09.04.2013 Views

Clerodendrum and Heathcare: An Overview - Global Science Books

Clerodendrum and Heathcare: An Overview - Global Science Books

Clerodendrum and Heathcare: An Overview - Global Science Books

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Medicinal <strong>and</strong> Aromatic Plant <strong>Science</strong> <strong>and</strong> Biotechnology ©2007 <strong>Global</strong> <strong>Science</strong> <strong>Books</strong><br />

<strong>Clerodendrum</strong> <strong>and</strong> <strong>Heathcare</strong>: <strong>An</strong> <strong>Overview</strong><br />

Neeta Shrivastava * • Tejas Patel<br />

B. V. Patel Pharmaceutical Education <strong>and</strong> Research Development (PERD) Centre, S. G. Highway, Thaltej, Ahmedabad - 380054, Gujarat, India<br />

Corresponding author: * neetashrivastava_perd@yahoo.co.in<br />

ABSTRACT<br />

The genus <strong>Clerodendrum</strong> L. (Family: Lamiaceae) is very widely distributed in tropical <strong>and</strong> subtropical regions of the world. More than<br />

five hundred species of the genus are identified till now, which includes small trees, shrubs <strong>and</strong> herbs. Ethno-medical importance of<br />

various species of <strong>Clerodendrum</strong> genus has been reported in various indigenous systems of medicines <strong>and</strong> as folk medicines. The genus is<br />

being used as medicines specifically in Indian, Chinese, Thai, Korean, Japanese systems of medicine for the treatment of various lifethreatening<br />

diseases such as syphilis, typhoid, cancer, jaundice <strong>and</strong> hypertension. Few species of the genus like <strong>Clerodendrum</strong> inerme, C.<br />

thomosonae, C. indicum, <strong>and</strong> C. speciosum are ornamental <strong>and</strong> being cultivated for aesthetic purposes. The powder/paste form <strong>and</strong> the<br />

various extracts of root, stem <strong>and</strong> leaves are reported to be used as medicine for the treatment of asthma, pyreticosis, cataract, malaria, <strong>and</strong><br />

diseases of blood, skin <strong>and</strong> lung. To prove these ethno-medical claims, some of these species are being extensively studied for their<br />

biological activities using various animal models. Along with biological studies, isolation <strong>and</strong> identification studies of chemical constituents<br />

<strong>and</strong> its correlation with the biological activities of the genus has also been studied. The major chemical components reported from<br />

the genus are phenolics, steroids, di- <strong>and</strong> triterpenes, flavonoids, volatile oils, etc. This review mainly covers the extent of work done on<br />

biological activities of various <strong>Clerodendrum</strong> species such as C. trichotomum, C. bungei, C. chinense, C. colebrookianum, C. inerme, C.<br />

phlomidis, C. petasites, C. grayi, C. indicum, C. serratum, C. campbellii, C. calamitosum <strong>and</strong> C. cyrtophyllum that can be used both in<br />

conventional therapy or as replacement therapies for the treatment of various diseases.<br />

_____________________________________________________________________________________________________________<br />

Keywords: ethnomedical, phytochemistry, anti-inflammatory, antimicrobial, antimalarial, antioxidant, antidiabetic, polyphyletic, paraphyletic<br />

Abbreviations: AGC, apigenin-7-O-β-D-glucoside; GSH, glutathione; MDA, malondialdehyde; PGE2, prostagl<strong>and</strong>in E2; XO, xanthine<br />

oxidase<br />

CONTENTS<br />

INTRODUCTION...................................................................................................................................................................................... 142<br />

ETHNOMEDICAL USES.......................................................................................................................................................................... 146<br />

PHYTOCHEMISTRY................................................................................................................................................................................ 146<br />

BIOLOGICAL ACTIVITIES..................................................................................................................................................................... 147<br />

<strong>An</strong>ti-inflammatory activities.................................................................................................................................................................. 147<br />

<strong>An</strong>timicrobial activites .......................................................................................................................................................................... 147<br />

<strong>An</strong>timalarial activities............................................................................................................................................................................ 148<br />

<strong>An</strong>tioxidant activities............................................................................................................................................................................. 148<br />

Other biological activities of <strong>Clerodendrum</strong> genus ............................................................................................................................... 148<br />

SUMMARY ............................................................................................................................................................................................... 148<br />

ACKNOWLEDGEMENT ......................................................................................................................................................................... 149<br />

REFERENCES........................................................................................................................................................................................... 149<br />

_____________________________________________________________________________________________________________<br />

INTRODUCTION<br />

The genus <strong>Clerodendrum</strong> L. [Family Lamiaceae (Verbenaceae)]<br />

is very widely distributed in tropical <strong>and</strong> subtropical<br />

regions of the world <strong>and</strong> is comprised of small trees, shrubs<br />

<strong>and</strong> herbs. The first description of the genus was given by<br />

Linnaeus in 1753, with identification of C. infortunatum.<br />

After a decade later in 1763 Adanson changed the Latin<br />

name "<strong>Clerodendrum</strong>" to its Greek form "Clerodendron";<br />

in Greek Klero means chance <strong>and</strong> dendron means tree i.e.<br />

chance tree which means the tree which does not bring<br />

good luck like Clerodendron infortunatum or the tree which<br />

brings good luck like C. fortunatum. Later on after a span<br />

of about two centuries in 1942 Moldenke readopted the<br />

Latinized name '<strong>Clerodendrum</strong>', which is now commonly<br />

used by taxonomists for the classification <strong>and</strong> description of<br />

the genus <strong>and</strong> species (Moldenke 1985; Rueda 1993; Hsiao<br />

<strong>and</strong> Lin 1995; Steane et al. 1999). <strong>Clerodendrum</strong> is a very<br />

large <strong>and</strong> diverse genus <strong>and</strong> till now five hundred <strong>and</strong> eighty<br />

species of the genus have been identified <strong>and</strong> are widely<br />

distributed in Asia, Australia, Africa <strong>and</strong> America (Table 1).<br />

A high degree of morphological <strong>and</strong> cytological variation<br />

(from 2n=24 to 2n=184) amongst the species, suggesting<br />

the paraphyletic or polyphyletic origin of the genus. Molecular<br />

systematic studies based on cloroplast <strong>and</strong> nuclear<br />

DNA also indicate polyphyletic origin of the genus (Steane<br />

et al. 1999). Owing to morphological variations like length<br />

of the corolla tube, size of leaves, <strong>and</strong> type of inflorescence<br />

some authors have classified the genus into two major subgenera,<br />

<strong>Clerodendrum</strong> <strong>and</strong> Cyclonema (Steane et al. 1999)<br />

while others have classified it into five subgenera <strong>and</strong> each<br />

subgenus is again subdivided into many sections (Moldenke<br />

1985). Similarly many species of the genus have been described<br />

by more than one author <strong>and</strong> hence are denoted in the<br />

literature with the name of different authors e.g. C. floribundum<br />

Hort. <strong>and</strong> C. floribundum R.Br., C. foetidum Bunge<br />

Received: 4 January, 2007. Accepted: 22 January, 2007. Invited Review


Medicinal <strong>and</strong> Aromatic Plant <strong>Science</strong> <strong>and</strong> Biotechnology 1(1), 142-150 ©2007 <strong>Global</strong> <strong>Science</strong> <strong>Books</strong><br />

Table 1 List of various species from the genus <strong>Clerodendrum</strong>. * Species described by more than one author.<br />

C. acerbiana Benth. & Hook.f.<br />

C. aculeatum (L.) Schlecht.*<br />

C. acuminatum Wall.<br />

C. adenocalyx Dop<br />

C. adenophysum H.Hallier<br />

C. affine Griff.<br />

C. africanum Moldenke<br />

C. aggregatum Gurke<br />

C. alatum Gurke<br />

C. albiflos H.J.Lam<br />

C. amicorum Seem.<br />

C. amplifolium S.Moore<br />

C. amplius Hance<br />

C. anafense Britton & P.Wils.<br />

C. angolense Guerke<br />

C. angustifolium Salisb.*<br />

C. apayaoense Quisumb.<br />

C. arenarium Baker<br />

C. arthur-gordoni Horne ex Baker<br />

C. assurgens K.Schum.<br />

C. attenuatum De Wild.*<br />

C. aucubifolium Hemsl.<br />

C. aurantiacum Baker<br />

C. aurantium G.Don<br />

C. × speciosum Teijsm. & Binn.<br />

C. bakeri Gurke<br />

C. balfouri Hort.<br />

C. barbafelis H.Hallier<br />

C. baronianum Oliver<br />

C. barteri Baker<br />

C. baumii Guerke<br />

C. bequaerti De Wild<br />

C. bernieri Briq.<br />

C. bethuneanum Low<br />

C. bingaense S.Moore<br />

C. bipindense Guerke<br />

C. blancoanum Villar<br />

C. blancoi Naves ex Villar<br />

C. blumeanum Schau.<br />

C. bodinierii Leveille<br />

C. bolivianum Rusby<br />

C. botryoides Baker<br />

C. botryoides K.Schum.<br />

C. brachyanthum Schau.<br />

C. brachypus Urb.<br />

C. lerodendrum bracteatum Wall.<br />

C. bracteosum Kostel.<br />

C. brassii Beer & H.J.Lam<br />

C. brazzavillense A.Cheval.<br />

C. breviflorum Ridl.<br />

C. brookeanum W.W.Smith<br />

C. brunfelsiiflorum H.Hallier<br />

C. brunsvigioides Baker<br />

C. buchananii Herb.Roxb.ex Wall.<br />

C. buchholzii Gurke<br />

C. buchneri Gurke<br />

C. buettneri Gurke<br />

C. bukobense Gurke<br />

C. bungei Steud.<br />

C. buruanum Miq.<br />

C. buxifolium Spreng.<br />

C. cabrae De Wild.<br />

C. caeruleum N.E.Br.<br />

C. caesium Guerke<br />

C. calamistratum Hort.Belg.ex Lem.<br />

C. calamitosum Linn.<br />

C. calcicola Britton<br />

C. calycinum Turcz.<br />

C. camagueyense Britton & P.Wils.<br />

C. canescens Wall.<br />

C. capense D.Don ex Steud.*<br />

C. capitatum Hook.*<br />

C. capsulare Blanco<br />

C. cardiophyllum F.Muell.<br />

C. carnosulum Baker<br />

C. castaneaefolium Klotzsch<br />

C. castaneifolium Hook. & Arn.<br />

C. catalpifolium H.Hallier<br />

C. caulambum Exell<br />

C. cauliflorum De Wild.*<br />

C. cavaleriei Leveille<br />

C. cephalanthum Oliver<br />

C. cernuum Wall.ex Steud.<br />

C. chamaeriphes Wernham<br />

C. citrinum Ridley<br />

C. coccineum D.Dietr.*<br />

C. cochinchinense Dop<br />

C. colebrookianum Walp.<br />

C. commersonii Spreng.<br />

C. condensatum Miq.<br />

C. confusum H.Hallier<br />

C. congense Baker*<br />

C. congestum Guerke<br />

C. conglobatum Baker<br />

C. consors S.Moore<br />

C. corbisieri De Wild.<br />

C. cordatum D.Don<br />

C. cordifolium A.Rich.<br />

C. coriaceum Poir.*<br />

C. corom<strong>and</strong>elianum Spreng.<br />

C. costaricense St<strong>and</strong>ley<br />

C. costatum R.Br.<br />

C. costulatum K.Schum.<br />

C. cruentum Lindl.<br />

C. cubensis Schau.<br />

C. culinare Sesse & Moc.<br />

C. cumingianum Schau.<br />

C. cuneatum Guerke*<br />

C. cuneifolium Baker<br />

C. cunninghamii Benth.<br />

C. curranii Elmer<br />

C. curtisii N.E.Br.<br />

C. cuspidatum Turcz.<br />

C. cyrtophyllum Turcz<br />

C. darrisii Leveille<br />

C. deflexum Wall.<br />

C. dekindtii Guerke<br />

C. dembianense Chiov.<br />

C. densiflorum Griff.<br />

C. dentatum Wall.<br />

C. depauperatum Wall.ex Steud.<br />

C. dependens Aug.DC.<br />

C. dicolor Vatke<br />

C. diepenhorstii Miq.<br />

C. dinklagei Gurke<br />

C. discolor Becc.<br />

C. disparifolium Blume<br />

C. divar. catum Jack*<br />

C. diversifolium Vahl<br />

C. dubium De Wild.<br />

C. duckei Moldenke<br />

C. dumale Baker<br />

C. dumale K.Schum.<br />

C. dusenii Guerke<br />

C. eketense Wernham<br />

C. ekmani Moldenke<br />

C. elberti H.Hallier<br />

C. elegans Manetti ex Lem.<br />

C. ellipticum Zipp.ex Span.<br />

C. elliptifolium Merrill<br />

C. elmeri Merrill<br />

C. emarginatum Briq.<br />

C. emirnense Boj.ex Hook.<br />

C. epiphyticum St<strong>and</strong>ley<br />

C. erectum De Wild.<br />

C. eriophyllum Gurke<br />

C. eriosiphon Schau.<br />

C. esquirolii Leveille*<br />

C. eucalycinum Oliver<br />

C. eupatorioides Baker<br />

C. euryphyllum Mildbr.<br />

C. excavatum De Wild.<br />

C. fallax Lindl.<br />

C. fargesii Dode<br />

C. farinosum Wall.<br />

C. fasciculatum Berthold Thomas<br />

C. fastigiatum H.J.Lam<br />

C. ferrugineum Turcz.<br />

C. finetii Dop<br />

C. fischeri Gurke ex Engl.<br />

C. fistulosum Becc.*<br />

C. flavum Merrill<br />

C. fleuryi A.Chevalier<br />

C. floribundum Hort.*<br />

143<br />

C. foetidum Bunge*<br />

C. formicarum Gurke<br />

C. formosanum Maxim.<br />

C. fortunatum Buch.-Ham.ex Wall.*<br />

C. fortunei Hemsl.<br />

C. fragrans Vent.*<br />

C. francavilleanum Buchinger ex<br />

Berthold Thomas<br />

C. friesii K.Schum.<br />

C. f.rutectorum S.Moore<br />

C. fugitans Wernham<br />

C. fuscum Gurke.<br />

C. galeatum Balf.f.<br />

C. garrettianum Craib<br />

C. gaudichaudii Dop<br />

C. geoffrayi Dop<br />

C. giletii Wildem. & Th.Dur.<br />

C. glaberrimum Hayata<br />

C. glabratum Guerke<br />

C. glabrum E.Mey.<br />

C. gl<strong>and</strong>ulosum Colebr.ex Wall.<br />

C. gl<strong>and</strong>ulosum Lindl.<br />

C. glaucum Wall.ex Steud.<br />

C. globuliflorum Berthold Thomas<br />

C. godefroyi Kuntze<br />

C. goossensi De Wild.<br />

C. gordoni Baker<br />

C. gossweileri Exell<br />

C. gr<strong>and</strong>icalyx E.A.Bruce<br />

C. gr<strong>and</strong>iflorum Schau.<br />

C. gr<strong>and</strong>ifolium Gurke*<br />

C. gratum Kurz*<br />

C. greyi Baker<br />

C. griffithianum C.B.Clarke<br />

C. guerkii Baker<br />

C. haematocalyx Hance<br />

C. haematolasium H.Hallier<br />

C. hahnianum Dop<br />

C. hainanense H<strong>and</strong>.-Mazz.<br />

C. harm<strong>and</strong>ianum Dop<br />

C. harnierianum Schweinf.<br />

C. hastato-oblongum C.B.Clarke<br />

C. hastatum Lindl.<br />

C. helianthemifolium Wall.ex Steud.<br />

C. hemiderma F.Muell.ex Benth.<br />

C. henryi P'ei<br />

C. herbaceum Wall.<br />

C. heterophyllum<br />

C. hettae H.Hallier<br />

C. hexagonum De Wild<br />

C. hexangulatum Berthold Thomas<br />

C. hildebr<strong>and</strong>tii Vatke<br />

C. hircinum Schau.<br />

C. hirsutum G.Don*<br />

C. hispidum M.R.Henderson<br />

C. hockii De Wild.<br />

C. holstii Guerke ex Baker*<br />

C. holtzei F.Muell.<br />

C. horsfieldii Miq.<br />

C. huegelii Hort.ex Regel<br />

C. humile Chiov.<br />

C. hysteranthum Baker<br />

C. illustre N.E.Br.<br />

C. impensum Berthold Thomas<br />

C. imperialis Carr.<br />

C. inaequipetiolatum Good<br />

C. incisum Klotzsch<br />

C. indeniense A.Cheval.<br />

C. indicum Druce*<br />

C. inerme Gaertn.*<br />

C. infortunatum Dennst.*<br />

C. ingratum K.Schum. & Lauterb.<br />

C. intermedium Berthold Thomas*<br />

C. involucratum Vatke<br />

C. ixoraeflorum Hazsk.<br />

C. jackianum Wall.<br />

C. japonicum Mak.*<br />

C. javanicum Spreng.*<br />

C. johnstoni Oliver<br />

C. kaempferi Fisch.ex Morr.<br />

C. kalaotoense H.J.Lam<br />

C. kalbreyeri Baker<br />

C. kampotense Dop<br />

C. kanichi Wildem.<br />

C. katangensis Wildem.<br />

C. kentrocaule Baker<br />

C. kinabaluense Stapf<br />

C. kirkii Baker<br />

C. kissakense Guerke<br />

C. klemmei Elmer<br />

C. koshunense Hayata<br />

C. kwangtungense H<strong>and</strong>.-Mazz.<br />

C. laciniatum Balf.f.<br />

C. laevifolium Blume<br />

C. lanceolatum F.Muell.<br />

C. lanceolatum Gurke.<br />

C. lanceoliferum S.Moore<br />

C. lanessanii Dop<br />

C. lankawiense King & Gamble<br />

C. lanuginosum Blume<br />

C. lasiocephalum C.B.Clarke<br />

C. laxicymosum De Wild.<br />

C. laxiflorum Baker<br />

C. lecomtei Dop<br />

C. lehuntei Horne ex Baker<br />

C. lelyi Hutchinson<br />

C. leucophloeum Balf.f.<br />

C. leucosceptrum D.Don<br />

C. leveillei Fedde ex Leveille<br />

C. ligustrinum<br />

C. lindawianum Lauterb.<br />

C. lindemuthianum Vatke<br />

C. lindenianum A.Eich.<br />

C. lindleyi Decne.ex Planch.<br />

C. linnaei F.Muell.*<br />

C. lividum Lindl.<br />

C. lloydianum Craib<br />

C. lobbii C.B.Clarke<br />

C. longicolle G.F.W.Mey.<br />

C. longiflorum Decne.<br />

C. longilimbum P'ei<br />

C. longipetiolatum Gurke*<br />

C. longisepalum Dop<br />

C. longituba Valeton<br />

C. longitubum Wildem. & Th.Dur.<br />

C. luembense De Wild.<br />

C. lujaei Wildem. & Th.Dur.<br />

C. lupakense S.Moore<br />

C. luzoniense Merrill<br />

C. mabesae Merrill<br />

C. macradenium Miq.<br />

C. macrocalycinum Baker<br />

C. macrocalyx De Wild.*<br />

C. macrophyllum Blume*<br />

C. macrosiphon Hook.f.*<br />

C. macrostachyum Baker*<br />

C. macrostegium Schau.<br />

C. madaeera Voigt<br />

C. magnificum Warb.<br />

C. magnoliaefolium Baker<br />

C. makanjanum H.Winkler<br />

C. m<strong>and</strong>arinorum Diels<br />

C. manetti Vis.<br />

C. mannii Baker<br />

C. margaritense Moldenke<br />

C. matudae St<strong>and</strong>ley<br />

C. medium R.Br.<br />

C. megasepalum Baker<br />

C. melanocrater Gurke<br />

C. membranifolium H.J.Lam<br />

C. mexicanum T.S.Br<strong>and</strong>egee<br />

C. meyeri-johannis Mildbraed<br />

C. micans Gurke<br />

C. microcalyx Ridley<br />

C. microphyllum Berthold Thomas<br />

C. mildbraedii Berthold Thomas<br />

C. minahassae Teijsm. & Binn.<br />

C. mindorense Merrill<br />

C. minutiflorum Baker<br />

C. mirabile Baker<br />

C. mite Vatke<br />

C. moldenkeanum St<strong>and</strong>ley<br />

C. molle H.B. & K.*<br />

C. montanum Berthold Thomas


Table 1 (cont.) * Species described by more than one author.<br />

C. morigono Chiov.<br />

C. mossambicense Klotzsch<br />

C. moupinense Franch.<br />

C. muenzneri Berthold Thomas<br />

C. multibracteatum Merrill<br />

C. multiflorum G.Don<br />

C. myrianthum Mildbr.<br />

C. myricoides Gurke*<br />

C. myrmecophila Ridl.<br />

C. natalense Gurke<br />

C. navesianum Vidal<br />

C. nereifolium Wall.<br />

C. neumayeri Vatke<br />

C. nhatrangense Dop<br />

C. nipense Urb.<br />

C. noiroti A.Chevalier<br />

C. nutans Jack*<br />

C. nyctaginifolium Good<br />

C. obanense Wernham<br />

C. obovatum Walp.<br />

C. obtusidens Miq.<br />

C. odoratum D.Don<br />

C. ohwii Kanehira & Hatusima<br />

C. orbiculare Baker<br />

C. oreadum S.Moore<br />

C. ornatum Wall.<br />

C. ovale Klotzsch<br />

C. ovalifolium A.Gray*<br />

C. ovatum Poir.*<br />

C. oxysepalum Miq.<br />

C. palmatolobatum Dop<br />

C. paniculatum Linn.<br />

C. papuanum Scheff.<br />

C. parvitubulatum Berthold Thomas<br />

C. pearsoni Moldenke<br />

C. peekelii Markgraf<br />

C. penduliflorum Wall.<br />

C. pentagonum Hance<br />

C. petasites S.Moore<br />

C. petunioides Baker<br />

C. philippinense Elmer<br />

C. philippinum Schau.<br />

C. phlebodes C.H.Wright<br />

C. phlomoides Hort.Ital.ex DC.*<br />

C. phyllomega Steud.<br />

C. picardae Urb.<br />

C. pierreanum Dop<br />

C. pilosum H.H.W.Pearson<br />

C. pithecobium St<strong>and</strong>ley & Steyerm.<br />

C. pittieri Moldenke ex St<strong>and</strong>ley<br />

C. pleiosciadium Gurke<br />

C. poggei Gurke<br />

C. polyanthum Guerke<br />

C. polycephalum Baker<br />

C. populneum Beer & H.J.Lam<br />

<strong>and</strong> C. foetidum D. Don, C. lanceolatum F. Muell. <strong>and</strong> C.<br />

lanceolatum Gurke, etc.; some more examples are cited in<br />

Table 2 (Rueda 1993; Hsiao <strong>and</strong> Lin 1995; Steane et al.<br />

1999). Conclusive remarks on the origin <strong>and</strong> classification<br />

Clerodendron <strong>and</strong> healthcare. Shrivastava <strong>and</strong> Patel<br />

C. porphyrocalyx K.Schum. & Lauterb.<br />

C. powellii Benth. & Hook.f.ex Drake<br />

C. preslii Elmer<br />

C. preussii Gurke.<br />

C. prittwitzii Berthold Thomas<br />

C. puberulum Merrill<br />

C. pubescens Lindl.<br />

C. pubescens Walp.<br />

C. pulchrum Fawc.<br />

C. pulverulentum Engl.<br />

C. pumilum Ridley<br />

C. pumilum Spreng.<br />

C. pusillum Guerke<br />

C. putre Schau.<br />

C. pygmaeum Merrill<br />

C. pynaertii De Wild.<br />

C. pyramidale <strong>An</strong>dr.<br />

C. quadrangulatum Berthold Thomas<br />

C. quadriloculare Merrill<br />

C. ramosissimum Baker<br />

C. reflexum H.H.W.Pearson<br />

C. rehmannii Guerke<br />

C. rhytidophyllum K.Schum.<br />

C. ridleyi King & Gamble<br />

C. riedelii Oliver<br />

C. ringoeti De Wild.<br />

C. robecchii Chiov.<br />

C. robinsonii Dop<br />

C. robustum Klotzsch<br />

C. roseum Poit.<br />

C. rotundifolium Oliver<br />

C. rubellum Baker<br />

C. rumphianum Bull<br />

C. rumphianum De Vriese<br />

C. rusbyi Moldenke<br />

C. sagittatum Wall.<br />

C. sagraei Schau.<br />

C. sahelangii Koord.ex Bakh.<br />

C. sanguineum K.Schum.<br />

C. sansibarense Gurke<br />

C. sarawakanum H.J.Lam<br />

C. savanorum De Wild.<br />

C. sc<strong>and</strong>ens Beauv.*<br />

C. scheffleri Guerke*<br />

C. schlechteri Guerke<br />

C. schliebenii Mildbr.<br />

C. schmidtii C.B.Clarke<br />

Table 2 A few species of the <strong>Clerodendrum</strong> genus described by many authors.<br />

C. aculeatum (L.) Schlecht.<br />

C. aculeatum Griseb.<br />

C. angustifolium Salisb.<br />

C. angustifolium Spreng.<br />

C. attenuatum De Wild.<br />

C. attenuatum R.Br.<br />

C. capense D.Don ex Steud.<br />

C. capense Eckl. & Zeyh.ex Schau.<br />

C. capitatum Hook.<br />

C. capitatum Schum & Thou.<br />

C. cauliflorum De Wild.<br />

C. cauliflorum Vatke<br />

C. coccineum D.Dietr.<br />

C. coccineum H.J.Lam<br />

C. congense Baker<br />

C. congense Engl.<br />

C. coriaceum Poir.<br />

C. coriaceum R.Br.<br />

C. divar. catum Jack<br />

C. divar. catum Sieb. & Zucc.<br />

C. fistulosum Becc.<br />

C. fistulosum Bower<br />

C. floribundum Hort.<br />

C. floribundum R.Br.<br />

C. foetidum Bunge<br />

C. foetidum D.Don<br />

C. foetidum Hort.Par.ex Planch.<br />

C. fortunatum Buch.-Ham.ex Wall.<br />

C. fortunatum Linn.<br />

C. fragrans Vent.<br />

C. fragrans Willd.<br />

C. gl<strong>and</strong>ulosum Colebr.ex Wall.<br />

C. gl<strong>and</strong>ulosum Lindl.<br />

C. gr<strong>and</strong>iflorum Schau.<br />

C. gr<strong>and</strong>ifolium Gurke<br />

C. gr<strong>and</strong>ifolium Salisb.<br />

C. gratum Kurz<br />

C. gratum Wall.<br />

C. hirsutum G.Don<br />

C. hirsutum H.H.W.Pearson<br />

C. holstii Guerke ex Baker<br />

C. holstii Gurke.<br />

C. indicum Druce<br />

C. indicum Kuntze<br />

C. schultzei Mildbr.<br />

C. schweinfurthii Gurke<br />

C. scopiferum Miq.<br />

C. semiserratum Wall.<br />

C. sereti De Wild.<br />

C. sericeum Wall.<br />

C. serotinum Carr.*<br />

C. serratum Moon*<br />

C. sieboldii Kuntze<br />

C. silvaeanum Henriques<br />

C. silvestre Berthold Thomas<br />

C. silvicola Guerke.<br />

C. simile H.H.W.Pearson*<br />

C. simplex G.Don<br />

C. singalense Miq.<br />

C. singwanum Berthold Thomas<br />

C. sinuatum Hook.<br />

C. siphonanthus<br />

C. somalense Chiov.<br />

C. speciosissimum Hort.<strong>An</strong>gl.ex<br />

Schau.<br />

C. speciosum Guerke*<br />

C. spicatum Thunb.<br />

C. spinescens Gurke<br />

C. spinosum Spreng.<br />

C. splendens A.Cheval.*<br />

C. splendidum Wall.<br />

C. squamatum Vahl<br />

C. squiresii Merrill<br />

C. stenanthum Klotzsch<br />

C. streptocaulon Hutchinson &<br />

Dalziel<br />

C. strictum Baker<br />

C. stuhlmanni Gurke<br />

C. subp<strong>and</strong>urifolium Kuntze<br />

C. subpeltatum Wernham<br />

C. subreniforme Guerke<br />

C. subscaposum Hemsl.<br />

C. suffruticosum Guerke<br />

C. swynnertonii S.Moore<br />

C. sylvaticum Briq.<br />

C. syringaefolium Baker<br />

C. talbotii Wernham<br />

C. tanganyikense Baker<br />

C. tatomense Dop<br />

C. teaguei Hutchinson<br />

C. ternatum Schinz<br />

C. ternifolium Baker*<br />

C. tessmanni Moldenke<br />

C. thomasii Moldenke<br />

C. thonneri Guerke<br />

C. infortunatum Dennst.<br />

C. infortunatum Gaertn.<br />

C. infortunatum Linn.<br />

C. intermedium Berthold Thomas<br />

C. intermedium Cham.<br />

C. japonicum Mak.<br />

C. japonicum Sweet<br />

C. javanicum Spreng.<br />

C. javanicum Walp.<br />

C. linnaei F.Muell.<br />

C. linnaei Thw.<br />

C. macrocalyx De Wild.<br />

C. macrocalyx H.J.Lam<br />

C. macrophyllum Blume<br />

C. macrophyllum Sims<br />

C. molle H.B. & K.<br />

C. molle Jack<br />

C. myricoides Gurke<br />

C. myricoides R.Br. & Vatke<br />

C. nutans Jack<br />

C. nutans Wall.<br />

C. ovalifolium A.Gray<br />

144<br />

C. thyrsoideum Baker*<br />

C. tomentellum Hutchinson & Dalziel<br />

C. tomentosum R.Br.<br />

C. tonkinense Dop<br />

C. toxicarium Baker*<br />

C. tracyanum F.Muell.ex Benth<br />

C. transvaalense Berthold Thomas<br />

C. tricholobum Guerke<br />

C. trichotomum Thunb.*<br />

C. triflorum Vis.<br />

C. trifoliatum Steud.<br />

C. triphyllum H.H.W.Pearson<br />

C. triplinerve Rolfe<br />

C. tuberculatum A.Rich.<br />

C. ubanghense A.Chevalier<br />

C. ug<strong>and</strong>ense Prain<br />

C. ulei Hayek<br />

C. ulugurense Guerke<br />

C. umbellatum Poir.<br />

C. umbratile King & Gamble<br />

C. uncinatum Schinz<br />

C. urticifolium Wall.<br />

C. utakwense Wernham<br />

C. validipes S.Moore<br />

C. vanoverberghii Merril<br />

C. vanprukii Craib<br />

C. var. ifolium De Wild.<br />

C. var. um Berthold Thomas<br />

C. velutinum A.Chevalier<br />

C. velutinum Berthold Thomas*<br />

C. venosum Wall.<br />

C. verrucosum Splitg.ex De Vriese<br />

C. versteegi Pulle<br />

C. verticillatum D.Don<br />

C. vestitum Wall.ex Steud.<br />

C. villosum Blume<br />

C. violaceum Guerke*<br />

C. viscosum Vent.<br />

C. volubile Beauv.<br />

C. weinl<strong>and</strong>ii K.Schum.ex H.J.Lam<br />

C. welwitschii Gurke<br />

C. wenzelii Merrill<br />

C. whitfieldii Seem.*<br />

C. wildemanianum Exell<br />

C. williamsii Elmer<br />

C. wilmsii Guerke<br />

C. yakusimense Nakai<br />

C. yatschuense H.Winkler<br />

C. yaundense Guerke<br />

C. yunnanense Hu<br />

C. zambesiacum Baker<br />

C. ovalifolium Bakh.<br />

C. ovalifolium Engl.<br />

C. ovatum Poir.<br />

C. ovatum R.Br<br />

C. sc<strong>and</strong>ens Beauv.<br />

C. sc<strong>and</strong>ens Druce<br />

C. sc<strong>and</strong>ens Linn.ex Jackson<br />

C. scheffleri Guerke<br />

C. schifferi A.Cheval.<br />

C. serratum Moon<br />

C. serratum Spreng.<br />

C. simile H.H.W.Pearson<br />

C. simile Merrill<br />

C. ternifolium D.Don<br />

C. ternifolium H.B. & K.<br />

C. thyrsoideum Baker<br />

C. thyrsoideum Guerke<br />

C. toxicarium Baker<br />

C. toxicarium Baker ex Gurke<br />

C. velutinum A.Chevalier<br />

C. velutinum Berthold Thomas<br />

C. velutinum Wall.<br />

of the genus are still lacking <strong>and</strong> a thorough revision of the<br />

classification of this genus supported by molecular systematics<br />

has been suggested by some researchers (Steane et al.<br />

1999, 2004).


Medicinal <strong>and</strong> Aromatic Plant <strong>Science</strong> <strong>and</strong> Biotechnology 1(1), 142-150 ©2007 <strong>Global</strong> <strong>Science</strong> <strong>Books</strong><br />

HO<br />

HO<br />

H 3CO<br />

RO<br />

RO<br />

H<br />

COOH<br />

O<br />

OH O<br />

Hispudilin<br />

Clerodermic acid<br />

O OH<br />

OH<br />

Uncinatone<br />

OH<br />

O<br />

O<br />

H<br />

COOH<br />

Colebrin<br />

O<br />

O<br />

O<br />

HO<br />

HO<br />

HO<br />

OH<br />

H3C HO<br />

OH<br />

OH<br />

O O<br />

OCH2CH3 5-O-ethylclerodendricin<br />

HO<br />

HO<br />

HO<br />

HO<br />

OH<br />

O<br />

OH<br />

HOH2CH2C O<br />

CH2CH2OH HO<br />

OCH 3<br />

R = Gluc. acid (6-OMe)<br />

Acacetin-7-O-methylglucuronate<br />

O<br />

R'O CH 3O CH 3O OR''<br />

Neolignan I<br />

R R', R" R''' = -CH2- Neolignan II<br />

R R' = -CH2-, R" R'" = CH3 O<br />

HO<br />

HO<br />

HO<br />

HOOC<br />

HO<br />

H 3C<br />

HO<br />

HO OH<br />

OR'''<br />

O<br />

O<br />

Neolignan III<br />

R R' = CH 3, R" R'" = -CH 2-<br />

O<br />

O<br />

OH OH<br />

O<br />

O O<br />

HO<br />

OH O<br />

O<br />

OH<br />

O<br />

Verbacoside<br />

Scutellarin<br />

Fig. 1 Some of the major chemical constituents of <strong>Clerodendrum</strong> genus.<br />

145<br />

O<br />

O<br />

O<br />

OH<br />

CN<br />

HO<br />

O<br />

Apigenin<br />

O<br />

HO<br />

1(R) Lucumin<br />

OH<br />

OH<br />

O<br />

OH<br />

Bungein<br />

O<br />

OH<br />

O<br />

Jionoside D<br />

OH<br />

CN<br />

HO<br />

O<br />

H<br />

O<br />

O<br />

OH<br />

Iridiod diglucoside<br />

OH<br />

HO<br />

O<br />

O<br />

O<br />

2(R) Prunasin<br />

Clerosterol<br />

HOOC<br />

OH<br />

OH<br />

Serratagenic acid<br />

OH<br />

OH<br />

OH<br />

OH<br />

OCH 3<br />

COOH<br />

OH<br />

OH


The genus is taxonomically characterized by its entire<br />

or toothed, oppositely arranged leaves, terete stems,<br />

terminally or axillary cymose inflorescence, hypogynous<br />

bisexual flowers, persistent calyx, cylindrical corolla tube<br />

with spreading 5-lobed at the top, exerted stamens, short bifided<br />

stigma, imperfectly 4-celled ovary, exalbumenous<br />

seeds <strong>and</strong> endocarp separating into 4 stony pyrenes (Kirtikar<br />

<strong>and</strong> Basu 1991; Hsiao et al. 1995; Steane et al. 1999).<br />

Resembling its taxonomic diversity, the genus exhibits a<br />

wide spectrum of folk <strong>and</strong> indigenous medicinal uses. Research<br />

is advancing towards scientific validation of classical<br />

therapeutic claims of the genus. In the present review<br />

we have focused on the medicinal <strong>and</strong> health care aspects<br />

of the genus. We have also included the work done on the<br />

phytochemical constituent responsible or believed to be responsible<br />

for the therapeutic properties of various species<br />

belong to the genus (Fig. 1).<br />

ETHNOMEDICAL USES<br />

A number of species from this genus were documented to<br />

be used as folk medicine by various tribes in Asian <strong>and</strong><br />

African continents (Table 3). Many species of the genus<br />

have also been documented in traditional systems of medicine<br />

practiced in countries like India, China, Korea, Thail<strong>and</strong><br />

<strong>and</strong> Japan.<br />

Roots <strong>and</strong> leaf extracts of C. indicum, C. phlomidis, C.<br />

serratum, C. trichotomum, C. chinense <strong>and</strong> C. petasites<br />

have been used for the treatment of rheumatism, asthma<br />

<strong>and</strong> other inflammatory diseases (<strong>An</strong>onymous 1992; Hazekamp<br />

et al. 2001; Kang et al. 2003; Panthong et al. 2003;<br />

Choi et al. 2004; Sungwook et al. 2004; Kanchanapoom et<br />

al. 2005). Plant species such as C. indicum <strong>and</strong> C. inerme<br />

were used to treat coughs, serofulous infection, buboes<br />

problem, venereal infections, skin diseases <strong>and</strong> as a vermifuge,<br />

febrifuge <strong>and</strong> also to treat Beriberi disease (<strong>An</strong>onymous<br />

1992; Rehman et al. 1997; Kanchanapoom et al.<br />

2001). It was also reported that tribals use C. inerme as an<br />

antidote of poisoning from fish, crabs <strong>and</strong> toads (Rehman et<br />

al. 1997; Kanchanapoom et al. 2001; P<strong>and</strong>ey et al. 2003). C.<br />

phlomidis, C. colebrookianum, C. calamitosum <strong>and</strong> C. trichotomum<br />

have been reported to have antidiabetic, antihypertensive<br />

<strong>and</strong> sedative properties (Singh et al. 1980;<br />

Chaturvedi et al. 1984; Khan et al. 1996; Cheng et al. 2001;<br />

Kang et al. 2003; Chae et al. 2004; Choi et al. 2004). C.<br />

cyrtophyllum <strong>and</strong> C. chinense were used for the treatment<br />

of fever, jaundice, typhoid <strong>and</strong> syphilis (Cheng et al. 2001;<br />

Kanchanapoom et al. 2005). Roots, leaves <strong>and</strong> fresh juice<br />

of leaves of C. infortunatum were used in eliminating ascarids<br />

<strong>and</strong> tumors, <strong>and</strong> also as a laxative (<strong>An</strong>onymous 1992).<br />

C. phlomidis has been used as an astringent <strong>and</strong> also in the<br />

treatment of gonorrhea (Rani et al. 1999; Murugesan et al.<br />

2001). The roots of C. serratum have been claimed to be<br />

used in dyspepsia, seeds in dropsy <strong>and</strong> leaves as a febrifuge<br />

<strong>and</strong> in cephalagia <strong>and</strong> ophthalmia (<strong>An</strong>onymous 1992). C.<br />

Clerodendron <strong>and</strong> healthcare. Shrivastava <strong>and</strong> Patel<br />

calamitosum was used as a medicine for the treatment of<br />

kidney, gall <strong>and</strong> bladder stones. This plant is also reported to<br />

have diuretic <strong>and</strong> antibacterial properties (Cheng et al.<br />

2001). In the Chinese system of medicine C. bungei is used<br />

for the treatment of headaches, dizziness, furuncles <strong>and</strong> hysteroptosis<br />

(Zhou et al. 1982; Yang et al. 2002). In India,<br />

fruits of C. petasites are used to produce sterility, while in<br />

China the plant is used as medicine for malaria (Hazekamp<br />

et al. 2001; Panthong et al. 2003). Leaves of C. buchholzii<br />

are reported in African pharmacopeia for treatment of furunculosis,<br />

echymosis <strong>and</strong> gastritis (Nyegue et al. 2005). Other<br />

then their therapeutic use, some of the species of the genus<br />

such as C. inerme, C. thomosonae, C. indicum <strong>and</strong> C. speciosum<br />

are also cultivated <strong>and</strong> used as ornamental plants.<br />

PHYTOCHEMISTRY<br />

As mentioned earlier the genus <strong>Clerodendrum</strong> is reported in<br />

various indigenous systems of medicine throughout the<br />

world for the treatment of various diseases. Efforts have<br />

been made by various researchers to isolate <strong>and</strong> identify<br />

biologically active principle <strong>and</strong> other major chemical<br />

constituents from various species of the genus. Research<br />

reports on the genus denote that the major class of chemical<br />

constituents present in the <strong>Clerodendrum</strong> genus are steroids<br />

such as β-sitosterol, γ-sitosterol octacosanol, clerosterol,<br />

bungein A, acteoside, betulinic acid, clerosterol 3-O-β-Dglucopyranoside,<br />

colebrin A-E, campesterol, 4α-methylsterol,<br />

cholesta-5-22-25-trien-3-β-ol, 24-β-cholesta-5-22-25trine,<br />

cholestanol, 24-methyl-22-dihydrocholestanol, 24-β-<br />

22-25-bis-dehydrocholesterol, 24-α-methyl-22-dehydrocholesterol,<br />

24-β-methyl-22-dehydrocholesterol, 24-ethyl-<br />

22-dehydrocholesterol, 24-ethylcholesterol, 22-dehydroclerosterol,<br />

24-methyllathosterol, 24-β-ethyl-25-dehydrolathosterol,<br />

(24S)-ethylcholesta-5-22-25-triene-3β-ol have<br />

been isolated from various Clerodendron species such as C.<br />

inerme, C. phlomidis, C. infortunatum, C. paniculatum, C.<br />

cyrtophyllum, C. fragrans, C. splendens, C. campbellii <strong>and</strong><br />

C. splendens (Bolger et al. 1970; Abdul-Alim 1971; Joshi et<br />

al. 1979; Sinha et al. 1980; Singh <strong>and</strong> Singhi 1981; Sinha et<br />

al. 1982; Hsu et al. 1983; Singh <strong>and</strong> Prakash 1983; Singh<br />

<strong>and</strong> Singhi 1983; Pinto <strong>and</strong> Nes 1985; Rempler <strong>and</strong> Hunkler<br />

1986; Akihisa et al. 1989; Att-Ur-Rehman et al. 1997; Goswami<br />

et al. 1996; Yang et al. 2000; Kanchanapoom et al.<br />

2001; Yang et al. 2002; Gao et al. 2003a, 2003b; P<strong>and</strong>ey et<br />

al. 2003; Kanchanapoom et al. 2005; Lee et al. 2006).<br />

<strong>An</strong>other class of constituents are terpenes which include:<br />

monoterpenes, diterpenes, triterpenes, iridoids <strong>and</strong><br />

sesquiterpenes. Terpenes such as α-amyrin, β-amyrin, caryoptin,<br />

3-epicaryoptin, 16-hydroxy epicaryoptin, clerodendrin<br />

A, B <strong>and</strong> C, clerodin, clerodermic acid, cleroinermin,<br />

friedelin, gramisterol, iridoids (inerminoside A, B, C <strong>and</strong> D,<br />

melittaside, monomelittoside, sammangaoside, ug<strong>and</strong>oside,<br />

8-O-acetylmioporoside), obtusifoliol, oleanolic acid, royleanone,<br />

dehydroroyleanone, sesquiterpene (sammangaoside A,<br />

Table 3 A few species of <strong>Clerodendrum</strong> genus <strong>and</strong> their distribution in the world.<br />

Scientific Name Synonym Distribution<br />

C. inerme Gaertn.<br />

India, Sri Lanka, South East Asian countries, Australia, Pacific Isl<strong>and</strong>s<br />

C. phlomidis Linn. f.<br />

C. multiforum Burm. f. India<br />

C. serratum Spreng.<br />

India<br />

C. infortunatum Linn.<br />

The Philippines<br />

C. siphonanthus R. Br.<br />

C. indicum (Linn) Kuntze India<br />

C. commersonii Spreng.<br />

China<br />

C. glabrum E. Mey.<br />

Southern Africa<br />

C. triphyllum R. Br.<br />

Southern Africa<br />

C. trichotomum<br />

China, Korea, Japan<br />

C. bungei Stued.<br />

China<br />

C. calamitosum L.<br />

Indonesia, Taiwan<br />

C. cyrtophyllum Turez.<br />

Taiwan<br />

C. chinense (Osb.) Mabberley<br />

C. fragrans (Vent.) Willd. Tropical regions of Asia<br />

C. colebrookianum<br />

India, South Asian countries<br />

C. myricoides<br />

South Africa<br />

C. petasites S. Moore<br />

India, Malaysia, Sri Lanka, Vietnam, Southern China<br />

C. philippinum Schauer<br />

Queensl<strong>and</strong>, Australia<br />

C. heterophyllum R. Br. & Thb.<br />

Southern Africa<br />

146


Medicinal <strong>and</strong> Aromatic Plant <strong>Science</strong> <strong>and</strong> Biotechnology 1(1), 142-150 ©2007 <strong>Global</strong> <strong>Science</strong> <strong>Books</strong><br />

B) clerodendrin A, uncinatone, Mi saponins-A, friedelanone,<br />

lupeol, betulinic acid, royleanone <strong>and</strong> dehydroroyleanone,<br />

<strong>and</strong> betulin have till now been isolated from various<br />

Clerodendron species such as C. inerme, C. phlomidis,<br />

C. paniculatum, C. colebrookianum, C. wildii, C. uncinatum,<br />

C. m<strong>and</strong>arinorum, C. thomsonae, C. fragrans, C.<br />

ug<strong>and</strong>ense, C. chinense (Joshi et al. 1979; Sharma <strong>and</strong><br />

Singh 1979; Singh et al. 1981; Sinha et al. 1981; Seth et al.<br />

1982; Singh <strong>and</strong> Prakash 1983; Achari et al. 1990; Raha et<br />

al. 1991; Achari et al. 1992; Rao et al. 1993; Calis et al.<br />

1994; El-Shamy et al. 1996; Kawai et al. 1998; Hazekamp<br />

2001; Kanchanapoom et al. 2001; Yang et al. 2002; Kumari<br />

et al. 2003; Chae et al. 2004; Dorsaz et al. 2004; Nishida et<br />

al. 2004; Min et al. 2005).<br />

Flavonoids are another class of compounds which are<br />

mainly present in Clerodendron speices <strong>and</strong> they are also<br />

responsible for few biological activities. The major flavonoids<br />

present are cynaroside, 5-hydroxy-4’-7-dimethoxy<br />

methyl flavone, kaempferol, salvigenin, 4-methyl scutellarein,<br />

5,7,4 O-trihydroxyflavone, apigenin, luteolin, acacetin-7-O-glucuronide,<br />

hispidulin, 2’-4-4’trihydroxy-6’methyl<br />

chalcone, 7-hydroxy flavone, luteolin, naringin-4’-O-α-glucopyranoside,<br />

pectolinarigenin, cirsimaritin, cirsimaritin-4’glucoside,<br />

quercetin-3-methyl ether which were isolated<br />

from C. inerme, C. phlomidis, C. petasites, C. trichotomum,<br />

C. m<strong>and</strong>arinorum, <strong>and</strong> C. infortunatum (Vendatham et al.<br />

1977; Seth et al. 1982; Raha et al. 1989; Achari et al. 1990;<br />

Raha et al. 1991; Roy <strong>and</strong> P<strong>and</strong>ey 1994, 1995; Roy et al.<br />

1995 ; El-Shamy et al. 1996; <strong>An</strong>am 1997, 1999).<br />

There are also other chemical constituents present<br />

which include volatile constituents such as 5-O-ethylcleroindicin<br />

D, linalool, benzyl acetate <strong>and</strong> benzyl benzoate,<br />

which have been isolated from C. canescens, C. cyrtophyllum,<br />

C. inerme <strong>and</strong> C. philippinum (Yang et al. 2002; Nyegue<br />

et al. 2004; Wong <strong>and</strong> Tan 2005).<br />

Other chemical constituent includes cyanogenic glycosides<br />

such as lucumin <strong>and</strong> prunasin which were isolated<br />

from C. grayi (Miller et al. 2006). Phenolic compounds like<br />

β-benzyl alcohol, β-benzyl alcohol-D-glucoside, neolignan,<br />

darendoside-B, phenyl propanoids like (isovarbascoside,<br />

verbascoside, leucosceptoside), vanillic acid, anisic acid,<br />

para-hydroxy benzoic acid, gallic acid have been reported<br />

in C. inerme, C. bungei <strong>and</strong> C. dauricum (Liu <strong>and</strong> Fu 1980;<br />

Gabriele <strong>and</strong> Rimpler 1981; Zhou et al. 1982; Gabriele et al.<br />

1983; Sakurai <strong>and</strong> Kato 1983; Calis et al. 1994); D-mannitol<br />

from C. serratum (Garg <strong>and</strong> Verma 2006). Carbohydrates<br />

like glucose, fructose, sucrose are been reported in C.<br />

m<strong>and</strong>arinorum <strong>and</strong> C. inerme. Other constituents such as<br />

ribosome-inactivating protein, salidroside, jinoside-D, acetoside<br />

have been isolated from C. inerme (Olivieri et al.<br />

1996), while trichotomoside, cytotoxic pheophorbides <strong>and</strong><br />

cleromyrin-I have been isolated from C. trichotomum, C.<br />

calamitosum <strong>and</strong> C. cyrtophyllum (Bashwira et al. 1989;<br />

Cheng et al. 2001; Chae et al. 2006).<br />

BIOLOGICAL ACTIVITIES<br />

The genus <strong>Clerodendrum</strong> contains many plant species that<br />

are being used in various health care systems for the treatment<br />

of various disorders including life-threatening diseases.<br />

To validate traditional claims associated with the genus<br />

many studies are being carried out using various animal<br />

models <strong>and</strong> in vitro assays. These studies showed that the<br />

different species of the genus possess potent anti-inflammatory,<br />

antidiabetic, antimalarial, antiviral, antihypertensive,<br />

hypolipidemic <strong>and</strong> antioxidant activities <strong>and</strong> have potential<br />

to be developed as potent remedial agents from natural<br />

resources. Some major activities are described below.<br />

<strong>An</strong>ti-inflammatory activities<br />

Inflammation is a very complex pathophysiological process<br />

involving a variety of biomoleucles responsible for causing<br />

it such as leucocytes, macrophages, mast cells, platelets <strong>and</strong><br />

lymphocytes by releasing eicosanoids <strong>and</strong> nitric oxide. Pro-<br />

147<br />

inflammatory cytokines such as TNF-α <strong>and</strong> IL-1β are also<br />

responsible for various inflammatory conditions. Many species<br />

of the genus <strong>Clerodendrum</strong> showed potent anti-inflammatory<br />

activity. C. phlomidis was reported for significantly<br />

decreasing paw oedemas induced by carrageenan in rats at a<br />

dose of 1g/kg (Surendrakumar 1988). Similarly C. petasites<br />

was reported to show moderate anti-inflammatory activity<br />

in the acute phase of inflammation in rats. The ED50 values<br />

of the experiment were reported to be 2.34 mg/ear <strong>and</strong><br />

420.41 mg/kg in rats (Panthong et al. 2003), it has been suggested<br />

by the authors that the anti-inflammatory activity of<br />

the plant extract could be due to the inhibition of prostagl<strong>and</strong>in<br />

synthesis by the extract.<br />

The anti-inflammatory activity of C. trichotomum leaves<br />

were checked in rat, mice <strong>and</strong> Raw 264.7 macrophage<br />

cells using experimental models with 1 mg/kg solution of<br />

30% <strong>and</strong> 60% methanolic extracts of leaves. Experimental<br />

results concluded that inhibition by methanolic extract was<br />

comparable to that of the positive control in an acute inflammation<br />

model, while in the chronic model the extract<br />

showed 10% higher activity than the positive control. It also<br />

suppressed the levels of prostagl<strong>and</strong>in E2 (PGE2) in RAW<br />

264.7 macrophage cells (Choi et al. 2004). A phenyl propanoid<br />

glycoside 'acetoside' isolated from C. trichotomum also<br />

showed anti-inflammatory activity by inhibiting the release<br />

of histamine, arachidonic acid <strong>and</strong> prostagl<strong>and</strong>in E2 in RBL<br />

2H3 cells. The mechanism identified for the inhibition of<br />

histamine release was related to calcium concentration (Lee<br />

et al. 2006).<br />

Xanthine oxidase (XO) is the enzyme responsible for<br />

the formation of uric acid from the purines hypoxanthine<br />

<strong>and</strong> xanthine, <strong>and</strong> is responsible for the medical condition,<br />

gout. Gout is caused by the deposition of uric acid in the<br />

joints leading to painful inflammation. Purified hydroalcoholic<br />

extracts of leaves <strong>and</strong> branches of C. floribundum<br />

showed 84% inhibition of XO activity (Sweeney et al.<br />

2001). Results of the experiment indicate the potential of<br />

the plant species to be developed as a remedy for XO-induced<br />

diseases.<br />

Flavonoid glycosides of C. inerme showed modulation<br />

in calcium transport in isolated inflamed rat liver <strong>and</strong> thereby<br />

showed reduction in inflammation. The results obtained<br />

in the experiment were comparable with indomethacine<br />

used as a positive control (Somasundram <strong>and</strong> Sadique 1986).<br />

The alcoholic extract of roots of C. serratum showed a significant<br />

anti-inflammatory activity in carrageenan <strong>and</strong> also<br />

in the cotton pellet model in experimental mice, rats <strong>and</strong><br />

rabbits (Narayanan et al. 1999).<br />

<strong>An</strong>timicrobial activites<br />

<strong>An</strong>tiinfective compounds from natural resources are of great<br />

interest as the existing drugs are getting less effective due to<br />

increased tolerance of microorganisms. A number of species<br />

from the genus <strong>Clerodendrum</strong> were documented in ancient<br />

texts for their antimicrobial action. To validate these claims,<br />

research work was carried out with various Gram positive<br />

<strong>and</strong> Gram negative bacterial strains <strong>and</strong> also with fungal <strong>and</strong><br />

viral pathogens. Dried, aerial parts of C. inerme showed potent<br />

antiviral activity against Hepatitis B virus with an ED50<br />

value of 16 µg/ml (Mehdi et al. 1997). Essential oil obtained<br />

from leaves of the plant showed antifungal activity against<br />

variety of fungal species such as Alternaria species,<br />

Aspergillus species, Cladosporium herbarum, Cunnimghamella<br />

echinulata, Helminthosporium saccharii, Microsporum<br />

gypseum, Mucor mucedo, Penicillium digitatum, Rhizopus<br />

nigricans, Trichophyton rubrum <strong>and</strong> Trichothecium roseum<br />

(Sharma <strong>and</strong> Singh 1979). Alcoholic extracts of leaves<br />

<strong>and</strong> flowers of C. inerme also exhibited antibacterial activity<br />

against Escherichia coli <strong>and</strong> Staphylococcus aureus (George<br />

<strong>and</strong> P<strong>and</strong>alai 1949). Pectolinarigenin <strong>and</strong> chalcone glucoside<br />

isolated from leaf of C. phlomidis showed antifungal<br />

activity (Roy et al. 1995).<br />

Two phenyl propanoid glycosides (acteoside <strong>and</strong> acteoside<br />

isomer) isolated from C. trichotomum showed potent


inhibition of HIV-1 integrase with IC50 values of 7.8 ± 3.6<br />

<strong>and</strong> 13.7 ± 6.0 µM (Kim et al. 2001). A new hydroquinone<br />

diterpenoid was isolated from C. uncinatum <strong>and</strong> was<br />

strongly fungi toxic to the spores of Cladosporium cucumerinum<br />

(Dorsaz et al. 2004). Hexane extracts of C. colebrookianum<br />

at concentrations of 1000 <strong>and</strong> 2000 ppm<br />

showed strong antibacterial activities against various Gram<br />

positive <strong>and</strong> Gram negative pathogens such as S. aureus,<br />

Staphylococcus haemolyticus, E. coli, Pseudomonas aeruginosa<br />

(Misra et al. 1995).<br />

Two flavonoids from roots of C. infortunatum, cabruvin<br />

<strong>and</strong> quercetin, showed strong antifungal activity. The former<br />

showed activity against Alternaria carthami <strong>and</strong> Helminthosporin<br />

oryzae, the latter against Alternaria alternate<br />

<strong>and</strong> Fusarium lini at concentrations of 200, 500 <strong>and</strong> 1000<br />

mg/ml (Roy et al. 1996). Mi-saponin-A, a triterpenoid saponin<br />

isolated from the roots of C. wildii, showed potent<br />

antifungal activity against Cladosporium cucumerinum (Toyoto<br />

et al. 1990).<br />

<strong>An</strong>timalarial activities<br />

In various ancient literatures related to healthcare <strong>Clerodendrum</strong><br />

have been reported for its antimalarial activities because<br />

of the presence of a bitter principle. Studies with different<br />

parasites support these ancient claims. The alcoholic<br />

extract of C. phlomidis showed antimalarial activity against<br />

Plasmodium falciparum with an IC50 value of 48 µg/ml<br />

(Simonsen et al. 2001). <strong>An</strong>other Indian species, C. inerme<br />

also inhibited the growth of larvae of Ades aegypti, Culex<br />

quinquefasciatus <strong>and</strong> Culex pipiens at 80 <strong>and</strong> 100 ppm<br />

concentration of petroleum ether <strong>and</strong> ether extracts (Gayar<br />

<strong>and</strong> Shazll 1968; Kalyanasundaram <strong>and</strong> Das 1985). C. myricoides<br />

a species from Southern Africa was also tested positive<br />

for its antimalarial activity against both sensitive <strong>and</strong><br />

resistant strains of P. falciparum with IC50< 30 µg/ml (Muregi<br />

et al. 2004), it also showed 31.7% suppression in parasitaemia<br />

against cloroquine tolerant strain of Plasmodium<br />

berghei NK65 (Muregi et al. 2007). These plants may be<br />

useful as a source for novel anti-plasmodial drugs/compounds<br />

from natural origin.<br />

<strong>An</strong>tioxidant activities<br />

<strong>An</strong>tioxidant compounds are responsible for scavenging free<br />

radicals, which are produced during normal metabolism or<br />

during adverse conditions that can be harmful to biological<br />

systems <strong>and</strong> leading to death of an organism. Species like C.<br />

inerme have been used as antioxidant drugs in various indigenous<br />

systems of medicines (Masuda et al. 1999). Organic<br />

<strong>and</strong> aqueous extracts of C. colebrookianum showed significant<br />

inhibition of lipid peroxidation in vitro <strong>and</strong> in vivo<br />

induced by FeSO4-ascorbate in rats. Aqueous extracts<br />

showed strongest inhibitory activity over organic extracts.<br />

This lends scientific support to the therapeutic use of the<br />

plant leaves claimed in tribal medicine (Rajlakshmi et al.<br />

2003). Isoacteoside, trichotomoside <strong>and</strong> jionoside D, three<br />

compounds isolated from C. trichotomum, when tested<br />

showed significant scavenging activity of intracellular reactive<br />

oxygen species produced by hydrogen peroxide suggesting<br />

their antioxidant properties (Chae et al. 2004, 2005,<br />

2006). Apigenin-7-O-β-D-glucuronopyranoside (AGC), isolated<br />

from C. trichotomum leaves decreased the volume<br />

of gastric juice <strong>and</strong> increased the gastric pH in a dose-dependent<br />

manner, decreasing the number of gastric lesions.<br />

A malondialdehyde (MDA) level, which is the end product<br />

of lipid peroxidation, was also decreased by AGC (i.d. 3<br />

mg/kg), which increased significantly after the induction of<br />

reflux oesophagitis. The MDA levels did not decrease when<br />

either apigenin or omeprazole were used as a control suggesting<br />

that AGC has an antioxidative mechanism to reduce<br />

gastric lesions. Apigenin glucuronopyranoside also decreased<br />

mucosal glutathione (GSH) levels significantly suggesting<br />

that AGC possesses free radical scavenging activity.<br />

So it can be concluded that AGC is more potent in inhibit-<br />

Clerodendron <strong>and</strong> healthcare. Shrivastava <strong>and</strong> Patel<br />

148<br />

ing reflux oesophagitis <strong>and</strong> gastritis <strong>and</strong> may therefore be a<br />

promising drug for their treatment (Min et al. 2005). In present<br />

lifestyles where stress has taken an unwanted important<br />

position leading to excess production of free radicals these<br />

natural remedies will prove a support to our biological system<br />

to balance metabolism.<br />

Other biological activities of <strong>Clerodendrum</strong> genus<br />

Other major biological activites reported for this genus are<br />

antihypertensive, antitumor, antidiabetic, antihyperlipidemic,<br />

larvicidal, antidiarrhoel activities. Organic extracts of C.<br />

inerme showed strong uterine stimulant activity when tested<br />

in female rats <strong>and</strong> rabbits (Sharaf et al. 1969), <strong>and</strong> also<br />

showed strong antihemolytic activity in human adults at<br />

0.02-2.0 mg/ml, with inhibition of phospholipase at 0.05-1.5<br />

mg/ml (Somasundaram <strong>and</strong> Sidique 1986). The methanolic<br />

extract of C. multiflorum leaves showed antidiarrhoeal activity<br />

against castor oil-induced diarrhoea, PGE2-induced<br />

enteropooling <strong>and</strong> caused reduction in gastrointestinal<br />

motility in rats (Rani et al. 1999), while leaf juice at 0.1%<br />

showed anthelmentic activity against Ascaris lumbricoides,<br />

Phreitima posthuma <strong>and</strong> Taenia solium (Garg <strong>and</strong> Sidique<br />

1992). Two compounds, isoacteoside <strong>and</strong> jionoside D isolated<br />

from C. trichotomum also reduced the levels of apoptotic<br />

cells induced by the action of hydrogen peroxide (Chae<br />

et al. 2004, 2005). C. bungei showed antitumor activity in<br />

hepatic cells of mice at a dose of 100 g/kg (Shi et al. 1993).<br />

CNS-related activities were also observed in C. phlomidis<br />

showing tranquillizing, CNS depressant, muscle relaxant<br />

<strong>and</strong> psychopharmacological effects in experimental mice<br />

<strong>and</strong> rats (Murugesan et al. 2001). C. m<strong>and</strong>arinorum root extracts<br />

showed strong binding with opiate, adenosine-1, α-2adrenergic,<br />

5HT-1, 5HT-2, dopamine-2, histamine-1, GABA<br />

(A), <strong>and</strong> GABA (B) receptors. Isolated compounds of these<br />

plants showed weak binding with these recepters suggesting<br />

its synergestic effect (Zhu et al. 1996). C. inerme extracts<br />

showed hypotensive effects in dogs at 50 mg/kg (Bhakuni et<br />

al. 1969).<br />

A decoction of the entire C. phlomidis plant has been reported<br />

to have antidiabetic activity. A dose of 1 g/kg showed<br />

antidiabetic effects in epinephrine <strong>and</strong> alloxan induced<br />

hyperglycemia in rats <strong>and</strong> it also showed antihyperglycemic<br />

activity in human adults at a dose of 15-30 g/day (Chaturvedi<br />

et al. 1984). Organic <strong>and</strong> crude extracts of C. colebrookianum<br />

significantly lowered the serum lipid profile in<br />

rats suggesting that it has cardioprotective potential (Devi<br />

<strong>and</strong> Sharma 2004). The methanolic extract of C. phlomidis<br />

<strong>and</strong> leaf extracts of C. inerme showed antispasmodic activity<br />

in mouse (200 mg/kg; Murugesan et al. 2001) <strong>and</strong> guinea<br />

pigs (2 mg/ml; Cox et al. 1989). Ethanolic extract (2.25-9.0<br />

mg/ml) of C. petasites evaluated for spasmolytic activity in<br />

guinea-pigs showed spasmolysis on tracheal smooth muscles;<br />

it also relaxed the smooth muscle which was contracted<br />

by exposure to histamine. The activity of smooth muscle<br />

relaxation was attributed to hispidulin (flavonoid) with an<br />

EC50 (3.0 ± 0.8 * 10 -5 M) suggesting hispidulin has anti-inflammatory<br />

activity (Hazekamp 2001). Dichloromethane<br />

leaf extracts of C. myricoides indicated antimutagenic properties<br />

against Salmonella typhimurium TA98 <strong>and</strong> TA100<br />

bacterial strains (Reid et al. 2006).<br />

No adverse effects of the genus have been reported in<br />

the literature until now. Various species of the genus like C.<br />

infortunatum, C. serratum, C. phlomidis have been reported<br />

to be safe in the prescribed dosage in traditional system of<br />

medicines (<strong>An</strong>ynomous 1; Sharma PV 2001).<br />

SUMMARY<br />

The genus <strong>Clerodendrum</strong> has been cited in many indigenous<br />

systems of health care for the treatment of variety of disorders.<br />

A few species extensively used as folk medicines for<br />

years have been investigated for their chemical constituents<br />

<strong>and</strong> biological activity to confirm these traditional claims.<br />

The genus is reported to have activities against a wide spec-


Medicinal <strong>and</strong> Aromatic Plant <strong>Science</strong> <strong>and</strong> Biotechnology 1(1), 142-150 ©2007 <strong>Global</strong> <strong>Science</strong> <strong>Books</strong><br />

trum of disorders which includes many life-threatening diseases<br />

like HIV. Still there are many species of the genus<br />

having a potential towards many disorders in their unexplored<br />

fold.<br />

ACKNOWLEDGEMENT<br />

The authors wish to thank Mr. H. Srinivasa for his help in preparing<br />

the manuscript.<br />

REFERENCES<br />

Abdul-Alim MA (1971) A chemical study of the leaves of Clerodendron<br />

inerme. Planta Medica 19, 318-321<br />

Achari B, Chaudhuri C, Saha CR, Dutta PK, Pakrashi SC (1990) A clerodane<br />

diterpene <strong>and</strong> other constituents of Clerodendron inerme. Phytochemistry<br />

29, 3671-3673<br />

Achari B, Giri C, Saha CR, Dutta PK, Pakrashi SC (1992) A neo-clerodane<br />

diterpene from Clerodendron inerme. Phytochemistry 31, 338-340<br />

Akihisa T, Ghosh P, Thakur S, Nagata H, Tamura T, Matsumoto T (1990)<br />

24,24-dimethyl-25-dehydrolophenol, a 4-α-methylsterol from <strong>Clerodendrum</strong><br />

inerme. Phytochemistry 29, 1639-1641<br />

Akihisa T, Matsubara Y, Ghosh P, Thakur S, Tamura T, Matsumoto T<br />

(1989) Sterols of some <strong>Clerodendrum</strong> species (Verbenaceae) occurring of the<br />

24-α <strong>and</strong> 24-β epimers of 24-ethylsterols lacking a Δ 25 -bond. Steroids 53,<br />

625-638<br />

<strong>An</strong>am EM (1997) Novel flavone <strong>and</strong> chalcone glycosides from Clerodendron<br />

phlomidis (Verbenaceae). Indian Journal of Chemistry 36B, 897-900<br />

<strong>An</strong>am EM (1999) Novel flavonone <strong>and</strong> chalcone glycosides from Clerodendron<br />

phlomidis (Verbanaceae). Indian Journal of Chemistry 38B, 1307-1310<br />

<strong>An</strong>ynomous (1992) The Useful Plants of India, Publication <strong>and</strong> Information<br />

Directorate, CSIR, New Delhi, 132 pp<br />

<strong>An</strong>ynomous 1 (2005) Quality St<strong>and</strong>ards of Indian Medicinal Plants (Vol 3) Indian<br />

Council of Medical Research, New Delhi, 167 pp<br />

Atta-Ur-Rehman, Begum S, Saied S, Choudhary MI, Farzana A (1997) A<br />

steroidal glycoside from Clerodendron inerme. Phytochemistry 45, 1721-<br />

1722<br />

Bashwira S, Hootelé C, Tourwé D, Pepermans H, Laus G, van Binst G<br />

(1989) Cleromyrine I, a new cyclohexapeptide from <strong>Clerodendrum</strong> myricoides.<br />

Tetrahedron 18, 5845-5852<br />

Bhakuni OS, Dhar ML, Dhar MM, Dhavan BN, Mehrotra BN (1969)<br />

Screening of Indian plants for biological activities Part II. Indian Journal of<br />

Experimental Biology 7, 250-262<br />

Bolger LM, Rees HH, Ghisalberti EL, Goad LJ, Goodwin TW (1970) Isolation<br />

of two new sterols from <strong>Clerodendrum</strong> campbellii. Tetrahedron Letters<br />

11, 3043-3046<br />

Bolger LM, Rees HH, Gisalberti EL, Goad LJ, Goodwin TW (1970) Biosynthesis<br />

of 24-ethylcholesta-5, 22, 25-trien-3β-ol, a new sterol from <strong>Clerodendrum</strong><br />

campbellii. Biochemistry Journal 118, 197-200<br />

Calis I, Hosny M, Yuruker A (1994) Inerminosides A1, C <strong>and</strong> D three iridoid<br />

glycosides from Clerodendron inerme. Phytochemistry 37, 1083-1085<br />

Calis I, Hosny M, Yuruker A, Wright AD, Sticher O (1994) Inerminosides A<br />

<strong>and</strong> B two novel complex iridoid glycosides from Clerodendron inerme.<br />

Journal of Natural Products 57, 494-500<br />

Chae S, Kang KA, Kim JS, Hyun JW, Kang SS (2006) Trichotomoside: A<br />

new antioxidative phenylpropanoid glycoside from Clerodendron trichotomum.<br />

Chemistry <strong>and</strong> Biodiversity 3, 41-48<br />

Chae S, Kim JS, Kang KA, Bu HD, Lee Y, Hyun JW, Kang SS (2004)<br />

<strong>An</strong>tioxidant activity of jionoside D from Clerodendron trichotomum. Biological<br />

<strong>and</strong> Pharmaceutical Bulletin 27, 1504-1508<br />

Chae S, Kim JS, Kang KA, Bu HD, Lee Y, Seo YR, Hyun JW, Kang SS<br />

(2005) <strong>An</strong>tioxidant activity of isoacteoside from Clerodendron trichotomum.<br />

Journal of Toxicology <strong>and</strong> Environmental Health A 68, 389-400<br />

Chaturvedi GN, Subramaniyam PN, Tiwari SK, Singh KP (1984) Experimental<br />

<strong>and</strong> clinical studies of diabetes mellitus evaluating the efficacy of an<br />

indigenous oral hypoglycemic drug – arani. <strong>An</strong>cient <strong>Science</strong> Life 3, 216-224<br />

Cheng H-H, Wang H-K, Ito J, Bastow KF, Tachibana Y, Nakanishi Y, Xu Z,<br />

Luo T-Y, Lee K-H (2001) Cytotoxic pheophorbide-related compounds from<br />

<strong>Clerodendrum</strong> calamitosum <strong>and</strong> C. cyrtophyllum. Journal of Natural Products<br />

64, 915-919<br />

Choi J-H, Wang W-K, Kim H-J (2004) Studies on the anti-inflammatory<br />

effects of Clerodendron trichotomum thunberg leaves. Archives of Pharmacological<br />

Research 27, 189-193<br />

Cox PA, Sperry LB, Tuominen M, Bohlin L (1989) Pharmacological activity<br />

of the Samoan Ethnopharmacopoeia. Economic Botany 43, 487-497<br />

Devi R, Sharma DK (2004) Hypolipidemic effect of different extracts of Clerodendron<br />

colebrookianum Walp in normal <strong>and</strong> high-fat diet fed rats. Journal<br />

of Ethnopharmacology 90, 63-68<br />

Dorsaz A-C, Marston A, Stoeckli-Evans H, Msonthi JD, Hostettmann K<br />

(2004) Uncinatone, a new antifungal hydroquinone diterpenoid from <strong>Clerodendrum</strong><br />

uncinatum Schinz. Helvetica Chimica Acta 68, 1605-1610<br />

El-Shamy AM, El-Shabrawy ARO, El-Fiki N (1996) Phytochemical study of<br />

149<br />

clerodendron inerme L. growing in Egypt. Zagazig Journal of Pharmaceutical<br />

<strong>Science</strong> 5, 49-53<br />

Gabriele L, Rimpler H (1981) Iridoids in <strong>Clerodendrum</strong> thomsonae Balf. F.,<br />

Verbanaceae. Zeitschrift fur Naturforschung C: A Journal of Biosciences 36C,<br />

708-713<br />

Gabriele L, Rimpler H (1983) Distribution of iridoid glycosides in <strong>Clerodendrum</strong><br />

species. Phytochemistry 22, 1729-1734<br />

Gao LM, Wei XM, He YQ (2003a) Studies on chemical constituents in leafs of<br />

Clerodendron fragrans. Zhongguo Zhong Yao Za Zhi 28, 948-951<br />

Gao LM, Wei XM, He YQ (2003b) Studies on chemical constituents of <strong>Clerodendrum</strong><br />

bungei. Zhongguo Zhong Yao Za Zhi 28, 1042-1044<br />

Garg SC, Siddiqui N (1992) <strong>An</strong>thelmintic activity of Vernonia teres L., <strong>and</strong><br />

<strong>Clerodendrum</strong> phlomidis L. Journal of Research Education in Indian Medicine<br />

11, 1-3<br />

Garg VP, Verma SCL (2006) Chemical examination of Clerodendron serratum:<br />

Isolation <strong>and</strong> characterization of D-mannitol. Journal of Pharmaceutical<br />

<strong>Science</strong>s 56, 639-640<br />

Gayar R, Shazll A (1968) Toxicity of certain plants to Culex pipiens larvae.<br />

Bulletin of the Society of Entomology, Egypt 52, 467<br />

George M, P<strong>and</strong>alai KM (1949) Investigations on plant antibiotics, Part IV.<br />

Further search for antibiotic substances in Indian medicinal Plants. Indian<br />

Journal of Medical Research 37, 169-181<br />

Goswami P, Kotoky J, Chen Z-N, Lu Y (1996) A sterol glycoside from leaves<br />

of Clerodendron colebrookianum. Phytochemistry 41, 279-281<br />

Hazekamp A, Verpoorte R, Panthong A (2001) Isolation of a bronchodilator<br />

flavonoid from the Thai medicinal plant <strong>Clerodendrum</strong> petasites. Journal of<br />

Ethnopharmacology 78, 45-49<br />

Hsiao JY, Lin ML (1995) A Chemotaxonomic study of essential oils from the<br />

leaves of genus <strong>Clerodendrum</strong> (Verbenaceae) native to Taiwan. Botany Bulletin<br />

Academica Sinica 36, 247-251<br />

Hsu YC, Chen C, Yuh P, Hsu HY (1983) Constituents of Clerodendron paniculatum<br />

Linn var. albiflorum Hemsl. Chung-kuo Nung Yeh Hua Hsueh Hui<br />

Chih 21, 26<br />

Joshi KC, Singh P, Mehra A (1979) Chemical investigation of the roots of different<br />

Clerodendron species. Planta Medica 37, 64-66<br />

Kalyanasundaram M, Das PK (1985) Larvicidal <strong>and</strong> synergestic activity of<br />

plant extracts for mosquito control. Indian Journal of Medical Research 82,<br />

19-23<br />

Kanchanapoom T, Chumsri P, Kasai R, Otsuka H, Yamasaki K (2005) A<br />

new iridoid diglycoside from <strong>Clerodendrum</strong> chinense. Journal of Asian Natural<br />

Products Research 7, 269-272<br />

Kanchanapoom T, Kasaia R, Chumsric P, Hiragad Y, Yamasaki K (2001)<br />

Megastigmane <strong>and</strong> iridoid glucosides from <strong>Clerodendrum</strong> inerme. Phytochemistry<br />

58, 333-336<br />

Kang DG, Lee YS, Kim HJ, Lee YM, Lee HS (2003) <strong>An</strong>giotensin converting<br />

enzyme inhibitory phenylpropanoid glycosides from Clerodendron trichotomum.<br />

Journal of Ethnopharmacology 89, 151-154<br />

Kawai K, Amano T, Nishida R, Kuwahara Y, Fukami H (1998) Clerodendrins<br />

from Clerodendron trichotomum <strong>and</strong> their feeding stimulant activity for<br />

the turnip sawfly. Phytochemistry 49, 1975-1980<br />

Khan MA, Singh VK (1996) A folklore survey of some plants of Bhopal district<br />

forest Madhya Pradesh India described as antidiabetics. Fitoterapia 67,<br />

416-421<br />

Kim HJ, Woo ER, Shin CG, Hwang DJ, Park H, Lee YS (2001) HIV-I integrase<br />

inhibitory phenyl propanoid glycosides from C. trichotomum. Archives<br />

in Pharmacological Research 24, 286-291<br />

Kirtikar KR, Basu BD (1991) Indian Medicinal Plants (2 nd Edn, Vol III) Bishen<br />

Singh Mahendra Pal Sing Publication, 1945 pp<br />

Kumar D, Verma HN, Tuteja N, Tewari KK (1997) Cloning <strong>and</strong> characterisation<br />

of a gene encoding an antiviral protein from <strong>Clerodendrum</strong> aculeatum<br />

L. Plant Molecular Biology 33, 745-751<br />

Kumari GNK, Balach<strong>and</strong>ran J, Aravind S, Ganesh MR (2003) <strong>An</strong>tifeedant<br />

<strong>and</strong> growth inhibitory effects of some neo-clerodane diterpenoids isolated<br />

from Clerodendron species (Verbanaceae) on Earias vitella <strong>and</strong> Spodoptera<br />

litura. Journal of Agriculture <strong>and</strong> Food Chemistry 51, 1555-1559<br />

Lee JH, Lee JY, Kang HS, Jeong CH, Moon H, Whang WK, Kim CJ, Sim<br />

SS (2006) The effect of acteoside on histamine release <strong>and</strong> arachidonic acid<br />

release in RBL-2H3 mast cells. Archives in Pharmacological Research 29,<br />

508-513<br />

Lu Y-L, Fu F-Y (1980) Studies on the chemical constituents of Clerodendron<br />

dauricum L. Part IV. Identification of carboxylic acids. Ts'ao Yao 11, 152-153<br />

Masuda T, Yonemori S, Oyama Y, Takeda Y, Tanaka T, <strong>An</strong>doh T, Shinohara<br />

A, Nakata M (1999) Evaluation of the antioxidant activity of environmental<br />

plants: activity of the leaf extracts from seashore plants. Journal of Agriculture<br />

<strong>and</strong> Food Chemistry 47, 1749-1754<br />

Mehdi H, Tan GT, Pezzuto JM, Fong HHS, Farnsworth NR, EL-Feraly FS<br />

(1997) Cell culture assay system for the evaluation of natural product mediated<br />

anti-hepatitis B virus activity. Phytomedicine 3, 369-377<br />

Miller RE, McConville MJ, Woodrow IE (2006) Cyanogenic glycosides from<br />

the rare Australian endemic rainforest tree <strong>Clerodendrum</strong> grayi (Lamiaceae).<br />

Phytochemistry 67, 43-51<br />

Min YS, Yim SH, Bai KL, Choi HJ, Jeong JH, Song HJ, Park SY, Ham I,<br />

Whang WK, Sohn UD (2005) The effects of apigenin-7-O-β-D-glucuro-


nopyranoside on reflux oesophagitis <strong>and</strong> gastritis in rats. Autonomic <strong>and</strong> Autacoid<br />

Pharmacology 25, 85-91<br />

Misra TN, Singh SR, P<strong>and</strong>ey HS, Kohli YP (1995) <strong>An</strong>tibacterial <strong>and</strong> antifungal<br />

activity of three volatile hexane eluates extracted from the leaves of C.<br />

colebrookianum. International Seminar on Recent Trends in Pharmaceutical<br />

<strong>Science</strong>s, Ootacamund, Abstract No 29<br />

Moldenke HN (1985) Notes on the genus <strong>Clerodendrum</strong> (Verbenaceae). IV.<br />

Phytologia 57, 334-365<br />

Muregi FW, Chhabra SC, Njagi EN, Lang'at-Thoruwa CC, Njue WM,<br />

Orago AS, Omar SA, Ndiege IO (2004) <strong>An</strong>ti-plasmodial activity of some<br />

Kenyan medicinal plant extracts singly <strong>and</strong> in combination with chloroquine.<br />

Phytotherapy Research 18, 379-384<br />

Muregi FW, Ishih A, Miyase T, Suzuki T, Kino H, Amano T, Mkoji GM,<br />

Terada M (2007) <strong>An</strong>timalarial activity of methanolic extracts from plants<br />

used in Kenyan ethnomedicine <strong>and</strong> their interactions with chloroquine (CQ)<br />

against a CQ-tolerant rodent parasite, in mice. Journal of Ethnopharmacology<br />

111, 190-195<br />

Murugesan T, Saravanan KS Lakshmi S, Ramya G, Thenmozhi K (2001)<br />

Evaluation of psychopharmacological effects of <strong>Clerodendrum</strong> phlomidis<br />

Linn. extract. Phytomedicine 8, 472-476<br />

Narayanan N, Thirugnanasambantham P, Viswanathan S, Vijayasekaran V,<br />

Sukumar E (1999) <strong>An</strong>tinociceptive, anti-inflammatory <strong>and</strong> antipyretic effects<br />

of ethanol extract of Clerodendron serratum roots in experimental animals.<br />

Journal of Ethnopharmacology 65, 237-241<br />

Nishida R, Kawai K, Amano T, Kuwahara Y (2004) Pharmacophagous<br />

feeding stimulant activity of neo-clerodane diterpenoids for the turnip sawfly,<br />

Athalia rosae fuficornis. Biochemistry <strong>and</strong> Systematic Ecology 32, 15-25<br />

Nyegue MA, Belinga-Ndoye CF, Amvam Zollo PH, Agnaniet H, Menut C,<br />

Bessière JM (2005) Aromatic plants of tropical central Africa, Part L, Volatile<br />

components of <strong>Clerodendrum</strong> buchholzii Gürke from Cameroon. Flavour<br />

<strong>and</strong> Fragrance Journal 20, 321-323<br />

Olivieri F, Prasad V, Valbonesi P, Srivastava S, Ghosal-Chowdhury P,<br />

Barbieri L, Bolognesi A, Stirpe F (1996) A systemic antiviral resistance-inducing<br />

protein isolated from <strong>Clerodendrum</strong> inerme Gaertn. is a polynucleotide<br />

adenosine glycosidase (ribosome-inactivating protein). FEBS Letters<br />

396, 132-134<br />

P<strong>and</strong>ey R, Verma RK, Singh SC, Gupta MM (2003) 4α-methyl-24β-ethyl-<br />

5α-cholesta-14,25-dien-3β-ol <strong>and</strong> 24β-ethylcholesta-5, 9(11), 22e-trien-3βol,<br />

sterols from <strong>Clerodendrum</strong> inerme. Phytochemistry 63, 415-420<br />

Panthong D, Kanjanapothi T, Taesotikul T, Wongcomea V (2003) <strong>An</strong>ti-inflammatory<br />

<strong>and</strong> antipyretic properties of <strong>Clerodendrum</strong> petasites S. Moorea.<br />

Journal of Ethnopharmacology 85, 151-156<br />

Pinto WJ, Nes WR (1985) 24β-ethylsterols, n-alkanes <strong>and</strong> n-alkanols of <strong>Clerodendrum</strong><br />

splendens. Phytochemistry 24, 1095-1097<br />

Raha P, Banerjee H, Das AK (1989) Occurrence of three 5-hydroxyflavones<br />

in Clerodendron sc<strong>and</strong>ens <strong>and</strong> Clerodendron inerme Linn. Indian Journal of<br />

Chemistry 28B, 874<br />

Raha P, Das AK, Adityachaudhuri N, Majumdar Pl (1991) Cleroinermin A<br />

neo-clerodane diterpenoid from Clerodendron inerme. Phytochemistry 38,<br />

3812-3814<br />

Rajlakshmi D, Banerjee SK, Sood S, Maulik SK (2003) In-vitro <strong>and</strong> in-vivo<br />

antioxidant activity of different extracts of the leaves of Clerodendron colebrookianum<br />

Walp in the rat. Journal of Pharmacy <strong>and</strong> Pharmacology 55,<br />

1681-1686<br />

Rani S, Ahamed N, Rajaram S, Saluja R, Thenmozhi S, Murugesan T<br />

(1999) <strong>An</strong>ti-diarrhoeal evaluation of <strong>Clerodendrum</strong> phlomidis Linn, leaf<br />

extract in rats. Journal of Ethnopharmacology 68, 315-319<br />

Rao LJM, Pereira J, Gurudutt KN (1993) Neo-clerodane diterpenes from<br />

Clerodendron inerme. Phytochemistry 34, 572-574<br />

Reid KA, Maesa J, Maesa A, van Staden J, Kimpec ND, Mulholl<strong>and</strong> DA,<br />

Verschaeve L (2006) Evaluation of the mutagenic <strong>and</strong> antimutagenic effects<br />

of South African plants. Journal of Ethnopharmacology 106, 44-50<br />

Roy R, P<strong>and</strong>ey VB (1995) Flavonoids of Clerodendron phlomidis. Indian<br />

Journal of Natural Products 11, 13-14<br />

Roy R, P<strong>and</strong>ey VB (1994) A chalcone glycoside from Clerodendron phlomidis.<br />

Phytochemistry 37, 1775- 1776<br />

Roy R, P<strong>and</strong>ey VB, Singh UP, Prithiviraj B (1996) <strong>An</strong>tifungal activity of the<br />

flavonoids from C. infortunatum roots. Fitoterapia 67, 473-74<br />

Roy R, Singh UP, P<strong>and</strong>ey VB (1995) <strong>An</strong>tifungal activity of some naturally occurring<br />

flavonoids. Oriental Journal of Chemistry 11, 145-148<br />

Clerodendron <strong>and</strong> healthcare. Shrivastava <strong>and</strong> Patel<br />

150<br />

Rueda RM (1993) The genus <strong>Clerodendrum</strong> (Verbenaceae) in Mesoamerica.<br />

<strong>An</strong>nals of the Missouri Botanical Garden 80, 870-890<br />

Seth KK, P<strong>and</strong>ey VB, Dasgupta B (1982) Flavanoids of Clerodendron phlomidis<br />

flowers. Pharmazie 37, 74-75<br />

Sharaf A, Aboulezz AF, Abdul-Alim MA, Goman N (1969) Pharmacological<br />

studies on the leaves of C. inerme. Quality Plant Material Vegetation 17, 293<br />

Sharma PV (2001) Dravyaguna-Vijnana (Vol II, Vegetable Drugs), Chaukhanbha<br />

Bharati Academy, Varanasi, pp 221, 298, 300, 523<br />

Sharma SK, Singh VP (1979) The antifungal activity of some essential oils. Indian<br />

Drugs Pharmaceutical Industry 14, 3-6<br />

Shi XF, Du DJ, Xie DC, Ran CQ (1993) Studies on the antitumor effect of<br />

<strong>Clerodendrum</strong> bungei Steud or C. foetidum Bge. Zhongguo Zhong Yao Za Zhi<br />

18, 687-690, 704<br />

Simonsen HT, Nordskjold JB, Smitt UW, Nyman W, Palpu P, Joshi P,<br />

Varughese G (2001) In vitro screening of Indian medicinal plants for antiplasmodial<br />

activity. Journal of Ethnopharmacology 74, 195-204<br />

Singh P, Singhi CL (1981) Chemical investigation of Clerodendron fragrans.<br />

Journal of the Indian Chemical Society 58, 626-627<br />

Singh R, Prakash L (1983) Chemical examination of stems of Clerodendron<br />

inerme (L) Gaertn. (Verbenaceae). Pharmazie 38, 565<br />

Singh VP, Sharma SK, Khan VS (1980) Medicinal plants from Ujain district<br />

Madhya Pradesh part II. Indian Drugs <strong>and</strong> Pharmaceutical Industry 5, 7-12<br />

Sinha NK, P<strong>and</strong>ey VB, Dasgupta B, Higuchi R, Kawasaki T (1982) Acteoside<br />

from the flowers of Clerodendron infortunatum. Indian Journal of Chemistry<br />

22B, 97-98<br />

Sinha NK, P<strong>and</strong>ey VB, Shah AH, Dasgupta B (1980) Chemical constituents<br />

of the flowers of Clerodendron infortunatum. Indian Journal of Pharmaceutical<br />

<strong>Science</strong> 42, 21<br />

Sinha NK, Seth KK, P<strong>and</strong>ey VB, Dasgupta B, Shah AH (1981) Flavonoids<br />

from the flowers of Clerodendron infortunatum. Planta Medica 42, 296-298<br />

Somasundaram S, Sadique J (1986) The role of mitochondrial calcium transport<br />

during inflammation <strong>and</strong> the effect of anti-inflammatory drugs. Biochemical<br />

Medicine <strong>and</strong> Metabolic Biology 36, 220-230<br />

Somasundram S, Sadique J (1986) <strong>An</strong>ti-hemolytic effect of flavonoidal glycosides<br />

of C. inerme: <strong>An</strong> in vitro study. Fitoterapia 57, 103-110<br />

Steane DA, Scotl<strong>and</strong> RW, Mabberley DJ, Olmstead RG (1999) Molecular<br />

systematics of <strong>Clerodendrum</strong> (Lamiaceae): its sequences <strong>and</strong> total evidence.<br />

American Journal of Botany 86, 98-107<br />

Steane DA, De Kok RPJ, Olmstead RG (2004) Phylogenetic relationships between<br />

<strong>Clerodendrum</strong> (Lamiaceae) <strong>and</strong> other Ajugoid genera inferred from nuclear<br />

<strong>and</strong> chloroplast DNA sequence data. Molecular Phylogenetics <strong>and</strong> Evolution<br />

32, 39-45<br />

Stenzel E, Rimpler H, Hunkler D (1986) Iridoid glucosides from <strong>Clerodendrum</strong><br />

incisum. Phytochemistry 25, 2557-2561<br />

Surendrakumar P (1988) <strong>An</strong>ti-inflammatory activity of Lippia nodiflora, Clerodendron<br />

phlomidis <strong>and</strong> Delonix elata. Journal of Research Education Indian<br />

Medicine 7, 19-20<br />

Sweeney AP, Wyllie SG, Shalliker RA, Markham JL (2001) Xanthine oxidase<br />

inhibitory activity of selected Australian native plants. Journal of Ethnopharmacology<br />

75, 273-277<br />

Toyota M, Msonthi JD, Hostettmann K (1990) A molluscicidal <strong>and</strong> antifungal<br />

triterpenoid saponin from the roots of <strong>Clerodendrum</strong> wildii. Phytochemistry<br />

29, 2849-2851<br />

Vendatham TNC, Subramanian SS, Harborne JB (1977) 4’methylscutellarein<br />

<strong>and</strong> pectolinarigenin from Clerodendron inerme. Phytochemistry 16, 294<br />

Wong KC, Tan CH (2005) Volatile constituents of the flowers of Clerodendron<br />

fragrans (Vent.) R. Br. Flavour <strong>and</strong> Fragrance Journal 20, 429-430<br />

Yang H, Hou A-J, Mei S-X, Sun H-D, Che C-T (2002) Constituents of<br />

<strong>Clerodendrum</strong> bungei. Journal of Asian Natural Products Research 4, 165-<br />

169<br />

Yang H, Jiang B, Hou A-J, Lin Z-W, Sun H-D (2000) Colebroside A, a new<br />

diglucoside of fatty acid ester of glycerin from <strong>Clerodendrum</strong> colebrookianum.<br />

Journal of Asian Natural Product Research 2, 177-185<br />

Yang H, Wang J, Hou A-J, Guo Y-P, Lin Z-W, Sun H-D (2000) New steroids<br />

from <strong>Clerodendrum</strong> colebrookianum. Fitoterapia 71, 641-648<br />

Zhou P, Pang Z, Hso HQ (1982) Studies on chemical constituents of Clerodendron<br />

bungei. Zhiwu Xaebao 24, 564-567<br />

Zhu M, Phillipson JD, Greengrass PM, Bowery NG (1996) Chemical <strong>and</strong><br />

biological investigation of the root bark of <strong>Clerodendrum</strong> m<strong>and</strong>arinorum.<br />

Planta Medica 62, 393-396

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!