04.05.2013 Views

View/Open - AgEcon Search

View/Open - AgEcon Search

View/Open - AgEcon Search

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Biological Control of Weeds:<br />

Southeast Asian Prospects<br />

D.F. Waterhouse<br />

(ACIAR Consultant in Plant Protection)<br />

ACIAR<br />

(Australian Centre for International Agricultural Research)<br />

Canberra<br />

AUSTRALIA<br />

1994


The Australian Centre for Intemational Agricultural Research (ACIAR) was established in June 1982 by an<br />

Act of the Australian Parliament. Its primary mandate is to help identify agricultural problems in developing<br />

countries and to commission collaborative research between Australian and developing country researchers<br />

in fields where Australia has special competence.<br />

Where trade names are used this constitutes neither endorsement of nor discrimination against any product<br />

by the Centre.<br />

ACIAR MONOGRAPH SERIES<br />

This peer-reviewed series contains the results of original research supported by ACIAR, or deemed relevant<br />

to ACIAR's research objectives. The series is distributed internationally, with an emphasis on the Third<br />

World.<br />

O Australian Centre for Intemational Agricultural Research<br />

GPO Box 157 1, Canberra, ACT 260 1.<br />

Waterhouse, D.F. 1994. Biological Control of Weeds: Southeast Asian Prospects<br />

ACIAR Monograph No. 26, vi + 302pp., 27 figs., 28 maps<br />

ISBN . 186320099 1<br />

Typset in 11/13 Times using a Macintosh IIvx running Quark XPress by K & B Publications<br />

Printed by Bmwn Prior Anderson Pty. Ltd.


Foreword<br />

Contents<br />

Abstract<br />

Estimation of biological control prospects<br />

Introduction<br />

Target weeds<br />

Ageratum conyzoides<br />

Amaranthus spinosus<br />

Bidens pilosa<br />

Chromolaena odorata<br />

Commelina benghalensis<br />

Echinochloa crus-galli<br />

Eichhornia crassipes<br />

Eleusine indica<br />

Euphorbia heterophylla<br />

Euphorbia hirta<br />

Fimbristylis miliacea<br />

Marsilea minuta<br />

Melastoma rnalabathricum<br />

Mikania micrantha<br />

Mimosa invisa<br />

Mimosa pigra<br />

Mimosa pudica<br />

Monochoria vaginalis<br />

Nephrolepis biserrata<br />

Panicum repens<br />

Paspalurn conjugatum<br />

PassiJlora foetida<br />

Pennisetum polystachion<br />

Pistia stratiotes<br />

Portulaca oleracea<br />

Rottboellia cochinchinensis<br />

Sphenoclea zeylanica<br />

References<br />

Index of scientific names of insects<br />

General index


Foreword<br />

From its very beginning in 1982 ACIAR has been a strong supporter of biological control<br />

as a sustainable and environmentally friendly alternative to the steadily growing use of<br />

pesticides. This alternative has achieved great success in regions of the world<br />

(e.g. Australia, New Zealand, Oceania, California) where many of the major insect pests<br />

and weeds have been introduced from outside the region. Although a smaller proportion<br />

of the major weeds in Southeast Asia are introduced than in many other regions, a recent<br />

survey commissioned by ACIAR (Waterhouse 1993a) identified 28 major weeds that<br />

merited evaluation as possible targets for biological control. Even if only half of these<br />

weeds proved to be attractive targets, this number would require several decades of<br />

research, major resources in personnel and equipment and strong support within the<br />

region.<br />

The aim of the present volume is to summarise for the major exotic weeds of agri-<br />

culture in Southeast Asia what is known about their natural enemies and the prospects for<br />

classical biological control. The book is intended to serve two purposes. Firstly, to facili-<br />

tate, for the countries of the region, the selection of promising, individual or collabora-<br />

tive, priority weed targets. Secondly, to provide donor agencies with an overall perspec-<br />

tive of the region's major exotic weed problems and prospects for their amelioration; and<br />

thus to aid in the selection of projects for support that are best suited to their terms of ref-<br />

erence.<br />

It is hoped that it may be possible in the near future to produce a companion volume<br />

dealing with major arthropod pests exotic to Southeast Asia.<br />

G.H.L. Rothschild<br />

Director<br />

Australian Centre for International<br />

Agricultural Research, Canberra


Abstract<br />

Biological control programs have already been mounted in some region of the world<br />

against 6 of the 28 major weeds that are exotic to Southeast Asia. Substantial or partial<br />

success has been achieved in one or more countries for all of these except Mikania<br />

micrantha, which is still under investigation. A substantial amount of information on<br />

their natural enemies in the region where the weeds evolved is available on all 6. This is<br />

in stark contrast with the situation for most of the remaining 22 weed species. Indeed, for<br />

more than half of these, so little relevant information is available that it is not possible to<br />

evaluate the chances of mounting a successful program. For this group of weeds the first<br />

step would be a survey in the centre of origin of the weed. It is probable that surveys<br />

could be mounted simultaneously of several candidate weeds in the same region of the<br />

world (e.g. Central America or Tropical Africa). The very minimum period for a prelimi-<br />

nary survey would be several weeks in both spring and late summer. When the organisms<br />

collected had been identified by taxonomists a decision would be facilitated on possible<br />

follow-up surveys.<br />

On the basis of available information there are good to excellent prospects for<br />

reducing, in at least some parts of the region, the weediness of the following:<br />

Chromolaena odorata<br />

Eichhornia crassipes<br />

Mimosa invisa<br />

Mimosa pigra<br />

Pistia stratiotes<br />

Portulaca oleracea<br />

There are also good reasons for believing that there will prove to be valuable natural<br />

enemies for the following:<br />

Ageratum conyzoides<br />

Amaranthus spinosus<br />

Bidens pilosa<br />

Eleusine indica<br />

Melastoma malabathricum<br />

Mikania micrantha<br />

There is insufficient information yet available on the remaining 15 weeds to attempt<br />

to evaluate their prospects for classical biological control.


2 Estimation of biological control prospects<br />

Weed Rating<br />

Ageratum conyzoides<br />

Amaranthus spinosus<br />

Bidens pilosa<br />

Chromolaena odorata<br />

Commelina benghalensis<br />

Cynodon dactylon<br />

Echinochloa crus-galli<br />

Eichhornia crassipes<br />

Eleusine indica<br />

Euphorbia heterophylla<br />

Euphorbia hirta<br />

Fimbristylis miliacea<br />

Marsilea minuta<br />

Melastoma malabathricum<br />

Mikania micrantha<br />

Mimosa invisa<br />

Mimosa pigra<br />

Mimosa pudica<br />

Monochoria vaginalis<br />

Nephrolepis biserrata<br />

Panicum repens<br />

Paspalum conjugatum<br />

PassiJlora foetida<br />

Pennisetum polystachion<br />

Pistia stratiotes<br />

Portulaca oleracea<br />

Rottboellia cochinchinensis<br />

Sphenoclea zeylanica<br />

Any<br />

Family biological<br />

control<br />

successes?<br />

Asteraceae<br />

Amaranthaceae<br />

Asteraceae<br />

Asteraceae<br />

Commelinaceae<br />

Poaceae<br />

Poaceae<br />

Pontederiaceae<br />

Poaceae<br />

Euphorbiaceae<br />

Euphorbiaceae<br />

C yperaceae<br />

Marsileaceae<br />

Melastomataceae<br />

Asteraceae<br />

Mimosaceae<br />

Mimosaceae<br />

Mimosaceae<br />

Pontederiaceae<br />

Nephrolepidaceae<br />

Poaceae<br />

Poaceae<br />

Passifloraceae<br />

Poaceae<br />

Araceae<br />

Portulacaceae<br />

Poaceae<br />

Sphenocleaceae<br />

Attractiveness<br />

as a target in<br />

SE Asia<br />

unsuitable


4 Biological Control of Weeds: Southeast Asian Prospects<br />

3 Introduction<br />

Waterhouse (1 993a) published information, collated from agricultural and weed experts<br />

in the 10 countries of Southeast Asia, on the distribution and importance of their major<br />

weeds in agriculture. Ratings were supplied on the basis of a very simple system:<br />

+++ very widespread and very important<br />

++ not widespread but of great importance where it occurs<br />

+ important only locally<br />

present, but not an important pest<br />

The advantages and limitations of this system are discussed by Waterhouse (1993a). Of<br />

232 weeds nominated, 140 were rated as highly important, and a subset of 40 particularly<br />

SO.<br />

The focus of the present work is on the possibilities for classical biological control<br />

of those of this subset of 40 that evolved outside Southeast Asia. The assumption is that<br />

many of these have been introduced without some of the organisms that help to control<br />

them where they evolved. The chances are very remote indeed, for weeds that evolved in<br />

Southeast Asia, of introducing sufficiently host-specific organisms from outside the<br />

region. Nevertheless, it is possible that useful organisms present in, say, Thailand or<br />

Myanmar may not be present in all of the islands constituting the Philippines or<br />

Indonesia (or vice versa) and this possibility should be borne in mind.<br />

The origin of 12 of the subset of 40 major weeds is believed to be Southeast Asia, or<br />

close by, and these have been excluded from consideration at this stage. The remaining<br />

28 species, 27 of which are treated here, are either known to have evolved in the<br />

Americas or Africa or are postulated to have evolved in both Asia and Africa. This latter<br />

group is considered because the possibility exists that useful organisms at the African end<br />

of the range may not yet have extended their distribution into all of Southeast Asia.<br />

The 28th species, couch grass, Cynodon dactylon, has not been dealt with because,<br />

in many situations, such as lawns and some pastures, it is regarded as a highly desirable<br />

species. Biological control agents would not distinguish between these situations and the<br />

many others where it is a serious weed, so other control measures must be employed in<br />

the latter instances.<br />

Of course, it is not to be expected that all of any one country's top 20 or even top 10<br />

exotic weeds will necessarily be included in this regional priority list. Indeed, at least<br />

some of those omitted might well merit the production of additional dossiers if they are<br />

of such importance locally that resources for a program would be likely to achieve a very<br />

high priority for a particular country. ACIAR would be interested to hear of weeds that<br />

might be considered in this category.<br />

It is not so long ago that Wilson (1964) pointed out that no insects had yet been used<br />

for the biological control of aquatic weeds and that it was not clear "whether in the aquat-<br />

ic environment there exists a sufficient development of that monophagy in phytophagous<br />

insects that has been the main foundation for the biological control of weeds on land". He


Introduction 5<br />

referred to the opinion of Brues (1946) that aquatic insects show little host specificity, but<br />

warned that this view might be the result of lack of information and recommended an<br />

extension of research in this general field. In the intervening 30 years, research on four<br />

major water weeds of South American origin has yielded success and even spectacular<br />

success with the following: Salvinia molesta, Eichhornia crassipes, Alternanthera<br />

philoxeroides and Pistia stratiotes (Room 1993).<br />

It is very probable that a parallel can be drawn between the situation with water<br />

weeds in 1964 and the "conventional wisdom" of today that grassy weeds are unsuitable<br />

targets for classical biological control because of the danger to many major world crops<br />

that also belong to the family Poaceae e.g. rice, wheat, maize, sorghum, millet, sugar-<br />

cane. However, it would be very strange indeed if host specialisation occurred widely in<br />

insects attacking all other plant families, but not amongst those attacking the very large<br />

number of grasses. In view of the fact that 10 of the 18 world's worst weeds are grasses<br />

(Holm et al. 1977) and eight of the 28 major exotic weeds in Southeast Asia are also<br />

grasses (Waterhouse 1992, 1993a), it is evident that the time is long overdue for a<br />

detailed study of the natural enemies of these grasses in the regions where they evolved.<br />

This theme is mentioned further below, in particular in the discussion on Eleusine indica.<br />

For any biological control organisms to be approved for introduction into Southeast<br />

Asia against weedy grasses they would need to be sufficiently specific that they would<br />

not cause economic damage to the crop grasses listed in table 3.1. This list refers to<br />

Thailand, but is believed to be much the same as that for other Southeast Asian countries.<br />

It does not, however, include pasture species. A number of useful grasses are also har-<br />

vested from the wild and some may have to be considered also, although there are impor-<br />

tant weeds (e.g. Zmperata cylindrica) amongst them. There are, of course, many addition-<br />

al crop grasses of importance outside the region, but of little or no importance in most or<br />

all of Southeast Asia. They would certainly have to be taken into consideration in other<br />

regions of the world.<br />

The successful biological control of a weed presents a special problem, seldom<br />

shared by the control of an insect pest, namely that some other plant, perhaps even a<br />

weed that is more difficult to control by other means, will spread to occupy the space<br />

vacated. Reduction to the greatest possible extent of the density of a weed is desirable in<br />

situations such as pastures or national parks. In many other situations, however, all that<br />

may be required is a significant reduction in seeding (for annuals) or in competitiveness<br />

(for annuals and perennials) so that the weed no longer has an opportunity of becoming<br />

dominant and thus, when necessary, is more readily controlled by cultural or other mea-<br />

sures. Thus, even partial biological control (leading to the weed becoming less aggres-<br />

sive) provides desirable plant species with the opportunity to compete more successfully<br />

for sunlight and nutrients and may be of significant value.<br />

Another problem is that many weeds display a good deal of variability throughout<br />

their distribution, resulting in part from polyploidy, hybridisation with closely related<br />

species and other genetic modifications. The taxa thus produced may not be equally sus-<br />

ceptible to natural enemies, so it is desirable, where possible, to match-tb-wlth ixa<br />

encountered in the surveys in the area of origin of the weed. It may also be necessary to


6 Biological Control of Weeds: Southeast Asian Prospects<br />

seek expert taxonomic advice at an early stage, perhaps involving electrophoretic, DNA<br />

and other studies, particularly when commencing a project on a weed that has not yet<br />

been the target of a biological control investigation.<br />

The summary accounts presented are designed to enable a rapid review to be made<br />

of (i) the main characteristics of the major weeds of agriculture that are believed to be<br />

exotic to part or all of Southeast Asia, (ii) what is known of their natural enemies and<br />

(iii) prospects for reducing their weediness by classical biological control.<br />

The material on weed characteristics draws heavily on the publications by Barnes<br />

and Chan (1990), Holm et al. (1977), Noda et al. (1985) and Soerjani et al. (1987).<br />

Additional information is available from these sources, including detailed botanical<br />

descriptions, vernacular names, biology, agricultural importance and herbicidal control.<br />

I am particularly grateful to the University of Hawaii Press for permission to draw<br />

on 21 of the illustrations in its publication 'The World's Worst Weeds' by Holm et al.<br />

(1977) to Ancom Berhad, Malaysia (Barnes and Chan 1990) and the Director of<br />

BIOTROP Indonesia (Soerjani et al. 1987) to draw on 2 and 3 illustrations respectively<br />

from their publications and to the Division of Entomology CSIRO for permission to use<br />

illustration 4.16. The figures have been slightly amended by the omission of inserts that<br />

are mainly of taxonomic interest. Acknowledgement appears on each of the illustrations<br />

used.<br />

In most instances four databases were searched for relevant information:<br />

AGRICOLA (Bibliography of Agriculture) 1 970+<br />

BIOSIS (Biological Abstracts) 1989+<br />

CAB (Commonwealth Agricultural Bureaux) 1984+<br />

DIALOG (Biological Abstracts) 1959+<br />

1 many cases abstracting journals and other sources published prior to the above<br />

cominencement dates were also searched. Useful information was also obtained by<br />

serendipity from these and other references and from unpublished records. Nevertheless,<br />

in many cases the search cannot be described as exhaustive. Even more relevant, howev-<br />

er, than attempting an exhaustive search would be a fresh, detailed field survey targeted<br />

on the known (or presumed) area of origin of the weed. In any event, in most instances a<br />

preliminary investigation would be highly desirable in the area of origin of a weed before<br />

deciding whether or not to embark upon a major project. Several such surveys might well<br />

be carried out simultaneously where more than one weed occurs in the same general<br />

region. Indeed, it is strongly recommended that a pre-project activity be funded to carry<br />

out such surveys, with special reference to selected weeds of major importance in<br />

Southeast Asia.<br />

Surveys of this nature are particularly important, since the amount of useful, pub-<br />

lished information on arthropods or other organisms attacking the target weeds is, in gen-<br />

eral, inadequate to serve as a basis for a sound decision. Although acceptable host speci-<br />

ficity is required for classical biological control, it is possible that some of the less specif-<br />

ic fungi listed might be developed for use as bioherbicides.<br />

In addition to surveys in the region of origin of the weed(s) it will also be necessary<br />

to survey the weed(s) in the country or countries where biological control is to be


Introduction 7<br />

attempted. This is to indicate whether any of the organisms that might be considered for<br />

introduction are already present.<br />

The species treated are drawn from tables 10 and 11 of 'The Major Arthropod Pests<br />

and Weeds of Agriculture in Southeast Asia: Distribution, Importance and Origin'<br />

(Waterhouse 1993a). It is quite possible that additional weeds rating highly in these<br />

tables will prove to be exotic to Southeast Asia (or significant parts of it) and, alternative-<br />

ly, that some considered to be exotic will, on further evidence, be shown to have evolved<br />

in the region.<br />

The natural enemies most commonly involved in classical biological control of<br />

weeds have been arthropods, although there is a growing interest in, and a few striking<br />

successes with, fungi. Because there is a considerable lack of uniformity in the names of<br />

many of the insects involved, a separate index is included listing the preferred scientific<br />

names. These have been used in the text, replacing those used by the authors quoted. On<br />

the other hand, with few exceptions the names used for fungi, bacteria, nematodes and<br />

viruses are those of the authors quoted, although it is probable that some names have<br />

been changed since they were used. Where the name of a weed or an insect given in a<br />

publication is no longer preferred by taxonomists, the superseded name, x, is shown thus<br />

(= x), but this usage is not intended to convey any other taxonomic message. Indeed, the<br />

superseded name may still be valid, but simply not applicable to the particular species<br />

referred to by the author.<br />

I am most grateful for assistance from many colleagues during the preparation of<br />

this book. It is not possible to name them all, but special thanks are due to Dr B.<br />

Napompeth (Thailand), Dr R. Muniappan (Guam), C.J. Davis (Hawaii) and, in Australia,<br />

Dr I.W. Forno, Dr K.L.S. Harley, M.H. Julien, Dr K.R. Norris, J. Prance, Dr D.P.A.<br />

Sands, Dr A.J. Wapshere and A.D. Wright of CSIRO and Dr R.E. McFadyen<br />

(Queensland Department of Lands). Many others who have contributed unpublished<br />

information are acknowledged at appropriate places in the text.<br />

Valuable advice on taxonomic problems has been received from a number of col-<br />

leagues in the Division of Entomology, CSIRO, Canberra, including Dr M. Carver<br />

(Hemiptera), Dr P. Cranston (Diptera), E.D. Edwards (Lepidoptera), Dr I.D. Naumann,<br />

Dr K.H.L. Key (Orthoptera), T. Weir (Coleoptera) and Dr E.C. Zimmerman<br />

(Curculionidae).<br />

Continuing warm support has been provided by Dr P. Ferrar, Research Program<br />

Coordinator, Crop Scienqs, ACIAR, Canberra.<br />

It is a pleasure to acknowledge the expert assistance of Mrs A. Johnstone<br />

(Ms A. Ankers) in converting my manuscripts into presentable form; and also of Mrs S.<br />

Smith and C. Hunt for assistance with the illustrations.<br />

It would not have been possible to continue with these biological control activities<br />

in deep retirement without the support, forbearance and encouragement of my wife, to<br />

whom particular thanks are due.


8<br />

Biological Control of Weeds: Southeast Asian Prospects<br />

Table 3.1 Grasses (other than pasture species) that are important in Thailand.<br />

A. Crop Grasses Importance<br />

Bambusa spp.<br />

Coix lacryma-jobi<br />

Cymbopogon spp.<br />

Hordeum spp.<br />

Oryza sativa<br />

Saccharum oficinarum<br />

Setaria italica<br />

Sorghum bicolor<br />

Triticum spp.<br />

Zea mays<br />

Zizania latifolia<br />

B. Grasses harvested from the wild<br />

Arundo donax<br />

Dendrocalamus spp.<br />

Gigantochloa spp.<br />

Imperata cylindrica<br />

Melocanna baccifera<br />

Phragmites spp.<br />

Phyllostachys spp.<br />

Schizostachyum dumetorum<br />

bamboo, construction, furniture,<br />

paper<br />

job's tears, cereal<br />

lemongrasses, flavourings<br />

barleys<br />

rice<br />

sugar cane<br />

foxtail millet<br />

sorghum<br />

wheats<br />

maize<br />

vegetable<br />

giant reed, cane<br />

weaving, vegetables<br />

construction, furniture<br />

paper, roof thatch<br />

paper, furniture, food<br />

reeds, thatch, mats<br />

furniture, vegetable<br />

rope


Target weeds<br />

Ageratum conyzoides<br />

Amaranthus spinosus<br />

Bidens pilosa<br />

Chromolaena odorata<br />

Commelina benghalensis<br />

Echinochloa crus-galli<br />

Eichhornia crassipes<br />

Eleusine indica<br />

Euphorbia heterophylla<br />

Euphorbia hirta<br />

Fimbristylis miliacea<br />

Marsilea minuta<br />

Melastoma malabathricum<br />

Mikania micrantha<br />

Mimosa invisa<br />

Mimosa pigra<br />

Mimosa pudica<br />

Monochoria vaginalis<br />

Nephrolepis biserrata<br />

Panicurn repens<br />

Paspalum conjugatum<br />

Passiflora foetida<br />

Penniseturn polystachion<br />

Pistia stratiotes<br />

Portulaca oleracea<br />

Rottboellia cochinchinensis<br />

Sphenoclea zeylanica


10 Biological Control of Weeds: Southeast Asian Prospects<br />

Ageratum conyzoides<br />

(after Holm et a/. 1977)


Map 4.1 Ageratum conyzoides<br />

4.1 Ageratum conyzoides 11<br />

Ageratum conyzoides<br />

As a member of the Asteraceae, it would be expected that Ageratum conyzoides would<br />

have many natural enemies attacking it in its area of origin in Tropical America.<br />

However, no study has been made and virtually nothing is known of the situation there.<br />

Elsewhere it is attacked by a range of insects, nematodes, fungi and viruses, but almost<br />

all have a very wide host range and are not suitable as biological control agents.<br />

Surveys in Tropical America would be necessary to provide data on which<br />

prospects for its biological control could be evaluated.


12 Biological Control of Weeds: Southeast Asian Prospects<br />

4.1 Ageratum conyzoides L.<br />

Asteraceae<br />

goatweed, ageratum; bandotan (Indonesia), rumput tahi ayam (Malaysia), bulak<br />

manok, kolokong kabayo (Philippines), ya tabsua, ya sap raeng (Thailand),<br />

co c~lt heo, bo xit (Vietnam)<br />

Rating<br />

+++ Myan, Thai<br />

17 ++ Msia, Sing, Phil<br />

+ Laos, Camb, Viet, Brun, Indo<br />

Origin<br />

Tropical America.<br />

Distribution<br />

Pantropical; also in the subtropics and extending into temperate areas from latitude 30°N<br />

to 30's. Widespread in SE Asia. Present in Java prior to 1860.<br />

Characteristics<br />

Ageratum conyzoides is a self pollinated, C3, annual herb. It is erect, often branched,<br />

sometimes decumbent and ranges up to 1.2 m at flowering. Its flowers are light blue,<br />

white or violet and its leaves and stems are hairy.<br />

Importance<br />

A. conyzoides occurs in both light and heavy soils in moister areas in agricultural land,<br />

waste land, roadsides, plantations, pastures and upland rice fields. It may produce<br />

40 000 or more seeds per plant and these are mainly spread by wind and water. They<br />

germinate readily and the life cycle can be completed in less than 2 months. A. cony-<br />

zoides is one of about 300 species in the genus, all of which originated in the Americas.<br />

Goatweed is important in 46 countries in 36 crops and is troublesome in plantations<br />

after grasses have been suppressed (Holm et al. 1977). It is a rapidly colonising, vigor-<br />

ously growing weed in a wide variety of arable crops in which thick carpets of A. cony-<br />

zoides compete strongly for nutrients and moisture. When a stand is destroyed another<br />

rapidly takes its place. It is suspected of poisoning cattle, but this is not confirmed from<br />

Australia. It was rated 19th of the World's Worst Weeds by Holm et al. (1977), as equal<br />

15th in Southeast Asia (Waterhouse 1993a) and 15th in the Oceanic Pacific<br />

(waterhouse unpub.).<br />

Its crushed leaves smell strongly of coumarin and are used as a styptic for wounds,<br />

also for sores, skin diseases, eye inflammation and lung problems (Gonzalez et al. 1991).<br />

It is sometimes used as cut flowers in the home.


Natural enemies<br />

4.1 Ageratum conyzoides 13<br />

Although A. conyzoides is listed by Holm et al. (1977) as a weed in some crops in<br />

Central and South America, it is significant that nowhere in that region (unlike the rest of<br />

the tropical world) is it regarded as a serious or a principal weed. From this it might be<br />

inferred that natural enemies might be controlling its abundance. However, so little infor-<br />

mation on natural enemies (Tables 4.1.1 to 4.1.3) was obtained from the databases<br />

searched that it is not possible to substantiate this claim. Almost all of the records are<br />

from outside its area of origin and one (the agromyzid fly, Melanagromyza metallica) is<br />

known to have a narrow host range. However, M. metallica is already widespread. In<br />

addition to India, it is known also from many places including Taiwan, Philippines,<br />

Vietnam, Thailand, Indonesia, Melanesia, Papua New Guinea, Solomon Is, Micronesia,<br />

Australia and Africa. It lays its eggs on the apical part of the stem. The larva bores into<br />

the pith region, gradually extending towards the root and the final instar larva cuts an exit<br />

hole at the base of the stem. Mines may extend into the roots and pupae are often present<br />

at about ground level in the mines (Singh and Beri 1973).<br />

If A. conyzoides is considered to be an important target it will be necessary to sur-<br />

vey for organisms attacking it in Central America and northern South America.<br />

Table 4.1.1 Natural enemies of Aaeratum convzoides: insects and mites.<br />

Species Location Other hosts References<br />

INSECTS<br />

Orthoptera<br />

ACRlDlDAE<br />

Zonocerus Nigeria<br />

variegatus<br />

Hemiptera<br />

APHlDlDAE<br />

Aphis craccivora<br />

Aphis gossypii<br />

Aphis spiraecola Java<br />

(= A. nigricauda)<br />

Aulacorthum<br />

solani<br />

Brachycaudus<br />

helichrysi<br />

Capitophorus<br />

hippophaes<br />

Hyperomyzus<br />

carduellinus<br />

Myzus ormtus<br />

Myzus persicae<br />

Neomasonaphis<br />

(- Masonaphis)<br />

amphalidis<br />

Uroleucon<br />

(= Macrosiphum)<br />

solidaginis<br />

Vesiculaphis pieridis India<br />

Chromolaena odorata,<br />

Lantana camara<br />

many<br />

many<br />

many<br />

many<br />

many<br />

Eupatorium, Mirabilis,<br />

Polygonum<br />

many<br />

many<br />

many<br />

Lyonia ovalifolia,<br />

Pieris ovalifolia<br />

Raychaudhuri 1983<br />

Raychaudhuri 1983<br />

Patch 1939,<br />

Raychaudhuri 1983<br />

Raychaudhuri 1983<br />

Raychaudhuri 1983<br />

Ghosh et al. 1971<br />

Patch 1939<br />

Raychaudhuri 1983<br />

Raychaudhuri 1983<br />

Raychaudhuri 1983<br />

Patch 1939<br />

Patch 1939<br />

(continued on next page)


14 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.1.1 (continued)<br />

Species Location Other hosts References<br />

ALEYRODIDAE<br />

Bemisia tabaci<br />

DlASPlDlDAE<br />

Mycetaspis personata<br />

LYGAEIDAE<br />

Nysius inconspicuus<br />

Thysanoptera<br />

PHLAEOTHRIPIDAE<br />

Haplothrips gowdei<br />

THRlPlDAE<br />

Calipthrips ipomoeae<br />

Microcephalothrips<br />

abdominalis<br />

Thrips tabaci<br />

Diptera<br />

AGROMYZIDAE<br />

Calycomyza sp.<br />

Melanagromyza<br />

metallica<br />

CHLOROPIDAE<br />

Olcella pleuralis<br />

TEPHRITIDAE<br />

Xanthaciura imecta<br />

Lepidoptera<br />

ARCTll DAE<br />

Pareuchaetes<br />

pseudoinsulata<br />

(= Ammalo insulata)<br />

GELECHllDAE<br />

Dichomeris sp.<br />

NOCTUIDAE<br />

Pseudoplusia includem<br />

(=Plusia 00)<br />

Spodoptera frugiperda<br />

India, a very wide range Ang et al. 1977,<br />

Malaysia, Sastry 1984,<br />

Turkey Shreni et al. 1979<br />

Brazil polyphagous dlAraujo e Silva et al. 1968a<br />

India sesame and many Thangavelu 1978<br />

others<br />

Hawaii vector of pineapple Sakimura 1937<br />

yellow spot virus<br />

Brazil polyphagous dlAraujo e Silva et al. 1968a<br />

India polyphagous Gopinathan et al. 198 1<br />

Hawaii vector of pineapple Sakimura 1937<br />

yellow spot virus<br />

USA Spencer & Steyskal 1986<br />

India, etc no other host Singh & Beri 1973<br />

mentioned<br />

Trinidad C. odorata, C. ivaefolia, McFadyen 1988a<br />

C. iresinoides,<br />

Fleischmannia<br />

microstemon,<br />

Wedelia<br />

caracasana,<br />

Wulfla baccata<br />

Florida, C. odorata,<br />

Trinidad F. microsternon<br />

W. caracasana<br />

McFadyen 1988a,<br />

Needham 1946<br />

Nigeria, C. odorata Bennett & Cruttwell 1973,<br />

Trinidad Olaoye 1974<br />

Trinidad C. odorata Bennett & Cruttwell 1973<br />

Brazil polyphagous d'Araujo e Silva et al. 1968a<br />

Brazil polyphagous d'Araujo e Silva et al. 1968a<br />

(continued on next page)


MITES<br />

4.1 Ageratum conyzoides 15<br />

Species Location Other hosts References<br />

PYRALIDAE<br />

Pionea upalusalis Trinidad, C. odorata, C. ivaefolia, McFadyen 1988a<br />

Puerto Rico, Austroeupatorium<br />

Venezuela inulaefolium,<br />

Fleischmannia<br />

microstemon<br />

Brevipalpus obovatus India cotton, Solanum nigrum, Sadana et al. 1983<br />

Sonchus asper,<br />

Phaseolus vulgaris,<br />

Euphorbia hirta,<br />

Xanthium sp.,<br />

Cichorium intybus<br />

Tetranychus urticae China a very wide range Dong et al. 1986<br />

Table 4.1.2 Natural enemies of Ageratum conzoides: nematodes.<br />

Species Location Other hosts References<br />

Aphelenchoidesfiagariae<br />

Helicotylenchus multicinctus<br />

Meloidogyne sp.<br />

Meloidogyne arenaria<br />

Meloidogyne arenaria<br />

thamesis<br />

Meloidogyne incognita<br />

Meloidogyne javanica<br />

Pratylenchus pratensis<br />

Rotylenchulus reniformis<br />

Hawaii strawberry, Vanda<br />

orchids, Impatiens,<br />

Nephrolepis biserrata<br />

Brazil banana, Portulaca<br />

oleracea and several<br />

weeds<br />

Cuba Eleusine indica,<br />

Croton lobatus,<br />

Cynodon dactylon<br />

Philippines<br />

Philippines<br />

Philippines many vegetables<br />

and weeds<br />

Philippines, many vegetables<br />

Nigeria and weeds<br />

Hawaii<br />

Hawaii, India many weeds<br />

Sher 1954<br />

Zem & Lordello 1983<br />

Acosta et al. 1986<br />

Holm et al. 1977<br />

Valdez 1968<br />

Valdez 1968<br />

Mamaril& Alberto 1989<br />

Mamaril& Alberto 1989,<br />

-Salawu et al. 1991<br />

Valdez 1968<br />

Holm et al. 1977<br />

Linford & Yap 1940,<br />

La1 et al. 1978


Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.1.3 Natural enemies of Ageratum conyzoides: fungi, bacteria and viruses.<br />

Species Location Other hosts References<br />

FUNGI<br />

Cercospora agerati<br />

Colletotrichium sp.<br />

Cylindrocladium<br />

quinqueseptalum<br />

Mycovellosiella perfoliata<br />

Puccinia conoclinii<br />

Sclerotium rolfsii<br />

BACTERIA<br />

Pseudomonas<br />

solanacearum<br />

India<br />

India<br />

India<br />

India<br />

many commercial<br />

hosts<br />

many<br />

India potato, Ranunculus<br />

sceleratus<br />

Stevens 1925<br />

Kulkami & Sharma 1976<br />

Sulochana et al. 1982<br />

Srivastava 198 1<br />

Stevens 1925<br />

Desai et al. 1980<br />

Sathiarajan &<br />

Sasikumar 1977,<br />

Sunaina et al. 1989<br />

VIRUSES<br />

Ageratum vein yellowing India, (transmitted by<br />

Ang et al. 1977,<br />

Malaysia Bemisia tabaci)<br />

Shreni et al. 1979<br />

anemone mosaic<br />

Holm et al. 1977<br />

Bidens mottle several, including<br />

Zinnia, petunia<br />

& Verbena<br />

Logan & Zettler 1984<br />

hibiscus yellow vein India (transmitted by<br />

Jeyarajan et al. 1988<br />

mosaic<br />

B. tabaci)<br />

pineapple yellow spot Hawaii<br />

Sakimura 1937<br />

potato virus Y<br />

India<br />

potato<br />

Joshi & Prakash 1977<br />

tapioca mosaic<br />

India<br />

(transmitted by<br />

B. tabaci)<br />

Jeyarajan et al. 1988<br />

tobacco leaf curl India tomato<br />

Holm et al. 1977,<br />

Reddy et al. 1981<br />

tomato leaf curl Turkey, many weeds<br />

Sastry 1984,<br />

India<br />

(transmitted by<br />

B. tabaci)<br />

Jeyarajan et al. 1988<br />

urd bean yellow mosaic India (transmitted by<br />

B. tabaci)<br />

Jeyarajan et al. 1988<br />

Zinnia yellow net India (transmitted by<br />

B. tabaci)<br />

Srivastava et al. 1977


18 Biological Control of Weeds: Southeast Asian Prospects<br />

Amaranthus spinosus<br />

(after Holm et a/. 1977)


Map 4.2 Amaranthus spinosus<br />

4.2 Amaranthus spinosus 19<br />

Amaran thus spinosus<br />

Mass rearing and release, as required, of the weevil Hypolixus trunculatus is reported to<br />

provide good control of Amaranthus spinosus in Thailand but, of course, this is augmen-<br />

tative rather than classical biological control.<br />

Three other insects (a weevil, a leaf mining fly and a caterpillar) are known which may<br />

prove to be adequately specific for classical biological control.<br />

However, almost nothing is known about the natural enemies of A. spinosus in tropical<br />

America where it evolved and it would thus be necessary to cany out a survey there in<br />

order to evaluate what potential biological control agents are available.


20 Biological Control of Weeds: Southeast Asian Prospects<br />

4.2 Amaranthus spinosus L.<br />

Amaranthaceae<br />

spiny amaranth, spiny pigweed, needle burr; hin nu nive tsu bauk (Myanmar),<br />

phak khom nam (Thailand), phti banla (Cambodia), bayam duri (Malaysia and<br />

Indonesia), orai (Philippines), den gai (Vietnam)<br />

Rating<br />

+++ Myan, Thai, Phil<br />

17 ++ Msia, Sing<br />

+ Laos, Camb, Viet, Indo<br />

Origin<br />

Tropical America.<br />

Distribution<br />

A. spinosus is mainly tropical and subtropical in distribution, but also extends into the<br />

temperate zone from latitude 30°N to 30"s.<br />

Characteristics<br />

A. spinosus is an erect, much branched, annual, growing to 1.2 m. Its stems are angled in<br />

cross section, fleshy, often reddish and bear many spines. Its leaves are alternate, with a<br />

pair of straight spines up to 1 cm long at the base. The inflorescence is long, slender and<br />

terminal or arises from leaf axils. The flowers are small, greenish and unisex. It is propa-<br />

gated by reddish brown seeds.<br />

Importance<br />

Spiny amaranth prospers in warm sunny situations, but not where it is cool or shady. It is<br />

not reported as a problem in the Mediterranean or Middle East. It is a weed in 44 coun-<br />

tries in 28 crops, mainly in the Caribbean, in the west and south of Africa, in India and in<br />

Southeast Asia. Up to 235 000 seeds per plant have been recorded. Seeds are spread by<br />

wind and water. Some germinate soon, others over several months and still others remain<br />

viable in the soil for many years. A. spinosus is abundant in cultivated and abandoned<br />

fields, along roadsides and in waste places. It is a weed of varying degrees of aggressive-<br />

ness in many crops, including upland rice, cotton, cowpeas, groundnuts, maize, mangos,<br />

millet, pineapples, sugarcane and vegetables. The rigid needle-like spines break off in the<br />

hands of workers in sugarcane, cotton and other crops.<br />

A. spinosus may contain high nitrate levels and has been implicated in livestock poi-<br />

soning. It is avoided by most animals because of its spines. Leaves are sometimes used<br />

by humans as a green vegetable. Other Amaranthus species are valuable as a grain crop<br />

in some South American countries and the family Amaranthaceae contains a number of<br />

widely grown ornamental garden species (Purseglove 1968).


4.2 Amaranthus spinosus 21<br />

Natural enemies<br />

A. spinosus is attacked by a number of natural enemies (Tables 4.2.1 and 4.2.2), but most<br />

of the reports come from outside its native range and are of non-specific organisms. The<br />

agromyzid fly Haplopeodes minutus, known in USA from species of Amaranthus and<br />

Chenopodium (Spencer and Steyskal 1986) and both the beetle Cassida nigriventris and<br />

the moth Coleophora versurella, known in Pakistan from these same plant genera (Khan<br />

et al. 1978), may prove to be sufficiently specific to be candidate biological control<br />

agents.<br />

The weevil Hypolixus trunculatus, whose larvae tunnel in the stems and form galls,<br />

is known from Pakistan, India and Thailand and attacks Amaranthus spinosus, A. viridis<br />

and Digera arvensis. Although it has a relatively long life'cycle and low reproductive<br />

capacity, mass rearing and augmentative releases have resulted in a satisfactory level of<br />

control and replaced the use of herbicides in Thailand (Julien 1992, Napompeth 1982,<br />

1989, 1992a). Females deposit eggs singly in cavities scooped out of the shoots. Larvae<br />

tunnel down inside the stem to its base, where a gall develops. Breeding continues<br />

throughout the year but is at its height in late summer. At this time the life cycle is 44 to<br />

50 days. Pupation occurs within the gall. Larvae and pupae are parasitised by larvae of<br />

the pteromalid wasp Oxysychus sp. (Aganval 1985).<br />

Evans (1987) records five fungi from A. spinosus but, except for one which is<br />

unsuitable because it has a wide host range, too little is known about their host specificity<br />

to assess the prospects for their use in classical biological control.<br />

Comment<br />

Almost nothing is known about the natural enemies of A. spinosus in tropical America<br />

where it evolved. A survey in this region would be necessary to document the organisms<br />

attacking it. There are good general grounds for believing that there are some natural<br />

enemies that are specific to the family Amaranthaceae. In most countries, members of<br />

this family have little value as crop plants, so the chances are that some safe natural ene-<br />

mies will be found that are of value as classical biological control agents.<br />

Table 4.2.1 Natural enemies of Amaranthus spinosus: insects and mites.<br />

Species Location Other hosts References<br />

INSECTS<br />

Hemiptera<br />

APHlDlDAE<br />

Myzus persicae Malawi, highly polyphagous Chapola 1980, Napompeth<br />

Thailand 1982<br />

COREIDAE<br />

CIetus fuscescens Nigeria Amaranthus dubius, Ukwela & Ewete 1989<br />

A. cruenrus,<br />

A. hypochondriachus<br />

LYGAEIDAE<br />

Germalus unipunctarus Vanuatu Cock 19841,<br />

Nysius sp. Vanuatu Cock 1984b<br />

(continued on next page)


22 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.2.1 continued<br />

Species Location Other hosts References<br />

MlRlDAE<br />

Horcias nobilellus Brazil ' polyphagous d'Araujo e Silva et al. 1968a<br />

PI ESMATIDAE<br />

Piesma cinereum Brazil polyphagous d'Araujo e Silva et al. 1968a<br />

Thysanoptera<br />

PHLAEOTHRIPIDAE<br />

Haplothrips India Amaranthus viridis, Dhiman 1986<br />

longisetosus A. oleosa, Chenopodium<br />

anthelminthicum<br />

Coleoptera<br />

CHRYSOMELIDAE<br />

Cassida exilis<br />

Cassida nigriventris<br />

CURCULIONIDAE<br />

Ceutorhynchus<br />

asperulus<br />

Hypolixus<br />

trunculatus<br />

MELYRIDAE<br />

Astylus lineatus<br />

Pakistan Amaranthus viridis,<br />

Chenopodium album<br />

Pakistan Amaranthus viridis,<br />

Chenopodium album,<br />

Spinucia oleracea<br />

India red gram, Amaranthus<br />

viridis, A. tricolor,<br />

Basella alba<br />

Pakistan, Amaranthus viridis,<br />

India, Chromolaena odorata<br />

Thailand Digera arvensis<br />

Brazil citrus<br />

Baloch et al. 1976<br />

Baloch et al. 1976<br />

Khan et al. 1978<br />

Puttaswamy &<br />

Channabasavannal98 1,<br />

Puttaswamy et al. 198 1<br />

Aganval 1985,<br />

Baloch et al. 1976, 1977,<br />

Ghani 1965, Julien 1992<br />

Napompeth 1982, 1990b,<br />

1992a<br />

d'Araujo e Silva et al. 1968a<br />

Diptera<br />

AGROMYZIDAE<br />

Haplopeodes USA Amaranthus, Spencer & Steyskal 1986<br />

minutus Chenopodium<br />

Lepidoptera<br />

COLEOPHORIDAE<br />

Coleophora<br />

versurella<br />

CURCULIONIDAE<br />

Hypolixus ritsemae<br />

LYCAENIDAE<br />

Zizeeria knysna<br />

Zizeeria krupta<br />

NOCTUIDAE<br />

Neogalea<br />

(= Spodoptera) sunia<br />

Spodoptera eridania<br />

Spodoptera exigua<br />

. Spodoptera litura<br />

1<br />

Pakistan<br />

Vanuatu<br />

Pakistan<br />

Pakistan<br />

Nicaragua<br />

Nicaragua<br />

Nicaragua<br />

Philippines<br />

Chenopodium botrys Khan et al. 1978<br />

Cock 19841,<br />

Baloch et al. 1976<br />

Baloch et al. 1977, Ghani<br />

1965<br />

polyphagous Savoie 1988<br />

polyphagous Savoie 1988<br />

polyphagous Savoie 1988<br />

highly polyphagous Moody et al. 1987<br />

(continued on next page)


4.2 Amaranthus spinosus 23<br />

Species Location Other hosts References<br />

PYRALI DAE<br />

Loxostege sp. Argentina seed heads of<br />

Amaranthus sp.<br />

(the genus Loxostege<br />

Spoladea (=Hymenia)<br />

recurvalis<br />

SCYTHRIDIDAE<br />

Eretmocera<br />

impactella<br />

TORTRICIDAE<br />

Archips sp.<br />

YPONOMEUTIDAE<br />

Plutella xylostella<br />

MITE<br />

TETRANYCHIDAE<br />

Tetranychus<br />

novocaledonicus<br />

India,<br />

Pakistan<br />

Vanuatu<br />

contains pests)<br />

polyphagous<br />

Pakistan Amaranthus viridis,<br />

Chenopodium album<br />

Pakistan<br />

Pakistan<br />

India Amaranthus tricolor,<br />

4. viridis<br />

C.J. Deloach<br />

pers. comm. 1980<br />

Baloch et al. 1976<br />

Chaudhury & Kapil 1977,<br />

Lock 1984b. Ghani 1965<br />

Baloch et al. 1977<br />

Ghani 1965<br />

Ghani 1965<br />

Puttaswav.y dr<br />

Channabasavanna 1981<br />

Table 4.2.2 Natural enemies of Amaranthus spinosus: nematodes, fungi, viruses.<br />

Species Location Other hosts References<br />

NEMATODES<br />

Cactodera amaranthi Cuba spinach, other species Stoyanov 1972<br />

Meloidogyne incognita<br />

Pratylenchus zeae<br />

Pseudocephalobus indicus<br />

Philippines<br />

of Amaranthus<br />

rice, many weeds<br />

India only recorded on<br />

Valdez 1968<br />

Fortuner 1976<br />

Joshi 1972<br />

Rotylenchulus reniformis India, USA<br />

A. spinosus<br />

many weed hosts Inserra et al. 1989,<br />

La1 et al. 1978<br />

FUNGI<br />

Albugo bliti Dominica, many Amaranthaceae<br />

Jamaica, India,<br />

Pakistan, Sudan<br />

Alternaria compacta<br />

Aposphaeria amaranthi<br />

Bipolaris indica (as<br />

Drechslera indica)<br />

India<br />

USA potential bioherbicide<br />

for A. albus; effect on<br />

A. spinosus not known<br />

many, including<br />

Helianthus, Pennisetum,<br />

Portulaca<br />

Baloch et al. 1977,<br />

Evans 1987<br />

Kar & Ashok-Das 1988<br />

Mintz & Weidemann 1992<br />

Evans 1987,<br />

Kenfield et al.<br />

1989<br />

(continued on next page)


24 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.2.2 continued<br />

Species Location Other hosts References<br />

Cercospora brachiata<br />

(= C. amaranthi)<br />

Fusarium oxysporum f.sp.<br />

elaeidis<br />

Phoma tropica<br />

Puccinia sp.<br />

VIRUSES<br />

cucumber mosaic<br />

Digera mosaic<br />

groundnut rosette<br />

tobacco bunchy top<br />

tobacco mosaic<br />

India, Nigeria, many Amaranthaceae<br />

Uganda, Trinidad,<br />

USA, Japan,<br />

China, USSR<br />

Nigeria oil palm, Chromolaem<br />

odorata, Impera ta<br />

cylindrica, Mariscus<br />

alternifolius<br />

India<br />

Hong Kong<br />

India cucumber, Solanum,<br />

nigrum, Tagetes<br />

erecta, etc<br />

India several weeds<br />

Malawi (Myzus persicae<br />

Philippines is a vector)<br />

Evans 1987<br />

Oritsejafor 1986<br />

Evans 1987<br />

Evans 1987<br />

Suteri et al. 1980<br />

Singh et al. 1975<br />

Adams 1967<br />

Chapola 1980<br />

Eugenio & del Rosario 1962


Biological Control of Weeds: Southeast Asian Prospects<br />

Bidens pilosa<br />

(after Holm et a/. 1977)


Map 4.3 Bidens pilosa<br />

4.3 Bidens pilosa<br />

Bidens pilosa is native to tropical America. Preliminary studies, based mainly on<br />

Trinidad, indicate that it is attacked by a number of natural enemies, mainly insects, and<br />

that several of these may be sufficiently host specific to be considered as biological con-<br />

trol agents. Further host specificity studies are required and additional, wider-ranging<br />

searches, particularly in South America.


28 Biological Control of Weeds: Southeast Asian Prospects<br />

4.3 Bidens pilosa L.<br />

Asteraceae<br />

cobbler's pegs, Spanish needle; djaringan ketul (Indonesia), pisau pisau<br />

(Philippines) yah koen jam khao (Thailand)<br />

Rating<br />

++ Thai, Indo, Phil<br />

10 + Myan, Laos, Camb, Viet<br />

Msia<br />

Origin<br />

Tropical America<br />

Distribution<br />

Pantropical. Known from Java before 1835, but apparently not present in Kalimantan or<br />

the Moluccas (Soerjani et al. 1987).<br />

Characteristics<br />

Bidens pilosa is an erect, slender, branching, annual herb growing up to 1.5 m. Its stems<br />

are four-angled in cross section and its leaves opposite and sparsely hairy. The abundant<br />

yellow flowers are borne in heads on long stalks and produce black, barbed seeds charac-<br />

teristically radiating in all directions from a common base. The recurved, 2-toothed barbs<br />

enable the seeds to stick readily to hair and clothing and they are also distributed by wind<br />

and water. Cobbler's pegs prefers moister soils and flowers all year round.<br />

Importance<br />

A very common weed of 31 crops in more than 40 countries, B. pilosa occurs in gardens,<br />

cultivated land, open waste places and along roadsides. It is an important weed of pas-<br />

tures, maize, sorghum, vegetables, cotton, tea, coffee, cassava, coconut, oil palm, citrus,<br />

papaya, rice, rubber and tobacco. Single plants produce up to 6000 seeds, many of which<br />

germinate readily, permitting three or four generations a year in some regions.<br />

Some seeds remain viable in the soil for at least 5 years. When herbicides have<br />

eradicated perennial grasses this weed often becomes dominant.<br />

In South Africa the early spring growth is sometimes eaten by humans, but has low<br />

nutritive value. It has a pungent essential oil that may taint milk.<br />

Natural enemies<br />

These 'are also dealt with in 'Biological Control: Pacific Prospects' (Waterhouse and<br />

Norris 1987) which did not assess B. pilosa a particularly promising target for biological<br />

control. However, more information has since become available (Table 4.3.1 and 4.3.2),


4.3 Bidens pilosa 29<br />

particularly concerning leaf miners and seed head feeders of the fly family Agromyzidae.<br />

This suggests that there may be good prospects for some of these natural enemies.<br />

Few details are available of the natural enemies of B. pilosa in Brazil. The pupal<br />

stage of the chrysomelid beetle Phaedon pertinax (= P. consimilis) lasts 6 to 8 days and<br />

the pentatomid bug Stiretrus erythrocephalus passes through 4 instars in 30 days<br />

(Ribeiro 1953). Thrips killed 22.25% of B. pilosa plants (particularly seedlings) and<br />

Diptera infested 97.8% of flower heads. Parasitisation of these Diptera by wasps and<br />

flies, varied from 40.96% to 58.91 % according to the size of the population (Esposito et<br />

al. 1985).<br />

About half of the 2500 species of the family Agromyzidae have known hosts and<br />

almost all of this group are restricted in their feeding to a single family or genus. Only 16<br />

of the species (0.6% of the total) are truly polyphagous, feeding on a number of unrelated<br />

families (Spencer 1990). Agromyzid flies are, therefore, worth serious consideration as<br />

classical biological control agents. In this context, plants of the genus Bidens appear to be<br />

particularly attractive to agromyzid flies for they support 19 species (Table 4.3.3).<br />

In the tribe Coreopsideae (of the family Asteraceae) only two (Bidens and<br />

Coreopsis) of its 26 genera support Agromyzidae (Table 4.3.4). Coreopsis is native in<br />

North America, but no agromyzids are known on it there, although three polyphagous<br />

species are known to attack it in Europe, India or Australia (Spencer 1990).<br />

Eleven of the above 19 species are known from Bidens pilosa (Table 4.3.1). Of<br />

these, three are restricted to the genus Bidens (perhaps even to B. pilosa), two are<br />

polyphagous, and the remaining six have one or more additional hosts in other genera of<br />

the Asteraceae. Ten of the eleven species are restricted to the Americas and further host<br />

specificity tests may well indicate that many are valuable biological control agents. Four<br />

of the ten form blotch mines (Arnauromyza maculosa, Calycomyza allecta, C. platyptera<br />

and Liriomyza archboldi), one makes long, linear irregular mines (Liriomyza venegasiae),<br />

and three feed in the seed heads (Liriomyza insignis, Melanagromyza bidentis and M.<br />

floris) (Spencer 1990, Spencer and Steyskal 1986).<br />

The flower heads of B. pilosa are also attacked by three species of Tephritidae in<br />

Central America and by one of these in India. Adult weevils of the genera Baris,<br />

Centrinaspis and Promecops feed in the flowers of B. pilosa and other Asteraceae, but<br />

are thought not to breed there. Several other insects (at least three other beetles and a<br />

pierid butterfly) have also been recorded from B. pilosa and sometimes from other<br />

Asteraceae as well.<br />

Table 4.3.4 shows the position of the genus Bidens as a member of the tribe<br />

Coreopsidae, within the family Asteraceae. There may well be natural enemies that<br />

attack it, but not any species of agricultural or special environmental significance.<br />

Attempts at biological control<br />

There have been none.


30 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.3.1 Natural enemies of Bidens pilosa: insects.<br />

Species Location Other hosts References<br />

Hemiptera<br />

ALEYRODI DAE<br />

Dialeurodes vulgaris India coffee, Erythrina<br />

lithosperma<br />

Venkataramaiah 1974<br />

APHlDlDAE<br />

Aphis coreopsidis Brazil soybean Almeida 1979, d'Araujo<br />

e Silva et al. 1968a<br />

d'Araujo e Silva et al. 1968a<br />

Christie et al. 1974,<br />

d'Araujo e Silva et al. 1968a<br />

Aphis illinoisensis Brazil<br />

Uroleucon<br />

(= Dacrynotus) sp.<br />

MlRlDAE<br />

Brazil, USA tobacco, lettuce<br />

Garcanus gracilentus Brazil sweet potato,<br />

polyphagous<br />

d'Araujo e Silva et al. 1968a<br />

Horcias nobilellus<br />

PENTATOMIDAE<br />

Brazil polyphagous<br />

Amaranthus spinosus<br />

d'Araujo e Silva et al. 1968a<br />

Stiretrus erythrocephalus Brazil<br />

Ribeiro 1953<br />

Thyanta perditor Brazil soybean<br />

Grazia et al. 1982<br />

Coleoptera<br />

APlONlDAE<br />

Apion luteirostre<br />

CHRYSOMELIDAE<br />

Chalcophana viridipennis<br />

Chlamisus insularis<br />

Phaedon pertinax<br />

(= P. consimilis)<br />

Physimerus pygmaeus<br />

CURCULIONIDAE<br />

Baris sp.<br />

South America Mikania micrantha Cock 1980<br />

Brazil<br />

Trinidad Chromolaena odorata,<br />

C. ivaefolia<br />

Brazil, Mikania micrantha<br />

(not in Trinidad)<br />

South America Mikania micrantha<br />

d'Araujo e Silva et al. 1968a<br />

McFadyen 1988a<br />

Cock 1980, d'Araujo e Silva<br />

et a]. 1968a, Ribeiro 1953<br />

Cock 1980<br />

Trinidad (feed in B. pilosa<br />

flowers)<br />

Cruttwell 1971a<br />

Centrinaspis sp. Trinidad (feed in B. pilosa<br />

flowers)<br />

Cruttwell 197 1 a<br />

Promecops sp. Trinidad (feed in B. pilosa<br />

flowers)<br />

Cruttwell 197 la<br />

Rhodobaenus<br />

Trinidad adults feed on stems, McFadyen 1988a<br />

cariniventris<br />

and petioles of B. pilosa,<br />

Chromolaena odorata,<br />

C. ivaefolia,<br />

Austroeupatorium<br />

inulaefolium<br />

Rhodobaenus,<br />

Trinidad feed in B. pilosa stems: McFadyen 1988a<br />

tredecimpunctatus<br />

and in several other<br />

Asteraceae<br />

Diptera<br />

AGROMYZIDAE<br />

Amauromyza maculosa Trinidad (also polyphagous, but favours<br />

N&S America, Asteraceae<br />

Hawaii)<br />

Cruttwell 197 1 a,<br />

Spencer 1990, Spencer &<br />

Steyskal 1986<br />

(continued on next page)


4.3 Bidens pilosa 31<br />

Species Location Other hosts References<br />

Calycomyza allecta Trinidad (also<br />

Brazil,<br />

Guadeloupe,<br />

Venezuela)<br />

Calycomyza USA (Florida,<br />

platyptera California)<br />

Liriomyza archboldi Florida<br />

(Bahamas,<br />

Costa Rica)<br />

Liriomyza insignis Costa Rica<br />

Liriomyza trifolii cosmopolitan<br />

Liriomyza venegasiae Southern<br />

California<br />

Liriomyza sp. Argentina<br />

Melanagromyza bidentis Florida,<br />

Caribbean<br />

Melanagromyzafloris Costa Rica,<br />

Mexico,<br />

Trinidad<br />

(also Florida,<br />

Neotropics)<br />

Melanagromyza splendid USA, Hawaii<br />

Phytomyza atricornis Australia<br />

CEClDOMYllDAE<br />

Asphondylia bidens Florida<br />

DROSOPHILIDAE<br />

Cladochaeta nebulosa Florida<br />

TEPHRlTlDAE<br />

Dioxyna sororcula Florida,<br />

(= D. picciola) Trinidad,<br />

widespread<br />

Xanthaciura insecta Florida,<br />

Trinidad<br />

Lepidoptera<br />

ARCTllDAE<br />

Hypercompe Brazil<br />

(=Ecpantheria)<br />

hambletoni<br />

NOCTUIDAE<br />

Cropia (=Dyops) minthe Brazil<br />

Mocis latipes Brazil<br />

Thysanoplusia Kenya<br />

(- Diachrysia) orichalcea<br />

PlERlDAE<br />

Perrhybris phaloe Trinidad<br />

(= Ascia buniae phaloe)<br />

Helianthus, Rudbeckia<br />

and garden Asteraceae<br />

Asteraceae, including<br />

Aster, Helianthus,<br />

Zinnia<br />

restricted to Bidens<br />

restricted to Bidens<br />

polyphagous, including<br />

Chrysanthemum<br />

Venegasia carpesioides<br />

restricted to Bidens<br />

Verbesina sp.<br />

Calendula sp<br />

Asteraceae including<br />

Helianthus, Lactuca<br />

polyphagous, including<br />

Cineraria<br />

attacks several<br />

Asteraceae in India<br />

Ageratum conyzoides,<br />

Chromolaena odorata<br />

Fleischmannia<br />

caracasana<br />

Panicum maximum,<br />

Paspalum notarum,<br />

Hyparrhenia rufa<br />

coffee and other crops<br />

Cruttwell 1971b, Frick<br />

19.56, Spencer 1990,<br />

Spencer & Steyskal 1986<br />

Spencer 1990<br />

Spencer & Steyskal 1986<br />

Spencer 1990,<br />

Spencer & Steyskal 1986<br />

Spencer 1990<br />

Spencer 1990,<br />

Spencer & Steyskal 1986<br />

Spencer 1990<br />

Spencer 1990<br />

Cruttwell 197 la, Spencer<br />

1990, Spencer &<br />

Steyskal 1986<br />

Spencer 1990,<br />

Spencer & Steyskal 1986<br />

Kleinschmidt 1970<br />

Steyskal 1972<br />

Steyskal 1972<br />

Cruttwell 1971 a, 1972a,b,<br />

Steyskal 1972<br />

McFadyen 1988a,<br />

Steyskal 1972<br />

d'Araujo e Silva et al. 1968a<br />

d'Araujo e Silva et al. 1968a<br />

Lourencao et al. 1982<br />

Bardner & Mathenge 1974<br />

Cruttwell 197 1 a


32<br />

Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.3.2 Natural enemies of Bidens pilosa: nematodes, fungi, mycoplasmas,<br />

viruses.<br />

Species Location<br />

NEMATODES<br />

Meloidogyne sp. Hawaii<br />

Meloidogyne hapla India<br />

Pratylenchus minutus Hawaii<br />

Rotylenchulus reniformis USA<br />

FUNGI<br />

Cercospora bidenfis Mauritius<br />

Cercospora rnegalopotamica Hawaii<br />

Entyloma guaraniticurn Mauritius<br />

Uromyces bidenticola Hawaii, Mauritius<br />

MYCOPLASMAS<br />

aster yellows Hawaii<br />

Bidens witches broom Brazil<br />

VIRUSES<br />

Bidens mosaic<br />

groundnut rosette<br />

Sonchus yellow net<br />

soybean mosaic<br />

tomato spotted wilt<br />

Brazil<br />

Hawaii<br />

Florida<br />

Brazil<br />

Hawaii<br />

PARASITIC PLANT<br />

Cassytha filiformis Hawaii<br />

Table 4.3.3 Species in Agromyzid genera attacking Bidens.<br />

References<br />

Linford et al. 1949<br />

Singh et al. 1979<br />

Linford et al. 1949<br />

Inserra et al. 1989, McSorley<br />

et al. 198 1<br />

Rochecouste & Vaughan 1959<br />

Stevens 1925<br />

Rochecouste & Vaughan 1959<br />

Anon 1960, Rochecouste &<br />

Vaughan 1959<br />

Holm et al. 1977<br />

Vega et al. 198 1<br />

Kuhn et al. 1982<br />

Adams 1967<br />

Christie et al. 1974<br />

Almeida 1979<br />

Sakimura 1937<br />

Raabe 1965<br />

Genus Specific to Bidens Specific to Coreopsideae Polyphagous<br />

Melanagromyza<br />

Amauromyza<br />

Liriomyza 3<br />

Calycomyza<br />

Chromatomyia<br />

Total 3


4.3 Bidens pilosa 33<br />

Table 4.3.4 Relationship of four major Southeast Asian weeds and some economically<br />

important genera within the family Asteraceae.<br />

Family Asteraceae: 21 000 species (Mabberley 1987)<br />

Tribe Some economically Weed species<br />

important genera<br />

Arctoteae<br />

Carlineae<br />

Echinopsideae<br />

Cardueae<br />

Mutisieae<br />

Lactuceae<br />

Vemonieae<br />

Inuleae<br />

Astereae<br />

Eupatorieae<br />

Calenduleae<br />

Senecioneae<br />

Anthemideae<br />

Heleniae<br />

Madieae<br />

Heliantheae<br />

Tageteae<br />

Coreopsideae<br />

Carthamnus, Cynara<br />

Cichorium, Lactuca<br />

Aster<br />

Cineraria<br />

Chrysanthemum<br />

Dahlia<br />

Cosmos, Helianthus, Zinnia<br />

Ageratum conyzoides,<br />

Chromolaena odorata,<br />

Mikania micrantha<br />

Coreopsis Bidens pilosa<br />

The family Asteraceae, by far the largest in the dicotyledons, has been subdivided into<br />

18 tribes, some 1300 genera and about 21 000 species (Mabberley 1987). It contains sur-<br />

prisingly few economically important crop plants, of which lettuce (Lactuca sativa),<br />

sunflower (Helianthus annuus) and globe artichoke (Cynara scolymus) are the major<br />

species. However, there are a number of commercially important garden plants, espe-<br />

cially in the genus Chrysanthemum.


Biological Control of Weeds: Southeast Asian Prospects<br />

Chromolaena odorata<br />

(after Holm etal. 1977)


Map 4.4 Chromolaena odorata<br />

4.4 Chromolaena odorata 35<br />

Chromolaena odorata<br />

Chromolaena odorata is not a problem weed in the tropical Americas where it evolved. It<br />

is attacked there by more than 200 insects, at least a quarter of which are probably suffi-<br />

ciently host specific to be considered as classical biological control agents. The aggres-<br />

siveness of C. odorata in countries to which it has spread is probably due to the absence<br />

of most of these natural enemies.<br />

The arctiid moth Pareuchaetes pseudoinsulata has been established in India,<br />

Sri Lanka, Philippines, Sabah (Malaysia), the Mariana Is (Guam, Rota, Saipan, Tinian,<br />

Aguijan) and Federated States of Micronesia (Yap, Pohnpei, Kosrae), but only in the two<br />

latter island groups has it had spectacular success in controlling the weed. The mite<br />

Acalitus adoratus has spread naturally to Southeast Asia and Micronesia but, as yet, is<br />

having minor impact.<br />

It is probable that a group of natural enemies will be necessary to bring about effec-<br />

tive biological control of C. odorata in Southeast Asia, but there are a number of species<br />

that are well worthy of attention and longer term prospects for control appear promising.


36<br />

Biological Control of Weeds: Southeast Asian Prospects<br />

4.4 Chromolaena odorata (L.) R.M. King and H. Robinson<br />

(Formerly Eupatoriurn odoraturn)<br />

Asteraceae<br />

Siam weed, devil weed; bizat, tawbizat (Myanmar), tontrem khet (Cambodia),<br />

French weed (Laos), pokok tjerman (Malaysia), kirinyu, kumpai jepang, rumput<br />

go1 kar (Indonesia), hagonoy (Philippines) saab sua, yah sua mop (Thailand), co<br />

hoi (Vietnam)<br />

Rating<br />

+++ Msia, Phil<br />

18 ++ Myan, Thai, Laos, Camb, Viet, Indo<br />

Origin<br />

Central America and tropical South America (from Florida to northern Argentina).<br />

Distribution<br />

C. odorata is a weed throughout Southeast Asia, Irian Jaya, Papua New Guinea, New<br />

Britain, Mariana and Caroline Is, southern China, Taiwan, Sri Lanka, Bangladesh, India,<br />

West, Central and South Africa.<br />

Characteristics<br />

C. odorata is an upright or scrambling, thicket-forming, perennial shrub, growing from<br />

1.5 to 3 m high. Its roots are fibrous with a few well formed anchor roots and many later-<br />

als, the stems round, yellowish, hairy or almost smooth and profusely branched. Its<br />

leaves are opposite, with toothed margins and are conspicuously three veined. The flow-<br />

ers are at the tips of all stems, in clusters of 20 to 60, white or pale lilac. The achenes<br />

consist of 5 mm-long seeds with hooks on their angles, together with a pappus of 5 mm-<br />

long white bristles. The leaves have a pungent odour when damaged. Seed production is<br />

prolific (as many as 2 million per plant) and seeds provide the main mode of reproduc-<br />

tion. The achenes float long distances in the air and the seed hooks cling to hair and<br />

clothing. Germination occurs as soon as there is adequate moisture, although some 66%<br />

of seeds are not viable. Buried seeds lose up to 50% of their viability after 2 years (Yadav<br />

and Tripathi 1982).<br />

Importance<br />

C. odorata is not a serious weed in the Americas and no specific control methods are<br />

necessary (McFadyen 1991a). This is in stark contrast to its serious weed status in the<br />

countries to which it has spread and has been attributed to the many natural enemies that<br />

attack it in the Americas (McFadyen 1989, 1991~). It was introduced to Calcutta in the<br />

1840s, had spread into Sri Lanka, Southeast Asia and Nigeria by the 1940s and into Irian<br />

Jaya, New Britain and Micronesia by the 1980s. It is forecast to spread widely and


4.4 Chromolaena odorata 37<br />

aggressively in equatorial Africa, northern and eastern Australia and the Pacific<br />

(McFadyen 1988b, 1989).<br />

C. odorata grows in many soil types, but prefers well drained conditions and an<br />

annual rainfall above 1000 mm. Although it is not a problem in continuously cultivated<br />

land, it is most common and causes most losses in plantation crops, including coconut,<br />

rubber, oil palm, tea, coffee, cocoa, teak and cashew. It also thrives in areas newly<br />

cleared for planting, in abandoned or neglected fields, wastelands and along roadsides. It<br />

is sometimes a weed in pastures. Its rapid growth enables it to smother most competitors<br />

and it inhibits many with its allelopathic properties. It dies back after flowering in areas<br />

with a pronounced dry season and then becomes a fire hazard. After burning or cutting,<br />

the plants shoot freely from the crown. They are capable of forming dense tangled bushes<br />

two to three metres high, occasionally reaching six metres as climbers on other plants.<br />

The stems branch freely, with 20 or more laterals developing from axillary buds and<br />

often bent over under their own weight. Impenetrable stands of the weed cut off access to<br />

pastures and provide hiding places for rats, pigs and other undesirable animals. C.<br />

odorata is intolerant of shade, so that it dies out when the canopy closes in plantations<br />

(Ambika and Jayachandra 1990, McFadyen 1988b, 199 1 a). The shoots and young leaves<br />

contain nitrate at levels 5 to 6 times those toxic to stock and also pyrrolizidine alkaloids<br />

and cattle deaths occur following grazing. Hand weeding of Chromolaena is reported to<br />

cause skin allergy and scratches to result in infections (Ambika and Jayachandra 1990).<br />

It is interesting that the spread of C. odorata in West Africa has led to a<br />

polyphagous grasshopper Zonocerus variegatus becoming a pest. Although they are<br />

unable to mature on the weed as the only diet, hoppers are strongly attracted to the plant<br />

and especially to its flowers; and thickets are preferred night roosting sites. BopprC<br />

(1 991) hypothesises that the pyrrolizidine alkaloids accumulated from feeding on C.<br />

odorata protect the grasshoppers and their eggs from predators and parasitoids, leading<br />

to increased fitness and population density. However, this only occurs during the dry season,<br />

but not in the wet season when C. odorata does not bloom.<br />

Claims have been made (e.g. Field 1991, Herren-Gemmill 1991) that, under some<br />

circumstances, C. odorata may be beneficial to resource-poor farmers. One potential<br />

advantage, is its ability to outcompete another serious weed, alang-alang (Imperata cylindric~).<br />

However, McFadyen (1992) pointed out that a suitable perennial legume would<br />

be even more beneficial than C. odorata, and she also refuted a number of other claims.<br />

In Sri Lanka the indigenous legume Tephrosia purpurea has been successfully used to<br />

suppress weeds including C. odorata under coconut (Salgado 1972). Whatever potential<br />

benefits there may be in the presence of C. odorata there is an enormous body of fact to<br />

demonstrate that C. odorata has serious adverse effects on agricultural productivity in<br />

countries to which it has been introduced.<br />

Natural enemies<br />

A good deal is known about the insects attacking Chromolaena odorata, mainly as a<br />

result of studies aimed at biological control which started in the late sixties at the<br />

Commonwealth Institute of Biological Control Station in Trinidad. A number of scientists


38<br />

Biological Control of Weeds: Southeast Asian Prospects<br />

were involved, but principally R.E. McFadyen (nee Cruttwell) (Bennett and Cruttwell<br />

1973, Bennett and Rao 1968, Bennett and Yaseen 1975, Cock 1984a, Cock and Holloway<br />

1982, Cruttwell 1973a,b, 1974, 1977a,b, Cruttwell and Bennett 1969, McFadyen<br />

1988a,b, 199 1 a,b, Yaseen and Bennett 1977).<br />

An extensive bibliography dealing with all aspects of C. odorata, including its natural<br />

enemies and biological control, was compiled by Muniappan et al. (1988a), later<br />

supplemented in Chromolaena odorata Newsletters 3 (1990) and 6 (1992). The proceedings<br />

of three International Workshops on Biological Control of Chromolaena odorata,<br />

held in 1988, 1991 and 1993 also contain a wealth of up-to-date information.<br />

In the Americas C. odorata is attacked by at least 207 insect and 2 mite species<br />

(McFadyen 1988a). Of these, about half are probably polyphagous, a quarter are restricted<br />

to the Asteraceae and a quarter specific to Chromolaena. All stages of growth of the<br />

above ground parts of the plants are attacked, but the roots have not been examined<br />

(McFadyen 1991a) and not all regions where C. odorata occurs naturally were visited.<br />

For other regions of the world McFadyen (1988a) quotes records of 42 insect and 9 mite<br />

species, the vast majority of which are, or are likely to prove, polyphagous. Since then a<br />

few additional species have been recorded, all but one of which (an eriophyid mite, see<br />

India below) are likely to be polyphagous.<br />

In Trinidad, the cumulative effect of the natural enemies is great, between 25 and<br />

50% of all growing tips being destroyed. Seed germination is as low as 17% and many<br />

flowerheads fail to produce seed. Seedlings often succumb to the attack of stem and tip<br />

feeding insects and competitiveness and growth of established plants is greatly reduced<br />

by insect attack. At different sites and in different seasons damage is caused by different<br />

insects and, in general, is heaviest in shaded sites. Some of the insects are heavily<br />

attacked by parasitoids and if introduced without these to another country might prove to<br />

be even more effective.<br />

In addition to an arctiid moth (Pareuchaetes pseudoinsulata) and a weevil (Apion<br />

brunneonigrum), which have already had considerable attention paid to them (see next<br />

section), McFadyen (1 99 1 c) has nominated an additional 1 1 insects for priority evaluation<br />

(Table 4.4.1). Furthermore, others (Cruttwell 1974, Cock 1984a, Cock and Holloway<br />

1982, McFadyen 1988c, Muniappan and Viraktamath 1986) have suggested an additional<br />

22 species (Table 4.4.2) which were evidently considered less important by McFadyen<br />

(1991~). It is clear therefore that, if required, there are many promising candidates for<br />

detailed consideration. The additional species of Pareuchaetes suggested by Cock and<br />

Holloway (1982) have not been investigated in detail, but all are believed to breed on C.<br />

odorata or related species and several may be better adapted climatically and biologically<br />

than P. pseudoinsulata to conditions in many overseas countries.<br />

Although no special search has been carried out except in Trinidad and Tobago a<br />

number of fungal pathogens occurring on C. odorata are shown in table 4.4.3. Half of the<br />

records 'come from outside its area of origin and must, therefore, be suspected of having a<br />

wider than desirable host range. Possibly Cionothrix praelonga is of greatest interest,<br />

since preliminary tests indicate that it may be host specific (Ooi et al. 1991). It is autoecious<br />

(i.e. it does not have an alternate host), occurs in the Caribbean and Venezuela and


4.4 Chromolaena odorata 39<br />

Table 4.4.1 Potential biological control agents for C. odorata: insects (after<br />

McFadyen 199 1 c).<br />

Species Part Damage Problem Country found<br />

attacked<br />

Coleoptera<br />

CHRYSOMELIDAE<br />

Aulacochlamys sp.<br />

Chlamisus insularis<br />

Pentispa explanata<br />

CURCULIONIDAE<br />

Rhodobaenus<br />

cariniventris<br />

Diptera<br />

AGROMYZIDAE<br />

Melanagromyza<br />

eupatoriella<br />

CEClDOMYllDAE<br />

Clinodiplosis sp.<br />

Perasphondylia<br />

reticulata<br />

TEPHRlTlDAE<br />

Procecidochares sp.<br />

Lepidoptera<br />

BUCCULATRICIDAE<br />

Bucculatrix sp.<br />

NYMPHALIDAE<br />

Actinote anteas<br />

PYRALIDAE<br />

Mescinia parvula<br />

stem<br />

stem<br />

leaf miner<br />

stem<br />

shoot borer<br />

shoot galls<br />

bud galls<br />

stem galls<br />

leaf miner<br />

leaf<br />

shoot borer<br />

moderate<br />

minor<br />

moderate<br />

great<br />

great<br />

great<br />

great<br />

moderate<br />

minor<br />

great<br />

great<br />

Trinidad<br />

all Americas<br />

prefers shade Trinidad<br />

Trinidad<br />

cage mating West Indies, S. America<br />

rearing Trinidad<br />

cage rearing all Americas<br />

parasites Americas<br />

Mexico<br />

cage mating Trinidad, Costa Rica<br />

cage mating all Americas<br />

causes conspicuous leaf lesions. Pseudocercospora eupatorii-formosani is reported to be<br />

common and damaging on C. odorata in Brunei, but is widespread already in South and<br />

Southeast Asia (Chacko 1988, Evans 1987, Peregrine and Ahmad 1982).<br />

Attempts at biological control<br />

Four insects have been released for biological control, the weevil Apion brunneoni-<br />

grurn, the fly Melanagromyza eupatoriella and two moths Mescinia parvula and<br />

Pareuchaetes pseudoinsulata (Table 4.4.4). Of these, only the last has become estab-<br />

lished, fairly readily in Sri Lanka, Guam and other Micronesian islands, but with some<br />

difficulty in India and Sabah (Malaysia) and it 'has since spread unaided to the<br />

Philippines and Brunei. It failed to become established in Thailand, Ghana, Nigeria and<br />

South Africa. It has produced spectacular defoliation and death of many plants in Guam


40 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.4.2 Additional potential biological control agents for C. odorata: arthropods.<br />

Species Part attacked Country found<br />

Coleoptera<br />

CERAMBYCIDAE<br />

Aerenica hirticornis stem borer Trinidad, Bolivia,<br />

Brazil, Argentina<br />

CURCULIONIDAE<br />

Baris sp.<br />

Centrinaspis sp.<br />

Diptera<br />

CEClDOMYllDAE<br />

Asphondylia corbulae<br />

Clinodiplosis eupatorii<br />

Clinodiplosis sp.<br />

Contarinia sp.<br />

Neolasioptera brickelliae<br />

Neolasioptera cruttwellae<br />

Neolasioptera eupatorii<br />

Neolasioptera frugivora<br />

TEPHRITIDAE<br />

Cecidochares jluminensis<br />

Procecidochares connexa<br />

flowers, leaf buds<br />

flowers, leaf buds<br />

flower galls<br />

leaf galls<br />

bud galls<br />

flowers (achenes)<br />

flowers (achenes)<br />

stem galls<br />

stem galls<br />

flowers (achenes)<br />

flowers<br />

stem galls<br />

Trinidad<br />

Trinidad, Costa Rica<br />

El Salvador, Trinidad<br />

Central America, Brazil, West<br />

Indies<br />

Trinidad<br />

Trinidad<br />

Trinidad<br />

Trinidad<br />

USA, Trinidad, Bolivia<br />

Trinidad<br />

Trinidad, SE Brazil<br />

Mexico, Brazil, Bolivia<br />

Lepidoptera<br />

ARCTllDAE<br />

Pareuchaetes aurata aurata leaves. buds Paraguay, Argentina,<br />

Pareuchaetes aurata aurantior<br />

Pareuchaetes arravaca<br />

Pareuchaetes insulata<br />

Pareuchaetes misantlensis<br />

Pareuchaetes sp.<br />

GELECHllDAE<br />

Dichomeris (= Trichotaphe) sp.<br />

leaves, buds<br />

leaves, buds<br />

leaves, buds<br />

leaves, buds<br />

leaves, buds<br />

leaf roller (see<br />

Cruttwell 1973b) Trinidad<br />

SE Brazil, Bolivia<br />

Amazon River<br />

Surinam and French Guiana<br />

Southern USA, Mexico,<br />

Caribbean, Colombia<br />

Mexico<br />

Mexico<br />

LYCAENIDAE<br />

Calephelis laverna leaves Brazil, Trinidad, Venezuela,<br />

Central America<br />

Acarina<br />

ERlOPHYlDAE<br />

Calacarus sp. shoots<br />

India


Table 4.4.3 Natural enemies of C. odorata: fungi.<br />

4.4 Chromolaena odorata 41<br />

Species Country found References<br />

Anhellia niger<br />

Cercospora sp.<br />

Cercospora eupatorii<br />

Cercospora eupatoriicola<br />

Cercospora eupatorii-odoratii<br />

Cionothrix praelonga<br />

Fusarium oxysporum f. sp. elaeidis<br />

Guignardia eupatorii<br />

Mycovellosiella perfoliata<br />

Phoma sp.<br />

Phomopsis eupatoriicola<br />

Phyllosticta eupatoriicola<br />

Pseudocercospora eupatorii-formosani<br />

Septoria sp.<br />

Septoria ekmaniana<br />

Trinidad, Tobago<br />

Peninsular Malaysia,<br />

Sabah<br />

North America, Cuba,<br />

Nepal, India, Ivory Coast<br />

India, Bangladesh<br />

Malaysia<br />

Dominica, Tobago,<br />

Venezuela<br />

Trinidad, Tobago<br />

Sri Lanka<br />

Trinidad, Tobago<br />

Trinidad, Tobago<br />

not recorded<br />

not recorded<br />

India, Myanmar, Thailand,<br />

Malaysia, Borneo, Brunei,<br />

Guam<br />

Trinidad, Tobago<br />

Ooi et al. 1991<br />

Singh 1980<br />

Chacko 1988, Evans 1987<br />

Chacko 1988, Evans 1987<br />

Chacko 1988, Evans 1987<br />

Chacko 1988, Evans 1987<br />

Oritsejafor 1986<br />

Chacko 1988, Evans 1987<br />

Ooi et al. 1991<br />

Ooi et al. 1991<br />

Chacko 1988, Evans 1987<br />

Chacko 1988, Evans 1987<br />

Chacko 1988, Evans 1987<br />

Russo 1985<br />

Ooi et al. 1991<br />

and striking but sporadic defoliation in Sri Lanka. In India, populations have built up but<br />

damage has seldom been great. Where established, it is heavily attacked by a range of<br />

predators and these are believed to have prevented successful establishment in several<br />

countries.<br />

The eriophyid mite Acalitus adoratus causes abnormal growth of the epidermal<br />

hairs on young leaves and stems of C. odorata. Although it was never purposely intro-<br />

duced, it was observed in Thailand in 1984 and the Philippines in 1987, but had probably<br />

been present for some years. It is also widespread in Java and Sumatra, but there is no<br />

information from other Indonesian islands. It is present in Yap and Palau in the Caroline<br />

Islands and was observed on Guam in November 1993 (R. Muniappan pers. comm.). It is<br />

not present in India and it is not known whether it is present in Sri Lanka (Cruttwell<br />

1977b, McFadyen 1991 b, 1993, Muniappan et al. 1988a).<br />

Further details follow of the situation in individual countries and of the biology of<br />

some of the more promising natural enemies.<br />

Asia<br />

INDIA<br />

In one study, 11 insects and 3 mites were found attacking C. odorata. All except<br />

Calacarus sp. (Eriophyidae) are polyphagous (Muniappan and Viraktamath 1986,<br />

Viraktamath and Muniappan 1992). Most eriophyid mites have a highly restricted host<br />

range, so it is not clear whether it may even have accompanied the weed from the


42 Biological Control of Weeds: Southeast Asian Prospects<br />

4.4.4 Introductions for the biological control of Chromolaena odorata.<br />

Species Country Liberated Result References<br />

Coleoptera<br />

BRENTHIDAE<br />

Apion brunneonigrum Ghana 1975 - Cock 1984a, 1985,<br />

Guam 1984 - Nafus & Schreiner 1989<br />

India 1972-83 - Chacko & Narasimham<br />

1988, Cock 1984, 1985<br />

Malaysia 1970 - Ooi et al. 1988a,b<br />

(Sabah)<br />

Nigeria 197CL75 - Cock 1984a, 1985<br />

Sri Lanka 197676 - Cock 1984a, 1985<br />

Lepidoptera<br />

ARCTllDAE<br />

Pareuchaetes aurata<br />

aurata<br />

Pareuchaetes<br />

pseudoinsulata<br />

South Africa<br />

Pohnpei<br />

Ghana<br />

Guam<br />

India<br />

Indonesia<br />

Kosrae<br />

Malaysia<br />

(Sabah)<br />

Northern<br />

Marianas<br />

Nigeria<br />

South Africa<br />

Sri Lanka<br />

Thailand<br />

Yap<br />

Julien 1992,<br />

Kluge & Caldwell 1993<br />

Esguerra et al. 199 1,<br />

Esguerra et al. 1994<br />

Muniappan et al. 1988b<br />

Cock 1985,<br />

Cock & Holloway 1982<br />

Julien 1992<br />

Nafus & Schreiner 1989,<br />

Seibert 1989<br />

Chacko & Narasimham<br />

1988, Cock & Holloway<br />

1982<br />

Chacko & Narasimham<br />

1988, Julien 1992,<br />

Muniappan et al. 1989,<br />

Satheesan et al. 1987<br />

McFadyen pers. comm.<br />

Esguerra et al. 1994<br />

Cock & Holloway 1982,<br />

Ooi et al. 1988a,b,<br />

Syed 1979a<br />

Nafus & Schreiner 1989,<br />

Seibert 1989<br />

Cock & Holloway 1982<br />

Julien 1992, Kluge 1991,<br />

Kluge & Caldwell 199 1<br />

Dharmadhikari et al. 1977<br />

Napompeth et al. 1988<br />

Marutani & Muniappan<br />

199 1 a, Muniappan et al.<br />

1988b<br />

PY RALl DAE<br />

Mescinia parvula Guam Nafus & Schreiner 1989


4.4 Chromolaena odorata 43<br />

Americas. In another study 21 polyphagous insects were recorded from C. odorata, of<br />

which the most widespread and numerous were Aphis fabae and A. spiraecola (Lyla and<br />

Joy 1992, Lyla et al. 1987). Some of these same species are included amongst the 31<br />

insects and 9 mites recorded on Chromolaena by Chacko and Narasimham (1988).<br />

Pareuchaetes pseudoinsulata from Trinidad was cleared of a nuclear polyhedral<br />

virus and mass reared. It was first released in 1973 at several sites in Karnataka, but no<br />

establishment occurred. Observations suggested that two ants, Myrmicaria brunnea and<br />

Oecophylla smaragdina, were major predators (Cock and Holloway 1972). P. pseudoin-<br />

sulata from Sri Lanka (where it had been sent and had already become established) was<br />

next released and appeared to be doing well until unexpectedly wiped out by virus (Cock<br />

1985). However, further material from Sri Lanka was laboratory reared and 36000 larvae<br />

and 1000 adults released from 1984 onwards, this time in Kerala. This procedure resulted<br />

in field establishment (Chacko and Narasimham 1988, Joy et al. 1993, Muniappan et al.<br />

1989, Satheesan et al. 1987). Most recently, the establishment of P. pseudoinsulata at<br />

Sullia Taluk in Karnataka State and defoliation of Chromolaena thickets over about 1000<br />

km2 was reported in December 1992 (R. Muniappan pers. comm. 1993). However the<br />

overall performance of the moth has been unsatisfactory (Joy et al. 1993).<br />

Small releases of the weevil Apion brunneonigrum have been made since 1972, but<br />

establishment has not resulted (Cock 1985, Ooi et al. 1991).<br />

SRI LANKA<br />

R pseudoinsulata was received from India in 1973 and about 2000 larvae released in a<br />

coconut estate in the North Western Province. Six months after release spectacular defo-<br />

liation was observed of a hectare of previously impenetrable growth of C. odorata. In<br />

addition to leaves, terminal buds and tender stems were being consumed. Further releas-<br />

es were made and two years later it was estimated that some 800 ha of C. odorata had<br />

been defoliated (Dharmadhikari et al. 1977). Since then sporadic, heavy defoliation has<br />

mainly occurred at the beginning of the dry season at the time of flowering. This has<br />

caused great damage and, at times, death of the weed. However R pseudoinsulata popu-<br />

lations fluctuate considerably, due in no small measure to natural enemies. Young larvae<br />

are taken by birds and predatory Sycanus bugs. They are also parasitised by the braconid<br />

Apanteles creatonoti and the tachinid Exorista sp. (Kanagaratnam 1976). In one series<br />

of experiments from 63 to 100% of pupae were consumed by ants, termites and lizards<br />

(Mahindapala et al. (1980). Perera (1981) fed P. pseudoinsulata larvae on C. odorata<br />

leaves dipped in 32P labelled sodium orthophosphate, transferred them to C. odorata in<br />

the field and collected predators from pitfall traps. Several carabids and a histerid<br />

showed no radioactivity, nor did the ants Odontomachus simillimus and Diacamma<br />

rugosum which were observed carrying away treated larvae to their nests, indicating that<br />

they do not feed on the larvae soon after capture. There was no unusual preponderance<br />

of predatory wasps, but birds were observed picking up larvae so it is likely that they<br />

were the cause of the sudden decline in larval population (P.A.C.R. Perera pers. comm.<br />

1993).


44 Biological Control of Weeds: Southeast Asian Prospects<br />

How effective the moth is as a control agent is yet to be determined. However,<br />

Perera (1981) calculated that a t? pseudoinsulata larva from hatching to pupation con-<br />

sumes an average of 184.6 cm2 of leaf. Based on measurements of a heavy growth of C.<br />

odorata, there are 22.42x lo8 cm2 of leaf area per ha requiring about 12 million larvae to<br />

produce defoliation. Assuming an average egg production of 200 per female moth and a<br />

1 : 1 sex ratio, 12 million larvae could be produced in two generations (3 months) with a<br />

release of 600 to 700 females. Cock and Holloway (1982) have suggested that there is a<br />

better climate match between Sri Lanka and Trinidad than for most of the other countries<br />

where the moth has been released.<br />

Apion brunneonigrum were released between 1974 and 1976 and, two months after<br />

release, were seen on flower heads but have not been recovered since (Cock 1985,<br />

Kanagaratnam 1976, Ooi et al. 1991).<br />

Southeast Asia<br />

BRUNEI<br />

Although no releases of P. pseudoinsulata have been made, two females were trapped in<br />

the early 1980s, presumably having resulted from the colonies established in neighbour-<br />

ing Sabah (Malaysia) (Cock 1985).<br />

INDONESIA<br />

An aphid has been observed to attack young shoots and cause leaf curl of C. odorata.<br />

Work on biological control of the weed was initiated in 1991 with the introduction of P.<br />

pseudoinsulata to Sumatra, but there is no information on the outcome. There is a current<br />

project (1993) under R.E. McFadyen to study the host specificity of the tephritid fly<br />

Procecidochares connexa and either the moth Mescinia parvula, the stem boring<br />

Melanagromyza eupatoriella or the butterfly Actinote anteas with a view, if judged safe<br />

to do so, to liberation in Indonesia and the Philippines (R.E. McFadyen pers. comm.,<br />

Tjitrosoedirdjo 1991, Tjitrosoedirdjo et al. 199 1).<br />

MALAYSIA (SABAH)<br />

Aphis spiraecola attacks young shoots of C. odorata and causes leaf fall (Bennett and<br />

Rao 1968).<br />

t? pseudoinsulata was introduced from India to Sabah in 1970 and releases made<br />

between 1970 and 1974 of over 4000 eggs, 40 000 larvae and 700 adults. Temporary<br />

establishment occurred in two areas in 1973 and 1974, but both colonies then appeared to<br />

die out over the next couple of years. This was considered to be due to general predators,<br />

such as ants (Cock and Holloway 1982). However, in 1983 and 1987, pockets of larvae<br />

appeared scattered over Sabah and often distant from the sites of original release (Ooi et<br />

al. 1988a,b). There is a good climate match between Sabah and Trinidad, which may<br />

explain the establishment (Cock and Holloway 1982).<br />

Small releases of A. brunneonigrum were made in 1970 and recoveries were report-<br />

ed a year later, but there is no indication that the weevil has survived (Ooi et al. 1988a,b,<br />

Syed 1973, 1975, 1979a,b).


4.4 Chromolaena odorata 45<br />

PHILIPPINES<br />

Aphis gossypii, A. spiraecola (= A. citricola) and the tortricid Homona coflearia were<br />

found attacking C. odorata (Torres 1986) and the total of natural enemies increased to 11<br />

by 8 additional (unspecified) insects (Torres 1988). Although it had not been intentional-<br />

ly introduced, numerous larvae of P. pseudoinsulata were discovered in 1985 in a limited<br />

area near the coast of Palawan. They were feeding on the leaves and stems of C. odorata<br />

under coconut trees and along roads, but surveys elsewhere at the time revealed no evi-<br />

dence of P. pseudoinsulata larvae (Aterrado 1986a,b, Torres and Paller 1989). However<br />

P. pseudoinsulata was discovered later in Zamboanga City, Bohol and northern Leyte<br />

provinces in the Visayas islands (Aterrado and Talatala-Sanico 1988).<br />

The eriophyid mite Acalitus adoratus was discovered in the Philippines in 1987<br />

(McFadyen 1 99 1 b).<br />

THAILAND<br />

A number of insects were found attacking C. odorata: the aphids Aphis craccivora,<br />

A. gossypii and A. spiraecola, the weevil Hypolixus trunculatus, a stem boring cicindelid<br />

larva and the arctiid moth Amsacta lactinea. They were causing little damage<br />

(Napompeth 1990a,b, Napompeth et al. 1988, Napompeth and Winotai 199 1).<br />

P. pseudoinsulata was introduced from Guam from 1986 to 1988 but, despite<br />

repeated field releases in 1987 and 1988, did not become established. The shoot miner<br />

Melanagromyza eupatoriella was introduced from Trinidad in 1978, but could not be<br />

reared and was not released.<br />

The mite Acalitus adoratus, detected in 1984, has since spread to all C. odorata<br />

infested areas, but is not having a significant effect on the weed.<br />

VIETNAM<br />

Infestations of Aphis craccivora and A. gossypii have been recorded on C. odorata, but<br />

no releases of biological control agents have been made (Napompeth and Hai 1988).<br />

Pacific<br />

GUAM<br />

P. pseudoinsulata was introduced from India and Trinidad, mass reared and first released<br />

in Guam in 1984 and later in the Northern Marianas. Initially late instar larvae were<br />

released in batches of up to 800, but were heavily attacked by ants, spiders, toads and<br />

other general predators and failed to become established. Next, groups of 500 or more<br />

adult moths were released at a number of sites, resulting in establishment in all release<br />

areas. Populations built up rapidly, defoliation of Chromolaena soon followed and almost<br />

all plants were stripped. Shoots arising from the crowns were also attacked as they<br />

appeared and, within a year, over 90% of the plants were killed. The moth spread rapidly<br />

and by 1987 had reached almost all infested areas of Guam. Eventually more than<br />

25 000 ha of the weed had been defoliated (Muniappan 1988c, Nafus and Schreiner 1989,<br />

Seibert 1989). A parasitoid Exorista xanthaspa (= E. civiloides) caused up to 30% mor-<br />

tality and predation by ants, spiders, toads and lizards occurred (Seibert 1989).


46 Biological Control of Weeds: Southeast Asian Prospects<br />

It was observed that the feeding of P. pseudoinsulata larvae caused the leaves of C.<br />

odorata to turn yellow, an effect that could not be produced by simply applying larval<br />

excreta to the plant. Yellow leaves were tougher and had a higher level of nitrate and,<br />

when larvae were forced, much against their preference, to feed on yellow leaves, they<br />

exhibited slow growth and high mortality. Furthermore, larvae continued to feed on yel-<br />

low plants both by day and night (exposing them to daytime predators), whereas on green<br />

plants they fed at night and hid at ground level by day (Marutani and Muniappan 1991 b).<br />

Interestingly, the yellow plants appear to lose their allelopathic properties and hence this<br />

major aid to dominance over other vegetation. The yellowing is reversible if the insects<br />

are removed (McConnell et al. 1992, Muniappan and Marutani 1992).<br />

Three additional insects were released to aid in the control of Chromolaena, but<br />

there is no evidence of establishment. Apion brunneonigrum was released early in 1984<br />

at the beginning of the dry season when the above ground growth of Chromolaena dies<br />

back. Because of the unsuitable condition of the host plants the beetle was not expected<br />

to become established. Small numbers of Mescinia parvula were released late in 1984<br />

and again late in 1986 (Seibert 1989). The mite Acalitus adoratus appeared in Guam in<br />

1993 (R. Muniappan pers. comm.).<br />

Larvae of the pyralid moth Eucampyla etheiella were observed attacking young<br />

flower buds and mature flowers and causing extensive damage. Larvae were parasitised<br />

by the eulophid Elachertus sp. and the elasmid Elasmus sp. (Marutani and Muniappan<br />

1 990).<br />

NORTHERN MARIANAS (ROTA, TINIAN, SAIPAN, AGUIJAN)<br />

P. pseudoinsulata has been established from liberations in 1986 and 1987 on all of these<br />

islands (Muniappan et al. 1989, Nafus and Schreiner 1989).<br />

Federated States of Micronesia<br />

KOSRAE<br />

Monthly releases of P. pseudoinsulata larvae in batches of 1000 to 4000 were made from<br />

early 1992 in sunny areas and defoliation of C. odorata was observed six months later.<br />

Predators were less active in sunny than in shady locations (Esguerra et al. 1994).<br />

PA LA U<br />

Although no releases of biological control agents have been made, the mite Acalitus ado-<br />

ratus was found to be present (Muniappan et al. 1988b).<br />

POHNPEI<br />

P. pseudoinsulata larvae were introduced from Guam in 1988, some liberated and others<br />

mass reared during which both larvae and adults were released until 1992. In four release<br />

sites extensive feeding injury and heavy defoliation of C. odorata was observed in 1991<br />

and populations persisted in 1992 in burnt areas where Siam weed was regenerating from<br />

root stocks (Esguerra et al. 1994). Heavy predation, especially in shaded conditions, was<br />

observed on all stages by ants, spiders, birds and lizards (Esguerra et al. 1991, 1994).


4.4 Chromolaena odorata 47<br />

YAP<br />

C. odorata was first reported in 1987. P. pseudoinsulata was released in 1988 at 14 dif-<br />

ferent sites, but failed to become established except at one location where only 100 lar-<br />

vae and 104 adults had been released (Muniappan et al. 1988b). It eventually disappeared<br />

at this site. However releases of 500 larvae in September and October and several hun-<br />

dred in December 1990 to June 1991 resulted in establishment (Marutani and Muniappan<br />

1991a). As on Guam and Rota, larvae of Eucampyla etheiella were found causing exten-<br />

sive damage to buds and mature flowers (Marutani and Muniappan 1990). The eriophyid<br />

mite Acalitus adoratus was found attacking C. odorata late in 1988, although it was not<br />

observed during a survey of the weed in May of that year (Muniappan et al. 1988b).<br />

Africa<br />

GHANA<br />

P. pseudoinsulata from India was used to establish a culture and releases were made<br />

between 1973 and 1978 in a variety of habitats including oil palm plantations. Although<br />

small amounts of leaf damage were observed shortly after release, no recoveries were<br />

made. Failure to establish was ascribed to predators, in particular to ants (Cock and<br />

Holloway 1982).<br />

One small release of Apion brunneonigrum was made in 1975, but it failed to<br />

become established (Cock 1985).<br />

NIGERIA<br />

P. pseudoinsulata shipped from Ghana between 1973 and 1978 were released, but no<br />

establishment occurred (Cock and Holloway 1982).<br />

A. brunneonigrum was sent from Trinidad from 1970 to 1975, but there is no record<br />

of establishment (Cock 1985).<br />

SOUTH AFRICA<br />

Disease-free adults of P. pseudoinsulata originating from Guam were released in batches<br />

of 500 to 1000 at 10 sites in Natal in 1989, but there are no signs of establishment. Very<br />

heavy egg predation (up to 82%) by ants and chrysopids was observed (Kluge 1991,<br />

Kluge and Caldwell 1991). P. pseudoinsulata has been obtained from Florida where the<br />

climate is similar to that in Natal and where there is a rich ant fauna. It is (as of 1991) to<br />

be released as soon as laboratory cultures of larvae have been cleared of microsporida.<br />

The larvae of another arctiid moth, Pareuchaetes aurata aurata, from Chromolaena<br />

jujuensis in Argentina were found to feed voraciously and complete their development on<br />

C. odorata. Females scatter their eggs around the base of the host plant and it is hoped<br />

that this will help to overcome the problem of ant predation. After specificity testing it<br />

has been released in Natal, but no further information is available (Kluge and Caldwell<br />

1993).<br />

'A laboratory culture of the butterfly Actinote anteas has been established with<br />

material collected in Costa Rica and host testing is to commence (Kluge and Caldwell<br />

1991).<br />

Work is also in progress on the host specificity of the weevil Rhodobaenus


48 Biological Control of Weeds: Southeast Asian Prospects<br />

cariniventris and a leaf spot disease caused by Septoria sp. (Kluge and Morris 1992).<br />

Major natural enemies<br />

Acalitus adoratus Acarina: Eriophyidae<br />

Recorded originally from Trinidad, Florida, Brazil and Bolivia, it appeared without spe-<br />

cial assistance in Thailand, Philippines, Indonesia (Java and Sumatra), Caroline Is (Yap,<br />

Palau) Guam and southern China. It was not present in India in the mid 1980s nor in Sri<br />

Lanka or West Africa (McFadyen 1993).<br />

These tiny mites (0.1 4 to 0.1 8 mm long) usually live on the lower surface of leaves.<br />

Their feeding induces abnormal growth of the epidermal hairs, resulting in the formation<br />

of erineum patches, the term given to areas covered with dense twisted hairs amongst<br />

which the mites live. These appear as white patches on the leaves, usually 0.5 to 3 mm in<br />

diameter, and the whole leaf surface may be affected. The patches often turn yellow on<br />

older leaves. The nymphs and adults feed, and the eggs are laid, between the epidermal<br />

hairs. Particularly heavy infestations develop in dry and exposed situations and, although<br />

the damage is not spectacular, heavy attack stunts, distorts and slows growth, thereby<br />

reducing competitiveness. Tests indicated that, as with many other eriophyid mites,<br />

A. adoratus is host specific.<br />

When infested leaves senesce, A. adoratus leave the erineum patches and are preyed<br />

upon by other mites and by the larvae of a cecidomyiid fly, Arthrocnodax meridionalis<br />

(Cruttwell 1977b, McFadyen 199 1 b, Muniappan et al. 1988a,b).<br />

It is suggested that A. adoratus was accidentally introduced to Sabah when field-<br />

collected adults of the weevil Apion brunneonigrum in Trinidad were released directly in<br />

the 1970s; and that it has since spread naturally and on leaves of C. odorata used as<br />

packing material around fruit and other produce (McFadyen 1993).<br />

Actinote anteas Lepidoptera: Nymphalidae<br />

Recorded from Costa Rica and Trinidad. The host specificity of this acraeinine defoliator<br />

is being examined in South Africa (Kluge and Caldwell 1991).<br />

Apion brunneonigrum Coleoptera: Apionidae<br />

This weevil has been recorded from Trinidad, Venezuela and Argentina. Small releases<br />

were made in West Africa, India, Sri Lanka, Sabah and the Marianas, but the weevil per-<br />

sisted only in Sabah and then apparently only briefly. The reasons for these failures have<br />

not been investigated.<br />

Cruttwell (1973a) studied its biology and host specificity and found that it would<br />

feed and develop only on C. odorata and C. ivaefolia. It has never been recorded damag-<br />

ing economic plants either in Trinidad or South America. The life history is closely linked<br />

with the development of its host, the adults becoming reproductively mature at the time<br />

that the plant produces young flower buds which provide food for egg maturation. Eggs<br />

are deposited in the developing flower heads and larvae feed within the flower heads,<br />

destroying the seeds. Pupation occurs in the flowerheads and, until the next flowering,<br />

adults feed on tender growth, usually in shaded situations, and may do considerable dam-


4.4 Chromolaena odorata 49<br />

age (Cock 1984a). An individual larva destroys 30 to 60 seeds during development and<br />

the ovipositing female many young flowers. A. brunneonigrum thus has potential for<br />

causing considerable damage, particularly in lightly shaded conditions.<br />

Aulacochlamys sp. Coleoptera: Chrysomelidae<br />

Widespread and occasionally abundant in Trinidad, where it causes moderate damage.<br />

Eggs are laid singly in a cylindrical ribbed case formed from faeces. These cases form<br />

the apex of a conical larval case which is enlarged as the larva grows. Larvae feed on the<br />

surface of stems and leaf petioles. Mature larvae attach the 3.5 to 3.7 mm long case to a<br />

stem and pupate inside. Adults emerge one to two weeks later. The small black adults<br />

(1.8 to 2.5 mm long) feed on the surface of stems and petioles. No parasitoids are known<br />

(McFadyen 1988a).<br />

Bucculatrix sp. Lepidoptera: Bucculatricidae<br />

Recorded from C. odorata in Mexico and Chromolaena jujuensis (= Eupatorium hooke-<br />

rianum) in Argentina. Larvae are solitary leaf miners and pupate in the mines (McFadyen<br />

1988a).<br />

Chlamisus insularis Coleoptera: Chrysomelidae<br />

Recorded from Mexico, Panama and Trinidad. The life history is similar to that of<br />

Aulacochlamys sp., but this species is somewhat larger. The mature larval case is conical<br />

with a rough surface and 6 to 7 mm long. The adults are black with golden markings and<br />

3.3 to 4.3 mm long. Adults are known to feed on C. odorata, C. ivaefolia and Bidens<br />

pilosa. A black, solitary eulophid egg parasitoid is known (McFadyen 1988a).<br />

Clinodiplosis sp. Diptera: Cecidomyiidae<br />

Recorded from C. odorata and C. ivaefolia in Trinidad. Up to three larvae at a time live<br />

between the bud leaves of stem tips or axillary buds, destroying tissue and preventing<br />

growth. A gall is formed by the slight swelling of the bud leaves which become red and<br />

densely covered with hairs. Mature larvae drop to the ground and pupate just below the<br />

soil surface. Adults emerge 11 to 18 days later. This gall midge is abundant and wide-<br />

spread in Trinidad, breeds throughout the year and causes considerable damage to C.<br />

odorata (McFadyen 1988a).<br />

Mescinia parvula Lepidoptera: Pyralidae<br />

Recorded from Trinidad; similar larvae were found on C. odorata in Mexico and Brazil<br />

and on C. jujuensis in Argentina. A few individuals were released on Guam in 1984, but<br />

there has been no evidence of establishment.<br />

Ovipositing females select leaves with dense hairs (in effect young leaves) with the<br />

result that developing buds are nearby. Eggs are laid individually amongst the epidermal<br />

hairs on the underside of the young leaves and hatch in 5 to 6 days. Young larvae move<br />

to a terminal or axillary bud and several may enter the same bud. They bore down the<br />

stem destroying meristematic tissue and preventing growth. Larvae may leave a stem and<br />

enter a new bud. After 13 or so days larvae leave the stem to spin a flimsy cocoon, either<br />

attached to the plant or among ground litter, in which they pupate. Adults emerge 10 to


50 Biological Control of Weeds: Southeast Asian Prospects<br />

11 days later and live up to 6 days. Attempts to induce mating in cages in Trinidad were<br />

unsuccessful. In specificity tests larvae fed on only a few Asteraceae other than C. odora-<br />

ta and C. ivaefolia but, with the exception of 1 out of 30 larvae placed on Dahlia, no<br />

development was ever completed. Over a three year period in Trinidad, no oviposition or<br />

attack was observed on Dahlia plants growing near C. odorata which was frequently<br />

attacked by M. parvula. Furthermore, since Dahlia leaves are not hairy, it is most unlike-<br />

ly that M. parvula would ever oviposit on them. Larvae in Trinidad are attacked by eight<br />

hymenopterous and one tachinid parasitoid and, if freed from these, might do consider-<br />

ably more damage to C. odorata (Cruttwell 1977a).<br />

Pareuchaetes aurata aurata Lepidoptera: Arctiidae<br />

This subspecies occurs in south-eastem Brazil, Paraguay and northern Argentina at lati-<br />

tudes (26" to 30°S) similar to those of Natal, South Africa. It has an average life cycle of<br />

30 days at 26' to 29OC and 58 days at 22O to 25OC. Its larvae are nocturnal feeders and<br />

shelter at the base of plants during the day. In the laboratory, pupation occurred in a flimsy<br />

cocoon spun between leaves on the plant. Mating may occur on the night of emergence<br />

and an average of 242 eggs are laid over the next eight days. These are laid singly on the<br />

ground and, in the laboratory, newly-hatched first instar larvae were able to walk up about<br />

2m of stem to commence feeding. In the field ?! aurata aurata is found in shaded habitats<br />

near surface water.<br />

In Argentina, larvae and pupae are infected with a microsporidan disease (Nosema<br />

sp.), up to 20% of larvae are parasitised by a complex of braconid, chalcidid and tachinid<br />

parasitoids and all stages are subject to attack by predatory ants.<br />

The usual host plant of ?! aurata aurata is Chromolaena jujuensis, but it has been<br />

successfully reared for more than 10 generations on C. odorata. In the field it has never<br />

been recorded as a pest on any of the many commercially important crops grown in its<br />

natural area of distribution. It was liberated in Natal (South Africa) in 1990 (Kluge and<br />

Caldwell 1993).<br />

Pareuchaetes pseudoinsuhta Lepidoptera: Arctiidae<br />

This moth is native to Trinidad, Tobago and the north-eastern coast of Venezuela. It has<br />

become established in Brunei, Guam, India, Philippines, Sabah, Sri Lanka, the Northern<br />

Marianas and Yap, but has failed to do so in Ghana, Nigeria, South Africa and Thailand. It<br />

was previously misidentified first as Ammalo arravaca and then as A. insulata, which is a<br />

closely related but distinct species (Cock and Holloway 1982).<br />

The moth, which lives up to about 10 days, lays 150 to 250 eggs (maximum 580) in<br />

groups attached to the lower surface of the leaves of C. odorata. Larvae feed on the leaves<br />

and are gregarious until the 3rd instar, but then disperse. From the 4th instar on they feed<br />

at night, hiding by day amongst debris at the base of the plant, where they later pupate.<br />

The life cycle varies from 40 to 60 days and breeding occurs throughout the year. Host<br />

specificity studies in Trinidad showed that development occurred only on Chromolaena<br />

ivaefolium, C. microstemon and C. odoratum. In addition larvae developed, but only as far<br />

as the 3rd instar, on Ageratum conyzoides (Bennett and Cruttwell 1973), although in Sri<br />

Lanka, adults were produced on this weed. However their eggs had a somewhat lower


4.4 Chromolaena odorata 51<br />

hatchability than those from adults bred on C. odorata (Mahindapala et al. 1980). A high<br />

degree of host specificity has since been confirmed by others (e.g. Ahmad and Thakur<br />

1991, Sankaran and Sugathan 1974, Syed 1979a) and no damage to plants other than to C.<br />

odorata has been reported either in the Americas or in the overseas countries where it has<br />

become established.<br />

In Trinidad the eggs are parasitised by a scelionid wasp and the larvae by five<br />

species of tachinid fly. A nuclear polyhedrosis virus also affects the larvae (Bennett and<br />

Cruttwell 1973) and may have been responsible for breeding difficulties in some overseas<br />

countries, although other countries have experienced no problems in establishing cultures.<br />

Pentispa explanata Coleoptera: Chrysomelidae<br />

This hispine beetle is recorded on C. odoratum from Mexico to Colombia and from<br />

Venezuela on Pithecoctenium sp. (Bignoniaceae). In Trinidad adults are widespread on C.<br />

odorata and C. ivaefolia, but would not feed on Pithecoctenium echinatum.<br />

Eggs are inserted singly under the leaf epidermis and covered with a faecal plug.<br />

Larvae hatch after about 12 days and form irregular blotch mines which expand to 2 to 3<br />

cm in diameter 20 to 25 days later when larvae are mature. Pupation occurs in the mine<br />

and adults emerge 5 to 8 days later. Adults disperse and feed on the underside of the<br />

leaves producing characteristic scars. There is one generation a year. Larvae are para-<br />

sitised by a solitary ectoparasitic elasmid Austelasmus sp. and are taken by predatory<br />

wasps (McFadyen 1988a).<br />

Perasphondylia reticulata Diptera: Cecidomyiidae<br />

This gall fly is recorded from C. odorata and C. ivaefolia in Trinidad, Brazil and Bolivia<br />

and from C. odorata and Eupatorium sp. in El Salvador.<br />

Larvae occur singly in a hollow pear-shaped gall, 7 to 9 mm long, in stem tips and<br />

axillary buds. P. reticulata causes considerable damage but is generally uncommon and<br />

confined to the cooler valleys in Trinidad. However it is commoner in Brazil and Bolivia.<br />

It is attacked by several parasitoids in Trinidad and Bolivia (McFadyen 1988a).<br />

Procecidochares connexa Diptera: Tephritidae<br />

This gall fly is recorded from Mexico, Brazil and Bolivia.<br />

Eggs are inserted in the tip of the stem and abnormal growth commences even<br />

before they hatch. One to seven larvae feed in separate curved tunnels in the developing<br />

gall. Mature larvae pupate in the tunnel behind an epidermal window through which the<br />

adult emerges later. The galls slow and distort growth and cause moderate damage.<br />

Larvae are parasitised by a number of wasps throughout their range (McFadyen<br />

1988a).<br />

Rhodobaenus cariniventtis Coleoptera, Curculionidae<br />

This weevil is recorded from Trinidad and USA. Eggs are deposited in a slit between two<br />

rows 'of punctures encircling the stem, which result in wilting of the stem tip. On hatch-<br />

ing, larvae feed for a few days in the wilted portion then tunnel into the sound tissue<br />

below the punctures. Bennett (1955) reports that, after a month, they pupate in the stem<br />

at the base of the plant and adults emerge 10 days later. However, McFadyen (1988a)


52 Biological Control of Weeds: Southeast Asian Prospects<br />

states that, when mature, the larva cuts off from the hollow tip of the stem a piece about<br />

2cm long containing it. This falls to the ground, where the open ends are plugged with<br />

frass, and pupation occurs. Adults feed on stems and petioles of Bidens pilosa,<br />

Chromolaena inulaefolium, C. ivaefolia and C. odorata (all Asteraceae). Larvae tunnel in<br />

the stems of all these except B. pilosa (McFadyen 1988a). Cruttwell (1974) suggested<br />

that the feeding of adults might be insufficiently restricted, but the situation merits fur-<br />

ther investigation.<br />

R. cariniventris is parasitised in Trinidad by an external egg parasitoid Euderus sp.<br />

(Eulophidae) (Bennett 1 955).<br />

Comments<br />

The genus Chromolaena belongs to the tribe Eupatorieae (Table 4.3.4), which is mainly<br />

of American origin. There are no crop plants or important ornamentals in this tribe.<br />

However, it does contain the major weeds Ageratum conyzoides (4.1) and Mikania<br />

micrantha (4.14) and several less important species: Ageratina altissima in eastern USA,<br />

A. adenophora and A. riparia in India to southern China, Australia, Hawaii and South<br />

Africa and Austroeupatorium inulaefolium in Indomalaysia and Sri Lanka. There are 129<br />

species of Chromolaena, all from Central and South America. Chromolaena ivaefolia<br />

and C. laevigata are widespread and occasionally weedy in the Americas, but only C.<br />

odorata has spread elsewhere (McFadyen 1991a). These relationships suggest that many<br />

of the insects that attack C. odorata and its close allies are likely to be sufficiently host<br />

specific to be considered for classical biological control.<br />

There has been discussion concerning the possible reasons for Pareuchaetes<br />

pseudoinsulata establishing fairly readily in Sri Lanka and Guam, with difficulty in India<br />

and Sabah and not at all in Africa (e.g. Cock 1984a, Cock and Holloway 1982, Seibert<br />

1989). The desirability is rightly emphasised of matching, where possible, the climate of<br />

the area from which it (or any other biological control agent) is collected with that of the<br />

area in which it is to be released. Since P. pseudoinsulata has no diapause and breeds all<br />

year round, it will at least experience great difficulty in bridging (or find it impossible to<br />

bridge) the gap created by almost complete leaf loss of C. odorata in areas where there is<br />

a severe and long dry season. However, if this were the only problem, the moth should be<br />

able to establish itself at least briefly before being eliminated by starvation: this sequence<br />

has not, however, been documented. What, however, has been widely reported is the very<br />

high level of predation on eggs, larvae and pupae, in particular by ants and spiders, but<br />

also by other invertebrate and vertebrate predators (e.g. Kluge 1991, Kluge and Caldwell<br />

1991). It seems probable that massive predation has been the cause of rapid demise of<br />

many releases. Thus, release sites should be chosen (or treated) so as to minimise preda-<br />

tion. Although significant predation was also observed on Guam, the lower diversity of<br />

predators (and other organisms) on islands may well have contributed to the compara-<br />

tively ready establishment of P. pseudoinsulata there and on other Pacific islands.<br />

Furthermore, the release of significant numbers (500 or more) of adults rather than of<br />

eggs or larvae may have assisted in avoiding rapid elimination of the released material.


4.4 Chromolaena odorata 53<br />

The general vigour of the released insects and the presence or absence of microsporida or<br />

viruses would also play a crucial role in successful establishment and it is probable that<br />

these factors have not always been adequately considered.<br />

It is possible that the high level of predation and of parasitisation of the biological<br />

control agents will, in many areas, so lessen the potential each has to cause damage to C.<br />

odorata that the combined effects of several will be required to bring about an adequate<br />

and sustained reduction in its weediness. Fortunately, many potentially suitable insects<br />

are available for study.


84 Biological Control of Weeds: Southeast Asian Prospects<br />

Eleusine indica<br />

(after Holm et a/. 1977)


Map 4.8.1 Eleusine indica<br />

4.8 Eleusine indica 85<br />

Eleusine indica<br />

Eleusine indica is of African origin and, except for finger millet, E. coracana, is not<br />

closely related to graminaceous crop plants. Finger millet is a staple crop in India and<br />

some parts of Africa, but relatively unimportant or not grown elsewhere. Little is known<br />

about the insect or other enemies of E. indica in Africa and, elsewhere, almost all records<br />

are of pests with a wide host range. Because it is a major weed (5th) in Southeast Asia<br />

and is only distantly related to crop plants a search for specific natural enemies in Africa<br />

must be regarded as an attractive proposition.


86 Biological Control of Weeds: Southeast Asian Prospects<br />

4.8 Eleusine indica (L.) Gaertn.<br />

Poaceae<br />

crowsfoot grass, goose grass; sin ngo let kya, sin ngo myet (Myanmar), yah<br />

teenka (Thailand), smao choeung tukke (Cambodia) co miin triiu (Vietnam),<br />

rumput sambou (Malaysia), rumput belul8ng (Indonesia), sabung sabungan<br />

(Philippines)<br />

Rating<br />

+++ Viet, Msia, Sing, Indo, Phil<br />

24 ++ Myan, Thai, Laos, Camb<br />

+ Brun<br />

Origin<br />

Africa (Phillips 1972), replacing an alternative view that it was India (Holm et al. 1977,<br />

Waterhouse 1993a).<br />

Distribution<br />

Throughout the tropics, sub-tropics and temperate regions of the world, including Africa,<br />

Asia, SE Asia, Australia, the Pacific and the Americas.<br />

Characteristics<br />

E. indica is a tufted, annual, C4 grass attaining a height of 0.6 m. Its flower spikes mostly<br />

have 2 to 7 spikelets, producing a characteristic windmill-like appearance.<br />

Importance<br />

The genus Eleusine, contains nine annual or perennial grasses all native to Africa except<br />

for the South American E. tristachya (Hilu and Johnson 1992, Phillips 1972). It belongs<br />

to the subfamily Chloridoideae, which is but distantly related to all except one of the<br />

principal grain crops. That exception is finger millet, or ragi, E. coracana (2n = 36),<br />

which is believed to have arisen from E. indica (2n = 18) (Hilu and de Wet 1976, Hilu<br />

and Johnson 1992, Hiremath and Salimath 1992) and is an important staple cereal in<br />

India and some regions of eastern Africa (Rachie and Peters 1977). However, it is worth<br />

noting that E. coracana is regarded as a minor weed in some Southeast Asian countries<br />

(Thailand, Vietnam) (Waterhouse 1993a) and that it is nowhere important in this region.<br />

The genera Eleusine and Dactyloctenium are closely related.<br />

E. indica is an important weed in more than 60 countries in at least 46 crops and, in<br />

these, has the status of a serious weed in 30 countries and 27 crops. It was evaluated as<br />

the fifth worst weed in the world (Holm et al. 1977) and also rated fifth in a recent survey<br />

in Southeast Asia (Waterhouse 1993a). It was rated 15th in 1992 in the oceanic Pacific<br />

(Waterhouse, unpublished). It grows well in sunny or somewhat shaded places, in marsh-<br />

lands,. wastelands, roadsides, along borders of irrigated fields and canals, in lawns and in<br />

pastures, and prospers and is particularly troublesome on arable land. It ranges from near


4.8 Eleusine indica 87<br />

the seashore to an altitude of at least 2000 m and is a major problem in almost all forms<br />

of agriculture between the tropics of Capricorn and Cancer.<br />

E. indica grows and flowers well in all seasons and a single plant may produce more<br />

than 50000 small seeds, which move readily by wind, in mud on the feet of animals and in<br />

the tread of machinery. The seeds are eaten by wild and domestic animals and are occasion-<br />

ally grown for grain in Africa and India, but Eleusine coracana, finger millet, with some-<br />

what larger seeds is far better for this purpose. Although sometimes claimed to be palatable<br />

to grazing animals, crowsfoot grass becomes fibrous too early in the season to be a satis-<br />

factory pasture grass. The seed heads may contain high levels of cyanogenic glycosides<br />

and are believed to be responsible for occasional cases of stock poisoning (Everist 1974).<br />

Natural enemies<br />

Natural enemies restricted to the genus Eleusine and its close relatives might well be con-<br />

sidered for biological control of E. indica except in India or other regions where finger<br />

millet is an important cereal.<br />

E. indica is reported in the literature to be attacked by more than 50 insects, nema-<br />

todes, fungi, bacteria and viruses, all except 6 in continents other than Africa (Tables<br />

4.8.1 to 4.8.4). Further, with few exceptions, all of these organisms are known to have<br />

wide host ranges and to attack important agricultural crops. Indeed, of those recorded,<br />

only one cecidomyiid gall fly and possibly one or two fungi could be considered further<br />

for classical biological control. Figliola et al. (1988) consider that, where they already<br />

occur, two fungi, Bipolaris setariae and Magnaporthe (=Pyricularia) grisea hold<br />

promise as bioherbicides for E. indica, although their host range is a little too wide for<br />

classical biological control.<br />

It is not surprising that the organisms attacking an economic crop, finger millet,<br />

E. coracana, have been investigated in greater detail than those of a weedy relative.<br />

Finger millet is believed to have been domesticated in the East African highlands by<br />

3000 BC or earlier and archaeological data suggests that it may have been introduced to<br />

India as early as 2000 BC (Hilu et al. 1979). Since E. coracana and E. indica are closely<br />

related, Wapshere (1 990b) argues, probably correctly, that most or all of the more specific<br />

organisms infesting finger millet are also likely to attack E. indica. It is very disappoint-<br />

ing, therefore, that almost all of the natural enemies of finger millet so far recorded (again<br />

mostly from outside Africa) have wide to very wide host ranges and are not potential bio-<br />

logical control agents. The very few species that may prove to have a limited host range<br />

are shown in table 4.8.5. Wapshere (1990b) has listed 40 insects that attack E. coracana<br />

and at the same time belong to groups known to have species restricted to a single grass<br />

genus (and there are also many other insects from groups with a wider host range that<br />

attack E. coracana). In addition to the undescribed Orseolia gall midge attacking E. indi-<br />

ca in India, only three insects (two cecidomyiid gall midges, one from Uganda and one<br />

from Nigeria and an aphid from India), a nematode (Heterodera delvii) from India and a<br />

smut fungus (Melanopsichiurn (= Ustilago) eleusinis) may, if shown to attack E. indica<br />

also, prove to be sufficiently host specific to be considered for classical biological control.<br />

It is relevant that cecidomyiid gall flies are believed to have a high degree of specificity to<br />

their host grass genera (Barnes 1946, K.M. Harris pers. comm. 1993, Wapshere 1990a).


88 Biological Control of Weeds: Southeast Asian Prospects<br />

Comment<br />

It has been pointed out above that the majority of records for natural enemies of both<br />

E. indica and E. coracana come from outside Africa and that almost all of these organ-<br />

isms have a wide host range. Indeed, this is to be expected if both Eleusine species are of<br />

African origin. Except for any specific enemies that may have accompanied them, it is<br />

inevitable that they will be attacked in new countries by non-specific natural enemies<br />

that, hitherto, were attacking other plants. Of course, the possibility exists that natural<br />

enemy species in the new country may have evolved a degree of specificity in the four or<br />

five thousand years that the Eleusine species have existed outside Africa.<br />

It is significant that there has not so far been any detailed search in Africa for natur-<br />

al enemies of E. indica to establish whether or not adequately specific species occur<br />

there. A two year (or longer) survey of E. indica in several regions of Africa would prob-<br />

ably be required, together with observations on whether the organisms found attacking<br />

E. indica also attack E. coracana, nearby grasses or other plants. The relevant regions for<br />

study in Africa and Madagascar are indicated in map 4.8.2 based on the distribution data<br />

of Phillips (1 972).<br />

If (i) the African cecidomyiid gall midges (Contarinia (= Stenodiplosis) spp.)<br />

(Tables 4.8.1, 4.8.5) do not already occur in Southeast Asia (they are not known in<br />

Australia), (ii) they prove to be adequately host specific and (iii) the Ugandan species<br />

attacks E. indica in addition to E. coracana, they would appear to be the most promising<br />

of known species for introduction elsewhere. The undescribed species from northern<br />

Nigeria (Table 4.8.1) was collected from E. indica at Zaria in July 1959 and July 1960<br />

(K.M. Harris, pers. comm. 1993). Larvae of the Indian Orseolia sp. nr. fluviatilis proba-<br />

bly induce galls on young shoots of E. indica, so would affect vegetative growth rather<br />

than having a direct impact on seed production. It is as yet known only from India.<br />

To sum up, for an attempt at classical biological control of a grass weed, E. indica<br />

would appear to be the one with most positive factors combined except that, so far, few<br />

adequately specific, natural enemies are known. However, almost nothing is known about<br />

the natural enemies in Africa, not only its centre of origin but also that of the genus<br />

Eleusine. It would, indeed, be most surprising if several natural enemies having a restrict-<br />

ed host range were not discovered during a thorough survey there.<br />

Table 4.8.1 Natural enemies of Eleusine indica: insects.<br />

Species Country Portion Comments: References<br />

attacked other hosts<br />

Hemiptera<br />

APHlDlDAE<br />

Chaetogeoica India<br />

graminiphaga<br />

Geoica lucijiuga India<br />

beans and a Raychaudhuri 1983<br />

number of<br />

grasses<br />

also on rice, Eleusine Raychaudhuri et al.<br />

coracana and many 1978<br />

weeds including<br />

Cynodon dactylon,<br />

Cyperus rotundus<br />

I (continued on next page)


4.8 Eleusine indica 89<br />

Species Country Portion Comments: References<br />

attacked other hosts<br />

Hysteroneura setariae Hawaii rice, maize, wheat<br />

Schizaphis (= Toxoptera)<br />

graminum<br />

Sitobion avenae<br />

(= Macrosiphum<br />

granarium)<br />

Sitobion (= Macrosiphum)<br />

miscanthi<br />

Sregophylla (= Anoecia)<br />

querci<br />

Tetraneura basui<br />

Tetraneura<br />

nigriabdominalis<br />

(= T. hirsuta)<br />

CERCOPIDAE<br />

Prosapia (= Monecphora)<br />

bicincta fraterna<br />

CICADELLIDAE<br />

Nephotettix malayanus<br />

Nephotettix<br />

nigromaculatus<br />

(= N. nigropictus)<br />

Nephotettix virescens<br />

Recilia dorsalis<br />

DELPHACIDAE<br />

Laodelphax striatellus<br />

sorghum, sugar cane<br />

rice, sorghum, maize<br />

and a very wide<br />

host range<br />

rice, wheat, a very<br />

wide host range<br />

India on a very wide range<br />

of crop plants and<br />

weeds<br />

maize and several<br />

weeds<br />

India<br />

on rice, Echinochloa<br />

colona, Paspalum<br />

conjugatum and<br />

other weeds<br />

India<br />

rice, maize, sugarcane<br />

Eleusine coracana<br />

and a very wide<br />

range of weeds<br />

Cuba also on Paspalum<br />

notatum, Brachiaria<br />

subquadripara,<br />

Andropogon annulatus,<br />

Cynodon dactylon<br />

Philippines<br />

Philippines<br />

Philippines<br />

Philippines<br />

rice, many weeds<br />

rice, many weeds<br />

rice, many weeds<br />

rice, many weeds<br />

Beardsley 1962<br />

Patch 1939<br />

Patch 1939<br />

Raychaudhuri 1983<br />

Patch 1939<br />

Raychaudhuri 1983<br />

Patch 1939,<br />

Raychaudhuri 1983<br />

Plana et al. 1986<br />

Khan et al. 1991<br />

Khan et al. 1991<br />

Khan et al. 1991<br />

Khan et al. 1991<br />

China wheat, barley, oats,<br />

sorghum etc<br />

Zhang et al. 1981<br />

Peregrinus maidis India transmitter of<br />

Cherian and Kylasam<br />

Eleusine mosaic 1937, Patch 1939, Rao<br />

virus (see table 4.8.4);<br />

very wide host range<br />

et al. 1965<br />

Sogatella furcijera China can complete<br />

development also on<br />

17 other species of<br />

crops and weeds<br />

including rice, barley,<br />

wheat, Echinochloa<br />

crus-galli<br />

Huang et al. 1985<br />

(continued on next page)


90 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.8.1 (continued)<br />

Species Country Portion Comments: References<br />

attacked other hosts<br />

LYGAEIDAE<br />

Blissus leucopterus<br />

Thysanoptera<br />

PHLAEOTHRIPIDAE<br />

Haplothrips ganglbaueri<br />

Diptera<br />

AGROMYZIDAE<br />

Liriomyza marginalis<br />

Pseudonapomyza spicata<br />

CEClDOMYllDAE<br />

Orseolia sp. nrjluviatilis<br />

Stenodiplosis sp.<br />

Lepidoptera<br />

ARCTllDAE<br />

Cnaphalocrocis medinalis<br />

Cnaphalocrocis<br />

(= Marasmia) patnalis<br />

Creatonotos (= Amsacta)<br />

gangis<br />

NOCTUI DAE<br />

Spodoptera ffugiperda<br />

PYRALI DAE<br />

Ostrinia furnacalis<br />

USA lower damages sorghum and Ahmad et al. 1984,<br />

stem many grasses including Lynch et al. 1987<br />

Cynodon dactylon and<br />

Dactyloctenium<br />

aegyptium, but<br />

particularly damaging<br />

to E. indica<br />

India rice, wheat, sorghum Ananthakrishnan &<br />

Thangavelu 1976<br />

N&S Panicum miliaceum,<br />

America Digitaria, Paspalum<br />

(primary host),<br />

Euchlaena<br />

Australia leaf maize, sugarcane,<br />

grasses<br />

India stem undescribed gall midge<br />

resembling (but not)<br />

the rice stem gall midge<br />

Orseolia<br />

(= Pachydiplosis)<br />

oryzae; no host other<br />

than E. indica known<br />

Nigeria seed undescribed species<br />

heads<br />

Spencer 1990,<br />

Spencer & Steyskal<br />

1986<br />

Kleinschmidt 1970<br />

Barnes 1954a,b, 1956,<br />

Gagnt 1985,<br />

Hegdekatti 1927,<br />

Rachie and Peters,<br />

1977<br />

K.M. Harris pers.<br />

comm. 1993<br />

Philippines leaf rice, many weeds Abenes & Khan 1990<br />

folder<br />

Philippines leaf rice, many weeds Abenes & Khan 1990<br />

folder<br />

Philippines leaves rice, many weeds Catindig et al. 1993<br />

USA<br />

Guam<br />

wide range of crops Pencoe and Martin<br />

and weeds 1982<br />

wide range of crops Schreiner et al. 1990<br />

and weeds


Table 4.8.2 Natural enemies of Eleusine indica: nematodes.<br />

Species<br />

Ditylenchus destructor<br />

Hirschrnaniella spinicaudata<br />

Meloidogyne sp.<br />

Meloidogyne arenaria<br />

Meloidogyne grarninicola<br />

Meloidogyne incognita<br />

Meloidogyne javanica<br />

Pratylenchus pratensis<br />

Pratylenchus zeae<br />

Rotylenchulus reniformis<br />

4.8 Eleusine indica 91<br />

Country Comments References<br />

South Africa<br />

Cuba<br />

China<br />

Cuba,<br />

Philippines,<br />

USA<br />

India<br />

Cuba, USA<br />

Brazil<br />

Hawaii<br />

S. Africa,<br />

Cuba<br />

Hawaii<br />

groundnut, several weeds<br />

has other weed hosts<br />

including Cyperus iria<br />

rice root knot nematode<br />

(damage up to 50%); also<br />

attacks wheat, and<br />

Echinochloa colona<br />

Echinochloa crus-galli,<br />

Portulaca oleracea,<br />

tobacco<br />

wheat, Panicum spp, tomato,<br />

capsicum, etc<br />

Ageratum conyzoides, Croton<br />

lobatus, Cynodon dactylon,<br />

tobacco<br />

attacks tomato and weeds<br />

including Bidens pilosa,<br />

Euphorbia heterophylla,<br />

Galinsoga parviflora<br />

also attacks Cynodon dactylon<br />

E. indica is a moderately good<br />

host of the maize nematode;<br />

has other weed hosts, including<br />

Cyperus iria<br />

Table 4.8.3 Natural enemies of Eleusine indica: fungi and bacteria.<br />

De Waele et al. 1990<br />

Femandez and Ortega<br />

1982<br />

Guo et al. 1984, Holm<br />

et al. 1977<br />

Tedford and Fortnum<br />

1988, Valdez 1968<br />

Rao et al. 1970<br />

Acosta et al. 1986<br />

Lordello et al. 1988<br />

Holm et al. 1977<br />

Femandez and Ortega<br />

1982, Jordaan et al.<br />

1988<br />

Linford and Yap 1940<br />

Species Country Comments References<br />

FUNGI<br />

Bipolaris setariae<br />

(as Drechslera setariae)<br />

Corticium sasakii<br />

Drechslera gigantea<br />

Helminthosporium sp.<br />

Helminthosporium holrnii<br />

Helrninthosporiurn maydis<br />

e<br />

USA (not<br />

recorded in<br />

Australia)<br />

India<br />

Brazil<br />

Thailand<br />

India<br />

China<br />

heavy attack on E. indica,<br />

light on maize, sorghum,<br />

none on dicotyledons<br />

rice, many weeds including<br />

Commelina benghalensis,<br />

Cynodon dactylon,<br />

Firnbristylis miliacea<br />

no hosts other than E. indica<br />

mentioned<br />

also on Echinochloa colona,<br />

Chloris gayana<br />

attacks 2 1 other weeds<br />

including Irnperata cylindrica,<br />

Digitaria ciliaris and<br />

Echinochloa crus-galli<br />

Figliola et al. 1988<br />

Hiremath and<br />

Sulladmath 1985<br />

Roy 1973<br />

Muchovej 1987<br />

Chandrasrikul 1962<br />

Singh and Misra 1978<br />

Wu and Liang 1984<br />

(continued on next page)


92 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.8.3 (continued)<br />

Species Country Comments References<br />

Helminthosporium nodulosum<br />

(as Bipolaris nodulosa or<br />

Cochliobolus nodulosus)<br />

Magnaporthe (= Pyricularia)<br />

grisea<br />

Pellicularia rolfsii<br />

Phyllachora eleusines<br />

Pyricularia oryzae<br />

Sclerophthora macrospora<br />

Sclerotiurn rolfsii<br />

Ustilago sp.<br />

Ustilago eleusinis (as<br />

Melanopsichiurn eleusinis)<br />

BACTERIA<br />

Pseudornonas glumae<br />

Pseudornonas plantarii<br />

Africa,<br />

Australia,<br />

India, Japan,<br />

Philippines,<br />

USA<br />

Africa,<br />

Australia,<br />

India, USA,<br />

Georgia<br />

Australia,<br />

India<br />

Africa,<br />

Australia<br />

Brazil, China<br />

India<br />

Australia,<br />

India<br />

China<br />

Africa, Asia<br />

Japan<br />

Japan<br />

also infests maize, Eleusine<br />

coracana, wheat, barley, oats<br />

and weeds including<br />

Dactyloctenium aegyptium;<br />

causes seedling blight leaf<br />

stripe and sooty heads in<br />

E. indica<br />

heavy attack on E. coracana,<br />

Rottboellia cochinchinensis,<br />

light attack on maize<br />

causes wilt disease of E.<br />

coracana and infests many<br />

grasses and dicotyledonous<br />

plants<br />

only recorded on Eleusine and<br />

Eragrostis in Africa; in<br />

Australia only on Eragrostis<br />

attacks rice<br />

attacks maize, wheat, oats,<br />

rice: attacks E. coracana and<br />

many grasses, but not E. indica<br />

in Australia; there may be host<br />

specific strains<br />

attacks many dicotyledonous<br />

crop plants and a wide range<br />

of grasses<br />

smut fungus of Eleusine and<br />

Dactyloctenium, but only on<br />

D. radulans in Australia<br />

an important rice pathogen:<br />

attacks a wide range of weeds<br />

attacks rice, wheat, sorghum,<br />

maize and many weeds<br />

Rachie and Peters<br />

1977, Wapshere<br />

1990b<br />

Chauhan & Verma<br />

198 1, Figliola et al.<br />

1988, Heath et al.<br />

1990, 1992, Shetty et<br />

al. 1985, Valent et al.<br />

1986, Vodianaia et al.<br />

1986, Wapshere<br />

1990b,c<br />

Wapshere 1990b<br />

Parbery 1967,<br />

Ramakrishran 1963<br />

Prabhu et al. 1992,<br />

Teng 1932, Valent et<br />

al. 1986<br />

Rachie and Peters<br />

1977, Ullstrup 1955,<br />

Wapshere 1990b<br />

Reddy 1983, Safeeulla<br />

1976<br />

Mundkur 1939<br />

Simmonds 1966,<br />

Zundel 1953<br />

Miyagawa et al. 1988<br />

Miyagawa et al. 1988


Table 4.8.4 Natural enemies of Ebusine indica: viruses.<br />

Virus Country Other hosts<br />

cereal chlorotic mottle<br />

corn leaf gall<br />

corn stunt<br />

Eleusine mosaic<br />

groundnut rosette<br />

maize dwarf mosaic<br />

maize streak<br />

rice leaf gall<br />

rice orange leaf<br />

rice ragged stunt<br />

rice tungro bacilliform<br />

rice tungro spherical<br />

rice yellow mottle<br />

sugarcane mosaic<br />

sugarcane streak<br />

tungro<br />

wheat rosette<br />

Australia<br />

Philippines<br />

USA<br />

India<br />

Malawi<br />

USA<br />

Nigeria<br />

Philippines<br />

Philippines<br />

China<br />

Philippines<br />

Philippines<br />

Philippines<br />

Kenya<br />

India<br />

Hawaii<br />

Philippines<br />

China<br />

oats, barley, wheat, maize,<br />

E. coracana, Digitaria ciliaris,<br />

Echinochloa colona;<br />

transmitted by Nesoclutha<br />

pallida<br />

maize<br />

several other weeds<br />

maize, sorghum, E. coracana<br />

and many other hosts<br />

groundnut<br />

maize<br />

maize, but not all cultivars<br />

Cicadulina triangula is<br />

the vector<br />

rice<br />

rice<br />

rice, E. indica and 4 other<br />

weeds<br />

rice, Echinochloa<br />

glabrescens, Monochoria<br />

vaginalis, Paspalum distichum<br />

rice, many weeds<br />

rice, many weeds<br />

rice, two grasses<br />

sugarcane<br />

sugarcane<br />

rice<br />

oats, barley, sorghum,<br />

wheat etc. Laodelphax<br />

striatellus is the vector<br />

4.8 Eleusine indica 93<br />

References<br />

Greber 1979<br />

Agati and Calica 1950<br />

Pitre and Boyd 1970<br />

Rao et al. 1965<br />

Adams 1967<br />

Lee 1964<br />

Ekukole et al. 1989,<br />

Rossel et al. 1984<br />

Agati and Calica 1950<br />

Watanakul 1964<br />

Xie et al. 1984<br />

Salamat et al. 1987<br />

Khan et al. 1991<br />

Khan et al. 1991<br />

Okioma et al. 1983<br />

Chona and Rafay 1950<br />

Holm et al. 1977<br />

Watanakul 1964<br />

Zhang et al. 1981<br />

Table 4.8.5 Natural enemies of Eleusine coracana which may prove to have<br />

a limited host range.<br />

Species Country Portion Comments References<br />

attacked<br />

INSECTS<br />

Diptera<br />

CEClDOMYllDAE<br />

Contarinia sp. Uganda inflores- not the same as the<br />

cence sorghum midge Barnes 1946, 1954a,b,<br />

Contarinia sorghicola: 1956, Geering 1953,<br />

the same or a similar Rachie & Peters 1977<br />

species attacks the<br />

common fallow weed<br />

Sorghum verticilliflorum<br />

(continued on next page)


94 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.8.5 (continued)<br />

Species Country Portion Comments References<br />

attacked<br />

Hemiptera<br />

APHlDlDAE<br />

Sitobion<br />

(= Macrosiphum)<br />

leelarnaniae<br />

NEMATODES<br />

Heterodera delvii<br />

FUNGI<br />

Melanopsichium<br />

eleusinis(= Ustilago<br />

eleusinis)<br />

India attacks several millets Raychaudhuri 1983<br />

(not in in India including pearl<br />

Australia) millet Pennisetum<br />

glaucum (=P. typhoideum),<br />

also Andropogon vulgare<br />

India root no other hosts Jairajpuri et al. 1979<br />

cysts mentioned<br />

Asia, Africa a smut fungus: only Simmonds, 1966,<br />

from Eleusine and Wapshere 1990c,<br />

Dactylocteniurn: Zundel 1953<br />

tentatively identified<br />

from D. radulans in<br />

Queensland, but not<br />

from E. indica


4.8 Eleusine indica<br />

Map 4.8.2 Distribution of Eleusine indica in Africa (after Phillips 1972)


96 Biological Control of Weeds: Southeast Asian Prospects<br />

Euphorbia heterophylla<br />

(after Barnes and Chan, 1990)


Map 4.9 Euphorbia heterophylla<br />

4.9 Euphorbia heterophylla 97<br />

Euphorbia heterophylla<br />

There are very few records of natural enemies other than fungi attacking Euphorbia<br />

heterophylla and no study has been made in tropical America where it evolved. However,<br />

from the sparse records of insects attacking species of Euphorbia in Brazil it is likely that<br />

adequately host specific insects do occur. Nevertheless E. heterophylla is regarded as an<br />

important weed in southern Brazil.


98 Biological Control of Weeds: Southeast Asian Prospects<br />

4.9 E uphorbia heterophylla L.<br />

(= E. geniculata = E. prunifolia)<br />

Euphorbiaceae<br />

painted spurge, Mexican fire plant; yaa yaang (Thailand)<br />

Rating<br />

+++ Thai<br />

10 ++ Msia<br />

+ Myan, Laos, Camb, Viet, Phil<br />

Indo<br />

Origin<br />

Tropical and sub-tropical America.<br />

Distribution<br />

Widespread as a weed in the tropical and subtropical regions of the world, notably in<br />

Southeast Asia, but apparently not in Kalimantan or Sulawesi (Indonesia) (Soerjani et al.<br />

1986).<br />

Characteristics<br />

An erect annual, up to about 1 m tall; stem cylindrical, hairy; lower leaves alternate;<br />

stems and leaves with milky latex. The simple or lobed leaves are crowded towards the<br />

top of the stem, with a flat, dichotomously-branched, terminal inflorescence of small yel-<br />

low flowers and large leafy bracts, often with a bright red or cream patch at the base. The<br />

inflorescence consists of many small, short-stalked flowers lacking petals but with con-<br />

spicuous glands (Wilson 1981). Reproduction is by seeds which are shed with an explo-<br />

sive mechanism.<br />

Importance<br />

A weed of increasing importance in upland fields of rice and many other crops; also in<br />

wastelands, roadsides, boundaries of coffee plantations; very abundant locally. Seeds per-<br />

sist in the soil until favourable conditions allow germination and rapid growth, giving<br />

rise to large populations of the weed. It is an important weed in 23 tropical countries and<br />

present in at least 37 others. Its rapid growth enables it to compete successfully with<br />

crops, quickly forming a dense canopy over young crop plants. Dense populations of the<br />

weed, with its white sticky latex, may make it impossible to harvest the crop.<br />

The young leaves are sometimes used as a vegetable, but are laxative if too much is<br />

eaten. The plant is said to have caused poisoning in livestock (Wilson 1981).<br />

Natural enemies<br />

Except possibly for Alternaria sp. and Helminthosporium sp. which have not been shown<br />

to be pathogenic to crop plants (Yorinori 1985), there are no records of apparently host


4.9 Euphorbia heterophylla 99<br />

specific organisms attacking Euphorbia heterophylla (Table 4.9.1). However, it is known<br />

that a number of insects do attack it in Brazil, but this observation was incidental to a<br />

study of fungi and none of the insects were identified (E.G. Fontes, pers. comm. 1992).<br />

Although periodic collections were made in Trinidad in the early 1970's, no promising<br />

insects were encountered (Yaseen 1972).<br />

There are few records (19 only) of insects attacking members of the genus<br />

Euphorbia in Brazil (Table 4.9.2) (d'Araujo e Silva et al. 1968a,b), indicating that little<br />

attention has so far been paid to Euphorbia spp. in this region. Six of the insects are<br />

polyphagous and too little is known about the others to arrive at a conclusion. Even if<br />

some are restricted to the Euphorbiaceae, it remains to be determined whether any will<br />

attack either Euphorbia heterophylla or E. hirta.<br />

E. heterophylla is resistant to most herbicides and, in recent years, has become pro-<br />

gressively more important in Brazil, particularly in the southern, soybean-producing<br />

states (Yorinori 1985), which suggests that its insect enemies, if any, may be heavily par-<br />

asitised.<br />

A biological control program has been in progress in Canada since the late 1960's<br />

against Euphorbia cyparissias and E. pseudovirgata, involving the introduction of some<br />

twenty species of insects from Europe. Several species have become established, with<br />

rather localised effects (Julien 1992). It is said that insects are generally unable to attack<br />

Euphorbia species because of the latex that flows freely from any wound and clogs the<br />

mouthparts (Best et al. 1980), but clearly some insects are adapted to deal with this prob-<br />

lem.<br />

The best known economic plant in the Euphorbiaceae is cassava, Manihot esculenta<br />

of South American origin. The insects attacking it there are comparatively well known, a<br />

factor that will aid the evaluation of the specificity of insects attacking Euphorbia spp.<br />

Another species of horticultural importance is poinsettia, Euphorbia pulcherrima.<br />

Table 4.9.1 Natural enemies of Euphorbia heterophylla.<br />

Species Location Other hosts References<br />

INSECTS<br />

Orthoptera<br />

ACRlDlDAE<br />

Poekilocerus<br />

hieroglyphicus<br />

Hemiptera<br />

ALEYRODIDAE<br />

Bemisia tabaci<br />

ALYDIDAE<br />

Leptocorisa acuta<br />

Leptocorisa oratorius<br />

Leptocorisa<br />

solomonensis<br />

Sudan beans, melons Ba-Angood 1977,<br />

Ba-Angood &<br />

Khidir 1975<br />

Thailand, cotton, polyphagous Debrot & Centeno 1985,<br />

Venezuela Nachapong & Mabbett 1979<br />

PNG<br />

PNG<br />

PNG<br />

F. Dori pers. comm. 1993<br />

F. Dori pers. comm. 1993<br />

F. Dori pers. comm. 1993<br />

(continued on next page)


100 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.9.1 (continued)<br />

MITES<br />

FUNGI<br />

Species Location Other hosts References<br />

TETRANYCHIDAE<br />

Tetranychus urticae Cuba polyphagous Perez et al. 1987<br />

Alternaria sp.<br />

Amphobotrys ricini<br />

Elsinoe sp.<br />

Helminthosporium sp.<br />

Macrophornina<br />

phaseolinu<br />

Phytophthora<br />

palmivora<br />

Puccinia sp.<br />

Rhizoctonia solani<br />

Sclerotinia<br />

sclerotiorum<br />

Sphaceloma sp.<br />

Uromyces euphorbiae<br />

NEMATODES<br />

Meloidogyne exigua<br />

Meloidogyne javanica<br />

Rotylenchulus<br />

reniformis<br />

Brazil<br />

USA<br />

Burundi<br />

Brazil<br />

India<br />

cassava<br />

Sarawak black pepper Anon 1979<br />

Brazil<br />

Brazil<br />

Brazil<br />

Brazil,<br />

Burundi<br />

Brazil<br />

Brazil<br />

Brazil<br />

Florida<br />

VIRUSES<br />

Euphorbia mosaic Brazil, USA,<br />

Venezuela<br />

cassava<br />

Yorinori 1985<br />

Holcomb et al. 1989<br />

Zeigler & Lozano 1983<br />

Fontes et al. 1992,<br />

Gazziero et al. 1988,<br />

Yorinori 1985<br />

Saxena et al. 198 1<br />

Fontes et al. 1992<br />

Yorinori 1985<br />

Yorinori 1985<br />

Yorinori 1985,<br />

Zeigler & Lozano 1983<br />

Yorinori 1985<br />

coffee, many weeds Luc et al. 1990<br />

Lordello et al. 1988<br />

Inserra et al. 1989,<br />

MacGowan 1989<br />

Debrot & Centeno 1985,<br />

Kim & Flores 1979,<br />

Kim & Fulton 1984,<br />

Yorinori 1985<br />

Table 4.9.2 Insects attacking species of Euphorbia in Brazil (d'Araujo e Silva et al.<br />

1968a,b).<br />

Insect Hosts Feeding habit<br />

Hemiptera<br />

ALEYRODIDAE<br />

Bemisia tabaci<br />

(= B. costa-limai) Euphorbia hirtella, polyphagous<br />

tomato, Mentha arvensis<br />

COCCIDAE<br />

Coccus spp. Euphorbiaceae, Acalypha sp., polyphagous<br />

Aspidosperma ramiflorum,<br />

Cassia sp., Citrus spp.<br />

(continued on next page)


4.9 Euphorbia heterophylla 101<br />

Insect Hosts Feeding habit<br />

Eucalymnatus spp.<br />

Platinglisia noacki<br />

COREIDAE<br />

Chariesterus armatus<br />

TlNGlDAE<br />

Corythuca pellucida<br />

Corythuca socia<br />

Thysanoptera<br />

PHLAEOTHRIPIDAE<br />

Haplothrips gowdeyi<br />

Coleoptera<br />

CHRYSOMELIDAE<br />

Caryedes (= Gibbobruchus)<br />

pickeli<br />

Disonycha argentiniensis<br />

Gibbobruchus polycoccus<br />

CURCULIONIDAE<br />

Sternocoelus sp.<br />

Sternocoelus notaticeps<br />

Lepidoptera<br />

LYMANTRIIDAE<br />

Thagona tibialis<br />

NOCTUIDAE<br />

Spodoptera eridania<br />

NYMPHALIDAE<br />

Didonis biblis<br />

Dynamine artemisia<br />

Episcada pascua<br />

SPHlNGlDAE<br />

Erinnyis oenotrus<br />

Euphorbia capansa, Nerium sp., polyphagous<br />

Caryota sp., Phoenix sp.<br />

Euphorbiaceae, Begonia sp., polyphagous<br />

Eugenia sp., Grevillea robusta,<br />

Ilex sp., kurus sp., Magnolia<br />

pumila, etc.<br />

Euphorbia braziliensis<br />

Euphorbiaceae<br />

Euphorbiaceae<br />

Euphorbia sp., coffee, rice,<br />

Crotolaria sp., PassiJlora sp.,<br />

Buddleia variabilis<br />

Euphorbiaceae<br />

Euphorbia pulcherrima<br />

Euphorbiaceae<br />

Euphorbiaceae<br />

Euphorbiaceae<br />

E. cespitosa, E. ovalifolia,<br />

E. pulcherrima<br />

Euphorbiaceae, many crops<br />

Euphorbiaceae, Tragia volubilis<br />

Euphorbiaceae<br />

Euphorbiaceae<br />

E. ovalifolia<br />

possibly restricted<br />

possibly restricted<br />

possibly restricted<br />

polyphagous<br />

possibly restricted<br />

possibly restricted<br />

possibly restricted<br />

?restricted to Euphorbiaceae<br />

?restricted to Euphorbiaceae<br />

?restricted to Euphorbiaceae<br />

polyphagous<br />

possibly restricted<br />

?restricted to Euphorbiaceae<br />

?restricted to Euphorbiaceae<br />

possibly restricted


102 Biological Control of Weeds: Southeast Asian Prospects<br />

Euphorbia hirta<br />

(after Holm st a/. 1977)


Map 4.10 Euphorbia hirta<br />

4.10 Euphorbia hirta<br />

Euphorbia hirta<br />

There is only one record of a natural enemy attacking Euphorbia hirta in tropical<br />

America where it evolved and only a few of polyphagous species attacking it elsewhere.<br />

A survey in Central America would be necessary to determine what species attack it<br />

there that might be potential biological control agents.


104<br />

Biological Control of Weeds: Southeast Asian Prospects<br />

4.10 Euphorbia hirta L.<br />

(= E. pilulifera)<br />

Euphorbiaceae<br />

garden spurge, asthma plant; mayo (Myanmar), nam nom raatchasee (Thailand)<br />

tuk das khla thom (Cambodia), co sua 16ng (Vietnam), ara tanah, hairy spurge<br />

(Malaysia) gelang susu, gendong ancok (Indonesia), gatas gatas (Philippines)<br />

Rating<br />

++ Thai, Sing, Phil<br />

10 + Laos, Camb, Viet, Msia<br />

w Myan, Indo<br />

Origin<br />

Tropical America.<br />

Distribution<br />

E. hirta is a weed of the tropics and subtropics.<br />

Characteristics<br />

A small, prostrate, hairy annual, 0.15 to 0.3 m tall, with a tap root; stems much branched<br />

from the base, often reddish, bearing brownish stiff hairs and having milky sap; leaves,<br />

hairy, opposite, sometimes purple-blotched and with toothed margins; flowers unisexual;<br />

reproduction by seeds 0.5 to 1 mm long.<br />

Importance<br />

E. hirta grows well in sunny to lightly shaded cultivated lands, gardens, lawns, waste<br />

areas and run down grasslands. It is an early coloniser of bare ground especially under<br />

damp or irrigated conditions. It flowers all year round in Southeast Asia producing up to<br />

3000 seeds per plant. When the seed pods mature they explode to disperse the seeds. Its<br />

prostrate habit enables it to tolerate mowing and it can be important in lawns. It has been<br />

reported from 47 countries as a weed in many crops, including citrus, cotton, groundnuts,<br />

maize, pineapples, rice, sorghum, sugarcane, tea and vegetables. Moody (1 989) records it<br />

as being more widespread in rice than Euphorbia heterophylla.<br />

E. hirta is sometimes used in medicines in Fiji, Malaysia, Indonesia, the Philippines<br />

and Brazil-the leaves and latex against intestinal diseases, ulcers and bronchitis, and the<br />

latex for conjunctivitis. It may have slightly poisonous properties and is useless as fodder<br />

for livestock.<br />

Natural enemies<br />

In view of its common occurrence in the tropical and subtropical belt of the world, it is<br />

surprising that there are so few records of natural enemies attacking it, and those that do<br />

are highly polyphagous (Table 4.10.1). A survey in Central America would be necessary<br />

to learn more about its natural enemies that might have potential for biological control.


Table 4.10.1 Natural enemies of Euphorbia hirta.<br />

4.10 Euphorbia hirta 105<br />

Species Location Other hosts References<br />

INSECTS<br />

Orthoptera<br />

ACRlDlDAE<br />

Chrotogonus<br />

trachypterus<br />

Hemiptera<br />

APHlDlDAE<br />

Aphis craccivora<br />

Aphis gossypii<br />

ALEYRODIDAE<br />

Bemisia tabaci<br />

DELPHACIDAE<br />

Tarophagus proserpina<br />

LYGAEIDAE<br />

Nysius inconspicuus<br />

PSEUDOCOCCIDAE<br />

Ferrisia virgata<br />

Thysanoptera<br />

THRlPlDAE<br />

Haplothrips euphorbiae<br />

Diptera<br />

AGROMYZIDAE<br />

Liriomyza bryoniae<br />

Liriomyza strigata<br />

Lepidoptera<br />

NOCTUI DAE<br />

Achaea janata<br />

FUNGI<br />

Aecidium tithymali<br />

Amphobotrys ricini<br />

Cylindrocladium<br />

quinqueseptatum<br />

Phytophthora palmivora<br />

PROTOZOA<br />

Phytomonas sp.<br />

NEMATODES<br />

Meloidogyne incognita<br />

India<br />

Nigeria,<br />

Uganda<br />

India<br />

India<br />

Philippines<br />

India<br />

India<br />

India<br />

Europe<br />

W. Europe,<br />

USSR<br />

Indonesia<br />

Thailand<br />

USA<br />

India<br />

Sarawak<br />

Venezuela<br />

Hawaii<br />

polyphagous Chandra et al. 1983<br />

poly phagous, Booker 1964, Davies 1972,<br />

a virus transmitter Ofuya 1988<br />

polyphagous Jeritta & David 1986<br />

polyphagous, Jeyarajan et al. 1988<br />

a virus transmitter<br />

polyphagous Duatin & Pedro 1986<br />

polyphagous Thangavelu 1978<br />

poly phagous Jeritta & David 1986<br />

possibly host restricted Jeritta & David 1986<br />

highly polyphagous Spencer 1973, 1990<br />

highly polyphagous Spencer 1973, 1990<br />

polyphagous Kalshoven 198 1<br />

Puckdeedindan 1966<br />

Holcomb et al. 1989<br />

Sulochana et al. 1982<br />

black pepper Anon 1979<br />

Barreto 1982<br />

Valdez 1968<br />

(continued on next page)


106 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.10.1 (continued)<br />

Species Location Other hosts References<br />

Meloidogyne javanica India Dahiya et al. 1988<br />

Radopholus sirnilis Zimbabwe polyphagous Martin et al. 1969<br />

Rotylenchulus reniforrnis Hawaii, USA Linford & Yap 1940,<br />

Inserra et al. 1989<br />

VIRUSES<br />

groundnut rosette Hawaii, Nigeria, Adams 1967,<br />

Uganda Booker 1964,<br />

Davies 1972<br />

hibiscus yellow India Jeyarajan et al. 1988<br />

vein mosaic<br />

tapioca mosaic India Jeyarajan et al. 1988<br />

tobacco leaf curl Hawaii Holm et al. 1977<br />

tomato leaf curl India Jeyarajan et al. 1988<br />

urd bean yellow mosaic India Jeyaragan et al. 1988


108 Biological Control of Weeds: Southeast Asian Prospects<br />

Fimbristylis miliacea<br />

(after Holm et a/. 1977)


Map 4.11 Fimbristylis miliacea<br />

4.1 1 Fimbristylis miliacea 109<br />

Fimbristylis miliacea<br />

Very few natural enemies of Fimbristylis miliacea are known and it would be necessary<br />

to carry out a survey in tropical America before it would be possible to evaluate the<br />

prospects for its biological control.


110 Biological Control of Weeds: Southeast Asian Prospects<br />

4.11 Fimbristylis miliacea (L.) Vahl<br />

(= l? littoralis)<br />

Cyperaceae<br />

lesser fimbristylis, grass-like fimbristylis; m6nhnyin (Myanmar), kak phrek kdam,<br />

smao (Cambodia), rumput bukit, rumput tahi berbau (Malaysia), agor (Thailand),<br />

ba bawagan (Indonesia)<br />

Rating<br />

+++ Myan, Camb, Msia, Brun, Indo<br />

23 ++ Viet, Sing, Phil<br />

. Thai, Laos<br />

Origin<br />

Tropical America.<br />

Distribution<br />

Central America, West Africa, Asia and Southeast Asia to northern Australia.<br />

Characteristics<br />

An erect annual or perennial sedge, growing up to 0.9 m; flower stems 4 or 5 angled,<br />

leaves two-ranked, threadlike, stiff and half as long as flower stems; inflorescence a dif-<br />

fuse compound umbel.<br />

Importance<br />

F. miliacea thrives in damp, open waste places, competing actively with other vegetation<br />

following germination during dry periods or shallow water conditions. A layer of water<br />

15 cm deep suppresses germination. Seedlings emerge during the entire growing period<br />

of rice with which it competes actively. It is a troublesome weed in 21 countries. In<br />

Malaysia it is the first sedge to emerge after rice has been transplanted and the first to<br />

recover after ploughing. In the Philippines it flowers all year, plants each producing up to<br />

10000 seeds. In many places there is no seed dormancy.<br />

F. miliacea is one of the most serious and widespread weeds of rice and is also<br />

reported from taro (Hawaii), bananas (Taiwan), abaca (Philippines), maize, sugarcane<br />

(Indonesia, Taiwan) and sorghum (Malaysia).<br />

F. miliacea is eaten by cattle, but the seeds are mostly undigested and germinate<br />

near the dung.<br />

~atu'ral enemies<br />

So little is known about its natural enemies (Table 4.1 1.1) that it is not possible to evalu-<br />

ate the prospects for biological control. A survey is necessary in tropical America.


Table 4.11.1 Natural enemies of Fimbrisstylis miliacea.<br />

4.1 1 Fimbristylis miliacea 111<br />

Species Location Other hosts References<br />

INSECTS<br />

Hemiptera<br />

PENTATOMIDAE<br />

Scotinophara Philippines rice, Cornrnelina Barrion & Litsinger 1987<br />

latiuscula benghalensis,<br />

Echinochloa crus-galli<br />

Lepidoptera<br />

Creatonoros gangis Philippines rice, many weeds Catindig et al. 1993<br />

(= Amsacra)<br />

FUNGI<br />

Corticum sasakii India Commelina Roy 1973<br />

benghalensis,<br />

Cynodon dactylon,<br />

Eleusine indica and<br />

other grasses<br />

NEMATODES<br />

Criconemella onoensis rice, many weeds Luc et al. 1990<br />

Hirschmaniella spp. rice, maize, sugarcane, Luc et al. 1990<br />

many weeds<br />

Meloidogyne India rice, many weeds Luc et al. 1990,<br />

graminicola Rao et al. 1970<br />

Meloidogyne oryzae Surinam rice, plantain, wheat, Maas et al. 1978<br />

potato, tomato<br />

Rotylenchulus Trinidad very polyphagous Singh 1974<br />

reniformis


112 Biological Control of Weeds: Southeast Asian Prospects<br />

Marsilea minu fa<br />

(after Soerjani el a/. 1987)


Map 4.12 Marsilea minuta<br />

4.1 2 Marsilea minuta 113<br />

Marsilea minuta<br />

Marsilea minuta, water clover, is thought to be of tropical African origin, but no account<br />

of its natural enemies there is available. A survey would thus be required to evaluate the<br />

prospects for its biological control.


114 Biological Control of Weeds: Southeast Asian Prospects<br />

4.12 Marsilea minuta L.<br />

(=M. crenata)<br />

Marsileaceae<br />

water clover, clover fern, pepperwort; pak vaen (Laos), chuntul phnom<br />

(Cambodia), semanggi (Indonesia), phak waen (Thailand), tapah itik (Malaysia)<br />

paang itik (Philippines).<br />

Rating<br />

+++ Msia<br />

12 ++ Indo, Phil<br />

+ Myan, Thai, Laos, Camb, Viet<br />

Origin<br />

Africa or possibly tropical Asia (Jacobsen 1983). It consists of a complex of strains<br />

including a diploid (n = 20) and a sterile triploid (2n = 60) (Tryon and Tryon 1982).<br />

Distribution<br />

Marsilea minuta is widespread over most of the African continent and it is pantropical in<br />

Asia. The Marsileaceae contains about 65 species, of which 16 occur in Africa and, of<br />

these, M. minuta is amongst the most widespread (Jacobsen 1983).<br />

Characteristics<br />

A very variable, perennial water fern of aquatic or marshy sites. Its stems are creeping<br />

rhizomes rooted in the mud. Leaves are clover-like, with four leaflets borne on a petiole 2<br />

to 30 cm long. Leaflets have fan-shaped, repeatedly bifurcating veins and normally float<br />

on the water surface. Sporocarps occur near the base of the petioles and usually occur<br />

under the mud or water surface. Reproduction is by spores or rhizomes.<br />

Importance<br />

Although M. minuta has a rating of 12 and is widely reported as a weed in Southeast<br />

Asia, there are surprisingly few references to it as a weed in the literature except for<br />

those dealing with chemical control. In Thailand it is common in rice fields and along<br />

canals and other waterways. It is one of the seven most important weeds in the Muda<br />

area of Malaysia (Itoh 1991a). It is one of the more important emergent weeds in shallow<br />

water rice fields in the central lowlands in Vietnam (Nguyen Van Vuong 1973) and in the<br />

lowland area of Vientiane in Laos (Sisounthone and Sisombat 1973). In Indonesia its<br />

vegetative growth and reproduction is very rapid. It can grow under water and, after<br />

weeding, rapidly re-establishes itself unless well buried in the soil. It is an effective com-<br />

petitor for nutrients, particularly in the early part of the growth period after transplanta-<br />

tion of rice seedlings when M. minuta rapidly covers the ground surface. In the<br />

Philippines it caused 19% crop loss when sown together with rice (Suriapermana 1977).<br />

The young leaves of water clover are sometimes eaten as a vegetable in Indonesia.


Natural enemies<br />

4.1 2 Marsilea minuta 115<br />

Very little information concerning natural enemies emerged from computer-aided search-<br />

es of the literature on Marsilea minuta, which also included searches of its synonyms:<br />

M. crenata and M. erosus in Asia and M. difisa, M. perrieriana and M. senegalensis in<br />

Africa (Table 4.12.1). In Africa Marsilea minuta appears to be regarded, at most, as a<br />

minor weed. This is possibly due to the fact that rice is far less important there than in<br />

Asia, or it may be due to the presence of effective natural enemies in Africa, although<br />

these have not yet been reported.<br />

In the Philippines, larvae of the ephydrid flies Notiphila Eatigenis and N. similis are<br />

common on emergent M. minuta and damage its stems. Their eggs are usually laid on the<br />

stems and serve as alternative hosts of Trichogramma wasps attacking rice stem borers<br />

(Barrion and Litsinger 1986). The contents of upwards of 90% of the sporocarps from<br />

M. minuta growing under terrestrial conditions in northwestern India were destroyed by<br />

larvae of the weevil Echinocnemus. The larval and pupal stages are completed in 40 to 45<br />

days (Loyal and Kumar 1977). In Indonesia the case-forming larvae of the widely distrib-<br />

uted pyralid moth Elophila (= Nymphula) responsalis attacked M. minuta and several<br />

other aquatic plants including Salvinia spp., Lemna purpusilla, L. polyrhiza, Monochoria<br />

vaginalis, Azolla pinnata and Pistia stratiotes. However, tests have shown that it will not<br />

feed on rice. The development period of Elophila responsalis ranged from 42 to 56 days.<br />

It was attacked by a pupal parasitoid (Tetrastichus sp.) and a larval coleopteran predator<br />

(Handayani and Syed 1976, Sankaran and Rao 1972, Subagyo 1975). Elophila respon-<br />

salis occurs also in India, Sri Lanka, Myanmar, Japan and Australia.<br />

Comment<br />

A survey for natural enemies attacking M. minuta in Africa is required before the<br />

prospects for its biological control in Southeast Asia can be evaluated.<br />

Table 4.12.1 Natural enemies of Marsilea minuta.<br />

Species Location References<br />

INSECTS<br />

Coleoptera<br />

CURCULIONIDAE<br />

Echinochnemus sp.<br />

Diptera<br />

EPHYDRIDAE<br />

Notiphila latigenis<br />

Notiphila similis<br />

India Loyal & Kumar 1977<br />

Philippines Barrion & Litsinger 1986<br />

Philippines Barrion & Litsinger 1986<br />

(continued on next page)


116 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.12.1 (continued)<br />

Species Location References<br />

Lepidoptera<br />

PY RALl DAE<br />

Elophila (= Nymphula)<br />

responsalis<br />

FUNGI<br />

VIRUS<br />

Alternaria sp.<br />

Cercospora rnarsileae<br />

Phaeotrichoconis crotalariae<br />

Pistia virus<br />

India, Indonesia<br />

India<br />

India<br />

India<br />

India<br />

Handayani & Syed 1976,<br />

Sankaran & Rao 1972,<br />

Subagyo 1975<br />

Menon & Ponnappa 1964<br />

Patil 1975<br />

Menon & Ponnappa 1964<br />

Menon & Ponnappa 1964


118 Biological Control of Weeds: Southeast Asian Prospects<br />

Melastoma malabathricum<br />

(after Soerjani et a/. 1987)


Map 4.13 Melastoma malabathricum<br />

4.1 3 Melastoma malabathricum 119<br />

Melastoma malabathricum<br />

M. rnalabathricum is a perennial shrub which probably originated in Southeast Asia or<br />

neighbouring areas, including Irian Jaya, Papua New Guinea and northern Australia, a<br />

region where it is regarded as being of little importance. A survey in this region would<br />

reveal whether there are promising natural enemies for biological control.


120 Biological Control of Weeds: Southeast Asian Prospects<br />

4.13 Melastoma malabathricum L.<br />

(= Melastoma affine)<br />

Melastomataceae<br />

melastoma, Indian rhododendron, Straits rhododendron; senduduk (Malaysia)<br />

Rating<br />

+++ Msia, Brun<br />

13 ++ Sing<br />

+ Thai, Laos, Viet, Indo, Phil<br />

Camb<br />

Origin<br />

Asia, Papua New Guinea, Australia.<br />

Characteristics<br />

M. malabathricum is a perennial shrub growing to 2 m high; its stems are reddish with<br />

rough upwardly pointing scales, the leaves are tapered to both ends, are rough to touch<br />

and have three distinct ribs. The flowers, which are clustered at the ends of twigs, are<br />

pinkish to light violet. The fruit is a berry-like capsule covered with scales.<br />

Importance<br />

Melastoma is common in abandoned clearings, on waste ground and in cultivated lands.<br />

In addition to its importance in Southeast Asia, it is a principal weed of rubber in West<br />

Africa. It is said to make good firewood. The sweetish black seeds are eaten and chewed<br />

leaves are used for burns and against amoebic dysentery. The fruits host a fruit fly<br />

species in the Bactrocera dorsalis complex which does not attack commercially impor-<br />

tant fruits (R.A.I. Drew, pers. comm.).<br />

Natural enemies<br />

Krauss (1 965) surveyed the natural enemies of species of Melastoma, including M. mala-<br />

bathricum, in various countries of Southeast Asia and islands of the western Pacific.<br />

Twenty six insect species were found on M. malabathricum (Table 4.13.1) and a further<br />

34 species on other melastomas. It is very likely that some of the 34 species will also<br />

attack M. malabathricum and, indeed, the leaf rolling pyralid moth Ategumia fatualis<br />

does so. After specificity tests Ategumia fatualis was liberated in Hawaii and Kauai in<br />

1958 and became established, although it did not become sufficiently abundant to pro-<br />

vide effective control (Table 4.13.2) (Krauss 1965).<br />

Another leaf-rolling pyralid Ategumia adipalis was liberated in 1965, and was<br />

reported to have become established (Davis and Chong 1969), but at low population lev-<br />

els. Next a noctuid moth Selca brunella was introduced to Kauai and Hawaii from<br />

Malaysia and Singapore in 1964 and was recovered the next year. The larvae feed avidly


4.13 Melastoma malabathricum 121<br />

in flower buds, bore into terminal stems and eat leaves. In heavily infested localities con-<br />

siderable dieback has resulted, at places flowering was prevented and in others up to 50%<br />

of fruits were destroyed by larvae. Larvae have been found recently on Tiboochina urvil-<br />

leana and Heterocentron subtriplinenium (both Melastomataceae) in Hawaii (C.J. Davis<br />

pers. comm. 1993). A braconid wasp Meteorus sp. attacks S. brunella larvae (Davis<br />

1970, Davis and Chong 1969).<br />

An unidentified grasshopper and an unidentified lepidopterous larva attack M. mal-<br />

abathricum in Thailand but not the chrysomelid beetle Altica cyanea which is present<br />

there and attacks it in Indonesia and Malaysia (Napompeth 1982).<br />

Comment<br />

Although a number of insects are known to attack M. malabathricum in Southeast Asia<br />

(and especially in Malaysia), they clearly do not reduce its status to the level required and<br />

thus are of limited value for classical biological control in that region. However, if as<br />

postulated, the area of origin includes Papua New Guinea, (Irian Jaya) and Australia it is<br />

possible that there may be useful natural enemies in the region that do not occur in coun-<br />

tries to the north and west. Certainly, Melastoma is not listed as an important weed in<br />

Papua New Guinea.<br />

Table 4.13.1 Natural enemies of Melastoma malabathricum.<br />

Species Country Food References<br />

INSECTS<br />

Hemiptera<br />

APHlDlDAE<br />

Aphis sp.<br />

CICADELLIDAE<br />

Tettigella<br />

(= Tettigoniella) sp.<br />

COCCI DAE<br />

Rastrococcus sp.<br />

MEMBRACIDAE<br />

Gargara sp.<br />

kptocentrus taurus<br />

Nilaurama minutispina<br />

Sipylus dilatatum<br />

Sipylus sp.<br />

Tricentrus sp.<br />

MlRlDAE<br />

Helopeltis antonii<br />

Hyalopeplus vitripennis<br />

RlCANllDAE<br />

- Pochazia antica<br />

Singapore leaf<br />

Malaysia leaf<br />

Malaysia<br />

Malaysia<br />

Malaysia<br />

Malaysia<br />

Malaysia<br />

Malaysia<br />

Malaysia<br />

Singapore<br />

Indonesia<br />

Malaysia<br />

Malaysia<br />

leaf<br />

branch; also on<br />

Melastoma<br />

polyanthum<br />

branch<br />

branch<br />

branch<br />

leaf<br />

leaf<br />

Krauss 1965<br />

Krauss 1965<br />

Krauss 1965<br />

Krauss 1965<br />

Krauss 1965<br />

Krauss 1965<br />

Krauss 1965<br />

Krauss 1965<br />

Krauss 1965<br />

Krauss 1965<br />

Soerjani et al. 1987<br />

Krauss 1965<br />

Krauss 1965<br />

(continued on next page)


122 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.13.1 (continued)<br />

Species Country Food References<br />

Coleoptera<br />

CHRYSOMELIDAE<br />

Altica cyanea Indonesia,<br />

CURCULIONIDAE<br />

Alcidodes sp.<br />

Ceutorhynchus sp.<br />

Cryptorhynchus sp.<br />

Imerodes (?) sp.<br />

Malaysia<br />

Malaysia<br />

Malaysia<br />

Malaysia<br />

Singapore<br />

Diptera<br />

TEPHRITIDAE<br />

Bactrocera dorsalis<br />

(= B. pedestris) Malaysia,<br />

Singapore,<br />

Sri Lanka<br />

Lepidoptera<br />

ARCTllDAE<br />

Species of Lithosiinae<br />

GELECHllDAE<br />

Idiophantis sp.<br />

HYPONOMEUTIDAE<br />

Argyresthia leuculias<br />

LYMANTRIIDAE<br />

?Species<br />

NOCTUIDAE<br />

Autoba (= Eublemma)<br />

versicolor<br />

Selca brunella<br />

PY RALl DAE<br />

Agrotera basinotata<br />

Ategumia adipalis<br />

Ategumia fatualis<br />

TORTRICIDAE<br />

Archips rnicaceana<br />

shoot<br />

flowers<br />

flowers<br />

flowers<br />

Malaysia fruit<br />

Malaysia<br />

Malaysia<br />

Malaysia<br />

Malaysia<br />

Malaysia,<br />

Singapore<br />

Malaysia<br />

Malaysia,<br />

Singapore<br />

Philippines<br />

Kamarudin & Shah<br />

1978, Napompeth 1982<br />

Krauss 1965<br />

Krauss 1965<br />

Krauss 1965<br />

Krauss 1965<br />

fruit Krauss 1965<br />

fruit<br />

fruit<br />

flower<br />

leaf<br />

leaf, twig, fruit<br />

leaf<br />

leaf<br />

Krauss 1965<br />

Krauss 1965<br />

Krauss 1965<br />

Krauss 1965<br />

Krauss 1965<br />

Julien 1992, Krauss 1965<br />

Krauss 1965<br />

Julien 1992, Krauss 1965<br />

leaf Krauss 1965<br />

Malaysia leaf Krauss 1965<br />

FUNGI<br />

Phytophthora palmivora Sarawak black pepper Anon 1979


4.13 Melastoma malabathricum 123<br />

Table 4.13.2 Introductions to Hawaii for the biological control of Melastoma<br />

malabathricum.<br />

Species Source Liberated Established References<br />

INSECT<br />

Lepidoptera<br />

NOLIDAE<br />

Selca brunella<br />

PYRALl DAE<br />

Ategumia adipalis<br />

Ategumia fatualis<br />

Malaysia, 1965 +<br />

Singapore<br />

Malaysia, 1965 +<br />

Singapore<br />

Philippines 1958 +<br />

Davis 1960, Davis &<br />

Chong 1968, Davis &<br />

Krauss 1962, 1966,<br />

1967, Julien 1992,<br />

Krauss 1965<br />

Davis & Chong 1969,<br />

Julien 1992<br />

Davis & Krauss 1966,<br />

Julien 1992


124 Biological Control of Weeds: Southeast Asian Prospects<br />

Mikania micrantha<br />

(after Holm et a/. 1977)


Map 4.14 Mikania micrantha<br />

4.1 4 Mikania micrantha 125<br />

Mikania micrantha<br />

Mikania micrantha is a perennial vine, native to Central and South America.<br />

A number of very promising, and probably specific, natural enemies are known in<br />

Central and South America where M. micrantha is not regarded as a weed. One of these,<br />

a thrips Liothrips mikaniae has been released in Malaysia and the Solomon Is, but<br />

extremely high predation is believed to have prevented its establishment. A bug<br />

Teleonemia sp., several chrysomelid beetles and an eriophyid mite Acalitus sp. warrant<br />

serious consideration. A number of other natural enemies, whose specificity has not yet<br />

been adequately investigated, also attack M. micrantha.<br />

In spite of the lack of success with the thrips, M. micrantha appears to be a prime<br />

target for the introduction of one or more of the other organisms that attack it in its area<br />

of origin.


126 Biological Control of Weeds: Southeast Asian Prospects<br />

4.14 Mikania micrantha Kunth<br />

Asteraceae<br />

mile-a-minute weed; cheroma, ulam tikus (Malaysia), sembung rambat<br />

(Indonesia).<br />

This chapter updates that in Waterhouse and Norris (1987), with special reference to<br />

Southeast Asia.<br />

Rating<br />

+++ Msia, Sing<br />

11 ++ Brun, Indo<br />

+ Phil<br />

Thai<br />

Origin<br />

The weedy species in Southeast Asia and the Pacific is M. micrantha from Central and<br />

South America and not the North American M. scandens or the Old World M. cordata<br />

(Parker 1 972).<br />

Distribution<br />

M. micrantha belongs to a genus containing about 250 species of mostly Central and<br />

South American origin. In addition to its native distribution in tropical America, it has<br />

spread to Mauritius, India, Sri Lanka, Bangladesh and Southeast Asia (as above). It<br />

occurs widely as a weed in the Pacific, including Papua New Guinea (Waterhouse and<br />

Norris 1987), but is not yet present in Australia. It was introduced from Paraguay to<br />

Bogor Botanic Gardens (Indonesia) in 1949 and, in 1956, was used as a soil cover in rub-<br />

ber: it has since spread throughout Indonesia (Soerjani et al. 1987).<br />

Characteristics<br />

Mikania micrantha is an extremely fast growing, sprawling, perennial vine, with oppo-<br />

site, heart-shaped leaves, longitudinally ribbed, branched and hairless stems and numer-<br />

ous small heads of densely clustered white flowers. It creeps and twines, roots readily at<br />

the nodes and produces abundant small (2 mm long) black seeds bearing a terminal tuft<br />

of white bristles that aid wind dispersal.<br />

In its natural habitat in tropical America, M. micrantha is usually found in disturbed<br />

situations. It seldom occurs on poor soils and is most commonly found in damp or<br />

swampy places. Typical sites in South America are roadsides in wet forest and the edges<br />

of freshwater swamps. Flowering occurs mainly in the dry season and only in sunny situ-<br />

ations (Cock 1982a).<br />

Importance<br />

With its rapid growth, ready rooting at nodes, smothering habit and prolific seed produc-<br />

tion, M. micrantha rapidly colonises disturbed habitats, retarding, by competition and


4.14 Mikania micrantha 127<br />

through plant inhibitors that it elaborates (Wong 1964), the growth of crops or natural<br />

vegetation. In comparison with a nitrogen-fixing legume, it is of restricted value in the<br />

role of a cover crop. For example, in Malaysia the girth of rubber trees was 27% less<br />

with a cover of M. micrantha than of a legume and the yield over the first 32 months of<br />

production was 27 to 29% less (Teoh et al. 1985). In many parts of Southeast Asia it is a<br />

serious pest of plantation crops (oil palm, coconut, cocoa, tea, rubber, teak). Its climbing<br />

habit enables it to reach and then dominate the crowns of bushes or trees up to 10m high,<br />

where it is difficult to attack either mechanically or chemically without risk of damaging<br />

the crop (Parker 1972). It recovers rapidly from slashing. It is eaten by cattle, but is less<br />

valuable as fodder than many of the pasture plants it is able to smother. Nevertheless, it is<br />

viewed by some as being useful to control soil erosion, to serve as a mulch when cut, and<br />

as being preferable to many alternative plants that might occupy the space vacated by its<br />

control. In its native habitat it is seldom a weed.<br />

Natural enemies<br />

MAJOR SPECIES<br />

TROPICAL AND SOUTH AMERICA<br />

Valuable information is available on 9 major and 22 minor natural enemies of M. micran-<br />

tha in its native region as a result of studies by Cock (1982a,b) and Freitas (1991).<br />

Several of the major natural enemies are reported to be promising biological control<br />

agents (Table 4.14.1) and all these, and probably some of those less extensively studied<br />

(Table 4.14.2), are worthy of serious consideration. Details of their biology and possible<br />

relevance for biological control are summarised below.<br />

Table 4.14.1 Major natural enemies of Mikania micrantha in its native range in<br />

Central and South America (after Cock 1982a).<br />

INSECTS<br />

Thysanoptera<br />

PHLAEOTHRIPIDAE<br />

Liothrips rnikaniae<br />

Hemiptera<br />

TlNGlDAE<br />

Teleonernia sp. or spp. nr prolixa<br />

Coleoptera<br />

CHRYSOMELIDAE<br />

Desmogramma conjuncta<br />

Echorna rnarginata<br />

Echorna quadristillata<br />

Physimerus pygrnaeus<br />

APlONlDAE<br />

Apion luteirostre<br />

CURCULIONIDAE<br />

' Pseudoderelomus baridiiformis<br />

MITE<br />

ERlOPHYlDAE<br />

Acalitus sp.


128 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.14.2 Additional natural enemies of Mikania micrantha, not known to be<br />

polyphagous, from Central and South America (Cock 1982a, Freitas 199 1 ).<br />

Species Distribution Feeding location Host range<br />

INSECTS<br />

Hemiptera<br />

LYGAEIDAE<br />

Xyonysius basalis<br />

(= X. inaequalis<br />

= X. sp. nr ementitus)<br />

MEMBRACIDAE<br />

Entylia sinuata<br />

Entylia sp.<br />

Trinidad, inflorescence<br />

Venezuela<br />

Colombia, stems and leaves<br />

Costa Rica<br />

Trinidad, Peru, stems and leaves<br />

Venezuela<br />

Ecuador<br />

Trinidad, stems and young<br />

Probably other Mikania<br />

spp.or other Asteraceae<br />

M. cordifolia<br />

M. cordifolia<br />

Micrutalis binaria M. vitifolia and<br />

Colombia leaves<br />

M. trinitaria<br />

MlRlDAE<br />

Pycnoderes incurvus<br />

TlNGlDAE<br />

Colombia,<br />

Ecuador,<br />

Costa Rica<br />

leaves<br />

probably specific<br />

Leptocysta sexnebulosa Venezuela<br />

Colombia. Peru<br />

mature leaves M. cordifolia<br />

Coleoptera<br />

CHLAMlSlDAE<br />

Exema complicata Trinidad, Peru, leaves<br />

Costa Rica,<br />

Colombia<br />

CHRYSOMELIDAE<br />

Longitarsus sp.<br />

nr amazonus<br />

Sceloenopla sp.<br />

Colombia, Peru leaves<br />

Trinidad leaves<br />

Diptera<br />

AGROMYZIDAE<br />

Calycomyza mikaniae Trinidad, leaf miner<br />

Colombia,<br />

CEClDOMYllDAE<br />

Neolasioptera sp.<br />

TEPHRlTlDAE<br />

Xanthaciura insecta<br />

Costa Rica<br />

Mikania spp., Chromolaena<br />

odorata and possibly<br />

other Asteraceae<br />

probably specific<br />

M. trinitaria<br />

Mikania spp. and possibly<br />

related Asteraceae<br />

Trinidad, Colombia flowers M. cordifolia<br />

Trinidad flower head<br />

Lepidoptera<br />

GELECHllDAE<br />

Onebala tegulella Trinidad,<br />

Costa Rica<br />

leaf roller<br />

Recurvaria sp. Trinidad flowers<br />

various Asteraceae<br />

M. vitifolia<br />

various Asteraceae<br />

(continued on next page)


4.14 Mikania micrantha 129<br />

Species Distribution Feeding location Host range<br />

GEOMETRIDAE<br />

Chloropteryx sp.<br />

Eupithecia sp.<br />

LYCAENIDAE<br />

Thereus<br />

(= Thecla) palegon<br />

NYMPHALIDAE<br />

Tegosa claudina<br />

(= Tegosa similis)<br />

PTEROPHORIDAE<br />

Adaina bipuncta<br />

PY RALl DAE<br />

Lamprosema distincta<br />

TORTRICIDAE<br />

Lobesia (= Polychrosis)<br />

?carduana<br />

Phalonidia<br />

multistrigata<br />

Trinidad<br />

Trinidad<br />

Trinidad<br />

Brazil, Trinidad,<br />

Colombia<br />

Trinidad<br />

Trinidad, Panama,<br />

Costa Rica<br />

Trinidad<br />

Trinidad<br />

flowers<br />

flowers<br />

flowers<br />

leaves<br />

flowers<br />

leaf roller<br />

flowers<br />

flowers<br />

various Asteraceae<br />

various Asteraceae<br />

various Asteraceae<br />

possibly specific<br />

various Asteraceae<br />

possibly specific<br />

various Asteraceae<br />

various Asteraceae<br />

Acalitus sp. Acarina: Eriophyidae<br />

Feeding on the leaves by this eriophyid mite causes the formation of raised patches<br />

(erinea) in which the mites and their immature stages congregate. In Venezuela the patches<br />

mostly protrude on the undersurface of the leaf, whereas elsewhere they are mostly on<br />

the uppersurface, which may indicate taxonomic differences. At low mite densities the<br />

small number of erineum patches appear to have little effect on the growth and vigour of<br />

the plant. However, in dense infestations, erineum patches cover all the young leaves and<br />

spread into the flower heads, resulting in shortened internodes and reduced flowering.<br />

Plant vigour is significantly reduced.<br />

Eriophyid mites are usually restricted to a single plant species. Although erineum<br />

patches occur widely on M. micrantha, they were not seen on any other species of<br />

Mikania encountered in Cock's (1 982a) studies, suggesting a high degree of specificity.<br />

Predatory or scavenger mites occur quite commonly in and around the erineum patches.<br />

If field specificity trials with potted plants of closely related Asteraceae placed among<br />

heavily infested M. micrantha prove negative, this mite would be a promising biological<br />

control agent. Similar mites on Lantana in South America appear to discourage insect<br />

attack (K.L.S. Harley pers. comm.).<br />

Apion luteirostre Coleoptera: Apionidae<br />

Eggs of this weevil are laid in unopened host flower heads. Larvae feed initially on the<br />

petals, stigma and stamens and, later, destroy the developing seeds. They pupate in the<br />

flower head. The adults make small holes in young leaves.<br />

rn extensive field studies A. luteirostre larvae were not recorded from Chromolaena<br />

odorata, although they were found on M. micrantha and M. vitifolia, but not on M. cordifolia.<br />

Starvation tests using adults resulted in their feeding on five species of Mikania and<br />

on Bidens pilosa, but not on Chromolaena odorata.


130 Biological Control of Weeds: Southeast Asian Prospects<br />

Larvae of Apion luteirostre are attacked by the non-specific eulophid parasitoid<br />

Horismenus? aeneicollis and the pteromalid Zatropis sp. A number of Apion species have<br />

been used successfully in biological control of weeds programs (e.g. Emex australis and<br />

E. spinosa). Further host specificity trials are needed to evaluate the potential value of<br />

A. luteirostre.<br />

Desmogramma conjuncta Coleoptera: Chrysomelidae<br />

This chrysomelid beetle occurs widely, but at low density, on M. micrantha in Central<br />

and South America and a related species D. bigaria occurs on M. micrantha in<br />

Venezuela.<br />

Eggs are laid on the host leaves on which the larvae feed. Pupation occurs in the<br />

soil. No field records are available of feeding on plants other than M. micrantha and, in<br />

limited multiple choice tests, adults offered Bidens pilosa (cobbler's pegs), Chromolaena<br />

odorata and M. micrantha (all Asteraceae) attacked only the latter. No natural enemies<br />

have been recorded.<br />

The chrysomelid subfamily Chrysomelinae to which this species belongs includes<br />

several successful biological control agents such as the Chrysolina species on St John's<br />

Wort, Hypericum perforaturn angustifolium. If species of Desmogramma are specific to<br />

M. micrantha they may prove to have potential as biological control agents.<br />

Echoma (= Omoplata) marginata and E. quadristillata Coleoptera: Chrysomelidae<br />

Adults and larvae of these chrysomelid beetles feed openly on M. micrantha and<br />

M. cordifolia leaves and cause general defoliation. E. marginata is uncommon, but<br />

E. quadristillata is quite common around Turrialba (Costa Rica). They appear to have a<br />

low reproductive potential (Cock 1982a). In limited-choice tests, E. quadristillata fed on<br />

M. micrantha and M. cordifolia, but not on Bidens pilosa or Sonchus sp. (Asteraceae). In<br />

another experiment, no preference was shown between its two host species, but it would<br />

not feed on another species of Mikania, which was probably M. vitifolia.<br />

A tachinid pupal parasitoid Hyalomyodes triangulifer is known from E. marginata<br />

and a chalcidid pupal parasitoid Brachymeria russelli from E. quadristillata.<br />

Liothrips mikaniae Thysanoptera: Phlaeothripidae<br />

This thrips occurs in Colombia, Costa Rica, Peru, Surinam, Trinidad and Venezuela. The<br />

eggs are mainly laid on the undersurface of the host plant leaves or at the base of leaf<br />

stalks and the larvae feed there in groups. The prepupae and pupae are found among leaf<br />

litter beneath the plant and the adults return to the youngest leaves to feed, mate and<br />

oviposit. L. mikaniae has been found only on M. micrantha growing in full sunshine and<br />

it never occurs on plants in shady situations. This limits its potential effectiveness to sun-<br />

lit stands of the weed. The life cycle (egg to egg-laying adult) takes about 35 days, males<br />

living about 28 days, females about 35 days and laying between 21 and 11 1 eggs (Ooi et<br />

al. 1993). The feeding by larvae and adults on the young leaves produces small to moder-<br />

ate-sized lesions on the undersurface, which dry to form brown scars and these cause<br />

extensive distortion of the leaves as they grow.<br />

Laboratory studies in Trinidad (Cock 1982b) and field observations (Cock 198 1,<br />

1982a,b) show that L. mikaniae is restricted to the genus Mikania and most probably to


4.1 4 Mikania micrantha 131<br />

M. micrantha, although M. cordifolia and M. vitifolia may be fed on to a limited extent in<br />

the laboratory. Additional studies carried out in England by CIBC confirmed its host<br />

specificity before permission was obtained to introduce L. mikaniae to Malaysia. Rearing<br />

methods are described by Cock (1982b) and Ooi et al. (1993).<br />

Physimerus pygmaeus Coleoptera: Chrysomelidae<br />

This halticine chrysomelid is one of a group of five Physimerus species occurring on<br />

M. micrantha in South America.<br />

The larval feeding habits are unknown, but they may attack roots. The adults feed<br />

on young leaves and petioles, causing the dieback of growing tips, and they may be<br />

destructive when in high densities. This species is uncommon in Trinidad, where it is<br />

restricted to shady conditions, whereas in Colombia it also occurs in the open.<br />

Adults of I? pygmaeus have been found feeding on both M. vitifolia and M. hookeri-<br />

ana, in addition to M. micrantha. Field-collected adults fed on Bidens pilosa, but not on<br />

Chromolaena odorata. No natural enemies have been recorded. Further specificity tests<br />

with larvae and adults would be necessary before the potential of this species could be<br />

evaluated. Various halticine beetles, Longitarsus spp., show great promise for the biolog-<br />

ical control of ragwort Senecio jacobaea, Paterson's curse Echium plantagineum and<br />

common heliotrope Heliotropium europaeum.<br />

Pseudoderelomus baridiifomis Coleoptera: Curculionidae<br />

Larvae of this weevil are not known and may be root or stem gall feeders. The adult bur-<br />

rows into the flowers, damaging the petals, stamens and stigma and prevents seed pro-<br />

duction from the flowering head it occupies. When common, levels of 25% damage have<br />

been recorded.<br />

Adults of P. baridiiformis occur mainly in the flowers of M. micrantha, but have<br />

also been recorded from M. trinitaria and M. vitifolia. They occur rarely in the flowers of<br />

Chromolaena odorata and have been recorded once from Neurolaena lobata. No natural<br />

enemies are known.<br />

Although the level of damage caused may be considerable, further studies of life<br />

history and host specificity are required.<br />

Teleonemia sp. or spp. nr prolixa Hemiptera: Tingidae<br />

A taxonomic study of the bug genus Teleonemia (which contains more than 80 species) is<br />

required to enable the determination of correct identity of the one or more species of<br />

brown tingid bugs feeding on Mikania flowering heads. The species is not i? prolixa,<br />

which is highly specific to Lantana camara (Harley and Kassulke 19,759.<br />

The eggs are laid into the flower bracts and the nymphs and adults feed on the<br />

flower heads, but do not appear to cause much damage at low densities. Faeces deposited<br />

on the opening flowers may be sufficient to prevent seed production, particularly when<br />

these serve as a substrate for fungal growth. i? harleyi in Trinidad has a similar life cycle<br />

and feeding habits in Lantana camara flowers (Harley and Kassulke 1975).<br />

Adults and nymphs of Teleonemia were found by Cock (1982a) on a number of<br />

Mikania species (micrantha, vitifolia, trinitaria, hookeriana). Although T. prolixa has<br />

been recorded from Cinchona sp. (Drake and Poor 1938), Lantana camara (Monte 1939)


132 Biological Control of Weeds: Southeast Asian Prospects<br />

and Acacia riparia (Drake and Ruhoff 1965), the records for Cinchona and Acacia<br />

appear to be in error (Harley and Kassulke 1975). A parasite attacks the eggs of<br />

Teleonemia and the lygaeid Xyonysius sp. in M. micrantha flowers. Teleonemia scrupu-<br />

losa has been used in a number of countries to considerable effect to help in the control<br />

of Lantana camara. If the flower-feeding Teleonemia that attack Mikania cause similar<br />

effects through injection of saliva, they may cause more damage than is apparent at first<br />

sight.<br />

MINOR SPECIES<br />

Cock (1982a) and Freitas (1991) list a further 22 species of insects attacking M. micran-<br />

tha in Central and South America (Table 4.14.2). There are 7 species of Hemiptera, 3<br />

Coleoptera, 10 Lepidoptera and 3 Diptera. Five of these are considered at this stage of<br />

knowledge to be promising.<br />

Exema complicata Coleoptera: Chlamisidae<br />

Adults and larvae of this beetle are leaf feeders on Mikania spp., Chromolaena odorata<br />

and perhaps other Asteraceae.<br />

Longitarsus nr amazonus Coleoptera: Chrysomelidae<br />

Adults of this halticine beetle feed on leaves of M. micrantha and larvae probably on<br />

roots. Longitarsus species generally have a very restricted host range.<br />

Neolasioptera sp. Diptera: Cecidomyiidae<br />

The larvae of this fly feed within the flower head and scar the seed shell, but the effect of<br />

this damage on seed viability is unknown. This species is parasitised by a eulophid<br />

Tetrastichus sp.<br />

Sceloenopla sp. Coleoptera: Chrysomelidae<br />

Adults of this hispine beetle feed on leaves and larvae are leafminers on M. micrantha<br />

and M. trinitaria. Horismenus? aeneicollis is recorded as a larval parasitoid. Hispine bee-<br />

tles have proved to be very effective against Lantana camara.<br />

Tegosa claudina Lepidoptera: Nymphalidae<br />

Earlier referred to as Tegosa similis, the larvae of this butterfly are leaf feeders on both<br />

Mikania micrantha and M. cordifolia. Eggs are laid in clusters and larvae are gregarious,<br />

passing through six instars (Freitas 1991).<br />

Attempts at biological control<br />

MALAYSIA<br />

An extensive evaluation of natural enemies attacking M. micrantha was made in<br />

peninsular Malaysia prior to a decision to embark upon a biological control project (Teoh<br />

et al. 1985). Of the insects collected from or reared on the host plant, 2506 were classi-<br />

fied arid separated into commonly found and minor natural enemies (Table 4.14.3).<br />

Although numerous insects were found to attack M. micrantha, not only was the<br />

extent, of damage insignificant, but most of the abundant species were known pests of<br />

economic crops. For example, Halticus minutus and Lamprosema diemenalis are major


4.14 Mikania micrantha 133<br />

pests of leguminous cover crops, Homoeocerus serrifer attacks rice and Helopeltis spp.<br />

are serious pests of cocoa. None of the natural enemies recorded in Tropical and South<br />

America were found in the survey. A number of fungi were also found, of which<br />

Colletotrichium gloeosporioides was the most important, comprising 84% of the sam-<br />

ples. Other fungi included Colletotrichium spp., a non-sporulating brown fungus,<br />

Rhizoctonia spp., Curvularia spp. and Pestalotia spp. It was concluded that a strong case<br />

existed for the introduction of effective natural enemies.<br />

Table 4.14.3 Insects attacking Mikania micrantha in peninsular Malaysia (Teoh et al.<br />

1985).<br />

Species Effects<br />

MAJOR SPECIES<br />

Orthoptera<br />

ACRlDlDAE<br />

Acrida turrita<br />

Hemiptera<br />

APHlDlDAE<br />

Aphis spiraecola<br />

CERCOPIDAE<br />

Clovia conifer<br />

CICADELLIDAE<br />

Bothrogonia ferrugenea<br />

COREIDAE<br />

Homoeocerus serrifer<br />

Riptortus linearis<br />

MEMBRACIDAE<br />

Centrotypus flexuosus<br />

MlRlDAE<br />

Halticus minutus<br />

Helopeltis spp.<br />

Lepidoptera<br />

PY RALl DAE<br />

MINOR SPECIES<br />

Orthoptera<br />

ACRlDlDAE<br />

Catantops humilis<br />

Hemiptera<br />

APHlDlDAE<br />

Aphis gossypii<br />

CICADELLIDAE<br />

Nephotettix spp.<br />

Thysanoptera<br />

THRlPlDAE<br />

Isothrips spp.<br />

Microcephalothrips spp.<br />

holes in leaves<br />

wrinkled leaves<br />

yellow spots on leaves and stems<br />

brown spots on stems<br />

brown spots on leaves<br />

brown spots on leaves<br />

necrosis on stems<br />

necrotic lesions on leaves<br />

necrotic lesions on leaves<br />

(continued on next page)


134 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.14.3 (continued)<br />

Species Effects<br />

Parthenothrips spp.<br />

Thrips hawaiiensis<br />

Thrips tabaci<br />

Coleoptera<br />

CHRYSOMELIDAE<br />

Dactylispa bipartista<br />

COCCINELLIDAE<br />

Coelophora bissellata<br />

Epilachnu indica<br />

Diptera<br />

TEPHRlTlDAE<br />

Sphaeniscus atilus<br />

Lepidoptera<br />

AMATIDAE<br />

Amata huebneri<br />

PYRALIDAE<br />

Hellula undalis<br />

Liothrips mikaniae was introduced to Malaysia from Trinidad via England in 1989<br />

for additional host specificity trials. Difficulties were experienced initially in mass rearing,<br />

due to unsuitable environmental conditions (lighting, temperature, aeration) low<br />

plant nutritional quality and predators (spiders, ants, and particularly a predatory thrips,<br />

Xyloplothrips sp. which destroyed 90% of the culture). Also, there were differences in<br />

the M. micrantha plants used. Some were hairless and others hairy. Larvae hatching from<br />

eggs along stems of the latter found difficulty in moving among the trichomes and many<br />

failed to reach the nearest leaf. Nevertheless, in Trinidad, L. mikaniae was found breeding<br />

on both plant types. After passing tests with 18 Malaysian crop species, 13 161 adult<br />

thrips were released in 25 batches of 99 to 1400 at 5 different sites from April 1990 to<br />

June 1991, but no establishment resulted (Table 4.14.4). Further thrips were imported in<br />

January 1992 to extend the genetic base of the rearing colony. Two releases were made<br />

into a fenced site, 18 000 adults, together with their rearing plants in pots, in May 1992<br />

and 1500 adults about a month later. The pots were watered daily for two months.<br />

However, L. mikaniae gradually disappeared and, after eight months, none could be<br />

found. An ant that made its nest amongst Mikania leaves was observed to feed voraciously<br />

on adult, larval and pupal stages of L. mikaniae, but showed little interest in eggs,<br />

whereas a predatory Haplothrips sp. preferred eggs. About 20 other potential predators<br />

were evaluated, but were not implicated (Liau et al. 1991, 1993, Norman et al. 1992,<br />

Teoh et al. 1985, Ooi 1993, Ooi et al. 1993).<br />

SOLOMON ISLANDS<br />

A consignment of L. mikaniae was sent from Malaysia to the Solomon Is and released in<br />

the field in 1988, but the site was flooded shortly afterwards. Further releases were made,<br />

but no establishment has occurred (M. Vagalo pers. comm.). It was suggested that there


4.14 Mikania micrantha 135<br />

may be differences in hospitability to L. mikaniae of the host plant between the<br />

Caribbean and Solomon Is.<br />

PAPUA NEW GUINEA<br />

Part of a consignment of L. mikaniae sent to the Solomon Is in 1989 was taken to Papua<br />

New Guinea, but there is no information on its fate (Williams et al. 1990), although it is<br />

believed to have died in quarantine (F. Dori pers. comm. 1993).<br />

SRI LANKA AND ASSAM<br />

In Sri Lanka and Assam it has been found that the plant parasite Cuscuta chinensis will<br />

suppress Mikania and prevent it spreading into tea plantations, although C. chinensis is<br />

not sufficiently selective to be used in the plantations themselves (Parker 1972). On<br />

Espiritu Santo (Vanuatu) a related species Cuscuta campestris is reported to suppress M.<br />

micrantha (M.J.W. Cock pers. comm.).<br />

Table 4.14.4 Liberations for the biological control of Mikania micrantha.<br />

Species Where From When Result References<br />

Thysanoptera<br />

PHLAEOTHRIPIDAE<br />

Lioihrips mikaniae Malaysia Trinidad via UK 1991 - Liau et al. 1991,<br />

1993, Norman et<br />

al. 1992<br />

Solomon Is Trinidad via UK 1988 - M. Vagalo pers.<br />

comm., Williams et<br />

al. 1990<br />

Comment<br />

Mikania micrantha is an introduced weed of widespread importance in plantation crops<br />

throughout Southeast Asia. It is not a significant weed in its native range in tropical<br />

Central and South America, where it is attacked by a wide range of arthropod natural<br />

enemies. Several appear to be not only damaging to the weed, but also highly specific. It<br />

must be concluded that M. micrantha is a highly appropriate target for an attempt at bio-<br />

logical control.<br />

The failure of Liothrips mikaniae to become established in Malaysia is disappoint-<br />

ing. The most probable explanation, partly supported by observations, is that heavy pre-<br />

dation was the cause. Although the same guild of predators may be widespread on conti-<br />

nental Southeast Asia, the same may not apply to island nations, particularly those in the<br />

southern Pacific, which have a far less diverse fauna and releases there might lead to suc-<br />

cessful establishment.


136 Biological Control of Weeds: Southeast Asian Prospects<br />

Mimosa in visa<br />

(after Holm eta/. 1977)


Map 4.15 Mimosa invisa<br />

4.15 Mimosa invisa<br />

Mimosa in visa<br />

Creeping sensitive plant, Mimosa invisa, is native to Tropical America, where it is not<br />

regarded as a weed.<br />

At least 70 species of insects attack it in Brazil and additional species elsewhere.<br />

Detailed studies have been made on two Hemiptera (Heteropsylla spinulosa and<br />

Scamurius sp.) and a moth (Psigida walkeri). H. spinulosa has caused extensive damage<br />

to M. invisa following its establishment in Australia and promising early results in Fiji,<br />

Papua New Guinea and Pohnpei, but disappointing results in Western Samoa. Scamurius<br />

sp. has failed to become established and P. walkeri is still under investigation.<br />

The prospects for biological control of M. invisa appear to be good, although<br />

additional natural enemies may have to be considered.


138 Biological Control of Weeds: Southeast Asian Prospects<br />

4.15 Mimosa invisa Martius ex Colla<br />

Mi mosaceae<br />

creeping sensitive plant; banla saet (Cambodia), borang, pis koetjing, rembete<br />

(Indonesia), duri semalu (Malaysia), makahiyang lalaki (Philippines), maiyaraap<br />

thao (Thailand), co trinh nu moc (Vietnam)<br />

Rating<br />

+++ Phil<br />

18 ++ Myan, Thai, Laos, Viet, Msia, Sing, Indo<br />

+ Camb<br />

Origin<br />

Tropical America. In Brazil southwards from Bahia to Paranh and westwards to Paraguay<br />

and tropical northeast Argentina; also lowlands of Central America from Veracruz<br />

(Mexico) southeastwards to Panama and adjacent Colombia.<br />

Distribution<br />

In addition to the above there are, in the Americas, scattered records from Brazilian<br />

Amazonia, the Guianas, Jamaica, Hispaniola and Cuba. M. invisa is widely distributed in<br />

Southeast Asia and the Pacific, also in Queensland, India, Sri Lanka, Taiwan and Nigeria.<br />

It was first recorded in Java in 1900 (Soerjani et al. 1987).<br />

Characteristics<br />

Mimosa invisa is a fast growing, abundantly thorny, biennial or perennial shrub with<br />

angular branching stems that become woody with age. The leaves are alternate, bipinnate<br />

and compound. The pink to purple globular flowers are borne on a short prickly stalk<br />

arising from a leaf axil. The seed pods are covered with stiff bristles and separate at<br />

transverse grooves into two to four, single-seeded segments.<br />

The genus Mimosa does not occur naturally in Southeast Asia or Australia. M.<br />

invisa is one of three weedy species of Mimosa in this region, all of which are treated in<br />

this volume. They may be distinguished (i) by the number of pinnae in the leaves: M.<br />

invisa 4 to 9 pairs; M. pigra 6 to 16 pairs; and M. pudica 1 to 2 pairs and (ii) the size of<br />

the pods: M. invisa 4 seeds per pod, M. pigra 12 to 24 seeds. In addition, M. invisa stems<br />

have a dense covering of small prickles, whereas M. pigra stems have a sparse covering<br />

of large prickles (Lonsdale 1992).<br />

M. invisa folds its pinnate leaves when touched, but is not as sensitive as some other<br />

species, such as M. pudica. The leaves fold at nightfall.<br />

unlike the situation in the more tropical regions, such as the Philippines where<br />

M. invisa flowers all year round, in central and southern Brazil it only flowers from the<br />

end of January to mid April. Seeds mature from February to the end of May and plants<br />

then senesce, losing most of their leaves, although a few green leaves remain at the stem


4.15 Mimosa invisa 139<br />

base. For two to five months green plants are difficult to find. Senescence is not due to<br />

water shortage as well-watered plants in the laboratory also senesce. However, germina-<br />

tion occurs when moisture is available, so young plants may appear after showers of rain<br />

(Garcia 1982b).<br />

Importance<br />

M. invisa scrambles vigorously over other plants, forming dense tangled thickets up to 2<br />

m high. It is a nitrogen-fixer and its extremely rapid growth smothers useful plants and<br />

other weeds. Its sharp, recurved thorns make stock reluctant to graze on it and difficult<br />

for them to penetrate the stands. Crops infested with M. invisa are difficult to harvest<br />

because the thorns puncture and lacerate the hands of the workers. It is common along<br />

roadsides and in moist waste places. It causes major problems in coconut, tea and rubber<br />

plantations, sugarcane and pineapple fields, crop lands and pastures. It is not a problem<br />

in the Americas, western Asia, East Africa or Europe, but is a serious weed in Southeast<br />

Asia and the Pacific. A spineless variety, M. invisa inermis, has been suggested as a trop-<br />

ical pasture legume, but its tendency to revert to the thorny type and its potential toxicity<br />

has discouraged its use (Waterhouse and Norris 1987).<br />

In the Americas, M. invisa is most common in the Paranh basin in the State of San<br />

Paulo (Brazil), but even there pure stands are not common and it does not appear to<br />

invade nearby crops. In forest regions it occurs as thickets among grasses along roads,<br />

river banks and in waste places; it occurs more commonly on the fringe of cities (Garcia<br />

1982b).<br />

Natural enemies<br />

Information up to 1986 was summarised by Waterhouse and Norris (1 987).<br />

M. invisa is seldom troublesome in Brazil or Argentina and some 70 species of<br />

insects and two fungi are known to attack it in Brazil (Table 4.15.1). Additional insects are<br />

known in the Americas, but they have not yet been studied. A pathogenic fungus<br />

Corynespora cassiicola kills M. invisa in Australia (Haseler 1984), heavy infestations of<br />

scale insects attack it in Fiji (Mune and Parham 1967), a non-specific lymantriid larva<br />

feeds on young leaves and flowers in Thailand (Napompeth 1982) and a pierid butterfly<br />

Eurema sp. breeds on it in Papua New Guinea and New Britain (T.L. Fenner pers. comm.).<br />

More than half of the insects attacking M. invisa in Brazil have not yet been identi-<br />

fied. Indeed it is probable that most of these are undescribed species and, if so, it follows<br />

that there is no published information about them. Where possible, identification, even to<br />

a genus, may be valuable. For example, species of the genus Heteropsylla are restricted<br />

to legumes, with known hosts only in the Mimosaceae or Caesalpiniaceae. Of the 35<br />

described species with recorded hosts, 31 are specific to a single host (Hodkinson and<br />

White 1981, Muddiman et al. 1992).<br />

Only a few of the 70 insect species attacking M. invisa are known as agricultural<br />

pests (Table 4.15.1). From the remainder, preliminary observations on a subgroup of<br />

about 10 species led to detailed studies on three, Heteropsylla spinulosa, Scamurius sp.<br />

and Psigida (= Psylopigida) walkeri.


140 Biological Control of Weeds: Southeast Asian Prospects<br />

Attempts at biological control<br />

AUSTRALIA<br />

Large numbers of Heteropsylla spinulosa were released in coastal Queensland, com-<br />

mencing in 1988 (Table 4.15.2). This involved 33 field sites, averaging thousands of<br />

insects per release (M. Ablin pers. comm. 1990). Within two years, the psyllid had dis-<br />

persed widely into all infestations of M. invisa in pastures. Dense clumps of the weed<br />

were reduced to small masses of bare stems with stunted growing tips, leading to other<br />

vegetation reestablishing itself. Seed production from severely affected plants was<br />

reduced by 85 to 100% (Ablin 1992, Anon 1988). It did not attack M. pudica plants near-<br />

by. A more recent assessment, using insecticide-produced exclusion, found that H. spinu-<br />

losa reduced seed production on average by SO%, growing tip elongation by 77% and the<br />

growth rate of tips by 50% (Ablin 1993a). Although M. invisa may still produce clusters<br />

of seed pods when damage is high, the pods contain very few viable seeds. Mature plants<br />

support low populations of H. spinulosa during the dry season from July to November.<br />

Thereafter, psyllid abundance increases with the onset of summer rains, with peak num-<br />

bers in April or May (M. Ablin pers. comm. 1993).<br />

Scamurius sp. was liberated in Queensland from 1987 to 1990 and proceeded to kill<br />

the tips of many shoots (Anon 1988). However it did not become established. It was also<br />

released against Mimosa pigra in the Northern Territory where it survived for several<br />

months, but fecundity was very low and the colony died out (M. Ablin pers. comm.<br />

1993).<br />

FIJI<br />

H. spinulosa was brought in from both Western Samoa and Australia in 1993 and, after a<br />

generation in quarantine, was liberated in Nadi in June. Six weeks later all stages were<br />

seen in the field. A mealy bug and Tetranychus sp. mites are occasionally found on<br />

M. invisa in the field (S.N. La1 pers. comm. 1993).<br />

PAPUA NEW GUINEA<br />

Heteropsylla spinulosa from Australia was reared through one generation in quarantine<br />

in Port Moresby and released early in 1993 in the Ramu Valley near Lae. Within a few<br />

months it had severely damaged M. invisa and killed many plants (F. Dori pers. comm.<br />

1993).<br />

POHNPEI<br />

Ten months after release at Palikir, Pohnpei H. spinulosa became abundant on M. invisa<br />

and subsequently killed many plants. Many psyllids were transferred to M. invisa in other<br />

areas (N.M. Esguena pers. comm. 1993).<br />

WESTERN SAMOA<br />

A total of 47000 nymphs and adults of Heteropsylla spinulosa from Australia were liber-<br />

ated in Western Samoa in 1988 and 1989 and, a year later, the psyllid was reported at<br />

some sampling sites to have reduced seed production, although not the area infested<br />

(Willson and Ablin 1991).<br />

Scamurius sp. was also liberated in Western Samoa in 1989 and was seen in the<br />

field after more than one generation, but not in more recent times. There have been no


4.15 Mimosa invisa 141<br />

reports of its effects. M. invisa continues to be a serious weed, with more than 85% of<br />

villages on the main island of Upolu being infested (Willson and Garcia 1992).<br />

Important Natural Enemies<br />

INSECTS<br />

Heteropsylla spinulosa Hemiptera: Psyllidae<br />

The average development period of this small (2.5 mm long) pale green, Brazilian psyllid<br />

is about 28 days. High populations cause severe stunting and distortion of the leaves and<br />

growing tips; flowering is reduced or even prevented. A sticky honeydew is produced<br />

which encourages a dense growth of sooty moulds. Females attach eggs by means of a<br />

pedicel inserted into the plant tissue between overlapping leaflets. Young nymphs live<br />

hidden between the leaflets, whereas adults feed on leaflets and shoots.<br />

In Brazil reduviid bugs pierce nymphs with their proboscis and withdraw them from<br />

their shelters, whereas larvae and adults of the predatory coccinellid Eriopis connexa are<br />

only able to capture exposed nymphs. Nymphs are also attacked by an encyrtid wasp<br />

Psyllaephagus yaseeni (Willson and Garcia 1992). The predatory vespid wasp<br />

Protonectarina sylveiriae attacks nymphs and an unidentified wasp causes up to 13%<br />

parasitisation (Garcia 1985).<br />

In extensive host specificity tests H. spinulosa adults and nymphs were unable to<br />

live on any plant other than M. invisa and its spineless variety M. invisa inermis. In the<br />

field it did not attack M. pudica, even when large infestations of M. invisa were<br />

destroyed and M. pudica was common nearby (M. Ablin pers. comm. 1993). Eggs were<br />

laid on 18 other plant species, but only under glasshouse conditions (Garcia 1985, Wild<br />

1987, Willson 1987, Willson and Garcia 1992) and Heteropsylla spinulosa was judged<br />

safe to liberate in Australia and four other countries (Table 4.15.2)<br />

Psygida walkeri Lepidoptera: Cercophanidae<br />

This moth is widespread in Brazil and Colombia. Females have a wing span of up to 5<br />

cm. When fully grown its greenish, spiny larvae may reach a length of 5 cm. They feed<br />

voraciously on leaves, flower buds, tender seed pods and on the top 30 cm of tender<br />

stems and branches, preventing both flowering and seed production. The life cycle takes<br />

about 2 months and there are 3 generations a year. There is a pupal diapause of up to 4<br />

months in Brazil<br />

Larvae of P. walkeri have been found in the field on M. invisa, M. rixosa, M. vel-<br />

loziana and once on M. somnians. They have not been found in the field in Brazil on<br />

other leguminous plants near M. invisa plants bearing larvae, nor on any plants of eco-<br />

nomic importance (Garcia 1983). However, under artificial conditions larvae can be<br />

reared on black wattle Acacia mearnsii and may also feed on Mimosa pudica and<br />

Leucaena leucocephala. Although adults will oviposit on A. mearnsii, no attack has been<br />

observed in the field (Haseler 1984). Further host specificity testing is in progress in<br />

Australia.


142 Biological Control of Weeds: Southeast Asian Prospects<br />

Scamurius sp. Hemiptera: Coreidae<br />

Both nymphs and adults of this large (up to 2.2 cm) coreid bug feed on the shoots, caus-<br />

ing them to collapse, thereby inhibiting vegetative growth and flowering. First instar<br />

nymphs moult whether fed or not and, after five instars, mature in about seven weeks.<br />

There are about four generations a year, from early summer to autumn, and adults may<br />

live for six months or more.<br />

Adults were found to probe many species of plants, but to feed only on species of<br />

Mimosa. Nymphs were able to develop on M. invisa and on two other weedy species,<br />

M. pigra and M. pudica, but not on other plants (Garcia 1984, Wild 1986, 1987). This<br />

species was approved for release in Australia and Western Samoa (Table 4.15.2).<br />

FUNGUS<br />

Corynespora cassiicola<br />

This stem spot fungus is very common in hot humid weather in north Queensland, Papua<br />

New Guinea (Keravat, Rabaul) and Western Samoa. It can be very damaging to M. invisa<br />

if environmental conditions are suitable (Willson and Ablin 1991). The strain involved<br />

appears to be specific to M. invisa, although fungi with the same specific name are<br />

reported from cowpea, papaya and tomato. If suitable environmental conditions persist in<br />

the field M. invisa plants shed their leaflets and stems die back as lesions cover the plant<br />

(M. Ablin pers. comm. 1993).<br />

Comments<br />

The use, in the future, of H. spinulosa from Brazil against M. invisa is complicated by<br />

several introductions of natural enemies that have already been made by Southeast Asian<br />

countries (eg. Thailand, Philippines). These introductions were of two parasitic wasps<br />

(Tamarixia leucaenae and Psyllaephagus yaseeni) native to the Caribbean and Central<br />

America (Noyes 1990) and one or more predatory coccinellids against a pest psyllid<br />

Heteropsylla cubana which appeared from the Americas in the 1980s. This pest can<br />

cause severe damage to Leucaena leucocephala which is widely planted for firewood and<br />

as fodder. Tests showed that these natural enemies of H. cubana would also attack<br />

H. spinulosa (Baker 1990). As a result, several countries where M. invisa is a serious pest<br />

(Australia and most Pacific islands, but not New Caledonia) have deferred introducing<br />

natural enemies of H. cubana.<br />

Several interesting points, relevant to any investigation for natural enemies in<br />

South America, emerge from the M. invisa project there:<br />

Before the studies of C.A. Garcia in the early 1980s almost nothing was known about<br />

the insects attacking it, yet within a year 57 insects were listed from Brazil (Garcia<br />

1982a,b) and within two years a further 10. No records are available from elsewhere<br />

in the Americas, except of a Heteropsylla sp. from Colombia (Garcia 1983).<br />

It has not been possible for taxonomists to assign a specific name (and sometimes not<br />

even a generic name) to the majority of insects collected. Some were not previously<br />

represented in any museum collections and many are almost certainly undescribed<br />

species.


4.1 5 Mimosa invisa 143<br />

Only one (Scamurius sp.) of the three insects eventually selected for detailed study<br />

was recognised in the first survey which yielded 57 species. It is clear that follow up<br />

surveys are essential.<br />

No study has yet been made of the insects attacking M. invisa over a very large area<br />

of its presumed native range. From brief observations in Colombia Garcia (1 983)<br />

commented that larvae of Lepidoptera were 'quite similar to those collected off M.<br />

invisa in Brazil. Coleoptera in general look different'.<br />

Should existing biological control be considered inadequate, further detailed studies<br />

covering the entire native range of M. invisa might well reveal additional, adequately<br />

specific insects attacking it.<br />

Examination of the host specificity of more of the insects recorded from Brazil (Table<br />

4.15.1) might also reveal further adequately specific insects.<br />

H. spinulosa does not thrive under either very wet or very dry conditions. Its popula-<br />

tions depend upon the availability of green foliage and, in the dry season, are found<br />

on pockets of green foliage. A flush of growth after rain leads to a build up in popula-<br />

tions to a level that severe damage may be caused, sufficient to kill many M. invisa<br />

plants.<br />

Table 4.15.1 Natural enemies of Mimosa invisa in Brazil (from Garcia 1982a,b, 1983<br />

and his unpublished monthly reports).<br />

Species Comment<br />

INSECTS<br />

Orthoptera<br />

TETTlGONl IDAE<br />

sp. 1<br />

sp. 2<br />

attacks flowers<br />

attacks leaves<br />

Hemiptera<br />

CERCOPIDAE<br />

Tomaspis (= Zulia) enteriana<br />

SP . belongs to Gyopinae<br />

CICADELLIDAE<br />

sp. I common on Mimosa invisa and M. pigra and<br />

colonises Acacia mearnsii and M. scabrella during<br />

the dry season<br />

sp. 2<br />

COREIDAE<br />

Scamurius sp. 1 see text<br />

Scamurius sp. 2<br />

MlRlDAE<br />

Horciacinus signoreti (= H. argentinus)<br />

Taylorilygus pallidulus<br />

MEMBRACIDAE<br />

Ceresa ustulata<br />

an agricultural pest<br />

Enchenopa gracilis<br />

Micrutalis sp.<br />

(continued on next page)


144 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.15.1 (continued)<br />

Species Comment<br />

PENTATOMI DAE<br />

Acrosternum herbidum<br />

Dichelops furcatus an agricultural pest<br />

Edessa meditabunda an agricultural pest<br />

Euschistus tristigmus cribarius<br />

Euschistus luridus<br />

Piezodorus guildinii an agricultural pest<br />

PSYLLIDAE<br />

Heteropsylla spinulosa see text<br />

Heteropsylla sp. from Colombia<br />

THYREOCORIDAE<br />

Gyrocnemis sp.<br />

Coleoptera<br />

CHRYSOMELIDAE<br />

Colaspis sp.<br />

Cryptocephalus viridiaeneus<br />

?Hilax sp.<br />

Lactica sp.<br />

Lexiphanes ?semicyaneus<br />

Lexiphanes sp.<br />

Metaxyonycha pallidula<br />

Nodonota sp.<br />

Pachybrachys sp.<br />

System s-liftera<br />

Temmodachrys sp. nr aphodoides<br />

CURCULIONIDAE<br />

Asynonychus godmani<br />

(= Pantomorus cervinus)<br />

Chalcodermus sp.<br />

Chalcodermus sp. nr segnis<br />

Hypanthus sp.<br />

Promecops sp. 1<br />

Promecops sp. 2<br />

Sibinia aspersa<br />

Sibinia ?subulirostris<br />

Sibinia sp.<br />

Lepidoptera<br />

AMATIDAE<br />

SP.<br />

CERCOPHANIDAE<br />

Psigida walkeri<br />

GEOMETRIDAE<br />

sp. 1<br />

sp. 2<br />

most Chrysomelidae were present ib low numbers.<br />

adults eat M. invisa leaves<br />

excellent defoliator; also attacks M. pigra<br />

adults eat leaves and show strong preference for<br />

M. invisa, but will also attack M. pudica, Calliandra<br />

selloi and Acacia mearnsii<br />

larvae bore stems, brown adults eat leaves<br />

black adults bore green seeds, but did not attack pods<br />

of 7 other legumes<br />

adults eat ovaries, larvae the seeds; recorded from<br />

Mimosa albida and M. quadrivalis, but would not<br />

attack six other legumes including Leucaena<br />

leucocephala<br />

seminicola group, larvae eat seeds, adults the leaves<br />

and ovaries and are also found in Mimosa rixosa<br />

red hairy larva<br />

see text<br />

debris-covered larva<br />

twisted larva<br />

(continued on next page)


FUNGI<br />

Species Comment<br />

sp. 3<br />

sp. 4<br />

sp. 5<br />

HESPERIIDAE<br />

Cogia (= Caicella) calchas<br />

LYCAENIDAE<br />

Hemiargus hanno<br />

Tmolus (= Thecla) azia<br />

NOCTUIDAE<br />

sp. 1<br />

sp. 2<br />

sp. 3<br />

sp. 4<br />

PlERlDAE<br />

Eurema tenella<br />

TORTRICIDAE<br />

sp. 1<br />

sp. 2<br />

sp. 3<br />

sp. 4<br />

FAMILY UNKNOWN<br />

Cercospora canescens<br />

Fusarium sp.<br />

Uredo mimosae-invisae<br />

reddish green larva<br />

common slim larva<br />

thick twig larva<br />

Table 4.15.2 Liberations for biological control of M. invisa.<br />

4.1 5 Mimosa invisa 145<br />

occurs in Mexico and Argentina; eggs laid also on<br />

M. pudica, M. scabrella, Indigofera anil, Skranquia<br />

sp., larvae are heavily parasitised<br />

larvae eat leaves, flowers and seed pods; also<br />

M. pudica flowers<br />

larvae eat leaves and flowers; also M. pudica and<br />

groundnut flowers<br />

velvet black larva; also on M. pudica, M. scabrella,<br />

Acacia mearnsii, Calliandra selloi, Leucaena<br />

leucocephala<br />

reddish larva<br />

green larva<br />

small green larva<br />

occurs in Brazil, Argentina, Paraguay, Bolivia; larvae<br />

defoliate M. invisa; also eat M. pudica, M. scabrella,<br />

Acacia mearnsii and (reluctantly) Leucaena<br />

leucocephala<br />

flowerltwig roller<br />

pod eater<br />

larvae eat leaves<br />

larvae roll flowers<br />

4 species, two bore in the stem tips, 1 eats pods<br />

and I the flowers<br />

from Venezuela (H.C. Evans pers. comm. 1992)<br />

Species From Liberated When Result References<br />

Heteropsylla spinulosa Brazil Queensland 1988 + Ablin 1992, Anon 1988<br />

Fiji 1993 ? S.N. Lal pers. comm. 1993<br />

Papua New Guinea 1993 + Ablin 1993b,<br />

F. Dori pers. comm. 1993<br />

Pohnpei 1992 + N.M. Esguerra pers. comm.<br />

1993<br />

Western Samoa 1988 + Willson & Garcia 1992<br />

Scamurius sp. Brazil Queensland 1987 - Anon 1988<br />

Western Samoa 1988 ?


146 Biological Control of Weeds: Southeast Asian Prospects<br />

Mimosa pigra<br />

(after CSIRO. 1992)


Map 4.16 Mimosa pigra<br />

4.16 Mimosa pigra<br />

Mimosa pigra originated in the area extending from Mexico to Amazonia and<br />

Venezuela. Four beetles and two moths have been established on M. pigra in Australia<br />

in the past 10 years. Two stem-boring moths Neurostrota gunniella and Carmenta<br />

mimosa are having a significant effect on the vigour of the weed. N. gunniella has<br />

spread widely, infests most stems and is reducing seed production. All except N. gun-<br />

niella have been liberated in Thailand. N. gunniella was not liberated because it can<br />

attack the aquatic vegetable Neptunia oleracea. However the two seed-feeding bruchids<br />

are destroying up to 20% of the seed in Thailand<br />

A specific, highly pathogenic fungus, Phloeospora mimosae-pigrae, has been<br />

approved for release in Australia and six insects and a rust fungus are under study.<br />

There are grounds for confidence that a group of natural enemies will become avail-<br />

able that, acting together, will cause significant damage to M. pigra.


148 Biological Control of Weeds: Southeast Asian Prospects<br />

4.16 Mimosa pigra L.<br />

Mimosaceae<br />

giant sensitive plant; mai yah raap yak, maiyarap ton, chi yop luang (Thailand);<br />

kembang gajah, semalu gajah (Malaysia); trinh nu nhon (Vietnam); putri malu<br />

(Indonesia)<br />

Rating<br />

+++ Thai<br />

15 ++ Myan, Laos, Msia, Sing, Indo<br />

+ Camb, Viet<br />

Origin<br />

Mexico, southern Venezuela, or central Amazon basin.<br />

Distribution<br />

Throughout the tropics and still spreading. It was an early invader of tropical Africa and<br />

is spreading aggressively in northern Australia and Southeast Asia. It is not present in the<br />

Philippines or the oceanic Pacific. Details of its distribution and time of recognition in<br />

various countries are given in Lonsdale (1992).<br />

Characteristics<br />

M. pigra is a perennial leguminous shrub, growing up to 6 m high on a wide range of<br />

soils, and found in moist open sites with a rainfall between 750 and 2250 mm in the trop-<br />

ics. Its leaves are bipinnate and sensitive to the touch, through movements of the petiole<br />

and pinnules. Petioles bear a slender prickle at the junction of each of the 6 to 16 pairs of<br />

pinnae and sometimes have stouter prickles between each pair. The stems bear<br />

broad-based, sharp thorns up to 7 mm long. Mature plants have many branches growing<br />

from the base, with a skirt of adventitious roots forming in seasonally inundated sites.<br />

They have a large central taproot which penetrates 1 to 2 m deep and a lateral root system<br />

that extends up to 3.5 m from the stem at a depth of about 5 cm. The flowers are mauve<br />

to pink, massed in globular heads lcm in diameter, with each head containing about 100<br />

flowers. Seed pods are produced in clusters of about 7, are densely bristly, 3 to 8 cm long<br />

and break transversely into segments each containing a seed. The bristles facilitate float-<br />

ing and thus rapid spread of the weed along river systems. In regions with pronounced<br />

wet and dry seasons, the former is the main period of growth, with flowering mainly<br />

from mid to late wet season. Development from flower bud to ripe seed takes about 5<br />

weeks (Lonsdale 1992). Average seed production is about 9000 seeds per plant, but up to<br />

220000 has been recorded. Although most seeds that lodge on or near the soil surface<br />

probably germinate within two years many seeds deeper in the soil lie dormant for long<br />

periods (at least 23 years).<br />

Previously, two varieties were recognised var. pigra and var. berlandieri, of which<br />

only pigra has spread around the world. Variety berlandieri has recently been renamed<br />

Mimosa asperata (Barneby 1989, Lonsdale 1992).


Importance<br />

4.16 Mimosa pigra 149<br />

In tropical America M. pigra usually occurs as small clumps of multi-stemmed plants<br />

growing in seasonally flooded habitats. However, in many countries to which it has been<br />

introduced, M. pigra is a serious weed of wetlands. Dense, prickly thickets compete with<br />

pastures, prevent access to water and hinder mustering. The thickets exclude native vege-<br />

tation and so alter the environment that many native plants and animals are eliminated or<br />

seriously affected (Lonsdale 1992). The weed leads to sediment accumulation in irriga-<br />

tion systems and reservoirs and, as the seed segments float, many end up in fallow rice<br />

paddies where they germinate rapidly. River sand containing seeds helps to establish new<br />

infestations when transported to building sites, road constructions etc.<br />

Cattle and horses occasionally browse on young plants and some wild animals find<br />

it acceptable, particularly as a dry-season browse but, in general, it seems to be of low<br />

palatability. The leaves contain low levels of the toxic amino acid mimosine. M. pigra<br />

was introduced to Thailand in 1945 as a green mulch crop and for erosion control in rice<br />

paddy irrigation channels, but it was soon found that the problems associated with it far<br />

outweighed any advantages (Wara-Aswapati 1983). However it is used still as a source of<br />

firewood and bean poles, although it is now regarded as a very serious weed.<br />

Natural enemies<br />

Surveys for natural enemies have been made in Brazil, Mexico, Venezuela (Harley et al.<br />

1983), Honduras (Habeck and Passoa 1982), Costa Rica (Forno 1992) and most recently<br />

in Belize and Cuba (I.W. Forno pers. comm.). In Honduras more than 60 species were<br />

listed (2 Orthoptera, 27 Hemiptera, 1 Diptera, 15 Coleoptera and 15 Lepidoptera).<br />

Although a full list of insects attacking M. pigra in its native range has yet to be pub-<br />

lished, a diverse group of over 200 is known to occur (Forno et al. 1991b). Only 12<br />

species are considered to be pests of agriculture and at least 45 have habits that are likely<br />

to lead to restricted host specificity, such as gall forming, leaf mining or stem boring. It is<br />

suggested that some 10% may be adequately host specific. These are likely to attack dif-<br />

ferent parts of the plant causing complementary damage, so that the prospects for biolog-<br />

ical control appear good (Forno et al. 1989b, Wilson et al. 1990).<br />

Six of the tropical American species of insects have been liberated (Table 4.16.1)<br />

five more were eventually not released after tests showed (or suggested) that they are<br />

insufficiently host specific (Table 4.16.2) and a further six are currently being examined<br />

in Australia or Mexico for host specificity (Table 4.16.3). However, the list of potential<br />

insects for consideration is far from exhausted. Host testing of agents for M. pigra is dis-<br />

cussed by Forno and Harley (1 992).<br />

Two fungal pathogens of M. pigra (Diabole cubensis and Phloeospora mimosae-<br />

pigrae) cause considerable damage in Mexico in spite of being extensively attacked by<br />

hypeiparasitic fungi. Without these, the pathogens should prove even more damaging.<br />

Other, less damaging fungi include Colletotrichium gloeosporioides, Pestalopsis sp.,<br />

Phomopsis sp. and Oidium sp. (Evans 1988, 1990, Evans and Seier 1991, Evans et al.<br />

1993).


150 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.16.1 Releases for the biological control of Mimosapigra.<br />

Species Part attacked Liberated Result References<br />

Coleoptera<br />

APlONlDAE<br />

Coelocephalapion<br />

aculeatum<br />

BRUCHIDAE<br />

Acanthoscelides<br />

puniceus<br />

Acanthoscelides<br />

quadridentatus<br />

CHRYSOMELIDAE<br />

Chlamisus<br />

mimosae*<br />

Lepidoptera<br />

GRAClLLARllDAE<br />

Neurostrota<br />

gunniella<br />

flower buds<br />

seeds<br />

seeds<br />

pinnae &<br />

stems<br />

pinnules &<br />

stems<br />

Australia 1992<br />

Thailand 1991<br />

Australia 1983<br />

Thailand 1984<br />

Vietnam 1987<br />

Australia 1983<br />

Thailand 1984<br />

Vietnam 1987<br />

Australia 1985<br />

Thailand 1986<br />

Vietnam 1990<br />

SESllDAE<br />

Carmenta mimosa stem<br />

Australia 1989<br />

Thailand 199 1<br />

* Introduced from Brazil, the remaining 5 insects from Mexico.<br />

Fomo et al. 1994,<br />

Wilson et al. 1992<br />

Wilson et al. 1992<br />

Kassulke et al.<br />

1990, Wilson &<br />

Flanagan 199 1,<br />

Harley et al. 1985<br />

Julien 1992<br />

Fomo et al. 199 1 b,<br />

Harley et al. 1985,<br />

Kassulke et al. 1990,<br />

Wilson & Flanagan<br />

1991<br />

Fomo et al. 1991b,<br />

Harley et al. 1985<br />

Julien 1992<br />

Julien 1992<br />

Julien 1992<br />

Julien 1992<br />

Australia 1989 Davis et al. 1991,<br />

Wilson & Flanagan<br />

1990<br />

Fomo et al. 1991a,<br />

Julien 1992<br />

Host specificity tests indicate that Phloeospora mimosae-pigrae is specific to M.<br />

pigra and Australian authorities have granted permission to liberate this pathogen.<br />

Testing of Diabole cubensis is still in progress.<br />

Attempts at biological control<br />

AUSTRALIA<br />

M. pigra was probably introduced to Australia at Darwin sometime during the 20 years<br />

before 1891 (Miller and Lonsdale 1987, Lonsdale et al. 1989) and, after a slow start, under-<br />

went a population explosion in the late 1970s and, by 1992, had already covered some 800<br />

km2 of wetlands (Lonsdale 1992). In its century of occupation, at least 114 species of<br />

phytophagous insects have come to attack it (5 Orthoptera, 3 Isoptera, 49 Hemiptera, 21


4.1 6 Mimosa pigra 151<br />

Table 4.16.2 Insects tested against Mimosa pigra, but not released (after Forno 1992).<br />

Species Portion attacked<br />

INSECTS<br />

Coleoptera<br />

CHRYSOMELIDAE<br />

Cryptocephalus (= Diplacaspis) nr<br />

miserabilis leaves<br />

Diplacaspis nr prosternalis stems and leaves<br />

Lexiphanes guerini<br />

young leaves<br />

Syphrea bibiana<br />

seedlings and roots<br />

Lepidoptera<br />

GELECHllDAE<br />

nr Aroga leaves and stems<br />

Table 4.16.3 Natural enemies of Mimosa pigra under investigation (I.W. Forno pers.<br />

comm. 1993).<br />

Species Portion attacked Status<br />

INSECTS<br />

Coleoptera<br />

APlONlDAE<br />

Coelocephalapion pigrae flower buds and leaves<br />

CURCULIONIDAE<br />

Chalcodermus serripes flower buds and immature seeds<br />

FUNGI<br />

Sibinia fastigiata immature seeds<br />

Sibinia ochreosa flower buds<br />

Sibinia peruana flower buds<br />

Sibinia seminicola immature seeds<br />

Diabole cubensis leaves<br />

Phloeospora mimosae-pigra stems, leaves, seed pods<br />

awaiting approval for release<br />

in quarantine in Australia<br />

in quarantine in Australia<br />

under study in Mexico<br />

in quarantine in Australia<br />

in quarantine in Australia<br />

under host testing<br />

approved for release<br />

Coleoptera and 36 Lepidoptera). Of the 11 4,47 species are seldom encountered, 39 are<br />

occasionally found and 28 are common. Thirty of the species are known pests of cultivat-<br />

ed plants and all except two are thought to be polyphagous. These two (a psyllid and a<br />

gelechiid moth) probably feed only on a restricted number of leguminous plants. In this<br />

survey no plant pathogens were recorded (Flanagan et al. 1990, Wilson et al. 1990).<br />

In spite of this diverse insect attack there is still an enormous difference, two orders of<br />

magnitude, between the bank of M. pigra seeds in the soil in Mexico (a mean of 117.5lm2)<br />

and Australia (a mean of 12380lm2). This is believed to reflect the differential occur-<br />

rence of effective natural enemies in each region (Lonsdale and Segura 1987).<br />

The first insects to be liberated-in 1983-for biological control of M. pigra were


152 Biological Control of Weeds: Southeast Asian Prospects<br />

two seed feeding bruchid beetles, Acanthoscelides quadridentatus and A. puniceus, both<br />

of which established readily (Table 4.16.1). They had previously been shown to be ade-<br />

quately host specific (Kassulke et al. 1990). Although these species have become wide-<br />

spread, on average they destroy only 0.8% of mature seed, so are not having much<br />

impact. Of the beetles sampled, 97.8% proved to be A. puniceus (Forno et al. 1991b,<br />

Wilson and Flanagan 1991, Wilson et al. 1992). A parasitoid, Dinarmus sp.<br />

(Pteromalidae), was reared from field-collected bruchids, but did not appear to be having<br />

much influence on beetle populations (C. Wilson pers. comm.).<br />

Next, in 1985, the stem feeding beetle Chlamisus mimosae was released and readily<br />

became established (Forno et al. 1991b) and in 1992193 large populations have been<br />

found at the Finniss R., Northern Territory and are severely damaging M. pigra stems<br />

(I.W. Forno pers. comm. 1 993).<br />

During 1989, two stem boring moths Neurostrota gunniella and Carmenta mimosa<br />

were released. N. gunniella established rapidly and, within a few months, was not only<br />

widespread near the release site but damaging a large number of stems (Forno et al.<br />

1991b, Wilson and Flanagan 1990). By 1993, it had spread to all M. pigra infestations<br />

and is associated with a naturally-occurring, exotic, die-back pathogen (Wilson 1992).<br />

There is a strong negative correlation between seed production and moth populations,<br />

suggesting that N. gunniela can reduce seed numbers by up to 60% (Anon 1992).<br />

Carmenta mimosa is very damaging to young plants and is spreading rapidly in the<br />

Finniss R. region where it is severely damaging stems (I.W. Forno pers. comm. 1993,<br />

Wilson 1992).<br />

The flower bud weevil Coelocephalapion aculeatum was liberated in 1992 and has<br />

become established, but its effects remain to be assessed (Forno et al. 1994, Wilson et al.<br />

1992).<br />

THAILAND<br />

M. pigra was introduced from Indonesia to the Chiang Mai province between 1947 and<br />

the early 1960s as a cover and green manure crop. When found useless for the purpose, it<br />

was employed for the control of irrigation ditchbank erosion, but has now become one of<br />

the worst and most aggressive weeds in the country.<br />

Napompeth (1981) reported 5 insect species attacking M. pigra but, of these, only<br />

the boring beetle Sagra femorata caused much damage. A further study (Napompeth<br />

1983) increased the number to 19 insects, but without adding any promising species.<br />

Both Acanthoscelides puniceus and A. quadridentatus were liberated in 1984 (Table<br />

4.16.1) and are now destroying between 1% and 20% of mature M. pigra seeds, which is<br />

significantly higher than that recorded for Australia (Forno 1992). The reasons for this<br />

different level of effect are not known. Chlamisus mimosae was liberated in 1986 and<br />

became established, but is not causing significant damage. The moth Neurostrota gun-<br />

niella, which is producing such spectacular damage in Australia, has not been liberated in<br />

Thaildnd because it has been shown to be capable of developing in the aquatic Neptunia<br />

oleracea, which is used as a vegetable. Two other species, the weevil Coelocephalapion<br />

aculeatum and the moth Carmenta mimosa were liberated in 1991 (Wilson et al. 1992),<br />

but there is no information on their establishment or impact.


4.1 6 Mimosa pigra 153<br />

MALAYSIA<br />

Acanthoscelides quadridentatus and A puniceus have become established at Kota Bharu<br />

in northern Malaysia adjacent to the region where they are established in Thailand (B.<br />

Napompeth pers. comm. 1993).<br />

MYANMAR<br />

Acanthoscelides quadridentatus and A puniceus have also become established in<br />

Myanmar along the border with Thailand (B. Napompeth pers. comm. 1993).<br />

INDONESIA<br />

M. pigra has been established in Indonesia at least since 1844 but is regarded as a less<br />

serious weed than in Thailand (Napompeth 1982, 1983). At least 10 insects were record-<br />

ed on it and, at times, causing considerable damage in the Bogor area (1 Orthoptera, 3<br />

Hemiptera, 1 Diptera, 2 Coleoptera and 3 Lepidoptera). Only one of these, a cerambycid<br />

borer Milothris irrorata was regarded as having any potential to cause important damage<br />

(Napompeth 1982). As there were doubts about its host specificity (Kalshoven 1981), it<br />

was introduced to Thailand for further study but did not survive in culture (Napompeth<br />

1982, 1992b). Acanthoscelides spp. have been found in M. pigra seed pods collected in<br />

Bogor in 1992, although there are no records of releases having been made (B.<br />

Napompeth pers. comm. 1993).<br />

VIETNAM<br />

Acanthoscelides puniceus and A. quadridentatus from Thailand were liberated in 1987<br />

and Chlamisus mimosae in 1990, but there is no information on their establishment<br />

(Julien 1992).<br />

Important natural enemies<br />

Acanthoscelides quadridentatus Coleoptera: Chrysomelidae<br />

A. puniceus<br />

These two species occur widely in Mexico and A. quadridentatus is also recorded from<br />

Texas, Nicaragua and Honduras. There are also two additional species, A. pigricola and<br />

A. zebratus, that are apparently specific to M. pigra seeds (Habeck and Passoa 1982).<br />

Eggs are laid during the day in or near crevices between pod segments. At 25°C each<br />

larva hatches after 10 days and tunnels through the pod into a single seed in which it<br />

completes its development. Pupation occurs in a cell and adults emerge by chewing a<br />

hole through the seed coat. On average A. quadridentatus females live 93 days and lay 65<br />

eggs, whereas A. puniceus females live 130 days and lay 178 eggs (Kassulke et al. 1990).<br />

Carmenta mimosa Lepidoptera: Sesiidae<br />

This species is native to Mexico and Cuba. In Mexico the larvae tunnel in the stems of<br />

M. pigra, thereby weakening the plant. The upper two-thirds of the stems frequently snap<br />

off, resulting in spectacular damage. Females lay 1 to 5 eggs at a time (up to a total of<br />

about 260) in the axils of the topmost, fully expanded leaves on a stem. At 25°C larvae<br />

hatch after 11 days and tunnel into the stem at a node or the swelling at the base of a leaf<br />

petiole. They feed on the outer layers of the plant, sometimes ringbarking it, or tunnel


154<br />

Biological Control of Weeds: Southeast Asian Prospects<br />

through the pith; they are cannibalistic if they meet another larva. They eject frass onto<br />

the surface of the stem. Occasionally larvae leave the stem and re-enter below the soil<br />

surface, grazing on and in the root, causing damage which sometimes kills the plant.<br />

Depending upon plant quality, there are 8 or 9 larval instars in 40 to 99 days before lar-<br />

vae spin a silken cocoon in which they pupate. The duration of the pupal period is 18 to<br />

21 days, giving an average life cycle of 98 days. Larvae can be reared on an artificial<br />

diet. In host specificity tests, C. mimosa was found to complete its development only on<br />

M. pigra (Forno et al. 1991 a, 1994, Smith and Wilson 1992, Wilson et al. 1992).<br />

Chalcodermus serripes Coleoptera: Curculionidae<br />

This weevil is native to Mexico. Adults feed on young leaves, flower buds and seeds.<br />

Eggs are inserted into the ventral side of pods so that they are at the embryo end of a<br />

developing seed. They hatch in 6 days and larvae feed on the soft developing seed,<br />

destroying the embryo (I.W. Forno, pers. comm.).<br />

Chlamisus mimosae Coleoptera: Chrysomelidae<br />

This species is native to Brazil. Females mate 2 weeks after emergence and then begin to<br />

lay eggs. Each egg is enveloped in faecal material and attached to the underside of a leaf<br />

by a fine stalk. At 25°C larvae hatch after 3 weeks and construct a conical case which is<br />

added to as the larva grows. Larval development time is 83 days and the pupal stage lasts<br />

25 days. Adults live up to 95 days. Adults and larvae graze on the epidermis of the grow-<br />

ing tips, on green stems and on leaves. In Darwin (Northern Territory) cultures of C.<br />

mimosae were attacked by a pupal parasitoid and predatory mites (Wilson et al. 1992).<br />

Coelocephalapion aculeatum Coleoptera: Apionidae<br />

This species is native to Mexico. It lays one egg at a time into a separate flower bud (of<br />

which an inflorescence contains up to 100). Larvae hatch after 2 days and feed on the<br />

developing flower buds, destroying the reproductive parts and sometimes the pedicel.<br />

Larval development takes about 7 days and pupal development 3 days. Preoviposition is<br />

about 7 days, adults live at least 3 months and may lay up to 5 eggs per day. Adults chew<br />

into the unopened flower buds and feed on the anthers and the pistil (Heard 1992, Wilson<br />

et al. 1992). This species could develop satisfactorily only on M, pigra (Forno et al.<br />

1 994).<br />

Coelocephalapion spretissimum and C. pigrae Coleoptera: Apionidae<br />

The life cycle of these species is similar to that of C. aculeatum. Adults feed on young<br />

leaves as well as on flower buds. The host testing of C. pigrae has been completed.<br />

Neurostrota gunnielh Lepidoptera: Gracillariidae<br />

This species is widespread in tropical or subtropical, moderately wet to semi-arid habitats<br />

wherever M. pigra occurs from southern Texas to Costa Rica and Cuba. It has been<br />

established in Australia.<br />

Eggs are laid singly on the ventral side of the first or second leaf from the branch tip<br />

and hatch about 4 days later. The first and second instar larvae are adapted for mining by<br />

being flattened dorso-ventrally, having large blade-like mandibles and no thoracic legs.


4.16 Mimosa pigra 155<br />

Each mines up to 5 leaf pinnules. Third instar larvae are cylindrical, enter the leaf rachis<br />

and tunnel to the stem tip. Later instars usually tunnel down the stem. They sometimes<br />

leave the stem and re-enter it at a node or near a prickle. Frass is usually visible when a<br />

larva is inside a stem. Pupation occurs in a cocoon spun between pinnules or inside the<br />

stem. The outside of the cocoon is ornamented with small, pearly-white, frothy balls dis-<br />

charged from the anus.<br />

At 25°C the time from egg to adult is about 30 days and equal numbers of males<br />

and females are produced. Females mate on the night of emergence and lay an average of<br />

86 eggs, most on the second night. N. gunniella caused very severe damage to M. pigra<br />

in quarantine trials which demonstrated that, except for attack on Neptunia species, it<br />

was specific to M. pigra. The aquatic Neptunia oleracea, which is an important vegetable<br />

in Thailand was attacked, so it has not been released there. In Mexico N. gunniella larvae<br />

are heavily attacked by parasitoids (Davis et al. 1991, Forno et al. 1989a, 199 1 b).<br />

Sibinia spp. Coleoptera: Curculionidae<br />

S. fastigiata occurs from Mexico to Brazil and Peru, whereas S. seminicola occurs from<br />

Texas and Mexico to southeastern Brazil and northeastern Argentina. These two Sibinia<br />

species are larger than the two that follow. Larvae of both species develop in the pods of<br />

M. pigra and feed on the seeds. Larvae of S. seminicola feed on green, immature seeds<br />

and pupation occurs within the pods while they are still attached to the plants (Clark<br />

1984).<br />

Sibinia ochreosa occurs in Texas, Mexico, Honduras, Nicaragua, Brazil, Argentina<br />

and S. peruana occurs in Mexico, Guatemala, Honduras, Costa Rica, Panama, Brazil,<br />

Peru, Bolivia and Argentina. Larvae of these two species develop in the flower buds of<br />

M. pigra and, at least the former species, pupates in the flower head (Clark 1984).<br />

FUNGI<br />

Diabole cubensis Fungi: Uredinales<br />

This rust attacks the leaves of M. pigra in Mexico and Cuba. It is particularly common<br />

and damaging during the dry season when there are high day temperatures and a signifi-<br />

cant drop at night leading to dew formation. Five hyperparasitic fungi are consistently<br />

encountered, often completely overgrowing the rust (Evans 1988, 1990).<br />

Phloeospora mimosae-pigrae Fungi: Coelomycetes<br />

This fungus causes extensive defoliation during the wet season, particularly in the Gulf<br />

coast of Mexico, but also occurs in Trinidad, Venezuela, Colombia and Brazil. It attacks<br />

stems, leaves and seed pods. It is host specific to M. pigra (Evans 1988, 1990, Seier and<br />

Evans 1993).<br />

Comment<br />

The majority of natural enemies of M. pigra so far studied are flower or seed attacking<br />

insects and there are indications already that cbnsiderable amounts of seed are being<br />

destroyed-up to 60% from Neurostrota alone in Australia and up to 20% by bruchids in


156<br />

Biological Control of Weeds: Southeast Asian Prospects<br />

Thailand. However, starting from a seed bank of 9000 per m2, this degree of reduction is<br />

nowhere like limiting.<br />

The inhibition to tip growth produced in Australia by Neurostrota gunniella is likely<br />

to be far more significant and will become even more so if the borer, Carmenta mimosa,<br />

becomes abundant enough to weaken a considerable proportion of larger stems.<br />

If (when) the two apparently specific fungi are approved for release, it is confidently<br />

expected that they will make a major contribution, Phloeospora mimosa-pigrae in the<br />

wet season and the rust Diabole cubensis in the dry.<br />

It is highly probable that a complex of natural enemies will be required to bring<br />

about an adequate reduction in competitiveness of M. pigra. It is still unclear whether<br />

those available or under investigation will be adequate but, if required, there are addition-<br />

al species that could be examined and future priority might well be given to leaf, stem or<br />

root feeding species.


158<br />

Biological Control of Weeds: Southeast Asian Prospects<br />

Mimosa pudica<br />

(after Holm et a/. 1977)


Map 4.17 Mimosa pudica<br />

4.17 Mimosa pudica<br />

Mimosa pudica<br />

Very little is known about the natural enemies of Mimosa pudica in its centre of origin in<br />

Central America. Most of the species recorded from there or elsewhere are widely<br />

polyphagous and few show promise as biological control agents. Since at least three<br />

forms of the weed are known it would be desirable to establish which forms are weedy in<br />

Southeast Asia so as to enable any searches in Central America to concentrate on that<br />

form. On general grounds, it is probable that useful species do exist.


160 Biological Control of Weeds: Southeast Asian Prospects<br />

4.17 Mimosa pudica L.<br />

Mimosaceae<br />

common sensitive plant; paklab, sampeas (Cambodia), daoen kaget kaget<br />

(Indonesia) mala malu (Malaysia), makahiya (Philippines), mai yarap (Thailand)<br />

mac co (Vietnam)<br />

Rating<br />

+++ Myan, Sing, Indo<br />

17 ++ Msia, Brun, Phil<br />

+ Thai, Viet<br />

. Laos, Camb<br />

Origin<br />

Tropical America.<br />

Distribution<br />

M. pudica is widespread in tropical, subtropical and temperate areas of the world. Its dis-<br />

tribution and other relevant aspects were summarised by Waterhouse and Norris (1987).<br />

There are at least three distinct varieties (Brenan 1959). M. pudica hispida is uncommon<br />

in the Americas, but is established in the Philippines (Bameby 1989), the Caroline and<br />

Mariana Is, Queensland, India and in African savanna country. M. pudica unijuga occurs<br />

in Hawaii and probably in other Pacific countries where it is a major weed.<br />

Characteristics<br />

M. pudica is low, much branched, generally perennial, slightly woody at the base, from<br />

15 to 100 cm high and has either an upright or a low trailing habit. Its stiff reddish-brown<br />

or purple stems bear scattered thorns. The hairy leaves are alternate, bipinnate and com-<br />

pound. They are sensitive to the touch, the petiole dropping and the leaflets being rapidly<br />

drawn back and folded. The pink flowers form small globular heads, each borne on a<br />

short hairy stalk arising from a leaf axil. Seeds are produced in pods which split into sin-<br />

gle-seeded segments bearing bristles, which aid dispersal by animals. In tropical coun-<br />

tries the weed flowers all year and each plant may produce up to 700 seeds.<br />

Importance<br />

M. pudica is a weed in 22 crops in 38 countries (Holm et al. 1977). It is common in waste<br />

land and is also a weed of lawns, crops, pastures and roadsides. In Southeast Asia and the<br />

Pacific it is a serious weed in maize, sorghum, sugarcane, tea, soybeans, upland rice,<br />

pinea~jples and cotton. Because of its tolerance to shading it is an important weed in plantation<br />

crops, such as rubber, coconuts, bananas, papaya, coffee, oil palm and citrus. In<br />

tropical pastures its dense growth and thorns often deter animals from feeding on suitable<br />

forage mingled with it (Holm et al. 1977). The thorns deter hand weeding and, as it sur-


4.1 7 Mimosa pudica 161<br />

vives mowing, it is a very unwelcome component of lawns. Attempts to select thornless<br />

types as pasture plants have not been successful.<br />

Natural enemies<br />

Some information is summarised by Waterhouse and Norris (1987). It is interesting that<br />

Holm et al. (1977) report M. pudica to be a widespread weed in the Caribbean, but far<br />

less important to the north and south of this region. This suggests that it evolved else-<br />

where in the Americas and has not been accompanied into the Caribbean by its full suite<br />

of natural enemies. Nevertheless a preliminary survey in Trinidad (Table 4.17.1) revealed<br />

14 insects attacking it, but they are probably polyphagous, with the possible exception of<br />

the arctiid caterpillar Lophocampa catenulata and the beetle, Chlarnisus sp. (Yaseen<br />

197 1, 1972). Perez et al. (1 988) found that the race Jilenus of Hemiargus hanno in Cuba<br />

appears not to attack plants other than M. pudica, although partially grown larvae of the<br />

Trinidad race were able to complete their development on Aeschynomene sensitiva and<br />

Cajanus cajan (Yaseen 1972). H. hanno Jilenus feeds readily on M. pudica seeds and is<br />

particularly active in spring when the weed is producing most seed (Perez et al. 1988).<br />

Four additional insects are known from Brazil (Garcia 1982a,b, 1983) but, so far, no<br />

species of Heteropsylla, although a special search for one might be rewarding. Although<br />

M. pudica was often encountered in surveys carried out in Mexico and Venezuela for nat-<br />

ural enemies of M. pigra, casual observation did not suggest that it was heavily attacked,<br />

less so indeed than M. invisa (I.W. Forno pers. comm. 1993).<br />

It is not known whether there is any differential attack by natural enemies on any of<br />

the three or more varieties of M. pudica, which have been established on morphological<br />

differences alone.<br />

Table 4.17.1 Natural enemies of Mimosa pudica.<br />

Species Country Portion of plant attacked References<br />

INSECTS<br />

Hemiptera<br />

COCCIDAE<br />

Coccus longulus Fiji<br />

CYDNIDAE<br />

Microporus<br />

(= Microcompsus) sp. Trinidad<br />

DlASPlDlDAE<br />

Hemiberlesia lataniae Fiji<br />

Pinnaspis strachani Fiji<br />

MARGARODIDAE<br />

Icerya seychellarurn Fiji<br />

SCUTELLERIDAE<br />

2 species Trinidad<br />

Coleoptera<br />

CHRYSOMELIDAE<br />

Chlarnisus sp. Trinidad<br />

stems Hinckley 1963<br />

stems<br />

stems<br />

stems<br />

flowers<br />

Yaseen 1972<br />

Hinckley 1963<br />

Hinckley 1963<br />

Hinckley 1963<br />

Yaseen 197 1<br />

flower buds Yaseen 197 1, 1972<br />

(continued on next page)


162 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.17.1 (continued)<br />

Species<br />

CURCULIONIDAE<br />

Chalcodermus sp.<br />

Promecops<br />

?campanulicollis<br />

Country Portion of plant attacked References<br />

Brazil<br />

Brazil<br />

seed pods<br />

leaves; mainly on<br />

M. invisa, see table<br />

4.15.1<br />

C.A. Garcia pers. comm.<br />

Garcia 1982a,b, 1983<br />

An unidentified sp. Trinidad Yaseen 197 1<br />

Lepidoptera<br />

ARCTllDAE<br />

Lophocampa catenulala<br />

GEOMETRIDAE<br />

Ptychamalia perlata<br />

GRACllARllDAE<br />

Neurostrota gunniella<br />

HESPERIIDAE<br />

Cogia (= Caicella)<br />

calchas (= ?<br />

Nisoniades bessus)<br />

?Slaphylus mazans<br />

LYCAENIDAE<br />

Calephelis sp.<br />

Hemiargus hanno<br />

Trinidad leaves Yaseen 1971<br />

Trinidad leaves<br />

Mexico leaves, stems<br />

Trinidad leaves, flowers<br />

Yaseen 1972<br />

Davis et al. 1991<br />

Cock 1985, Yaseen 1972<br />

Trinidad leaves, flowers Yaseen 1972<br />

Trinidad<br />

Cuba,<br />

Trinidad<br />

leaves<br />

leaves, flowers, pods<br />

also on flowers of<br />

Aeschynomene<br />

semitiva and Cajanus<br />

cajan (= C. indicus)<br />

Tmolus azia Trinidad leaves, flowers Yaseen 1972<br />

NOCTUI DAE<br />

Spodoptera litura Fiji<br />

Sp. 1 (velvet black larva) Brazil<br />

PlERlDAE<br />

Eurema lisa Cuba<br />

Eurema tenella Brazil<br />

also on Mimosa pudica<br />

and groundnut flowers<br />

leaves<br />

leaves; also on<br />

M. invisa<br />

leaves: mainly on<br />

M. invisa, see table<br />

4.15.1<br />

Yaseen 1971<br />

Dethier 1940, Perez et al.<br />

1988, Yaseen 1972<br />

Hinckley 1963<br />

Garcia 1982a,b, 1983<br />

Dethier 1940<br />

Garcia 1982a,b, 1983<br />

TORTRICIDAE<br />

Platynota rostrana Trinidad leaves Yaseen 1972<br />

NEMATODE<br />

Meloidogyne sp. Cuba Holm et al. 1977,<br />

Izquierdo et al. 1987<br />

FUNGI<br />

VIRUS<br />

Oidium sp. Mexico<br />

?Puccinia sp. Mexico<br />

mildew on leaves<br />

rust on leaves<br />

Evans 1987<br />

Evans 1987<br />

unspecified Germany Umrath et al. 1979


164 Biological Control of Weeds: Southeast Asian Prospects<br />

Monochoria vaginalis<br />

(after Holm et a/. 1977)


Map 4.18 Monochoria vaginalis<br />

4.1 8 Monochoria vaginalis 165<br />

Monochoria vaginalis<br />

Monochoria vaginalis appears to be a major weed only in Southeast Asia and then only<br />

in rice. Almost nothing is known of its natural enemies in India and Africa where it<br />

occurs, but is not regarded as important. This suggests that a survey in these regions<br />

might reveal promising biological control agents.


166 Biological Control of Weeds: Southeast Asian Prospects<br />

4.18 Monochoria vaginalis (Burm. f.) Presl<br />

Pontederiaceae<br />

monochoria; ka kiad chrach (Cambodia), phak kbiat (Thailand), rau mac la thon<br />

(Vietnam), etjeng padi (Indonesia), biga bigaan (Philippines), kelayar, echeng<br />

padi (Malaysia)<br />

Rating<br />

+++ Laos, Camb, Msia, Brun, Indo, Phil<br />

26 ++ Myan, Thai, Viet, Sing<br />

Origin<br />

Tropical Asia and Africa (Holm et al. 1977), but not a pest in Africa or Asia (Soerjani et<br />

al. 1987), although it is clearly very important in Southeast Asia.<br />

Distribution<br />

Africa, India, China, Korea, Japan, Southeast Asia to northern Australia, Fiji and Hawaii.<br />

Characteristics<br />

A smooth, fleshy, semi-aquatic annual or perennial, 0.1 to 0.5 m tall; the plant roots in<br />

mud and its upper portions grow above water; stemless, base of leaves heartshaped or<br />

rounded, shiny deep green; petioles soft, hollow; inflorescence with a large bract and<br />

arising about two thirds of the way up the petiole from the base and opposite the leaf; 3<br />

to 25 violet or lilac flowers producing numerous, small seeds throughout most of the<br />

year. Seed germination and seedling growth not reduced by submergence. Old plants<br />

often form large clumps.<br />

Importance<br />

M. vaginalis occurs in marshy places, freshwater pools, mudflats, ditches, along canal<br />

banks and in rice fields. It is a very serious weed of rice in eastern and southern Asia. It<br />

is predominantly an annual in flooded ricefields, dying when the fields dry out, but<br />

developing again later from seed.<br />

In Taiwan, M. vaginalis produced more fresh tissue weight than any other weed in<br />

rice, twice that of second ranking Echinochloa crus-galli (Lin 1968). However in the<br />

Philippines it was outcompeted in rice by E. crus-galli (Lubigan and Vega 1971). Only in<br />

rice is it reported as a very widespread and important weed, except for its occurrence in<br />

taro in Hawaii.<br />

Its leaves are eaten as a pot herb in India and several parts of it are used as herbal<br />

medicine, the juice being prescribed for various conditions and the roots for stomach and<br />

liver ailments and toothache (Burkill 1935, Soerjani et al. 1987).


Natural enemies<br />

4.1 8 Monochoria vaginalis 167<br />

So little is recorded about the natural enemies of M. vaginalis (Table 4.18.1) that it is not<br />

possible to assess the prospects for biological control. However, the fact that it is appar-<br />

ently not a weed in Africa or western Asia suggests that it would be well worthwhile<br />

investigating these regions for suitable agents.<br />

Table 4.18.1 Natural enemies of Monochoria vaginalis.<br />

Species Location Other hosts References<br />

INSECTS<br />

Orthoptera<br />

ACRlDlDAE<br />

Gesonula punctifrons India<br />

Hemiptera<br />

CICADELLIDAE<br />

Macrosteles fasciffons USA rice<br />

DELPHACIDAE<br />

Tarophagus proserpina Philippines taro, cassava, sweet potato<br />

Lepidoptera<br />

NOCTUIDAE<br />

Spodoptera litura India widely polyphagous<br />

PYRALIDAE<br />

Elophila responsalis Indonesia Marsilea minuta, Pistia<br />

stratiotes, Salvinia molesta,<br />

S. cucullata<br />

Nymphulafregonalis India probably polyphagous<br />

SPHlNGlDAE<br />

Hippotion echeclus India polyphagous<br />

NEMATODES<br />

Hirschmaniella spp. rice, sugarcane,<br />

many weeds<br />

Meloidogyne graminicola rice, many weeds<br />

VIRUSES<br />

rice ragged stunt Thailand, rice<br />

Philippines<br />

Pistia virus India<br />

FUNGI<br />

Cercospora sp. India<br />

Doassansia sp. India<br />

Rhizoctonia solani India rice, potato<br />

Thanatephorus cucumeris Philippines rice<br />

a leaf blight Philippines Sphenoclea zeylanica<br />

CRUSTACEA<br />

Triops cancriformis Japan Veronica peregrina and<br />

some other weeds<br />

Sankaran & Rao 1972<br />

Way et al. 1983<br />

Duatin & Pedro 1986<br />

Sankaran & Rao 1972<br />

Handayani & Syed 1976,<br />

Mangodihardjo 1975<br />

Sankaran & Rao 1972<br />

Sankaran & Rao 1972<br />

Luc et al. 1990<br />

Luc et al. 1990<br />

Parejarearn et al. 1988,<br />

Salamat et al. 1987<br />

Menon & Ponnappa 1964<br />

Menon & Ponnappa 1964<br />

Menon & Ponnappa 1964<br />

Gokulapalan & Nair 1983<br />

Moody et al. 1987,<br />

Mew et al. 1980<br />

Bayot et a]. 1992<br />

Igarashi 1985


168 Biological Control of Weeds: Southeast Asian Prospects<br />

Nep hrolepis biserra ta<br />

(after Barnes and Chan, 1990)


Map 4.19 Nephrolepis biserrata<br />

4.19 Nephrolepis biserrata 169<br />

Nephrolepis biserrata<br />

N. biserrata is a widespread fern that probably originated in Tropical Africa. Almost<br />

nothing was learnt concerning natural enemies from a literature search. A survey in its<br />

area of origin would be required to evaluate whether there were any natural enemies that<br />

might be of value for biological control.


170 Biological Control of Weeds: Southeast Asian Prospects<br />

4.19 Nephrolepis biserrata (Sw.) Schott<br />

Nephrolepidaceae (formerly in the Davalliaceae)<br />

broad sword fern; paku larat (Malaysia)<br />

Rating<br />

+++ Sing, Brun<br />

10 ++ Msia, Phil<br />

Thailand<br />

Origin<br />

Probably Tropical Africa.<br />

Distribution<br />

Pantropical. N. biserrata occurs throughout tropical Africa, ranging in the west from<br />

Guinea to Angola and in the east from Sudan to Durban (South Africa). It is mainly<br />

coastal, but infrequent in the interior. It is most abundant up to 350 m (Jacobsen 1983). In<br />

addition to Southeast Asia, it is also known from India, Australia, Japan, the Pacific,<br />

USA and Mexico.<br />

Characteristics<br />

N. biserrata is a perennial, terrestrial or epiphytic fern. The rhizome bears abundant<br />

scales and produces many long stolons. The fronds are tufted, suberect to arching and<br />

green when young, turning brown when old. The pinnae are commonly 15 to 20 cm<br />

wide, exceptionally more than 30 cm. Fertile pinnae are narrower than the sterile pinnae<br />

and bear sori well clear of the edge. The veins are indistinct and fork once or twice.<br />

When rooted in the soil, the fern commonly reaches a height of 2m and, exceptionally in<br />

South Africa, up to 4 m.<br />

Importance<br />

N. biserrata is very common in shaded places in the lowlands wherever the conditions<br />

are not too dry. It can form dense masses in rubber and oil palm plantations and in<br />

orchards and often occurs as an epiphyte on palms. Where pineapples had been grown<br />

for up to 10 years in Malaysia, 90% of the viable seeds and spores in the top 15 cm of<br />

soil were spores of N. biserrata (in particular) and 8 other ferns (Wee 1974), enabling its<br />

rapid reappearance after cultivation.<br />

Natural enemies<br />

The only records of natural enemies encountered were those of an eriophyid mite on<br />

N. biserrata in Fiji (Mani and Jayaraman (1987) and of the nematode Aphelenchoides<br />

fragariae in Hawaii, but there is no evidence that a careful search has ever been made.


Attempts at biological control<br />

There have been none.<br />

Comment<br />

4.19 Nephrolepis biserrata 171<br />

The genus Nephrolepis contains about 20 species (Tryon and Tryon 1982), or 35 species<br />

(Jacobsen 1983). It is primitive among the group of oleandroid, davallioid and nephrole-<br />

poid ferns to which it belongs and N. biserrata and its close allies represents the more<br />

primitive element in the genus Nephrolepis (Nayar and Bajpai 1976). A survey for natur-<br />

al enemies, particularly in the areas in Africa where it occurs, would reveal whether there<br />

are any that might be of value in biological control.


172 Biological Control of Weeds: Southeast Asian Prospects<br />

Panicum repens<br />

(after Holm et a/. 1977)


Map 4.20 Panicum repens<br />

4.20 Panicum repens<br />

Panicum repens<br />

P. repens is a major grassy weed in Southeast Asia. It is probably of tropical<br />

AfricanJMediterranean origin, a region where it is not reported to be a problem. Very few<br />

natural enemies have been recorded and, without a preliminary survey in its area of ori-<br />

gin, it would not be possible to evaluate the prospects for its biological control.


174 Biological Control of Weeds: Southeast Asian Prospects<br />

4.20 Panicum repens L.<br />

Poaceae<br />

torpedo grass, creeping panic grass; myet kha (Myanmar) yah chan ah kat, yah<br />

chanagard (Thailand), chhlong (Cambodia), co 6ng (Vietnam), keruong padi,<br />

rumput jae jae (Malaysia and Indonesia), luya luyahan (Philippines)<br />

Rating<br />

+++ Viet, Indo<br />

16 ++ Thai, Msia, Sing, Phil<br />

+ Myan, Brun<br />

Laos. Camb<br />

Origin<br />

Tropical and North Africa, Mediterranean (sometimes said to be native to Asia).<br />

Distribution<br />

Panicum repens is widely distributed in the tropics and subtropics. It was introduced to<br />

Java about 1850, but is said not to occur in the Moluccas. No seeds are produced in<br />

Indonesia (Soerjani et al. 1987).<br />

Description<br />

Panicum repens is an erect, wiry, creeping, perennial grass, rooting at hairless nodes and<br />

bearing flowering stalks 30 to 90 cm tall. It spreads widely (up to 7 m), but does not form<br />

dense clumps. Its smooth, sharp-pointed, branched rhizomes are often swollen or knotty<br />

and have brownish or whitish scales. Its leaves are alternate. The inflorescence is an open<br />

terminal panicle, 6 to 20 cm long, with many tender branches pointing obliquely<br />

upwards. The spikelets are pale green or pale yellow and often tinged with purple.<br />

Importance<br />

Panicum repens is one of the most serious grass weeds because of its rapid rate of spread<br />

and the persistence and hardiness of its coarse, enlarged rhizomes. It suppresses other<br />

plants by its allelopathic (inhibiting) products (Perera et al. 1989). It is primarily a weed<br />

of moist, coastal, sandy soils, although it also grows in heavy upland soils (to 2000 m in<br />

Indonesia). It thrives in open sunny situations, but can stand partial shade and its rhi-<br />

zomes survive even prolonged dry periods. It tolerates temporary flooding, sometimes<br />

forms floating mats, and encroaches upon ditches, drains and watercourses. It is common<br />

in cultivated lands, grasslands, roadsides and gardens and is frequently reported as a weed<br />

in lawns. In Malaysia it is a serious weed of cocoa, coconuts and rubber, in Indonesia of<br />

rainfed and upland rice, cocoa, coconut, maize, rubber, sugarcane and tea and in Thailand<br />

of rice and orchard crops. In improved pastures it chokes out more nutritionally valuable


4.20 Panicum repens 175<br />

grasses. Deep ploughing favours its spread by breaking up and dispersing its rhizomes.<br />

P. repens is quite palatable to stock when young and has the advantage of being able<br />

to stand heavy grazing and trampling. However, it contains only 3.3% crude protein and<br />

up to 39% crude fibre, so there are other far more nutritious grasses suitable for the same<br />

environment (Holm et al. 1977).<br />

Natural enemies<br />

As can be seen in table 4.20.1, very few natural enemies were revealed by an extensive<br />

literature search. The only species not known to be both polyphagous and a pest is the<br />

mite Parasteneotarsonemus panici, recorded so far only from Tamil Nadu, India,<br />

where it was found causing rusting symptoms beneath the leaf sheath of P. repens<br />

(Mohanasundaram 1984).<br />

Absence of attack almost certainly does not represent the true situation, but rather<br />

that no relevant surveys have been carried out. For example, there has been little advance<br />

in knowledge of cecidomyiid gall flies attacking Panicum spp. since the summary by<br />

Barnes (1954b) in which were listed at least 13 species (Table 4.20.2). Two of these (the<br />

widespread rice stem gall midge Orseolia (= Pachydiplosis) oryzae and Contarinia<br />

(= Stenodiplosis) panici are known to be pests (Hegdekatti 1927). The scarcity of infor-<br />

mation from Africa points to an important gap in our knowledge and the absence of<br />

records from the Mediterranean, where most plants have been studied in some detail for<br />

native-insects, suggests that P. repens is not native to that region.<br />

Comment<br />

Clearly insufficient information is known about the natural enemies of P. repens<br />

(although it doubtless must have many) to provide any meaningful assessment of the<br />

prospects for its biological control. However, the genus Panicum contains a number of<br />

good to very good fodder species (e.g. P. antidotale (blue panic), P. bulbosum (bulbous<br />

panic), P. capillare (witchgrass), P. maximum (guinea grass), P. paludosum (swamp<br />

panic)) as well as several that are weedy and may cause photosensitivity or poisoning<br />

(e.g. P. coloratum (coolah grass), P. luzonense, P. miliaceum (millet panic, or proso), P.<br />

novemnerve). There are thus likely to be considerable problems in discovering organisms<br />

of adequate specificity. Nevertheless, P. repens is not reported as a weed of crops in trop-<br />

ical Africa or the Mediterranean (Holm et al. 1977) and a preliminary survey there might<br />

well reveal promising natural enemies.


176 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.20.1 Natural enemies of Panicum repens.<br />

Natural enemies Recorded from References<br />

INSECTS<br />

Hemiptera<br />

CICADELLIDAE<br />

Thaia oryzivora Thailand<br />

DELPHACIDAE<br />

Delphacodes idonea USA<br />

Sogatella kolophon Australia, Pacific Is, SE Asia,<br />

USA, Central & S. America,<br />

W. Africa<br />

Lepidoptera<br />

EUPTEROTIDAE<br />

Nisaga simplex India<br />

NOCTUl DAE<br />

Sesamia cretica Egypt<br />

PYRALI DAE<br />

Cnaphalocrocis medinalis Philippines<br />

Cnaphalocrocis (= Marasmia) Philippines<br />

patnalis<br />

Parapoynx stagnalis<br />

(= Nymphula depunctalis) India<br />

MITES<br />

TARSONEMIDAE<br />

Parasteneotarsonemus panici India<br />

FUNGI<br />

Claviceps sp.<br />

Pyricularia sp.<br />

Pyricularia oryzae<br />

Sporisorium overeemi<br />

NEMATODE<br />

Meloidogyne graminicola<br />

India<br />

India<br />

Leeuwangh & Leuamsang 1967<br />

Ballou et al. 1987<br />

Ballou et al. 1987<br />

Patnaik et al. 1987<br />

Ahmed 1980<br />

Abenes & Khan 1990<br />

Abenes & Khan 1990<br />

Pillai & Nair 1979<br />

Mohanasundaram 1984<br />

Janardhanan et al. 1982<br />

Hilda & Suranarayanan 1976,<br />

Holm et al. 1977<br />

Paje et al. 1964<br />

Rifai 1980<br />

Luc et al. 1990


4.20 Panicum repens 177<br />

Table 4.20.2 Gall flies (Cecidomyiidae) reported attacking Panicum spp. (after<br />

Barnes 1954b).<br />

Species Recorded from Location<br />

Contarinia (= Srenodiplosis) panici<br />

Lasioptera (= Dyodiplosis)fluitans<br />

Lasioptera inustorum<br />

Lasioptera kanni<br />

Lasioptera panici<br />

Lasioptera paniculi<br />

Orseolia cynodontis<br />

Orseolia (= Courteia) graminis<br />

Orseolia (= Dyodiplosis) andropoginis<br />

Orseolia (= Dyodiplosis) fluvialis<br />

Orseolia (= Pachydiplosis) oryzae<br />

Parallelodiplosis javanica<br />

Parallelodiplosis spp.<br />

Yugoslavia, USSR<br />

Panicum fluitans S. India<br />

USA<br />

S. India<br />

USA<br />

Philippines<br />

France, Italy, Algeria, Eritrea,<br />

Senegal<br />

Java, Sri Lanka, S. India<br />

Panicum jluitans S. India<br />

S and SE Asia, W. Africa<br />

Panicum indicum Sri Lanka<br />

Middle East, Java, Peru


178 Biological Control of Weeds: Southeast Asian Prospects<br />

Paspalurn conjuga turn<br />

(after Holm et a/. 1977)


Map 4.21 Paspalurn conjugaturn<br />

4.2 1 Paspalurn conjugaturn 179<br />

Paspalurn conjugaturn<br />

P. conjugaturn is of Tropical American origin, but it is recorded as an important weed in a<br />

number of situations in the Caribbean area. Very few natural enemies have been reported.<br />

A preliminary survey would be required in its centre of origin before the prospects for its<br />

biological control could be evaluated.


180 Biological Control of Weeds: Southeast Asian Prospects<br />

4.21 Paspalurn conjugaturn Bergius<br />

Poaceae<br />

sourgrass; paitan, rumput canggah, rumput pait (Indonesian), rumput kerbau,<br />

jampang canggah, buffalo grass (Malaysia), hulape (Philippines), ya hep<br />

(Thailand)<br />

Rating<br />

+++ Viet, Msia, Indo<br />

15 ++ Sing, Brunei, Phil<br />

Myan, Thai, Laos, Camb<br />

Origin<br />

Tropical America.<br />

Distribution<br />

Paspalurn conjugaturn occurs as a troublesome weed in Central America, West Africa<br />

and the islands and peninsulas of Southeast Asia and the Pacific. These are, for the most<br />

part, the humid tropics (Holm et al. 1977).<br />

Characteristics<br />

P. conjugaturn is a creeping, stoloniferous, perennial grass. The stolons are up to 2 m in<br />

length, often reddish purple in colour and bear roots and a tuft of green to purple leaves<br />

at each node.<br />

The flower stalks are erect, range up to 60 cm, and have smooth nodes. At the apex<br />

of each stalk there are two racemes (flower spikes) 4 to 15 cm long. The stigmas are<br />

white and the anthers bright yellow. The weed can be recognised when in flower by the<br />

typical T-shaped inflorescence.<br />

Importance<br />

P. conjugaturn is mainly a weed of the warm, wet lowlands, although in Hawaii and Sri<br />

Lanka it grows up to 1875 m. It is found in waste areas and along paths and streams, its<br />

inflorescences trailing in the water. It is common in cultivated fields and in natural and<br />

poorly managed pastures and particularly in perennial or plantation crops where the soil<br />

is not ploughed frequently. It spreads rapidly by its stolons, forming dense masses which<br />

can suppress or eliminate tree seedlings and other small plants. It tolerates some shade<br />

and can grow on poor and acid soils.<br />

In the Philippines it flowers all year round and one plant can produce 1500 seeds. It<br />

is also dispersed by broken pieces of stolons rooting after being spread by machines used<br />

for cultivation. In the Philippines it is particularly important in bananas, coffee, papaya,<br />

rice and pineapple; in Cambodia in rice; in Malaysia in citrus, coconuts, oil palm, rice


4.21 Paspalurn conjugaturn 181<br />

and rubber; in Indonesia in tea, oil palm and rubber; and elsewhere in cassava, cocoa,<br />

lawns, maize, pastures, sugarcane and vegetables.<br />

P. conjugaturn is suitable for grazing only when young and the seeds of older plants<br />

have been reported to choke animals by sticking in their throats (Holm et al. 1977).<br />

Natural enemies<br />

The natural enemies of P. conjugatum that have been recorded in the literature (Table<br />

4.21.1) are almost all polyphagous and many of them are of economic importance. One<br />

possible exception is the bagworm moth Brachycyttarus griseus, which was originally<br />

described from Vietnam and is also recorded from Malaysia and the Philippines, as well<br />

as from Guam and Hawaii to which it has spread. It feeds on P. conjugaturn in Hawaii<br />

and on the grass Zoysia pungens in Guam: it probably also feeds on other grasses. In<br />

Guam it is parasitised by the tachinid fly, Stornatomyia sp. (Davis 1990). However, it<br />

does little to control P. conjugaturn in the countries where it already occurs, so it does not<br />

appear to be a promising species to introduce elsewhere.<br />

Perhaps more valuable is the cecidomyiid fly Cleitodiplosis grarninis, a gall forming<br />

fly described from Brazil. The gall consists of the terminal leaves becoming clustered<br />

into an ovoid 30 x 20mm mass as a result of the upper internodes being greatly reduced.<br />

Thirty to forty sulphur-coloured larvae may be found in a single gall, in which they<br />

pupate. They appear in August and September (Barnes 1956). Barnes (1954b) comment-<br />

ed that no gall midge had, at that time, been recorded from the inflorescence of<br />

Paspalurn, although Parallelodiplosis paspali (from Java and India) and Lasioptera sp.<br />

had been recorded from the stems.<br />

The chrysomelid beetle Colaspis (= Maecolaspis) aerea also damages cocoa in<br />

Brazil (Fenonatto 1986) and hence would not be acceptable for introduction elsewhere.<br />

The seeds of P. conjugaturn are harvested by ants in some areas, but the impact of<br />

this on weed density in the field has not been established. Under experimental field con-<br />

ditions in Mexico, the pestiferous fire ant, Solenopsis gerninata, reduced P. conjugaturn<br />

seed densities by 97% or more but had no effect on the seed densities of Bidens pilosa<br />

(Carroll and Risch 1984).<br />

Comment<br />

As with Panicurn repens, so little is known about the natural enemies of Paspalurn conju-<br />

gatum that it is not possible to evaluate the prospects for its biological control. Again,<br />

there is the limitation that some closely related species in the genus Paspalum are of eco-<br />

nomic value for fodder (e.g. P. dilataturn (paspalum), P. distichurn (saltwater couch), P.<br />

plicatulum, P. scrobiculaturn (scrobic), P. vaginaturn (saltwater couch)). However, a fun-<br />

gus attacks the seeds of the first two species, producing the toxin, ergot, and most of the<br />

species are considered weedy in at least some situations, so there may be occasions<br />

where a conflict of interests would have to be resolved, should effective agents be dis-<br />

covered. The prospects for finding these are not perhaps very promising, since Holm et<br />

al. (1977) record P. conjugaturn as a weed in a number of countries in and around the<br />

Caribbean.


182 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.21.1 Natural enemies of Paspalum conjugatum.<br />

Species Country References<br />

INSECTS<br />

Thysanoptera<br />

Haplothrips gowdeyi Hawaii Sakimura 1937<br />

Haplothrips paumalui Hawaii Sakimura 1937<br />

Coleoptera<br />

CHRYSOMELIDAE<br />

Colaspis (= Maecolaspis) aerea Brazil<br />

Diptera<br />

CEClDOMYllDAE<br />

Cleitodiplosis graminis Brazil<br />

Lepidoptera<br />

ARCTllDAE<br />

Creatonotos (= Amsacta) gangis<br />

HESPERllDAE<br />

Taractrocera ina<br />

PSYCHIDAE<br />

Brachycyttarus griseus<br />

FUNGI<br />

PYRALIDAE<br />

Cnaphalocrocis medinalis<br />

Cnaphalocrocis (= Marasmia)<br />

patnalis<br />

Parapoynx stagnalis<br />

(= Nymphula depunctalis)<br />

Exserohilum paspali<br />

Leptosphaeria proteispora<br />

Myriogenospora atramentosa<br />

Physarum cinereum<br />

Sorosporium paspali<br />

BACTERIA<br />

Xanthomonas albilineans<br />

Ferronatto 1986<br />

Barnes 1956<br />

Philippines Catindig et al. 1993<br />

Australia Common & Waterhouse 198 1<br />

Guam, Hawaii, Malaysia, Davis 1990<br />

Vietnam, Philippines<br />

Philippines Abenes & Khan 1990<br />

Philippines Abenes & Khan 1990<br />

Philippines Bandong & Litsinger 1984<br />

Brazil Muchovej & Nesio 1987<br />

Hawaii Stevens 1925<br />

Brazil, USA, Venezuela Hanlin & Tortolero 1990<br />

Brazil Muchovej & Muchovej 1987<br />

Hawaii Stevens 1925<br />

Australia Persley 1973<br />

NEMATODES<br />

Rotylenchulus reniformis Trinidad Singh 1974<br />

VIRUSES<br />

sugarcane mosaic Hawaii, Japan, Taiwan Chen et al. 1989b,<br />

Holm et al. 1937,<br />

Ohtsu & Gomi 1985


184 Biological Control of Weeds: Southeast Asian Prospects<br />

Passiflora foetida<br />

(after Soe jani et a/. 1987)


Map 4.22 Passiflora foetida<br />

4.22 Passiflora foetida<br />

Passiflora foetida<br />

No searches have been made for natural enemies of P. foetida in its area of origin in<br />

South America, where it is not a weed. It is known to be attacked there by the larvae of<br />

some nymphalid (heliconiine) butterflies.<br />

However studies of the related P. tripartita, a serious forest weed in Hawaii,<br />

recorded upwards of 200 species of insects. It may thus be inferred that a similar study<br />

would reveal many insects attacking P. foetida. However, until a relevant study is carried<br />

out, it is not possible to evaluate the prospects for its successful biological control.<br />

I


186 Biological Control of Weeds: Southeast Asian Prospects<br />

4.22 PassifZora foetida L.<br />

Passifloraceae<br />

stinking passionflower, wild passionfruit; love-in-a-mist; ka thok rok (Thailand),<br />

timun padang (Malaysia), buah tikus (Indonesia)<br />

Rating<br />

+++ Msia<br />

11 ++ Brun<br />

+ Myan, Thai, Laos, Viet, Sing, Phil<br />

Indo<br />

Origin<br />

South America. Natural populations have been observed in the coastal mountain ranges<br />

in the State of Parana, Brazil (G.P. Markin pers. comm. 1993).<br />

Distribution<br />

Widespread throughout the tropics and serious in Southeast Asia; also a weed in the<br />

Pacific Region, West Africa and Central America. Introduced to Java a long time ago.<br />

Characteristics<br />

A foetid, woody, annual or perennial vine, 1.5 to 6 m long; stem, cylindrical, densely<br />

hairy; tendrils arise next to leaves on the shaded side of the stem; leaves heart-shaped to<br />

three lobed, alternate, arranged helically, with long-stalked glands and long fine hairs on<br />

margins, producing a disagreeable smell when crushed; flowers white to lilac, bisexual. It<br />

flowers all year round, opening in the morning and closing before noon. The green to<br />

orange or red fruits are enclosed in lacy bracts. A large number of varieties occur<br />

(Wagner et al. 1990).<br />

Importance<br />

I! foetida is a weed of upland rice and other field crops. It occurs in wet areas or those<br />

where there is a pronounced wet season. It is common in plantations, rough pastures,<br />

roadsides and wasteland.<br />

In the Philippines it is sometimes used as a soil cover in coconut plantations to con-<br />

trol Imperata cylindrica grass or erosion. In Papua New Guinea it is planted between<br />

sweet potatoes to suppress Imperata. Young leaves are used in Surinam and Java as a<br />

vegetable. Seeds are flat, black, woody and enclosed in a sweet aromatic pulp (Swarbrick<br />

1981). Young fruit are cyanogenic. Stems and leaves are suspected of poisoning live-<br />

stock.<br />

P. foetida contains alkaloids and at least 10 flavonoids. One of the latter, ermanin, is<br />

a feeding deterrent to larvae of the nymphalid butterfly Dione juno which, in Colombia,<br />

do not attack P. foetida leaves, but eat large amounts of other PassiJlora species.


4.22 Passifora foetida 187<br />

The Passifloraceae contain about 12 genera and 600 species, most of which are ten-<br />

dril climbing vines native to warm regions of the world. The genus PassiJlora contains<br />

some 500 tropical and subtropical species, mostly from Central and South America.<br />

Several have edible fruits and attractive flowers, about 40 species have been cultivated,<br />

but fewer than 6 are fruit crops in the neotropics and only one, P. edulis (and its varieties,<br />

such as the yellow favicarpa), is economically important (Waage et al. 1981). P. ligu-<br />

laris is also cultivated in Malaysia (Ong and Ting 1973). A few species, such as P. foeti-<br />

da and P. lonchocarpa, are extremely foul smelling (Benson et al. 1976). Eleven species,<br />

including P. foetida and P. tripartita (= P. mollissima) (in Hawaii) are recorded as weeds<br />

in different parts of the world (Swarbrick 1981). Both P. foetida and P. tripartita are<br />

closely related taxonomically, whereas, P. edulis belongs to a different subgenus (Waage<br />

et al. 1981) and is the only economic crop at risk from oligophagous insects attacking<br />

P. foetida.<br />

Natural enemies<br />

Upwards of 200 insects are recorded attacking Passifloraceae in Central and South<br />

America. The most notable are heliconiine butterflies of the family Nymphalidae. Their<br />

larvae develop only on plants of the family Passifloraceae, with the single exception of<br />

Eueides procula, which will develop on the Turneraceae (Pemberton 1983, Waage et al.<br />

1981). only 5 of the 65 or so species of heliconiines are recorded as pests of Passiflora<br />

edulis, namely Agraulis vanillae, Dione juno, Dryas julia, Eueides aliphera and E.<br />

isabella, although larvae of a few other species are occasionally found on it (Waage et al.<br />

1981). It is apparent that heliconiine butterflies are well worth investigating for species of<br />

adequate host specificity to P. foetida.<br />

Little is known about the natural enemies of P. foetida (Table 4.22.1) and no<br />

attempts have been made at biological control. The passion vine butterfly Agraulis vanil-<br />

lae, an accidental introduction to Hawaii before 1977, is now widespread there. In addi-<br />

tion to attacking Passifora edulis, its larvae feed on the leaves of P. foetida, P. manicata<br />

and P. suberosa, but they seldom attack banana poka, P. tripartita, which is a serious for-<br />

est weed in Hawaii. P. foetida is widely distributed on Hawaii from sea level up to about<br />

500 m and a rainfall from 750 to 3000 mm. It occurs generally in highly disturbed areas,<br />

where it is a very minor component among other introduced species. On the west side,<br />

the taxon has red fruit and, on the east, green. It has very few natural enemies, with the<br />

exception of Agraulis vanillae. A. vanillae larvae are common but usually in small num-<br />

bers, although occasionally there are outbreaks that completely defoliate the plants (G.P.<br />

Markin pers. comm. 1993). A. vanillae is native to the Americas and ranges from<br />

Argentina up through Mexico to Florida, the Gulf States and California (Beardsley 1980,<br />

Bianchi 1982, 1983, Klots (1951)). In Hawaii it is attacked by a nuclear polyhedral virus<br />

which limits its numbers (G.P. Markin pers. comm. 1993), in California by Phorocera<br />

claripennis (Tachinidae) and in eastern USA by Brachymeria ovata (Nakahara 1977).<br />

The other species of heliconiine recorded as attacking P. foetida is Heliconius hecale,<br />

which is widespread in Central and South America and attacks a large number of


188 Biological Control of Weeds: Southeast Asian Prospects<br />

Passifloraceae (Benson et al. 1976, Waage et al. 1981). On the other hand, larvae of<br />

H. charithonia, H. cydno and H. erato did not develop on R foetida (Waage et al. 1981).<br />

In the Ivory Coast larvae of the pterophorid moth Sphenarches anisodactylus eat the<br />

leaves of R foetida, Lagenaria siceraria and Brillantaisia lamium. Although the moth<br />

also occurs in India and Japan it is not known from P. foetida there, but attacks two eco-<br />

nomic plants, the legumes lablab bean, Lablab purpureus and pigeon pea, Cajanus cajan<br />

(Bigot and Vuattoux 1979). Thus there is some uncertainty whether the host specificity of<br />

the African taxon is the same as that in Asia.<br />

The National Parks and Forest Service authorities in Hawaii have been carrying out<br />

searches for some years in South America for natural enemies of banana poka, R triparti-<br />

ta. Two insects from Colombia have been introduced to Hawaii (Gardner et al. 1992).<br />

One of these was the moth Cyanotricha necyria (Dioptidae), which was released in 1988,<br />

but did not become established (Casaiias-Arango et al. 1990, Julien 1992, Markin and<br />

Nagata 1989, Markin et al. 1989). In host specificity tests C. necyria did not oviposit on<br />

f? foetida, but the larvae could develop on its foliage (Markin and Nagata 1989). The<br />

fungus Colletotrichium gloeosporioides f. sp. clidemiae has been mass produced for lib-<br />

eration (E.E. Trujillo memorandum 1989).<br />

In Hawaii the fungus Fusarium oxysporum f. sp. passiflorue attacks P. foetida,<br />

P. tripartita and P. ligularis, but not R suberosa or the cultivated P. edulis f. jlavicarpa<br />

(Gardner 1 989).<br />

Table 4.22.1 Natural enemies of Passiflora foetida.<br />

Species Location Other hosts References<br />

INSECTS<br />

Hemiptera<br />

APHlDlDAE<br />

Aphis fabae Kenya polyphagous Bakker 1974<br />

Aphis gossypii Ivory Coast polyphagous De Wijs 1974<br />

Aphis spiraecola Ivory Coast De Wijs 1974<br />

Myzus persicae Japan polyphagous Yonaha et al. 1979<br />

Uroleucon compositae Kenya Bakker 1974<br />

Diptera<br />

AGROMYZIDAE<br />

Melanagromyza<br />

PO~YP~Y~~<br />

Tropicomyia theae<br />

Lepidoptera<br />

NOCTUIDAE<br />

Helicoverpa zea<br />

(= H. obsoleta)<br />

. Heliothis virescens<br />

NYMPHALIDAE<br />

Agraulis vanillae<br />

f<br />

Australia polyphagous, including Kleinschmidt 1960, 1970<br />

Passijlora spp.<br />

Papua New polyphagous Spencer I990<br />

Guinea<br />

Sumatra polyphagous Den Doop 19 18<br />

Venezuela polyphagous Venturi 1960<br />

Central restricted to some Anon 1977, Beardsley 1980,<br />

America, Passijlora spp. Bianchi 1982, 1983,<br />

Hawaii Waage et al. 198 1<br />

(continued on next page)


FUNGI<br />

4.22 Passifloi-a foetida 189<br />

Species Location Other hosts References<br />

Heliconius hecale<br />

PTEROPHORIDAE<br />

Sphenarches<br />

anisodactylus<br />

Alternaria passiflorae<br />

Alternaria tenuis<br />

Colletotrichium<br />

gloeosporioides<br />

Fusarium oxysporum<br />

f.sp. passiflorae<br />

Haplosporella<br />

pass$oridia<br />

Hemphyllium sp.<br />

NEMATODE<br />

Meloidogyne incognita<br />

VIRUS<br />

cucumber mosaic<br />

passionfruit chlorotic<br />

spot<br />

passionfruit moiaic<br />

passionfruit ringspot<br />

potyvirus<br />

passionfruit woodiness<br />

potyvirus<br />

widespread in restricted to some<br />

Central & South Pass$ora spp.<br />

America<br />

Ivory Coast see discussion<br />

Hawaii<br />

Hawaii<br />

India<br />

Hawaii<br />

India<br />

Hawaii<br />

Australia<br />

Japan<br />

Papua New<br />

Guinea<br />

Hawaii,<br />

Malaysia<br />

Ivory Coast<br />

Australia,<br />

Kenya<br />

Waage et al. 198 1<br />

Bigot & Vuattoux 1979<br />

Raabe 1965<br />

Raabe 1965<br />

Mallikarjunaiah & Rao 1972<br />

Gardner 1989<br />

Pande 1980<br />

Raabe 1965<br />

Sauer & Alexander 1979<br />

Yonaha et al. 1979<br />

Van Velsen 196 1<br />

Ong & Ting 1973,<br />

Raabe 1965<br />

Brunt et al. 1990,<br />

De Wijs 1974<br />

Anon 1976, Bakker 1974,<br />

Brunt et al. 1990,<br />

Leggat & Teakle 1975


190 Biological Control of Weeds: Southeast Asian Prospects<br />

Pennisetum polystachion<br />

(after Holm et a/. 1977)


Map 4.23 Pennisetum polystachion<br />

4.23 Pennisetum polystachion 191<br />

Pennisetum polystachion<br />

This erect, tufted, non-stoloniferous grass, originated in Tropical Africa from where it<br />

has spread throughout Asia and Southeast Asia to the Pacific.<br />

Almost nothing is known of the natural enemies of P. polystachion or closely<br />

related species. It is not possible to evaluate the prospects for its biological control with-<br />

out a search for natural enemies in its region of origin.


192 Biological Control of Weeds: Southeast Asian Prospects<br />

4.23 Pennisetum polystachion (L.) Schultes<br />

(= Pennisetum setosum)<br />

Poaceae<br />

mission grass; feather Pennisetum; yaa khaehyon chop (Thailand), rumput<br />

gajah, rumput berus, rumput kuning, ekor kucing (Malaysia) rumput jurig<br />

(Indonesia)<br />

There are differences in opinion over the spelling of the specific name, polystachion or<br />

polystachyon, with the former being used here. In Africa, there are three subspecies<br />

P. polystachion polystachion, P. p. setosum (sometimes regarded as a true species) and<br />

P. p. atrichum. There is some evidence of crossing between the varieties of P. polysta-<br />

chion and the related Pennisetum hordeoides and the production of populations with dif-<br />

ferent chromosome numbers (Brunken 1979).<br />

Rating<br />

+++ Msia<br />

11 ++ Indo, Phil<br />

+ Thai, Laos, Camb, Viet<br />

Origin<br />

Tropical Africa.<br />

Distribution<br />

P. polystachion is widespread in the tropics of Africa and Asia, but also occurs in north-<br />

ern Australia and the Pacific. It rarely extends beyond 23"N or 23"s. In Africa it occurs<br />

mainly in the savanna and open areas in the forest zone of West Africa from Senegal to<br />

Cameroun and then south and east to Mozambique and Kenya (Brunken 1979, Kativu<br />

and Mithen 1988).<br />

Characteristics<br />

P. polystachion is an erect, tufted annual or perennial grass, with fibrous roots, but no<br />

stolons. Its leaves are narrow and 5 to 45 cm long. Its flowering stems are sometimes<br />

branched, 50 to 300 cm tall, ending in a cylindrical yellow-brown flowering spike, 5 to<br />

25 cm long, bearing densely hairy, unequal bristles of two lengths, the longer 2 to 5 cm<br />

and the shorter lcm.<br />

Importance<br />

P. polystachion grows on dry lateritic soils and is often present along roadsides, in waste-<br />

lands and in upland crops. Propagation is by seeds, but regrowth can occur from dormant<br />

buds located at the base of the stems and from aerial nodes.<br />

It becomes dominant in upland tropical hillsides and croplands after forests have


4.23 Pennisetum polystachion 193<br />

been cleared, or when shifting cultivation or subsistence agriculture have been practised<br />

(Holm et al. 1977). Because of the rapid germination of its wind-dispersed seeds and its<br />

aggressive and highly competitive growth, it rapidly takes over wastelands. Since a sin-<br />

gle cultivation rarely kills enough of the weed to provide control, it often impedes further<br />

use of areas for crops.<br />

In Indonesia it was first observed in 1972 (Titrosoedirdjo 1990). It is now an impor-<br />

tant weed of rubber and occasionally a problem in upland rice.<br />

P. polystachion is thought to have reached Malaysia via Thailand as recently as the<br />

early 1980s, infesting at least 10 km2 of roadsides and is now widely distributed, occur-<br />

ring up to an altitude of 900 m (Baki et al. 1990). It is now a major weed in rubber, oil<br />

palm, sugarcane, orchards, vegetables and upland rice (Titrosoedirdjo 1990).<br />

In the Philippines P. polystachion is able to compete effectively even with blady<br />

grass Imperata cylindrica in grassy fields in Central Luzon and in rubber plantations in<br />

west Java (Titrosoedirdjo 1990).<br />

P. polystachion is a good fodder grass when young and makes excellent hay.<br />

Natural enemies<br />

Very few natural enemies of P. polystachion appear to have been recorded in the litera-<br />

ture (Table 4.23.1). The only species of possible relevance are several gall midges from<br />

Africa, but very little is recorded of their biology. Three species of gall midge have been<br />

reared from P. polystachion in the Gold Coast. One is similar to the pestiferous sorghum<br />

midge Contarinia sorghicola (but may be different), the second belongs to the Trifila<br />

group and the third belongs to the Lasiopterariae (Barnes 1954a,b, Geering 1953). Three<br />

species of gall midge have been described from ears of Pennisetum in southern India,<br />

Cecidomyia penniseti (from P. glaucum = P. typhoideum), Geromyia (= Itonida) penniseti<br />

(from P. cenchroides) and Geromyia (= Itonida) seminis and an unidentified species from<br />

the stems. Of these, G. penniseti may be predaceous (Barnes 1954b, Felt 1920, 1921).<br />

In Madagascar there is a gall midge (?Cecidomyia sp.) whose larvae live in the<br />

inflorescence of Pennisetum (no species given) and in Sudan a gall midge, possibly<br />

Geromyia seminis, has been reared from the ears of Pennisetum (no species given)<br />

(Barnes 1954b).<br />

The larvae of the Brazilian satyrid butterfly Eryphanis polyxena were bred in the<br />

laboratory on P. polystachion (= P. setosum) (Dias 1979), but damage is not reported<br />

from the field.<br />

Comment<br />

There is little doubt that a range of natural enemies attacking f? polystachion would be<br />

found if a search were made in Tropical Africa.<br />

Several other weedy species of Pennisetum also originated in Africa, in addition to<br />

three or more species that have at least some desirable attributes. Perhaps the best known is<br />

kikuyu grass, P. clandestinum, which is a valuable fodder during the warmer months,<br />

although it is a weed in some situations and its nitrate levels can be toxic to grazing animals.<br />

?? glaucum (= P. americanum), pearl millet, is used as food in some areas. ?? purpureum,


194<br />

Biological Control of Weeds: Southeast Asian Prospects<br />

elephant or napier grass, can grow to 3 m, is valuable for fodder when young and can be<br />

used as fuel when old. However, it can also be a weed, as in rubber in Malaysia. Little<br />

has been recorded of the natural enemies attacking these species of Pennisetum. The<br />

most interesting are three cecidomyiid gall midges in India, Geromyia penniseti, G. sem-<br />

inis and Mycodiplosis indica from Pennisetum glaucum (= P. typhoideum) and Geromyia<br />

seminis from Pennisetum cenchroides (Barnes 193 1, Felt 1920).<br />

Table 4.23.1 Natural enemies of Pennisetum polystachion.<br />

Species<br />

INSECTS<br />

Diptera<br />

CEClDOMYllDAE<br />

Cecidomyia penniseti<br />

Contarinia ?sorghicola<br />

Contarinia sp. 1<br />

Contarinia sp. 2<br />

Contarinia sp. 3<br />

Contarinia sp. 4<br />

Geromyia (= Itonida) penniseti<br />

Geromyia (= Itonida) seminis<br />

Lepidoptera<br />

HESPERllDAE<br />

Parnara bada bada<br />

NYMPHALIDAE<br />

Eryphanis polyxena<br />

PYRALlDAE<br />

Cnaphalocrosis medinalis<br />

FUNGI<br />

Bipolaris papendor-i<br />

Gloeocercospora sp.<br />

Helminthosporiurn rostratum<br />

Phakospora apoda<br />

Puccinia chaetochloae<br />

Puccinia substrata<br />

Pyricularia oryule<br />

Spacelotheca penniseti<br />

Country<br />

India<br />

Gold Coast<br />

Gold Coast<br />

Gold Coast<br />

Madagascar<br />

India<br />

India<br />

India. Sudan<br />

Malaysia<br />

Brazil<br />

Malaysia<br />

Brazil<br />

References<br />

Barnes 1954b<br />

Barnes 1954b<br />

Bames 1954b<br />

Barnes 1954b<br />

Barnes 1954b<br />

Bames 1954b<br />

Barnes 1954b<br />

Barnes 1954b<br />

C.L. Tan pers. comm. 1993<br />

Dias 1979<br />

C.L. Tan pers. comm. 1993<br />

H.C. Evans pers. comm. I992<br />

H.C. Evans pers. comm. 1992<br />

Thite & Chavan 1977<br />

H.C. Evans pers. comm. 1992<br />

H.C. Evans pers. comm. 1992<br />

H.C. Evans pers. comm. 1992<br />

Prabhu et al. 1992<br />

H.C. Evans pers. comm. I992


196 Biological Control of Weeds: Southeast Asian Prospects<br />

Pistia stratiotes<br />

(after Holm et a/. 1977)


Map 4.24 Pistia stratiotes<br />

4.24 Pistia stratiotes<br />

Pista stratiotes<br />

Water lettuce is a widespread, floating water weed, which probably originated in South<br />

America.<br />

The host specific South American weevil, Neohydronomus aflnis, has been<br />

established readily in six countries and, in all, has produced substantial to excellent con-<br />

trol. The moth, Samea multiplicalis, which attacks P. stratiotes and Salvinia spp., has<br />

been established in Australia but its impact has not been evaluated.<br />

In Thailand, classical biological control has not been attempted, but mass rearing<br />

and release of the native noctuid moth Spodoptera pectinicornis has replaced the use of<br />

herbicides.<br />

The prospects are excellent for classical biological control of P. stratiotes in<br />

countries where it is still regarded as an important weed.


198 Biological Control of Weeds: Southeast Asian Prospects<br />

4.24 Pistia stratiotes L.<br />

Araceae<br />

water lettuce; chak thom (Cambodia), apoe apoe, apon apon (Indonesia),<br />

kiambang besar (Malaysia), chok, jawg (Thailand), beo cai (Vietnam)<br />

Rating<br />

++ Thai, Laos, Camb, Viet, Phil<br />

14 + Myan, Msia, Brun, Indo<br />

Sing<br />

Origin<br />

The origin of Pistia stratiotes is unknown, although the number of host specific insects<br />

present there (Table 4.24.1) suggests South America. However, there is also a host spe-<br />

cific noctuid moth that ranges from India to Papua New Guinea. Dray and Center (1992)<br />

examine the various theories concerning the area of origin of water lettuce.<br />

Distribution<br />

Water lettuce occurs very widely as a troublesome water weed between the tropics of<br />

Capricorn and Cancer, particularly in Africa, Asia, Southeast Asia and the Caribbean.<br />

Pliny refers to its use in Egypt in AD77 (DeLoach et al. 1979, Holm et al. 1977). It is<br />

absent from a number of Pacific countries although recorded as a weed in Papua New<br />

Guinea, Solomon Is, Guam, New Caledonia and Hawaii.<br />

Characteristics<br />

Pistia stratiotes is a free-floating, perennial monocotyledon, with a tuft of fibrous feath-<br />

ery roots up to 1 m long. Numerous secondary roots may be up to 4 cm in length. Stolons<br />

up to 60 cm are produced from the base of the plant and develop into new plants. Leaves<br />

are pale green, upright, 2.5 to 15 cm long, broad at the top and tapered at the base. They<br />

are prominently veined beneath and form a rosette. They are spongy in texture and bear<br />

numerous fine, water-repelling hairs on both sides. The flowers are bisexual, inconspicu-<br />

ous, green, surrounded by tubular bracts and arise from the centre of the rosette. It is said<br />

that water lettuce does not flower in Thailand but a small number of flowers have been<br />

observed (B. Napompeth pers. comm. 1993). It flowers in the Philippines, Australia,<br />

Africa and USA. The fruit is berry-like and green and contains 4 to 12 small brown seeds<br />

which can float on the water for up to 2 days. There are as many as 9 varieties of water<br />

lettuce (Neal 1965).<br />

Importance<br />

The free-floating plants are found in reservoirs, ponds, in marshes along the edges of<br />

large tropical lakes and in slow-moving or stagnant waters. They multiply rapidly and


4.24 Pistia stratiotes 199<br />

can block streams, interfere with fisheries and hydroelectric generating plant and bank up<br />

at dams, bridges and culverts, leading to increased flooding problems. Despite earlier<br />

claims (Holm et al. 1977), unlike water hyacinth, water lettuce does not increase water<br />

loss through evapotranspiration (Lallana et al. 1987). Together with water hyacinth it is a<br />

common and important component of the dense aggregations of free-floating vegetation,<br />

known as sudds. It grows best at pH 4, whereas water hyacinth produces greatest dry<br />

weight at pH 7 (Holm et al. 1977).<br />

Water lettuce plants act as a substrate for sandfly larvae (Ceratopogonidae) and lar-<br />

vae and pupae of the disease-transmitting mosquito genus Mansonia obtain their oxygen<br />

by attaching to Pistia roots. P. stratiotes is an important weed of irrigated rice, floating<br />

into paddy crops, taking root in the soil and competing much like other weeds.<br />

On the other hand, it has been used as human food in India during famines and is<br />

still fed to pigs and ducks. It is said to have some medicinal value as a cure for skin dis-<br />

eases and dysentery, as a laxative, to treat asthma and, its ash rubbed into the scalp, as a<br />

treatment for ringworm.<br />

Natural enemies<br />

AUSTRALIA<br />

Although water lettuce was first recorded in the Northern Territory only in 1946 it was<br />

already an important weed in some locations in Queensland before the introduction of<br />

Neohydronomus afJinis, although plants in the Northern Territory were rarely thrifty.<br />

Heavy damage was observed there by larvae of the moth Parapoynx (= Nymphula) tene-<br />

bralis, which lays it eggs on the leaves. Newly emerged larvae excise a portion of leaf to<br />

make a protective case in which they shelter while feeding and moving around the plant.<br />

These larvae also attack Salvinia molesta, as do larvae of the related Parapoynx<br />

(= Nymphula) turbata (Gillett et al. 1988). In Thailand this species attacks water lettuce<br />

(Napompeth 1982), so it presumably has the same habit in the Northern Territory. A bug,<br />

Nisia nervosa (= N. atrovenosa) feeds on water lettuce as it does in India (Gillett et al.<br />

1988, Joy 1978).<br />

CENTRAL AND SOUTH AMERICA<br />

Bennett (1975) listed 12 species of phytophagous insects that had been reared from Pistia<br />

stratiotes and Cordo et al. (1981) added one more. Particularly notable (Table 4.24.1) is<br />

the group of South American weevils which are generally confined to water lettuce,<br />

although adults of several may produce minor attack on some of the nearby aquatic<br />

plants whose stems and leaves nevertheless would be too small to support larval develop-<br />

ment. Preliminary host range studies suggest that several may be specific enough to be<br />

employed for biological control, although adequate information is available only for<br />

Neohydronomus afinis. This has been successfully established in several countries (see<br />

later). Larvae of the small pyralid moth Samea multiplicalis, which occurs from<br />

Argentina to the southeastern United States, feed on the growing buds of water lettuce<br />

and sporadically cause very heavy damage and dieback of the plants (Cordo et al. 1978,<br />

1981, DeLoach et al. 1976, 1979).


200 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.24.1 Natural enemies of Pistia stratiotes.<br />

Species Location References<br />

INSECTS<br />

Hemiptera<br />

APHlDlDAE<br />

unnamed<br />

Rhopalosiphum nymphaeae<br />

COCCIDAE<br />

Planococcus citri<br />

LYGAEIDAE<br />

Valtissius sp.<br />

MEENOPLllDAE<br />

Nisia nervosa<br />

(= N. atrovenosa)<br />

Orthoptera<br />

ACRlDlDAE<br />

Paulinia acuminata<br />

TETRlGlDAE<br />

Criotettrix sp.<br />

Coleoptera<br />

CURCULIONIDAE<br />

Argentinorhynchus bennetti<br />

Argentinorhynchus breyeri<br />

Argentinorhynchus bruchi<br />

Argentinorhynchus minimus<br />

Argentinorhynchus squamosus<br />

Neohydronomus aflnis<br />

Neohydronomus elegans<br />

Neohydronomus pulchellus<br />

Ochetinu bruchi<br />

Pistiacola cretatus<br />

Pistiacola fasciatus<br />

Pistiacola sp. nr nigrirostris<br />

Lepidoptera<br />

ARCTllDAE<br />

Spilosoma virginica<br />

NOCTUIDAE<br />

Erastroides curvifascia<br />

Proxenus hennia<br />

,Spodoptera pectinicornis<br />

Thailand<br />

Florida<br />

Nigeria, Trinidad<br />

Argentina<br />

Australia. India<br />

South America<br />

Thailand<br />

Mexico, Venezuela<br />

Argentina, Paraguay<br />

Argentina, Paraguay<br />

Venezuela<br />

Argentina, Paraguay<br />

South America<br />

Honduras, Cuba<br />

Trinidad to Argentina, Cuba<br />

Argentina<br />

Argentina, Brazil<br />

Central and South America<br />

Argentina<br />

Florida<br />

India<br />

Indonesia<br />

India, Bangladesh, Thailand<br />

Napompeth 1990a<br />

Ballou et al. 1986, Bennett<br />

1975, Joy 1978<br />

Bennett 1975<br />

Bennett 1975<br />

Gillett et al. 1988, Joy 1978<br />

Bennett 1966, 1975<br />

Napompeth 1990a<br />

O'Brien & Wibmer 1989a,b<br />

O'Brien & Wibmer 1989a,b<br />

Cordo et al. 1978<br />

O'Brien & Wibmer 1989a,b<br />

Cordo et al. 1978<br />

DeLoach et al. 1976<br />

O'Brien & Wibmer 1989c<br />

Bennett et al. 1975,<br />

O'Brien & Wibmer 1989c<br />

Cordo et al. 198 1<br />

Cordo et al. 198 1<br />

Wibmer & O'Brien 1989<br />

Cordo et al. 198 1<br />

Thompson and Habeck 1988<br />

Chaudhuri & Janaki Ram<br />

1975<br />

Mangoendihardjo & Nasroh<br />

1976<br />

Alam et al. 1980, George<br />

1963, Napompeth 1990a,<br />

Sankaran 1974, Sankaran &<br />

Rao 1972, Sankaran et al.<br />

1964<br />

(continued on next page)


MITES<br />

FUNGI<br />

4.24 Pistia stratiotes 201<br />

Species Location References<br />

PYRALlDAE<br />

Argyractis subornata<br />

Elophila responsalis<br />

Parapoynx (= Nymphula)<br />

diminutalis<br />

Parapoynx (= Nymphula)<br />

tenebralis<br />

Parapoynx (= Nymphula)<br />

turbata<br />

Petrophila drumalis<br />

Samea multiplicalis<br />

Synclita obliteralis<br />

Hydrozetes subornata<br />

Cercospora canescens<br />

Cercospora sp.<br />

Phyllosticta stratiotes<br />

Sclerotium rolfsii<br />

Brazil<br />

India, Indonesia<br />

Thailand<br />

Australia<br />

Australia, Thailand<br />

Florida<br />

southern USA, Trinidad,<br />

northern South America<br />

Florida<br />

Australia<br />

Australia<br />

India<br />

India<br />

India<br />

Fomo 1983<br />

Handayani & Syed 1976,<br />

Mangoendihardjo et al. 1977,<br />

Sankaran & Rao 1972,<br />

Subagyo1975<br />

Napompeth 1990a,<br />

Suasa-Ard 1976<br />

Gillett et al. 1988<br />

Gillett et al. 1988,<br />

Napompeth 1990a,<br />

Suasa-Ard 1976<br />

Dray et al. 1988<br />

Bennett 1966, 1975,<br />

Bennett et al. 1975,<br />

Dray et al. 1988<br />

Dray et al. 1988<br />

Gillett et al. 1988<br />

Gillett et al. 1988<br />

Bennett 1975,<br />

Nag Raj and Ponappa 1966<br />

Bennett 1975<br />

Bennett 1975<br />

UNITED STATES<br />

Dray et al. (1988) recorded larvae of three species of moth, a mealy bug, a leafhopper<br />

and an aphid on water lettuce which has been present in Florida for at least 200 years<br />

(Thompson and Habeck 1988). Only one of these insects, a root feeding moth, was con-<br />

sidered to be possibly host specific. This was later identified as the pyralid moth<br />

Petrophila drumalis: the two other moths were Samea multiplicalis and Synclita obliter-<br />

alis (Dray et al. 1989). The aphid was probably Rhopalosiphum nymphaeae, a well<br />

known transmitter of a number of economically important viruses. It has been recorded<br />

to cause dieback of water lettuce in Nigeria (Pettett and Pettett 1970). This aphid was<br />

reported to be widespread on water lettuce in Florida (Ballou et al. 1986). An aphid, pos-<br />

sibly the same species, transmitted a virus that caused widespread dieback of Z? stratiotes<br />

on Lake Volta in Ghana (Okali and Hall 1974), although serious dieback has not been<br />

reported in Florida. The non-specific larvae of the arctiid moth Spilosoma virginica was<br />

also common on water lettuce in Florida (Thompson and Habeck 1988).


202 Biological Control of Weeds: Southeast Asian Prospects<br />

INDIA<br />

Larvae of the moth Spodoptera pectinicornis cause extensive damage to Pistia. On aver-<br />

age, a single larva can consume the leaves of two Pistia plants during its developmental<br />

period of 15 to 20 days. Some 100 larvae developing from an average egg mass destroy<br />

all Pistia leaves within an area of 1 m2 and, during peak abundance in the field, the num-<br />

ber of larvae per m2 of Pistia surface was always higher than this (George 1963,<br />

Sankaran and Ramaseshiah 1974). The bug Nisia nervosa successfully completes its life<br />

cycle on Pistia, but is reported as a minor pest of rice (Joy 1978).<br />

INDONESIA<br />

In Java and Sulawesi, water lettuce is attacked by larvae of the noctuid moth Proxenus<br />

hennia which appears to be specific (Mangoendihardjo and Nasroh 1976). Other species<br />

found attacking it were Elophila (= Nymphula) responsalis, Spodoptera mauritia, an<br />

aphid and a cicadellid (Zygina sp.) (Mangoendihardjo and Syed 1974, Mangoendihardjo<br />

et al. 1976, 1977, Syed et al. 1977).<br />

THAILAND<br />

Water lettuce is attacked by several insects (Table 4.24.1), of which only the pygmy<br />

grasshopper Criotettrix sp. and the native water lettuce moth Spodoptera pectinicornis<br />

are capable of inflicting serious damage. In certain areas where the density of Criotettrix<br />

was as high as 100 per m2 considerable suppression of the weed occurred. Both adults<br />

and nymphs were able to walk on the surface of the water and were observed to attack<br />

also the water fern, Salvinia cucullata (Napompeth 1982). The extensive damage that can<br />

be caused by Spodoptera pectinicornis is discussed later.<br />

Attempts at biological control<br />

AUSTRALIA<br />

The first attempt to bring about classical biological control of Pistia stratiotes was the lib-<br />

eration of adults and larvae of Neohydronomus afinis in 1982 near Brisbane. Within two<br />

months of release, plants were rotting and sinking and, by eight months, about one third<br />

of the plants in a dam were chlorotic and some had been destroyed. Severely damaged<br />

plants produced short stolons terminating in small plantlets before sinking and dying, but<br />

these plantlets failed to grow to the size of their parents before, in turn, becoming severe-<br />

ly damaged, producing plantlets and then sinking. Continued weevil attack led initially to<br />

an increase in the number of plants, but a decrease in their size and dry weight. Before<br />

long, few water lettuce plants remained (Harley et al. 1984). The moth Samea multipli-<br />

calis was liberated in Australia in 1981, primarily against Salvinia molesta, on which it<br />

became established. However, within four years, its effectiveness was restricted by proto-<br />

zoan disease and three hymenopterous parasitoids (Thomas and Room 1986). It presum-<br />

ably attacks Pistia stratiotes also, although there seems to be only one observation of it<br />

doing so. This was at Townsville (D.P.A. Sands pers. comm. 1993).<br />

PAPUA NEW GUINEA<br />

The moth Spodoptera pectinicornis attacks water lettuce, but is unable to prevent its<br />

increase when the plant is freed from competition by the biological control of Salvinia or


Table 4.24.2 Liberations for the biological control of Pistia stratiotes.<br />

4.24 Pistia stratiotes 203<br />

Species Where From When Result References<br />

Coleoptera<br />

CURCULIONIDAE<br />

Neohydronornus a#nis Australia Brazil 1982 + Harley et al. 1984, 1990<br />

Botswana Brazil via 1988 + Chikwenhere & Forno 1991<br />

Australia LW. Fomo pers. comm. 1993<br />

Papua New Brazil via 1985 + Chikwenhere & Forno 199 1,<br />

Guinea Australia Harley et al. 1990,<br />

Laup 1987b<br />

South Africa Brazil via 1985 + Cilliers 1987, 1989b<br />

Australia<br />

United States Brazil via 1987 + Center et al. 1989,<br />

of America Australia Thompson & Habeck 1988,<br />

Dray et al. 1990<br />

Zambia Zimbabwe about + P. Room pers. comm. 1993<br />

1990<br />

Zimbabwe Brazil via 1988 + Chikwenhere & Fomo 1991<br />

Australia<br />

Lepidoptera<br />

NOCTUIDAE<br />

Spodoptera pectinicornis Florida Thailand 1990 ? Center et al. 1989,<br />

Julien 1992<br />

Napompeth 1990a<br />

PYRALl DAE<br />

Sarnea rnultiplicalis Australia Brazil 198 1 + Forno 1987, Room et al. 1984<br />

Eichhornia. Neohydronomus afinis was successfully established in the Sepik River sys-<br />

tem in 1985, but its impact is yet to be recorded (Laup 1987b).<br />

THAILAND<br />

Although no introductions of biological control agents for Pistia stratiotes have been<br />

made in Thailand, the mass rearing and release of the native noctuid moth Spodoptera<br />

pectinicornis has replaced the use of herbicides for this weed. Under laboratory condi-<br />

tions mixed instar larvae at the rate of 300 or more per m2 gave as fast and effective con-<br />

trol as any herbicide. In the field a substantial initial release of larvae, followed by one or<br />

two additional releases at two-week intervals has led to complete control within 6 to 10<br />

weeks. Thus, a 4.5 km2 infestation of water lettuce was controlled in 6 weeks at Sri<br />

Nakarint Dam in 1978 and a 10 km2 infestation in 1982 (Napompeth 1982). S. pectini-<br />

cornis occurred throughout the year and in all infestations of Pistia (Suasa-Ard and<br />

Napompeth 1982).<br />

UNITED STATES<br />

Neohydronomus afinis was released in Florida in 1987, became established readily, mul-<br />

tiplied rapidly and soon spread from the release sites to cause considerable damage to<br />

water lettuce (Dray et al. 1990). In one release site the Pistia population was reduced<br />

from 50 to less than 5 acres in 2 years and, in another, a 10 acre site was virtually cleared


204 Biological Control of Weeds: Southeast Asian Prospects<br />

in 3 years. However, in a third site, little effect was noted. It was postulated that this<br />

might be due to the presence of a different genetic strain of P. stratiotes, which had a far<br />

greater seed production than that at the other two sites (Dray and Center 1992).<br />

Spodoptera pectinicornis has also been established in Florida (Center et al. 1989;<br />

Napompeth 1 990a).<br />

BOTSWANA<br />

N. afinis was released on the Linyanti R at the Selinda spillway in 1988. Excellent con-<br />

trol was achieved within 12 months (I.W. Forno pers. comm. 1993).<br />

SOUTH AFRICA<br />

Neohydronomus afinis was released in Kruger National Park and a water lettuce infesta-<br />

tion in a motionless water body was completely controlled within 10 months (Cilliers<br />

1987, 1989a,b). The weevil has been less successful on fast-flowing rivers where plants<br />

infested with weevil larvae are continually washed down stream and replaced by unin-<br />

fested plants from higher up. However, even under these circumstances, up to 90% of<br />

plants showed signs of feeding damage (Cilliers 1991 b).<br />

ZAMBIA<br />

N. afinis was already established by natural spread at Kafubu Lake when N. afinis from<br />

Zimbabwe was liberated about 1990 and by 1992 there were only scattered plants of<br />

Pistia but no mats (P.M. Room pers. comm. 1993).<br />

ZIMBABWE<br />

Neohydronomus afinis was released in 1988, was well established in 4 months and, with-<br />

in a year, water lettuce was no longer a problem in the Manyame River (Chikwenhere<br />

and Forno 1991).<br />

Major natural enemies<br />

Argentinorhynchus bmchi Coleoptera: Curculionidae<br />

This yellow spotted weevil (4.7 mm long) is known from Argentina, Bolivia, Paraguay<br />

and Uruguay (O'Brien and Wibmer 1989a,b). Although it is rare, it has the potential to<br />

cause heavy damage to water lettuce. Under laboratory conditions adults ate 1 cm2 of<br />

leaf surface per day, producing some 10 oval holes all the way through the leaf. Adults<br />

feed mostly by night and generally on medium-aged leaves. Field collected females laid<br />

on average 1575 eggs among the dense hairs on the leaf surface. Eggs hatch in 7.6 days.<br />

First instar larvae enter the leaf and feed on the spongy leaf tissue and second and third<br />

instars in the crown. Fourth instar larvae could not be reared: in the laboratory they left<br />

the plant and drowned. Adults fed and oviposited only on water lettuce and, except for<br />

slight feeding on Spirodela, of the 26 plant species tested, larvae only developed on water<br />

lettuce. In the laboratory 6 larvae per plant killed water lettuce within a month. It was<br />

suggested that egg predation may account for the rarity of A. bruchi; also that the diffi-<br />

culty experienced in rearing the fourth instar larvae may indicate that special conditions<br />

are required, lack of which may reduce survival (Cordo et al. 1978).


4.24 Pistia stratiotes 205<br />

Neohydronomus aflnis Coleoptera: Curculionidae<br />

This mottled, brown-grey weevil was earlier confused in the literature with the closely<br />

related N. pulchellus. It occurs naturally in Argentina, Brazil, Colombia, Paraguay, Peru,<br />

Uruguay and Venezuela (O'Brien and Wibmer 1989~). Adults (males 1.8 mm, females<br />

2.1 mm long) feed on the leaves of Pistia stratiotes and mine the tissues: they do not<br />

appear to attack the crown or roots. Females lay about 1 egg per day beneath the leaf epi-<br />

dermis, usually on the upper surface near the margin. Eggs hatch after 3 to 4 days and<br />

larvae tunnel through the leaf tissues to complete development in 1 1 to 14 days. Pupation<br />

occurs in small pockets in the leaf tissues and adults emerge after about 4 days. The peri-<br />

od from egg to adult varies from 4 to 6 weeks, but there are only 3 generations a year in<br />

Argentina (December, February to March and June). Overwintering probably occurs in<br />

the adult stage (DeLoach et al. 1976).<br />

N. afJinis is very destructive under laboratory conditions. Maximum damage<br />

occurred in midsummer in Argentina, when peak populations of 200 to 600 per m2 pro-<br />

duced 1.6 feeding spots per cm2 of leaf surface. Adult N. afinis are occasionally para-<br />

sitised by nematodes in Argentina (DeLoach et al. 1976).<br />

N. affinis is highly specific to water lettuce, as shown by tests in Zimbabwe<br />

(Chikwenhere and Forno 1991), South Africa (Cilliers 1989b), Florida (DeLoach et al.<br />

1976, Dray et al. 1990, Thompson and Habeck 1988, 1989) and Australia (Harley et al.<br />

1990); and also by absence of reported damage to economic plants in any of the countries<br />

to which it has been introduced.<br />

Pistiacola cretatus Coleoptera: Curculionidae<br />

This brown 2.3mm long weevil, earlier known as Onychylis cretatus, occurs in Argentina<br />

and Brazil (Wibmer and O'Brien 1989). Adults feed mainly on the upper surface of the<br />

leaves of P. stratiotes and oviposit into the leaf tissue. The slender larvae tunnel into the<br />

denser tissues of the basal third of the leaf and also into the crown. Pupation occurs with-<br />

in the spongy part of the leaf. In the field, adult P. cretatus were found only on water let-<br />

tuce (Cordo et al. 1981).<br />

Samea multiplicalis Lepidoptera: Pyralidae<br />

This brown moth with dark markings and a wingspan of about 17 mm occurs from<br />

Florida to Argentina.<br />

Up to 290 eggs are laid per female, mainly on the upper surface of the leaves. These<br />

hatch after 4 days and the larvae construct a silken canopy under which they feed, or they<br />

may tunnel into the leaves to feed on the spongy tissues: they also eat the buds. After 5 or<br />

6 instars in the course of 16 days, they pupate in silken cocoons, to emerge as adults 5<br />

days later. Adults live up to 7 days (DeLoach et al. 1979, Knopf and Habeck 1976, Sands<br />

and Kassulke 1984). S. multiplicalis has three main hosts in Florida, Pistia stratiotes,<br />

Azolla caroliniana and Salvinia rotundifolia and it may occasionally attack Eichhornia<br />

crassipes. Oviposition is highest on P. stratiotes. Although medium to large larvae fed on<br />

a number of plants under laboratory conditions, S. multiplicalis has never been reported


06 Biological Control of Weeds: Southeast Asian Prospects<br />

as a pest of cultivated plants in Argentina or Brazil (DeLoach et al. 1979). It passed strict<br />

host specificity tests in Australia, larvae completing development on l? stratiotes, Azolla<br />

pinnata and Salvinia molesta. Larvae that had fed first on S. molesta were unable to com-<br />

plete their development on water lettuce, although they produced minor leaf scars. S.<br />

multiplicalis was released in Australia, but primarily against Salvinia molesta (Sands and<br />

Kassulke 1984).<br />

Samea multiplicalis has 3 generations a year in the field in Argentina, with popula-<br />

tion peaks in December, February and May, when populations reach a maximum of 5 lar-<br />

vae per plant. In laboratory tests females laid 99.3% of their eggs on P. stratiotes. Larvae<br />

caused heavy, but sporadic, damage to water lettuce in the field. However, in most years,<br />

populations were held at low levels, apparently by parasitoids (Apanteles sp. and<br />

Podogaster sp.) (DeLoach et al. 1979). In Florida 52% parasitisation was recorded,<br />

42.7% by three species of Hymenoptera (Agathis sp., Apsilops sp. and Temelucha ferrug-<br />

inae) and 9.3% by a tachinid fly (Lixophaga sp.) (Knopf and Habeck 1976). Nosema sp.<br />

was detected in Australia in some larvae from Brazil and the culture was freed of these<br />

before release (Sands and Kassulke 1984).<br />

Spodoptera pectinicornis Lepidoptera: Noctuidae<br />

This moth ranges over an extensive area from India through Sri Lanka, Thailand and<br />

Indonesia to Papua New Guinea. Eggs are laid in masses of 70 to 120 on the undersur-<br />

face of the Pistia leaf near its edge. They hatch in 40 to 60 hours to produce pale green<br />

larvae that burrow in the leaf parallel to the longitudinal veins. After some 20 days the<br />

1.5 to 2 cm long larvae pupate, to emerge two to three days later as small silvery brown<br />

moths about lcm long (George 1963). In Thailand the period from egg to adult averaged<br />

30 days and females laid an average of 666 eggs. Host specificity tests showed that it<br />

would develop only on Pistia stratiotes (Suasa-Ard 1976). Napompeth (1990a) reports<br />

that it is relatively simple to mass rear in the laboratory and to distribute in the field.<br />

Details are available of its rearing and ecology in Thailand (Suasa-Ard 1976, Suasa-Ard<br />

and Napompeth 1978). It was mass reared and released in Florida after tests showed that<br />

it was sufficiently host specific (Center et al. 1989, Napompeth 1990a).<br />

Comment<br />

Pistia stratiotes is seldom more than a minor component of the floating weed mass when<br />

either Eichhornia crassipes or Salvinia molesta or both are present. However, when it<br />

occurs alone or when the strong competition from these two weeds is greatly reduced by<br />

their effective biological control, water lettuce can increase rapidly to occupy the vacated<br />

water surface. Since damaging biological control agents are available for all three weeds,<br />

it is sensible to embark on a biological control program for them all, either at the same<br />

time or in sequence.<br />

Adequate biological control of water lettuce has been achieved by the introduction<br />

of the weevil Neohydronomus alone. However, if an even greater degree of control is<br />

desired, there are, in South America, additional species of weevil and also several moths


4.24 Pistia stratiotes 207<br />

that appear to be well worthwhile investigating further. This is particularly so, as some<br />

are known to be heavily attacked by natural enemies and, if introduced without these,<br />

would be expected to be even more effective.<br />

It can be concluded with some confidence that water lettuce is a promising candi-<br />

date for biological control.


208 Biological Control of Weeds: Southeast Asian Prospects<br />

Portulaca oleracea<br />

(after Holm et a/. 1977)


Map 4.25 Portulaca oleracea<br />

4.25 Portulaca oleracea 209<br />

Portulaca oleracea is a serious weed throughout tropical, subtropical and temperate<br />

areas, attaining high overall pest status more because of its very widespread importance<br />

than by being amongst the top few weeds in any one country.<br />

About 14 of the 140 or so species of insects that are known to attack it appear to<br />

be restricted to the genus Portulaca and probably several to P. oleracea or its very close<br />

relatives. In their native ranges 4 leaf-mining or gall-forming flies, 1 leaf-mining moth, 1<br />

leaf-mining sawfly and 2 weevils all cause considerable damage and show high specifici-<br />

ty to P. oleracea.<br />

If this group of phytophagous insects is not already present, the establishment of<br />

several without their own natural enemies should lead to a significant lowering in the<br />

weed status of I? oleracea.<br />

Portulaca oleracea is an attractive target for an attempt at biological control.


210 Biological Control of Weeds: Southeast Asian Prospects<br />

4.25 Portulaca oleracea L.<br />

Portulacaceae<br />

pigweed, purslane; gelang, krokot (Indonesia); gelang pasir, segan (Malaysia);<br />

phak bia yai (Thailand), mya byit, mye byet (Myanmar); kbet choun (Cambodia);<br />

golasiman, ulasiman (Philippines), rau Sam (Vietnam)<br />

Rating<br />

+++ Phil<br />

10 ++ Thai<br />

+ Myan, Viet, Msia, Sing, Indo<br />

Much of the material in this dossier is summarised from the account in Waterhouse<br />

(1993b).<br />

Origin<br />

Uncertain; possibly Central America, but see comment.<br />

Distribution<br />

Very widespread in tropical, subtropical and temperate regions of the world, including<br />

Southeast Asia, Australia and the Pacific.<br />

Characteristics<br />

Pigweed is a fleshy annual herb, reproducing by seed, or by stem-fragments rooting<br />

when lying on moist soil. The stems are succulent, often reddish and 0.2 to 0.5 m in<br />

length. The stems and leaves are smooth and fleshy and form mats. In sunlight the plants<br />

are prostrate, but in partly shaded situations they may attain a height of 0.5 m. The leaves<br />

are alternate, flowers are yellow, sessile, self-pollinated and either occur singly, or sever-<br />

al may occur together, in the leaf clusters at the ends of branches. They open on sunny<br />

mornings and later produce numerous tiny (0.5 mm diameter) black seeds.<br />

Importance<br />

P. oleracea was ranked 9th of the world's worst weeds, being recorded in 45 crops in 81<br />

countries (Holm et al. 1977). With a rating of 10 in Southeast Asia, it ranked equal 32nd<br />

in the region; also 6th in the Pacific and 49th in Australia (Waterhouse 1993a,b). In<br />

Southeast Asia, it is particularly important in many upland crops, including vegetables,<br />

rice, maize, sorghum, groundnuts and sugarcane. It is drought hardy, colonising waste<br />

places and bare areas but thrives in moist fertile soils. There are many ecological types,<br />

some of which are occasionally used as a vegetable. In the Philippines up to 10000 and<br />

in Norih America up to 243 000 seeds are produced per plant. The tiny seeds are spread<br />

by wind, water, as a contaminant of the seeds of crops and by birds, surviving passage<br />

through the digestive tract. They also survive burial for long periods and germinate best<br />

above 30°C, but poorly below 24°C.


4.25 Portulaca oleracea 211<br />

Pigweed does not compete well with other weeds. It is successful because it estab-<br />

lishes rapidly after soil disturbance and may flower and seed before being outcompeted<br />

by taller plants. The succulent leaves and stems are rich in oxalates and nitrates and have<br />

been implicated in livestock deaths. The succulent leaves of some strains have been used<br />

as human food (Miyanishi and Cavers 1980).<br />

Natural enemies<br />

The 138 insect species that have been recorded attacking P. oleracea were listed by<br />

Waterhouse (1993b), most of them from Central and South America (Bennett and<br />

Cruttwell 1972) and USA (Romm 1937). A few additional records are now listed in table<br />

4.25.1. Most of these species are known to be (or suspected of being) polyphagous and<br />

many are pests. Nevertheless, table 4.25.2 lists 14 insects that, so far as known, are<br />

restricted to P. oleracea, or at least to the genus Portulaca. Eight of these appear to have<br />

originated in the Americas, 2 each in Africa and India, and 1 each in France and<br />

Southeast Asia. With the exception of the weevil Ceutorhynchus portulacae, described<br />

from P. oleracea in Java, there do not appear to be any reports of native insects which<br />

might possibly be restricted to pigweed in Southeast Asia, the Pacific or Australia.<br />

Table 4.25.1 Natural enemies of Portrclaca oleracea: additional insect records to those<br />

of Waterhouse (1 993b).<br />

Species Country Other hosts References<br />

Hemiptera<br />

APHlDlDAE<br />

Myzus persicae<br />

ClCADELLlDAE<br />

Circulifer haematoceps<br />

Orosius orientalis<br />

(= 0. albicinctus)<br />

LYGAEIDAE<br />

Nysius cymoides<br />

Nysius vinitor<br />

Coleoptera<br />

CURCULIONIDAE<br />

Hypurus bertrandi<br />

Diptera<br />

AGROMYZIDAE<br />

Liriomyza caulophaga<br />

Liriomyza trifolii<br />

1<br />

Australia polyphagous author's record<br />

Israel polyphagous Klein & Raccah 1991<br />

India polyphagous Kooner & Deol 1982<br />

Italy jojoba Parenzan 1985<br />

Australia polyphagous Elshafie 1976, Ramesh &<br />

Laughlin 1984<br />

Australia, India, specific R.E. McFadyen pers. comm.<br />

Guam, Northern 1993,Zaka-ur-rab 199 1,<br />

Marianas Zimmerman 1957<br />

Australia Beta vulgaris R.E. McFadyen pers. comm.<br />

var. cicla 1993<br />

USA polyphagous Chandler & Chandler 1988<br />

(continued on next page)


212 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.25.1 (continued)<br />

Species Country Other hosts References<br />

Lepidoptera<br />

NOCTU IDAE<br />

Agrotis ipsilon India polyphagous Das & Ram 1988<br />

Neogalea (= Spodoptera)<br />

sunia Nicaragua polyphagous Savoie 1988<br />

Spodoprera eridania Nicaragua polyphagous Savoie 1988<br />

Spodoptera exigua Nicaragua polyphagous Savoie 1988<br />

PY RALl DAE<br />

Loxostege bijdalis N. America cotton Allyson 1976<br />

The host specificity has been investigated of 5 of the 6 species of Diptera,<br />

Lepidoptera and Hymenoptera listed in table 4.25.2, but, except for Baris arctithorax and<br />

Hypurus bertrandi, both of which appear to be adequately specific (see later), little is<br />

known about that of the 8 weevils.<br />

Several of the fungi listed in table 4.25.3 are reported to damage P. oleracea, some-<br />

times severely (Waterhouse 1993b), but too little is known about host specificity or host<br />

specific strains to evaluate their possible role as classical biological control agents.<br />

Nevertheless their specificity certainly merits investigation should the need arise.<br />

Attempts at biological control<br />

There have been no attempts to establish natural enemies as biological control agents for<br />

P. oleracea. However three insect species have appeared in countries well out of their<br />

native range, in particular the European weevil Hypurus bertrandi, but also the American<br />

sawfly Schizocerella pilicornis and the American leaf-mining fly Haplopeodes palliatus.<br />

These successful, unassisted establishments suggest that there should be little difficulty<br />

in securing assisted establishments elsewhere. Unfortunately there is no information<br />

available on what effects, if any, these three insects have had on P. oleracea in their new<br />

countries, but it is suspected that a group of species may be required to secure substantial<br />

effects in Australia.<br />

The sawfly Schizocerella pilicornis appeared in eastern Australia (Queensland and<br />

New South Wales) in the early 1960s; (Benson 1962, Krombein and Burks 1967) but<br />

there are no records of it building up in sufficient numbers to cause serious damage. In<br />

1993 Hypurus bertrandi and Liriomyza caulophaga were bred from P. oleracea leaves in<br />

Brisbane (R.E. McFadyen pers. comm.), but numbers were too low to cause serious dam-<br />

age. It is not known whether these species have only become established recently.<br />

L. caulophaga was previously known only from Beta vulgaris var. cicla (silverbeet) in<br />

Australia. Larvae tunnel in the soft white spongy tissue between the vascular strands in<br />

the leaf petioles and midribs and pupate there (Kleinschmidt 1960, 1970, Spencer 1990).<br />

EGYPT<br />

Tawfik et al. (1976) recorded Hypurus bertrandi attacking P. oleracea.<br />

GUAM AND THE NORTHERN MARIANA IS.<br />

Zimmerman (1957) records Hypurus bertrandi from Guam, Tinian, Saipan and Agrihan,<br />

some of the specimens from Saipan being taken from the crops of swifts.


4.25 Portulaca oleracea 213<br />

Table 4.25.2 Insects restricted to R oleracea or at least to the genus Portulaca (after<br />

Waterhouse 1993b).<br />

Species Distribution References<br />

Coleoptera<br />

CURCULlONlDAE<br />

Apion sp.<br />

Baris arctithorax<br />

Baris lorata<br />

Baris portulacae<br />

Ceutorhynchus oleracae<br />

Ceutorhynchus portulacae<br />

Hypurus bertrandi<br />

Linogeraeus (= Centrinaspis)<br />

perscitus<br />

Diptera<br />

AGROMYZIDAE<br />

Haplopeodes palliatus<br />

ANTHOMYIIDAE<br />

Pegornya dolosa<br />

CEClDOMYllDAE<br />

Asphondylia portulacae<br />

Lasioptera portulacae<br />

Neolasioptera portulacae<br />

Lepidoptera<br />

HELlODlNlDAE<br />

Heliodines quinqueguttata<br />

Hymenoptera<br />

TENTHREDINIDAE<br />

Schizocerella pilicornis<br />

Brazil<br />

Egypt<br />

Sudan<br />

India<br />

Java<br />

India<br />

Puerto Rico,<br />

France,<br />

Egypt,<br />

USA, Hawaii, Marianas,<br />

Australia<br />

Colombia, Trinidad, USA<br />

Australia, USA<br />

Trinidad<br />

El Salvador, Argentina,<br />

Colombia, Bolivia,<br />

Leeward Is, St Kitts<br />

Nevis, Montserrat, Jamaica<br />

USA<br />

Cuba, Florida, St Vincent<br />

Trinidad, St Kitts Nevis,<br />

Trinidad,Montserrat<br />

Puerto Rico<br />

California, Mexico<br />

USA, Australia<br />

Argentina to USA<br />

d'Araujo e Silva et al. 1968a,b<br />

Tawfik et al. 1976<br />

Marshall 19 1 1<br />

Marshall 19 16<br />

Marshall 1935<br />

Marshall 1916<br />

Wolcott 1948<br />

Tempsre 1943<br />

Tawfik et al. 1976<br />

Clement and Norris 1982<br />

RE McFadyen pers. comm. 1993,<br />

Zimmeman 1957<br />

Bennett and Cruttwell 1972,<br />

Romm 1937<br />

R.E. McFadyen pers. comm.<br />

1993, Romm 1937<br />

Bennett and Cruttwell 1972<br />

Cruttwell and Bennett 1972a<br />

Gagnt 1968,<br />

Bennett and Cruttwell 1972<br />

Felt 191 1<br />

GagnC 1968<br />

Bennett and Cruttwell 1972<br />

Bennett and Cruttwell 1972,<br />

Cruttwell and Bennett 1972b<br />

Wolcott 1948<br />

Bennett and Cruttwell 1972<br />

Krombein and Burks 1967<br />

Muesebeck et al. 195 1


214 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.25.3 Natural enemies of Portulaca oleracea: fungi, viruses and nematodes.<br />

Species Country Other hosts References<br />

FUNGI<br />

AIbugo portulacae<br />

AIbugo portulacearum<br />

Ascochyta portulacae<br />

Bipolaris (= Drechslera)<br />

indica<br />

Cercospora portulacae<br />

Cercosporella dominicana<br />

Dendrographium<br />

lucknowense<br />

Dichotomophthora indica<br />

(= D. lutea)<br />

Dichotomophthora<br />

portulacae<br />

Helminthosporium<br />

(Bipolaris) portulacae<br />

Phoma sp.<br />

Phytophthora palmivora<br />

Polymyxa betae f. sp.<br />

portulacae<br />

VIRUSES<br />

anemone brown ring<br />

aster yellows<br />

beet curly top<br />

chili vein banding<br />

clover big vein<br />

cucumber mosaic<br />

groundnut rosette<br />

tobacco broad ring spot<br />

tobacco etch<br />

tobacco mosaic<br />

tobacco streak<br />

NEMATODES<br />

Criconemella xenoplax<br />

Ditylenchus dipsaci<br />

Helicotylenchus indicus<br />

Helicotylenchus<br />

multicinctus<br />

Heterodera glycines<br />

Europe, Africa,<br />

Asia, Americas<br />

Poland<br />

USSR<br />

USA<br />

India<br />

Dominica<br />

India<br />

IMI 1992, Miyanishi &<br />

Cavers 1980<br />

IMI 1992<br />

IMI 1992<br />

many, including Evans 1987,<br />

Amaranthus spinosus Kenfield et al. 1989<br />

IMI 1992<br />

IMI 1992<br />

IMI 1992<br />

USA, West Indies, Helianthus,<br />

Europe, India Pennisetum<br />

Europe, Sudan, tarragon, cactus,<br />

Hawaii, capsicum,<br />

California, Glycine max<br />

Jamaica<br />

Venezuela<br />

USA Portulaca grandifora<br />

France tarragon<br />

Sarawak pepper and several<br />

weeds<br />

Bulgaria, Japan sugar beet, wheat,<br />

many weeds<br />

Hawaii<br />

Hawaii<br />

Hawaii<br />

Hawaii<br />

Hawaii<br />

Bulgaria<br />

Hungary<br />

USA<br />

Malawi<br />

Hawaii<br />

Hawaii<br />

Philippines<br />

Hawaii<br />

anemone<br />

aster<br />

sugar beet<br />

chili<br />

clover<br />

many economic<br />

plants<br />

cucumber, tobacco<br />

groundnut<br />

tobacco<br />

tobacco<br />

many<br />

tobacco<br />

Baudoin 1986, IMI 1992,<br />

Rao 1966<br />

Vegh & Le Berre 1984<br />

Klisiewicz 1985,<br />

Klisiewicz et al. 1983,<br />

Mehrlich & Fitzpatrick 1935<br />

Mitchell 1986<br />

IMI 1992, Rader 1948,<br />

Strider & Chi 1984<br />

Vegh & Le Berre 1984<br />

Anon 1979<br />

Abe & Ui 1986,<br />

Vrbanov & Krumov 1989<br />

Holm et al. 1977<br />

Holm et al. 1977<br />

Holm et al. 1977<br />

Holm et al. 1977<br />

Holm et al. 1977<br />

Dikova 1989,<br />

Nasser & Basky 1988,<br />

Dodds & Taylor 1980<br />

Adams 1967<br />

Holm et al. 1977<br />

Holm et al. 1977<br />

Eugenio & del Rosario 1962<br />

Holm et al. 1977<br />

USA many legumes and Zehr et al. 1990<br />

other plants<br />

USSR polyphagous Kholod 1983<br />

India polyphagous Rahman & Khan 1986<br />

Brazil, Ivory banana Luc et al. 1990,<br />

Coast Zem & Lordello 1983<br />

Colombia soybean Quintero et al. 1988<br />

I (continued on next page)


4.25 Portulaca oleracea 215<br />

Species Country Other hosts References<br />

Heterodera rnarioni<br />

Hoplolairnus indicus<br />

Meloidogyne sp.<br />

Meloidogyne arenaria<br />

Meloidogyne hapla<br />

Meloidogyne incognita<br />

Meloidogyne javanica<br />

Pratylenchus rninutus<br />

Pratylenchus sp.<br />

Radopholus sirnilis<br />

Rotylenchulus reniforrnis<br />

Tylenchorhynchus<br />

brassicae<br />

Hawaii<br />

USA<br />

Cuba<br />

USA<br />

Hungary<br />

India, USA,<br />

Philippines<br />

India<br />

Hawaii<br />

Ivory Coast<br />

Ivory Coast<br />

India, USA,<br />

Hawaii<br />

India<br />

eggplant, tomato<br />

coffee<br />

tobacco<br />

several weeds<br />

polyphagous<br />

polyphagous<br />

Musa sp.,<br />

several weeds<br />

ornamentals and<br />

many weeds<br />

polyphagous<br />

Linford & Yap 1940<br />

Rahman & Khan 1986<br />

Izquierdo et al. 1987<br />

Tedford & Fortnum 1988<br />

Dabaj & Jenser 1990<br />

Maqbool et al. 1986,<br />

Tedford & Fortnum 1988,<br />

Valdez 1968<br />

Maqbool et al. 1986<br />

Linford et al. 1949<br />

Luc et al. 1990<br />

Luc et al. 1990<br />

Heald et al. 1974,<br />

Inserra et al. 1989<br />

Khan & Khan 1985<br />

Linford & Yap 1940<br />

Rahman & Khan 1986<br />

HAWAII<br />

Pigweed was established in Hawaii prior to 187 1 (Hillebrand 1888). Hypurus bertrandi,<br />

originally misidentified as Ceutorhynchus sp., was reported in 1950 to be numerous<br />

enough in many cases to defoliate P. oleracea and to cause it to collapse as if sprayed<br />

with a herbicide (Bianchi 1955). Nevertheless, in 1992, Hawaiian weed scientists considered<br />

it as one of their worst weeds (W.C. Mitchell pers. comm. 1992), so the control<br />

exerted by H. bertrandi and v'arious non-specific insects is clearly insufficient.<br />

Zimmerman (1957) postulates that H. bertrandi was introduced from the Marianas to<br />

Hawaii, possibly with war material being returned from the battlefields. However it is<br />

more likely to have moved in the reverse direction.<br />

INDIA<br />

Zaka-ur-rab (1991) records Hypurus bertrandi as one of the leaf-mining weevils of the<br />

Indian subcontinent.<br />

PUERTO RlCO<br />

Wolcott (1948) recorded H. bertrandi from Puerto Rico, but no other information is<br />

available.<br />

Major Natural Enemies<br />

Summarised below is what is known of the biology of nine of the natural enemies listed<br />

in table 4.25.2.<br />

Apion sp. Coleoptera: Curculionidae<br />

Apion sp. produces galls in the flower buds of P. oleracea in Brazil (d'Araujo e Silva et<br />

al. 1968a,b) and Apion larvae also cause significant damage by gall formation in flowers<br />

in northern Argentina (Bennett and Cruttwell 1972, Bennett pers. comm. 1992).


216 Biological Control of Weeds: Southeast Asian Prospects<br />

Asphondylia portulacae Diptera: Cecidomyiidae<br />

Oviposition by this flower gall midge into the very small pigweed buds causes them to<br />

develop abnormally. Usually only one larva develops per bud and occupies a chamber in<br />

the swollen receptacle. Galled flowers do not produce seed. A. portulacae is heavily<br />

attacked by parasitoids (Bennett and Cruttwell 1972) and might be an important natural<br />

enemy if freed from them. The genus Asphondylia is considered to be highly host specif-<br />

ic and 52 of its 54 species are known from only a single host. Each of the two exceptions<br />

only attacks two plants of the same genus and Bennett and Cruttwell (1972) suggested,<br />

on the basis of this information, that host specificity testing was unnecessary.<br />

Baris arctithorax Coleoptera: Curculionidae<br />

In Egypt this weevil forms stem galls on pigweed, but is not known from any economic<br />

plant. Eggs are laid singly in cavities gnawed in the stem by the female, leading to the<br />

production of single closed galls in which the larvae feed. Pupation occurs in the soil.<br />

Young infested plants produce weak vegetative growth, few seeds and may even be<br />

killed. Adult weevils feed on the surface of leaves causing white blotches or holes. At<br />

temperatures from 25 to 30°C the development time from egg to adult is about 40 days.<br />

Infestations of up to 74% of plants are recorded in summer and a peak of 95% in autumn<br />

(Awadallah et al. 1976, Tawfik et al. 1976).<br />

Haplopeodes palliatus Diptera: Agromyzidae<br />

The genus Haplopeodes contains 13 species, all from the Americas and known on only<br />

four plant families-Portulacaceae (1 species) Amaranthaceae (3 species),<br />

Chenopodiaceae (2 species) and Solanaceae (8 species) (Spencer 1990). Each appears to<br />

be specific to a single genus and H. palliatus is known only from l? oleracea. It is a typi-<br />

cal leaf miner.<br />

Heliodines quinqueguttata Lepidoptera: Heliodinidae<br />

Eggs, which are laid singly or in groups of up to 6, hatch in 5 to 6 days and larvae wan-<br />

der some distance over the plant before mining into a leaf, stem or seed capsule. After 7<br />

to 8 days the fifth instar larva leaves the mine and pupates within a flimsy silk cocoon<br />

attached to the stems or leaves of the plant. Larvae are attacked by a braconid endopara-<br />

sitoid, Pholetesor (= Apanteles) sp. (circumscriptus group).<br />

Host specificity tests were carried out on a wide variety of economic and non-<br />

economic plants, but development was completed only on Portulaca oleracea, P. pilosa<br />

(also weedy) and the ornamental P. grandiflora. However, in the field in Trinidad, neither<br />

P. pilosa nor P. quadriJida (also weedy) were attacked and l? grandiflora was not grown.<br />

There appear to be no records of Heliodines species attacking crops and each species<br />

appears to be restricted to a single plant family. Cruttwell and Bennett (1972b) suggested,<br />

therefore, that it should be considered as a biological control agent.<br />

Hypurus bertrandi Coleoptera: Curculionidae<br />

This tiny (2mm long) weevil has spread unaided from its native France to Egypt (prior to<br />

1926) (Hoffman and Tempbre 1944, Tawfik et al. 1976), Puerto Rico (Wolcott 1948),<br />

Hawaii (1950) (Davis 1955, Maehler 1954), Guam and the Northern Marianas


4.25 Portulaca oleracea 217<br />

(Zimmerman 1957), California (1980) and Queensland (1993) (R.E. McFadyen pers.<br />

comm.).<br />

Eggs are deposited singly and larvae mine the leaves. Infested leaves wilt and fall;<br />

and the larvae then migrate to fresh leaves, each destroying four or five in its lifetime. If<br />

no undamaged leaves are available the outer tissues of stems are attacked. Pupation<br />

occurs in a cell formed by soil particles cemented by fecal secretion and, in France,<br />

adults overwinter under the bark of trees. Adults feed on leaf margins, stems and devel-<br />

oping seed capsules. Development is rapid, from egg to adult in 10 days at 32.2OC and<br />

under 16 hours light. Z? oleracea is its only reported host plant. In France it is parasitised<br />

by a number of wasps (Tawfik et al. 1976, Clement and Norris 1982, Hoffmann and<br />

Tempbre 1944, Norris 1 985, Tempbre 1943, 1 944, 1950).<br />

Neolasioptera portulacae Diptera: Cecidomyiidae<br />

Oviposition in the stem by this midge leads to globular galls up to 1.5 cm in diameter,<br />

each containing up to 10 larvae. Galls retard or prevent growth and also flower and seed<br />

production. In open, infertile sites every pigweed stem may be infested but, in vigorous<br />

growth or in shaded sites, the level of attack is usually very low. The larvae are heavily<br />

attacked by parasitoids.<br />

All except one of the 51 species of Neolasioptera are restricted to one plant genus<br />

and the remaining species only attacks two plant genera. This was taken by Bennett and<br />

Cruttwell (1972) to indicate that N. portulacae is sufficiently host specific to be<br />

employed for biological control.<br />

Pegomya dolosa Diptera: Anthomyiidae<br />

Eggs are laid singly on the underside of the pigweed leaf and hatch after about 3 days.<br />

The larvae are leaf miners, devouring the contents of the leaf and then leaving to enter<br />

another. Two or more leaves are commonly destroyed by each larva. After feeding for<br />

about 7 days larvae leave to pupate in the soil, later emerging as 3 to 4 mm long adults.<br />

Eggs are parasitised and larvae are attacked by a pteromalid wasp.<br />

Schizocerella pilicornis Hymenoptera: Tenthredinidae<br />

This leaf-mining sawfly occurs naturally over a very wide range from Argentina and<br />

Brazil to USA (Muesebeck et al. 195 1). It appeared unaided in eastern Australia (Benson<br />

1962, Krombein and Burks 1967). There are two biotypes. The larvae of one which is<br />

widespread in USA mines the leaves, whereas those of the other (from Mississippi north-<br />

wards) feeds externally on the leaves.<br />

Females mate soon after emergence and lay up to 40 eggs singly in the edges of the<br />

leaves. The larvae mine the leaves, damaging each to the point of collapse before moving<br />

to another. At least two leaves are destroyed by each larva. The mature larvae enter the<br />

soil and spin cocoons. The life cycle can be completed in 13 days and there are a number<br />

of generations each year (Clement and Norris 1982, Gorske et al. 1976). In California<br />

prepupae in diapause overwinter in the soil. Adults live for a day and do not feed. In<br />

California up to 84% of Z? oleracea leaves were severely damaged, leading to defoliation<br />

and sometimes death of the plant. When Z? oleracea was protected by insecticide from<br />

both S. pilicornis and Hypurus bertrandi it produced about four times as much seed as


218<br />

Biological Control of Weeds: Southeast Asian Prospects<br />

unprotected plants, although the latter still produced enough (4000 to 5000/m2/day) to<br />

maintain a high seed bank in the soil (Force 1965, Garlick 1922, Gomes de Lima 1968,<br />

Gorske et al. 1977, Norris 1985, Webster and Mally 1900).<br />

S. pilicornis has not been recorded from any economic plant and, in starvation tests,<br />

was only able to feed on P. oleracea and the related Montia perfoliata (Gorske et al.<br />

1976). A microsporidan, Nosema pilicornis causes high mortality in infected S. pilicornis<br />

larvae in USA and should be eliminated during any transfer of the sawfly to new areas<br />

(Gorske and Maddox 1978).<br />

Comment<br />

It is generally believed that, through coevolution, there are likely to be a number of spe-<br />

cific (or nearly specific) natural enemies of an organism in its area of origin.<br />

Furthermore, that not all such organisms will have accompanied their host when it has<br />

moved outside its area of origin. If this generalisation is applied to P. oleracea it can be<br />

seen that 8 of its 14 specific (or nearly specific) natural enemies are of American origin<br />

but no more than 2 from any other region of the world (Table 4.25.2). The inference from<br />

this is that P. oleracea is probably of American origin, an inference supported by the<br />

finding of seeds in Louisiana, Illinois and Kentucky dating between lOOOBC and 750AD<br />

and pollen and seeds in Ontario sediments dating back to 1350AD (Miyanishi and Cavers<br />

1980). This suggests that, if it is desired to evaluate insects additional to those listed in<br />

table 4.25.2, they should first be sought from the Americas and possibly from amongst<br />

those listed by Waterhouse (1993b).<br />

The family Portulacaceae is relatively small with 20 genera and about 250 species<br />

worldwide, of which the genus Portulaca contains about half (West 1990). Very few<br />

Portulacaceae are cultivated: Portulaca grandiflora as a brightly flowering garden plant,<br />

Talinum paniculatum and T. triangulare as pot herbs (but they are sometimes regarded as<br />

weeds), Montia fontana for salads, Lewisia spp. as rockery plants and Anacampseros as a<br />

succulent; but these are not considered to be of great economic importance (Cruttwell<br />

and Bennett 1972a).<br />

From what is known about the biology of the insects in table 4.25.2 it appears that,<br />

if a group of them is established in a new country without their own natural enemies,<br />

they should cause serious damage to l? oleracea and significantly reduce its competitive-<br />

ness and seed production.


220 Biological Control of Weeds: Southeast Asian Prospects<br />

Rottboellia cochinchinensis<br />

(after Holm eta/. 1977)


Map 4.26 Rottboellia cochinchinensis<br />

4.26 Rottboellia cochinchinensis 221<br />

Rottboellia cochinchinensis<br />

Rottboellia cochinchinensis is probably of Southeast Asian or Indian origin, although one<br />

biotype may have evolved in East Africa. Very little is known of its insect enemies in<br />

these regions and they certainly merit investigation. Current research on fungal<br />

pathogens indicates that Sporisorium ophiuri is a potential agent for the Americas and<br />

other regions where it does not yet occur.<br />

If preliminary surveys for specific insect enemies in Asia and Africa support a<br />

Southeast Asian origin it is unlikely to be an attractive early target for classical biological<br />

control in this region.


222 Biological Control of Weeds: Southeast Asian Prospects<br />

4.26 Rottboellia cochinchinensis (Lour.) W.D. Clayton<br />

(= Rottboellia exaltata)<br />

Poaceae<br />

itch grass; myet ya, myet ya nge (Myanmar), branjangan (Indonesia), aguitigay<br />

(Philippines), yaa prong khaai (Thailand)<br />

Rating<br />

+++ Indo, Phil<br />

12 ++ Thai<br />

+ Myan, Laos, Viet, Msia<br />

Origin<br />

Uncertain but probably India to Southeast Asia; one biotype in East Africa.<br />

Distribution<br />

Worldwide, and weedy between 23' north and south latitudes (Holm et al. 1977).<br />

Formerly known as Rottboellia exaltata. Two biotypes have been recognised in USA and<br />

at least five in the Philippines (Fisher et al. 1987). The origin of R. cochinchinensis has<br />

not been completely resolved. It is said to be native to India (Holm et al. 1977), but in his<br />

survey of fungal pathogens and their specificity (or lack of it) Evans (pers. comm. 1992)<br />

was led to the conclusion that it may be Southeast Asia; and furthermore, that there is a<br />

distinct East African biotype, with possibly specific natural enemies of its own. It is<br />

interesting that, of the 14 Kenyan tribes visited by Ellison and Evans (1990), 13 had a<br />

separate and specific vernacular name for itch grass. Although it was a common weed<br />

and dense stands occurred at the edge of fields and along roadsides, control was achieved<br />

by early season hoeing and none of the farmers suggested it was a major problem. This<br />

evidence was taken as reinforcing the theory that East Africa is the centre of origin at<br />

least of the local biotype of the weed.<br />

Characteristics<br />

R. cochinchinensis is a tall, erect, strongly tufted, annual grass growing to 3 m. It has stilt<br />

roots. Its leaves and stems have long, sharp, fragile, siliceous, irritating hairs that break<br />

off in the flesh on contact. The inflorescence is a single cylindrical spike.<br />

Importance<br />

It is an aggressive C4, annual grass of 18 tropical and subtropical crops in 28 countries,<br />

including maize, rice, sorghum, soybeans and sugarcane. The heaviest infestations occur<br />

in the Caribbean, Central America, and parts of South America, to which it is a relatively<br />

recent introduction; also a widespread weed in southern Africa. It is an important weed in<br />

sugarcane, maize and upland rice in the Philippines. It is often a primary coloniser of dis-<br />

turbed land. It flowers all year round. Reproduction is by seed and up to 8000 may be


4.26 Rottboellia cochinchinensis 223<br />

produced per plant. The seed is about the size of a rice grain and is not easily separated<br />

from intermingled rice grains. Some seeds germinate immediately, whereas others lie<br />

dormant for varying periods, sometimes years. Buried seeds may germinate and emer-<br />

gence take place from a depth of 15 cm. It is common in open, well-drained places, but<br />

also grows in wet places and even in shallow water. It commonly occurs on contour<br />

banks and roadsides. It prefers sunny or no more than moderately shaded situations, but<br />

can grow in deep shade. Its many needle-like hairs deter hand removal of older plants,<br />

since the hairs penetrate hands and clothing and result in painful infections.<br />

R. cochinchinensis is sometimes grazed and used for green fodder, although avoided<br />

at times by some animals because of its sharp hairs.<br />

Natural enemies<br />

Fungi are the only natural enemies (Tables 4.26.1 to 4.26.3) for which there is any rea-<br />

sonably comprehensive information. Fungi have been surveyed and their specificity is<br />

being examined in a joint International Institute of Biological Control and Long Ashton<br />

Research Station project covering East Africa, South America, India, Nepal, Sri Lanka<br />

and Thailand (Ellison 1992, Ellison and Evans 1990, 1993, Evans 1991, Natural<br />

Resources Institute 1992).<br />

As indicated earlier, R. cochinchinensis shows high biotype variation between coun-<br />

tries and this is correlated with varying levels of susceptibility to different fungal isolates.<br />

Also, a clear positive correlation was found between high pathogen virulence and inade-<br />

quate specificity to itch grass (Ellison 1992). Maize (Zea mays) proved to be the crop<br />

species most at risk from itch grass pathogens, which is not surprising in view of the<br />

close evolutionary relationship of the two genera involved. This suggests that the use of<br />

fungi for classical biological control of itch grass may not show great promise, but that<br />

their use as mycoherbicides might prove effective. All except one of the fungi from tropi-<br />

cal America that have been tested are non-specific to itch grass and most are local<br />

pathogens that have transferred from local grasses (Evans 1987). In Kenya, in addition to<br />

at least 10 non-specific fungi attacking itch grass, a head smut, Sporisorium<br />

(= Sphacelotheca) ophiuri was found, which appears to be restricted to Rottboellia and<br />

the closely related genus Chasmopodium (Ellison and Evans 1990, Zundel 1953).<br />

S. ophiuri is recorded as occurring in East Africa, Sri Lanka, Philippines and<br />

Thailand, but apparently not in the Americas. It is often locally damaging, significantly<br />

reducing vigour and virtually eliminating seeding. Its host specificity is under detailed<br />

investigation (Ellison and Evans 1993, Evans 1991) as a potential candidate for classical<br />

biological control for areas where it does not already occur. In an annual weed where<br />

seeds are the only means of propagation, a destructive seed head disease, such as S. ophi-<br />

uri, is a highly promising biological control agent (Evans 1991).<br />

A Curvularia isolate from Trinidad proved highly damaging to itch grass, while not<br />

damaging rice, maize, sugarcane or pearl millet (Evans 1991). A Curvularia from<br />

Somalia was able to kill R. cochinchinensis in a few days, but was also able to infest<br />

maize. However the crop readily recovered (Ellison 1992). If further tests confirm its<br />

specificity, it may be a potential biological control agent. The same applies to Puccinia


224 Biological Control of Weeds: Southeast Asian Prospects<br />

rottboelliae about which less is recorded (Evans 1987). Special attention is now being<br />

paid to the possibility of developing preparations of one or more of these fungi as a<br />

mycoherbicide. An isolate from Thailand of Colletotrichium sp. which appears to be spe-<br />

cific to itch grass has been selected from 900 fungal samples and field trials have already<br />

demonstrated that an appropriate formulation has potential against this weed, particularly<br />

when combined with low doses of herbicide (Ellison 1992, Ellison and Evans 1993,<br />

Natural Resources Institute 1992).<br />

Surprisingly few insects (Table 4.26.1) have been recorded attacking itch grass and<br />

only one unidentified gall midge recorded in India from Rottboellia compressa (Barnes<br />

1946) might, if it attacks R. cochinchinensis also, be specific enough to be a candidate<br />

agent. It is regrettable that parallel observations were not made on insects during the<br />

extensive fungal surveys. In East Africa a stem borer, a lepidopteran leaf feeder and a fly<br />

larva all proved to be non-specific graminaceous feeders (H.C. Evans pers. comm. 1992,<br />

1993).<br />

R. cochinchinensis is an alternative host for a number of viruses, almost all of them<br />

serious diseases of maize (Table 4.26.3). It is surprising that the only record encountered<br />

dealing with nematodes related to a study of 16 plant parasitic species attacking sugar-<br />

cane in the Philippines. This found that itch grass was not infected by Meloidogyne sp.<br />

(Reyes and Beguico 1978).<br />

Comment<br />

Rottboellia belongs to the same grass tribe (Andropogoneae), but not to the same sub-<br />

tribes, as Saccharum, Sorghum and Zea (Table 4.26.4). This suggests that candidates for<br />

classical biological control of this weed will have to pass extensive host specificity test-<br />

ing against all of the crop and pasture grasses belonging to these and related genera<br />

before being considered for release.<br />

Table 4.26.1 Natural enemies of Rottboelliu cochinchinensis: insects.<br />

Species Location Other hosts References<br />

Orthoptera<br />

GRYLLIDAE<br />

Euscyrtus concinnus Philippines Eleusine indica, Barrion & Litsinger 1980<br />

Dactylocteniurn<br />

aegyptiurn, Cyperus<br />

rotundus, Digitaria<br />

sanguinalis<br />

Pteronernobius sp. Sierra Leone Alghali & Domingo 1982<br />

Hemiptera<br />

APHlDlDAE<br />

Myzus persicae Peru a very wide range Ortiz 198 1<br />

Uroleucon (= Dactynotus)<br />

. ambrosiae USA sorghum, maize Koike 1977<br />

I<br />

(continued on next page)


4.26 Rottboellia cochinchinensis 225<br />

Species Location Other hosts References<br />

CICADELLIDAE<br />

Nephotettix nigrornaculatus Sierra Leone<br />

DELPHACIDAE<br />

Peregrinus rnaidis Venezuela<br />

Coleoptera<br />

COCCINELLIDAE<br />

Chnootriba (= Epilachna)<br />

similis Sierra Leone<br />

Diptera<br />

AGROMYZIDAE<br />

Pseudonapornyza<br />

philippinensis Philippines<br />

CEClDOMYllDAE<br />

a gall midge India<br />

MUSCIDAE<br />

Atherigona soccata Kenya<br />

Lepidoptera<br />

LYMANTRIIDAE<br />

Psalis pennatula Kenya<br />

NOCTUIDAE<br />

Sesarnia sp. Ghana<br />

Spodoptera frugiperda USA<br />

PYRALIDAE<br />

Chilo sp.<br />

sp.?<br />

Ghana<br />

Kenya<br />

rice, Ischaernurn Alghali & Domingo 1982<br />

rugosurn, Paspalurn<br />

vaginaturn<br />

a virus transmitter Ferreira et al. 1989, Migliori<br />

on many hosts & Lastra 1980, 198 1,<br />

Trujillo et al. 1974<br />

Alghali & Domingo 1982<br />

known only from Spencer 1961<br />

R. cochinchinensis<br />

recorded only from Barnes 1946<br />

Rottboellia cornpressa<br />

rice Ogwaro 1978<br />

generalist Poaceae H.C. Evans pers. comm. 1993<br />

leaf eater<br />

Sampson & Kumar 1986<br />

many graminaceous Rajapakse et al. 1988<br />

crops<br />

Sampson & Kumar 1986<br />

generalist Poaceae H.C. Evans pers. comm. 1993<br />

leaf eater<br />

Table 4.26.2 Natural enemies of Rottboellia cochinchinensis: fungi.<br />

Fungi Location Other hosts References<br />

Ascochyta sp.<br />

Bipolai-is perotidis<br />

Cercospora spp.<br />

Kenya no tests on other Ellison & Evans 1990, 1993<br />

plants<br />

Australia many other grasses QDPI, unpublished<br />

Kenya, Ethiopia, maize mildly Ellison & Evans 1990, 1993<br />

Zanzibar,<br />

Madagascar,<br />

Americas, SE Asia<br />

(continued on next page)


226 Biological Control of Weeds: Southeast Asian Prospects<br />

Table 4.26.2 (continued)<br />

Fungi<br />

Cercospora fusimaculans<br />

Cercospora rottboelliae<br />

Cochliobolus<br />

(Helminthosporiurn) bicolor<br />

Cochliobolus (Curvularia)<br />

cymbopogonis<br />

Cochliobolus heterostrophus<br />

(Drechslera maydis)<br />

Colletotrichium sp.<br />

Coniothyrium sp.<br />

Curvularia spp. (many)<br />

Diaporthe (Phomopsis) sp.<br />

Diplodia sp.<br />

Fusarium moniliforme<br />

(Gibberella fujikuroi)<br />

Glornerella (Colletotrichium)<br />

grarninicola<br />

Leptosphaeria sp.<br />

Magnaporthe (Pyricularia)<br />

grisea<br />

Phaeoseptoria sp.<br />

Phyllachora sacchari<br />

Puccinia rottboelliae<br />

Location Other hosts References<br />

Sudan, Zambia, many grasses<br />

Ghana, Guinea,<br />

Togo,.Uganda,<br />

Jamaica<br />

Guinea<br />

Zimbabwe, sugarcane, maize,<br />

Somalia pearl millet<br />

Bolivia, Kenya, sugarcane, maize,<br />

Trinidad, pearl millet,<br />

Zanzibar, USA, sorghum<br />

SE Asia<br />

Kenya, Papua sugarcane, maize<br />

New Guinea,<br />

SE Asia<br />

Thailand (this species is close<br />

to C. graminicola)<br />

Africa, SE Asia<br />

Trinidad, Papua most (not all) attack<br />

New Guinea, economic crops<br />

Madagascar,<br />

Somalia, Zanzibar<br />

Kenya, SE Asia maize mildly<br />

Kenya no tests on other<br />

plants<br />

Guatemala the particular strain<br />

tested had limited<br />

host range with no<br />

symptoms in maize,<br />

sorghum or sugar<br />

Jimenez et al. 1990<br />

cane, but other strains<br />

attack these and rice<br />

India, Nepal, No Colletotrichiurn Evans 1987, 1991<br />

Sri Lanka, infection observed<br />

Thailand in East Africa<br />

Kenya, SE Asia no tests on other<br />

plants<br />

Ellison & Evans 1990, 1993<br />

Kenya, maize mildly, also<br />

Zimbabwe Eleusine spp.<br />

Kenya, SE Asia no tests on other<br />

plants<br />

Asia, Nigeria,<br />

Sicily, Argentina<br />

Kenya, Mada- limited host range<br />

gascar, Ghana,<br />

Uganda, Zambia,<br />

Ethiopia, Guinea,<br />

Nigeria, Sierra<br />

Leone, Sudan,<br />

Zimbabwe, India<br />

Evans 1987<br />

Evans 1987<br />

Ellison & Evans 1990. 1993<br />

Ellison & Evans 1990, 1993,<br />

Evans 1987, Walker &<br />

White 1979<br />

Ellison & Evans 1990, 1993,<br />

Evans 1987<br />

Ellison 1992, Ellison & Evans<br />

1993<br />

Ellison & Evans 1993<br />

Ellison 1992, Evans 1991<br />

Ellison & Evans 1990, 1993<br />

Ellison & Evans 1990. 1993<br />

Ellison & Evans 1990, 1993,<br />

Evans 1987<br />

Ellison & Evans 1990, 1993<br />

Anahosur and Sivanesan 1978<br />

Ellison & Evans 1990, 1993,<br />

Evans 1987<br />

(continued on next page)


4.26 Rottboellia cochinchinensis 227<br />

Fungi Location Other hosts References<br />

Pyrenochaeta sp. SE Asia<br />

Sphacelotheca rottboelliae Malawi, India<br />

Sporisorium (= Sphacelotheca) Kenya, Somalia,<br />

ophiuri Sudan, Uganda,<br />

Zimbabwe,<br />

Sierra Leone,<br />

Sri Lanka,<br />

Philippines<br />

Ustilago scitaminea Philippines<br />

Ellison & Evans 1993<br />

also on Saccharum Evans 1987<br />

spontaneum<br />

limited host range, Ellison & Evans 1990, 1993,<br />

and not present Evans 1987, 1991<br />

in the Americas<br />

Latiza 1980<br />

Table 4.26.3 Natural enemies of Rottboellia cochinchinensis: viruses.<br />

Virus Location Other hosts References<br />

corn leaf gall virus Philippines Agati & Calica 1950<br />

maize stripe tenuivirus USA sorghum Bradfute & Tsai 1990<br />

maize stripe virus USA sorghum Gingery et al. 1981<br />

maize hoja blanca Venezuela sorghum Ferreira et al. 1989<br />

maize white leaf Venezuela Trujillo et al. 1974<br />

maize rayado fine Texas several grasses Nault et al. 1980<br />

maize mosaic Guadeloupe,<br />

French Guinea sorghum Migliori & Lastra 198 1<br />

maize dwarf mosaic USA sorghum, sugarcane Gillespie & Koike I973<br />

maize yellow mottle Nigeria Thottapilly et al. 1992<br />

virus like disease of maize Guadaloupe sorghum Migliori & Lastra 1980<br />

rice leaf gall Philippines Agati & Calica 1950<br />

Table 4.26.4 Taxonomic position of the major exotic grass weeds (bold text) in rela-<br />

tion to the major genera of crops in the family Poaceae (= Gramineae).<br />

Subfamily Tribe Sub-tribe Genera<br />

Bambusoideae Bambuseae<br />

Oryzeae<br />

Pooideae Triticeae<br />

Aveneae<br />

Chloridoideae Eragrostideae<br />

Cynodonteae<br />

Panicoideae Paniceae<br />

Andropogoneae<br />

Maydeae<br />

Bambusa<br />

Oryza<br />

Hordeum, Secale,<br />

Triticum<br />

Avena<br />

Eleusine, Eragrostis<br />

Cynodon<br />

Setariinae Echinochloa, Panicum,<br />

Paspalum, Setaria<br />

Digitariinae Digitaria<br />

Cenchrinae Pennisetum<br />

Saccharinae Saccharum<br />

Sorghinae Sorghum<br />

Rottboelliinae Rottboellia<br />

Tripsacinae Zea


228 Biological Control of Weeds: Southeast Asian Prospects<br />

Sphenoclea zeylanica<br />

(after Holm et a/. 1977)


Map 4.27 Sphenoclea zeylanica<br />

4.27 Sphenoclea zeylanica 229<br />

Sphenoclea zeylanica<br />

Goose weed, Sphenoclea zeyhnica, is native to Tropical Africa where it is not regarded<br />

as a weed, although there are no natural enemies recorded from it there. In Southeast<br />

Asia, where it is an important weed of rice, and in India, it is sometimes severely affected<br />

by a fungus which may have some promise as a bioherbicide.<br />

A survey for natural enemies in its area of origin would be required to evaluate<br />

the prospects for its biological control.


230 Biological Control of Weeds: Southeast Asian Prospects<br />

4.27 Sphenoclea zeylanica Gaertn.<br />

Sphenocleaceae<br />

gooseweed; goenda (Indonesia), silisilihan (Philippines), pakpawd, phak pot<br />

(Thailand) xa b6ng (Vietnam)<br />

Rating<br />

+++ Msia<br />

14 ++ Thai, Camb, Phil<br />

+ Myan, Laos, Viet, Brun, Indo<br />

Origin<br />

Tropical Africa<br />

Distribution<br />

In tropical and subtropical regions across the world. From Iran extending eastwards to<br />

Indonesia and the Philippines, also China, Japan, USA, the ~aribbean, Guyana, Surinam<br />

and Madagascar. Not reported from Papua New Guinea, Australia or the oceanic Pacific.<br />

Characteristics<br />

S. zeylanica is an erect, fleshy, herbaceous annual, often with much branched, hollow<br />

stems, growing to 1.5 m; leaves alternate, oblong to lanceolate, tapering to both ends;<br />

flowers sessile in dense spikes, terminal, whitish; seed yellowish brown, 0.5 mm long;<br />

roots cord-like.<br />

Importance<br />

S. zeylanica is unusual in that it is not reported as a weed in any crop except rice (Holm<br />

et al. 1977). It thrives in damp ground at altitudes up to 350 m. In Africa it grows in the<br />

mud of tidal creeks, but does not have this habit in Malaysia. It occurs on the sides of<br />

ponds and along ditches and rivers, on dry river beds and in seasonal swamps. It prefers<br />

stagnant water sites. It reproduces continuously by seed in the Philippines. In spite of its<br />

competition with the rice plant, S. zeylanica can give valuable practical control (up to<br />

99%) of populations of rice nematodes (Hirschmaniella spp.), with the additional benefit<br />

of increased soil nitrogen. It acts through the production of toxic plant exudates<br />

(Mohandes et al. 1981).<br />

In Java, young plants and tips of older plants are steamed and eaten with rice.<br />

Natural enemies<br />

The only natural enemy encountered in the literature search is a fungus (Table 4.27.1).<br />

This was a severe infestation of the fungus Cercosporidiurn helleri on the lower surface<br />

of S. zeylanica leaves in India (Ponnappa 1967). The affected leaves became deformed<br />

and fell off. Similar fungi capable of causing death of the weed were observed at Los


4.27 Sphenoclea zeylanica 231<br />

Banos, Philippines and at Prey Phadu, Cambodia (Moody et al. 1987). If this fungus<br />

proves to be adequately specific it may have some value as a bioherbicide.<br />

Table 4.27.1 Natural enemies of Sphenoclea zeylanica<br />

Species Location References<br />

NEMATODE<br />

Meloidogyne graminicola Luc et al. 1990<br />

FUNGUS<br />

Cercosporidium helleri Cambodia, India, Moody et al. 1987,<br />

Philippines Ponnappa 1967


5 References<br />

Abe, H. and Ui, T. 1986. Host range of<br />

Polymyxa betae Keskin strains in rhizoma-<br />

nia-infested soils of sugar beet fields in<br />

Japan. Annals of the Phytopathological<br />

Society of Japan 52: 394-403. (Weed<br />

Abstracts 36: 2228, 1987).<br />

Abenes, M.L.P. and Khan, Z.R. 1990. Feeding<br />

and food assimilation by two species of<br />

rice leaffolders on selected weed plants.<br />

International Rice Research Newsletter<br />

15(3): 3 1-32.<br />

Ablin, M.P. 1992. Heteropsylla sp. (Psyllidae)<br />

successfully controls pasture infestations<br />

of Mimosa invisa within three years of re-<br />

lease in Australia. p. 54, Abstracts, VIII<br />

International Symposium on Biological<br />

Control of Weeds, Lincoln University,<br />

Canterbury, New Zealand, 2-7 February<br />

1992.<br />

Ablin, M.P. 1993a. Insecticide exclusion with<br />

carbofuran demonstrates the effectiveness<br />

of Heteropsylla spinulosa as a biological<br />

control agent for Mimosa invisa in North<br />

Queensland. Abstract, 14 Asian Pacific<br />

Weed Science Society and 10th Australian<br />

Weed Society Conference, September<br />

1993, Brisbane.<br />

Ablin, M. 1993b. Successful establishment of<br />

Heteropsylla spinulosa on Mimosa invisa<br />

in Papua New Guinea. Queensland<br />

Department of Lands, Memorandum, lp.<br />

Acosta, O., Veitia, A. and Wade, J. 1986.<br />

Malezas hospedantes de Meloidogyne spp.<br />

en areas tabacaleras de la Preoincia de<br />

Sancti Spiritus. Ciencia y Tecnica en la<br />

Agricultura, Proteccion de Plantas 9(4)<br />

3 1-40. (Helminthological Abstracts,<br />

Series B, 58: 1410,1989).<br />

Adams, A. 1967. The vectors and alternate<br />

hosts of groundnut rosette virus in Central<br />

Province, Malawi. Rhodesian, Zambian,<br />

Malawian Journal of Agricultural<br />

Research 5: 145-1 5 1. (Holm et al. 1977).<br />

Agarwal, B.D. 1985. Biology of Hypolixus<br />

truncatulus Fabr. (Coleoptera:<br />

Curculionidae) forming galls on the stem<br />

of Amaranthus spinosus Linn. in India.<br />

Cecidologia Internationale 6(


234 Biological Control of Weeds: Southeast Asian Prospects<br />

Almeida, A.M.R. 1979. Experimental trans-<br />

mission of soybean mosaic virus by an<br />

aphid Dactynotus sp. occuring on Bidens<br />

pilosa, Paranh State, Brazil (Portuguese).<br />

Fitopathologia Brasiliera 4: 509-5 10.<br />

Ambika, S.R. and Jayachandra 1990. The<br />

problem of Chromolaena weed.<br />

Chromolaena odorata Newsletter 3: 1-6.<br />

Anahosur, K.H. and Sivanesan, A. 1978.<br />

Phyllachora sacchari causes tar spot or<br />

black spot on leaves of Polytoca macro-<br />

phylla, Rottboellia exaltata, Saccharum,<br />

Sorghum. Descriptions of Pathological<br />

Fungi and Bacteria, Commonwealth<br />

Mycological Institute, Kew, UK. 59(588)<br />

~PP.<br />

Ananthakrishnan, T.N. and Thangavelu, K.<br />

1976. The cereal thrips (Haplothrips gan-<br />

glbaueri Schmutz) with special reference<br />

to the trends of infestation on Oryza sativa<br />

and the weed Echinochloa crus-galli.<br />

Proceedings of the Indian Academy of<br />

Science B 83: 196-201.<br />

Ang, O.C., Poh, T.W. and Chuan, L.Y. 1977.<br />

A whitefly-borne virus disease of<br />

Ageratum conyzoides (Linn.) in Malaysia.<br />

MARDI Research Bulletin 5: 148-152.<br />

Anon 1960. Index of plant diseases in the<br />

United States. Handbook 165. United<br />

States Department of Agriculture,<br />

Washington, D.C. 53 lpp.<br />

Anon 1973. Some Prospects for Aquatic<br />

Weed Management in Guyana. Workshop<br />

in Aquatic Weed Management and<br />

Utilization. National Science Research<br />

Council, Guyana, and National Academy<br />

of Science, USA. 1973. Georgetown,<br />

Guyana.<br />

Anon 1976. Annual Report, 1975-76. 91pp.<br />

Queensland Department of Primary<br />

Industries, Brisbane, Australia.<br />

Anon 1988. Tully insect release aimed at GSP<br />

control. Bulletin, Bureau of Sugar<br />

Experiment Stations 24: 8-9.<br />

Anon 1992. Stem-borer with promise. Ecos<br />

74: 3.<br />

Ashton, H.I. 1973. Aquatic Plants of<br />

Australia. Melbourne University Press.<br />

Melbourne, Australia. 368pp.<br />

Aterrado, E.D. 1986a. Pareuchaetes<br />

pseudoinsulata caterpillar on<br />

Chromolaena odorata: a new Philippines<br />

record. Philippines Journal of Coconut<br />

Science 1 l(2): 59-60.<br />

Aterrado, E.D. 1986b. Notes on the presence<br />

of Pareuchaetes pseudoinsulata Rego<br />

Barros (Lepidoptera: Arctiidae) a potential<br />

biotic agent for the control of<br />

Chromolaena odorata (L.) King and<br />

Robinson, in Palawan: a new Philippine<br />

record. 17th Annual Conference of the<br />

Pest Control Council of the Philippines,<br />

Iloilo City, 8-10 May 1986, 7pp typescript.<br />

Aterrado, E.D. and Talatala-Sanico, R.L.<br />

1988. Status of Chromolaena odorata research<br />

in the Philippines. pp. 53-55 in<br />

Proceedings of the First International<br />

Workshop on Biological Control of<br />

Chromolaena odorata. Agricultural<br />

Experiment Station, Mangilao, Guam.<br />

Awadallah, K.T., Tawfik, M.F.S. and<br />

Shalaby, F.F. 1976. Notes on the life history<br />

of Baris arctithorax Pic on the weed<br />

Portulaca oleracea L. (Coleoptera:<br />

Curculionidae). Bulletin of the Entomological<br />

Society of Egypt 60: 35-43.<br />

Ba-Angood, S.A.S. 1977. Observations on<br />

food preference and feeding habits of three<br />

important species of Acrididae in the<br />

Sudan. Zeitschrift fiir Angewandte<br />

Entomologie 83: 344-350.<br />

Anon 1977. Hawaii pest report. Detection.<br />

Ba-Angood, S.A.S. and Khidir, E.E. 1975.<br />

Cooperative Plant Pest Reporter 2(>) : 1 1. Comparative acceptability of different<br />

Anon 1979. Annual Report of the Research food plants by some species of Acrididae.<br />

ranch, Department of Agriculture, Zeitschrift fiir Angewandte Entomologie<br />

Sarawak, for the year 1977. Kuching, 78: 291-293.<br />

Sarawak 257pp. (Review of Plant<br />

Pathology).<br />

-


Baer, R.G. and Quimby, P.C. 1981.<br />

Laboratory rearing and life history of<br />

Arzama densa, potential native biological<br />

control agent against water hyacinth.<br />

Journal of Aquatic Plant Management<br />

19: 22-26.<br />

Baker, G.E., Sutton, D.L. and Blackburn, R.D.<br />

1974. Feeding habits of the white amur on<br />

water hyacinth. Hyacinth Control Journal<br />

12: 58-62.<br />

Baker, P.S. 1990. Parasitism of the mimosa<br />

psyllid (Heteropsylla sp.) by two para-<br />

sitoids of the leucaena psyllid<br />

(Heteropsylla cubana Crawford). A report<br />

for ACIAR. International Institute of<br />

Biological Control, Trinidad. 8pp.<br />

Baki, B.B., Latief, A. and Puat, N.A. 1990.<br />

The genus Pennisetum in Peninsular<br />

Malaysia with particular reference to P.<br />

setosum, a new record for the weed flora.<br />

Proceedings, Symposium on Weed<br />

Management. BIOTROP Special<br />

Publication 38: 71-79.<br />

Bakker, W. 1974. Notes on East African plant<br />

virus diseases. VI. Virus diseases of<br />

Passiflora in Kenya. East African<br />

Agricultural and Forestry Journal<br />

40(1): 11-23. (Review of Plant Pathology<br />

54: 5499,1975).<br />

Ballou, J.K., Tsai, J.H. and Center, T.D. 1986.<br />

Effect of temperature on the development,<br />

natality and longevity of Rhopalosiphum<br />

nymphaeae (L.) (Homoptera: Aphididae).<br />

Environmental Entomology 15:<br />

1096-1 099.<br />

Ballou, J.K., Tsai, J.H. and Wilson, S.W.<br />

1987. Delphacid planthoppers Sogatella<br />

kolophon and Delphacodes idonea<br />

(Homoptera: Delphacidae): descriptions of<br />

immature stages and notes on biology.<br />

Annals of the Entomological Society of<br />

America 80: 3 12-3 19.<br />

Baloch, G.M., Khan, A.G. and Zafar, T. 1977.<br />

Natural enemies of Abutilon, Amaranthus,<br />

Rumex and Sorghum. Commonwealth<br />

Institute of Biological Control. Report of<br />

work carried out during 1976. pp. 61-62.<br />

5 References 235<br />

Baloch, G.M., Zafar, T. and Khan, A.G. 1976.<br />

Natural enemies of Abutilon, Amaranthus,<br />

Rumex and Sorghum in Pakistan.<br />

Commonwealth Institute of Biological<br />

Control. Report of work carried out during<br />

1975. pp. 69-70.<br />

Bandong, J.P. and Litsinger, J.A. 1984. Plant<br />

hosts of the rice caseworm. International<br />

Rice Research Newsletter 9(2): 20-21.<br />

Bardner, R. and Mathenge, W.M. 1974. First<br />

record of Phytometra orichalcea (F.)<br />

(Lepidoptera: Noctuidae) feeding on coffee<br />

foliage. East African Agricultural and<br />

Forestry Journal 40: 214. (Review of<br />

Applied Entomology, Series A 64: 3021,<br />

1976).<br />

Barneby, R.C. 1989. Reflections on typification<br />

and application of the names Mimosa<br />

pigra L. and M. asperata L.<br />

(Mimosaceae). pp. 37-142 in The Davies<br />

and Hedge Festschrift (ed. Kit Tan).<br />

Edinburgh University Press.<br />

Barnes, D.E. and Chan, L.G. 1990. Common<br />

Weeds of Malaysia and their Control.<br />

Ancom Berhad, Persiaran Selangor,<br />

Malaysia. 349pp.<br />

Barnes, H.F. 1931. Gall midges<br />

(Cecidomyidae) whose larvae prevent seed<br />

production in grasses (Gramineae).<br />

Bulletin of Entomological Research 22:<br />

199-203.<br />

Barnes, H.F. 1946. Gall Midges of Economic<br />

Importance. Vol I1 Gall Midges of Fodder<br />

Crops. 160pp. Crosby Lockwood and Son,<br />

London.<br />

Barnes, H.F. 1954a. The sorghum midge<br />

problem. pp. 101-104 in Report of the<br />

Sixth Commonwealth Entomological<br />

Conference 7-16 July 1954.<br />

Commonwealth Institute of Entomology,<br />

London.<br />

Barnes, H.F. 1954b. Memorandum on the gall<br />

midges living on the sorghums, the<br />

Panicum millets and rice. pp. 155-160 in<br />

Report of the Sixth Commonwealth<br />

Entomological Conference 7-16 July<br />

1954. Commonwealth Institute of<br />

Entomology, London.


236 Biological Control of Weeds: Southeast Asian Prospects<br />

Barnes, H.F. 1956. Gall Midges of Economic<br />

Importance. Volume VII. Gall Midges of<br />

Cereal Crops. Crosby Lockwood and Son<br />

Ltd, London. 26 1 pp.<br />

Barreto, J.M. 1982. Disease of coconut associ-<br />

ated with flagellate protozoa (Phytomonas<br />

sp.) in the Paria peninsula, State of Sucre.<br />

(Spanish). Agronomia Tropical<br />

32: 291-302 (Protozoological Abstracts<br />

11: 2864, 1987).<br />

Barrett, S.C.H. and Forno, I.W. 1982. Style<br />

morph distribution in New World popula-<br />

tions of Eichhornia crassipes (Mart.)<br />

Solms-Laubach (Water Hyacinth). Aquatic<br />

Botany 13: 299-306.<br />

Barrion, A.T. and Litsinger, J.A. 1980.<br />

Euscyrtus concinnus (Orthoptera:<br />

Gryl1idae)-a new rice pest in the<br />

Philippines. International Rice Research<br />

Newsletter 5(5): 19.<br />

Barrion, A.T. and Litsinger, J.A. 1986.<br />

Ephydrid flies (Diptera: Ephydridae) of<br />

rice in the Philippines. International Rice<br />

Research Newsletter 1 l(4): 29-30.<br />

Barrion, A.T. and Litsinger, J.A. 1987. The<br />

bionomics, karyology and chemical con-<br />

trol of the node-feeding black bug,<br />

Scotinophara latiuscula Breddin<br />

(Hemiptera: Pentatomidae) in the<br />

Philippines. Journal of Plant Protection in<br />

the Tropics 4: 37-54.<br />

Baudoin, A.B.A.M. 1986. First report of<br />

Dichotomophthora indica on common<br />

purslane in Virginia. Plant Disease<br />

70: 352.<br />

Bayot, R.G., Watson, A.K. and Moody, K.<br />

1992. Control of paddy weeds by plant<br />

pathogens in the Philippines. Proceedings<br />

of International Symposium on Biological<br />

Control and Integrated Management of<br />

Paddy and Aquatic Weeds in Asia.<br />

National Agricultural Research Center,<br />

Tsukuba, Japan, pp. 273-283.<br />

Beardsley , J. W. 1962. Hysteroneura setariae<br />

(Thomas). Proceedings of the Hawaiian<br />

Entomological Society 18: 21.<br />

Beardsley, J.W. 1980. Notes and exhibitions.<br />

Agraulis vanillae (L.). Proceedings of the<br />

Hawaiian Entomological Society<br />

23: 155-157.<br />

Bennett, F.D. 1955. A record of an external<br />

egg parasite from Trinidad BWI. Canadian<br />

Entomologist 87: 406.<br />

Bennett, F.D. 1965. Proposals for a programme<br />

leading to the biological control<br />

of water hyacinth Eichhornia crassipes.<br />

12pp. Commonwealth Institute of<br />

Biological Control, Commonwealth<br />

Agricultural Bureaux.<br />

Bennett, F.D. 1966. Investigations on the insects<br />

attacking the aquatic ferns, Salvinia<br />

spp. in Trinidad and Northern South<br />

America. Proceedings Southern Weed<br />

Conference 19: 497-504.<br />

Bennett, F.D. 1967. Notes on the possibility<br />

of biological control of the water hyacinth<br />

Eichhornia crassipes. Pesticides Abstracts<br />

& News Summary, C, 13: 304-309.<br />

Bennett, F.D. 1968. Insects and mites as potential<br />

controlling agents of water hyacinth<br />

(Eichhornia crassipes (Mart.) Solms.). pp.<br />

832-835 in Proceedings of the Ninth<br />

British Weed Control Conference.<br />

Bennett, F.D. 1970. Insects attacking water<br />

hyacinth in the West Indies, British<br />

Honduras and the USA. Hyacinth Control<br />

Journal 5: 10-13.<br />

Bennett, F.D. 1972. Survey and assessment of<br />

the natural enemies of the water hyacinth,<br />

Eichhornia crassipes. Pesticides Abstracts<br />

&News Summary, C, 18: 310-311.<br />

Bennett, F.D. 1974. Biological control of<br />

aquatic weeds. Proceedings of the Summer<br />

Institute of Biological Control, University<br />

of Mississippi, pp. 224-237.<br />

Bennett, F.D. 1975. Insects and plant<br />

pathogens for the control of Salvinia and<br />

Pistia. Proceedings of the Symposium on<br />

Water Quality Management through<br />

Biological Control. Gainsville, Florida,<br />

January 29-3 1,1975, pp 28-35.


Bennett, F.D. 1979. List of natural enemies of<br />

water hyacinth Eichhornia crassipes and<br />

of Tribulus cystoides in Mexico. VII<br />

Reunion Nacional de Control Biologico.<br />

Veracruz, Mexico: 137-1 41.<br />

Bennett, F.D. 1982a. Exploration and screening<br />

of natural enemies of water hyacinth.<br />

Workshop on Biological Control of Water<br />

Hyacinth. Commonwealth Science<br />

Council, London, UK. 3-5 May 1982.<br />

Bangalore, India, pp. 27-30.<br />

Bennett, F.D. 1982b. Conflict of interests: Are<br />

biological control and utilization of water<br />

hyacinth compatible? Workshop on<br />

Biological Control of Water Hyacinth.<br />

Commonwealth Science Council, London.<br />

3-5 May 1982. Bangalore, India,<br />

pp. 65-67.<br />

Bennett, F.D. 1984. Biological control of<br />

aquatic weeds. Proceedings of the<br />

International Conference on Water<br />

Hyacinth, Hyderabad, pp. 14-40.<br />

Bennett, F.D. and Cruttwell, R.E. 1972.<br />

Investigations on the insects attacking<br />

Portulaca oleracea L. in the Neotropics. 1.<br />

Insects recorded from P. oleracea and<br />

species encountered in preliminary surveys.<br />

CIBC unpublished report, 12pp.<br />

Bennett, F.D. and Cruttwell, R.E. 1973.<br />

Insects attacking Eupatorium odoratum in<br />

the Neotropics 1. Ammalo insulata (Walk.)<br />

(Lep.: Arctiidae), a potential biotic agent<br />

for the control of Eupatorium oabratum L.<br />

(Compositae). Commonwealth Institute of<br />

Biological Control. Technical Bulletin<br />

16: 105-115.<br />

,Bennett, F.D. and Rao, V.P. 1968.<br />

Distribution of an introduced weed<br />

Eupatorium odoratum Linn. (Compositae)<br />

in Asia and Africa and possibilities of its<br />

biological control. Pesticides Abstracts<br />

and News Summary, C, 14: 277-28 1.<br />

Bennett, F.D. and Yaseen, M. 1975. Control<br />

of Siam weed, Eupatorium odoratum.<br />

Commonwealth Institute of Biological<br />

Control. Report of work carried out during<br />

1974, pp. 79-80.<br />

5 References 237<br />

Bennett, F.D., Yaseen, M. and Beg, M.N.<br />

1975. Report of work carried out during<br />

1974. Aquatic Weeds. Commonwealth<br />

Institute of Biological Control, pp. 78-79.<br />

Bennett, F.D. and Zwolfer, H. 1968.<br />

Exploration for natural enemies of the<br />

water hyacinth in northern South America<br />

and Trinidad. Hyacinth Control Journal<br />

7: 44-52.<br />

Bennett, F.D. and Zwolfer, H. 1969.<br />

Commonwealth Institute of Biological<br />

Control. Work carried out during 1968.<br />

Investigations on the natural enemies of<br />

Eichhornia crassipes. p 80.<br />

Benson, R.B. 1962. The affinities of the<br />

Australian Argidae (Hymenoptera).<br />

Annals and Magazine of Natural History,<br />

Series 13 (5): 63 1-635.<br />

Benson, E.W., Brown, K.S. and Gilbert, L.E.<br />

1976. Coevolution of plants and herbivores:<br />

passion flower butterflies.<br />

Evolution 29: 659-680.<br />

Beshir, M.O. 1983. Water hyacinth in<br />

Sudan-early results. Biocontrol News<br />

and Information 4: 1.<br />

Beshir, M.O. 1984. The establishment and<br />

distribution of natural enemies of water<br />

hyacinth released in Sudan. Tropical Pest<br />

Management 30: 320-323.<br />

Beshir, M.O. and Bennett, F.D. 1985.<br />

Biological control of water hyacinth on the<br />

White Nile, Sudan. Proceedings of the 6th<br />

International Symposium on Biological<br />

Control of Weeds, pp. 491-496.<br />

Best, K.F., Bowes, G.G., Thomas, A.G. and<br />

Maw, M.G. 1980. The biology of<br />

Canadian weeds. 39. Euphorbia esula L.<br />

Canadian Journal of Plant Science<br />

60: 65 1-663.<br />

Bianchi, F.A. 1955. Ceutorhynchus sp.<br />

Proceedings of the Hawaiian<br />

Entomological Society 15: 379-380.<br />

Bianchi, F. 1982. Notes and exhibitions.<br />

Agraulis vanillae (L.). Proceedings of the<br />

Hawaiian Entomological Society<br />

24: 15-16.


238 Biological Control of Weeds: Southeast Asian Prospects<br />

Bianchi, F. 1983. Notes and exhibitions.<br />

Meteorus laphygmae Viereck. Proceedings<br />

of the Hawaiian Entomological Society<br />

24: 169.<br />

Bigot, L. and Vuattoux, R. 1979. Quelques<br />

domkes biologiques et kcologiques sur les<br />

lepidopt2res Pterophoridae de la region de<br />

Lamto (CBte d'Ivoire). Bulletin de<br />

1'Institut Fondamental d'Afrique Noire 41:<br />

837-843. (Review of Applied<br />

Entomology, Series A, 69: 4303, 1981).<br />

Bill, S.M. 1969. The water weed problems in<br />

Australia. Hyacinth Control Journal<br />

8: 1-6.<br />

Booker, R.A. 1964. The effect of sowing date<br />

and spacing on rosette disease of groundnut<br />

in northern Nigeria, with observations<br />

on the vector, Aphis craccivora. Samaru<br />

Research Bulletin 1964 (30) 7pp.<br />

(Agricola).<br />

Bopprk, M. 1991. A non-nutritional relationship<br />

of Zonocerus (Orthoptera) to<br />

Chromolaena (Asteraceae) and general<br />

implications for weed management.<br />

Ecology and ' Management of<br />

Chromolaena odorata. Biotrop Special<br />

Publication 44: 153-1 61.<br />

Borror, D.J., Delong, D.M. and Triplehorn,<br />

C.A. 1981. An Introduction to the Study of<br />

Insects. Saunders College Publishers,<br />

Toronto, Ontario. (Maun and Barrett<br />

1986).<br />

Bradfute, O.E. and Tsai, J.H. 1990. Rapid<br />

identification of maize stripe virus.<br />

Phytopathology 80: 71 5-719.<br />

Brenan, J.P.M. 1959. Mimosa. Flora of<br />

Tropical East Africa. Leguminosae,<br />

Subfamily. Mimosoideae pp. 42-47.<br />

Brues, C.T. 1946. Insect Dietary. Harvard<br />

University Press, Cambridge, USA,<br />

466~~-<br />

Brunken, J.N. 1979. Cytotaxonomy and evaluation<br />

in Pennisetum section Brevivalvula<br />

(Gramineae) in tropical Africa. Botanical<br />

Journal of the Linnean Society 79: 37-49.<br />

Brunt, A., Crabtree, K. and Gibbs, A. 1990.<br />

Viruses of Tropical Plants. CAB<br />

International and ACIAR. 707pp.<br />

Burikam, I. and Napompeth, B. 1980.<br />

Gesonula punctifrons (StAl) (Orthoptera:<br />

Acrididae) as a natural enemy of water<br />

hyacinth (Eichhornia crassipes). National<br />

Biological Control Research Center,<br />

Kasetsart University. Bangkok, Thailand.<br />

Technical Bulletin 8: 1-12.<br />

Burkill, I.H. 1935. A Dictionary of the<br />

Economic Products of the Malay<br />

Peninsula, London. Two volumes.<br />

Carroll, C.R. and Risch, S.J. 1984. The dynamics<br />

of seed harvesting in early successional<br />

communities by a tropical ant<br />

Solenopsis geminata. Oecologia<br />

61: 388-392.<br />

Casafias-Arango, A., Trujillo, E.E., de<br />

Hernandez A.M. and Taniguchi, G. 1990.<br />

Field biology of Cyanotricha necyria<br />

Felder (Lep., Dioptidae) a pest of<br />

Passiflora spp. in southern Columbia's<br />

and Ecuador's Andean region. Journal of<br />

Applied Entomology 109: 93-97.<br />

Catindig, J.L.A., Barrion, A.T. and Litsinger,<br />

J.A. 1993. Developmental biology and<br />

host plant range of rice-feeding tiger moth<br />

Creatonotus gangis (L.). International<br />

Rice Research Notes 18(3): 34-35.<br />

Center, T.D. and Balciunas, J.K. 1982. The biological<br />

control of water hyacinth in the<br />

United States. Workshop on Biological<br />

Control of Water Hyacinth.<br />

Commonwealth Science Council, London.<br />

3-5 May 1982. Bangalore, India, pp.<br />

57-62.<br />

Center, T.D., Balciunas, J.K. and Habeck,<br />

D.H. 1982. Descriptions of Sameodes albiguttalis<br />

(Lepidoptera: Pyralidae) life<br />

stages with key to Lepidoptera larvae on<br />

water hyacinths. Annals of the<br />

Entomological Society of America 75:<br />

47 1-479.


Center, T.D., Cofrancesco, A.F. and<br />

Balciunas, J.K. 1989. Biological control of<br />

wetland and aquatic weeds in the south-<br />

eastern United States. Proceedings 7th<br />

International Symposium on Biological<br />

Control of Weeds 6-1 1 March 1988,<br />

Rome, Italy, pp. 239-262.<br />

Center, T.D. and Dray, F.A. 1992.<br />

Associations between water hyacinth wee-<br />

vils (Neochetina eichhorniae and N.<br />

bruchi) and phenological stages of<br />

Eichhornia crassipes in southern Florida.<br />

Florida Entomologist 75: 196-21 1.<br />

Center, T.D. and Durden, W.C. 1981. Release<br />

and establishment of Sameodes albiguttalis<br />

for the biological control of water hyacinth.<br />

Environmental Entomology<br />

10: 75-80.<br />

Center, T.D. and Durden, W.C. 1986.<br />

Variation in water hyacinthlweevil interactions<br />

resulting from temporal differences<br />

in weed control efforts. Journal of Aquatic<br />

Plant Management 24: 28-38.<br />

Center, T.D., Cofrancesco, A.F. and<br />

Balciunas, J.K. 1989. Biological control of<br />

wetland and aquatic weeds in the southeastern<br />

United States. Proceedings 7th<br />

International Symposium on Biological<br />

Control of Weeds, pp. 239-262.<br />

Chacko, M.J. 1988. Prospects for the biological<br />

control of Chromolaena odorata (L.)<br />

R.M. King and H. Robinson. Proceedings<br />

of the First International Workshop on<br />

Biological Control of Chromolaena odorata.<br />

Agricultural Experiment Station,<br />

Mangilao, Guam, pp. 25-33.<br />

Chacko, M.J. and Narasimham, A.U. 1988.<br />

Biocontrol attempts against Chromolaena<br />

odorata in India-a review. Proceedings<br />

of the First International Workshop on<br />

Biological Control of Chromolaena odorata.<br />

Agricultural Experiment Station,<br />

Mangilao, Guam, pp. 65-79.<br />

Chadwick, M.J. and Obeid, M. 1966. A comparative<br />

study of the growth of Eichhornia<br />

crassipes and Pistia stratiotes in water<br />

culture. Journal of Ecology 54: 563-575.<br />

5 References 239<br />

Chandler, L.D. and Chandler, J.M. 1988.<br />

Comparative host suitability of bell pepper<br />

and selected weed species for Liriomyza<br />

trifolii (Burgess). Southwest Entomologist<br />

13(2): 137-1 46 (Agricola).<br />

Chandra, R., Mital, V.P. and Goel, S.C. 1983.<br />

Consumption and utilization of different<br />

food plants by Chrotogonus trachypterus<br />

Blanch. (Orthoptera: Acrididae). Insect<br />

Ecology and Resource Management. ed.<br />

S.C. Goel. Sanatan Dharm College.<br />

Muzaffarnagar, India. pp. 226-23 1.<br />

(Review of Applied Entomology, Series<br />

A, 72: 5169-1984).<br />

Chandrasrikul, A. 1962. A preliminary host<br />

list of plant diseases in Thailand.<br />

Technical Bulletin 6, 23pp. Thailand<br />

Department of Agriculture, Bangkok<br />

(Holm et al. 1977).<br />

Chapola, G.M. 1980. Investigations into alternate<br />

hosts of tobacco bushy-top virus in<br />

Malawi. Journal of Science and<br />

Technology l(2): 1 1-16.<br />

Charudattan, R., Freeman, T.E., Conway,<br />

K.E. and Zettler, F.W. 1974. Studies on<br />

the use of plant pathogens in biological<br />

control of aquatic weeds in Florida.<br />

Proceedings of the Fourth International<br />

Symposium on Aquatic Weeds. 17-20<br />

September 1974. Vienna, Austria, pp.<br />

144-149.<br />

Chaudhuri, H. and Janaki Ram, K. 1975.<br />

Control of aquatic weed by moth larvae.<br />

Nature 253: 40-41.<br />

Chaudhury, J.P. and Kapil, R.P. 1977. Record<br />

of a new host plant of Hymenia recurvalis<br />

(F.) and its parasites. Indian Journal of<br />

Entomology 37: 3 14.<br />

Chauhan, L.S. and Verma, S.C. 1981. Two<br />

new host records for India. Indian Journal<br />

of Mycology and Plant Pathology<br />

1 1: 246-247.<br />

Chen, C.C., Chen, M.J., Chiu, R.J. and Hsu,<br />

H.T. 1989a. Morphological comparisons<br />

of Echinochloa ragged stunt and rice<br />

ragged stunt viruses by electron mcroscopy.<br />

Phytopathology 79: 235-241.


240 Biological Control of Weeds: Southeast Asian Prospects<br />

Chen, C.T., Deng, T.C. and Chang, C.A.<br />

1989b. Sugarcane mosaic in Taiwan.<br />

Serological relationships and coat protein<br />

of SCMV strains. Taiwan Sugar 36: 10-1 3<br />

(Review Plant Pathology 70: 960, 1991).<br />

Cherian, M.C. and Kylasam, M.S. 1937.<br />

Preliminary studies on the 'freckled yellow'<br />

and 'stripe' diseases of cholam.<br />

Proceedings of the Association of<br />

Economic Biologists, Coimbatore, India<br />

1936. (Rachie and Peters 1977).<br />

Chikwenhere, G.P. and Forno, I.W. 1991.<br />

Introduction of Neohydronomus afinis for<br />

biological control of Pistia stratiotes in<br />

Zimbabwe. Journal of Aquatic Plant<br />

Management 29: 53-55.<br />

Chona, B. and Rafay, S. 1950. Studies on the<br />

sugar-cane diseases in India. 1. Sugar-cane<br />

mosaic virus. 2. The phenomenon of natural<br />

transmission and recovery from mosaic<br />

of sugar-cane. Indian Journal of<br />

Agricultural Science 20: 39-78.<br />

(Holm et al. 1977).<br />

Christie, S.R., Christie, R.G. and Edwardson,<br />

J.R. 1974. Transmission of a bacillifonn<br />

virus of sowthistle (Sonchus) and Bidens<br />

pilosa. Phytopathology 64: 840-845.<br />

CIBC 1972. Commonwealth Institute of<br />

Biological Control. Annual Report for<br />

1971.<br />

Cilliers, C.J. 1987. First attempt at and early<br />

results on the biological control of Pistia<br />

stratiotes L. in South Africa. Koedoe 30:<br />

35-40.<br />

Cilliers, C.J. 1989a. Biological control of<br />

aquatic weeds in South Africa-an interim<br />

report. Proceedings 7th International<br />

Symposium on Biological Control of<br />

Weeds. 6-1 1 March 1988, Rome, Italy,<br />

pp. 263-267.<br />

Cilliers, C.J. 1989b. Confirmation of host<br />

specificity of Neohydronomus pulchellus<br />

under simulated natural conditions.<br />

Journal of the Entomological Society of<br />

Southern Africa 52: 180.<br />

Cilliers, C.J. 1991a. Biological control of<br />

water hyacinth, Eichhornia crassipes<br />

(Pontederiaceae), in South Africa.<br />

Agriculture, Ecosystems and Environment<br />

37: 207-217.<br />

Cilliers, C.J. 1991b. Biological control of<br />

water lettuce, Pistia pratiotes in South<br />

Africa. In (ed.) J.R. Hoffmann, Biological<br />

Control of Weeds in South Africa.<br />

Agricultural Ecosystems and the<br />

Environment 37: 225-229.<br />

Clark, W.E. 1984. Species of Sibinia Germar<br />

(Coleoptera.: Curculionidae) associated<br />

with Mimosa pigra L. Proceedings of the<br />

Entomological Society of Washington<br />

86: 358-367.<br />

Clement, S.L. and Norris, R.F. 1982. Two insects<br />

offer potential biological control of<br />

common purslane. California Agriculture<br />

36(fl): 16-1 8.<br />

Cock, M.J.W. 1980. Biological control of<br />

Mikania micrantha. Commonwealth<br />

Institute of Biological Control. Report of<br />

work carried out April 1979-March 1980,<br />

pp 53-54.<br />

Cock, M.J.W. 1981. An assessment of the occurrence<br />

and potential of natural enemies<br />

of Mikania spp. in the Neotropics. 64 pp.<br />

Final report (May 1979-March 198 1).<br />

Commonwealth Institute of Biological<br />

Control, Commonwealth Agricultural<br />

Bureaux.<br />

Cock, M.J.W. 1982a. Potential biological control<br />

agents for Mikania micrantha HBK<br />

from the Neotropical region. Tropical Pest<br />

Management 28: 242-254.<br />

Cock, M.J.W. 1982b. The biology and host<br />

specificity of Liothrips mikaniae<br />

(Priesner) (Thysanoptera,<br />

Phlaeothripidae), a potential biological<br />

control agent of Mikania micrantha<br />

(Compositae). Bulletin of Entomological<br />

Research 72: 523-533.<br />

Cock, M.J.W. 1984a. Possibilities for biological<br />

control of Chromolaena odorata.<br />

Tropical Pest Management 30: 7-13.


Cock, M.J.W. 1984b. Report on a consultancy<br />

to the Republic of Vanuatu to advise on<br />

biological control of weeds and pests, 20<br />

November-4 December 1983.<br />

Unpublished report. 33pp. Commonwealth<br />

Institute of Biological Control,<br />

Commonwealth Agricultural Bureaux.<br />

Cock, M.J.W. 1985. A Review of Biological<br />

Control of Pests in the Commonwealth<br />

Caribbean and Bermuda up to 1982.<br />

Commonwealth Institute of Biological<br />

Control. Technical Communication 9,<br />

21 8pp.<br />

Cock, M.J.W. and Holloway, J.D. 1982. The<br />

history of, and prospects for, the biological<br />

control of Chromolaena odorata<br />

(Compositae) by Pareuchaetes pseudoin-<br />

sulata Rego Barros and allies<br />

(Lepidoptera: Arctiidae). Bulletin of<br />

Entomological Research 72: 193-205.<br />

Cofrancesco, A.F. 1984. Biological control<br />

activities in Texas and California.<br />

Proceedings 18 Annual Meeting Aquatic<br />

Plant Control Research Program, U.S.<br />

Army Corps of Engineers. Miscellaneous<br />

Paper A-84-4, pp. 57-61.<br />

Cofrancesco, A.F., Stewart, R.M. and<br />

Sanders, D.R. 1985. The impact of<br />

Neochetina eichhorniae (Coleoptera:<br />

Curculionidae) on water hyacinth in<br />

Louisiana. Proceedings of the 6th<br />

International Symposium on Biological<br />

Control of Weeds, pp. 525-535.<br />

Common, I.F.B. and Waterhouse, D.F. 1981.<br />

Butterflies of Australia. Angus and<br />

Robertson Sydney, 682 pp.<br />

Conners, I.L. 1967. An annotated index of<br />

plant diseases in Canada and fungi record-<br />

ed on plants in Alaska, Canada and<br />

Greenland. Canada Department of<br />

Agriculture, Ottawa, Ontario. Publication<br />

1251,381~~.<br />

Conti, M. 1981. Wild plants in the ecology of<br />

planthopper-borne viruses of grasses and<br />

cereals. pp. 109-1 19 in (ed). J.M. Thresh,<br />

Pests, Pathogens and Vegetation. Pitman<br />

Publishing. Inc., Boston, Massachusetts.<br />

(Maun and Barrett 1986).<br />

5 References 241<br />

Conway, K.E. 1976. Evaluation of<br />

Cercospora rodmanii as a biological con-<br />

trol of water hyacinths. Phytopathology<br />

66: 914-917.<br />

Conway, K.E. and Freeman, T.E. 1977. Host<br />

specificity of Cercospora rodmanii, a po-<br />

tential biological control of water hya-<br />

cinth. Plant Disease Reporter 61 : 262-266.<br />

Conway, K.E., Freeman, T.E. and<br />

Charudattan, R. 1974. The fungal flora of<br />

water hyacinth in Florida, Part 1. Water<br />

Resources Research Center, University of<br />

Florida, Gainesville, Florida, USA.<br />

Publication 30, 1 lpp.<br />

Conway, K.E., Freeman, T.E. and<br />

Charudattan, R. 1978. Development of<br />

Cercospora rodmanii as a biological control<br />

for Eichhornia crassipes. Proceedings<br />

of the Fifth International Symposium on<br />

Aquatic Weeds, 1978. Amsterdam,<br />

Netherlands, pp. 225-230.<br />

Cordo, H.A. and DeLoach, C.J. 1975.<br />

Ovipositional specificity and feeding<br />

habits of the water hyacinth mite,<br />

Orthogalurnna terebrantis, in Argentina.<br />

Environmental Entomology 4: 561-565.<br />

Cordo, H.A. and DeLoach, C.J. 1976. Biology<br />

of the water hyacinth mite in Argentina.<br />

Weed Science 24: 245-249.<br />

Cordo, H.A. and DeLoach, C.J. 1978. Host<br />

specificity of Sameodes albiguttalis in<br />

Argentina, a biological control agent for<br />

water hyacinth. Environmental<br />

Entomology 7: 322-328.<br />

Cordo, H.A., DeLoach, C.J. and Ferrer, R.<br />

198 1. Biological studies on two weevils,<br />

Ochetina bruchi and Onychylis crenatus<br />

collected from Pistia and other aquatic<br />

plants in Argentina. Annals of the<br />

Entomological Society of America 74:<br />

363-368.<br />

Cordo, H.A., DeLoach, C.J., Runnacles, J. and<br />

Ferrer, R. 1978. Argentinorhynchus<br />

bruchi, a weevil from Pistia stratiotes in<br />

Argentina: biological studies.<br />

Environmental Entomology 7: 329-333.


.42 Biological Control of Weeds: Southeast Asian Prospects<br />

Cruttwell, R.E. 1971 a. Commonwealth Cruttwell, R.E. 1977b. Insects attacking<br />

Institute of Biological Control. Report of Eupatorium odoratum in the Neotropics.<br />

work carried out during 1970. Biological 6. Two eriophyid mites, Acalitus adoratus<br />

control of weeds. pp. 92-93. Keifer and Phyllocoptes cruttwellae<br />

Cruttwell, R.E. 197 1 b. Commonwealth<br />

Institute of Biological Control. West<br />

Indian Station. Quarterly - report - for<br />

April-June 1971.8~;. - -<br />

Cruttwell, R.E. 1972a. Commonwealth<br />

Institute of Biological Control. Report of<br />

work carried out during 1971. Biological<br />

Keifer. Commonwealth Institute of<br />

Biological Control. Technical Bulletin<br />

18: 59-63.<br />

Cruttwell, R.E. and Bennett, F.D. 1969.<br />

Commonwealth Institute of Biological<br />

Control. Report of work for 1968. Control<br />

of Siam weed. pp. 78-79.<br />

control of weeds. pp. 106107. Cruttwell, R.E. and Bennett, F.D. 1972a.<br />

Cruttwell, R.E. 1972b. Bidens pilosa.<br />

Commonwealth Institute of Biological<br />

Control. West Indian Station. Quarterly report<br />

for October-December 1971.6~~.<br />

Investigations on the insects attacking<br />

Portulaca oleracea in the Neotropics. 2.<br />

Investigations on the biology and hostspecificity<br />

of the leaf miner Pegomya sp.<br />

(Dipt., Anthomyidae). CIBC unpublished<br />

Cruttwell, R.E. 1973a. Insects attacking -<br />

Eupatorium odoratum in the Neotropics.<br />

2. Studies of the seed weevil Apion brunneonigrum<br />

BB and its potential use to control<br />

E. odoratum L, Commonwealth<br />

Institute of Biological Control. Technical<br />

Bulletin 16: 1 17-1 24.<br />

report, 6vp. A<br />

Cruttwell, R.E. and Bennett, F.D. 1972b.<br />

Investigations on the insects attacking<br />

Portulaca oleracea in the Neotropics. 3.<br />

Investigations on the biology and hostspecificity<br />

of the leaf miner Heliodine<br />

quinqueguttata Wals. (Lep., Heliodinidae)<br />

Cruttwell, R.E. 1973b. Insects attacking in ~rinidad. CIBC unp;blished report,<br />

Eupatorium odoratum in the Neotropics<br />

3. Dichomeris sp. nov. (= Trichotaphe sp.<br />

nr eupatoriella) (Lep.: Gelechiidae) a<br />

leaf-roller on Eupatorium odoratum L.<br />

(Compositae). Commonwealth Institute of<br />

Biological Control. Technical Bulletin<br />

16: 125-134.<br />

~PP.<br />

d'Araujo e Silva, A.G., Gonqalves, C.R.,<br />

Galvfio, D.M., Gonqalves, A.J.L.,<br />

Gomes, J., Silva, M.N. and Simoni, L.<br />

1968a. Quarto cathlogo dos insetos que<br />

vivem nas planBs do Brasil, seus parasites<br />

e predatores. Part 11. Tomo 1. Insetos hos-<br />

Cruttwell, R.E. 1974. Insects and mites attack- pedeiros e inimigos naturais. Ministeria da<br />

ing Eupatorium odoratum in the Agricultura. Departmento de Def. e<br />

Neotropics 4. An annotated list of insects Inspeqfio Agropecuhria, Rio de Janeiro.<br />

and mites recorded from Eupatorium 622pp. (Bennett and Cruttwell 1972).<br />

odoratum L., with a key to the types of<br />

damage found in Trinidad.<br />

Commonwealth Institute of Biological<br />

Control. Technical Bulletin 17: 87-1 25.<br />

d'Araujo e Silva, A.G., Gonqalves, C.R.,<br />

Galvfio, D.M., Gonqalves, A.J.L.,<br />

Gomes, J., Silva, M.N. and Simoni, L.<br />

1968b. Quarto cathlogo dos insetos que<br />

Cruttwell, R.E. 1977a. Insects and mites at- vivem nas plantas do Brasil, seus parasites<br />

tacking Eupatorium odoratum L. in the e predatores. Part 11. Tomo 2. Indice de in-<br />

Neotropics 5. Mescinia sp. nr parvula setos e indice de plantas. Ministeria da<br />

(Zeller). Commonwealth Institute of Agricultura. Departmento de Def. e<br />

Biological Control. Technical Bulletin Inspeqfio Agropecuhria, Rio de Janeiro.<br />

18: 49-58.<br />

267pp.


Dabaj, K.H. and Jenser, G. 1990. Some weed<br />

host-plants of the northern root-knot ne-<br />

matode Meloidogyne hapla in Hungary.<br />

Nematologia Mediterranea 18: 139-1 40.<br />

(Weed Abstracts 40: 2868, 199 1).<br />

Dahiya, R.S., Mangat, B.P.S. and Bhatti, D.S.<br />

1988. Some new host records of<br />

Meloidogyne javanica. International<br />

Nematology Network Newsletter 5(3):<br />

32-34.<br />

Das, B.B. and Ram, G. 1988. Incidence, dam-<br />

age and carry-over of cutworm (Agrotis<br />

ypsilon) attacking potato (Solanum tubero-<br />

sum) crop in Bikar. Indian Journal of<br />

Agricultural Sciences 8: 650-65 1.<br />

Davies, J.C. 1972. Studies on the ecology of<br />

Aphis craccivora Koch (Aphididae) the<br />

vector of rosette disease of groundnuts in<br />

Uganda. Bulletin of Entomological<br />

Research 62: 169-1 8 1.<br />

Davis, C.J. 1955. Hypurus bertrandi Perris.<br />

Proceedings of the Hawaiian<br />

Entomological Society 16: 3.<br />

Davis, C.J. 1960. Recent introductions for bi-<br />

ological control in Hawaii, V. Proceedings<br />

of the Hawaiian Entomological Society<br />

17: 244-248.<br />

Davis, C.J. 1970. Recent introductions for bi-<br />

ological control in Hawaii, XV.<br />

Proceedings of the Hawaiian<br />

Entomological Society 20: 521-525.<br />

Davis, C.J. and Chong, M. 1968. Recent intro-<br />

ductions for biological control in Hawaii,<br />

XIII. Proceedings of the Hawaiian<br />

Entomological Society 20: 25-28.<br />

Davis, C.J. and Chong, M. 1969. Recent intro-<br />

ductions for biological control in Hawaii,<br />

XIV. Proceedings of the Hawaiian<br />

Entomological Society 20: 3 17-322.<br />

Davis, C.J. and Krauss, N.L.H. 1962. Recent<br />

developments in the biological control of<br />

weed pests in Hawaii. Proceedings of the<br />

Hawaiian Entomological Society<br />

18: 65-67.<br />

5 References 243<br />

Davis, C.J. and Krauss, N.L.H. 1966. Recent<br />

introductions for biological control in<br />

Hawaii, XI. Proceedings of the Hawaiian<br />

Entomological Society 19: 201-207.<br />

Davis, C.J. and Krauss, N.L.H. 1967. Recent<br />

introductions for biological control in<br />

Hawaii, XII. Proceedings of the Hawaiian<br />

Entomological Society 19: 375-380.<br />

Davis, D.R. 1990. First record of a bagworm<br />

moth from Hawaii (USA): description and<br />

introduction of Brachycyttarus griseus De<br />

Joannis (Lepidoptera: Psychidae).<br />

Proceedings of the Entomological Society<br />

of Washington 92: 259-270.<br />

Davis, D.R., Kassulke, R.C., Harley, K.L.S.<br />

and Gillett, J.D. 1991. Systematics, mor-<br />

phology, biology and host specificity of<br />

Neurostrota gunniella (Busck)<br />

(Lepidoptera : Gracillariidae), an agent for<br />

the biological control of Mimosa pigra L.<br />

Proceedings of the Entomological Society<br />

of Washington 93: 16-44.<br />

Debrot, E. and Centeno, F. 1985. Occurrence<br />

of Euphorbia mosaic virus infecting<br />

Euphorbia heterophylla in Venezuela<br />

(Spanish). Agronomia Tropical 35(4-6):<br />

5-12. (Review of Applied Entomology,<br />

Series A, 77: 3821,1989).<br />

Delfosse, E.S. 1978a. Interaction between the<br />

mottled water hyacinth weevil, Neochetina<br />

eichhorniae Warner, and the water hyacinth<br />

mite, Orthogalumna terebrantis<br />

Wallwork. Proceedings of the Fourth<br />

International Symposium on the<br />

Biological Control of Weeds. 30 August-2<br />

September 1976. Gainesville, Florida,<br />

USA, pp. 93-97.<br />

Delfosse, E.S. 1978b. Effect on water hyacinth<br />

of Neochetina eichhorniae Col.:<br />

Curculionidae, combined with<br />

Orthogalumna terebrantis. Entomophaga<br />

23: 379-387.<br />

Delfosse, E.S. and Perkins, B.D. 1977.<br />

Discovery and bioassay of a kairomone<br />

from water hyacinth, Eichhornia<br />

crassipes. The Florida Entomologist<br />

60: 217-222.


244 Biological Control of Weeds: Southeast Asian Prospects<br />

Delfosse, E.S., Sutton, D.L. and Perkins, B.D.<br />

1976. Combination of the mottled water<br />

hyacinth weevil and the white amur for bi-<br />

ological control of water hyacinth. Journal<br />

of Aquatic Plant Management 14: 64-67.<br />

DeLoach, C.J. 1975. Evaluation of candidate<br />

arthropods for biological control of water<br />

hyacinth: studies in Argentina.<br />

Proceedings of the Symposium on Water<br />

Quality Management through Biological<br />

Control. 23-30 January 1975. Gainesville,<br />

Florida, USA, pp. 44-50.<br />

DeLoach, C.J. 1976. Neochetina bruchi, a bi-<br />

ological control agent of water hyacinth:<br />

host specificity in Argentina. Annals of the<br />

Entomological Society of America<br />

69: 635-642.<br />

DeLoach, C.J. 1977. Identification and bio-<br />

logical notes on the species of Neochetina<br />

that attack Pontederiaceae in Argentina<br />

(Coleoptera: Curculionidae: Bagoini).<br />

Coleopterists' Bulletin 29: 257-263.<br />

DeLoach, C.J. and Cordo, H.A. 1976a.<br />

Ecological studies of Neochetina bruchi<br />

and N. eichhorniae on water hyacinth in<br />

Argentina. Journal of Aquatic Plant<br />

Management 14: 53-59.<br />

DeLoach, C.J. and Cordo, H.A. 1976b. Life<br />

cycle and biology of Neochetina bruchi, a<br />

weevil attacking water hyacinth in<br />

Argentina, with notes on N. eichhorniae.<br />

Annals of the Entomological Society of<br />

America 69: 643-652.<br />

DeLoach, C.J. and Cordo, H.A. 1978. Life<br />

history and ecology of the moth Sameodes<br />

albiguttalis, a candidate for biological<br />

control of water hyacinth. Environmental<br />

Entomology 7: 309-321.<br />

DeLoach, C.J., Cordo, H.A., Ferrer, R.,<br />

Runnacles, J. and DeSantis, L. 1980.<br />

Acigona infusella, a potential biological<br />

control agent for water hyacinth: observa-<br />

tions in Argentina (with descriptions of<br />

two new species of Apanteles by L.<br />

DeSantis). Annals of the Entomological<br />

Society of America 73: 138-1 46.<br />

DeLoach, C.J., DeLoach, A.D. and Cordo,<br />

H.A. 1976. Neohydronomus pulchellus, a<br />

weevil attacking Pistia stratiotes in South<br />

America: biology and host specificity.<br />

Annals of the Entomological Society of<br />

America 69: 830-834.<br />

DeLoach, C.J., DeLoach, D.J. and Cordo,<br />

H.A. 1979. Observations on the biology of<br />

the moth, Samea multiplicalis on water let-<br />

tuce in Argentina. Journal of Aquatic Plant<br />

Management 17: 42-44.<br />

Den Doop, J.E.A. 1918. De Verspreiding van<br />

Trichogramma, den Eiparasiet van<br />

Heliothis obsoleta F., ter Oostkust van<br />

Sumatra. Meded. del Proelstation, Medan<br />

1 O(9): 2 13-220. (Pemberton 1983).<br />

Desai, S.A., Siddaramaiah, A.L. and Hegde,<br />

R.K. 1980. Three additiolial hosts to<br />

Sclerotium rolfsii. Current Research 9(9):<br />

151-152.<br />

Dethier, V.G. 1940. Life histories of Cuban<br />

Lepidoptera. Psyche 47: 14-26.<br />

De Waele, D., Jordaan, E.M. and Basson, S.<br />

1990. Host status of seven weed species<br />

and their effects on Ditylenchus destructor<br />

infestation of peanut. Journal of<br />

Nematology 22: 292-296.<br />

De Wijs, J.J. 1974. A virus causing ringspot<br />

of Passiflora edulis in the Ivory Coast.<br />

Annals of Applied Biology 77: 33-40.<br />

Dhaliwal, G.S. 1979. Some new weed hosts of<br />

the rice hispa recorded in India.<br />

International Rice Research Newsletter<br />

4: 19.<br />

Dharmadhikari, P.R., Perera, P.A.C.R. and<br />

Hassen, T.M.F. 1977. The introduction of<br />

Ammalo insulata for the control of<br />

Eupatorium odoratum in Sri Lanka.<br />

Commonwealth Institute of Biological<br />

Control. Technical Bulletin 18: 129-1 35.<br />

Dhiman, S.C. 1986. New host plants of<br />

Haplothrips longisetosus Ananthakrish-<br />

nan. Entomon 1 1 : 262.


I 5 References 245<br />

Dias, M.M. 1979. Morphology and biology of<br />

Eryphanis polyxena polyxena (Meerburgh<br />

1779, Lepidoptera, Satyridae,<br />

Brassolinae. (Portuguese). Revista<br />

Brasileira de Entomologia 23: 267-274.<br />

Dikova, D. 1989. Wild-growing hosts of the<br />

cucumber mosaic virus. (Bulgarian).<br />

Rasteniev dni Nauki 26(7): 57-64 (Weed<br />

Abstracts 39: 842, 1990).<br />

Divakar, B.J. and Manoharan, V. 1978. A re-<br />

view on water hyacinth, Eichhornia cras-<br />

sipes (Mart.) Solms. and its control by nat-<br />

ural enemies. Plant Protection Gleanings<br />

9: 23pp.<br />

Dodds, J.A. and Taylor, G.S. (1980).<br />

Cucumber mosaic virus infection of tobacco<br />

transplants and purslane (Portulaca oleracea).<br />

Plant Disease 64: 294-296.<br />

Dong, H.F., Guo, Y.J. and Niu, L.P. 1986.<br />

Biological control of the two spotted spider<br />

mite with Phytoseiulus persimilis on<br />

four ornamental plants in greenhouses<br />

(Chinese). Chinese Journal of Biological<br />

Control 2: 59-62.<br />

Drake, C.J. and Poor, M.E. 1938. Los<br />

Tingitidae (Hemiptera) de la coleccion<br />

Carlos Berg. Instituto del Museo de la<br />

Universidad Nacional de la Plata. Notas<br />

del Museo la Plata 2: 103-1 09.<br />

Drake, C.J. and Ruhoff, F.A. 1965. Lacebugs<br />

of the world. A catalog (Hemiptera:<br />

Tingidae). United States National Museum<br />

Bulletin 243.634~~.<br />

Dray, F.A. and Center, T.D. 1992. Biological<br />

control of Pistia stratiotes L. (waterlettuce)<br />

using Neohydronomus affinis<br />

Hustache (Coleoptera: Curculionidae).<br />

U.S. Army Engineer Waterways<br />

Experiment Station, Vicksburg, MS.<br />

Technical Report A-92-1,27 pp.<br />

Dray, F.A., Center, T.D. and Habeck, D.H.<br />

1989. Immature stage of the aquatic moth<br />

Petrophila drumalis (Lepidoptera:<br />

Pyralidae: Nymphulinae) from Pistia stratiotes<br />

(water lettuce). Florida Entomologist<br />

72: 711-714.<br />

Dray, F.A., Center, T.D., Habeck, D.H.,<br />

Thompson, C.R., Cofrancesco, A.F. and<br />

Balciunas, J.K. 1990. Release and establishment<br />

in the southeastern United States<br />

of Neohydronomus affinis (Coleoptera:<br />

Curculionidae), an herbivore of water lettuce.<br />

Environmental Entomology 19:<br />

799-802.<br />

Dray, F.A., Thompson, C.R., Habeck, D.H.,<br />

Balciunas, J.K. and Center, T.D. 1988. A<br />

survey of the fauna associated with Pistia<br />

stratiotes (water lettuce) in Florida. U.S.<br />

Army Engineers, Waterways Experiment<br />

Station, Technical Report A-86-6,32pp.<br />

Duatin, C.J.Y. and Pedro, L.B.de 1986.<br />

Biology and host range of the taro planthopper,<br />

Tarophagus proserpina Kirk.<br />

Annals of Tropical Research 8: 72-80.<br />

Duatin, C.J.Y., Pedro, L.B.de and De Pedro,<br />

L.B. 1986. Biology and host range of the<br />

taro planthopper, Tarophagus proserpina<br />

Kirk. Annals of Tropical Research<br />

8: 72-80. (Review of Applied<br />

Entomology, Series A, 75: 794, 1987).<br />

Ekukole, G., Ansa, O.A., Ajaye, 0. and<br />

Sundaram, N.V. 1989. Some grasses<br />

showing streak virus symptoms in Zaria,<br />

Nigeria. Samaru Journal of Agricultural<br />

Research 6(6): 29-33 (Review of Plant<br />

Pathology 69: 8439, 1990).<br />

El-Banhawy, E.M. 1979. Description of some<br />

unknown phytoseiid mites from Brazil<br />

(Mesostigmata: Phytoseiidae). Acarologia<br />

20: 477-484.<br />

Ellison, C.A. 1992. Mycoherbicidal control of<br />

Rottboellia cochinchinensis: a viable alternative?<br />

Plant Protection Quarterly<br />

7: 163-165.<br />

Ellison, C.A. and Evans, H.C. 1990.<br />

Preliminary assessment of fungal<br />

pathogens as biological control agents for<br />

Rottboellia cochinchinensis (Gramineae).<br />

Proceedings of the VII International<br />

Symposium on Biological Control of<br />

Weeds. 6-1 1 March 1988, Rome, Italy,<br />

pp. 477-482.


246 Biological Control of Weeds: Southeast Asian Prospects<br />

Ellison, C.A. and Evans, H.C. 1993. Present<br />

status of the biological control programme<br />

for the graminaceous weed Rottboellia<br />

cochinchinensis. Proceedings of the VIII<br />

International Symposium on Biological<br />

Control of Weeds, 2-7 February 1992,<br />

Lincoln University, Canterbury, New<br />

Zealand.<br />

Elshafie, M. 1976. Nysius vinitor Berg.<br />

(Hemiptera: Lygaeidae) infesting pigweed,<br />

Portulaca oleracea L. Journal of the<br />

Entomological Society of Australia 9: 54.<br />

Esguerra, N.M., William, W.S. and Smith,<br />

J.R. 1991. Status of biological control of<br />

the Siam weed Chromolaena odorata (L.)<br />

R.M. King and H. Robinson on Pohnpei,<br />

Federated States of Micronesia. Ecology<br />

and Management of Chromolaena<br />

odorata. Biotrop Special Publication 44:<br />

99- 104.<br />

Esguerra, N.M., William, W.S. and Smith,<br />

J.R. 1994. Establishment of Pareuchaetes<br />

pseudoinsulata Rego Barros introduced to<br />

control the Siam weed, Chroniolaena<br />

odorata (L.) R.M. King and H. Robinson<br />

in the Eastern Caroline Islands.<br />

Proceedings 3rd International Workshop<br />

on Biological Control of Chromolaena<br />

odorata. Ivory Coast, November 1993.<br />

Preprint 4pp.<br />

Esposito, M.C., Medeiros, L., Righetti, S.M.<br />

and Garcia, M.A. 1985. Efeito de insetos<br />

fitofagos em populaqoes de Bidens pilosa.<br />

Resumos, XI1 Congresso Brasileiro de<br />

Zoologia 27 de JanCiro a 1 de Fevereiro,<br />

Universidade Estaduae de Campinas,<br />

p. 114.<br />

Eugenio, C. and del Rosario, M. 1962. Host<br />

range of tobacco mosaic virus in the<br />

Philippines. Philippine Agriculturist 46:<br />

175-1 97. (Holm et al. 1977).<br />

Evans, H.C. 1987. Fungal pathogens of some<br />

subtropical and tropical weeds and possi-<br />

bilities for biological control. Biocontrol<br />

News and Information 8: 7-30.<br />

Evans, H.C. 1988. Preliminary survey of fungal<br />

pathogens of Mimosa pigra in Mexico,<br />

21 February-2 March 1988. Project PIG<br />

760.4~~. CIBC, Silwood Park. UK.<br />

Evans, H.C. 1990. The potential of fungal<br />

pathogens as biological control agents of<br />

Mimosa pigra: a preliminary assessment.<br />

Unpublished report, 19pp. CAB<br />

International Institute of Biological<br />

Control.<br />

Evans, H.C. 1991. Biological control of tropi-<br />

cal grassy weeds. pp. 52-72 in Tropical<br />

Grassy Weeds, (eds) F.W.G. Baker and<br />

P.J. Terry.<br />

Evans, H.C., Carrion, G. and Guzman, G.<br />

1993. A new species of Sphaerulina and<br />

its Phloeospora anamorph, with potential<br />

for biological control of Mimosa pigra.<br />

Mycological Research 97: 59-67.<br />

Evans, H.C. and Seier, M.K. 1991. Project<br />

PIG 760 Progress Report, October 1990-<br />

September 1991. CAB International<br />

Institute of Biological Control, Silwood<br />

Park, UK.<br />

Everist, S.L. 1974. Poisonous Plants of<br />

Australia. Angus and Robertson, Sydney.<br />

684pp.<br />

Felt, E.P. 191 1. Hosts and galls of American<br />

gall midges. Journal of Economic<br />

Entomology 4: 45 1-475.<br />

Felt, E.P. 191 6. New western gall midges.<br />

Journal of the New York Entomological<br />

Society 24: 175-196.<br />

Felt, E.P. 1918. Key to American insect galls.<br />

Bulletin of the New York State Museum<br />

200: 5-3 1 0.<br />

Felt, E.P. 1920. New Indian gall midges<br />

(Diptera). Memoirs of the Department of<br />

Agriculture in India, Entomology 7(1-2):<br />

1-11.<br />

Felt, E.P. 1921. New Indian gall midges<br />

(Itonididae). Memoirs of the Department<br />

of Agriculture in India, Entomology 7(4):<br />

23-28.


Fernandez, M. and Ortega, J. 1982. Plantas in-<br />

deseables como hospedantes de nematodos<br />

parasitos del moz (Spanish). Ciencias de<br />

la Agricultura 12: 1 14-1 16.<br />

(Helminthological Abstracts, Series B, 53:<br />

955, 1984).<br />

Ferreira, D.I.C., Garrido, M.J. and Trujillo,<br />

G.E. 1989. Maize hoja blanca virus infect-<br />

ing sorghum (Sorghum bicolor (L.)<br />

Moench) in Maracay, Aragua (Spanish).<br />

Fitopatologia Venezolana 2: 23 (Review<br />

of Agricultural Entomology 79: 4587,<br />

1991).<br />

Ferronatto, E.M.O. 1986. Preliminary obser-<br />

vations on the host plants of the immature<br />

stages of the principal chrysomelids<br />

(Coleoptera: Chrysomelidae) occurring in<br />

cacao plantations. Revista Theobroma 16:<br />

107-1 10. (Portuguese). (Review of<br />

Applied Entomology, Series A, 76: 3499,<br />

1988).<br />

Field, S.P. 1991. Chromolaena odorata:<br />

friend or foe for resource poor farmers.<br />

Chromolaena odorata Newsletter 4: 4-7.<br />

Figliola, S.S., Camper, N.D. and Ridings,<br />

W.H. 1988. Potential biological control<br />

agents for goosegrass (Eleusine indica).<br />

Weed Science 36: 830-835.<br />

Fischer, G.W. 1953. Manual of North<br />

American smut fungi. Ronald Press, New<br />

York. (Maun and Barrett 1986).<br />

Fisher, H.H., Menendez, R.A., Daley, L.S.,<br />

Robb-Spencer, D. and Crabtree, G.D.<br />

1987. Biochemical characterization of itch<br />

grass (Rottboellia exaltata) biotypes.<br />

Weed Science 35: 333-338.<br />

Flanagan, G.J., Wilson, C.G. and Gillett, J.D.<br />

1990. The abundance of native insects on<br />

the introduced weed Mimosa pigra in<br />

Northern Australia. Journal of Tropical<br />

Ecology 6: 2 19-230.<br />

Fontes, E.G., Teixera, C.A.D., Pires, C.S.S.<br />

and Sujii, E.R. 1992. Current status of the<br />

biological control of weeds in Brazil.<br />

Abstracts, VIII International Symposium<br />

on Biological Control of Weeds, Lincoln<br />

University, Canterbury, New Zealand, 2-7<br />

February 1992, p. 84.<br />

5 References 247<br />

Force, D.C. 1965. The purslane sawfly in cen-<br />

tral California. California Department of<br />

Agriculture, Bulletin 54: 157-160.<br />

Forno, I.W. 1981. Effects of Neochetina eich-<br />

horniae on the growth of water hyacinth.<br />

Journal of Aquatic Plant Management 19:<br />

27-3 1.<br />

Forno, I.W. 1983. Life history and biology of<br />

a water hyacinth moth, Argyractis subor-<br />

nata (Lepidoptera: Pyralidae,<br />

Nymphulinae). Annals of the<br />

Entomological Society of America 76:<br />

624-627.<br />

Forno, I.W. 1987. Biological control of the<br />

floating fern Salvinia molesta in northeastern<br />

Australia: plant herbivore interactions.<br />

Bulletin of Entomological Research<br />

77: 9-17.<br />

Forno, I.W. 1992. Biological control of<br />

Mimosa pigra: research undertaken and<br />

prospects for effective control. (ed.)<br />

K.L.S. Harley, A Guide to the<br />

Management of Mimosa pigra, CSIRO,<br />

Canberra, pp. 38-42.<br />

Forno, I.W. and Harley, K.L.S. 1992. Host<br />

testing of biological control agents for<br />

Mimosa pigra. (ed.) K.L.S. Harley, A<br />

Guide to the Management of Mimosa<br />

pigra, CSIRO, Canberra, pp. 43-62.<br />

Forno, W., Heard, T.A. and Day, M.D. 1994.<br />

Host-specificity and aspects of the biology<br />

of Coelocephalapion aculeatum<br />

(Coleoptera: Apionidae), a potential biological<br />

control agent of Mimosa pigra<br />

(Mimosaceae). Environmental<br />

Entomology 24: (in press).<br />

Forno, I.W., Kassulke, R.C. and Day, M.D.<br />

1991a. Life-cycle and host testing proce-<br />

dures for Carmenta mimosa, Eichlin and<br />

Passoa (Lepidoptera: Sesiidae), a biologi-<br />

cal control agent for Mimosa pigra L.<br />

(Mimosaceae) in Australia. Biological<br />

Control 1: 309-3 15.


248 Biological Control of Weeds: Southeast Asian Prospects<br />

Forno, I.W., Kassulke, R.C. and Harley,<br />

K.L.S. 1989a. Neurostrota gunniella<br />

(Busck) (Order Lepidoptera, Family<br />

Gracillariidae), a potential agent for bio-<br />

logical control of the weed, Mimosa pigra<br />

L. (Family Leguminosae) in the Northern<br />

Territory. CSIRO Division of<br />

Entomology, unpublished report, 9pp.<br />

Forno, I.W., Miller, I.L., Napompeth, B. and<br />

Thamasara, S. 199 1b. Management of<br />

Mimosa pigra in Southeast Asia and<br />

Australia. pp. 265-271. Proceedings of the<br />

3rd International Conference on Plant<br />

Protection in the Tropics.<br />

Forno, I.W., Napompeth, B. and<br />

Buranapanichpan, S. 1989b. Is biological<br />

control of Mimosa pigra possible?<br />

Proceedings of The 1 st Asia-Pacific<br />

Conference of Entomology, November<br />

1989. Chiangmai, pp. 785-799.<br />

Forno, I.W. and Wright, A.D. 198 1. The biol-<br />

ogy of Australian weeds. 5. Eichhornia<br />

crassipes (Mart.) Solms. Journal of the<br />

Australian Institute of Agricultural<br />

Science 47: 21-28.<br />

Fortuner, R. 1976. Pratylenchus zeae.<br />

Commonwealth Institute of<br />

Helminthology. Descriptions of Plant-<br />

Parasitic Nematodes, Set 6, No. 77.<br />

Freeman, T.E. 1977. Biological control of<br />

aquatic weeds with plant pathogens.<br />

Aquatic Botany 3: 175-1 84.<br />

Freitas, A.V.L. 1991. Variation, life cycle and<br />

systematics of Tegosa claudina<br />

(Eschscholtz) (Lepidoptera, Nymphalidae,<br />

Melitaeinae) in S2o Paulo State, Brazil.<br />

(Portuguese). Revista Brasileira de<br />

Entomologia 35: 301-306.<br />

Frick, K.E. 1956. Revision of the North<br />

American Calycomyza species north of<br />

Mexico (Phytobia: Agromyzidae,<br />

Diptera). Annals of the Entomological<br />

Society of America 49: 284-300.<br />

Fullerton, R.A. 1977. New plant disease<br />

record in New Zealand: two smuts<br />

(Ustilago tricophora, Tolyposporium bul-<br />

latum) of barnyard grass (Echinochloa<br />

crus-galli). New Zealand Journal of<br />

Agricultural Research 20: 1 13.<br />

GagnC, R.J. 1968. A catalogue of the Diptera<br />

of the Americas south of the United States.<br />

23. Family Cecidomyiidae. 62pp. (Bennett<br />

and Cruttwell 1972).<br />

GagnC, R.J. 1985. A taxonomic revision of the<br />

Asian rice gall midge, Orseolia oryzae<br />

(Wood-Mason), and its relatives (Diptera:<br />

Cecidomyiidae) Entomography 3:<br />

127-162.<br />

Ganga-Vislakshy, P.N. and Jayanth, K.P.<br />

1991. Studies on the life history and devel-<br />

opment of Orthogalumna terebrantis<br />

Wallwork (Acarina: Galumnidae), an exot-<br />

ic oribatid mite of Eichhornia crassipes.<br />

Entomon 16: 53-58.<br />

Garcia, C.A. 1982a. Preliminary report on the<br />

natural enemies and distribution of<br />

Mimosa invisa in Brazil. Queensland<br />

Department of Lands Report. 4pp.<br />

Garcia, C.A. 1982b. A survey of the insects<br />

attacking giant sensitive plant (M. invisa)<br />

in Brazil with notes on its distribution.<br />

Queensland Department of Lands Report.<br />

1 ~PP.<br />

Garcia, C.A. 1983. Preliminary host specifici-<br />

ty testing of Psilopygida walkeri for the<br />

biological control of Mimosa invisa.<br />

Queensland Department of Lands Report.<br />

11~~.<br />

Garcia, C.A. 1984. A preliminary report on<br />

the host specificity of Scamurius sp.<br />

(Hemiptera, Heteroptera: Coreidae) a po-<br />

tential agent for the biological control of<br />

Mimosa invisa (giant sensitive plant in<br />

Queensland Australia). Queensland<br />

Department of Lands Report. 10pp.<br />

Garcia, C.A. 1985. A preliminary report on<br />

the host specificity of Heteropsylla sp.<br />

(Hemiptera, Homoptera: Psyllidae), a po-<br />

tential agent for the biological control of<br />

Mimosa invisa (giant sensitive plant) in<br />

Queensland, Australia. Queensland<br />

Department of Lands Report. 12pp.


Gardner, D.E. 1989. Pathogenicity of<br />

Fusarium oxysporum f.sp. passiflorae to<br />

banana poka and other Passiflora spp. in<br />

Hawaii. Plant Disease 73: 476-478.<br />

Gardner, D.E., Smith, C.W. and Markin, G.P.<br />

1992. Biological control of alien plants in<br />

natural areas of Hawaii. Abstracts, VIII<br />

International Symposium on Biological<br />

Control of Weeds. Lincoln University,<br />

Canterbury, New Zealand, p 1 1.<br />

Garlick, W.G. 1922. Concerning the feeding<br />

habits of the purslane sawfly larva. The<br />

Canadian Entomologist 54: 240.<br />

Gast, R.E., Wilson, R.G. and Kerr, E.D. 1984.<br />

Lesion nematode (Pratylenchus spp.) infection<br />

of weed species and fieldbeans<br />

(Phaseolus vulgaris). Weed Science<br />

32: 6 1 6-620.<br />

Gazziero, D.L.P., Ulbrich, A.V., Yorinori,<br />

J.T. and Voll, E. 1988. Weeds: biological<br />

control (Portuguese). Documentos-Centro<br />

Nacional de Pesquisa de Soja, EMBRAPA<br />

36: 299-303.<br />

Geering, Q.A. 1953. The sorghum midge,<br />

Contarinia sorghicola (Coq.) in East<br />

Africa. Bulletin of Entomological<br />

Research 44: 363-366.<br />

George, M.J. 1963. Studies on infestation of<br />

Pistia stratiotes Linn. by the caterpillar of<br />

Namangana pectinicornis Hemps., a noctuid<br />

moth, and its effects on Mansonioides<br />

breeding. Indian Journal of Malariology<br />

17: 149-155.<br />

Ghani, M.A. 1965. Studies on the insect enemies<br />

of noxious weeds in Pakistan.<br />

Commonwealth Institute of Biological<br />

Control, Rawalpindi, Pakistan. 171pp.<br />

Ghosh, A.K., Basu, R.C. and Raychaudhuri,<br />

D.N. 1971. On collection of aphids<br />

(Homoptera: Aphididae) from Bhutan with<br />

descriptions of two new species.<br />

Konty\O(^,u) 39(2): 120-1 25.<br />

Gillespie, A.G. and Koike, H. 1973.<br />

Sugarcane mosaic virus and maize dwarf<br />

mosaic in mixed infections of sugarcane<br />

and other grasses. Phytopathology 63:<br />

1300-1 307.<br />

5 References 249<br />

Gillett, J.D., Dunlop, C.R. and Miller, I.L.<br />

1988. Occurrence, origin, weed status and<br />

control of water lettuce (Pistia stratiotes)<br />

in the Northern Territory. Plant Protection<br />

Quarterly 3(4): 144-1 48.<br />

Gingery, R.E., Nault, L.R. and Bradfute, O.E.<br />

195 Nosema pilicornis sp. n. of the<br />

purslane sawfly. Schizocerella pilicornis.<br />

Journal of Invertebrate Pathology<br />

32: 235-243.<br />

Goto, M. 1992. The relationship between<br />

Emmalocera sp. and barnyard grass and its<br />

potential as a biological control.<br />

Proceedings of an International<br />

Symposium on Biological Control and<br />

Integrated Management of Paddy and<br />

Aquatic Weeds in Asia. National<br />

Agriculture Research Center, Tsukuba,<br />

Japan, pp. 229-247.<br />

Grazia, J., Vecchio, M.C. del., Hildebrand, R.<br />

and Ramiro, Z.A. 1982. Study of the<br />

nymphs of pentatomids (Heteroptera) that<br />

infest soyabeans (Glycine max (L.)<br />

Merrill) 111. Thyanta perditor (Fabricius<br />

1794). Anais da Sociedade Entomologica<br />

do Brasil 1 1 : 139-1 46. (Portuguese).<br />

(Review of Applied Entomology, Series A<br />

73: 7093,1983).<br />

Greber, R.S. 1979. Cereal chlorotic mottle<br />

virus-a rhabdovirus of Graminiae in<br />

Australia transmitted by Nesoclutha pallida<br />

(Evans). Australian Journal of<br />

Agricultural Research 30: 433-443.<br />

Gruezo, W.S. 1990. The genus Kordyana Rac.<br />

new record (Exobasidiaceae) in the<br />

Philippines. Natural History Bulletin of<br />

the Siam Society 38: 89-92 (Biological<br />

Abstracts, July to December 1991).<br />

Guo, Y.Y., Zhou, N.S., Wu, T.T. and Qiu,<br />

H.L. 1984. An investigation and study on<br />

rice root-knot nematode on Hainan Island<br />

(Chinese). Guangdong Agricultural<br />

Science, Guangdong Nongye Kexue<br />

1984(4) 32-34. (Helminthological<br />

Abstracts Series B, 54: 598, 1985).


250 Biological Control of Weeds: Southeast Asian Prospects<br />

Giirsoy, O.V. 1989. Arthropod and phy-<br />

topathogen natural enemies of several<br />

weeds in Turkey. Proceedings, VII<br />

Symposium on Biological Control of<br />

Weeds, 6-1 1 March 1988, Rome, Italy.<br />

Istituto Sperimentale per la Patologia<br />

Vegetale. Ministero dell Agricoltura e<br />

delle Foreste, Rome, Italy, pp. 609-61 1.<br />

Habeck, D.H. 1974. Arzama densa as a pest of<br />

dasheen. The Florida Entomologist<br />

57: 409-410.<br />

Habeck, D.H. and Passoa, S. 1982. Potential<br />

for biological control of Mimosa pigra.<br />

Proceedings of an International<br />

Symposium on Mimosa pigra<br />

Management, 1982 Chaing Mai, Thailand.<br />

International Plant Protection Center<br />

Document No 48-A-83. Oregon State<br />

University, USA, pp. 1 15-120.<br />

Haller, W.T. and Sutton, D.L. 1973. Effects of<br />

pH and high phosphorus concentrations on<br />

the growth of water hyacinth. Hyacinth<br />

Control Journal 1 1 59-67.<br />

Hamdoun, A.M. and Tigani, K.B.El. 1977.<br />

Weed problems in' the Sudan. Pesticides<br />

Abstracts & News Summary 23: 19&194.<br />

Handayani, T. and Syed, R.A. 1976.<br />

Nymphula responsalis attacking Salvinia<br />

spp. in Indonesia. BIOTROP Newsletter<br />

15: 14.<br />

Hanlin, R.T. and Tortolero, 0. 1990. Icones<br />

Ascomycetum Venezuelae:<br />

Myriogenospora atramentosa. Mycotaxon<br />

39: 237-244.<br />

Harley, K.L.S. 1982. Release and evaluation<br />

of natural enemies of water hyacinth.<br />

Proceedings, Workshop on Biological<br />

Control of Water Hyacinth.<br />

Commonwealth Science Council, London.<br />

3-5 May 1982. Bangalore, India,<br />

pp. 24-30.<br />

Harley, K.L.S. 1984. Implementing a program<br />

for biological control of water hyacinth,<br />

Eichhornia crassipes. Proceedings of the<br />

International Conference on Water<br />

Hyacinth. United Nations Environment<br />

Programme. 7-1 1 February 1983.<br />

Hyderabad, India, pp. 58-69.<br />

Harley, K.L.S. 1989. The management of<br />

water hyacinth with emphasis on biological<br />

control. Commonwealth Science<br />

Council, London, 44pp.<br />

Harley, K.L.S. 1990. The role of biological<br />

control in the management of water hyacinth,<br />

Eichhornia crassipes. Biocontrol<br />

News and Information 1 1: 1 1-22.<br />

Harley, K.L.S., Forno, I.W., Kassulke, R.C.<br />

and Sands, D.P.A. 1984. Biological control<br />

of water lettuce. Journal of Aquatic<br />

Plant Management 22: 101-1 02.<br />

Harley, K.L.S. and Kassulke, R.C. 1975. The<br />

suitability of Teleonemia prolixa (StA1) for<br />

biological control of Lantana camara in<br />

Australia. Journal of the Australian<br />

Entomological Society 14: 225-228.<br />

Harley, K.L.S., Kassulke, R.C., Sands, D.P.A.<br />

and Day, M.D. 1990. Biological control of<br />

water lettuce, Pistia stratiotes (Araceae)<br />

by Neohydronomus affinis (Coleoptera:<br />

Curculionidae). Entomophaga 35:<br />

363-374.<br />

Harley, K.L.S., Winder, J.A., Kassulke, R.C.<br />

and Sands, D.P.A. 1983. Prospects for biological<br />

control of Mimosa pigra L. in<br />

Australia. Proceedings of the International<br />

Symposium on Mimosa pigra management.<br />

Chaing Mai 1982, pp. 1 13-1 14.<br />

Harley, K.L.S., Miller, I.L., Napompeth, B.<br />

and Thamasara, S. 1985. An integrated approach<br />

to the management of Mimosa<br />

pigra L. in Australia and Thailand.<br />

Proceedings of the 10th Asian-Pacific<br />

Weed Society Conference, pp. 209-215.<br />

Harley, K.L.S. and Wright, A.D. 1984.<br />

Implementing a program for biological<br />

control of water hyacinth, Eichhornia<br />

crassipes. Proceedings of the International<br />

Conference on Water Hyacinth,<br />

Hyderabad, India. (ed.) G. Thyagarajan.<br />

7-1 1 February 1983. United Nations<br />

Environment Program Reports and<br />

Proceedings 7: 55-69.<br />

Haseler, W.H. 1984. The Alan Fletcher<br />

Research Station Annual Report<br />

1983-1 984. Queensland Department of<br />

Lands. 15pp.


Hashioka, Y. 1973. Notes on Pyricularia. 11.<br />

Four species and one variety parasitic to<br />

Cyperaceae, Gramineae and<br />

Commelinaceae. Transactions of the<br />

Mycological Society of Japan 14: 256-265<br />

(Review of Plant Pathology 53: 3373,<br />

1974).<br />

Heald, C.M., Menges, R.M. and Wayland,<br />

J.R. 1974. Efficacy of ultra-high frequency<br />

(UHF) electromagnetic energy and soil fumigation<br />

on the control of the reniform nematode<br />

(Rotylenchus reniformis) and common<br />

purslane (Portulaca oleracea) among<br />

southern peas. Plant Disease Reporter<br />

58: 985-987.<br />

Heard, T.A. 1992. Resource use by Apion aculeatum,<br />

a herbivore of inflorescences of<br />

Mimosa pigra. p. 73, Abstracts, VIII<br />

International Symposium on Biological<br />

Control of Weeds, Lincoln University,<br />

Canterbury, New Zealand, 2-7 February<br />

1992.<br />

Heath, M.C., Valent, B., Howard, R.J. and<br />

Chumley, F.G. 1990. Interactions of two<br />

strains of Magnaporthe grisea with rice,<br />

goosegrass and weeping lovegrass.<br />

Canadian Journal of Botany 68:<br />

1627-1 637.<br />

Heath, M.C., Howard, R.J., Valent, B. and<br />

Chumlev. F.G. 1992. Ultrastructural inter-<br />

5 References 251<br />

Hillebrand, W.F. 1888. Flora of the Hawaiian<br />

Islands. Williams and Norgate, London.<br />

673pp.<br />

Hilu, K.W. and Johnson, J.L. 1992.<br />

Ribosomal DNA variation in finger millet<br />

and wild species of Eleusine (Poaceae).<br />

Theoretical and Applied Genetics<br />

83: 895-902.<br />

Hilu, K.W. and de Wet, J.M.J. 1976.<br />

Domestication of Eleusine coracana.<br />

Economic Botany 30: 199-208.<br />

Hilu, K.W., de Wet, J.M.J. and Harlan, J.R.<br />

1979. Archaeobotany and the origin of fin-<br />

ger millet. American Journal of Botany<br />

16: 330-333.<br />

Hinckley, A.D. 1963. Trophic records of some<br />

insects, mites and ticks in Fiji. Fiji<br />

Department of Agriculture Bulletin 45.<br />

1 16pp.<br />

Hiremath, S.C. and Salimath, S.S. 1992. The<br />

'A' genome donor of Eleusine coracana<br />

(L.) Gaertn. (Gramineae). Theoretical and<br />

Applied Genetics 84: 747-754.<br />

Hiremath, P.C. and Sulladmath, V.V. 1985.<br />

Zonate leaf blight-a new disease of finger<br />

millet. Current Science 54: 935.<br />

d ,<br />

actions of one strain of Magnaporthe<br />

Hodkinson, I.D. and White, I.M. '1981. The<br />

neotropical Psylloidea (Homoptera:<br />

grisea with goosegrass and weeping love- Insecta): an annotated check list. Journal<br />

grass. Canadian Journal of Botany of Natural History 15: 491-523.<br />

70: 779-787.<br />

Hegdekatti, R.M. 1927. The rice gall midge in<br />

north Kanara. Agricultural Journal of India<br />

22: 461-463.<br />

Hoffmann, A. and Temp*re, G. 1944. Note<br />

sur Hypurus bertrandi Penis. Bulletin de<br />

la SocietC Entomologique de France<br />

49: 100-104.<br />

Herren-Gemmill, B. 1991. The ecological role<br />

of the exotic asteraceous Chromolaena<br />

odorata in the bush fallow farming system<br />

of West Africa. Ecology and management<br />

of Chromolaena odorata. BIOTROP<br />

Holcomb, G.E., Jones, J.P. and Wells, D.W.<br />

1989. Blight of prostrate spurge and cultivated<br />

poinsettia caused by Amphobotrys<br />

ricini. Plant Disease 73: 74-75.<br />

Special Publication 44: 11-24. Holm, L.G., Plucknett, D.L., Pancho, J.V. and<br />

Hilda, A. and Suranarayanan, S. 1976. Cross- Herberger, J.P. 1977. The World's Worst<br />

protection in the blast disease of Panicum<br />

repens L. Proceedings of the Indian<br />

Weeds. Distribution and Biology.<br />

University Press of Hawaii, Honolulu,<br />

Academy of Science Section B. 84:<br />

21 5-225.<br />

Hawaii. 609pp.


252 Biological Control of Weeds: Southeast Asian Prospects<br />

Huang, C.W., Feng, B.C., Wang, H.D., Yao, Jairajpuri, M.S., Khan, W.U., Setty, K.G.H.<br />

J. and Song, L.J. 1985. The host plants of and Govindu, H.C. 1979. Heterodera<br />

whitebacked planthopper and its tolerance delvii n. sp. (Nematoda: Heteroderidae) a<br />

to starvation (Chinese). Insect Knowledge parasite of ragi (Eleusine coracana) in<br />

(Kunchong Zhishi) 22(5): 193-1 94. Bangalore, India. Revue Nematologie<br />

(Review of Applied Entomology, Series 2: 3-9.<br />

Igarashi, K. 1985. Ecological studies of<br />

Triops cancriformis (Bosc) inhabiting<br />

Shonai district, Japan (Japanese). Journal<br />

of the Yamagata Agriculture and Forestry<br />

Society 42: 35-42. (Review of Applied<br />

Entomology, Series A, 75: 1079, 1987).<br />

IMI 1992. Unpublished report of the<br />

International Mycological Institute, CABI,<br />

UK.<br />

Inserra, R.N., Dunn, R.A., McSorley, R.,<br />

Langdon, K.R. and Richmer, A.Y. 1989.<br />

Weed hosts of Rotylenchus reniformis in<br />

ornamental nurseries in southern Florida.<br />

Nematology Circular, Gainsville, No 171,<br />

4pp. (Nematological Abstracts 59: 1404,<br />

1990).<br />

Irving, N.S. and Beshir, M.O. 1982.<br />

Introduction of some natural enemies of<br />

water hyacinth to the White Nile, Sudan.<br />

Tropical Pest Management 28: 2CL26.<br />

Itoh, K. 1991a. Life Cycles of Rice Field<br />

Weeds and their Management in Malaysia.<br />

Tropical Agriculture Research Center,<br />

Tsukuba, Japan. 89pp.<br />

3h, K. 1991b. Integrated weed management<br />

of direct seeded wet rice fields in<br />

Southeast Asia and Pacific regions, with<br />

special reference to Malaysia. Proceedings<br />

of the 13th Asian Pacific Weed Science<br />

Society Conference, Jakarta, Indonesia,<br />

October 15-1 8. 1991. 1 ~ . DD. .<br />

Izquierdo, J.E., Huepp, G. and Chacon, L.<br />

1987. Detection of nematodes of the genus<br />

Meloidogyne in weeds associated with coffee<br />

plantations (Spanish). Sciencia y<br />

Tecnica en la Agricultura, Cafe y Cacao 9<br />

(1): 47-54. (Weed Abstracts 39: 581,<br />

1 990).<br />

Jacobsen, W.B.C. 1983. Ferns and Fern Allies<br />

of Southern Africa. Durban, Butterworths.<br />

542pp.<br />

Janardhanan, K.K., Singh, H.N. and Husain,<br />

A. 1982. Studies on Claviceps parasitic on<br />

Panicum species in India. Folia<br />

Microbiologica 27: 121-1 25.<br />

Jayanth, K.P. 1987. Biological control of<br />

water hyacinth in India. Indian Institute of<br />

Horticultural Research Technical Bulletin<br />

No. 3,28pp.<br />

Jayanth, K.P. 1988. Biological control of<br />

water hyacinth in India by release of the<br />

exotic weevil Neochetina bruchi. Current<br />

Science 17: 968-970.<br />

Jayanth, K.P. and Visalakshi, P.N.G. 1989.<br />

Establishment of the exotic mite<br />

Orthogalumna terebrantis Wallwork on<br />

water hyacinth in Bangalore, India.<br />

Journal of Biological Control 3: 75-76.<br />

Jeritta, A.L.R. and David, B.V. 1986. Some<br />

insects associated with euphorbiaceous<br />

weeds. Pest management 1: 21-26.<br />

(Review of Applied Entomology, Series<br />

A, 75: 6270. 1987).<br />

Jeyarajan, R., Doraiswarny, S., Sivaprakasam,<br />

K., Venkata-Rao, A. and<br />

Ramakrishnan, L. 1988. Incidence of<br />

whitefly transmitted viruses in Tamil<br />

Nadu. Madras Agricultural Journal<br />

75: 212-213.<br />

Jimenez, J.M., Bustamante, E., Gomez, R. and<br />

Pareja, M. 1990. Spike rot disease of itchgrass,<br />

Rottboellia cochinchinensis, its etiology<br />

and possible use in biological control<br />

(Spanish). Manejo Integrado de Plagas<br />

15: 13-23.<br />

Jordaan, E.M., Waele, D.de. and De Waele,<br />

D. 1988. Host status of five weed species<br />

and their effects on Pratylenchus zeae infestation<br />

of maize. Journal of Nematology<br />

20: 620-624.


Joshi, P.M. 1972. Pseudocephalobus indicus<br />

n.gen, n.sp. (Rhabditida: Cephalobidae)<br />

from Marathwada, India. Marathwada<br />

University Journal of Science Section B<br />

(Biological Science) 11: 155-158.<br />

(Helminthological Abstracts, Series B.<br />

47:1363, 1978).<br />

Joshi, R.D. and Prakash, J. 1977. Ageratum<br />

conyzoides-a weed reservoir of potato<br />

virus Y. Journal of the Indian Potato<br />

Association 4(1): 22 (Agricola).<br />

Joy, P.J. 1978. On the occurrence of Nisia<br />

atrovenosa Lethierry (Homoptera:<br />

Menoplidae) on Pistia stratiotes L. (Farn.<br />

Araceae) in India. Agricultural Research<br />

Journal of Kerala 16: 93-94.<br />

Joy, P.J., Lyla, K.R. and Satheesan, N.V.<br />

1993. Biological control of Chromolaena<br />

odorata in Kerala, India. Chromolaena<br />

odorata Newsletter 7: 1-3.<br />

Julien, M.H. 1992. Biological control of<br />

weeds. A world catalogue of agents and<br />

their target weeds. 3rd edition. 186pp.<br />

CAB International in association with<br />

ACIAR.<br />

Kalshoven, L.G.E. 198 1. The pests of crops in<br />

Indonesia. Revised and translated by P.A.<br />

Van Der Laan and G.H.L. Rothschild. P.T.<br />

Ichtiar Baru-Van Hoeve, Jakarta,<br />

Indonesia. 701 pp.<br />

Kamarudin, K.A. and Shah, A.A. 1978. The<br />

potential of Haltica cyanea Weber (Col.:<br />

Chrysomelidae) as a biological control<br />

agent of Melastoma malabathricum Linn.<br />

MARDI Research Bulletin 6: 15-24.<br />

Kamath, M.K. 1979. A review of biological<br />

control of insect pests and noxious weeds<br />

in Fiji (1969-1978). Fiji Agricultural<br />

Journal 41: 55-72.<br />

Kanagaratnam, P. 1976. Report of the Crop<br />

Protection Division-1975. Ceylon<br />

Coconut Quarterly 27: 36-41.<br />

Kar, A.K. and Ashok-Das 1988. New records<br />

of fungi from India. Indian<br />

Phytopathology 41: 505. (Review of Plant<br />

Pathology 70: 6367, 1991).<br />

5 References 253<br />

Kasno, A.K.A. and Soerjani, M. 1979.<br />

Prospects for biological control of weeds<br />

in Indonesia. Proceedings of the Seventh<br />

Asian-Pacific Weed Science Society<br />

Conference. Australia; Asian-Pacific<br />

Weed Science Societies. 26-30 November<br />

1979. Orange, Australia, Supplement 2:<br />

35-38.<br />

Kassulke, R.C., Harley, K.L.S. and Maynard,<br />

G.V. 1990. Host specificity of<br />

Acanthoscelides quadridentatus and A.<br />

puniceus (Col.: Bruchidae) for biological<br />

control of Mimosa pigra (with preliminary<br />

data on their biology). Entomophaga<br />

35: 85-97.<br />

Kativu, S. and Mithen, R. 1988. Pennisetum<br />

in southern Africa. Plant Genetic<br />

Resources Newsletter 73/74: 1-8.<br />

Keifer, H.H. 1979. Eriophyid studies. C-16,<br />

California Department of Agriculture.<br />

Sacramento, California. USA.<br />

Kenfield, D., Hallock, Y., Clardy, J. and<br />

Strobel, G. 1989. Curvulin and O-ethyl-<br />

curvulinic acid: phytotoxic metabolites of<br />

Drechslera indica which cause necroses<br />

on purslane and spiny amaranth. Plant<br />

Science 60: 123-1 28.<br />

Khan, A.G., Baloch, G.M. and Ghani, M.A.<br />

1978. Natural enemies of Abutilon,<br />

Amaranthus, Rumex and Sorghum.<br />

Commonwealth Institute of Biological<br />

Control. Report of work carried out<br />

January 1977-March 1978. pp. 42-43.<br />

Khan, M.A., Hibino, H., Aguiero, V.M.,<br />

Daquioag, R.D. and Opina, O.S. 1991.<br />

Rice and weed hosts of rice tungro associ-<br />

ated viruses and leafhopper vectors. Plant<br />

Disease 75: 926-930.<br />

Khan, R.M. and Khan, M.W. 1985. Portulaca<br />

oleracea hitherto unrecorded host of<br />

Rotylenchulus reniformis from India. Acta<br />

Botanica Indica 13: 286-295.<br />

Kholod, N.A. 1983. Plant hosts of the straw-<br />

berry stem nematode. (Russian). Materialy<br />

Simpoziuma Voronezh, 27-29 Sentyabrya<br />

1983, 104-1 11 (Helminthological<br />

Abstracts, Series B, 55: 1 10, 1986).


254 Biological Control of Weeds: Southeast Asian Prospects<br />

Kim, K.S. and Flores, E.M. 1979. Nuclear<br />

changes associated with Euphorbia mosaic<br />

virus transmitted by the whitefly.<br />

Phytopathology 69: 980-984.<br />

Kim, K.S. and Fulton, R.W. 1984.<br />

Ultrastructure of Datura stramonium in-<br />

fected with Euphorbia virus suggestive of<br />

a whitefly-transmitted geminivirus.<br />

Phytopathology 74: 236-241.<br />

Klein, M. and Raccah, B. 1991. Separation of<br />

two leafhopper populations of Circulifer<br />

haematoceps complex on different host<br />

plants in Israel. Phytoparasitica 19:<br />

153-1 55. (Review of Agricultural<br />

Entomology 79: 9784, 1991).<br />

Kleinschmidt, R.P. 1960. New species of<br />

Agromyzidae from Queensland.<br />

Queensland Journal of Agricultural<br />

Science 17: 321-337.<br />

Kleinschmidt, R.P. 1970. Studies of some<br />

Agromyzidae in Queensland. Queensland<br />

Journal of Agriculture and Animal Science<br />

27: 341-384.<br />

Klisiewicz, J.M. 1985. Growth and reproduc-<br />

tion of Dichotomophthora portulacae and<br />

its biological activity on purslane. Plant<br />

Disease 69: 76 1-762.<br />

Klisiewicz, J.M., Clement, S.L. and Norris,<br />

R.F. 1983. Black stem: a fungal disease of<br />

common purslane in California. Plant<br />

Disease 64: 1 162.<br />

Klots, A.B. 195 1. A Field Guide to the<br />

Butterflies of North America East of the<br />

Great Plains. Houghton Mifflin, Boston.<br />

349pp.<br />

Kluge, R.L. 1991. Biological control of triffid<br />

weed, Chromolaena odorata (Asteraceae),<br />

in South Africa. Agriculture, Ecosystems<br />

and Environment 37: 193-197.<br />

Kluge, R.L. and Caldwell, P.M. 1991.<br />

Chromolaena odorata in South Africa.<br />

Chromolaena odorata Newsletter 4: 7.<br />

Kluge, R.L. and Caldwell, P.M. 1993. The bi-<br />

ology and host specificity of Pareuchaetes<br />

aurata aurata (Lepidoptera: Arctiidae), a<br />

'new association' biological control agent<br />

for Chromolaena odorata (Compositae).<br />

Bulletin of Entomological Research<br />

83: 87-94.<br />

Kluge, R.L. and Morris, M.J. 1992. The bio-<br />

control of Chromolaena odorata in South<br />

Africa: a progress report. Abstracts of the<br />

IX International Symposium on Biological<br />

Control of Weeds, New Zealand, p. 59.<br />

Knipling, E.B., West, S.H. and Haller, W.T.<br />

1970. Growth characteristics, yield poten-<br />

tial and nutritive content of water hy-<br />

acinths. Proceedings of the Soil Science<br />

Society, Florida 30: 51-63.<br />

Knopf, K.W. and Habeck, D.H. 1976. Life<br />

history and biology of Samea<br />

multiplicalis. Environmental Entomology<br />

5: 539-542.<br />

Koike, H. 1977. Transmission by Dactynotus<br />

ambrosiae from mixed infections with<br />

sugarcane mosaic and maize dwarf mosaic<br />

virus strains. Plant Disease Reporter<br />

61 : 724-727.<br />

Kooner, B.S. and Deol, G.S. 1982.<br />

Comparative rate of development of<br />

Orosius albicinctus Distant (Cicadellidae:<br />

Homoptera) on different host plants.<br />

Journal of Agricultural Science,<br />

Cambridge 98: 61 3-61 4.<br />

Krauss, N.L.H. 1965. Investigations on bio-<br />

logical control of melastoma (Melastoma<br />

malabathricum L.). Proceedings of the<br />

Hawaiian Entomological Society<br />

19: 97-101.<br />

Krombein, K.V. and Burks, B.D. 1967.<br />

Hymenoptera of America north of Mexico.<br />

Synoptic Catalogue, Agriculture<br />

Monograph 2. Second Supplement. 584pp.<br />

USDA, US Government Printing Office,<br />

Washington.<br />

Kuhn, G.B., Lin, M.T. and Kitajima, E.W.<br />

1982. Some properties of bidens mosaic<br />

virus. (Portuguese). Fitopathologia<br />

Brasiliera 7: 185-195.


Kulkarni, S.N. and Sharma, O.P. 1976.<br />

Evaluation of some systemic and non-sys-<br />

temic fungicides against two plant patho-<br />

genic fungi. Pesticides lO(8): 32.<br />

Lal, A., Yadav, B.S. and Nandwana, R.P.<br />

1978. A record of some new and known<br />

weed hosts of Rotylenchulus renijormis<br />

Linford and Oliveira, 1940 from<br />

Rajasthan. Indian Journal of Nematology<br />

6: 94-95 (Helminthological Abstracts, B,<br />

48: 932, 1979).<br />

Lallana, V.H., Sabattini, R.A. and Lallana,<br />

M.C. 1987. Evapotranspiration from<br />

Eichhornia crassipes, Pistia stratiotes,<br />

Salvinia herzogii and Azolla caroliniana<br />

during summer in Argentina. Journal of<br />

Aquatic Plant Management 25: 48-50.<br />

Latiza, A.S. 1980. Host range of Ustilago scit-<br />

aminea Syd. in the Philippines. Sugarcane<br />

Pathologists' Newsletter 24: 1 1-1 3.<br />

Laup, S. 1987a. Biological control of water<br />

hyacinth: early observations. Harvest 12:<br />

35-40.<br />

Laup, S. 1987b. Biological control of water<br />

lettuce: early observations. Harvest<br />

12: 41-43.<br />

Lee, 0. 1964. Weeds may host dwarf mosaic.<br />

Proceedings of the 20th North Central<br />

Weed Control Conference. Purdue<br />

University, Lafayette, pp. 44-47. (Holm et<br />

al. 1977).<br />

Leeuwangh, J. and Leuamsang, P. 1967.<br />

Observations on the ecology of Thaia<br />

oryzivora, a leafhopper found on rice in<br />

Thailand. FA0 Plant Protection Bulletin<br />

15(2): 30-3 1.<br />

Leggat, F.W. and Teakle, D.S. 1975.<br />

PassifZora foetida, a widespread host of<br />

passionfruit woodiness virus in<br />

Queensland. APPS Newsletter 4(3):<br />

22-23.<br />

Lei, H.Z., Liu, G.Q. and Li, W.J. 1983.<br />

Studies of planthopper species and their<br />

population fluctuation on cockspur in rice<br />

fields. Plant Protection 9: 11-12.<br />

5 References 255<br />

Liau, S.S., Ooi, P.A.C. Ismail, M.R., Tay,<br />

B.L., Lee, S.A., Chung, G.F. and Ho, C.T.<br />

1991. Biological control of Mikaniaearly<br />

experiences in Malaysia.<br />

Proceedings, International Conference on<br />

Biological Control in Tropical Agriculture,<br />

27-30 August, 199 1, Malaysia. Preprint<br />

10 PP.<br />

Liau, S.S., Tan, C.L., Chung, G.F., Ooi,<br />

P.A.C., Lee, S.A. and Tay, B.L. 1993.<br />

Field releases of Liothrips mikaniae<br />

(Priesner)-experiences in Malaysia.<br />

Workshop on Biological Control of<br />

Mimosa pigra and Mikania micrantha,<br />

February 2, 1993. ASEAN PLANTI,<br />

Serdang, Malaysia, 1 p. abstract.<br />

Lin 1968. Weeds Found on Cultivated Land in<br />

Taiwan. Volumes 1 and 2. College of<br />

Agriculture, National Taiwan University,<br />

Taipai. 950pp. (Holm et al. 1977).<br />

Linford, M., Oliveira, J. and Ishii, M. 1949.<br />

Paratylenchus minutus n.sp., a nematode<br />

parasitic on roots. Pacific Science<br />

3: 11 1-1 19.<br />

Linford, M. and Yap, F. 1940. Some hosts of<br />

the reniform nematode in Hawaii.<br />

Proceedings of the Helminthological<br />

Society of Washington 7: 42-44. (Holm et<br />

al. 1977).<br />

Little, E.C.S. 1968. The control of water<br />

weeds. Weed Research 8: 79-105.<br />

Logan, A.E. and Zettler, F.W. 1984.<br />

Susceptibility of Rudbeckia, Zinnia,<br />

Ageratum and other bedding plants to<br />

Bidens mottle virus. Plant Disease<br />

68: 260-262.<br />

Lonsdale, W.M. 1992. The biology of Mimosa<br />

pigra. (ed.) K.L.S. Harley, A Guide to the<br />

Management of Mimosa pigra. CSIRO<br />

Canberra, pp. 8-32.<br />

Lonsdale, W.M., Miller, I.L. and Fomo, I.W.<br />

1989. The biology of Australian weeds 20.<br />

Mimosa pigra L. Plant Protection<br />

Quarterly 4: 1 19-1 3 1.


256 Biological Control of Weeds: Southeast Asian Prospects<br />

Lonsdale, W.M. and Segura, R. 1987. A de-<br />

mographic study of native and introduced<br />

populations of Mimosa pigra. (eds) D.<br />

Lemerle and A.R. Leys. Proceedings of<br />

the 8th Australian Weeds Conference,<br />

Sydney. Weed Society of N.S.W., Sydney,<br />

pp. 163-166.<br />

Lordello, R.R.A., Lordello, A.I.L. and Paulo,<br />

E.M. 1988. Multiplicao de Meloidogyne<br />

javanica em plantas daninbas.<br />

Nematologia Brazilieria 12: 84-92 (Weed<br />

Abstracts 38: 2165, 1989).<br />

Lourencao, A.L., Filho, E.B. and Ferraz,<br />

M.C.V.D. 1982. Natural enemies of Mocis<br />

latipes (Guente 1852). (Portuguese).<br />

Bragantia 41: 237-240 (Review of<br />

Applied Entomology, Series A, 71: 7909,<br />

1983).<br />

Loyal, D.S. and Kumar, K. 1977. Utilization<br />

of Marsilea sporocarps as sham seeds by a<br />

weevil. American Fern Journal 67(3): 95.<br />

Lubigan, R. and Vega, M. 1971. The effect of<br />

different densities and durations of compe-<br />

tition of Echinochloa crusgalli (L.) Beauv.<br />

and Monochoria vaginalis (Burm.f.) Presl.<br />

on the yield of lowland rice. Weed Science<br />

Report, 1970-7 1. Department of<br />

Agricultural Botany, University of the<br />

Philippines, College of Agriculture, Los<br />

Bands, pp. 19-23. (Holm et al. 1977).<br />

Luc, M., Sikora, R.A. and Bridge, J. 1990.<br />

Plant Parasitic Nematodes in Subtropical<br />

and Tropical Agriculture. CAB<br />

International Institute of Parasitology,<br />

U.K., 629 pp.<br />

Lyla, K.R. and Joy, P.J. 1992. Biology of<br />

Aphis spiraecola Patch infesting<br />

Chromolaena odorata in Kerala, India.<br />

Chromolaena odorata Newsletter 5: 2-3.<br />

Lyla, K.R., Joy, P.J. and Abraham, C.C. 1987.<br />

Insect pests of Chromolaena odorata<br />

(= Eupatorium odoratum). Agricultural<br />

Research Journal of Kerala 25: 302-304.<br />

Lynch, R.E., Some, S., Dicko, I., Wells, H.D.<br />

and Monson, W.G. 1987. Chinch bug<br />

damage to bermuda grass. Journal of<br />

Entomological Science 22: 153-1 58.<br />

Maas, P.W.T., Sanders, H. and Dede, J. 1978.<br />

Meloidogyne oryzae n.sp. (Nematoda,<br />

Meloidogynidae) infesting imgated rice in<br />

Surinam (South America). Nematologica<br />

24: 305-3 1 1.<br />

Mabberley, D.J. 1987. The Plant Book.<br />

Cambridge University Press, 706pp.<br />

McConnell, J., Marutani, M. and Muniappan,<br />

R. 1992. Insect induced changes in<br />

Chromolaena odorata. Ecology and<br />

Management of Chromolaena odorata.<br />

SEAMEO BIOTROP, Bogor, Indonesia,<br />

BIOTROP Special Publication 44:<br />

159-161.<br />

McFadyen, R.E.C. 1988a. Phytophagous insects<br />

recorded from C. odorata.<br />

Chromolaena odorata Newsletter 2: 5-23.<br />

McFadyen, R.E.C. 1988b. History and distribution<br />

of Chromolaena odorata (L.)<br />

R.M. King and H. Robinson. Proceedings<br />

of the First International Workshop on<br />

Biological Control of Chromolaena odorata.<br />

Agricultural Experiment Station,<br />

Mangilao, Guam, pp. 7-1 2.<br />

McFadyen, R.E.C. 1988c. Ecology of<br />

Chromolaena odorata in the Neotropics.<br />

Proceedings of the First International<br />

Workshop on Biological Control of<br />

Chromolaena odorata. Agricultural<br />

Experiment Station. Mangilao, Guam, pp.<br />

13-20.<br />

McFadyen, R.E.C. 1989. Siam weed: a new<br />

threat to Australia's north. Plant Protection<br />

Quarterly 4: 3-7.<br />

McFadyen, R.E.C. 1991a. The ecology of<br />

Chromolaena odorata in the Neotropics.<br />

Ecology and management of Chromolaena<br />

odorata. BIOTROP Special Publication<br />

44: 1-9.<br />

McFadyen, R. 1991 b. The accidental introduction<br />

of the Chromolaena mite Acalitus<br />

adoratus into Southeast Asia.<br />

Chromolaena odorata Newsletter 4: 8.<br />

McFadyen, R.E.C. 1991c. New approaches to<br />

the biological control of Chromolaena<br />

odorata in Southeast Asia. Ecology and<br />

Management of Chromolaena odorata.<br />

SEAMEO BIOTROP, Bonor, Indonesia,<br />

Biotrop Special ~ublication-44: 135-1 41


McFadyen, R. 1992. A critique of the paper<br />

"Chromolaena odorata: friend or foe for<br />

resources poor farmers" by S.P. Field,<br />

published in the Chromolaena odorata<br />

newsletter 4. Chromolaena odorata<br />

Newsletter 5: 6.<br />

McFadyen, R.E.C. 1993. The accidental intro-<br />

duction of the Chromolaena mite Acalitus<br />

adoratus into Southeast Asia. Proceedings<br />

of the Eighth International Symposium on<br />

Biological Control of Weeds. 2-7<br />

February 1992 Lincoln University,<br />

Canterbury New Zealand, 9pp.<br />

Macfarlane, R. 1984. Report of the entomolo-<br />

gist 1981 and 1982. Solomon Islands,<br />

Ministry of Home Affairs and National<br />

Development. (Review of Applied<br />

Entomology, Series A 72: 8235, 1984).<br />

MacGowan, J.B. 1989. Bureau of<br />

Nematology-nematode detections of spe-<br />

cial interest. Triology Technical Report<br />

28(12): 1-3. (Nematological Abstracts,<br />

Series B. 59: 141 3,1990).<br />

McSorley, R., Parrado, J.L. and Goldweber, S.<br />

198 1. Plant-parasitic nematodes associated<br />

with mango and relationship to tree condi-<br />

tion. Nematropica 1 1 : 1-9.<br />

Maehler, K.L. 1954. Recent beetle captures.<br />

Proceedings of the Hawaiian<br />

Entomological Society 15: 269.<br />

Mahindapala, R., Kirthisinghe, J.K.F. and<br />

Pinto, J.L.J.G. 1980. Some studies on the<br />

biological control of Chromolaena odora-<br />

ta (Eupatorium odoratum). Ceylon<br />

Coconut Quarterly 3 1 : 98-1 04.<br />

Malleswaria-Rao, Y. and Narayana-Rao, A.<br />

198 1. Sporulation of Pyricularia spp.:<br />

stimulation by detached leaves and leaf<br />

extracts of Commelina benghalensis L.<br />

Proceedings of the Indian Academy of<br />

Science. Plant Science 90: 389-393.<br />

Mallikarjunaiah, R.R. and Rao, V.G. 1972. A<br />

new leaf-spot disease of passion flower<br />

from Maharashtra. Current Science<br />

'41: 686.<br />

5 References 257<br />

Mamaril, E.C. and Alberto, R.T. 1989. Root-<br />

knot nematodes infecting some common<br />

weeds in vegetable growing areas in<br />

Sicsican. International Nematology<br />

Network Newsletter 6(3): 37-39.<br />

(Nematological Abstracts 59: 389, 1990).<br />

Mangodihardjo, S. 1975. Prospects of biologi-<br />

cal control of weeds in Indonesia.<br />

Proceedings, 3rd Indonesian Weed<br />

Science Conference, Bandung, Indonesia,<br />

pp 33-41.<br />

Mangoendihardjo, S. and Nasroh, A. 1976.<br />

Proxenus sp. (Lepidoptera: Noctuidae), a<br />

promising natural enemy of water lettuce<br />

(Pistia stratiotes). Proceedings of the Fifth<br />

Asian-Pacific Weed Science Society<br />

Conference October 5-1 1, 1975 Tokyo,<br />

pp. 444-446.<br />

Mangoendihardjo, S., Nasroh, A., Kasno and<br />

Subagyo, T. 1976. Studies of natural ene-<br />

mies associated with important weed<br />

species in Indonesia. BIOTROP Annual<br />

Report, 1975-1976 p. 22.<br />

Mangoendihardjo, S., Setyawati, O., Syed,<br />

R.A. and Sosromarsono, S. (1977). Insects<br />

and fungi associated with some aquatic<br />

weeds in Indonesia. Proceedings, Sixth<br />

Asian Pacific Weed Science Society<br />

Conference July 1 1-17, 1977.2:440-446.<br />

Mangoendihardjo, S. and Syed, R.A. 1974.<br />

Studies of natural enemies of Eichhornia<br />

crassipes and Pistia stratiotes L. Southeast<br />

Asian Workshop on Aquatic Weeds.<br />

Malang. Paper 7b. 3. 19pp.<br />

Mani, M.S. and Jayaraman, P. 1987. On some<br />

plant galls from the Fiji islands.<br />

Proceedings of the Indian Academy of<br />

Science: Animal Science 96: 8 1-1 15.<br />

Maqbool, M.A., Hashmi, S. and Ghaffar, A.<br />

1986. Eleven new hosts of root-knot ne-<br />

matodes and identification of physiologi-<br />

cal races in Pakistan. Pakistan Journal of<br />

Nematology 4: 1 1-1 4.


258 Biological Control of Weeds: Southeast Asian Prospects<br />

Markin, G.P. and Nagata, R.F. 1989. Host<br />

preference and potential climatic range of<br />

Cyanotricha necyria (Lepidoptera:<br />

Dioptidae), a potential biological control<br />

agent of the weed Passijlora mollissima in<br />

Hawaiian forests. Cooperative National<br />

Park Resources Studies Unit. Technical<br />

Report 67.35~~.<br />

Markin, G.P., Nagata, R.F. and Taniquchi, G.<br />

, 1989. Biology and behaviour of the South<br />

American moth, Cyanotricha necyria<br />

(Felder and Rogenhofer) (Lepidoptera:<br />

Notodontidae), a potential biocontrol agent<br />

in Hawaii of the forest weed Passij7ora<br />

mollissima (HBK) Bailey. Proceedings of<br />

the Hawaiian Entomological Society<br />

29: 115-123.<br />

Marshall, G.K. 191 1. On a new species of<br />

Baris from the Sudan. The Entomologists'<br />

Monthly Magazine 22: 207-208.<br />

Marshall, G.K. 1916. Some injurious Indian<br />

weevils (Curculionidae) 2. Bulletin of<br />

Entomological Research 26: 565-569.<br />

Marshall, G.K. 1935. New injurious<br />

Curculionidae (Col.) from Malaya.<br />

Bulletin of Entomological Research<br />

26: 565-569.<br />

Martin, G.C., James, G.L., Bissett, J.L. and<br />

Way, J.I. 1969. New records of infection<br />

by the burrowing nematode. FA0 Plant<br />

Protection Bulletin 17: 1 16.<br />

Marutani, M. and Muniappan, R. 1990. A new<br />

natural enemy of Chromolaena odorata in<br />

Micronesia. Chromolaena odorata<br />

Newsletter 3: 7.<br />

Marutani, M. and Muniappan, R. 1991a. Re-<br />

establishment of Pareuchaetes pseudoin-<br />

sulata in Yap. Chromolaena odorata<br />

Newsletter 4: 3.<br />

Marutani, M. and Muniappan, R. 1991b.<br />

Interactions between Chromolaena odora-<br />

ta (Asteraceae) and Pareuchaetes<br />

pseudoinsulata (Lepidoptera: Arctiidae).<br />

Annals of Applied Biology 119: 227-238.<br />

Mathur, V.K. and Prasad, S.K. 1973. Survival<br />

and host range of the rice root nematode,<br />

Hirschmaniella oryzae. Indian Journal of<br />

Nematology 3: 88-93 (Helminthological<br />

Abstracts B, 44: 1259, 1975).<br />

Maun, M.A. and Barrett, S.C.H. 1986. The bi-<br />

ology of Canadian weeds. 77. Echinochloa<br />

crus-galli (L.) Beauv. Canadian Journal of<br />

Plant Science 66: 739-759.<br />

Mehrlich, F.P. and Fitzpatrick, H.M. 1935.<br />

Dichotomophthora portulacae, a patho-<br />

gene of Portulaca oleracea. Mycologica<br />

27: 543-550.<br />

Menon, R. and Ponnappa, K.M. 1964.<br />

Commonwealth Institute of Biological<br />

Control. Report of work carried out during<br />

1963. Plant Pathogens, pp. 39-40.<br />

Mew, T.W., Fabellar, N.G. and Elazegui, F.A.<br />

1980. Ecology of the rice sheath blight<br />

pathogen: parasitic survival. International<br />

Rice Research Newsletter 5(4): 16.<br />

Migliori, A. and Lastra, R. 1980. Etude d'une<br />

maladie de type viral presente sur mais en<br />

Guadeloupe et transmise par le delphacide<br />

Peregrinus maidis. Annals de<br />

Phytopathologie 12: 277-294.<br />

Migliori, A. and Lastra, R. 1981. Mise en evi-<br />

dence du maize mosaic virus chez le mais<br />

en Guadeloupe et en Guyane. Agronomie<br />

7: 195-198.<br />

Miller, I.L. and Lonsdale, W.M. 1987. Early<br />

records of Mimosa pigra in the Northern<br />

Territory. Plant Protection Quarterly<br />

2: 140-142.<br />

Mintz, A.S. and Weidemann, G.J. 1992.<br />

Evaluation of Aposphaeria amaranthi as a<br />

potential bioherbicide for Amaranthus.<br />

p.68. Abstracts, VIII International<br />

Symposium on Biological Control of<br />

Weeds. Lincoln University, Canterbury,<br />

New Zealand.<br />

Misra, M.P., Pawar, A.D., Samujh, R. and<br />

Srivastava, C.M. 1992. Use of Neochetina<br />

eichhorniae Warner and N. bruchi<br />

Hustache (Coleoptera, Curculionidae) for<br />

the biological control of water hyacinth in<br />

north India. Journal of Advanced Zoology<br />

13: 49-52.


Mitchell, D.S. 1978. Aquatic Weeds in<br />

Australian Inland Waters. Australian<br />

Government Printing Service. Canberra,<br />

Australia. 189pp.<br />

Mitchell, J.K. 1986. Dichotomophthora portulacae<br />

causing black stem rot on common<br />

purslane in Texas. Plant Disease 70: 603.<br />

Miyagawa, H., Ozaki, K. and Kimura, T.<br />

1988. Pathogenicity of Psuedomonas<br />

glumae and P. plantarii to the ears and<br />

leaves of graminaceous plants. Bulletin of<br />

the Chugoku National Agricultural<br />

Experiment Station 3: 3 1-43. (Weed<br />

Abstracts 38: 3926, 1989).<br />

Miyanishi, K. and Cavers, P.B. 1980. The biology<br />

of Canadian weeds. 40. Portulaca<br />

oleracea L. Canadian Journal of Plant<br />

Sciences 60: 953-963.<br />

Moffett, M.L. and McCarthy, G.J.P. 1973.<br />

Xanthomonas translucens on Japanese<br />

millet (Echinochloa crus-galli var. frumentacea).<br />

Australian Journal of<br />

Experimental Agriculture and Animal<br />

Husbandry 13: 452-454.<br />

Mohamed, A.Z., Lee, B.S. and Lum, K.Y.<br />

1992. Developing a biological control<br />

initiative in Malaysia. (eds) P.A.C. Ooi,<br />

G.S. Lim and P.S. Teng. Biological<br />

Control: Issues in the Tropics, pp. 59-62.<br />

Mohanasundaram, M. 1984. Some tarsonemid<br />

mites from Tamilnadu, India (Acari:<br />

Tarsonemidae). Oriental Insects 18:<br />

79-85.<br />

Mohandes, C., Rao, Y.S. and Sahu, S.C. 1981.<br />

Cultural control of rice root nematodes<br />

(Hirschmaniella spp.) with Sphenoclea<br />

zeylanica. Proceedings of the Indian<br />

Academy of Sciences (Animal Sciences)<br />

90:373-376.<br />

Monte, 0. 1939. Lista preliminar do<br />

tingitideos de Minas Gerais. (Portuguese).<br />

Revista Sociedade Brasiliera de<br />

Agronomia 2: 63-87.<br />

Moody, K. 1989. Weeds reported in rice in<br />

South and Southeast Asia. International<br />

Rice Research Institute. Los Banos,<br />

Philippines. 442pp.<br />

5 References 259<br />

Moody, K., Castin, E.M. and Estorninos, L.E.<br />

1987. Natural enemies of some weeds in<br />

the Philippines. Typescript 17pp.<br />

Morrill, W.L., Penelec, L. and Almazon, L.P.<br />

1990. Effects of weeds on fecundity and<br />

survival of Leptocorisa oratorius<br />

(Hemiptera: Alydidae). Environmental<br />

Entomology 19: 1469-1 472.<br />

Muchovej, J.J. 1987. Drechslera gigantea on<br />

Eleusine indica in Brazil. (Portuguese).<br />

Fitopatologia Brasileira 12: 405-406.<br />

(Review of Plant Pathology, 67: 5494,<br />

1988).<br />

Muchovej, J.J. and Muchovej, R.M.C. 1987.<br />

Physarum cinereum on turfgrass in Brazil.<br />

Fitopatologia Brasileira 12: 402-403.<br />

Muchovej, J.J. and Nesio, M.L.R. 1987. A<br />

new Exserohilum from Brazil.<br />

Transactions of the British Mycological<br />

Society 89: 126-1 28.<br />

Muddiman, S.B., Hodkinson, I.D. and Hollis,<br />

D. 1992. Legume-feeding psyllids of the<br />

genus Heteropsylla (Homoptera:<br />

Psylloidea). Bulletin of Entomological<br />

Research 82: 73-1 17.<br />

Muesebeck. C.F.W., Krombein, K.V. and<br />

Townes, H.K. 1951. Hymenoptera of<br />

America north of Mexico. Synoptic<br />

Catalogue, Agriculture Monograph 21.<br />

1420pp. USDA, US Government Printing<br />

Office, Washington.<br />

Mundkur, B.B. 1939. A contribution towards<br />

a knowledge of Indian Ustilaginales.<br />

Transactions of the British Mycological<br />

Society 23: 105 (Rachie and Peters 1977).<br />

Mune, T.L. and Parham, J.W. 1967. The declared<br />

noxious weeds of Fiji and their control.<br />

Fiji Department of Agriculture.<br />

Bulletin 48.74~~.<br />

Muniappan, R. 1988a. Chromolaena odorata<br />

newsletter No 1, 15pp. Agricultural<br />

Experiment Station, University of Guam.<br />

Mangilao, Guam.<br />

Muniappan, R. 1988b. Chromolaena odorata<br />

newsletter No 2, 23pp. Agricultural<br />

Experiment Station, University of Guam,<br />

Mangilao, Guam.


260 Biological Control of Weeds: Southeast Asian Prospects<br />

Muniappan, R. 1988c. Pareuchaetes estab-<br />

lishment. Chromolaena odorata<br />

Newsletter 1: 2.<br />

Muniappan, R., Marutani, M. and Denton,<br />

G.R.W. 1988b. Introduction and establish-<br />

ment of Pareuchaetes pseudoinsulata<br />

Rego Barros (Arctiidae) against<br />

Chromolaena odorata in the Western<br />

Caroline Islands. Journal of Biological<br />

Control 2: 141-1 42.<br />

Muniappan, R. and Marutani, M. 1992.<br />

Coevolution of the Siarn weed and its nat-<br />

ural enemy. p. 74. Abstracts VIII<br />

International Symposium on Biological<br />

Control of Weeds, Lincoln University,<br />

Canterbury, New Zealand, 2-7 February<br />

1992.<br />

Muniappan, R., Marutani, M. and McConnell,<br />

J. 1988a. A bibliography of Chromolaena<br />

odorata. Chromolaena odorata Newsletter<br />

1: 3-15.<br />

Muniappan, R., Sundaramurthy, V.T. and<br />

Viraktamath, C.A. 1989. Distribution of<br />

Chromolaena odorata (Asteraceae) and<br />

bionomics and consumption and utiliza-<br />

tion of food by Pareuchaetes pseudoinsu-<br />

lata (Lepidoptera: Arctiidae) in India.<br />

Proceedings of the VII International<br />

Symposium on Biological Control of<br />

Weeds. Italy, pp. 401-409.<br />

Muniappan, R. and Viraktamath 1986. Insects<br />

and mites associated with Chromolaena<br />

odorata (L.) R.M. King and H. Robinson<br />

(Asteraceae) in Karnataka and Tamil<br />

Nadu. Entomon 1 1 : 285-287.<br />

Nachapong, M. and Mabbett, T. 1979. A sur-<br />

vey of some wild hosts of Bemisia tabaci<br />

Genn. around cotton fields in Thailand.<br />

Thai Journal of Agricultural Science<br />

12: 217-222.<br />

Nafus, D. and Schreiner, I. 1989. Biological<br />

control activities in the Mariana Islands<br />

from 191 1 to 1988. Micronesica<br />

22: 65-1 06.<br />

Nag Raj, T.R. and Ponnappa, K.M. 1966.<br />

Commonwealth Institute of Biological<br />

Control. Report of work carried out during<br />

1965. Plant pathogens. pp. 43-44.<br />

Nagarkatti, S. 1982. Biological control efforts<br />

in India with special reference to water<br />

hyacinth (Eichhornia crassipes).<br />

Workshop on Biological Control of Water<br />

Hyacinth. Commonwealth Science<br />

Council, London. 3-5 May 1982.<br />

Bangalore, India, pp. 43-44.<br />

Nakahara, L.M. 1977. Possible new State<br />

pest, Agraulis (= Dione) vanillae<br />

Linnaeus. Memorandum, Hawaii<br />

Department of Agriculture, January 17.<br />

~PP.<br />

Napompeth, B. 1981. Approaches to the biological<br />

control of Mimosa pigra L. in<br />

Thailand. (Thai). National Biological<br />

Control Research Centre Kasetsart<br />

University, Bangkok, Thailand. Extension<br />

Leaflet 12. 1 1 pp.<br />

Napompeth, B. 1982. Biological control research<br />

and development in Thailand.<br />

Proceedings of the International<br />

Conference on Plant Protection in the<br />

Tropics. 1-4 March 1982. Kuala Lumpur,<br />

Malaysia, pp. 301-323.<br />

Napompeth, B. 1983. Preliminary screening<br />

of insects for biological control of Mimosa<br />

pigra in Thailand. Proceedings of an<br />

International Symposium on Mimosa<br />

pigra Management, 1982, Chiang Mai,<br />

Thailand. International Plant Protection<br />

Center Document No 48-A-83. Oregon<br />

State University, USA, pp. 121-128.<br />

Napompeth, B. 1984. Biological control of<br />

water hyacinth in Thailand. Proceedings,<br />

International Conference on Water<br />

Hyacinth, Hyderabad, India. 7-1 1<br />

February 1983. (ed.) G. Thyagarajan.<br />

United Nations Environment Program<br />

Reports and Proceedings Series 7:<br />

8 1 1-822.<br />

Napompeth, B. 1989. Biological control of insect<br />

pests and weeds in Thailand.<br />

Biological control of pests. BIOTROP<br />

Special Publication 36: 5 1-68.<br />

Napompeth, B. 1990a. Country report:<br />

Thailand. Biological control of weeds in<br />

Thailand. BIOTROP Special Publication<br />

38: 23-36.


Napompeth, B. 1990b. Hypolixus trunculatus<br />

F. found feeding on C. odorata in<br />

Thailand. Chromolaena odorata<br />

Newsletter 3: 6.<br />

Napompeth, B. 1992a. Brief review of biolog-<br />

ical control activities in Thailand.<br />

ed. Y. Hirose, Biological Control in South<br />

and East Asia. Kyushu University Press,<br />

Japan, pp. 5 1-68.<br />

Napompeth, B. 1992b. Biological control of<br />

paddy and aquatic weeds in Thailand.<br />

Biological Control and Integrated<br />

Management of Paddy and Aquatic Weeds<br />

in Asia. National Agriculture Research<br />

Center, Tsukuba, Japan, pp. 249-258.<br />

Napompeth, B., Charernsom, K., Suasa-Ard,<br />

W. and Pongsupradit, D. 1977. Insects of<br />

biological control importance for aquatic<br />

weeds in Thailand. Environment News<br />

5: 47-56.<br />

Napompeth, B. and Hai, T.N. 1988.<br />

Chromolaena odorata in Vietnam.<br />

Proceedings of the First International<br />

Workshop on Biological Control of<br />

Chromolaena odorata. Agricultural<br />

Experiment Station. Mangilao, Guam,<br />

p. 63.<br />

Napompeth, B., Hai, T.N. and Winotai, A.<br />

1988. Attempts on biological control of<br />

Siam weed Chromolaena odorata in<br />

Thailand. Proceedings of the First<br />

International Workshop on Biological<br />

Control of Chromolaena odorata.<br />

Agricultural Experiment Station,<br />

Mangilao, Guam, pp. 57-62.<br />

5 References 261<br />

Nasser, M.A.K. and Basky, Z. 1988. Research<br />

on some weeds as reservoirs of cucumber<br />

mosaic virus. (Hungarian).<br />

Zoldsegtermesztesi Kutato Intezet<br />

Bulletinje 21: 83-88. (Weed Abstracts 39:<br />

3424,1990).<br />

Natural Resources Institute 1992. Control of<br />

Rottboellia cochinchinensis with mycoherbicides.<br />

Natural Resources Institute<br />

Newsletter 5(10): 8-9.<br />

Nault, L.R., Gingery, R.E. and Gordon, D.T.<br />

1980. Leafhopper transmission and host<br />

range of maize rayado fino virus.<br />

Phytopathology 70: 709-71 2.<br />

Nayar, B.K. and Bajpai, N. 1976. Morphology<br />

in relation to phylogeny of the davallioid<br />

oleandroid group of ferns.<br />

Phytomorphology 26: 333-354.<br />

Neal, M.C. 1965. In Gardens of Hawaii. B.P.<br />

Bishop Museum Special Publication 50,<br />

Bishop Museum Press, Honolulu, HI.<br />

Needham, J.G. 1946. An insect community<br />

which lives in flowerheads. National<br />

Geographic 90: 34CL356.<br />

Nguyen Van Vuong, 1973. Weed flora in rice<br />

field in South Vietnam. The Second<br />

Indonesian Weed Science Conference,<br />

Yogyakarta, April 2-5, 1973, pp.<br />

155-161.<br />

Noda, K., Teerawatsakul, M., Prakongvongs,<br />

C. and Chaiwiratnukul, L. 1985. Major<br />

Weeds in Thailand. National Weed<br />

Science Research Institute Project,<br />

Thailand. 142pp.<br />

- -<br />

Napompeth? B. and A' 1991'<br />

Norman, K., Liau, S.S. and Ooi, P.A.C. 1992.<br />

Progress on biological control of Siam<br />

ne introduction of Liothrips mikaniae for<br />

weed, Chromolaena odorata in Thailand.<br />

the biocontrol of Mikania in Malaysia.<br />

and management of Chromolaena<br />

Proceedings of the National IRPA<br />

odorata. BIOTROP Special Publication<br />

(Intensification of Research in Priority<br />

44~91-97.<br />

Areas) Seminar (Agricultural Sector)<br />

Narendra, D.V. and Rao, V.G. 1973. A new Kuala Lumpur, 6-1 1 January 1992. 1 p ableaf-spot<br />

disease of Commelina. Current stract.<br />

Science 42(5): 180.


262 Biological Control of Weeds: Southeast Asian Prospects<br />

Norris, R.F. 1985. Biological weed control<br />

with endemic organisms, with emphasis<br />

on common purslane (Portulaca oler-<br />

acea). Proceedings 37 Annual California<br />

Weed Conference. El Macero, California,<br />

USA, pp. 67-69.<br />

Noyes, J.S. 1990. A new encyrtid<br />

(Hymenoptera) parasitoid of the leucaena<br />

psyllid (Homoptera: Psyllidae) from<br />

Mexico, Central America and the<br />

Caribbean. Bulletin of Entomological<br />

Research 80: 37-41.<br />

O'Brien, C.W. 1976. A taxonomic revision of<br />

the New World subaquatic genus<br />

Neochetina (Coleoptera: Curculionidae:<br />

Bagoini). Annals of the Entomological<br />

Society of America 69: 165-174.<br />

O'Brien, C.W. and Wibmer, G.J. 1989a.<br />

Revision of the neotropical weevil genus<br />

Argentinorhynchus Brethes (Coleoptera:<br />

Curculionidae). Annals of the<br />

Entomological Society of America 82:<br />

267-278.<br />

O'Brien. C.W. and Wibmer, G.J. 1989b. Two<br />

new South American species of the weevil<br />

genus Argentinorhynchus Brethes.<br />

Southwestern Entomologist 14: 21 3-223.<br />

(Review of Agricultural Entomology 78:<br />

7552, 1990).<br />

O'Brien, C.W. and Wibmer, G.J. 1989c.<br />

Revision of the neotropical genus<br />

Neohydronomus Hustache (Coleoptera:<br />

Curculionidae). Coleopterists' Bulletin<br />

43: 291-304.<br />

Ofuya, T.I. 1988. Occurrence, growth and survival<br />

of Aphis craccivora (Homoptera:<br />

Aphididae) on some weeds in a rainforest<br />

area of Nigeria. Annals of Applied<br />

Biology 1 13: 229-233.<br />

Ogwaro, K. 1978. Ovipositional behaviour<br />

and host-plant preference of the sorghum<br />

shoot fly, Atherigona soccata (Diptera:<br />

Anthomyiidae). Entomologia<br />

Experimentalis et Applicata 23: 189-1 99.<br />

Ohtsu, Y. and Gomi, T. 1985. Strain A of sugarcane<br />

mosaic virus isolated from sourgrass<br />

in Ishigaki Island, Okinawa, Japan.<br />

(Japanese). Annals of the<br />

Phytopathological Society of Japan 5 1 :<br />

6 16-622.<br />

Okali, D.U.U. and Hall, J.B. 1974. Die-back<br />

of Pistia stratiotes on Volta Lake, Ghana.<br />

Nature 248: 452-453.<br />

Okioma, S.N.M., Muchoki, R.N. and Gathuru,<br />

E.M. 1983. Alternate hosts of rice yellow<br />

mottle virus in the Lake Victoria basin of<br />

Kenya. Tropical Pest Management<br />

29: 295-296. (Review of Plant Pathology<br />

63: 1258, 1984).<br />

Olaoye, S.O.A. 1974. Studies on the biological<br />

control of Eupatorium odoratum in<br />

Nigeria. Proceedings of the Fourth<br />

Nigerian Weed Science Group Meeting,<br />

pp. 1-8. (Weed Abstracts 25: 836, 1976).<br />

Ong, C.A. and Ting, W.P. 1973. Two virus<br />

diseases of passion fruit (Passiflora edulis<br />

f. flavicarpa). MARDI Research Bulletin<br />

1: 33-50.<br />

Ooi, P.A.C. 1993. Biological control of<br />

Mikania micrantha. International Institute<br />

of Biological Control, Annual Report<br />

1992, p. 48.<br />

Ooi, P.A.C., Holden, A.N.G. and Baker, P.S.<br />

199 1. Arthropods and pathogens for biological<br />

control of Chromolaena odorata.<br />

Ecology and Management of<br />

Chromolaena odorata. BIOTROP Special<br />

Publication 44: 127-1 32.<br />

Ooi, P.A.C., Ravindran, C.P. and Liau, S.S.<br />

1993. Biology and production of Liothrips<br />

mikaniae Priesner. Workshop on<br />

Biological Control of Mimosa pigra and<br />

Mikania micrantha, February 2, 1993.<br />

ASEAN PLANTI, Serdang, Malaysia, 1 p.<br />

abstract.<br />

Ooi, P.A.C., Sim, C.H. and Tay, E.B. 1988a.<br />

Status of the arctiid moth introduced to<br />

control Siam weed in Sabah, Malaysia.<br />

Planter 64: 298-304.


Ooi, P.A.C., Sim, C.H. and Tay, E.B. 1988b.<br />

Irregular recovery of Pareuchaetes<br />

pseudoinsulata in Sabah, Malaysia.<br />

Proceedings of the First International<br />

Workshop on Biological Control of<br />

Chromolaena odorata. Agricultural<br />

Experiment Station. Mangilao, Guam, p.<br />

56.<br />

Oritsejafor, J.J. 1986. Weed hosts of<br />

Fusarium oxysporum f.sp. elaeidis.<br />

Oleagineux 41: 1-7. (Review of Plant<br />

Pathology 65: 3667, 1986).<br />

Ortiz, M.S. 1981. Aphididae from the forest<br />

edge: Tingo Maria (Huanuco-Peru)<br />

(Spanish). Revista Peruana de<br />

Entomologia 23: 1 19-1 20.<br />

Paje, E.P., Exconde, O.R. and Raymundo,<br />

S.A. 1964. Host range of Piricularia<br />

oryzae in the Philippines. Philippine<br />

Agriculturist 48: 35-48.<br />

Pande, A. 1980. Haplosporella passiforidia<br />

n.sp. from Maharashtra. New taxa on<br />

Passiflora foetida. Indian Journal of<br />

Mycology and Plant Pathology 10: 75.<br />

Parbery, D.G. 1967. Studies on grarninicolous<br />

species of Phyllachora Nks. in Fckl. V. A<br />

taxonomic monograph. Australian Journal<br />

of Botany 15: 271-375.<br />

Parejarearn, A., Chettanachit, D., Balaveang,<br />

W. and Disthaporn, S. 1988. Rice ragged<br />

stunt virus (RSV) in aquatic weed<br />

Monochoria vaginalis. International Rice<br />

Research Newsletter 13(2): 22.<br />

Parenzan, P. 1985. Damage to jojoba<br />

(Simmondsia chinensis) by Nysius<br />

(Macroparius) cymoides Spin.<br />

(Rhynchota-Heteroptera-Lygaeidae) in<br />

Apulia. (Italian). Entomologica 20:<br />

99-108. (Review of Applied Entomology<br />

A 76: 1203,1988).<br />

Parker, C. 1972. The Mikania problem.<br />

Pesticides Abstracts & News Summary, A.<br />

18: 312-315.<br />

Parris, S.D. 1980. Aquatic plant control activi-<br />

ty in the Panama Canal zone.<br />

Miscellaneous Paper, United States Army<br />

Waterways Experimental Station A-80-3,<br />

pp. 384-389.<br />

5 References 263<br />

Parsons, W.T. 1963. Water hyacinth, a pest of<br />

world water-ways. Victorian Journal of<br />

Agriculture 61 : 23-27.<br />

Patch, E.M. 1939. Food-plant catalogue of the<br />

aphids of the world. Maine Agricultural<br />

Experiment Station. Bulletin 393: 35-430.<br />

Patil, M.S. 1975. Some Cercospora species<br />

from Kolhapur India Part 2. Botanique<br />

(Nagpur) 6: 2 19-226. (BIOSIS).<br />

Patnaik, N.C., Mohanty, B. and Parida, A.K.<br />

1987. Nisaga simplex caterpillar on rice in<br />

western Orissa. International Rice<br />

Research Newsletter 12: 44.<br />

Pawar, A.D. and Gupta, M. 1984. Importation<br />

of exotic phytophagous insects for the<br />

control of water hyacinth in India: Plant<br />

Protection Bulletin 36: 79-82.<br />

Pemberton, R.W. 1983. Exploration for natur-<br />

al enemies of Passifora mollissima in the<br />

Andes. USDA Biological Control of<br />

Weeds Laboratory Albany, California.<br />

Unpublished report 125pp.<br />

Pencoe, N.L. and Martin, P.B. 1982. Grass<br />

hosts of fall armyworm: larval preference<br />

and methods of determination. Journal of<br />

the Georgia Entomological Society<br />

17: 126-1 32. (Agricola).<br />

Penfound, W.T. and Earle, T.T. 1948. The bi-<br />

ology of the water hyacinth. Ecological<br />

Monographs 1 8: 448-472.<br />

Peregrine, W.T.H. and Ahmad, K. 1982.<br />

Brunei: a first annotated list of plant dis-<br />

eases and associated organisms.<br />

Commonwealth Mycological Institute.<br />

Phytopathological Papers 27: 1-87.<br />

Perera, K.A.D.N., Chandrasena, J.P.N.R. and<br />

Tillekeratne, L.M.V. 1989. Further studies<br />

on allelopathic effects of torpedograss<br />

(Panicum repens L.). Proceedings, 12th<br />

Asian-Pacific Weed Science Society<br />

Conference 2: 433-439 (Weed Abstracts<br />

41: 1652,1992).<br />

Perera, P.A.C.R. 198 1. Predation studies on<br />

Pareuchaetes pseudoinsulata (Lep:<br />

Arctiidae) using 32P labelled immatures.<br />

Ceylon Coconut Quarterly 32: 105-1 10.


264 Biological Control of Weeds: Southeast Asian Prospects<br />

Perez, A.Z. and Lopez, E. 1980. Two new<br />

hosts of Elasmopalpus lignosellus Zeller<br />

in Cuba. Ciencas Agriculturas 6: 106.<br />

(Maun and Barrett 1986).<br />

Perez, E., Orta, R. and Martinez, M.A. 1988.<br />

Influence of Hemiargus hanno filenus<br />

(Poey) on the reproductive potential of<br />

Mimosa pudica L. (Spanish). Revista<br />

Biologia Habana 1 l(2): 65-68.<br />

Perez, M., Palenzuela, I., Ramirez, L.A. and<br />

Jackson, A. 1987. New hosts of<br />

Tetranychus urticae (Acari:<br />

Tetranychidae). (Spanish). Revista de<br />

Proteccion Vegetal 2: 63-65 (Review of<br />

Agricultural Entomology 78: 8426, 1990).<br />

Perju, T. 1989. Biological control of weeds in<br />

Romania. Proceedings of the VII<br />

International Symposium on Biological<br />

Control of Weeds, 6-1 1 March 1988,<br />

Rome, Italy, pp. 659-661.<br />

Perkins, B.D. 1973a. Potential for water hyacinth<br />

management with biological agents.<br />

Proceedings Tall Timbers Conference on<br />

Ecological Animal Control by Habitat<br />

Management 4. 24-25 February 1972.<br />

Tallahassee, Florida, USA, pp. 53-64.<br />

Perkins, B.D. 1973b. Preliminary studies of a<br />

strain of the water hyacinth mite from<br />

Argentina. Proceedings of the Second<br />

International Symposium on Biological<br />

Control of Weeds. October 1971. Rome,<br />

Italy. Miscellaneous Publication 6:<br />

179-1 84. Commonwealth Institute of<br />

Biological Control, Commonwealth<br />

Agricultural Bureaux.<br />

Perkins, B.D. 1974. Arthropods that stress<br />

water hyacinth. Pesticides Abstracts &<br />

News Summary, A, 20: 304-3 14.<br />

Perkins, B.D. 1977a. Enhancement of effect<br />

of Neochetina eichhorniae for biological<br />

control of water hyacinth. Proceedings of<br />

the IV International Symposium on<br />

Biological Control of Weeds. Center for<br />

Environmental Programs. Institute of Food<br />

and Agricultural Sciences, Florida<br />

University 1977. Gainesville, Florida,<br />

USA, pp. 87-92.<br />

Perkins, B.D. 1977b. Preliminary results of integrating<br />

chemical and biological controls<br />

to combat water hyacinth.<br />

Perkins, B.D., Lovarco, M.M. and Durden,<br />

W.C.I. 1976. A technique for collecting<br />

adult Neochetina eichhorniae Warner<br />

(Coleoptera: Curculionidae) for water hyacinth<br />

control. (Note). The Florida<br />

Entomologist 59: 352.<br />

Perkins, B.D. and Maddox, D.H. 1976. Host<br />

specificity of Neochetina bruchi Hustache<br />

(Coleoptera: Curculionidae), a biological<br />

control agent for water hyacinth. Journal<br />

of Aquatic Plant Management 1 4: 59-64.<br />

Persley, G.J. 1973. Naturally occurring alternative<br />

hosts of Xanthomonas albilineans<br />

in Queensland. Plant Disease Reporter 57:<br />

1040-1042.<br />

Pettett, A. and Pettett, S.J. 1970. Biological<br />

control of Pistia stratiotes in Western<br />

State, Nigeria. Nature 226: 282.<br />

Phillips, S.M. 1972. A survey of the genus<br />

Eleusine Gaertn. (Gramineae) in Africa.<br />

Kew Bulletin 27: 251-270.<br />

Pillai, K.S. and Nair, M.R.G.K. 1979. Biology<br />

and habits of the rice case worm<br />

Nymphula depunctalis in Kerala, India.<br />

Entomon 4: 13-1 6.<br />

Pitre, H.N. and Boyd, F.J. 1970. A study of<br />

the role of weeds in corn fields in the epidemiology<br />

of corn stunt disease. Journal of<br />

Economic Entomology 63: 195-197.<br />

Plana, L., Palenzuela, I., Perez, M., Diaz,<br />

L.E., Meza, P. and Gonzalez, J.L. 1986.<br />

Reporte de cuatro malezas hospedantes de<br />

Monecphora bicincta fraterna Uhler<br />

(Homoptera: Cercopidae). Documentos de<br />

Ciencia y Tecnica, Instituto Superior de<br />

Ciencias Agropecuarias de la Habana,<br />

Ciencias Agropecuarias 5: 85-91. (Review<br />

of Applied Entomology, Series A, 76:<br />

4049, 1988).<br />

Ponnappa, K. 1967. Cercosporidium helleri<br />

on Sphenoclea zeylanica-a new record<br />

from India. Current Science 10: 273.


Ponnappa, K.M. 1976. Evaluation of<br />

Alternaria eichhorniae Nag Raj and<br />

Ponnappa as an agent of biological control<br />

of water hyacinth, Eichhornia crassipes,<br />

and some aspects of biology of the fungus.<br />

Technical Bulletin 17: 161-168.<br />

Commonwealth Institute of Biological<br />

Control, Commonwealth Agricultural<br />

Bureaux.<br />

Prabhu, A.S., Filippi, M.C. and Castro, N.<br />

1992. Pathogenic variation among isolates<br />

of Pyricularia oryzae affecting rice, wheat<br />

and grasses in Brazil. Tropical Pest<br />

Management 38: 367-371.<br />

Puckdeedindan, P. 1966. A supplementary<br />

host list of plant diseases in Thailand.<br />

Technical Bulletin 7. Department of<br />

Agriculture, Bangkok. 24pp. (Holm et al.<br />

1977).<br />

Purseglove, J.W. 1968. Tropical Crops.<br />

Dicotyledons 1 and 2 (1-719). Longman,<br />

London.<br />

Puttaswamy and Channabasavanna, G.P.<br />

198 1. Influence of three Amaranthus<br />

species on the development, fecundity and<br />

longevity of Tetranychus novocaledonicus<br />

(Acari: Tetranychidae). Colemania<br />

1: 35-36. (Review of Applied<br />

Entomology, Series A, 70: 261 2, 1982).<br />

Puttaswamy, Reddy, D.N.R. and Naik, L.K.<br />

1981. Redgram bud weevil<br />

Ceuthorhynchus asperulus Faust<br />

(Coleoptera: Curculionidae) a pest on<br />

Amaranthus. Current Research 1 O(2):<br />

33-35. (Review of Applied Entomology,<br />

Series A, 70: 966,1982).<br />

Quintero, J., Rebellon, A. and De Agudelo,<br />

F.V. 1988. Distribution and identification<br />

of host species of Heterodera glycines<br />

Ichinoke race 3 in Valle del Cauca<br />

(Colombia). (Spanish). Acta Agronomica<br />

(Palmira) 38(1): 41-52<br />

Raabe, R. 1965. Checklist of some parasitic<br />

phanerogams and some of their hosts on<br />

the island of Hawaii in 1963. Plant<br />

Disease Reporter 49: 583-585.<br />

5 References 265<br />

Rachie, K.O. and Peters, L.V. 1977. The<br />

Eleusines (a review of the world litera-<br />

ture). International Crops Research<br />

Institute for the Semi-Arid Tropics,<br />

Hyderabad, India. 179pp.<br />

Rader, W.E. 1948. Helminthosporium portu-<br />

lacae a new pathogen of Portulaca oler-<br />

acea L. Mycologica 40: 342-346.<br />

Rahman, R. and Khan, M.W. 1986.<br />

Population growth of some ectoparasitic<br />

nematodes on vegetables and associated<br />

weeds. International Nematology Network<br />

Newsletter 3(3): 1 1-22. (Helminthological<br />

Abstracts Series B, 56: 261, 1987).<br />

Rajapakse, R.H.S., Ashley, T.R., Waddill,<br />

H.van and Van-Waddill, H. 1988.<br />

Interspecific competition of fall army-<br />

worm parasites. Brighton Crop Protection<br />

Conference. Pests and Diseases 1988, Vol<br />

3: 1 137-1 141. (Review of Agricultural<br />

Entomology 79: 2457, 199 1).<br />

Ramakrishran, T.S. 1963. Diseases of Millets.<br />

Indian Council of Agricultural Research,<br />

New Delhi, 152pp. (Wapshere 1990b).<br />

Ramesh, P. and Laughlin, R. 1984. Dispersal<br />

of nymphs of Nysius vinitor Berg. and its<br />

importance in the management of sun-<br />

flower crops. Proceedings of the Fourth<br />

Australian Applied Entomological<br />

Research Conference, Adelaide 1984,<br />

pp. 35-42.<br />

Rao, D.G., Varma, P.M. and Kapoor, S.P.<br />

1965. Studies of mosaic disease of<br />

Eleusine in the Deccan. Indian<br />

Phytopathology 18: 1 39-1 50.<br />

Rao, P.N. 1966. A new species of<br />

Dichotomophthora on Portulaca oleracea<br />

from Hyderabad, India. Mycopathologia et<br />

Mycologia Applicata 28: 137-1 40.<br />

Rao, Y.S., Israel, P. and Biswas, H. 1970.<br />

Weed and rotation crop plants as hosts for<br />

the rice root-knot nematode Meloidogyne<br />

graminicola (Golden and Birchfield).<br />

Oryza 7: 137-1 42. (Helminthological<br />

Abstracts B, 46: 25, 1977).<br />

Raychaudhuri, D.N. 1983. Food Plant<br />

Catalogue of Indian Aphididae. University<br />

of Calcutta. 203pp.


266 Biological Control of Weeds: Southeast Asian Prospects<br />

Raychaudhuri, D.N., Pal, P.K. and Ghosh,<br />

M.R. 1978. Root-infesting aphids<br />

(Homoptera: Aphididae: Pemphiginae)<br />

from north east India. Entomon 3:<br />

234-264.<br />

Reddy, C.N. 1983. Seed mycoflora of finger<br />

millet (Eleusine coracana) and its effect<br />

on seed viability. Current Science<br />

52: 488-490.<br />

Reddy, K.S., Yaraguntaiah, R.C. and Sastry,<br />

K.S. 1981. Strains of leaf curl virus of<br />

tomato in India. Zeitschrift fiir<br />

Pflanzenkrankheiten und Pflanzenschutz<br />

88: 400-404.<br />

Reis, E.M. 1982. Survey of cultivated, native<br />

and weed plants, hosts of fungi that cause<br />

root rots on winter cereals and other crops.<br />

Summa Phytopathology 8: 134-1 40.<br />

(Maun and Barrett 1986).<br />

Reyes, T.T. and Beguico, E.D. 1978.<br />

Nematodes in sugarcane. NSDB<br />

Technology Journal, Philippines 3(3):<br />

25-30. (Helminthological Abstracts B, 49:<br />

1609,1980).<br />

Ribeiro, J.H.C. 1953. Sobre um inimigo do<br />

Bidens pilosus. Agronomia 12: 5 1-53.<br />

Rifai, M.A. 1980. The identity of Ustilago<br />

amadelpha var. glabriuscula (considered<br />

conspecific with Ustilago overeemii which<br />

is reclassified as Sporisorium overeemii,<br />

cause of smut on Panicum repens in Java).<br />

Reinwardtia 9: 399-401.<br />

Rochecouste, E. and Vaughan, R. 1959.<br />

Weeds of Mauritius. Bidens pilosa L.<br />

Leaflet Series 1. Mauritius Sugar Industry<br />

Research Institute, Reduit. (Holm et al.<br />

1 977).<br />

Romm, H.J. 1937. The insect depredators of<br />

purslane (Portulaca oleracea L.). Florida<br />

Entomologist 20: 43-47 and 5 1-61.<br />

Room, P.M. 1993. Biological control of float-<br />

ing weeds in the Pacific: history and sta-<br />

tus. Micronesica, Supplement 4: 41-47.<br />

Room, P.M. and Fernando, I.V.S. 1992. Weed<br />

invasions countered by biological control:<br />

Salvinia molesta and Eichhornia crassipes<br />

in Sri Lanka. Aquatic Botany 42: 99-1 07.<br />

Room, P.M., Forno, I.W. and Taylor, M.F.J.<br />

1984. Establishment in Australia of two<br />

insects for the biological control of the<br />

floating weed Salvinia molesta. Bulletin of<br />

Entomological Research 74: 505-5 16.<br />

Rossel, H.W., Nabukenya, R., Thottapilly, G.<br />

and Zagre, M'B.B. 1984. Maize. Virology.<br />

International Institute of Tropical<br />

Agriculture, 1983 Annual Report<br />

pp. 42-43.<br />

Roy, A.K. 1973. Natural occurrence of<br />

Corticium sasakii on some weeds. Current<br />

Science 42: 842-843.<br />

Russo, V.M. 1985. Leaf spot disease of<br />

Chromolaena odorata caused by Septoria<br />

sp. in Guam. Plant Disease 69: 1 101.<br />

Sabrosky, C.W. 1950. The genus Dicraeus in<br />

North America (Diptera, Chloropidae).<br />

Proceedings of the Entomological Society<br />

of Washington 52(2): 53-62.<br />

Sadana, G.L., Gupta, B.K. and Chopra, R.<br />

1983. Mites associated with the crops and<br />

weeds in the Punjab, India. Science and<br />

Culture 49: 184-1 86.<br />

Safeeulla, K.M. 1976. Biology and Control of<br />

the Downy Mildews of Pearl Millet,<br />

Sorghum and Finger Millet. Mysore<br />

University, Mysore, 304pp. (Wapshere<br />

1 990b).<br />

Sakimura, K. 1937. A survey of host ranges of<br />

thrips in and around Hawaiian pineapple<br />

fields. Proceedings of the Hawaiian<br />

Entomological Society 9: 41 5-427.<br />

Salamat, G.Z., Parejarearn, A. and Hibino, H.<br />

1987. Weed hosts of ragged stunt virus.<br />

International Rice Research Newsletter<br />

12(4): 30.<br />

Salawu, E.O., Ambursa, A.S. and Managa,<br />

Y.B. 1991. Weed and crop hosts of<br />

root-knot nematode, Meloidogyne javanica<br />

(Treub 1885) Chitwood 1949 in north<br />

west Nigeria. Pakistan Journal of<br />

Nematology 9: 109-1 18.<br />

Salgado, M.L.M. 1972. Tephrosia purpurea<br />

(Pila) for the control of Eupatorium and as<br />

a green manure on coconut estates. Ceylon<br />

Coconut Planters Review 6: 160-1 74.


Sampson, M.A. and Kumar, R. 1986.<br />

Alternative host plants of sugar-cane stem-<br />

borers in southern Ghana. Insect Science<br />

and its Application 7: 539-541.<br />

Sands, D.P.A. and Kassulke, R.C. 1983.<br />

Acigona infusella (Walker) (Lepidoptera:<br />

Pyralidae), an agent for biological control<br />

of water hyacinth (Eichhornia crassipes)<br />

in Australia. Bulletin of Entomological<br />

Research 73: 625-632.<br />

Sands, D.P.A. and Kassulke, R.C. 1984.<br />

Samea multiplicalis (Lep.: Pyralidae) for<br />

biological control of two water weeds<br />

Salvinia molesta and Pistia stratiotes in<br />

Australia. Entomophaga 29: 267-273.<br />

Sankaran, T. 1974. Evaluation of natural ene-<br />

mies associated with witchweed, nutsedge<br />

and several other aquatic weeds occumng<br />

in India. Final Report P.L. 480 Project.<br />

India Station, CIBC, Bangalore. 56pp.<br />

Sankaran, T. and Ramaseshiah, G. 1974.<br />

Prospects for biological control of some<br />

major aquatic weeds in Southeast Asia.<br />

CIBC Indian Station. Mimeographed<br />

Report. l5pp.<br />

Sankaran, T. and Rao, V.P. 1972. An annotat-<br />

ed list of insects attacking some terrestrial<br />

and aquatic weeds in India, with records of<br />

some parasites of the phytophagous in-<br />

sects. CIBC Technical Bulletin<br />

15: 131-157.<br />

Sankaran, T. and Sugathan, G. 1974. Host-<br />

specificity tests and field trials with<br />

Ammalo insulata (Wlk.) (Lep.: Arctiidae)<br />

in India. Commonwealth Institute of<br />

Biological Control. Unpublished report.<br />

1 1 PP-<br />

Sankaran, T., Rao, V.P., Rao, H.D. and<br />

Narayanan 1964. Commonwealth Institute<br />

of Biological Control. Report of work car-<br />

ried out during 1963. Insects. pp. 36-39.<br />

Sankaran, T., Srinath, D. and Krishna, K.<br />

1966. Studies on Gesonula punctifrons<br />

Stal. (Orthoptera: Acrididae:<br />

Cyrtacanthacridinae) attacking water hya-<br />

cinth in India. Entomophaga 1 1: 433-440.<br />

5 References 267<br />

Sastroutomo, S.S., Ikusima, I and Numata, M.<br />

1978. Ecological studies of water hyacinth<br />

(Eichhornia crassipes Mart. Solms) with<br />

special emphasis on their growth. Japanese<br />

Journal of Ecology 28: 191-1 97.<br />

Sastry, K.S. 1984. Strains of tomato leaf curl<br />

virus and its perpetuation under field con-<br />

ditions. Journal of Turkish Phytopathology<br />

13: 87-90. (Review of Plant Pathology 64:<br />

3 189,1985).<br />

Satheesan, N.V., Lyla, K.R., Joy, P.J. and<br />

Joseph, D. 1987. Establishment of<br />

Pareuchaetes pseudoinsulata Rego Barros<br />

(- Ammalo insulata Walk.), an arctiid<br />

caterpillar, for the biological control of<br />

Chromolaena odorata. Agricultural<br />

Research Journal of Kerala 25: 142-1 43.<br />

Sathiarajan, P.K. and Sasikumar, S. 1977.<br />

Ageratum conyzoides Linn; a weed host of<br />

Psuedomonas solanacearum, E.F. Smith.<br />

Agricultural Research Journal of Kerala<br />

14: 1 88 (Agricola).<br />

Sauer, M.R. and Alexander, D.M. 1979. Root-<br />

knot resistance in Passiflora foetida.<br />

Australasian Plant Pathology 8(4): 50-5 1.<br />

Savoie, K.L. 1988. Selective feeding by<br />

species of Spodoptera (Lepidoptera:<br />

Noctuidae) in a bean field with minimum<br />

tillage (Spanish). Turrialba 38: 67-70.<br />

(Review of Agricultural Entomology 78:<br />

4848,1990).<br />

Saxena, A.K., Jain, S.K. and Saksena, S.B.<br />

1981. Additions to the host range of<br />

Macrophomina phaseolina. Indian<br />

National Academy of Sciences, Letters<br />

4: 357.<br />

Scheepens, P.C. 1987. Joint action of<br />

Cochliobolus lunatus and atrazine on<br />

Echinochloa crus-galli (L.) Beauv. Weed<br />

Research 27: 43-47.<br />

Schmutz, E., Preenan, B. and Reed, R. 1968.<br />

The livestock poisoning plants of Arizona.<br />

University of Arizona Press, Tucson.<br />

176pp. (Holm et al. 1977).


268 Biological Control of Weeds: Southeast Asian Prospects<br />

Schreiner, I.H., Nafus, D.M. and Dumaliang,<br />

N. 1990. Growth and survival of the Asian<br />

corn borer Ostrinia furnacalis GuenCe<br />

(Lep: Pyralidae) on alternative hosts in<br />

Guam. Tropical Pest Management<br />

36: 93-96.<br />

Seibert, T.F. 1989. Biological control of the<br />

weed, Chromolaena odorata (Asteraceae),<br />

by Pareuchaetes pseudoinsulata<br />

(Lepidoptera: Arctiidae) on Guam and the<br />

Northern Mariana Islands. Entomophaga<br />

34: 531-539.<br />

Seier, M.K. and Evans, H.C. 1993. Proposal<br />

to import the fungus Sphaerulina mi-<br />

mosae-pigrae (Phloeospora mimosae-pi-<br />

grae) into Australia for the biological con-<br />

trol of the giant sensitive plant, Mimosa<br />

pigra. CAB Institute of Biological<br />

Control, Ascot, UK. 13 lpp.<br />

Sher, S.A. 1954. Observations on plant-para-<br />

sitic nematodes in Hawaii. Plant Disease<br />

Reporter 38: 687-689.<br />

Shetty, H.S., Gopinath, A. and Rajashekar, K.<br />

1985. Relationship of seed-borne inocu-<br />

lum of Pyricularia grisea to the incidence<br />

of blast of finger millet in the field. Indian<br />

Phytopathology 38: 154-1 56.<br />

Shinkai, A. 1956. Host range of rice stripe<br />

disease (further report) (Japanese). Annals<br />

of the Phytopathological Society of Japan<br />

21: 47 (Holm et al. 1977).<br />

Shoemaker, R.A. 1962. Drechslera Ito.<br />

Canadian Journal of Botany 40: 809-836.<br />

Shreni, V.C.D., Srivastava, K.M. and Singh,<br />

B.P. l979. Vein yellowing of Ageratum<br />

conyzoides-a whitefly transmitted disease<br />

from India. New Botanist 6: 97-102.<br />

(Review of Plant Pathology 60: 4163,<br />

1981).<br />

Silveira-Guido, A. 197 1. Datos preliminares<br />

de biologia y especificidad de Acigona ignitalis<br />

Hamps. (Lep., Pyralidae) sobre el<br />

hospedero Eichhornia crassipes (Mart.)<br />

Solms-Laubach (Pontederiaceae). Revista<br />

de 'la Sociedad Entomologica Argentina<br />

33: 137-145.<br />

Simmonds, J.H. 1966. Host Index of Plant<br />

Diseases in Queensland. Queensland<br />

Department of Primary Industries,<br />

Brisbane. pp. 22-37.<br />

Singh, K.G. 1980. A check list of host and<br />

disease in Malaysia. Ministry of<br />

Agriculture, Malaysia. Bulletin<br />

154: 1-280.<br />

Singh, N.D. 1974. Some host plants of the<br />

reniform nematode in Trinidad. (eds)<br />

C.W.D. Braithwaite, R.H. Phelps and F.D.<br />

Bennett. Proceedings of a symposium on<br />

the protection of horticultural crops in the<br />

Caribbean held at the University of the<br />

West Indies, St Augustine, Trinidad, 8-1 1<br />

April 1974, pp. 1 19-1 24.<br />

Singh, N., Gill, J.S. and Krishnanada, N.<br />

1979. Prevalence of root-knot nematode in<br />

Nilgiri hills. Indian Phytopathology<br />

32: 499-501.<br />

Singh, R.A. and Misra, A.P. 1978. Some new<br />

hosts for Helminthosporium holmii leaf<br />

spot from India. Indian Phytopathology<br />

3 1 : 264-266. (Agricola).<br />

Singh, S. and Beri, S.K. 1973. Studies on the<br />

immature stages of Agromyzidae (Diptera)<br />

from India. Part 111. Notes on the biology<br />

and description of immature stages of<br />

three species of Melanagromyza Hendel.<br />

Journal of Natural History 7: 23-32.<br />

Singh, S., Verma, V.S. and Padma, R. 1975.<br />

A mosaic disease of Digera arvensis<br />

Forsk. Zeitschrift fiir Pflanzenkrankheiten<br />

und Pflanzenschutz 82: 180-1 82.<br />

Singh, S.R., Kamath, M.K., Kumar, K., Autar,<br />

M.L. and Lal, S.L. 198 1. Fiji Department<br />

of Agriculture Annual Research Report for<br />

1979: 77-78.<br />

Singh, S.R., Prasad, R.S. and Solly, R.K.<br />

1982. The status of Neochetina eichhorni-<br />

ae Warner (Coleoptera, Curculionidae) as<br />

biological control agent for water hyacinth<br />

Eichhornia crassipes (Mart) Solms (Fam:<br />

Pontederiaceae) in Fiji. Report of the<br />

Regional Workshop on Biological Control<br />

of Water Hyacinth. 3-5 May 1982,<br />

Bangalore, India. Commonwealth Science<br />

Council, pp. 35-38.


Sisounthone, C. and Sisombat, L. 1973. Brief<br />

information on weeds in rice fields in<br />

Laos. The Second Indonesian Weed<br />

Science Conference, Yogyakarta, April<br />

2-5,1973, pp. 151-153.<br />

Sivapragasam, A. 1983. Weed hosts for<br />

Cyrtorhinus lividipennis (Reuter) a brown<br />

planthopper predator. International Rice<br />

Research Newsletter 8(6): 19-20.<br />

Smith, C.S. and Wilson, C.G. 1992. Use of an<br />

artificial diet for rearing the Mimosa clear-<br />

wing moth, Carmenta mimosa. Abstracts,<br />

VIII International Symposium on<br />

Biological Control of Weeds, Lincoln<br />

University, Canterbury, New Zealand,<br />

2-7 February 1992, p. 80.<br />

Soerjani, M., Kostermans, A.J.G.H. and<br />

Tjitrosoepomo, G. 1987. Weeds of Rice in<br />

. Indonesia. Balai Pustaka, Jakarta. 732pp.<br />

Spencer, K.A. 1961. A synopsis of the orien-<br />

tal Agromyzidae (Diptera). Transactions<br />

of the Royal Entomological Society of<br />

London 1 13: 55-1 00.<br />

Spencer, K.A. 1973. Agromyzidae (Diptera)<br />

of economic importance. Series<br />

Entomologica. 9. Dr W. Junk, The Hague.<br />

405~~.<br />

Spencer, K.A. 1990. Host Specialization in<br />

the World Agromyzidae. Series<br />

Entomologica. 45, Kluwer Academic<br />

Publishers. 445pp.<br />

Spencer, K.A. and Steyskal, G.C. 1986.<br />

Manual of the Agromyzidae (Diptera) of<br />

the United States. United States<br />

Department of Agriculture. Agriculture<br />

Handbook No 638.478~~.<br />

Srivastava, K.M. Singh, B.P., Dwadash<br />

Shreni, V.C. and Srivastava, B.N. 1977.<br />

Zinnia yellow net disease-transmission,<br />

host range and agent-vector relationship.<br />

Plant Disease Reporter 61: 550-554.<br />

Srivastava, R.C. 1981. Fungi causing plant<br />

disease at Jaunpur (U.P.). IV. Indian<br />

Phytopathology 33: 221-224.<br />

Stevei-IS, F. 1925. Hawaiian fungi. Bernice P.<br />

Bishop Museum, Honolulu, Bulletin 19,<br />

189pp. (Holm et al. 1977).<br />

5 References 269<br />

Steyskal, G.C. 1972. The dipterous fauna of<br />

the heads of Bidens pilosa re-examined.<br />

Florida Entomologist 55: 87-88.<br />

Stoyanov, D. 1972. Heterodera amaranthi<br />

n.sp. (Tylenchida: Heteroderidae); un nC-<br />

matodo formador de quistes en Cuba.<br />

Poeyana 97: 1.<br />

Strider, D.L. and Chi, T.T.L. 1984. Damping-<br />

off of portulaca caused by<br />

Helminthosporiurn (Bipolaris) portulacae<br />

in North Carolina. Plant Disease 68: 826.<br />

Suasa-Ard, W. 1 976. Ecological investigation<br />

on Namangana pectinicornis Hampson<br />

(Lepidoptera: Noctuidae), as a potential<br />

biological control agent of the water let-<br />

tuce, Pistia stratiotes L. (hales: Araceae).<br />

M.S. Thesis Kasetsart University,<br />

Bangkok. 59pp.<br />

Suasa-Ard, W. and Napompeth, B. 1978.<br />

Investigation on Episammia pectinicornis<br />

(Hampson) (Lepidoptera: Noctuidae) for<br />

biological control of the water lettuce in<br />

Thailand. (Thai). National Biological<br />

Control Research Centre, Kasetsart<br />

University, Bangkok Technical Bulletin 3.<br />

1 OPP.<br />

Subagyo, T. 1975. Some aspects of the biolo-<br />

gy of Nymphula responsalis Wlk. attack-<br />

ing Salvinia spp. BIOTROP Newsletter<br />

12: 14.<br />

Sulochana, K.K., Wilson, K.I. and Nair, M.C.<br />

1982. Some new host records for<br />

Cylindrocladium quinqueseptatum from<br />

India. Agricultural Research Journal of<br />

Kerala 20: 106-108. (Review of Plant<br />

Pathology 64: 4207, 1985).<br />

Sunaina, V., Kishore, V. and Shekhawat, G.S.<br />

1989. Latent survival of Pseudomonas<br />

solanacearum in potato tubers and weeds.<br />

Zeitschrift fiir Pflanzenkrankenheiten und<br />

Pflanzenschutz 96: 361-363. (Review of<br />

Plant Pathology 39: 2327, 1990).<br />

Suriapermana, S. 1977. Weed competition in<br />

transplanted rice. International Rice<br />

Research Newsletter 2(3): 9-10.


270 Biological Control of Weeds: Southeast Asian Prospects<br />

Suteri, B.D., Joshi, C.C. and Bala, S. 1980.<br />

Some ornamentals and weeds as reservoirs<br />

of potato virus Y and cucumber mosaic<br />

virus in Kumaon. Indian Phytopathology<br />

32: 640.<br />

Swarbrick, J.T. 1981. Weeds of Australia. 3.<br />

Passifloraceae-the passion flowers.<br />

Australian Weeds l(2): 20-22.<br />

Syed, R.A. 1973. Report on biological control<br />

of Eupatorium odoratum for Sabah.<br />

Commonwealth Institute of Biological<br />

Control. Unpublished report. 10pp.<br />

Syed, R.A. 1975. Commonwealth Institute of<br />

Biological Control. Report of work carried<br />

out during 1974. Biological control of<br />

Eupatorium odoratum. pp. 83-84.<br />

Syed, R.A. 1979a. An attempt on biological<br />

control of Eupatorium odoratum L. f. in<br />

Sabah, Malaysia. (ed.) Soerjani.<br />

Proceedings of the Sixth Asian-Pacific<br />

Weed Science Society, 1977, Jakarta<br />

Indonesia 2: 459-466. (Cock 1984).<br />

Syed, R.A. 1979b. Some aspects of biological<br />

control of weeds in Southeast Asia.<br />

Second Indonesian Weed Science<br />

Conference, Yogyakarta, April 2-5, 1973.<br />

BIOTROP Bulletin 1 1: 31 1-31 8.<br />

Syed, R.A., Setywati, 0. and Kasno 1977.<br />

Commonwealth Institute of Biological<br />

Control. Report of work carried out during<br />

1976. Biological control of some impor-<br />

tant aquatic weeds. pp. 87-89.<br />

Tawfik, M.F.S., .Awadallah, K.T. and<br />

Shalaby, F.F. 1976. Survey of insects<br />

found on common weeds in Giza region,<br />

Egypt. Bulletin of the Entomological<br />

Society of Egypt 60: 7-1 4.<br />

Tedford, E.C. and Fortnum, B.A. 1 988. Weed<br />

hosts of Meloidogyne arenaria and<br />

M. incognita common in tobacco fields in<br />

South Carolina. Annals of Applied<br />

Nematology 2: 102-1 05. (Weed Abstracts<br />

38: 2559, 1989).<br />

Ternpike, G. 1943. Observations sur Hypurus<br />

bertrandi Perris, ColCoptbre,<br />

Curculionidae nuisible au pourpier. Revue<br />

de Zoologie Agricole et AppliquCe<br />

42 (9-10): 49-55. (Review of Applied<br />

Entomology A, 34: 349, 1946).<br />

Tempbre, G. 1944. Remarques sur Hypurus<br />

bertrandi Perris. Bulletin de la SociCtC<br />

LinnCenne de Lyon 13: 78-80.<br />

Tempbre, G. 1950. L'Cthologie des Hypurini<br />

(Col. Curculionidae) (Note prkliminaire).<br />

Bulletin de la SociCtC Entomologique de<br />

France 55: 57-6 1.<br />

Teng, S. 1932. Fungi of Nanking 11.<br />

Contribution from the biological laborato-<br />

ry of the Science Society of China.<br />

Botanical Series 8: 5-48. (Holm et al.<br />

1 977).<br />

Teoh, C.H., Chung, G.F., Liau, S.S., Ghani, I.,<br />

Tan, A.M., Lee, S.A. and Mariati, M.<br />

1985. Prospects for biological control of<br />

Mikania micrantha HBK in Malaysia.<br />

Planter 61: 5 15-530.<br />

Thangavelu, K. 1978. First record of host<br />

plants and additional distribution of Nysius<br />

inconspicuus Distant. Current Science<br />

47: 249.<br />

Thite, A.N. and Chavan, P.D. 1977. A new<br />

leaf spot disease of Pennisetum spp.<br />

caused by Helminthosporium rostratum.<br />

Maharashtra Vidnyan Mandir Patrika<br />

12(2): 63-65. (Review of Plant Pathology<br />

57: 277,1978).<br />

Thomas, P.A. and Room, P.M. 1986.<br />

Taxonomy and control of Salvinia<br />

molesta. Nature 320: 581-584.<br />

Thompson, C.R. and Habeck, D.H. 1988.<br />

Host specificity and biology of the weevil<br />

Neohydronomus pulchellus Hustache, bio-<br />

logical control agent of water lettuce<br />

(Pistia stratiotes L.). U.S. Army Engineer<br />

Waterways Experiment Station,<br />

Vicksberg, MS. Technical Report<br />

A-83-10,23 pp.


Thompson, C.R. and Habeck, D.H. 1989.<br />

Host specificity and biology of the weevil<br />

Neohydronomus affinis (Coleoptera:<br />

Curculionidae) a biological control agent<br />

of Pistia stratiotes. Entomophaga 34:<br />

299-306.<br />

Thottappilly, G., Lent, J.W.M. van, Rossel,<br />

H.W. and Sehgal, O.P. 1992. Rottboellia<br />

yellow mottle virus, a new solemovirus affecting<br />

Rottboellia cochinchinensis (itch<br />

grass) in Nigeria. Annals of Applied<br />

Biology 120: 405-41 5.<br />

Tjitrosoedirdjo, S. 1990. Pennisetum polystachion<br />

(L.) Schult. SEAMEO BIOTROP,<br />

Bogor, Indonesia. Weed Info Sheet 3,2pp.<br />

Tjitrosoedirdjo, S. 199 1. Chromolaena odorata<br />

(L.) R.M. King and H. Robinson.<br />

SEAMEO, BIOTROP, Bogor, Indonesia.<br />

Weed Info Sheet 5,4pp.<br />

Tjitrosoedirdjo, S., Tjitrosoedirdjo, S.S. and<br />

Umaly, R.C. 1991. The status of<br />

Chromolaena odorata (L.) R.M. King and<br />

H. Robinson in Indonesia. Ecology and<br />

Management of Chromolaena odorata.<br />

BIOTROP Special Publication 44: 57-66.<br />

Togashi, K. 1942. A survey of the plant diseases<br />

of cultivated plants in Iwate<br />

Prefecture in 1941. Bulletin 8. Iwate<br />

Agricultural Experiment Station, Morioka.<br />

25pp. (Holm et al. 1977).<br />

Tomes, D.O. 1986. Potential insect biocontrol<br />

agents against the weed Chromolaena<br />

odorata R.M. King and H. Robinson in the<br />

Philippines. Philippine Entomologist<br />

6: 535-536.<br />

Torres, D.O. 1988. Infestation of<br />

Chromolaena odorata R.M. King and H.<br />

Robinson in the Philippines and search for<br />

local insects with potential as biological<br />

control agents. Weedwatcher 849: 12.<br />

Torres, D.O. and Paller, E.C. 1989. The devil<br />

weed (Chromolaena odorata R.M. King<br />

and H. Robinson) and its management.<br />

SEAWIC Weed Leaflet 4.6pp.<br />

Toye, S.A. 1974. Feeding and locomotory activities<br />

of Zonocerus variegatus (L.)<br />

(Orthoptera, Acridoidea). Revue de<br />

Zoologie Africaine 88: 205-21 2.<br />

5 References 271<br />

Trujillo, G.E., Acosta, J.M. and Pinero, A.<br />

1974. A new corn virus found in<br />

Venezuela. Plant Disease Reporter<br />

58: 122-126.<br />

Tryon, R.M. and Tryon, A.F. 1982. Ferns and<br />

Allied Plants with Special Reference to<br />

Tropical America. Springer-Verlag, New<br />

York, 537 pp.<br />

Ueki, K. and Oki, Y. 1979. Seed production<br />

and germination of Eichhornia crassipes<br />

in Japan. Proceedings of the Seventh<br />

Asian-Pacific Weed Science Society<br />

Conference. Australia; Asian-Pacific<br />

Weed Science Societies. 26-30 November<br />

1979. Orange, Australia, 25 pp.<br />

Ukwela, M.U. and Ewete, F.K. 1989. Studies<br />

on the biology and population assessment<br />

of Cletus fuscescens Walk. (Heteroptera:<br />

Coreidae) on Amaranthus in western<br />

Nigeria. National Horticultural Research<br />

Institute, Ibadan. Occasional Paper 24.<br />

15pp. (Review of Agricultural<br />

Entomology 79: 4760, 199 1).<br />

Ullstrup, A.J. 1955. Crazy top of some wild<br />

grasses and the occurrence of the sporangial<br />

stage of the pathogen. Plant Diseases<br />

Reporter 39: 839-841.<br />

Umrath, K., Thaler, I. and Steiner, G. 1979.<br />

Reduced quantity of excitatory substance<br />

and morphological changes in virus infested<br />

Mimosa pudica (German). Phyton<br />

Annales Rei Botanicae 19: 247-25 1.<br />

Valdez, R. 1968. Survey, identification and<br />

host-parasite relationships of root-knot nematodes<br />

occurring in some parts of the<br />

Philippines. Philippine Agriculturist<br />

5 1 : 802-824. (Holm et al. 1977).<br />

Valent, B., Crawford, M.S., Weaver, C.G. and<br />

Chumley, F.G. 1986. Genetic studies of<br />

fertility and pathogenicity in Magnaporthe<br />

grisea (Pyricularia oryzae). Iowa State<br />

Journal of Research 60: 569-594. (Review<br />

of Plant Pathology, 65: 492 1, 1986).<br />

Van Velsen, R.J. 1961. Chlorotic spot, a virus<br />

disease of Passiflora foetida in New<br />

Guinea. Papua and New Guinea<br />

Agricultural Journal 13: 160-1 66.


272 Biological Control of Weeds: Southeast Asian Prospects<br />

Vega, J., Almeida, A.M.R. and Costa, A.S.<br />

198 1. A mycoplasma-like organism asso-<br />

ciated with witches' broom disease of<br />

Bidens pilosa L. (Portuguese).<br />

Fitopathologia Brasiliera 6: 29-33.<br />

Vegh, I. and Le Berre, A. 1984. Presence in<br />

France of two new diseases in purslane<br />

and tarragon. (French). Revue Horticole<br />

249: 15-17 (Review of Plant Pathology<br />

63: 5064, 1984).<br />

Vengris, J., Palacz, A.K., Shaw, F.R. and<br />

Ziener, W.H. 1963. Weevil affects barn-<br />

yard grass in Massachussets. Weeds<br />

1 1: 321-322.<br />

Venkataramaiah, G.H. 1974. A note on<br />

Dialeurodes vulgaris on coffee. Journal of<br />

Coffee Research 1 : 13-1 4.<br />

Venturi, F. 1960. Insetti e aragnidi delle pio-<br />

nte Comuni del Venezuela segnalati nel<br />

period0 1938-1 963. Relazionie<br />

Monographafie Agarie Subtropicale.<br />

Tropicale 86: 149-1 50 (Pemberton 1983).<br />

Viraktamath, C.A. and Muniappan, R. 1992.<br />

New records of insects on Chromolaena<br />

odorata in India. Chromolaena odorata<br />

Newsletter 5: l,4.<br />

Vodianaia, L.A., Maglakelidze, A.I., Lebedev,<br />

V.B., Kozlova, L.F. and Iakushevich, M.I.<br />

1986. Role of the completed stage of the<br />

life cycle of the fungus Pyricularia grisea<br />

(Russian). Bulletin, Academy of Sciences<br />

Georgia USSR 122: 401-404. (Agricola).<br />

Vogel, E. and Oliver, A.D. 1969. Life history<br />

and some factors affecting the population<br />

of Arzama densa in Louisiana. Annals of<br />

the Entomological Society of America<br />

62: 74S752.<br />

Vogt G.B. and Cordo, H.A. 1976. Recent<br />

South American field studies of prospec-<br />

tive biocontrol agents of weeds.<br />

Proceedings Research Planning<br />

Conference on the Aquatic Plant Control<br />

Program. 22-24 October 1975. Charleston,<br />

South Carolina, USA. U.S. Army Engineer<br />

Waterways Experiment Station, Missouri,<br />

Miscellaneous Paper A-76-1 : 36-55.<br />

Vrbanov, V.M. and Krumov, K.I. 1989.<br />

Spreading and hosts of Polymyxa betae<br />

parasite of sugar beet and vector of rhizomal<br />

pathogen. (Bulgarian). Rasteniev<br />

'dn Nauki 26(8): 80-85.<br />

Waage, I.T., Smiley, 3.T. and Gilbert, L.E.<br />

198 1. The Passifora problem in Hawaii:<br />

prospects and problems of controlling the<br />

forest weed P. mollissima (Passifloraceae)<br />

with heliconiinae butterflies.<br />

Entomophaga 26: 275-284.<br />

Wagner, W.L., Herbst, D.R. and Sohmer, S.H.<br />

1990. Manual of the Flowering Plants of<br />

Hawaii. Bishop Museum Special<br />

Publication 83. Volume 11. University of<br />

Hawaii Press.<br />

Walker, H.L. and White, J.C. 1979.<br />

Curvularia cymbopogonis, a pathogen of<br />

itchgrass (Rottboellia exaltata) in southern<br />

Louisiana. Plant Disease Reporter<br />

63: 642-644.<br />

Wapshere, A.J. 1990a. Biological control options<br />

for some grass weeds in Australia.<br />

(eds) C. Bassett, L.J. Whitehouse and J.A.<br />

Zabkiewicz. Alternatives to the Chemical<br />

Control of Weeds. Proceedings of an<br />

International Conference, Rotorua, New<br />

Zealand, July 1989. Ministry of Forestry,<br />

FRI Bulletin 155: 80-84.<br />

Wapshere, A.J. 1990b. Discussion of the biological<br />

control of crowsfoot grass<br />

(Eleusine indica) in India, Africa and<br />

Australia. Proceedings of the 9th<br />

Australian Weeds Conference, Adelaide,<br />

South Australia, August 6-10, 1990, pp.<br />

484-489.<br />

Wapshere, A.J. 1990c. Biological control of<br />

grass weeds in Australia: an appraisal.<br />

Plant Protection Quarterly 5: 62-75.<br />

Wara-Aswapati, 0. 1983. Seed production<br />

and germination of Mimosa pigra L. in<br />

Chiangmai, Thailand. (eds) G.L. Robert<br />

and D.H. Habeck. Proceedings,<br />

International Symposium on Mimosa<br />

pigra Management, Chiang Mai, Thailand.<br />

International Plant Protection Center,<br />

Cowallis, Document 48-A-83: 8 1-83.


5 References 273<br />

Watanakul, L. 1964. A study on the host Wibmer, G.J. and O'Brien, C.W. 1989. Two<br />

range of tungro and orange leaf virus of new neotropical genera in the weevil tribe<br />

rice. M.S. Thesis, College of Agriculture, Stenopelmini. Southwestern Entomologist<br />

University of the Philippines, Los Baiios. 14: 395-408. (Review of Agricultural<br />

(Holm et al. 1977). Entomology 78: 9497, 1990).<br />

Waterhouse, D.F. 1992. Prospects for biologi-<br />

cal control of paddy weeds in Southeast<br />

Asia and some recent successes in the bio-<br />

logical control of aquatic weeds.<br />

Proceedings of International Symposium<br />

on Biological Control and Integrated Pest<br />

Management of Paddy and Aquatic Weeds<br />

in Asia, pp. 21-42. National Agricultural<br />

Research Centre, Kannondai 3-1 -1.<br />

Tsukuba, Ibaraki 305, Japan, October<br />

1992.<br />

Waterhouse, D.F. 1993a. The major arthropod<br />

pests and weeds of agriculture in<br />

Southeast Asia: distribution, importance<br />

and origin. Australian Centre for<br />

International Agricultural Research,<br />

Canberra, Australia. 141pp.<br />

Waterhouse, D.F. 1993b. Biological Control:<br />

Pacific Prospects. Supplement 2.<br />

Australian Centre for International<br />

Agricultural Research, Canberra. 138 pp.<br />

Waterhouse, D.F. and Norris, K.R. 1987.<br />

Biological Control: Pacific Prospects.<br />

Inkata Press, Melbourne, 454pp.<br />

Way, M.O., Grigarick, A.A. and Mahr, S.E.<br />

1983. Effects of rice plant density, rice<br />

water weevil (Coleoptera: Curculionidae)<br />

damage to rice and aquatic weeds on aster<br />

leafhopper (Homoptera: Cicadellidae) density.<br />

Environmental Entomology<br />

12: 949-952.<br />

Webster, F.M. and Mally, C.W. 1900. The<br />

purslane sawfly-Schizocerus zabriskei<br />

Ashm. Canadian Entomologist 32: 51-54.<br />

Wee, Y.C. 1974. Viable seeds and spores of<br />

weed species in peat soil under pineapple<br />

cultivation. Weed Research 14: 193-196.<br />

West, J.G. 1990. Portulacaceae. pp. 178-1 85,<br />

(ed.) G.J. Harden, Flora of NSW, NSW<br />

University Press Volume 1,601 pp.<br />

Wild, C.H. 1986. Host specificity report on<br />

Scamurius sp. (Hemiptera, Heteroptera:<br />

Coreidae) an agent for the biological control<br />

of giant sensitive plant (Mimosa invisa<br />

Mart.: Mimosaceae) in Queensland.<br />

Queensland Department of Lands Report.<br />

15~~.<br />

Wild, C.H. 1987. Supplement to host specificity<br />

report on Scamurius sp. (Hemiptera,<br />

Heteroptera: Coreidae) an agent for the biological<br />

control of giant sensitive plant<br />

(Mimosa invisa Mart.: Mimosaceae) in<br />

Queensland. Queensland Department of<br />

Lands Report. 4pp.<br />

Williams, C., Vagalo, M., Tsatsia, F. and<br />

Pauku, R. 1990. Entomology Section<br />

Report. Research Division Internal Report,<br />

Ministry of Agriculture and Lands.<br />

Solomon Islands. Chapter 13: 1-9.<br />

Willson, B.W. 1987. Host specificity report<br />

on Heteropsylla sp. (Hemiptera,<br />

Homoptera: Psyllidae) an agent for the biological<br />

control of giant sensitive plant<br />

(Mimosa invisa Mart.: Mimosaceae) in<br />

Queensland. Queensland Department of<br />

Lands Report. 12pp.<br />

Willson, B.W. and Ablin, M.P. 1991.<br />

Biological control of Mimosa<br />

invisa-Western Samoa. Progress<br />

Report-ACIAR Project 8801, June 1991.<br />

7pp. Queensland Department of Lands.<br />

Willson, B.W. and Garcia, C.A. 1992. Host<br />

specificity and biology of Hereropsylla<br />

spinulosa (Hom.: Psyllidae) introduced<br />

into Australia and Western Samoa for the<br />

biological control of Mimosa invisa.<br />

Entomophaga 37: 293-299.<br />

A.K. 198 Eu~horbia hetero~h~lla: a<br />

review of distribution, importance and<br />

control. Tropical Pest Management<br />

27: 32-38.


274 Biological Control of Weeds: Southeast Asian Prospects<br />

Wilson, C.G. 1992. The biological control<br />

programme against Mimosa pigra in<br />

Australia's Northern Territory. Abstracts<br />

VIII International Symposium on<br />

Biological Control of Weeds, Lincoln<br />

University, Canterbury, New Zealand,<br />

2-7 February 1992, p. 13.<br />

Wilson, C.G. and Flanagan, G.J. 1990.<br />

Establishment and spread of Neurostrota<br />

gunniella on Mimosa pigra in the<br />

Northern Territory. Proceedings of the<br />

Ninth Australian Weeds Conference,<br />

Adelaide, South Australia, pp. 505-507<br />

Wilson, C.G. and Flanagan, G.J. 1991.<br />

Establishment of Acanthoscelides quadri-<br />

dentatus (Schaeffer) and A. puniceus<br />

Johnson (Coleoptera: Bruchidae) on<br />

Mimosa pigra L. in northern Australia.<br />

Journal of the Australian Entomological<br />

Society 30: 279-280.<br />

Wilson, C.G., Flanagan, G.J. and Gillett, J.D.<br />

1990. The phytophagous insect fauna of<br />

the introduced shrub, Mimosa pigra in<br />

Northern Australia and its relevance to bi-<br />

ological control. Environmental<br />

Entomology 19: 776-784.<br />

Wilson, C.G., Forno, I.W., Smith, C.S. and<br />

Napompeth, B. 1992. Rearing and release<br />

methods for biological control agents.<br />

(ed.) K.L.S. Harley, A Guide to the<br />

Management of Mimosa pigra, CSIRO,<br />

Canberra, pp. 49-62.<br />

Wilson, F. 1964. The biological control of<br />

weeds. Annual Review of Entomology<br />

9: 225-244.<br />

Wolcott, G.N. 1948. The insects of Puerto<br />

Rico. Journal of Agriculture, University of<br />

Puerto Rico 32: 1-975. (Bennett and<br />

Cruttwell 1972).<br />

Wong, P.W. 1964. Evidence for the presence<br />

of growth inhibitory substances in Mikania<br />

cordata (Bum. f.) B.L. Robinson. Journal<br />

of the Rubber Research Institute of<br />

Malaya 18: 231-241.<br />

Wright, A.D. 1979. Preliminary report on<br />

damage to Eichhornia crassipes by an in-<br />

troduced weevil at a central Queensland<br />

liberation site. Proceedings of the Seventh<br />

Asian-Pacific Weed Science Society<br />

Conference. Australia; Asian-Pacific<br />

Weed Science Societies. 26-30 November<br />

1979. Orange, Australia, pp. 227-229.<br />

Wright, A.D. 198 1. Biological control of<br />

water hyacinth in Australia. Proceedings<br />

of the 5th International Symposium on<br />

Biological Control of Weeds, pp.<br />

529-535.<br />

Wright, A.D. 1982. Progress towards biological<br />

control of water hyacinth in Australia.<br />

Proceedings, Workshop on Biological<br />

Control of Water Hyacinth.<br />

Commonwealth Science Council. London.<br />

3-5 May 1982. Bangalore, India, pp.<br />

31-33.<br />

Wright, A.D. 1984. Effect of biological control<br />

agents on water hyacinth in Australia.<br />

Proceedings of the International<br />

Conference on Water Hyacinth. United<br />

Nations Environment Programme.<br />

7-1 1 February 1983. Hyderabad, India,<br />

pp. 823-833.<br />

Wright, A.D. 1987. A basis for integrating biological<br />

and chemical control of water<br />

hyacinth (Eichhornia crassipes (Mart.)<br />

Solms). Master of Philosophy Thesis,<br />

School of Environmental Studies, Griffith<br />

University.<br />

Wright, A.D. and Bourne, A.S. 1986. Effect<br />

of leaf hardness on penetration of water<br />

hyacinth by Sameodes albiguttalis. Journal<br />

of Aquatic Plant Management 24: 90-91.<br />

Wright, A.D. and Bourne, A.S. 1990. Effect<br />

of 2, 4-D on the quality of water hyacinth<br />

as food for insects. Plant Protection<br />

Quarterly 5: 139-141.<br />

Wright, A.D. and Stegeman, D.A. 1990. The<br />

weevil, Neochetina bruchi, could help<br />

control water hyacinth in Australia.<br />

Proceedings of the 9th Australian Weeds<br />

Conference, Adelaide, South Australia,<br />

August 6-1 0, pp. 508-5 10.<br />

Wu, Q.N. and Liang, K.G. 1984. Host range<br />

of Helminthosporium maydis Nish and<br />

Miyake. (Chinese). Acta Phytopathologica<br />

Sinica 14: 79-86. (Review of Plant<br />

Pathology 64: 1088,1985).


Xie, L.H., Lin, Q.Y. and Wang, S.F. 1984. On<br />

the preparation and use of an antiserum to<br />

rice ragged stunt virus. (Chinese). Acta<br />

Phytopathologica Sinica 14: 147-1 51.<br />

(Review of Applied Pathology 64: 2513,<br />

1985).<br />

Yadav, A.S. and Tripathi, R.S. 1982. A study<br />

on seed population dynamics of three<br />

weedy species of Eupatorium odorata.<br />

Weed Research 22: 69-76.<br />

Yaseen, M. 197 1. Mimosa pudica. Report on<br />

work carried out during 1970.<br />

Commonwealth Institute of Biological<br />

Control. Commonwealth Agricultural<br />

Bureaux, p. 92.<br />

Yaseen, M. 1972. Mimosa pudica. Report on<br />

work carried out during 1971.<br />

Commonwealth Institute of Biological<br />

Control. Commonwealth Agricultural<br />

Bureaux, p. 107.<br />

Yaseen, M. and Bennett, F.D. 1977.<br />

Commonwealth Institute of Biological<br />

Control. Report of work carried out during<br />

1976. Control of Siam weed, Eupatorium<br />

odoratum, pp. 75-76.<br />

Yonaha, T., Tamori, M., Yamanoha, S. and<br />

Nakasone, T. 1979. Studies on passion<br />

fruit virus diseases in Okinawa. 1.<br />

Cucumber mosaic virus isolated from dis-<br />

eased Passiflora edulis and Passiflora<br />

foetida plants (Japanese). Science Bulletin<br />

of the College of Agriculture, University<br />

of the Ryukyus 1979 (No 26): 29-38.<br />

(Review of Plant Pathology 60: 1553,<br />

1981).<br />

Yorinori, J.T. 1985. Biological control of milk<br />

weed (Euphorbia heterophylla) with path-<br />

ogenic fungi. Proceedings of the VI<br />

International Symposium on Biological<br />

Control of Weeds. Agriculture Canada<br />

1985, pp. 677-68 1.<br />

5 References 275<br />

Zaka-ur-rab, M. 1991. Leaf mining<br />

Coleoptera of the Indian subcontinent.<br />

Journal of Entomological Research (New<br />

Delhi) 15: 20-30.<br />

Zehr, E.I., Aitken, J.B., Scott, J.M. and<br />

Meyer, J.R. 1990. Additional hosts for the<br />

ring nematode Criconemella xenoplax.<br />

Journal of Nematology 22: 86-89.<br />

Zeigler, R.S. and Lozano, J.C. 1983. The relationship<br />

of some Elsinoe and Sphaceloma<br />

species pathogenic on cassava and other<br />

Euphorbiaceae in Central and South<br />

America. Phytopathology 73: 293-300.<br />

Zem, A.C. and Lordello, L.G.E. 1983. Studies<br />

on hosts of Radopholus similis and<br />

Helicotylenchus multicinctus (Portuguese).<br />

Trabalhos apresentados a VII Reuniao<br />

Brasileira de Nematologia, Brasilia, D.F.<br />

21-25 de fevereiro de 1983. Publicaco<br />

7: 175-187. (Weed Abstracts 34: 100,<br />

1985).<br />

Zhang, S., Shu, X., Zhou, G., Fu, C., Li, Z.<br />

and Wang, L. 1981. Preliminary studies on<br />

the host range of wheat rosette disease<br />

caused by northern cereal mosaic virus.<br />

(Chinese). Acta Phytopathologica Sinica<br />

11: 7-10.<br />

Zimmerman, E.C. 1957. The portulaca<br />

leafmining weevil, Hypurus bertrandi, in<br />

Hawaii (Coleoptera: Curculionidae:<br />

Ceutorhynchinae). Annals of the<br />

Entomological Society of America<br />

50: 221-222.<br />

Zundel, G.L. 1953. The Ustilaginales of the<br />

World. Contribution 176. Department of<br />

Botany, School of Agriculture, State<br />

College, Pennsylvania. 41 Opp.


6 Index of scientific names of insects<br />

abdominalis,<br />

Microcephalothrips<br />

Acanthoscelides pigricola<br />

Kingsolver Col.:<br />

Bruchidae 152<br />

Acanthoscelides puniceus<br />

Johnson Col.: Bruchidae<br />

150,152,153<br />

Acanthoscelides<br />

quadridentatus (Schaeffer)<br />

Col.: Bruchidae 150, 152,<br />

153<br />

Acanthoscelides zebratus<br />

Kingsolver Col.:<br />

Bruchidae 152<br />

Achaea janata (Linnaeus)<br />

Lep.: Noctuidae 105<br />

Acigona infusella, see<br />

Haimbachia infusella<br />

Acrida turrita Linnaeus Ort.:<br />

Acrididae 133<br />

Acrosternum herbidum (Stiil)<br />

Hem.: Pentatomidae 144<br />

Actinote anteas (Doubleday<br />

and Hewitson) Lep.:<br />

Nymphalidae 39,44,47,<br />

48<br />

aculeatum, Coelocephalapion<br />

acuminata, Paulinia<br />

acuta, Leptocorisa<br />

Adaina bipuncta Moschler<br />

Lep.: Pterophoridae 129<br />

adipalis, Ategumia<br />

aeneicollis, Horismenus<br />

aerea, Colaspis<br />

aerea, Maecolaspis<br />

Aerenica hirticornis (Klug)<br />

Col.: Cerambycidae 40<br />

afinis, Neohydronomus<br />

agamemnon, Chi10<br />

Agathis Hyrn.: Braconidae<br />

206<br />

Agraulis vanillae (Linnaeus)<br />

Lep.: Nymphalidae 187,<br />

188<br />

Agrmyza parvicornis Loew<br />

Dip.: Agromyzidae 64<br />

Agromyza proxima Spencer<br />

Dip.: Agromyzidae 65<br />

Agrotera basinotata<br />

Harnpson Lep.:<br />

Pyralidae 122<br />

Agrotis ipsilon (Hufnagel)<br />

Lep.: Noctuidae 21 2<br />

albicinctus, Orosius<br />

albiguttalis, Sameodes<br />

Alcidodes Col.: Curculionidae<br />

1 22<br />

aliphera, Eueides<br />

allecta, Calycomyza<br />

Altica cyanea (Weber) Col.:<br />

Chrysomelidae 121, 1 22<br />

Amata huebneri Boisduval<br />

Lep.: Amatidae 134<br />

Amauromyza Dip.:<br />

Agromyzidae 32,57<br />

Amauromyza maculosa<br />

(Malloch) Dip.:<br />

Agromyzidae 29,30<br />

amazonus, Longitarsus<br />

arnbrosiae, Dactynotus<br />

ambrosiae, Uroleucon<br />

Ammalo arravica, see<br />

Pareuchaetes<br />

pseudoinsulata<br />

Ammalo insulata, see<br />

Pareuchaetes insulata<br />

Amsacta gangis, see<br />

Creatonotos gangis<br />

Amsacta lactinea (Cramer)<br />

Lep.: Arctiidae 45<br />

anaphalidis, Masonaphis<br />

anaphalidis, Neomasonaphis<br />

andropogonis, Dyodiplosis<br />

andropogonis, Orseolia<br />

anisodactylus, Sphenarches<br />

Anoecia querci , see<br />

Stegophylla querci<br />

antem, Actinote<br />

antica, Pochazia<br />

antonii, Helopeltis<br />

Apanteles Hyrn.: Braconidae<br />

206<br />

Apanteles cordoi De Santis<br />

Hyrn.: Braconidae 80<br />

Apanteles creatonoti Viereck<br />

Hyrn.: Braconidae 43,<br />

Apantelesfluitantis De Santis<br />

Hyrn.: Braconidae 80<br />

Aphis Hem.: Aphididae 121<br />

Aphis citricola, see Aphis<br />

spiraecola<br />

Aphis coreopsidis (Thomas)<br />

Hem.: Aphididae 30<br />

Aphis craccivora Koch Hem.:<br />

Aphididae 13,45, 105<br />

Aphis fabae Scopoli Hem.:<br />

Aphididae 41,64, 188<br />

Aphis gossypii Glover Hem.:<br />

Aphididae 13,45, 105, 133<br />

188<br />

Aphis illinoisensis Shimer<br />

Hem.: Aphididae 30<br />

Aphis nigricauda, see Aphis<br />

spiraecola<br />

Aphis spiraecola Patch Hem.:<br />

Aphididae 1 3,41,44,45,<br />

133,188<br />

aphodoides, Temnodachrys<br />

Apion Col.: Apionidae 130,<br />

213,215<br />

Apion brunneonigrum<br />

BCguin-Billecocq Col.:<br />

Apionidae 38,39,42-44,<br />

46-48<br />

Apion luteirostre Gerstaecker<br />

Col.: Apionidae 30, 127,<br />

129,130<br />

Apsilops sp. Hyrn.:<br />

Ichneumonidae 206<br />

archboldi, Liriomyza<br />

Archips Lep.: Tortricidae<br />

23<br />

Archips micaceana (Walker)<br />

Meyrick Lep.: Tortricidae<br />

123<br />

arctithorax, Baris<br />

argentiniensis, Disonycha<br />

Argentinorhynchus bennetti<br />

O'Brien and Wibmer Col.:<br />

Curculionidae 200


278 Biological Control ( ~f Weeds: Southeast Asian Prc<br />

Argentinorhynchus breyeri<br />

Br2thes Col.:<br />

Curculionidae 200<br />

Argentinorhynchus bruchi<br />

(Hustache) Col.:<br />

Curculionidae 200,204<br />

Argentinorhynchus minimus<br />

O'Brien and Wibmer Col.:<br />

Curculionidae 200<br />

Argentinorhynchus<br />

squamosus (Hustache)<br />

Col.: Curculionidae 200<br />

argentinus, Horciacinus<br />

Argyractis subornata<br />

(Hampson) Lep.: Pyralidae<br />

72,201<br />

Argyresthia leuculias<br />

Meyrick Lep.:<br />

Argyresthiidae 122<br />

armatus, Chariesterus<br />

armigera, Dicladispa<br />

Aroga Lep.: Gelechiidae 15 1<br />

arravaca, Ammalo<br />

arravaca, Pareuchaetes<br />

artemisia, Dynamine<br />

Arthrocnodax meridionalis<br />

Felt Dip.: Cecidomyiidae<br />

48<br />

Ascia buniae phaloe, see<br />

Perrhybris phaloe<br />

aspersa, Sibinia<br />

asperulus, Ceutorhynchus<br />

Asphondylia Dip.:<br />

Cecidomyiidae 2 1 6<br />

Asphondylia bidens<br />

Johannsen Dip.:<br />

Cecidomyiidae 3 1<br />

Asphondylia corbulae Mohn<br />

Dip.: Cecidomyiidae 40<br />

Asphondylia portulacae<br />

Mohn Dip.: Cecidomyiidae<br />

213,216<br />

Astylus lineatus (Fabricius)<br />

Col.: Melyridae 22<br />

Asynonychus godmani Crotch<br />

Col.: Curculionidae 144<br />

Ategumia adipalis (Zeller)<br />

Lep.: Pyralidae 120, 122,<br />

123<br />

Ategumia fatualis (Lederer)<br />

Lep.: Pyralidae 120, 122,<br />

123<br />

Atherigona soccata Rondani<br />

Dip.: Muscidae 225<br />

atilus, Sphaeniscus<br />

atricornis, Phytomyza<br />

atrovenosa, Nisia<br />

Atractomorpha crenulata<br />

(Fabricius) Ort.: Acrididae<br />

78<br />

Aulacorthum solani<br />

(Kaltenbach) Hem.<br />

Aphididae 13<br />

Aulacochlamys Col.<br />

Chrysomelidae 39,49<br />

aurata aurantior,<br />

Pareuchaetes<br />

aurata aurata, Pareuchaetes<br />

aurata, Pareuchaetes<br />

Austelasmus Hym.:<br />

Elasmidae 5 1<br />

Autoba versicolor (Walker)<br />

Lep.: Noctuidae 122<br />

avenae, Sitobion<br />

Azarma densa, see Bellura<br />

densa<br />

azia, Thecla<br />

azia, Tmolus<br />

Bactrocera dorsalis (Hendel)<br />

Dip.: Tephritidae 120, 122<br />

Bactrocera pedestris, see<br />

Bactrocera dorsalis<br />

bada, Parnara<br />

Baliothrips biformis, see<br />

Stenchaetothrips biformis<br />

baridiiformis,<br />

Psuedoderelomus<br />

Baris Col.: Curculionidae 29,<br />

30,40<br />

Baris arctithorax (Pic) Col.:<br />

Curculionidae 2 12,213,<br />

216<br />

Baris lorata Marshall Col.:<br />

Curculionidae 2 1 3<br />

Baris portulacae Marshall<br />

Col.: Curculionidae 2 13<br />

basalis, Xyonysius<br />

basinotata, Agrotera<br />

basui, Tetraneura<br />

Bellura densa (Walker) Lep.:<br />

Noctuidae 73,79,80<br />

Bemisia costa-limai, see<br />

Bemisia tabaci<br />

Bemisia tabaci (Gennadius)<br />

Hem.: Aleyrodidae 14, 16,<br />

99,100,105<br />

bennetri, Argentinorhynchus<br />

bertrandi, Hypurus<br />

bessus, Nisoniades<br />

bibiana, Syphrea<br />

biblis, Didonis<br />

bicincta fraterna,<br />

Monecphora<br />

bicincta fraterna, Prosapia<br />

bicolor, Stirellus<br />

bidens, Asphondylia<br />

bidentis, Melanogromyza<br />

bifidalis, Loxostege<br />

biformis, Baliothrips<br />

biformis, Stenchaetothrips<br />

bigaria, Desmogramma<br />

binaria, Micrutalis<br />

bipartista, Dactylispa<br />

bipuncta, Adaina<br />

bissellata, Coelophora<br />

Blissus leucopterus (Say)<br />

Hem.: Lygaeidae 90<br />

botanephaga, Sesamia<br />

Bothrogonia ferrugenea<br />

(Fabricius) Hem.:<br />

Cicadellidae 133<br />

Brachycaudus helichrysi<br />

(Kaltenbach) Hem.:<br />

Aphididae 13<br />

Brachycyttarus griseus De<br />

Joannis Lep.: Psychidae<br />

181,182<br />

Brachymeria ovata (Say)<br />

Hym.: Chalcididae 187<br />

Brachymeria russelli Burks<br />

Hym.: Chalcididae 130<br />

breyeri, Argentinorhynchus<br />

brickelliae, Neolasioptera<br />

bruchi, Argentinorhynchus<br />

bruchi, Neochetina<br />

bruchi, Ochetina<br />

brunella, Selca<br />

brunnea, Myrmicaria<br />

brunneonigrum, Apion<br />

bryoniae, Liriomyza<br />

Bucculatrix sp. Lep.:<br />

Bucculatricidae 39,49<br />

buniae phaloe, Ascia


Caicella calchas, see Cogia<br />

calchas<br />

calamistis, Sesamia<br />

calchas, Caicella<br />

calchas, Cogia<br />

Calephelis Lep.: Lycaenidae<br />

162<br />

Calephelis laverna Godman<br />

and Salvin Lep.:<br />

Lycaenidae 40<br />

Caliothrips ipomoeae<br />

Moulton Thy.: Thripidae<br />

14<br />

Calycomyza Dip.:<br />

Agromyzidae 14,32<br />

Calycomyza allecta<br />

(Melander) Dip.:<br />

Agromyzidae 29,3 1<br />

Calycomyza mikaniae<br />

Spencer Dip.:<br />

Agromyzidae 128<br />

Calycomyza platyptera<br />

(Thornson) Dip.:<br />

Agromyzidae 29,3 1<br />

campanulicollis, Promecops<br />

Capitophorus hippophaes<br />

(Walker) Hem.: Aphididae<br />

13<br />

carduana,Lobesia<br />

carduana, Polychrosis<br />

carduellinus, Hyperomyzus<br />

cariniventris, Rhodobaenus<br />

Cannenta mimosa Eichlin<br />

and Passoa Lep.: Sesiidae<br />

147,150,152-154,156<br />

Caryedes pickeli (Pic) Col.:<br />

Bruchidae 101<br />

Cassida exilis Col.:<br />

Chrysomelidae 22<br />

Cassida nigriventris Col.:<br />

Chrysomelidae 21,22<br />

Catantops humilis Serville<br />

Ort.: Acrididae 133<br />

catenulata, Lophocampa<br />

caulophaga, Liriomyza<br />

Cecidochares fluminensis<br />

(Lima) Dip.: Tephritidae<br />

40<br />

Cecidomyia Dip.:<br />

Cecidomyiidae 193<br />

6 Index of scientific names of insects 279<br />

Cecidomyia penniseti Felt<br />

Dip.: Cecidomyiidae 193,<br />

194<br />

Centrotypus flexuosus<br />

(Fabricius) Hem.:<br />

Membracidae 133<br />

Centrinaspis Col.:<br />

Curculionidae 29,30,40<br />

Centrinaspis perscitus see<br />

Linogeraeus perscitus<br />

Ceresa ustulata Fairmaire<br />

Hem.: Membracidae 143<br />

Cerodontha muscina<br />

(Meigen) Dip.:<br />

Agromyzidae 65<br />

cervinus, Pantomorus<br />

Ceutorhynchus Col.:<br />

Curculionidae 122,215<br />

Ceutorhynchus asperulus<br />

Faust Col.: Curculionidae<br />

22<br />

Ceutorhynchus oleracae<br />

Marshall Col.:<br />

Curculionidae 2 1 3<br />

Ceutorhynchus portulacae<br />

Marshall Col.:<br />

Curculionidae 2 1 1,213<br />

Chaetogeoica graminiphaga<br />

Raychaudhuri, Pal and<br />

Ghosh Hem.: Aphididae<br />

0 0<br />

00<br />

Chalcodermus Col.:<br />

Curculionidae 144, 162<br />

Chalcodermus segnis Fielder<br />

Col.: Curculionidae 144<br />

Chalcodermus serripes<br />

Fahraeus Col.:<br />

Curculionidae 15 1, 154<br />

Chalcophana viridipennis<br />

Germar Col.:<br />

Chrysomelidae 30<br />

Chariesterus armatus<br />

(Thunberg) Hem.:<br />

Coreidae 101<br />

charitonia, Heliconius<br />

Chilo Lep.: Pyralidae 225<br />

Chilo agamemnon Bleszynski<br />

Lep.: Pyralidae 65<br />

Chilo zacconius Bleszynski<br />

Lep.: Pyralidae 65<br />

Chlamisus Col.:<br />

Chrysomelidae 16 1<br />

Chlamisus insularis (Jacoby)<br />

Col.: Chrysomelidae 49<br />

Chlamisus mimosae Karren<br />

Col.: Chrysomelidae 30,<br />

39,49,150,152,154<br />

Chloropteryx Lep.:<br />

Geometridae 129<br />

Chnootriba similis<br />

(Thunberg) Col.:<br />

Coccinellidae 225<br />

Chortogonus trachypterus<br />

Blanchard Ort.: Acrididae<br />

105<br />

Chromatomyia Dip.<br />

Agromyzidae 32<br />

Chrysolina Col.:<br />

Chrysomelidae 130<br />

Cicadulina triangula Hem.:<br />

Cicadellidae 93<br />

cinerea, Piesma<br />

Circulifer haematoceps<br />

(Mulsant and Rey) Hem.:<br />

Cicadellidae 21 1<br />

citri, Planococcus<br />

citricola, Aphis<br />

civiloides, Exorista<br />

Cladochaeta nebulosa<br />

Coquillett Dip.:<br />

Drosophilidae 3 1<br />

claripennis, Phorocera<br />

claudina, Tegosa<br />

Cleitodiplosis graminis<br />

(Tavares) Dip.:<br />

Cecidomyiidae 1 8 1, 182<br />

Cletusfuscescens Walker<br />

Hem.: Coreidae 21<br />

Clinodiplosis Dip.:<br />

Cecidomyiidae 39, 40,49<br />

Clinodiplosis eupatorii (Felt)<br />

Dip.: Cecidomyiidae 40<br />

Clovia conifer (Walker)<br />

Hem.: Cercopidae 133<br />

Cnaphalocrocis medinalis<br />

(GuenCe) Lep.: Pyralidae<br />

65,90,176,182,194<br />

Cnaphalocrocis patnalis<br />

Bradley Lep.: Pyralidae<br />

65,90,176,182<br />

Coccus Hem.: Coccidae 100


280 Biological Control of Weeds: Southeast Asian Pra<br />

Coccus longulus (Douglas)<br />

Hem.: Coccidae 161<br />

Coelocephalapion aculeatum<br />

(Fall) Col.: Apionidae 150,<br />

152,154<br />

Coelocephalapion pigrae<br />

Kissinger Col.: Apionidae<br />

151,154<br />

Coelocephalapion<br />

spretissimum (Sharp) Col.:<br />

Apionidae 154<br />

Coelophora bissellata<br />

Mulsant Col.:<br />

Coccinellidae 134<br />

Coelosternus notaticeps, see<br />

Sternocoelus notaticeps<br />

coffearia, Homona<br />

Cogia calchas (Herrich-<br />

Schaffer) Lep.:<br />

Hesperiidae 145, 162<br />

Colaspis Col.: Chrysomelidae<br />

144,181<br />

Colaspis aerea Lefevre Col.:<br />

Chysomelidae 182<br />

Coleophora versurella Zeller<br />

Lep.: Coleophoridae 21,22<br />

commelinae, Liriomyza<br />

complicata, Exema<br />

compositae, Uroleucon<br />

concinnus, Euscyrtus<br />

conifer, Clovia<br />

conjuncta, Desmogramma<br />

connexa, Eriopis<br />

connexa, Procecidochares<br />

consimilis, Phaedon<br />

Contarinia Dip.:<br />

Cecidomyiidae 40,88,93,<br />

194<br />

Contarinia panici (Plotnikov)<br />

Dip.: Cecidomyiidae 175,<br />

177<br />

Contarinia sorghicola<br />

(Coquillett) Dipt.:<br />

Cecidomyiidae 93, 193,<br />

194<br />

corbulae, Asphondylia<br />

cordoi, Apanteles<br />

coreopsidis, Aphis<br />

Corythuca pellucidu Drake<br />

and Hambleton Hem.:<br />

Tingidae 101<br />

Corythuca socia Monte<br />

Hem.: Tingidae 101<br />

costa-limai, Bemisia<br />

Courteia graminis, see<br />

Orseolia graminis<br />

craccivora, Aphis<br />

creatonoti, Apanteles<br />

Creatonotos gangis<br />

(Linnaeus) Lep.: Arctiidae<br />

90,111,182<br />

crenulata, Atractomorpha<br />

cretatus, Onychylis<br />

cretatus, Pistiacola<br />

cretica, Sesamia<br />

cribarius, Euschistus<br />

Criotettrix Ort.: Tetrigidae<br />

200,202<br />

Cropia minthe (Dyar) Lep.:<br />

Noctuidae 3 1<br />

cruttwellae, Neolasioptera<br />

Cryptocephalus miserabilis<br />

Suffrian Col.:<br />

Chrysomelidae 15 1<br />

Cryptocephalus viridiaeneus<br />

Boheman Col.:<br />

Chrysomelidae 1 44<br />

Cryptorhynchus Col.:<br />

Curculionidae 122<br />

cubana, Heteropsylla<br />

curvifascia, Erastroides<br />

cyanea, Altica<br />

cyanea, Haltica<br />

Cyanotricha necyria (Felder<br />

and Rogenhofer) Lep.:<br />

Dioptidae 188<br />

cydno, Heliconius<br />

cymoides, Nysius<br />

cynodontis. Orseolia<br />

Cyrtorhinus lividipennis<br />

Reuter Hem.: Miridae 64<br />

Dactylispa bipartista Col.:<br />

Chrysomelidae 134<br />

Dactynotus ambrosiae, see<br />

Uroleucon ambrosiae<br />

Dactynotus, see Uroleucon<br />

Delphacodes idonea Hem.:<br />

Delphacidae 176<br />

densa, Bellura<br />

depunctalis, Nymphula<br />

Desmogramma 130<br />

Desmogramma bigaria<br />

Erichson Col.:<br />

Chrysomelidae 130<br />

Desmogramma conjuncta<br />

BechynC Col.:<br />

Chrysomelidae 127, 130<br />

Diacamma rugosum (Le<br />

Guillou) Hym.: Formicidae<br />

43<br />

Diachrysia orichalcea, see<br />

Thysanoplusia orichalcea<br />

Dialeurodes vulgaris Singh<br />

Hem.: Aleyrodidae 30<br />

Dichelops fircatus<br />

(Fabricius) Hem.:<br />

Pentatomidae 144<br />

Dichomeris Lep.: Gelechiidae<br />

14,40<br />

Dicladispa armigera<br />

(Olivier) Col.:<br />

Chrysomelidae 64<br />

Didonis biblis (Fabricius)<br />

Lep.: Nymphalidae 101<br />

diemenalis, Lamprosema<br />

dilatatum, Sipylus<br />

diminutalis, Nymphula<br />

diminutalis, Paraponyx<br />

Dinarmus Hym.:<br />

Pteromalidae 152<br />

Dione juno (Cramer) Lep.:<br />

Nymphalidae 186, 1 87<br />

Dioxyna picciola, see<br />

Dioxyna sororcula<br />

Dioxyna sororcula<br />

(Wiedemann) Dip.:<br />

Tephritidae 3 1<br />

Diplacaspis miserabilis, see<br />

Cryptocephalus<br />

miserabilis<br />

Diplacaspis prosternalis<br />

(Schaeffer) Col.:<br />

Chrysomelidae 15 1<br />

Disonycha argentiniensis<br />

BechynC Col.:<br />

Chrysomelidae 10 1<br />

distincta, Lamprosema<br />

dolosa, Pegomya<br />

dorsalis, Bactrocera<br />

dorsalis, Recilia<br />

drumalis, Petrophila<br />

Dryas julia (Fabricius) Lep.:<br />

Nymphalidae 187


Dynamine artemisia<br />

(Fabricius) Lep.:<br />

Nymphalidae 101<br />

Dyodiplosis andropogonis,<br />

see Orseolia andropogonis<br />

Dyodiplosisfluitans, see<br />

Lasioptera fluitans<br />

Dyodiplosisfluvialis, see<br />

Orseolia fluvialis<br />

Dyops minthe, see Cropia<br />

minthe<br />

echeclus, Hippotion<br />

echinochloa, Lasioptera<br />

Echinocnemus Col.:<br />

Curculionidae 1 15<br />

Echoma marginata<br />

(Linnaeus) Col.:<br />

Chrysomelidae 127, 1 30<br />

Echoma quadristillata<br />

(Boheman) Col.:<br />

Chrysomelidae 127, 130<br />

Ecpantheria hambletoni, see<br />

Hypercompe hambletoni<br />

Edessa meditabunda<br />

(Fabricius) Hem.:<br />

Pentatomidae 144<br />

eichhorniae, Neochetina<br />

Elachertus Hym.: Eulophidae<br />

46<br />

Elasmopalpus lignosellus<br />

(Zeller) Lep.: Pyralidae 65<br />

Elasmus Hym.: Elasmidae 46<br />

Eldana saccharins Walker<br />

Lep.: Pyralidae 65<br />

elegans, Neohydronomus<br />

elimatus, Dalbulus<br />

Elophila responsalis<br />

(Walker) Lep.: Pyralidae<br />

115,116,167,201,202<br />

ementitus, Xyonysius<br />

Emmalocera Lep.: Pyralidae<br />

63,65<br />

Enchenopa gracilis (Germar)<br />

Hem.: Membracidae 143<br />

entreriana, Tomaspis<br />

entreriana, Zulia<br />

Entylia Hem.: Membracidae<br />

128<br />

Entylia sinuata (Fabricius)<br />

Hem.: Membracidae 128<br />

6 Index of scientific names of insects 281<br />

Epilachna indica Mulsant<br />

Col.: Coccinellidae 134<br />

Epilachna similis, see<br />

Chnootriba similis<br />

Epipagis albiguttalis, see<br />

Sameodes albiguttalis<br />

Epipsammia pectinicornis,<br />

see Spodoptera<br />

pectinicornis<br />

Episammea pectinicornis, see<br />

Epipsammia pectinicornis<br />

Episcada pascua Schaus<br />

Lep.: Nymphalidae 101<br />

Erastroides curvifascia<br />

Hampson Lep.: Noctuidae<br />

200<br />

erato, Heliconius<br />

Eretmocera impactella<br />

(Walker) Lep.:<br />

Scythrididae 23<br />

eridania, Prodenia<br />

eridania, Spodoptera<br />

Erinnyis oenotrus (Cramer)<br />

Lep.: Sphingidae 101<br />

Eriopis connexa (Germar)<br />

Col.: Coccinellidae 141<br />

Eryphanis polyxena<br />

Meerburgh Lep.:<br />

Nymphalidae 193, 194<br />

erythrocephalus, Stiretrus<br />

etheiella, Eucampyla<br />

Eublemma versicolor, see<br />

Autoba versicolor<br />

Eucalymnatus Hem.:<br />

Coccidae 100<br />

Eucampyla etheiella Meyrick<br />

Lep.: Pyralidae 46,47<br />

Euderus Hym.: Eulophidae<br />

52<br />

Eueides aliphera Godart<br />

Lep.: Nymphalidae 187<br />

Eueides isabella (Cramer)<br />

Lep.: Nymphalidae 187<br />

Eueides procula Butler and<br />

Drull Lep.: Nymphalidae<br />

187<br />

eupatoriella, Melanagromyza<br />

eupatorii, Clinodiplosis<br />

eupatorii, Neolasioptera<br />

euphorbiae, Haplothrips<br />

Eupithecia Lep.: Geometridae<br />

129<br />

Eurema Lep.: Pieridae 139<br />

Eurema lisa (Boisduval and<br />

LeConte) Lep.: Pieridae<br />

162<br />

Eurema tenella (Boisduval)<br />

Lep.: Pieridae 145, 162<br />

Euschistus tristigmus<br />

cribarius Stdl Hem.:<br />

Pentatomidae 144<br />

Euschistus luridus Dallas<br />

Hem.: Pentatomidae 144<br />

Euscyrtus concinnus (de<br />

Haan) Ort.: Gryllidae 57,<br />

64,224<br />

Exema complicata Jacoby<br />

Col.: Chrysomelidae 128,<br />

132<br />

exigua, Spodoptera<br />

exilis, Cassida<br />

Exorista Dip.: Tachinidae 43<br />

Exorista civiloides, see<br />

Exorista xanthaspis<br />

Exorista xanthaspis<br />

Wiedemam Dip.:<br />

Tachinidae 45<br />

explanata, Pentispa<br />

fabae, Aphis<br />

fasciatus, Pistiacola<br />

fascifrons, Macrosteles<br />

fastigiata, Sibinia<br />

fatualis, Ategumia<br />

femorata, Sagra<br />

Ferrisia virgata (Cockerell)<br />

Hem.: Pseudococcidae 105<br />

ferrugenea, Bothrogonia<br />

ferruginae, Temlucha<br />

flexuosus, Centrotypus<br />

floris, Melanagromyza<br />

fluitans, Dyodiplosis<br />

fluitans, Lasioptera<br />

fluitantis, Apanteles<br />

fluminensis, Cecidochares<br />

fluvialis, Dyodiplosis<br />

fluviatilis, Orseolia<br />

fregonalis, Nymphula<br />

frugiperda, Spodoptera<br />

frugivora, Neolasioptera<br />

furcatus, Dichelops


282 Biological Control of Weeds: Southeast Asian Prospects<br />

furcifera, Sogatella<br />

furnacalis, Ostrinia<br />

fuscesens, Cletus<br />

gangis, Amsacta<br />

gangis, Creatonotos<br />

ganglbaueri, Haplothrips<br />

Garcanus gracilentus (St&)<br />

Hem.: Miridae 30<br />

Gargara Hem.: Membracidae<br />

121<br />

geminata, Solenopsis<br />

gentilei, Tetrastichus<br />

gentilei, Thripsastichus<br />

Geoica Iucifuga (Zehntner)<br />

Hem.: Aphididae 88<br />

Germalus unipunctatus<br />

(Montandon) Hem.:<br />

Lygaeidae 21<br />

Geromyia penniseti (Felt)<br />

Dip.: Cecidomyiidae 193,<br />

194<br />

Geromyia seminis (Felt) Dip.:<br />

Cecidomyiidae 193,194<br />

Gesonula punctifrons (Sdl)<br />

Ort.: Acrididae 78, 167<br />

Gibbobruchus pickeli , see<br />

Caryedes pickeli<br />

Gibbobruchus polycoccus<br />

(Fahraeus) Col.: Bruchidae<br />

101<br />

godmani, Asynonychus<br />

gossypii, Aphis<br />

gowdeyi, Haplothrips<br />

gracilentus, Garcanus<br />

gracilis, Enchenopa<br />

graminiphaga, Chaetogeoica<br />

graminis, Cleitodiplosis<br />

graminis, Courteia<br />

graminis, Orseolia<br />

graminum, Schizaphis<br />

granarium, Macrosiphum<br />

griseola, Hydrellia<br />

griseus, Brachycyttarus<br />

guerini, Lexiphanes<br />

guildinii, Piezodorus<br />

gunniella, Neurostrota<br />

Gyrocnemis Hem.:<br />

Thyreocoridae 144<br />

haematoceps, Circulijier<br />

I<br />

Haimbachia infusella<br />

(Walker) Lep.: Pyralidae<br />

69,73,74,76,79,80,82<br />

Haltica cyanea, see Altica<br />

cyanea<br />

Halticus minutus Reuter<br />

Hem.: Miridae 132<br />

hambletoni, Ecpantheria<br />

hambletoni, Hypercompe<br />

hanno, Hemiargus<br />

Haplopeodes Dip.:<br />

Agromyzidae 21 6<br />

Haplopeodes minutus (Frost)<br />

Dip.: Agromyzidae 21,22<br />

Haplopeodes palliatus<br />

(Czoquillett) Dip.:<br />

Agromyzidae 2 12,2 1 3,<br />

216<br />

Haplothrips Thy.:<br />

Phlaeothripidae 134<br />

Haplothrips euphorbiae Thy.:<br />

Phlaeothripidae 105<br />

Haplothrips ganglbaueri<br />

Schmutz Thy.:<br />

Phlaeothripidae 63, 64, 89<br />

Haplothrips gowdeyi<br />

(Franklin) Thy.:<br />

Phlaeothripidae 14, 101,<br />

182<br />

Haplothrips longisetosus<br />

Ananthakrishnan Thy.:<br />

Phlaeothripidae 22<br />

Haplothrips paumalui<br />

Moulton Thy.:<br />

Phlaeothripidae 182<br />

harleyi, Teleonemia<br />

hawaiiensis, Thrips<br />

hecale, Heliconius<br />

helichrysi, Brachycaudus<br />

Heliconius charitonia<br />

(Linnaeus) Lep.:<br />

Nymphalidae 188<br />

Heliconius cydno Bates Lep.:<br />

Nymphalidae 188<br />

Heliconius erato Doubleday<br />

Lep.: Nymphalidae 188<br />

Heliconius hecale Hewitson<br />

Lep.: Nymphalidae 187,<br />

189<br />

Helicoverpa obsoleta, see<br />

Helicoverpa zea<br />

Helicoverpa virescens, see<br />

Heliothis virescens<br />

Helicoverpa zea (Boddie)<br />

Lep.: Noctuidae 188<br />

Heliodines Lep.: Heliodinidae<br />

216<br />

Heliodines quinqueguttata<br />

Walshingham Lep.:<br />

Heliodinidae 2 13,2 16<br />

Heliothis virescens<br />

(Fabricius) Lep.:<br />

Noctuidae188<br />

Hellula undalis (Fabricius)<br />

Lep.: Pyralidae 134<br />

Helopeltis Hem.: Miridae 133<br />

Helopeltis antonii Signoret<br />

Hem.: Miridae 121<br />

Hemiargus hanno (Stoll)<br />

Lep.: Lycaenidae 145, 161,<br />

162<br />

Hemiberlesia lataniae<br />

(Signoret) Hem.:<br />

Diaspididae 161<br />

hennia, Proxenus<br />

herbidum, Acrosternum<br />

Heteropsylla Hem.: Psyllidae<br />

139,142,144,161<br />

Heteropsylla cubana<br />

Craw ford Hem.: Psyllidae<br />

1 42<br />

Heteropsylla spinulosa<br />

Muddiman, Hodkinson and<br />

Hollis Hem.: Psyllidae<br />

137,139-1 45<br />

hieroglyphicus, Poekilocerus<br />

Hilar Col.: Chrysomelidae<br />

1 44<br />

Hippotion echeclus<br />

(Boisduval) Lep.:<br />

Sphingidae 78, 167<br />

hirsuta, Tetraneura<br />

hirticornis, Aerenica<br />

Homoeocerus serrijier<br />

Westwood Hem.: Coreidae<br />

133<br />

Homona cofearia (Nietner)<br />

Lep.: Tortricidae 45<br />

Horciacinus argentinus, see<br />

Horciacinus signoreti<br />

Horciacinus signoreti (Berg)<br />

Hem.: Miridae 143


Horcias nobilellus (Berg)<br />

Hem.: Miridae 22,30<br />

Horismenus ?aeneicollis<br />

Ashmead Hym.:<br />

Eulophidae 130, 132<br />

hospes, Spilostethus<br />

huebneri, Amata<br />

humilis, Catantops<br />

humilis, Hyperodes<br />

humilis, Listronotus<br />

Hyalomyodes triangulifer<br />

(Loew) Dip.: Tachinidae<br />

130<br />

Hyalopeplus vitripennis (Stll)<br />

Hem.: Miridae 121<br />

Hydrellia griseola (Falltn)<br />

Dip.: Ephydridae 65<br />

Hymenia recurvalis, see<br />

Spodoptera recurvalis<br />

Hypanthus Col.:<br />

Curculionidae 144<br />

Hypercompe hambletoni<br />

(Schaus) Lep.: Arctiidae<br />

3 1<br />

Hyperodes humilis, see<br />

Listronotus humilis<br />

Hyperomyzus carduellinus<br />

(Theobald) Hem.:<br />

Aphididae 13<br />

Hypolixus ritsemae (Pascoe)<br />

Col.: Curculionidae 22<br />

Hypolixus trunculatus<br />

(Fabricius) Col.:<br />

Curculionidae 19,21,22,<br />

45<br />

Hypomicrogaster Hym.:<br />

Braconidae 81<br />

Hypurus bertrandi Pems<br />

Col.: Curculionidae<br />

21 1-213,215-217<br />

Hysteroneura setariae<br />

(Thomas) Hem.:<br />

Aphididae 89<br />

Icerya seychellarum<br />

(Westwood) Hem.:<br />

Margarodidael61<br />

Idiophantis Lep.: Gelechiidae<br />

122<br />

idonea, Delphacodes<br />

illinoisensis, Aphis<br />

6 Index of scientific names of insects 283<br />

Imerodes Col.: Curculionidae<br />

122<br />

impactella, Eretmocera<br />

ina, Taractrocera<br />

inaequalis, Xyonysius<br />

includens, Pseudoplusia<br />

inconspicuus, Nysius<br />

incurvus, Pycnoderes<br />

indica, Epilachna<br />

indica, Mycodiplosis<br />

infusella, Acigona<br />

infusella, Haimbachia<br />

insecta, Xanthaciura<br />

insignis, Liriomyza<br />

insularis, Chlamisus<br />

insulata, Pareuchaetes<br />

insulata, Ammalo<br />

inustorum, Lasioptera<br />

ipomoeae, Caliothrips<br />

ipsilon, Agrotis<br />

irrorata. Milothris<br />

isabella, Eueides<br />

Isothrips Thy.: Thripidae 1 33<br />

Itonida penniseti, see<br />

Geromyia penniseti<br />

Itonida seminis, see<br />

Geromyia seminis<br />

janata, Achaea<br />

javanica, Parallelodiplosis<br />

julia, Dryas<br />

juno, Dione<br />

kanni, Lasioptera<br />

knysna, Zizeeria<br />

kolophon, Sogatella<br />

krupta, Zizeeria<br />

Lactica sp. Col.:<br />

Chrysomelidae 144<br />

lactinea, Amsacta<br />

laevis, Macrotracheliella<br />

Lamprosema diemenalis<br />

(Guenke) Lep.: Pyralidae<br />

132,133<br />

Lamprosema distincta (Kaye)<br />

Lep.: Pyralidae 129<br />

Laodelphax striatellus<br />

(Falltn) Hem.:<br />

Delphacidae 64,89,93<br />

laphygmae, Meteorus<br />

Lasioptera Dip.:<br />

Cecidomyiidae 18 1<br />

Lasioptera echinochloa Felt<br />

Dip.: Cecidomyiidae 63,<br />

65<br />

Lasiopterafluitans Felt Dip.:<br />

Cecidomyiidae 177<br />

Lasioptera inustorum Felt<br />

Dip.: Cecidomyiidae 177<br />

Lasioptera kanni Felt Dip.:<br />

Cecidomyiidae 177<br />

Lasioptera panici Felt Dip.:<br />

Cecidomyiidae 177<br />

Lasioptera paniculi Felt Dip.:<br />

Cecidomyiidae 177<br />

Lasioptera portulaceae Felt<br />

Dip.: Cecidomyiidae 21 3<br />

lataniae, Hemiberlesia<br />

latigenis, Notiphila<br />

latipes, Mocis<br />

latiuscula, Scotinophara<br />

laverna, Calepheles<br />

leelamaniae, Macrosiphum<br />

leelamaniae, Sitobion<br />

Leptocentrus taurus<br />

(Fabricius) Hem.:<br />

Membracidae 12 1<br />

Leptocorisa acuta (Thunberg)<br />

Hem.: Alydidae 99<br />

Leptocorisa oratorius<br />

(Fabricius) Hem.:<br />

Alydidae 64,99<br />

Leptocorisa solomonensis<br />

Ahmad Hem.: Alydidae 99<br />

Leptocysta sexnebulosa (Stll)<br />

Hem.: Tingidae 128<br />

leucaenae, Tamarixia<br />

leucopterus, Blissus<br />

leuculias, Argyresthia<br />

Lexiphanes Col.:<br />

Chrysomelidae 144<br />

Lexiphanes guerini (Perbose)<br />

Col.: Chrysomelidae 15 1<br />

Lexiphanes semicyaneus<br />

(Suffrian) Col.:<br />

Chrysomelidae 144<br />

licarsisalis, Herpetogramma<br />

Eignosellus, Elasmopalpus<br />

linearis, Riptortus<br />

lineatus, Astylus<br />

Linogeraeus perscitus<br />

(Herbst) Curculionidae 2 13


284 Biological Control of Weeds: Southeast Asian Prospects<br />

Liothrips mikaniae (Priesner)<br />

Thy.: Phlaeothripidae 125,<br />

127,130,134,135<br />

liothrips, Thripsobremia<br />

Liriomyza Dip.: Agromyzidae<br />

31,32<br />

Liriomyza archboldi Frost<br />

Dip.: Agromyzidae 29,3 1<br />

Liriomyza bryoniae<br />

(Kaltenbach) Dip.:<br />

Agromyzidae 105<br />

Liriomyza caulophaga<br />

(Kleinschmidt) Dip.:<br />

Agromyzidae 21 1,212<br />

Liriomyza commelinae Frost<br />

Dip.: Agromyzidae 57<br />

Liriomyza insignis Spencer<br />

Dip.: Agromyzidae 29,3 1<br />

Liriomyza marginalis<br />

Malloch Dip.:<br />

Agromyzidae 89<br />

Liriomyza robustae Spencer<br />

Dip.: Agromyzidae 57<br />

Liriomyza strigata Meigen<br />

Dip.: Agromyzidae 105<br />

Liriomyza trifolii (Burgess)<br />

Dip.: Agromyzidae 3 1,211<br />

Liriomyza venegasiae<br />

Spencer Dip.:<br />

Agromyzidae 29,3 1<br />

lisa, Eurema<br />

Lissorhoptrus oryzophilus<br />

Kuschel Col.:<br />

Curculionidae 64<br />

Listronotus humilis<br />

(Gyllenhall) Col.:<br />

Curculionidae 63,64<br />

litura, Spodoptera<br />

lividipennis, Cyrtorhinus<br />

Lixophaga Dip.: Tachinidae<br />

206<br />

Lobesia carduana (Busck)<br />

Lep.: Tortricidae 129<br />

longifircifera, Sogatella<br />

longisetosus, Haplothrips<br />

Longitarsus Col.:<br />

Chrysomelidae 13 1, 132<br />

Longitarsus nr amazonus<br />

Baly Col.: Chrysomelidae<br />

128,132<br />

longulus, Coccus<br />

Lophocampa catenulata<br />

(Hubner) Lep.: Arctiidae<br />

161,162<br />

lorata, Baris<br />

Loxostege Lep.: Pyralidae 23<br />

Loxostege bijidalis<br />

(Fabricius) Lep.: Pyralidae<br />

212<br />

lucifuga, Geoica<br />

lugens, Nilaparvata<br />

luridus, Euschistus<br />

luteirostre, Apion<br />

macminni, Cerodontha<br />

rnacrophthalma, Diopsis<br />

Macrosiphum granarium, see<br />

Sitobion avenue<br />

Macrosiphum leelamaniae,<br />

see Sitobion leelamaniae<br />

Macrosiphum miscanthi, see<br />

Sitobion miscanthi<br />

Macrosiphum solidaginis, see<br />

Uroleucon solidaginis<br />

Macrosteles fascifrons (Still)<br />

Hem.: Cicadellidae 167<br />

maculosa, Amauromyza<br />

Maecolaspis aerea, see<br />

Colaspis aerea<br />

maidis, Dalbulus<br />

maidis, Peregrinus<br />

malayanus, Nephotettix<br />

Mansonia Dip.: Culicidae<br />

199<br />

Marasmia patnalis, see<br />

Cnaphalocrocis patnalis<br />

marginalis, Liriomyza<br />

marginata, Echoma<br />

Masonaphis anaphalidis, see<br />

Neomasonavhis<br />

anaphalidis<br />

mauritia, Spodoptera<br />

mazans, Staphylus<br />

medinalis, Cnaphalocrocis<br />

meditabunda, Edessa<br />

Melanagromyza Dip.:<br />

Agromyzidae 32<br />

Melanagromyza bidentis<br />

Spencer Dip.:<br />

Agromyzidae 29,3 1<br />

Melanagromyza eupatoriella<br />

Spencer Dip.:<br />

Agromyzidae 39,44,45<br />

Melanagromyza floris<br />

Spencer Dip.:<br />

Agromyzidae 29,3 1<br />

Melanagromyza metallica<br />

(Thomson) Dip.:<br />

Agromyzidae 13, 14<br />

Melanagromyza polyphyta<br />

Kleinschmidt Dip.:<br />

Agromyzidae 1 88<br />

Melanagromyza splendida<br />

Frick Dip.: Agromyzidae<br />

3 1<br />

rneridionalis, Arthrocnoda.<br />

Mescinia parvula (Zeller)<br />

Lep.: Pyralidae 39,42,44,<br />

46,49,50<br />

metallica, Melanagromyza<br />

Metqonycha pallidula<br />

(Boheman) Col.:<br />

Chrysomelidae 144<br />

Meteorus Hym.: Braconidae<br />

121<br />

micaceana, Archips<br />

Microcephalothrips Thy.:<br />

Thripidae 133<br />

Microcephalothrips<br />

abdominalis (D.L.<br />

Crawford) Thy.: Thripidae<br />

14<br />

Microcomps~s, see<br />

Microporus<br />

Microporus Hem.: Cydnidae<br />

161<br />

Micrutalis Hem.:<br />

Membracidae 143<br />

Micrutalis binaria<br />

(Fairmaire) Hem.:<br />

Membracidae 128<br />

mikaniae, Calycomyza<br />

mikaniae, Liothrips<br />

Milothris irrorata (Fabricius)<br />

Col.: Cerambycidae 153<br />

mimosa, Carmenta<br />

mimosae, Chlamisus<br />

minimus, Argentinorhynchus<br />

minthe, Cropia<br />

minthe, Dyops<br />

minuta, Oxya<br />

minutispina, Nilautama<br />

minutus, Halticus<br />

minutus, Haplopeodes


misantlensis, Pareuchaetes<br />

miscanthi, Macrosiphum<br />

miscanthi, Sitobion<br />

miserabilis, Cryptocephalus<br />

miserabilis, Diplacaspis<br />

Mocis latipes (GuenCe) Lep.:<br />

Noctuidae 3 1<br />

Monecphora bicincta<br />

fraterna, see Prosapia<br />

bicincta fraterna<br />

multiplicalis, Samea<br />

multistrigata, Phalonidia<br />

muscina, Cerodontha<br />

Mycetaspis personata<br />

(Comstock) Hem.:<br />

Diaspididae 14<br />

Mycodiplosis indica Felt<br />

Dip.: Cecidomyiidae 194<br />

Myrmicaria brunnea<br />

Saunders Hym.:<br />

Formicidae 43<br />

Mythimna unipuncta<br />

(Haworth) Lep.: Noctuidae<br />

65<br />

Myzus ornatus Laing Hem.:<br />

Aphididae 13<br />

Myzus persicae (Sulzer)<br />

Hem.: Aphididae 13,21,<br />

24, 188., 21 1,224<br />

Namangana pectinicornis,<br />

see Epipsammia pectini<br />

cornis<br />

nebulosa, Cladochaeta<br />

necyria, Cyanotricha<br />

Neochetina Col.:<br />

Curculionidae 73,76,78<br />

Neochetina bruchi Hustache<br />

Col.: Curculionidae 69,73,<br />

74,76-82<br />

Neochetina eichhorniae<br />

Warner Col.:<br />

Curculionidae 69,73-80,<br />

82<br />

Neogalea sunia (GuenCe)<br />

Lep.: Noctuidae 22,212<br />

Neohydronomus afJinis<br />

Hustache Col.:<br />

Curculionidae 197, 199,<br />

200,202-206<br />

6 Index of scientific names of insects 285<br />

Neohydronomus elegans<br />

O'Brien and Wibmer Col.:<br />

Curculionidae 200<br />

Neohydronomus pulchellus<br />

Hustache Col.:<br />

Curculionidae 200,205<br />

Neolasioptera Dip.:<br />

Cecidomyiidae 128, 132,<br />

217<br />

Neolasioptera brickelliae<br />

Mohn Dip.: Cecidomyiidae<br />

40<br />

Neolasioptera cruttwellae<br />

Gagne Dip.:<br />

Cecidomyiidae 40<br />

Neolasioptera eupatorii (Felt)<br />

Dip.: Cecidomyiidae 40<br />

Neolasioptera frugivora<br />

Gagne Dip.:<br />

Cecidomyiidae 40<br />

Neolasioptera portulacae<br />

(Cook) Dip.:<br />

Cecidomyiidae 21 3,2 17<br />

Neomasonaphis anaphalidis<br />

(Basu) Hem.: Aphididae<br />

13<br />

Nephotettix Hem.:<br />

Cicadellidae 133<br />

Nephotettix malayanus<br />

Ishihara and Kawase<br />

Hem.: Cicadellidae 89<br />

Nephotettix nigropictus, see<br />

Nephotettix<br />

nigromaculatus<br />

Nephotettix nigromaculatus<br />

(Motschulsky) Hem.:<br />

Cicadellidae 89,225<br />

Nephotettix virescens<br />

(Distant) Hem.:<br />

Cicadellidae 89<br />

nervosa, Nisia<br />

Nesoclutha pallida (Evans)<br />

Hem.: Cicadellidae 93<br />

Neurostrota gunniella<br />

(Busck) Lep.:<br />

Gracillariidae 147, 150,<br />

152,154156,162<br />

nigriabdominalis, Tetraneura<br />

nigricauda, Aphis<br />

nigrifrons, Graminella<br />

nigrirostris, Pistiacola<br />

nigriventris, Cassida<br />

nigromaculatus, Nephotettix<br />

nigropictus, Nephotettix<br />

Nilaparvata lugens (StAl)<br />

Hem.: Delphacidae 64<br />

Nilautama minutispina<br />

Funkhouser Hem.:<br />

Membracidae 121<br />

Nisaga simplex Walker Lep.:<br />

Eupterotidae 176<br />

Nisia atrovenosa, see Nisia<br />

nervosa<br />

Nisia nervosa (Motschulsky)<br />

Hem.: Meenoplidae 199,<br />

200,202<br />

Nisoniades bessus, see Cogia<br />

calchas<br />

noacki, Platinglisia<br />

nobilellus, Horacias<br />

Nodonota Col.:<br />

Chrysomelidae 144<br />

notaticeps, Coelosternus<br />

notaticeps, Sternocoelus<br />

Notiphila latigenis Hendel<br />

Dip.: Ephydridae 1 15,116<br />

Notophila similis de Meijere<br />

Dip.: Ephydridae 1 15,116<br />

nymphaeae, Rhopalosiphum<br />

Nymphula depunctalis, see<br />

Parapoynx stagnalis<br />

Nymphula diminutalis<br />

Snellen, see Parapoynx<br />

diminutalis<br />

Nymphulafregonalis Snellen<br />

Lep.: Pyralidae 167<br />

Nymphula responsalis, see<br />

Elophila responsalis<br />

Nymphula tenebralis, see<br />

Parapoynx tenebralis<br />

Nymphula turbata, see<br />

Parapoynx turbata<br />

Nysius Hem.:Lygaeidae 21<br />

Nysius cymoides (Spinola)<br />

Hem.: Lygaeidae 21 1<br />

Nysius inconspicuus Distant<br />

Hem.: Lygaeidae 14, 105<br />

Nysius vinitor Bergroth<br />

Hem.: Lygaeidae 21 1<br />

obliteralis, Synclita<br />

obsoleta, Helicoverpa


286<br />

Biological Control of Weeds: Southeast Asian Prospects<br />

Ochetina bruchi Hustache<br />

Col.: Curculionidae 200<br />

ochreosa, Sibinia<br />

Odontomachus simillimus Fr.<br />

Smith Hym.: Formicidae<br />

43<br />

Oecophylla smaragdina<br />

(Fabricius) Hym.:<br />

Formicidae 43<br />

oenotrus, Erinnyis<br />

Olcella pleuralis Becker<br />

Dip.: Chloropidae 14<br />

oleracae, Ceutorhynchus<br />

Omoplata rnarginata, see<br />

Echoma marginata<br />

Onebala tegulella<br />

(Walshingham) Lep.:<br />

Gelechiidae 128<br />

. Onychylis cretatus, see<br />

Pistiacola cretatus<br />

Onychylis sp. nr nigrirostris,<br />

see Pistiacola sp. nr<br />

nigrirostris<br />

oo, Plusia<br />

oratorius, Leptocorisa<br />

orichalcea, Diachrysia<br />

orientalis, Orosius<br />

ornatus, Myzus<br />

Orosius albicinctus, see<br />

Orosius orientalis<br />

Orosius orientalis<br />

(Matsumura) Hem.:<br />

Cicadellidae 21 1<br />

Orseolia Dip.: Cecidomyiidae<br />

87<br />

Orseolia andropogonis Felt<br />

Dip.: Cecidomyiidae 177<br />

Orseolia cynohntis Kieffer<br />

and Massalongo Dip.:<br />

Cecidomyiidae 177<br />

Orseoliafluvialis Dip.:<br />

Cecidomyiidae 177<br />

Orseoliafluviatilis (Felt)<br />

Dip.: Cecidomyiidae 88,<br />

90<br />

Orseolia graminis (Kreffer<br />

and Docters Van Leeuwen-<br />

Reijnvaan) Dip.:<br />

Cecidomyiidae 177<br />

Orseolia oryzae (Wood-<br />

Mason) Dipt.:<br />

Cecidomyiidae 65,90,<br />

175,177<br />

oryzae, Orseolia<br />

oryzae, Pachydiplosis<br />

oryzivora, Thaia<br />

oryzophilus, Lissorhoptrus<br />

Ostriniafurnacalis (GuenCe)<br />

Lep.: Pyralidae 90<br />

ovata, Brachymeria<br />

Oxya minuta Carl Ort.:<br />

Acrididae 78<br />

Oxysychus Hym.:<br />

Pteromalidae 21<br />

Pachybrachys Col.:<br />

Chrysomelidae 144<br />

Pachydiplosis, see Orseolia<br />

SP-<br />

Pachydiplosis oryzae, see<br />

Orseolia oryzae<br />

pacificus, Brachyplatys<br />

pacificus, Planococcus<br />

palegon, Thecla<br />

palegon, Thereus<br />

palliata, Phytomyza<br />

palliatus, Haplopeodes<br />

pallida, Nesoclutha<br />

pallidula, Metaxyonycha<br />

pallidulus, Taylorilygus<br />

panici, Contarinia<br />

panici, Lasioptera<br />

panici, Stenodiplosis<br />

panicola, Sogatella<br />

paniculi, Lasioptera<br />

Pantomorus cervinus, see<br />

Asynonychus godrnani<br />

Parallelodiplosis Dip.:<br />

Cecidomyiidae 177<br />

Parallelodiplosis javanica<br />

Felt Dip.: Cecidomyiidae<br />

177<br />

Parallelodiplosis paspali<br />

Dip.: Cecidomyiidae 18 1<br />

Parapoynx diminutalis<br />

Snellen Lep.: Pyralidae<br />

20 1<br />

Parapoynx stagnalis (Zeller)<br />

Lep.: Pyralidae 176, 182<br />

Parapoynx tenebralis<br />

(Lower) Lep.: Pyralidae<br />

199,20 1<br />

Parapoynx turbata Butler<br />

Lep.: Pyralidae 199,201<br />

Pareuchaetes Lep.: Arctiidae<br />

38,40<br />

Pareuchaetes arravaca<br />

(Jordan) Lep.: Arctiidae 40<br />

Pareuchaetes aurata<br />

aurantior Rothschild Lep.:<br />

Arctiidae 40<br />

Pareuchaetes aurata aurata<br />

(Butler) Lep.: Arctiidae 40,<br />

42,47,50<br />

Pareuchaetes insulata<br />

(Walker) Lep.: Arctiidae<br />

40<br />

Pareuchaetes misantlensis<br />

Rego Barros Lep.:<br />

Arctiidae 40<br />

Pareuchaetes pseuhinsulata<br />

Rego Barros Lep.:<br />

Arctiidae 14,35,38,39,<br />

42-47,50,52<br />

Parnara bada (Moore) Lep.:<br />

Hesperiidae 194<br />

Parthenothrips Thy.:<br />

Thripidae 134<br />

parvicornis, Agromyza<br />

parvula, Mescinia<br />

parvus, Phenacoccus<br />

pascua, Episcada<br />

paspali, Parallelodiplosis<br />

patnalis, Cnaphalocrocis<br />

patnalis, Marasmia<br />

Paulinia acuminata De Geer<br />

Ort.: Acrididae 200<br />

paumalui, Haplothrips<br />

pectinicornis, Epipsammia<br />

pectinicornis, Spohptera<br />

pedestris, Bactrocera<br />

Pegomya dolosa Stein Dip.:<br />

Anthomyiidae 21 3,217<br />

pellucida, Corythuca<br />

pennatula, Psalis<br />

penniseti, Cecidomyia<br />

penniseti, Geromyia<br />

penniseti, ltonida<br />

penniseti, Sesamia<br />

Pentispa explanata (Chapuis)<br />

Col.: Chrysomelidae 39,<br />

5 1<br />

Perasphondylia reticulata<br />

Mohn Dip.: Cecidomyiidae<br />

39,51


perditor, Thyanta<br />

Peregrinus maidis (Ashmead)<br />

Hem.: Delphacidae 89,225<br />

perlata, Ptychamalia<br />

Perrhybris phaloe (Godart)<br />

Lep.: Pieridae 3 1<br />

perscitus, Centrinaspis<br />

perscitus, Linogeraeus<br />

persicae, Myzus<br />

personata, Micetaspis<br />

pertinax, Phaedon<br />

peruana, Sibinia<br />

Petrophila drumalis (Dyar)<br />

Lep.: Pyralidae 201<br />

Phaedon consimilis, see<br />

Phaedon pertinax<br />

Phaedon pertinax StAl Col.:<br />

Chrysomelidae 29,30<br />

phaloe, Perrhybris<br />

Phalonidia multistrigata<br />

Walshingham Lep.:<br />

Tortricidae 129<br />

philippinensis,<br />

Pseudonapomyza<br />

Pholetesor sp.<br />

(circumscriptus group)<br />

Hym.: Braconidae 2 1 6<br />

Phorocera claripennis Pales<br />

Dip.: Tachinidae 187<br />

Physimerus Col.:<br />

Chrysomelidae 13 1<br />

Physimerus pygmaeus Jacoby<br />

Col.: Chrysomelidae 30,<br />

127,131<br />

Phytomyza atricornis Meigen<br />

Dip.: Agromyzidae 3 1<br />

Phytomyza palliata, see<br />

Haplopeodes palliatus<br />

picciola, Dioxyna<br />

pickeli, Caryedes<br />

pickeli, Gibbobruchus<br />

pieridis, Vesiculaphis<br />

Piesma cinereum Say Hem.:<br />

Piesmatidae 22<br />

Piezodorus guildinii<br />

(Westwood) Hem.:<br />

Pentatomidae 144<br />

pigrae, Coelocephalapion<br />

pigricola, Acanthoscelides<br />

pilicornis, Schizocerella<br />

6 Index of scientific names of insects 287<br />

Pinnaspis strachani (Cooley)<br />

Hem.: Diaspididae 16 1<br />

Pionea upalusalis (Walker)<br />

Lep.: Pyralidae 15<br />

Pistiacola cretatus<br />

(Champion) Col.:<br />

Curculionidae 200,205<br />

Pistiacola fasciatus Wibmer<br />

and O'Brien Col.:<br />

Curculionidae 200<br />

Pistiacola sp. nr nigrirostris<br />

Col.: Curculionidae 200<br />

Planococcus citri (Risso)<br />

Hem.: Pseudococcidae 200<br />

Platinglisia noacki Cockerel1<br />

Hem.: Coccidae 101<br />

Platynota rostrana (Walker)<br />

Lep.: Tortricidae 162<br />

platyptera, Calycomyza<br />

pleuralis, Olcella<br />

Plusia oo , see Pseudoplusia<br />

includens 14<br />

Plutella xylostella (Curtis)<br />

Lep.: Yponomeutidae 23<br />

Pochazia antica (Gray)<br />

Hem.: Ricaniidae 121<br />

Podogaster Hym.:<br />

Ichneumonidae 206<br />

Poekilocerus hieroglyphicus<br />

(Klug) Ort.: Acrididae 99<br />

Polychrosis ?carduana, see<br />

hbesia ?carduana<br />

polycoccus, Gibbobruchus<br />

polyphyta, Melangromyza<br />

polyxena, Eryphanis<br />

portulacae, Asphondylia<br />

portulacae, Baris<br />

portulacae, Ceutorhynchus<br />

portulacae, Neolasioptera<br />

portulaecae, Lasioptera<br />

Procecidochares Dip.:<br />

Tephritidae 39<br />

Procecidochares connexa<br />

Macquart Dip.: Tephritidae<br />

40,44,51<br />

procula, Eueides<br />

Prodenia eridania, see<br />

Spodoptera eridania<br />

prolixa, Teleonemia<br />

Promecops Col.:<br />

Curculionidae 29,30, 144<br />

Promecops campanulicollis<br />

Voss Col.: Curculionidae<br />

162<br />

Prosapia bicincta fraterna<br />

(Uhler) Hem.: Cercopidae<br />

89<br />

proserpina, Tarophagus<br />

prosternalis, Diplacaspis<br />

Protonectarina sylveiriae<br />

(Saussure) Hym.: Vespidae<br />

141<br />

Proxenus hennia Swinhoe<br />

Lep.: Noctuidae 202<br />

proxirna, Agromyza<br />

Psalis pennatula (Fabricius)<br />

Lep.: Lymantriidae 225<br />

Pseudaletia unipuncta, see<br />

Mythimna unipuncta<br />

Pseudoderelomus<br />

baridiiformis Champion<br />

Col.: Curculionidae 127,<br />

131<br />

pseudoinsulata, Pareuchaetes<br />

pseudoinsulata, Pareuchaetes<br />

Pseudonapomyza<br />

philippinensis Spencer<br />

Dip.: Agromyzidae 225<br />

Pseudonapomyza spicata<br />

Malloch Dip.:<br />

Agromyzidae 90<br />

Pseudoplusia includens<br />

(Walker) Lep.: Noctuidae<br />

1 "<br />

14<br />

Psigida walkeri (Grote) Lep.:<br />

Cercophanidae 137, 139,<br />

141,144<br />

Psyllaephagus yaseeni Noyes<br />

Hym.: Encyrtidae 141, 142<br />

Psylopigida walkeri, see<br />

Psigida walkeri<br />

Pteronemobius Ort.:<br />

Gryllidae 224<br />

Ptychamalia perlata<br />

(Warren) Lep.:<br />

Geometridae 162<br />

pulchellus, Neohydronomus<br />

punctifrons, Gesonula<br />

puniceus, Acanthoscelides<br />

pusanus, Sogatodes<br />

pusanus, Tagosodes


288<br />

Biological Control of Weeds: Southeast Asian Prospects<br />

Pycnoderes incurvus<br />

(Distant) Hem.: Miridae<br />

128<br />

pygmaeus, Physimerus<br />

quadridentatus,<br />

Acanthoscelides<br />

quadristillata, Echoma<br />

querci, Anoecia<br />

querci, Stegophylla<br />

quinqueguttata, Heliodines<br />

Rastrococcus Hem.:<br />

Pseudococcidae 121<br />

Recilia dorsalis<br />

(Motschulsky) Hem.:<br />

Cicadellidae 89<br />

, recurvalis, Hymenia<br />

recurvalis, Spodoptera<br />

recurvalis, Spoladea<br />

Recurvaria Lep.: Gelechiidae<br />

128<br />

responsalis, Elophila<br />

responsalis, Nymphula<br />

reticulata, Peraphondylia<br />

Rhodobaenus cariniventris<br />

Champ. Col.:<br />

Curculionidae 30,39,47,<br />

51,52<br />

Rhodobaenus<br />

tredecimpunctatus (Illiger)<br />

Col.: Curculionidae 30<br />

Rhopalosiphum nymphaeae<br />

(Linnaeus) Hem.:<br />

Aphididae 77,200,201<br />

Riptortus linearis (Linnaeus)<br />

Hem.: Coreidae 133<br />

ritsemae, Hypolixus<br />

robustae, Liriomyza<br />

rostrana, Platynota<br />

rugosum, Diacamma<br />

russelli, Brachymeria<br />

s-littera, Systena<br />

saccharina, Eldana<br />

Sagra femorata (Drury) Col.:<br />

Chrysomelidae 152<br />

Samea multiplicalis (Guente)<br />

Lep.: Pyralidae 197, 199,<br />

201-203,205<br />

Sameodes Lep.: Pyralidae 76<br />

Sameodes albiguttalis<br />

(Warren) Lep.: Pyralidae<br />

69,73,75-82<br />

Scamurius Hem.: Coreidae<br />

137,139,140,142,143,<br />

145<br />

Sceloenopla Col.:<br />

Chrysomelidae 128, 132<br />

Schizaphis graminum<br />

(Rondani) Hem.:<br />

Aphididae 89<br />

Schizocerella pilicornis<br />

(Holmgren) Hym.:<br />

Tenthredinidae 21 2,213,<br />

217,218<br />

Scotinophara latiuscula<br />

(Breddin) Hem.:<br />

Pentatomidae 57,64, 1 11<br />

scrupulosa, Teleonemia<br />

segnis, Chalcodermus<br />

Selca brunella (Hampson)<br />

Lep.: Noctuidae 120- 123<br />

semicyaneus, Lexyphanes<br />

seminicola, Sibinia<br />

seminis, Geromyia<br />

seminis, Itonida<br />

septentrionalis. Platysimus<br />

serrifer, Homoeocerus<br />

serripes, Chalcodermus<br />

Sesamia Lep.: Noctuidae 225<br />

Sesamia botanephaga Tams<br />

and Bowden Lep.:<br />

Noctuidae 65<br />

Sesamia calamistis Hampson<br />

Lep.: Noctuidae 65<br />

Sesamia cretica Lederer Lep.:<br />

Noctuidae 176<br />

Sesamia penniseti Tams and<br />

Bowden Lep.: Noctuidae<br />

65<br />

setariae, Hysteroneura<br />

sexnebulosa, Leptocysta<br />

seychellarum, Icerya<br />

Sibinia Col.: Curculionidae<br />

144,153<br />

Sibinia aspersa Champion<br />

Col.: Curculionidae 144<br />

Sibinia fatigiata Clark Col.:<br />

Curculionidae 15 1, 155<br />

Sibinia ochreosa Casey Col.:<br />

Curculionidae 15 1, 1 55<br />

Sibinia peruana Pierce Col.:<br />

Curculionidae 15 1, 155<br />

Sibinia seminicola Clark<br />

Col.: Curculionidae 151,<br />

155<br />

Sibinia subulirostris<br />

Hustache Col.:<br />

Curculionidae 144<br />

signoreti, Horciacinus<br />

similis, Chnootriba<br />

similis, Epilachna<br />

similis, Notiphila<br />

similis, Tegosa<br />

simillimus, Odontomachus<br />

simplex, Nisaga<br />

sinuata, Entylia<br />

Sipylus Hem.: Membracidae<br />

121<br />

Sipylus dilatatum (Walker)<br />

Hem.: Membracidae 1 2 1<br />

Sitobion avenue (Fabricius)<br />

Hem.: Aphididae 89<br />

Sitobion leelamaniae (David)<br />

Hem.: Aphididae 94<br />

Sitobion miscanthi<br />

(Takahashi) Hem.:<br />

Aphididae 89<br />

smaragdina, Oecophylla<br />

soccata, Atherigona<br />

socia, Corythuca<br />

Sogatellafurcifera (Horviith)<br />

Hem.: Delphacidae 64, 89<br />

Sogatella kolophon<br />

(Kirkaldy) Hem.:<br />

Delphacidae 176<br />

Sogatella longifurcifera, see<br />

Sogatella vibix<br />

Sogatella panicicola, see<br />

Sogatella vibix<br />

Sogatella vibix (Haupt) Hem.:<br />

Delphacidae 64<br />

Sogatodes pusanus, see<br />

Tagosodes pusanus<br />

solani, Aulacorthum<br />

Solenopsis geminata<br />

(Fabricius) Hym.:<br />

Forrnicidae 1 8 1<br />

solidaginis, Macrosiphum<br />

solidaginis, Uroleucon<br />

solomonensis, Leptocorisa<br />

sorghicola, Contarinia


sororcula, Dioxyna<br />

Sphaeniscus atilus (Walker)<br />

Dip.: Tephritidae 134<br />

Sphenarches anisodactylus<br />

(Walker) Lep.:<br />

Pterophoridae 188, 189<br />

spicata, Pseudonapomyza<br />

Spilosoma virginica<br />

(Fabricius) Lep.: Arctiidae<br />

200,201<br />

spinulosa, Heteropsylla<br />

spiraecola, Aphis<br />

splendida, Melanagromyza<br />

Spoabptera eridania (Stoll)<br />

Lep.: Noctuidae 22, 101,<br />

212<br />

Spoabptera exigua (Hiibner)<br />

Lep.: Noctuidae 22,212<br />

Spodopterafrugiperda (J.E.<br />

Smith) Lep.: Noctuidae 14,<br />

90,225<br />

Spodoptera Iitura (Fabricius)<br />

Lep.: Noctuidae 22,78,<br />

162,167<br />

Spoabptera mauritia<br />

(Boisduval) Lep.:<br />

Noctuidae 78,202<br />

Spoabptera pectinicornis<br />

(Hampson) Lep.:<br />

Noctuidae 197,200,<br />

202-204,206<br />

Spoabptera sunia, see<br />

Neogalea sunia<br />

Spoladea recurvalis<br />

(Fabricius) Lep.:<br />

Pyralidae 23<br />

spretissimum,<br />

Coelocephalapion<br />

squamosus,<br />

Argentinorhynchus<br />

stagnalis, Parapoynx<br />

Staphylus mazans (Reakirt)<br />

Lep.: Hesperiidae 162<br />

Stenchaetothrips biformis<br />

Bagnall Thy.: Thripidae 64<br />

Stegophylla querci (Fitch)<br />

Hem.: Aphididae 89<br />

Stenodiplosis Dip.:<br />

Cecidomyiidae 90<br />

Stenodiplosis panici, see<br />

Contarinia panici<br />

6 Index of scientific names of insects 289<br />

Sternocoelus Col.:<br />

Curculionidae 101<br />

Sternocoelus notaticeps<br />

(Marshall) Col.:<br />

Curculionidae 101<br />

Stiretrus erythrocephalus<br />

Lepeletier and Serville<br />

Hem.: Pentatomidae 29,30<br />

Stomatomyia Dip.:<br />

Tachinidae 1 8 1<br />

strachani, Pinnaspis<br />

striatellus, Laodelphax<br />

strigata, Liriomyza<br />

subornata, Argyractis<br />

subulirostris. Sibinia<br />

sunia, Neogalea<br />

sunia, Spodoptera<br />

Sycanus Hem.: Reduviidae 43<br />

sylveiriae, Protonectarina<br />

Synclita obliteralis (Walker)<br />

Lep.: Pyralidae 201<br />

Syphrea bibiana Bechynk<br />

Jacoby Col.:<br />

Chrysomelidae 15 1<br />

Systena s-littera (Linnaeus)<br />

Col.: Chrysomelidae 144<br />

tabaci, Bemisia<br />

tabaci, Thrips<br />

Tagosodes pusanus (Distant)<br />

Hem.: Delphacidae 64<br />

Tamarixia Eeucaenae Boucek<br />

Hym.: Eulophidae 142<br />

Taractrocera ina Waterhouse<br />

Lep.: Hesperiidae 182<br />

Tarophagus proserpina<br />

(Kirkaldy) Hem.:<br />

Delphacidae 57, 105, 167<br />

taurus, Leptocentrus<br />

Taylorilygus pallidulus<br />

(Blanchard) Hem.: Miridae<br />

1 43<br />

Tegosa claudina<br />

(Eschscholtz) Lep.:<br />

Nymphalidae 129,132<br />

Tegosa similis, see Tegosa<br />

claudina<br />

tegulella, Onebala<br />

Teleonemia Hem.: Tingidae<br />

125,131,132<br />

Teleonemia harleyi<br />

Froeschner Hem.: Tingidae<br />

131<br />

Teleonemia prolixa St31<br />

Hem.: Tingidae 131<br />

Teleonemia scrupulosa Stil<br />

Hem.: Tingidae 132<br />

Teleonemia sp. or spp. nr<br />

prolixa Hem.: Tingidae<br />

127,131<br />

Temelucha ferruginae<br />

(Davis) Hym.:<br />

Ichneumonidae 206<br />

Temnodachrys aphodoides<br />

Col.: Chrysomelidae 144<br />

tenebralis, Nymphula<br />

tenebralis, Parapoynx<br />

tenella, Eurema<br />

Tetraneura basui Hille Ris<br />

Lambers Hem.: Aphididae<br />

89<br />

Tetraneura hirsuta, see<br />

Tetraneura<br />

nigriabdominalis<br />

Tetraneura nigriabdominalis<br />

(Sasaki) Hem.: Aphididae<br />

89<br />

Tetrastichus Hym.:<br />

Eulophidae 1 15, 132<br />

Tetrigella Hem.: Cicadellidae<br />

121<br />

Tettigoniella, see Tettigella<br />

Thagona tibialis (Walker)<br />

Lep.: Lymantriidae 101<br />

Thaia oryzivora Ghauri<br />

Hem.: Cicadellidae 176<br />

theae, Tropicomyza<br />

Thecla azia, see Tmolus azia<br />

Thecla palegon, see Thereus<br />

palegon<br />

Thereus palegon (Cramer)<br />

Lep.: Lycaemidae 129<br />

thetis, Eucerocoris<br />

Thrips hawaiiensis Morgan<br />

Thy.: Thripidae 134<br />

Thrips tabaci Lindeman Thy.:<br />

Thripidae 14, 134<br />

Thrypticus Dip.:<br />

Dolichopodidae 72<br />

Thyanta perditor (Fabricius)<br />

Hem.: Pentatomidae 30


290 Biological Control of Weeds: Southeast Asian Prospects<br />

Thysanoplusia orichalcea Uroleucon Hem.: Aphididae walkeri, Psigida<br />

(~abicius) Lep.:<br />

Noctuidae 3 1<br />

tibialis, Thagona<br />

Tmolus azia (Hewitson) Lep.:<br />

Lycaenidae 145,162<br />

Tomaspis entreriana Berg<br />

Hem.: Cercopidae 143<br />

Toxoptera graminum, see<br />

Schizaphis graminum<br />

trachypterus, Chortogonus<br />

tredecimpunctatus,<br />

Rhodobaenus<br />

triangula, Cicadulina<br />

triangulifer, Hyalomyodes<br />

Tricentrus Hem.:<br />

Membracidae 1 2 1<br />

Trichogramma Hym.:<br />

30<br />

Uroleucon ambrosiae<br />

(Thomas) Hem.:<br />

Aphididae 224<br />

Uroleucon cornpositae<br />

(Theobald) Hem.:<br />

Aphididae 188<br />

Uroleucon solidaginis<br />

(Fabricius) Hem.:<br />

Aphididae 13<br />

ustulata, Ceresa<br />

Valtissius Hem.: Lygaeidae<br />

200<br />

vanillae, Agraulis<br />

variegatus, - Zonocerus<br />

venegasiae, Liriomyza<br />

Xanthaciura insecta (Loew)<br />

Dip.: Tephritidae 14,3 1,<br />

128<br />

xanthaspis, Exorista<br />

Xyloplothrips Thy.:<br />

Phlaeothripidae 134<br />

xylostella, Plutella<br />

xyonysius Hem.: Lygaeidae<br />

132<br />

Xyonysius basalis (Dallas)<br />

Hem.: Lygaeidae 128<br />

Xyonysius inaequalis, see<br />

Xyonysius basalis<br />

Xyonysius sp. nr ementitus,<br />

see Xyonysius basalis<br />

yaseeni, Psyllaephagus<br />

Trichogrammatidae 1 15<br />

Trichotaphe, see Dichomeris<br />

trifolii, Liriomyza<br />

tripsaci, Dalbu lus<br />

Tropicomyia theae (Cotes)<br />

Dip.: Agromyzidae 188<br />

trunculatus, Hypolixus<br />

turbata, Nymphula<br />

turbata, Parapoynx<br />

turrita, Acrida<br />

undalis, Hellula<br />

unipunctata, Mythimna<br />

unipunctata, Pseudaletia<br />

unipunctatus, Germalus<br />

upalusalis, Pionea<br />

urichi, Liothrips<br />

versicolor, Autoba<br />

versicolor, Eublemma<br />

versurella, Coleophora<br />

Vesiculaphis pieridis Basu<br />

Hem.: Aphididae 13<br />

vibix, Sogatella<br />

vinitor, Nysius<br />

virescens, Heliothis<br />

virescens, Nephotettix<br />

virgata, Ferrisia<br />

virginica, Spilosoma<br />

viridiaeneus, Criptocephalus<br />

viridigrisea, Austroasca<br />

viridipennis, Chalcophana<br />

vitripennis, Hyalopeplus<br />

vulgaris, Dialeurodes<br />

zacconius, Chilo<br />

Zatropis Hym.: Pteromalidae<br />

130<br />

zea, Helicoverpa<br />

zebratus, Acanthoscelides<br />

Zizeeria knysna (Trimen)<br />

Lep.: Lycaenidae 22<br />

Zizeeria krupta (Trimen)<br />

Lep.: Lycaenidae 22<br />

Zonocerus variegatus<br />

(Linnaeus) Ort.: Acrididae<br />

13,37<br />

Zulia entreriana, see<br />

Tomaspis entreriana<br />

Zygina Hem.: Cicadellidae<br />

202


General index<br />

(Bold type indicates the pages alternifolius, Mariscus<br />

for the main weeds of altissima, Ageratina<br />

Chapter 4) Amaranthaceae 3,20,21,23,<br />

abaca (Musa textilis) 1 10<br />

Acacia mearnsii 1 41,<br />

143-1 45<br />

Acacia riparia 132<br />

Acalitus 125,127,129<br />

Acalitus adoratus 41,45-48<br />

Acalypha 100<br />

Acremonium zonatum 75,76,<br />

79,82<br />

adenophora, Ageratum<br />

adoratus, Acalitus<br />

Aecidium tithymali 105<br />

aegyptium, Dactyloctenium<br />

Aeschynomene sensitiva 161,<br />

162<br />

afine, Melastoma<br />

agerati, Cercospora<br />

Ageratina altissima 52<br />

Ageratum adenophora 52<br />

Ageratum conyzoides 1,3,<br />

10-16,31,33,50,52,91<br />

Ageratum riparia 52<br />

Ageratum vein yellowing 16<br />

agor 1 10<br />

Agropyron repens 65<br />

aguifigay 222<br />

alang-alang (Imperata<br />

cylindrica) 37<br />

alba, Basella<br />

albida, Mimosa<br />

albilineans, Xanthornonas<br />

Albugo bliti 23<br />

Albugo portulaceae 21 4<br />

Albugo portulacearum 21 4<br />

album, Chenopodium<br />

albus, Amaranthus<br />

alikbangon 56<br />

allelopathy 37, 46, 174,230<br />

Alternanthera philoxeroides 5<br />

Alternaria 98, 100, 1 16<br />

Alternaria compacta 23<br />

Alternaria eichhorniae 77,78<br />

Alternaria passiforae 189<br />

Alternaria tenuis 189<br />

24,216<br />

amaranthi, Aposphaeria<br />

amaranthi, Cacodera<br />

amaranthi, Cercospora<br />

Amaranthus 20-23<br />

Amaranthus albus 24<br />

Amaranthus cruentus 2 1<br />

Amaranthus dubius 21<br />

Amaranthus<br />

hypochondriachus 2 1<br />

Amaranthus oleosa 22<br />

Amaranthus spinosus l,3,<br />

1&24,30,214<br />

Amaranthus tricolor 22,23<br />

Amaranthus viridis 2 1-23<br />

Amblyseius glorius 72<br />

Amblyseius pederosus 72<br />

americanum, Pennisetum<br />

Amphobotrys ricini 100,105<br />

Anacamseros 2 1 8<br />

Andropogon annulatus 89<br />

Andropogon vulgare 94<br />

Andropogoneae 224<br />

anemone 2 1 4<br />

anemone brown ring 21 4<br />

anemone mosaic 16<br />

Anhellia niger 41<br />

anil, Indigofera<br />

annulatus, Andropogon<br />

annuus, Helianthus<br />

anthelminthicum,<br />

Chenopodium<br />

Anthemidae 33<br />

anthocyanin 70<br />

antidotale, Panicum<br />

ants 43,45-47,50,52<br />

anuus, Helianthus<br />

Aphelenchoides fragariae 15,<br />

170<br />

apoda, Phakospora<br />

apoe apoe 198<br />

aponapon 198<br />

Aposphaeria arnaranthi 23<br />

aquatica, Ipomoea<br />

ara tanah 104<br />

Araceae 3, 198<br />

Arctoteae 33<br />

arenaria thamesis,<br />

Meloidogyne<br />

arenaria, Meloidogyne<br />

Arundo donax 8<br />

arvensis, Digera<br />

arvensis, Mentha<br />

Ascochyta 225<br />

Ascochyta portulaceae 2 1 4<br />

asper, Sonchus<br />

asperatg, Mimosa<br />

Aspidosperma ramiflorum<br />

100<br />

Aster31,33,214<br />

aster yellows 32,214<br />

Asteraceae 3, 12,28-31,33,<br />

36,38,50,52,<br />

126,128-130,132<br />

Astereae 33<br />

asthma plant (Euphorbia<br />

hirta) 104<br />

atramentosa,<br />

Myriogenospora<br />

australis, Emex<br />

Austroeupatorium<br />

inulaefolium 14,30,52<br />

Avena, 227<br />

Azolla 7 1<br />

Azolla caroliniana 205<br />

Azolla pinnata 1 15,206<br />

azurea, Eichhornia<br />

ba bawagan 1 10<br />

baccata, Wulfla<br />

baccifera, Melocanna<br />

bamboo 8<br />

Bambusa 8,227<br />

banana 57,63,110,160,180,<br />

21 4<br />

banana poka (Pmsifora<br />

tripartita) 187<br />

bandotan 12<br />

banla saet 138<br />

barley (Hordeum) 8,89,92,<br />

93


292 Biological Control of Weeds: Southeast Asian Prospects<br />

barley stripe mosaic 66<br />

barnyard grass (Echinochloa<br />

crus-galli) 62<br />

Basella alba 22<br />

bayam duri 20<br />

bayokibok 62<br />

bean 88,99<br />

beda bin 70<br />

beet curly top 2 14<br />

Begonia 1 0 1<br />

benghalensis, Commelina<br />

bbo chi 198<br />

Beta vulgaris var. cicla 2 1 1,<br />

212<br />

betae f.sp. portulaceae,<br />

Polymyxa<br />

bicolor, Cochliobolus<br />

. bicolor, Helminthosporium<br />

bicolor, Sorghum<br />

Bidens 29,3 1<br />

Bidens mosaic 32<br />

Bidens mottle 16<br />

Bidens pilosa l,3,26-33,49,<br />

52,91,129-131,181<br />

Bidens witches broom 32<br />

bidenticola. Uromyces<br />

bidentis, Cercospora<br />

biga bigaan 166<br />

Bignoniaceae 5 1<br />

Bipolaris indica 24,2 14<br />

Bipolaris nodulosa, see<br />

Helminthosporium<br />

nodulosum<br />

Bipolaris papendor-i 194<br />

Bipolaris perotidis 225<br />

Bipolaris portulaceae,<br />

see Helminthosporium<br />

portulaceae<br />

Bipolaris setariae 86,91<br />

birds 43,46<br />

biserrata, Nephrolepis<br />

bizat 36<br />

black pepper (Piper nigrum)<br />

100,122,214<br />

black wattle (Acacia<br />

mearnsii) 141,143-1 45<br />

blady grass (Imperata<br />

cylindrica) 193<br />

bliti, Albugo<br />

blue panic (Panicum<br />

antidotab) 175<br />

bb xit 12<br />

borhg 138<br />

botrys, Chenopodium<br />

Brachiaria subquadripara 89<br />

brachiata, Cercospora<br />

brAnjiingAn 222<br />

brassicae, Tylenchorhynchus<br />

braziliensis, Euphorbia<br />

Brevipalpus obovatus 15<br />

Brillantaisia laminum 188<br />

broad sword fern<br />

(Nephrolepis biserrata)<br />

170<br />

buah tikus 186<br />

Buddleia variabilis 101<br />

buffalo grass 180<br />

bulak manok 12<br />

bulbosum, Panicum<br />

bulbous panic (Panicum<br />

bulbosum) 175<br />

bullatum, Tolyposporium<br />

Cacodera amaranthi 23<br />

cactus 214<br />

caerulia, Passiflora<br />

Caesalpiniaceae 139<br />

cajan, Cajanus<br />

Cajanus cajan 16 1, 162,188<br />

Cajanus indicus, see Cajanus<br />

cajan<br />

Calacarus 40,41<br />

Caladium 78<br />

Calendula 3 1<br />

Calenduleae 33<br />

Calliandra selloi 144, 145<br />

camara, Lantana<br />

campestiis, Cuscuta<br />

cancriformis, Triops<br />

canescens, Cercospora<br />

capansa, Euphorbia<br />

capillare, Panicum<br />

capsicum 91,2 14<br />

caracasana, Fleischmannia<br />

caracasana, Wedelia<br />

Cardueae 33<br />

Carlineae 33<br />

caroliniana, Azolla<br />

carpesioides, Venegasia<br />

Carthamnus 33<br />

Caryota 100<br />

cashew 37<br />

cassava (Manihot esculenta)<br />

28,57,63,99,100,181<br />

Cassia 100<br />

cassiicola, Corynespora<br />

Cassytha filiformis 32<br />

cebbensis, Kordyana<br />

cenchroides, Pennisetum<br />

Cercospora 41,167,225<br />

Cercospora agerati 16<br />

Cercospora amaranthi 24<br />

Cercospora bidentis 32<br />

Cercospora brachiata 24<br />

Cercospora canescens 145<br />

Cercospora eupatorii 41<br />

Cercospora eupatorii-<br />

ohratii 41<br />

Cercospora eupatoriicola 41<br />

Cercospora fusimaculans 225<br />

Cercospora marsileae 1 16<br />

Cercospora megalopotamica<br />

32<br />

Cercospora piaropi 77,82<br />

Cercospora portulaceae 2 1 4<br />

Cercospora rodmanii 69,73,<br />

75,77,82,83<br />

Cercospora rottboelliae 226<br />

Cercosporella dominicana<br />

214<br />

Cercosporidium helleri 230,<br />

23 1<br />

cereal chlorotic mottle 93<br />

cespitosa, Euphorbia<br />

chaetochloae, Puccinia<br />

chak thorn 198<br />

Chasmopodium 223<br />

Chenopodiaceae 2 16<br />

Chenopodium 2 1,22<br />

Chenopodium album 22,23<br />

Chenopodium<br />

anthelminthicum 22<br />

Chenopodium botrys 22<br />

cheroma 126<br />

chhlong 174<br />

chi yop luang 148<br />

chili 2 14<br />

chili vein banding 2 14<br />

chinensis, Cuscuta<br />

Chloridoideae 86<br />

Chloris gayana 9 1<br />

chok 198<br />

Chromolaena 37.52


Chromolaena inulaefolium 52<br />

Chromolaena iresinoides 14<br />

Chromolaena ivaefolia 14,<br />

30,48-52<br />

Chromolaena jujuensis 47,<br />

49,50<br />

Chromolaena laevigata 52<br />

Chromolaena microstemon<br />

50<br />

Chromolaena odorata l,3,<br />

13, 14,22,24,30,31,<br />

33,3443,128-132<br />

Chrysanthemum 3 1,33<br />

chrysopids 47<br />

chuntul phnom 1 14<br />

Cichorium 33<br />

Cichorium intybus 15<br />

ciliaris, Digitaria<br />

Cinchona 13 1,132<br />

Cineraria 3 1,33<br />

cinereum, Physarum<br />

Cionothrix praelonga 38,41<br />

citrus 22,28,63, 100, 104,<br />

160,180<br />

clandestinum, Pennisetum<br />

Claviceps 175<br />

clover 2 14<br />

clover big vein 21 4<br />

clover fern (Marsilea minuta)<br />

114<br />

cb c6t heo 12<br />

cb hoi 36<br />

cb l6ng viit 62<br />

cb m2n Mh 86<br />

cb 6ng 174<br />

cb sua l6ng 104<br />

cb trinh nu m6c 138<br />

cobbler's pegs (Bidens<br />

pilosa) 28, 1 30<br />

cochinchinesis, Rottboellia<br />

Cochliobolus bicolor 226<br />

Cochliobolus cymbopogonis<br />

226<br />

Cochliobolus heterostrophus<br />

226<br />

Cochliobolus lunatus 65<br />

Cochliobolus nodulosus, see<br />

Helminthosporium<br />

nodulosum<br />

cocoa 37,127,174,18 1<br />

coconut 28,37,127,139,<br />

160,174,180,186<br />

coffee 28,30,3 1,37,63,98,<br />

100,101,160,180<br />

Coix lacryma-jobi 8<br />

Colletotrichium 16, 133,224,<br />

226<br />

Colletotrichium<br />

gloeosporioides f.sp.<br />

clidemiae 188<br />

Colletotrichium<br />

gloesporioides 133,149,<br />

189<br />

Colletotrichium graminicola,<br />

see Glornerella<br />

grminicola<br />

Colocasia 78<br />

Colocasia esculenta 79<br />

colona, Echinochloa<br />

coloratum, Panicum<br />

Commelina 56,57<br />

Commelina benghalensis 3,<br />

54-58,91,111<br />

Commelina difisa 58<br />

Commelina robusta 57<br />

Commelinaceae 3,56<br />

common heliotrope<br />

(Heliotropiurn europaeum)<br />

131<br />

common sensitive plant<br />

(Mimsa pudica) 160<br />

compacts, Alternaria<br />

compressa, Rottboellia<br />

Coniothyrium 226<br />

conjugatum, Paspalum<br />

conoclinii, Puccinia<br />

conyzoides, Ageratum<br />

coolah grass (Panicum<br />

coloratum) 175<br />

coracana, Eleusine<br />

cordata, Mikania<br />

cordata, Pontederia<br />

cordifolia, Mikania<br />

Coreopsidae 29,32,33<br />

Coreopsis 29,33<br />

corn leaf gall 93,227<br />

corn stunt 93<br />

Corticium sasakii 58,91, 1 1 1<br />

Corynespora cassiicola 1 39,<br />

1 42<br />

Cosmos 33<br />

cotton 20,63,99, 104, 160<br />

couch grass (Cynodon<br />

dactylon) 4<br />

7 General index 293<br />

coumarin 12<br />

cowpea 20,142<br />

crassipes, Eichhornia<br />

creeping panic grass<br />

(Panicum repens) 174<br />

creeping sensitive plant<br />

(Mimosa invisa) 137,138<br />

crenata, Marsilea<br />

Criconemella onoensis 1 1 1<br />

Criconemella xenoplax 2 1 4<br />

Crotolaria 10 1<br />

crotolariae, Phaeotrichoconis<br />

Croton lobatus 15,91<br />

crowsfoot grass (Eleusine<br />

indica) 86<br />

cruentus, Amaranthus<br />

crus-galli var. frumentacea,<br />

Echinochloa<br />

crus-galli, Echinochloa<br />

crusgalli, Ustilago<br />

Ctenopharyngodon idella 72,<br />

75,76<br />

cubensis, Diabole<br />

cucullata, Salvinia<br />

cucumber 24,214<br />

cucumber mosaic 24,189,<br />

214<br />

cucumeris, Thanatephorus<br />

Curvularia 133,223,226<br />

Curvularia cymbopogonis,<br />

see Cochliobolus<br />

cymbopogonis<br />

Cuscuta cmpestris 135<br />

Cuscuta chinensis 135<br />

cylindrica, Impera ta<br />

Cylindrocladium<br />

quinqueseptatum 16, 105<br />

Cymbopogon 8<br />

cymbopogonis, Cochliobolus<br />

cymbopogonis, Curvularia<br />

Cynara 33<br />

Cynara scolymus 33<br />

Cynodon227<br />

Cynodon dactylon 3,4,15,<br />

58,64,88-91,111<br />

cyparissias, Euphorbia<br />

Cyperaceae 3, 1 10<br />

Cyperus iria 9 1<br />

Cyperus rotundus 88,224


294<br />

Biological Control of Weeds: Southeast Asian Prospects<br />

Dactyloctenium 86,92,94<br />

Dactyloctenium aegyptium<br />

90,92,224<br />

Dactyloctenium radulans 92,<br />

94<br />

dactylon, Cynodon<br />

Dahlia 33,50<br />

daoen kaget kaget 160<br />

dasheen<br />

(Colocasia esculenta) 79<br />

daua daua 62<br />

Davalliaceae 170<br />

dayflower (Commelina<br />

benghalensis) 56<br />

delvii, Heterodera<br />

den gai 20<br />

Dendrocalamus 8<br />

Dendrographium<br />

lucknowense 2 14<br />

destructor, Ditylenchus<br />

devil weed (Chromolaena<br />

odorata) 36<br />

Diabole cubensis 149, 150,<br />

151, 155, 156<br />

Diaporthe 226<br />

dichotomiflorum, Panicum<br />

Dichotomophthora indica 2 14<br />

Dichotomophthora lutea,<br />

see Dichotomophthora<br />

indica<br />

Dichotomophthora<br />

portulaceae 21 4<br />

dictyoides, Drechslera<br />

difisa, Commelina<br />

dzfsusa, Marsilea<br />

Digera arvensis 2 1,22<br />

Digera mosaic 24<br />

Digitaria 90,227<br />

Digitaria ciliaris 91<br />

Digitaria sanguinalis 63,224<br />

dilatatum, Paspalum<br />

Diplodia 226<br />

dipsaci, Ditylenchus<br />

distichum, Paspalum<br />

Ditylenchus destructor 91<br />

Ditylenchus dipsaci 2 1 4<br />

djaringan ketul 28<br />

djawan 62<br />

Doassansia 167<br />

dominicana, Cercosporella<br />

donax, Arundo<br />

Drechslera dictyoides 65<br />

Drechslera gigantea 91<br />

Drechslera hawaiiensis 58<br />

Drechslera indica, see<br />

Bipolaris indica<br />

Drechslera maydis, see<br />

Cochliobolus<br />

heterostrophus<br />

Drechslera setariae, see<br />

Bipolaris setariae<br />

dubius, Amaranthus<br />

dumetorum, Schizostachyum<br />

duri semalu 138<br />

2c2ng 70<br />

echeng padi 166<br />

echinatum, Pithecoctenium<br />

Echinochloa 63,227<br />

Echinochloa colona 63-65,<br />

89,91,93<br />

Echinochloa crus-galli 3,57,<br />

60-66 89,91,111,166<br />

Echinochloa crus-galli var.<br />

fiumentacea 62<br />

Echinochloa glabrescens 93<br />

Echinochloa oryzicola 63<br />

Echinochloa pic ta 63.65<br />

Echinochloa utilis 65<br />

Echinochloa walteri 65<br />

Echinopsideae 33<br />

Echium plantagineum 13 1<br />

edulis var. flavicarpa,<br />

Passiflora<br />

edulis, Passiflora<br />

eggplant 2 15<br />

Eichhornia azurea 73, 80, 81<br />

Eichhornia crassipes 1,3,5,<br />

68-83,203,205,206<br />

eichhorniae, Alternaria<br />

eichhorniae, Flechtmannia<br />

eichhorniae, Uredo<br />

ekmaniana, Septoria<br />

ekor kucing 192<br />

elephant grass (Pennisetum<br />

purpureum) 194<br />

Eleusine 86-88,92,94,226,<br />

227<br />

Eleusine coracana 85-89,92,<br />

93<br />

Eleusine indica 1,3,5, 15,<br />

58,84-95,111.224<br />

Eleusine mosaic 89,93<br />

Eleusine tristachya 86<br />

eleusines, Phyllachora<br />

eleusinis, Melanopsichium<br />

eleusinis, Ustilago<br />

Elsinoe 100<br />

Emex australis 130<br />

Emex spinosa 130<br />

encephalitis 71<br />

Entyloma guaraniticum 32<br />

Eragrostis 92<br />

erecta, Tagetes<br />

ergot 18 1<br />

erineum 48,129<br />

erosus, Marsilea<br />

Erythrina lithosperma 30<br />

esculenta, Colocasia<br />

esculenta, Manihot<br />

etjeng padi 70, 166<br />

Euchlaena 90<br />

Eugenia 101<br />

Eupatorieae 33,52<br />

eupatorii, Cercospora<br />

eupatorii, Guignardia<br />

eupatorii-formosani,<br />

Pseudocercospora<br />

eupatorii-odoratii,<br />

Cercospora<br />

eupatoriicola, Cercospora<br />

eupatoriicola, Phomopsis<br />

eupatoriicola, Phyllosticta<br />

Eupatorium 13,5 1<br />

Eupatorium hookerianum,<br />

see Chromolaena jujuensis<br />

Eupatorium odoratum,<br />

see Chromolaena odorata<br />

Euphorbia 97,99,101<br />

Euphorbia braziliensis 101<br />

Euphorbia capansa 100<br />

Euphorbia cespitosa 101<br />

Euphorbia cyparissias 99<br />

Euphorbia geniculata, see<br />

Euphorbia heterophylla<br />

Euphorbia heterophylla 3,91,<br />

96-101,104<br />

Euphorbia hirta 3, 15,99,<br />

102-106<br />

Euphorbia hirtella 100<br />

Euphorbia mosaic 100<br />

Euphorbia ovalifolia 101<br />

Euphorbia pilulifera, see<br />

Euphorbia hirta


Euphorbia prunifolia, see<br />

Euphorbia heterophylla<br />

Euphorbia pseudovirgata 99<br />

Euphorbia pulcherrima 99,<br />

101<br />

Euphorbiaceae 3,98, 100,<br />

101,104<br />

euphorbiae, Uromyces<br />

europaeum, Heliotropium<br />

exaltata, Rottboellia<br />

exigua, Meloidogyne<br />

Exserohilum paspali 182<br />

feather Pennisetum<br />

(Pennisetum polystachion)<br />

192<br />

Ficus 77<br />

filariasis 71<br />

fili2iformis, Cassytha<br />

Fimbristylis littoralis, see<br />

Fimbristylis miliacea<br />

Fimbristylis miliacea 3,57,<br />

58,91,108-111<br />

finger millet (Eleusine<br />

coracana) 85-87<br />

Flechtmannia eichhorniae 72<br />

Fleischmannia caracasana<br />

3 1<br />

Fleischmannia microstemon<br />

14<br />

fluitans, Panicum<br />

foetida, Passiflora<br />

fontana, Montia<br />

foxtail millet (Setaria italica)<br />

8<br />

fragariae, Aphelenchoides<br />

French weed 36<br />

fujikuroi, Gibberella<br />

Fusarium 145<br />

Fusarium moniliforme 226<br />

Fusarium oxysporum f.sp.<br />

elaeidis 24, 41<br />

Fusarium oxysporum f.sp.<br />

passiflorae 188,189<br />

Fusarium roseum 65<br />

fusimaculans, Cercospora<br />

Galinsoga parvi'ora 9 1<br />

garden spurge (Euphorbia<br />

hirta) 104<br />

gatas gatas 104<br />

gayana, Chloris<br />

gelang 10<br />

gelang pasir 210<br />

gelang susu 104<br />

gbndong hcok 104<br />

geniculata, Euphorbia<br />

gewor 56<br />

giant sensitive plant (Mimosa<br />

pigra) 148<br />

Gibberellafujikuroi, see<br />

Fusarium moniliforme<br />

gigantea, Drechslera<br />

Gigantochloa 8<br />

glabrescens,. Echinochloa<br />

glauca, Setaria<br />

glaucum, Pennisetum<br />

globe artichoke (Cynara<br />

scolymus) 33<br />

Gloeocercospora 194<br />

gloeosporioides f.sp.<br />

clidemiae, Colletotrichium<br />

gloeosporioides,<br />

Colletotrichium<br />

Glomerella graminicola 226<br />

glorius, Amblyseius<br />

glumae, Pseudomonas<br />

Glycine max 21 4<br />

glycines, Heterodera<br />

goatweed (Ageratum<br />

conyzoides) 12<br />

goenda 230<br />

golasiman 2 10<br />

goosegrass (Eleusine indica)<br />

86<br />

gooseweed (Sphenoclea<br />

zeylanica) 230<br />

graminicola, Colletotrichium<br />

graminicola, Glomerella<br />

graminicola, Meloidogyne<br />

grandiflora, Portulaca<br />

grass carp<br />

(Ctenopharyngodon idella)<br />

72<br />

grass-like fimbristylis<br />

(Fimbristylis miliacea) 1 10<br />

Grevillea robusta 101<br />

grisea, Magnaporthe<br />

groundnut 20,63,91,93, 104<br />

210,214<br />

groundnut rosette 24,32,57,<br />

93,106,214<br />

7 General index 295<br />

guaraniticum, Entyloma<br />

Guignardia eupatorii 41<br />

guinea grass (Panicum<br />

maximum) 175<br />

hagonoy 36<br />

hairy spurge (Euphorbia<br />

hirta) 104<br />

hairy wandering jew<br />

(Commelina benghalensis)<br />

56<br />

hapla, Meloidogyne<br />

Haplosporella passifloridia<br />

189<br />

hastata, Monochoria<br />

hawaiiensis, Drechslera<br />

hay kai mangda 62<br />

Heleniae 33<br />

Heliantheae 33<br />

Helianthus 24,3 1,33,214<br />

Helianthus annuus 33<br />

Helicotylenchus indicus 2 14<br />

Helicotylenchus multicinctus<br />

15,57,214<br />

Heliotropium europaeum 13 1<br />

helleri, Cercosporidium<br />

Helminthosporium 65,91,98,<br />

100<br />

Helminthosporium bicolor,<br />

see Cochliobolus bicolor<br />

Helminthosporium holmii 91<br />

Helminthosporium maydis 91<br />

Helminthosporium<br />

nodulosum 92<br />

Helminthosporium portulacae<br />

214<br />

Helminthosporium rostratum<br />

194<br />

Helminthosporium turicum<br />

65<br />

Hemphyllium 189<br />

Heterocentron<br />

subtriplinenium 12 1<br />

Heterodera delvii 87,94<br />

Heterodera glycines 2 1 5<br />

Heterodera marioni 21 5<br />

heterophylla, Euphorbia<br />

heterostrophus, Cochliobolus<br />

hibiscus yellow vein mosaic<br />

16,106<br />

hin nu nive tsu bauk 20


296<br />

Biological Control of Weeds: Southeast Asian Prospects<br />

Hirschmaniella 1 1 1, 167,230<br />

Hirschmaniella oryzae 65<br />

Hirschmaniella spinicaudata<br />

9 1<br />

hirta, Euphorbia<br />

hirtella, Euphorbia<br />

holmii, Helminthosporium<br />

hookeriana, Mikania<br />

hookerianum, Eupatorium<br />

Hoplolaimus indicus 2 15<br />

hordeoides, Pennisetum<br />

Hordeum 8,227<br />

hulape 180<br />

Hydrozetes subornata 20 1<br />

Hyparrhenia rufa 3 1<br />

Hypericum perforatum<br />

angustifolium 130<br />

hypochondriachus,<br />

Amaranthus<br />

idella, Ctenopharyngodon<br />

Ilex 101<br />

Impatiens 15<br />

Imperata cylindrica 5,8,24,<br />

37,91,186,193<br />

incognita, Meloidogyne<br />

Indian rhododendron<br />

(Melastoma<br />

rnalabathricum) 120<br />

indica, Bipolaris<br />

indica, Dichotomophthora<br />

indica, Drechslera<br />

indica, Eleusine<br />

indicum, Panicum<br />

indicus, Cajan<br />

indicus, Hoplolaimus<br />

indicus, Pseudocephalobus<br />

Indigofera anil143<br />

intybus, Cichorium<br />

inulaefolium,<br />

Austroeupatorium<br />

Inuleae 33<br />

invadens, Nosema<br />

invisa inermis, Mimosa<br />

invisa, Mimosa<br />

Ipomoea aquatica 78<br />

iresinoides, Chromolaena<br />

iria, Cyperus<br />

Ischaemum rugosum 225<br />

italica, Setaria<br />

itch grass (Rottboellia<br />

cochinchinensis) 222<br />

ivaefolia, Chromolaena<br />

jacobaea, Senecio<br />

jampang canggah 180<br />

Japanese millet (Echinochloa<br />

crus-galli var.<br />

frumentacea) 62<br />

javanica, Meloidogyne<br />

jawg 198<br />

job's tears (Coix lacryma-<br />

jobi) 9<br />

jojoba 2 1 1<br />

jujuensis, Chromolaena<br />

jute 63<br />

ka kiad chrach 166<br />

ka thok rok 186<br />

kak phr6k kdam 1 10<br />

kamplauk 70<br />

kbet choun 210<br />

keladi bunting 70<br />

kelayar 166<br />

kembang gajah 148<br />

keruong padi 174<br />

kiambang besar 198<br />

kikuyu grass (Pennisetum<br />

clandestinum) 193<br />

kirinyu 36<br />

kolokong kabayo 12<br />

Kordyana celebensis 58<br />

krokot 2 10<br />

kumpai jepang 36<br />

Lablab purpureus 188<br />

lablab bean (Lablab<br />

purpureus)<br />

lacryma-jobi, Coix<br />

Lactuca 3 1,33<br />

Lactuca sativa 33<br />

Lactuceae 33<br />

laevigata, Chromolaena<br />

Lagenaria siceraria 188<br />

lamaan 62<br />

laminum, Brillantaisia<br />

lanceolata, Pontederia<br />

Lantana 129<br />

Lantana camara 13,13 1,132<br />

latex 98,99<br />

latifolia, Zizania<br />

Laurus 101<br />

lawn 4,86, 104, 161, 174,<br />

181<br />

legumes 56<br />

Lemna 71<br />

Lemna polyrhiza 1 15<br />

Lemna purpusilla 1 15<br />

lemon grass (Cymbopogon) 8<br />

Leptosphaeria 226<br />

Leptosphaeria proteispora<br />

182<br />

lesser fimbristylis<br />

(Fimbristylis miliacea) 1 10<br />

lettuce (Lactuca sativa) 30<br />

Leucaena leucocephala 141,<br />

142,144,145<br />

leucocephala, Leucaena<br />

Lewisia 218<br />

ligularis, Passifora<br />

lithosperma, Erythrina<br />

littoralis, Fimbristylis<br />

lizards 43,45,46<br />

lobata, Neurolaena<br />

lobatus, Croton<br />

lonchocarpa, Passifora<br />

love-in-a-mist (Passifora<br />

foetida) 186<br />

luc binh 70<br />

lucerne dwarf 66<br />

lucknowense,<br />

Dendrographium<br />

lunatus, Cochliobolus<br />

lutea, Dichotomophthora<br />

luya luyahan 174<br />

luzonense, Panicum<br />

Lyonia ovalifolia 13<br />

mac co 160<br />

Macrophomina phaseolina<br />

100<br />

macrospora, Sclerophthora<br />

Madieae 33<br />

Magnaporthe grisea 87, 92,<br />

226<br />

Magnolia pumila 10 1<br />

mai yah raap yak 148<br />

maiyaraap thao 138<br />

mai yarap 160<br />

mai yarap ton 148<br />

maize (Zea mays) 5,8,20,<br />

28,63-65,80,89-93,<br />

104, 110, 111, 160, 174,<br />

181,210,222,222-226,<br />

maize dwarf mosaic 66,93,<br />

227


maize hoja blanca 227<br />

maize mosaic 227<br />

maize nematode<br />

(Pratylenchus zeae) 91<br />

maize rayado fine 227<br />

maize streak 93<br />

maize stripe 227<br />

maize stripe tenuivirus 227<br />

maize white leaf 227<br />

maize yellow mottle 227<br />

makahiya 160<br />

makahiyang lalaki 138<br />

mala malu 160<br />

malabathricum, Melastoma<br />

malaria 7 1<br />

manatee (Trichechus) 72<br />

mango 20<br />

manicata, Passifora<br />

Manihot esculenta 99<br />

marioni, Heterodera<br />

Mariscus alternifolius 24<br />

Marsilea crenata, see<br />

Marsilea minuta<br />

Marsilea difisa,<br />

see Marsilea minuta<br />

Marsilea erosus, see<br />

Marsilea minuta<br />

Marsilea minuta 3,112116,<br />

167<br />

Marsilea perrieriana, see<br />

Marsilea crenata<br />

Marsilea senegalensis, see<br />

Marsilea minuta<br />

Marsileaceae 3,114<br />

marsileae, Cercospora<br />

max, Glycine<br />

maximum, Panicum<br />

maydis, Drechslera<br />

maydis, Helminthosporium<br />

mayo 104<br />

mays, Zea<br />

mearnsii, Acacia<br />

megalopotamica, Cercospora<br />

Melanopsichium eleusinis 87,<br />

92,94<br />

Melastoma 120<br />

Melastoma afJine, see<br />

Melastoma malabathricum<br />

Melastoma malabathricum 1,<br />

3,118-123<br />

Melastoma polyanthum 121<br />

melastoma (Melastoma<br />

malabathricum) 120<br />

Melastomataceae 3, 120, 121<br />

Melocanna baccifera 8<br />

Meloidogyne 15,32,91, 162,<br />

215,224<br />

Meloidogyne arenaria 15,91,<br />

215<br />

Meloidogyne arenaria<br />

thamesis 15<br />

Meloidogyne exigua 100<br />

Meloidogyne graminicola 65,<br />

91,111,167,176,231<br />

Meloidogyne hapla 32,215<br />

Meloidogyne incognita 15,<br />

23,57,91,105,189,215<br />

Meloidogyne javanica 15,57,<br />

91,100,106,215<br />

Meloidogyne oryzae 1 1 1<br />

melon 99<br />

Mentha arvensis 100<br />

Mexican fire plant<br />

(Euphorbia heterophylla)<br />

98<br />

micrantha, Mikania<br />

microsporida 47,50,52,79<br />

microstemon, Chromolaena<br />

microstemon, Fleischmannia<br />

Mikania 128-1 30,132<br />

Mikania cordata 126<br />

Mikania cordifolia 128-1 32<br />

Mikania hookeriana 13 1<br />

Mikania micrantha l,3,30,<br />

33,52,124-135<br />

Mikania scandens 126<br />

Mikania trinitaria 128, 13 1,<br />

132<br />

Mikania vitifolia 128-1 3 1<br />

mile-a-minute weed (Mikania<br />

micrantha) 126<br />

miliacea, Fimbristylis<br />

miliaceum, Panicum<br />

millet 5,20,63,94<br />

millet panic (Panicum<br />

miliaceum) 175<br />

millet, Japanese (Echinochloa<br />

crus-galli var.<br />

frumentacea) 62<br />

Mimosa<br />

Mimosa albida 144<br />

Mimosa asperata 148<br />

7 General index 297<br />

Mimosa invisa 1,3,136-145,<br />

161,162<br />

Mimosa invisa inermis 139,<br />

141<br />

Mimosa pigra I, 3,138, 140,<br />

142-1 44,146-156,161<br />

Mimosa pigra berlandieri,<br />

see Mimosa asperata<br />

Mimosa pudica l,3, 1 38,<br />

140-142,144,145,<br />

158-162<br />

Mimosa pudica hispida 160<br />

Mimosa pudica unijuga 160<br />

Mimosa quadrivalis 144<br />

Mimosa rixosa 141,144<br />

Mimosa scabrella 143,145<br />

Mimosa somnians 141<br />

Mimosa velloziana 141<br />

Mimosaceae 3,138,139,148,<br />

160<br />

mimosae-invisae, Uredo<br />

mimosae-pigrae,<br />

Phloeospora<br />

mimosine, 149<br />

minuta, Marsilea<br />

minutus, Pratylenchus<br />

Mirabilis 13<br />

mission grass (Pennisetum<br />

polystachion) 192<br />

molesta, Salvinia<br />

mollissima, Passifora<br />

m6nhnyin 1 10<br />

moniliforme, Fusarium<br />

Monochoria hastata 78<br />

Monochoria vaginalis 3,78,<br />

93,115,164-167<br />

monochoria (Monochoria<br />

vaginalis) 166<br />

Montia fontana 2 1 8<br />

Montia pe$oliata 2 1 8<br />

multicinctus, Helicotylenchus<br />

Musa 57<br />

Mutisieae 33<br />

mya by it 2 1 0<br />

Mycovellosiella perfoliata 16,<br />

4 1<br />

mye byet 21 0<br />

myet cho 56<br />

myet ihi 62<br />

myet kha 174<br />

myet ya 222


298 Biological Control of Weeds: Southeast Asian Pro<br />

myet ya nge 222<br />

Myriogenospora atramentosa<br />

182<br />

Myrothecium roridum 78<br />

nam nom raatchasee 104<br />

napier grass (Pennisetum<br />

purpureum) 194<br />

needle burr (Amaranthus<br />

spinosus) 20<br />

Nephrolepidaceae 170<br />

Nephrolepis 17 1<br />

Nephrolepis biserrata 3, 15,<br />

168-171<br />

Neptunia 155<br />

Neptunia oleracea 147, 152,<br />

155<br />

Nerium 100<br />

Neurolaena lobata 13 1<br />

niger, Anhellia<br />

nigrum, Solanum<br />

nodulosa, Bipolaris<br />

nodulosum,<br />

Helminthosporium<br />

nodulosus, Cochliobolus<br />

Nosema 50,206<br />

Nosema nr invadens 8 1<br />

Nosema pilicornis 21 8<br />

notatum, Paspalum<br />

novemnerve, Panicum<br />

novocaledonicus,<br />

Tetranychus<br />

oat pseudorosette 66<br />

oats (Avena sativae) 89,92,<br />

93<br />

obovatus, Brevipalpus,<br />

odorata, Chromolaena<br />

odoratum, Eupatorium<br />

oficinarum, Saccharum<br />

Oidium 149, 162<br />

oil palm 24,28,37, 127, 160,<br />

170,180,193<br />

oleosa, Amaranthus<br />

oleracea, Neptunia<br />

oleracea, Portulaca<br />

oleracea, Spinacia<br />

onoensis, Criconemella<br />

ophiuri, Spacelotheca<br />

ophiuri, Sporisorium<br />

orai 20<br />

Orthogalumna terebrantis 69,<br />

73,75-77,79,80-82<br />

Oryza 227<br />

Oryza sativa 8<br />

oryzae var. commelinae,<br />

Pyricularia<br />

oryzae, Hirschmaniella<br />

oryzae, Meloidogyne<br />

oryzae, Pyricularia<br />

oryzicola, Echinochloa<br />

oryzicola, Eleusine<br />

ovalifolia, Euphorbia<br />

ovalifolia, Lyonia<br />

ovalifolia, Pieris<br />

overeemi, Sporisorium<br />

oxysporum f.sp. elaeidis,<br />

Fusarium<br />

oxysporum f.sp. passiflorae,<br />

Fusarium<br />

paang itik 1 14<br />

painted spurge (Euphorbia<br />

heterophylla) 98<br />

paitan 180<br />

pak prab 56<br />

pak vaen 1 14<br />

paklab 160<br />

pakpawd 230<br />

paku larat 170<br />

palmivora, Phytophthora<br />

paludosum, Panicum<br />

panici,<br />

Parasteneotarsonemus<br />

paniculatum, Talinum<br />

Panicum 91,175,177,227<br />

Panicum antidotale 175<br />

Panicum bulbosum 175<br />

Panicum capillare 175<br />

Panicum coloratum 175<br />

Panicum dichotomiflorum 65<br />

Panicum fluitans 177<br />

Panicum indicum 177<br />

Panicum luzonense 175<br />

Panicum maximum 3 1, 175<br />

Panicum miliaceum 64,90,<br />

175<br />

Panicum novemnerve 175<br />

Panicum paludosum 175<br />

Panicum repens 3,172-177,<br />

181<br />

panicum mosaic 66<br />

papaya 28,142,160,180<br />

papendofli, Bipolaris<br />

Parasteneotarsonemus panici<br />

175,176<br />

Paratylenchus 65<br />

parviflora, Galinsoga<br />

paspali, Exserohilum<br />

paspali, Sorosporium<br />

Paspalum 90, 18 1,227<br />

Paspalum conjugatum 3,89,<br />

178-183<br />

Paspalum dilatatum 18 1<br />

Paspalum distichum 64,93,<br />

181<br />

Paspalum notatum 3 1,89<br />

Paspalum plicatulum 18 1<br />

Pasualum scrobiculatum 18 1<br />

~as>alum vaginatum 1 8 1,<br />

225<br />

paspalum (Paspalum<br />

dilatatum) 18 1<br />

Passiflora 101, 186-189<br />

Passiflora edulis 187<br />

Passiflora edulis var.<br />

flavicarpa 187, 188<br />

Passiflora foetida 3,184-189<br />

Passiflora ligularis 187, 188<br />

Passiflora lonchocarpa 187<br />

Passiflora manicata 187<br />

Passiflora mollissima, see<br />

Passijlora tripartita<br />

Passiflora suberosa 187,188<br />

Passiflora tripartita 185, 187,<br />

188<br />

Passifloraceae 3, 186-1 88<br />

passijlorae, Alternaria<br />

passifloridia, Haplosporella<br />

passion vine butterfly<br />

(Agraulis vanillae) 1 87<br />

passionfruit chlorotic spot<br />

189<br />

passionfruit mosaic 189<br />

passionfruit ringspot<br />

potyvirus 189<br />

passionfruit woodiness<br />

potyvirus 189<br />

pasture 4, 12,28,56,86, 139<br />

181,186<br />

Paterson's curse (Echium<br />

plantagineum) 13 1<br />

pawpaw, see papaya


peanut, see ground nut<br />

pearl millet (Pennisetum<br />

glaucum) 94,193,226<br />

pederosus, Amblyseius<br />

Pellicularia rolfsii 92<br />

penniseti, Spacelotheca<br />

Pennisetum 24, 193, 194,<br />

2 14,227<br />

Pennisetum americanum,<br />

see Pennisetum glaucum<br />

Pennisetum cenchroides 194<br />

Pennisetum clandestinum 193<br />

Pennisetum glaucum 94, 193<br />

Pennisetum hordeoides 1 92<br />

Penniseam polystachion 3,<br />

190-194<br />

Pennisetum polystachion<br />

atrichum 192<br />

Pennisetum polystachion<br />

polystachion 192<br />

Pennisetum polystachion<br />

setosum 192<br />

Pennisetum polystachyon, see<br />

Pennisetum polystachion<br />

Pennisetum purpureum 193<br />

Pennisetum setosum, see<br />

Pennisetum polystachion<br />

Pennisetum typhoideum, see<br />

Pennisetum glaucum<br />

pepperwort (Marsilea<br />

minuta) 1 14<br />

peregrina, Veronica<br />

perfoliata, Montia<br />

perfoliata, Mycovellosiella<br />

perforatum angustifolium,<br />

Hypericum<br />

perotidis, Bipolaris<br />

perrieriana, Marsilea<br />

Pestalopsis 149<br />

Pestalotia 133<br />

petunia 16<br />

Phaeoseptoria 226<br />

phak bia yai 2 10<br />

phak kbiat 166<br />

phak khom nam 20<br />

phak pot 230<br />

phak, top chawaa 70<br />

phak waen 1 14<br />

Phakospora apoda 194<br />

phaseolina, Macrophomina<br />

Phaseolus vulgaris 15<br />

philoxeroides, Alternanthera<br />

Phloeospora mimosae-pigrae<br />

147,150,151,155<br />

Phoenix 100<br />

Phoma 41,214<br />

Phoma tropica 24<br />

Phomopsis 1 49<br />

Phomopsis eupatoriicola 41<br />

Phragmites 8<br />

phti banla 20<br />

Phyllachora eleusines 92<br />

Phyllachora sacchari 226<br />

Phyllostachys 8<br />

Phyllosticta eupatoriicola 41<br />

Phyllosticta stratiotes 157<br />

Physarum cinereum 182<br />

Phytomonas 105<br />

Phytophthora palmivora 100,<br />

105,122,214<br />

piaropi, Cercospora<br />

pickerel weed (Pontederia<br />

cordata) 80<br />

picta, Echinochloa<br />

picta, Eleusine<br />

Pieris ovalifolia 13<br />

pigeon pea (Cajanus cajan)<br />

188<br />

pigra, Mimosa<br />

pigweed (Portulaca oleracea)<br />

210<br />

pilicornis. Nosema<br />

pilosa, Bidens<br />

pilosa, Portulaca<br />

pilulifera, Euphorbia<br />

pineapple 20, 104, 139, 160,<br />

170,180<br />

pineapple yellow spot 14, 16<br />

pinnata, Azolla<br />

pis koetjing 138<br />

pisau pisau 28<br />

Pistia stratiotes 1,3,5,7 1,<br />

1 15. 167,196-207<br />

Pistia virus 1 16, 167<br />

Pithecoctenium 5 1<br />

Pithecoctenium echinatum 5 1<br />

plantagineum, Echium<br />

plantain 1 11<br />

plantarii, Pseudomonas<br />

plicatuhm, Paspalum<br />

Poaceae 3,62,86,174, 180,<br />

192,222,225<br />

7 General index 299<br />

poinsettia (Euphorbia<br />

pulcherrima)<br />

pokok tjerman 36<br />

polyanthes, Vernonia<br />

polyanthum, Melastoma<br />

Polygonum 13<br />

polyhedrosis 5 1,187<br />

Polymyxa betae f.sp.<br />

portulaceae 21 4<br />

polyrhiza, Lemna<br />

polystachion atrichum,<br />

Pennisetum<br />

polystachion setosum,<br />

Pennisetum<br />

polystachion, Pennisetum<br />

Pontederia cordata 73,79,80<br />

Pontederia lanceolata 8 1<br />

Pontederia rotundifolia 80<br />

Pontederiaceae 3,70,79,166<br />

Portulaca 24, 209,218<br />

Portulaca grandijlora 21 4,<br />

216,218<br />

Portulaca oleracea 1,3, 1 5,<br />

91,208-218<br />

Portulaca pilosa 21 6<br />

Portulaca quadrifida 2 16<br />

portulaceae, Albugo<br />

portulaceae, Ascochyta<br />

portulaceae, Bipolaris<br />

portulaceae, Cercospora<br />

portulaceae,<br />

Dichotomophthora<br />

portulaceae,<br />

Helminthosporium<br />

Portulacaecae 3,210,216<br />

portulacearum, Albugo<br />

potato 15,63, 1 1 1, 167<br />

potato virus Y 16<br />

praelonga, Cionothrix<br />

pratensis, Pratylenchus<br />

Pratylenchus 57,215<br />

Pratylenchus minutus ,32,<br />

215<br />

Pratylenchus pratensis 1 5,9 1<br />

Pratylenchus zeae 23,9 1<br />

proso (Panicum novemnerve)<br />

175<br />

proteispora, Leptosphaeria<br />

prunifolia, Euphorbia<br />

Pseudocephalobus indicus 23


300<br />

Biological Control of Weeds: Southeast Asian Prospects<br />

Pseudocercospora<br />

eupatorii-formosani 39,41<br />

Pseudomonas glumae 92<br />

Pseudomonas plantarii 92<br />

Pseudomonas solanacearum<br />

16<br />

pseudovirgata, Euphorbia<br />

Puccinia 24, 100, 1 62<br />

Puccinia conoclinii 16<br />

Puccinia chaetochloae 194<br />

Puccinia rottboelliae<br />

223,226<br />

Puccinia substriata 194<br />

pudica hispida, Mimosa<br />

pudica unijuga, Mimosa<br />

pudica, Mimosa<br />

pulcherrima, Euphorbia<br />

pumila, Magnolia<br />

pungens, Zoysia<br />

purpurea, Tephrosia<br />

purpureum, Pennisetum<br />

purpureus, Lablab<br />

purpusilla, Lemna<br />

purslane (Portulaca oleracea)<br />

210<br />

putri malu 1 48<br />

Pyrenochaeta 227<br />

Pyricularia 58, 176<br />

Pyricularia grisea, see<br />

Magnaporthe grisea<br />

Pyricularia oryzae 65,92,<br />

176<br />

Pyricularia owe var.<br />

commelinae 58<br />

quadr$da, Portulaca<br />

quadripara, Brachiaria<br />

quadrivalis, Mimosa<br />

quinqueseptatum,<br />

Cylindrocladium<br />

Radopholus similis 57, 106,<br />

215<br />

radulans, Dactyloctenium<br />

ragi (Eleusine coracana) 86<br />

ragwort (Senecio jacobaea)<br />

131<br />

ramiflorum, Aspidosperma<br />

Ranunculus sceleratus 16<br />

rats<br />

rau mhc 118 thon 166<br />

mu Sam 2 1 0<br />

red gram 22<br />

r&mb&t& 138<br />

reniformis, Rotylenchulus<br />

repens, Agropyron<br />

repens, Panicum<br />

Rhizoctonia 65, 133<br />

Rhizoctonia solani 78, 100,<br />

167<br />

rice (Oryza sativa) 5,8, 12,<br />

20,23,28,56-58,61,<br />

63-65,71,77,80 88-93,<br />

98 101,104,110,<br />

11 1,114,115,149,160<br />

166,167,174,180 , 186,<br />

193, 199,202,210,222,<br />

225 ,226,230<br />

rice dwarf 66<br />

rice leaf gall 93,227<br />

rice orange leaf 93<br />

rice ragged stunt 93, 167<br />

rice root rot nematode 91<br />

rice tungro 66<br />

rice tungro bacilliform 93<br />

rice tungro spherical 93<br />

rice yellow mottle 93<br />

ricini, Amphobotrys<br />

riparia, Acacia<br />

riparia, Ageratum<br />

rixosa, Mimosa<br />

robusta, Commelina<br />

robusta. Grevillea<br />

rodmanii, Cercospora<br />

rolfsii, Pellicularia<br />

rolfsii, Sclerotium<br />

roridum, Myrothecium<br />

roseum, Fusarium<br />

rostratum, Helminthosporium<br />

Rottboellia 223,227<br />

Rottboellia cochinchinensis 3,<br />

92,220-227<br />

Rottboellia compressa 224,<br />

225<br />

Rottboellia exaltata, see<br />

Rottboellia<br />

cochinchinensis<br />

rottboelliae, Cercospora<br />

rottboelliae, Puccinia<br />

rottboelliae, Spacelotheca<br />

rotundifolia, Pontederia<br />

rotundifolia, Salvinia<br />

rotundus, Cyperus<br />

Rotylenchulus reniformis 15,<br />

23,32,91, 100, 106, 11 1,<br />

182,215<br />

rubber 28,37,120,127,139<br />

160, 170, 174, 180, 193,<br />

194<br />

Rudbeckia 3 1<br />

rufa, Hyparrhenia<br />

rugosum, Ischaemum<br />

rumput belulhng 86<br />

rumput berus 192<br />

rumput bukit 1 10<br />

rumput canggah 180<br />

rumput gajah 192<br />

rumput go1 kar 36<br />

rumput jae jae 174<br />

rumput jurig 192<br />

rumput kerbau 1 80<br />

rumput kuning 192<br />

rumput pait 180<br />

rumput sambou 86<br />

rumput tahi ayam 12<br />

rumput tahi berbau 1 10<br />

saab sua 36<br />

sabung sabungan 86<br />

sacchari, Phyllachora<br />

Saccharum 224,227<br />

Saccharum oficinarum 8<br />

Saccharum spontaneum 227<br />

saltwater couch (Paspalum<br />

distichurn or P. vaginatum)<br />

181<br />

Salvinia 77, 1 15, 197,202<br />

Salvinia cucullata 167,<br />

202,<br />

Salvinia molesta 5,71,77,<br />

167,199,202,206<br />

Salvinia rotundifolia 205<br />

sambau 62<br />

sampeas 160<br />

sanguinalis, Digitaria<br />

sasakii, Corticium<br />

sativa, Lactuca<br />

sativa, Oryza<br />

sawah 70<br />

scabrella, Mimosa<br />

scandens, Mikania<br />

sceleratus, Ranunculus


Schizostachyum dumetorum 8<br />

scitaminea, Ustilago<br />

Sclerophthora macrospora 92<br />

Sclerotinia sclerotiorum 100<br />

sclerotiorum, Sclerotinia<br />

Sclerotium rolfsii 16,92<br />

scolymus, Cynara<br />

scrobic (Paspalum<br />

scrobiculatum) 18 1<br />

scrobiculatum, Paspalum<br />

Secale 227<br />

segan 210<br />

selloi, Calliandra<br />

semalu gajah 148<br />

semhggi 1 14<br />

sembung rambat 126<br />

senduduk 120<br />

Senecio jacobaea 13 1<br />

Senecioneae 33<br />

senegalensis, Marsilea<br />

sensitiva, Aeschynomene<br />

Septoria 41,47<br />

Septoria ekrnaniana 41<br />

sesame 14<br />

Setaria 227<br />

Setaria glauca 63<br />

Setaria italica 8<br />

setariae, Bipolaris<br />

setariae, Drechslera<br />

setosum, Pennisetum<br />

Siam weed (Chromolaena<br />

odorata) 36,46<br />

siceraria, Lagenaria<br />

silisilihan 230<br />

silverbeet (Beta vulgaris var.<br />

cicla) 21 2<br />

similis, Raabpholus<br />

sin ngo let kya 86<br />

sin ngo myet 86<br />

Skranquia 145<br />

smao 110<br />

smao bek kbol62<br />

smao choeung tukke 86<br />

Solanaceae 2 16<br />

solanacearum, Pseuabmonas<br />

solani, Rhizoctonia<br />

Solanum nigrum 14,24<br />

somnians, Mimosa<br />

Sonchus 130<br />

Sonchus asper 14<br />

Sonchus yellow net 32<br />

Sorghum 5,8,28,63,89,90,<br />

91,93,104,110,160,210,<br />

222,224,226,227<br />

Sorghum bicolor 8<br />

Sorghum verticillijlorum 93<br />

Sorosporium paspali 1 82<br />

sourgrass (Paspalum<br />

conjugatum) 180<br />

soybean (Glycine mar) 30,99<br />

160,222<br />

soybean mosaic 32<br />

Spaceloma 100<br />

Spacelotheca ophiuri, see<br />

Sporisorium ophiuri<br />

Spacelotheca penniseti 194<br />

Spacelotheca rottboelliae 227<br />

Spanish needle (Bidens<br />

pilosa) 28<br />

Sphenoclea zeylanica 3, 167,<br />

228-231<br />

Sphenocleaceae 3,230<br />

spiders 45,46,52<br />

Spinacia oleracea 22<br />

spinicaudata, Hirschmaniella<br />

spinosa, Emex<br />

spinosus, Amaranthus<br />

spiny amaranth (Amaranthus<br />

spinosus) 20<br />

spiny pigweed (Amaranthus<br />

spinosus) 20<br />

Spirodela 204<br />

spontaneum, Saccharum<br />

Sporisorium ophiuri 22 1,<br />

223,227<br />

Sporisorium overeemi 176<br />

St John's wort (Hypericum<br />

perforatum angustifolium)<br />

130<br />

stinking passionflower<br />

(Passijlora foetida) 186<br />

Straits rhododendron<br />

(Melastoma<br />

malabathricum) 120<br />

stratiotes, Phyllosticta<br />

stratiotes, Pistia<br />

strawberry 157<br />

suberosa, Passzjlora<br />

subornata, Hydrozetes<br />

subquadripara, Brachiaria<br />

substriata, Puccinia<br />

subtriplinenium,<br />

Heterocentron<br />

7 General index 301<br />

sugar beet 2 14<br />

sugarcane (Saccharum<br />

oficinarum) 5,8,20,63,<br />

65,89,90,93, 104, 110,<br />

111, 139, 160, 174, 181,<br />

193,210,222,226<br />

sugarcane mosaic 66,93,182<br />

sugarcane streak 93<br />

sunflower (Helianthus anuus)<br />

33<br />

swamp panic (Panicum<br />

paludosum) 175<br />

sweet potato 30,57<br />

Tageteae 33<br />

Tagetes erecta 24<br />

Talinum paniculatum 2 1 8<br />

Talinum triangulare 21 8<br />

tapah itik 1 14<br />

tapioca mosaic 16, 106<br />

taro (Colocasia) 57,63,71,<br />

79,110<br />

tarragon 2 1 4<br />

tawbizat 36<br />

tea 28, 37, 104, 127, 139,<br />

160,174,180<br />

teak 37,127<br />

tenuis, Alternaria<br />

Tephrosia purpurea 37<br />

terebrantis, Orthogalumna<br />

termites 43<br />

Tetranychus 140<br />

Tetranychus novocaledonicus<br />

23<br />

Tetranychus urticae 15,100<br />

Thanatephorus cucumeris<br />

167<br />

Tiboochina urvilleana 121<br />

timun padang 186<br />

tithymali, Aecidium<br />

toads 45<br />

tobacco 28,30,63,91,214<br />

tobacco broad ring spot 21 4<br />

tobacco bunchy top 24<br />

tobacco etch 21 4<br />

tobacco leaf curl 16, 106<br />

tobacco mosaic 24,2 14<br />

tobacco streak 2 14<br />

Tolyposporium bullatum 66<br />

tomato91, 100, 111, 142<br />

tomato leaf curl 1 6, 106


302 Biological Control of Weeds: Southeast Asian Prospects<br />

tomato spotted wilt 32<br />

tontrem khet 36<br />

torpedo grass (Panicum<br />

repens) 174<br />

Tradescantia 57<br />

Tragia volubilis 101<br />

translucens, Xanthomonas<br />

triangulare, Talinum<br />

Trichechus 72<br />

tricolor, Amaranthus<br />

tricophora, Ustilago<br />

trinh nu nhon 148<br />

trinitaria, Mikania<br />

Triops cancriformis 1 67<br />

tripartita, Passiflora<br />

tristachya, Eleusine<br />

Triticum 8,227<br />

tropica, Phoma<br />

tuk das khla thom 104<br />

tungro 93<br />

turicum, Helminthosporium<br />

Turneraceae 187<br />

Tylenchorhynchus brassicae<br />

215<br />

typhoideum, Pennisetum<br />

ulam tikus 126<br />

ulasiman 21 0<br />

urd bean yellow mosaic 16,<br />

106<br />

Ureab eichhorniae 82<br />

Ureab mimosae-invisae 145<br />

Uromyces bidenticola 32<br />

Uromyces euphorbiae 100<br />

urticae, Tetranychus<br />

urvilleana, Tiboochina<br />

Ustilago 92<br />

Ustilago crusgalli 66<br />

Ustilago eleusinis, see<br />

Melanopsichium eleusinis<br />

92<br />

Ustilago sciraminea 227<br />

Ustilago tricophora 66<br />

utilis, Echinochloa<br />

utilis, Eleusine<br />

vaginalis, Monochoria<br />

vaginatum, Paspalum<br />

Vanda 15<br />

variabilis, Buddleia<br />

vegetables 8,20,28,56,63,<br />

104,181,193,210<br />

velloziana, Mimosa<br />

Venegasia carpesioides 3 1<br />

Verbena 16<br />

Verbesina 3 1<br />

Vemonieae 33<br />

Veronica peregrina 167<br />

verticilliflorwn, Sorghum<br />

viridis, Amaranthus<br />

vitifolia, Mikania<br />

volubilis, Tragia<br />

vulgare, Andropogon<br />

vulgaris var. cicla, Beta<br />

vulgaris, Phaseolus<br />

walteri, Echinochloa<br />

water clover (Marsilea<br />

minuta) 1 1 3-1 15<br />

water hyacinth (Eichhornia<br />

crassipes) 70<br />

water lettuce (Pistia<br />

stratiotes) 198<br />

Wedelia caracasana 1 4<br />

wheat (Triticum) 58,65,<br />

89-93,111,214<br />

wheat rosette 93<br />

wheat streak mosaic 66<br />

white amur<br />

(Ctenopharyngdon idella)<br />

72<br />

wild passionfruit (Passiflora<br />

foetida) 186<br />

witchgrass (Panicum<br />

capillare) 175<br />

Wulfia baccata 14<br />

xB b6ng 230<br />

Xanthium 15<br />

Xanthomonas albilineans 182<br />

Xanthomonas translucens 66<br />

xenoplar, Criconemella<br />

ya hep 180<br />

ya plong 62<br />

ya sap raeng 12<br />

ya tabsua 12<br />

yaa khaehyon chop k92<br />

yaa prong khaai 222<br />

yaa yaang 98<br />

yah chan ah kat 174<br />

yah chanagard 174<br />

yah koen jam khao 28<br />

yah sua mop 36<br />

yah teenka 86<br />

ye padauk 70<br />

Zea 224,227<br />

Zea mays 8<br />

zeae, Pratylenchus<br />

zeylanica, Sphenoclea<br />

Zinnia 16,3 1,33<br />

Zinnia yellow net 16<br />

zonatum, Acremonium<br />

Zoysia pungens 18 1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!