09.04.2013 Views

Clerodendrum and Heathcare: An Overview - Global Science Books

Clerodendrum and Heathcare: An Overview - Global Science Books

Clerodendrum and Heathcare: An Overview - Global Science Books

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Medicinal <strong>and</strong> Aromatic Plant <strong>Science</strong> <strong>and</strong> Biotechnology ©2007 <strong>Global</strong> <strong>Science</strong> <strong>Books</strong><br />

<strong>Clerodendrum</strong> <strong>and</strong> <strong>Heathcare</strong>: <strong>An</strong> <strong>Overview</strong><br />

Neeta Shrivastava * • Tejas Patel<br />

B. V. Patel Pharmaceutical Education <strong>and</strong> Research Development (PERD) Centre, S. G. Highway, Thaltej, Ahmedabad - 380054, Gujarat, India<br />

Corresponding author: * neetashrivastava_perd@yahoo.co.in<br />

ABSTRACT<br />

The genus <strong>Clerodendrum</strong> L. (Family: Lamiaceae) is very widely distributed in tropical <strong>and</strong> subtropical regions of the world. More than<br />

five hundred species of the genus are identified till now, which includes small trees, shrubs <strong>and</strong> herbs. Ethno-medical importance of<br />

various species of <strong>Clerodendrum</strong> genus has been reported in various indigenous systems of medicines <strong>and</strong> as folk medicines. The genus is<br />

being used as medicines specifically in Indian, Chinese, Thai, Korean, Japanese systems of medicine for the treatment of various lifethreatening<br />

diseases such as syphilis, typhoid, cancer, jaundice <strong>and</strong> hypertension. Few species of the genus like <strong>Clerodendrum</strong> inerme, C.<br />

thomosonae, C. indicum, <strong>and</strong> C. speciosum are ornamental <strong>and</strong> being cultivated for aesthetic purposes. The powder/paste form <strong>and</strong> the<br />

various extracts of root, stem <strong>and</strong> leaves are reported to be used as medicine for the treatment of asthma, pyreticosis, cataract, malaria, <strong>and</strong><br />

diseases of blood, skin <strong>and</strong> lung. To prove these ethno-medical claims, some of these species are being extensively studied for their<br />

biological activities using various animal models. Along with biological studies, isolation <strong>and</strong> identification studies of chemical constituents<br />

<strong>and</strong> its correlation with the biological activities of the genus has also been studied. The major chemical components reported from<br />

the genus are phenolics, steroids, di- <strong>and</strong> triterpenes, flavonoids, volatile oils, etc. This review mainly covers the extent of work done on<br />

biological activities of various <strong>Clerodendrum</strong> species such as C. trichotomum, C. bungei, C. chinense, C. colebrookianum, C. inerme, C.<br />

phlomidis, C. petasites, C. grayi, C. indicum, C. serratum, C. campbellii, C. calamitosum <strong>and</strong> C. cyrtophyllum that can be used both in<br />

conventional therapy or as replacement therapies for the treatment of various diseases.<br />

_____________________________________________________________________________________________________________<br />

Keywords: ethnomedical, phytochemistry, anti-inflammatory, antimicrobial, antimalarial, antioxidant, antidiabetic, polyphyletic, paraphyletic<br />

Abbreviations: AGC, apigenin-7-O-β-D-glucoside; GSH, glutathione; MDA, malondialdehyde; PGE2, prostagl<strong>and</strong>in E2; XO, xanthine<br />

oxidase<br />

CONTENTS<br />

INTRODUCTION...................................................................................................................................................................................... 142<br />

ETHNOMEDICAL USES.......................................................................................................................................................................... 146<br />

PHYTOCHEMISTRY................................................................................................................................................................................ 146<br />

BIOLOGICAL ACTIVITIES..................................................................................................................................................................... 147<br />

<strong>An</strong>ti-inflammatory activities.................................................................................................................................................................. 147<br />

<strong>An</strong>timicrobial activites .......................................................................................................................................................................... 147<br />

<strong>An</strong>timalarial activities............................................................................................................................................................................ 148<br />

<strong>An</strong>tioxidant activities............................................................................................................................................................................. 148<br />

Other biological activities of <strong>Clerodendrum</strong> genus ............................................................................................................................... 148<br />

SUMMARY ............................................................................................................................................................................................... 148<br />

ACKNOWLEDGEMENT ......................................................................................................................................................................... 149<br />

REFERENCES........................................................................................................................................................................................... 149<br />

_____________________________________________________________________________________________________________<br />

INTRODUCTION<br />

The genus <strong>Clerodendrum</strong> L. [Family Lamiaceae (Verbenaceae)]<br />

is very widely distributed in tropical <strong>and</strong> subtropical<br />

regions of the world <strong>and</strong> is comprised of small trees, shrubs<br />

<strong>and</strong> herbs. The first description of the genus was given by<br />

Linnaeus in 1753, with identification of C. infortunatum.<br />

After a decade later in 1763 Adanson changed the Latin<br />

name "<strong>Clerodendrum</strong>" to its Greek form "Clerodendron";<br />

in Greek Klero means chance <strong>and</strong> dendron means tree i.e.<br />

chance tree which means the tree which does not bring<br />

good luck like Clerodendron infortunatum or the tree which<br />

brings good luck like C. fortunatum. Later on after a span<br />

of about two centuries in 1942 Moldenke readopted the<br />

Latinized name '<strong>Clerodendrum</strong>', which is now commonly<br />

used by taxonomists for the classification <strong>and</strong> description of<br />

the genus <strong>and</strong> species (Moldenke 1985; Rueda 1993; Hsiao<br />

<strong>and</strong> Lin 1995; Steane et al. 1999). <strong>Clerodendrum</strong> is a very<br />

large <strong>and</strong> diverse genus <strong>and</strong> till now five hundred <strong>and</strong> eighty<br />

species of the genus have been identified <strong>and</strong> are widely<br />

distributed in Asia, Australia, Africa <strong>and</strong> America (Table 1).<br />

A high degree of morphological <strong>and</strong> cytological variation<br />

(from 2n=24 to 2n=184) amongst the species, suggesting<br />

the paraphyletic or polyphyletic origin of the genus. Molecular<br />

systematic studies based on cloroplast <strong>and</strong> nuclear<br />

DNA also indicate polyphyletic origin of the genus (Steane<br />

et al. 1999). Owing to morphological variations like length<br />

of the corolla tube, size of leaves, <strong>and</strong> type of inflorescence<br />

some authors have classified the genus into two major subgenera,<br />

<strong>Clerodendrum</strong> <strong>and</strong> Cyclonema (Steane et al. 1999)<br />

while others have classified it into five subgenera <strong>and</strong> each<br />

subgenus is again subdivided into many sections (Moldenke<br />

1985). Similarly many species of the genus have been described<br />

by more than one author <strong>and</strong> hence are denoted in the<br />

literature with the name of different authors e.g. C. floribundum<br />

Hort. <strong>and</strong> C. floribundum R.Br., C. foetidum Bunge<br />

Received: 4 January, 2007. Accepted: 22 January, 2007. Invited Review


Medicinal <strong>and</strong> Aromatic Plant <strong>Science</strong> <strong>and</strong> Biotechnology 1(1), 142-150 ©2007 <strong>Global</strong> <strong>Science</strong> <strong>Books</strong><br />

Table 1 List of various species from the genus <strong>Clerodendrum</strong>. * Species described by more than one author.<br />

C. acerbiana Benth. & Hook.f.<br />

C. aculeatum (L.) Schlecht.*<br />

C. acuminatum Wall.<br />

C. adenocalyx Dop<br />

C. adenophysum H.Hallier<br />

C. affine Griff.<br />

C. africanum Moldenke<br />

C. aggregatum Gurke<br />

C. alatum Gurke<br />

C. albiflos H.J.Lam<br />

C. amicorum Seem.<br />

C. amplifolium S.Moore<br />

C. amplius Hance<br />

C. anafense Britton & P.Wils.<br />

C. angolense Guerke<br />

C. angustifolium Salisb.*<br />

C. apayaoense Quisumb.<br />

C. arenarium Baker<br />

C. arthur-gordoni Horne ex Baker<br />

C. assurgens K.Schum.<br />

C. attenuatum De Wild.*<br />

C. aucubifolium Hemsl.<br />

C. aurantiacum Baker<br />

C. aurantium G.Don<br />

C. × speciosum Teijsm. & Binn.<br />

C. bakeri Gurke<br />

C. balfouri Hort.<br />

C. barbafelis H.Hallier<br />

C. baronianum Oliver<br />

C. barteri Baker<br />

C. baumii Guerke<br />

C. bequaerti De Wild<br />

C. bernieri Briq.<br />

C. bethuneanum Low<br />

C. bingaense S.Moore<br />

C. bipindense Guerke<br />

C. blancoanum Villar<br />

C. blancoi Naves ex Villar<br />

C. blumeanum Schau.<br />

C. bodinierii Leveille<br />

C. bolivianum Rusby<br />

C. botryoides Baker<br />

C. botryoides K.Schum.<br />

C. brachyanthum Schau.<br />

C. brachypus Urb.<br />

C. lerodendrum bracteatum Wall.<br />

C. bracteosum Kostel.<br />

C. brassii Beer & H.J.Lam<br />

C. brazzavillense A.Cheval.<br />

C. breviflorum Ridl.<br />

C. brookeanum W.W.Smith<br />

C. brunfelsiiflorum H.Hallier<br />

C. brunsvigioides Baker<br />

C. buchananii Herb.Roxb.ex Wall.<br />

C. buchholzii Gurke<br />

C. buchneri Gurke<br />

C. buettneri Gurke<br />

C. bukobense Gurke<br />

C. bungei Steud.<br />

C. buruanum Miq.<br />

C. buxifolium Spreng.<br />

C. cabrae De Wild.<br />

C. caeruleum N.E.Br.<br />

C. caesium Guerke<br />

C. calamistratum Hort.Belg.ex Lem.<br />

C. calamitosum Linn.<br />

C. calcicola Britton<br />

C. calycinum Turcz.<br />

C. camagueyense Britton & P.Wils.<br />

C. canescens Wall.<br />

C. capense D.Don ex Steud.*<br />

C. capitatum Hook.*<br />

C. capsulare Blanco<br />

C. cardiophyllum F.Muell.<br />

C. carnosulum Baker<br />

C. castaneaefolium Klotzsch<br />

C. castaneifolium Hook. & Arn.<br />

C. catalpifolium H.Hallier<br />

C. caulambum Exell<br />

C. cauliflorum De Wild.*<br />

C. cavaleriei Leveille<br />

C. cephalanthum Oliver<br />

C. cernuum Wall.ex Steud.<br />

C. chamaeriphes Wernham<br />

C. citrinum Ridley<br />

C. coccineum D.Dietr.*<br />

C. cochinchinense Dop<br />

C. colebrookianum Walp.<br />

C. commersonii Spreng.<br />

C. condensatum Miq.<br />

C. confusum H.Hallier<br />

C. congense Baker*<br />

C. congestum Guerke<br />

C. conglobatum Baker<br />

C. consors S.Moore<br />

C. corbisieri De Wild.<br />

C. cordatum D.Don<br />

C. cordifolium A.Rich.<br />

C. coriaceum Poir.*<br />

C. corom<strong>and</strong>elianum Spreng.<br />

C. costaricense St<strong>and</strong>ley<br />

C. costatum R.Br.<br />

C. costulatum K.Schum.<br />

C. cruentum Lindl.<br />

C. cubensis Schau.<br />

C. culinare Sesse & Moc.<br />

C. cumingianum Schau.<br />

C. cuneatum Guerke*<br />

C. cuneifolium Baker<br />

C. cunninghamii Benth.<br />

C. curranii Elmer<br />

C. curtisii N.E.Br.<br />

C. cuspidatum Turcz.<br />

C. cyrtophyllum Turcz<br />

C. darrisii Leveille<br />

C. deflexum Wall.<br />

C. dekindtii Guerke<br />

C. dembianense Chiov.<br />

C. densiflorum Griff.<br />

C. dentatum Wall.<br />

C. depauperatum Wall.ex Steud.<br />

C. dependens Aug.DC.<br />

C. dicolor Vatke<br />

C. diepenhorstii Miq.<br />

C. dinklagei Gurke<br />

C. discolor Becc.<br />

C. disparifolium Blume<br />

C. divar. catum Jack*<br />

C. diversifolium Vahl<br />

C. dubium De Wild.<br />

C. duckei Moldenke<br />

C. dumale Baker<br />

C. dumale K.Schum.<br />

C. dusenii Guerke<br />

C. eketense Wernham<br />

C. ekmani Moldenke<br />

C. elberti H.Hallier<br />

C. elegans Manetti ex Lem.<br />

C. ellipticum Zipp.ex Span.<br />

C. elliptifolium Merrill<br />

C. elmeri Merrill<br />

C. emarginatum Briq.<br />

C. emirnense Boj.ex Hook.<br />

C. epiphyticum St<strong>and</strong>ley<br />

C. erectum De Wild.<br />

C. eriophyllum Gurke<br />

C. eriosiphon Schau.<br />

C. esquirolii Leveille*<br />

C. eucalycinum Oliver<br />

C. eupatorioides Baker<br />

C. euryphyllum Mildbr.<br />

C. excavatum De Wild.<br />

C. fallax Lindl.<br />

C. fargesii Dode<br />

C. farinosum Wall.<br />

C. fasciculatum Berthold Thomas<br />

C. fastigiatum H.J.Lam<br />

C. ferrugineum Turcz.<br />

C. finetii Dop<br />

C. fischeri Gurke ex Engl.<br />

C. fistulosum Becc.*<br />

C. flavum Merrill<br />

C. fleuryi A.Chevalier<br />

C. floribundum Hort.*<br />

143<br />

C. foetidum Bunge*<br />

C. formicarum Gurke<br />

C. formosanum Maxim.<br />

C. fortunatum Buch.-Ham.ex Wall.*<br />

C. fortunei Hemsl.<br />

C. fragrans Vent.*<br />

C. francavilleanum Buchinger ex<br />

Berthold Thomas<br />

C. friesii K.Schum.<br />

C. f.rutectorum S.Moore<br />

C. fugitans Wernham<br />

C. fuscum Gurke.<br />

C. galeatum Balf.f.<br />

C. garrettianum Craib<br />

C. gaudichaudii Dop<br />

C. geoffrayi Dop<br />

C. giletii Wildem. & Th.Dur.<br />

C. glaberrimum Hayata<br />

C. glabratum Guerke<br />

C. glabrum E.Mey.<br />

C. gl<strong>and</strong>ulosum Colebr.ex Wall.<br />

C. gl<strong>and</strong>ulosum Lindl.<br />

C. glaucum Wall.ex Steud.<br />

C. globuliflorum Berthold Thomas<br />

C. godefroyi Kuntze<br />

C. goossensi De Wild.<br />

C. gordoni Baker<br />

C. gossweileri Exell<br />

C. gr<strong>and</strong>icalyx E.A.Bruce<br />

C. gr<strong>and</strong>iflorum Schau.<br />

C. gr<strong>and</strong>ifolium Gurke*<br />

C. gratum Kurz*<br />

C. greyi Baker<br />

C. griffithianum C.B.Clarke<br />

C. guerkii Baker<br />

C. haematocalyx Hance<br />

C. haematolasium H.Hallier<br />

C. hahnianum Dop<br />

C. hainanense H<strong>and</strong>.-Mazz.<br />

C. harm<strong>and</strong>ianum Dop<br />

C. harnierianum Schweinf.<br />

C. hastato-oblongum C.B.Clarke<br />

C. hastatum Lindl.<br />

C. helianthemifolium Wall.ex Steud.<br />

C. hemiderma F.Muell.ex Benth.<br />

C. henryi P'ei<br />

C. herbaceum Wall.<br />

C. heterophyllum<br />

C. hettae H.Hallier<br />

C. hexagonum De Wild<br />

C. hexangulatum Berthold Thomas<br />

C. hildebr<strong>and</strong>tii Vatke<br />

C. hircinum Schau.<br />

C. hirsutum G.Don*<br />

C. hispidum M.R.Henderson<br />

C. hockii De Wild.<br />

C. holstii Guerke ex Baker*<br />

C. holtzei F.Muell.<br />

C. horsfieldii Miq.<br />

C. huegelii Hort.ex Regel<br />

C. humile Chiov.<br />

C. hysteranthum Baker<br />

C. illustre N.E.Br.<br />

C. impensum Berthold Thomas<br />

C. imperialis Carr.<br />

C. inaequipetiolatum Good<br />

C. incisum Klotzsch<br />

C. indeniense A.Cheval.<br />

C. indicum Druce*<br />

C. inerme Gaertn.*<br />

C. infortunatum Dennst.*<br />

C. ingratum K.Schum. & Lauterb.<br />

C. intermedium Berthold Thomas*<br />

C. involucratum Vatke<br />

C. ixoraeflorum Hazsk.<br />

C. jackianum Wall.<br />

C. japonicum Mak.*<br />

C. javanicum Spreng.*<br />

C. johnstoni Oliver<br />

C. kaempferi Fisch.ex Morr.<br />

C. kalaotoense H.J.Lam<br />

C. kalbreyeri Baker<br />

C. kampotense Dop<br />

C. kanichi Wildem.<br />

C. katangensis Wildem.<br />

C. kentrocaule Baker<br />

C. kinabaluense Stapf<br />

C. kirkii Baker<br />

C. kissakense Guerke<br />

C. klemmei Elmer<br />

C. koshunense Hayata<br />

C. kwangtungense H<strong>and</strong>.-Mazz.<br />

C. laciniatum Balf.f.<br />

C. laevifolium Blume<br />

C. lanceolatum F.Muell.<br />

C. lanceolatum Gurke.<br />

C. lanceoliferum S.Moore<br />

C. lanessanii Dop<br />

C. lankawiense King & Gamble<br />

C. lanuginosum Blume<br />

C. lasiocephalum C.B.Clarke<br />

C. laxicymosum De Wild.<br />

C. laxiflorum Baker<br />

C. lecomtei Dop<br />

C. lehuntei Horne ex Baker<br />

C. lelyi Hutchinson<br />

C. leucophloeum Balf.f.<br />

C. leucosceptrum D.Don<br />

C. leveillei Fedde ex Leveille<br />

C. ligustrinum<br />

C. lindawianum Lauterb.<br />

C. lindemuthianum Vatke<br />

C. lindenianum A.Eich.<br />

C. lindleyi Decne.ex Planch.<br />

C. linnaei F.Muell.*<br />

C. lividum Lindl.<br />

C. lloydianum Craib<br />

C. lobbii C.B.Clarke<br />

C. longicolle G.F.W.Mey.<br />

C. longiflorum Decne.<br />

C. longilimbum P'ei<br />

C. longipetiolatum Gurke*<br />

C. longisepalum Dop<br />

C. longituba Valeton<br />

C. longitubum Wildem. & Th.Dur.<br />

C. luembense De Wild.<br />

C. lujaei Wildem. & Th.Dur.<br />

C. lupakense S.Moore<br />

C. luzoniense Merrill<br />

C. mabesae Merrill<br />

C. macradenium Miq.<br />

C. macrocalycinum Baker<br />

C. macrocalyx De Wild.*<br />

C. macrophyllum Blume*<br />

C. macrosiphon Hook.f.*<br />

C. macrostachyum Baker*<br />

C. macrostegium Schau.<br />

C. madaeera Voigt<br />

C. magnificum Warb.<br />

C. magnoliaefolium Baker<br />

C. makanjanum H.Winkler<br />

C. m<strong>and</strong>arinorum Diels<br />

C. manetti Vis.<br />

C. mannii Baker<br />

C. margaritense Moldenke<br />

C. matudae St<strong>and</strong>ley<br />

C. medium R.Br.<br />

C. megasepalum Baker<br />

C. melanocrater Gurke<br />

C. membranifolium H.J.Lam<br />

C. mexicanum T.S.Br<strong>and</strong>egee<br />

C. meyeri-johannis Mildbraed<br />

C. micans Gurke<br />

C. microcalyx Ridley<br />

C. microphyllum Berthold Thomas<br />

C. mildbraedii Berthold Thomas<br />

C. minahassae Teijsm. & Binn.<br />

C. mindorense Merrill<br />

C. minutiflorum Baker<br />

C. mirabile Baker<br />

C. mite Vatke<br />

C. moldenkeanum St<strong>and</strong>ley<br />

C. molle H.B. & K.*<br />

C. montanum Berthold Thomas


Table 1 (cont.) * Species described by more than one author.<br />

C. morigono Chiov.<br />

C. mossambicense Klotzsch<br />

C. moupinense Franch.<br />

C. muenzneri Berthold Thomas<br />

C. multibracteatum Merrill<br />

C. multiflorum G.Don<br />

C. myrianthum Mildbr.<br />

C. myricoides Gurke*<br />

C. myrmecophila Ridl.<br />

C. natalense Gurke<br />

C. navesianum Vidal<br />

C. nereifolium Wall.<br />

C. neumayeri Vatke<br />

C. nhatrangense Dop<br />

C. nipense Urb.<br />

C. noiroti A.Chevalier<br />

C. nutans Jack*<br />

C. nyctaginifolium Good<br />

C. obanense Wernham<br />

C. obovatum Walp.<br />

C. obtusidens Miq.<br />

C. odoratum D.Don<br />

C. ohwii Kanehira & Hatusima<br />

C. orbiculare Baker<br />

C. oreadum S.Moore<br />

C. ornatum Wall.<br />

C. ovale Klotzsch<br />

C. ovalifolium A.Gray*<br />

C. ovatum Poir.*<br />

C. oxysepalum Miq.<br />

C. palmatolobatum Dop<br />

C. paniculatum Linn.<br />

C. papuanum Scheff.<br />

C. parvitubulatum Berthold Thomas<br />

C. pearsoni Moldenke<br />

C. peekelii Markgraf<br />

C. penduliflorum Wall.<br />

C. pentagonum Hance<br />

C. petasites S.Moore<br />

C. petunioides Baker<br />

C. philippinense Elmer<br />

C. philippinum Schau.<br />

C. phlebodes C.H.Wright<br />

C. phlomoides Hort.Ital.ex DC.*<br />

C. phyllomega Steud.<br />

C. picardae Urb.<br />

C. pierreanum Dop<br />

C. pilosum H.H.W.Pearson<br />

C. pithecobium St<strong>and</strong>ley & Steyerm.<br />

C. pittieri Moldenke ex St<strong>and</strong>ley<br />

C. pleiosciadium Gurke<br />

C. poggei Gurke<br />

C. polyanthum Guerke<br />

C. polycephalum Baker<br />

C. populneum Beer & H.J.Lam<br />

<strong>and</strong> C. foetidum D. Don, C. lanceolatum F. Muell. <strong>and</strong> C.<br />

lanceolatum Gurke, etc.; some more examples are cited in<br />

Table 2 (Rueda 1993; Hsiao <strong>and</strong> Lin 1995; Steane et al.<br />

1999). Conclusive remarks on the origin <strong>and</strong> classification<br />

Clerodendron <strong>and</strong> healthcare. Shrivastava <strong>and</strong> Patel<br />

C. porphyrocalyx K.Schum. & Lauterb.<br />

C. powellii Benth. & Hook.f.ex Drake<br />

C. preslii Elmer<br />

C. preussii Gurke.<br />

C. prittwitzii Berthold Thomas<br />

C. puberulum Merrill<br />

C. pubescens Lindl.<br />

C. pubescens Walp.<br />

C. pulchrum Fawc.<br />

C. pulverulentum Engl.<br />

C. pumilum Ridley<br />

C. pumilum Spreng.<br />

C. pusillum Guerke<br />

C. putre Schau.<br />

C. pygmaeum Merrill<br />

C. pynaertii De Wild.<br />

C. pyramidale <strong>An</strong>dr.<br />

C. quadrangulatum Berthold Thomas<br />

C. quadriloculare Merrill<br />

C. ramosissimum Baker<br />

C. reflexum H.H.W.Pearson<br />

C. rehmannii Guerke<br />

C. rhytidophyllum K.Schum.<br />

C. ridleyi King & Gamble<br />

C. riedelii Oliver<br />

C. ringoeti De Wild.<br />

C. robecchii Chiov.<br />

C. robinsonii Dop<br />

C. robustum Klotzsch<br />

C. roseum Poit.<br />

C. rotundifolium Oliver<br />

C. rubellum Baker<br />

C. rumphianum Bull<br />

C. rumphianum De Vriese<br />

C. rusbyi Moldenke<br />

C. sagittatum Wall.<br />

C. sagraei Schau.<br />

C. sahelangii Koord.ex Bakh.<br />

C. sanguineum K.Schum.<br />

C. sansibarense Gurke<br />

C. sarawakanum H.J.Lam<br />

C. savanorum De Wild.<br />

C. sc<strong>and</strong>ens Beauv.*<br />

C. scheffleri Guerke*<br />

C. schlechteri Guerke<br />

C. schliebenii Mildbr.<br />

C. schmidtii C.B.Clarke<br />

Table 2 A few species of the <strong>Clerodendrum</strong> genus described by many authors.<br />

C. aculeatum (L.) Schlecht.<br />

C. aculeatum Griseb.<br />

C. angustifolium Salisb.<br />

C. angustifolium Spreng.<br />

C. attenuatum De Wild.<br />

C. attenuatum R.Br.<br />

C. capense D.Don ex Steud.<br />

C. capense Eckl. & Zeyh.ex Schau.<br />

C. capitatum Hook.<br />

C. capitatum Schum & Thou.<br />

C. cauliflorum De Wild.<br />

C. cauliflorum Vatke<br />

C. coccineum D.Dietr.<br />

C. coccineum H.J.Lam<br />

C. congense Baker<br />

C. congense Engl.<br />

C. coriaceum Poir.<br />

C. coriaceum R.Br.<br />

C. divar. catum Jack<br />

C. divar. catum Sieb. & Zucc.<br />

C. fistulosum Becc.<br />

C. fistulosum Bower<br />

C. floribundum Hort.<br />

C. floribundum R.Br.<br />

C. foetidum Bunge<br />

C. foetidum D.Don<br />

C. foetidum Hort.Par.ex Planch.<br />

C. fortunatum Buch.-Ham.ex Wall.<br />

C. fortunatum Linn.<br />

C. fragrans Vent.<br />

C. fragrans Willd.<br />

C. gl<strong>and</strong>ulosum Colebr.ex Wall.<br />

C. gl<strong>and</strong>ulosum Lindl.<br />

C. gr<strong>and</strong>iflorum Schau.<br />

C. gr<strong>and</strong>ifolium Gurke<br />

C. gr<strong>and</strong>ifolium Salisb.<br />

C. gratum Kurz<br />

C. gratum Wall.<br />

C. hirsutum G.Don<br />

C. hirsutum H.H.W.Pearson<br />

C. holstii Guerke ex Baker<br />

C. holstii Gurke.<br />

C. indicum Druce<br />

C. indicum Kuntze<br />

C. schultzei Mildbr.<br />

C. schweinfurthii Gurke<br />

C. scopiferum Miq.<br />

C. semiserratum Wall.<br />

C. sereti De Wild.<br />

C. sericeum Wall.<br />

C. serotinum Carr.*<br />

C. serratum Moon*<br />

C. sieboldii Kuntze<br />

C. silvaeanum Henriques<br />

C. silvestre Berthold Thomas<br />

C. silvicola Guerke.<br />

C. simile H.H.W.Pearson*<br />

C. simplex G.Don<br />

C. singalense Miq.<br />

C. singwanum Berthold Thomas<br />

C. sinuatum Hook.<br />

C. siphonanthus<br />

C. somalense Chiov.<br />

C. speciosissimum Hort.<strong>An</strong>gl.ex<br />

Schau.<br />

C. speciosum Guerke*<br />

C. spicatum Thunb.<br />

C. spinescens Gurke<br />

C. spinosum Spreng.<br />

C. splendens A.Cheval.*<br />

C. splendidum Wall.<br />

C. squamatum Vahl<br />

C. squiresii Merrill<br />

C. stenanthum Klotzsch<br />

C. streptocaulon Hutchinson &<br />

Dalziel<br />

C. strictum Baker<br />

C. stuhlmanni Gurke<br />

C. subp<strong>and</strong>urifolium Kuntze<br />

C. subpeltatum Wernham<br />

C. subreniforme Guerke<br />

C. subscaposum Hemsl.<br />

C. suffruticosum Guerke<br />

C. swynnertonii S.Moore<br />

C. sylvaticum Briq.<br />

C. syringaefolium Baker<br />

C. talbotii Wernham<br />

C. tanganyikense Baker<br />

C. tatomense Dop<br />

C. teaguei Hutchinson<br />

C. ternatum Schinz<br />

C. ternifolium Baker*<br />

C. tessmanni Moldenke<br />

C. thomasii Moldenke<br />

C. thonneri Guerke<br />

C. infortunatum Dennst.<br />

C. infortunatum Gaertn.<br />

C. infortunatum Linn.<br />

C. intermedium Berthold Thomas<br />

C. intermedium Cham.<br />

C. japonicum Mak.<br />

C. japonicum Sweet<br />

C. javanicum Spreng.<br />

C. javanicum Walp.<br />

C. linnaei F.Muell.<br />

C. linnaei Thw.<br />

C. macrocalyx De Wild.<br />

C. macrocalyx H.J.Lam<br />

C. macrophyllum Blume<br />

C. macrophyllum Sims<br />

C. molle H.B. & K.<br />

C. molle Jack<br />

C. myricoides Gurke<br />

C. myricoides R.Br. & Vatke<br />

C. nutans Jack<br />

C. nutans Wall.<br />

C. ovalifolium A.Gray<br />

144<br />

C. thyrsoideum Baker*<br />

C. tomentellum Hutchinson & Dalziel<br />

C. tomentosum R.Br.<br />

C. tonkinense Dop<br />

C. toxicarium Baker*<br />

C. tracyanum F.Muell.ex Benth<br />

C. transvaalense Berthold Thomas<br />

C. tricholobum Guerke<br />

C. trichotomum Thunb.*<br />

C. triflorum Vis.<br />

C. trifoliatum Steud.<br />

C. triphyllum H.H.W.Pearson<br />

C. triplinerve Rolfe<br />

C. tuberculatum A.Rich.<br />

C. ubanghense A.Chevalier<br />

C. ug<strong>and</strong>ense Prain<br />

C. ulei Hayek<br />

C. ulugurense Guerke<br />

C. umbellatum Poir.<br />

C. umbratile King & Gamble<br />

C. uncinatum Schinz<br />

C. urticifolium Wall.<br />

C. utakwense Wernham<br />

C. validipes S.Moore<br />

C. vanoverberghii Merril<br />

C. vanprukii Craib<br />

C. var. ifolium De Wild.<br />

C. var. um Berthold Thomas<br />

C. velutinum A.Chevalier<br />

C. velutinum Berthold Thomas*<br />

C. venosum Wall.<br />

C. verrucosum Splitg.ex De Vriese<br />

C. versteegi Pulle<br />

C. verticillatum D.Don<br />

C. vestitum Wall.ex Steud.<br />

C. villosum Blume<br />

C. violaceum Guerke*<br />

C. viscosum Vent.<br />

C. volubile Beauv.<br />

C. weinl<strong>and</strong>ii K.Schum.ex H.J.Lam<br />

C. welwitschii Gurke<br />

C. wenzelii Merrill<br />

C. whitfieldii Seem.*<br />

C. wildemanianum Exell<br />

C. williamsii Elmer<br />

C. wilmsii Guerke<br />

C. yakusimense Nakai<br />

C. yatschuense H.Winkler<br />

C. yaundense Guerke<br />

C. yunnanense Hu<br />

C. zambesiacum Baker<br />

C. ovalifolium Bakh.<br />

C. ovalifolium Engl.<br />

C. ovatum Poir.<br />

C. ovatum R.Br<br />

C. sc<strong>and</strong>ens Beauv.<br />

C. sc<strong>and</strong>ens Druce<br />

C. sc<strong>and</strong>ens Linn.ex Jackson<br />

C. scheffleri Guerke<br />

C. schifferi A.Cheval.<br />

C. serratum Moon<br />

C. serratum Spreng.<br />

C. simile H.H.W.Pearson<br />

C. simile Merrill<br />

C. ternifolium D.Don<br />

C. ternifolium H.B. & K.<br />

C. thyrsoideum Baker<br />

C. thyrsoideum Guerke<br />

C. toxicarium Baker<br />

C. toxicarium Baker ex Gurke<br />

C. velutinum A.Chevalier<br />

C. velutinum Berthold Thomas<br />

C. velutinum Wall.<br />

of the genus are still lacking <strong>and</strong> a thorough revision of the<br />

classification of this genus supported by molecular systematics<br />

has been suggested by some researchers (Steane et al.<br />

1999, 2004).


Medicinal <strong>and</strong> Aromatic Plant <strong>Science</strong> <strong>and</strong> Biotechnology 1(1), 142-150 ©2007 <strong>Global</strong> <strong>Science</strong> <strong>Books</strong><br />

HO<br />

HO<br />

H 3CO<br />

RO<br />

RO<br />

H<br />

COOH<br />

O<br />

OH O<br />

Hispudilin<br />

Clerodermic acid<br />

O OH<br />

OH<br />

Uncinatone<br />

OH<br />

O<br />

O<br />

H<br />

COOH<br />

Colebrin<br />

O<br />

O<br />

O<br />

HO<br />

HO<br />

HO<br />

OH<br />

H3C HO<br />

OH<br />

OH<br />

O O<br />

OCH2CH3 5-O-ethylclerodendricin<br />

HO<br />

HO<br />

HO<br />

HO<br />

OH<br />

O<br />

OH<br />

HOH2CH2C O<br />

CH2CH2OH HO<br />

OCH 3<br />

R = Gluc. acid (6-OMe)<br />

Acacetin-7-O-methylglucuronate<br />

O<br />

R'O CH 3O CH 3O OR''<br />

Neolignan I<br />

R R', R" R''' = -CH2- Neolignan II<br />

R R' = -CH2-, R" R'" = CH3 O<br />

HO<br />

HO<br />

HO<br />

HOOC<br />

HO<br />

H 3C<br />

HO<br />

HO OH<br />

OR'''<br />

O<br />

O<br />

Neolignan III<br />

R R' = CH 3, R" R'" = -CH 2-<br />

O<br />

O<br />

OH OH<br />

O<br />

O O<br />

HO<br />

OH O<br />

O<br />

OH<br />

O<br />

Verbacoside<br />

Scutellarin<br />

Fig. 1 Some of the major chemical constituents of <strong>Clerodendrum</strong> genus.<br />

145<br />

O<br />

O<br />

O<br />

OH<br />

CN<br />

HO<br />

O<br />

Apigenin<br />

O<br />

HO<br />

1(R) Lucumin<br />

OH<br />

OH<br />

O<br />

OH<br />

Bungein<br />

O<br />

OH<br />

O<br />

Jionoside D<br />

OH<br />

CN<br />

HO<br />

O<br />

H<br />

O<br />

O<br />

OH<br />

Iridiod diglucoside<br />

OH<br />

HO<br />

O<br />

O<br />

O<br />

2(R) Prunasin<br />

Clerosterol<br />

HOOC<br />

OH<br />

OH<br />

Serratagenic acid<br />

OH<br />

OH<br />

OH<br />

OH<br />

OCH 3<br />

COOH<br />

OH<br />

OH


The genus is taxonomically characterized by its entire<br />

or toothed, oppositely arranged leaves, terete stems,<br />

terminally or axillary cymose inflorescence, hypogynous<br />

bisexual flowers, persistent calyx, cylindrical corolla tube<br />

with spreading 5-lobed at the top, exerted stamens, short bifided<br />

stigma, imperfectly 4-celled ovary, exalbumenous<br />

seeds <strong>and</strong> endocarp separating into 4 stony pyrenes (Kirtikar<br />

<strong>and</strong> Basu 1991; Hsiao et al. 1995; Steane et al. 1999).<br />

Resembling its taxonomic diversity, the genus exhibits a<br />

wide spectrum of folk <strong>and</strong> indigenous medicinal uses. Research<br />

is advancing towards scientific validation of classical<br />

therapeutic claims of the genus. In the present review<br />

we have focused on the medicinal <strong>and</strong> health care aspects<br />

of the genus. We have also included the work done on the<br />

phytochemical constituent responsible or believed to be responsible<br />

for the therapeutic properties of various species<br />

belong to the genus (Fig. 1).<br />

ETHNOMEDICAL USES<br />

A number of species from this genus were documented to<br />

be used as folk medicine by various tribes in Asian <strong>and</strong><br />

African continents (Table 3). Many species of the genus<br />

have also been documented in traditional systems of medicine<br />

practiced in countries like India, China, Korea, Thail<strong>and</strong><br />

<strong>and</strong> Japan.<br />

Roots <strong>and</strong> leaf extracts of C. indicum, C. phlomidis, C.<br />

serratum, C. trichotomum, C. chinense <strong>and</strong> C. petasites<br />

have been used for the treatment of rheumatism, asthma<br />

<strong>and</strong> other inflammatory diseases (<strong>An</strong>onymous 1992; Hazekamp<br />

et al. 2001; Kang et al. 2003; Panthong et al. 2003;<br />

Choi et al. 2004; Sungwook et al. 2004; Kanchanapoom et<br />

al. 2005). Plant species such as C. indicum <strong>and</strong> C. inerme<br />

were used to treat coughs, serofulous infection, buboes<br />

problem, venereal infections, skin diseases <strong>and</strong> as a vermifuge,<br />

febrifuge <strong>and</strong> also to treat Beriberi disease (<strong>An</strong>onymous<br />

1992; Rehman et al. 1997; Kanchanapoom et al.<br />

2001). It was also reported that tribals use C. inerme as an<br />

antidote of poisoning from fish, crabs <strong>and</strong> toads (Rehman et<br />

al. 1997; Kanchanapoom et al. 2001; P<strong>and</strong>ey et al. 2003). C.<br />

phlomidis, C. colebrookianum, C. calamitosum <strong>and</strong> C. trichotomum<br />

have been reported to have antidiabetic, antihypertensive<br />

<strong>and</strong> sedative properties (Singh et al. 1980;<br />

Chaturvedi et al. 1984; Khan et al. 1996; Cheng et al. 2001;<br />

Kang et al. 2003; Chae et al. 2004; Choi et al. 2004). C.<br />

cyrtophyllum <strong>and</strong> C. chinense were used for the treatment<br />

of fever, jaundice, typhoid <strong>and</strong> syphilis (Cheng et al. 2001;<br />

Kanchanapoom et al. 2005). Roots, leaves <strong>and</strong> fresh juice<br />

of leaves of C. infortunatum were used in eliminating ascarids<br />

<strong>and</strong> tumors, <strong>and</strong> also as a laxative (<strong>An</strong>onymous 1992).<br />

C. phlomidis has been used as an astringent <strong>and</strong> also in the<br />

treatment of gonorrhea (Rani et al. 1999; Murugesan et al.<br />

2001). The roots of C. serratum have been claimed to be<br />

used in dyspepsia, seeds in dropsy <strong>and</strong> leaves as a febrifuge<br />

<strong>and</strong> in cephalagia <strong>and</strong> ophthalmia (<strong>An</strong>onymous 1992). C.<br />

Clerodendron <strong>and</strong> healthcare. Shrivastava <strong>and</strong> Patel<br />

calamitosum was used as a medicine for the treatment of<br />

kidney, gall <strong>and</strong> bladder stones. This plant is also reported to<br />

have diuretic <strong>and</strong> antibacterial properties (Cheng et al.<br />

2001). In the Chinese system of medicine C. bungei is used<br />

for the treatment of headaches, dizziness, furuncles <strong>and</strong> hysteroptosis<br />

(Zhou et al. 1982; Yang et al. 2002). In India,<br />

fruits of C. petasites are used to produce sterility, while in<br />

China the plant is used as medicine for malaria (Hazekamp<br />

et al. 2001; Panthong et al. 2003). Leaves of C. buchholzii<br />

are reported in African pharmacopeia for treatment of furunculosis,<br />

echymosis <strong>and</strong> gastritis (Nyegue et al. 2005). Other<br />

then their therapeutic use, some of the species of the genus<br />

such as C. inerme, C. thomosonae, C. indicum <strong>and</strong> C. speciosum<br />

are also cultivated <strong>and</strong> used as ornamental plants.<br />

PHYTOCHEMISTRY<br />

As mentioned earlier the genus <strong>Clerodendrum</strong> is reported in<br />

various indigenous systems of medicine throughout the<br />

world for the treatment of various diseases. Efforts have<br />

been made by various researchers to isolate <strong>and</strong> identify<br />

biologically active principle <strong>and</strong> other major chemical<br />

constituents from various species of the genus. Research<br />

reports on the genus denote that the major class of chemical<br />

constituents present in the <strong>Clerodendrum</strong> genus are steroids<br />

such as β-sitosterol, γ-sitosterol octacosanol, clerosterol,<br />

bungein A, acteoside, betulinic acid, clerosterol 3-O-β-Dglucopyranoside,<br />

colebrin A-E, campesterol, 4α-methylsterol,<br />

cholesta-5-22-25-trien-3-β-ol, 24-β-cholesta-5-22-25trine,<br />

cholestanol, 24-methyl-22-dihydrocholestanol, 24-β-<br />

22-25-bis-dehydrocholesterol, 24-α-methyl-22-dehydrocholesterol,<br />

24-β-methyl-22-dehydrocholesterol, 24-ethyl-<br />

22-dehydrocholesterol, 24-ethylcholesterol, 22-dehydroclerosterol,<br />

24-methyllathosterol, 24-β-ethyl-25-dehydrolathosterol,<br />

(24S)-ethylcholesta-5-22-25-triene-3β-ol have<br />

been isolated from various Clerodendron species such as C.<br />

inerme, C. phlomidis, C. infortunatum, C. paniculatum, C.<br />

cyrtophyllum, C. fragrans, C. splendens, C. campbellii <strong>and</strong><br />

C. splendens (Bolger et al. 1970; Abdul-Alim 1971; Joshi et<br />

al. 1979; Sinha et al. 1980; Singh <strong>and</strong> Singhi 1981; Sinha et<br />

al. 1982; Hsu et al. 1983; Singh <strong>and</strong> Prakash 1983; Singh<br />

<strong>and</strong> Singhi 1983; Pinto <strong>and</strong> Nes 1985; Rempler <strong>and</strong> Hunkler<br />

1986; Akihisa et al. 1989; Att-Ur-Rehman et al. 1997; Goswami<br />

et al. 1996; Yang et al. 2000; Kanchanapoom et al.<br />

2001; Yang et al. 2002; Gao et al. 2003a, 2003b; P<strong>and</strong>ey et<br />

al. 2003; Kanchanapoom et al. 2005; Lee et al. 2006).<br />

<strong>An</strong>other class of constituents are terpenes which include:<br />

monoterpenes, diterpenes, triterpenes, iridoids <strong>and</strong><br />

sesquiterpenes. Terpenes such as α-amyrin, β-amyrin, caryoptin,<br />

3-epicaryoptin, 16-hydroxy epicaryoptin, clerodendrin<br />

A, B <strong>and</strong> C, clerodin, clerodermic acid, cleroinermin,<br />

friedelin, gramisterol, iridoids (inerminoside A, B, C <strong>and</strong> D,<br />

melittaside, monomelittoside, sammangaoside, ug<strong>and</strong>oside,<br />

8-O-acetylmioporoside), obtusifoliol, oleanolic acid, royleanone,<br />

dehydroroyleanone, sesquiterpene (sammangaoside A,<br />

Table 3 A few species of <strong>Clerodendrum</strong> genus <strong>and</strong> their distribution in the world.<br />

Scientific Name Synonym Distribution<br />

C. inerme Gaertn.<br />

India, Sri Lanka, South East Asian countries, Australia, Pacific Isl<strong>and</strong>s<br />

C. phlomidis Linn. f.<br />

C. multiforum Burm. f. India<br />

C. serratum Spreng.<br />

India<br />

C. infortunatum Linn.<br />

The Philippines<br />

C. siphonanthus R. Br.<br />

C. indicum (Linn) Kuntze India<br />

C. commersonii Spreng.<br />

China<br />

C. glabrum E. Mey.<br />

Southern Africa<br />

C. triphyllum R. Br.<br />

Southern Africa<br />

C. trichotomum<br />

China, Korea, Japan<br />

C. bungei Stued.<br />

China<br />

C. calamitosum L.<br />

Indonesia, Taiwan<br />

C. cyrtophyllum Turez.<br />

Taiwan<br />

C. chinense (Osb.) Mabberley<br />

C. fragrans (Vent.) Willd. Tropical regions of Asia<br />

C. colebrookianum<br />

India, South Asian countries<br />

C. myricoides<br />

South Africa<br />

C. petasites S. Moore<br />

India, Malaysia, Sri Lanka, Vietnam, Southern China<br />

C. philippinum Schauer<br />

Queensl<strong>and</strong>, Australia<br />

C. heterophyllum R. Br. & Thb.<br />

Southern Africa<br />

146


Medicinal <strong>and</strong> Aromatic Plant <strong>Science</strong> <strong>and</strong> Biotechnology 1(1), 142-150 ©2007 <strong>Global</strong> <strong>Science</strong> <strong>Books</strong><br />

B) clerodendrin A, uncinatone, Mi saponins-A, friedelanone,<br />

lupeol, betulinic acid, royleanone <strong>and</strong> dehydroroyleanone,<br />

<strong>and</strong> betulin have till now been isolated from various<br />

Clerodendron species such as C. inerme, C. phlomidis,<br />

C. paniculatum, C. colebrookianum, C. wildii, C. uncinatum,<br />

C. m<strong>and</strong>arinorum, C. thomsonae, C. fragrans, C.<br />

ug<strong>and</strong>ense, C. chinense (Joshi et al. 1979; Sharma <strong>and</strong><br />

Singh 1979; Singh et al. 1981; Sinha et al. 1981; Seth et al.<br />

1982; Singh <strong>and</strong> Prakash 1983; Achari et al. 1990; Raha et<br />

al. 1991; Achari et al. 1992; Rao et al. 1993; Calis et al.<br />

1994; El-Shamy et al. 1996; Kawai et al. 1998; Hazekamp<br />

2001; Kanchanapoom et al. 2001; Yang et al. 2002; Kumari<br />

et al. 2003; Chae et al. 2004; Dorsaz et al. 2004; Nishida et<br />

al. 2004; Min et al. 2005).<br />

Flavonoids are another class of compounds which are<br />

mainly present in Clerodendron speices <strong>and</strong> they are also<br />

responsible for few biological activities. The major flavonoids<br />

present are cynaroside, 5-hydroxy-4’-7-dimethoxy<br />

methyl flavone, kaempferol, salvigenin, 4-methyl scutellarein,<br />

5,7,4 O-trihydroxyflavone, apigenin, luteolin, acacetin-7-O-glucuronide,<br />

hispidulin, 2’-4-4’trihydroxy-6’methyl<br />

chalcone, 7-hydroxy flavone, luteolin, naringin-4’-O-α-glucopyranoside,<br />

pectolinarigenin, cirsimaritin, cirsimaritin-4’glucoside,<br />

quercetin-3-methyl ether which were isolated<br />

from C. inerme, C. phlomidis, C. petasites, C. trichotomum,<br />

C. m<strong>and</strong>arinorum, <strong>and</strong> C. infortunatum (Vendatham et al.<br />

1977; Seth et al. 1982; Raha et al. 1989; Achari et al. 1990;<br />

Raha et al. 1991; Roy <strong>and</strong> P<strong>and</strong>ey 1994, 1995; Roy et al.<br />

1995 ; El-Shamy et al. 1996; <strong>An</strong>am 1997, 1999).<br />

There are also other chemical constituents present<br />

which include volatile constituents such as 5-O-ethylcleroindicin<br />

D, linalool, benzyl acetate <strong>and</strong> benzyl benzoate,<br />

which have been isolated from C. canescens, C. cyrtophyllum,<br />

C. inerme <strong>and</strong> C. philippinum (Yang et al. 2002; Nyegue<br />

et al. 2004; Wong <strong>and</strong> Tan 2005).<br />

Other chemical constituent includes cyanogenic glycosides<br />

such as lucumin <strong>and</strong> prunasin which were isolated<br />

from C. grayi (Miller et al. 2006). Phenolic compounds like<br />

β-benzyl alcohol, β-benzyl alcohol-D-glucoside, neolignan,<br />

darendoside-B, phenyl propanoids like (isovarbascoside,<br />

verbascoside, leucosceptoside), vanillic acid, anisic acid,<br />

para-hydroxy benzoic acid, gallic acid have been reported<br />

in C. inerme, C. bungei <strong>and</strong> C. dauricum (Liu <strong>and</strong> Fu 1980;<br />

Gabriele <strong>and</strong> Rimpler 1981; Zhou et al. 1982; Gabriele et al.<br />

1983; Sakurai <strong>and</strong> Kato 1983; Calis et al. 1994); D-mannitol<br />

from C. serratum (Garg <strong>and</strong> Verma 2006). Carbohydrates<br />

like glucose, fructose, sucrose are been reported in C.<br />

m<strong>and</strong>arinorum <strong>and</strong> C. inerme. Other constituents such as<br />

ribosome-inactivating protein, salidroside, jinoside-D, acetoside<br />

have been isolated from C. inerme (Olivieri et al.<br />

1996), while trichotomoside, cytotoxic pheophorbides <strong>and</strong><br />

cleromyrin-I have been isolated from C. trichotomum, C.<br />

calamitosum <strong>and</strong> C. cyrtophyllum (Bashwira et al. 1989;<br />

Cheng et al. 2001; Chae et al. 2006).<br />

BIOLOGICAL ACTIVITIES<br />

The genus <strong>Clerodendrum</strong> contains many plant species that<br />

are being used in various health care systems for the treatment<br />

of various disorders including life-threatening diseases.<br />

To validate traditional claims associated with the genus<br />

many studies are being carried out using various animal<br />

models <strong>and</strong> in vitro assays. These studies showed that the<br />

different species of the genus possess potent anti-inflammatory,<br />

antidiabetic, antimalarial, antiviral, antihypertensive,<br />

hypolipidemic <strong>and</strong> antioxidant activities <strong>and</strong> have potential<br />

to be developed as potent remedial agents from natural<br />

resources. Some major activities are described below.<br />

<strong>An</strong>ti-inflammatory activities<br />

Inflammation is a very complex pathophysiological process<br />

involving a variety of biomoleucles responsible for causing<br />

it such as leucocytes, macrophages, mast cells, platelets <strong>and</strong><br />

lymphocytes by releasing eicosanoids <strong>and</strong> nitric oxide. Pro-<br />

147<br />

inflammatory cytokines such as TNF-α <strong>and</strong> IL-1β are also<br />

responsible for various inflammatory conditions. Many species<br />

of the genus <strong>Clerodendrum</strong> showed potent anti-inflammatory<br />

activity. C. phlomidis was reported for significantly<br />

decreasing paw oedemas induced by carrageenan in rats at a<br />

dose of 1g/kg (Surendrakumar 1988). Similarly C. petasites<br />

was reported to show moderate anti-inflammatory activity<br />

in the acute phase of inflammation in rats. The ED50 values<br />

of the experiment were reported to be 2.34 mg/ear <strong>and</strong><br />

420.41 mg/kg in rats (Panthong et al. 2003), it has been suggested<br />

by the authors that the anti-inflammatory activity of<br />

the plant extract could be due to the inhibition of prostagl<strong>and</strong>in<br />

synthesis by the extract.<br />

The anti-inflammatory activity of C. trichotomum leaves<br />

were checked in rat, mice <strong>and</strong> Raw 264.7 macrophage<br />

cells using experimental models with 1 mg/kg solution of<br />

30% <strong>and</strong> 60% methanolic extracts of leaves. Experimental<br />

results concluded that inhibition by methanolic extract was<br />

comparable to that of the positive control in an acute inflammation<br />

model, while in the chronic model the extract<br />

showed 10% higher activity than the positive control. It also<br />

suppressed the levels of prostagl<strong>and</strong>in E2 (PGE2) in RAW<br />

264.7 macrophage cells (Choi et al. 2004). A phenyl propanoid<br />

glycoside 'acetoside' isolated from C. trichotomum also<br />

showed anti-inflammatory activity by inhibiting the release<br />

of histamine, arachidonic acid <strong>and</strong> prostagl<strong>and</strong>in E2 in RBL<br />

2H3 cells. The mechanism identified for the inhibition of<br />

histamine release was related to calcium concentration (Lee<br />

et al. 2006).<br />

Xanthine oxidase (XO) is the enzyme responsible for<br />

the formation of uric acid from the purines hypoxanthine<br />

<strong>and</strong> xanthine, <strong>and</strong> is responsible for the medical condition,<br />

gout. Gout is caused by the deposition of uric acid in the<br />

joints leading to painful inflammation. Purified hydroalcoholic<br />

extracts of leaves <strong>and</strong> branches of C. floribundum<br />

showed 84% inhibition of XO activity (Sweeney et al.<br />

2001). Results of the experiment indicate the potential of<br />

the plant species to be developed as a remedy for XO-induced<br />

diseases.<br />

Flavonoid glycosides of C. inerme showed modulation<br />

in calcium transport in isolated inflamed rat liver <strong>and</strong> thereby<br />

showed reduction in inflammation. The results obtained<br />

in the experiment were comparable with indomethacine<br />

used as a positive control (Somasundram <strong>and</strong> Sadique 1986).<br />

The alcoholic extract of roots of C. serratum showed a significant<br />

anti-inflammatory activity in carrageenan <strong>and</strong> also<br />

in the cotton pellet model in experimental mice, rats <strong>and</strong><br />

rabbits (Narayanan et al. 1999).<br />

<strong>An</strong>timicrobial activites<br />

<strong>An</strong>tiinfective compounds from natural resources are of great<br />

interest as the existing drugs are getting less effective due to<br />

increased tolerance of microorganisms. A number of species<br />

from the genus <strong>Clerodendrum</strong> were documented in ancient<br />

texts for their antimicrobial action. To validate these claims,<br />

research work was carried out with various Gram positive<br />

<strong>and</strong> Gram negative bacterial strains <strong>and</strong> also with fungal <strong>and</strong><br />

viral pathogens. Dried, aerial parts of C. inerme showed potent<br />

antiviral activity against Hepatitis B virus with an ED50<br />

value of 16 µg/ml (Mehdi et al. 1997). Essential oil obtained<br />

from leaves of the plant showed antifungal activity against<br />

variety of fungal species such as Alternaria species,<br />

Aspergillus species, Cladosporium herbarum, Cunnimghamella<br />

echinulata, Helminthosporium saccharii, Microsporum<br />

gypseum, Mucor mucedo, Penicillium digitatum, Rhizopus<br />

nigricans, Trichophyton rubrum <strong>and</strong> Trichothecium roseum<br />

(Sharma <strong>and</strong> Singh 1979). Alcoholic extracts of leaves<br />

<strong>and</strong> flowers of C. inerme also exhibited antibacterial activity<br />

against Escherichia coli <strong>and</strong> Staphylococcus aureus (George<br />

<strong>and</strong> P<strong>and</strong>alai 1949). Pectolinarigenin <strong>and</strong> chalcone glucoside<br />

isolated from leaf of C. phlomidis showed antifungal<br />

activity (Roy et al. 1995).<br />

Two phenyl propanoid glycosides (acteoside <strong>and</strong> acteoside<br />

isomer) isolated from C. trichotomum showed potent


inhibition of HIV-1 integrase with IC50 values of 7.8 ± 3.6<br />

<strong>and</strong> 13.7 ± 6.0 µM (Kim et al. 2001). A new hydroquinone<br />

diterpenoid was isolated from C. uncinatum <strong>and</strong> was<br />

strongly fungi toxic to the spores of Cladosporium cucumerinum<br />

(Dorsaz et al. 2004). Hexane extracts of C. colebrookianum<br />

at concentrations of 1000 <strong>and</strong> 2000 ppm<br />

showed strong antibacterial activities against various Gram<br />

positive <strong>and</strong> Gram negative pathogens such as S. aureus,<br />

Staphylococcus haemolyticus, E. coli, Pseudomonas aeruginosa<br />

(Misra et al. 1995).<br />

Two flavonoids from roots of C. infortunatum, cabruvin<br />

<strong>and</strong> quercetin, showed strong antifungal activity. The former<br />

showed activity against Alternaria carthami <strong>and</strong> Helminthosporin<br />

oryzae, the latter against Alternaria alternate<br />

<strong>and</strong> Fusarium lini at concentrations of 200, 500 <strong>and</strong> 1000<br />

mg/ml (Roy et al. 1996). Mi-saponin-A, a triterpenoid saponin<br />

isolated from the roots of C. wildii, showed potent<br />

antifungal activity against Cladosporium cucumerinum (Toyoto<br />

et al. 1990).<br />

<strong>An</strong>timalarial activities<br />

In various ancient literatures related to healthcare <strong>Clerodendrum</strong><br />

have been reported for its antimalarial activities because<br />

of the presence of a bitter principle. Studies with different<br />

parasites support these ancient claims. The alcoholic<br />

extract of C. phlomidis showed antimalarial activity against<br />

Plasmodium falciparum with an IC50 value of 48 µg/ml<br />

(Simonsen et al. 2001). <strong>An</strong>other Indian species, C. inerme<br />

also inhibited the growth of larvae of Ades aegypti, Culex<br />

quinquefasciatus <strong>and</strong> Culex pipiens at 80 <strong>and</strong> 100 ppm<br />

concentration of petroleum ether <strong>and</strong> ether extracts (Gayar<br />

<strong>and</strong> Shazll 1968; Kalyanasundaram <strong>and</strong> Das 1985). C. myricoides<br />

a species from Southern Africa was also tested positive<br />

for its antimalarial activity against both sensitive <strong>and</strong><br />

resistant strains of P. falciparum with IC50< 30 µg/ml (Muregi<br />

et al. 2004), it also showed 31.7% suppression in parasitaemia<br />

against cloroquine tolerant strain of Plasmodium<br />

berghei NK65 (Muregi et al. 2007). These plants may be<br />

useful as a source for novel anti-plasmodial drugs/compounds<br />

from natural origin.<br />

<strong>An</strong>tioxidant activities<br />

<strong>An</strong>tioxidant compounds are responsible for scavenging free<br />

radicals, which are produced during normal metabolism or<br />

during adverse conditions that can be harmful to biological<br />

systems <strong>and</strong> leading to death of an organism. Species like C.<br />

inerme have been used as antioxidant drugs in various indigenous<br />

systems of medicines (Masuda et al. 1999). Organic<br />

<strong>and</strong> aqueous extracts of C. colebrookianum showed significant<br />

inhibition of lipid peroxidation in vitro <strong>and</strong> in vivo<br />

induced by FeSO4-ascorbate in rats. Aqueous extracts<br />

showed strongest inhibitory activity over organic extracts.<br />

This lends scientific support to the therapeutic use of the<br />

plant leaves claimed in tribal medicine (Rajlakshmi et al.<br />

2003). Isoacteoside, trichotomoside <strong>and</strong> jionoside D, three<br />

compounds isolated from C. trichotomum, when tested<br />

showed significant scavenging activity of intracellular reactive<br />

oxygen species produced by hydrogen peroxide suggesting<br />

their antioxidant properties (Chae et al. 2004, 2005,<br />

2006). Apigenin-7-O-β-D-glucuronopyranoside (AGC), isolated<br />

from C. trichotomum leaves decreased the volume<br />

of gastric juice <strong>and</strong> increased the gastric pH in a dose-dependent<br />

manner, decreasing the number of gastric lesions.<br />

A malondialdehyde (MDA) level, which is the end product<br />

of lipid peroxidation, was also decreased by AGC (i.d. 3<br />

mg/kg), which increased significantly after the induction of<br />

reflux oesophagitis. The MDA levels did not decrease when<br />

either apigenin or omeprazole were used as a control suggesting<br />

that AGC has an antioxidative mechanism to reduce<br />

gastric lesions. Apigenin glucuronopyranoside also decreased<br />

mucosal glutathione (GSH) levels significantly suggesting<br />

that AGC possesses free radical scavenging activity.<br />

So it can be concluded that AGC is more potent in inhibit-<br />

Clerodendron <strong>and</strong> healthcare. Shrivastava <strong>and</strong> Patel<br />

148<br />

ing reflux oesophagitis <strong>and</strong> gastritis <strong>and</strong> may therefore be a<br />

promising drug for their treatment (Min et al. 2005). In present<br />

lifestyles where stress has taken an unwanted important<br />

position leading to excess production of free radicals these<br />

natural remedies will prove a support to our biological system<br />

to balance metabolism.<br />

Other biological activities of <strong>Clerodendrum</strong> genus<br />

Other major biological activites reported for this genus are<br />

antihypertensive, antitumor, antidiabetic, antihyperlipidemic,<br />

larvicidal, antidiarrhoel activities. Organic extracts of C.<br />

inerme showed strong uterine stimulant activity when tested<br />

in female rats <strong>and</strong> rabbits (Sharaf et al. 1969), <strong>and</strong> also<br />

showed strong antihemolytic activity in human adults at<br />

0.02-2.0 mg/ml, with inhibition of phospholipase at 0.05-1.5<br />

mg/ml (Somasundaram <strong>and</strong> Sidique 1986). The methanolic<br />

extract of C. multiflorum leaves showed antidiarrhoeal activity<br />

against castor oil-induced diarrhoea, PGE2-induced<br />

enteropooling <strong>and</strong> caused reduction in gastrointestinal<br />

motility in rats (Rani et al. 1999), while leaf juice at 0.1%<br />

showed anthelmentic activity against Ascaris lumbricoides,<br />

Phreitima posthuma <strong>and</strong> Taenia solium (Garg <strong>and</strong> Sidique<br />

1992). Two compounds, isoacteoside <strong>and</strong> jionoside D isolated<br />

from C. trichotomum also reduced the levels of apoptotic<br />

cells induced by the action of hydrogen peroxide (Chae<br />

et al. 2004, 2005). C. bungei showed antitumor activity in<br />

hepatic cells of mice at a dose of 100 g/kg (Shi et al. 1993).<br />

CNS-related activities were also observed in C. phlomidis<br />

showing tranquillizing, CNS depressant, muscle relaxant<br />

<strong>and</strong> psychopharmacological effects in experimental mice<br />

<strong>and</strong> rats (Murugesan et al. 2001). C. m<strong>and</strong>arinorum root extracts<br />

showed strong binding with opiate, adenosine-1, α-2adrenergic,<br />

5HT-1, 5HT-2, dopamine-2, histamine-1, GABA<br />

(A), <strong>and</strong> GABA (B) receptors. Isolated compounds of these<br />

plants showed weak binding with these recepters suggesting<br />

its synergestic effect (Zhu et al. 1996). C. inerme extracts<br />

showed hypotensive effects in dogs at 50 mg/kg (Bhakuni et<br />

al. 1969).<br />

A decoction of the entire C. phlomidis plant has been reported<br />

to have antidiabetic activity. A dose of 1 g/kg showed<br />

antidiabetic effects in epinephrine <strong>and</strong> alloxan induced<br />

hyperglycemia in rats <strong>and</strong> it also showed antihyperglycemic<br />

activity in human adults at a dose of 15-30 g/day (Chaturvedi<br />

et al. 1984). Organic <strong>and</strong> crude extracts of C. colebrookianum<br />

significantly lowered the serum lipid profile in<br />

rats suggesting that it has cardioprotective potential (Devi<br />

<strong>and</strong> Sharma 2004). The methanolic extract of C. phlomidis<br />

<strong>and</strong> leaf extracts of C. inerme showed antispasmodic activity<br />

in mouse (200 mg/kg; Murugesan et al. 2001) <strong>and</strong> guinea<br />

pigs (2 mg/ml; Cox et al. 1989). Ethanolic extract (2.25-9.0<br />

mg/ml) of C. petasites evaluated for spasmolytic activity in<br />

guinea-pigs showed spasmolysis on tracheal smooth muscles;<br />

it also relaxed the smooth muscle which was contracted<br />

by exposure to histamine. The activity of smooth muscle<br />

relaxation was attributed to hispidulin (flavonoid) with an<br />

EC50 (3.0 ± 0.8 * 10 -5 M) suggesting hispidulin has anti-inflammatory<br />

activity (Hazekamp 2001). Dichloromethane<br />

leaf extracts of C. myricoides indicated antimutagenic properties<br />

against Salmonella typhimurium TA98 <strong>and</strong> TA100<br />

bacterial strains (Reid et al. 2006).<br />

No adverse effects of the genus have been reported in<br />

the literature until now. Various species of the genus like C.<br />

infortunatum, C. serratum, C. phlomidis have been reported<br />

to be safe in the prescribed dosage in traditional system of<br />

medicines (<strong>An</strong>ynomous 1; Sharma PV 2001).<br />

SUMMARY<br />

The genus <strong>Clerodendrum</strong> has been cited in many indigenous<br />

systems of health care for the treatment of variety of disorders.<br />

A few species extensively used as folk medicines for<br />

years have been investigated for their chemical constituents<br />

<strong>and</strong> biological activity to confirm these traditional claims.<br />

The genus is reported to have activities against a wide spec-


Medicinal <strong>and</strong> Aromatic Plant <strong>Science</strong> <strong>and</strong> Biotechnology 1(1), 142-150 ©2007 <strong>Global</strong> <strong>Science</strong> <strong>Books</strong><br />

trum of disorders which includes many life-threatening diseases<br />

like HIV. Still there are many species of the genus<br />

having a potential towards many disorders in their unexplored<br />

fold.<br />

ACKNOWLEDGEMENT<br />

The authors wish to thank Mr. H. Srinivasa for his help in preparing<br />

the manuscript.<br />

REFERENCES<br />

Abdul-Alim MA (1971) A chemical study of the leaves of Clerodendron<br />

inerme. Planta Medica 19, 318-321<br />

Achari B, Chaudhuri C, Saha CR, Dutta PK, Pakrashi SC (1990) A clerodane<br />

diterpene <strong>and</strong> other constituents of Clerodendron inerme. Phytochemistry<br />

29, 3671-3673<br />

Achari B, Giri C, Saha CR, Dutta PK, Pakrashi SC (1992) A neo-clerodane<br />

diterpene from Clerodendron inerme. Phytochemistry 31, 338-340<br />

Akihisa T, Ghosh P, Thakur S, Nagata H, Tamura T, Matsumoto T (1990)<br />

24,24-dimethyl-25-dehydrolophenol, a 4-α-methylsterol from <strong>Clerodendrum</strong><br />

inerme. Phytochemistry 29, 1639-1641<br />

Akihisa T, Matsubara Y, Ghosh P, Thakur S, Tamura T, Matsumoto T<br />

(1989) Sterols of some <strong>Clerodendrum</strong> species (Verbenaceae) occurring of the<br />

24-α <strong>and</strong> 24-β epimers of 24-ethylsterols lacking a Δ 25 -bond. Steroids 53,<br />

625-638<br />

<strong>An</strong>am EM (1997) Novel flavone <strong>and</strong> chalcone glycosides from Clerodendron<br />

phlomidis (Verbenaceae). Indian Journal of Chemistry 36B, 897-900<br />

<strong>An</strong>am EM (1999) Novel flavonone <strong>and</strong> chalcone glycosides from Clerodendron<br />

phlomidis (Verbanaceae). Indian Journal of Chemistry 38B, 1307-1310<br />

<strong>An</strong>ynomous (1992) The Useful Plants of India, Publication <strong>and</strong> Information<br />

Directorate, CSIR, New Delhi, 132 pp<br />

<strong>An</strong>ynomous 1 (2005) Quality St<strong>and</strong>ards of Indian Medicinal Plants (Vol 3) Indian<br />

Council of Medical Research, New Delhi, 167 pp<br />

Atta-Ur-Rehman, Begum S, Saied S, Choudhary MI, Farzana A (1997) A<br />

steroidal glycoside from Clerodendron inerme. Phytochemistry 45, 1721-<br />

1722<br />

Bashwira S, Hootelé C, Tourwé D, Pepermans H, Laus G, van Binst G<br />

(1989) Cleromyrine I, a new cyclohexapeptide from <strong>Clerodendrum</strong> myricoides.<br />

Tetrahedron 18, 5845-5852<br />

Bhakuni OS, Dhar ML, Dhar MM, Dhavan BN, Mehrotra BN (1969)<br />

Screening of Indian plants for biological activities Part II. Indian Journal of<br />

Experimental Biology 7, 250-262<br />

Bolger LM, Rees HH, Ghisalberti EL, Goad LJ, Goodwin TW (1970) Isolation<br />

of two new sterols from <strong>Clerodendrum</strong> campbellii. Tetrahedron Letters<br />

11, 3043-3046<br />

Bolger LM, Rees HH, Gisalberti EL, Goad LJ, Goodwin TW (1970) Biosynthesis<br />

of 24-ethylcholesta-5, 22, 25-trien-3β-ol, a new sterol from <strong>Clerodendrum</strong><br />

campbellii. Biochemistry Journal 118, 197-200<br />

Calis I, Hosny M, Yuruker A (1994) Inerminosides A1, C <strong>and</strong> D three iridoid<br />

glycosides from Clerodendron inerme. Phytochemistry 37, 1083-1085<br />

Calis I, Hosny M, Yuruker A, Wright AD, Sticher O (1994) Inerminosides A<br />

<strong>and</strong> B two novel complex iridoid glycosides from Clerodendron inerme.<br />

Journal of Natural Products 57, 494-500<br />

Chae S, Kang KA, Kim JS, Hyun JW, Kang SS (2006) Trichotomoside: A<br />

new antioxidative phenylpropanoid glycoside from Clerodendron trichotomum.<br />

Chemistry <strong>and</strong> Biodiversity 3, 41-48<br />

Chae S, Kim JS, Kang KA, Bu HD, Lee Y, Hyun JW, Kang SS (2004)<br />

<strong>An</strong>tioxidant activity of jionoside D from Clerodendron trichotomum. Biological<br />

<strong>and</strong> Pharmaceutical Bulletin 27, 1504-1508<br />

Chae S, Kim JS, Kang KA, Bu HD, Lee Y, Seo YR, Hyun JW, Kang SS<br />

(2005) <strong>An</strong>tioxidant activity of isoacteoside from Clerodendron trichotomum.<br />

Journal of Toxicology <strong>and</strong> Environmental Health A 68, 389-400<br />

Chaturvedi GN, Subramaniyam PN, Tiwari SK, Singh KP (1984) Experimental<br />

<strong>and</strong> clinical studies of diabetes mellitus evaluating the efficacy of an<br />

indigenous oral hypoglycemic drug – arani. <strong>An</strong>cient <strong>Science</strong> Life 3, 216-224<br />

Cheng H-H, Wang H-K, Ito J, Bastow KF, Tachibana Y, Nakanishi Y, Xu Z,<br />

Luo T-Y, Lee K-H (2001) Cytotoxic pheophorbide-related compounds from<br />

<strong>Clerodendrum</strong> calamitosum <strong>and</strong> C. cyrtophyllum. Journal of Natural Products<br />

64, 915-919<br />

Choi J-H, Wang W-K, Kim H-J (2004) Studies on the anti-inflammatory<br />

effects of Clerodendron trichotomum thunberg leaves. Archives of Pharmacological<br />

Research 27, 189-193<br />

Cox PA, Sperry LB, Tuominen M, Bohlin L (1989) Pharmacological activity<br />

of the Samoan Ethnopharmacopoeia. Economic Botany 43, 487-497<br />

Devi R, Sharma DK (2004) Hypolipidemic effect of different extracts of Clerodendron<br />

colebrookianum Walp in normal <strong>and</strong> high-fat diet fed rats. Journal<br />

of Ethnopharmacology 90, 63-68<br />

Dorsaz A-C, Marston A, Stoeckli-Evans H, Msonthi JD, Hostettmann K<br />

(2004) Uncinatone, a new antifungal hydroquinone diterpenoid from <strong>Clerodendrum</strong><br />

uncinatum Schinz. Helvetica Chimica Acta 68, 1605-1610<br />

El-Shamy AM, El-Shabrawy ARO, El-Fiki N (1996) Phytochemical study of<br />

149<br />

clerodendron inerme L. growing in Egypt. Zagazig Journal of Pharmaceutical<br />

<strong>Science</strong> 5, 49-53<br />

Gabriele L, Rimpler H (1981) Iridoids in <strong>Clerodendrum</strong> thomsonae Balf. F.,<br />

Verbanaceae. Zeitschrift fur Naturforschung C: A Journal of Biosciences 36C,<br />

708-713<br />

Gabriele L, Rimpler H (1983) Distribution of iridoid glycosides in <strong>Clerodendrum</strong><br />

species. Phytochemistry 22, 1729-1734<br />

Gao LM, Wei XM, He YQ (2003a) Studies on chemical constituents in leafs of<br />

Clerodendron fragrans. Zhongguo Zhong Yao Za Zhi 28, 948-951<br />

Gao LM, Wei XM, He YQ (2003b) Studies on chemical constituents of <strong>Clerodendrum</strong><br />

bungei. Zhongguo Zhong Yao Za Zhi 28, 1042-1044<br />

Garg SC, Siddiqui N (1992) <strong>An</strong>thelmintic activity of Vernonia teres L., <strong>and</strong><br />

<strong>Clerodendrum</strong> phlomidis L. Journal of Research Education in Indian Medicine<br />

11, 1-3<br />

Garg VP, Verma SCL (2006) Chemical examination of Clerodendron serratum:<br />

Isolation <strong>and</strong> characterization of D-mannitol. Journal of Pharmaceutical<br />

<strong>Science</strong>s 56, 639-640<br />

Gayar R, Shazll A (1968) Toxicity of certain plants to Culex pipiens larvae.<br />

Bulletin of the Society of Entomology, Egypt 52, 467<br />

George M, P<strong>and</strong>alai KM (1949) Investigations on plant antibiotics, Part IV.<br />

Further search for antibiotic substances in Indian medicinal Plants. Indian<br />

Journal of Medical Research 37, 169-181<br />

Goswami P, Kotoky J, Chen Z-N, Lu Y (1996) A sterol glycoside from leaves<br />

of Clerodendron colebrookianum. Phytochemistry 41, 279-281<br />

Hazekamp A, Verpoorte R, Panthong A (2001) Isolation of a bronchodilator<br />

flavonoid from the Thai medicinal plant <strong>Clerodendrum</strong> petasites. Journal of<br />

Ethnopharmacology 78, 45-49<br />

Hsiao JY, Lin ML (1995) A Chemotaxonomic study of essential oils from the<br />

leaves of genus <strong>Clerodendrum</strong> (Verbenaceae) native to Taiwan. Botany Bulletin<br />

Academica Sinica 36, 247-251<br />

Hsu YC, Chen C, Yuh P, Hsu HY (1983) Constituents of Clerodendron paniculatum<br />

Linn var. albiflorum Hemsl. Chung-kuo Nung Yeh Hua Hsueh Hui<br />

Chih 21, 26<br />

Joshi KC, Singh P, Mehra A (1979) Chemical investigation of the roots of different<br />

Clerodendron species. Planta Medica 37, 64-66<br />

Kalyanasundaram M, Das PK (1985) Larvicidal <strong>and</strong> synergestic activity of<br />

plant extracts for mosquito control. Indian Journal of Medical Research 82,<br />

19-23<br />

Kanchanapoom T, Chumsri P, Kasai R, Otsuka H, Yamasaki K (2005) A<br />

new iridoid diglycoside from <strong>Clerodendrum</strong> chinense. Journal of Asian Natural<br />

Products Research 7, 269-272<br />

Kanchanapoom T, Kasaia R, Chumsric P, Hiragad Y, Yamasaki K (2001)<br />

Megastigmane <strong>and</strong> iridoid glucosides from <strong>Clerodendrum</strong> inerme. Phytochemistry<br />

58, 333-336<br />

Kang DG, Lee YS, Kim HJ, Lee YM, Lee HS (2003) <strong>An</strong>giotensin converting<br />

enzyme inhibitory phenylpropanoid glycosides from Clerodendron trichotomum.<br />

Journal of Ethnopharmacology 89, 151-154<br />

Kawai K, Amano T, Nishida R, Kuwahara Y, Fukami H (1998) Clerodendrins<br />

from Clerodendron trichotomum <strong>and</strong> their feeding stimulant activity for<br />

the turnip sawfly. Phytochemistry 49, 1975-1980<br />

Khan MA, Singh VK (1996) A folklore survey of some plants of Bhopal district<br />

forest Madhya Pradesh India described as antidiabetics. Fitoterapia 67,<br />

416-421<br />

Kim HJ, Woo ER, Shin CG, Hwang DJ, Park H, Lee YS (2001) HIV-I integrase<br />

inhibitory phenyl propanoid glycosides from C. trichotomum. Archives<br />

in Pharmacological Research 24, 286-291<br />

Kirtikar KR, Basu BD (1991) Indian Medicinal Plants (2 nd Edn, Vol III) Bishen<br />

Singh Mahendra Pal Sing Publication, 1945 pp<br />

Kumar D, Verma HN, Tuteja N, Tewari KK (1997) Cloning <strong>and</strong> characterisation<br />

of a gene encoding an antiviral protein from <strong>Clerodendrum</strong> aculeatum<br />

L. Plant Molecular Biology 33, 745-751<br />

Kumari GNK, Balach<strong>and</strong>ran J, Aravind S, Ganesh MR (2003) <strong>An</strong>tifeedant<br />

<strong>and</strong> growth inhibitory effects of some neo-clerodane diterpenoids isolated<br />

from Clerodendron species (Verbanaceae) on Earias vitella <strong>and</strong> Spodoptera<br />

litura. Journal of Agriculture <strong>and</strong> Food Chemistry 51, 1555-1559<br />

Lee JH, Lee JY, Kang HS, Jeong CH, Moon H, Whang WK, Kim CJ, Sim<br />

SS (2006) The effect of acteoside on histamine release <strong>and</strong> arachidonic acid<br />

release in RBL-2H3 mast cells. Archives in Pharmacological Research 29,<br />

508-513<br />

Lu Y-L, Fu F-Y (1980) Studies on the chemical constituents of Clerodendron<br />

dauricum L. Part IV. Identification of carboxylic acids. Ts'ao Yao 11, 152-153<br />

Masuda T, Yonemori S, Oyama Y, Takeda Y, Tanaka T, <strong>An</strong>doh T, Shinohara<br />

A, Nakata M (1999) Evaluation of the antioxidant activity of environmental<br />

plants: activity of the leaf extracts from seashore plants. Journal of Agriculture<br />

<strong>and</strong> Food Chemistry 47, 1749-1754<br />

Mehdi H, Tan GT, Pezzuto JM, Fong HHS, Farnsworth NR, EL-Feraly FS<br />

(1997) Cell culture assay system for the evaluation of natural product mediated<br />

anti-hepatitis B virus activity. Phytomedicine 3, 369-377<br />

Miller RE, McConville MJ, Woodrow IE (2006) Cyanogenic glycosides from<br />

the rare Australian endemic rainforest tree <strong>Clerodendrum</strong> grayi (Lamiaceae).<br />

Phytochemistry 67, 43-51<br />

Min YS, Yim SH, Bai KL, Choi HJ, Jeong JH, Song HJ, Park SY, Ham I,<br />

Whang WK, Sohn UD (2005) The effects of apigenin-7-O-β-D-glucuro-


nopyranoside on reflux oesophagitis <strong>and</strong> gastritis in rats. Autonomic <strong>and</strong> Autacoid<br />

Pharmacology 25, 85-91<br />

Misra TN, Singh SR, P<strong>and</strong>ey HS, Kohli YP (1995) <strong>An</strong>tibacterial <strong>and</strong> antifungal<br />

activity of three volatile hexane eluates extracted from the leaves of C.<br />

colebrookianum. International Seminar on Recent Trends in Pharmaceutical<br />

<strong>Science</strong>s, Ootacamund, Abstract No 29<br />

Moldenke HN (1985) Notes on the genus <strong>Clerodendrum</strong> (Verbenaceae). IV.<br />

Phytologia 57, 334-365<br />

Muregi FW, Chhabra SC, Njagi EN, Lang'at-Thoruwa CC, Njue WM,<br />

Orago AS, Omar SA, Ndiege IO (2004) <strong>An</strong>ti-plasmodial activity of some<br />

Kenyan medicinal plant extracts singly <strong>and</strong> in combination with chloroquine.<br />

Phytotherapy Research 18, 379-384<br />

Muregi FW, Ishih A, Miyase T, Suzuki T, Kino H, Amano T, Mkoji GM,<br />

Terada M (2007) <strong>An</strong>timalarial activity of methanolic extracts from plants<br />

used in Kenyan ethnomedicine <strong>and</strong> their interactions with chloroquine (CQ)<br />

against a CQ-tolerant rodent parasite, in mice. Journal of Ethnopharmacology<br />

111, 190-195<br />

Murugesan T, Saravanan KS Lakshmi S, Ramya G, Thenmozhi K (2001)<br />

Evaluation of psychopharmacological effects of <strong>Clerodendrum</strong> phlomidis<br />

Linn. extract. Phytomedicine 8, 472-476<br />

Narayanan N, Thirugnanasambantham P, Viswanathan S, Vijayasekaran V,<br />

Sukumar E (1999) <strong>An</strong>tinociceptive, anti-inflammatory <strong>and</strong> antipyretic effects<br />

of ethanol extract of Clerodendron serratum roots in experimental animals.<br />

Journal of Ethnopharmacology 65, 237-241<br />

Nishida R, Kawai K, Amano T, Kuwahara Y (2004) Pharmacophagous<br />

feeding stimulant activity of neo-clerodane diterpenoids for the turnip sawfly,<br />

Athalia rosae fuficornis. Biochemistry <strong>and</strong> Systematic Ecology 32, 15-25<br />

Nyegue MA, Belinga-Ndoye CF, Amvam Zollo PH, Agnaniet H, Menut C,<br />

Bessière JM (2005) Aromatic plants of tropical central Africa, Part L, Volatile<br />

components of <strong>Clerodendrum</strong> buchholzii Gürke from Cameroon. Flavour<br />

<strong>and</strong> Fragrance Journal 20, 321-323<br />

Olivieri F, Prasad V, Valbonesi P, Srivastava S, Ghosal-Chowdhury P,<br />

Barbieri L, Bolognesi A, Stirpe F (1996) A systemic antiviral resistance-inducing<br />

protein isolated from <strong>Clerodendrum</strong> inerme Gaertn. is a polynucleotide<br />

adenosine glycosidase (ribosome-inactivating protein). FEBS Letters<br />

396, 132-134<br />

P<strong>and</strong>ey R, Verma RK, Singh SC, Gupta MM (2003) 4α-methyl-24β-ethyl-<br />

5α-cholesta-14,25-dien-3β-ol <strong>and</strong> 24β-ethylcholesta-5, 9(11), 22e-trien-3βol,<br />

sterols from <strong>Clerodendrum</strong> inerme. Phytochemistry 63, 415-420<br />

Panthong D, Kanjanapothi T, Taesotikul T, Wongcomea V (2003) <strong>An</strong>ti-inflammatory<br />

<strong>and</strong> antipyretic properties of <strong>Clerodendrum</strong> petasites S. Moorea.<br />

Journal of Ethnopharmacology 85, 151-156<br />

Pinto WJ, Nes WR (1985) 24β-ethylsterols, n-alkanes <strong>and</strong> n-alkanols of <strong>Clerodendrum</strong><br />

splendens. Phytochemistry 24, 1095-1097<br />

Raha P, Banerjee H, Das AK (1989) Occurrence of three 5-hydroxyflavones<br />

in Clerodendron sc<strong>and</strong>ens <strong>and</strong> Clerodendron inerme Linn. Indian Journal of<br />

Chemistry 28B, 874<br />

Raha P, Das AK, Adityachaudhuri N, Majumdar Pl (1991) Cleroinermin A<br />

neo-clerodane diterpenoid from Clerodendron inerme. Phytochemistry 38,<br />

3812-3814<br />

Rajlakshmi D, Banerjee SK, Sood S, Maulik SK (2003) In-vitro <strong>and</strong> in-vivo<br />

antioxidant activity of different extracts of the leaves of Clerodendron colebrookianum<br />

Walp in the rat. Journal of Pharmacy <strong>and</strong> Pharmacology 55,<br />

1681-1686<br />

Rani S, Ahamed N, Rajaram S, Saluja R, Thenmozhi S, Murugesan T<br />

(1999) <strong>An</strong>ti-diarrhoeal evaluation of <strong>Clerodendrum</strong> phlomidis Linn, leaf<br />

extract in rats. Journal of Ethnopharmacology 68, 315-319<br />

Rao LJM, Pereira J, Gurudutt KN (1993) Neo-clerodane diterpenes from<br />

Clerodendron inerme. Phytochemistry 34, 572-574<br />

Reid KA, Maesa J, Maesa A, van Staden J, Kimpec ND, Mulholl<strong>and</strong> DA,<br />

Verschaeve L (2006) Evaluation of the mutagenic <strong>and</strong> antimutagenic effects<br />

of South African plants. Journal of Ethnopharmacology 106, 44-50<br />

Roy R, P<strong>and</strong>ey VB (1995) Flavonoids of Clerodendron phlomidis. Indian<br />

Journal of Natural Products 11, 13-14<br />

Roy R, P<strong>and</strong>ey VB (1994) A chalcone glycoside from Clerodendron phlomidis.<br />

Phytochemistry 37, 1775- 1776<br />

Roy R, P<strong>and</strong>ey VB, Singh UP, Prithiviraj B (1996) <strong>An</strong>tifungal activity of the<br />

flavonoids from C. infortunatum roots. Fitoterapia 67, 473-74<br />

Roy R, Singh UP, P<strong>and</strong>ey VB (1995) <strong>An</strong>tifungal activity of some naturally occurring<br />

flavonoids. Oriental Journal of Chemistry 11, 145-148<br />

Clerodendron <strong>and</strong> healthcare. Shrivastava <strong>and</strong> Patel<br />

150<br />

Rueda RM (1993) The genus <strong>Clerodendrum</strong> (Verbenaceae) in Mesoamerica.<br />

<strong>An</strong>nals of the Missouri Botanical Garden 80, 870-890<br />

Seth KK, P<strong>and</strong>ey VB, Dasgupta B (1982) Flavanoids of Clerodendron phlomidis<br />

flowers. Pharmazie 37, 74-75<br />

Sharaf A, Aboulezz AF, Abdul-Alim MA, Goman N (1969) Pharmacological<br />

studies on the leaves of C. inerme. Quality Plant Material Vegetation 17, 293<br />

Sharma PV (2001) Dravyaguna-Vijnana (Vol II, Vegetable Drugs), Chaukhanbha<br />

Bharati Academy, Varanasi, pp 221, 298, 300, 523<br />

Sharma SK, Singh VP (1979) The antifungal activity of some essential oils. Indian<br />

Drugs Pharmaceutical Industry 14, 3-6<br />

Shi XF, Du DJ, Xie DC, Ran CQ (1993) Studies on the antitumor effect of<br />

<strong>Clerodendrum</strong> bungei Steud or C. foetidum Bge. Zhongguo Zhong Yao Za Zhi<br />

18, 687-690, 704<br />

Simonsen HT, Nordskjold JB, Smitt UW, Nyman W, Palpu P, Joshi P,<br />

Varughese G (2001) In vitro screening of Indian medicinal plants for antiplasmodial<br />

activity. Journal of Ethnopharmacology 74, 195-204<br />

Singh P, Singhi CL (1981) Chemical investigation of Clerodendron fragrans.<br />

Journal of the Indian Chemical Society 58, 626-627<br />

Singh R, Prakash L (1983) Chemical examination of stems of Clerodendron<br />

inerme (L) Gaertn. (Verbenaceae). Pharmazie 38, 565<br />

Singh VP, Sharma SK, Khan VS (1980) Medicinal plants from Ujain district<br />

Madhya Pradesh part II. Indian Drugs <strong>and</strong> Pharmaceutical Industry 5, 7-12<br />

Sinha NK, P<strong>and</strong>ey VB, Dasgupta B, Higuchi R, Kawasaki T (1982) Acteoside<br />

from the flowers of Clerodendron infortunatum. Indian Journal of Chemistry<br />

22B, 97-98<br />

Sinha NK, P<strong>and</strong>ey VB, Shah AH, Dasgupta B (1980) Chemical constituents<br />

of the flowers of Clerodendron infortunatum. Indian Journal of Pharmaceutical<br />

<strong>Science</strong> 42, 21<br />

Sinha NK, Seth KK, P<strong>and</strong>ey VB, Dasgupta B, Shah AH (1981) Flavonoids<br />

from the flowers of Clerodendron infortunatum. Planta Medica 42, 296-298<br />

Somasundaram S, Sadique J (1986) The role of mitochondrial calcium transport<br />

during inflammation <strong>and</strong> the effect of anti-inflammatory drugs. Biochemical<br />

Medicine <strong>and</strong> Metabolic Biology 36, 220-230<br />

Somasundram S, Sadique J (1986) <strong>An</strong>ti-hemolytic effect of flavonoidal glycosides<br />

of C. inerme: <strong>An</strong> in vitro study. Fitoterapia 57, 103-110<br />

Steane DA, Scotl<strong>and</strong> RW, Mabberley DJ, Olmstead RG (1999) Molecular<br />

systematics of <strong>Clerodendrum</strong> (Lamiaceae): its sequences <strong>and</strong> total evidence.<br />

American Journal of Botany 86, 98-107<br />

Steane DA, De Kok RPJ, Olmstead RG (2004) Phylogenetic relationships between<br />

<strong>Clerodendrum</strong> (Lamiaceae) <strong>and</strong> other Ajugoid genera inferred from nuclear<br />

<strong>and</strong> chloroplast DNA sequence data. Molecular Phylogenetics <strong>and</strong> Evolution<br />

32, 39-45<br />

Stenzel E, Rimpler H, Hunkler D (1986) Iridoid glucosides from <strong>Clerodendrum</strong><br />

incisum. Phytochemistry 25, 2557-2561<br />

Surendrakumar P (1988) <strong>An</strong>ti-inflammatory activity of Lippia nodiflora, Clerodendron<br />

phlomidis <strong>and</strong> Delonix elata. Journal of Research Education Indian<br />

Medicine 7, 19-20<br />

Sweeney AP, Wyllie SG, Shalliker RA, Markham JL (2001) Xanthine oxidase<br />

inhibitory activity of selected Australian native plants. Journal of Ethnopharmacology<br />

75, 273-277<br />

Toyota M, Msonthi JD, Hostettmann K (1990) A molluscicidal <strong>and</strong> antifungal<br />

triterpenoid saponin from the roots of <strong>Clerodendrum</strong> wildii. Phytochemistry<br />

29, 2849-2851<br />

Vendatham TNC, Subramanian SS, Harborne JB (1977) 4’methylscutellarein<br />

<strong>and</strong> pectolinarigenin from Clerodendron inerme. Phytochemistry 16, 294<br />

Wong KC, Tan CH (2005) Volatile constituents of the flowers of Clerodendron<br />

fragrans (Vent.) R. Br. Flavour <strong>and</strong> Fragrance Journal 20, 429-430<br />

Yang H, Hou A-J, Mei S-X, Sun H-D, Che C-T (2002) Constituents of<br />

<strong>Clerodendrum</strong> bungei. Journal of Asian Natural Products Research 4, 165-<br />

169<br />

Yang H, Jiang B, Hou A-J, Lin Z-W, Sun H-D (2000) Colebroside A, a new<br />

diglucoside of fatty acid ester of glycerin from <strong>Clerodendrum</strong> colebrookianum.<br />

Journal of Asian Natural Product Research 2, 177-185<br />

Yang H, Wang J, Hou A-J, Guo Y-P, Lin Z-W, Sun H-D (2000) New steroids<br />

from <strong>Clerodendrum</strong> colebrookianum. Fitoterapia 71, 641-648<br />

Zhou P, Pang Z, Hso HQ (1982) Studies on chemical constituents of Clerodendron<br />

bungei. Zhiwu Xaebao 24, 564-567<br />

Zhu M, Phillipson JD, Greengrass PM, Bowery NG (1996) Chemical <strong>and</strong><br />

biological investigation of the root bark of <strong>Clerodendrum</strong> m<strong>and</strong>arinorum.<br />

Planta Medica 62, 393-396

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!