measurement. Percent cover will be<br />

recorded using the Braun-Blanquet scale (Table 10.2, Braun-Blanquet 1932).<br />

8) Fixed station data from the previous year will be carried in the field <strong>and</strong> the<br />

observer will determine if the observed coverages are different from those<br />

recorded the previous year. If the coverages are different, the new values<br />

should be recorded. If they are not, the previous year's values should be<br />

recorded. This procedure is designed to minimize observer bias.<br />

9) For SAV, record species present <strong>and</strong> estimate total coverage if possible.<br />

10) A 4.0 m 2 quadrat will be used for emergent vegetation. The quadrat will be<br />

centered on the permanent station marker <strong>and</strong> oriented so that its sides are<br />

parallel with the North-South <strong>and</strong> East-West compass directions<br />

11) A 1.0 m 2 quadrat will be used for SAV quadrat (for r<strong>and</strong>om station<br />

sampling). The quadrat orientation will be r<strong>and</strong>om.<br />

12) Interstitial soil salinity will be measured in the vicinity of each fixed station<br />

using a refractometer (a hole is dug <strong>and</strong> water that fills the hole is placed in<br />

the refractometer).<br />

Brackish/Fresh Reporting Unit – 4 km long river segment beginning on upstream edge<br />

of Juncus distribution heading downstream. All procedures outlined above will be<br />

utilized.<br />

Unidentified species will be collected <strong>and</strong> sent to the University of South Florida for species<br />

verification. Identification of emergent aquatic vegetation (EAV) species will follow that of<br />

Godfrey <strong>and</strong> Wooten (1981). In addition to EAV at marsh quadrats, interstitial salinities will<br />

be measured using a Reichert refractometer.<br />

10.3.2 Floodplain Vegetation Polygon Mapping<br />

False-color infrared aerial photographs will be provided by <strong>Tampa</strong> <strong>Bay</strong> <strong>Water</strong> in electronic<br />

format. These will be supplemented with blueline aerial photographs available from<br />

Hillsborough County <strong>and</strong> the Florida Department of Transportation.<br />

The boundaries of floodplain vegetation associated with HBMP reporting units will be<br />

delineated by photointerpretation <strong>and</strong> field mapping. The resulting polygons will be<br />

digitized to create GIS coverage for each reporting unit. Inter-annual changes in the area <strong>and</strong><br />

extent of major vegetation associations in the reporting units will be calculated by comparing<br />

the association boundaries over time.<br />

Aerial photographs with a scale of 1 inch = 200 ft. or larger will be used for the field<br />

mapping efforts. Year 2 <strong>and</strong> later photointerpretation <strong>and</strong> field mapping will use aerial<br />

photographs with overlays of mapping polygons from the previous mapping event. The<br />

observed vegetation-association boundaries should be compared with the previous event’s<br />

boundary to determine whether the boundary has shifted. Changes in vegetation boundaries<br />

will be made by creating a copy of the previous event’s coverage <strong>and</strong> editing only those


Page 5<br />

Section 10.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

polygons with changed boundaries or shapes. This procedure is designed to minimize<br />

observer bias.<br />

10.3.3 Linear Vegetation Mapping <strong>and</strong> Shoreline Surveys<br />

The field codes used in the mapping effort are given in Table 10.3. This effort will occur in<br />

all four HBMP reporting units. Aerial photographs with a scale of 1 inch = 200 ft. or larger<br />

will be used for the mapping. Year 2 <strong>and</strong> later mapping will use aerial photographs with<br />

overlays of mapping polygons from the previous survey period (completed every five years).<br />

Estimation of the first <strong>and</strong> last occurrence of vegetation community indicator species (e.g.,<br />

Juncus) for each monitoring event will be based on the population occurrence of each<br />

species rather than the occurrence of individual <strong>plan</strong>ts of each species. This will be<br />

accomplished by visual inspection <strong>and</strong> identification of <strong>plan</strong>t species from a boat. The falsecolor<br />

infrared aerial photography described above will be used in the field to assist in the<br />

location of the first <strong>and</strong> last occurrences of the populations of the conspicuous indicator<br />

species once the initial survey is completed <strong>and</strong> the photography is ground-truthed. A<br />

photographic map key <strong>and</strong> the photographic record of the identified locations of the<br />

conspicuous indicator species will be prepared <strong>and</strong> digitized to create a GIS layer of first <strong>and</strong><br />

last occurrence <strong>and</strong> the vegetation associations that border the river. Inter-annual changes in<br />

first <strong>and</strong> last occurrence <strong>and</strong> the extent of major vegetation associations in the reporting units<br />

will be calculated by comparing the association boundaries over time.<br />

10.4 GIS Database<br />

Polygon <strong>and</strong> linear mapping will use a GIS database. The following section describes data<br />

management conventions for this database.<br />

10.4.1 Metadata<br />

GIS staff should use the ArcView metadata extension (metadata2.avx) to document all new<br />

shape files. Minimum metadata includes the creation date, source <strong>and</strong> projection. The<br />

Arc/INFO 8 metadata feature should be used to document new coverages.<br />

10.4.2 File Naming<br />

File <strong>and</strong> Directory names for GIS must not contain spaces. A mnemonic name that hints at<br />

the contents is best. Always keep a backup of the previous version of a shape file, in case of<br />

corruption or error. The user should either make a copy <strong>and</strong> put a version number at the end<br />

or save a copy of the original with the suffix “BK” added to the file name.<br />

10.4.3 Directory Structure<br />

The object of structuring directories is to keep ALL files used on a project in the<br />

project directory. This means copy graphics, or st<strong>and</strong>ard layers from shared directories into<br />

the project BEFORE linking them to an ArcView Project. Note that projects will run much


Page 6<br />

Section 10.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

faster <strong>and</strong> take less space if you clip a shapefile to the largest project map extent, rather than<br />

store <strong>and</strong> constantly redraw a state-wide coverage.<br />

Project Directories. 100909.10_NewProj is a sample st<strong>and</strong>ard project directory name.<br />

Project Subdirectories. The identifier “PM” designates Project Management files. The<br />

number of subdirectories used is at the discretion of the individual. Include the project<br />

<strong>control</strong> <strong>plan</strong> here as well as in hard copy in the project file. Common subdirectories include:<br />

• AvProj = ArcView Project files<br />

• Themes = All Themes: shape files, graphics, image files, geodatabases, <strong>and</strong> database<br />

files referenced in ArcView. If you have to send anything but the Avproj <strong>and</strong> Themes<br />

directory to move the project elsewhere, you have not followed the rule.<br />

Also, regarding all .avl files describing a theme legend - The st<strong>and</strong>ard legend for a<br />

shapefile should be stored along with the shape file <strong>and</strong> have the same name. The<br />

preferred choice is to put all files directly into Themes -- no subdirectories. This system<br />

makes it simple to re-map the .apr file to another drive or directory.<br />

Include Metadata files with the same name as the shape file. The arcview metadata<br />

extension gives them the .met extension. For coverages <strong>and</strong> personal geodatabases, the<br />

metadata should be included in the same directory as coverage directory or within the<br />

geodatabase.<br />

• Database = Access <strong>and</strong> other Databases that are not geodatabases, <strong>and</strong> not themes.<br />

• Methodology = Any innovative project methodology that a new user would need to<br />

know, OR that would be useful on similar projects in the future.<br />

• Reports = Project Reports<br />

• Exports = Exported Print files, JPEGS, WMF’s, etc.<br />

• Outside = All outside data other than st<strong>and</strong>ard sources. Place data from the client or a<br />

sub-consultant in a subdirectory indicating the source. DO NOT map ArcView projects<br />

to these files.<br />

Copy any data used in ArcView to the Themes directory. If outside data are too large to<br />

store a reference copy in Outside, create a directory placeholder in Outside <strong>and</strong> put in a<br />

readme.doc file referencing either a CD in the project file, or Read Only files in the Themes<br />

directory.


Page 7<br />

Section 10.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

10.4.4 Map St<strong>and</strong>ards<br />

All maps going to external sources must have:<br />

• North Arrow, Scale <strong>and</strong> Legend,<br />

• Date,<br />

• Sources,<br />

• APR File Name with full path, <strong>and</strong><br />

• Layout name.<br />

NOTE. This implies that if someone calls for more copies, or revised copies, anyone should<br />

be able to open the Project File, pull up the Layout, <strong>and</strong> see the same layout that is in the<br />

hard copy. That means creating a separate view <strong>and</strong> separate Layout for each map. There is<br />

a “copy layout” extension on the Internet, or group the contents of a layout, cut <strong>and</strong> paste<br />

into a new layout, then ungroup.<br />

10.4.5 Map Revisions<br />

When revising maps, the requested changes should be marked on the original map with<br />

highlighter or other obvious markings. Cross off the revisions with a different color<br />

highlighter as they are completed.<br />

10.4.6 Map Review<br />

Always have someone else review maps before sending them out.<br />

Transmittals to outside clients should always pass through the Project Manager, unless the<br />

PM designates otherwise.<br />

10.4.7 Automated Verification Procedures<br />

In addition to the st<strong>and</strong>ard visual checks of your work to confirm that it adheres to the<br />

relevant st<strong>and</strong>ards, always be on the lookout for new verification procedures. These<br />

typically would involve referencing to an outside source, or an earlier version, or checking<br />

for known data ranges.<br />

When dealing with many files, check to make sure file counts are consistent <strong>and</strong> no files<br />

have been left out.<br />

Check data for outliers. If the reasonable range for an attribute is known, check for data<br />

outside the range.<br />

Always build verification into data entry forms. Either limit users to selecting from a list, or<br />

put verification limits on the field.


Page 8<br />

Section 10.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

10.4.8 Electronic submittal st<strong>and</strong>ards<br />

Electronic Submittals should always be on a CD labeled with a permanent marker or label<br />

maker. The label should contain: PROJECT-DATA-DATE-CONTACT-COMMENTS.


Page 9<br />

Section 10.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Table 10.1 Vegetation Indicators, Units of Measure <strong>and</strong> Sources of Variability<br />

Critical Indicator Units of Measure Potential Sources of Variability<br />

Emergent Vegetation<br />

- Species Composition<br />

- Abundance<br />

- Distribution<br />

- Areal Extent<br />

Submerged Vegetation<br />

- Species Composition<br />

- Abundance<br />

- Distribution<br />

- Areal Extent<br />

species % comp.<br />

no./unit area<br />

river km<br />

acres<br />

species % comp.<br />

no./unit area<br />

river km<br />

acres<br />

depth, salinity, sediment grain size,<br />

sediment organic matter, velocity, exotics<br />

depth, light transmission, salinity,<br />

sediment grain size, velocity<br />

Table 10.2 The Braun-Blanquet Vegetation Classification Scale<br />

Rating Number Of Plants Area Occupied<br />

+ Sparse or very sparse Very small<br />

1 Plentiful Small<br />

2 Very numerous 10-25%<br />

3 Any number 25-50%<br />

4 Any number 50-75%<br />

5 Any number >75%


Page 10<br />

Section 10.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Table 10.3 Shoreline <strong>and</strong> Wetl<strong>and</strong> Mapping Classification System<br />

FLUCCS<br />

Code<br />

Shore Type<br />

Description<br />

4000 Upl<strong>and</strong> Forests Natural forest areas with at least 10% canopy closure<br />

5411 Tidal Streams/Creeks Must be less than 1 mile wide<br />

5413 Natural Non-Vegetated Natural shoreline with no vegetation<br />

6100 Wetl<strong>and</strong> Hardwood Forests<br />

Forested freshwater wetl<strong>and</strong>s with at least 10% canopy closure,<br />

with at least 66% relative cover by hardwoods, but where no tree<br />

species achieves 66% relative cover<br />

6120 Mangrove Swamp Can be red or black mangroves with at least 10% canopy closure<br />

6200 Wetl<strong>and</strong> Coniferous Forests<br />

6300 Mixed Wetl<strong>and</strong> Forest<br />

Forested freshwater wetl<strong>and</strong>s with at least 10% canopy closure,<br />

with at least 66% relative cover by conifers, but where no tree<br />

species achieves 66% relative cover<br />

Forested freshwater wetl<strong>and</strong>s with at least 10% canopy closure, but<br />

where no tree species or group (hardwood or conifer) achieves 66%<br />

relative cover<br />

6400<br />

Vegetated Non-Forested<br />

Wetl<strong>and</strong><br />

Wetl<strong>and</strong>s with less than 10% canopy closure by trees, where no<br />

species comprises 66% or more of the relative aerial cover<br />

6411 Sawgrass At least 66% relative aerial coverage by sawgrass<br />

6412 Cattail<br />

At least 66% relative cover by cattail <strong>and</strong> less than 10% aerial cover<br />

by needlerush<br />

6421 Cordgrass At least 66% relative cover by Spartina<br />

6422 Needlerush<br />

6424 Needlerush/Cattail<br />

6425 Needlerush/Leather Fern<br />

6426 Mixed Saltwater Marsh<br />

At least 66% relative cover by needlerush <strong>and</strong> less than 10% aerial<br />

cover by leatherfern<br />

At least 66% relative aerial coverage by needlerush <strong>and</strong> cattail<br />

combined <strong>and</strong> at least 10% relative aerial coverage each species<br />

individually<br />

At least 66% relative aerial coverage by needlerush <strong>and</strong> leather fern<br />

combined <strong>and</strong> at least 10% relative aerial coverage each species<br />

individually.<br />

Non-forested saltwater wetl<strong>and</strong>s where no species comprises 66%<br />

or more of the relative aerial cover<br />

6428 Common reed At least 66% relative aerial coverage by Phragmites<br />

9110<br />

Submerged Aquatic<br />

Vegetation (SAV)<br />

Presence of SAV, including seagrasses<br />

9121 Attached algae Presence of attached marine or freshwater algae


Page 11<br />

Section 10.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Vegetation Studies<br />

Bob Woithe<br />

Shoreline<br />

Survey<br />

Aerial<br />

Photography<br />

Alafia<br />

Transition Zones<br />

Emergent Vegetation<br />

Areal Extent & Limits<br />

B. Woithe<br />

Field Staff<br />

Estimations – Total<br />

Coverage By Type<br />

B. Woithe<br />

P. Latham<br />

K. Anamisis<br />

Emergent &<br />

Submergent<br />

B. Woithe<br />

Field Staff<br />

Figure 10.1 Organization of Vegetation Elements


Appendix 10-A<br />

Example of Vegetation Monitoring Forms


Exhibit 10.1 Fixed-station vegetation sampling data form<br />

Notebook #: 100909-# TBW HBMP Page # _______<br />

Reporting Unit: ____________ Stratum: _______________ Station # _____________<br />

Lat degrees 27 minutes __________ Long deg__________ 82 minutes____________<br />

Date: _________ _________ (yy/mm/dd) Time On Station (EST) ________________________<br />

Species Br.-Bl. Cover Species Br.-Bl. Cover<br />

_____________________________ ________ ____________________________ ______<br />

_____________________________ ________ ____________________________ ______<br />

_____________________________ ________ ____________________________ ______<br />

_____________________________ ________ ____________________________ ______<br />

_____________________________ ________ ____________________________ ______<br />

_____________________________ ________ ____________________________ ______<br />

_____________________________ ________ ____________________________ ______<br />

Date: _________________ (yy/mm/dd) Time On Station (EST) _______________<br />

Tide Stage: _________________<br />

Interstitial Salinity (ppt) __________________<br />

Field Notes: _______________________________________________________________________<br />

__________________________________________________________________________________<br />

__________________________________________________________________________________<br />

Reporting Unit: ____________ Stratum: _______________ Station # _____________<br />

Lat degrees 27 minutes __________ Long deg__________ 82 minutes____________<br />

Date: _________ _________ (yy/mm/dd) Time On Station (EST) ________________________<br />

Species Br.-Bl. Cover Species Br.-Bl. Cover<br />

_____________________________ ________ ____________________________ ______<br />

_____________________________ ________ ____________________________ ______<br />

_____________________________ ________ ____________________________ ______<br />

_____________________________ ________ ____________________________ ______<br />

_____________________________ ________ ____________________________ ______<br />

_____________________________ ________ ____________________________ ______<br />

_____________________________ ________ ____________________________ ______<br />

Date: _________________ (yy/mm/dd) Time On Station (EST) _______________<br />

Tide Stage: _________________<br />

Interstitial Salinity (ppt) __________________<br />

Field Notes: _______________________________________________________________________<br />

__________________________________________________________________________________<br />

__________________________________________________________________________________<br />

Braun Blanquet<br />

Rating Number of Plants Area Occupied Rating Number of Plants Area Occupied<br />

+ Sparse or very sparse very small 3 Any number 25-50%<br />

1 Plentiful Small 4 Any number 50-75%<br />

2 Very numerous 10-25% 5 Any number >75%


Appendix 10-B<br />

Plant Species Observed at HBMP Fixed Stations<br />

Through 2004


HBMP Master Vegetation Species List<br />

Species# Genus species Family Common Name<br />

0 Bare ground -9999 -9999 Bare ground<br />

1 Typha angustifolia Typhaceae Narrow leaf cattail<br />

2 Crinum americanum Agavaceae String lily<br />

3 Juncus roemerianus Juncaceae Needle rush<br />

4 Cladium jamaicense Cyperaceae Sawgrass<br />

5 Panicum repens Poaceae Torpedo grass<br />

6 Acrostichum aureum Adiantaceae Golden leather fern<br />

7 Rhizophora mangle Rhizophoraceae Red mangrove<br />

8 Avicennia germinans Verbenaceae Black mangrove<br />

9 Ruppia maritima Zosteraceae Widgeon grass<br />

10 Brachiaria purpurascens Poaceae Para grass<br />

11 Solidago spp. . .


Appendix 10-C<br />

HBMP Alafia River Vegetation Monitoring Fixed<br />

Station Locations


Veg_Stratum<br />

HBMP Fixed Vegetation Monitoring Station Locations<br />

Veg_Station<br />

Latitude_Degrees<br />

Latitude_Minutes<br />

Longitude_Degrees<br />

Longitude_Minutes<br />

Equivalent River Centerline<br />

Station<br />

1 1 27 52.253 82 18.647 AR510362 10.362<br />

1 2 27 52.259 82 18.660 AR510334 10.334<br />

1 3 27 52.243 82 18.678 AR510306 10.306<br />

1 4 27 52.236 82 18.825 AR510059 10.059<br />

1 5 27 52.226 82 18.825 AR510054 10.054<br />

1 6 27 52.226 82 18.825 AR510054 10.054<br />

1 7 27 52.197 82 18.861 AR510000 10.000<br />

1 8 27 52.191 82 18.874 AR509976 9.976<br />

1 9 27 52.156 82 18.879 AR509945 9.945<br />

2 1 27 51.941 82 18.803 AR509491 9.491<br />

2 2 27 51.927 82 18.809 AR509458 9.458<br />

2 3 27 51.910 82 18.816 AR509420 9.420<br />

2 4 27 51.902 82 18.857 AR409329 9.329<br />

2 5 27 51.906 82 18.864 AR409317 9.317<br />

2 6 27 51.916 82 18.871 AR409317 9.317<br />

2 7 27 51.984 82 18.943 AR409131 9.131<br />

2 8 27 51.991 82 19.123 AR408799 8.799<br />

2 9 27 51.990 82 19.132 AR408784 8.784<br />

3 1 27 52.069 82 19.248 AR408583 8.583<br />

3 2 27 52.132 82 19.329 AR408420 8.420<br />

3 3 27 52.133 82 19.336 AR408406 8.406<br />

3 4 27 52.191 82 19.477 AR408143 8.143<br />

3 5 27 52.192 82 19.487 AR408127 8.127<br />

3 6 27 52.108 82 19.573 AR407983 7.983<br />

3 7 27 52.157 82 19.639 AR407871 7.871<br />

3 8 27 52.066 82 19.679 AR407799 7.799<br />

3 9 27 52.063 82 19.688 AR407782 7.782<br />

4 1 27 51.986 82 19.808 AR407537 7.537<br />

4 2 27 51.973 82 19.950 AR407240 7.240<br />

4 3 27 51.930 82 20.012 AR407112 7.112<br />

4 4 27 51.856 82 20.185 AR306787 6.787<br />

4 5 27 51.849 82 20.209 AR306744 6.744<br />

4 6 27 51.763 82 20.153 AR306843 6.843<br />

4 7 27 51.755 82 20.168 AR306817 6.817<br />

4 8 27 51.755 82 20.182 AR306793 6.793<br />

4 9 27 51.831 82 20.266 AR306643 6.643<br />

5 1 27 51.431 82 21.038 AR305054 5.054<br />

5 2 27 51.435 82 21.087 AR304973 4.973<br />

5 3 27 51.555 82 20.590 AR305988 5.988<br />

5 4 27 51.548 82 20.595 AR305970 5.970<br />

5 5 27 51.529 82 20.616 AR305900 5.900<br />

5 6 27 51.518 82 20.605 AR305942 5.942<br />

5 7 27 51.507 82 20.620 AR305887 5.887<br />

6 1 27 51.507 82 20.630 AR305855 5.855<br />

6 2 27 51.495 82 20.652 AR305795 5.795<br />

6 3 27 51.544 82 20.785 AR305495 5.495<br />

River Kilometer


Veg_Stratum<br />

Veg_Station<br />

Latitude_Degrees<br />

Latitude_Minutes<br />

Longitude_Degrees<br />

Longitude_Minutes<br />

Equivalent River<br />

Centerline Station<br />

River Kilometer<br />

6 5 27 51.549 82 20.817 AR305434 5.434<br />

6 6 27 51.542 82 20.843 AR305384 5.384<br />

6 7 27 51.528 82 20.844 AR305382 5.382<br />

6 8 27 51.431 82 21.038 AR305054 5.054<br />

6 9 27 51.435 82 21.087 AR304973 4.973<br />

7 1 27 51.509 82 21.354 AR204525 4.525<br />

7 2 27 51.626 82 21.367 AR204504 4.504<br />

7 3 27 51.616 82 21.384 AR204476 4.476<br />

7 4 27 51.578 82 21.398 AR204453 4.453<br />

7 5 27 51.562 82 21.420 AR204416 4.416<br />

7 6 27 51.551 82 21.424 AR204410 4.410<br />

7 7 27 51.545 82 21.423 AR204411 4.411<br />

7 8 27 51.498 82 21.598 AR204121 4.121<br />

7 9 27 51.492 82 21.631 AR204067 4.067<br />

8 1 27 51.534 82 21.811 AR203767 3.767<br />

8 2 27 51.548 82 21.834 AR203725 3.725<br />

8 3 27 51.535 82 22.048 AR203349 3.349<br />

8 4 27 51.535 82 22.073 AR203308 3.308<br />

8 5 27 51.326 82 22.264 AR202987 2.987<br />

8 6 27 51.330 82 22.265 AR202985 2.985<br />

8 7 27 51.343 82 22.264 AR202987 2.987<br />

8 8 27 51.257 82 22.202 AR203093 3.093<br />

8 9 27 51.260 82 22.205 AR203088 3.088<br />

9 1 27 51.364 82 22.401 AR202759 2.759<br />

9 2 27 51.354 82 22.417 AR202733 2.733<br />

9 3 27 51.336 82 22.504 AR202590 2.590<br />

9 4 27 51.356 82 22.501 AR202595 2.595<br />

9 5 27 51.319 82 22.600 AR202431 2.431<br />

9 6 27 51.622 82 22.478 AR202632 2.632<br />

9 7 27 51.629 82 22.485 AR202620 2.620<br />

9 8 27 51.639 82 22.553 AR202509 2.509<br />

9 9 27 51.651 82 22.687 AR102288 2.288


Page 1 of 2<br />

Section 11.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

11.0 References <strong>and</strong> Relevant Literature<br />

Braun-Blanquet, J. 1932. Plant Sociology. Oxford University Press. Oxford, UK.<br />

Campbell Scientific. 1997. CR10X Measurement <strong>and</strong> Control Module Operator’s<br />

Manual. Campbell Scientific, Inc. Logan, UT.<br />

Campbell Scientific. 2007. LoggerNet Instruction Manual. Campbell Scientific, Inc.<br />

Logan, UT.<br />

Cochran, W.G. 1977. Sampling Techniques. 3 rd Edition. John Wiley & Sons. New<br />

York, NY.<br />

Cochran, W.G., F. Mosteller, <strong>and</strong> J.W. Tukey. 1954. Principles of sampling. Journal of<br />

the American Statistical Association 49:13-35.<br />

Furness, R.W. <strong>and</strong> J.J.D. Greenwood (eds.). 1993. Birds as Monitors of Environmental<br />

Change. Chapman <strong>and</strong> Hall. London, Engl<strong>and</strong>.<br />

Godfrey, R.K., <strong>and</strong> J. W. Wooten. 1981. Aquatic <strong>and</strong> Wetl<strong>and</strong> Plants of the<br />

Southeastern United States. University of Georgia Press. Athens, GA.<br />

Goss-Custard, J.D. 1967. The Winter Feeding Ecology of the Redshank Tringa totanus.<br />

Ibis 111: 338-356.<br />

Grant, P.J. 1999. Gulls: A Guide to Identification. Academic Press. San Diego, CA.<br />

Hayman, P., J. Marchant <strong>and</strong> J. Prater. 1986. Shorebirds: An Identification Guide<br />

Houghton Mifflin. Boston, MA.<br />

Hunt, D.T.E, <strong>and</strong> A.L. Wilson. 1986. The Chemical Analysis of <strong>Water</strong>: General<br />

Principles <strong>and</strong> Techniques. 2 nd Edition. Royal Society of Chemistry,<br />

London, Engl<strong>and</strong>.<br />

Kaufman, K. 1990. A Field Guide to Advanced Birding. Peterson Field Guide Series.<br />

Houghton Mifflin Company. Boston, MA.<br />

Kirchner, C.J. 1983. Quality Control in <strong>Water</strong> Analysis. Environmental Science <strong>and</strong><br />

Technology 17(4):174A-181A.<br />

Moreira, Francisco. 1993. Winter Feeding Ecology of Black-tailed Godwits. Ibis 136:<br />

349-355.


Page 2 of 2<br />

Section 11.0<br />

April 2008<br />

Version 2.1 FINAL DRAFT<br />

Morgan, B.J.T. <strong>and</strong> P.M. North (eds.). 1985. Statistics in Ornithology. Springer-Verlag.<br />

Berlin, Germany. In Billinger, D., et. al. (eds.). Volume 29 of Lecture<br />

Notes in Statistics.<br />

National Research Council. 1990. Managing Troubled <strong>Water</strong>s. National Academy<br />

Press. Washington, DC.<br />

PBS&J. 2000. <strong>Tampa</strong> Bypass Canal/Alafia River <strong>Water</strong> Supply Projects<br />

Hydrobiological Monitoring Program. Final Reports prepared for <strong>Tampa</strong><br />

<strong>Bay</strong> <strong>Water</strong>. PBS&J. <strong>Tampa</strong>, FL.<br />

PBS&J. 2001. <strong>Tampa</strong> Bypass Canal/Alafia River <strong>Water</strong> Supply Projects<br />

Hydrobiological Monitoring Program – <strong>Water</strong> Year 2000 Data Report.<br />

Prepared for <strong>Tampa</strong> <strong>Bay</strong> <strong>Water</strong>. PBS&J. <strong>Tampa</strong>, FL.<br />

Scott, S. L. 1989. Field Guide to the Birds of North America. 2 nd Edition National<br />

Geographic Society. New York, NY.<br />

Southern Analytical Laboratories, Inc. 2001. Quality Manual for Southern Analytical<br />

Laboratories, Inc. Southern Analytical Laboratories, Inc. Oldsmar, FL.<br />

Stanley, T.W., <strong>and</strong> S.S. Verner. 1985. The U.S. Environmental Protection Agency’s<br />

Quality Assurance Program. In: J.K. Taylor <strong>and</strong> T.W. Stanley (eds.)<br />

Quality Assurance for Environmental Measurements. American Society<br />

for Testing Materials. Philadelphia, PA.<br />

Stevens <strong>Water</strong> Monitoring Systems. 1999. SDI Encoder Instruction 91196. Stevens<br />

<strong>Water</strong> Monitoring Systems, Inc. Beaverton, OR.<br />

Stevenson, H.M. <strong>and</strong> B.H. Anderson. 1994. The Birdlife of Florida. University Press of<br />

Florida. Gainesville, FL.<br />

Summers, J.K., <strong>and</strong> G. Maddox. 1999. Design of the Status Monitoring Network. In:<br />

Overview of the Florida Department of Environmental Protection’s<br />

Integrated <strong>Water</strong> Resource Monitoring Efforts <strong>and</strong> the Design Plan of the<br />

Status Network. Florida Department of Environmental Protection.<br />

Tallahassee, FL.<br />

Taylor, J.K. 1987. Quality Assurance of Chemical Measurements. Lewis Publishers.<br />

Boca Raton, FL.<br />

YSI. 1999. 6-Series YSI Environmental Operations Manual. YSI, Inc. Yellow Springs,<br />

OH.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!