06.04.2013 Views

Fruit-frugivore interactions in a Malagasy littoral forest - Universiteit ...

Fruit-frugivore interactions in a Malagasy littoral forest - Universiteit ...

Fruit-frugivore interactions in a Malagasy littoral forest - Universiteit ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Fruit</strong>-<strong>frugivore</strong> <strong><strong>in</strong>teractions</strong> <strong>in</strong> a <strong>Malagasy</strong> <strong>littoral</strong> <strong>forest</strong>: a community-wide approach of seed dispersal An BOLLEN<br />

<strong>Fruit</strong>-<strong>frugivore</strong> <strong><strong>in</strong>teractions</strong><br />

<strong>in</strong> a <strong>Malagasy</strong> <strong>littoral</strong> <strong>forest</strong>:<br />

a community-wide approach<br />

of seed dispersal<br />

Proefschrift voorgelegd tot het behalen van<br />

de graad van doctor <strong>in</strong> de Wetenschappen<br />

aan de <strong>Universiteit</strong> Antwerpen te verdedigen door<br />

An BOLLEN<br />

Promotoren: Prof. dr. L. Van Elsacker<br />

Prof. dr. R. Verheyen<br />

Prof. dr. J. Ganzhorn<br />

UNIVERSITEIT ANTWERPEN<br />

Faculteit Wetenschappen<br />

Departement Biologie<br />

ANTWERPEN 2003


<strong>Universiteit</strong> Antwerpen<br />

Faculteit Wetenschappen<br />

Departement Biologie<br />

Promotoren: Prof. dr. L. Van Elsacker<br />

Prof dr. R. Verheyen<br />

Prof dr. J. Ganzhorn<br />

Antwerpen, 2003<br />

<strong>Fruit</strong>-<strong>frugivore</strong> <strong><strong>in</strong>teractions</strong> <strong>in</strong> a <strong>Malagasy</strong><br />

<strong>littoral</strong> <strong>forest</strong>: a community-wide<br />

approach of seed dispersal<br />

Interacties tussen vruchten en <strong>frugivore</strong>n<br />

<strong>in</strong> een Madagaskisch littoraal regenwoud:<br />

een benader<strong>in</strong>g van zaadverspreid<strong>in</strong>g<br />

op niveau van het ecosysteem<br />

Proefschrift voorgelegd tot het behalen van de graad van doctor <strong>in</strong> de Wetenschappen<br />

aan de <strong>Universiteit</strong> Antwerpen te verdedigen door<br />

An BOLLEN


Cover photographs:<br />

Front:<br />

Back:<br />

-‘ambora’ Tambourissa purpurea (Monimiaceae) © An Bollen<br />

-‘bodono’ Cheirogaleus medius (Cheirogaleidae) © Han Remaut<br />

-‘hazombato’ Campylospermum obtusifolium (Ochnaceae) © An Bollen<br />

-‘horovana’ Hypsipetes madagascariensis (Pycnonotidae) © Han Remaut<br />

-‘tsilantria’ Vacc<strong>in</strong>ium emirnense (Ericaceae) © An Bollen<br />

-‘varika’ a male Eulemur fulvus collaris (Lemuridae) © An Bollen<br />

-aerial photograph of the Sa<strong>in</strong>te Luce area (middle) © An Bollen<br />

-‘sanirambavy’ fruits of T<strong>in</strong>a thouarsiana (Sap<strong>in</strong>daceae) with bill traces of<br />

Coracopsis nigra (Psittacidae) © An Bollen<br />

-‘fanihy’ Pteropus rufus (Pteropodidae) © An Bollen<br />

-‘rotry mena’ Syzygium sp.2’ (Myrtaceae) © An Bollen<br />

-seeds of ‘voapaky vavy’ Uapaca <strong>littoral</strong>is (Euphorbiaceae) with gnaw<strong>in</strong>g marks<br />

of ‘voalava’ rodents © An Bollen<br />

-Eulemur fulvus collaris feed<strong>in</strong>g <strong>in</strong> a fruit<strong>in</strong>g tree © An Bollen<br />

-‘sjihely’ sard<strong>in</strong>e-like fishes <strong>in</strong> Dec ‘00 <strong>in</strong> the village of Ambandriky © An Bollen<br />

-the people of the Ambandriky at the land<strong>in</strong>g strip of Mart<strong>in</strong> Pêcheur <strong>in</strong> front of the<br />

hill of S17 © An Bollen<br />

Throughout this PhD taxonomic names of the plant species follow the Flora of Madagascar<br />

(Humbert 1936-1984), the data base of Missouri Botanical Garden (http://mobot.mobot.org/W3T)<br />

ISBN 90-5728-042-6<br />

© An Bollen


TABLE OF CONTENTS<br />

Table of contents<br />

Acknowledgements ........................................................................................................1<br />

Preface ...........................................................................................................................5<br />

I. General Introduction..................................................................................................7<br />

II. Ma<strong>in</strong> Chapters ......................................................................................................... 13<br />

1. Phenology of the <strong>littoral</strong> <strong>forest</strong> of Sa<strong>in</strong>te Luce, south-east Madagascar.............. 15<br />

Bollen A, Donati G<br />

Submitted to Biotropica<br />

2. Tree dispersal strategies <strong>in</strong> the <strong>littoral</strong> <strong>forest</strong> of Sa<strong>in</strong>te Luce .............................. 37<br />

(south-east Madagascar)<br />

Bollen A, Van Elsacker L, Ganzhorn JU<br />

Submitted to Oecologia<br />

3. Relations between fruits and disperser assemblages <strong>in</strong> the <strong>littoral</strong> .................... 59<br />

<strong>forest</strong> of south-east Madagascar: a community level approach<br />

Bollen A, Van Elsacker L, Ganzhorn JU<br />

Submitted to Journal of Tropical Ecology<br />

3a. Feed<strong>in</strong>g ecology of Pteropus rufus (Pteropodidae) ................................... 85<br />

<strong>in</strong> the <strong>littoral</strong> <strong>forest</strong> of Sa<strong>in</strong>te Luce (south-east Madagascar)<br />

Bollen A, Van Elsacker L<br />

Acta Chiropterologica 4(1): 33-47<br />

3b. Feed<strong>in</strong>g ecology of Coracopsis nigra (Psittacidae) <strong>in</strong> ............................ 101<br />

the <strong>littoral</strong> <strong>forest</strong> (south-east Madagascar).<br />

Bollen A, Van Elsacker L<br />

Submitted to Ostrich<br />

4. <strong>Fruit</strong> characteristics <strong>in</strong> a dry deciduous and a humid <strong>littoral</strong> <strong>forest</strong>................... 111<br />

of Madagascar: evidence for selection pressure through abiotic<br />

constra<strong>in</strong>ts rather than through co-evolution with lemurs as seed dispersers<br />

Bollen A, Donati G, Fietz J, Schwab D, Ramanamanjato J-B,<br />

Randrihasipara L, Van Elsacker L, Ganzhorn JU<br />

In: <strong>Fruit</strong>s and <strong>frugivore</strong>s, L Dew and JP Boubli (Eds.)<br />

In Press. Kluwer Academic Press, Dordrecht<br />

5. The <strong>Malagasy</strong> <strong>littoral</strong> <strong>forest</strong>: threats and possible solutions ............................ 133<br />

Bollen A, Donati G


Table of contents<br />

III. General conclusion.............................................................................................. 147<br />

Samenvatt<strong>in</strong>g.............................................................................................................. 153<br />

Sommaire ................................................................................................................... 159<br />

References ................................................................................................................ 165


ACKNOWLEDGEMENTS<br />

Acknowledgements<br />

Many people have provided me with assistance, guidance and support dur<strong>in</strong>g the time it<br />

has taken me to complete this PhD for which I am very grateful:<br />

First of all I want to thank my supervisor, L<strong>in</strong>da Van Elsacker, who has supported me<br />

from the beg<strong>in</strong>n<strong>in</strong>g of this PhD, never los<strong>in</strong>g faith. Thanks for lett<strong>in</strong>g me <strong>in</strong>troduce not only<br />

lemurs but also bats, birds and rats with<strong>in</strong> this primatological group and for always be<strong>in</strong>g<br />

ready to read my manuscripts over and over aga<strong>in</strong>, to exchange ideas and to motivate<br />

me to present research to the larger public. S<strong>in</strong>cere thanks as well to Rudi Verheyen who<br />

was ready to act as my co-promoter and who has encouraged me throughout the PhD.<br />

It was Jörg Ganzhorn who got me to Madagascar <strong>in</strong> the first place. He helped me<br />

greatly dur<strong>in</strong>g field research, <strong>in</strong> the analyses and written part of this PhD. Many of the<br />

<strong>in</strong>terpretations presented here were developed <strong>in</strong> discussion with him. His impressive list<br />

of publications and unique expertise <strong>in</strong> tropical ecology have been an ideal guide for me<br />

dur<strong>in</strong>g these four years. Jörg, thank you very much for the appreciated help and all the<br />

time you put <strong>in</strong>to this work while not really hav<strong>in</strong>g any spare time.<br />

I would also like to express my gratitude to all my CRC colleagues on whom I could<br />

count for correct<strong>in</strong>g ‘rough’ drafts and provid<strong>in</strong>g useful suggestions. In particular I would<br />

like to thank Cather<strong>in</strong>e Roden, Jeroen Stevens, Ad<strong>in</strong>da Sannen, Rebekka Deleu, Isra<br />

Deblauwe, Hilde Vervaecke and Krist<strong>in</strong> Leus. My special thanks to Ad<strong>in</strong>da who helped<br />

me greatly <strong>in</strong> the f<strong>in</strong>al phase, guid<strong>in</strong>g me through all the official procedures and lay-out<br />

options. Many thanks as well to Vera Cuypers and Paule Stevens who made all the<br />

adm<strong>in</strong>istrative paperwork a lot easier.<br />

Language-wise I was very lucky to get help from Eric Arnhem who was ready to<br />

correct the French summary of this PhD. As for English, it was wonderful to work together<br />

with Don and Val Sibley who closely scanned my drafts for awkward phrases,<br />

grammatical errors and other mistakes. Previous versions of the chapters benefited<br />

greatly from the comments of Steve Goodman and Paul Adrian Racey, for which many<br />

thanks.<br />

I am very grateful to Irene Tomaschewski from the Department of Conservation and<br />

Ecology (University of Hamburg) for carry<strong>in</strong>g out biochemical analyses on the fruits.<br />

Thanks to the statistical advice of Dries Bonte and Stefaan Van Dongen SAS became<br />

a little less <strong>in</strong>comprehensible to me. They put me back on the right track when I was lost<br />

<strong>in</strong> the complex world of statistical tests and models. My s<strong>in</strong>cere thanks for your help!<br />

I would further like to thank the members of the jury who have taken time to read<br />

through this PhD, I am look<strong>in</strong>g forward to your comments. In this respect I am very<br />

grateful for the useful suggestions and constructive criticism of Prof Luc Lens on the first<br />

version of this PhD.<br />

Obviously this PhD would never have been possible <strong>in</strong> the first place without the<br />

fund<strong>in</strong>g of the FWO (Funds for Scientific Research, Flanders), for which many thanks. I<br />

further thank the Centre for Research and Conservation (Antwerp Zoo) and the<br />

Department of Biology (University of Antwerp) as well as DOCOP (University of Antwerp)<br />

for additional fund<strong>in</strong>g.<br />

1


Acknowledgements<br />

A special word of thanks to the whole team of QMM <strong>in</strong> Fort-Dauph<strong>in</strong> for welcom<strong>in</strong>g<br />

me at their study site and for help<strong>in</strong>g me out with transport, radio-contact and food.<br />

Thanks to Rufen for the ‘architectural’ <strong>in</strong>novations at the campsite, which greatly<br />

improved our liv<strong>in</strong>g standards. Laurent Randrihasipara and Jean-Baptiste<br />

Ramanamanjato, thanks for putt<strong>in</strong>g up with ‘la belge exigeante’ and Manon V<strong>in</strong>celette,<br />

thank you for always tak<strong>in</strong>g time to answer my numerous questions.<br />

Hav<strong>in</strong>g a degree <strong>in</strong> Zoology, it was great to be surrounded by excellent botanists<br />

familiar with the <strong>Malagasy</strong> flora. Petra De Block was the first to <strong>in</strong>troduce me to the<br />

exist<strong>in</strong>g literature on taxonomy of <strong>Malagasy</strong> plants. Johny Rabenantoandro and Faly<br />

Mbolatiana from the Missouri Botanical Garden managed to replace most ‘vernacular’<br />

names <strong>in</strong>to scientific ones, which is not at all simple! Thanks for your patience <strong>in</strong> try<strong>in</strong>g to<br />

guide me through the herbaria at Tana.<br />

Prof. Berthe Rakotosamimanana (Dept. Anthropologie) and Prof Daniel<br />

Rakotondravony (Dept Biologie Animale) of the University of Antananarivo helped me to<br />

obta<strong>in</strong> research permits and saved me from weeks of adm<strong>in</strong>istrative hassle, for which my<br />

s<strong>in</strong>cere thanks. I further acknowledge ANGAP, the M<strong>in</strong>istère des Eaux et Forêts and the<br />

Commission Tripartite of the <strong>Malagasy</strong> government for their collaboration and permission<br />

to work <strong>in</strong> Madagascar.<br />

The great help of my field assistants was essential <strong>in</strong> my field research. Thanks to<br />

them I managed to recognize many different tree species and f<strong>in</strong>d my way <strong>in</strong> the <strong>forest</strong>. In<br />

particular I would like to acknowledge Sambo Givet and ‘Ramanga’ (Honoré Aly) with<br />

whom I spend many hours <strong>in</strong> the <strong>forest</strong>. It was an enrich<strong>in</strong>g experience and unforgettable<br />

cooperation <strong>in</strong> ‘équipe fruit’. I am very grateful as well to Josette, our cook, for spoil<strong>in</strong>g us<br />

daily with fresh sisika 1 and rano apango 2 and to Kadoffe for his work <strong>in</strong> phenology and his<br />

companionship. Ramisi Edmond, our local plant specialist, helped me tremendously <strong>in</strong><br />

identify<strong>in</strong>g and recogniz<strong>in</strong>g plant species. Many other Antanosy helped me <strong>in</strong> the field<br />

(Julson, Bruno, Claude, Rivo, …). Misaotra! 3 I would further like to express my<br />

appreciation for the assistance and goodwill of the people of Ambandrika,<br />

Ampanosatomboky et Manafiafy. They always welcomed me and I have great respect for<br />

the Présidents des villages (Olaf Abel Isaia, Leonnaise, Sambo Pierre, Milson) who were<br />

always ready to discuss about conservation issues.<br />

Dur<strong>in</strong>g my field research numerous <strong>Malagasy</strong> and foreign students jo<strong>in</strong>ed me at the<br />

campsite for shorter or longer periods. They contributed a lot to a great and stimulat<strong>in</strong>g<br />

work<strong>in</strong>g environment. Thanks for shar<strong>in</strong>g all those wonderful moments Jack, Tolona,<br />

Andreas, Nicoletta, Valent<strong>in</strong>a, Rick, Petra, Kaï, Odon and Jose.<br />

Closer to home I would like to acknowledge my friends and family who supported me<br />

throughout this PhD <strong>in</strong> different ways, for which my s<strong>in</strong>cere thanks. The risk of forgett<strong>in</strong>g<br />

someone is too big, which is why I have not tried to list everyone here but I am sure they<br />

know I deeply appreciate their support!<br />

My parents have been a great support to me for as long as I can remember. They<br />

always have been very open-m<strong>in</strong>ded and accepted my wish to get out <strong>in</strong>to the world and<br />

explore far away places. Thanks for be<strong>in</strong>g there for me unconditionally and for<br />

encourag<strong>in</strong>g me to follow my ‘idealistic’ dreams. My brother always supports me too and I<br />

am happy to see how close we still are even though both of us spend a lot of time at<br />

different places on the globe.<br />

2


Acknowledgements<br />

F<strong>in</strong>ally there is someone special to whom I am most grateful. Giuseppe Donati has<br />

been of crucial importance to me dur<strong>in</strong>g this PhD. How could I ever forget the year we<br />

spent together <strong>in</strong> the <strong>forest</strong>, my neighbour from the tent next-door; the long nights talk<strong>in</strong>g<br />

about our excit<strong>in</strong>g f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> the <strong>forest</strong>; endless discussions try<strong>in</strong>g hard to f<strong>in</strong>d solutions<br />

to the conservation issues; Sanz<strong>in</strong>ia 4 at breakfast; Italian salami for Belgian chocolates.<br />

We shared both great and tough moments. Too much to describe here but I am sure he<br />

knows what I am talk<strong>in</strong>g about! Misaotra betsaka zoky be an ala!!! 3<br />

Then of course there is the <strong>forest</strong> with all its mysteries and wonders that I was able to<br />

explore a little more each day. It is a precious place and I feel very fortunate to have been<br />

able to work out there. I hope this unique <strong>littoral</strong> <strong>forest</strong> of Sa<strong>in</strong>te Luce will survive for<br />

many more generations to come…<br />

Misaotra betsaka! 3 Antwerp, 25 October ‘03<br />

1 shrimps, 2 rice water, 3 Thanks!, 4 Sanz<strong>in</strong>ia madagascariensis : boa<br />

3


PREFACE<br />

Preface<br />

This work br<strong>in</strong>gs together the ma<strong>in</strong> data collected dur<strong>in</strong>g a 14-month field research <strong>in</strong> the<br />

<strong>littoral</strong> <strong>forest</strong> of Sa<strong>in</strong>te Luce, south-east Madagascar. Nearly all chapters have been<br />

written to be suitable for publication and can as such be read <strong>in</strong>dependently from each<br />

other. Overlap <strong>in</strong> the <strong>in</strong>troduction, materials and methods sections of the different papers<br />

was therefore unavoidable. In the different chapters dist<strong>in</strong>ct sub-samples from the fruit<br />

database and phenological data were used depend<strong>in</strong>g on the research question under<br />

consideration.<br />

The work can be subdivided <strong>in</strong>to three major sections: the <strong>in</strong>troduction, the ma<strong>in</strong> section<br />

conta<strong>in</strong><strong>in</strong>g five chapters and the conclusion. The <strong>in</strong>troduction situates the ma<strong>in</strong> topic of<br />

this work, describes the study site and the goal of this study. It further gives the outl<strong>in</strong>e of<br />

the thesis. At the time of compil<strong>in</strong>g this thesis one chapter has been published (Chapter<br />

3a), one is <strong>in</strong> course of publication (Chapter 4) and four are be<strong>in</strong>g reviewed (Chapter 1, 2,<br />

3, 3b). Chapter 5 gives an overview of the conservation issues <strong>in</strong> the <strong>littoral</strong> <strong>forest</strong> and<br />

outl<strong>in</strong>es possible applications, which will be used for conservation suggestions <strong>in</strong> a later<br />

publication. F<strong>in</strong>ally the conclusion l<strong>in</strong>ks all chapters together, summariz<strong>in</strong>g the most<br />

relevant f<strong>in</strong>d<strong>in</strong>gs of this study.<br />

Unfortunately the four year period was too limited to <strong>in</strong>tegrate all collected data <strong>in</strong>to this<br />

work. It will therefore not f<strong>in</strong>ish with this doctoral study. Other parts of my work such as<br />

the more experimental prelim<strong>in</strong>ary work on seed predation and germ<strong>in</strong>ation have been<br />

presented dur<strong>in</strong>g conferences <strong>in</strong> the form of oral and poster contributions: the British<br />

Ecological Society (BES) meet<strong>in</strong>g <strong>in</strong> Read<strong>in</strong>g <strong>in</strong> 2001 (Bollen and Van Elsacker 2001),<br />

the Association for Tropical Biology and Conservation (ATBC) meet<strong>in</strong>g <strong>in</strong> Panama 2002<br />

(Bollen et al. 2002; Bollen and Van Elsacker 2002b), the ATBC meet<strong>in</strong>g <strong>in</strong> Aberdeen<br />

2003 (Bollen and Van Elsacker 2003) and the Benelux Congress of Zoology <strong>in</strong> Antwerp<br />

(Bollen and Van Elsacker 2002c). A lecture given at the University of professional<br />

education Larenste<strong>in</strong> <strong>in</strong> the Netherlands as part of a course on Tropical Ecology<br />

completes this list. As I work with the Centre for Research and Conservation, which is<br />

based at the Antwerp Zoo, there were several occasions on which written and oral media<br />

on this seed dispersal project were presented to a larger audience (Zoo Magaz<strong>in</strong>e,<br />

Course Primatology, Op de Koffie, Save the Bonobos, Africamatters).<br />

5


GENERAL INTRODUCTION<br />

General <strong>in</strong>troduction<br />

ZOOCHORY AND FRUGIVORY<br />

Scientists and evolutionary biologists as early as Darw<strong>in</strong> (1859), Wallace (1879) and<br />

Kerner (1898) acknowledged the importance of seed dispersal. The number of studies on<br />

dispersal ecology has only <strong>in</strong>creased substantially dur<strong>in</strong>g the last three decades. There<br />

was a great <strong>in</strong>terest <strong>in</strong> understand<strong>in</strong>g the role played by frugivory and seed dispersal <strong>in</strong><br />

the dynamics of <strong>forest</strong>s, particularly those <strong>in</strong> tropical <strong>forest</strong>s. Van der Pijl (1969) was the<br />

first to give an elaborate survey of the modes of seed dispersal. This was based on the<br />

classification of Ridley (1930), who def<strong>in</strong>ed the agent of transport as the criterion for the<br />

ma<strong>in</strong> dispersal classes. Seeds are not mobile themselves, so their movement must be<br />

effected by dispersal vectors, whether abiotic or biotic. The ma<strong>in</strong> classes of seed<br />

dispersal are autochory, anemochory, hydrochory and zoochory, which respectively<br />

means seed dispersal by the plant itself, by w<strong>in</strong>d, water or animals (Van der Pijl 1969).<br />

Each of these categories can be further subdivided <strong>in</strong>to several subclasses, but I will only<br />

elaborate on zoochory, s<strong>in</strong>ce this is the focus of my research. The unit of dispersal is a<br />

diaspore, which <strong>in</strong> zoochorous plants is nearly always the seed. Three different types of<br />

zoochory can be dist<strong>in</strong>guished; endo-, syn- and epi- (or exo-) zoochory. Endozoochory<br />

occurs when diaspores are transported with<strong>in</strong> the animal, either <strong>in</strong>tentionally or<br />

accidentally. Synzoochory takes place when diaspores are <strong>in</strong>tentionally carried <strong>in</strong> the<br />

mouth and epizoochory when diaspores are accidentally carried on the outside of the<br />

animal (Van der Pijl 1969). In tropical ra<strong>in</strong><strong>forest</strong> zoochory, <strong>in</strong> particular endo- and<br />

synzoochory, is the most common way of seed dispersal (Charles-Dom<strong>in</strong>ique 2001).<br />

About 75% or more of all plant species depend on vertebrates for the dispersal of their<br />

seeds (Howe & Smallwood 1982). In Mediterranean scrubland and tropical dry woodland<br />

only 50-70% of the plants are zoochorous and <strong>in</strong> temperate <strong>forest</strong>s the percentages are<br />

even lower (30-40%). Zoochorous plant species are even virtually absent <strong>in</strong> alp<strong>in</strong>e and<br />

desert vegetation (Jordano 2000).<br />

The general pr<strong>in</strong>ciple of zoochory is fairly simple. Frugivores rely on fruits as their<br />

essential food source for survival, while at the same time, as seed dispersers, they<br />

represent the dynamic l<strong>in</strong>k between the fruit<strong>in</strong>g plant and the seedl<strong>in</strong>gs. <strong>Fruit</strong>s facilitate<br />

the dispersal of seeds by provid<strong>in</strong>g benefits to seed dispersers (Van der Pijl 1969; Witmer<br />

and Van Soest 1998; Jordano 2000). The seed is associated with soft and fleshy edible<br />

fruit pulp with attractive signals (colours, smell) on which the <strong>frugivore</strong>s orient themselves<br />

to locate ripe fruit. The rewards offered by the plants <strong>in</strong>clude nutritious fruit pulp, while<br />

through directed dispersal by <strong>frugivore</strong>s plants can colonize new vacant areas and avoid<br />

disproportionate mortality near the parent plant (Janzen 1970; Connell 1971; Chapman<br />

and Chapman 1996; Wenny 2000). Of course other animals also exploit this mutualism.<br />

For example, some <strong>in</strong>vertebrate and vertebrate <strong>frugivore</strong>s capitalize on fleshy fruits<br />

without dispers<strong>in</strong>g the seeds or, even worse, by destroy<strong>in</strong>g them. In this respect,<br />

<strong>frugivore</strong> species can be subdivided based on their role <strong>in</strong> the ecosystem (Gautier-Hion et<br />

al. 1985; Debussche and Isenmann 1992; Jordano 2000). First of all legitimate seed<br />

dispersers swallow fruits entirely, digest the pulp and defecate or regurgitate <strong>in</strong>tact seeds.<br />

Secondly, fruit pulp specialists or seed droppers tear off the pulp and drop the seeds.<br />

7


General <strong>in</strong>troduction<br />

F<strong>in</strong>ally, seed predators discard the pulp, extract and digest or crack the seed. The latter<br />

can be considered as granivores.<br />

<strong>Fruit</strong>-<strong>frugivore</strong> <strong><strong>in</strong>teractions</strong> represent an important aspect <strong>in</strong> tropical <strong>forest</strong> dynamics.<br />

<strong>Fruit</strong> resources are thought to be crucial <strong>in</strong> susta<strong>in</strong><strong>in</strong>g certa<strong>in</strong> vertebrate populations <strong>in</strong><br />

some tropical areas (Terborgh 1986a; Gautier-Hion and Michaloud 1989; Julliot 1997).<br />

While zoochorous fruits are very abundant <strong>in</strong> the tropics, <strong>frugivore</strong>s make up the bulk of<br />

vertebrate biomass <strong>in</strong> tropical <strong>forest</strong>s (Flem<strong>in</strong>g et al. 1987; Gautier-Hion et al. 1985). In<br />

general, birds and mammals (ma<strong>in</strong>ly primates and bats) are the most important<br />

vertebrate <strong>frugivore</strong>s, which swallow and defecate, regurgitate or spit seeds away from<br />

the parent plant. However some records of frugivory by reptiles, fish and <strong>in</strong>vertebrates<br />

exist as well (Van der Pijl 1969; Corlett 1998). Obligate and occasional frugivory are the<br />

extremes along a gradient of fruit-eat<strong>in</strong>g. Most <strong>frugivore</strong>s supplement their fruit diet to a<br />

greater or lesser extent with animal prey, flowers, leaves, nectar, and seeds (Flem<strong>in</strong>g et<br />

al. 1987; Corlett 1998). Accord<strong>in</strong>g to Terborgh’s def<strong>in</strong>ition (1986a) are <strong>frugivore</strong>s only<br />

those animal species whose diet is composed of at least 50% fleshy fruits. Worldwide, 17<br />

bird families can be considered strictly frugivorous (Snow 1981). Among mammals,<br />

obligate <strong>frugivore</strong>s are rare with the exception of Pteropodids (Old World bats, Marshall<br />

1983). As for primates, fruit is found <strong>in</strong> the diet of 91% of the species studied to date<br />

(Jordano 2000).<br />

Seed dispersal is a complex multi-step process that l<strong>in</strong>ks the end of the reproductive<br />

cycle of adult plants with the establishment of their offspr<strong>in</strong>g (Wang and Smith 2002). The<br />

pre-dispersal, dispersal and post-dispersal phases make up the <strong>in</strong>termediate processes<br />

between seed production and recruitment of adult trees (Fig. 1). The pre-dispersal phase<br />

is actually the fleshy fruit-<strong>frugivore</strong> <strong>in</strong>terface, which <strong>in</strong>cludes the probability of the fruit to<br />

be selected, eaten and dispersed by a certa<strong>in</strong> <strong>frugivore</strong>. The major focus <strong>in</strong> this phase is<br />

the fruit as food source with its morphological display and nutritional reward, <strong>in</strong>clud<strong>in</strong>g its<br />

spatial and temporal availability both seasonally and annually. <strong>Fruit</strong> production, fruit<strong>in</strong>g<br />

period and fruit crop size are other traits <strong>in</strong>fluenc<strong>in</strong>g this phase (Garber and Lambert<br />

1998). The actual dispersal phase <strong>in</strong>dicates ma<strong>in</strong>ly the stage at which the consumers<br />

forage and feed on the fruits. Here, fruit and seed handl<strong>in</strong>g and process<strong>in</strong>g determ<strong>in</strong>e the<br />

roles different <strong>frugivore</strong>s may fulfil <strong>in</strong> this ecosystem. F<strong>in</strong>ally <strong>in</strong> the post-dispersal phase<br />

the seed fate is concentrated on, which <strong>in</strong>cludes seed shadow, germ<strong>in</strong>ation and growth of<br />

seedl<strong>in</strong>gs. This phase further <strong>in</strong>cludes secondary seed dispersal and seed predation.<br />

S<strong>in</strong>ce seed dispersal takes place at the f<strong>in</strong>al stage of a plant’s reproductive life cycle, it<br />

has the potential to wipe out previous effects of poll<strong>in</strong>ation and fruit growth phases<br />

(Jordano 2000) and thus also to alter vegetation recruitment (Wang & Smith 2002).<br />

SEED DISPERSAL HYPOTHESES<br />

The study of frugivory and zoochory has led to early conceptual contributions. Several<br />

hypotheses were developed try<strong>in</strong>g to expla<strong>in</strong> the evolution with<strong>in</strong> zoochorous fruits. First<br />

of all dur<strong>in</strong>g the 1980s the field of frugivory and seed dispersal focused on a central<br />

paradigm: co-evolution (Janzen 1980; Levey and Benkman 1999). In this process<br />

organisms <strong>in</strong>teract closely, <strong>in</strong>fluenc<strong>in</strong>g each other’s evolution, which leads to reciprocal<br />

adaptations. With respect to seed dispersal, certa<strong>in</strong> plant species may evolve specific<br />

fruit and seed traits to facilitate dispersal while the behaviour and diet of the <strong>frugivore</strong><br />

responds to these changes. Tight co-evolutionary fruit-<strong>frugivore</strong> <strong><strong>in</strong>teractions</strong> have been<br />

proposed by several authors (Howe 1977; Tut<strong>in</strong> et al. 1991; Chapman et al. 1992b).<br />

8


PRE-DISPERSAL PHASE<br />

phenology, poll<strong>in</strong>ation<br />

fruit production<br />

fruit crop size, fruit<strong>in</strong>g length<br />

Adult<br />

tree<br />

POST-DISPERSAL<br />

PHASE<br />

growth of seedl<strong>in</strong>gs<br />

and sapl<strong>in</strong>gs<br />

regeneration<br />

Seedl<strong>in</strong>g<br />

<strong>Fruit</strong><br />

availability<br />

Secondary<br />

dispersal<br />

POST-DISPERSAL PHASE<br />

seed shadow<br />

germ<strong>in</strong>ation & establishment<br />

seed mortality<br />

Seed<br />

ra<strong>in</strong><br />

Fig 1. The seed dispersal cycle (based on Wang and Smith 2002)<br />

PRE-DISPERSAL PHASE<br />

morphological display<br />

nutrient content<br />

feed<strong>in</strong>g selection<br />

Seed<br />

uptake<br />

General <strong>in</strong>troduction<br />

DISPERSAL PHASE<br />

primary seed dispersal<br />

fruit & seed handl<strong>in</strong>g<br />

feed<strong>in</strong>g & dispersal behaviour<br />

by <strong>frugivore</strong>s<br />

Seed<br />

predation<br />

Secondly based on the idea of co-evolution, a dichotomy of low and high <strong>in</strong>vestment<br />

plants has been put forward (Snow 1971; McKey 1975; Howe 1977; Howe and Estabrook<br />

1977; Howe 1993). Low <strong>in</strong>vestment plants or generalists were described to <strong>in</strong>vest little <strong>in</strong><br />

the nutritional value of their fruits, hav<strong>in</strong>g watery and sugary pulp. They produce large<br />

fruit crops dur<strong>in</strong>g short periods, attract<strong>in</strong>g as many opportunist <strong>frugivore</strong>s as possible. On<br />

the contrary, high <strong>in</strong>vestment plants or specialists produce highly nutritious fruits, dur<strong>in</strong>g<br />

elongated periods of time. They have a smaller fruit crop and often large one-seeded<br />

fruits attract<strong>in</strong>g few specialist <strong>frugivore</strong>s. This dichotomy has further contributed to the<br />

more differentiated concept of dispersal syndromes. Syndromes represent diffuse coevolution<br />

among taxa and <strong>in</strong>clude ma<strong>in</strong>ly broad morphological co-adaptations of fruit and<br />

seed traits that attract certa<strong>in</strong> taxonomic groups of seed dispersers. Each disperser type<br />

corresponds to a more or less diversified group of frugivorous animals whose size,<br />

anatomy and behaviour are compatible with the fruit features. This concept has been<br />

widely used <strong>in</strong> literature (Van der Pijl 1969; Howe and Smallwood 1982; Janson 1983;<br />

Knight and Siegfried 1983; Gautier-Hion et al.; 1985; Willson et al. 1989; Julliot 1996; see<br />

also Fischer and Chapman 1993; Jordano 1995; Voigt 2001). These three hypotheses<br />

highlight the importance, mechanisms and consequences of seed dispersal.<br />

STUDY SITE: LITTORAL FOREST OF SAINTE LUCE (SE-MADAGASCAR)<br />

The <strong>littoral</strong> <strong>forest</strong> of Madagascar represents a particular study site to carry out seed<br />

dispersal research. First of all, Madagascar is a hotspot of biodiversity and endemism<br />

(Mittermeier et al. 1998) with high priority for conservation. The majority of all plant<br />

species is endemic to Madagascar (Dumetz 1999; Schatz 2001), with percentages as<br />

9


General <strong>in</strong>troduction<br />

high as 98% for the <strong>littoral</strong> <strong>forest</strong> (Rabevohitra et al. 1996; Razafimizanilala 1996). So<br />

study<strong>in</strong>g fruit-<strong>frugivore</strong> <strong><strong>in</strong>teractions</strong> contributes to a better understand<strong>in</strong>g of the dynamics<br />

with<strong>in</strong> this ecosystem, that differs greatly <strong>in</strong> flora as well as fauna from those previously<br />

studied. Secondly most studies <strong>in</strong> Madagascar regard<strong>in</strong>g seed dispersal focused only on<br />

the role of the larger lemur species (Hem<strong>in</strong>gway 1996; Dew and Wright 1998; Overdorff<br />

and Strait 1998; Birk<strong>in</strong>shaw 1999, 2001; Ganzhorn et al. 1999a). Frugivory and zoochory<br />

by bats, birds and the smaller lemurs have only poorly been studied <strong>in</strong> Madagascar and<br />

not at all <strong>in</strong> the <strong>littoral</strong> <strong>forest</strong>. There is thus a great need for a community-wide approach<br />

of zoochory <strong>in</strong> <strong>Malagasy</strong> ecosystems, which is carried out for the <strong>littoral</strong> <strong>forest</strong> <strong>in</strong> this<br />

study. Thirdly, the <strong>Malagasy</strong> <strong>frugivore</strong> guild can be considered atypical <strong>in</strong> its composition.<br />

There are very few frugivorous bird and bat species here compared to other tropical sites,<br />

while at the same time large mammals are miss<strong>in</strong>g. Furthermore, s<strong>in</strong>ce humans arrived<br />

on the island one third of its lemur species has disappeared (Godfrey et al. 1997). This<br />

relatively species-poor <strong>frugivore</strong> guild allows us to sample data on all <strong>in</strong>volved species.<br />

Besides, this particular composition stresses the importance of the rema<strong>in</strong><strong>in</strong>g <strong>frugivore</strong>s<br />

<strong>in</strong> seed dispersal, which will provide crucial data that can be implemented <strong>in</strong> conservation<br />

management plans. At present the highly degraded and fragmented <strong>littoral</strong> <strong>forest</strong> is under<br />

severe threat and <strong>in</strong> urgent need of conservation. F<strong>in</strong>ally, Sa<strong>in</strong>te Luce lies at the<br />

southernmost position of a ra<strong>in</strong><strong>forest</strong>, be<strong>in</strong>g south of Capricorn, which may have led to a<br />

differential impact of abiotic factors here. The high degree of endemism and biodiversity,<br />

together with the awkward <strong>frugivore</strong> composition, the southernmost position and the<br />

urgent need for data on plant-animal <strong><strong>in</strong>teractions</strong> <strong>in</strong> this threatened <strong>forest</strong> type have all<br />

contributed to the choice of the <strong>littoral</strong> <strong>forest</strong> to focus on community-wide seed dispersal.<br />

THESIS OUTLINE<br />

In this PhD the results of a 14-month field research (November ’99 - February ‘01) are<br />

presented. Throughout the research, a close collaboration was established with the<br />

University of Hamburg (Germany), the University of Antananarivo, the M<strong>in</strong>istry of Water<br />

and Forestry, Qit Madagascar M<strong>in</strong>erals and Missouri Botanical Garden <strong>in</strong> Antananarivo<br />

(Madagascar).<br />

This study aims at understand<strong>in</strong>g community-wide seed dispersal <strong>in</strong> the <strong>Malagasy</strong><br />

<strong>littoral</strong> <strong>forest</strong>. Research on both pre-dispersal and dispersal phase was carried out. The<br />

central focus of the doctoral study is to unravel how phenological, morphological and<br />

biochemical fruit traits determ<strong>in</strong>e and <strong>in</strong>teract <strong>in</strong> fruit-<strong>frugivore</strong> dynamics. Seed dispersal<br />

is approached both ways, from the perspective of trees and <strong>frugivore</strong>s. In the first part,<br />

fruits are studied with respect to the trees’ <strong>in</strong>vestment <strong>in</strong> morphological display and<br />

nutritional reward along with their temporal availability. To get <strong>in</strong>sight <strong>in</strong>to the overall fruit<br />

availability <strong>in</strong> the <strong>littoral</strong> <strong>forest</strong> together with its <strong>in</strong>tra- and <strong>in</strong>ter-annual fluctuation,<br />

phenological transects and fruit trails were carried out (Chapter 1). Dispersal strategies<br />

are tested based on exist<strong>in</strong>g hypotheses such as co-evolution, low-high <strong>in</strong>vestment<br />

model and dispersal syndromes (Chapter 2). In the next part, the <strong>in</strong>fluence of the<br />

morphological and biochemical traits on the <strong>frugivore</strong>s’ fruit choice, feed<strong>in</strong>g selection and<br />

fruit and seed process<strong>in</strong>g is <strong>in</strong>vestigated. The role of the complete <strong>frugivore</strong> guild <strong>in</strong> this<br />

ecosystem as seed dispersers or predators is determ<strong>in</strong>ed (Chapter 3). The feed<strong>in</strong>g<br />

ecology and disperser role of Pteropus rufus (Chapter 3a) and predator role of<br />

Coracopsis nigra (Chapter 3b) are elaborated on. Subsequently, an <strong>in</strong>ter-site comparison<br />

between fruit traits and feed<strong>in</strong>g ecology of Eulemur fulvus and Cheirogaleus medius is<br />

10


General <strong>in</strong>troduction<br />

made to test the validity of my results at other <strong>forest</strong> types. Both sites have similar<br />

<strong>frugivore</strong> guilds, but <strong>in</strong>volve completely different <strong>forest</strong> types: the dry deciduous <strong>forest</strong> of<br />

Kir<strong>in</strong>dy (west Madagascar) and the humid <strong>littoral</strong> <strong>forest</strong> of Sa<strong>in</strong>te Luce (south-east<br />

Madagascar)(Chapter 4). F<strong>in</strong>ally, the present degradation and fragmentation of the <strong>littoral</strong><br />

<strong>forest</strong> as well as the disruption of fruit-<strong>frugivore</strong> mutualisms <strong>in</strong> Sa<strong>in</strong>te Luce is discussed.<br />

Based on my understand<strong>in</strong>gs of seed dispersal dynamics, certa<strong>in</strong> f<strong>in</strong>d<strong>in</strong>gs can be<br />

<strong>in</strong>tegrated with<strong>in</strong> exist<strong>in</strong>g conservation measures (Chapter 5).<br />

11


’Hazo tokana tsy mba ala’<br />

One tree does not make a <strong>forest</strong><br />

<strong>Malagasy</strong> proverb<br />

Draw<strong>in</strong>g of flower and fruit of Ravenala madagascariensis (Strelitziaceae) © An Bollen


Phenology of the <strong>littoral</strong> <strong>forest</strong><br />

of Sa<strong>in</strong>te Luce,<br />

south-east Madagascar<br />

AN BOLLEN, GIUSEPPE DONATI<br />

BIOTROPICA (SUBMITTED)<br />

Phenology<br />

ABSTRACT<br />

From January 2000 through December 2002 phenological transects were carried out to<br />

assess monthly leaf, flower and (ripe) fruit presence for 423 <strong>in</strong>dividual plants (95 plant<br />

species, 43 families) with<strong>in</strong> the <strong>littoral</strong> <strong>forest</strong> of Sa<strong>in</strong>te Luce. <strong>Fruit</strong>-on-trail-counts were<br />

conducted additionally <strong>in</strong> the year 2000 to allow comparison between both methods.<br />

Despite low climatic seasonality and absence of a dry season <strong>in</strong> the <strong>littoral</strong> <strong>forest</strong>, <strong>in</strong>terannual<br />

phenological patterns were seasonal at our site. With<strong>in</strong>-year variability was<br />

present with clear periods of abundance and scarcity. All phenophases were highly <strong>in</strong>tercorrelated<br />

and peak from November through February. This was found <strong>in</strong> other humid<br />

<strong>Malagasy</strong> <strong>forest</strong>s as well, while <strong>in</strong> dry <strong>Malagasy</strong> <strong>forest</strong>s phenophases seemed to be more<br />

spaced <strong>in</strong> time due to the more seasonal climate. Day length seems to have the strongest<br />

impact on all phenophases, while ra<strong>in</strong>fall is associated with flush<strong>in</strong>g only and temperature<br />

with fruit<strong>in</strong>g and ‘ripe fruit<strong>in</strong>g’. Differences <strong>in</strong> presence of ripe fruits when compar<strong>in</strong>g<br />

between both sampl<strong>in</strong>g methods can be expla<strong>in</strong>ed by the differential contribution of<br />

several life forms <strong>in</strong> both methods, which <strong>in</strong>fluence overall fruit<strong>in</strong>g patterns.<br />

INTRODUCTION<br />

Phenological studies address the tim<strong>in</strong>g of reproductive events <strong>in</strong> plants such as bud<br />

formation, flower<strong>in</strong>g and fruit<strong>in</strong>g along with vegetative processes like leaf flush<strong>in</strong>g and<br />

shedd<strong>in</strong>g. Tropical trees display an enormous variety <strong>in</strong> temporal patterns of flower<strong>in</strong>g<br />

and fruit<strong>in</strong>g. Both flowers and fruits are patchily distributed <strong>in</strong> time and space and are<br />

relatively scarce food items compared to leaves and <strong>in</strong>sects (Howe 1984). Therefore it is<br />

critical to study food availability and distribution <strong>in</strong> order to understand the behavioural<br />

ecology of tropical wildlife. In the tropics, many animal species are frugivorous to a lesser<br />

or greater degree and <strong>in</strong> terms of biomass, <strong>frugivore</strong>s are the dom<strong>in</strong>ant trophic group <strong>in</strong><br />

most tropical <strong>forest</strong> mammalian communities (Terborgh 1983). This is further reflected by<br />

the dom<strong>in</strong>ance (60-90%) of zoochorous plant species produc<strong>in</strong>g fleshy fruits (Howe and<br />

Smallwood 1982).<br />

Quantify<strong>in</strong>g fruit availability has been a primary objective <strong>in</strong> many studies, which<br />

focus on the ecology of tropical fruit<strong>in</strong>g trees and their consumers (Chapman et al. 1992a;<br />

Janson and Chapman 1999). Dur<strong>in</strong>g the alternation of seasons and years <strong>in</strong> ra<strong>in</strong> <strong>forest</strong>s,<br />

the availability of vegetative and reproductive plant parts is irregular and <strong>in</strong>duces periods<br />

of abundance and scarcity of food for consumers (Brugiere et al. 2002). These temporal<br />

15


Chapter 1<br />

changes <strong>in</strong> resource availability are both affected by abiotic or climatic variables as well<br />

as by biotic factors through herbivory, poll<strong>in</strong>ation and seed dispersal.<br />

Up to present, several short-term phenological studies have been published for<br />

Madagascar, where 96% of the tree species are endemic (Schatz 2001). Phenological<br />

studies have been carried out <strong>in</strong> dry deciduous and semi-deciduous <strong>forest</strong>s <strong>in</strong> the West<br />

(Meyers and Wright 1993; Sorg and Rohner 1996; Curtis and Zaramody 1998;<br />

Rasmussen 1999; Yamashita 2002) as well as <strong>in</strong> lowland and mid-altitude ra<strong>in</strong><strong>forest</strong> <strong>in</strong><br />

the East (Andrianisa 1989; Overdorff 1993a, 1993b; Rigamonti 1993; Freed 1996;<br />

Hem<strong>in</strong>gway 1996, 1998; Andrews and Birk<strong>in</strong>shaw 1998). Most of these studies represent<br />

data from one year and often <strong>in</strong>clude only a limited number of species. At present, no<br />

data are available for the <strong>littoral</strong> <strong>forest</strong>. This paper presents the first f<strong>in</strong>d<strong>in</strong>gs from a<br />

detailed phenology of plant guilds <strong>in</strong> the <strong>littoral</strong> <strong>forest</strong> of Sa<strong>in</strong>te Luce (south-east<br />

Madagascar) <strong>in</strong> the <strong>in</strong>terest of reveal<strong>in</strong>g broad community-wide patterns of leaf<strong>in</strong>g,<br />

flower<strong>in</strong>g, fruit<strong>in</strong>g <strong>in</strong> the course of three years. This study generates <strong>in</strong>dices to the food<br />

supply available to animal consumers, but also addresses the impact of abiotic factors.<br />

Furthermore, we compare phenological patterns of different <strong>Malagasy</strong> <strong>forest</strong> types.<br />

In this study several aspects will be looked at closely. First, we describe the temporal<br />

fluctuations of flush<strong>in</strong>g, flower<strong>in</strong>g and fruit<strong>in</strong>g <strong>in</strong>ter- and <strong>in</strong>tra-annually based on data from<br />

phenological transects and fruit-on-trail-counts, which are considered to be the most<br />

common phenological methodologies (Chapman et al. 1992a; Chapman and Wrangham<br />

1994). Secondly, we look for correlations between these phenological patterns and<br />

different abiotic factors such as ra<strong>in</strong>fall, temperature and day length, that may trigger<br />

phenological events. F<strong>in</strong>ally, we compare our data with the results of other <strong>Malagasy</strong><br />

study sites.<br />

METHODS<br />

Study site<br />

The <strong>littoral</strong> <strong>forest</strong> of Sa<strong>in</strong>te Luce (24º45'S 47º11'E) is located <strong>in</strong> south-eastern<br />

Madagascar, 50km up north of Fort-Dauph<strong>in</strong>. Research was carried out <strong>in</strong> a 377-ha large<br />

<strong>forest</strong> fragment, called S9 (Fig. 1). Littoral <strong>forest</strong> is characterised by a relatively open or<br />

non-cont<strong>in</strong>uous canopy, which is 6 to 12m <strong>in</strong> height with emergents up to 20m. The<br />

diameter at breast height (DBH) of trees rarely exceeds 30-40cm. Littoral <strong>forest</strong> grows on<br />

sandy soils and occurs with<strong>in</strong> 2-3km of the coast at an altitude of 0-20m (Lewis<br />

Environmental Consultants 1992a).<br />

Abiotic factors<br />

Daily ra<strong>in</strong>fall was measured with a plastic ra<strong>in</strong> gauge (TruCheck) dur<strong>in</strong>g the research<br />

period. Ra<strong>in</strong>fall data from February till September 2001 were not available for Sa<strong>in</strong>te<br />

Luce. A thermo-hygrograph (Box Pro) was placed <strong>in</strong> primary <strong>forest</strong> at one meter height to<br />

record the daily march of temperature and relative humidity. Variation <strong>in</strong> day length was<br />

calculated us<strong>in</strong>g Stephen Moshier’s Ephemeris Program v5.1 (Moshier 1991) for the<br />

Sa<strong>in</strong>te Luce latitude. Mean monthly values were calculated for all abiotic factors.<br />

16


20°S<br />

N<br />

MADAGASCAR<br />

50°E<br />

Sa<strong>in</strong>te Luce<br />

Fort Dauph<strong>in</strong><br />

SAINTE LUCE<br />

S9<br />

fruit trail<br />

phenological<br />

transect<br />

Phenology<br />

Fig. 1. Map of Madagascar with <strong>in</strong>dication of the study site together with an enlargement of the<br />

<strong>forest</strong> fragment ‘S9’ where the study was carried out. A detail of the grid with correspond<strong>in</strong>g<br />

phenology transects and fruit trails is shown as well.<br />

Phenological transect<br />

A systematic floristic and phenology <strong>in</strong>ventory was conducted as part of two doctoral<br />

research projects <strong>in</strong> the <strong>littoral</strong> <strong>forest</strong>: one on the behavioural ecology of Eulemur fulvus<br />

collaris (Donati 2002) and the other on seed dispersal and predation by the frugivorous<br />

guild (Bollen and Van Elsacker 2002, Chapter 3a; Bollen et al. <strong>in</strong> press, Chapter 4). All<br />

plant species with DBH greater than 5cm (conform to other <strong>Malagasy</strong> studies, see<br />

Meyers and Wright 1993; Overdorff 1993a; Hem<strong>in</strong>gway 1996) with<strong>in</strong> 5m of each side of<br />

the transects were tagged with fluorescent flags provided by an <strong>in</strong>dividual code. Ideally,<br />

five <strong>in</strong>dividuals per species were marked. Additional tree species were added to this list.<br />

These <strong>in</strong>volved important known <strong>frugivore</strong> resources that did not occur on the transect or<br />

only at very low densities. The complete phenological transect consisted of 423<br />

<strong>in</strong>dividuals of 95 species (74 genera; 43 families) sampled over two botanical transects<br />

cover<strong>in</strong>g 2320x10m² (Fig. 1). Eighteen trees died naturally or were cut dur<strong>in</strong>g the<br />

sampl<strong>in</strong>g period, result<strong>in</strong>g <strong>in</strong> a complete data set of 405 <strong>in</strong>dividuals. The different<br />

vegetation types, such as primary, secondary and swamp <strong>forest</strong> as well as abandoned<br />

tavy (slash and burn areas) were represented <strong>in</strong> the phenological transect.<br />

Phenological data were recorded once a month as of January 2000 up to present.<br />

Here we present data from January 2000 through December 2002. The different<br />

categories considered are the follow<strong>in</strong>g:<br />

Leaf<strong>in</strong>g: no leaves, presence of young leaves, full of leaves, leaf fall;<br />

Flower<strong>in</strong>g: no flowers, flower buds, open flowers, fallen flowers;<br />

<strong>Fruit</strong><strong>in</strong>g: no fruits, fruit buds, unripe, ripe or fallen fruits, dry fruits of last season.<br />

100m<br />

campsite<br />

route nationale<br />

Sa<strong>in</strong>te Luce –<br />

Mahatalaky<br />

100m<br />

17


Chapter 1<br />

For analyses we narrowed these categories down to complete leaf fall, presence or<br />

absence of young leaves, flowers, ripe and other fruits. Observations on leaf<strong>in</strong>g, flower<strong>in</strong>g<br />

and fruit<strong>in</strong>g were always made by the same team of two field assistants, who scanned the<br />

canopy with b<strong>in</strong>oculars and checked the litter below for fallen flowers and/or fruits. A<br />

species was scored flush<strong>in</strong>g, flower<strong>in</strong>g or fruit<strong>in</strong>g if at least one <strong>in</strong>dividual of this species<br />

was <strong>in</strong> this phenophases. To differentiate between unripe and ripe fruits, we focused on<br />

differences <strong>in</strong> colour, size and consistency.<br />

No attempt was made to estimate overall fruit production. Neither did we use<br />

quantitative scores nor relative abundance of leaves, flowers and fruits as we lacked<br />

previous knowledge on crop sizes. Furthermore the high variability of crop sizes <strong>in</strong>tra-<br />

and <strong>in</strong>ter-specifically <strong>in</strong> time, related to tree size, makes it difficult to objectively quantify<br />

these reproductive events. Moreover, various measures are used <strong>in</strong> different studies<br />

which makes comparison problematic and accord<strong>in</strong>g to Chapman et al. (1992a) <strong>in</strong>terobserver<br />

variability is high.<br />

We further subdivided our species sample by life form <strong>in</strong>to large trees (>6m), small<br />

trees (


Phenology<br />

Statistical analyses<br />

Because phenological data are not <strong>in</strong>dependent <strong>in</strong> time and not normally distributed, we<br />

used non-parametric statistics for repeated measures. To test for <strong>in</strong>ter-annual variability<br />

<strong>in</strong> phenophases we used Kendall’s Coefficient of Concordance, while the Friedman test<br />

(ANOVA) showed whether significant differences exist <strong>in</strong> the number of species flush<strong>in</strong>g,<br />

flower<strong>in</strong>g or fruit<strong>in</strong>g among years. Spearman Rank Correlation Analyses were used to<br />

exam<strong>in</strong>e overall relationships <strong>in</strong> phenophases, climatic and feed<strong>in</strong>g data. Chi-square<br />

analyses were conducted to compare between flower<strong>in</strong>g and fruit<strong>in</strong>g on the basis of<br />

different classes of synchronicity and regularity, as well as to compare between life forms<br />

used <strong>in</strong> fruit trail and phenology. Mann Whitney U tests compared the number of species<br />

with ripe and other fruits between two phenological methods. All statistical tests were<br />

carried out accord<strong>in</strong>g to Siegel (1956) with the statistical software SAS and STATISTICA<br />

for W<strong>in</strong>dows.<br />

RESULTS<br />

Abiotic factors<br />

There was considerable year to year variation <strong>in</strong> the seasonal distribution of ra<strong>in</strong>fall and<br />

temperature. No significant correlations could be found for both variables between years<br />

(Table 1, Fig. 2). Mean annual ra<strong>in</strong>fall dur<strong>in</strong>g 2000-2002 was 2690mm (±228 SD). Figure<br />

2 gives monthly distribution <strong>in</strong> ra<strong>in</strong>fall and monthly average temperature, <strong>in</strong>dicat<strong>in</strong>g an<br />

obvious wet season from November through February. No clear dry season could be<br />

detected. Driest months were September and October (average 79mm ±37 SD). Dur<strong>in</strong>g<br />

July 2000 ra<strong>in</strong>fall was unusually high for this time of the year. Temperatures were highest<br />

from December through March after which they decl<strong>in</strong>ed to a m<strong>in</strong>imum <strong>in</strong> July and<br />

August. Mean monthly temperature was 23°C (±2.3 SD, N=30) rang<strong>in</strong>g from 18.5 to<br />

25.6°C. As expected for a site below the Tropic of Capricorn, we found a considerable<br />

difference <strong>in</strong> day length <strong>in</strong> Sa<strong>in</strong>te Luce (Fig. 2) with a m<strong>in</strong>imum <strong>in</strong> summer solstice (June:<br />

10.6h) and a maximum <strong>in</strong> w<strong>in</strong>ter solstice (December: 12.6h).<br />

Phenology<br />

Overall, we monitored the fruit<strong>in</strong>g phenology of 423 <strong>in</strong>dividuals of 95 plant species<br />

belong<strong>in</strong>g to 74 genera and 43 families (Appendix I). The median number of <strong>in</strong>dividuals<br />

per species was five, rang<strong>in</strong>g from one to n<strong>in</strong>e. Most represented plant families were<br />

Clusiaceae, Flacourtiaceae, and Myrtaceae, with six plant species each and Rubiaceae<br />

and Euphorbiaceae with five species. The majority of the rema<strong>in</strong><strong>in</strong>g families were<br />

represented by only one or two species. Most studied plants were large trees (71%)<br />

followed by small trees and shrubs (23%). V<strong>in</strong>es and epiphytes only made up 5% and 1%<br />

respectively of the complete sample.<br />

The flower<strong>in</strong>g peak occurred always at the beg<strong>in</strong>n<strong>in</strong>g of the ra<strong>in</strong>y season, ma<strong>in</strong>ly <strong>in</strong><br />

November, when on average 38 species (±7 SD, range 33-47) were bloom<strong>in</strong>g. Of all<br />

flower<strong>in</strong>g events (N=2054) dur<strong>in</strong>g three years, 15% (N=309) occurred <strong>in</strong> November.<br />

Flower<strong>in</strong>g patterns over years were significantly correlated (W=0.46, df=2, N=12, P


Chapter 1<br />

Fig. 2. Seasonal variation <strong>in</strong> the climate of the <strong>littoral</strong> <strong>forest</strong> of Sa<strong>in</strong>te Luce is given together with<br />

monthly ra<strong>in</strong>fall, mean temperature and day length recorded over a three year period (2000-2002).<br />

Table 1. Spearman rank correlations for <strong>in</strong>terannual patterns with<strong>in</strong> temperature,<br />

ra<strong>in</strong>fall, flush<strong>in</strong>g, flower<strong>in</strong>g and fruit<strong>in</strong>g. rs-values are given. * P


Phenology<br />

The highest number of fruit<strong>in</strong>g species were recorded from November through<br />

February of each year, the fruit<strong>in</strong>g peak co<strong>in</strong>cid<strong>in</strong>g with high ra<strong>in</strong>fall. In general, fruit<strong>in</strong>g<br />

lagged beh<strong>in</strong>d flower<strong>in</strong>g by one or two months. Among 2832 effective fruit<strong>in</strong>g events<br />

dur<strong>in</strong>g 36 months, 36% was concentrated between November and February of each year.<br />

Kendall’s Concordance showed that fruit<strong>in</strong>g patterns among years were significantly<br />

associated (W=0.53, df=2, N=12, P


Chapter 1<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

60<br />

55<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

Fig. 3. Phenological flush<strong>in</strong>g, flower<strong>in</strong>g, and fruit<strong>in</strong>g (all fruits and ripe fruits) are given for the three<br />

years with <strong>in</strong>dication of the monthly average of number of species present.<br />

Comparison between phenological transect and fruit trail data<br />

Over a 12-month period a total of 113 species were monitored fruit<strong>in</strong>g on the fruit trail.<br />

These species belonged to 75 genera and 48 families. Fourteen plant species could not<br />

be identified. The fruit trail and phenological transect have 60 species <strong>in</strong> common. Large<br />

trees made up 43% of the fruit trail species, while for smaller trees, shrubs, v<strong>in</strong>es, herbs<br />

and epiphytes this was 57% (App. I). The distribution of growth types with<strong>in</strong> phenological<br />

transect and fruit trail were significantly different (X²=16.33, df=1, P


Phenology<br />

Table 2. Spearman rank correlations of three year data between number of species with young<br />

leaves (YL), flowers (FL), fruits (FR), ripe fruits (RIPE), temperature (TEMP), ra<strong>in</strong>fall (RAIN) as<br />

well as day length (DL). rs-values are given. * P


Chapter 1<br />

Fig 4. Comparison of data from the phenological transect and fruit trail is shown with <strong>in</strong>dication of<br />

the number of species with overall ripe fruits present as well as the dist<strong>in</strong>ction between life forms.<br />

DISCUSSION<br />

Abiotic factors<br />

A pronounced island-wide environmental seasonality is said to characterise Madagascar<br />

(Morland 1993). This is true <strong>in</strong> particular for the ambient temperature that appears to vary<br />

<strong>in</strong> consistent, seasonal cycles throughout Madagascar, which corresponds with data from<br />

our study site. On the contrary, ra<strong>in</strong>fall does vary widely among regions <strong>in</strong> Madagascar<br />

24<br />

25<br />

<strong>Fruit</strong> trail (N=113 sp)<br />

N sp large trees others all trees<br />

20<br />

15<br />

10<br />

5<br />

0<br />

35<br />

N sp<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan<br />

Phenological transect (N=95 sp)<br />

large trees others all trees<br />

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan


Phenology<br />

(Table 4). While the North and West are characterised by prolonged annual dry seasons<br />

and the South by sparse and irregular ra<strong>in</strong>fall, the East has no clear dry season (Morland<br />

1993; Kappeler and Ganzhorn 1994; Hem<strong>in</strong>gway 1998; Britt 2000; Vasey 2000). When<br />

compar<strong>in</strong>g our ra<strong>in</strong>fall data with those from eastern low alititude <strong>forest</strong>s Nosy Mangabe,<br />

Masoala and Betampona (Morland 1993; Britt 2000; Vasey 2000) and the <strong>in</strong>land mid<br />

altitude ra<strong>in</strong><strong>forest</strong> Ranomafana (Overdorff 1993a; Hem<strong>in</strong>gway 1998), all sites have their<br />

driest months <strong>in</strong> September and October, with a prolongation <strong>in</strong>to November for the<br />

Masoala pen<strong>in</strong>sula. The mid altitude <strong>forest</strong> of Ranomafana approaches a more seasonal<br />

climate as it has relatively fewer ra<strong>in</strong> from April through September. Low altitude coastal<br />

<strong>forest</strong>s are clearly more aseasonal when consider<strong>in</strong>g ra<strong>in</strong>fall which is conform to our<br />

study site. Thus, no seasons were considered <strong>in</strong> the <strong>littoral</strong> <strong>forest</strong> of Sa<strong>in</strong>te Luce. It<br />

seems to follow the def<strong>in</strong>ition of an aseasonal tropical wet climate (Morellato et al. 2000),<br />

as it is characterised by mean monthly temperatures of at least 18°C, annual ra<strong>in</strong>fall<br />

above 2000mm and either no dry season or a short drier period of less than four<br />

consecutive months with ra<strong>in</strong>fall below 100mm per month. The situation <strong>in</strong> Sa<strong>in</strong>te Luce<br />

corresponds with that <strong>in</strong> other tropical wet <strong>forest</strong>s worldwide. In summary, ra<strong>in</strong>fall seems<br />

more important <strong>in</strong> determ<strong>in</strong><strong>in</strong>g local seasonality rather than temperature which has less<br />

fluctuation (Sakai et al. 1999) and, overall seasonality is said to be lower <strong>in</strong> humid than <strong>in</strong><br />

dry <strong>forest</strong>s (Koptur et al. 1988).<br />

Phenological transect<br />

The phenology of the community as a whole followed a flower<strong>in</strong>g, fruit<strong>in</strong>g and ripe fruit<strong>in</strong>g<br />

pattern which was repeated from year to year <strong>in</strong> a regular seasonal cycle, while for<br />

leaf<strong>in</strong>g patterns <strong>in</strong>ter-annual variability is high. However, the number of species flower<strong>in</strong>g<br />

and fruit<strong>in</strong>g differed substantially from year to year. Over three years flush<strong>in</strong>g, flower<strong>in</strong>g,<br />

fruit<strong>in</strong>g and ripe fruit<strong>in</strong>g were all <strong>in</strong>ter-correlated and the peak of all phenophases<br />

occurred <strong>in</strong> the same period (November and February). This corresponds with the fact<br />

that <strong>in</strong> many evergreen species flush<strong>in</strong>g and flower<strong>in</strong>g occur close <strong>in</strong> time as they are<br />

both triggered by solar irradiance and young leaves and flowers develop from the same<br />

new shoots (Van Schaik et al. 1993).<br />

We found an important quantitative difference between availability of ripe versus all<br />

fruits, which is probably related to the fact that unripe fruits were often aborted. Unripe<br />

fruit abortion is considered common <strong>in</strong> the tropics (Smyte 1970; Medway 1972). This can<br />

occur due to several reasons such as climate (Janson and Chapman 1999), <strong>in</strong>sect<br />

predation (Koptur et al. 1988) or other factors. Abnormal high ra<strong>in</strong> <strong>in</strong> July 2000 resulted <strong>in</strong><br />

fruit abortion <strong>in</strong> many species as the number of ripe fruits was considerably lower <strong>in</strong> July<br />

and August 2000 compared to other years.<br />

In our data, the large differences between number of species flower<strong>in</strong>g compared to<br />

the ones fruit<strong>in</strong>g is not biologically mean<strong>in</strong>gful and is an artefact of the methodology. This<br />

is probably because the category of all fruits <strong>in</strong>cludes fruit buds, unripe, ripe and even<br />

rotten fruits as well as old dry fruits from the previous season, which leads to higher<br />

numbers of species fruit<strong>in</strong>g dur<strong>in</strong>g an ‘artificially’ prolonged time. As for flowers, monthly<br />

scor<strong>in</strong>g is probably not sufficient (De Block pers. comm.) as flowers <strong>in</strong> general have a<br />

short existence only and thus may be missed. As a matter of fact, <strong>in</strong> five species no<br />

flowers were observed even though these species fruited.<br />

25


Chapter 1<br />

Table 4. Data on phenology <strong>in</strong> different sites throughout Madagascar (ND: no data available,<br />

RNF: Ranomafana).<br />

Study site Forest type Climate Phenology sample<br />

Location Altitude (m)<br />

Ra<strong>in</strong>fall (mm)<br />

Duration<br />

Ambatonakolahy mid altitude ra<strong>in</strong><strong>forest</strong> max ra<strong>in</strong>: Feb-Mar 511 <strong>in</strong>d 72 sp<br />

NE Madagascar 450-650 m<strong>in</strong> ra<strong>in</strong>: Sep Dec '90-Nov '91<br />

4200 5 mo<br />

Vatoharanana RNF mid altitude ra<strong>in</strong><strong>forest</strong> max: Dec-Mar 104 <strong>in</strong>d 26 sp<br />

21°02-25'S 47°18-37'E 1125 m<strong>in</strong>: Sep-Oct Jul '88-Aug '89<br />

2300 1 yr<br />

Vatoharanana RNF mid altitude ra<strong>in</strong><strong>forest</strong> max: Dec-Mar 1354 <strong>in</strong>d 127 sp<br />

21°02-25'S 47°18-37'E 1100 m<strong>in</strong>: Sep-Oct Jan '91-Jul '92<br />

2300 1.5 yr<br />

Dara<strong>in</strong>a dry <strong>forest</strong> max ra<strong>in</strong>: Dec-Mar 499 <strong>in</strong>d 150 sp<br />

13°14'S 49°39'E 400-1100 m<strong>in</strong> ra<strong>in</strong>: Sep Jul '90-Jun '91<br />

1445 1 yr<br />

Kir<strong>in</strong>dy dry deciduous <strong>forest</strong> ra<strong>in</strong>y season: Dec-Feb 80 <strong>in</strong>d 56 sp<br />

20°04'S 44°40'E 18-40 dry season: Apr-Oct 78-'87<br />

800 9 yr<br />

Anjamena dry semideciduous <strong>forest</strong> ra<strong>in</strong>y season: Dec-Apr 19 sp<br />

16°03'S 45°55'E 1<br />

ND dry season: May-Nov Oct '94-Sep '95<br />

1189 1 yr<br />

Ampijoroa dry semideciduous <strong>forest</strong> ra<strong>in</strong>y season: Dec-Mar 317 <strong>in</strong>d<br />

16°19'S 46°49'E 1<br />

75-390 dry season: May-Oct Jun '96-Jun '97<br />

1771 1 yr<br />

BezaMahafaly dry deciduous <strong>forest</strong> ra<strong>in</strong>y season:Nov-Mar 10 plots (2x50m)<br />

SW-Madagascar ND dry season: Apr-Oct Feb '99-Feb '00<br />

866 9 mo<br />

Lokobe primary lowland ra<strong>in</strong><strong>forest</strong> aseasonal 278 <strong>in</strong>d<br />

13°23'S 48°18'E 0-430 max ra<strong>in</strong>: Nov-May Nov '92-Dec '93<br />

2356 1 yr<br />

Montagne d'Ambre mid altitude ra<strong>in</strong><strong>forest</strong> aseasonal ND<br />

NW Madagascar 850-1474<br />

3585<br />

max ra<strong>in</strong>: Dec-Mar<br />

Nosy Mangabe primary lowland ra<strong>in</strong><strong>forest</strong> aseasonal ND<br />

NE Madagascar 0-331<br />

3806<br />

max ra<strong>in</strong>: Jan-May<br />

Sa<strong>in</strong>te Luce <strong>littoral</strong> <strong>forest</strong> aseasonal 423 <strong>in</strong>d 95 sp<br />

24°45'S 47°11'E 0-20 max ra<strong>in</strong>: Dec-Mar Jan '00- Dec '03<br />

2690 3 yr<br />

1 general geografic data are from the authors or from Preston (1991).<br />

26


Table 4 Cont<strong>in</strong>ued<br />

Flush<strong>in</strong>g Flower<strong>in</strong>g <strong>Fruit</strong><strong>in</strong>g Literature cited<br />

constant peak: Aug high: Oct-Nov Rigamonti (1993)<br />

low: July<br />

Phenology<br />

high: Jan, May peak: Aug, Nov-Dec peak: Aug-Oct, Feb Overdorff (1992,1993a, 1993b)<br />

low: Jun-Oct low: Apr-Aug Meyers and Wright (1993)<br />

corr with ra<strong>in</strong>fall corr with ra<strong>in</strong>fall peak: Oct-Dec Hem<strong>in</strong>gway (1996,1998)<br />

low: Apr-Jul<br />

peak: wet season peak: Oct-Nov peak: Dec-Mar Meyers and Wright (1993)<br />

peak: Nov-Dec peak: Oct-Dec all year available Sorg and Rohner (1996)<br />

peak: Dec-Mar peak: Oct peak: Oct Curtis (1997)<br />

low: Jun-Oct low: Jun<br />

peak: Dec-Feb peak: Jan, Sep, Feb peak: Jun-Jul, Sep, May Rasmussen (1999)<br />

peak: Nov-Jan peak: Nov peak: Apr-Jun Yamashita (2002)<br />

ND ND low: Mar-Jun Andrews and Birk<strong>in</strong>shaw (1998)<br />

ND similar to RNF similar to RNF Freed (1996)<br />

<strong>in</strong> Vasey (2000)<br />

ND peak: Dec-Jan peak: Nov-Feb Andrianisa (1989)<br />

<strong>in</strong> Vasey (2000)<br />

peak: Nov-Jan peak: Nov peak: Nov-Jan Bollen and Donati (this study)<br />

low: Aug-Oct<br />

27


Chapter 1<br />

Relation with abiotic factors<br />

Climatic parameters such as temperature, ra<strong>in</strong>fall, day length, cloud cover and irradiance<br />

are the proximate factors that affect the tim<strong>in</strong>g of phenophases (Smythe 1970; Van<br />

Schaik et al. 1993) and among them ra<strong>in</strong>fall has often been identified as the pr<strong>in</strong>cipal<br />

external factor, directly or <strong>in</strong>directly controll<strong>in</strong>g the period rhythms of tropical <strong>forest</strong>s<br />

(Medway 1972; Lieberman 1982; Sorg and Rohner 1996; Morellato et al. 2000).<br />

However, transect-wide flower<strong>in</strong>g and fruit<strong>in</strong>g patterns were not related to ra<strong>in</strong>fall <strong>in</strong><br />

Sa<strong>in</strong>te Luce as opposed to many other sites (Hem<strong>in</strong>gway 1996; Sorg and Rohner 1996).<br />

On the contrary, leaf emergence did correspond positively with ra<strong>in</strong>fall as <strong>in</strong> most other<br />

tropical <strong>forest</strong>s (Lieberman 1982; Hem<strong>in</strong>gway 1996, 1998; Rasmussen 1999). Flower<strong>in</strong>g<br />

was not correlated with temperature nor with ra<strong>in</strong>fall, while fruit<strong>in</strong>g was positively<br />

associated with temperature and for “ripe fruits” this correlation was even stronger.<br />

Smythe (1970) mentioned that organic composition is slow throughout the dry season but<br />

as ra<strong>in</strong>s beg<strong>in</strong>, the comb<strong>in</strong>ation of high temperature and high relative humidity allows<br />

decomposition of the accumulated materials to proceed very quickly. The dropp<strong>in</strong>g of<br />

seeds at a time when there is a sudden rather brief abundance of nutrients may <strong>in</strong>crease<br />

the probability of survival of seedl<strong>in</strong>gs, which may expla<strong>in</strong> this correlation. Day length, our<br />

rough estimation of solar irradiance, was highly correlated with all three phenophases.<br />

This result is <strong>in</strong> agreement with the f<strong>in</strong>d<strong>in</strong>gs of Van Schaik et al. (1993). They highlighted<br />

the importance of irradiance <strong>in</strong> enhanc<strong>in</strong>g photosynthetic processes dur<strong>in</strong>g flush<strong>in</strong>g and<br />

flower<strong>in</strong>g. Given the latitude of Sa<strong>in</strong>te Luce, at the southernmost range for a ra<strong>in</strong> <strong>forest</strong>,<br />

this abiotic factor could be particularly important <strong>in</strong> trigger<strong>in</strong>g phenological cycles here.<br />

Caution has to be taken while <strong>in</strong>terpret<strong>in</strong>g these results as both temperature and ra<strong>in</strong>fall<br />

data are <strong>in</strong>complete and impact of edaphic factors was not studied. Besides external<br />

factors, plant species obviously also have endogenous rhythms and their expressions are<br />

affected by changes <strong>in</strong> <strong>in</strong>ternal tree functions that are not necessarily l<strong>in</strong>ked with<br />

environmental patterns (Marco and Paez 2002).<br />

Synchronicity<br />

Our results showed that there is a complete gradient from species with strong<br />

seasonality, either annually or cont<strong>in</strong>uously flower<strong>in</strong>g and fruit<strong>in</strong>g to those with weak<br />

seasonality without obvious periodicity or an extended flower and fruit production<br />

throughout most of the year. This high variability <strong>in</strong> synchronicity and flower-fruit<br />

periodicity has also been found <strong>in</strong> other tropical sites (Gautier-Hion et al. 1981; Van<br />

Schaik 1986; Van Schaik et al. 1993). However, we can extract some general trends at<br />

our site. Almost half of all species monitored had flowers and fruits each year, which<br />

<strong>in</strong>dicates that there is some stable level of food availability for nectarivores and<br />

<strong>frugivore</strong>s. While flower<strong>in</strong>g is annual <strong>in</strong> about 39% of the species, for fruit<strong>in</strong>g this<br />

percentage is reduced to 31%. This difference together with the higher number of species<br />

that has irregular fruit<strong>in</strong>g, <strong>in</strong>dicates that many species failed to set fruits even though<br />

flowers were present. Janson and Chapman (1999) mentioned that <strong>in</strong> species that<br />

attempt to reproduce every year, fruit<strong>in</strong>g failure is common <strong>in</strong> many years due to between<br />

year climatic variation. Absence of poll<strong>in</strong>ation, climatic and other environmental as well as<br />

physiological factors may be responsible for this (Medway 1972, Koptur et al. 1988). The<br />

category of irregular species may <strong>in</strong>clude species with bi-annual and tri-annual rhythms,<br />

but long-term data are needed to reveal these longer flower-fruit <strong>in</strong>tervals. Extended<br />

flower<strong>in</strong>g and fruit<strong>in</strong>g occur <strong>in</strong> most tropical <strong>forest</strong> at higher or lower percentages<br />

depend<strong>in</strong>g on the site (Frankie 1975; Koptur et al. 1988; Van Schaik et al. 1993; Sakai et<br />

28


Phenology<br />

al. 1999; Morellato 2000). It makes biologically sense that this occurs more for fruit<strong>in</strong>g<br />

than flower<strong>in</strong>g as unripe fruits often take a longer time to mature than flowers.<br />

Comparison between phenological transect and fruit trail<br />

By select<strong>in</strong>g trees above a specific size as <strong>in</strong> the phenological transect, one makes the<br />

assumption that trees with a DBH smaller than 5cm are unable of produc<strong>in</strong>g fruit. In this<br />

way all smaller trees, shrubs, herbs, epiphytes and v<strong>in</strong>es are excluded, although they<br />

may <strong>in</strong>fluence overall fruit<strong>in</strong>g patterns. Our data revealed that fruit<strong>in</strong>g patterns <strong>in</strong> general<br />

were <strong>in</strong>deed correlated between both methods. This trend was found as well <strong>in</strong> a study by<br />

Wallace and Pa<strong>in</strong>ter (2002) when compar<strong>in</strong>g between both methods. However, when<br />

consider<strong>in</strong>g ripe fruits only it was evident that <strong>in</strong> Sa<strong>in</strong>te Luce dur<strong>in</strong>g austral w<strong>in</strong>ter smaller<br />

vegetation forms carried more ripe fruits than the phenological transect showed. Thus,<br />

fruit trail data compensate for the underestimation of smaller trees and shrubs <strong>in</strong><br />

phenological transects. As both methods are complementary it is useful to <strong>in</strong>clude both to<br />

get the global picture and reveal different phenological trends for large trees and other life<br />

forms. Furthermore fruit trails have the advantage of add<strong>in</strong>g a density effect to the data<br />

as this is a more quantitative phenological approach where all trees <strong>in</strong> fruit encountered<br />

on the transect are scored each month. On the contrary, dur<strong>in</strong>g phenological transects,<br />

only phenophases of a fixed number of tree species are scored, which represent only a<br />

sub-sample of all tree present <strong>in</strong> an ecosystem selected on their DBH. Moreover,<br />

phenology transects are especially appropriate for scor<strong>in</strong>g resource availability for<br />

arboreal <strong>frugivore</strong>s, while fruit trails are more appropriate for terrestrial <strong>frugivore</strong>s<br />

(Wallace and Pa<strong>in</strong>ter 2002). In this respect we can expla<strong>in</strong> the lag <strong>in</strong> time <strong>in</strong> periods of<br />

fruit scarcity between both methods as <strong>in</strong> phenology only fruits <strong>in</strong> the canopy are scored,<br />

which are earlier available than the subsequently fallen fruits, that are <strong>in</strong>cluded <strong>in</strong> fruit-ontrail-counts<br />

(cf. Wallace and Pa<strong>in</strong>ter 2002). To conclude, comb<strong>in</strong><strong>in</strong>g both methods is ideal<br />

to get <strong>in</strong>sight <strong>in</strong>to the complete food availability for the frugivorous guild as a whole.<br />

Furthermore, our results show the importance of differentiat<strong>in</strong>g between unripe and ripe<br />

fruits <strong>in</strong> both methods, which often lacks <strong>in</strong> other studies, to <strong>in</strong>dicate the ‘true’ severity of<br />

bottlenecks <strong>in</strong> fruit availability that <strong>frugivore</strong>s face <strong>in</strong> tropical <strong>forest</strong>s.<br />

Comparison with other <strong>Malagasy</strong> sites<br />

S<strong>in</strong>ce methodologies and representation of data differ between sites, we restricted our<br />

comparison to general phenological patterns. In eastern humid <strong>forest</strong>s (Ranomafana and<br />

Sa<strong>in</strong>te Luce, Table 4) flush<strong>in</strong>g co<strong>in</strong>cides with the wettest period of the year. In the dry<br />

semi-deciduous and deciduous <strong>forest</strong>s the emergence of young leaves starts at the end<br />

of the dry season and atta<strong>in</strong>s a peak at the onset of the ra<strong>in</strong>y season (Table 4). Given the<br />

much stronger seasonal climate of dry <strong>forest</strong>s, where flush<strong>in</strong>g is restricted <strong>in</strong> time, young<br />

leaves anticipate the first ra<strong>in</strong>s and create the possibility for plants to maximally benefit of<br />

the favourable ra<strong>in</strong>y season. In all sites flower<strong>in</strong>g seems to occur <strong>in</strong> October and<br />

November. As mentioned before, flush<strong>in</strong>g and flower<strong>in</strong>g occur close <strong>in</strong> time and are both<br />

triggered by high irradiance (Van Schaik et al. 1993), which is elevated <strong>in</strong> these months<br />

when ra<strong>in</strong>fall is ubiquitously low and the sky rarely covered. <strong>Fruit</strong><strong>in</strong>g patterns are much<br />

more diverse between sites and peaks differ from site to site. In Ranomafana, Nosy<br />

Mangabe, Montagne d’Ambre and Sa<strong>in</strong>te Luce fruit<strong>in</strong>g occurred at the same time as<br />

flower<strong>in</strong>g and flush<strong>in</strong>g (Table 4). The dry <strong>forest</strong>s may have fruit<strong>in</strong>g peaks <strong>in</strong> austral<br />

summer (Meyers and Wright 1993), w<strong>in</strong>ter (Curtis and Zaramody 1998; Rasmussen<br />

1999; Yamashita 2002) or throughout the year (Sorg and Rohner 1996). In summary, the<br />

29


Chapter 1<br />

<strong>Malagasy</strong> ra<strong>in</strong><strong>forest</strong>s display an associated pattern for all phenophases, while <strong>in</strong> the dry<br />

<strong>forest</strong>s phenophases are more spaced <strong>in</strong> time (Kappeler and Ganzhorn 1994; Curtis<br />

1997; Rasmussen 1999). Therefore, the lean fruit period <strong>in</strong> the <strong>littoral</strong> <strong>forest</strong> and mid<br />

altitude ra<strong>in</strong><strong>forest</strong> does not appear to be compensated by flower and/or young leaf bursts.<br />

This pattern together with significant <strong>in</strong>ter-annual variation <strong>in</strong> food availability may expla<strong>in</strong><br />

the lower <strong>frugivore</strong> biomass <strong>in</strong> humid <strong>forest</strong>s as opposed to dry <strong>forest</strong>s (Ganzhorn et al.<br />

1999b; Donati 2002).<br />

CONCLUSION<br />

While the <strong>littoral</strong> <strong>forest</strong> can be considered aseasonal regard<strong>in</strong>g climate, there are<br />

however consistent year to year patterns <strong>in</strong> flower<strong>in</strong>g and fruit<strong>in</strong>g. Intra-annual differences<br />

occur <strong>in</strong> phenophases lead<strong>in</strong>g to periods of abundance and scarcity. Typically for the<br />

<strong>littoral</strong> <strong>forest</strong> and other <strong>Malagasy</strong> humid <strong>forest</strong>s <strong>in</strong> general but very different from dry<br />

<strong>Malagasy</strong> <strong>forest</strong>s, is the <strong>in</strong>ter-correlation of all phenophases that peak almost<br />

simultaneously <strong>in</strong> the wettest period (November-February). Irradiance seems to be the<br />

most important abiotic factor <strong>in</strong> trigger<strong>in</strong>g phenophases, due to its importance <strong>in</strong><br />

photosynthetic processes especially at this extreme southern latitude for a tropical wet<br />

<strong>forest</strong>. <strong>Fruit</strong> trails and phenological transects have shown to be complementary methods<br />

by unravell<strong>in</strong>g fruit<strong>in</strong>g patterns of different life forms and different sub-samples of all<br />

present plant species, <strong>in</strong>clud<strong>in</strong>g both fruit data on canopy and ground level.<br />

ACKNOWLEDGEMENTS<br />

This study was carried out under the Accord de Collaboration between Department of Animal<br />

Biology and Department of Anthropology of the University of Antananarivo, the Institute of Zoology<br />

of Hamburg University and QIT Madagascar M<strong>in</strong>erals (QMM). Our thanks go out to QMM for<br />

provid<strong>in</strong>g logistics and <strong>in</strong>frastructure at the campsite. In particular we acknowledge Manon<br />

V<strong>in</strong>celette, Jean-Baptiste Ramanamanjato, Laurent Randrihasipara of the QMM Environmental and<br />

Conservation Team for follow<strong>in</strong>g up phenology and climatic data (QMM unpubl. data) at the site<br />

after we left and shar<strong>in</strong>g these data with us. Many thanks as well to Give Sambo and Dauph<strong>in</strong><br />

Mbola, the two local field assistants who helped with the collection of phenology and fruit trail data.<br />

The first author is supported by a grant of the Belgian Fund for Scientific Research, Flanders<br />

(FWO). We further thank the Flemish Government for structural support to the Centre for Research<br />

and Conservation (CRC) of the Royal Zoological Society of Antwerp (RSZA). The second author<br />

was supported by a doctoral grant of the Italian M<strong>in</strong>istry for Scientific Research (MURST) and the<br />

University of Pisa. Many thanks as well to Jörg Ganzhorn, L<strong>in</strong>da Van Elsacker and Silvana<br />

Borgogn<strong>in</strong>i Tarli for their support dur<strong>in</strong>g our research.<br />

30


Phenology<br />

Appendix I. Overview of plant species <strong>in</strong>cluded <strong>in</strong> both phenological transect (PH) and fruit trail<br />

(FT) with <strong>in</strong>dication of life form (LT: large tree, ST: small tree or shrub, V: v<strong>in</strong>e, E: epiphyte).<br />

Family, species and vernacular name are given. For species without vernacular names, codes<br />

(x1 or FT1) were given.<br />

Family Name Species name Vernacular name PH FT Life form<br />

Anacardiaceae Poupartia chapelieri sisikandrongo x x LT<br />

Campnosperma micranteia roandria x LT<br />

Rhus thouarsii kangy x LT<br />

Annonaceae Monanthotaxis cf. malacophylla vahihazo x x V<br />

Polyalthia capuronii menapeka x V<br />

Polyalthia madagascariensis fotsivavo x LT<br />

Polyalthia sp.1 fotsivavo géante x x LT<br />

Apocynaceae Cabucala madagascariensis tandrokosy x ST<br />

Araliaceae Cuphocarpus aculeatus voatsilana marécage x x LT<br />

Schefflera ra<strong>in</strong>aliana voatsilana x x LT<br />

Arecaceae Dypsis fibrosa boakandambo x x ST<br />

Dypsis prestoniana boakabe x x LT<br />

Dypsis scottiana raosy x ST<br />

Asteraceae Senecio sp. witte pluisjes x ST<br />

Bignoniaceae Phyllarthron ilicifolium zahambe x LT<br />

Ophiocolea delph<strong>in</strong>ensis akondronala x ST<br />

Burseraceae Canarium boiv<strong>in</strong>ii ramy x x LT<br />

Canellaceae C<strong>in</strong>namosma madagascariensis vahabatra 3eM x LT<br />

Capparaceae Crataeva obovata belataka x x ST<br />

Physena madagascariensis FT 85 x ST<br />

Celastraceae Mystroxylon aethiopicum voavoantatsimo x x ST<br />

Elaeodendron sp. aramboazo x LT<br />

Polycardia phyllanthoides fandrianakanga x LT<br />

Clusiaceae Garc<strong>in</strong>ia chapelieri haz<strong>in</strong>y tomate x LT<br />

Garc<strong>in</strong>ia cf/aff. madagascariensis disaky kely x x ST<br />

Mammea bongo disaky be x LT<br />

Symphonia fasciculata haz<strong>in</strong>y voany be x LT<br />

Symphonia sp. haz<strong>in</strong>y fleur rouge x x LT<br />

Calophyllum sp. vitano x LT<br />

Combretaceae Term<strong>in</strong>alia fatraea katrafa x x LT<br />

Connaraceae Agelaea pentagyna rehiba vahima<strong>in</strong>ty x x V<br />

Dichapetalaceae Dichapetalum sp. vahikatepoka x V<br />

Dilleniaceae Dillenia triquetra varikanda x LT<br />

Ebenaceae Diospyros myriophylla forofoka x LT<br />

Diospyros sp.1 hazoma<strong>in</strong>ty blanc x ST<br />

Diospyros sp.2 hazoma<strong>in</strong>ty x x ST<br />

Diospyros sp.3 hazoma<strong>in</strong>ty kely x ST<br />

Diospyros sp.4 FT 82 x ST<br />

Elaeocarpaceae Elaeocarpus alnifolius sanga x LT<br />

Ericaceae Vacc<strong>in</strong>ium em<strong>in</strong>ense tsilantria x ST<br />

Erythroxylaceae Erythroxylum buxifolium fangora sp.1 x ST<br />

Erythroxylum nitidilum fangora sp.2 x LT<br />

Euphorbiaceae Anthostema madagascariensis bamby x LT<br />

Blotia leandriana x225 x ST<br />

Blotia mimosoides fantsikaitra x LT<br />

31


Chapter 1<br />

Appendix I Cont<strong>in</strong>ued<br />

Family Name Species name Vernacular name PH FT Life form<br />

Euphorbiaceae Euphorbia tetraptera famanta x ST<br />

Macaranga perrieri mocarana x LT<br />

Uapaca ferrug<strong>in</strong>ea voapaky lahy x x LT<br />

Uapaca <strong>littoral</strong>is voapaky vavy x x LT<br />

Uapaca thouarsii voapaky vavy ZJ x LT<br />

genus <strong>in</strong>det. randramboay x ST<br />

Fabaceae Cynometra cf. cloiselii mampay x x LT<br />

Intsia bijuga harandrato x x LT<br />

Phylloxylon xylophylloides sotro x x LT<br />

Flacourtiaceae Bembicia uniflora bemalemy x x LT<br />

Homalium albiflorum tap<strong>in</strong>andro 1<br />

x LT<br />

Homalium albiflorum lapivatra 1<br />

x LT<br />

Homalium louvelianum ramirisa x LT<br />

Homalium planiflorum hazofotsy x x ST<br />

Homalium sp. marakoditra x x LT<br />

Scolopia orientalis zoramena x x LT<br />

Grossulariaceae Brexia sp. kambatrikambatri x x ST<br />

Hamamelidaceae Dicoryphe stipulaceae zorala x LT<br />

Hippocrataceae Salacia madagascariensis voatsimatra x x V<br />

Icac<strong>in</strong>aceae Apodytes sp. nov. hazomamy an ala x LT<br />

Lauraceae genus <strong>in</strong>det. varongy sp2 x LT<br />

Beilschmiedia madagascariensis resonzo x LT<br />

Cryptocarya sp. tavolohazo x x LT<br />

Ocotea sp. varongy be x LT<br />

Liliaceae Dracaena reflexa var. nervosa fal<strong>in</strong>androbe 1<br />

x x ST<br />

Dracaena reflexa var. nervosa fal<strong>in</strong>androkely 1<br />

x ST<br />

Dracaena reflexa var. nervosa tavolobotroka 1<br />

x ST<br />

Loranthaceae Bakerella ambongoensis velomihanto sp1 x x E<br />

Bakerella sp. velomihanto sp2 x E<br />

Loganiaceae Anthocleista longifolia lendemilahy x x ST<br />

Menispermaceae Burasaia madagascariensis faritsaty x x ST<br />

Monimiaceae Tambourissa purpurea ambora 1<br />

x x ST<br />

Tambourissa purpurea amboralahy 1<br />

x ST<br />

Moraceae Trilepisium madagascariense beronono x x LT<br />

Myristicaceae Brochoneura madagascariensis mafotra x x LT<br />

Myrs<strong>in</strong>aceae Monoporus spathulatus FT 88 x V<br />

Myrtaceae Eugenia cloiselii ropasy sp.1 x x LT<br />

Eugenia sp.1 ropasy sp.2 x LT<br />

Eugenia sp.2 ropoaky x x LT<br />

Syzygium emirnense rotry sosimaro x ST<br />

Syzygium sp.1 rotry ala x LT<br />

Syzygium sp.2 rotry mena x x LT<br />

Ochnaceae Campylospermum obtusifolium hazombato x ST<br />

Diporidium ciliatum sakambolava x x ST<br />

Oleaceae Jasm<strong>in</strong>um kitch<strong>in</strong>gii vahifotsy kely x V<br />

Noronhia cf. lanceolata hazondraotry x ST<br />

Noronhia ovalifolia zorafotsy x x LT<br />

32


Phenology<br />

Appendix I Cont<strong>in</strong>ued<br />

Family Name Species name Vernacular name PH FT Life form<br />

Oleaceae Noronhia sp.1 belavenoka x x LT<br />

Olea sp. vahabatra x x LT<br />

Pandanaceae Pandanus aff. longistylus fandranabo x LT<br />

Pandanus dauph<strong>in</strong>ensis vakoanala x ST<br />

Pandanus rollotii fandranabotonboky x x LT<br />

Pittosporaceae Pittosporum polyspermum x202 x ST<br />

Rhopalocarpaceae Rhopalocarpus coriaceus tsilavimb<strong>in</strong>anto x x LT<br />

Rubiaceae Canthium variistipula fantsikaitrama<strong>in</strong>ty x x ST<br />

Cremocarpon lantzii x220 x ST<br />

Ixora sp. x203 x ST<br />

Mor<strong>in</strong>da cf. umbellata vahilengo x V<br />

Peponidium sp. fantsikaidroka x LT<br />

Mapouria aegialodes x210a x ST<br />

Psychotria sp. tanatananala x ST<br />

Mapouria sp. x210 x ST<br />

Pyrostria sp. fantsikaitrafotsy x LT<br />

Rothmannia mandenensis taholagna x x LT<br />

Sald<strong>in</strong>ia <strong>littoral</strong>is mangavoa x ST<br />

Tarenna thouarsiana FT 62 x ST<br />

Tricalysia cf. cryptocalyx hazongalala x x ST<br />

Tricalysia sp. kotofotsy x ST<br />

Rutaceae Vepris eliottii ampoly 1<br />

x x LT<br />

Vepris eliottii ampolylahy 1<br />

x x LT<br />

Sap<strong>in</strong>daceae Macphersonia radlkoferi sanirambaza x LT<br />

Filicium decipiens lah<strong>in</strong>voatsilana x LT<br />

Plagioscyphus jumellei ambirimbarika pionair x ST<br />

T<strong>in</strong>a thouarsiana sagnirambavy x x LT<br />

T<strong>in</strong>opsis conjugata sagnira sp.3 x LT<br />

Sapotaceae Donella delph<strong>in</strong>ensis hazomteraka x LT<br />

Fauchera hexandra natohetiki x x LT<br />

Sideroxylon beguei var. sabouraui ambirimbarika x x LT<br />

Sarcolaenaceae Leptolaena sp. fotonbavy x x LT<br />

Sarcolaena multiflora merama<strong>in</strong>tso x x LT<br />

Schizolaena elongata fotondahy x x LT<br />

Smilaceae Smilax anceps fandrikatani x V<br />

Sphaerosepalaceae Podocarpus madagascariensis harambilo x LT<br />

Taccaceae Tacca leontopetaloides tavolo x H<br />

Theaceae Asteropeia micraster fanolamena x x LT<br />

Asteropeia multiflora fanolafotsy x x LT<br />

Ulmaceae Trema orientalis andrarezona x LT<br />

Verbenaceae Clerodendrum sp. nofotrako marecage x x LT<br />

Violaceae R<strong>in</strong>orea pauciflora memboloa x ST<br />

? ? FT 100 x ST<br />

? ? liane fleur jaune x V<br />

? ? FT 112 x ST<br />

? ? FT 20 x ST<br />

? ? FT 49 x ST<br />

33


Chapter 1<br />

Appendix I Cont<strong>in</strong>ued<br />

Family Name Species name Vernacular name PH FT Life form<br />

? ? FT 51 x ST<br />

? ? FT 8 x ST<br />

? ? FT 80 x ST<br />

? ? FT 91 x ST<br />

? ? FT 93 x LT<br />

? ? FT 95 x ST<br />

? ? FT 96 x ST<br />

? ? menahi x ST<br />

? ? vahifotsy be x x V<br />

1 as <strong>in</strong>dicated by their vernacular name certa<strong>in</strong> plant species correspond to the same scientific name.<br />

They could represent different ecotypes of the same species or different species that have no taxonomic<br />

names yet. As this is difficult to affirm at the moment we preferred <strong>in</strong>clud<strong>in</strong>g all plant species as separate<br />

units throughout this paper.<br />

34


varika<br />

fanihy<br />

AU BOUT DU MONDE<br />

stock papier<br />

hygienique<br />

mpondiky<br />

gra<strong>in</strong>es sautées<br />

vazana<br />

aide<br />

morale<br />

bohaky<br />

compagnie<br />

pour la nuit?<br />

Kadoffe,<br />

rav<strong>in</strong>y feno?


<strong>Malagasy</strong> proverb<br />

Draw<strong>in</strong>g © Giuseppe Donati 2000<br />

‘Ataovy toy ny voankazo an ala,<br />

ka ny mamy no atelemo, ny mangidy aloavy’<br />

Do as with the fruits of the <strong>forest</strong>,<br />

the sweet ones you swallow, the bitter ones you spit out


Tree dispersal strategies<br />

Tree dispersal strategies <strong>in</strong> the<br />

<strong>littoral</strong> <strong>forest</strong> of Sa<strong>in</strong>te Luce<br />

(south-east Madagascar)<br />

AN BOLLEN, LINDA VAN ELSACKER , JÖRG GANZHORN<br />

OECOLOGIA (SUBMITTED)<br />

ABSTRACT<br />

Zoochory is the most common mode of seed dispersal for the majority of plant species <strong>in</strong><br />

the tropics. Based on the assumption of tight plant-animal <strong><strong>in</strong>teractions</strong> several<br />

hypotheses have been developed to <strong>in</strong>vestigate the orig<strong>in</strong> of life history traits of plant<br />

diaspores and their dispersers, such as species-specific co-evolution, the low-high<br />

<strong>in</strong>vestment model (low <strong>in</strong>vestment <strong>in</strong> s<strong>in</strong>gle fruits but massive fruit<strong>in</strong>g to attract many<br />

different <strong>frugivore</strong>s versus high <strong>in</strong>vestment <strong>in</strong> s<strong>in</strong>gle fruits and fruit production for<br />

extended periods to provide food for a few specialised <strong>frugivore</strong>s), and the evolution of<br />

dispersal syndromes which represent plant adaptations to larger taxonomic groups of<br />

dispersers. To test these hypotheses the frugi-granivorous vertebrate consumers and<br />

dispersal strategies of 34 tree species were determ<strong>in</strong>ed <strong>in</strong> the <strong>littoral</strong> <strong>forest</strong> of Sa<strong>in</strong>te Luce<br />

(SE-Madagascar) with the help of fruit traps and tree watches. The impact of fruit<br />

consumers on the seeds was determ<strong>in</strong>ed based on detailed behavioural observations.<br />

Phenological, morphological and biochemical fruit traits from tree species were measured<br />

to look for co-variation with different types of dispersal. There was no evidence for<br />

species-specific co-evolution nor any support for the low/high <strong>in</strong>vestment model. However<br />

diaspores dispersed by birds, mammals or both groups (mixed dispersed tree species)<br />

differ <strong>in</strong> the size of their fruits and seeds, fruit shape, and seed number, but not <strong>in</strong><br />

biochemical traits. Five large-seeded tree species seem to depend critically on the largest<br />

lemur, Eulemur fulvus collaris, for seed dispersal and recruitment. However, this does not<br />

represent a case of tight species-specific co-evolution. It rather seems to be a<br />

consequence of the ext<strong>in</strong>ction of larger frugivorous birds and lemurs which also might<br />

have fed on these large fruits. It seems that the species-poor guild of <strong>frugivore</strong>s <strong>in</strong><br />

Madagascar and <strong>in</strong> the <strong>littoral</strong> <strong>forest</strong> <strong>in</strong> particular did not allow the evolution of specialised<br />

dispersal strategies. In particular, the low species diversity of avian <strong>frugivore</strong>s resulted <strong>in</strong><br />

significantly few bird fruits compared to other sites.<br />

Introduction<br />

In tropical <strong>forest</strong>s, active transport of seeds by animals (zoochory) is the most common<br />

means of seed dispersal, <strong>in</strong>volv<strong>in</strong>g more than 75% of all plant species (McKey 1975;<br />

Charles-Dom<strong>in</strong>ique et al. 1981; Howe and Smallwood 1982; Janson 1983; Gautier-Hion<br />

et al. 1985; Jordano 1992). Seed dispersal away from the parent tree seems essential for<br />

37


Chapter 2<br />

the successful establishment of seedl<strong>in</strong>gs (e.g. Janzen 1970; Connell 1971; Howe and<br />

Smallwood 1982; Terborgh et al. 2001). Therefore attract<strong>in</strong>g <strong>frugivore</strong>s is crucial for a<br />

plant <strong>in</strong> order to ensure reproduction.<br />

Several hypotheses have been proposed to expla<strong>in</strong> the evolution of zoochory. First,<br />

under the assumption that the evolution of life history traits of plants, their diaspores and<br />

their consumers are mutually dependent, the most restrictive hypothesis assumes very<br />

tight co-evolutionary relationships between one s<strong>in</strong>gle fruit and <strong>frugivore</strong> species. So far<br />

no evidence has been found <strong>in</strong> support of this hypothesis (Howe and Smallwood 1982;<br />

Herrera 1984; Howe 1984; Gautier-Hion et al. 1985; Fisher and Chapman 1993;<br />

Chapman 1995; Erikkson and Ehrlen 1998; Lambert and Garber 1998). Secondly, from<br />

the plants’ po<strong>in</strong>t of view McKey (1975) postulated different patterns of resource<br />

<strong>in</strong>vestment <strong>in</strong> plants that rely on multiple versus specialised seed dispersers. Accord<strong>in</strong>g<br />

to this model low <strong>in</strong>vestment plants (generalists) <strong>in</strong>vest little <strong>in</strong> s<strong>in</strong>gle fruits but display<br />

large fruit crops dur<strong>in</strong>g a short fruit<strong>in</strong>g period to attract a large variety of opportunistic<br />

<strong>frugivore</strong>s. In contrast, the high <strong>in</strong>vestment plants (specialists) have fruit pulp with higher<br />

nutrient content, a more limited fruit production and extended fruit<strong>in</strong>g seasons that attract<br />

few specialists (Howe 1979). Aga<strong>in</strong> not much support could be found for this idea so far<br />

(Dowsett-Lemaire 1988; Wenny 2000; Wütherlich et al. 2001; but see Wheelwright 1986).<br />

Thirdly the hypothesis of dispersal syndromes postulates broad morphological<br />

adaptations of fruit traits associated with different consumer taxa, mostly dist<strong>in</strong>guish<strong>in</strong>g<br />

diaspores dispersed by birds, mammals or both groups (mixed fruits). This model<br />

emphasizes the taxonomy and phylogenetic heritage of dispersers with their associated<br />

sensory capacities (Van der Pijl 1969; Janson 1983; Knight and Siegfried 1983; Gautier-<br />

Hion et al. 1985; Mart<strong>in</strong>ez del Rio 1994; Corlett 1996; Kalko et al. 1996; Kor<strong>in</strong>e et al.<br />

2000; Pizo 2002; Voigt 2001).<br />

The <strong>forest</strong>s of Madagascar provide good opportunities to test the above hypotheses.<br />

There is a high level of floral and faunal endemism <strong>in</strong> Madagascar with 96% endemics<br />

among the tree species (Schatz 2001), more than 50% of its birds (Langrand 1990) and<br />

90% of its mammals (Goodman et al. <strong>in</strong> press). This results <strong>in</strong> communities with an<br />

evolutionary history, which is largely <strong>in</strong>dependent from the communities for which the<br />

hypotheses have been developed and tested and therefore allows <strong>in</strong>dependent tests for<br />

these hypotheses. For this, we selected 34 different tree species of the evergreen <strong>littoral</strong><br />

<strong>forest</strong> of south-eastern Madagascar <strong>in</strong> order to answer the follow<strong>in</strong>g questions;<br />

1. Which <strong>frugivore</strong>s feed on the different fruit<strong>in</strong>g tree species and what is their impact on<br />

the seeds?<br />

2. Is there evidence for tight species-specific co-evolution?<br />

3. Can tree species be categorized as low or high <strong>in</strong>vestment species accord<strong>in</strong>g the<br />

McKey’s hypothesis?<br />

4. Are there trees which rely on certa<strong>in</strong> taxonomic groups for dispersal and if so: do fruits<br />

with different dispersal strategies vary significantly <strong>in</strong> their morphological and biochemical<br />

attributes?<br />

METHODS<br />

Study site and the frugivorous guild<br />

The <strong>littoral</strong> <strong>forest</strong> of Sa<strong>in</strong>te Luce (24º45'S 47º11'E) is located <strong>in</strong> south-eastern<br />

Madagascar, 50km north of Fort-Dauph<strong>in</strong>. The first author collected data between<br />

November 1999 and February 2001 <strong>in</strong> a 377-ha <strong>forest</strong> fragment, called ‘S9’. Average<br />

38


Tree dispersal strategies<br />

annual ra<strong>in</strong>fall is 2,690mm. Mean monthly temperature is about 23°C and ranges from<br />

12°C to 33°C. For a more detailed description of the study site we refer to Bollen et al. (<strong>in</strong><br />

press, Chapter 4). At Sa<strong>in</strong>te Luce, the trophical guild of <strong>frugivore</strong>s consists of 13 strictly or<br />

partially frugivorous vertebrate species (Table 1).<br />

Focal tree species<br />

For this study 34 tree species, which are thought to be important food sources for certa<strong>in</strong><br />

animal species were chosen (App. I). <strong>Fruit</strong> traps were <strong>in</strong>stalled under 29 tree species and<br />

tree watches were carried out for 27 tree species. Herbarium specimens of all taxa were<br />

collected. Vernacular ‘antanosy’ names were provided by local research assistants.<br />

Scientific names were obta<strong>in</strong>ed after determ<strong>in</strong>ation of voucher specimens at the national<br />

herbaria of Antananarivo with the help of botanists from Missouri Botanical Garden (App.<br />

I). Voucher specimens were deposited at the Missouri Botanical Garden of Antananarivo<br />

(Madagascar).<br />

<strong>Fruit</strong> traps<br />

In order to estimate relative fruit production and consumption, fruit traps were placed on<br />

the ground under the tree <strong>in</strong> the zone of fruit fall (follow<strong>in</strong>g Goodman et al. 1997a). In total<br />

29 tree species were studied, fruit traps be<strong>in</strong>g placed under one <strong>in</strong>dividual per tree<br />

species. Each fruit trap was 1m² <strong>in</strong> size and was made out of black plastic sheet<strong>in</strong>g. <strong>Fruit</strong><br />

traps were blocked at the sides with upturned edges to avoid loss of the content due to<br />

ra<strong>in</strong> wash<strong>in</strong>g. The number of fruit traps per <strong>in</strong>dividual tree depended on the crown size,<br />

on average be<strong>in</strong>g one trap per 3.2m² (±1.6 SD) of the crown area. Total fruit crop size<br />

was obta<strong>in</strong>ed by extrapolat<strong>in</strong>g the data from the area sampled by the traps to the total<br />

crown area. <strong>Fruit</strong> traps were <strong>in</strong>spected and emptied every other morn<strong>in</strong>g between 06h00-<br />

10h00 throughout the fruit<strong>in</strong>g period. Ideally, fruit traps were <strong>in</strong>stalled before fruit ripen<strong>in</strong>g<br />

had started and were removed at the end of the fruit production. For five tree species,<br />

fruit traps were <strong>in</strong>stalled shortly after the onset of fruit<strong>in</strong>g, due to a delay <strong>in</strong> notic<strong>in</strong>g that a<br />

species was fruit<strong>in</strong>g (Table 2).<br />

Analyses of the contents of each fruit trap <strong>in</strong>volved count<strong>in</strong>g and check<strong>in</strong>g the<br />

condition of fruits and seeds, which were coded us<strong>in</strong>g the follow<strong>in</strong>g categories;<br />

Neutral effect: <strong>in</strong>tact fruits (unripe, ripe or rotten)<br />

pulp partially eaten, <strong>in</strong>tact seeds<br />

pulp completely consumed, <strong>in</strong>tact seeds<br />

Dispersal: empty fruit husks, pulp eaten and seeds swallowed<br />

Predation: partially eaten seeds or empty seed husks with gnaw marks<br />

Percentages of all categories were calculated per tree species. Additionally, defecated<br />

seeds from the focal tree or other tree species present <strong>in</strong> the fruit traps were scored as<br />

well. Several animals leave dist<strong>in</strong>ctive feed<strong>in</strong>g marks on the discarded fruit and seed<br />

rema<strong>in</strong>s. Therefore it was often possible to determ<strong>in</strong>e the consumer species or at least<br />

the larger taxonomic group.<br />

Tree watches<br />

Observations on feed<strong>in</strong>g assemblages of <strong>frugivore</strong>s were carried out dur<strong>in</strong>g the peak<br />

fruit<strong>in</strong>g period of 27 tree species. These so-called ‘tree watches’ (Chapman and<br />

Chapman 1996; Scharfe and Schlund 1996; Goodman et al. 1997a; Böhn<strong>in</strong>g-Gaese et al.<br />

1999) consisted of <strong>in</strong>termittent 36h observations (two cycles 06h00-00h00) of one<br />

39


Chapter 2<br />

40<br />

Table 1. The <strong>frugivore</strong> guild at Sa<strong>in</strong>te Luce with <strong>in</strong>dication of their diet (F: frugivorous, G: granivorous, O: omnivorous), their activity<br />

budget (D: diurnal, N: nocturnal, C: cathemeral), feed<strong>in</strong>g height (A: arboreal, T: terrestrial), body mass (<strong>in</strong> g) and length (<strong>in</strong> cm)<br />

Role 3<br />

Body 1,2<br />

Length<br />

Body 1<br />

mass<br />

Feed<strong>in</strong>g<br />

height<br />

Active<br />

and their potential role as seed dispersers (D) or seed predators (P) <strong>in</strong> this ecosystem.<br />

Family<br />

Scientific name<br />

English name<br />

Diet<br />

D<br />

D<br />

P<br />

D<br />

P<br />

P<br />

32<br />

28<br />

28<br />

24<br />

35<br />

50<br />

215<br />

ND<br />

190<br />

45<br />

218<br />

ND<br />

A<br />

A<br />

T<br />

A<br />

A<br />

A<br />

D<br />

D<br />

D<br />

D<br />

D<br />

D<br />

F<br />

F<br />

G<br />

F<br />

G<br />

G<br />

<strong>Malagasy</strong> Green Pigeon<br />

<strong>Malagasy</strong> Blue Pigeon<br />

Madagascar Turtle Dove<br />

Madagascar Bulbul<br />

Lesser Vasa Parrot<br />

Greater Vasa Parrot<br />

Treron australis<br />

Alectroenas madagascariensis<br />

Streptopelia picturata<br />

Hypsipetes madagascariensis<br />

Coracopsis nigra<br />

Coracopsis vasa<br />

AVES<br />

Columbidae<br />

Pycnonotidae<br />

Psittacidae<br />

P<br />

P<br />

15-23<br />

10-16<br />

100<br />

88<br />

AT<br />

AT<br />

N<br />

N<br />

O<br />

O<br />

Black Rat<br />

Webb's Tuft-Tailed Rat<br />

Rattus rattus<br />

Eliurus webbi<br />

MAMMALIA<br />

RODENTIA<br />

Muridae<br />

Nesomy<strong>in</strong>ae<br />

D<br />

23-27<br />

500-750<br />

A<br />

N<br />

F<br />

Madagascar Fly<strong>in</strong>g Fox<br />

Pteropus rufus<br />

CHIROPTERA<br />

Megachiroptera<br />

Pteropodidae<br />

D<br />

D<br />

D<br />

D<br />

40-47<br />

12.5<br />

25<br />

20<br />

PRIMATES<br />

Lemuridae Eulemur fulvus collaris<br />

Collared Brown Lemur F C A 2000-2300<br />

Cheirogaleidae Microcebus rufus<br />

Brown Mouse Lemur O N A 42<br />

Cheirogaleus major<br />

Greater Dwarf Lemur O N A 443<br />

Cheirogaleus medius<br />

Fat-tailed Dwarf Lemur O N A 119-282<br />

1<br />

Data from Langrand (1990), Fietz and Ganzhorn (1999), Garbutt (1999), Ganzhorn et al. (1999a), Donati (2002).<br />

2<br />

Body length (BL) is total length for birds and bats but head/body length for lemurs and rodents.<br />

3<br />

Data from Goodman et al. (1997b); Ganzhorn et al. (1999a); Bollen and Van Elsacker (2002a); Donati (2002); Bollen (unpubl. data).


Tree dispersal strategies<br />

<strong>in</strong>dividual tree per species. Six species were observed for less than 36 hours due to a<br />

very short fruit<strong>in</strong>g period or heavy ra<strong>in</strong>s dur<strong>in</strong>g the fruit<strong>in</strong>g peak (Table 3). Observations<br />

were made with<strong>in</strong> 10m of the focal tree, which allowed an unobstructed view of<br />

approximately 70-100% of the canopy. Dur<strong>in</strong>g the day b<strong>in</strong>oculars (Leica 10x42) were<br />

used while at night a headlight (Petzl), which reflects the tapetum lucidum of the eyes of<br />

lemurs, fly<strong>in</strong>g foxes and rats, aided observations. Additionally, if moonlight conditions<br />

were favourable, night goggles (Litton Electron Devices) were used as well. Tree watches<br />

provided data on the animal species feed<strong>in</strong>g <strong>in</strong> the tree and their handl<strong>in</strong>g and feed<strong>in</strong>g<br />

behaviour. This allowed us to classify them as seed-dispersers, seed droppers or fruit<br />

pulp consumers and seed predators. This behaviour could be easily observed dur<strong>in</strong>g the<br />

day but not always at night when one needed to rely on evidence such as fall<strong>in</strong>g fruit<br />

husks, fruits or seeds. Species visit<strong>in</strong>g the tree without eat<strong>in</strong>g were not considered <strong>in</strong> the<br />

analyses.<br />

Accord<strong>in</strong>g to the model of dispersal syndromes, tree and fruit characteristics evolved<br />

<strong>in</strong> response to the community of <strong>frugivore</strong>s and their taxonomic aff<strong>in</strong>ities. Both literature<br />

and detailed observations dur<strong>in</strong>g tree watches allowed us to classify the different<br />

consumer species as seed dispersers, fruit-pulp consumers and/or seed predators<br />

(Goodman et al. 1997a; Ganzhorn et al. 1999a; Bollen and Van Elsacker 2002a, Chapter<br />

3, 3a; Donati 2002). Based on this knowledge, the follow<strong>in</strong>g dispersal groups were<br />

dist<strong>in</strong>guished;<br />

-mixed fruits: eaten by both birds and mammals<br />

-bird-fruits: eaten by fruit pigeons and/or bulbul<br />

-mammal-fruits: eaten by lemurs and fly<strong>in</strong>g foxes<br />

-fruits eaten only by Eulemur fulvus collaris<br />

Morphological and biochemical characterisation<br />

The number of seeds per fruit were counted, fruits and seeds were weighed fresh us<strong>in</strong>g<br />

spr<strong>in</strong>g or electronic balances and measured us<strong>in</strong>g callipers with 0.01g and 0.01mm<br />

precision, respectively. In addition the ratio between length and width (L/W) was used as<br />

an <strong>in</strong>dex of fruit shape (Pizo 2002). Most fruits are typically zoochorous, <strong>in</strong>clud<strong>in</strong>g soft<br />

and juicy drupes or berries.<br />

Ripe fruits were dried <strong>in</strong> the sun or <strong>in</strong> a dry<strong>in</strong>g oven, ground to pass through a 2mm<br />

sieve, and dried aga<strong>in</strong> overnight at 50-60°C prior to analyses. Lipids were determ<strong>in</strong>ed by<br />

the Soxleth method. Total nitrogen (N) was determ<strong>in</strong>ed us<strong>in</strong>g the Kjeldahl procedure.<br />

Multiply<strong>in</strong>g N by 6.25 converted total nitrogen to crude prote<strong>in</strong>. However it should be<br />

noted that a conversion factor of 6.25 overestimates the prote<strong>in</strong> actually available for<br />

<strong>frugivore</strong>s <strong>in</strong> some fruits (Levey et al. 2000). Soluble carbohydrates and procyanid<strong>in</strong><br />

(condensed) tann<strong>in</strong>s were extracted with 50% methanol. Concentrations of soluble sugar<br />

were determ<strong>in</strong>ed as the equivalent of galactose after acid hydrolization of the 50%<br />

methanol extract. This measurement correlates well with concentrations obta<strong>in</strong>ed with<br />

enzymatic analyses of glucose, fructose and galactose (Ganzhorn and Tomaschewski<br />

unpubl. data). Concentrations of procyanid<strong>in</strong> tann<strong>in</strong> were measured as equivalents of<br />

quebracho tann<strong>in</strong> (Oates et al. 1977; Porter and Hem<strong>in</strong>gway 1990). Samples were<br />

analysed for acid detergent fibre (ADF) (Goer<strong>in</strong>g and Van Soest 1970; Van Soest 1994)<br />

modified accord<strong>in</strong>g to the <strong>in</strong>structions for use <strong>in</strong> an ANKOM FIBER ANALYZER.<br />

Biochemical analyses were carried out at the Institute of Zoology, Department of Ecology<br />

and Conservation (University Hamburg).<br />

41


Chapter 2<br />

Statistical analyses<br />

To visualise dispersal types and to test for fruit trait co-variation consistent with these<br />

dispersal types, two pr<strong>in</strong>cipal component analyses (PCA) were conducted us<strong>in</strong>g<br />

morphological and biochemical fruit trait data of 29 tree species. As data were not<br />

normally distributed, morphological and biochemical traits were log-transformed prior to<br />

analyses. Factor load<strong>in</strong>gs were used to determ<strong>in</strong>e the strength of association of each fruit<br />

trait with each pr<strong>in</strong>cipal component. Mann Whitney U tests, Spearman rank correlations<br />

and Kruskal Wallis were carried out accord<strong>in</strong>g to Siegel (1956) with the statistical<br />

software SAS for W<strong>in</strong>dows.<br />

RESULTS<br />

<strong>Fruit</strong> traps<br />

Consider<strong>in</strong>g fruit trap analyses, there was substantial variation <strong>in</strong> the three ma<strong>in</strong><br />

categories (neutral, dispersal, predation) among different tree species (Table 2, Fig. 1).<br />

Based on all fruit trap data, a substantial proportion (median: 70%, quartiles 39-98%) of<br />

seeds rema<strong>in</strong>ed under the parent plant; <strong>in</strong>clud<strong>in</strong>g unripe, ripe and rotten fruits (47%) that<br />

had not been eaten as well as partially eaten fruits that still conta<strong>in</strong>ed their seed (13%) or<br />

<strong>in</strong>tact seeds (9%) that were dropped after the fruit pulp had been swallowed (Table 2). In<br />

all these cases the animals had a neutral effect on the seeds, s<strong>in</strong>ce they were neither<br />

dispersed nor predated. For 18 species the number of fruits or seeds dropped under the<br />

parent plant was higher than 50% (Fig. 1). Evidence of seed dispersal <strong>in</strong>volved empty<br />

fruit husks (median 9%, quartiles 0-61%) that were discarded after consumers swallowed<br />

the fruit pulp and seeds. This proportion was relatively large (>50%) for only eight tree<br />

species. The proportion of predated seeds was low (median 2%, quartiles 0-5%) and<br />

exceeded 5% for only six tree species (Table 2, Fig. 1).<br />

Faecal dropp<strong>in</strong>gs, collected <strong>in</strong> fruit traps, provided complementary but nonquantitative<br />

<strong>in</strong>formation on seed dispersal. N<strong>in</strong>ety percent of all faecal samples collected<br />

under focal trees were found to conta<strong>in</strong> seeds from other tree species, thus <strong>in</strong>dicat<strong>in</strong>g<br />

seed dispersal. Of the 29 tree species sampled, seeds of 13 species were found <strong>in</strong><br />

dropp<strong>in</strong>gs of Eulemur fulvus collaris and one species <strong>in</strong> dropp<strong>in</strong>gs of Alectroenas<br />

madagascariensis. For the majority of these species (9 out of 14) hardly any empty fruit<br />

husks were found <strong>in</strong> the fruit traps as proof of seed dispersal (0-3%) (Table 2) because<br />

dispersed seeds <strong>in</strong>volve completely swallowed fruits, which are not accounted for <strong>in</strong> this<br />

method. For the other rema<strong>in</strong><strong>in</strong>g 5 species, more empty fruit husks (42-89%) were<br />

retrieved <strong>in</strong> the fruit traps, <strong>in</strong>dicat<strong>in</strong>g that, here, consumers most often scooped out and<br />

swallowed fruit pulp and seeds and discarded the rema<strong>in</strong><strong>in</strong>g fraction.<br />

Fourteen plant species had the majority of their fruits eaten. Non-eaten fruits were<br />

most abundant <strong>in</strong> eight species and equal percentages of eaten and non-eaten fruits<br />

occur for 7 species (Table 2). Identification of the consumers was based on faecal<br />

dropp<strong>in</strong>gs or feed<strong>in</strong>g marks. On the species level, faecal dropp<strong>in</strong>gs of E. f. collaris and A.<br />

madagascariensis are obviously dist<strong>in</strong>guishable and recognizable by size and<br />

consistency. The bill mark is typical for both Coracopsis spp. Stripped off pulp parts are<br />

typical marks of Pteropus rufus’ sharp teeth. Lemur tooth marks can be species-specific<br />

based on their size, but were most often assigned to larger taxonomic group of nocturnal<br />

lemurs (<strong>in</strong>volv<strong>in</strong>g Cheirogaleus spp. and Microcebus rufus) or lemurs (<strong>in</strong>volv<strong>in</strong>g all four<br />

lemur species) (App. II). Rodents leave typical gnaw<strong>in</strong>g marks, but these do not always<br />

42


Tree dispersal strategies<br />

allow identification to species-level. The other frugivorous bird species most often<br />

swallow the fruit entirely and thus leave no identifiable marks.<br />

Table 2. Percentages of the different categories used <strong>in</strong> fruit trap analyses, <strong>in</strong>volv<strong>in</strong>g neutral or<br />

dropped, dispersed and predated seeds, eaten and non-eaten fruits are given. For these different<br />

categories highest percentages are given <strong>in</strong> bold. An asterisk <strong>in</strong>dicates non-quantitative dispersal<br />

evidence by faecal dropp<strong>in</strong>g, which leads to underestimation of this category.<br />

(P and S part. Eaten: pulp and seeds partially eaten, FS: faecal seeds,<br />

Am: Alectroenas madagascariensis, Efc: Eulemur fulvus collaris).<br />

Impact on seed: Predation<br />

Category: Intact P part Intact Sum Empty FS S part Eaten Not<br />

fruits eaten 1 seeds 2<br />

husks eaten eaten<br />

Apodytes dimidiata 3<br />

21 66 13 100 0 0 79 21<br />

Brexia sp. 19 2 4 25 69 7 81 19<br />

Brochoneura acum<strong>in</strong>eata 14 1 15 76 10 86 14<br />

Burasaia madagascariensis 8 24 24 56 9 36 93 8<br />

Canarium boiv<strong>in</strong>ii 54 16 20 90 8 2 46 54<br />

Canthium variistipula 3<br />

23 5 72 100 0* Efc 0 77 24<br />

C<strong>in</strong>namosma madagascariensis 5 3 31 39 61 0 95 5<br />

Diospyros sp. 3<br />

11 10 32 53 42* Efc 5 89 11<br />

Dypsis prestoniana 53 15 30 98 0* Am 2 47 54<br />

Elaeocarpus alnifolius 54 36 9 99 0* Efc 1 46 55<br />

Eugenia cloiselii 67 24 9 100 0* Efc 0 33 67<br />

Eugenia sp. 82 6 12 100 0* Efc 0 18 82<br />

Garc<strong>in</strong>ia cf. madagascariensis 63 7 70 28 3 37 63<br />

Leptolaena multiflora 95 2 97 3* Efc 0 5 95<br />

Olea sp. 79 18 1 98 0* Efc 3 21 79<br />

Poupartia chapelieri 4 1 24 29 69* Efc 2 96 4<br />

Rothmannia mandenensis 31 31 69 0 100 0<br />

Sarcolaena multiflora 11 11 89* Efc 1 89 11<br />

Schizolaena elongata 78 14 1 93 3* Efc 4 22 79<br />

Scolopia orientalis 35 12 2 49 45 7 65 35<br />

Syzygium sp.1 54 21 2 77 23 1 47 54<br />

Syzygium sp.2 3<br />

Neutral effect Dispersal<br />

58 20 21 99 0* Efc 1 42 58<br />

Term<strong>in</strong>alia fatraea 49 34 8 91 9 1 51 49<br />

T<strong>in</strong>a thouarsiana 40 3 2 45 1 54 60 40<br />

Uapaca ferrug<strong>in</strong>ea 49 49 50* Efc 2 52 49<br />

Uapaca <strong>littoral</strong>is 45 1 6 52 48* Efc 1 55 46<br />

Uapaca thouarsii 64 18 82 2 16 36 64<br />

Vepris eliotii 21 7 28 67 5 79 21<br />

Vepris fitorav<strong>in</strong>a 10 5 15 85 0 90 10<br />

median 47 13 9 70 9 2 55 46<br />

quartiles 18-59 3-21 9-24 39-98 0-61 0-5 42-8614-58<br />

1<br />

This category refers to fruits of which the pulp is partially eaten, but <strong>in</strong>tact seeds rema<strong>in</strong>.<br />

2<br />

This category refers to fruits of which all pulp and husk are eaten, but <strong>in</strong>tact seeds were dropped.<br />

3<br />

For these five tree species fruit traps were <strong>in</strong>stalled shortly after the onset of fruit<strong>in</strong>g, due to a delay <strong>in</strong><br />

notic<strong>in</strong>g that this species was fruit<strong>in</strong>g.<br />

43


Chapter 2<br />

Overall fruit trap data documented 77 plant-animal <strong><strong>in</strong>teractions</strong> of which the majority<br />

(n=63) could be identified on feed<strong>in</strong>g marks alone. Additional <strong><strong>in</strong>teractions</strong> (n=14) were<br />

revealed through analyses of faecal samples. For seven <strong><strong>in</strong>teractions</strong>, faecal samples<br />

confirmed data from feed<strong>in</strong>g marks. Of all <strong><strong>in</strong>teractions</strong>, 65% (n=50) could be assigned to<br />

a s<strong>in</strong>gle consumer species, while 35% could only be assigned to a larger taxonomic<br />

group, such as lemurs <strong>in</strong> general (n=9), nocturnal lemurs (n=10) or rodents (n=8).<br />

100%<br />

Fig 1. Indication of percentages of different categories of seed dispersal, predation, and neutral<br />

seed dropp<strong>in</strong>g per plant species. X <strong>in</strong>cludes six plant species be<strong>in</strong>g Cv, Ad, Ec, E, Ea, S2. For<br />

abbreviations of tree species, see Appendix I.<br />

Tree watches<br />

Tree watches were carried out for 27 species, for a total of 928 observation hours<br />

(median of 36h/species) dur<strong>in</strong>g 107 observation days (median 6 days/sp., range 3-10<br />

days/sp.) at the peak of the fruit<strong>in</strong>g periods (Fig. 2). Observational data on the feed<strong>in</strong>g<br />

behaviour revealed whether species had a neutral, positive or negative impact on the<br />

seeds. For Coracopsis nigra, Eliurus webbi and Rattus rattus the destruction of seeds is<br />

very clear. Streptopelia picturata feeds on seeds on the ground and is likely a seed<br />

predator but detailed feed<strong>in</strong>g observations of this very shy dove were not possible. The<br />

lemur and fly<strong>in</strong>g fox species can act as seed dispersers but often also drop seeds under<br />

the parent plant dur<strong>in</strong>g fruit handl<strong>in</strong>g or after swallow<strong>in</strong>g fruit pulp and hence have a<br />

neutral effect on seeds. Hypsipetes madagascariensis, Treron australis and Alectroenas<br />

madagascariensis act as seed dispersers swallow<strong>in</strong>g all fruits entirely (Bollen et al.,<br />

Chapter 3).<br />

If we consider all comb<strong>in</strong>ations of consumer-plant species <strong><strong>in</strong>teractions</strong> (n=100) of the<br />

plant species that were <strong>in</strong>cluded <strong>in</strong> both fruit trap analyses and tree watches, most of<br />

these (n=62) were confirmed by both tree watches and fruit trap analyses, even if some<br />

of the fruit trap data only referred to the larger taxonomic group (App II). In general, tree<br />

watches further ref<strong>in</strong>ed the fruit trap data to species level but also added 24 new<br />

44<br />

90%<br />

80%<br />

70%<br />

60%<br />

50%<br />

40%<br />

30%<br />

20%<br />

10%<br />

0%<br />

X Dp-<br />

O<br />

Lm Se Tf Cb Ut S1 G Bm D Ul Uf So Tt Cm Rm Pc Ve B Vf B a Sm<br />

neutral dispersal predation


Tree dispersal strategies<br />

consumer-plant <strong><strong>in</strong>teractions</strong> to the list. <strong>Fruit</strong> trap data detected 14 <strong><strong>in</strong>teractions</strong> that were<br />

not confirmed by tree watches and these <strong>in</strong>volved ma<strong>in</strong>ly shy consumer species that<br />

were difficult to observe. In Appendix II, twelve tree species were not considered, as data<br />

on these species had not been sampled by both fruit traps and tree watches.<br />

Data on general phenology of ripe fruits (Bollen and Donati, Chapter 1) are presented<br />

<strong>in</strong> Figure 2 to <strong>in</strong>dicate when the fruit<strong>in</strong>g peak of the different focal tree species occurred<br />

and how this related to the overall fruit availability of canopy tree species <strong>in</strong> the <strong>littoral</strong><br />

<strong>forest</strong>. The number of fruit tree species selected each month more or less corresponds<br />

with the monthly fruit<strong>in</strong>g diversity throughout the year 2000.<br />

Dispersal strategies<br />

It is difficult to actually ‘test’ co-evolution but this paradigm is based on tight <strong><strong>in</strong>teractions</strong><br />

between one s<strong>in</strong>gle fruit and disperser species. In this respect there are five plant species<br />

that are exclusively dispersed by Eulemur fulvus collaris, namely Canarium boiv<strong>in</strong>ii<br />

(ramy), Diospyros sp. (hazoma<strong>in</strong>ty), Eugenium sp. (ropasy sp. 2), Rothmannia<br />

mandenensis (taholagna), C<strong>in</strong>namosma madagascariensis var. namoronensis (vahabatra<br />

3eM). These fruits were significantly heavier (fruit weight: Z=3.26, P=0.0011) and longer<br />

(fruit length: Z=3.38; P=0.0007) than the other fruits. No significant difference could be<br />

found for any of the other morphological and biochemical traits.<br />

Accord<strong>in</strong>g to McKey's (1975) model, high <strong>in</strong>vestment trees have small crop size, long<br />

fruit<strong>in</strong>g period and few seed dispersers, whereas the opposite is valid for low <strong>in</strong>vestment<br />

trees. However no significant correlations could be found among these traits (fruit<strong>in</strong>g<br />

period-crop size: rs=0.18, P=0.41; fruit<strong>in</strong>g period-number seed dispersers: rs=-0.08,<br />

P=0.70; crop size-number of seed dispersers rs=0.13, P=0.53). Investment was<br />

considered to be represented by the concentrations of nutrients such as sugars, lipids<br />

and prote<strong>in</strong>. The only significant correlation found was among prote<strong>in</strong> and lipid content<br />

(rs=0.51, P=0.005) and among sugar content and fruit<strong>in</strong>g period (rs=-0.43, P=0.04).<br />

Sugar, lipid and prote<strong>in</strong> content were not correlated with the number of seed dispersers<br />

as the model predicts. Any division <strong>in</strong> low and high <strong>in</strong>vestment trees thus seems to be<br />

arbitrary here and does not represent a valid classification to test the McKey model.<br />

Based on data from fruit traps and tree watches, 29 tree species were divided <strong>in</strong>to<br />

species <strong>in</strong> which fruits were eaten and dispersed only by Eulemur fulvus collaris, by birds,<br />

by mammals or by both groups. This classification <strong>in</strong>to disperser ‘syndromes’ is based on<br />

the taxonomic composition of the consumers (Table 3). Mammal fruits account for 55%<br />

(n=16) of all species, while both mixed (n=5) and specialist (n=5) tree species accounted<br />

for 17% each and bird dispersed species (n=3) for 11%. First we tested for correlations<br />

among all fruit traits, both morphological (n=6) and biochemical (n=5). Us<strong>in</strong>g sequential<br />

Bonferroni adjustment only four Spearman rank correlations rema<strong>in</strong>ed significant: fruit<br />

weight and fruit length (rs=0.76, P


Chapter 2<br />

Table 3. Morphological and biochemical traits used for PCA analyses. Weights are given <strong>in</strong><br />

g, length <strong>in</strong> mm. <strong>Fruit</strong> shape is fruit length divided by fruit width. Biochemical components are<br />

given <strong>in</strong> percentages dry weight. The disperser type we assigned the plant species is given<br />

<strong>in</strong> the last column. ND: no data available, Efc refers to fruits that are dispersed by Eulemur fulvus<br />

collaris only.<br />

Morphological<br />

Plant species Number <strong>Fruit</strong> <strong>Fruit</strong> Seed Seed <strong>Fruit</strong><br />

seeds weight length weight length shape<br />

Apodytes dimidiata 1 0.45 12.34 0.23 10.61 1.55<br />

Brexia sp. 1 1.57 20.19 0.21 15.12 1.64<br />

Canarium boiv<strong>in</strong>ii 1 9.69 31.14 4.17 27.01 1.29<br />

Canthium variistipula 2 0.31 7.80 0.06 6.0 0.85<br />

C<strong>in</strong>namosma madagascariensis 10 6.22 21.99 0.14 8.42 0.98<br />

Dyospiros sp. 5 16.48 30.71 1.89 19.74 0.93<br />

Dypsis prestoniana 1 0.59 14.85 0.34 12.92 1.85<br />

Eugenia cloiselii 1 1.59 13.20 1.26 11.64 0.90<br />

Eugenia sp. 1 4.20 23.81 1.64 15.33 1.33<br />

Leptolaena multiflora 2 0.06 5.60 0.01 2.90 1.19<br />

Ludia antanosarum 6 1.04 12.47 2.98 3.22 1.07<br />

Macaranga perrieri 1 0.04 4.55 0.03 3.06 1.00<br />

Olea sp. 1 0.90 16.98 0.80 15.85 1.56<br />

Polyalthia madagascariensis 1 0.30 12.22 0.12 7.80 1.73<br />

Polyscias sp. 1 0.04 5.03 0.01 3.64 1.31<br />

Poupartia chapelieri 1 0.54 15.43 0.36 15.24 1.52<br />

Rothmannia mandenensis 100 35.33 40.36 0.03 4.35 1.04<br />

Sarcolaena multiflora 5 0.67 14.11 0.01 2.73 1.32<br />

Schizolaena elongata 2 0.77 8.89 0.01 3.05 0.63<br />

Scolopia orientalis 3 0.52 10.52 0.02 3.75 1.11<br />

Syzygium sp.1 1 0.64 10.23 0.64 9.32 0.90<br />

Syzygium sp.2 1 0.54 9.55 0.31 6.56 0.98<br />

Term<strong>in</strong>alia fatraea 1 0.37 13.19 0.13 8.12 1.91<br />

Trema orientalis 1 0.02 3.24 0.01 2.17 1.00<br />

Uapaca ferrug<strong>in</strong>ea 3 1.42 13.59 0.19 10.66 1.03<br />

Uapaca <strong>littoral</strong>is 3 4.86 23.63 0.52 15.03 1.19<br />

Uapaca thouarsii 3 1.67 12.53 0.22 9.64 0.88<br />

Vepris eliotii 3 0.57 9.86 0.04 6.84 1.05<br />

Vepris fitorav<strong>in</strong>a 2 8.15 8.47 0.16 6.76 1.15<br />

46


Tree dispersal strategies<br />

Table 3 Cont<strong>in</strong>ued<br />

Plant species Fat Crude<br />

Biochemical<br />

Sugar Tann<strong>in</strong> ADF Disperser<br />

prote<strong>in</strong> type<br />

Apodytes dimidiata 2.85 6.86 64.06 0.00 ND mixed<br />

Brexia sp. 2.82 2.69 18.23 0.00 18.64 mammal<br />

Canarium boiv<strong>in</strong>ii 12.98 9.19 2.17 0.00 38.59 Efc<br />

Canthium variistipula 4.91 5.63 18.18 0.18 20.1 mammal<br />

C<strong>in</strong>namosma madagascariensis 4.96 5.31 26.01 1.74 12.44 Efc<br />

Dyospiros sp. 0.55 3.13 6.53 0.55 27.69 Efc<br />

Dypsis prestoniana 3.04 7.19 15.37 0.16 16.62 mixed<br />

Eugenia cloiselii 2.11 7.31 31.24 0.20 19.59 mammal<br />

Eugenia sp. 1.17 3.94 18.48 0.00 24.8 Efc<br />

Leptolaena multiflora 2.24 5.63 2.95 0.16 35.61 mammal<br />

Ludia antanosarum 1.24 2.88 23.38 0.39 21.71 mammal<br />

Macaranga perrieri 4.51 5.38 2.87 0.00 42.32 bird<br />

Olea sp. 1.69 3.75 38.53 0.14 22.39 mammal<br />

Polyalthia madagascariensis 1.23 5.44 49.44 0.48 22.46 mixed<br />

Polyscias sp. 2.12 4.19 17.8 0.00 46.4 bird<br />

Poupartia chapelieri 0.65 5.69 12.63 0.00 14.97 mammal<br />

Rothmannia mandenensis 0.32 4.63 8.12 0.13 35.68 Efc<br />

Sarcolaena multiflora 3.93 4.25 14.98 0.15 34.47 mammal<br />

Schizolaena elongata 2.22 6.24 26.57 0.00 13.72 mammal<br />

Scolopia orientalis 0.75 3.06 33.38 0.35 12.78 mammal<br />

Syzygium sp.1 7.13 4.38 31.94 0.19 17.88 mammal<br />

Syzygium sp.2 3.36 4.94 43.36 1.07 19.07 mixed<br />

Term<strong>in</strong>alia fatraea 3.11 7.81 16.40 0.38 35.68 mixed<br />

Trema orientalis 44.67 13.97 3.38 0.15 16.69 bird<br />

Uapaca ferrug<strong>in</strong>ea 5.73 5.88 2.26 0.00 51.01 mammal<br />

Uapaca <strong>littoral</strong>is 2.05 4.44 7.49 0.4 29.93 mammal<br />

Uapaca thouarsii ND ND ND ND ND mammal<br />

Vepris eliotii 14.74 7.89 6.42 0.00 17.21 mammal<br />

Vepris fitorav<strong>in</strong>a 7.37 5.38 19.82 1.23 15.39 mammal<br />

47


Chapter 2<br />

depressed seeds (Fig. 3a). The distribution of the species along the first axis shows<br />

slightly more variation than on the second axis where the majority of fruits have few<br />

seeds and a spherical or elongated fruit shape. The first axis clearly separates the birdspecies<br />

from all other species. They have smaller and lighter fruits and seeds.<br />

Furthermore the mixed fruits have average or <strong>in</strong>termediate sizes while the specialist fruits<br />

are clearly larger and more variable <strong>in</strong> shape and seed number. The mammal fruits are<br />

<strong>in</strong>termediate <strong>in</strong> size, all rather spherical <strong>in</strong> shape and few-seeded. So the different<br />

disperser types can be more or less separated <strong>in</strong>to groups by both axes.<br />

The first two factors of the PCA conducted with the biochemical traits accounted for<br />

73% of the total variance (Table 4). The first axis of the PCA <strong>in</strong>cluded parameters<br />

associated with sugar and crude prote<strong>in</strong> content and expla<strong>in</strong>ed 43% of the variance<br />

(eigenvalue=2.17). The second axis was determ<strong>in</strong>ed by concentrations of fat and acid<br />

detergent fibre and expla<strong>in</strong>ed 30% of the variance (eigenvalue=1.52; Table 4). When<br />

consider<strong>in</strong>g the different disperser types no clear patterns arise accord<strong>in</strong>g to these axes<br />

(Fig. 3b). Thus, chemical traits failed to group species accord<strong>in</strong>g to disperser type.<br />

To support the conclusions of this descriptive analyses, a Kruskal-Wallis test was<br />

carried out for the disperser syndromes with the first two pr<strong>in</strong>cipal components of each<br />

PCA. For the morphological parameters, the four disperser syndromes showed a<br />

significant difference for PCA1 (P=0.001), mean<strong>in</strong>g traits related to fruit size but not for<br />

PCA2 (seed number, fruit shape; P=0.31). For the biochemical parameters no significant<br />

difference could be found among the disperser syndromes based on PCA1 (P=0.14),<br />

<strong>in</strong>volv<strong>in</strong>g sugar and crude prote<strong>in</strong>s, nor for PCA2 (P=0.31) <strong>in</strong>volv<strong>in</strong>g fat and ADF (Table<br />

4).<br />

Table 4. Pr<strong>in</strong>cipal component analyses for morphological and biochemical traits of 29 tree<br />

species. Each factor represents an ord<strong>in</strong>ation axis. Kruskal Wallis test results of the<br />

disperser type with the pr<strong>in</strong>cipal components given as well (**P


n species with ripe fruits<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

O<br />

Tt<br />

Ec<br />

Bm<br />

To<br />

X<br />

Ps<br />

Lm<br />

Vf<br />

D<br />

Pc<br />

Sm<br />

Ad<br />

Tf<br />

Dp<br />

Tree dispersal strategies<br />

Fig. 2. Number of tree species bear<strong>in</strong>g ripe fruits <strong>in</strong> 2000. The height of the fruit<strong>in</strong>g peak of the tree<br />

species <strong>in</strong>volved <strong>in</strong> tree watches is <strong>in</strong>dicated as well. X <strong>in</strong>cludes the follow<strong>in</strong>g seven species: So,<br />

La, S1, Cb, Mp, Ve, Se accord<strong>in</strong>g the abbreviations <strong>in</strong> Appendix I.<br />

DISCUSSION<br />

In the present study we <strong>in</strong>vestigated three hypotheses for evidence of co-evolution<br />

between life history traits of plants, their diaspores and animal consumers. These were<br />

tight, species-specific <strong><strong>in</strong>teractions</strong>, different <strong>in</strong>vestment patterns of plants <strong>in</strong> their fruits <strong>in</strong><br />

relation to the specialization of dispersers and dispersal syndromes as adaptations to<br />

taxonomically diverse groups of dispersers with different sensory capabilities (colour<br />

vision <strong>in</strong> birds, olfaction <strong>in</strong> mammals).<br />

There was no evidence for tight co-evolution between specific tree and consumer<br />

species. This is consistent with f<strong>in</strong>d<strong>in</strong>gs of most studies (Howe and Smallwood 1982;<br />

Howe 1984; Gautier-Hion et al. 1985; Herrera 1986; Fisher and Chapman 1993;<br />

Chapman 1995; Erikkson and Ehrlen 1998; Lambert and Garber 1998). Most plant<br />

species do not depend on one s<strong>in</strong>gle disperser species. The only possible <strong>in</strong>dication of<br />

co-evolution <strong>in</strong> our study are the five tree species for which Eulemur fulvus collaris is the<br />

only seed disperser. However, this lemur species is a very opportunistic feeder. A<br />

comparative study between the dry deciduous <strong>forest</strong> of Kir<strong>in</strong>dy and the <strong>littoral</strong> <strong>forest</strong> of<br />

Sa<strong>in</strong>te Luce (Bollen et al. <strong>in</strong> press, Chapter 4) confirms the absence of co-evolutionary<br />

plant-animal <strong><strong>in</strong>teractions</strong> here and shows that this lemur species has a rather high dietary<br />

flexibility. However, even though the dietary breath of E. f. collaris is quite large, this<br />

species is a sequential specialist and as such selects two or three dom<strong>in</strong>ant fruit species<br />

each month (Donati 2002). Canarium boiv<strong>in</strong>ii and Eugenia sp. make up important<br />

S2<br />

Dec 99 Feb 00 Apr 00 Jun 00 Aug 00 Oct 00 Dec 00<br />

Jan 00 Mar 00 May 00 Jul 00 Sep 00 Nov 00<br />

Cm<br />

P<br />

E<br />

Uf<br />

Ul<br />

49


Chapter 2<br />

Fig. 3. Ord<strong>in</strong>ation plot of the 29 tree species on the first two axes of a pr<strong>in</strong>icipal component<br />

analyses of (a) morphological traits and (b) biochemical traits. The asterisks stand for dispersal by<br />

E. f. collaris only, the diamonds for mammal species, the open circles for bird species and the open<br />

squares for mixed species.<br />

50<br />

- fruit shape<br />

number of seeds<br />

fat<br />

ADF<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

3<br />

2<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

-5 -4 -3 -2 -1 0 1 2 3 4<br />

fruit length<br />

fruit weight<br />

seed length<br />

-3 -2 -1 0 1 2 3 4<br />

- sugar<br />

crude prote<strong>in</strong>


Tree dispersal strategies<br />

portions of the monthly diet <strong>in</strong> Sa<strong>in</strong>te Luce, be<strong>in</strong>g 23% of the total diet <strong>in</strong> January 2001<br />

and 12% <strong>in</strong> July and August 2000 respectively (Donati 2002). The rema<strong>in</strong><strong>in</strong>g three<br />

species are rather marg<strong>in</strong>al dietary items. Nevertheless, co-evolution <strong>in</strong> the strict sense<br />

does not seem to occur here as it is ma<strong>in</strong>ly the large fruit size and weight that physically<br />

excludes the other <strong>frugivore</strong>s with smaller gape size. E. f. collaris is simply the last of the<br />

rema<strong>in</strong><strong>in</strong>g large-bodied lemur species <strong>in</strong> this <strong>littoral</strong> <strong>forest</strong> that can <strong>in</strong>gest these largesized<br />

seeds, thus match<strong>in</strong>g the situation of brown lemurs <strong>in</strong> some of Madagascar's dry<br />

deciduous <strong>forest</strong>s (Ganzhorn et al. 1999a). Many large-bodied <strong>frugivore</strong>s have<br />

disappeared <strong>in</strong> Madagascar recently and the ext<strong>in</strong>ction of at least 16 large lemur species<br />

<strong>in</strong> the Holocene could have <strong>in</strong>cluded some specialised seed dispersers (Godfrey et al.<br />

1997). All these ‘specialist’ tree species depend critically on Eulemur fulvus collaris for<br />

seed dispersal and recruitment. Even though these lemurs often drop the large seeds (up<br />

to 30mm seed length) under the parent plant, occasionally seeds are swallowed and<br />

defecated or dropped some distance away from the parent plant. Thus <strong>in</strong> terms of<br />

conservation these relationships are of crucial importance to conserve the <strong>in</strong>tegrity of the<br />

<strong>littoral</strong> <strong>forest</strong>.<br />

Our attempt to test McKey's model was problematic for a variety of reasons. First, the<br />

predictions are qualitative rather than quantitative <strong>in</strong> nature. ‘Investments’ are difficult to<br />

specify and may not be the same at nutrient-poor as at nutrient-rich sites or at sites of<br />

differ<strong>in</strong>g seasonality. Also, it is problematic to decide whether short but massive fruit<strong>in</strong>g<br />

might actually be less expensive for a tree than extended fruit<strong>in</strong>g over longer periods of<br />

time. Furthermore, the model was developed for bird-dispersed trees <strong>in</strong> the Neotropics<br />

and its validity largely depends on the composition of the <strong>frugivore</strong> guild. With as few as<br />

eight vertebrate seed dispersers <strong>in</strong> the <strong>littoral</strong> <strong>forest</strong> any rank<strong>in</strong>g or subdivision <strong>in</strong>to<br />

specialists and generalists is likely to show too much variation to be detected statistically<br />

<strong>in</strong> descriptive field studies. For the <strong>littoral</strong> <strong>forest</strong> of Madagascar, it might be risky for any<br />

tree species to depend on only one of these few <strong>frugivore</strong>s and therefore most tree<br />

species seem to be characterised by a mixture of general traits from both the low and<br />

high <strong>in</strong>vestment model. Even though <strong>in</strong> general there is little evidence for the McKey<br />

model (but see Wheelwright 1986), the depauperate <strong>frugivore</strong> guild of Madagascar might<br />

not be suitable to test this concept.<br />

Of the three hypotheses to be tested, the dist<strong>in</strong>ction <strong>in</strong>to dispersal syndromes was<br />

the only one that could be supported by the present data. <strong>Fruit</strong>s consumed and dispersed<br />

by birds and mammals differ dist<strong>in</strong>ctly <strong>in</strong> fruit and seed size and weight, fruit shape and<br />

seed number. Moreover, <strong>in</strong> a similar PCA analysis, Pizo (2002) found the same<br />

importance of fruit size, fruit width, seed length (PCA1), fruit shape and seed number<br />

(PCA2) which dist<strong>in</strong>guished primate fruits from the bird and mixed fruits. Bird fruits tend to<br />

be smaller and more elongated than primate fruits. Our results thus agree with studies on<br />

fruit syndromes <strong>in</strong> other assemblages of plants and animals <strong>in</strong> different regions (Janson<br />

1983; Knight and Siegfried 1983; Gautier-Hion et al 1985; Pizo 2002; Voigt et al. 2001).<br />

The rather uniform results suggest that these syndromes are biologically mean<strong>in</strong>gful.<br />

However for biochemical traits no significant differences could found, which corresponds<br />

to the f<strong>in</strong>d<strong>in</strong>gs of Pizo (2002) and Corlett (1996). Even though it has been shown that<br />

mammals favour fruits rich <strong>in</strong> sugars while birds prefer fruits with high lipid and prote<strong>in</strong><br />

content (Snow 1981; Flem<strong>in</strong>g et al. 1987; Debussche and Isenmann 1989; Galetti 2000),<br />

the present study only showed a slightly lower sugar and higher prote<strong>in</strong> content <strong>in</strong> fruits<br />

eaten by birds.<br />

51


Chapter 2<br />

On a community level the low number of <strong>frugivore</strong>s seems to have a profound impact<br />

on the composition and relative contribution of functional groups to regional ecosystems.<br />

Neotropical sites have very speciose frugivorous guilds with more than 50 bird species<br />

(Wheelwright 1986; Galetti and Pizo 1996). In contrast Madagascar has very few<br />

<strong>frugivore</strong>s and specifically very few frugivorous bird species (Flem<strong>in</strong>g et al. 1987), which<br />

seems to be reflected <strong>in</strong> the strik<strong>in</strong>g low number of ‘actual’ bird fruits. These<br />

circumstances obviously narrow down the options for tree species to specialise on certa<strong>in</strong><br />

bird species <strong>in</strong> Sa<strong>in</strong>te Luce. In a comparison of fruits <strong>in</strong> deciduous <strong>forest</strong>s of Madagascar<br />

and South Africa, Bleher and Böhn<strong>in</strong>g-Gaese (2001) and Voigt et al. (2001) showed that<br />

the latter has much more bird-dispersed fruits, whereas <strong>in</strong> Madagascar more mammal<br />

fruits exist. This is consistent with our f<strong>in</strong>d<strong>in</strong>gs from the humid evergreen <strong>littoral</strong> <strong>forest</strong>.<br />

The lack of bird fruits is opposed to the f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> India (Ganesh and Davidar 2000),<br />

Hong Kong (Corlett 1996), La Selva <strong>in</strong> Costa Rica (Levey et al. 1993) and Malawi<br />

(Dowsett-Lemaire 1988). At all these sites the majority of fruits are dispersed by birds or<br />

by both birds and mammals. In our dataset, there are only slightly more mixed fruits and<br />

the majority are mammal fruits, aga<strong>in</strong> <strong>in</strong>dicat<strong>in</strong>g low dependence for most tree species on<br />

birds but high dependence on lemurs and fly<strong>in</strong>g foxes for seed dispersal.<br />

Even though dispersal strategies may <strong>in</strong>clude some specifically selected<br />

morphological traits known as syndromes, general traits make up the bulk of the floral<br />

diversity <strong>in</strong> the <strong>littoral</strong> <strong>forest</strong>. In particular the nutritional reward for the animals does not<br />

seem to be taxa related <strong>in</strong> Sa<strong>in</strong>te Luce, as is also the case <strong>in</strong> Corlett (1996) and Pizo<br />

(2002). Many tree species attract their seed dispersers by more or less generalist fruit<br />

traits. However we have to be cautious as Zamora (2000) stressed that <strong>in</strong> communitywide<br />

studies ‘the noise often overwhelms the pattern’ and thus the diffuse co-adaptations<br />

we found may be the result of the complexity of <strong><strong>in</strong>teractions</strong>, few strong ones but many<br />

weak ones. Thus we cannot exclude the possibility that certa<strong>in</strong> strong <strong><strong>in</strong>teractions</strong> were<br />

overlooked <strong>in</strong> this study, even though the impact of the species poor <strong>frugivore</strong> guild<br />

seems to be determ<strong>in</strong><strong>in</strong>g <strong>in</strong> this ecosystem.<br />

In summary, it seems that <strong>in</strong> the <strong>littoral</strong> <strong>forest</strong> of Madagascar the comb<strong>in</strong>ation of life<br />

history traits of tree species have not been shaped under the constra<strong>in</strong>ts imposed by<br />

vertebrate seed dispersers upon the trees as co-evolution and the low-high <strong>in</strong>vestment<br />

model of McKey (1975) state. A classification based on taxonomic affiliation of seed<br />

dispersers does provide a more clear pattern support<strong>in</strong>g the idea that animals eat what is<br />

available and what they can swallow and digest, ma<strong>in</strong>ly based on size characteristics.<br />

The observed l<strong>in</strong>ks between traits of fruits and seeds and their consumers may be more a<br />

consequence of the morphological and physiological heritage and constra<strong>in</strong>ts of the<br />

consumers but not the result of co-evolution. The lack of tight co-evolutionary <strong><strong>in</strong>teractions</strong><br />

makes sense <strong>in</strong> Madagascar, as the community of vertebrate <strong>frugivore</strong>s is so species<br />

poor that there might have been few options for co-evolution. It could have been too<br />

dangerous for a tree species to rely on a s<strong>in</strong>gle animal species for seed dispersal. Or<br />

simply, the species poor community of <strong>frugivore</strong>s <strong>in</strong> Madagascar might not have had a<br />

large enough impact to produce specific tree traits. Nevertheless, some large seeds can<br />

only be dispersed by E. f. collaris. These tree species are likely to suffer from the<br />

ext<strong>in</strong>ction of the larger frugivorous lemur species.<br />

52


Tree dispersal strategies<br />

ACKNOWLEDGEMENTS<br />

We are QMM very grateful for provid<strong>in</strong>g logistics and <strong>in</strong>frastructure at the campsite. In particular we<br />

thank Manon V<strong>in</strong>celette, Jean-Baptiste Ramanamanjato, Laurent Randrihasipara of the QMM<br />

Environmental and Conservation Team. Plant determ<strong>in</strong>ations were carried out with the help of the<br />

botanists Faly Randriatafika and Johny Rabenantoandro of the Missouri Botanical Garden (MBG,<br />

Antananarivo). Voucher specimens are currently at MBG <strong>in</strong> Antananarivo. This manuscript<br />

benefited greatly from numerous suggestions of two anonymous reviewers. This study was carried<br />

out under the “Accord de Collaboration” between the Departments of Animal Biology and<br />

Anthropology of the University of Antananarivo and the Institute of Zoology of Hamburg University<br />

and QMM. I also thank Dries Bonte and Willem Talloen for provid<strong>in</strong>g help with statistics. The first<br />

author is supported by a grant from the Belgian Fund for Scientific Research, Flanders (FWO). We<br />

thank the Flemish Government for structural support to the CRC of the RZSA.<br />

Appendix I. List of abbreviations used <strong>in</strong> Figures 1 and 2 with family, scientific and vernacular<br />

name.<br />

Abbreviation Family name Scientific name Vernacular name<br />

Pc Anacardiaceae Poupartia chapelieri sisikandrongo<br />

Pm Annonaceae Polyalthia madagascariensis fotsivavo<br />

P Araliaceae Polyscias sp. voatsilana<br />

Dp Arecaceae Dypsis prestoniana boakabe<br />

Cb Burseraceae Canarium boiv<strong>in</strong>ii ramy<br />

Cm Canellaceae C<strong>in</strong>namosma madagascariensis vahabatra 3eM<br />

G Clusiaceae Garc<strong>in</strong>ia cf/aff. Madagascariensis disaky kely<br />

Tf Combretaceae Term<strong>in</strong>alia fatraea katrafa<br />

D Ebenaceae Diospyros sp.2 hazoma<strong>in</strong>ty<br />

Ea Elaeocarpaceae Elaeocarpus alnifolius sanga<br />

Mp Euphorbiaceae Macaranga perrieri mocarana<br />

Uf Uapaca ferrug<strong>in</strong>ea voapaky lahy<br />

Ul Uapaca <strong>littoral</strong>is voapaky vavy<br />

Ut Uapaca thouarsii voapaky lahy ZJ<br />

La Flacourtiaceae Ludia antanosarum zorafotsy<br />

So Scolopia orientalis zoramena<br />

B Grossulariaceae Brexia sp. kambatrikambatri<br />

Ad Icac<strong>in</strong>aceae Apodytes dimidiata hazomamy<br />

Bm Menispermaceae Burasaia madagascariensis faritsaty<br />

Ba Myristicaceae Brochoneura acum<strong>in</strong>eata mafotra<br />

Ec Myrtaceae Eugenia cloiselii ropasy sp.1<br />

E Eugenia sp. ropasy sp.2<br />

S1 Syzygium sp.1 rotry ala<br />

S2 Syzygium sp.2 rotry mena<br />

O Oleaceae Olea sp. vahabatra<br />

Cv Rubiaceae Canthium variistipula fantsikaitrama<strong>in</strong>ty<br />

Rm Rothmannia mandenensis taholagna<br />

Ve Rutaceae Vepris eliotii lah<strong>in</strong>ampoly<br />

Vf Vepris fitorav<strong>in</strong>a fitorav<strong>in</strong>a<br />

Tt Sap<strong>in</strong>daceae T<strong>in</strong>a thouarsiana sanirambavy<br />

Lm Sarcolaenaceae Leptolaena multiflora fotonbavy<br />

Sm Sarcolaena multiflora merama<strong>in</strong>tso<br />

Se Schizolaena elongata fotondahy<br />

To Ulmaceae Trema orientalis andrarezona<br />

53


Chapter 2<br />

Appendix II. Plant-animal <strong><strong>in</strong>teractions</strong> based on fruit traps (T), dropp<strong>in</strong>gs (F), tree watches<br />

(W). The number of fruit traps, observation hours, crop size and fruit<strong>in</strong>g period are given as<br />

well as the number of consumer, disperser and predator species. The abbreviations are Am<br />

for Alectroenas madagascariensis , Hm for Hypsipetes madagascariensis , Ta for Treron<br />

australis, Efc for Eulemur fulvus collaris , L for lemurs, NL for nocturnal lemurs, Cm for<br />

Cheirogaleus medius , CM for Cheirogaleus major, Mr for Microcebus rufus, Pr for Pteropus<br />

rufus, C for Coracopsis spp., Sp for Streptopelia picturata, Em for Eliurus myox<strong>in</strong>us and Rr<br />

for Rattus rattus.<br />

Impact on seed: <strong>Fruit</strong> Tree Crop <strong>Fruit</strong><strong>in</strong>g Number Number<br />

Category: traps watches size period consumer disperser<br />

(N) (h) (N fruits) (N days) species species<br />

Apodytes dimidiata 2 36 309 19 7 6<br />

Brexia sp. 1 - 461 143 4 3<br />

Brochoneura acum<strong>in</strong>eata 3 - 1324 41 1 0<br />

Burasaia madagascariensis 2 36 114 49 4 2<br />

Canarium boiv<strong>in</strong>ii 4 36 772 412 2 1<br />

Canthium variistipula 1 - 1280 59 4 3<br />

C<strong>in</strong>namosma madagascariensis 2 26.5 1<br />

1445 59 1 1<br />

Diospyros sp. 3 25 1<br />

676 73 1 1<br />

Dypsis prestoniana 1 36 1006 51 8 6<br />

Elaeocarpus alnifolius 2 - 749 53 3 1<br />

Eugenia cloiselii 2 27.5 1<br />

395 17 2 2<br />

Eugenia sp. 2 36 1712 107 1 1<br />

Garc<strong>in</strong>ia sp. 1 - 46 26 2 1<br />

Leptolaena multiflora 4 36 959 71 5 4<br />

Ludia antanosarum - 31 1<br />

- - 5 4<br />

Macaranga perrieri - 36 - - 2 1<br />

Olea sp. 5 36 4816 67 5 3<br />

Polyalthia madagascariensis - 36 - - 5 5<br />

Polyscias sp. - 36 - - 5 3<br />

Poupartia chapelieri 3 36 800 45 6 4<br />

Rothmannia mandenensis 2 - 21 37 2 1<br />

Sarcolaena multiflora 3 36 3010 53 6 4<br />

Schizolaena elongata 5 36 1654 36 3 2<br />

Scolopia orientalis 2 30.5 1<br />

5476 54 5 3<br />

Syzygium sp.1 3 36 1769 62 5 3<br />

Syzygium sp.2 4 36 2416 59 7 6<br />

Term<strong>in</strong>alia fatraea 2 36 2018 145 7 5<br />

T<strong>in</strong>a thouarsiana 4 36 4395 62 5 2<br />

Trema orientalis - 36 - - 3 3<br />

Uapaca ferrug<strong>in</strong>ea 3 36 381 143 6 4<br />

Uapaca <strong>littoral</strong>is 4 36 6800 328 5 3<br />

Uapaca thouarsii 3 - 1586 295 4 3<br />

Vepris eliotii 2 31 1<br />

1612 55 3 3<br />

Vepris fitorav<strong>in</strong>a 3 36 7086 44 4 3<br />

1<br />

No complete set of 36 hours could be obta<strong>in</strong>ed due to a very short fruit<strong>in</strong>g period or difficult climatic conditions.<br />

54


Tree dispersal strategies<br />

Appendix II Cont<strong>in</strong>ued<br />

Seed dispersers Number Seed predators<br />

Birds Lemurs<br />

Bats predator Birds Rodents<br />

Am Hm Ta Efc L NL Cm CM Mr Pr species C Sp Em Rr<br />

W W W T TW TW TW 1 TW<br />

T T T T 1<br />

T<br />

1<br />

T<br />

W T W 2 T T<br />

TW 2 T T<br />

F T TW W 1 T<br />

TW 0<br />

FW 0<br />

FW W W T W W W 2 TW W<br />

FT 2 T T<br />

FW T W 0<br />

TFW 0<br />

T 1<br />

T<br />

FW T W W W 1 W<br />

W W W T 1 W<br />

W 1 W<br />

TFW T W W 3 W T T<br />

W W W W W 0<br />

W W W 2 W W<br />

FW T W W W 2 W T<br />

T 1<br />

T<br />

TFW T W W W 2 W W<br />

TFW W<br />

1 W<br />

TW T TW W 2 W T<br />

TW T W W 2 T T<br />

W W TFW T W W W 1 W<br />

W W W W TW 2 W T<br />

W T TW 3 TW TW TW<br />

W W W 0<br />

FW T W W W 2 T T<br />

TFW T TW W 2 T T<br />

T T T 1 T<br />

TW T TW W 0<br />

W T T W W 1 TW<br />

55


<strong>Malagasy</strong> proverb<br />

Lemur draw<strong>in</strong>g © Stephen Nash 1989<br />

‘Ataovy dian-tana: jerena ny aloha,<br />

todihana ny afara’<br />

Behave like the chameleon:<br />

look forward and observe beh<strong>in</strong>d


Frugivore guild<br />

Relations between fruits and disperser<br />

assemblages <strong>in</strong> the <strong>littoral</strong> <strong>forest</strong><br />

of south-east Madagascar:<br />

a community level approach<br />

AN BOLLEN, LINDA VAN ELSACKER, JÖRG GANZHORN<br />

JOURNAL OF TROPICAL ECOLOGY (SUBMITTED)<br />

ABSTRACT<br />

Interactions among fleshy fruits and <strong>frugivore</strong> assemblages are presented from a oneyear<br />

study <strong>in</strong> the <strong>littoral</strong> <strong>forest</strong> of Sa<strong>in</strong>te Luce, south-eastern Madagascar. This<br />

community level approach allows us to evaluate the relative contribution of different<br />

<strong>frugivore</strong>s to seed dispersal and predation. For this, <strong><strong>in</strong>teractions</strong> between 136 consumed<br />

fruit species and 13 frugivorous species were studied. <strong>Fruit</strong> and seed size are the most<br />

important physical factors determ<strong>in</strong><strong>in</strong>g food selection of all consumer species. While birds<br />

favour lipid-rich fruits, mammals seem to avoid them. The lemur species that go <strong>in</strong>to<br />

hibernation clearly prefer sugar rich fruit pulp. In general, there is substantial dietary<br />

overlap among consumer species and animals seem to be quite flexible to eat whatever<br />

is available. This might be related to unpredictable fruit availability, which <strong>in</strong> turn, might be<br />

one of the reasons for the evolution of the depauperate <strong>frugivore</strong> guild here. Nevertheless<br />

all <strong>frugivore</strong>s have different impacts on seed dispersal. Eulemur fulvus collaris is<br />

particularly important for the dispersal of large-seeded species. Birds and fly<strong>in</strong>g foxes<br />

ensure genetic exchange and plant regeneration between and outside <strong>forest</strong> fragments.<br />

In terms of conservation, heterogeneous seed transport is particularly important for this<br />

severely degraded <strong>littoral</strong> <strong>forest</strong>.<br />

INTRODUCTION<br />

Interactions between fleshy-fruited plant species and the community of vertebrate<br />

<strong>frugivore</strong>s have been studied <strong>in</strong> the tropics worldwide (Leighton 1982; Gautier-Hion et al.<br />

1985; Dowsett-Lemaire 1988; Corlett 1996; Kitamura et al. 2002; Ingle 2003), where<br />

zoochorous plant species make up the majority of the flora (Howe and Smallwood 1982;<br />

Flem<strong>in</strong>g et al. 1987). The fleshy pulp of endozoochorous fruits attracts its consumers by a<br />

wide array of morphological traits and offers a nutritional reward for potential seed<br />

dispersers. In general, fruits are eaten and dispersed by a variety of animals even though<br />

some fruit traits are more likely to attract one taxonomic group of potential dispersers<br />

than another (Howe 1984; Gautier-Hion et al. 1985; Herrera 1987; Dowsett-Lemaire<br />

1988; Terborgh 1990; Jordano 1992, 1995; Fisher and Chapman 1993; Erikkson and<br />

Ehrlen 1998). In this respect diffuse and broad co-adaptations are revealed when<br />

analys<strong>in</strong>g feed<strong>in</strong>g selection result<strong>in</strong>g <strong>in</strong> ‘fruit character syndromes’ (Van der Pijl 1969;<br />

Gautier-Hion et al. 1985). However, the def<strong>in</strong>ition of syndromes is problematic as traits<br />

are def<strong>in</strong>ed differently <strong>in</strong> each study. Therefore it is necessary to evaluate diets of<br />

59


Chapter 3<br />

different consumer species, unbiased, by look<strong>in</strong>g for morphological and biochemical traits<br />

that may or may not <strong>in</strong>dicate certa<strong>in</strong> feed<strong>in</strong>g preferences <strong>in</strong>stead of try<strong>in</strong>g to fit<br />

preconceived syndromes.<br />

Frugivorous animals have been shown to be important for seed dispersal and <strong>forest</strong><br />

regeneration <strong>in</strong> Madagascar. Most field studies <strong>in</strong> <strong>Malagasy</strong> <strong>forest</strong>s have focused on the<br />

feed<strong>in</strong>g ecology and dispersal role of <strong>frugivore</strong> species such as lemurs (Ralisoamalala<br />

1996; Scharfe and Schlund 1996; Dew and Wright 1998; Overdorff and Strait 1998;<br />

Birk<strong>in</strong>shaw 1999, 2001; Ganzhorn et al. 1999a) or fly<strong>in</strong>g foxes (Bollen and Van Elsacker<br />

2002a, Chapter 3a), while others have studied the association between focal tree species<br />

and their <strong>frugivore</strong> consumers (Scharfe and Schlund 1996; Goodman and Ganzhorn<br />

1997; Goodman et al. 1997a; Böhn<strong>in</strong>g-Gaese et al. 1999). However, apart from some<br />

comb<strong>in</strong>ations of literature and field studies (Phillipson 1996; Bleher and Böhn<strong>in</strong>g-Gaese<br />

2001; Voigt 2001) no community wide dispersal study has been carried out <strong>in</strong><br />

Madagascar up to now. This current study focuses on <strong><strong>in</strong>teractions</strong> between the<br />

community of vertebrate <strong>frugivore</strong>s present <strong>in</strong> the <strong>littoral</strong> <strong>forest</strong> and the plant species they<br />

consume, with emphasis on fruit morphology and nutrient content of each plant species<br />

and with respect to the <strong>in</strong>dividual roles of consumers as seed dispersers or predators.<br />

The study on fruit-<strong>frugivore</strong> <strong><strong>in</strong>teractions</strong> is particularly relevant for Madagascar as this<br />

island has a high percentage of botanical and faunal endemism (Lowry et al. 1997;<br />

Schatz 2001) and at the same time a rather depauperate <strong>frugivore</strong> community (Langrand<br />

1990; Mittermeier 1994; Goodman et al. 1997a). An attempt was made to unravel<br />

aspects of animal-plant <strong><strong>in</strong>teractions</strong> that determ<strong>in</strong>e the dynamics of the <strong>littoral</strong> <strong>forest</strong>,<br />

which presently suffers from severe fragmentation and degradation. Given these aspects,<br />

it is important to understand these <strong><strong>in</strong>teractions</strong> to urgently <strong>in</strong>tegrate them <strong>in</strong> conservation<br />

management plans for this area.<br />

The follow<strong>in</strong>g research questions are addressed:<br />

1. Which plant species are <strong>in</strong>cluded <strong>in</strong> the diet of the <strong>frugivore</strong>s present <strong>in</strong> the <strong>littoral</strong><br />

<strong>forest</strong>?<br />

2. On the basis of which morphological and biochemical fruit and seed<br />

characteristics do <strong>frugivore</strong>s select their food resources and are certa<strong>in</strong> feed<strong>in</strong>g<br />

preferences prevalent?<br />

3. To what extent does dietary overlap occur between these <strong>frugivore</strong>s?<br />

4. What is the impact of these <strong>frugivore</strong>s on the fruits they eat? Can they be<br />

considered as efficient seed dispersers, rather neutral seed droppers or more<br />

destructive seed predators?<br />

STUDY SITE<br />

This research was conducted by the first author from November 1999 through January<br />

2001 <strong>in</strong> a 377-ha <strong>forest</strong> fragment (S9) of the <strong>littoral</strong> <strong>forest</strong> of Sa<strong>in</strong>te Luce (24º45'S<br />

47º11'E, south-east Madagascar). At the moment, the south-eastern <strong>littoral</strong> <strong>forest</strong> is<br />

represented by 2500 ha only, which is located <strong>in</strong> the surround<strong>in</strong>g area of Fort-Dauph<strong>in</strong><br />

(Petriky, Mandena, Sa<strong>in</strong>te Luce) (Ganzhorn et al. 2001; V<strong>in</strong>celette pers. comm.). The<br />

most <strong>in</strong>tact <strong>littoral</strong> <strong>forest</strong> can be found at Sa<strong>in</strong>te Luce, which <strong>in</strong>cludes <strong>forest</strong> fragments<br />

rang<strong>in</strong>g <strong>in</strong> size from 3 up to 377ha (Fig. 1). Littoral <strong>forest</strong> grows on sandy soils and occurs<br />

with<strong>in</strong> 3km of the coast (Dumetz 1999). A relatively open or non-cont<strong>in</strong>uous canopy<br />

characterises this <strong>forest</strong>, which is 6 to 8m <strong>in</strong> height with emergents up to 18m (Dumetz<br />

1999). The diameter at breast height (DBH) of trees rarely exceeds 30 to 40cm<br />

60


Frugivore guild<br />

(Rabevohitra et al. 1996; Dumetz 1999). Average annual ra<strong>in</strong>fall at this site is about<br />

2690mm, with a marked ra<strong>in</strong>y season from November through February while no clear<br />

dry season could be detected (Bollen and Donati, Chapter 1). Mean monthly temperature<br />

is 23°C (QMM unpubl. data). <strong>Fruit</strong> production is seasonal, with a peak <strong>in</strong> abundance of<br />

ripe fruits <strong>in</strong> December and January and with periods of fruit scarcity that differ strongly<br />

<strong>in</strong>ter-annually (Bollen and Donati, Chapter 1).<br />

24°S<br />

MADAGASCAR<br />

PETRIKY<br />

Fort-Dauph<strong>in</strong><br />

48°E<br />

MANDENA<br />

10 km<br />

SAINTE<br />

LUCE<br />

N<br />

FORT-<br />

DAUPHIN<br />

Fig. 1. On the left Madagascar is shown with <strong>in</strong>dication of the south-eastern zone. In the middle a<br />

detail of the <strong>littoral</strong> <strong>forest</strong>s (Sa<strong>in</strong>te Luce, Mandena and Petriky) is given together with a detail of the<br />

ma<strong>in</strong> <strong>forest</strong> fragments of Sa<strong>in</strong>te Luce on the right.<br />

METHODS<br />

Plant species studied<br />

Ripe fruits were collected <strong>in</strong> the study area throughout the research period. Consequently<br />

morphological characteristics were measured <strong>in</strong> the field station and biochemical<br />

components were analysed <strong>in</strong> the lab. In this chapter only plant species are <strong>in</strong>cluded,<br />

which have their fruits or seeds consumed by at least one vertebrate species. The nonzoochorous<br />

fruits were left out. Therefore the dataset used here is a subset of the<br />

complete one (N =175) used elsewhere (Bollen and Van Elsacker 2002, Chapter 3a;<br />

S8<br />

S7<br />

S6<br />

S17<br />

S9<br />

SAINTE<br />

LUCE<br />

61


Chapter 3<br />

Bollen et al. <strong>in</strong> press, Chapter 4). The full dataset is available from the first author by<br />

request.<br />

Herbarium specimens of all taxa were collected and deposited at the Missouri<br />

Botanical Garden of Antananarivo (Madagascar). Local research assistants provided<br />

Antanosy names. Scientific names were obta<strong>in</strong>ed after determ<strong>in</strong>ation of voucher<br />

specimens at herbaria of Antananarivo (FOFIFA, Tsimbazaza) with the help of botanists<br />

from Missouri Botanical Garden (App. I).<br />

Morphological characteristics<br />

Discrete variables used to characterise fruits were:<br />

Growth form: large tree (>6m), small tree (


Frugivore guild<br />

analyses and analyses of fruit trap contents (78x1m² traps under 29 tree species) (Bollen<br />

and Van Elsacker 2002a, Chapter3a; Bollen et al., Chapter 2). For Pteropus rufus faecal<br />

dropp<strong>in</strong>gs were collected weekly under the roost site year-round. Dietary data on the<br />

rodents resulted ma<strong>in</strong>ly from identify<strong>in</strong>g gnaw<strong>in</strong>g marks on seed rema<strong>in</strong>s collected at<br />

feed<strong>in</strong>g sites. S<strong>in</strong>ce Eulemur fulvus collaris was studied <strong>in</strong>tensively <strong>in</strong> parallel to the<br />

present study (Baldi 2002; Donati 2002; Morelli 2002), fruits eaten by this species may be<br />

more thoroughly sampled than other species. The con-generic species Cheirogaleus<br />

medius and C. major could not always be dist<strong>in</strong>guished dur<strong>in</strong>g observations and are<br />

treated as Cheirogaleus spp. <strong>in</strong> the analyses. The same applies to rodent species,<br />

Eliurus webbi and Rattus rattus (<strong>in</strong>troduced), as not all gnaw<strong>in</strong>g marks could be attributed<br />

to a s<strong>in</strong>gle species. Details of the diets of the various species are given <strong>in</strong> Appendix I. For<br />

the frugivorous bird species, diets are treated separately, but for feed<strong>in</strong>g selection<br />

Alectroenas madagascariensis, Treron australis, and Hypsipetes madagascariensis were<br />

comb<strong>in</strong>ed, as they are the only seed dispers<strong>in</strong>g birds at our site.<br />

Dietary overlap was calculated among pairs of <strong>frugivore</strong>s us<strong>in</strong>g Sørensen’s similarity<br />

<strong>in</strong>dex (Krebs 1989). This <strong>in</strong>dex generates a value rang<strong>in</strong>g from 0 to 1, with 0 represent<strong>in</strong>g<br />

no overlap and 1 represent<strong>in</strong>g complete overlap. The dataset comprises accounts of fruit<br />

species consumed by different <strong>frugivore</strong> consumers along with the impact they have on<br />

the seeds. Based on this, <strong>frugivore</strong>s can be classified <strong>in</strong>to the follow<strong>in</strong>g categories: seed<br />

dispersers or fruit consumers (D), neutral or pulp consumers (N) and seed predators (P)<br />

accord<strong>in</strong>g to Gauthier-Hion et al. (1985) and Debussche and Isenmann (1992). The first<br />

group disperses <strong>in</strong>tact seeds by endozoochory through dropp<strong>in</strong>gs or synzoochory<br />

through regurgitation, while the second group eats fruit pulp but drops the seeds under<br />

the parent plant. The last group eats and destroys the seeds. It is difficult to assign a<br />

certa<strong>in</strong> <strong>frugivore</strong> to one category only, as one species may have different impacts on the<br />

same and on different plant species. The stage of ripeness of the consumed fruits was<br />

scored as well. To differentiate between unripe and ripe fruits changes <strong>in</strong> size, colour and<br />

consistency were looked at.<br />

Data analyses<br />

Most of the variables measured have highly skewed distributions so the median value is<br />

given <strong>in</strong>stead of the mean. For the same reason non-parametric statistics were used. Chisquare<br />

analyses were conducted to compare discrete fruit traits <strong>in</strong> the diet with those <strong>in</strong><br />

the overall dataset, whereas Mann Whitney U tests were carried out to control for feed<strong>in</strong>g<br />

preferences when compar<strong>in</strong>g cont<strong>in</strong>uous traits between food and non-food items.<br />

Afterwards sequential Bonferroni corrections were performed on the significance levels<br />

(Rice 1989). To understand which factors <strong>in</strong>fluence the diet of the different <strong>frugivore</strong>s<br />

separately a logistic generalised model was applied <strong>in</strong> which morphological and<br />

biochemical variables were <strong>in</strong>cluded as fixed factors. Dietary data were used as b<strong>in</strong>omial<br />

response variables (0=non-food, 1=food item) <strong>in</strong> a generalised mixed l<strong>in</strong>ear model with<br />

logit l<strong>in</strong>k (glimmix procedure <strong>in</strong> SAS 8.1.) with forward procedure reta<strong>in</strong><strong>in</strong>g significant<br />

variables. As Cheirogaleus spp. and Microcebus rufus go <strong>in</strong>to torpor <strong>in</strong> austral w<strong>in</strong>ter,<br />

comparison of their diet and total dataset available were restricted to the fruits that were<br />

present dur<strong>in</strong>g their active period. Statistical significance was accepted for α≤0.05 for all<br />

tests. All statistical tests were carried out accord<strong>in</strong>g to Siegel (1956) with the statistical<br />

software SAS for W<strong>in</strong>dows.<br />

63


Chapter 3<br />

64<br />

Body 1,2<br />

Body<br />

lenght (cm)<br />

1<br />

Table 1. List of frugivorous vertebrate species at Sa<strong>in</strong>te Luce, with <strong>in</strong>dication of their diet (F: frugivorous, G: granivorous, O: omnivorous), their<br />

activity budget (D: diurnal, N: nocturnal, C: cathemeral), feed<strong>in</strong>g height (A: arboreal, T: terrestrial), body mass and length. ND: no data available.<br />

Family Scientific name<br />

English name<br />

Diet Activity Feed<strong>in</strong>g Group size<br />

height (N <strong>in</strong>dividuals) mass (g)<br />

32<br />

28<br />

28<br />

24<br />

35<br />

50<br />

215<br />

ND<br />

190<br />

45<br />

218<br />

ND<br />

3-8<br />

3-12<br />

1-2<br />

5-15<br />

3-15<br />

3-15<br />

A<br />

A<br />

T<br />

A<br />

A<br />

A<br />

D<br />

D<br />

D<br />

D<br />

D<br />

D<br />

F<br />

F<br />

G<br />

F<br />

G<br />

G<br />

<strong>Malagasy</strong> Green Pigeon<br />

<strong>Malagasy</strong> Blue Pigeon<br />

Madagascar Turtle Dove<br />

Madagascar Bulbull<br />

Lesser Vasa Parrot<br />

Greater Vasa Parrot<br />

Treron australis L.<br />

Alectroenas madagascariensis L.<br />

Streptopelia picturata Temm<strong>in</strong>ck<br />

Hypsipetes madagascariensis Müller<br />

Coracopsis nigra L.<br />

Coracopsis vasa Shaw<br />

AVES<br />

Columbidae<br />

Pycnonotidae<br />

Psittacidae<br />

15-23<br />

10-16<br />

100<br />

88<br />

1-2<br />

1-2<br />

AT<br />

AT<br />

N<br />

N<br />

O<br />

G<br />

Black Rat<br />

Webb's Tuft-Tailed Rat<br />

Rattus rattus L.<br />

Eliurus webbi Ellerman<br />

MAMMALIA<br />

RODENTIA<br />

Muridae<br />

Nesomy<strong>in</strong>ae<br />

23-27<br />

500-750<br />

250-300<br />

A<br />

N<br />

F<br />

Madagascar Fly<strong>in</strong>g Fox<br />

Pteropus rufus Tiedemann<br />

CHIROPTERA<br />

Pteropodidae<br />

PRIMATES<br />

Lemuridae Eulemur fulvus collaris E. Geoffroy Collared Brown Lemur F C A 3-10 2000-2300 40-47<br />

Cheirogaleidae Microcebus rufus E. Geoffroy Brown Mouse Lemur O N A 1<br />

42 12,5<br />

Cheirogaleus major E. Geoffroy Greater Dwarf Lemur O N A 1-3 443 25<br />

Cheirogaleus medius E. Geoffroy Fat-tailed Dwarf Lemur O N A 1-3 119-282 20<br />

1<br />

Data from Langrand (1990), Fietz and Ganzhorn (1999), Goodman et al. (1997b), Goodman et al. (<strong>in</strong> press), Ganzhorn et al. (1999a), Donati (pers. comm. 2002).<br />

2 Body length is total length for birds and bats but head/body length for lemurs and rodents.


Frugivore guild<br />

RESULTS<br />

Lemurs fed on most fruit<strong>in</strong>g species, their diet comprised 119 plant species. Birds,<br />

rodents, and Pteropus rufus consumed 55, 50, and 39 plant species, respectively.<br />

Different methods of collect<strong>in</strong>g dietary data <strong>in</strong>fluenced the outcome of diet lists (Table 2).<br />

In general direct observations (systematic or opportunistic) resulted <strong>in</strong> the largest<br />

numbers of feed<strong>in</strong>g records. However, five species were difficult to observe. Due to<br />

hunt<strong>in</strong>g pressure, observations of P. rufus at night with a headlight were not rout<strong>in</strong>ely<br />

possible. Both rodent species could be observed only rarely as they detect the observer<br />

by smell. As expla<strong>in</strong>ed <strong>in</strong> the methods, this bias could be limited by systematically<br />

collect<strong>in</strong>g faecal dropp<strong>in</strong>gs and identify<strong>in</strong>g gnaw<strong>in</strong>g marks year-round. Treron australis<br />

and S. picturata were very shy and flew away upon detect<strong>in</strong>g the observer. Moreover<br />

dropp<strong>in</strong>gs of these bird species as well as of Hypsipetes madagascariensis were found<br />

only rarely. For Alectroenas madagascariensis and E. f. collaris faecal dropp<strong>in</strong>gs could be<br />

collected more easily, but much less often for the smaller nocturnal lemurs. Characteristic<br />

feed<strong>in</strong>g marks were helpful <strong>in</strong> particular to identify food species of Coracopsis nigra, both<br />

rodent and all lemur species.<br />

Table 2. Number of consumed plant taxa scored per consumer species is given with<br />

<strong>in</strong>dication of the different methods (O:observations, F: faecal analyses; T: traces). 'Ripeness'<br />

<strong>in</strong>dicates the stage of ripeness (R: ripe, UR: unripe) at which fruit species were consumed.<br />

The effect on seeds by the consumer species is <strong>in</strong>dicated (D: dispersal, N: neutral seed dropp<strong>in</strong>g,<br />

P: predation, ?: unknown).<br />

Dietary diversity<br />

N N N<br />

Sampl<strong>in</strong>g<br />

effort<br />

Ripeness Effect on seeds<br />

species genera families O F T R UR D N P ?<br />

Treron australis 9 9 9 7 4 0 9 0 9 0 0 0<br />

Alectroenas madagascariensis 18 17 14 16 13 0 18 0 18 1 0 0<br />

Streptopelia picturata 13 13 11 13 0 0 13 0 0 0 0 13<br />

Hypsipetes madagascariensis 21 20 17 21 1 0 21 0 21 2 0 0<br />

Coracopsis nigra 37 32 22 36 2 9 26 24 4 8 36 0<br />

Eulemur fulvus collaris 111 76 43 93 67 21 111 25 100 36 27 0<br />

Cheirogaleus spp. 39 31 20 37 7 24 39 0 28 24 0 0<br />

Microcebus rufus 41 33 24 33 6 25 41 0 27 20 0 4<br />

Pteropus rufus 39 27 21 7 34 5 39 0 37 12 0 1<br />

rodents 50 37 31 3 1 47 50 0 4 2 49 0<br />

Morphological Characteristics<br />

The complete data set of all food species <strong>in</strong>volved ma<strong>in</strong>ly large canopy tree species<br />

(59%). Most common plant families are Rubiaceae (10%), Euphorbiaceae (5%), and<br />

Flacourtiaceae, Myrtaceae, Annonaceae, and Areceae (each with 4%). Berries and<br />

drupes were the most common fruit types (83%) with a soft and juicy pulp (62%). Dull<br />

coloured fruits (green, brown, yellow-orange 68%) with odour (65%) made up the majority<br />

of the fruits. Other dom<strong>in</strong>ant features were <strong>in</strong>dehiscent fruits with a th<strong>in</strong> husk (77%) and<br />

seeds could be either protected (54%) or not (46%). The median number of seeds per<br />

fruits was 2 (quartiles 1-4) and median fruit weight was 1.23g (0.49-5.23g), fruit length<br />

was 15.43mm (0.49-5.23mm), and seed length was 8.36 mm (4.85–14.42mm).<br />

Taxonomically, Rubiaceae was the dom<strong>in</strong>ant plant family <strong>in</strong> most diets and<br />

Euphorbiaceae, Areceae, and Annonaceae were important as well but to a lesser extent.<br />

There appeared to be no clear taxonomic preferences with<strong>in</strong> the diet of all <strong>frugivore</strong>s. The<br />

65


Chapter 3<br />

dom<strong>in</strong>ant plant families seemed to be represented <strong>in</strong> the diets as represented <strong>in</strong> the<br />

overall sample. The same is true for growth form (Table 3). Most consumers favour<br />

berries and drupes, but for rodents there was a trend for select<strong>in</strong>g drupes. Even though<br />

soft and juicy fruit made up most of the sample, nocturnal lemurs and fly<strong>in</strong>g foxes<br />

selected this pulp type significantly more often than other pulp types. The latter also<br />

favoured arillate fruits (Table 3). For colour a selection was noticed towards red and<br />

purple fruits by all <strong>frugivore</strong> bird species, whereas mammals ate whatever colour was<br />

available. Most fruits <strong>in</strong> the <strong>littoral</strong> <strong>forest</strong> had an odour and were probably selected <strong>in</strong> this<br />

way, except for Coracopsis nigra, which fed ma<strong>in</strong>ly on odourless fruits (Table 3). For the<br />

nocturnal lemur species fruits with a th<strong>in</strong> husk were favoured. The other consumers did<br />

not seem to avoid the few dehiscent and thick-husked fruits present (Table 3). In all<br />

animal species no difference <strong>in</strong> seed protection could be found between diet and the<br />

overall dataset (Table 3). The few preferences <strong>in</strong>dicated above appeared to be nonsignificant<br />

after correction by sequential Bonferroni.<br />

Fly<strong>in</strong>g foxes were the only consumer species, which preferred multi-seeded fruits,<br />

while the diet of the other animals did not differ from what was available (Table 4). Initially<br />

many significant preferences could be found related to fruit and seed size and weight.<br />

However after sequential Bonferroni adjustment, only the frugivorous birds seem to select<br />

significantly smaller and lighter fruits. Coracopsis nigra also prefers lighter fruits and<br />

Pteropus rufus smaller seeds. Contrarily the rodents clearly favour heavier fruits and<br />

larger seeds. (Table 4).<br />

Biochemical Characteristics<br />

Water was the dom<strong>in</strong>ant constituent of fresh pulp (median 76.0%). On a dry mass basis,<br />

both acid (22.6%) and neutral (32.0%) detergent fibre contents were high. The median<br />

sugar content was 19.2%. Median lipid content of fruits was 3.1%, total nitrogen 0.9%,<br />

and extractable prote<strong>in</strong> 2.8%. Tann<strong>in</strong> values were very low <strong>in</strong> our dataset with a median<br />

value of 0.2%. Enzymatic analyses of all fruits yielded median values of 3.6%<br />

saccharose, 1.8% glucose, and 1.8% fructose.<br />

As for fats, frugivorous birds seemed to select fruits with a high lipid content, while<br />

the opposite was true for E. f. collaris and P. rufus (Table 4). Neither total nitrogen nor<br />

extractable prote<strong>in</strong> seemed to <strong>in</strong>fluence fruit choice for any of the consumer species, nor<br />

did water content or acid detergent fibre. Cheirogaleus spp. and Microcebus rufus<br />

selected fruits with high sugar content but this trend was not significant (Cheirogaleus<br />

spp. P=0.06, M. rufus P=0.19). However when look<strong>in</strong>g at saccharose, glucose, and<br />

fructose concentrations separately, preferences were significant for Cheirogaleus spp.<br />

(Table 4). The same trend existed for M. rufus (saccharose P=0.17, glucose P=0.11,<br />

fructose P=0.056). Tann<strong>in</strong>s were consumed as present <strong>in</strong> the overall database but<br />

Coracopsis nigra <strong>in</strong>cluded fruits with significantly higher tann<strong>in</strong> content. In the diet of M.<br />

rufus neutral detergent fibre was significantly lower than <strong>in</strong> fruits, which were not<br />

consumed (Table 4). None of these preferences rema<strong>in</strong>ed significant after sequential<br />

Bonferroni adjustment.<br />

66


Table 3. Chi-square results compar<strong>in</strong>g fruit and seed traits <strong>in</strong> the diets of the different consumer species to the overall data set.<br />

Significant differences are <strong>in</strong> bold (* P


Chapter 3<br />

Table 4. Morphological and biochemical characteristics of food and non-food items of the<br />

different <strong>frugivore</strong> species. For comparison of fruit selection by Cheirogaleus spp. and<br />

Microcebus rufus only those fruits were considered that were present dur<strong>in</strong>g the months when<br />

the lemurs were not <strong>in</strong> torpor. Values are medians, quartiles and sample size. Z-values are<br />

based on Mann Whitney U tests ( * P


Frugivore guild<br />

Table 4 Cont<strong>in</strong>ued<br />

Parameters<br />

Eulemur fulvus collaris Cheirogaleus spp.<br />

Food Non food Z Food Non food Z<br />

Seed number 2.00 1.50 -0.70 1.50 1.00 -0.09<br />

1.00-5.00 1.00-2.25 1.00-3.00 1.00-4.00<br />

105 20 38 74<br />

<strong>Fruit</strong> weight 1.46 0.72 -2.65** 0.66 1.79 -3.16**<br />

0.56-5.86 0.21-157 0.32-1.63 0.79<br />

103 24 39 73<br />

<strong>Fruit</strong> length 15.5 13.95 -1.02 12.34 19.10 -3.29**<br />

10.52-25.18 9.13-21.76 9.22-16.42 12.42-30.59<br />

109 24 39 78<br />

Seed length 8.36 7.90 -1.15 8.19 10.27 -2.07*<br />

5.31-15.05 3.37-10.91 4.39-11.96 5.35-18.27<br />

104 20 36 75<br />

Lipid 2.77 6.73 2.65** 2.82 3.27 -0.80<br />

1.73-5.17 3.74-21.27 1.87-5.07 1.85-6.01<br />

84 12 35 49<br />

Total nitrogen 0.86 0.83 -0.28 0.86 0.85 -0.68<br />

0.65-1.17 0.57-1.07 0.60-1.12 0.63-1.26<br />

88 12 35 52<br />

Extractable 2.82 3.02 0.21 3.15 2.78 0.57<br />

prote<strong>in</strong> 1.59-4.26 1.62-4.01 1.64-4.65 1.68-4.18<br />

88 12 35 52<br />

Sugar 18.39 31.42 0.99 27.84 12.84 1.88<br />

7.52-35.99 10.38-40.64 13.81-40.68 6.51-33.76<br />

88 12 35 52<br />

Tann<strong>in</strong> 0.19 0.22 0.70 0.16 0.21 -1.03<br />

0-0.51 0.12-0.66 0.00-0.39 0.00-0.58<br />

88 12 35 52<br />

NDF 32.73 30.00 -1.37 31.22 34.36 -1.28<br />

24.11-47.91 21.75-33.55 24.08-41.77 25.62-52.33<br />

78 12 33 48<br />

ADF 22.77 22.30 -0.77 21.71 24.95 -1.45<br />

17.11-35.68 16.99-27.80 16.99-29.93 17.39-37.02<br />

78 12 33 48<br />

Water content 76.50 71.00 -0.86 75.86 74.04 0.69<br />

70.00-83.25 65.00-79.00 71.00-82.50 63.04-80.75<br />

76 15 31 52<br />

Saccharose 3.60 6.54 -0.06 5.05 0.99 -2.33*<br />

0.92-14.10 1.02-15.58 2.48-16.27 0.38-7.54<br />

48 8 28 20<br />

Glucose 1.77 2.15 -0.37 1.92 0.39 -2.60*<br />

0.39-6.25 0.35-5.67 1.09-5.75 0.10-2.00<br />

48 8 28 20<br />

Fructose 1.75 1.90 -0.44 2.41 0.53 -2.58*<br />

0.58-7.71 0.09-7.52 1.22-7.05 0.07-1.45<br />

48 8 28 20<br />

69


Chapter 3<br />

Table 4 Cont<strong>in</strong>ued<br />

Parameters<br />

Microcebus rufus Pteropus rufus<br />

Food Non food Z Food Non food Z<br />

Seed number 2.00 1.00 0.26 3.00 1.00 3.39***<br />

1.00-3.00 1.00-3.00 1.00-30.50 1.00-2.00<br />

37 75 39 86<br />

<strong>Fruit</strong> weight 0.63 1.94 -3.16** 0.98 1.37 -0.91<br />

0.30-1.64 0.82-6.43 0.43-3.82 0.54-5.85<br />

38 74 38 89<br />

<strong>Fruit</strong> length 12.28 19.69 -3.22** 13.59 16.56 -1.10<br />

9.59-15.15 12.70-28.75 9.94-21.09 10.64-25.41<br />

38 79 39 94<br />

Seed length 7.46 11.83 -2.87** 6.31 10.30 -3.67***<br />

3.79-10.58 5.98-17.75 3.74-8.38 6.77-15.78<br />

37 74 38 86<br />

Lipid 3.12 2.69 -0.48 2.52 3.79 -2.07*<br />

2.19-5.60 1.79-5.17 1.94-3.90 1.84-8.50<br />

32 52 36 60<br />

Total nitrogen 0.83 0.86 -0.74 0.79 0.87 -1.62<br />

0.58-1.12 0.64-1.18 0.52-1.14 0.67-1.18<br />

32 55 37 63<br />

Extractable 2.90 2.86 -0.18 2.86 2.53 0.79<br />

prote<strong>in</strong> 1.72-4.18 1.65-4.58 2.18-3.96 1.55-4.39<br />

32 55 37 63<br />

Sugar 21.60 15.37 1.29 18.18 20.98 -0.36<br />

10.66-41.88 6.59-33.5 8.12-37.23 7.76-37.53<br />

32 55 37 63<br />

Tann<strong>in</strong> 0.20 0.18 0.27 0.28 0.16 1.05<br />

0.00-0.42 0.00-0.52 0.10-0.78 0.00-0.52<br />

32 55 37 63<br />

NDF 27.77 34.36 -1.99* 35.06 31.35 1.25<br />

23.27-41.92 27.56-51.56 27.04-47.91 22.97-44.34<br />

31 50 34 56<br />

ADF 20.10 25.98 1.70 25.84 22.45 1.46<br />

17.08-31.04 18.85-36.56 19.08-35.99 16.71-32.81<br />

31 50 34 56<br />

Water content 76.00 73.00 1.54 78.24 74.00 1.14<br />

71.75-83.25 63.00-81.00 71.75-83.00 64.77-83.5<br />

32 51 32 59<br />

Saccharose 3.95 1.15 1.38 3.56 3.95 0.38<br />

2.34-20.22 0.61-11.52 0.96-13.66 0.91-17.74<br />

23 25 29 27<br />

Glucose 1.91 0.50 1.60 1.70 1.91 0.07<br />

1.07-5.68 0.17-3.50 0.45-5.66 0.36-5.86<br />

23 25 29 27<br />

Fructose 1.97 0.79 1.91 1.57 1.93 0.04<br />

1.19-9.17 0.10-5.42 0.64-6.16 0.13-9.77<br />

23 25 29 27<br />

70


Table 4 Cont<strong>in</strong>ued<br />

Parameters<br />

Rodents<br />

Food Non food Z<br />

Seed number 1.00 2.00 -0.92<br />

1.00-3.00 1.00-5.00<br />

48 77<br />

<strong>Fruit</strong> weight 3.16 0.92 3.53***<br />

0.82-8.03 0.29-2.90<br />

50 77<br />

<strong>Fruit</strong> length 19.04 13.20 3.24**<br />

13.29-30.38 8.08-21.82<br />

50 83<br />

Seed length 12.06 6.90 3.99***<br />

7.77-18.89 3.89-11.73<br />

48 76<br />

Lipid 2.85 3.22 -0.01<br />

1.75-6.92 2.12-5.12<br />

35 61<br />

Total nitrogen 0.86 0.86 0.77<br />

0.68-1.21 0.59-1.15<br />

35 65<br />

Extractable 2.53 2.83 -0.09<br />

prote<strong>in</strong> 1.84-4.06 1.57-4.34<br />

35 65<br />

Sugar 18.23 21.27 -0.95<br />

6.98-32.66 10.15-40.02<br />

35 65<br />

Tann<strong>in</strong> 0.18 0.20 -0.95<br />

0.00-0.44 0.00-0.65<br />

35 65<br />

NDF 33.70 31.22 0.58<br />

24.03-47.45 23.90-46.24<br />

33 57<br />

ADF 23.03 22.51 0.49<br />

17.21-35.68 17.08-33.87<br />

33 57<br />

Water content 73.69 77.00 -1.20<br />

65.00-81.25 70.50-84.00<br />

40 51<br />

Saccharose 3.51 5.22 -0.85<br />

0.75-7.37 1.05-15.75<br />

20 36<br />

Glucose 1.27 2.33 -1.01<br />

0.41-2.27 0.39-6.30<br />

20 36<br />

Fructose 1.34 2.37 -0.95<br />

0.56-3.57 0.37-11.93<br />

20 36<br />

Frugivore guild<br />

71


Chapter 3<br />

Besides test<strong>in</strong>g feed<strong>in</strong>g selection for each variable separately, we additionally aim to<br />

understand which factors <strong>in</strong>fluence the diet of the different <strong>frugivore</strong>s. Accord<strong>in</strong>g to the<br />

f<strong>in</strong>al significant model of Eulemur fulvus collaris, growth form (F2, 120= 5.75, P=0.004) and<br />

seed protection (F1 120=6.66, P=0.011) seem to determ<strong>in</strong>e most whether a fruit is eaten.<br />

Their diet is characterised by fruits from large trees with a hard kernel (Table 5). For<br />

Cheirogaleus spp. fruit length (F1, 115= 10.15, P=0.002) is the only significant determ<strong>in</strong>ant,<br />

whereas for M. rufus this is seed length (F1, 109= 8.84, P=0.004). Obviously smaller fruits<br />

and seeds determ<strong>in</strong>e the diet of both lemur species (Table 5). Conspicuous colours (F5,<br />

89=3.25, P=0.009) and large fat contents (F1, 89= 6.33, P=0.013) determ<strong>in</strong>e whether<br />

<strong>frugivore</strong> birds eat a certa<strong>in</strong> fruit. Coracopsis nigra prefers odourless (F1, 128=6.54,<br />

P=0.012) and small fruits (F1, 128= 6.45, P=0.012). Fat content (F1, 87= 6.97, P=0.009) and<br />

seed length (F1, 87=15.11, P=0.0002) seem to determ<strong>in</strong>e the presence of fruits <strong>in</strong> the diet<br />

of P. rufus. In particular fruits with low lipid content and small seed length are most<br />

abundant. F<strong>in</strong>ally, the diet of rodents is characterised by a significant <strong>in</strong>teraction between<br />

seed length and seed protection (F1, 114=5.73, P=0.018), <strong>in</strong>dicat<strong>in</strong>g that large seeds,<br />

which often have a hard kernel predom<strong>in</strong>ate their diet (Table 5). The goodness-of-fit of<br />

the different model is significant (X²Efc=92.41; X²Ch=134.49; X²Mr=130.51; X²fb=82.85;<br />

X²Cn=136.04; X²rod=128.19; P


Frugivore guild<br />

Diet overlap<br />

Frugivorous animal species shared between 2 and 42 plant species. This corresponds to<br />

a Sørensen’s similarity <strong>in</strong>dex of 0.08 to 0.67 (Table 6). Bird and lemur species had more<br />

fruit species <strong>in</strong> common than fly<strong>in</strong>g foxes and rodents. The highest similarity <strong>in</strong>dex was<br />

found between M. rufus and Cheirogaleus spp. (Table 6), followed by P. rufus and M.<br />

rufus. The lowest <strong>in</strong>dex was found between Treron australis and the rodents. In general,<br />

dietary overlap among mammals was larger than among birds or between mammals and<br />

birds (Table 6). These results have to be <strong>in</strong>terpreted with caution <strong>in</strong> particular for those<br />

species which dietary diversity is underestimated, such as T. australis and S. picturata.<br />

Both <strong>in</strong>ter- and <strong>in</strong>tra-specific <strong><strong>in</strong>teractions</strong> as well as polyspecific feed<strong>in</strong>g associations<br />

were observed.<br />

Table 6. Diet overlap between each pair of consumer species. The number of species consumed<br />

by each <strong>frugivore</strong> is shown <strong>in</strong> italics. Above diagonal is the number of species shared between<br />

pairs, below the diagonal is the dietary overlap values calculated accord<strong>in</strong>g to Sørensen's<br />

similarity <strong>in</strong>dex.<br />

N Hm Am Ta Sp Cn Efc Ch 1 Mr Pr Rod 1<br />

N 21 18 9 13 37 111 39 41 39 50<br />

Hypsipetes madagascariensis (Hm) 21 10 5 5 11 14 8 10 9 3<br />

Alectroenas madagascariensis (Am) 18 0.51 7 4 10 14 9 8 9 8<br />

Treron australis (Ta) 9 0.33 0.52 2 5 6 5 4 4 3<br />

Streptopelia picturata (Sp) 13 0.29 0.26 0.18 8 10 7 7 5 2<br />

Coracopsis nigra (Cn) 37 0.38 0.18 0.22 0.32 27 18 16 14 10<br />

Eulemur fulvus collaris (Efc) 111 0.21 0.21 0.10 0.16 0.36 35 35 35 42<br />

Cheirogaleus spp. (Ch) 39 0.27 0.32 0.21 0.27 0.47 0.47 27 20 18<br />

Microcebus rufus (Mr) 41 0.32 0.27 0.16 0.26 0.41 0.46 0.67 23 19<br />

Pteropus rufus (Pr) 39 0.30 0.32 0.17 0.19 0.37 0.47 0.51 0.57 14<br />

Rodents (Rod) 50 0.08 0.24 0.02 0.06 0.23 0.52 0.40 0.42 0.31<br />

1<br />

Congeneric species are treated together, as well as both rodent species which could not<br />

always be attributed to a s<strong>in</strong>gle species<br />

Dispersal and predation role<br />

The ‘true’ frugivorous bird species Alectroenas madagascariensis, Treron australis, and<br />

Hypsipetes madagascariensis dispersed seeds of most of the species they fed on. Ripe<br />

fruits were nearly always swallowed and thus dispersed (Table 2). Streptopelia picturata<br />

was considered a seed predator feed<strong>in</strong>g on seeds on the ground but due to its shy<br />

nature, feed<strong>in</strong>g behaviour could not be observed <strong>in</strong> detail and thus the fate of consumed<br />

seeds rema<strong>in</strong>s unclear. Coracopsis nigra occasionally dropped fruits under the parent<br />

plant or flew away with <strong>in</strong>tact fruits but for the majority of their food resources, they acted<br />

as seed predators, either destroy<strong>in</strong>g seeds directly with their beak or feed<strong>in</strong>g on unripe<br />

fruits (Bollen and Van Elsacker, Chapter 3b). In contrast, E. f. collaris is an important<br />

seed disperser for a large number of plant species. Dur<strong>in</strong>g feed<strong>in</strong>g this species was<br />

messy, swallow<strong>in</strong>g numerous seeds while dropp<strong>in</strong>g others under the parent plant and this<br />

happened for a third of their consumed plant species (Table 2). Furthermore, for some<br />

plant species it ate unripe fruits, thus destroy<strong>in</strong>g the seeds this way. Cheirogaleus spp.<br />

and M. rufus as well as P. rufus act as seed dispersers for smaller seeds and as seed<br />

droppers for larger ones. P. rufus may participate <strong>in</strong> dispersal at short distances as they<br />

carry larger fruits to nearby feed<strong>in</strong>g roost and drop the seeds there. Rodents often tear off<br />

73


Chapter 3<br />

and do not consume the fibrous flesh, which surrounds nuts. Both rodent species clearly<br />

preyed on seeds of numerous species, but <strong>in</strong>tact and even germ<strong>in</strong>ated seeds of four<br />

species were found at feed<strong>in</strong>g sites. No secondary seed dispersal through cach<strong>in</strong>g could<br />

be detected (Table 2).<br />

DISCUSSION<br />

Food selection based on taxonomy, morphology, biochemistry and phenology<br />

Even though <strong>in</strong> the literature numerous examples exist of plant families that are typically<br />

consumed by birds such as Lauraceae Myristicaceae, Areceae, Burseraceae, and others<br />

(McKey 1975; Snow 1981; Corlett 1998; Oliveira et al. 2002) or by fly<strong>in</strong>g foxes such as<br />

Moraceae, Anacardiaceae, Guttiferae, Myrtaceae, Areceae, and Sapotaceae (Marshall<br />

1983; Banack 1998; Corlett 1998) no clear dom<strong>in</strong>ant plant families could be found with<strong>in</strong><br />

the diets of any of the consumer species. The families best represented correspond with<br />

the dom<strong>in</strong>ant plant families of the <strong>littoral</strong> <strong>forest</strong>. This may be l<strong>in</strong>ked either to the fact that<br />

Madagascar has a high percentage of endemic plant species which may alter the overall<br />

floral composition compared to other tropical <strong>forest</strong>s (Schatz 2001) or that the<br />

depauperate guild of <strong>frugivore</strong>s does not discrim<strong>in</strong>ate its diet taxonomically.<br />

The ma<strong>in</strong> food preferences for all consumers are related to morphological fruit traits.<br />

Worldwide <strong>in</strong> studies on fruit-<strong>frugivore</strong> <strong><strong>in</strong>teractions</strong> size, colour, and fruit protection<br />

seemed to be the most important traits <strong>in</strong> fruit selection. Among these, fruit and/or seed<br />

sizes were found to be most significant and related to the body size of the consumers.<br />

The gape size of frugivorous birds limits the maximum seed diameter of fruits they can<br />

swallow, while mammals have teeth and have other means to eat larger fruits (Flem<strong>in</strong>g et<br />

al. 1987; Dowsett-Lemaire 1988; Corlett 2002). For this reason, <strong>in</strong> our study, as <strong>in</strong> most<br />

studies, birds seem to select significantly smaller fruits than mammals (Snow 1981;<br />

Janson 1983; Knight and Siegfried 1983; Gautier-Hion et al. 1985; Wheelwright 1986;<br />

Herrera 1987; Debussche 1988; Debussche and Isenmann 1989; Jordano 1995; Corlett<br />

1996; Lambert 2002; Pizo 2002; Carlo et al. 2003). Eulemur fulvus collaris <strong>in</strong> this respect<br />

is very important <strong>in</strong> the local community as it is the only seed disperser of the larger fruit<br />

species. Nevertheless fruit size dist<strong>in</strong>ction is weakened by the fact that some bird species<br />

can pick up broken parts of fruits and eat larger soft fruits <strong>in</strong> a piecemeal fashion<br />

(Kitamura et al. 2002; Pizo 2002). As a result some studies did not f<strong>in</strong>d a significant<br />

difference <strong>in</strong> size of bird and mammal consumed fruits (Gautier-Hion et al. 1985; Voigt<br />

2001; Poulsen et al. 2002).<br />

As for fruit protection, mammals are able to feed on fruits with a thick husk<br />

(Birk<strong>in</strong>shaw 2001; Kitamura et al. 2002; Lambert 2002), whereas birds select more<br />

frequently those with a th<strong>in</strong> husk or dehiscent fruits (Janson 1983; Gautier-Hion et al.<br />

1985; Kitamura et al. 2002). However, it seems that not all mammals eat thick-husked<br />

fruits. In our study E. f. collaris and P. rufus did, whereas the Cheirogaleus spp. and M.<br />

rufus nevertheless preferred th<strong>in</strong>-husked fruits. Another important trait for feed<strong>in</strong>g<br />

selection is supposed to be represented by the external colour of ripe fruits, though little<br />

agreement exists on this topic. One consistency throughout all studies, <strong>in</strong>clud<strong>in</strong>g this one,<br />

is that birds eat many red and black fruits (McKey 1975; Charles-Dom<strong>in</strong>ique et al. 1981;<br />

Janson 1983; Knight and Siegfried 1983; Gautier-Hion et al. 1985; Debussche 1988;<br />

Dowsett-Lemaire 1988; Horvitz et al. 2002; Kitamura et al. 2002; Poulsen et al. 2002;<br />

Voigt et al. 2001). For primates <strong>in</strong> particular, different results have been found which is<br />

likely related to their different visual acuity <strong>in</strong> different parts of the world. Lemurs have no<br />

74


Frugivore guild<br />

or limited colour vision, whereas New World primates have dichromate and Old World<br />

primates trichromate vision (Jacobs 1995; Dom<strong>in</strong>y and Lucas 2002; Surridge et al. 2003).<br />

Nevertheless <strong>in</strong> many studies dull coloured fruits such as green, brown, yellow, and<br />

orange are eaten by mammals and/or primates (Janson 1983; Knight and Siegfried 1983;<br />

Terborgh 1983; Gautier-Hion et al. 1985; Dowsett-Lemaire 1988; Birk<strong>in</strong>shaw 2001;<br />

Kitamura 2002; Poulsen et al. 2002) but at some sites, <strong>in</strong>clud<strong>in</strong>g ours, these species do<br />

not avoid bright colours either (Janson 1983; Knight and Siegfried 1983; Gautier-Hion et<br />

al. 1985; this study). Few studies <strong>in</strong>clude odour <strong>in</strong> their dataset, as this is a subjective<br />

measure. Nevertheless it is common knowledge that birds forage upon visual detection<br />

whereas mammals make use of olfactation. For the rema<strong>in</strong><strong>in</strong>g morphological fruit traits<br />

scored, there does not exist a general understand<strong>in</strong>g <strong>in</strong> literature, nor a clear food<br />

preference for certa<strong>in</strong> consumer species <strong>in</strong> our dataset.<br />

While most studies on fruit preferences concentrate on morphological traits,<br />

biochemical characteristics are rarely considered (Janson et al. 1986; Herrera 1987;<br />

Ganzhorn 1988; Jordano 1995; Izhaki 2002; Pizo 2002). The most common f<strong>in</strong>d<strong>in</strong>g is that<br />

mammals <strong>in</strong> general avoid lipid-rich fruits whereas birds may favour them (McKey 1975;<br />

Debussche and Isenmann 1989; Jordano 1995). This differential preference for lipids<br />

corresponds <strong>in</strong>deed with our f<strong>in</strong>d<strong>in</strong>gs of frugivorous birds, E. f. collaris, and P. rufus. The<br />

only other trend found was that nocturnal lemurs that go <strong>in</strong>to torpor favour sugar-rich fruit<br />

pulp. For Cheirogaleus medius this preference dur<strong>in</strong>g prehibernation fatten<strong>in</strong>g was<br />

already described by Bonnaire and Simmen (1994) and Fietz and Ganzhorn (1999). In<br />

Sa<strong>in</strong>te Luce, fruits are relatively low <strong>in</strong> tann<strong>in</strong> values (as elsewhere <strong>in</strong> Madagascar:<br />

Iaconelli and Simmen 2002) and the consumer species did not seem to avoid fruit<br />

species with high tann<strong>in</strong> content. Bairle<strong>in</strong> (1996) mentioned that tann<strong>in</strong>s <strong>in</strong> general seem<br />

to be less detrimental for avian <strong>frugivore</strong>s than others, which seems to be true for<br />

Coracopsis nigra at our site. Besides the differences mentioned above, the rema<strong>in</strong><strong>in</strong>g<br />

chemical components varied little among consumer species and did not seem to<br />

determ<strong>in</strong>e their feed<strong>in</strong>g selection as was shown by other studies (Corlett 1996; Pizo<br />

2002).<br />

As mentioned <strong>in</strong> the results, several of these food preferences do no longer rema<strong>in</strong><br />

significant after sequential Bonferroni adjustment. There has been a great deal of<br />

discussion on whether to apply these adjustments or not. Recently Moran (2003) has<br />

come up with some arguments for the rejection of this adjustment. All the same, we<br />

believe that several of our <strong>in</strong>itial significant f<strong>in</strong>d<strong>in</strong>gs, which are no longer significant after<br />

rigorous adjustment for <strong>in</strong>creas<strong>in</strong>g type I errors, do represent biological mean<strong>in</strong>gful<br />

results which are confirmed by similar results from several other studies.<br />

Selection criteria of granivores ought to differ from those of <strong>frugivore</strong>s based on other<br />

traits, such as seed length and protection as granivores target the seed <strong>in</strong>stead of the<br />

pulp. To look for their nutritional preferences, biochemical analyses of seeds are<br />

necessary. The f<strong>in</strong>d<strong>in</strong>g that drupes dom<strong>in</strong>ate the diet of rodents may <strong>in</strong>deed <strong>in</strong>dicate a<br />

protection of the large seeds aga<strong>in</strong>st seed predation.<br />

Besides the obvious fruit traits phenology further has a strong impact on food<br />

composition. Dur<strong>in</strong>g bottlenecks, feed<strong>in</strong>g preferences are probably not as prevalent as<br />

when fruit is abundant. Therefore <strong>frugivore</strong>s have to be flexible <strong>in</strong> their dietary strategy by<br />

enlarg<strong>in</strong>g their home range and/or modify<strong>in</strong>g their activity pattern (such as E. f. collaris,<br />

Donati 2002), leav<strong>in</strong>g the study area (like Coracopsis vasa), forag<strong>in</strong>g outside the <strong>littoral</strong><br />

<strong>forest</strong> (like P. rufus) (Bollen and Van Elsacker 2002a, Chapter 3a) or go<strong>in</strong>g <strong>in</strong>to torpor<br />

when food is scarce (such as Cheirogaleus spp. and M. rufus). Goodman and Ganzhorn<br />

75


Chapter 3<br />

(1997) already po<strong>in</strong>ted out that <strong>frugivore</strong>s <strong>in</strong> Madagascar might have adapted to lean<br />

periods by hav<strong>in</strong>g broad diets (parrots and lemurs) and mov<strong>in</strong>g considerable distances <strong>in</strong><br />

search of food (P. rufus and fruit pigeons). For post-dispersal granivores food availability<br />

is less problematic as seeds are available much longer than fruits.<br />

Thus <strong>in</strong> general few traits consistently determ<strong>in</strong>e food selection of the thirteen<br />

consumer species <strong>in</strong> the <strong>littoral</strong> <strong>forest</strong>. There may be several reasons for this. First, most<br />

<strong>frugivore</strong>s <strong>in</strong> Sa<strong>in</strong>te Luce seem to be flexible to eat what is available. Secondly, the large<br />

dietary overlap among <strong>frugivore</strong>s at our site <strong>in</strong>dicates diffuse mutual relationships<br />

between plant and consumer species, which is similar to most other study sites (Terborgh<br />

1983; Gautier-Hion et al. 1985; Dowsett-Lemaire 1988; Debussche and Isenman 1989;<br />

Kitamura et al. 2002; Carlo et al. 2003). In this respect, Flem<strong>in</strong>g (1979) po<strong>in</strong>ted out that <strong>in</strong><br />

the Paleotropics dietary overlap is generally higher than <strong>in</strong> the Neotropics. This is<br />

probably l<strong>in</strong>ked to the higher spatio-temporal patch<strong>in</strong>ess of fruit resources here that<br />

favours dietary generalisation, higher <strong>in</strong>ter-specific dietary overlap, and fewer coexist<strong>in</strong>g<br />

species if food levels become critically low. This may <strong>in</strong>deed be true for the <strong>littoral</strong> <strong>forest</strong><br />

where high <strong>in</strong>ter and <strong>in</strong>tra-annual differences can be found <strong>in</strong> ripe fruit availability (Bollen<br />

and Donati, Chapter 1). This might represent one of the reasons why Madagascar's guild<br />

of <strong>frugivore</strong>s is depauperate (Flem<strong>in</strong>g et al. 1987; Langrand 1990; Ganzhorn et al. 1999b;<br />

Wright 1999) and has higher levels of dietary overlap than found at other sites.<br />

Diet of <strong>frugivore</strong>s and their role <strong>in</strong> seed dispersal and/or predation<br />

E. f. collaris has a highly frugivorous diet at Sa<strong>in</strong>te Luce (74.0% ripe fruits, 5.4% unripe<br />

fruits) (Donati 2002), which corresponds with f<strong>in</strong>d<strong>in</strong>gs from other studies on Eulemur<br />

species (Overdorff 1993a,b; Rigamonti 1993; Curtis 1997; Birk<strong>in</strong>shaw 1999, 2001). E. f.<br />

collaris can be considered a sequential specialist, feed<strong>in</strong>g on a wide array of endemic<br />

fruit species (111 species) but with only two to three dom<strong>in</strong>ant fruit species each month<br />

(Donati 2002). Their relatively large home range (up to 100ha) and extensive day range<br />

lengths (1500-3500m) (Donati 2002) <strong>in</strong>dicate that long distance seed dispersal with<strong>in</strong> a<br />

fragment is likely. Furthermore, be<strong>in</strong>g the largest <strong>frugivore</strong>s they represent a large<br />

proportion of the <strong>frugivore</strong> biomass <strong>in</strong> this ecosystem. They eat high amounts of fruit<br />

throughout the year and are the only ones that are able to swallow larger seeds. All these<br />

aspects suggest that <strong>in</strong>deed E. f. collaris is one of the most important seed dispersers <strong>in</strong><br />

this ecosystem. The only limit<strong>in</strong>g factor is that this species is reluctant to cross the<br />

grassland between fragments and thus rarely disperses seeds across the boundaries of<br />

the fragment. This important role <strong>in</strong> seed dispersal has been found for other Eulemur and<br />

lemur species (Ralisoamalala 1996; Scharfe and Schlund 1996; Dew and Wright 1998;<br />

Ganzhorn et al. 1999a; Birk<strong>in</strong>shaw 1999, 2001; Britt 2000).<br />

The smaller nocturnal lemurs seem to have a less diverse fruit diet and can be<br />

considered more omnivorous (Mart<strong>in</strong> 1973; Petter et al. 1977; Hladik et al. 1980;<br />

Tattersall 1982), even though several studies <strong>in</strong> different <strong>forest</strong> types found that a high<br />

proportion of fruit is <strong>in</strong>cluded <strong>in</strong> the diet of Microcebus rufus (Wright and Mart<strong>in</strong> 1995;<br />

Atsalis 1999). Fietz and Ganzhorn (1999) recorded 25 fruit species <strong>in</strong> the diet of<br />

Cheirogaleus medius <strong>in</strong> the western dry deciduous <strong>forest</strong> of Kir<strong>in</strong>dy (CFPF). Atsalis<br />

(1999) scored 24 fruit species of M. rufus <strong>in</strong> the mid-altitude humid <strong>forest</strong>s of<br />

Ranomafana. Compared with these numbers our list of food items likely represents the<br />

bulk of their diet <strong>in</strong> the <strong>littoral</strong> <strong>forest</strong>. These lemurs are smaller <strong>in</strong> body size, eat less,<br />

occupy limited ranges (1-4ha, Fietz 1999; Atsalis 2000), and have a rather limited gape<br />

size. Furthermore <strong>in</strong> Sa<strong>in</strong>te Luce as <strong>in</strong> other <strong>Malagasy</strong> <strong>forest</strong>s (Fietz and Ganzhorn 1999;<br />

76


Frugivore guild<br />

Schmid 2000) Cheirogaleus spp. and M. rufus go <strong>in</strong>to torpor from May through October,<br />

which restricts their feed<strong>in</strong>g and thus also dispersal activity to austral summer. These<br />

species are often found at <strong>forest</strong> edges and <strong>in</strong> secondary <strong>forest</strong> throughout Madagascar<br />

(Petter et al. 1977) as well as <strong>in</strong> Sa<strong>in</strong>te Luce. This makes them important seed dispersers<br />

for small-seeded plant species that fruit dur<strong>in</strong>g austral summer. So far, few data are<br />

available on the dispersal role of these nocturnal lemurs but Wright and Mart<strong>in</strong> (1995),<br />

Ganzhorn and Kappeler (1996), Dew and Wright (1998), and Atsalis (1999) have<br />

suggested that they are <strong>in</strong>deed possible seed dispersers for small and medium sized<br />

fruits, which are found <strong>in</strong>tact <strong>in</strong> their dropp<strong>in</strong>gs.<br />

Pteropus rufus feeds on a wide array of endemic plant species <strong>in</strong> Sa<strong>in</strong>te Luce and is<br />

the most important long distance seed disperser <strong>in</strong> the <strong>littoral</strong> <strong>forest</strong>. A colony of 300<br />

Pteropus rufus eats high quantities of fruit each night, defecates dur<strong>in</strong>g flight, and covers<br />

great distances between sleep<strong>in</strong>g and feed<strong>in</strong>g roosts (up to 50km) (Bollen and Van<br />

Elsacker 2002a, Chapter 3a). By bridg<strong>in</strong>g isolated <strong>forest</strong> fragments P. rufus helps to<br />

ensure genetic exchange between plant populations and <strong>forest</strong> fragments and even<br />

regeneration <strong>in</strong> clear<strong>in</strong>gs. Passage through the gut does not seem to destroy the seeds<br />

(Bollen and Van Elsacker 2002a, Chapter 3a).<br />

Few data exist on the diet of both <strong>Malagasy</strong> fruit pigeon species. However, other<br />

studies <strong>in</strong> the Paleotropics recorded a frugivorous diet for seed dispers<strong>in</strong>g fruit pigeons<br />

(Van der Pijl 1969; Corlett 1998; Dowsett-Lemaire 1988; Oliviera et al. 2002), even<br />

though Snow (1981) described Treron australis as a seed predator of Ficus seeds.<br />

Goodman et al. (1997b) mentions as well that a large component of the diet of T.<br />

australis ate Ficus fruits. <strong>Fruit</strong> pigeons have large home ranges and can wander daily 10-<br />

12km from their roost (Dowsett-Lemaire 1988; Flem<strong>in</strong>g 1992). In Sa<strong>in</strong>te Luce, they feed<br />

on ripe fruits only and always swallow the entire fruit, digest<strong>in</strong>g only the fleshy parts and<br />

defecat<strong>in</strong>g the seeds, as observed by Van der Pijl (1969), Corlett (1998) and Oliveira et<br />

al. (2002). In the <strong>littoral</strong> <strong>forest</strong> fruit pigeons seem to be efficient seed dispersers of<br />

numerous plant species because they have wide gapes (Corlett 1998), cover great<br />

distances and use secondary and disturbed habitats dispers<strong>in</strong>g also seeds from pioneer<br />

and heliophil species from perches <strong>in</strong> a range of habitats. Both short and long-distance<br />

seed dispersal occurs. Prelim<strong>in</strong>ary results of germ<strong>in</strong>ation trials demonstrate that passage<br />

though the digestive tract of Alectroenas madagascariensis does not have a negative<br />

impact on germ<strong>in</strong>ation (Bollen unpubl. data).<br />

Hypsipetes madagascariensis is an important seed disperser as well, feed<strong>in</strong>g at<br />

lower heights than fruit pigeons and parrots. This species swallows ripe fruits entirely and<br />

defecates the seeds unharmed (Birk<strong>in</strong>shaw 2001; Bollen unpubl. data). Bulbuls are very<br />

tolerant to disturbance and often the most common <strong>frugivore</strong>s and dispersal agents <strong>in</strong><br />

degraded tropical and subtropical <strong>forest</strong>s <strong>in</strong>clud<strong>in</strong>g urban areas (Corlett 1998). In Sa<strong>in</strong>te<br />

Luce this species could be encountered <strong>in</strong> <strong>in</strong>tact <strong>forest</strong> as well as on <strong>forest</strong> edges.<br />

Only limited data are available on the diet of Coracopsis nigra (Goodman et al.<br />

1997a; Hampe 1998; Dowsett 2000), thus the 37 food species that were recorded <strong>in</strong><br />

Sa<strong>in</strong>te Luce seem to be quite representative. Most data are from C. nigra, which is<br />

present at the site year round, whereas C. vasa is encountered less frequently and dur<strong>in</strong>g<br />

certa<strong>in</strong> periods of the year only. Coracopsis nigra destroys seeds of many endemic plant<br />

species. They can be considered pre-dispersal seed predators <strong>in</strong> this ecosystem.<br />

Occasional seed dispersal may occur but for few species and on rare occasions only.<br />

Even though substantial differences occur between the numerous parrot species present<br />

worldwide, they are often referred to as granivores (Janzen 1981; Jordano 1983; Clout<br />

77


Chapter 3<br />

1989; Galetti 1993; Sa<strong>in</strong>i et al. 1994; Pizo et al. 1995; Corlett 1998; Renton 2001). For<br />

Madagascar Goodman et al. (1997a; 1997b) observed seed predation of Ficus seeds by<br />

Coracopsis spp., while Böhn<strong>in</strong>g Gaese et al. (1999) described C. nigra as an occasional<br />

seed disperser for Commiphora guillaum<strong>in</strong>i.<br />

Accord<strong>in</strong>g to the literature most Streptopelia spp. feed largely on dry seeds and fruits<br />

and destroy most of the seeds they swallow <strong>in</strong> their muscular gizzards (Corlett 1998).<br />

However, S. decaocto is said to regurgitate some large seeds (Corlett 1998). S. picturata<br />

was most often seen feed<strong>in</strong>g on the ground but no details on its feed<strong>in</strong>g behaviour could<br />

be obta<strong>in</strong>ed at our study site. Nevertheless this species is suspected to be a postdispersal<br />

seed predator destroy<strong>in</strong>g most seeds, which is confirmed by Goodman et al.<br />

(1997b). Obviously our list of food items sampled for this bird is largely underestimated<br />

compared to their actual diet.<br />

Before humans settled, the only seed predators <strong>in</strong> Sa<strong>in</strong>te Luce were Coracopsis spp.,<br />

S. picturata, and Eliurus webbi. The latter now has to contend also with a non-native<br />

rodent species (Rattus rattus) even though there are no <strong>in</strong>dications for food or habitat<br />

competition between these two rodent species (Ramanamanjato and Ganzhorn 2001;<br />

Ganzhorn 2003). Evidence of post-dispersal predation by rodents destroy<strong>in</strong>g the seeds of<br />

fifty plant species was found, but Goodman and Sterl<strong>in</strong>g (1996) and Ganzhorn et al.<br />

(1999a) suggested that native <strong>Malagasy</strong> rodents may store seeds <strong>in</strong> their burrows but no<br />

evidence has been found so far for Eliurus webbi <strong>in</strong> the <strong>littoral</strong> <strong>forest</strong>. Goodman (1994)<br />

describes a burrow of E. webbi <strong>in</strong> Andr<strong>in</strong>gitra conta<strong>in</strong><strong>in</strong>g 20 seeds of Cryptocarya sp. of<br />

which only half were eaten. In Sa<strong>in</strong>te Luce a few seeds were observed to escape total<br />

destruction when germ<strong>in</strong>at<strong>in</strong>g from the rodents’ food piles. This diet list can serve as a<br />

first <strong>in</strong>dication on the rodents’ food species <strong>in</strong> the <strong>littoral</strong> <strong>forest</strong>, tak<strong>in</strong>g <strong>in</strong>to account that<br />

completely digested seeds are miss<strong>in</strong>g here. Nevertheless by target<strong>in</strong>g seeds of selected<br />

species, rodents can significantly alter <strong>forest</strong> composition (DuPuy 1996; Spehn and<br />

Ganzhorn 2000).<br />

Besides the described <strong>frugivore</strong>s (Table 1), there are also other animal species <strong>in</strong><br />

Sa<strong>in</strong>te Luce that occasionally feed on fruits. Bird species such as Coua caerulea<br />

(Cuculidae) and Zosterops maderaspatana (Zosteropidae) (also observed by Goodman<br />

et al. 1997a) could be seen feed<strong>in</strong>g on fruits <strong>in</strong> Sa<strong>in</strong>te Luce, as well as the terrestrial<br />

mammal Tenrec ecaudatus (Tenrecidae) and the fruit bats Rousettus madagascariensis<br />

and Eidolon dupreanum (Pteropodidae), but the latter species were very difficult to track.<br />

Local people may also act as seed dispersers when collect<strong>in</strong>g several fruit species (n=12,<br />

App. I). As secondary seed dispersers Pheidole spp. (Myrmic<strong>in</strong>ae) seem to be important<br />

and they were observed to transport <strong>in</strong>tact seeds of at least 20 species to their ground<br />

nests, thus match<strong>in</strong>g the important role of ants <strong>in</strong> other <strong>forest</strong>s of Madagascar (Voigt et al.<br />

2002; App. I).<br />

As mentioned above, the dispersal quality of the <strong>frugivore</strong>s differs substantially.<br />

Frugivores are active at different times of the day and year, forage at different heights,<br />

have dist<strong>in</strong>ct feed<strong>in</strong>g behaviour, gut passage rates, and seed shadows. While birds may<br />

defecate from nearby or far away perches either with<strong>in</strong> primary <strong>forest</strong> or <strong>in</strong> the clear<strong>in</strong>gs,<br />

fly<strong>in</strong>g foxes defecate dur<strong>in</strong>g flight or under feed<strong>in</strong>g or sleep<strong>in</strong>g roosts, rodents<br />

concentrate seeds at burrows or feed<strong>in</strong>g sites and lemurs move seeds with<strong>in</strong> the <strong>forest</strong><br />

fragment only. In the end, the comb<strong>in</strong>ed action of a variety of fruit-eat<strong>in</strong>g vertebrates with<br />

dist<strong>in</strong>ct seed shadows produces a very heterogeneous transport of seeds, which is very<br />

important <strong>in</strong> the severely fragmented and degraded <strong>littoral</strong> <strong>forest</strong> to ensure regeneration<br />

of most plant species with<strong>in</strong> and outside <strong>forest</strong> fragments. So even though dietary overlap<br />

78


Frugivore guild<br />

among consumers based on species partition<strong>in</strong>g is high <strong>in</strong> Sa<strong>in</strong>te Luce, the different<br />

<strong>frugivore</strong> species are not ecologically redundant due to their differential impact. Moreover,<br />

the actual diet overlap may be lower than described here because proportional use of diet<br />

items should be <strong>in</strong>cluded (Poulsen et al. 2002). In terms of conservation E. f. collaris is of<br />

crucial importance for the dispersal and regeneration of large seeded plant species, P.<br />

rufus for long distance dispersal across fragment boundaries and <strong>frugivore</strong> bird species<br />

for enhanc<strong>in</strong>g succession and regeneration of plants <strong>in</strong> degraded areas.<br />

Although our dietary records for each consumer species are not exhaustive, it is<br />

assumed that the <strong><strong>in</strong>teractions</strong> reported here are an unbiased sample and thus that the<br />

patterns found provide an accurate picture of how <strong><strong>in</strong>teractions</strong> are organized <strong>in</strong> the <strong>littoral</strong><br />

<strong>forest</strong> on a species-specific as well as on a community level. On the one hand, speciesspecific<br />

fruit choice is to a limited extent determ<strong>in</strong>ed by a particular set of morphological,<br />

biochemical, and phenological traits. However, on the other hand, there is substantial<br />

dietary overlap among species. Unpredictable food availability <strong>in</strong> the <strong>littoral</strong> <strong>forest</strong> may<br />

have led to this diet generalisation and to a species-poor <strong>frugivore</strong> guild as well.<br />

However, each <strong>frugivore</strong> has its own particular impact <strong>in</strong> the seed dispersal of plant<br />

species. As the <strong>littoral</strong> <strong>forest</strong>s become more fragmented, the rema<strong>in</strong><strong>in</strong>g patches become<br />

<strong>in</strong>creas<strong>in</strong>gly isolated, and heterogeneous seed transport with<strong>in</strong> and between <strong>forest</strong><br />

patches becomes more critical for long-term species survival.<br />

ACKNOWLEDGEMENTS<br />

We are very grateful to QMM (QIT Madagascar M<strong>in</strong>erals) for provid<strong>in</strong>g logistics and <strong>in</strong>frastructure at<br />

the study site. In particular we thank Manon V<strong>in</strong>celette, Jean-Baptiste Ramanamanjato, and<br />

Laurent Randrihasipara of the QMM Environmental and Conservation Team. Special thanks go to<br />

Giuseppe Donati, Nicoletta Baldi, and Valent<strong>in</strong>a Morelli from the University of Pisa (Italy) for mak<strong>in</strong>g<br />

their data on fruit eat<strong>in</strong>g by Eulemur fulvus collaris available. This draft benefited greatly from<br />

suggestions of Steve Goodman, for which many thanks. This study was carried out under a<br />

Collaboration Agreement between the Department of Animal Biology and Department of<br />

Anthropology of the University of Antananarivo and the Institute of Zoology of Hamburg University<br />

and QMM. The first author is supported by a grant from the Belgian Fund for Scientific Research,<br />

Flanders (FWO). We thank the Flemish Government for structural support to the CRC of the RSZA.<br />

79


Chapter 3<br />

Appendix I. All plant species that are <strong>in</strong>cluded <strong>in</strong> the diet lists of the consumer species with <strong>in</strong>dication of the method how these data were<br />

gathered (O:observation, T: feed<strong>in</strong>g marks; F: faecal dropp<strong>in</strong>gs). Abbrevations of the species are Efc for Eulemur fulvus collaris, Ch for<br />

Cheirogaleus spp., Cm for C. medius, CM for C. major, Mr for Microcebus rufus , Am for Alectroenas madagascariensis, Ta for Treron<br />

australis, Sp for Streptopelia picturata, C for Coracopsis nigra , Hm for Hypsipetes madagascariensis, Pr for Pteropus rufus, Rod for both rodent<br />

species, Rr for Rattus rattus and Ew for Eliurus webbi. SD refers to secondary seed dispersal by Pheidole sp. and Hss stands for humans. For<br />

certa<strong>in</strong> plant species no antanosy names existed, so codes (such as x205, FT62) or other descriptions to dist<strong>in</strong>guish between species were used.<br />

Vernacular<br />

Lemurs Birds Bats Rats Other<br />

Family name Species name<br />

Antanosy names Efc Ch Cm CM Mr Am Ta Sp C Hm Pr all Rr Ew SD Hss<br />

?<br />

?<br />

fanotabe<br />

F<br />

?<br />

?<br />

sarikafe<br />

O<br />

?<br />

?<br />

vahifotsy be<br />

O<br />

?<br />

?<br />

x205<br />

T<br />

?<br />

?<br />

x209<br />

OF<br />

Anacardiaceae Campnosperma micranteium roandria<br />

OF<br />

Poupartia chapelieri<br />

sisikandrongo OF OT OT OT OT<br />

O<br />

T O<br />

Protorhus cf. lecomtei<br />

kangy<br />

F<br />

Annonaceae Monanthotaxis cf. malacophylla vahimbotany OF OT OT<br />

O<br />

T<br />

Polyalthia capuronii<br />

menapeka<br />

OT<br />

T<br />

Polyalthia madagascariensis fotsivavo<br />

OF OT OT OT OF O OF F T<br />

Polyalthia sp.1<br />

fotsivavo géante O<br />

Polyalthia sp.2<br />

fotsivavo marécage OF<br />

Apocynaceae Cabucala madagascariensis tandrokosy<br />

OT<br />

O<br />

O O<br />

Araliaceae Polyscias sp.<br />

voatsilana sp2 OF<br />

OF O O O O F<br />

Schefflera ra<strong>in</strong>aliana<br />

voatsilana sp1 O<br />

O O O<br />

Arecaceae Dypsis fibrosa<br />

boakandambo OF<br />

T T T<br />

Dypsis nodifera<br />

raotry<br />

OF OT OT OT<br />

TF<br />

Dypsis prestoniana<br />

boakabe<br />

OF OT OT OT OF O O O O<br />

O<br />

Dypsis sa<strong>in</strong>telucei<br />

telopolombilany OF<br />

Dypsis scottiana<br />

raosy<br />

OF OT OT<br />

F F<br />

T O<br />

Bignoniaceae Ophiocolea delph<strong>in</strong>ensis akondronala<br />

F<br />

T<br />

O<br />

Phyllarthron ilicifolium<br />

zahambe<br />

OF<br />

Phyllarthron sp.<br />

zahambe manongaroa F<br />

Burseraceae Canarium boiv<strong>in</strong>ii<br />

ramy<br />

O<br />

T T<br />

Canellaceae C<strong>in</strong>namosma madagascariensis vahabatra 3eM OTF<br />

F<br />

Capparaceae Crataeva obovata<br />

belataka<br />

OTF<br />

T<br />

Celastraceae Mystroxylon aethiopicum voavoantatsimo OT<br />

O<br />

Polycardia phyllanthoides fandrianakanga F<br />

Clusiaceae Garc<strong>in</strong>a chapelieri<br />

haz<strong>in</strong>y tomate OT<br />

Clusiaceae Garc<strong>in</strong>ia cf/aff madagascariensis disaky kely<br />

OT<br />

T<br />

Psorospermum revolutum harongampanihy<br />

T<br />

OT<br />

O<br />

O O<br />

Combretaceae Term<strong>in</strong>alia fatraea<br />

katrafa<br />

OF OT OT OF O OTF T O<br />

80


Appendix 1 Cont<strong>in</strong>ued<br />

Other<br />

SD Hss<br />

Rats<br />

Rr Ew<br />

all<br />

Bats<br />

Pr<br />

Hm<br />

C<br />

O<br />

Birds<br />

Sp<br />

Ta<br />

Am<br />

Mr<br />

Lemurs<br />

Ch Cm CM<br />

Efc<br />

T<br />

T<br />

T<br />

T<br />

OT<br />

O<br />

O<br />

F<br />

O<br />

O<br />

T<br />

O<br />

OF<br />

OF<br />

OF<br />

OTF<br />

OF<br />

OF<br />

OT<br />

OTF<br />

O<br />

OF<br />

OT OTF OTF<br />

F<br />

OF<br />

OF<br />

T<br />

O<br />

O<br />

O<br />

F<br />

O<br />

O<br />

T<br />

T<br />

T<br />

T<br />

T<br />

T<br />

T<br />

T<br />

OF<br />

OTF<br />

F<br />

OT<br />

OT<br />

OT<br />

OTF<br />

OT<br />

OT<br />

OT<br />

OTFOT<br />

OTFOT<br />

OTF<br />

OF<br />

OF<br />

TF<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

OF<br />

O<br />

T<br />

O<br />

T<br />

T<br />

T<br />

T<br />

T<br />

T<br />

T<br />

T<br />

T<br />

T<br />

F<br />

F<br />

OF<br />

F<br />

OT<br />

O<br />

OT<br />

OT<br />

OT<br />

F<br />

OT<br />

OF<br />

OT<br />

OT<br />

OF<br />

OT<br />

OT<br />

OT<br />

OF<br />

O<br />

T<br />

O<br />

OF<br />

O<br />

O<br />

O<br />

O<br />

OT<br />

OF<br />

T<br />

F<br />

T<br />

Frugivore guild<br />

F<br />

OF<br />

OF<br />

T<br />

T<br />

T<br />

O<br />

O<br />

O<br />

T<br />

O<br />

F<br />

F<br />

F<br />

F<br />

F<br />

T<br />

F<br />

OT<br />

O<br />

O<br />

OTF<br />

Vernacular<br />

Antanosy names<br />

rehiba<br />

vahihazo<br />

hazoma<strong>in</strong>ty blanc<br />

hazoma<strong>in</strong>ty<br />

x201<br />

sanga<br />

tsilantria<br />

fangora sp1<br />

fangora sp2<br />

bamby<br />

famanta<br />

mocarana<br />

x225<br />

voapaky lahy<br />

voapaky vavy<br />

voapaly lahy ZJ<br />

mampay<br />

sotro<br />

fandramana<br />

bemalemy<br />

ramirisa<br />

hazofotsy<br />

zorafotsy<br />

zoramena<br />

kambatrikambatri<br />

zorala<br />

voatsimatra<br />

hazomamy marécage<br />

hazomamy an ala<br />

tavolohazo février<br />

resonzo<br />

tavolohazo novembre<br />

varongy<br />

lokaza<br />

fal<strong>in</strong>andro<br />

tavolobotroka<br />

lendemilahy<br />

lendemibe<br />

velomihanto sp.1<br />

Species name<br />

Agelea pentagyna<br />

Dichapetalum sp.<br />

Diospyros sp.1<br />

Diospyros sp.2<br />

Elaeocarpus alnifolius 1<br />

Elaeocarpus alnifolius 1<br />

Vacc<strong>in</strong>ium emirnense<br />

Erythroxylum braxifolium<br />

Erythroxylum nitidilum<br />

Anthostema madagascariensis<br />

Euphorbia tetraptera<br />

Macaranga perrieri<br />

Suregada baronii<br />

Uapaca ferrug<strong>in</strong>ea<br />

Uapaca <strong>littoral</strong>is<br />

Uapaca thouarsii<br />

Cynometra cf. cloiselii<br />

Phylloxylon xylophylloides<br />

Aphloia theiformis<br />

Bembicia uniflora<br />

Homalium louvelianum<br />

Ludia antanosarum*<br />

Ludia antanosarum*<br />

Scolopia orientalis<br />

Brexia sp.<br />

Dicoryphe stipulaceae<br />

Salacia madagascariensis<br />

Apodytes dimidiata<br />

Apodytes sp. nov.<br />

Beilschmiedia madagascariensis 1<br />

Beilschmiedia madagascariensis 1<br />

Cryptocarya sp.<br />

Ocotea sp.<br />

Barr<strong>in</strong>gtonia butonica<br />

Dracaena reflexa var. nervosa 1<br />

Dracaena reflexa var. nervosa 1<br />

Anthocleista longifolia<br />

Anthocleista madagascariensis<br />

Bakerella ambongoensis<br />

Family name<br />

Connaraceae<br />

Dichapetalaceae<br />

Ebenaceae<br />

Elaeocarpaceae<br />

Ericaceae<br />

Erythroxylaceae<br />

Euphorbiaceae<br />

Fabaceae<br />

Flacourtiaceae<br />

Grossulariaceae<br />

Hamamelidaceae<br />

Hippocrateaceae<br />

Icac<strong>in</strong>aceae<br />

Lauraceae<br />

Lecythidaceae<br />

Liliaceae<br />

Loganiaceae<br />

O<br />

OF<br />

Loranthaceae<br />

81


Chapter 3<br />

Other<br />

SD Hss<br />

Rats<br />

Rr Ew<br />

82<br />

all<br />

Bats<br />

Pr<br />

F<br />

Hm<br />

O<br />

C<br />

O<br />

Birds<br />

Sp<br />

Ta<br />

Am<br />

F<br />

Mr<br />

OF<br />

Lemurs<br />

Ch Cm CM<br />

OF<br />

Appendix 1 Cont<strong>in</strong>ued<br />

Efc<br />

O<br />

O<br />

T<br />

T<br />

T<br />

T<br />

OT<br />

OT<br />

O<br />

O<br />

O<br />

T<br />

T<br />

T<br />

T<br />

F<br />

F<br />

F<br />

F<br />

F<br />

O<br />

O<br />

O<br />

OF<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

F<br />

OF<br />

OF<br />

O<br />

O<br />

F<br />

O<br />

OF<br />

O<br />

OF<br />

OF<br />

T<br />

T<br />

OT<br />

OT<br />

O<br />

O<br />

O<br />

OF<br />

OF<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

T<br />

T<br />

T<br />

O<br />

O<br />

O<br />

T<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

OF<br />

O<br />

O<br />

O<br />

O<br />

T<br />

O<br />

O<br />

OF<br />

OF<br />

OF<br />

O<br />

T<br />

T<br />

T<br />

T<br />

T<br />

O<br />

OT<br />

OT<br />

OT<br />

OT<br />

F<br />

OF<br />

O<br />

OF<br />

O<br />

F<br />

O<br />

F<br />

F<br />

F<br />

F<br />

O<br />

OT<br />

OT<br />

OT<br />

OT<br />

O<br />

O<br />

O<br />

O<br />

T<br />

O<br />

OF<br />

OF<br />

O<br />

OF<br />

O<br />

O<br />

F<br />

O<br />

Vernacular<br />

Antanosy names<br />

velomihanto sp.2<br />

voatrotoky<br />

sarigoavy<br />

faritsaty<br />

amborabe<br />

ambora<br />

amboralahy<br />

aviavy<br />

fihamy<br />

nonoka<br />

beronono<br />

tsilaka<br />

mafotra sp.1<br />

mafotra sp.2<br />

taratasy<br />

ropasy sp.1<br />

ropasy sp.2<br />

guavy<br />

rotry ala<br />

rotry mena<br />

hazombato<br />

vahifotsy kely<br />

hazondraotry<br />

belavenoka<br />

x236<br />

vahabatra<br />

fandranabo<br />

vakoanala<br />

fandranabotonboky<br />

ta<strong>in</strong>barika<br />

Rubiaceae ZJ<br />

fantsikaitrama<strong>in</strong>ty<br />

x203<br />

x210a<br />

x210<br />

vahilengo<br />

lehengobe<br />

fantsikaidroka<br />

fantsikaitra<br />

Species name<br />

Bakerella sp.<br />

Tristemma mauritianum<br />

Malleastrum mandenense<br />

Burasaia madagascariensis<br />

Tambourissa castri-delph<strong>in</strong>ii<br />

Tambourissa purpurea 1<br />

Tambourissa purpurea 1<br />

Ficus baroni<br />

Ficus guatteriifolia<br />

Ficus pyrifolia<br />

Trilepisium madagascariense<br />

Myrica spathulata<br />

Brochoneura acum<strong>in</strong>ata<br />

Brochoneura madagascariensis<br />

Embelia <strong>in</strong>cumbens<br />

Eugenia cloiselii<br />

Eugenia sp.<br />

Psidium guayave<br />

Syzygium sp.1<br />

Syzygium sp.2<br />

Campylospermum obtusifolium<br />

Jasm<strong>in</strong>um kitch<strong>in</strong>gii<br />

Noronhia cf. lanceolata<br />

Noronhia sp.1<br />

Noronhia sp.2<br />

Olea sp.<br />

Pandanus aff. longistylus<br />

Pandanus dauph<strong>in</strong>ensis<br />

Pandanus rollotii<br />

genus <strong>in</strong>det.<br />

Canthium sp.<br />

Canthium variistipula<br />

Ixora sp.<br />

Mapouria aegialodes<br />

Mapouria sp.<br />

Mor<strong>in</strong>da cf. umbellata<br />

Mor<strong>in</strong>da rigida<br />

Peponidium sp.<br />

Plectronia densiflora<br />

Family name<br />

Loranthaceae<br />

Melastomataceae<br />

Meliaceae<br />

Menispermaceae<br />

Monimiaceae<br />

Moraceae<br />

Myricaceae<br />

Myristicaceae<br />

Myrs<strong>in</strong>aceae<br />

Myrtaceae<br />

Ochnaceae<br />

Oleaceae<br />

Pandanaceae<br />

Rubiaceae


Vernacular<br />

Species name<br />

Antanosy names Efc Ch Cm CM Mr Am Ta Sp C Hm Pr all Rr Ew SD Hss<br />

Psychotria sp.1<br />

tanatananala<br />

O<br />

T<br />

Pyrostria sp.<br />

fantsikaitrafotsy O<br />

Rothmannia mandenensis taholagna<br />

OTF<br />

F T<br />

O<br />

Sald<strong>in</strong>ia <strong>littoral</strong>is<br />

mangavoa<br />

O O<br />

O<br />

O O<br />

Tarenna thouarsiana<br />

FT 62<br />

F<br />

Tricalysia cf cryptocalyx hazongalala<br />

F<br />

O<br />

O F<br />

Vepris eliotii ampoly<br />

OF OT OT O F O F<br />

lah<strong>in</strong>ampoly<br />

OF O<br />

O<br />

T<br />

fitorav<strong>in</strong>a<br />

OTFOT<br />

OT OT<br />

OT T<br />

sanirambaza<br />

O O<br />

O<br />

ambirimbarika pionair<br />

T<br />

sanirambavy<br />

O<br />

OT O OT O<br />

sagnira sp3<br />

OTF<br />

OT<br />

natohetiki<br />

O<br />

ambirimbarika O<br />

OT F<br />

fotombavy<br />

OF OF OF OF O<br />

O<br />

merama<strong>in</strong>tso OTFOT<br />

OT OT OT O OT F<br />

O O<br />

fotonday<br />

OF O<br />

O<br />

fandrikatany<br />

F<br />

tsilavimb<strong>in</strong>anto F<br />

ravenala<br />

O<br />

tavolo<br />

OTF<br />

T<br />

fanolafotsy<br />

O<br />

T<br />

andrarezona<br />

O O O<br />

O<br />

nofotrako<br />

OF<br />

1<br />

Vepris eliotii 1<br />

Appendix 1 Cont<strong>in</strong>ued<br />

Lemurs<br />

Birds Bats Rats Other<br />

Family name<br />

Rubiaceae<br />

Rutaceae<br />

Vepris fitorav<strong>in</strong>a<br />

Sap<strong>in</strong>daceae Macphersonia radlkoferi<br />

Plagioscyphus jumellei<br />

T<strong>in</strong>a thouarsiana<br />

T<strong>in</strong>opsis conjugata<br />

Sapotaceae Mimusops commersonii<br />

Syderoxylon beguei<br />

Sarcolaenaceae Leptolaena sp.<br />

Sarcolaena multiflora<br />

Schizolaena elongata<br />

Smilaceae Smilax anceps<br />

SphaerosepalaceaeRhopalocarpus<br />

coriaceus<br />

Strelitziaceae Ravenala madagascariensis<br />

Taccaceae Tacca leontopetaloides<br />

Theaceae Asteropeia multiflora<br />

Ulmaceae Trema orientalis<br />

Verbenaceae Vitex chrysomallum<br />

1<br />

as <strong>in</strong>dicated by their vernacular name several species correspond to the same scientific name. They could represent different ecotypes of one same species or<br />

be different species that have no taxonomic names yet. As this is difficult to affirm at the moment we preferred treat<strong>in</strong>g all vernacular names as separate species<br />

throughout this paper.<br />

Frugivore guild<br />

83


Pteropus rufus<br />

Feed<strong>in</strong>g ecology of Pteropus rufus<br />

(Pteropodidae) <strong>in</strong> the <strong>littoral</strong> <strong>forest</strong> of<br />

Sa<strong>in</strong>te Luce (south-east Madagascar)<br />

AN BOLLEN, LINDA VAN ELSACKER<br />

ACTA CHIROPTEROLOGICA 4(1): 33-47 (2002)<br />

ABSTRACT<br />

This paper exam<strong>in</strong>es bat-plant <strong><strong>in</strong>teractions</strong> by focus<strong>in</strong>g on the fruit diet and food selection<br />

of fly<strong>in</strong>g foxes (Pteropus rufus) <strong>in</strong> the <strong>littoral</strong> <strong>forest</strong> fragments of Sa<strong>in</strong>te Luce, south-east<br />

Madagascar. Analyses of faecal samples and opportunistic observations revealed 40<br />

endemic plant species <strong>in</strong> the diet. The fly<strong>in</strong>g foxes ma<strong>in</strong>ly eat odoriferous ripe and juicy<br />

berries. No particular fruit colour was predom<strong>in</strong>ant <strong>in</strong> their diet. Both multi-seeded and<br />

s<strong>in</strong>gle-seeded fruits are eaten. Small seeds (1–3.5mm seed length) are usually<br />

swallowed whole. Passage through the digestive tract of the fly<strong>in</strong>g foxes does not reduce<br />

the germ<strong>in</strong>ation rate of seeds nor the percentage of seeds germ<strong>in</strong>ated. This study<br />

<strong>in</strong>dicates that the role of fly<strong>in</strong>g foxes <strong>in</strong> both short and long distance seed dispersal for a<br />

large number of endemic tree species of the <strong>littoral</strong> <strong>forest</strong> should not be underestimated<br />

when design<strong>in</strong>g re<strong>forest</strong>ation programs <strong>in</strong> particular or conservation action plans <strong>in</strong><br />

general.<br />

INTRODUCTION<br />

Pteropus rufus is an endemic fly<strong>in</strong>g fox <strong>in</strong> Madagascar and belongs to the Old World<br />

family Pteropodidae (Megachiroptera). The genus Pteropus lives ma<strong>in</strong>ly on islands<br />

(Cheke and Dahl 1981; Banack 1998). Its representatives are almost entirely frugivorous,<br />

feed<strong>in</strong>g mostly on fruit pulp, juices, nectar and occasionally also on leaves (Marshall<br />

1983). Pteropus rufus occurs predom<strong>in</strong>antly <strong>in</strong> the humid <strong>forest</strong>s <strong>in</strong> the east and the<br />

north. Most roost sites are found <strong>in</strong> the coastal lowlands (Racey pers. comm).<br />

Although some fragments of <strong>littoral</strong> <strong>forest</strong> can be found along the north-eastern coastl<strong>in</strong>e<br />

of Madagascar, most of it is situated <strong>in</strong> the south-east. In this report we concentrate on<br />

this south-eastern region and more <strong>in</strong> particular on the <strong>littoral</strong> <strong>forest</strong> of Sa<strong>in</strong>te Luce (Fig.<br />

1). This type of <strong>forest</strong> has been considerably reduced <strong>in</strong> size over time (Ramanamanjato<br />

2000). Between 1950 and 1995, 3,400 ha, almost half of what was present <strong>in</strong> 1950, has<br />

disappeared. This represents a de<strong>forest</strong>ation rate of 760 ha every 10 years (Mir<br />

Télédétection Inc. 1998). At present only highly degraded <strong>forest</strong> remnants and very few<br />

<strong>in</strong>tact <strong>forest</strong> fragments rema<strong>in</strong>.<br />

In Sa<strong>in</strong>te Luce a colony of 300–350 <strong>in</strong>dividuals of P. rufus <strong>in</strong>habits the <strong>littoral</strong> <strong>forest</strong><br />

fragment ‘S6’ (225ha) (Lewis Environmental Consultants 1992b). This colony has been<br />

located there for at least 10 years and accord<strong>in</strong>g to the local people even longer. These<br />

fly<strong>in</strong>g foxes are very easily disturbed when approached as a consequence of severe<br />

hunt<strong>in</strong>g pressure and frequent bush fires <strong>in</strong> the area (Bollen pers. obs.). Currently there<br />

85


Chapter 3a<br />

are at least two other roost sites of fly<strong>in</strong>g foxes <strong>in</strong> the region. The largest one conta<strong>in</strong>s<br />

800–1000 <strong>in</strong>dividuals and is found <strong>in</strong> a private reserve, Berenty (25°00’S, 46°18’E;<br />

Ramanamanjato pers. comm., Fig. 1). In this gallery <strong>forest</strong> the fly<strong>in</strong>g foxes are more or<br />

less protected from hunt<strong>in</strong>g. Another roost site is found <strong>in</strong> a sacred <strong>forest</strong> ‘Enato<br />

Anandrano’ (24°55’S, 47°00’E) where the fly<strong>in</strong>g foxes are protected by the local fady, a<br />

<strong>Malagasy</strong> taboo related to the presence of tombs of the ancestors (Ramanamanjato pers.<br />

comm.). There is no <strong>in</strong>formation on the colony size here and its status as it is forbidden to<br />

enter these <strong>forest</strong>s. In the lowland Anosyennes, up north of Sa<strong>in</strong>te Luce, <strong>in</strong> Marovony and<br />

Analalava, two small roost sites, with less than 50 <strong>in</strong>dividuals each, were observed <strong>in</strong><br />

isolated <strong>forest</strong> remnants (Lewis Environmental Consultants 1992b). The current status of<br />

both bat populations and <strong>forest</strong> fragments however is unknown (Fig. 1).<br />

Due to the high degree of fragmentation and degradation of the <strong>littoral</strong> <strong>forest</strong>, long<br />

distance seed dispersal is important to ensure genetic exchange between plant<br />

communities of different <strong>forest</strong> fragments. At present not much <strong>in</strong>formation is available on<br />

the diet of Pteropus rufus <strong>in</strong> these <strong>littoral</strong> <strong>forest</strong>s. Therefore, the ma<strong>in</strong> goal of this<br />

research is to <strong>in</strong>vestigate whether they act as important seed dispersers <strong>in</strong> this<br />

ecosystem by determ<strong>in</strong><strong>in</strong>g which plant species are eaten by these fly<strong>in</strong>g foxes. This study<br />

forms part of an extensive ecological research project on the mutual dependence of the<br />

frugivorous-granivorous guild and the <strong>littoral</strong> <strong>forest</strong> flora, more <strong>in</strong> particular on seed<br />

dispersal and predation. Because of this, the focus of this study is on frugivory only and<br />

not on nectarivory, and pollen analyses were not carried out.<br />

METHODS<br />

Research site and study period<br />

The <strong>littoral</strong> <strong>forest</strong> of Sa<strong>in</strong>te Luce is located <strong>in</strong> south-east Madagascar (24º45’S, 47º11’E)<br />

and is considered to be dense humid evergreen <strong>forest</strong> (Koechl<strong>in</strong> et al. 1974). It<br />

corresponds to the same <strong>forest</strong> type as mounta<strong>in</strong> ra<strong>in</strong> <strong>forest</strong> but grows on sandy soils and<br />

is always found with<strong>in</strong> 2–3km of the coast at an altitude of 0–20m (Lewis Environmental<br />

Consultants 1992a). Field research was conducted by the first author between November<br />

1999 and February 2001. Dur<strong>in</strong>g this research period annual precipitation was 2,487mm<br />

with a mean temperature of 23°C, rang<strong>in</strong>g between 12°C and 33°C.<br />

The <strong>forest</strong> fragments of Sa<strong>in</strong>te Luce are considered the least degraded of all. In 1991<br />

they represented a total area of about 1,947ha. A group of 20 fragments can be<br />

dist<strong>in</strong>guished, separated by pla<strong>in</strong>s of grassland and swamps. The five larger fragments<br />

(S6, S7, S8, S9, and S17) range <strong>in</strong> size from 190 to 377 ha (Lewis Environmental<br />

Consultants 1992a). Distances between these five fragments vary from 1.5 to 5km. Most<br />

of them have been separated from each other at least s<strong>in</strong>ce 1950 and have s<strong>in</strong>ce then<br />

systematically decl<strong>in</strong>ed <strong>in</strong> size due to human impact on the edges (Lewis Environmental<br />

Consultants 1992a). Today S6, S7, and S8 are further degrad<strong>in</strong>g by recent tavy (slash<br />

and burn followed by cultivation), bushfires, and selective logg<strong>in</strong>g (Bollen pers. obs.).<br />

<strong>Fruit</strong> diet: faecal analyses and observations<br />

Most of our data on the fruit diet of P. rufus was obta<strong>in</strong>ed by collect<strong>in</strong>g and analys<strong>in</strong>g<br />

faecal samples. From January 2000 till January 2001 the day roost of the P. rufus colony<br />

<strong>in</strong> S6 was visited once a week to collect faecal samples under the roost trees. On each<br />

visit as many dropp<strong>in</strong>gs as possible were collected randomly with a m<strong>in</strong>imum number of<br />

five dropp<strong>in</strong>gs conta<strong>in</strong><strong>in</strong>g seeds. These samples were analysed for seed content, seed<br />

86


Pteropus rufus<br />

number per species and seed viability upon return<strong>in</strong>g at the field station. A reference<br />

collection of the seeds gathered from several fragments of primary and secondary <strong>forest</strong><br />

was made. It should conta<strong>in</strong> the majority of fruits available with<strong>in</strong> the <strong>littoral</strong> <strong>forest</strong> dur<strong>in</strong>g<br />

our study period. This reference collection was used to identify the seed species dur<strong>in</strong>g<br />

faecal analyses. For several Ficus spp., seeds were too similar to allow identification at<br />

species level. For these species identifications were based on the characteristics of the<br />

seedl<strong>in</strong>gs.<br />

Observations on feed<strong>in</strong>g behaviour were obta<strong>in</strong>ed dur<strong>in</strong>g tree watches and dur<strong>in</strong>g<br />

opportunistic encounters with fly<strong>in</strong>g foxes. Because of the difficulty of approach<strong>in</strong>g fly<strong>in</strong>g<br />

foxes at night these data are limited. The follow<strong>in</strong>g parameters were scored: visitation<br />

length, def<strong>in</strong>ed as the time elaps<strong>in</strong>g between arrival of the first fly<strong>in</strong>g fox until departure of<br />

the last one <strong>in</strong> the feed<strong>in</strong>g tree, number of <strong>in</strong>dividuals feed<strong>in</strong>g and if possible feed<strong>in</strong>g<br />

behaviour. Ejecta pellets collected under the tree were described by their characteristic<br />

feed<strong>in</strong>g marks.<br />

BERENTY<br />

Ambosary<br />

ANALALAVA<br />

ENATO<br />

ANANDRANO<br />

Fort-Dauph<strong>in</strong><br />

10 km<br />

SAINTE LUCE<br />

MAROVONY<br />

Fig 1. On the left a detail of the <strong>littoral</strong> <strong>forest</strong>s (Marovony, Analalava, Sa<strong>in</strong>te Luce, Mandena and<br />

Petriky) <strong>in</strong> the south-east is shown with the five Pteropus rufus colonies’ roost sites <strong>in</strong>dicated and<br />

on the right a detail shows the five biggest <strong>forest</strong> fragments of the Sa<strong>in</strong>te Luce <strong>littoral</strong> <strong>forest</strong> with<br />

<strong>in</strong>dication aga<strong>in</strong> on the bat’s day roost (S6) and the campsite (S9).<br />

Food selection: fruit and seed characterisation<br />

The follow<strong>in</strong>g characteristics of fruits and seeds were noted for a total number of 175<br />

<strong>in</strong>dividual plant species available <strong>in</strong> the <strong>forest</strong> throughout our research period: growth<br />

form, fruit type, external colour at ripeness, odour, pulp type, fruit and seed length and<br />

mass, number of seeds per fruit, water content and fruit sk<strong>in</strong> thickness. Large trees (>6m<br />

<strong>in</strong> height), small trees (


Chapter 3a<br />

Table 1. Overview of the fruit species consumed by Pteropus rufus with <strong>in</strong>dication of plant<br />

family, species or gender name and vernacular name, type of evidence (O: observation,F: faecal<br />

analyses, M: gnaw<strong>in</strong>g marks), growth form, fruit type, colour at ripeness, odour (S: strong;<br />

P: present, A: absent), pulp type, fruit length (mm) and weight (g), seed length (mm) and weight<br />

(g), number of seeds (NS) and percentage of watercontent (H2O). <strong>Fruit</strong> sk<strong>in</strong> thickness was<br />

identical for all taxa (easily opened by nail) except for Rothmannia mandenensis (by knife only).<br />

Family Taxon Vernacular Evid Growth<br />

name form<br />

Annonaceae Polyalthia madagascariensis fotsivavo F large tree<br />

Araliaceae Polyscias sp. voatsilana F large tree<br />

Arecaceae Dypsis prestoniana boakabe OFM large tree<br />

Dypsis nodifera raotry MF small tree/shrub<br />

Bignoniaceae Ophiocolea delph<strong>in</strong>ensis akondronala M small tree/shrub<br />

Canellaceae C<strong>in</strong>namosma madagascariensis vahabatra F large tree<br />

Combretaceae Term<strong>in</strong>alia fatraea katrafa OMF large tree<br />

Ericaceae Vacc<strong>in</strong>ium emirnense tsilantria F small tree/shrub<br />

Euphorbiaceae Uapaca ferrug<strong>in</strong>ea voapaky lahy OF large tree<br />

Uapaca thouarsii voapaky lahy ZJ F large tree<br />

Uapaca <strong>littoral</strong>is voapaky vavy OMF large tree<br />

Ludia antanosarum 1 hazofotsy F small tree/shrub<br />

Ludia antanosarum 1 zorafotsy F large tree<br />

Flacourtiaceae Scolopia orientalis zoramena OF large tree<br />

Lauraceae Beilschmiedia madagascariensis resonzo M large tree<br />

Ocotea sp. varongy F large tree<br />

Liliaceae Dracaena reflexa var. nervosa 1 fal<strong>in</strong>andro F small tree/shrub<br />

Dracaena reflexa var. nervosa 1 tavolobotroka F small tree/shrub<br />

Loranthaceae Bakerella ambongoensis velomihanto sp.1 F epiphyte<br />

Bakerella sp. velomihanto sp.2 F epiphyte<br />

Loganiaceae Anthocleista madagascariensis lendemibe F large tree<br />

Anthocleista longifolia lendemilahy F small tree/shrub<br />

Monimiaceae Tambourissa purpurea 1 ambora F small tree/shrub<br />

Tambourissa purpurea 1 amboralahy F small tree/shrub<br />

Moraceae Ficus baronii aviavy F large tree<br />

Ficus guatteriifolia fihamy F large tree<br />

Ficus pyrifolia nonoka F large tree<br />

Myrtaceae Syzygium sp.2 rotry mena OMF large tree<br />

Rubiaceae Canthium variistipula fantsikaitrama<strong>in</strong>ty F large tree<br />

Tricalysia cf. cryptocalyx hazongalala lahy F small tree/shrub<br />

Tricalysia sp. hazongalala vavy F small tree/shrub<br />

Rothmannia mandenensis taholagna F large tree<br />

genus <strong>in</strong>det. ta<strong>in</strong>barika F large tree<br />

Ixora sp. x203 F small tree/shrub<br />

Mapouria aegialodes x210a F small tree/shrub<br />

Mapouria sp.2 x210 F small tree/shrub<br />

Rutaceae Vepris elliotii ampoly F large tree<br />

Sapotaceae Sideroxylon beguei var. saboureaui ambirimbarika MF large tree<br />

Sarcolaenaceae Sarcolaena multiflora merama<strong>in</strong>tso F large tree<br />

Saxifragaceae Brexia sp. kambatrikambatri F small tree/shrub<br />

1 as <strong>in</strong>dicated by their vernacular name <strong>in</strong> three cases we found two plant species correspond<strong>in</strong>g to the same<br />

scientific name. They could represent different ecotypes of the same species or they might be different species<br />

that have no taxonomic names yet. As this is difficult to affirm at the moment we preferred <strong>in</strong>clud<strong>in</strong>g all vernacular<br />

as separate units <strong>in</strong> our diet list and the 40 plant species are also treated as separate species throughout this paper<br />

88


Pteropus rufus<br />

Table 1 Cont<strong>in</strong>ued<br />

<strong>Fruit</strong> Colour Odour Pulp <strong>Fruit</strong> Seed<br />

NS H20 type type length weight length weight (%)<br />

berry orange A soft & juicy 12.2 0.3 7.8 0.12 1 72<br />

drupe green A jiucy & hard 5.0 0.1 3.6


Chapter 3a<br />

Pulp type could be juicy or arillate pulp, fibrous pulp or pulpless. <strong>Fruit</strong> and seed length<br />

and mass were measured with callipers and an electronic scale ‘Kernbalans NM60’ with<br />

respectively 0.01mm and 0.01g precision. These measures along with the number seeds<br />

were each subdivided <strong>in</strong> three classes. The water content of the fruits was calculated by<br />

compar<strong>in</strong>g fresh mass and dry mass, after three days of dry<strong>in</strong>g <strong>in</strong> an oven. The fruit sk<strong>in</strong><br />

thickness was divided <strong>in</strong>to the follow<strong>in</strong>g categories; easily cut by f<strong>in</strong>gernail, by a knife or<br />

by a secateur.<br />

We used X 2 -analyses to compare the fly<strong>in</strong>g foxes’ food selection with the overall fruit<br />

availability. A herbarium of all fruit species collected dur<strong>in</strong>g our study was made <strong>in</strong> the<br />

field and identified by Dr. Johny Rabenantoandro at Missouri Botanical Garden <strong>in</strong><br />

Antananarivo.<br />

Germ<strong>in</strong>ation trials<br />

The seed viability after passage through the digestive tract was tested by simple<br />

germ<strong>in</strong>ation trials, <strong>in</strong> which three different treatments were used; defecated seeds, control<br />

seeds and control fruits. Ripe control seeds and fruits were collected on or under the<br />

parent plant with<strong>in</strong> a restricted time frame. All seeds were sown at 1cm depth <strong>in</strong> plastic<br />

pots filled with 8cm sterile sand and a 1.5cm humus layer on top. Pots were placed under<br />

a shed for protection from direct sunlight. The faecal seeds were still surrounded by their<br />

faecal matrix, when sown. For each treatment sow<strong>in</strong>g was done at the same time and<br />

under the same overall ecological conditions <strong>in</strong> order to standardize procedures. The<br />

germ<strong>in</strong>ation rate, def<strong>in</strong>ed as time to first germ<strong>in</strong>ation, and percentage germ<strong>in</strong>ated seeds<br />

were scored weekly over a period of at least six months.<br />

RESULTS<br />

<strong>Fruit</strong> diet: faecal analyses and observations<br />

Over a 13-month period at least 40 fruit species (27 genera, 21 families) were eaten by P.<br />

rufus (Table 1). The fly<strong>in</strong>g foxes were observed to eat six fruit species while evidence of<br />

38 species was found <strong>in</strong> the faecal samples. Eight species were identified as eaten by<br />

fly<strong>in</strong>g foxes based on the marks on the ejecta pellets found under fruit trees. At least five<br />

seed species rema<strong>in</strong>ed unidentified <strong>in</strong> the faecal samples and therefore are not shown <strong>in</strong><br />

Table 1. The family Rubiaceae, <strong>in</strong>clud<strong>in</strong>g genera Canthium, Rothmannia, Tricalysia,<br />

Mapouria, Ixora, and one unidentified genus, was predom<strong>in</strong>ant, represent<strong>in</strong>g eight fruit<br />

species and thus 20% of the plant species <strong>in</strong> the diet of the fly<strong>in</strong>g foxes. Of the rema<strong>in</strong><strong>in</strong>g<br />

20 families, eleven were represented by only one species, six by two species and three<br />

by three species. The cumulative distribution curve shows that at the end of the 12-month<br />

period the curve starts to level out end<strong>in</strong>g <strong>in</strong> a record of 40 species eaten (Fig. 2).<br />

January was sampled the second time after complet<strong>in</strong>g a year cycle, which did not result<br />

<strong>in</strong> a higher number of species sampled.<br />

Five particular plant species, Ficus guatteriifolia, Syzigium sp.2, Term<strong>in</strong>alia fatraea,<br />

Uapaca thouarsii, and Uapaca <strong>littoral</strong>is were found to be important food sources for the<br />

fly<strong>in</strong>g foxes dur<strong>in</strong>g the study period. This importance was based on the larger number of<br />

dropp<strong>in</strong>gs found conta<strong>in</strong><strong>in</strong>g their seeds, the evidence on ejecta pellets, multiple feed<strong>in</strong>g<br />

observations or because these species were eaten for at least four successive months,<br />

often much longer (Table 2).<br />

Typically one seed species per dropp<strong>in</strong>g was found. Out of the 410 faecal samples<br />

collected only four samples had two different species of seeds. No sample conta<strong>in</strong>ed a<br />

90


Pteropus rufus<br />

larger number of species. Twenty-three plant species (61%), from a total of 38 food<br />

species identified by faecal samples were represented only by one or two seeds per of<br />

dropp<strong>in</strong>g. More than 50 seeds per dropp<strong>in</strong>g were found for 13% of the food plant species.<br />

The rema<strong>in</strong><strong>in</strong>g 26% of the plant species had two to eight seeds <strong>in</strong> dropp<strong>in</strong>gs.<br />

Most of the direct encounters occurred from April through June while the fly<strong>in</strong>g foxes<br />

were feed<strong>in</strong>g ma<strong>in</strong>ly on fruits of Term<strong>in</strong>alia fatraea, Dypsis prestoniana and Syzigium<br />

sp.2, and on flowers of Ravenala madagascariensis. Out of a total of 47 <strong>in</strong>dependent<br />

observations (Table 3), the median number of <strong>in</strong>dividuals feed<strong>in</strong>g together was 1 (range<br />

1–15) and the median visitation length was 2 m<strong>in</strong>utes (range 1–48m<strong>in</strong>). Sometimes<br />

feed<strong>in</strong>g animals would take off carry<strong>in</strong>g one or more fruits to a neighbour<strong>in</strong>g tree, eat<br />

them and then return to the orig<strong>in</strong>al fruit tree. On other occasions <strong>in</strong>dividuals would<br />

rema<strong>in</strong> eat<strong>in</strong>g <strong>in</strong> the fruit tree itself. The longest visitation length (48m<strong>in</strong>) and largest<br />

group size (N=15) were recorded <strong>in</strong> T. fatraea. Dur<strong>in</strong>g observations it was also clear from<br />

the fall<strong>in</strong>g seeds and ejecta pellets that fly<strong>in</strong>g foxes most often only suck out juices from<br />

the pulp and then systematically drop or spit out the rema<strong>in</strong><strong>in</strong>g pulp fraction and seeds.<br />

This feed<strong>in</strong>g behaviour was noticed for T. fatraea, D. prestoniana, and Syzigium sp.2.<br />

Only few data of feed<strong>in</strong>g on flowers were recorded. On one occasion flower petals of<br />

Ludia antanosarum (Flacourtiaceae) were noticed to be abundantly present <strong>in</strong> the faecal<br />

samples dur<strong>in</strong>g May while this tree species is bloom<strong>in</strong>g. Furthermore the fly<strong>in</strong>g foxes<br />

were observed feed<strong>in</strong>g on the nectar of Ravenala madagascariensis (Strelitziaceae)<br />

fly<strong>in</strong>g from one tree to another on several occasions.<br />

Number of species<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

J F M A M J J A S O N D J<br />

cumulative distribution<br />

monthly distribution<br />

Months<br />

Fig. 2. The monthly and cumulative distribution of the number of plant species eaten by Pteropus<br />

rufus over a 13-month period.<br />

91


Chapter 3a<br />

92<br />

Table 2. Temporal distribution of feed<strong>in</strong>g patterns of the bats per plant taxon per month from January 2000 to January 2001 with<br />

<strong>in</strong>dication of type of evidence (F: faecal samples, O: observation, M: recognizable feed<strong>in</strong>g marks on ejecta pellets) per month.<br />

Number<br />

of seeds/dropp<strong>in</strong>g<br />

Max<br />

-<br />

-<br />

-<br />

8<br />

-<br />

-<br />

ND<br />

3<br />

3<br />

-<br />

3<br />

2<br />

2<br />

4<br />

-<br />

-<br />

ND<br />

-<br />

-<br />

11<br />

50+<br />

10<br />

-<br />

-<br />

-<br />

300+<br />

M<strong>in</strong><br />

-<br />

-<br />

-<br />

4<br />

-<br />

-<br />

ND<br />

1<br />

1<br />

-<br />

1<br />

1<br />

1<br />

1<br />

-<br />

-<br />

ND<br />

-<br />

-<br />

2<br />

27<br />

1<br />

-<br />

-<br />

-<br />

5<br />

Median<br />

1<br />

1<br />

1<br />

6<br />

1<br />

1<br />

ND<br />

1<br />

1<br />

100+<br />

1<br />

2<br />

1<br />

2.5<br />

8<br />

4<br />

ND<br />

1<br />

1<br />

9<br />

50+<br />

4<br />

1<br />

1<br />

100+<br />

100+<br />

Faecal<br />

samples<br />

(N)<br />

2<br />

4<br />

1<br />

2<br />

1<br />

1<br />

-<br />

11<br />

3<br />

1<br />

34<br />

43<br />

9<br />

2<br />

1<br />

1<br />

-<br />

1<br />

1<br />

3<br />

36<br />

4<br />

1<br />

1<br />

12<br />

148<br />

J<br />

D<br />

N<br />

F<br />

F<br />

OF OF<br />

OF<br />

M<br />

F<br />

Number of dropp<strong>in</strong>gs per taxon is also given. The five most important species are highlighted.<br />

'Feed<strong>in</strong>g' months<br />

Taxon<br />

J F M A M J J A S O<br />

Dracaena reflexa var. nervosa 'fal<strong>in</strong>andro'<br />

F<br />

Dracaena reflexa var. nervosa 'tavolobotroka'<br />

F F<br />

Polyalthia madagascariensis<br />

F<br />

Polyscias sp.<br />

F<br />

Dypsis prestoniana<br />

OM<br />

F<br />

Dypsis nodifera<br />

MF<br />

Ophiocolea delph<strong>in</strong>ensis<br />

M<br />

C<strong>in</strong>namosma madagascariensis<br />

F F F<br />

Term<strong>in</strong>alia fatraea<br />

M OM OM M<br />

Vacc<strong>in</strong>ium emirnense<br />

F<br />

Uapaca ferrug<strong>in</strong>ea<br />

O F OF OF<br />

Uapaca thouarsii<br />

F<br />

Uapaca <strong>littoral</strong>is<br />

M F F F F<br />

Ludia antanosarum 'hazofotsy'<br />

F<br />

F<br />

Ludia antanosarum 'zorafotsy'<br />

F<br />

Scolopia orientalis<br />

O<br />

O<br />

Beilschmiedia madagascariensis<br />

Ocotea sp.<br />

Bakerella sp.<br />

F<br />

Bakerella ambongoensis<br />

F F F<br />

Anthocleista madagascariensis<br />

F<br />

Anthocleista longifolia<br />

F F<br />

Tambourissa purpurea 'ambora'<br />

F<br />

Tambourissa purpurea 'amboralahy'<br />

F<br />

Ficus baronii<br />

F<br />

Ficus guatteriifolia<br />

F F F F F F F F F F F<br />

F<br />

F<br />

F<br />

F


Table 2 Cont<strong>in</strong>ued<br />

Number<br />

of seeds/dropp<strong>in</strong>g<br />

Max<br />

-<br />

2<br />

4<br />

-<br />

-<br />

7<br />

-<br />

2<br />

-<br />

-<br />

5<br />

1<br />

-<br />

-<br />

M<strong>in</strong><br />

-<br />

1<br />

1<br />

-<br />

-<br />

1<br />

-<br />

1<br />

-<br />

-<br />

5<br />

3<br />

-<br />

-<br />

Median<br />

100+<br />

1<br />

2<br />

1<br />

1<br />

1<br />

2<br />

1<br />

1<br />

1<br />

5<br />

1<br />

9<br />

1<br />

Faecal<br />

samples<br />

(N)<br />

25<br />

44<br />

10<br />

1<br />

1<br />

5<br />

1<br />

4<br />

1<br />

1<br />

1<br />

3<br />

1<br />

1<br />

J<br />

D<br />

N<br />

'Feed<strong>in</strong>g' months<br />

M J J A S<br />

Taxon<br />

F<br />

F<br />

F<br />

F<br />

O<br />

F<br />

F<br />

F<br />

A<br />

M<br />

F<br />

J<br />

F<br />

F<br />

F<br />

F<br />

OMOF<br />

F<br />

F<br />

F<br />

F<br />

F<br />

F<br />

F<br />

F<br />

F<br />

F<br />

F<br />

F<br />

F<br />

MF<br />

F<br />

F<br />

Ficus pyrifolia<br />

Syzygium sp.2<br />

Canthium variistipula<br />

Tricalysia cf. cryptocalyx<br />

Tricalysia sp.<br />

Rothmannia mandenensis<br />

Ta<strong>in</strong>barika<br />

Ixora sp.<br />

Mapouria aegialodes<br />

Mapouria sp.<br />

Vepris elliotii<br />

Sideroxylon beguei var. saboureaui<br />

Sarcolaena multiflora<br />

Brexia sp.<br />

Number of <strong>in</strong>dividuals<br />

Table 3. The number of observations (N) per tree species with <strong>in</strong>dication of the median,<br />

range, and average deviation (AD) of the number of <strong>in</strong>dividuals feed<strong>in</strong>g <strong>in</strong> the tree.<br />

Visitation lengths (<strong>in</strong> m<strong>in</strong>) are also shown.<br />

Visitation length<br />

N<br />

Pteropus rufus<br />

AD<br />

0.19<br />

3.38<br />

-<br />

1.44<br />

-<br />

-<br />

-<br />

1.31<br />

Range<br />

1-2<br />

1-15<br />

1<br />

1-7<br />

1<br />

1<br />

1<br />

1-15<br />

Median<br />

1.00<br />

1.00<br />

1.00<br />

1.00<br />

1.00<br />

1.00<br />

1.00<br />

1.00<br />

AD<br />

7.01<br />

14.16<br />

0.32<br />

2.12<br />

1.00<br />

0.50<br />

1.00<br />

5.44<br />

Range<br />

1-15<br />

1-48<br />

1-2<br />

1-15<br />

1-3<br />

1-2<br />

1-3<br />

1-48<br />

Median<br />

5.00<br />

3.00<br />

1.00<br />

2.50<br />

2.00<br />

2.00<br />

2.00<br />

2.00<br />

9<br />

7<br />

5<br />

20<br />

2<br />

2<br />

2<br />

47<br />

Dypsis prestoniana<br />

Term<strong>in</strong>alia fatraea<br />

Ravenala madagascariensis<br />

Syzygium sp.<br />

Uapaca ferrug<strong>in</strong>ea<br />

Uapaca <strong>littoral</strong>is<br />

Scolopia orientalis<br />

All species together<br />

93


Chapter 3a<br />

Table 4. Comparison of morphological characteristics of fruits (with the correspond<strong>in</strong>g sample<br />

size and frequency distribution) <strong>in</strong> the diet of P. rufus and the overall fruits available (n=152-175)<br />

<strong>Fruit</strong> parameters<br />

Total fruit<br />

availability<br />

Pteropus<br />

rufus' diet<br />

Statistics<br />

N %<br />

Growth form<br />

N % X² df P<br />

Larger trees 94 54 23 58 1.42 2 NS<br />

Small trees and shrubs 62 35 15 37<br />

Others 19 11<br />

<strong>Fruit</strong> type<br />

2 5<br />

Berry 83 50 25 63 4.64 3 NS<br />

Drupe 51 30 11 27<br />

Capsule 21 13 1 2<br />

Others 12 7 3 8<br />

Colour of ripe fruits<br />

Yellow 22 13 5 13 6.00 6 NS<br />

Orange 10 6 4 10<br />

Red, p<strong>in</strong>k 29 17 9 23<br />

Puple, blue 16 9 5 13<br />

Brown 44 25 9 23<br />

Green 39 22 8 20<br />

Others 14 8 0 0<br />

Odour<br />

Absent 59 35 16 39 3.30 2 NS<br />

Present 47 28 6 15<br />

Strong 63 37<br />

Pulp type<br />

18 44<br />

Juicy 124 72 35 88 12.56 3


Pteropus rufus<br />

Food selection: exploited versus available food items<br />

In order to ga<strong>in</strong> some <strong>in</strong>sight <strong>in</strong>to the fly<strong>in</strong>g foxes’ food selection, the different variables of<br />

several fruit and seed parameters were compared for the 175 available and 40 exploited<br />

food species (Table 4). Focus<strong>in</strong>g on exploited food species only, it was apparent that<br />

ma<strong>in</strong>ly large trees and to a lesser extent small trees and shrubs are exploited for their<br />

fruits. No herbs and v<strong>in</strong>es occur <strong>in</strong> the diet list. Berries are the fruit type most represented<br />

<strong>in</strong> the diet followed by drupes. <strong>Fruit</strong>s with a strong odour are predom<strong>in</strong>ant <strong>in</strong> the diet,<br />

while all colours are present <strong>in</strong> approximately similar percentages. <strong>Fruit</strong>s with many t<strong>in</strong>y<br />

seeds as well as one- to two-seeded fruits are well represented. In general fruit sk<strong>in</strong><br />

thickness is m<strong>in</strong>imal and most fruits have a water content over 60%. Furthermore juicy<br />

fruits with a length between 10–30mm are most common <strong>in</strong> the list, but no particular fruit<br />

mass was most abundant. Seed length is often smaller than 10mm and seed mass less<br />

than 0.1g. The threshold for seed swallow<strong>in</strong>g at our study site is as much as 10mm, with<br />

4.4mm be<strong>in</strong>g the median diameter (N=38).<br />

Much of the differential use of fruits can be expla<strong>in</strong>ed by a differential availability.<br />

There is only a significant difference between observed and expected values for the<br />

parameters pulp type, seed length and seed mass (Table 4). <strong>Fruit</strong>s with juicy pulp are<br />

clearly preferred. Fibrous fruits and fruits without pulp, even though available, are not<br />

consumed by the fly<strong>in</strong>g foxes at all. <strong>Fruit</strong>s with seed length smaller than 10mm are<br />

preferred to longer seeded-fruits. The most preferred seed mass is under 0.1g, but the<br />

0.1–1.0g category still makes up one third of their food choice, while seeds heavier than<br />

1g seem to be avoided. After sequential Bonferroni adjustment (Rice 1989 but see Moran<br />

2003) none of these preferences rema<strong>in</strong>ed significant.<br />

Germ<strong>in</strong>ation trials<br />

Our faecal analyses show that seeds of at least 38 plant species pass through the<br />

digestive tract. Due to the scarcity of simultaneous presence of defecated seeds, control<br />

seeds and fruits, it was not always possible to obta<strong>in</strong> the same number of duplicates or<br />

the same number of seeds for all treatments.<br />

None of the defecated seeds looked damaged. Only five species provided enough<br />

seeds and fruits at the same time to start a germ<strong>in</strong>ation experiment (Table 5). Passage<br />

through the digestive tract had neither a negative nor a positive impact on the<br />

germ<strong>in</strong>ation rate and percentage of seeds germ<strong>in</strong>ated. It appears that seeds from <strong>in</strong>tact<br />

control fruits take more time to germ<strong>in</strong>ate than seeds of faecal samples and control<br />

seeds. Numbers were too small, however, to allow statistical comparison.<br />

DISCUSSION<br />

<strong>Fruit</strong> diet<br />

Quantitatively<br />

The diet of P. rufus studied at Sa<strong>in</strong>te Luce consists of 40 endemic plant species of the<br />

<strong>littoral</strong> <strong>forest</strong>. Even though our data set represents the most complete <strong>in</strong>formation<br />

available on the fruit diet of P. rufus <strong>in</strong> <strong>littoral</strong> <strong>forest</strong>s today, it is probably an<br />

underestimation of their overall fruit diet for several reasons. First, by focus<strong>in</strong>g ma<strong>in</strong>ly on<br />

faecal sample content, larger seeds, that are often spat out and less commonly eaten<br />

food species can be missed. Secondly, exotic species that are neither important nor<br />

typical for the <strong>littoral</strong> <strong>forest</strong> were omitted from our study. It is likely that the five seed<br />

species that could not be identified may represent seeds from such exotic species. They<br />

may also be fruit species eaten <strong>in</strong> other <strong>forest</strong> types and were as such not present <strong>in</strong> our<br />

95


Chapter 3a<br />

reference collection. It cannot be excluded that the mounta<strong>in</strong> ra<strong>in</strong> <strong>forest</strong>, with a different<br />

floral composition (Koechl<strong>in</strong> et al. 1974) lies with<strong>in</strong> the forag<strong>in</strong>g range of the colony<br />

studied. F<strong>in</strong>ally, there might also be an important temporal bias s<strong>in</strong>ce a number of tree<br />

species <strong>in</strong> these <strong>littoral</strong> <strong>forest</strong>s do not fruit annually but bi-annually or even less often<br />

(Randrihasipara pers. comm.; Bollen and Donati, Chapter 1). One year of sampl<strong>in</strong>g is not<br />

enough to establish the complete fruit diet of P. rufus. Nevertheless, our species<br />

accumulation curve <strong>in</strong>dicates that a large proportion of the diet is <strong>in</strong>deed already known.<br />

Long-term studies are needed to further complete the diet list.<br />

Table 5. The number of weeks needed for the first germ<strong>in</strong>ation (a) and the percentage of<br />

germ<strong>in</strong>ated seeds (b) for the three treatments: faecal seeds, control seeds, and control fruits.<br />

The values given here are median, average deviation (AD), and sample size (N).<br />

a)<br />

Germ<strong>in</strong>ation rate<br />

Species<br />

Faecal seeds Control seeds Control fruits<br />

Median AD N Median AD N Median AD N<br />

Ludia antanosarum 2.5 - 1 3.5 0.5 2 7 - 1<br />

Term<strong>in</strong>alia fatraea 25 - 1 22 0.9 3 26 1.2 5<br />

Syzygium sp. 7 - 1 6 0.9 3 10 6.8 3<br />

Ficus guatteriifolia 3.5 2.9 8 7 - 1 15.5 2.5 2<br />

Rothmannia mandenensis 8 - 1 23 - 1<br />

2<br />

- 0<br />

b)<br />

Percentage germ<strong>in</strong>ated<br />

Species<br />

Faecal seeds<br />

Control seeds Control fruits<br />

Median AD N Median AD N Median AD N<br />

Ludia antanosarum 25 - 1 62.5 12.5 2 33 - 1<br />

Term<strong>in</strong>alia fatraea 60 - 1 30 15.6 3 30 8.0 5<br />

Syzygium sp. 50 - 1 80 11.1 3 60 13.3 3<br />

Ficus guatteriifolia 16 9 8<br />

1<br />

- 1<br />

1<br />

- 2<br />

Rothmannia mandenensis 50 - 1 40 - 1<br />

2<br />

- 0<br />

1<br />

as these seeds are very t<strong>in</strong>y and numerous <strong>in</strong> fruits it is impossible to know exactly which percentage<br />

had germ<strong>in</strong>ated <strong>in</strong> both control seeds and control fruits.<br />

2<br />

ripe fruits fall apart <strong>in</strong> small pieces and therefore we could not sow complete fruits for comparison.<br />

Quantitative data on the diet of P. rufus <strong>in</strong> other parts of Madagascar are limited. In the<br />

gallery <strong>forest</strong> of Berenty the diet of P. rufus conta<strong>in</strong>s only 13 plant species, both flowers<br />

and fruits <strong>in</strong>cluded (Long and Racey submitted). This much lower number can probably<br />

be best expla<strong>in</strong>ed by the lower plant diversity of the much drier gallery <strong>forest</strong>. Racey et al.<br />

(<strong>in</strong> prep) have studied P. rufus <strong>in</strong> Madagascar for several years at different sites <strong>in</strong><br />

Madagascar and their data on feed<strong>in</strong>g ecology resulted <strong>in</strong> a diet list of 38 plant species<br />

for P. rufus with two thirds of these be<strong>in</strong>g fruit resources. Racey and Nicoll (1984)<br />

mention a fruit diet of 18 species for Pteropus seychellensis <strong>in</strong> the Seychelles and Parry-<br />

Jones and Augee (1991) found 22 fruit species <strong>in</strong> the diet of Pteropus poliocephalus. An<br />

extensive literature survey by Marshall (1983) resulted <strong>in</strong> a list of 62 plant genera<br />

consumed for their fruits by all Pteropus spp. (N=67) together. All these numbers<br />

demonstrate that our diet list <strong>in</strong>clud<strong>in</strong>g 40 species belong<strong>in</strong>g to 28 genera is quite<br />

extensive.<br />

As for the quantitative data of our observations, we believe there may be a bias on<br />

the visitation length scored, as fly<strong>in</strong>g foxes would fly away when they detected our<br />

96


Pteropus rufus<br />

presence. On the other hand, visitation length could <strong>in</strong>deed be relatively short because of<br />

a particular feed<strong>in</strong>g behaviour of these fly<strong>in</strong>g foxes to consume fruits <strong>in</strong> ‘d<strong>in</strong><strong>in</strong>g roosts’ and<br />

not <strong>in</strong> the fruit tree itself on some occasions. This behaviour was also observed for other<br />

frugivorous fly<strong>in</strong>g foxes (Marshall 1983) and for Neotropical frugivorous bat species<br />

(Morisson 1980; Kalko et al. 1996), even though Kalko et al. (1996) mention a rather<br />

sedentary feed<strong>in</strong>g mode for Afrotropical fly<strong>in</strong>g foxes, which could also be observed <strong>in</strong><br />

Sa<strong>in</strong>te Luce on other occasions.<br />

Taxonomically<br />

Of the five plant species mentioned <strong>in</strong> the results, Ficus guatteriifolia (Moraceae) is likely<br />

to be the most important one <strong>in</strong> the diet of P. rufus. This species is available year-round<br />

due to <strong>in</strong>tra-specific asynchrony <strong>in</strong> flower<strong>in</strong>g and fruit<strong>in</strong>g and faecal analyses show it was<br />

consumed the whole year. It forms a staple food and is likely to be a keystone resource<br />

(def<strong>in</strong>ition accord<strong>in</strong>g to Mills et al. 1993) for these fly<strong>in</strong>g foxes. Ficus spp. are also the<br />

food taxon that is most frequently regarded as important <strong>in</strong> literature on the diet of the<br />

fly<strong>in</strong>g foxes (Pteropodidae) <strong>in</strong> the Paleotropics (Cheke and Dahl 1981; Marshall 1983;<br />

Fujita and Tuttle 1991; Banack 1998) and of fruit bats (Phyllostomatidae) <strong>in</strong> the<br />

Neotropics (Heithaus et al. 1975; Flem<strong>in</strong>g et al. 1977; Morrison 1980; Kalko et al. 1996).<br />

By the same token, Syzigium sp.2 (Myrtaceae) could be considered a keystone fruit<br />

species as well. It is a very common and widespread tree species, which provides food<br />

from May up to January. The fruit<strong>in</strong>g cycle of an <strong>in</strong>dividual tree is only about two to three<br />

months long but s<strong>in</strong>ce the fruit<strong>in</strong>g pattern <strong>in</strong> the different <strong>forest</strong> fragments shows a delay<br />

of a few months, the fruits are available <strong>in</strong> the area for as long as n<strong>in</strong>e months. In this<br />

way certa<strong>in</strong> plant species are accessible only to fly<strong>in</strong>g <strong>frugivore</strong>s for extended periods.<br />

Term<strong>in</strong>alia fatraea (Combretaceae) is a highly preferred food item and one of the<br />

plant species of which most observations were recorded and large amounts of macerated<br />

fruit pulp were found under the trees <strong>in</strong> the morn<strong>in</strong>g. From April to July T. fatraea is eaten<br />

<strong>in</strong> very large quantities. There may be a parallel between Term<strong>in</strong>alia catappa consumed<br />

<strong>in</strong> the Masoala Pen<strong>in</strong>sula (Hutcheon 1994) and T. fatraea eaten <strong>in</strong> Sa<strong>in</strong>te Luce. Both act<br />

as important food species dur<strong>in</strong>g times of fruit scarcity and therefore play a crucial role <strong>in</strong><br />

the diet of P. rufus. Term<strong>in</strong>alia catappa has also been regarded as an important food<br />

species for Pteropus spp. by Cheke and Dahl (1981), Fujita and Tuttle (1991) and<br />

Banack (1998).<br />

Several authors mention that fruit bats feed on a taxonomically non-random subset of<br />

fruits. These so-called ‘bat fruits’ are ma<strong>in</strong>ly plant species of follow<strong>in</strong>g plant families<br />

Moraceae, Myrtaceae, Sapotaceae, Arecaceae, Piperceae, Solanaceae, Anacardiaceae,<br />

Guttiferae, Legum<strong>in</strong>osae, and Combretaceae (Marshall 1983; Flem<strong>in</strong>g 1987; Banack<br />

1998; Corlett 1998). Our data set conta<strong>in</strong>s several of these families. Surpris<strong>in</strong>gly the<br />

family Rubiaceae, not mentioned by any author, is taxonomically represented by the<br />

highest species number <strong>in</strong> our diet list. On the contrary, the plant families Guttiferae and<br />

Anacardiaceae, both considered ‘bat families’ by Marshall (1983) and Corlett (1998), are<br />

not eaten by P. rufus <strong>in</strong> Sa<strong>in</strong>te Luce even though available. Certa<strong>in</strong> plant families might<br />

<strong>in</strong>deed be considered ‘bat families’ but the actual diet may still vary greatly accord<strong>in</strong>g to<br />

<strong>forest</strong> type and fruit availability with<strong>in</strong>.<br />

97


Chapter 3a<br />

Food selection<br />

Growth form<br />

A closer look at fruit characteristics for both eaten and available species seems to po<strong>in</strong>t at<br />

certa<strong>in</strong> food preferences, although at the same time other, non-significant, results were<br />

rather unexpected. For example accord<strong>in</strong>g to the analyses the fly<strong>in</strong>g foxes did not prefer<br />

to eat <strong>in</strong> large trees, which was unexpected as bats were most often observed and<br />

supposed to feed <strong>in</strong> large trees (Flem<strong>in</strong>g et al. 1987). The often larger fruit crop available<br />

at the same time <strong>in</strong> large trees, the more accessible position and the more easily<br />

detectable resources both for bats and researchers are probably responsible for this<br />

result. All important food resources <strong>in</strong> our diet list <strong>in</strong>volve large trees, but shrubs and<br />

smaller trees still account for almost 40%. The latter occur <strong>in</strong> larger numbers <strong>in</strong><br />

secondary <strong>forest</strong> and are more easily detected and eaten there. Old World pteropodids<br />

are known to be primarily canopy feeders (Flem<strong>in</strong>g et al. 1987) and prefer primary <strong>forest</strong><br />

to secondary <strong>forest</strong> (Banack 1998). In our data set most of the fruit species eaten grow <strong>in</strong><br />

<strong>in</strong>tact and primary <strong>forest</strong>. Both pioneer plant species as well as species from a later<br />

successive phase were exploited.<br />

<strong>Fruit</strong> type versus pulp type and water content<br />

The fly<strong>in</strong>g foxes eat ma<strong>in</strong>ly juicy berries with a high water content. Observations, ejecta<br />

pellets, and literature (Marshall 1983) confirm that fruit juices dom<strong>in</strong>ate the diet of fly<strong>in</strong>g<br />

foxes. As <strong>in</strong>dicated <strong>in</strong> Table 4, only for the parameter ‘pulp type’ a difference was found<br />

between eaten and available fruits, not for fruit type and water content but these<br />

parameters are often <strong>in</strong>ter-correlated. In most tropical <strong>forest</strong>s 50–90% of the plant<br />

species depend on animals for their dispersal (Howe and Smallwood 1982; Flem<strong>in</strong>g et al.<br />

1987) and among typical endozoochorous fruits juicy berries with a high water content<br />

form a large proportion, which stands also for the majority of available fruits <strong>in</strong> the humid<br />

<strong>littoral</strong> <strong>forest</strong> of Sa<strong>in</strong>te Luce.<br />

Odour and colour<br />

Most fruits eaten have an odour and even a strong one, which can be related to the bats’<br />

well-developed olfactory senses especially used for locat<strong>in</strong>g food (Marshall 1983; Kalko<br />

et al. 1996). Odour was a feature of most (65%) of the fruits available <strong>in</strong> the <strong>forest</strong>, which<br />

may expla<strong>in</strong> why analyses revealed that there was no significant preference for this trait.<br />

This abundance of odoriferous fruits is probably because a large amount of the available<br />

fruit species are dependant on mammals for seed dispersal and scent <strong>in</strong> general is also<br />

of major importance for mammals when locat<strong>in</strong>g and select<strong>in</strong>g ripe fruits. Besides good<br />

smell, the fly<strong>in</strong>g foxes have also developed large eyes and thus good vision which might<br />

further help them to locate fruits at night (Marshall 1983). Obviously colour is of little<br />

relevance s<strong>in</strong>ce they feed and forage at night and all nocturnal mammals are colour-bl<strong>in</strong>d<br />

(Corlett 1998). This is confirmed by the fact that selection of fruits <strong>in</strong> favour of a particular<br />

colour was not observed.<br />

Size versus mass<br />

Based on the number of seeds per dropp<strong>in</strong>g we presumed that t<strong>in</strong>y seeds of multi-seeded<br />

fruits with a length up to 1–3.5mm are likely to be automatically swallowed together with<br />

the fruit pulp. As for larger one- to two-seeded fruits, with seed length between 3.5–<br />

20mm, fruit sk<strong>in</strong> and seeds are most often spat out. This feed<strong>in</strong>g behaviour of dropp<strong>in</strong>g<br />

larger seeds and swallow<strong>in</strong>g t<strong>in</strong>y seeds together with fruit juices was also mentioned by<br />

98


Pteropus rufus<br />

Marshall (1983). Occasionally some seeds (up to 15mm length) are swallowed as well.<br />

For all three Uapaca sp., with seed length over 9.6mm, seeds were often swallowed but<br />

this is probably due to the pulp texture and slippery seeds. The threshold for swallow<strong>in</strong>g<br />

seeds is reported as be<strong>in</strong>g less than 3.2mm diameter for a 600g Pteropus sp. and<br />

between 3–5mm for fly<strong>in</strong>g foxes <strong>in</strong> general (Corlett 1998; Shilton et al. 1999), which is<br />

smaller than the 10mm recorded at our study site.<br />

Our analyses showed no particular fruit mass preference. The fact that Pteropus spp.<br />

may transport fruits of over 200g (Marshall 1983) means that they are probably not<br />

limited by masses up to 50g, be<strong>in</strong>g the maximum fruit mass that was scored.<br />

‘Bat fruits’<br />

Accord<strong>in</strong>g to Flem<strong>in</strong>g (1979), Marshall (1983), Stashko and D<strong>in</strong>erste<strong>in</strong> (1988), Thomas<br />

(1988) and Kor<strong>in</strong>e et al. (1998) ‘bat fruits’ can be morphologically characterised as<br />

variable <strong>in</strong> size with a green or dull colour, a strong and musty odour, high water content,<br />

pendant position or held away from the foliage. This description corresponds with our<br />

results mean<strong>in</strong>g that the fly<strong>in</strong>g foxes’ food species <strong>in</strong> Sa<strong>in</strong>te Luce <strong>in</strong>clude fruits of all size,<br />

hav<strong>in</strong>g no particular conspicuous colour, a strong odour and high water content.<br />

However, compared to the overall database of available fruits <strong>in</strong> this <strong>forest</strong> several of<br />

these variables are simply characteristic for the majority of fruits. Thus real food selection<br />

or clear preference cannot be established. Therefore it is important that future studies<br />

also focus more on all available food resources <strong>in</strong> an ecosystem rather than study<strong>in</strong>g the<br />

diet of the bat species only. This way it will be possible to draw broader conclusions on<br />

real food preferences and typical ‘bat fruits’ compared to the wide array of fruits available.<br />

The exclusive role of fly<strong>in</strong>g foxes <strong>in</strong> seed dispersal<br />

Quantitatively important short and long distance seed dispersal<br />

Pteropus rufus feeds on a huge variety of fruits, which makes this species potentially an<br />

important seed disperser for a large number and diverse set of endemic plant species <strong>in</strong><br />

the <strong>littoral</strong> <strong>forest</strong>. Compared to other <strong>frugivore</strong>s <strong>in</strong> the <strong>littoral</strong> <strong>forest</strong> it is the only one<br />

capable of long distance seed dispersal s<strong>in</strong>ce forag<strong>in</strong>g may occur up to 50km away from<br />

the roost site (Thomas, 1988) thereby bridg<strong>in</strong>g isolated <strong>forest</strong> fragments. This ensures<br />

genetic exchange between plant populations of different <strong>forest</strong> fragments, and for very<br />

small fragments no longer <strong>in</strong>habited by other mammal seed dispersers, only fly<strong>in</strong>g foxes<br />

can disperse these fruits. Long distance seed dispersal happens ma<strong>in</strong>ly between<br />

successive feed<strong>in</strong>g trees (0.3–8.3km apart) or even further away between forag<strong>in</strong>g areas<br />

and roost sites (up to 50km apart) for all <strong>in</strong>gested seeds (Morrison 1978; Kor<strong>in</strong>e et al.<br />

1999).<br />

Gut passage rate <strong>in</strong> fly<strong>in</strong>g foxes is often only about 30 m<strong>in</strong>utes (Morrison 1980),<br />

although there is also evidence for gut retention of food for large periods (>12h or >18h)<br />

<strong>in</strong> Pteropodidae (Shilton et al. 1999), which <strong>in</strong>creases the possibility for long distance<br />

seed dispersal. As digestion can be rapid, large quantities of food can be processed<br />

every night. This is necessary because be<strong>in</strong>g fly<strong>in</strong>g mammals, these fly<strong>in</strong>g foxes have<br />

rather high-energy requirements and may eat at least the equivalent of their own body<br />

mass each night (Marshall 1983; Shilton et al. 1999). In addition, they are very numerous<br />

<strong>in</strong> the area. All this probably leads to a massive consumption of fruits and possible<br />

dispersal of seeds every night by a large number of animals.<br />

99


Chapter 3a<br />

Germ<strong>in</strong>ation experiments<br />

Izhaki et al. (1995) noted a positive effect of passage through bats’ guts on germ<strong>in</strong>ation<br />

rate of the <strong>in</strong>gested seeds. Nevertheless, Palmeirim et al. (1989), Kalko et al. (1996),<br />

Iudica and Bonaccorso (1997), Kor<strong>in</strong>e et al. (1998), Shilton et al. (1999) as well as this<br />

study did not f<strong>in</strong>d such a relation. There seemed to be no positive or negative impact on<br />

germ<strong>in</strong>ation rate and germ<strong>in</strong>ation percentage of defecated seeds. The results on<br />

percentage of plants that f<strong>in</strong>ally germ<strong>in</strong>ated after 6 months are difficult to <strong>in</strong>terpret and<br />

appear very variable. More extensive experiments under more controlled ecological<br />

conditions and with more replicas should be carried out to confirm these first prelim<strong>in</strong>ary<br />

data. But, even if germ<strong>in</strong>ation itself does not profit from the digestive process, more<br />

important to consider is the distance covered by the fly<strong>in</strong>g foxes dur<strong>in</strong>g gut passage.<br />

Threats and conservation options<br />

Unfortunately <strong>in</strong> Sa<strong>in</strong>te Luce not only the fragmented habitat is at risk, but its <strong>in</strong>habitants<br />

among which the fly<strong>in</strong>g foxes, are seriously threatened as well. Dur<strong>in</strong>g our field research<br />

the whole colony moved once from their orig<strong>in</strong>al roost site to another one, five kilometers<br />

west, where they rema<strong>in</strong>ed from February through May 2000. Afterwards the colony<br />

returned to the first roost site. At both roost sites, rocks, long sticks and <strong>in</strong>jured patagia<br />

were <strong>in</strong>dications of severe hunt<strong>in</strong>g pressure. Several bush fires <strong>in</strong> the nearby area<br />

perturbed the colony even more. Too much harassment might cause the colony to divide<br />

<strong>in</strong>to smaller groups, and settle elsewhere, leav<strong>in</strong>g the <strong>littoral</strong> <strong>forest</strong> deprived of its only<br />

capable long distance seed disperser.<br />

ACKNOWLEDGEMENTS<br />

We would like to acknowledge QMM (QIT Madagascar M<strong>in</strong>erals) for provid<strong>in</strong>g logistics and<br />

<strong>in</strong>frastructure at the campsite. In particular we thank Manon V<strong>in</strong>celette, Jean-Baptiste<br />

Ramanamanjato, Laurent Randrihasipara of the QMM Environmental and Conservation Team and<br />

Prof. Dr. Jörg Ganzhorn (University of Hamburg) for their support <strong>in</strong> this research. We are very<br />

grateful to Dr. Johny Rabenantoandro of Missouri Botanical Garden (Antananarivo) for assistance<br />

with the identification of the plant species. We also thank Prof. Paul A. Racey (Univ. Aberdeen) for<br />

provid<strong>in</strong>g important literature and for his extensive revisions and useful suggestions. F<strong>in</strong>ally we owe<br />

great thanks to Giuseppe Donati and the <strong>Malagasy</strong> assistants <strong>in</strong> the Sa<strong>in</strong>te Luce campsite, without<br />

them this research would have been a lot harder. This study was carried out under a Collaboration<br />

Agreement between Department of Animal Biology and Department of Anthropology of the<br />

University of Antananarivo and the Institute of Zoology of Hamburg University and QMM. First<br />

author is supported by a Research Assistantship of the Belgian Fund for Scientific Research,<br />

Flanders (FWO). We thank the Flemish Government for structural support to the CRC of the RZSA.<br />

100


Coracopsis nigra<br />

The feed<strong>in</strong>g ecology of Coracopsis nigra<br />

(Psittacidae) <strong>in</strong> the <strong>littoral</strong> <strong>forest</strong> of Sa<strong>in</strong>te<br />

Luce (south-east Madagascar)<br />

AN BOLLEN, LINDA VAN ELSACKER<br />

OSTRICH (SUBMITTED)<br />

ABSTRACT<br />

This paper describes the diet and feed<strong>in</strong>g ecology of the parrot species Coracopsis nigra<br />

<strong>in</strong> the <strong>littoral</strong> <strong>forest</strong> of Sa<strong>in</strong>te Luce, south-eastern Madagascar. Forty plant species were<br />

recorded be<strong>in</strong>g eaten by these parrots over a 14-month study period. C. nigra is an<br />

opportunistic feeder and eats a large variety of flowers (10%), ripe and unripe seeds<br />

(68%) and fruits (22%). Of all fruit species consumed, the majority (70%) of fruits are also<br />

eaten <strong>in</strong> unripe condition, which may lead to an advantage over potential food<br />

competitors. Detailed observation of their feed<strong>in</strong>g behaviour shows that generally seeds<br />

are destroyed, and as such they are considered primarily as pre-dispersal seed<br />

predators. As granivores their role <strong>in</strong> the ecosystem is rather negative but the impact of<br />

this damage seems to be limited due to high dietary overlap with seed dispers<strong>in</strong>g<br />

<strong>frugivore</strong>s. Among granivores, the different seed predators seem to have occupied<br />

separate trophical niches based on fruit and seed size and weight, feed<strong>in</strong>g height and<br />

activity pattern.<br />

INTRODUCTION<br />

Worldwide, frugivorous animals play an important role <strong>in</strong> <strong>forest</strong> dynamics <strong>in</strong> terms of seed<br />

dispersal and <strong>forest</strong> regeneration. In Madagascar, most studies <strong>in</strong> this field have focused<br />

on the dispersal role of lemurs (Ralisoamalala 1996; Scharfe and Schlund 1996; Dew and<br />

Wright 1998; Overdorff and Strait 1998; Birk<strong>in</strong>shaw 1999; Ganzhorn et al. 1999a). At<br />

present, hardly any <strong>in</strong>formation is available on the potential role of the frugivorous bird<br />

species <strong>in</strong> seed dispersal or predation. The <strong>Malagasy</strong> <strong>frugivore</strong> avifauna is strik<strong>in</strong>gly<br />

depauperate compared with cont<strong>in</strong>ental areas and other large tropical islands (Flem<strong>in</strong>g et<br />

al. 1987). In the <strong>littoral</strong> <strong>forest</strong> of Sa<strong>in</strong>te Luce (south-east Madagascar), there are only six<br />

frugivorous bird species be<strong>in</strong>g Streptopelia picturata or the <strong>Malagasy</strong> Turtledove, Treron<br />

australis or <strong>Malagasy</strong> Green Pigeon, Alectroenas madagascariensis or Madagascar Blue<br />

Pigeon (Columbidae), Hypsipetes madagascariensis or Madagascar Bulbul<br />

(Pycnonotidae) and two species of Coracopsis (Psittacidae), C. nigra, the Lesser Vasa<br />

Parrot, and C. vasa, the Greater Vasa Parrot. In this study, we focus on one of the largest<br />

frugivorous bird species <strong>in</strong> the region; Coracopsis nigra for which little <strong>in</strong>formation is<br />

available on its feed<strong>in</strong>g ecology (Hampe 1998; Dowsett 2000). Many <strong>Malagasy</strong> animal<br />

species today are under threat of ext<strong>in</strong>ction, and this may have a major impact on<br />

ecosystems. This is particularly relevant for the <strong>littoral</strong> <strong>forest</strong>, as only small <strong>forest</strong><br />

remnants have survived due to human degradation of this habitat and its subsequent<br />

fragmentation. These <strong>forest</strong> fragments may not be large enough for certa<strong>in</strong> animal<br />

101


Chapter 3b<br />

species to persist (Ganzhorn et al. 2000) and therefore, it is critical to identify effective<br />

seed dispersers <strong>in</strong> this ecosystem that might aid <strong>forest</strong> regeneration. Conversely we also<br />

want to ga<strong>in</strong> <strong>in</strong>sight <strong>in</strong>to seed predation and the traits that determ<strong>in</strong>e food selection of the<br />

different granivorous species.<br />

METHODS<br />

Between November 1999 and February 2001, field data were collected by the first author<br />

on the feed<strong>in</strong>g ecology of Coracopsis nigra <strong>in</strong> the 377-ha <strong>littoral</strong> <strong>forest</strong> fragment of Sa<strong>in</strong>te<br />

Luce, called S9 (24º45'S 47º11'E), located <strong>in</strong> extreme southeast Madagascar. For a<br />

detailed description of the study site, I refer to Bollen and Van Elsacker (2002a, Chapter<br />

3a). Coracopsis species are naturally <strong>forest</strong> birds but also <strong>in</strong>habit certa<strong>in</strong> degraded areas<br />

(Dowsett 2000). Both C. nigra and C. vasa were observed at our site, mostly <strong>in</strong> s<strong>in</strong>gle and<br />

occasionally <strong>in</strong> mixed species formations. However all feed<strong>in</strong>g observations presented <strong>in</strong><br />

this paper are from C. nigra, which is present year-round and <strong>in</strong> high densities. C. vasa<br />

was only observed on few occasions dur<strong>in</strong>g austral summer (December 2000 - January<br />

2001) and seems to migrate <strong>in</strong>to the area sporadically.<br />

Diets were assessed by direct feed<strong>in</strong>g observations through tree watches (36hwatches)<br />

and more casual observations while walk<strong>in</strong>g along transects. Feed<strong>in</strong>g and<br />

handl<strong>in</strong>g behaviour were described <strong>in</strong> detail <strong>in</strong> order to determ<strong>in</strong>e the role of C. nigra <strong>in</strong><br />

seed dispersal and/or predation. More <strong>in</strong>direct methods such as faecal analyses and<br />

identify<strong>in</strong>g fruit trap contents further contributed to the completion of the diet list (for<br />

details on methodology, see Bollen et al., Chapter 2). Parrots’ bill marks on the rejected<br />

fruit parts are easily recognizable and analyses of Coracopsis’ faecal samples enabled us<br />

to evaluate the condition of seeds after gut passage.<br />

All fruit<strong>in</strong>g species encountered dur<strong>in</strong>g the study site were characterised accord<strong>in</strong>g to<br />

the follow<strong>in</strong>g variables; fruit type (berry, drupe, capsule, other), pulp type (juicy, fibrous,<br />

none), seed protection (none, hard seed coat), seed number, fruit and seed length and<br />

weight. The latter were measured with callipers and a ‘Kernbalans NM60’ scale with a<br />

precision of 0.01mm and 0.01g respectively. <strong>Fruit</strong>s were considered ripe when seeds<br />

were fully developed, often co<strong>in</strong>cid<strong>in</strong>g with a change <strong>in</strong> colour, odour or texture.<br />

Most of the variables measured have highly skewed distributions so the median value<br />

is given <strong>in</strong>stead of the mean. For the same reason non-parametric statistics were used,<br />

such as Spearman rank correlation, Kruskal Wallis test and Cont<strong>in</strong>gency tables.<br />

Statistical significance was accepted for α≤0.05 for all tests. All statistical tests were<br />

carried out accord<strong>in</strong>g to Siegel (1956) with the statistical software SAS for W<strong>in</strong>dows.<br />

RESULTS<br />

C. nigra was recorded feed<strong>in</strong>g on 40 plant species (36 genera, 25 families; Table 1), of<br />

which 39 are endemic and one, Psidium guajava, is exotic. Three plant species,<br />

Symphonia sp., Rhopalocarpus coriaceus and Eugenia sp. are exploited for their flowers<br />

only, while both the flowers and fruits of Polyscias sp. are eaten. All other plant species<br />

listed <strong>in</strong> Table 1 are visited for their fruits or seeds. Summariz<strong>in</strong>g, 68% of the food<br />

species served as a seed source, 22% are eaten for seed and pulp and 10% for flowers<br />

(Table 1).<br />

The range of plant species consumed by C. nigra <strong>in</strong>cludes berries (31%) and drupes<br />

(47%) as well as capsules and other fruit types (22%). Most consumed fruits have a juicy<br />

102


Coracopsis nigra<br />

fruit pulp (70%) but the parrots also consume fibrous (8%) as well as fruits without pulp<br />

(22%). The majority of fruits is one-seeded (57%), but several multi-seeded fruits are<br />

consumed as well. Fifty-four percent of all species have a hard kernel to protect the seed,<br />

while 46% has none. The median fruit length is 12mm (quartiles: 8-17mm) and median<br />

fruit weight is 0.6g (quartiles 0.2-1.0g). For seeds, median length is 7mm (4-11mm) and<br />

weight 0.1g (0.0-0.3g). Of all the fruit species consumed (N=37), 13 (35%) are taken both<br />

ripe and unripe, 13 (35%) <strong>in</strong> an unripe state only, and 11 (30%) only when ripe.<br />

T<strong>in</strong>a thouarsiana (N obs.=13; Sap<strong>in</strong>daceae) and Macaranga perrieri (N obs.=8;<br />

Euphorbiaceae) are important food items that are eaten from November through January,<br />

when overall fruit resources are abundant <strong>in</strong> the <strong>littoral</strong> <strong>forest</strong> (Table 1, Fig. 1). On the<br />

contrary, Bembicia uniflora (N obs.=28; Flacourtiaceae) fruits dur<strong>in</strong>g the period of fruit<br />

scarcity and is probably the ma<strong>in</strong> food source with<strong>in</strong> the diet of C. nigra. The parrots<br />

consume both ripe and unripe seeds of this plant species for at least six consecutive<br />

months. Another essential food source for numerous frugivorous species among which C.<br />

nigra is Syzigium sp.2 (N obs.=18; Myrtaceae), which also fruits when fruit availability is<br />

low. This plant species is very common and abundantly present <strong>in</strong> the <strong>littoral</strong> <strong>forest</strong> and<br />

may be considered a keystone species for numerous <strong>frugivore</strong>s <strong>in</strong> this ecosystem. When<br />

compar<strong>in</strong>g the phenology of C. nigra’s food items with the overall phenology of the <strong>forest</strong>,<br />

they are not at all correlated (rs=-0.22, P=0.48, N=13). Thus the patterns of fruit<br />

abundance and scarcity with<strong>in</strong> the ecosystem are not reflected with<strong>in</strong> the diet of the<br />

parrots. The monthly dietary diversity of C. nigra (median 18 species/month) seems to be<br />

quite stable throughout the year with a little less species eaten from June through<br />

October 2000.<br />

Our observations revealed that <strong>in</strong> general C. nigra is a very wasteful eater: it eats<br />

quickly and drops a considerable quantity of consumable food. <strong>Fruit</strong>s are generally held<br />

by one foot and cut <strong>in</strong> half with the bill. Seeds are often only partially eaten, while pulp or<br />

fruit husks are discarded. Bill marks on discarded pulp show that only the seeds are<br />

eaten. In the few faecal samples collected (N=6), only parts of the seed coat could be<br />

recovered. The seed itself was digested entirely.<br />

Of all selected fruit items, the majority (N=33) is consumed by seed dispersers as<br />

well (Table 1). The four rema<strong>in</strong><strong>in</strong>g species are actually not even zoochorous but rather<br />

autochorous fruits. Nearly half (N=17) of the food species are consumed by other seed<br />

predators as well such as Streptopelia picturata, Rattus rattus and Eliurus webbi (Table<br />

1). When compar<strong>in</strong>g fruit and seed sizes with<strong>in</strong> the diet of turtledoves, parrots and<br />

rodents, there is a significant size effect that separates these three groups of seed<br />

predators (Table 2). S. picturata selects significantly smaller and lighter fruits and seeds<br />

than C. nigra, which <strong>in</strong> turn eats fruits that are smaller than those consumed by the<br />

rodents. The number of seeds does not differ among these species. Apparently all<br />

granivorous species select ma<strong>in</strong>ly one-seeded fruits. Other traits determ<strong>in</strong><strong>in</strong>g food<br />

selection for granivores may be fruit type, pulp type and seed protection. There is no<br />

significant difference for any one of these traits however certa<strong>in</strong> trends are clear (Table<br />

2). For example S. picturata eats more berries while C. nigra and the rodents clearly<br />

select more drupes, which then further expla<strong>in</strong>s the high proportion of fruits with seed<br />

protection <strong>in</strong> their diet. As far as pulp type, C. nigra eats several fruits with no pulp while<br />

this is rarely the case for the other seed predators.<br />

103


Chapter 3b<br />

Table 1. Diet list of C. nigra with <strong>in</strong>dication of the plant part eaten (S: seed, P: pulp, fl: flower),<br />

the condition when eaten (UR: unripe, R: ripe), month when observed eaten (ME; 1: January,<br />

2: February , etc.) and months when available (MA) as food source. ‘Evid.’ refers to the method<br />

by which data were obta<strong>in</strong>ed (S: systematic tree watches, O: opportunistic observations,<br />

T: feed<strong>in</strong>g marks, F: faecal dropp<strong>in</strong>gs). Other consumer species are also <strong>in</strong>dicated for each<br />

plant species, subdivided <strong>in</strong> seed dispersers and seed predators (L: lemurs, Pr: Pteropus rufus,<br />

Am: Alectroenas madagascariensis , Ta: Treron australis , Hm: Hypsipetes madagascariensis ,<br />

Sp: Streptopelia picturata , R: rodents, Ew : Eliurus webbi , Rr: Rattus rattus ). The follow<strong>in</strong>g<br />

fruit traits are given as well; fruit and pulp type, seed protection, seed number (NS), fruit and seed<br />

length (<strong>in</strong> mm) and weight (<strong>in</strong> g).<br />

Family name Scientific name<br />

Part Ripeness<br />

eaten<br />

ME MA Evid.<br />

Anacardiaceae Poupartia chapelieri S UR 4 11-4 SOT<br />

Annonaceae Polyalthia madagascariensis S R 4 11-5 SOT<br />

Apocynaceae Cabucala madagascariensis S UR 2 whole year OT<br />

Araliaceae Polyscias sp. fl,PS R 8 7-9 SO<br />

Schefflera ra<strong>in</strong>aliana P,S R 5 4-5 O<br />

Arecaceae Dypsis prestoniana S UR & R 3 2-5 ST<br />

Clusiaceae Symphonia sp. fl 12 12-3 O<br />

Combretaceae Term<strong>in</strong>alia fatraea P,S UR & R 3 2-6 ST<br />

Connaraceae Agelea pentagyna S UR 1 12-1 OT<br />

Ericaceae Vacc<strong>in</strong>ium emirnense P,S R 1 10-3 OT<br />

Erythroxylaceae Erythroxylum buxifolium P,S UR & R 5 2-5 OF<br />

Erythroxylum nitidulum P,S UR & R 8 8 O<br />

Euphorbiaceae Macaranga perrieri S R 11-1 11-2 S<br />

Suregada baronii S UR 5,7 4-11 O<br />

Uapaca <strong>littoral</strong>is S UR 3,8-11 whole year ST<br />

Flacourtiaceae Bembicia uniflora S UR & R 4-9 4-11 O<br />

Homalium louvelianum S UR & R 6,8 6-11 OT<br />

Ludia antanosarum S UR 1-2 12-3 SOT<br />

Icac<strong>in</strong>aceae Apodytes dimidiata S R 4 3-4 ST<br />

Loranthaceae Bakerella ambongoensis S UR 4 3-4 O<br />

Bakerella sp. S UR 12 12-3 O<br />

Myrtaceae Eugenia sp. fl 12 11-12 O<br />

Psidium guajava P,S R 1 1-2 O<br />

Syzygium sp.2 P,S R 4,6 4-7 SOT<br />

Ochnaceae Campylospermum obtusifolium P,S UR & R 2 11-8 O<br />

Oleaceae Jasm<strong>in</strong>um kitch<strong>in</strong>gii S R 6,9 3-6, 9-11 O<br />

Noronhia cf. lanceolata S UR & R 8 8-11 O<br />

Noronhia sp. S UR 7,10 4-1 OT<br />

Olea sp. S R 12 11-1 ST<br />

Rubiaceae Cantium variistipula S UR 8,12 4-9 OT<br />

Mor<strong>in</strong>da cf. umbelluligera S UR & R 7 3-7 O<br />

Mor<strong>in</strong>da rigida S UR & R 1 12-1 O<br />

Rutaceae Vepris elliotii S UR 4 whole year SO<br />

Vepris fitorav<strong>in</strong>a S UR & R 2 2-3 ST<br />

Sap<strong>in</strong>daceae T<strong>in</strong>a thouarsiana S UR & R 11-1 6-3 SOTF<br />

T<strong>in</strong>opsis conjugata S UR & R 12 10-3 OT<br />

Sapotaceae Sideroxylon beguei var. saboureaui S UR 11 11-3 OT<br />

Sarcolaenaceae Sarcolaena multiflora S UR 3-4 12-5 OT<br />

Sphaerosepalaceae Rhopalocarpus coriaceus fl 3-4 2-5 O<br />

Strelitziaceae Ravenala madagascariensis S R 4,8 4-9 O<br />

104


Coracopsis nigra<br />

Table 1 Cont<strong>in</strong>ued<br />

Other consumer species<br />

Dispersers Predators<br />

<strong>Fruit</strong><br />

type<br />

Pulp<br />

type<br />

Seed<br />

protection<br />

NS<br />

<strong>Fruit</strong> <strong>Fruit</strong> Seed Seed<br />

length weight length weight<br />

L R drupe juicy hard coat 1 15.43 0.54 15.24 0.36<br />

L, Pr, Hm, Am R berry juicy hard coat 1 12.22 0.30 7.80 0.12<br />

L - drupe juicy hard coat 3 9.16 0.10 37.97 1.11<br />

L, Pr, Am, Ta, Hm Sp, R drupe juicy none 1 5.03 0.04 3.64 0.01<br />

L, Am, Hm - drupe juicy hard coat 2 4.73 0.08 2.85 0.01<br />

L, Pr, Am, Hm Sp berry juicy hard coat 1 14.85 0.59 12.92 0.34<br />

L, Pr, Am R drupe fibrous hard coat 1 13.19 0.37 8.12 0.13<br />

- - other no pulp none 1 16.89 1.05 12.58 0.32<br />

L, Pr, Ta, Hm - berry juicy hard coat 100 11.51 0.84 1.45 0.00<br />

L, Hm - drupe juicy hard coat 1 7.29 0.07 6.86 0.03<br />

L, Am R drupe juicy none 1 10.97 0.28 8.25 0.09<br />

L, Hm - drupe no pulp hard coat 1 4.55 - 3.06 0.03<br />

- Sp capsule no pulp none 4 9.47 0.40 3.95 0.04<br />

L, Pr R, Ew, Rr drupe juicy hard coat 3 23.63 4.86 15.03 0.52<br />

L - capsule no pulp none 1 5.34 0.01 - -<br />

- - capsule no pulp none 1 2.35 0.02 - -<br />

L, Pr - berry juicy none 6 12.47 1.04 3.22 2.98<br />

L, Am, Ta, Hm R drupe juicy hard coat 1 12.34 0.45 10.61 0.23<br />

L, Pr - berry juicy none 1 8.03 0.14 4.61 0.01<br />

L, Pr, Am, Hm - berry juicy none 1 15.86 0.66 10.35 0.25<br />

L - berry juicy none - 24.25 4.60 - -<br />

L, Pr, Am, Hm Sp berry juicy none 1 9.55 0.55 6.56 0.31<br />

Am, Ta Sp drupe juicy none 1 28.87 0.25 - -<br />

L Sp berry juicy none 1 6.49 0.20 4.07 0.07<br />

Hm - drupe juicy hard coat 3 7.06 0.21 3.39 0.02<br />

L R, Rr drupe fibrous hard coat 1 20.53 1.79 18.28 -<br />

L R, Rr, Ew drupe juicy hard coat 1 16.98 0.90 15.85 0.80<br />

L, Pr - drupe juicy hard coat 2 7.80 0.31 6.30 0.06<br />

L - berry juicy hard coat 20 11.94 1.75 5.31 0.01<br />

L - berry juicy hard coat 100 26.97 9.30 7.23 0.04<br />

L, Pr, Ta - drupe fibrous none 4 10.20 0.82 7.46 0.08<br />

L R drupe juicy hard coat 2 8.47 8.15 6.76 0.16<br />

L Sp, Rr, Ew other no pulp none 1 17.88 0.74 3.79 0.03<br />

L - other no pulp none 1 20.01 1.79 12.02 0.66<br />

L, Pr - berry juicy none 18 28.15 3.92 6.57 0.02<br />

L, Pr Sp capsule juicy hard coat 5 14.11 0.67 2.73 0.01<br />

- - capsule no pulp hard coat 6.93 0.25<br />

105


Chapter 3b<br />

N species fruit<strong>in</strong>g<br />

Fig 1. An overview of the overall phenology at Sa<strong>in</strong>te Luce is given for the period January 2000-<br />

January 2001. The number of species with ripe and unripe fruits is given per month. The number of<br />

C. nigra food species fruit<strong>in</strong>g is also shown.<br />

DISCUSSION<br />

To date, little <strong>in</strong>formation is available on the diet of the Vasa Parrots. The work of Dowsett<br />

(2000), mostly on C. nigra, is the most extensive study of Coracopsis carried out at ten<br />

different <strong>Malagasy</strong> study sites, <strong>in</strong>volv<strong>in</strong>g humid low-altitude and mid-altitude ra<strong>in</strong><strong>forest</strong>s <strong>in</strong><br />

the east, dry deciduous <strong>forest</strong> <strong>in</strong> the west and sp<strong>in</strong>y <strong>forest</strong> <strong>in</strong> the south. Their feed<strong>in</strong>g data<br />

<strong>in</strong>clude more than 30 species from 23 plant families, ma<strong>in</strong>ly endemic species. As <strong>in</strong> our<br />

study, most (60%) of the food species are exploited for seeds, 20% for flowers and 8%<br />

for pulp. The rema<strong>in</strong>der are eaten for young leaves and plant buds. Their dietary list from<br />

humid eastern <strong>forest</strong> sites shows some taxonomic resemblance with ours at genus level<br />

(Uapaca, Psidium, Macaranga, Dypsis, and Poupartia) and at species level (prey<strong>in</strong>g on<br />

seeds of Ravenala madagascariensis). Similarity was found as well with the observations<br />

of Goodman et al. (1997b) of C. nigra feed<strong>in</strong>g on Macaranga sp., Sarcolaena multiflora,<br />

buds of Symphonia sp., blue pericarps of Ravenala madagascariensis and the seeds of<br />

Ficus sp. and Uapaca sp. <strong>in</strong> the South-eastern Marosohy <strong>forest</strong>. Hampe (1998) observed<br />

C. nigra for one month <strong>in</strong> the western dry deciduous <strong>forest</strong> of Kir<strong>in</strong>dy. Eight food species<br />

were recognized; four <strong>in</strong>volved flowers, three fruits and seeds, and one young leaf<br />

shoots. Two more studies (Ratsirarson and Silander 1997; Böhn<strong>in</strong>g-Gaese et al. 1999)<br />

106<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Phenology ripe fruits<br />

Phenology unripe fruits<br />

Coracopsis food items<br />

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan


Coracopsis nigra<br />

Table 2. Morphological variables with<strong>in</strong> the diet of Coracopsis nigra , Streptopelia<br />

picturata and the rodents (<strong>in</strong>clud<strong>in</strong>g E. webbi and Rattus rattus ) are shown.<br />

A comparison is made for the cont<strong>in</strong>uous variables through Kruskal Wallis test and<br />

for the class variables through cont<strong>in</strong>gency tables.<br />

C. nigra S. picturata rodents Kruskal Wallis<br />

median (N=37) median (N=13) median (N=50) H df P<br />

Number of seeds 1 1 1 0.13 2 0.93<br />

<strong>Fruit</strong> length 12.28 9.55 19.04 22.35 2


Chapter 3b<br />

behaviour of parrots worldwide, many authors agree on their role as seed predators<br />

(Janzen 1981; Jordano 1983; Clout 1989; Galetti 1993; Sa<strong>in</strong>i et al. 1994; Pizo et al. 1995;<br />

Corlett 1998; Renton 2001). C. nigra and possibly also C. vasa can certa<strong>in</strong>ly be<br />

considered as granivores <strong>in</strong> Sa<strong>in</strong>te Luce rather than <strong>frugivore</strong>s, as they are so often<br />

referred to <strong>in</strong> literature. As such they vary from other seed predators <strong>in</strong> many different<br />

aspects. C. nigra is a pre-dispersal seed predator, which feeds <strong>in</strong> the tree crown only<br />

dur<strong>in</strong>g daylight on both ripe and unripe fruits, which are medium <strong>in</strong> size. It can further<br />

tolerate high tann<strong>in</strong> contents and eats non-zoochorous fruits as well without any fruit pulp<br />

at all. S. picturata is a post-dispersal seed predator which eats small seeds of juicy fruits<br />

on the ground only, either with a protective seed coat or not. The rodents both feed on<br />

the ground as <strong>in</strong> the tree at night, but most often carry seeds away to a feed<strong>in</strong>g site. They<br />

eat the largest seeds of mostly drupes and may occasionally be <strong>in</strong>volved <strong>in</strong> secondary<br />

seed dispersal as well. Nevertheless they can be ma<strong>in</strong>ly considered as post-dispersal<br />

seed predators for the majority of consumed fruit species. As shown <strong>in</strong> Figure 1 C. nigra<br />

has an almost constant year-round food availability as unripe fruits <strong>in</strong> particular stay long<br />

periods on the tree before ripen<strong>in</strong>g. On the other hand seeds stay longer periods<br />

available on the ground than <strong>in</strong> the tree, which is favourable for both the rodents and S.<br />

picturata. So, apparently there is a good niche separation among all seed predators <strong>in</strong><br />

this ecosystem, which is ma<strong>in</strong>ly based on fruit and seed size, feed<strong>in</strong>g height and activity<br />

pattern.<br />

In conclusion, C. nigra destroys seeds of numerous endemic plant species <strong>in</strong> Sa<strong>in</strong>te Luce<br />

and should therefore be considered a seed predator <strong>in</strong> this ecosystem. In general, they<br />

split and thus destroy the seed with their bill, eat it and reject the surround<strong>in</strong>g pulp. Seed<br />

dispersal does occasionally occur when parrots fly away from the parent plant, dropp<strong>in</strong>g<br />

several <strong>in</strong>tact fruits or the rema<strong>in</strong>s of soft and juicy berries. Zoochorous tree species have<br />

evolved phenological, morphological and biochemical flower, fruit and seed<br />

characteristics to attract efficient poll<strong>in</strong>ators and seed dispersers, which can assure<br />

successful plant regeneration. However, the behaviour of granivorous animals offers the<br />

plant no apparent advantage. Nevertheless, most food species consumed by these<br />

parrots are also eaten by other <strong>frugivore</strong>s, which act as seed dispersers. Dietary overlap<br />

among granivores is limited and the different seed predators seem to occupy separate<br />

trophical niches <strong>in</strong> this ecosystem.<br />

ACKNOWLEDGEMENTS<br />

We would like to thank QMM (QIT Madagascar M<strong>in</strong>erals) for provid<strong>in</strong>g logistics and <strong>in</strong>frastructure at<br />

the study site. We are very grateful to Steve Goodman and Jörg Ganzhorn for their extensive<br />

revisions and useful suggestions. This study was carried out under a Collaboration Agreement<br />

between the Department of Animal Biology and the Department of Anthropology of the University of<br />

Antananarivo, the Institute of Zoology of Hamburg University and QMM. The first author was<br />

supported by a grant from the Belgian Fund for Scientific Research, Flanders (FWO). We thank the<br />

Flemish Government for its structural support for the Centre of Research and Conservation (CRC)<br />

of the Royal Zoological Society of Antwerp (RZSA).<br />

108


<strong>Malagasy</strong> proverb<br />

Draw<strong>in</strong>g of fruits from Sa<strong>in</strong>te Luce © An Bollen 2003<br />

’Isavasavana ny tahony,<br />

tiana hahitana ny fotony’<br />

If someone explores the trunk of a tree,<br />

it means he wants to see the roots


Intersite comparison<br />

<strong>Fruit</strong> characteristics <strong>in</strong> a dry deciduous<br />

and a humid <strong>littoral</strong> <strong>forest</strong> of Madagascar:<br />

evidence for selection pressure through<br />

abiotic constra<strong>in</strong>ts rather than through<br />

co-evolution with lemurs<br />

as seed dispersers.<br />

AN BOLLEN, GIUSEPPE DONATI, JOANNA FIETZ,<br />

DOROTHEA SCHWAB, JEAN-BAPTISTE RAMANAMANJATO,<br />

LAURENT RANDRIHASIPARA, LINDA VAN ELSACKER ,<br />

JÖRG GANZHORN<br />

FRUITS AND FRUGIVORES (L DEW, J-P BOUBLI)<br />

(IN PRESS)<br />

ABSTRACT<br />

<strong>Fruit</strong> and seed characteristics are compared between a dry deciduous <strong>forest</strong> <strong>in</strong> the west<br />

and a humid <strong>littoral</strong> <strong>forest</strong> <strong>in</strong> the south-east of Madagascar to discrim<strong>in</strong>ate between the<br />

role of abiotic factors (humidity, climate, soil characteristics) and frugivorous vertebrates<br />

for the evolution of morphological and biochemical fruit characteristics. The sites differed<br />

<strong>in</strong> abiotic conditions but conta<strong>in</strong> very similar communities of frugivorous vertebrates. <strong>Fruit</strong><br />

selection by two lemur species (Eulemur fulvus and Cheirogaleus medius) that are<br />

important for seed dispersal and that are present at both study sites, was compared<br />

between sites to exam<strong>in</strong>e fixed selection criteria that could give rise to possible<br />

co-evolution between <strong>frugivore</strong>s and their fruit species on the one hand or to dietary<br />

flexibility of the <strong>frugivore</strong>s on the other hand. Our results show that most fruit<br />

characteristics differ significantly between study sites. Food selection by both lemur<br />

genera <strong>in</strong> relation to morphological and biochemical fruit characteristics co-varies closely<br />

with their representation at a given site. These results <strong>in</strong>dicate that morphological and<br />

biochemical characteristics are more likely the result of abiotic conditions rather than of<br />

<strong><strong>in</strong>teractions</strong> between frugivorous lemurs and their food.<br />

INTRODUCTION<br />

The study of <strong><strong>in</strong>teractions</strong> between fruits and their vertebrate consumers has generated a<br />

great deal of <strong>in</strong>terest <strong>in</strong> recent decades, especially <strong>in</strong> tropical <strong>forest</strong>s where most plant<br />

species depend on frugivorous animals for dispersal of their seeds (see Willson et al.<br />

1989 for a review). Attract<strong>in</strong>g <strong>frugivore</strong>s is crucial for these plants <strong>in</strong> order to ensure<br />

reproduction by seed dispersal (Howe and Smallwood 1982). Morphological fruit<br />

characteristics, such as colour, pulp richness, hardness of the shell, seed size, and<br />

patterns of spatio-temporal distribution have been <strong>in</strong>terpreted as co-adapted features that<br />

govern animals' choice of fruit species.<br />

111


Chapter 4<br />

Most seed dispersal studies and reviews of correlations between <strong>frugivore</strong> food<br />

selection and fruit characteristics have produced little empirical support for tight<br />

co-evolutionary relationships (Howe and Smallwood 1982; Herrera 1984; Howe 1984;<br />

Gautier-Hion et al. 1985; Fisher and Chapman 1993; Chapman 1995; Erikkson and<br />

Ehrlen 1998; Lambert and Garber 1998), as most plant species do not depend on one<br />

s<strong>in</strong>gle species of disperser. In most cases a range of taxonomically dist<strong>in</strong>ct <strong>frugivore</strong>s<br />

may consume and disperse the seeds of the same fruit<strong>in</strong>g species (Gautier-Hion et al.<br />

1985; Herrera 1986; Ganzhorn 1988; Chapman 1995; Chapman and Chapman 1996;<br />

Bollen et al., Chapter 2, 3). <strong>Fruit</strong> traits are likely to evolve <strong>in</strong> response to other selection<br />

pressures or may perform more than one function (Willson and Whelan 1990). Data from<br />

the fossil record suggest that morphological fruit traits often have rema<strong>in</strong>ed relatively<br />

constant for millions of years (Fisher and Chapman 1993; Chapman 1995).<br />

Primates represent a major group of mammalian seed dispersers <strong>in</strong> the tropics.<br />

Studies have demonstrated that many primate species rely heavily on fruit and that they<br />

represent a large component of the <strong>frugivore</strong> biomass (25-40%, Terborgh 1983; Bourlière<br />

1985; Chapman 1995; Julliot 1996; Chapman and Onderdonk 1998; Lambert and Garber<br />

1998). In Madagascar, lemurs have been postulated to be important seed dispersers<br />

(Ralisoamalala 1996; Scharfe and Schlund 1996; Dew and Wright 1998; Overdorff and<br />

Strait 1998; Birk<strong>in</strong>shaw 1999, 2001; Ganzhorn et al. 1999a) <strong>in</strong> particular s<strong>in</strong>ce the guild of<br />

frugivorous birds and bats is depauperate <strong>in</strong> this island as compared to other cont<strong>in</strong>ents<br />

(Flem<strong>in</strong>g et al. 1987; Wright and Mart<strong>in</strong> 1995; Goodman and Ganzhorn 1997; Wright<br />

1997a; Böhn<strong>in</strong>g-Gaese et al. 1999; Ganzhorn et al. 1999a).<br />

In this study, we <strong>in</strong>vestigate whether morphological and biochemical fruit<br />

characteristics can be l<strong>in</strong>ked to abiotic conditions or whether there is evidence for<br />

co-evolution between these fruit characteristics and the ma<strong>in</strong> consumers that are <strong>in</strong>volved<br />

<strong>in</strong> seed dispersal, i.e. Eulemur fulvus and Cheirogaleus medius. We selected two types of<br />

<strong>forest</strong> <strong>in</strong> Madagascar grow<strong>in</strong>g under very different climatic and edaphic conditions:<br />

evergreen <strong>littoral</strong> wet <strong>forest</strong> and dry deciduous <strong>forest</strong>. Both sites had a similar<br />

complement of <strong>frugivore</strong> species, hav<strong>in</strong>g six genera and five species <strong>in</strong> common.<br />

The follow<strong>in</strong>g predictions were tested:<br />

1. If fruit characteristics evolved ma<strong>in</strong>ly <strong>in</strong> response to abiotic conditions we expect<br />

different morphological and biochemical fruit characteristics at the two sites<br />

2. If fruit characteristics co-evolved <strong>in</strong> response to selective pressure of consumers<br />

we expect that characteristics of food items at both sites do not differ, as the guild<br />

of frugivorous vertebrates is very similar at both sites.<br />

3. The second prediction listed above requires that selection criteria of <strong>frugivore</strong>s<br />

are species-specific. We therefore predict that these consumers will have a<br />

specialised diet irrespective of fruit availability, as is supposed by co-evolution.<br />

112


Kir<strong>in</strong>dy<br />

Antananarivo<br />

Fort-Dauph<strong>in</strong><br />

Fig. 1. Location of the study sites.<br />

Madagascar<br />

Morondava<br />

Sa<strong>in</strong>te Luce<br />

Intersite comparison<br />

METHODS<br />

Study Sites<br />

Data were collected at two sites: Sa<strong>in</strong>te Luce (STL) and Kir<strong>in</strong>dy/CFPF (KIR).<br />

In STL the study site is a 377-ha fragment of humid <strong>littoral</strong> <strong>forest</strong> located <strong>in</strong> southeastern<br />

Madagascar, 50km north of Fort-Dauph<strong>in</strong>/Tolagnaro at 24º45'S 47º11'E. Data<br />

collection was carried out by AB and GD between November 1999 and February 2001<br />

(Fig. 1, Donati 2002). From January 2000 through December 2000 annual ra<strong>in</strong>fall was<br />

2,480 mm with four dist<strong>in</strong>ct seasons; hot-wet (December-February), hot-dry (March-May),<br />

cold-wet (June-August) and transitional-dry (September-November) (Donati 2002), but<br />

substantial <strong>in</strong>ter-annual variation has been recorded (QIT Madagascar M<strong>in</strong>erals, unpubl.<br />

data). Mean temperature is about 23°C and ranges from 12°C to 33°C. The <strong>littoral</strong> <strong>forest</strong><br />

of STL is characterised by a relatively open or non-cont<strong>in</strong>uous canopy, which is 6 to 12m<br />

<strong>in</strong> height with emergents of up to 20 m (Lewis Environmental Consultants 1992a). The<br />

diameter at breast height (DBH) of trees rarely exceeds 30-40cm (Rabevohitra et al.<br />

1996). Littoral <strong>forest</strong> grows on sandy soils and occurs with<strong>in</strong> 2-3km of the coast at an<br />

altitude of 0-20m (Dumetz 1999).<br />

The <strong>forest</strong> of Kir<strong>in</strong>dy/CFPF is a <strong>forest</strong>ry concession of the Centre Formation<br />

Professionnelle Forestière de Morondava at 20°04’S 44°40’E, some 60km north of<br />

Morondava <strong>in</strong> west-Madagascar). It consists of 12,000ha of dry deciduous <strong>forest</strong>. Annual<br />

ra<strong>in</strong>fall averages about 800 mm with a long dist<strong>in</strong>ct dry season from April to October<br />

when most trees lose their leaves. Most ra<strong>in</strong> falls between December and February.<br />

113


Chapter 4<br />

Mean temperature is around 24.7°C and relative humidity varies between 58% and 67%<br />

with an average of 63% (Rakotonir<strong>in</strong>a 1996; Sorg and Rohner 1996). The canopy<br />

reaches 10-12m <strong>in</strong> height. Trees with DBH50%) consists of fruits and/or seeds so<br />

they may be considered as possible seed dispersers. Two lemur species were studied <strong>in</strong><br />

more detail for this study. These were Eulemur fulvus rufus <strong>in</strong> KIR and E. f. collaris <strong>in</strong> STL<br />

and Cheirogaleus medius at both sites. These species, particularly E. fulvus, are<br />

supposed to represent very important, if not essential, seed dispersers <strong>in</strong> <strong>Malagasy</strong><br />

<strong>forest</strong>s (Ganzhorn et al. 1999a).<br />

Phenology and pluviometry<br />

In STL a phenological transect with a total of 423 <strong>in</strong>dividual trees belong<strong>in</strong>g to 95 species<br />

and 43 families was set up by AB and GD and monitored between January 2000 and<br />

January 2001. Trees sampled for phenology had a DBH>5cm and an effort was made to<br />

obta<strong>in</strong> five <strong>in</strong>dividuals per species whenever possible. Twice a month, presence or<br />

absence of young leaves, flowers, unripe and ripe fruits were recorded. A Tru-Check Ra<strong>in</strong><br />

Gauge was <strong>in</strong>stalled at the campsite <strong>in</strong> December 1999. It was checked and emptied<br />

each morn<strong>in</strong>g around 06h00. dur<strong>in</strong>g the whole study period. For KIR ra<strong>in</strong>fall and<br />

phenological data were taken from Sorg and Rohner (1996) <strong>in</strong>volv<strong>in</strong>g 80 <strong>in</strong>dividual trees<br />

of 56 species (26 families) monitored over several years (1978-1987). For the present<br />

phenology analysis only large overstory tree species were considered. Small trees,<br />

shrubs, v<strong>in</strong>es and epiphytes were left out <strong>in</strong> order to allow comparison between sites. A<br />

subsample of both phenologies (STL: 54 spp., KIR: 32 spp.) was extracted to <strong>in</strong>clude only<br />

those plant species that had been characterised morphologically (see below).<br />

Plant and fruit characteristics<br />

In STL and KIR fruits of 173 and 171 plant species belong<strong>in</strong>g to 58 and 47 families<br />

Morphological characteristics<br />

Variables used to characterise fruits were:<br />

Growth form of parent plant: large tree, small tree and shrub, others<br />

(<strong>in</strong>clud<strong>in</strong>g herbs, v<strong>in</strong>es and epiphytes);<br />

<strong>Fruit</strong> type: berry, drupe, capsule, pod, samara, synconia, others;<br />

Pulp type: juicy soft, juicy fibrous, dry fibrous, aril, no pulp;<br />

(<strong>in</strong> phenology ‘fleshy’ fruits are characterised as juicy soft, juicy fibrous or arillate; ‘nonfleshy’<br />

fruits are dry fibrous or do not have any pulp);<br />

Colour: yellow-orange, red, purple, brown, green, others (black, grey and white),<br />

(multicoloured fruits were put <strong>in</strong> the category of the most conspicuous colour present);<br />

Odour: absent, present;<br />

114


Table 1. Frugivorous, granivorous and omnivorous vertebrate species possibly <strong>in</strong>volved <strong>in</strong> seed dispersal <strong>in</strong> Sa<strong>in</strong>te Luce<br />

and Kir<strong>in</strong>dy. Diet: F: frugivorous, FG: frugi-granivorous; Ffo: frugi-folivorous; foF: foli-frugivorous; O:omnivorous;<br />

Activity: D: diurnal, N: nocturnal, C: cathemeral; Body mass (<strong>in</strong> g) and Body length (<strong>in</strong> cm) and their potential role as<br />

seed dispersers (D) or seed predators (P) <strong>in</strong> these ecosystems.ND: no data available.<br />

Impact<br />

seeds<br />

Body ab<br />

length<br />

Body a<br />

mass<br />

Activity<br />

Diet<br />

KIR<br />

STL<br />

English name<br />

Scientific name<br />

Family<br />

D<br />

D<br />

D<br />

P<br />

P<br />

32<br />

28<br />

24<br />

35<br />

50<br />

215<br />

ND<br />

45<br />

218<br />

ND<br />

D<br />

D<br />

D<br />

D<br />

D<br />

F<br />

F<br />

F<br />

G<br />

G<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

x<br />

<strong>Malagasy</strong> Green Pigeon<br />

<strong>Malagasy</strong> Blue Pigeon<br />

Madagascar Bulbull<br />

Lesser Vasa Parrot<br />

Greater Vasa Parrot<br />

Treron australis<br />

Alectroenas madagascariensis<br />

Hypsipetes madagascariensis<br />

Coracopsis nigra<br />

AVES<br />

Columbidae<br />

Columbidae<br />

Pycnonotidae<br />

Psitaccidae<br />

Coracopsis vasa<br />

D<br />

23-27<br />

500-750<br />

N<br />

F<br />

x<br />

Madagascar Fly<strong>in</strong>g Fox<br />

Pteropus rufus<br />

MAMMALIA<br />

CHIROPTERA<br />

Pteropodidae<br />

Intersite comparison<br />

PRIMATES<br />

Indridae Propithecus verreauxi<br />

Verreaux's Sifaka<br />

x FoF D 3000 40-47 D,P<br />

Lemuridae Eulemur fulvus collaris Collared Brown Lemur x<br />

F C 2000-2300 40-47 D<br />

Eulemur fulvus rufus<br />

Red-fronted Brown Lemur<br />

x FFo C 1600-2100 45 D<br />

Cheirogaleidae Microcebus mur<strong>in</strong>us<br />

Grey Mouse Lemur<br />

x O N 60 12.5 D<br />

Microcebus berthae<br />

Berthe's Mouse Lemur<br />

x O N 30 12.5 D<br />

Microcebus rufus<br />

Brown Mouse Lemur<br />

x<br />

O N 42 12.5 D<br />

Cheirogaleus major<br />

Greater Dwarf Lemur x<br />

O N 443 25 D<br />

Cheirogaleus medius<br />

Fat-tailed Dwarf Lemur x x O N 119-280 20 D<br />

a<br />

Data from Langrand (1990), Goodman et al. (1997b), Fietz and Ganzhorn (1999), Garbutt (1999), Ganzhorn et al. (1999a), Donati (2002).<br />

b Body length is total length for birds and bats but head/body length for lemurs.<br />

115


Chapter 4<br />

Number of seeds: 1-2, 3-10, 11-50, 50+;<br />

<strong>Fruit</strong> weight: 50g;<br />

<strong>Fruit</strong> length: 30mm;<br />

Seed length: 20mm;<br />

<strong>Fruit</strong> protection: dehiscent, <strong>in</strong>dehiscent with th<strong>in</strong> husk; <strong>in</strong>dehiscent with thick husk;<br />

Seed protection: no protection; seed coat or lignified kernel;<br />

Dispersal type: zoochorous (exo- and endo-) or non-zoochorous <strong>in</strong>clud<strong>in</strong>g anemochorous,<br />

hydrochorous, autochorous.<br />

The characterisations were modified based on the orig<strong>in</strong>al classifications by Gautier-<br />

Hion et al. (1985) and Lambert and Garber (1998). Epiphytes, v<strong>in</strong>es, shrubs, large (>6m)<br />

and small trees (


Intersite comparison<br />

characteristics were analysed with two-way analyses of variance. Data were arcs<strong>in</strong>e<br />

transformed for these analyses. Statistical analyses were run accord<strong>in</strong>g to Siegel (1956)<br />

with the help of SAS and SPSS software.<br />

RESULTS<br />

Climate and phenology<br />

Figure 2 shows phenology and annual precipitation for both study sites. Annual ra<strong>in</strong>fall<br />

was 2,480mm <strong>in</strong> STL and 721mm <strong>in</strong> KIR dur<strong>in</strong>g the study period. The phenological<br />

patterns considered <strong>in</strong> this study differ slightly from the overall pattern at both sites as<br />

published previously (Sorg and Rohner 1996; Donati 2002) because only a subset of the<br />

complete phenological dataset was used for comparison.<br />

In KIR ripe fruits are available year round with a m<strong>in</strong>imum <strong>in</strong> April. ‘Fleshy’ and ‘nonfleshy’<br />

fruit species are equally (50%) represented <strong>in</strong> KIR (Fig. 2). Dur<strong>in</strong>g the dry season<br />

(May through October) non-fleshy fruits predom<strong>in</strong>ate. As <strong>in</strong>dicated before, <strong>in</strong> STL there<br />

are no clearly def<strong>in</strong>ed wet or dry seasons. <strong>Fruit</strong> abundance here is highest from January<br />

through March, rather limited from April through October with a lean period from June to<br />

August. The majority (81%) of fruit species <strong>in</strong> STL are characterised as ‘fleshy’. In<br />

contrast to KIR, the representation of the ‘non-fleshy’ fruits rema<strong>in</strong>s low but fairly constant<br />

(4-7%) <strong>in</strong> STL throughout the year.<br />

Soil conditions<br />

In the upper layer (A horizon) soils are more acid and conta<strong>in</strong> higher concentrations of<br />

organic matter, nitrogen and phosphor <strong>in</strong> STL than <strong>in</strong> KIR (Table 3). Exchange capacity<br />

has not been measured for STL. The situation at STL is similar to the data available for<br />

Ranomafana, an evergreen ra<strong>in</strong><strong>forest</strong> site at higher altitude (Ganzhorn et al. 1999b).<br />

There, growth rate of trees is higher than at Kir<strong>in</strong>dy, probably due to the longer growth<br />

season. However, the probability of fruit<strong>in</strong>g is reduced, <strong>in</strong>dicat<strong>in</strong>g that fruit production is<br />

associated with higher stress for the trees of the evergreen <strong>forest</strong>. It is unclear how these<br />

different constra<strong>in</strong>ts affect the type of fruits produced.<br />

Floristics<br />

Both datasets have 30 families (40%) and 19 genera (10%) <strong>in</strong> common but no tree<br />

species (Table 2). In STL the four most important plant families were Rubiaceae (23<br />

species), Euphorbiaceae (8), Flacourtiaceae (6), and Myrtaceae (6). They accounted for<br />

25% of all species. In KIR Fabaceae (16), Euphorbiaceae (14), Tiliaceae (9), Rubiaceae<br />

(8), and Combretaceae (6) were the five most important plant families. They accounted<br />

for 31% of the species. The representation of these top eight families is not correlated<br />

between the two datasets (rs=0.18; P=0.7, N=8). The representation of large and small<br />

trees, shrubs and other growth forms <strong>in</strong> the samples did not differ between sites (Table<br />

4).<br />

117


Chapter 4<br />

Fig. 2. Monthly fruit availability and ra<strong>in</strong>fall <strong>in</strong> Sa<strong>in</strong>te Luce and Kir<strong>in</strong>dy. Fleshy fruits are fruits<br />

characterised as juicy soft, juicy fibrous or arillate, non-fleshy fruits are dry fibrous or do not have<br />

any pulp.<br />

118<br />

% of sp with ripe<br />

fruits<br />

% of sp with ripe fruits<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Phenology (N=54)<br />

ra<strong>in</strong>fall (2480mm)<br />

Sa<strong>in</strong>te Luce<br />

J F M A M J J A S O N D<br />

Months<br />

Phenology (N=38)<br />

ra<strong>in</strong>fall (721mm)<br />

Kir<strong>in</strong>dy<br />

J F M A M J J A S O N D<br />

Months<br />

non fleshy fruits<br />

fleshy fruits<br />

ra<strong>in</strong>fall<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

Ra<strong>in</strong>fall (mm)<br />

Ra<strong>in</strong>fall (mm)


Intersite comparison<br />

Table 2. Plant families, genera and species sampled <strong>in</strong> Sa<strong>in</strong>te Luce and Kir<strong>in</strong>dy. In bold the<br />

most important plant families per site are <strong>in</strong>dicated. There are 30 plant families <strong>in</strong> common.<br />

L KIR TOT COM STL KIR TOT COM<br />

Families (N = 74) N N N N<br />

Families<br />

N N N N<br />

sp sp gen gen<br />

sp sp gen gen<br />

Anacardiaceae 3 4 4 1 Meliaceae 1 4 6 0<br />

Annonaceae 5 0 2 0 Menispermaceae 1 1 2 0<br />

Apocynaceae 1 3 4 0 Monimiaceae 3 0 1 0<br />

Araceae 1 0 1 0 Moraceae 5 3 3 1<br />

Araliaceae 2 0 1 0 Myricaceae 1 0 1 0<br />

Arecaceae 5 1 2 0 Myristicaceae 2 0 1 0<br />

Asclepiadaceae 0 1 1 0 Myrs<strong>in</strong>aceae 1 0 1 0<br />

Asteraceae 0 2 2 0 Myrtaceae 6 0 3 0<br />

Asteropeiaceae 1 0 1 0 Ochnaceae 1 1 2 0<br />

Bignoniaceae 3 4 5 1 Olacaceae 1 1 2 0<br />

Bombaceae 0 2 1 0 Oleaceae 5 3 4 1<br />

Borag<strong>in</strong>aceae 0 1 1 0 Pandanaceae 3 2 1 1<br />

Burseraceae 1 2 2 0 Passifloraceae 0 2 1 0<br />

Buxaceae 0 1 1 0 Pedaliaceae 0 1 1 0<br />

Canellaceae 1 0 1 0 Physenaceae 1 0 1 0<br />

Capparaceae 1 0 1 0 Pittosporaceae 2 0 1 0<br />

Celastraceae 2 1 3 0 Podocarpaceae 1 0 1 0<br />

Guttiferae 5 1 3 1 Ptaeroxylaceae 0 3 1 0<br />

Combretaceae 1 6 3 1 Rhamnaceae 0 2 2 0<br />

Connaraceae 1 1 1 1 Rubiaceae 23 8 20 2<br />

Dichapetallaceae 2 0 1 0 Rutaceae 3 2 2 1<br />

Ebenaceae 2 4 1 1 Sap<strong>in</strong>daceae 4 2 5 1<br />

Elaeocarpaceae 2 0 1 0 Sapotaceae 2 2 3 0<br />

Ericaceae 1 0 1 0 Sarcolaenaceae 4 2 4 0<br />

Erythroxylaceae 3 1 1 1 Saxifragaceae 2 0 1 0<br />

Euphorbiaceae 8 14 13 1 Scrophulariaceae 0 1 1 0<br />

Fabaceae 3 16 17 0 Simaroubaceae 0 1 1 0<br />

Flacourtiaceae 7 1 6 1 Solanaceae 0 1 1 0<br />

Hammamelidaceae 1 0 1 0 Sphaerosepalaceae 1 1 1 1<br />

Hernandiaceae 0 1 1 0 Sterculiaceae 0 3 3 0<br />

Hippocrateaceae 1 0 1 0 Strelitziaceae 1 0 1 0<br />

Icac<strong>in</strong>aceae 2 0 1 0 Tiliaceae 0 9 1 0<br />

Lauraceae 4 0 3 0 Ulmaceae 1 0 1 0<br />

Loranthaceae 3 0 1 0 Verbenaceae 1 3 2 1<br />

Lecythidaceae 1 1 2 0 Violaceae 1 0 1 0<br />

Liliaceae 4 1 4 0 UNKNOWN 15 37 0<br />

Loganiaceae 3 5 2 1 Sum (N species) 173 171 180 19<br />

Lythraceae 0 1 1 0 Maximum 23 16 20 2<br />

Melastomataceae 1 0 1 0 M<strong>in</strong>imum 0 0 1 0<br />

Average 3 1.81 2.46 -<br />

119


Chapter 4<br />

120<br />

Table 3. Soil characteristics of the <strong>littoral</strong> <strong>forest</strong> at Sa<strong>in</strong>te Luce and the dry deciduous <strong>forest</strong> at Kir<strong>in</strong>dy/CFPF (values are<br />

medians and range; N=4 for both sites).<br />

Depth<br />

C<br />

N<br />

Organic<br />

Horizon pH<br />

C/N P (ppm) K (ppm)<br />

(cm)<br />

(%) (%)<br />

matter<br />

Sa<strong>in</strong>te<br />

4.6 11.3 0.42 30 18.1 2.0 22<br />

10 A<br />

Luce 4.1 – 5.9 7.2 – 25.5 0.21 – 0.84 23 – 41 12.4 – 43.9 1.0 – 3.0 17 - 49<br />

5.7 0.6 0.88 2.07 1.1<br />

0<br />

15<br />

80 B<br />

5.6 – 7.2 0.6 – 4.9 0.14 – 1.46 0.65 – 4.28 1.0 – 8.35 0 – 3.0 0 - 17<br />

1<br />

25<br />

12 – 35<br />

13<br />

6 – 31<br />

0.55<br />

0.2 – 0.9<br />

0.25<br />

0.2 – 0.3<br />

3.0<br />

0.9 – 3.7<br />

14<br />

13 - 21<br />

0.13<br />

0.03 – 0.15<br />

1.76<br />

0.53 – 2.15<br />

6.4<br />

6.0 – 6.5<br />

5.2<br />

A<br />

10<br />

Kr<strong>in</strong>dy/<br />

CFPF 2<br />

4.9 – 6.6<br />

B<br />

80<br />

1 Data come from Razafimizanilala (1996).<br />

2 Data come from Felber (1984).


Intersite comparison<br />

Comparison of fruit characteristics between sites<br />

Morphology<br />

Five out of eleven morphological parameters differed significantly between both study<br />

sites (Table 4). In STL, berries are the dom<strong>in</strong>at<strong>in</strong>g type of fruit followed closely by drupes.<br />

In KIR drupes are most abundant followed by berries and capsules. <strong>Fruit</strong> pulp <strong>in</strong> STL is<br />

mostly soft and juicy. In KIR the majority of fruits has a rather dry and fibrous pulp.<br />

Remarkable is the large number of odoriferous fruits <strong>in</strong> STL while <strong>in</strong> KIR only one third of<br />

the fruits was classified as odoriferous. KIR has more dehiscent fruits and thick-husked<br />

<strong>in</strong>dehiscent fruits than STL where 75% of fruits are <strong>in</strong>dehiscent and th<strong>in</strong>-husked.<br />

Concern<strong>in</strong>g dispersal type, zoochorous fruits prevail both <strong>in</strong> KIR and STL, but KIR has<br />

more non-zoochorous fruits than STL. However this difference was no longer significant<br />

after sequential Bonferroni adjustment. There is no significant difference between study<br />

sites for colour, number of seeds, fruit length, fruit mass, seed length and seed<br />

protection.<br />

Chemistry<br />

The chemical composition of mature fruits differed between sites <strong>in</strong> most chemical<br />

variables except for extractable prote<strong>in</strong>s and sugars. Lipid concentrations were<br />

significantly higher <strong>in</strong> STL while NDF, ADF, total nitrogen, and procyanid<strong>in</strong> tann<strong>in</strong>s were<br />

higher <strong>in</strong> KIR (Table 5). After rigorous adjustment for Type I errors (Rice 1989), there was<br />

only a significant difference for NDF, ADF and tann<strong>in</strong>s.<br />

Comparison of diets of Eulemur and Cheirogaleus between sites<br />

Morphology<br />

<strong>Fruit</strong>s eaten by both lemur species at both sites did not differ significantly <strong>in</strong> growth form,<br />

number of seeds, fruit length, fruit mass, seed length or seed protection (Table 4).<br />

However significant differences were found with respect to pulp type and the protection of<br />

fruits consumed by Eulemur and Cheirogaleus at both sites. The observed difference<br />

corresponds to the differential availability of fruits with different types of pulp and<br />

protection at both sites.<br />

Even though significantly fewer berries but more capsules were available <strong>in</strong> KIR than<br />

<strong>in</strong> STL (Table 4), this difference was not apparent when compar<strong>in</strong>g diets of both lemurs<br />

between sites. Both species seemed to prefer berries and drupes even when these are<br />

less common and harder to f<strong>in</strong>d. In contrast, proportions of fruit colours did not differ<br />

significantly between samples eaten by C. medius, although E. fulvus did eat significantly<br />

more brown and green fruits <strong>in</strong> KIR and more yellow, orange and red fruits <strong>in</strong> STL. The<br />

proportion of odoriferous fruits eaten by both lemur species was higher <strong>in</strong> STL than <strong>in</strong><br />

KIR, though the difference is not significant <strong>in</strong> the case of C. medius. KIR also had<br />

significantly more non-zoochorous fruits than STL, but still zoochorous fruits dom<strong>in</strong>ate the<br />

fruit diet of both lemur species at both sites.<br />

Chemistry<br />

Except for higher tann<strong>in</strong> concentrations <strong>in</strong> fruits consumed <strong>in</strong> KIR, none of the<br />

concentrations of the plant chemicals differed between fruits eaten by C. medius <strong>in</strong> STL<br />

and KIR (Table 6). <strong>Fruit</strong>s consumed by E. fulvus conta<strong>in</strong>ed higher concentrations of fibre<br />

and tann<strong>in</strong>s <strong>in</strong> KIR than <strong>in</strong> STL. These results correspond with the biochemical<br />

differences <strong>in</strong> overall fruit availability between sites. Only the difference between fibre<br />

content rema<strong>in</strong>s significant after sequential Bonferroni.<br />

121


Chapter 4<br />

Table 4. Morphological characteristics of fruits collected <strong>in</strong> Sa<strong>in</strong>te Luce and Kir<strong>in</strong>dy and of<br />

fruits eaten by Cheirogaleus medius and Eulemur fulvus ssp. at the two sites. The X²-values<br />

were calculated for comparisons between sites; * P


Intersite comparison<br />

Table 4 Cont<strong>in</strong>ued<br />

Total Cheirogaleus Eulemur<br />

database diet diet<br />

STL KIR STL KIR STL KIR<br />

Number of seeds (N) 172 151 36 35 107 44<br />

1-2 97 72 22 16 62 17<br />

3-10 43 58 9 15 26 19<br />

11-50 12 9 5 4<br />

50+ 20 12 14 4<br />

10+ 5 4<br />

Unknown 1 20 0 1 0 2<br />

X²<br />

7.02; df=3 2.54; df=2 7.39; df=3<br />

<strong>Fruit</strong> weight (N) 161 146 35 33 100 39<br />

10g 15 10 11 3<br />

>1g 12 18<br />

Unknown 12 25 1 3 7 7<br />

X²<br />

2.38; df=2 2.83; df=1 1.78; df=2<br />

<strong>Fruit</strong> length (N) 167 159 36 36 105 45<br />

30mm 29 29 2 4 20 7<br />

Unknown 6 12 0 0 2 1<br />

X²<br />

3.63; df=2 2.19; df=2 0.27; df=2<br />

Seed length (N) 160 148 33 35 101 43<br />

20mm 18 8 11 3<br />

>10mm 11 11<br />

Unknown 13 23 3 1 6 3<br />

X²<br />

4.52; df=2 0.03; df=1 1.10; df=2<br />

<strong>Fruit</strong> protection (N) 173 151 36 35 104 45<br />

Dehiscent 26 39 0 3 10 5<br />

Indehiscent th<strong>in</strong> husk 130 80 83 26<br />

Indehiscent thick husk 17 32 11 14<br />

Indehiscent 36 30<br />

Unknown 0 20 0 1 3 1<br />

X²<br />

17.68***; df=2 9.27**; df=1 10.05**; df=2<br />

Seed protection (N) 158 147 35 34 101 45<br />

None 82 79 14 18 41 24<br />

Lignified kernel/seed 76 68 21 16 60 21<br />

Unknown 15 24 1 2 6 1<br />

X²<br />

0.10; df=1 1.16; df=1 2.05; df=1<br />

Dispersal mode (N) 163 150 35 35 103 45<br />

Zoochorous 130 104 34 33 93 41<br />

Non-zoochorous 33 46 1 2 10 4<br />

Unknown 10 20 1 1 4 1<br />

X²<br />

4.50*; df=1 1.16; df=1 2.05; df=1<br />

123


Chapter 4<br />

Table 5. Biochemical characteristics of ripe fruits at Sa<strong>in</strong>te Luce and Kir<strong>in</strong>dy. NDF: neutral<br />

detergent fiber, ADF: acid detergent fiber; Nitrogen: total nitrogen; Tann<strong>in</strong>: procyanid<strong>in</strong> tann<strong>in</strong>.<br />

Z-values are based on Mann-Whitney-U tests; * P


Intersite comparison<br />

Table 6. Biochemical characteristics of food and non-food fruits of Eulemur fulvus ssp. and<br />

Cheirogaleus medius . For comparisons of fruit selection by C. medius only those fruits were<br />

considered that were present dur<strong>in</strong>g the months when C. medius were active (i.e. not<br />

hibernat<strong>in</strong>g). Values are medians, quartiles, and sample size. Z-values are based on<br />

Mann-Whitney-U. * P


Chapter 4<br />

Chemistry<br />

At both sites, fruits consumed by C. medius conta<strong>in</strong>ed higher concentrations of sugar<br />

than fruits not consumed (Table 6), but this was no longer significant after sequential<br />

Bonferroni adjustment. In KIR, fruits consumed by C. medius had lower fibre contents<br />

than fruits that had not been consumed. The only significant difference between non-food<br />

fruits and fruits consumed by E. fulvus consisted of lower fat concentrations <strong>in</strong> food<br />

species consumed at STL. Aga<strong>in</strong> this was not significant anymore after adjustment for<br />

Type I errors (Rice 1989).<br />

Interactions between lemur food selection and site effects on fruit chemistry<br />

In order to separate possible effects due to site characteristics from effects of lemur food<br />

selection on the chemical composition of fruits, two-way analyses were run us<strong>in</strong>g ’site’<br />

and ‘lemur food’ as fixed <strong>in</strong>dependent factors. The results of these analyses are<br />

consistent with the conclusions above. Site-specific effects are significant for the majority<br />

of chemicals. Accord<strong>in</strong>g to the two-way ANOVA C. medius consistently searches for fruits<br />

with high sugar concentrations (Table 8). E. fulvus seems to avoid fruits with high fat<br />

contents <strong>in</strong> Sa<strong>in</strong>te Luce only. The site effects persisted once the food items of the two<br />

lemur species were pooled and contrasted to the fruits that had not been eaten by neither<br />

species. There were several significant <strong><strong>in</strong>teractions</strong> between site and the food effects.<br />

Cheirogaleus medius avoids high fiber content but this clearly depends on the relative<br />

availability of fiber content at a certa<strong>in</strong> site, while for Eulemur fulvus tann<strong>in</strong> concentrations<br />

<strong>in</strong> fruits eaten by E. fulvus vary differently at the two sites. F<strong>in</strong>ally when both lemur<br />

species are pooled together, the lipid content of the consumed fruit species corresponds<br />

as well with the site specific availability.<br />

Table 7. The X² results of the comparison between morphological traits of lemur food<br />

species and the overall representation of these fruit traits with<strong>in</strong> a site; * P


Intersite comparison<br />

Table 8. Effects of site characteristics and whether or not an item was eaten by lemurs<br />

accord<strong>in</strong>g to two-way analyses of variance. Analyses were performed on arcs<strong>in</strong>e transformed<br />

data. Analyses were run separately for Cheirogaleus medius, Eulemur fulvus , and for fruits that<br />

had been eaten by either one or both species.<br />

Values are F-values; * P


Chapter 4<br />

consider<strong>in</strong>g species number (Table 2). Scharfe and Schlund (1996) also concluded from<br />

their study that <strong>in</strong> the western <strong>forest</strong>s of Madagascar the majority of fruits are<br />

autochorous or dispersed by mammals while <strong>in</strong> the east dispersal by birds (that eat<br />

ma<strong>in</strong>ly berries and drupes) and mammals prevail. Our results concur with these.<br />

The site-related difference <strong>in</strong> the representation of fruits with an odour merits further<br />

consideration. In <strong>Malagasy</strong> <strong>forest</strong>s, frugivorous diurnal and thus visually oriented bird<br />

species are poorly represented and most mammalian <strong>frugivore</strong>s of Madagascar are<br />

cathemeral or nocturnal. Colour is probably less relevant for these lemurs and fly<strong>in</strong>g<br />

foxes while olfactory clues are likely to be important (Schill<strong>in</strong>g 1979; Barton et al. 1995;<br />

Hladik and Simmen 1996; Bollen and Van Elsacker 2002a, Chapter 3a; Dom<strong>in</strong>y et al.<br />

2002; Luft et al. pers. comm.). S<strong>in</strong>ce comparative data on fruit odour from other <strong>forest</strong>s<br />

are lack<strong>in</strong>g and taste and smell perception differ largely between <strong>in</strong>dividuals and species,<br />

the present results - which are based on subjective impressions of different human<br />

<strong>in</strong>dividuals - cannot be further <strong>in</strong>terpreted. A more standardised evaluation of olfactory<br />

clues might be worthwhile <strong>in</strong> future research.<br />

With respect to our predictions we can say that given the almost identical set of<br />

<strong>frugivore</strong>s present at both sites, these large differences <strong>in</strong> morphological and biochemical<br />

fruit traits between sites are most likely not a consequence of selection for seed dispersal<br />

by animals, as far as the particular lemur species compared. They rather represent the<br />

adaptations of a plant community respond<strong>in</strong>g to the need for protection aga<strong>in</strong>st water loss<br />

dur<strong>in</strong>g the long and harsh dry season, typical for dry deciduous <strong>forest</strong> <strong>in</strong> Madagascar.<br />

Comparison of lemur diets between sites and lemur food selection with<strong>in</strong> a site<br />

Regard<strong>in</strong>g feed<strong>in</strong>g selection with<strong>in</strong> a given site and comparison of diets between sites<br />

several patterns arise from the datasets. First of all, there are several parameters that<br />

seem less important for lemur food selection such as growth form, colour, fruit length,<br />

seed length, number of seeds, seed protection and extractable prote<strong>in</strong>s. They did not<br />

differ at all between sites and did not <strong>in</strong>fluence lemurs’ feed<strong>in</strong>g selection. On the contrary,<br />

clear feed<strong>in</strong>g preferences were found accord<strong>in</strong>g to fruit and dispersal type. Both lemurs<br />

selected almost exclusively zoochorous berries and drupes when fruits with abiotic<br />

dispersal were also available at both sites. F<strong>in</strong>ally and most remarkably, both lemur<br />

species display a high dietary flexibility for certa<strong>in</strong> parameters, both morphological (pulp<br />

type, odour, fruit sk<strong>in</strong> protection) as biochemical (total nitrogen, tann<strong>in</strong>s, ADF and NDF).<br />

For these parameters they would select food items <strong>in</strong> correspondence to what is most<br />

available at a given site. This seems to <strong>in</strong>dicate that these species can switch their diet to<br />

what is available. This allows them to survive <strong>in</strong> different <strong>forest</strong> types on frugivorous diets<br />

with different nutrient compositions and different morphological traits.<br />

Overall, from a chemical perspective these lemur species did not show much<br />

evidence for fruit selection based on consistent chemical properties once site-specific<br />

characteristics were taken <strong>in</strong>to account. In the present analyses E. fulvus avoid fruits with<br />

high lipid contents and fruits eaten by C. medius had lower fibre content than the nonfood<br />

items. These criteria persist even after site-specific effects have been accounted for<br />

(Table 8). Similarly, the preference of C. medius for fruits with high sugar content also<br />

persists at both sites. This has been l<strong>in</strong>ked to their need to accumulate fat reserves for<br />

hibernation (Fietz and Ganzhorn 1999). This selectivity however does not result <strong>in</strong> tight<br />

co-evolution, as a lot of less sugary fruits are present as well at both sites because other<br />

seed dispersers also occur and do not necessarily select sugary fruits.<br />

128


Intersite comparison<br />

The results of the present study do not support the prediction that morphological and<br />

biochemical fruit and seed characteristics result from strong specific <strong><strong>in</strong>teractions</strong> and<br />

co-evolution with lemurs. Rather they could be the consequence of abiotic conditions and<br />

can best be <strong>in</strong>terpreted as the result of an opportunistic and generalist zoochorous<br />

dispersal strategy of plants. Chapman (1995) has po<strong>in</strong>ted out that weak selection<br />

pressure on fruit traits could result if primates have highly flexible diets and are not the<br />

only dispersers available <strong>in</strong> an ecosystem. Furthermore, large dietary differences<br />

between neighbour<strong>in</strong>g primate groups or groups liv<strong>in</strong>g a few hundred kilometres apart are<br />

not uncommon (Chapman 1995). This matches our f<strong>in</strong>d<strong>in</strong>gs of selection criteria of<br />

Eulemur and Cheirogaleus at STL and KIR, which are located 600km apart. Abiotic<br />

factors <strong>in</strong>fluence the phenology and taxonomy at a site and may then <strong>in</strong>directly also lead<br />

to different morphological features and dist<strong>in</strong>ct biochemical compositions of food items<br />

available at each site.<br />

Consider<strong>in</strong>g the predictions outl<strong>in</strong>ed above we can summarize our results as follows:<br />

1. S<strong>in</strong>ce the <strong>frugivore</strong> communities are rather similar at the two sites, abiotic<br />

conditions rather than specific consumers are more likely to be responsible for<br />

the variety of morphological and biochemical features <strong>in</strong> fruits from different <strong>forest</strong><br />

types.<br />

2. No evidence for co-evolution between these lemurs and fruit traits could be found<br />

as diets of the same lemur species differed substantially between sites.<br />

3. With<strong>in</strong> fleshy fruits, the lemur species considered did not show any persistent<br />

criteria for fruit selection <strong>in</strong> general besides few biochemical preferences but<br />

modified their diet accord<strong>in</strong>g to fruit availability, even though mutual <strong><strong>in</strong>teractions</strong><br />

and dependencies of fruits/seeds and their consumers exist.<br />

ACKNOWLEDGEMENTS<br />

We thank L. Dew and J. P. Boubli for their <strong>in</strong>vitation to participate at the symposium ‘Floristics,<br />

Phenology and Frugivore Communities: A Pantropical comparison’ at the ATB Conference <strong>in</strong><br />

Panama and the ‘Commission Tripartite’ of the <strong>Malagasy</strong> Government, the Laboratoire de la<br />

Primatologie et des Vertébrés de E.E.S.S. d'Antananarivo, the M<strong>in</strong>istère pour la Production<br />

Animale et des Eaux et Forêts, Missouri Botanical Garden at Antananarivo, the CFPF at<br />

Morondava, QMM (QIT Madagascar M<strong>in</strong>erals) and the WWF Madagascar for their collaboration<br />

and permission to work <strong>in</strong> Madagascar. The studies were carried out under Accord de Collaboration<br />

between the Dept. Animal Biology and Dept. Anthropology of the University of Antananarivo, the<br />

University of Tüb<strong>in</strong>gen, the German Primate Center, the Institute of Zoology of Hamburg University,<br />

the CFPF and QMM. We are grateful to Nicoletta Baldi and Valent<strong>in</strong>a Morelli for provid<strong>in</strong>g data on<br />

Eulemur feed<strong>in</strong>g ecology for STL. B. Rakotosamimanana, C. Ravaoar<strong>in</strong>oromanga and E.<br />

Rakotovao provided important help at various stages of the study. I. Tomaschewski and U.<br />

Walbaum helped with plant analyses. F<strong>in</strong>ancial support came from the Belgian Fund for Scientific<br />

Research, Flanders (FWO) to AB, the University of Pisa to GD, the German Primate Center, DFG<br />

and DAAD to JF, DS and JUG. We thank the Flemish Government for structural support to the CRC<br />

of the RZSA.<br />

129


’Ny valala tsy <strong>in</strong>droa mandry<br />

eo am-bavahady’<br />

Grasshoppers won’t show up<br />

twice at your doorstep<br />

<strong>Malagasy</strong> proverb<br />

Personal <strong>Malagasy</strong> stamp made by a young man on the streets of Antananarivo


The <strong>Malagasy</strong> <strong>littoral</strong> <strong>forest</strong>:<br />

threats and possible solutions<br />

AN BOLLEN, GIUSEPPE DONATI<br />

(TO BE PUBLISHED)<br />

Conservation<br />

ABSTRACT<br />

The <strong>littoral</strong> <strong>forest</strong> is expected to lose numerous endemic plant and animal species <strong>in</strong> the<br />

near future because of de<strong>forest</strong>ation and resultant habitat changes. A great concern is<br />

the disruption of plant-animal <strong><strong>in</strong>teractions</strong>. It can be predicted that alterations <strong>in</strong> the<br />

recruitment dynamics of plant species <strong>in</strong> <strong>forest</strong> fragments might have unknown<br />

consequences for their long-term survival. This paper discusses the characteristics of<br />

animal seed dispersal relevant to the regeneration of the <strong>littoral</strong> <strong>forest</strong>. Possible<br />

management implications are discussed <strong>in</strong> relation to the exist<strong>in</strong>g <strong>in</strong>itiatives. Urgent<br />

protection of the largest rema<strong>in</strong><strong>in</strong>g <strong>forest</strong> fragments (S9, S17), <strong>in</strong>clud<strong>in</strong>g a fly<strong>in</strong>g fox roost<br />

site (S6) is of great importance. Furthermore it is necessary to <strong>in</strong>stall corridors to connect<br />

the isolated fragments and create plantations to fulfil the need for wood of the local<br />

people.<br />

INTRODUCTION<br />

Worldwide, Madagascar is considered a high priority for global biodiversity protection due<br />

to high faunal and floral endemism and biodiversity (Mittermeier et al. 1998). The flora of<br />

Madagascar is one of the richest <strong>in</strong> the world <strong>in</strong> comparison to its area (Dumetz 1999).<br />

About 96% of all plant species present are endemic (Schatz 2001). The avifauna is<br />

relatively species poor compared to other tropical islands, but the level of endemism is<br />

also extremely high (52% Langrand 1990). For mammals, reptiles and amphibians<br />

endemism even raises up to 90% (Garbutt 1999), 95% (Ramanamanjato 2000) and even<br />

99% (Ramanamanjato 2000) respectively. At the same time Madagascar is one of the<br />

tropical regions where the effects of de<strong>forest</strong>ation are most worry<strong>in</strong>g (Green and<br />

Sussman 1990). Ever s<strong>in</strong>ce humans first reached the island some 2000 years ago, the<br />

native <strong>forest</strong>s have provided them with animals for food, land for cultivation and wood for<br />

construction and fuel. Humans have thus dramatically changed the island vegetation.<br />

Accord<strong>in</strong>g to Kull (2000) dense endemic ra<strong>in</strong><strong>forest</strong>s cover only 10% of the island, while<br />

total <strong>forest</strong> cover is about 23%. De<strong>forest</strong>ation is proceed<strong>in</strong>g most rapidly <strong>in</strong> the east,<br />

where 66% of the orig<strong>in</strong>al ra<strong>in</strong><strong>forest</strong> has been logged or irreversibly converted to land for<br />

cultivation (Dumetz 1999; Kull 2000). At these rates it is predicted that <strong>in</strong> the year 2025<br />

ra<strong>in</strong><strong>forest</strong> will only rema<strong>in</strong> on the steepest slopes, <strong>in</strong> remote areas and nature reserves<br />

(Kull 2000). Madagascar receives global attention as a hot spot of biological diversity,<br />

133


Chapter 5<br />

environmental degradation and conservation action (Mittermeier et al. 1998; Kull 2000),<br />

but at the moment only 3% of the island has a protected status (Godfrey et al. 1997).<br />

The <strong>littoral</strong> <strong>forest</strong> of south-eastern Madagascar is one of the ecosystems most<br />

threatened on this island and is reduced to its vestiges with only 2500ha rema<strong>in</strong><strong>in</strong>g today,<br />

represent<strong>in</strong>g at most 10% of the orig<strong>in</strong>al <strong>forest</strong> (Ganzhorn et al. 2001; V<strong>in</strong>celette pers.<br />

comm.). Dur<strong>in</strong>g the last 50 years more than 5000ha have disappeared (MIR<br />

Télédétection Inc 1998). This <strong>forest</strong> type has been severely degraded due to charcoal<br />

production, logg<strong>in</strong>g, bushfires and shift<strong>in</strong>g cultivation (slash and burn). At the moment it is<br />

represented by severely degraded <strong>forest</strong> fragments, rang<strong>in</strong>g <strong>in</strong> size from 3 to 377ha. In<br />

the Fort-Dauph<strong>in</strong> area the exist<strong>in</strong>g <strong>littoral</strong> <strong>forest</strong>s on sandy soils are Petriky, Mandena<br />

and Sa<strong>in</strong>te Luce (Fig. 1). Sa<strong>in</strong>te Luce has the highest species diversity and can be<br />

considered among the most <strong>in</strong>tact <strong>littoral</strong> <strong>forest</strong> rema<strong>in</strong><strong>in</strong>g <strong>in</strong> eastern Madagascar<br />

(Dumetz 1999; Rabevohitra et al. 1996). A botanical study by Razafimizanilala (1996)<br />

and Rabevohitra et al. (1996) <strong>in</strong> the <strong>forest</strong> fragment ‘S9’ of Sa<strong>in</strong>te Luce shows that 98%<br />

of the 189 plant species monitored are endemic for Madagascar and there are 29<br />

endemic plant species for the south-eastern <strong>littoral</strong> <strong>forest</strong> (Lewis Environmental<br />

Consultants 1992a).<br />

In order to highlight the importance of the <strong>littoral</strong> <strong>forest</strong> before it completely vanishes,<br />

we present here our current understand<strong>in</strong>gs of <strong>frugivore</strong>-fruit <strong><strong>in</strong>teractions</strong>. We further<br />

discuss the causes of habitat loss and <strong>forest</strong> fragmentation and imply our knowledge on<br />

seed dispersal for landscape restoration. F<strong>in</strong>ally suggestions concern<strong>in</strong>g conservation<br />

applications as well as priorities for future research are made.<br />

STUDY SITE<br />

In this paper we focus <strong>in</strong> particular on the situation of Sa<strong>in</strong>te Luce, where first and second<br />

author conducted two PhD researches from September 1999 till February 2001. The<br />

campsite is located <strong>in</strong> the 377 ha-large <strong>forest</strong> fragment, called ‘S9’ (24º45'S 47º11'E).<br />

Littoral <strong>forest</strong> lies with<strong>in</strong> 5 km of the coast and occurs on sandy soils at an elevation of 0<br />

up to 20m. It is characterised by a relatively open or non-cont<strong>in</strong>uous canopy, which is 6 to<br />

8m <strong>in</strong> height and diameter at breast height (DBH) of trees rarely exceeds 30 to 40cm<br />

(Rabevohitra et al. 1996; Dumetz 1999). This <strong>forest</strong> type is characterised by an average<br />

annual ra<strong>in</strong>fall of about 2,690 mm, with a marked ra<strong>in</strong>y season from November through<br />

February. No clear dry season could be detected (Bollen and Donati, Chapter 1). Mean<br />

monthly temperature is 23°C (QMM unpubl. data). <strong>Fruit</strong> production is seasonal, with a<br />

peak <strong>in</strong> abundance of ripe fruits <strong>in</strong> December and January and with periods of fruit<br />

scarcity that differ strongly <strong>in</strong>ter-annually (Bollen and Donati, Chapter 1)<br />

THREATS<br />

Three villages, Ambandrika, Ampanasatomboky and Manafiafy lie with<strong>in</strong> close range of<br />

the largest <strong>forest</strong> fragments of Sa<strong>in</strong>te Luce; S6 (225 ha), S7 (206 ha), S8 (190 ha), S9<br />

(377 ha) and S17 (244 ha)(Fig. 1), which make up half of the rema<strong>in</strong><strong>in</strong>g south-eastern<br />

<strong>littoral</strong> <strong>forest</strong>. Some 700 villagers depend on the <strong>forest</strong> for crop grow<strong>in</strong>g, timber and nontimber<br />

<strong>forest</strong> products for subsistence and commercial activities. The ma<strong>in</strong> causes<br />

responsible for degradation and fragmentation <strong>in</strong> Sa<strong>in</strong>te Luce are clearance by slash and<br />

burn, useless bushfires and unsusta<strong>in</strong>able harvest<strong>in</strong>g of logs. Threats <strong>in</strong> the near future<br />

further <strong>in</strong>clude charcoal production by the Antandroy people, a southern tribe, and<br />

134


Conservation<br />

Fig. 1. On the left is a detail of the south-eastern <strong>Malagasy</strong> region around Fort-Dauph<strong>in</strong> shown. In<br />

black the rema<strong>in</strong><strong>in</strong>g <strong>littoral</strong> <strong>forest</strong>s are <strong>in</strong>dicated, while the humid montane ra<strong>in</strong><strong>forest</strong> (<strong>in</strong>clud<strong>in</strong>g<br />

Andohahela National Park) is <strong>in</strong> grey. On the right we zoom <strong>in</strong> on the largest <strong>forest</strong> fragments of the<br />

<strong>littoral</strong> <strong>forest</strong> of Sa<strong>in</strong>te Luce and <strong>in</strong>dicate the Antanosy villages <strong>in</strong> this area and our study site.<br />

ilmenite extraction from the sand by a large <strong>Malagasy</strong> m<strong>in</strong><strong>in</strong>g company, QIT Madagascar<br />

M<strong>in</strong>erals (QMM) owned by QIT-Fer et Titane, a subsidiary of Rio T<strong>in</strong>to Z<strong>in</strong>c.<br />

Shift<strong>in</strong>g cultivation through ‘tavys’ (slash and burn) contributes directly to the actual<br />

dramatic levels of de<strong>forest</strong>ation, <strong>in</strong> particular for <strong>forest</strong>s on sandy soils. Farmers cut a<br />

patch along the <strong>forest</strong> border, allow the slash to dry and then burn it <strong>in</strong> preparation for<br />

cultivation of maize, manioc or rice. A new patch is created and cultivated every 1-2<br />

years, s<strong>in</strong>ce extensive ra<strong>in</strong> quickly depletes the bare sandy soil from m<strong>in</strong>erals. This<br />

causes a retreat of <strong>forest</strong> edges and leads to soil sterilisation. After the first clear<strong>in</strong>g,<br />

grasslands dom<strong>in</strong>ated by <strong>in</strong>vasive heath shrubs Erica sp. (Ericaceae) directly replace the<br />

natural <strong>forest</strong> (Lewis Environmental Consultants 1992a). As such the soils become even<br />

more acid and less suitable for regeneration of endemic plant species. Farmers rarely<br />

monitor their fires allow<strong>in</strong>g them to expand and run their course. As a consequence<br />

uncontrolled bushfires further result <strong>in</strong> an alarm<strong>in</strong>g progress of de<strong>forest</strong>ation while not<br />

serv<strong>in</strong>g any purpose. Even though the people burn throughout the whole year, these<br />

activities are more concentrated <strong>in</strong> periods when w<strong>in</strong>ds are stronger (September-October,<br />

February-March). Whereas <strong>in</strong> the dry deciduous <strong>forest</strong> of West Madagascar bushfires<br />

occur naturally, this is less common <strong>in</strong> the eastern <strong>forest</strong>s (Kull 2000).<br />

There is both subsistence and commercial logg<strong>in</strong>g, but on a local scale only. People<br />

cut ma<strong>in</strong>ly large and mature trees to get fuel, construction and tool wood. Logg<strong>in</strong>g here<br />

<strong>in</strong>volves ma<strong>in</strong>ly unsusta<strong>in</strong>able and wasteful resource use so that many cut logs are<br />

partially left beh<strong>in</strong>d <strong>in</strong> the <strong>forest</strong>. The selective removal of timber species changes their<br />

distribution patterns imped<strong>in</strong>g regeneration. Although the logg<strong>in</strong>g pressure was<br />

considered low up to now <strong>in</strong> Sa<strong>in</strong>te Luce, some plant species used for fuel were observed<br />

135


Chapter 5<br />

at a very low density <strong>in</strong> apparent prist<strong>in</strong>e area (Donati pers.obs.). Discussions with local<br />

people and observations of many cut trunks lead us to the conclusion that some plant<br />

species, like C<strong>in</strong>namosma madagascariensis, are already rare due to selective logg<strong>in</strong>g.<br />

At the end of our study period (December 2000) logg<strong>in</strong>g <strong>in</strong>tensified and trucks<br />

transport<strong>in</strong>g the logs could be observed at night on the national road head<strong>in</strong>g to Fort-<br />

Dauph<strong>in</strong>. This short-sighted commercial logg<strong>in</strong>g is even more harmful and a serious<br />

threat to all <strong>forest</strong>s <strong>in</strong> the surround<strong>in</strong>g area of Fort-Dauph<strong>in</strong> as needs for construction<br />

wood get larger <strong>in</strong> the city. The only wood people are allowed to take out of the <strong>forest</strong> by<br />

law is ‘dead wood’. As such, people have been very <strong>in</strong>ventive <strong>in</strong> <strong>in</strong>terpret<strong>in</strong>g this law.<br />

They cut several trees <strong>in</strong> the <strong>forest</strong>, leave the logs there for a month to afterwards collect<br />

this ‘dead’ wood (Donati and Bollen pers. obs.). Nowadays they even circumcise the bark<br />

deep enough so eventually trees will die (Hapke pers. comm.).<br />

The villagers take several other products out of the <strong>forest</strong>. Large palms (Dypsis<br />

prestoniana) are cut at the base only to collect the nervature of their leaves of which traps<br />

for crabs and langoust<strong>in</strong>es are made. The enormous logs are often left beh<strong>in</strong>d unused.<br />

Canoes are dug out of the largest trees, such as ‘ramy’ Canarium boiv<strong>in</strong>ii and ‘vitano’<br />

Calophyllum sp. (Table 1) and different v<strong>in</strong>e species serve for fish<strong>in</strong>g gear. People also<br />

eat the fruits of several endemic tree species, but no real large-scale harvest<strong>in</strong>g occurs.<br />

Dur<strong>in</strong>g fam<strong>in</strong>e, people collect and eat the roots of tavolo (Tacca leontopetaloides) and via<br />

(Typhonodorum lendleyanum)(Table 1).<br />

Besides the <strong>in</strong>direct threat of habitat loss, hunt<strong>in</strong>g also has its impact on <strong>littoral</strong> <strong>forest</strong><br />

dynamics. However <strong>in</strong> contrast to sites more <strong>in</strong>land, such as Andohahela NP, Mandena<br />

and Petriky, the impact of hunt<strong>in</strong>g <strong>in</strong> Sa<strong>in</strong>te Luce is rather limited. Fish rather than bush<br />

meat make up the largest proportion of animal prote<strong>in</strong> <strong>in</strong> the daily menu. The majority of<br />

villagers are fishermen and catch<strong>in</strong>g fish (year-round) and shellfish (langoust<strong>in</strong>es only<br />

April-December) represents their most important <strong>in</strong>come. Bush meat is only eaten on rare<br />

occasions or dur<strong>in</strong>g traditional events. Nocturnal lemurs, such as Cheirogaleus major,<br />

Cheirogaleus medius and the t<strong>in</strong>y Microcebus rufus, that hibernate dur<strong>in</strong>g austral w<strong>in</strong>ter<br />

<strong>in</strong> hollow tree trunks are an easy catch. The larger Eulemur fulvus collaris is hunted by a<br />

traditional technique called tandroho (Randriamanal<strong>in</strong>a et al. 2000). More specifically a<br />

strip of <strong>forest</strong> (50 m²) is cleared, so that canopies are too far apart for the lemurs to cross.<br />

Long logs are then placed between both ends as the only crossover with two snares <strong>in</strong><br />

the middle. This hunt<strong>in</strong>g technique could be at the base of the unbalanced sex-ratio <strong>in</strong><br />

favour of males reported <strong>in</strong> S9 (Donati unpubl. data), as <strong>in</strong> this species females often<br />

have progression priority and as such they are more likely to become victims of these<br />

traps. E. f. collaris was also captured by the use of row sl<strong>in</strong>gs, a practice particularly<br />

frequent <strong>in</strong> young mans and probably responsible for the cryptic behaviour of these<br />

lemurs at the beg<strong>in</strong>n<strong>in</strong>g of our study. Hunt<strong>in</strong>g pressure on E. f. collaris decl<strong>in</strong>ed drastically<br />

<strong>in</strong> the study area (S9) dur<strong>in</strong>g the presence of researchers based on several discussions<br />

with the local people. Nevertheless traps were still encountered <strong>in</strong> September 2000 <strong>in</strong><br />

S17 (Fig. 1). Pteropus rufus is very vulnerable to hunt<strong>in</strong>g as it roosts communally and can<br />

thus be located and killed easily <strong>in</strong> great numbers. Catapults, long branches and stones<br />

were often found under their roost site. The animals were harassed dur<strong>in</strong>g daylight and<br />

even changed their roost site twice <strong>in</strong> 2000 (Bollen and Van Elsacker 2002a, Chapter 3a).<br />

Terrestrial birds are trapped us<strong>in</strong>g snares or other <strong>in</strong>genuous systems on the ground.<br />

<strong>Fruit</strong> pigeons (Treron australis, Alectroenas madagascariensis), parrots (Coracopsis vasa<br />

and C. nigra) and bulbuls (Hypsipetes madagascariensis) are hunted with arrows or<br />

catapults. Alternatively, fruit pigeons get stuck onto small branches covered with sticky<br />

136


Conservation<br />

latex, which are placed <strong>in</strong> Ficus or other fruit<strong>in</strong>g trees by adolescent men. Tenrecs are<br />

hunted with the aid of dogs at dusk. Hunt<strong>in</strong>g occurs ma<strong>in</strong>ly for food purposes but<br />

occasionally the animals are traded regionally as well for pets and this <strong>in</strong> particular for<br />

Eulemur fulvus collaris and Coracopsis spp. (Bollen pers.obs.).<br />

Charcoal production is an important activity of the people liv<strong>in</strong>g <strong>in</strong> the extreme<br />

southern Androy. At the moment, charcoal pits are regularly found <strong>in</strong> Mandena and<br />

Petriky but not yet <strong>in</strong> Sa<strong>in</strong>te Luce. It is a very destructive practice. A strip of <strong>forest</strong> is<br />

cleared, branches are stapled <strong>in</strong> a hole <strong>in</strong> the ground, covered by vegetation and then<br />

burned for several days. Charcoal is used by numerous people as fuel and represents a<br />

major <strong>in</strong>come for the Antandroy. It can be expected that <strong>in</strong> the near future these activities<br />

will move up north towards Sa<strong>in</strong>te Luce as the <strong>forest</strong>s of Mandena and Petriky get more<br />

depleted.<br />

Furthermore QMM represents another threat as m<strong>in</strong><strong>in</strong>g activities will destroy a large<br />

part (76%) of the <strong>littoral</strong> <strong>forest</strong> (Lewis Environmental Consultants 1992a). In Sa<strong>in</strong>te Luce,<br />

74% of the rema<strong>in</strong><strong>in</strong>g <strong>forest</strong> will vanish (QMM 2001). In November 2001, QMM got<br />

permission of the <strong>Malagasy</strong> government to start the m<strong>in</strong><strong>in</strong>g. For the com<strong>in</strong>g six year all<br />

<strong>in</strong>frastructure is be<strong>in</strong>g prepared to beg<strong>in</strong> extraction of ilmenite <strong>in</strong> 2009 <strong>in</strong> Mandena.<br />

Petriky and Sa<strong>in</strong>te Luce will be m<strong>in</strong>ed respectively 20 and 35 years later. M<strong>in</strong><strong>in</strong>g activities<br />

will last 45 up to 60 years (V<strong>in</strong>celette pers. comm.). Populations of numerous plant<br />

species risk disappear<strong>in</strong>g together with the fauna (Lewis Environmental Consultants<br />

1992a). Anthropogenic pressure will then further <strong>in</strong>tensify on the few rema<strong>in</strong><strong>in</strong>g <strong>littoral</strong><br />

<strong>forest</strong> fragments outside the QMM concession zone.<br />

As everywhere, population growth is associated with limited resources. Even though<br />

the local people are responsible for most of the degradation and fragmentation of the<br />

<strong>littoral</strong> <strong>forest</strong> at the moment, there is def<strong>in</strong>itely also will<strong>in</strong>gness from their part to protect<br />

the <strong>forest</strong>. The President of Sa<strong>in</strong>te Luce <strong>in</strong> 2000-2001, Olaf Abel Isaia has done this by<br />

<strong>in</strong>itiat<strong>in</strong>g a traditional d<strong>in</strong>a. These are local agreements for protection of natural resources<br />

(LOI N°96-025, 1996). At the moment, QMM and delegates from the three villages are<br />

discuss<strong>in</strong>g on a new version of the d<strong>in</strong>a for Sa<strong>in</strong>te Luce, which will probably be f<strong>in</strong>alised<br />

later this year (V<strong>in</strong>celette pers. comm.).<br />

IMPACT ON ECOSYSTEM AND SEED DISPERSERS<br />

Plant-<strong>frugivore</strong> <strong><strong>in</strong>teractions</strong> are important components of complex <strong>forest</strong> communities.<br />

Vertebrate seed dispersal is a key process <strong>in</strong> the dynamics of natural vegetation and<br />

vegetation recovery (Wallace and Pa<strong>in</strong>ter 2002). Furthermore, <strong>frugivore</strong>s play a vital role<br />

<strong>in</strong> the ma<strong>in</strong>tenance of biodiversity <strong>in</strong> tropical <strong>forest</strong>s, where they constitute a large<br />

proportion of the vertebrate biomass (Flem<strong>in</strong>g et al. 1987). In the same way zoochorous<br />

tree species make up the bulk of the tropical flora (Howe and Smallwood 1982). Loss of<br />

fruit-<strong>frugivore</strong> <strong><strong>in</strong>teractions</strong> may thus have profound consequences for conservation<br />

(Corlett 1998).<br />

Many animal species <strong>in</strong> Sa<strong>in</strong>te Luce rely on fruit as an essential food resource and<br />

conversely provide valuable dispersal services to many of these fruit bear<strong>in</strong>g plants<br />

(Bollen et al., Chapter 3)(Table 1). As <strong>forest</strong>s become more fragmented the rema<strong>in</strong><strong>in</strong>g<br />

patches become <strong>in</strong>creas<strong>in</strong>gly isolated and less accessible for arboreal lemur species. As<br />

a consequence gene flow and seed dispersal between patches becomes more critical for<br />

long term survival of many plant species. On the other hand, if fragments get too small or<br />

hunt<strong>in</strong>g <strong>in</strong>creases, the long-term survival of animal species will not be guaranteed either<br />

137


Chapter 5<br />

Table 1. A list of plant species from Sa<strong>in</strong>te Luce, Indicat<strong>in</strong>g if they are endemic (E), abundant (A),<br />

common (C) and typical <strong>littoral</strong> <strong>forest</strong> (LITT) plant species. The utility of these plant species is<br />

given as well; medic<strong>in</strong>al use (M), firewood (F), construction wood (C) or unknown use (X).<br />

'Special' <strong>in</strong>dicates plant species that are consumed by numerous <strong>frugivore</strong>s (number is given),<br />

LS means that these are large-seeded plant species for which Eulemur fulvus collaris is the<br />

only seed disperser and 'key?' refers to a potential keystone species dur<strong>in</strong>g periods of fruit<br />

scarcity. 'Food' species for the people are <strong>in</strong>dicated as well, with <strong>in</strong>dication of plant part eaten.<br />

Family Species Vernacular name Status 1 Utilitair 1 Special Food<br />

Anacardiaceae Poupartia chapelieri sisikandrongo A C 7<br />

Protorhus cf. lecomtei kangy LS<br />

Annonaceae Monanthotaxis cf. malacophylla vahimbotany C<br />

Polyalthia madagascariensis fotsivavo 8<br />

Polyalthia capuronii menapeka LS<br />

Apocynaceae Cabucala madagascariensis tandrokosy FRUIT<br />

Arecaceae Typhonodorum l<strong>in</strong>dleyanum via ROOT<br />

Araliaceae Schefflera ra<strong>in</strong>aliana voatsilana sp1 FM<br />

Polyscias sp. voatsilana sp2 7<br />

Areceae Dypsis fibrosa boakandambo LITT LS<br />

Dypsis nodifera raotry LITT<br />

Dypsis prestoniana boakabe LITT 9-key?<br />

Dypsis sa<strong>in</strong>telucei telopolombilany LITT RARE<br />

Dypsis scottiana raosy LITT 6<br />

Bignoniaceae Ophiocolea delph<strong>in</strong>ensis akondronala EC X FRUIT<br />

Phyllarthron ilicifolium zahambe E C<br />

Phyllarthron sp. zahambe manongaroa E C<br />

Burseraceae Canarium boiv<strong>in</strong>ii ramy MC LS<br />

Canellaceae C<strong>in</strong>namosma madagascariensis vahabatra 3eM LS-RARE<br />

Capparaceae Crataeva obovata belataka C LS<br />

Clusiaceae Psorospermum revolutum harongampanihy MF FRUIT<br />

Calophyllum sp. vitano C<br />

Garc<strong>in</strong>a chapelieri haz<strong>in</strong>y tomate LS<br />

Garc<strong>in</strong>ia cf/aff. madagascariensis disaky kely LS<br />

Combretaceae Term<strong>in</strong>alia fatraea katrafa C<br />

Dichapetalaceae Dichapetalum sp. vahihazo LS<br />

Ebenaceae Diospyros sp.1 hazoma<strong>in</strong>ty blanc F LS<br />

Diospyros sp.2 hazoma<strong>in</strong>y LITT F LS<br />

Elaeocarpaceae Elaeocarpus alnifolius* sanga LS<br />

Ericaceae Vacc<strong>in</strong>ium emirnense tsilantria CF 9 FRUIT<br />

Erythroxylaceae Erythroxylum buxifolium fangora sp.1 F<br />

Erythroxylum nitidilum fangora sp.2 F<br />

Euphorbiaceae Uapaca ferrug<strong>in</strong>ea voapaky lahy CF 6<br />

Uapaca <strong>littoral</strong>is voapaky vavy CF 9<br />

Uapaca thouarsii voapaky lahy ZJ LITT CF<br />

Fabaceae Cynometra cf. cloiselii mampay A C<br />

Phylloxylon xylophylloides sotro E C<br />

Intsia bijuga harandrato C<br />

Flacourtiaceae Aphloia theiformis fandramana C<br />

Bembicia uniflora bemalemy A CF<br />

Homalium louvelianum ramirisa CF<br />

Scolopia orientalis zoramena C F 7<br />

Grossulariaceae Brexia sp. kambatrikambatri C<br />

Hippocrateaceae Salacia madagascariensis voatsimatra C LS FRUIT<br />

138


Conservation<br />

Table 1 Cont<strong>in</strong>ued<br />

Family Species Vernacular name Status 1 Utilitair 1 Special Food<br />

Icac<strong>in</strong>aceae Apodytes dimidiata hazomamy marécage E 9<br />

Apodytes sp. nov. hazomamy an ala E X LS<br />

Lauraceae Cryptocarya sp. tavolohazo X<br />

Ravensara acum<strong>in</strong>ata ? M<br />

Liliaceae Dracaena reflexa var. nervosa fal<strong>in</strong>andro LITT-C FM<br />

Dracaena reflexa var. nervosa tavolobotroka LITT-C FM<br />

Loganiaceae Anthocleista longifolia lendemilahy C C<br />

Loranthaceae Bakerella sp. velomihanto 6<br />

Melastomataceae Tristemma mauritianum voatrotoky FRUIT<br />

Meliaceae Malleastrum mandenense sarigoavy EC<br />

Monimiaceae Tambourissa castri-delph<strong>in</strong>ii amborabe CFM<br />

Tambourissa purpurea ambora CFM 7<br />

Moraceae Ficus guatteriifolia fihamy M<br />

Ficus pyrifolia nonoka 7<br />

Myricaceae Myrica spathulata tsilaka M<br />

Myristicaceae Brochoneura acum<strong>in</strong>ata mafotra sp.1 C CM LS<br />

Brochoneura madagascariensis mafotra sp.2 C CM LS<br />

Myrs<strong>in</strong>aceae Embelia <strong>in</strong>cumbens taratasy M<br />

Myrtaceae Eugenia cloiselii ropasy sp.1 EC CFM<br />

Eugenia sp. ropasy sp.2 CFM LS<br />

Syzygium sp.1 rotry ala C 7 FRUIT<br />

Syzygium sp.2 rotry mena C 10-key? FRUIT<br />

Oleaceae Jasm<strong>in</strong>um kitch<strong>in</strong>gii vahifotsy kely C<br />

Noronhia cf. lanceolata hazondraotry M<br />

Noronhia sp.1 belavenoka M<br />

Olea sp. vahabatra A M 7<br />

Pandanaceae Pandanus dauph<strong>in</strong>ensis vakoanala A C LS<br />

Pandanus aff. longistylus fandranabo C LS<br />

Pandanus rollotii fandranabotonboky C LS<br />

Podocarpaceae Podocarpus madagascariensis harambilo CFM<br />

Sphaerosepalaceae Rhopalocarpus coriaceus tsilavimb<strong>in</strong>anto LS<br />

Rubiaceae Canthium sp. Rubiaceae ZJ CFM<br />

Canthium variistipula fantsikaitrama<strong>in</strong>ty C CFM 6 FRUIT<br />

Ixora sp. x203 C X<br />

Plectronia densiflora fantsikaitra M<br />

Psychotria sp.1 tanatananala F<br />

Rothmannia mandenensis taholagna X FRUIT<br />

Tricalysia cf. cryptocalyx hazongalala F<br />

Rutaceae Vepris eliotii lah<strong>in</strong>ampoly EC CFM 6<br />

Sap<strong>in</strong>daceae Macphersonia radlkoferi sanirambaza X<br />

Plagioscyphus jumelei ambirimarika pionair X<br />

Sarcolaenaceae Leptolaena multiflora fotombavy C CF<br />

Sarcolaena multiflora merama<strong>in</strong>tso LITT-C CF 9 FRUIT<br />

Schizolaena elongata fotondahy C<br />

Sphaerosepalaceae Rhopalocarpus coriaceus tsilavimb<strong>in</strong>anto C X<br />

Strelitziaceae Ravenala madagascariensis ravenala CM<br />

Taccaceae Tacca leontopetaloides tavolo ROOT<br />

Theaceae Asteropeia multiflora fanolafotsy CFM<br />

Verbenaceae Vitex chrysomallum nofotrako LITT C<br />

1 data come from Dumetz (1999), Razafimizanilala (1996), Rabevohitra et al.(1996), Koechl<strong>in</strong> (1974),<br />

Lewis Environmental Consultants (1992a), QIT Madagascar M<strong>in</strong>erals (2001).<br />

139


Chapter 5<br />

(Ganzhorn et al. 1999a). Madagascar <strong>in</strong> general, already has a depauperate avian<br />

<strong>frugivore</strong> community (Langrand 1990; Goodman et al. 1997a) and lacks larger <strong>frugivore</strong>s<br />

such as rum<strong>in</strong>ants, ungulates and elephants. Moreover one third of lemur species<br />

became ext<strong>in</strong>ct years ago (Godfrey et al. 1997). Thus emphasiz<strong>in</strong>g even more the<br />

importance of the rema<strong>in</strong><strong>in</strong>g seed dispersers here. Large <strong>frugivore</strong>s, such as E. f. collaris,<br />

are often most vulnerable to habitat fragmentation which is conform f<strong>in</strong>d<strong>in</strong>gs at other sites<br />

(Johns and Skorupa 1987; Kannan and James 1999). The vulnerability of E. f. collaris is<br />

reflected by the fact that this species is only present <strong>in</strong> the two largest and most <strong>in</strong>tact<br />

fragments, S9 and S17, but absent <strong>in</strong> all other, smaller fragments <strong>in</strong> Sa<strong>in</strong>te Luce<br />

(Ganzhorn et al. 2000). E. f. collaris is <strong>in</strong> particular important for seed dispersal of<br />

numerous plant species and it is the only <strong>frugivore</strong> present here that is able to swallow<br />

and thus disperse larger seeds (up to 16.5mm diameter, Table 1). Therefore, local<br />

ext<strong>in</strong>ction of this species could ultimately lead to the lack of regeneration of different<br />

dependant plant species. Other specialist <strong>frugivore</strong>s, such as Pteropus rufus, Treron<br />

australis and Alectroenas madagascariensis, are very vulnerable as well, <strong>in</strong> particular<br />

when important food sources are selectively logged (Table 1). Frugivorous birds and<br />

fly<strong>in</strong>g foxes are the most important mobile seed dispersers br<strong>in</strong>g<strong>in</strong>g seeds <strong>in</strong>to grasslands<br />

and early succession vegetation. The simple structure of these habitats pose less of a<br />

barrier to them than it does for arboreal lemurs. Genetic exchange and long distance<br />

dispersal between and among fragments are less likely to occur, if populations of mobile<br />

fly<strong>in</strong>g dispersers decrease or vanish.<br />

Our studies showed that no evidence for co-evolution could be found, nor were there<br />

strong <strong>in</strong>dications for syndromes that attract taxonomic groups by certa<strong>in</strong> morphological<br />

and/or nutritional traits (Bollen et al., Chapter 2, 3, 4; Bollen et al. <strong>in</strong> press). Instead we<br />

found that there is great dietary overlap among <strong>frugivore</strong> species and that dispersal is<br />

achieved through redundant systems. Most <strong>frugivore</strong>s seem to eat accord<strong>in</strong>g to what is<br />

available, given the limitation of fruit and seed size and certa<strong>in</strong> feed<strong>in</strong>g preferences.<br />

Animal seed dispersers are vital for the regeneration of <strong>littoral</strong> <strong>forest</strong>s. Especially s<strong>in</strong>ce<br />

losses of ecologically <strong>in</strong>terdependent species will be permanent to an even larger extent<br />

here as <strong>forest</strong> fragments are very isolated. Due to co-dependency of <strong>frugivore</strong>s and tree<br />

species, the hunt on <strong>frugivore</strong>s leads to suboptimal or <strong>in</strong>sufficient dispersal and<br />

recruitment success of certa<strong>in</strong> plant species (Chapman and Onderdonk 1998; McConkey<br />

and Drake 2002) while de<strong>forest</strong>ation, <strong>forest</strong> degradation and fragmentation has a drastic<br />

impact on the food cha<strong>in</strong> of the frugivorous fauna.<br />

PROTECTION OF THE LITTORAL FOREST<br />

Forest<br />

The rema<strong>in</strong><strong>in</strong>g <strong>in</strong>tact <strong>forest</strong> fragments, which act as reservoirs from where <strong>in</strong>digenous<br />

floral and faunal species can colonize new habitats are <strong>in</strong> urgent need for protection.<br />

Even though the <strong>littoral</strong> <strong>forest</strong> only represents 5% of all <strong>forest</strong> cover <strong>in</strong> the south-eastern<br />

region (QIT Madagascar M<strong>in</strong>erals 2001), the importance of its conservation cannot be<br />

emphasized enough. At present, Sa<strong>in</strong>te Luce conta<strong>in</strong>s the most <strong>in</strong>tact <strong>littoral</strong> <strong>forest</strong><br />

fragments on sand, which differ strongly <strong>in</strong> floristic diversity from the one on laterite and<br />

from the <strong>in</strong>land montane <strong>forest</strong> (Rabevohitra et al. 1996; Dumetz 1999). Ideally<br />

conservation zones should be large enough to encompass the micro-heterogeneity <strong>in</strong><br />

order to avoid their effective elim<strong>in</strong>ation. In this respect, the <strong>forest</strong> fragments S9 and S17<br />

have the highest conservation priority, represent<strong>in</strong>g the two largest and most <strong>in</strong>tact <strong>forest</strong><br />

140


Conservation<br />

fragments, <strong>in</strong>clud<strong>in</strong>g both <strong>in</strong>land and coastal <strong>littoral</strong> <strong>forest</strong>. S9 has been subject to<br />

numerous research projects s<strong>in</strong>ce 1989 (V<strong>in</strong>celette pers. comm.). This fragment conta<strong>in</strong>s<br />

some recent tavy <strong>in</strong> its northern and north-eastern section (Bollen and Donati pers. obs.).<br />

Logg<strong>in</strong>g has <strong>in</strong>creased dur<strong>in</strong>g the last years but ‘<strong>in</strong>tact’ primary <strong>forest</strong> with important<br />

lemur populations is still present. S17 is a long and narrow <strong>forest</strong> fragment located on a<br />

dune system very close to the coast. The southern part is very degraded (Bollen and<br />

Donati pers. obs.) but the northern part can still be considered very prist<strong>in</strong>e, which is<br />

probably due to its remote position as it is separated from the villages by a lake and an<br />

estuar<strong>in</strong>e system (Fig. 1). The extreme northern part (ca. 60ha) is owned by Mr. De<br />

Heaulme and theoretically supervised by local guards. Both fragments, S9 and S17 are<br />

very different <strong>in</strong> appearance and floral composition and <strong>in</strong>clude much of the biodiversity<br />

present <strong>in</strong> the <strong>littoral</strong> <strong>forest</strong>. The conservation zones proposed by QMM <strong>in</strong>volve 190ha of<br />

S9 and almost complete S17. This will be enforced once the d<strong>in</strong>a gets accepted by all<br />

<strong>in</strong>volved parties. Additionally we believe S6 is of extreme importance due to the presence<br />

of the roost site of a colony of fly<strong>in</strong>g foxes, which are irreplaceable long distance seed<br />

dispersers for numerous plant species. The <strong>forest</strong> fragment itself is extremely degraded<br />

and victim to numerous unregulated <strong>forest</strong>ry activities. All these fragments together<br />

comprise about 1000ha of <strong>littoral</strong> <strong>forest</strong>. They lie with<strong>in</strong> close proximity to one another<br />

and comprise <strong>in</strong>land and coastal <strong>littoral</strong> <strong>forest</strong>, mangroves, dunes and marshes, sandy<br />

beaches, a lake and an estuary provid<strong>in</strong>g important refuges for a wide variety of plant and<br />

animal species (Fig. 1).<br />

Several studies <strong>in</strong> Madagascar have demonstrated that it is better to protect a few<br />

large fragments as opposed to several small ones. Ramanamanjato (2000) found that a<br />

series of small <strong>littoral</strong> <strong>forest</strong> fragments does not provide the biodiversity of reptiles and<br />

amphibians found <strong>in</strong> one or a few large fragments. The species number decl<strong>in</strong>es<br />

substantially <strong>in</strong> fragments smaller than 200-300ha. As for birds, Raherilalao (2001)<br />

showed that the number of bird species also decreases proportionally with the size of<br />

<strong>forest</strong>s blocks <strong>in</strong> Ranomafana. In addition, Ganzhorn et al. (2000) found that the number<br />

of lemur species present <strong>in</strong> a fragment is related to its overall size. At the moment, Sa<strong>in</strong>te<br />

Luce still provides an important refuge for E. f. collaris (S9 density 0.38<strong>in</strong>d/ha, Banks<br />

2002), which occurs only <strong>in</strong> the south-eastern region of Madagascar. Protection of the<br />

rema<strong>in</strong><strong>in</strong>g primary <strong>forest</strong> is of crucial importance <strong>in</strong> general because Ganzhorn and<br />

Schmid (1998) found that even 40 year old secondary dry <strong>forest</strong>s <strong>in</strong> western Madagascar<br />

are unlikely to provide a suitable habitat even for the smallest seem<strong>in</strong>gly least threatened<br />

of all lemur species. As for protection measure all logg<strong>in</strong>g, hunt<strong>in</strong>g and slash and burn<br />

practices should be banned from these fragments, so that ecosystems can recover. In<br />

theory, the regional division of the M<strong>in</strong>istry of Water and Forests should control the<br />

presence of these activities <strong>in</strong> the <strong>forest</strong> but there is a shortage of staff, f<strong>in</strong>ances and<br />

means and the remoteness of Sa<strong>in</strong>te Luce further contributes to the lack of an accurate<br />

control system. The f<strong>in</strong>al management plan should clearly <strong>in</strong>dicate what land could still be<br />

used for these traditional activities allow<strong>in</strong>g buffer zones close to the ma<strong>in</strong> population<br />

centres. Ideally slash and burn practices should be replaced by more susta<strong>in</strong>able land<br />

use practices <strong>in</strong> the zones adjacent to protected areas. Involvement of local people <strong>in</strong><br />

decision-mak<strong>in</strong>g for conservation action plans is <strong>in</strong>dispensable. Resource management<br />

should be urgently improved and control systems should at least partially come from<br />

with<strong>in</strong> the villages.<br />

141


Chapter 5<br />

Animals<br />

The degree of vulnerability of a given species due to <strong>forest</strong> fragmentation is likely to be<br />

related to its tolerance to habitat change and its capability to use or bridge the grasslands<br />

around the rema<strong>in</strong><strong>in</strong>g <strong>forest</strong> fragments. As for <strong>frugivore</strong>s, the large lemur species E. f.<br />

collaris is most vulnerable as it is reluctant to cross these grasslands. Due to the spatiotemporal<br />

patch<strong>in</strong>ess of its food resources, it needs large home ranges (up to 100ha) and<br />

covers long distances daily (1500-3500m, Donati 2002). E. f. collaris only occurs <strong>in</strong> the<br />

south-eastern region of Madagascar (Tattersall 1982) and risks to decl<strong>in</strong>e severely <strong>in</strong><br />

numbers as a consequence of fragmentation and degradation of the <strong>littoral</strong> <strong>forest</strong> and<br />

through hunt<strong>in</strong>g practice. Eulemur fulvus collaris, or Eulemur collaris as debated by some<br />

(Djletati et al. 1997; Wright 1999; Wyner et al. 1999; but see also Pastor<strong>in</strong>i et al. 2000) is<br />

listed as a vulnerable taxon by IUCN (Hilton-Taylor 2000) and needs to be urgently<br />

protected. With respect to this species, there has already been a translocation on several<br />

groups of E. f. collaris <strong>in</strong> 1999 <strong>in</strong> Mandena. Their habitat (fragment M3) was almost<br />

completely destroyed by producers of charcoal. Therefore the lemurs were captured and<br />

transferred to an actively protected <strong>forest</strong> fragment (M15-M16, Mandena Conservation<br />

Zone). Despite the <strong>in</strong>itial loss of some <strong>in</strong>dividuals, the groups seem to have adapted to<br />

their new habitat (Ramanamanjato pers. comm.). Translocation and re-<strong>in</strong>troduction of<br />

primates, especially <strong>in</strong> ‘rescue’ situations such as the one <strong>in</strong> Mandena will become<br />

<strong>in</strong>creas<strong>in</strong>gly important as a tool for species conservation (Soorae and Baker 2002).<br />

Moreover, this practice has a high popular significance and a very high potential for<br />

educational applications. The nocturnal lemurs are still more abundantly present <strong>in</strong><br />

smaller <strong>forest</strong> fragments (Ganzhorn et al. 2000) but are restricted to a s<strong>in</strong>gle fragment as<br />

well. Another highly vulnerable species is Pteropus rufus, because a population of 250-<br />

300 fly<strong>in</strong>g foxes has its roost <strong>in</strong> a severely degraded fragment. Therefore, this roost site<br />

should be <strong>in</strong>cluded <strong>in</strong> an actively protected zone. Most frugivorous bird species seem to<br />

be less threatened and more abundantly present <strong>in</strong> small, large, <strong>in</strong>tact and degraded<br />

fragments.<br />

As <strong>frugivore</strong>s face periods of fruit scarcity it is important to collect long-term data on<br />

phenology to understand <strong>in</strong>ter-annual patterns and predict periods of fruit abundance and<br />

scarcity. Interest<strong>in</strong>g as well is to identify keystone species that bear fruit dur<strong>in</strong>g periods of<br />

fruit scarcity and supply much of the diet of the <strong>frugivore</strong>s <strong>in</strong> this <strong>forest</strong> (Terborgh 1986b).<br />

Given the short duration of our studies (Bollen and Donati, Chapter 1) we are unable to<br />

asses true ‘keystone species’ (def<strong>in</strong>ition accord<strong>in</strong>g Terborgh 1986b; Mills et al. 1993) at<br />

the moment. However, a potential candidate may be Syzigium sp. 2 (Myrtaceae) and to a<br />

lesser extent Dypsis prestoniana (Arecaceae). Both species fruit when fruit availability is<br />

low. Syzigium sp. 2 is a large canopy tree species that is very common <strong>in</strong> the <strong>littoral</strong><br />

<strong>forest</strong> (Razafimizanilala 1996) with numerous odoriferous purple berries characterised by<br />

a soft and juicy pulp and th<strong>in</strong> husk. These fruits are one-seeded with high sugar<br />

concentrations (43%). This species constituted 80% of the diet of E. f. collaris <strong>in</strong> June<br />

2000. Dypsis prestoniana is much less abundant as it used to be but can still be f<strong>in</strong>d <strong>in</strong><br />

the more <strong>in</strong>tact parts of S9. This high palm species has a relatively large fruit crop<br />

consider<strong>in</strong>g its small canopy. With<strong>in</strong> the diet of E. f. collaris fruits of this species<br />

constituted 20% <strong>in</strong> April (Table 1). The overall importance of these potential keystone<br />

species <strong>in</strong>creases if we consider that they are eaten by all frugivorous species present <strong>in</strong><br />

Sa<strong>in</strong>te Luce. Phenology data on important timber species could further be a useful tool to<br />

more ecologically susta<strong>in</strong>able <strong>in</strong>itiatives as well (Wallace and Pa<strong>in</strong>ter 2002). As they can<br />

142


Conservation<br />

contribute disproportionately to the diets of certa<strong>in</strong> species, detailed data on food supply<br />

are <strong>in</strong>dispensable (Chapman and Peres 2001).<br />

Corridors and plantations<br />

As degradation and fragmentation are quite advanced <strong>in</strong> the <strong>littoral</strong> <strong>forest</strong>, active<br />

protection of the rema<strong>in</strong><strong>in</strong>g <strong>in</strong>tact <strong>forest</strong> and control of hunt<strong>in</strong>g, logg<strong>in</strong>g and fires is not<br />

enough to conserve and restore this ecosystem. Furthermore, natural regeneration via<br />

secondary <strong>forest</strong>s is too slow to counteract the loss of primary <strong>forest</strong>s. Therefore, it is<br />

necessary to accelerate the natural recovery process. In this respect, creation of corridors<br />

that connect isolated primary <strong>forest</strong> remnants with th<strong>in</strong> strips of habitat is considered a<br />

prime target for conservation activities (Ganzhorn et al. 1997; Beier and Noss 1998). In<br />

this respect, QIT Madagascar M<strong>in</strong>erals (2001) has <strong>in</strong>stalled a corridor <strong>in</strong> 1999 <strong>in</strong> between<br />

M4 and M5 <strong>in</strong> Mandena with 20% endemic species and 80% exotic species. Corridors<br />

are valuable conservation tools, promot<strong>in</strong>g <strong>in</strong>creased plant and animal movement among<br />

patches that will enhance population viability and likelihood of recolonisation, as well as<br />

facilitation of poll<strong>in</strong>ation and seed dispersal (Beier and Noss 1998; Tewksbury et al. 2002)<br />

As some species readily move between fragments, us<strong>in</strong>g habitat corridors, others do not<br />

(Chapman and Peres 2001). Reasonably, seed of <strong>forest</strong> plant species will be dispersed<br />

at greater distances from their source through cont<strong>in</strong>uous <strong>forest</strong> than through open field<br />

or pasture, so corridors should ideally be contiguous with the native <strong>forest</strong> seed source<br />

(Wunderle 1997).<br />

In Sa<strong>in</strong>te Luce, S9, S17, S6 and S7 are not too far apart and could ideally be l<strong>in</strong>ked<br />

by corridors <strong>in</strong> the near future so that re<strong>forest</strong>ation can happen from these nuclei. Birds<br />

and fly<strong>in</strong>g foxes are of great importance dur<strong>in</strong>g first succession stages dispers<strong>in</strong>g pioneer<br />

and heliophil species. After three years the ground is effectively shaded by their canopy<br />

that climax species will then predom<strong>in</strong>ate <strong>in</strong> seedl<strong>in</strong>g growth, provided the seed source is<br />

brought <strong>in</strong>to these parcels by fly<strong>in</strong>g foxes, fruit pigeons, bulbuls and <strong>in</strong> a later phase even<br />

mouse lemurs. As the corridor gets more ample dwarf lemurs and eventually E. f. collaris<br />

will make use of them as well, dispers<strong>in</strong>g certa<strong>in</strong> seeds. If we depend entirely on natural<br />

seed dispersal to br<strong>in</strong>g tree species to a site, this may result <strong>in</strong> a secondary <strong>forest</strong><br />

dom<strong>in</strong>ated by a well-dispersed subset of the <strong>forest</strong> flora. Unassisted succession has<br />

proven to be better at restor<strong>in</strong>g biomass than biodiversity (Corlett 2002). In this respect<br />

large-seeded plant species (for example Canarium boiv<strong>in</strong>ii, Diospyros sp., Apodytes sp.<br />

nov.)(Table 1) are less easily dispersed than small-seeded trees and because they have<br />

fewer dispersers, they require plant<strong>in</strong>g <strong>in</strong> subsequent efforts (Terborgh 1983; Janzen<br />

1988; Wunderle 1997; Kitamura et al. 2002. Ingle 2003).<br />

Besides creat<strong>in</strong>g corridors, plantations of both native and exotic species can help<br />

regeneration as well while at the same time provid<strong>in</strong>g an alternative wood source for the<br />

local people. In this respect QIT Madagascar M<strong>in</strong>erals has carried out experiments <strong>in</strong> a<br />

tree nursery for 10 years with different exotic tree species such as Eucalyptus, Acacia<br />

and Casuar<strong>in</strong>a species (QIT Madagascar M<strong>in</strong>erals 2001), which were found to be<br />

suitable <strong>in</strong> landscape restoration. They even accelerate natural <strong>forest</strong> succession by<br />

ameliorat<strong>in</strong>g harsh soil and understory microclimatic conditions, suppress<strong>in</strong>g dom<strong>in</strong>ant<br />

grasses, improv<strong>in</strong>g soil fertility and nutrient availability and attract<strong>in</strong>g seed dispersers<br />

(Wunderle 1997; Holl et al. 2000; Corlett 2002). In the near area of Mandena there are<br />

about 1930ha of plantations, either private, state property or <strong>in</strong>stalled by QMM. QMM has<br />

<strong>in</strong>stalled 200ha of plantations <strong>in</strong> Mandena and 2ha <strong>in</strong> Sa<strong>in</strong>te Luce. So far there are no<br />

plantations <strong>in</strong> Petriky. QMM <strong>in</strong>tends to grow more plantations every year (V<strong>in</strong>celette pers.<br />

143


Chapter 5<br />

comm.). Mixed species plantations <strong>in</strong> Ampijoroa have proven to be suitable and to offer<br />

fairly acceptable habitats for the majority of the extant lemur species. In Mandena<br />

Cheirogaleus medius and Microcebus mur<strong>in</strong>us were observed to feed on the flowers of<br />

the exotic Melaleuca qu<strong>in</strong>quenervia (Myrtaceae, QIT Madagascar M<strong>in</strong>erals 2001). In<br />

other eastern sites even the larger lemurs, like Eulemur sp., were seen to relate on<br />

Eucalyptus flowers (Ganzhorn 1985; Overdorff 1988). However the floristic diversity of<br />

plantations is limited and may thus not provide food year round for all lemur species<br />

(Ganzhorn 1987; Ganzhorn and Abraham 1991). Therefore plantations, just as corridors,<br />

should ideally border natural <strong>forest</strong>s. This way economic <strong>in</strong>terest can be comb<strong>in</strong>ed with<br />

lemur conservation by plant<strong>in</strong>g economically and ecologically valuable trees on presently<br />

de<strong>forest</strong>ed areas (Ganzhorn and Abraham 1991). Nevertheless one should be careful <strong>in</strong><br />

select<strong>in</strong>g appropriate species for this and the corridors or plantation should not be<br />

monospecific nor <strong>in</strong>volve dom<strong>in</strong>ant <strong>in</strong>vasive species.<br />

Plant<strong>in</strong>g important fruit<strong>in</strong>g trees <strong>in</strong> corridors, plantations or clear<strong>in</strong>gs also improves<br />

the process of re<strong>forest</strong>ation by attract<strong>in</strong>g <strong>frugivore</strong>s and the seed dispersal they provide.<br />

<strong>Fruit</strong> trees can thus be used to accelerate seed dispersal and enrich biodiversity. As<br />

zoochory is the predom<strong>in</strong>ant dispersal mode <strong>in</strong> the tropics (Howe and Smallwood 1982),<br />

dietary data on <strong>frugivore</strong>s can <strong>in</strong>fluence the choice of fruit species <strong>in</strong>cluded <strong>in</strong> plant<strong>in</strong>g<br />

projects. Otherwise, perches or trees <strong>in</strong> clear<strong>in</strong>gs may further attract bird and fly<strong>in</strong>g foxes,<br />

which then aga<strong>in</strong> br<strong>in</strong>g certa<strong>in</strong> seeds <strong>in</strong>to these open areas (Holl et al. 2000). In this way<br />

<strong>frugivore</strong>s can be used to facilitate regeneration, re<strong>forest</strong>ation and vegetation succession<br />

of tropical <strong>forest</strong>.<br />

Development aid<br />

Together with active protection measures for the <strong>littoral</strong> <strong>forest</strong> ecosystem, there is great<br />

need for an <strong>in</strong>tegrated approach comb<strong>in</strong><strong>in</strong>g research, conservation and developmental<br />

aid <strong>in</strong> the area. Madagascar is one of the poorest countries <strong>in</strong> the world. More than 75%<br />

of its human population lives below the poverty level. Conservation of local fauna and<br />

flora is a luxury for the <strong>Malagasy</strong> who struggle to survive from day to day. There is an<br />

urgent need for alternative resources necessary to provide the people with fuel,<br />

construction and tool wood. For this, plantations of fast-grow<strong>in</strong>g non-<strong>in</strong>vasive species are<br />

necessary. At the same time conservation management plans and long term <strong>in</strong>tegrity of<br />

protected areas depend critically upon support from rural communities. Cooperation with<br />

local people, as promoted by the first phase of the National Environment Action Plan<br />

(1991-1995), is an essential feature to succeed <strong>in</strong> conservation.<br />

There are several possibilities to provide economical benefits to the <strong>Malagasy</strong>. First<br />

of all, ecotourism may serve as a conservative strategy for extend<strong>in</strong>g economic<br />

opportunities while safeguard<strong>in</strong>g this unique natural environment. The area of Sa<strong>in</strong>te<br />

Luce provides several options for ecotourism, as there are impressive coastal and <strong>in</strong>land<br />

<strong>forest</strong>s, beautiful prist<strong>in</strong>e white sandy beaches, several nearby small islands, gorgeous<br />

bays and traditional villages. Several groups of E. f. collaris are habituated and can thus<br />

easily be observed as well as numerous bird, amphibian and reptile species. The ma<strong>in</strong><br />

problem for ecotourism is the difficult accessibility of Sa<strong>in</strong>te Luce because of the poor<br />

road system and rough sea conditions dur<strong>in</strong>g most of the year. Shar<strong>in</strong>g revenues from<br />

<strong>forest</strong> entrance may be one way to fully distribute benefits from tourism to residents.<br />

Furthermore local guides can be tra<strong>in</strong>ed and organisations could support local economy.<br />

Ma<strong>in</strong>ly small-scale tourism would be advantageous here, so it does not have a negative<br />

impact on the ecosystem nor lead to <strong>in</strong>creased habitat disturbance or human immigration.<br />

144


Conservation<br />

Ferraro (2001) has noticed that benefits from tourism <strong>in</strong> Ranomafana are only seasonal<br />

and have been captured by a relatively small subset of the population, which are often<br />

migrants. This should be avoided by all means. Butterfly farm<strong>in</strong>g and beekeep<strong>in</strong>g were<br />

proposed as other economical opportunities by QMM and the latter was set up by QMM<br />

<strong>in</strong> Mandena and Sa<strong>in</strong>te Luce. This <strong>in</strong>itiative was welcomed with great enthusiasm by the<br />

local people (V<strong>in</strong>celette and Ramanamanjato pers. comm.). Different possibilities can be<br />

thought of as long as they offer benefits for both the local people and the <strong>littoral</strong> <strong>forest</strong>.<br />

Exclusively protected areas may have a negative impact on the livelihood of residents<br />

that cultivate the land and/or collect and sell fuel and construction wood to the fishermen.<br />

They need to be compensated by recruitment as tourist guides, <strong>forest</strong> guards, workers <strong>in</strong><br />

the plantations and so on. Compared to sites more <strong>in</strong>land, this is only a small percentage<br />

of the population <strong>in</strong> Sa<strong>in</strong>te Luce. Another possibility to dim<strong>in</strong>ish the locals’ impact on the<br />

<strong>littoral</strong> <strong>forest</strong> <strong>in</strong> general is to offer alternatives for their fish<strong>in</strong>g gear, such as more<br />

synthetic materials (nylon or plastics). By the same token, gas or Eucalyptus charcoal<br />

may be a better alternative for charcoal and <strong>in</strong>digenous firewood. Overall, it is very<br />

important that ecologically, economically and socially susta<strong>in</strong>able solutions to the<br />

conservation of biodiversity are searched for as well as the wise management of natural<br />

resources.<br />

We further believe that environmental education <strong>in</strong> the villages is of great importance.<br />

The first and second author had several meet<strong>in</strong>gs with the local authorities and gave<br />

presentations <strong>in</strong> the local school regard<strong>in</strong>g research activities <strong>in</strong> the <strong>forest</strong>. We expla<strong>in</strong>ed<br />

the purpose of our studies and the relevance of conserv<strong>in</strong>g this ecosystem. These<br />

meet<strong>in</strong>gs always attracted lots of people and should def<strong>in</strong>itely be cont<strong>in</strong>ued <strong>in</strong> the future<br />

to <strong>in</strong>clude all parties <strong>in</strong> the process of decision-mak<strong>in</strong>g and to improve social acceptance<br />

of conservation plans.<br />

Future studies<br />

Even though dynamics of the <strong>littoral</strong> <strong>forest</strong> ecosystem are slowly revealed, much more<br />

data are necessary. First of all, a community wide study on poll<strong>in</strong>ation is needed, as no<br />

seed sett<strong>in</strong>g can occur without it. Secondly there is an urgent need for long-term data on<br />

phenology <strong>in</strong> order to predict periods of fruit scarcity and to def<strong>in</strong>e important food species,<br />

which can be consequently planted <strong>in</strong> corridors and/or plantations to facilitate and<br />

enhance germ<strong>in</strong>ation. Thirdly future studies should focus on patterns of seed shadows<br />

and post-dispersal survival of seeds and seedl<strong>in</strong>gs across the full range of habitats<br />

<strong>in</strong>clud<strong>in</strong>g both <strong>in</strong>tact as well as degraded landscapes. Managers need to be able to<br />

predict which species will survive <strong>in</strong> <strong>forest</strong> fragments <strong>in</strong> order to identify which ones are<br />

potentially most threatened by de<strong>forest</strong>ation and thus should be given priority for plant<strong>in</strong>g<br />

(Chapman and Peres 2001). Furthermore, once we get <strong>in</strong>sight on community wide plantanimal<br />

<strong><strong>in</strong>teractions</strong>, it is necessary to estimate m<strong>in</strong>imum viable population sizes of<br />

animals and their tolerance to <strong>forest</strong> fragmentation, translocation or re-<strong>in</strong>troduction, which<br />

will become a necessary tool <strong>in</strong> the <strong>littoral</strong> <strong>forest</strong> due to the future m<strong>in</strong><strong>in</strong>g plans. F<strong>in</strong>ally a<br />

follow up is needed to assess whether they make use of plantations and corridors. Most<br />

studies <strong>in</strong> the past have been carried out <strong>in</strong> primary and protected <strong>forest</strong>. This approach<br />

may not serve the <strong>in</strong>terests of conservation as we need to be able to evaluate<br />

conservation action plans and to reformulate these based on new f<strong>in</strong>d<strong>in</strong>gs. Future<br />

research should be carried out by animal ecologists, plant population biologists and <strong>forest</strong><br />

managers collaborat<strong>in</strong>g closely together <strong>in</strong> order to f<strong>in</strong>d a better balance between timber<br />

harvest<strong>in</strong>g, biodiversity conservation and susta<strong>in</strong>able management. Even though more<br />

145


Chapter 5<br />

data are needed we believe this study along with others from the <strong>littoral</strong> <strong>forest</strong> provide a<br />

conclusive and solid data base to aid <strong>in</strong> formulat<strong>in</strong>g conservation plans now and thus<br />

urgent and active protection should no longer be delayed any further <strong>in</strong> time.<br />

CONCLUSION<br />

The <strong>littoral</strong> <strong>forest</strong> is be<strong>in</strong>g cleared at an alarm<strong>in</strong>g rate while our understand<strong>in</strong>g of its<br />

ecology is still <strong>in</strong>complete. Multi-discipl<strong>in</strong>ary approach is required <strong>in</strong> the near future to<br />

unravel further <strong><strong>in</strong>teractions</strong> and to ref<strong>in</strong>e conservation action plans. Forest restoration is a<br />

necessary activity but simultaneously efforts should be focused on conserv<strong>in</strong>g the<br />

<strong>in</strong>tegrity of exist<strong>in</strong>g primary <strong>forest</strong>s, as there is no guarantee that all species will recolonize<br />

after disturbance. At the moment, less than 3% of Madagascar has a protected<br />

status (Wright 1997b) and one third of the lemur species has already gone ext<strong>in</strong>ct<br />

(Godfrey et al. 1997). Up to date, the <strong>littoral</strong> <strong>forest</strong> is not represented <strong>in</strong> protected areas.<br />

This is an important and unique <strong>forest</strong> type due to its high endemism and biodiversity.<br />

Understand<strong>in</strong>g <strong>forest</strong> dynamics and unravell<strong>in</strong>g plant-animal <strong><strong>in</strong>teractions</strong> <strong>in</strong> degraded<br />

tropical ecosystems is essential if we are to conserve exist<strong>in</strong>g <strong>forest</strong>s and accelerate the<br />

process of re<strong>forest</strong>ation. It is necessary to urgently jo<strong>in</strong> forces <strong>in</strong> order to prevent that our<br />

and several other studies were a last testimony of what once was the <strong>littoral</strong> <strong>forest</strong>. We<br />

owe it to the future generations to protect this ecosystem, so they can take pleasure <strong>in</strong><br />

explor<strong>in</strong>g it further and so the endemic plant and animal species can persist and thrive<br />

here.<br />

ACKNOWLEDGEMENTS<br />

We like to thank Manon V<strong>in</strong>celette and Jean-Baptiste Ramanamanjato of the QMM Environmental<br />

team for provid<strong>in</strong>g detailed <strong>in</strong>formation on the environmental policy <strong>in</strong> the <strong>littoral</strong> <strong>forest</strong> and on the<br />

current activities of QMM. Many thanks as well to Jörg Ganzhorn, L<strong>in</strong>da Van Elsacker and Silvana<br />

M. Borgogn<strong>in</strong>i Tarli for their support <strong>in</strong> this research. The first author is supported by a grant from<br />

the Belgian Fund for Scientific Research, Flanders (FWO). We thank the Flemish Government for<br />

structural support to the CRC of the RZSA. The second author was supported by a doctoral grant of<br />

the Italian M<strong>in</strong>istry for Scientific Research (MURST) and the University of Pisa.<br />

146


GENERAL CONCLUSION<br />

General conclusion<br />

The ma<strong>in</strong> purpose of this study was to ga<strong>in</strong> <strong>in</strong>sight <strong>in</strong>to overall fruit-<strong>frugivore</strong> <strong><strong>in</strong>teractions</strong><br />

<strong>in</strong> the <strong>littoral</strong> <strong>forest</strong> of Sa<strong>in</strong>te Luce. It represents the first community-wide approach to<br />

primary seed dispersal <strong>in</strong> a <strong>Malagasy</strong> <strong>forest</strong> type from the perspective of both the tree<br />

and the consumer species.<br />

Three hypotheses concern<strong>in</strong>g evidence of co-evolution between life history traits of<br />

plants, their diaspores and animal consumers were tested by study<strong>in</strong>g the frugivorous<br />

vertebrates and the dispersal strategies of 34 tree species. Phenological, morphological<br />

and biochemical fruit traits from these species were measured to look for co-variation with<br />

their seed dispersers. No evidence was found for species-specific co-evolution <strong>in</strong> this<br />

study. The lack of tight co-evolutionary relationships was suggested as well by many<br />

other studies (Gautier-Hion et al. 1985; Herrera 1986; Fisher and Chapman 1993;<br />

Erikson and Ehrlen 1998). Five large-seeded tree species however did seem to depend<br />

critically on the largest lemur, Eulemur fulvus collaris, for seed dispersal and recruitment.<br />

This strong dependence however does not represent a case of co-evolution <strong>in</strong> the strict<br />

sense but can be <strong>in</strong>terpreted as an <strong>in</strong>direct consequence of the ext<strong>in</strong>ction of the larger<br />

frugivorous birds and lemurs, which would also have been capable of dispers<strong>in</strong>g these<br />

large fruits. Nevertheless, <strong>in</strong> terms of conservation these fruit-<strong>frugivore</strong> <strong><strong>in</strong>teractions</strong> are of<br />

crucial importance to conserve the <strong>in</strong>tegrity of the <strong>littoral</strong> <strong>forest</strong>.<br />

The low-high <strong>in</strong>vestment model (McKey 1975) subdivides tree species <strong>in</strong>to<br />

specialists and generalists but aga<strong>in</strong> my results do no support this model. McKey’s model<br />

was orig<strong>in</strong>ally developed for bird-dispersed trees <strong>in</strong> the Neotropics and its validity seems<br />

to depend largely on the site-specific composition of the <strong>frugivore</strong> guild (see Wheelwright<br />

et al. 1984). It seems that the species-poor guild of <strong>frugivore</strong>s <strong>in</strong> Madagascar did not lead<br />

to specialised dispersal strategies. Most tree species seem to be characterised by rather<br />

‘generalist’ fruit traits allow<strong>in</strong>g them to attract as many seed dispersers as possible. This<br />

way the risk of rely<strong>in</strong>g on only one <strong>frugivore</strong> species is avoided, which may be dangerous<br />

<strong>in</strong> an ecosystem with few <strong>frugivore</strong>s. Furthermore, the low species diversity of avian<br />

<strong>frugivore</strong>s resulted <strong>in</strong> significantly few bird fruits compared to other sites.<br />

Of all three hypotheses, the concept of dispersal syndromes (Van der Pijl 1969)<br />

was supported most clearly, as there were <strong>in</strong>deed <strong>in</strong>dications that certa<strong>in</strong> morphological<br />

traits correspond to taxonomic groups of dispersers. I found that diaspores dispersed by<br />

birds, mammals or both groups (called mixed fruits) differ <strong>in</strong> their fruit and seed size, fruit<br />

shape and seed number, but not <strong>in</strong> biochemical composition. These results agree with<br />

studies on fruit syndromes <strong>in</strong> other tropical regions with dist<strong>in</strong>ct assemblages of plants<br />

and animals (Janson 1983; Knight and Siegfriend 1983; Gautier-Hion et al. 1985, Corlett<br />

1996; Pizo 2002). Nevertheless, dispersal syndromes can only partly clarify the variability<br />

displayed <strong>in</strong> tree dispersal strategies at Sa<strong>in</strong>te Luce, while the <strong>in</strong>fluence of abiotic factors<br />

on fruit traits may serve as an additional explanation along with the phylogenetic heritage<br />

of plant taxa. In this respect, Hampe (2003) mentions the importance of temperature,<br />

water availability and day length <strong>in</strong> relation to seed growth, fruit size and sugar or lipid<br />

content respectively. As such, there may be similar mean<strong>in</strong>gful correlations that I<br />

overlooked. Overall, efficient plant-disperser <strong><strong>in</strong>teractions</strong> do exist <strong>in</strong> Sa<strong>in</strong>te Luce as well<br />

147


General conclusion<br />

as <strong>in</strong> other sites (Gautier-Hion et al. 1985; Dowsett-Lemaire 1988; Herrera 1995, Corlett<br />

2002; Pizo 2002) without requir<strong>in</strong>g the close co-variation of fruit traits with their dispersers<br />

as predicted by the tested models.<br />

To evaluate the relative contribution of the different animal species <strong>in</strong> relation to seed<br />

dispersal and predation, the core part of this study concentrated on plant-animal<br />

<strong><strong>in</strong>teractions</strong> on a species-specific as well as on a community level. These mutual<br />

relationships determ<strong>in</strong>e the dynamics of the <strong>littoral</strong> <strong>forest</strong> ecosystem. <strong>Fruit</strong> and seed size<br />

appear to be the most determ<strong>in</strong><strong>in</strong>g physical traits <strong>in</strong> food selection of all consumer<br />

species. While birds show a strong preference for specifically coloured fruits (red, purple<br />

and black), nocturnal lemurs show clear preference for soft and juicy fruit pulp and th<strong>in</strong>husked<br />

fruits irrespective of colour. Arillate or soft and juicy fruits are also favoured by<br />

fly<strong>in</strong>g foxes. Nutritionally, birds prefer lipid-rich fruits whereas certa<strong>in</strong> mammals (Eulemur<br />

fulvus collaris, Pteropus rufus) avoid those, which may be l<strong>in</strong>ked to their differential<br />

capacity to digest and assimilate lipids. Mouse and dwarf lemurs select fruits with high<br />

sugar content. This allows them to prepare and store fat reserves before go<strong>in</strong>g <strong>in</strong>to torpor<br />

(see also Bonnaire and Simmen 1994, Fietz and Ganzhorn 1999). These f<strong>in</strong>d<strong>in</strong>gs are the<br />

only <strong>in</strong>dications for diet selection of all <strong>frugivore</strong>s, while for the vast majority of fruit traits,<br />

both biochemical and morphological, the <strong>frugivore</strong>s consume whatever is available. This<br />

weak selection pressure represents another reason for the lack of strong mutual<br />

relationships among fruit traits and dispersers.<br />

Compared to other study sites worldwide (Flem<strong>in</strong>g 1979; Gautier-Hion et al. 1985;<br />

Kitamura et al. 2002) dietary overlap among <strong>frugivore</strong>s seems to be rather high <strong>in</strong> Sa<strong>in</strong>te<br />

Luce. However, without consider<strong>in</strong>g the proportional use of different food items this<br />

overlap may be overestimated. Dietary overlap among <strong>frugivore</strong>s may be strongly<br />

<strong>in</strong>fluenced by phenology, <strong>in</strong>creas<strong>in</strong>g when fruit is abundant and decreas<strong>in</strong>g when it is<br />

scarce (Overdorff 1993; Johnson 2002). Phenological data from Sa<strong>in</strong>te Luce show that<br />

fruit<strong>in</strong>g is highly seasonal and that lean periods differ substantially <strong>in</strong>ter-annually. The<br />

overall low fruit productivity and high unpredictability of food resources <strong>in</strong> Sa<strong>in</strong>te Luce<br />

and other <strong>Malagasy</strong> <strong>forest</strong>s (Overdorff 1996; Goodman and Ganzhorn 1997; Wright<br />

1999) may be the at the base of low feed<strong>in</strong>g selection pressure and thus relatively high<br />

dietary overlap. This also corresponds with the theory of Flem<strong>in</strong>g (1979) that high spatiotemporal<br />

patch<strong>in</strong>ess <strong>in</strong> the Paleotropics leads to much higher dietary overlap and at the<br />

same time to the co-existence of fewer <strong>frugivore</strong> species as opposed to the<br />

Neotropics. In this respect, Terborgh (1986) says that periods of fruit scarcity are crucial<br />

to set the carry<strong>in</strong>g capacity of tropical <strong>forest</strong>s for their <strong>frugivore</strong> community. Dur<strong>in</strong>g<br />

bottlenecks <strong>frugivore</strong>s have to switch to other food items (such as young leaves, flowers<br />

or <strong>in</strong>sects) to compensate for the lack of fruit and to avoid <strong>in</strong>ter-specific competition. In<br />

Sa<strong>in</strong>te Luce and other <strong>Malagasy</strong> humid <strong>forest</strong>s phenophases are highly <strong>in</strong>ter-correlated <strong>in</strong><br />

time, which means that alternative diet items are not available either dur<strong>in</strong>g lean periods.<br />

As a result many lemur species rema<strong>in</strong> highly frugivorous even when fruits are scarce but<br />

concentrate on a few important food species (Overdorff 1993; Vasey 2000; Donati 2002;<br />

Johnson 2002). Some of these plant species may be potential keystone species and<br />

Ficus species are known to often play this role <strong>in</strong> the tropics for numerous tropical<br />

<strong>frugivore</strong>s (Terborgh 1986a; Johnson 2002 but see Gautier-Hion and Michaloud 1989).<br />

However Goodman and Ganzhorn (1997) mention that Madagascar <strong>in</strong> general has a<br />

reduced Ficus diversity. This is also the case for Sa<strong>in</strong>te Luce, where other plant species<br />

are likely to fulfil this role (Syzigium sp.2, Dypsis prestoniana).<br />

148


General conclusion<br />

Even though dietary overlap is high and most fruit species are eaten and dispersed<br />

by several <strong>frugivore</strong>s, the different animal species clearly have a dist<strong>in</strong>ct impact on seed<br />

dispersal. As such, they do not appear to be ecologically redundant <strong>in</strong> their role with<strong>in</strong> the<br />

ecosystem. While fly<strong>in</strong>g <strong>frugivore</strong>s (fruit pigeons, bulbuls, fly<strong>in</strong>g foxes) disperse seeds<br />

<strong>in</strong>to the clear<strong>in</strong>gs and ensure genetic exchange between <strong>forest</strong> fragments, E. f. collaris is<br />

the only disperser of large-seeded fruit species. Mouse and dwarf lemurs disperse only<br />

small-seeded fruit species dur<strong>in</strong>g austral summer. On the contrary the granivores<br />

(rodents, turtledoves, parrots) prey on seeds of most fruits they eat. Clearly,<br />

heterogeneous seed transport is particularly important for a severely fragmented<br />

ecosystem such as the <strong>littoral</strong> <strong>forest</strong>.<br />

The community-wide and ma<strong>in</strong>ly descriptive approach of this study only allowed me<br />

to unravel general trends <strong>in</strong> food ecology and determ<strong>in</strong>e the particular importance of the<br />

different species with<strong>in</strong> the ecosystem. This study lacks more detailed quantitative data<br />

on the animal side of the <strong><strong>in</strong>teractions</strong>. Due to this shortcom<strong>in</strong>g niche differentiation of the<br />

sympatric <strong>frugivore</strong>s has certa<strong>in</strong>ly been overlooked. Frugivore species occupy a speciesspecific<br />

multidimensional niche with<strong>in</strong> the ecosystem, which obviously has its <strong>in</strong>fluence as<br />

well on food selection. Due to competition and particular life history traits not all fruits may<br />

be ‘truly’ available to all <strong>frugivore</strong>s as was set forward by this study. When understand<strong>in</strong>g<br />

niche differentiation, it may be easier to detect which other traits may <strong>in</strong>deed be more<br />

relevant <strong>in</strong> determ<strong>in</strong><strong>in</strong>g actual diet choice.<br />

To check whether previous results are confirmed at other <strong>Malagasy</strong> <strong>forest</strong> types, a<br />

comparison on fruit availability and the feed<strong>in</strong>g ecology of two lemurs species was<br />

conducted with<strong>in</strong> two completely different <strong>forest</strong>s: the dry deciduous <strong>forest</strong> <strong>in</strong> Kir<strong>in</strong>dy<br />

(west Madagascar) and the humid <strong>littoral</strong> <strong>forest</strong> <strong>in</strong> Sa<strong>in</strong>te Luce (south-eastern<br />

Madagascar). Both sites differ substantially <strong>in</strong> abiotic conditions and have a dist<strong>in</strong>ct plant<br />

species composition and phenology. However, the <strong>frugivore</strong> guild at both sites is<br />

comparable. As for fruit traits, Sa<strong>in</strong>te Luce has more fleshy zoochorous berries with th<strong>in</strong><br />

husks while dehiscent capsules and <strong>in</strong>dehiscent thick-husked drupes are more abundant<br />

<strong>in</strong> Kir<strong>in</strong>dy. Biochemically, lipid concentrations are higher <strong>in</strong> Sa<strong>in</strong>te Luce whereas fibre,<br />

tann<strong>in</strong> and nitrogen contents are higher <strong>in</strong> Kir<strong>in</strong>dy. Most of the dom<strong>in</strong>ant fruit traits <strong>in</strong> the<br />

dry deciduous <strong>forest</strong> represent adaptations aga<strong>in</strong>st water loss dur<strong>in</strong>g the long and harsh<br />

dry season. This stresses once more the importance abiotic factors may have on fruit<br />

traits. Other studies compar<strong>in</strong>g fruit traits on a larger geographical scale have found a<br />

potential <strong>in</strong>fluence of abiotic factors and phylogeny of plant communities (Hampe 2003,<br />

Voigt et al. submitted). When compar<strong>in</strong>g feed<strong>in</strong>g selection of two seed dispersers,<br />

Eulemur fulvus and Cheirogaleus medius with<strong>in</strong> and between sites, there are three<br />

different trend that can be found. Firstly, there are clear food preferences. Zoochorous<br />

berries and drupes are strongly preferred, even though other dispersal and fruit types are<br />

present at both sites. As for nutrients, Eulemur fulvus collaris avoids lipid rich fruits <strong>in</strong><br />

Sa<strong>in</strong>te Luce and Cheirogaleus medius selects fruit with high sugar content both <strong>in</strong> Sa<strong>in</strong>te<br />

Luce and <strong>in</strong> Kir<strong>in</strong>dy as preparation for their torpor. Secondly, many traits such as fruit and<br />

seed size, growth form, colour, seed number, seed protection and extractable prote<strong>in</strong>s do<br />

not differ between sites and do not determ<strong>in</strong>e lemur food selection. F<strong>in</strong>ally, for several<br />

traits, both morphological (pulp type, odour, fruit sk<strong>in</strong> protection) and biochemical (total<br />

nitrogen, tann<strong>in</strong>s, ADF and NDF) the lemur species seem to display a large dietary<br />

flexibility. For these features, which differ between sites, the animals select accord<strong>in</strong>g to<br />

the overall availability at a given site. These results show that overall there is a weak<br />

149


General conclusion<br />

selection pressure by <strong>frugivore</strong>s on fruit traits and this at both study sites. At the same<br />

time these <strong>frugivore</strong>s show remarkable regional dietary variation, a phenomenon that has<br />

been found <strong>in</strong> other studies on primates as well (Richard and Dewar 1991; Richard 1977;<br />

Chapman 1995). Thus on a larger geographical scale, the results confirm our previous<br />

conclusions that fruit traits are more likely to be the result of abiotic conditions rather than<br />

of <strong><strong>in</strong>teractions</strong> with their <strong>frugivore</strong>s. In Kir<strong>in</strong>dy, no evidence could be found either for<br />

species-specific co-evolution. To summarize there has been no support for tight coevolution<br />

between fruit traits and dispersers <strong>in</strong> Madagascar (this study), nor <strong>in</strong> temperate<br />

<strong>forest</strong>s (Herrera 1984, 1987; Hampe 2003) or the Neotropics (Janzen 1983; Pizo 2002;<br />

Silva et al. 2002) and the Paleotropics (Gautier-Hion et al. 1985; Corlett 2002). There<br />

seem to be three ma<strong>in</strong> explanations for this. First of all, research has shown that fruit<br />

traits are very conservative and strongly phylogenetically determ<strong>in</strong>ed (Herrera 1986,<br />

1989, 1995; Jordano 1995, Hampe 2003). Secondly, fruit selection by dispersers is not<br />

consistent <strong>in</strong> time and space and has shown to be too weak to shape fruit traits <strong>in</strong><br />

different ecosystems with different <strong>frugivore</strong> diversity. Worldwide, fruit size seems to be<br />

the only common selection cue for dispersers. F<strong>in</strong>ally, many studies, along with this one<br />

show that rather abiotic factors may shape fruit characteristics (Herrera 1986, 1995;<br />

Hampe 2003; Voigt et al, submitted). It seems thus that we need to look beyond coevolution<br />

as it may well be that the ‘conservative’ fruit traits have more strongly <strong>in</strong>fluenced<br />

<strong>frugivore</strong> behaviour than the other way around.<br />

As mentioned before, one might question the suitability to study seed dispersal <strong>in</strong> a site<br />

with a depauperate <strong>frugivore</strong> community. Indeed, Madagascar is characterized by a<br />

species poor <strong>frugivore</strong> guild, with sparsely representation of bird and bat species and the<br />

complete lack of larger mammals like elephants and ungulates. Besides the composition<br />

and abundance of the <strong>frugivore</strong> assemblage varies significantly over time as larger lemur<br />

species have gone ext<strong>in</strong>ct dur<strong>in</strong>g Holocene and bush pigs and lemur species<br />

disappeared locally. On an evolutionary time scale these ext<strong>in</strong>ctions occurred recent and<br />

it is unlikely that they may have <strong>in</strong>terfered <strong>in</strong> shap<strong>in</strong>g fruit traits. The ma<strong>in</strong> disadvantage of<br />

deal<strong>in</strong>g with a depauperate and <strong>in</strong>complete <strong>frugivore</strong> community is that it obviously<br />

narrows down the chance of f<strong>in</strong>d<strong>in</strong>g species-specific co-evolution. Specialized dispersal<br />

strategies seem rather unlikely <strong>in</strong> an ecosystem where few <strong>frugivore</strong>s occur.<br />

Nevertheless it does seem that the <strong>frugivore</strong> composition is reflected <strong>in</strong> the<br />

representation of the different dispersal syndromes (cf. f<strong>in</strong>d<strong>in</strong>gs Gautier-Hion et al. 1985;<br />

Ganesh and Davidar 2000; Hampe 2003; Voigt et al. submitted) as very few ‘bird-fruits’<br />

are present at the study site. Besides, the models that were <strong>in</strong>vestigated, were developed<br />

<strong>in</strong> the Neotropics where species-rich <strong>frugivore</strong> communities are present. Nonetheless no<br />

evidence could be found there either, nor elsewhere. So <strong>in</strong> the end, my results from<br />

Sa<strong>in</strong>te Luce do not seem to contradict with f<strong>in</strong>d<strong>in</strong>gs from other sites with completely<br />

different <strong>frugivore</strong> guilds. The ma<strong>in</strong> advantage of this particular <strong>frugivore</strong> composition is<br />

that it allowed me to sample data on all <strong>frugivore</strong>s present and to <strong>in</strong>clude frugivory by<br />

bats, birds and rats which has only been poorly studied up to now <strong>in</strong> <strong>Malagasy</strong> <strong>forest</strong>s.<br />

Interest<strong>in</strong>g as well is that follow<strong>in</strong>g Flem<strong>in</strong>g’s (1979) theory, Madagascar represents an<br />

extreme situation for the Paleotropics as it has a significantly low and unpredictable fruit<br />

production and few <strong>frugivore</strong>s. Furthermore, the majority of <strong>frugivore</strong>s and fruit<strong>in</strong>g trees<br />

studied are endemic, which stresses the importance of provid<strong>in</strong>g data on these dist<strong>in</strong>ct<br />

ecosystems as well to complete our knowledge on the tropics worldwide. Besides, <strong>in</strong>sight<br />

150


General conclusion<br />

<strong>in</strong> fruit-<strong>frugivore</strong> <strong><strong>in</strong>teractions</strong> <strong>in</strong> Sa<strong>in</strong>te Luce is crucial to understand <strong>forest</strong> dynamics here<br />

and to provide a solid database on which to formulate conservation plans.<br />

In the clos<strong>in</strong>g section of this study, the hazardous situation of the <strong>Malagasy</strong> <strong>littoral</strong> <strong>forest</strong><br />

at the moment is described and suggestions are made as to how my f<strong>in</strong>d<strong>in</strong>gs can be<br />

used <strong>in</strong> the design of population habitat viability analyses (PHVA), which will further lead<br />

to the development of conservation management plans. The <strong>littoral</strong> <strong>forest</strong> is expected to<br />

lose numerous endemic plant and animal species <strong>in</strong> the near future because of<br />

cont<strong>in</strong>u<strong>in</strong>g de<strong>forest</strong>ation and resultant habitat changes. Of great concern is the disruption<br />

of plant-animal <strong><strong>in</strong>teractions</strong>. Alterations <strong>in</strong> the recruitment dynamics of plant species <strong>in</strong><br />

<strong>forest</strong> fragments might have unknown consequences for their long-term survival. As<br />

<strong>forest</strong>s become more fragmented, the rema<strong>in</strong><strong>in</strong>g patches become <strong>in</strong>creas<strong>in</strong>gly isolated<br />

and less accessible for arboreal lemur species, which were found to be important seed<br />

dispersers for numerous plant species. Consequently, gene flow and seed dispersal<br />

between patches become more critical for the long-term survival of many plant species.<br />

Conversely, if fragments get too small or hunt<strong>in</strong>g <strong>in</strong>creases, the long-term survival of<br />

animal species will not be guaranteed either. As Holocene ext<strong>in</strong>ctions have shown, large<br />

<strong>frugivore</strong>s, such as E. f. collaris, are most vulnerable to habitat fragmentation. We now<br />

know that this species is the only rema<strong>in</strong><strong>in</strong>g seed disperser of large-seeded plant species<br />

and its decl<strong>in</strong>e and ext<strong>in</strong>ction will <strong>in</strong>evitably lead to a decl<strong>in</strong>e and lack of regeneration of<br />

large-seeded trees. Frugivorous birds and fly<strong>in</strong>g foxes are the most important mobile<br />

seed dispersers br<strong>in</strong>g<strong>in</strong>g seeds <strong>in</strong>to grasslands and early succession vegetation. Genetic<br />

exchange and long distance dispersal between fragments is less likely to occur if<br />

populations of mobile fly<strong>in</strong>g dispersers decrease or vanish. It is thus not only the threat of<br />

habitat loss but also the hunt<strong>in</strong>g <strong>in</strong> the <strong>littoral</strong> <strong>forest</strong> that will disrupt animal-plant<br />

dynamics. I believe my f<strong>in</strong>d<strong>in</strong>gs on seed dispersal can represent a crucial <strong>in</strong>put for<br />

underly<strong>in</strong>g PHVA of conservation management plans. They will help to <strong>in</strong>dicate priorities<br />

of action and vulnerable animal and plant species, which need special protection efforts.<br />

Obviously, it is of crucial importance to urgently protect the largest rema<strong>in</strong><strong>in</strong>g <strong>in</strong>tact <strong>forest</strong><br />

fragments, which act as reservoirs from where <strong>in</strong>digenous floral and faunal species can<br />

colonize new habitats. In this respect, conservation zones are be<strong>in</strong>g established by QMM<br />

at the moment. Furthermore, to accelerate the natural recovery process corridors and<br />

plantations are be<strong>in</strong>g <strong>in</strong>stalled. In addition, environmental education <strong>in</strong> local schools<br />

should be cont<strong>in</strong>ued as active cooperation with local people is <strong>in</strong>dispensable to the<br />

success of susta<strong>in</strong>able use of land and natural resources and to actively protect the<br />

rema<strong>in</strong><strong>in</strong>g <strong>littoral</strong> <strong>forest</strong>s.<br />

To conclude, this study provided a survey on fruit availability and its fluctuations <strong>in</strong> the<br />

<strong>littoral</strong> <strong>forest</strong> as well as an extensive three-dimensional dataset <strong>in</strong>volv<strong>in</strong>g numerous plant<br />

species with their correspond<strong>in</strong>g phenological, morphological and biochemical traits. <strong>Fruit</strong><br />

diets of all <strong>frugivore</strong> species were obta<strong>in</strong>ed as well. Based on my results, I can conclude<br />

with great certa<strong>in</strong>ty that, <strong>in</strong> the <strong>littoral</strong> <strong>forest</strong> of Sa<strong>in</strong>te Luce, fleshy-fruited plants engage <strong>in</strong><br />

diffuse mutualisms with their dispersal agents. These <strong><strong>in</strong>teractions</strong> are quite generalized,<br />

very ancient and extraord<strong>in</strong>arily frequent <strong>in</strong> certa<strong>in</strong> communities (Willson and Traveset<br />

2000). High unpredictability and asymmetry of <strong><strong>in</strong>teractions</strong>, coupled with an important<br />

<strong>in</strong>fluence of abiotic factors, signal that mutual selection pressures between plants and<br />

seed dispersers are greatly constra<strong>in</strong>ed (Levey and Benkman 1999). In Sa<strong>in</strong>te Luce fruiteat<strong>in</strong>g<br />

animals tend to consume many fruit species and likewise the fruits of many plants<br />

151


General conclusion<br />

are consumed by a wide range of animals, possibly to m<strong>in</strong>imize the effects of the loss of<br />

one dispersal agent. Abiotic factors seem to be more responsible than biotic ones <strong>in</strong><br />

shap<strong>in</strong>g fruit characteristics. The long-term dynamics of fruits and their dispersers appear<br />

to be decoupled and the diet choice of <strong>frugivore</strong>s shows a remarkable flexibility towards<br />

variations <strong>in</strong> the fruit supply. If <strong>frugivore</strong> preference had <strong>in</strong>fluenced the evolution of fruit<br />

traits at all it would most probably have acted upon general characteristics, such as fruit<br />

size. Clearly, this shows that abiotic variables and phylogeny are much more important <strong>in</strong><br />

this ecosystem and thus may outweigh the extent of connections between <strong>frugivore</strong>s and<br />

fruits.<br />

Future research should concentrate more on the animal side of these<br />

<strong><strong>in</strong>teractions</strong>, which is essential to understand how niche separation among <strong>frugivore</strong>s is<br />

organised <strong>in</strong> space and time. This will lead to a better understand<strong>in</strong>g of what exactly<br />

determ<strong>in</strong>es diet choice. Data on the post-dispersal phase are needed as well to complete<br />

the dispersal cycle and to comprehend how the assembly and recruitment of plant<br />

communities are organised <strong>in</strong> space and time. As clear patterns <strong>in</strong> one year may<br />

disappear <strong>in</strong> the next, long-term data on phenology are needed. At present several<br />

undergraduate and graduate students are look<strong>in</strong>g at parts of these processes, slowly<br />

fill<strong>in</strong>g the gaps <strong>in</strong> our knowledge. Even though there is still a lot to explore and to<br />

<strong>in</strong>vestigate, now is the time to act <strong>in</strong> order to preserve the <strong>littoral</strong> <strong>forest</strong>, and to prevent<br />

the irreversible disappearance of this precious ecosystem.<br />

152


SAMENVATTING<br />

Samenvatt<strong>in</strong>g<br />

Dit doctoraat behandelt zaadverspreid<strong>in</strong>g op soort- en op gemeenschapsniveau <strong>in</strong> het<br />

littoraal regenwoud van Sa<strong>in</strong>te Luce <strong>in</strong> zuidoost Madagaskar. Het tracht bovendien een<br />

<strong>in</strong>zicht te geven <strong>in</strong> de ecologische relaties tussen enerzijds de gilde van <strong>frugivore</strong>n en<br />

anderzijds bepaalde soorten vruchtbomen kenmerkend voor dit ecosysteem. Meer<br />

specifiek wordt aandacht besteed aan de predispersie- en dispersiefase.<br />

Zaadverspreid<strong>in</strong>g wordt benaderd zowel vanuit het standpunt van de plantensoorten als<br />

dat van de diersoorten. In het eerste deel bestuderen we aan de hand van de temporele<br />

beschikbaarheid van vruchten en hun morfologische en biochemische kenmerken de<br />

verspreid<strong>in</strong>gsstrategieën van 34 boomsoorten. Een uitgebreid onderzoek wordt hiervoor<br />

uitgevoerd naar de algemene vruchtbeschikbaarheid <strong>in</strong> het littoraal regenwoud.<br />

Vervolgens worden bestaande hypotheses, zoals soortspecifieke co-evolutie, het hoge<br />

versus het lage <strong>in</strong>vester<strong>in</strong>gsmodel en het concept van verspreid<strong>in</strong>gssyndromen<br />

onderzocht. Verder hebben we getracht te achterhalen op basis van welke<br />

vruchtkenmerken de verschillende diersoorten hun voedsel selecteren. Hiervoor werden<br />

<strong>in</strong> dit woudtype 173 vruchtensoorten beschreven op morfologie en voed<strong>in</strong>gswaarde.<br />

Dertien vruchteneters komen <strong>in</strong> dit ecosysteem voor. Zij behoren tot de volgende<br />

taxonomische groepen: primaten (4 spp.), vleermuizen (1 sp.), vogels (6 spp.) en<br />

knaagdieren (2 spp.). Ook bepalen we eveneens de rol die deze verschillende<br />

diersoorten spelen <strong>in</strong> het behoud van deze habitat en de regeneratie van typische<br />

woudsoorten door een actieve deelname aan de verspreid<strong>in</strong>g en/of predatie van zaden.<br />

Om de geldigheid van deze resultaten b<strong>in</strong>nen een ruimer kader te testen en te<br />

<strong>in</strong>terpreteren, vergelijken we vruchtkenmerken en voedselkeuze van twee lemuursoorten<br />

<strong>in</strong> twee totaal verschillende woudtypes. We kunnen besluiten dat dit werk niet alleen<br />

aanleid<strong>in</strong>g heeft gegeven tot fundamenteel wetenschappelijke resultaten maar eveneens<br />

een bijdrage kan leveren <strong>in</strong> de onderbouw<strong>in</strong>g van beleidsplannen omtrent conservatie.<br />

Eerst bestuderen we de vruchtbeschikbaarheid <strong>in</strong> het littoraal regenwoud. Deze wordt<br />

aan de hand van twee methodes bepaald, met name phenological transects en fruit trails.<br />

Hoewel dit woudtype een aseizoenaal klimaat kent, blijkt uit de resultaten toch dat er<br />

duidelijke seizoenale en jaarlijkse fluctuaties optreden <strong>in</strong> het vruchtaanbod. Jaarlijks is er<br />

een vruchtpiek van november tot en met februari. Anderzijds zijn de periodes van<br />

vruchtschaarste m<strong>in</strong>der voorspelbaar, ze verschillen van jaar tot jaar. Frugivoren hebben<br />

dus af te rekenen met zowel periodes van vruchtovervloed als van -schaarste. In het<br />

littoraal woud zijn, net als <strong>in</strong> de andere regenwouden <strong>in</strong> Madagaskar de phenophases<br />

(bladgroei, bloei en vruchtrijp<strong>in</strong>g) onderl<strong>in</strong>g sterk gecorreleerd en bereiken ze hun<br />

hoogtepunt <strong>in</strong> de periode van maximale neerslag (november-februari). In droge<br />

woudtypes daarentegen zijn de phenophases meer gespreid over het hele jaar. Zonlicht<br />

fungeert als trigger bij fotosynthese en daglengte blijkt sterk gecorreleerd te zijn met alle<br />

phenophases <strong>in</strong> Sa<strong>in</strong>te Luce. Variatie <strong>in</strong> daglengte is een belangrijke factor <strong>in</strong> dit extreem<br />

zuidelijk gelegen tropisch woud <strong>in</strong> tegenstell<strong>in</strong>g tot evenaarwouden waar daglengte<br />

constant is. Daarenboven is de aanwezigheid van rijpe vruchten ook sterk gecorreleerd<br />

met temperatuur. Dit verband is hoogstwaarschijnlijk een gevolg van het hoge<br />

nutriëntengehalte <strong>in</strong> de bodem <strong>in</strong> periodes van hoge temperatuur en neerslag. Deze<br />

153


Samenvatt<strong>in</strong>g<br />

omstandigheden zijn bovendien ideaal voor de zaadkiem<strong>in</strong>g. De resultaten van zowel<br />

phenological transects als fruit trails tonen aan dat beide methodes aanvullend zijn. In<br />

tegenstell<strong>in</strong>g tot het noteren van vruchtrijp<strong>in</strong>g bij grote bomen <strong>in</strong> de phenological<br />

transects, worden <strong>in</strong> fruit trails alle groeivormen (bomen, struiken, kruiden, epifyten en<br />

lianen) <strong>in</strong> reken<strong>in</strong>g gebracht. Uit de resultaten blijkt dat die onderl<strong>in</strong>g een verschillende<br />

impact hebben op het seizoenaal verloop van het <strong>in</strong>tegraal vruchtaanbod <strong>in</strong> een woud.<br />

Bovendien worden <strong>in</strong> fruit trails ook de vruchten op de bodem meegeteld. Door<br />

comb<strong>in</strong>atie van beide methodes wordt een <strong>in</strong>zicht verworven <strong>in</strong> de temporele variatie <strong>in</strong><br />

vruchtbeschikbaarheid voor zowel arboreale als terrestrische vruchteneters.<br />

Vervolgens richten we onze aandacht op verspreid<strong>in</strong>gsstrategieën van 34 boomsoorten.<br />

Hierbij baseren we ons op enkele basismodellen uit de tropische ecologie, zijnde<br />

soortspecifieke co-evolutie, het model van lage versus hoge <strong>in</strong>vester<strong>in</strong>g (McKey 1975) en<br />

verspreid<strong>in</strong>gssyndromen. Eerst en vooral gaat men er bij co-evolutie van uit dat één<br />

bepaalde vruchtensoort verspreid wordt door één enkele vruchteneter. Hierbij zou de<br />

wisselwerk<strong>in</strong>g tussen beide soorten zo sterk zijn dat ze elkaars evolutie beïnvloeden, wat<br />

mogelijk zou leiden tot extreme vormen van wederzijdse aanpass<strong>in</strong>gen. Volgens het<br />

model van lage en hoge <strong>in</strong>vester<strong>in</strong>g verwachten we dat de lage <strong>in</strong>vesteerders of<br />

generalisten aan de hand van massale vruchtproductie gedurende een korte periode<br />

zoveel mogelijk zaadverspreiders aantrekken met hun waterige en zoete vruchten. De<br />

hoge <strong>in</strong>vesteerders of specialisten daarentegen produceren m<strong>in</strong>der vruchten maar met<br />

een hogere voed<strong>in</strong>gswaarde (hoog vet- en eiwitgehalte) en dit gedurende een langere<br />

vruchtperiode. Hierdoor zouden ze slechts enkele maar wel efficiënte zaadverspreiders<br />

aantrekken. Uit beide modellen vloeit het meer genuanceerd pr<strong>in</strong>cipe van<br />

verspreid<strong>in</strong>gssyndromen voort waarbij bepaalde morfologische co-adaptaties <strong>in</strong> vrucht en<br />

zaad bepaalde taxonomische diergroepen aantrekken. Om deze modellen en pr<strong>in</strong>cipes te<br />

testen hebben we aan de hand van fruit traps en tree watches de identiteit van de<br />

vruchteneters achterhaald evenals hun rol als mogelijke zaadverspreiders en/of –<br />

predatoren. Fenologische, morfologische en biochemische kenmerken van de<br />

vruchtensoorten werden bovendien <strong>in</strong> reken<strong>in</strong>g gebracht om te testen of er al dan niet covariatie<br />

optreedt tussen deze kenmerken en bepaalde verspreid<strong>in</strong>gsstrategieën. Er werd<br />

geen bewijs gevonden voor co-evolutie, noch voor het model van lage en hoge<br />

<strong>in</strong>vester<strong>in</strong>g. Desalniettem<strong>in</strong> kan er toch een onderscheid gemaakt worden tussen wat we<br />

vogel-, zoogdier- en gemengde (zowel vogels als zoogdieren) vruchten kunnen noemen<br />

op basis van vrucht- en zaadgrootte, vruchtvorm en zaadaantal per vrucht.<br />

Voed<strong>in</strong>gswaarde kan niet volgens deze categorieën <strong>in</strong>gedeeld worden. Vijf boomsoorten<br />

met grote zaden worden enkel en alleen verspreid door Eulemur fulvus collaris. Hieruit<br />

concluderen dat dit om co-evolutie gaat is wellicht fout, gezien het eerder een gevolg is<br />

van het uitsterven van grote <strong>frugivore</strong> vogel- en lemuursoorten, die ongetwijfeld ook deze<br />

grote zaden konden verspreiden. Niettegenstaande spreekt het voor zich dat deze<br />

exclusieve <strong>in</strong>teracties uiterst belangrijk zijn vanuit het standpunt van conservatie. Wat het<br />

<strong>in</strong>vester<strong>in</strong>gsmodel betreft, blijkt dat dit model gebaseerd werd op vogelvruchten <strong>in</strong> de<br />

Neotropics en de geldigheid ervan blijkt dan ook sterk afhankelijk te zijn van de<br />

samenstell<strong>in</strong>g van de <strong>frugivore</strong> gilde. De soortenarme groep van vruchteneters zowel <strong>in</strong><br />

heel Madagascar als <strong>in</strong> het littoraal regenwoud heeft blijkbaar geen aanleid<strong>in</strong>g gegeven<br />

tot gespecialiseerde verspreid<strong>in</strong>gsstrategieën. Het is voor een bepaalde boomsoort<br />

mogelijk te riskant om afhankelijk te zijn van slechts één enkele vruchteneter. Als gevolg<br />

hiervan worden de meeste boomsoorten dan ook gekarakteriseerd door een set van<br />

154


Samenvatt<strong>in</strong>g<br />

gemengde en veeleer algemene morfologische en biochemische kenmerken. Anderzijds<br />

heeft de lage soortendiversiteit van <strong>frugivore</strong> vogels aanleid<strong>in</strong>g gegeven tot opvallend<br />

we<strong>in</strong>ig vogelvruchten hier <strong>in</strong> vergelijk<strong>in</strong>g met andere tropische sites. Tot slot kunnen we<br />

dus stellen dat van de drie modellen het concept van de verspreid<strong>in</strong>gssyndromen het<br />

meest aannemelijk is <strong>in</strong> Sa<strong>in</strong>te Luce maar de variatie <strong>in</strong> verspreid<strong>in</strong>gsstrategieën wordt<br />

hierdoor maar gedeeltelijk verklaard.<br />

Het centrale hoofdstuk van dit doctoraat behandelt de vrucht-frugivoor <strong>in</strong>teracties die deel<br />

uitmaken van het ecosysteem. Zowel het dieet als de selectiecriteria en de overlapp<strong>in</strong>g<br />

van voedselsoorten van de 13 verschillende vruchten- en zaadeters wordt beschreven<br />

evenals hun respectievelijke rol b<strong>in</strong>nen dit ecosysteem. Vrucht- en zaadgrootte blijken de<br />

voornaamste kenmerken te zijn <strong>in</strong> de voedselvoorkeur van alle <strong>frugivore</strong>n. Vogels eten<br />

vooral kle<strong>in</strong>e vruchten, terwijl voor de verschillende zoogdieren de gegeten vrucht- en<br />

zaadgrootte evenredig toeneemt met de grootte van de mondholte en het lichaam. Terwijl<br />

vogels voornamelijk rode, paarse en zwarte vruchten selecteren, hebben de nocturne<br />

lemuren en een duidelijke voorkeur voor sappige en vlezige vruchten met een dunne<br />

schil. Vliegende honden eten eveneens graag vlezige vruchten. Wat voed<strong>in</strong>gswaarde<br />

betreft verkiezen vogels vetrijke vruchten terwijl de zoogdieren (Eulemur fulvus collaris en<br />

Pteropus rufus) deze net vermijden. Dwerg- en muislemuren selecteren vruchten met een<br />

hoog suikergehalte om vetreserves aan te leggen voor hun torpor. Overlapp<strong>in</strong>g van de<br />

diëten tussen de verschillende vruchteneters is relatief hoog hier ten opzichte van andere<br />

sites, wat mogelijk kan verklaard worden door de onvoorspelbaarheid van het<br />

vruchtaanbod <strong>in</strong> het littoraal regenwoud. Dit zou op zijn beurt een verklar<strong>in</strong>g kunnen zijn<br />

voor het lage soortenaantal <strong>frugivore</strong>n dat Madagaskar en onze site kenmerkt. Ook al is<br />

er een grote overlapp<strong>in</strong>g van dieet, de impact van de vruchteneters op zaadverspreid<strong>in</strong>g<br />

blijkt toch verschillend en hun rol <strong>in</strong> het ecosysteem evenm<strong>in</strong> overlappend. Naast de<br />

vermelde vruchteneters, telt dit woud ook een aantal zaadeters. Zowel endemische als<br />

exotische rattensoorten, een tortelduifsoort en twee papegaaiensoorten zijn duidelijk<br />

granivoren daar zij de zaden vernietigen van de meeste vruchten die ze eten.<br />

Daarentegen zijn de sterk <strong>frugivore</strong> duiven en bulbuls belangrijke zaadverspreiders voor<br />

de verspreid<strong>in</strong>g van soorten <strong>in</strong> open gebieden waar deze planten deel uitmaken van de<br />

eerste successiefase. E. f. collaris heeft een zeer soortenrijk dieet en is daarenboven als<br />

grootste vruchteneter vooral belangrijk als exclusieve verspreider van grote zaden<br />

b<strong>in</strong>nen<strong>in</strong> een woudfragment. De kle<strong>in</strong>e dwerg- en muislemuren zijn eerder omnivoor en<br />

verspreiden vooral zaden van kle<strong>in</strong>e vruchten gedurende de periode waar<strong>in</strong> ze actief zijn.<br />

Tenslotte zijn de vliegende honden uiterst belangrijk voor zaadverspreid<strong>in</strong>g op lange<br />

afstand en verzekeren ze bovendien de genetische uitwissel<strong>in</strong>g tussen plantenpopulaties<br />

en woudfragmenten. Dit heterogeen zaadtransport is enorm belangrijk <strong>in</strong> een sterk<br />

gefragmenteerd ecosysteem zoals <strong>in</strong> Sa<strong>in</strong>te Luce. In twee kle<strong>in</strong>ere hoofdstukken<br />

besteden we extra aandacht aan de voedselecologie en de rol van de vliegende honden<br />

als zaadverspreiders en de zwarte papegaaien als zaadpredatoren omdat over beide<br />

soorten tot hiertoe nauwelijks data beschikbaar zijn voor Madagaskar.<br />

Tenslotte vergelijken we vrucht- en zaadkenmerken b<strong>in</strong>nen twee totaal verschillende<br />

woudtypes <strong>in</strong> Madagaskar: enerzijds het littoraal regenwoud van Sa<strong>in</strong>te Luce (zuidoost<br />

Madagaskar), anderzijds het droge bladverliezende woud van Kir<strong>in</strong>dy (west<br />

Madagaskar). Aan de hand hiervan trachten we de rol van abiotische factoren en<br />

vruchteneters <strong>in</strong> relatie te brengen tot de evolutie van morfologische en biochemische<br />

155


Samenvatt<strong>in</strong>g<br />

vruchtkenmerken. Beide sites verschillen sterk <strong>in</strong> abiotische factoren maar hebben een<br />

vergelijkbare <strong>frugivore</strong> gilde. Deze studie laat ons toe te testen of onze bev<strong>in</strong>d<strong>in</strong>gen van<br />

Sa<strong>in</strong>te Luce ook opgaan voor andere sites van Madagaskar en ze vervolgens <strong>in</strong> een<br />

ruimer kader te <strong>in</strong>terpreteren. Eerst en vooral is het duidelijk dat de algemene<br />

vruchtkenmerken sterk verschillen tussen beide sites. Sa<strong>in</strong>te Luce heeft opvallend meer<br />

sappige steenvruchten en bessen met dunne schil terwijl openspr<strong>in</strong>gende doosvruchten<br />

en steenvruchten met dikke schil meer voorkomen <strong>in</strong> Kir<strong>in</strong>dy. Biochemisch ligt het<br />

vetgehalte hoger <strong>in</strong> vruchten van Sa<strong>in</strong>te Luce, <strong>in</strong> tegenstell<strong>in</strong>g tot de hogere<br />

concentraties vezels, tann<strong>in</strong>en en stikstof <strong>in</strong> Kir<strong>in</strong>dy. De typische vruchtkenmerken <strong>in</strong> dit<br />

droge bladverliezende woud duiden dan ook vooral op aanpass<strong>in</strong>gen tegen watervlies<br />

gedurende het lange droge seizoen. Wanneer we kijken naar voedselselectie van<br />

Eulemur fulvus en Cheirogaleus medius b<strong>in</strong>nen en tussen beide sites wordt het duidelijk<br />

dat kenmerken zoals vrucht- en zaadgrootte, groeivorm, kleur, zaadaantal,<br />

zaadbescherm<strong>in</strong>g en eiwitgehalte, die niet verschillen tussen de sites, niet echt relevant<br />

zijn voor de voedselselectie van deze lemuren. Anderzijds is er wel een sterke voorkeur<br />

voor zoöchore bessen en steenvruchten <strong>in</strong> beide sites, ook al is er een kwantitatief<br />

verschil <strong>in</strong> de aanwezigheid van deze vruchttypes tussen Kir<strong>in</strong>dy en Sa<strong>in</strong>te Luce. Wat de<br />

voed<strong>in</strong>gswaarde betreft, negeert Eulemur fulvus vetrijke vruchten <strong>in</strong> Sa<strong>in</strong>te Luce en<br />

selecteert Cheirogaleus medius vooral vruchten met een hoog suikergehalte en dit zowel<br />

<strong>in</strong> Sa<strong>in</strong>te Luce als <strong>in</strong> Kir<strong>in</strong>dy als voorbereid<strong>in</strong>g voor hun torpor zoals eerder vermeld.<br />

Tenslotte blijkt dat beide lemuursoorten zich sterk kunnen aanpassen aan de algemene<br />

beschikbaarheid wat tal van morfologische (pulptype, geur, vruchtwand) en biochemische<br />

kenmerken (stikstof, tann<strong>in</strong>es, ADF en NDF) betreft. Deze vruchtkenmerken verschillen<br />

sterk tussen beide sites en de lemuren eten dan ook wat meest aanwezig is <strong>in</strong> een<br />

bepaalde site. Voedselkeuze van beide soorten lemuren wordt dus sterk bepaald door<br />

het algemene vruchtaanbod. Aan de hand van deze resultaten kunnen we dus stellen dat<br />

vruchtkenmerken wellicht eerder het gevolg zijn van sitegebonden abiotische factoren<br />

dan het gevolg van een sterk selectieve impact door <strong>in</strong>teracties met hun vruchteneters.<br />

Net zoals <strong>in</strong> andere onderdelen van deze studie kan ook deze vergelijk<strong>in</strong>g tussen sites<br />

evenm<strong>in</strong> bewijsmateriaal leveren voor het bestaan van co-evolutie. Er kan hooguit<br />

gesproken worden van een zwakke selectieve <strong>in</strong>vloed van de <strong>frugivore</strong>n op<br />

vruchtkenmerken. De lemuren zijn duidelijk flexibel genoeg om hun dieet aan te passen<br />

en te overleven op vruchten met andere morfologische kenmerken en andere<br />

voed<strong>in</strong>gswaarde, waarvan het aanbod verschilt per regio.<br />

Uite<strong>in</strong>delijk wordt <strong>in</strong> het afsluitende hoofdstuk de huidige situatie van het littoraal<br />

regenwoud toegelicht en worden enkele adviezen geformuleerd die relevant zijn voor<br />

conservatie. Het littoraal woud van Sa<strong>in</strong>te Luce bestaat momenteel enkel nog uit sterk<br />

gedegradeerde woudfragmenten. Dit woud riskeert dan ook vele endemische planten- en<br />

diersoorten te verliezen <strong>in</strong> de nabije toekomst omwille van ontboss<strong>in</strong>g en verdere<br />

habitatdegradatie. Het ontwrichten van plant-dier <strong>in</strong>teracties is dan ook een van de<br />

grootste bedreig<strong>in</strong>gen, aangezien verander<strong>in</strong>gen <strong>in</strong> de regeneratie van plantensoorten <strong>in</strong><br />

woudfragmenten belangrijke gevolgen kunnen hebben voor het overleven van deze<br />

soorten op lange termijn. Slash and burn, nutteloze bosbranden en houtkap vormen de<br />

belangrijkste oorzaken voor wouddegradatie en fragmentatie. Daarenboven is er <strong>in</strong> de<br />

nabije toekomst ook nog de bedreig<strong>in</strong>g van houtskool en titaniumontg<strong>in</strong>n<strong>in</strong>g <strong>in</strong> deze<br />

regio. Door sterke fragmentatie raken de resterende woudfragmenten geïsoleerd<br />

waardoor ze niet langer toegankelijk zijn voor arboreale diersoorten. Genetische<br />

156


Samenvatt<strong>in</strong>g<br />

uitwissel<strong>in</strong>g tussen fragmenten door vogels en vleermuizen is dan ook van extreem<br />

belang om de dynamiek van deze wouden <strong>in</strong> stand te houden. Daarenboven hebben<br />

grote zaden we<strong>in</strong>ig zaadverspreiders en verdienen deze plantensoorten speciale<br />

aandacht wat conservatie betreft. Het zijn bovendien ook juist die grote vruchteneters met<br />

hoge habitatvereisten die het meest kwetsbaar zijn en bedreigd worden door<br />

versnipper<strong>in</strong>g van hun habitat. Niet enkel habitatverlies maar ook de jacht op<br />

verscheidene diersoorten kan leiden tot het uiteenvallen van plant-dier <strong>in</strong>teracties. Aan de<br />

hand van onze resultaten hopen we toch duidelijk een aantal sleutelsoorten, zowel<br />

b<strong>in</strong>nen fauna als flora te hebben aangeduid die extra aandacht verdienen <strong>in</strong><br />

natuurbehoud. De bev<strong>in</strong>d<strong>in</strong>gen van dit proefschrift kunnen dan ook als soliede basis<br />

dienen waarop beleidsvoer<strong>in</strong>g rond natuurbeheer ter plaatse zich kan baseren. In eerste<br />

<strong>in</strong>stantie is het van groot belang de meest <strong>in</strong>tacte en grootste woudfragmenten dr<strong>in</strong>gend<br />

maar vooral actief te beschermen. Zij vertegenwoordigen de laatste reservoirs vanwaar<br />

planten en dieren nieuwe habitats kunnen koloniseren. Anderzijds is het ook noodzakelijk<br />

de regeneratie van het woud te stimuleren door het aanleggen van plantages en corridors<br />

die herbeboss<strong>in</strong>g bevorderen. Actieve deelname van de lokale bevolk<strong>in</strong>g is hierbij<br />

onmisbaar en van cruciaal belang voor de slaagkans van het natuurbehoud <strong>in</strong> deze regio.<br />

Milieu-educatie <strong>in</strong> de lokale scholen is <strong>in</strong> dit verband een ideale manier om de Antanosy<br />

actief bij deze projecten te betrekken. Alleen zo kunnen wij hen overtuigen dat het<br />

belangrijk is voor henzelf en vooral voor de toekomstige generaties om hun wouden te<br />

beschermen.<br />

Als conclusie hopen we te kunnen stellen dat dit doctoraat er<strong>in</strong> geslaagd is een eerste<br />

<strong>in</strong>zicht te geven <strong>in</strong> de algemene vruchtbeschikbaarheid en haar fluctuaties <strong>in</strong> het littoraal<br />

regenwoud. Eveneens hebben we een driedimensionale dataset van 173 plantensoorten<br />

samengesteld met hun respectieve fenologische, morfologische en biochemische<br />

kenmerken. Bovendien hebben we het dieet en de voedselecologie van de verschillende<br />

vruchteneters beschreven. Uit de resultaten is gebleken dat <strong>in</strong> het littoraal regenwoud<br />

van Sa<strong>in</strong>te Luce sappige en vlezige vruchten eerder diffuus geassocieerd zijn met hun<br />

zaadverspreiders. Een hoge onvoorspelbaarheid en asymmetrie <strong>in</strong> de <strong>in</strong>teracties, die<br />

daarenboven sterk beïnvloed worden door abiotische factoren, leggen beperk<strong>in</strong>gen op<br />

aan mutuele selectieve druk. Vruchteneters consumeren een grote variëteit aan vruchten,<br />

terwijl vruchten daarentegen vaak door verschillende diersoorten gegeten worden.<br />

Hierdoor is het risico van te sterke afhankelijkheid beperkt wanneer een welbepaalde<br />

zaadverspreider lokaal uitsterft. Abiotische factoren (neerslag, bodem, zonlicht,<br />

temperatuur) zijn duidelijk belangrijker <strong>in</strong> het scheppen van vruchtkenmerken dan<br />

biotische factoren (de <strong>frugivore</strong>n zelf) <strong>in</strong> het littoraal regenwoud. Bovendien vertonen<br />

bepaalde <strong>frugivore</strong> diersoorten vaak een hoge flexibiliteit wat hun voedsel betreft en<br />

passen zij zich aan de algemene beschikbaarheid aan. Toch zijn er enkele duidelijke<br />

voedselvoorkeuren van bepaalde taxonomische groepen of soorten, maar die hebben<br />

blijkbaar geen sterke impact gehad op de ontwikkel<strong>in</strong>g van bepaalde vruchtkenmerken.<br />

Des te meer omdat de samenstell<strong>in</strong>g en grootte van <strong>frugivore</strong> groepen sterk kan<br />

verschillen <strong>in</strong> de tijd. Dit is zeker het geval <strong>in</strong> Madagaskar waar talrijke grote vogel- en<br />

lemuursoorten uitstierven s<strong>in</strong>ds de komst van de mens. Als er al enige duidelijke impact<br />

heeft bestaan van <strong>frugivore</strong>n op de evolutie van vruchtkenmerken dan heeft dit vooral<br />

geleid tot bepaalde algemene morfologische kenmerken. Vooral abiotische factoren<br />

overheersen de relatie vrucht-frugivoor. Om de cyclus van zaadverspreid<strong>in</strong>g te<br />

vervolledigen zouden toekomstige studies <strong>in</strong> Sa<strong>in</strong>te Luce het lot van de zaden na<br />

157


Samenvatt<strong>in</strong>g<br />

zaadverspreid<strong>in</strong>g moeten bestuderen. Zo kan de samenstell<strong>in</strong>g en regeneratie van<br />

plantengemeenschappen <strong>in</strong> tijd en ruimte nog beter begrepen worden. De rol van<br />

zaadverspreiders benadrukt het probleem van ‘lege wouden’ waar langlevende bomen<br />

als ‘levende doden’ getuige zijn van de ontkoppel<strong>in</strong>g van essentiële biotische <strong>in</strong>teracties<br />

ten gevolge van habitatverstor<strong>in</strong>g en jacht.<br />

158


RÉSUMÉ<br />

Résumé<br />

Cette thèse de doctorat traite des modalités de dispersion des gra<strong>in</strong>es au niveau des<br />

espèces a<strong>in</strong>si qu’au niveau de la communauté (floristique et faunistique) de la forêt<br />

<strong>littoral</strong>e de Sa<strong>in</strong>te Luce au Sud-est de Madagascar. Cette étude tente de mieux<br />

comprendre les relations écologiques entre la communauté de <strong>frugivore</strong>s et les arbres<br />

fruitiers qui caractérisent cet écosystème. Plus spécifiquement, nous nous sommes<br />

concentrés sur les phases de pré-dispersion et dispersion des gra<strong>in</strong>es. La dispersion des<br />

gra<strong>in</strong>es est abordée du po<strong>in</strong>t de vue de la flore aussi bien que de la faune. Dans un<br />

premier temps, nous avons étudié les stratégies de dispersion des arbres en nous basant<br />

sur la disponibilité temporelle des fruits et sur leurs caractéristiques morphologiques et<br />

biochimiques. Ensuite, nous avons évalué certa<strong>in</strong>es hypothèses telles que le pr<strong>in</strong>cipe de<br />

co-évolution, le modèle d’<strong>in</strong>vestissement haut/bas et le concept des syndromes de<br />

dispersion. Enf<strong>in</strong>, nous avons tenté de déterm<strong>in</strong>er, sur base de quelques caractéristiques<br />

des fruits, comment les différents <strong>frugivore</strong>s sélectionnent leur nourriture. Pour cela, nous<br />

avons décrit et catégorisé 173 espèces de fruits en nous basant sur leur morphologie et<br />

leur valeur nutritive. Dans cet écosystème, il existe treize espèces de <strong>frugivore</strong>s<br />

appartenant à quatre groupes taxonomiques: les primates (4 spp.), les chauve-souris (1<br />

sp.), les oiseaux (6 spp.) et les rongeurs (2 spp.). Nous avons évalué le rôle que jouent<br />

ces animaux dans le ma<strong>in</strong>tien de cet habitat et dans la régénération des espèces<br />

<strong>forest</strong>ières typiques au travers de leur contribution à la dispersion et/ou à la prédation des<br />

gra<strong>in</strong>es. Af<strong>in</strong> de tester la validité de nos résultats de manière plus vaste, nous avons<br />

étudié les caractéristiques des fruits et la sélection alimentaire des deux espèces de<br />

lémuriens dans deux types de forêts différentes. F<strong>in</strong>alement, ce travail n'a pas seulement<br />

donné lieu à des résultats scientifiques <strong>in</strong>téressants mais a aussi contribué à l'élaboration<br />

de plans de gestion pour la conservation de ce milieu.<br />

Premièrement, nous avons étudié la disponibilité des fruits et ses fluctuations dans une<br />

forêt <strong>littoral</strong>e du Sud-est de Madagascar. Af<strong>in</strong> de faire ce peu, nous avons parcouru des<br />

layons phénologiques et réalisé des relevés mensuels au sol. Malgré que la saisonnalité<br />

soit peu marquée et qu'une vraie saison sèche soit <strong>in</strong>existante dans la forêt <strong>littoral</strong>e de<br />

Madagascar, les tendances phénologiques <strong>in</strong>terannuelles peuvent être considérées<br />

comme relativement saisonnières. De plus, une variation <strong>in</strong>tra-annuelle se discerne avec<br />

des périodes d’abondance et d'autres de pénurie en fruits. Toutes les phénophases<br />

(feuillaison, floraison, fructification) sont <strong>in</strong>ter-corrélées et culm<strong>in</strong>ent à un maximum<br />

durant la période de novembre à février. Ce phénomène a déjà été observé dans<br />

d’autres forêts humides malgaches. Cependant, dans les forêts malgaches sèches, les<br />

différentes phénophases sont relativement espacées dans le temps en raison d’un climat<br />

plus saisonnier. Apparemment, la photopériode exerce un impact important sur les<br />

phénophases. La lum<strong>in</strong>osité fonctionne comme un déclencheur pour la photosynthèse et,<br />

de manière évidente, il existe une plus grande variation de la durée du jour dans un site<br />

situé aussi extrêmement au sud. Par contre, la durée du jour est constante dans les<br />

forêts équatoriales. Les précipitations n'ont une importance que pour la feuillaison et la<br />

température affecte la présence des fruits et surtout des fruits mûrs. Ceci peut être<br />

expliqué par la haute valeur nutritive du sol durant les périodes de plus haute<br />

159


Résumé<br />

température et précipitation. Ces circonstances sont par ailleurs idéales pour la<br />

germ<strong>in</strong>ation des gra<strong>in</strong>es. Lorsqu'on compare les résultats obtenus par les deux<br />

méthodologies que nous avons utilisées, la différence de présence de fruits mûrs peut<br />

être expliquée par une contribution différente des types biologiques rencontrés sur le<br />

layon phénologique et le relevé au sol. Cette différence de contribution <strong>in</strong>fluence<br />

clairement les tendances de fructification totale. De fait, lors des relevés au sol, les fruits<br />

rencontrés à même le sol sont aussi comptés. La comb<strong>in</strong>aison des deux méthodes met<br />

en évidence la variation temporaire dans la disponibilité des fruits pour les <strong>frugivore</strong>s<br />

arboricoles a<strong>in</strong>si que les <strong>frugivore</strong>s terrestres.<br />

Ensuite, nous nous sommes concentrés sur les stratégies de dispersion de 34 espèces<br />

d’arbres. Nous nous sommes basés sur certa<strong>in</strong>s modèles de l’Ecologie Tropicale : la coévolution,<br />

le modèle d’<strong>in</strong>vestissement haut/bas (McKey 1975) et les syndromes de<br />

dispersion. Selon le modèle de co-évolution, une espèce de fruit dépend d’une seule<br />

espèce de <strong>frugivore</strong> pour sa dispersion. Cette <strong>in</strong>teraction est si forte que les deux<br />

espèces <strong>in</strong>fluencent leurs évolutions réciproquement, ce qui peut mener aux formes<br />

extrêmes d’adaptations mutuelles. Selon le modèle d’<strong>in</strong>vestissement haut/bas, les<br />

mo<strong>in</strong>dre <strong>in</strong>vestisseurs ou généralistes attirent les espèces dissém<strong>in</strong>atrices grâce une<br />

production fruitière importante durant une courte période de fructification. En général, la<br />

pulpe des fruits de ce genre d'espèces est succulente et sucrée. Par contre, les grands<br />

<strong>in</strong>vestisseurs ou spécialistes produisent mo<strong>in</strong>s de fruits mais d’une valeur nutritive plus<br />

haute avec un taux élevé de lipides et proté<strong>in</strong>es, et ce, pendant une période plus longue.<br />

De ce fait, elles n'attirent que peu d'espèces dissém<strong>in</strong>atrices mais ces espèces seront<br />

des dissém<strong>in</strong>atrices efficaces. De ces deux modèles découle des syndromes de<br />

dispersion qui supposent des co-adaptations morphologiques des fruits et gra<strong>in</strong>es attirant<br />

certa<strong>in</strong>s groupes taxonomiques plutôt que d'autres. Af<strong>in</strong> de tester ces modèles et<br />

pr<strong>in</strong>cipes, nous avons identifié les consommateurs et déterm<strong>in</strong>é leur rôle en tant que<br />

dissém<strong>in</strong>ateurs ou prédateurs par les méthodes des placettes, des pièges à fruits et par<br />

un suivi régulier de quelques pieds de différentes espèces. De plus, nous avons<br />

caractérisé les traits phénologiques, morphologiques et biochimiques des espèces de<br />

fruit pour tester s’il existait une co-variation de ces traits et de certa<strong>in</strong>es stratégies de<br />

dispersion. Les résultats ne soutiennent pas l'hypothèse de la co-évolution ni le modèle<br />

d’<strong>in</strong>vestissement haut/bas. Néanmo<strong>in</strong>s, il est quand même possible de dist<strong>in</strong>guer les<br />

fruits à oiseaux, les fruits à mammifères et les mixtes (mangés par les oiseaux et par les<br />

mammifères) sur base de la taille des fruits et gra<strong>in</strong>es, de la forme des fruits et du<br />

nombre de gra<strong>in</strong>e par fruit. Ces mêmes catégories ne se retrouvent pas quand on<br />

mesure la valeur nutritive des différentes espèces. C<strong>in</strong>q espèces d’arbres à grandes<br />

gra<strong>in</strong>es ne peuvent être dissém<strong>in</strong>ées que par Eulemur fulvus collaris. Nous ne pouvons<br />

dès lors conclure que ces cas représentent un cas de co-évolution. Il s'agirait plutôt d'une<br />

conséquence de l’ext<strong>in</strong>ction des grandes espèces de lémuriens et oiseaux qui étaient<br />

capables d'aussi avaler ces gra<strong>in</strong>es de grande taille. Pourtant ces <strong><strong>in</strong>teractions</strong> exclusives<br />

sont extrêmement importantes du po<strong>in</strong>t de vue de la conservation. Quant au modèle<br />

d’<strong>in</strong>vestissement différent, il semble qu'il soit basé sur des fruits à oiseaux des<br />

Néotropiques et sa validité dépend fortement de la composition de la communauté de<br />

<strong>frugivore</strong>s. En règle générale, la communauté de <strong>frugivore</strong>s est relativement pauvre à<br />

Madagascar tout comme à Sa<strong>in</strong>te Luce, ce qui semble avoir mené à des stratégies plutôt<br />

généralistes de la part des espèces de cette communauté. Il est peut-être top risqué pour<br />

une espèce d’arbre fruitier de dépendre d’une seule espèce de <strong>frugivore</strong> pour sa<br />

160


Résumé<br />

dispersion dans cette région. Par conséquent, la plupart des espèces d’arbres est<br />

caractérisée par des traits morphologiques et biochimiques générales et non spécialisés.<br />

D’autre part, la faible diversité des oiseaux <strong>frugivore</strong>s a pu avoir donné lieu au fait qu'il y<br />

ait très peu de fruits à oiseaux en comparaison avec d'autres sites. En conclusion, on<br />

constate que des trois modèles, celui des syndromes de dispersion semble le plus<br />

plausible à Sa<strong>in</strong>te Luce. Cependant, il n'explique que partiellement la variation dans les<br />

syndromes de dispersion.<br />

Le chapitre central de ce doctorat traite des <strong><strong>in</strong>teractions</strong> fruit-<strong>frugivore</strong> qui font partie de<br />

l’écosystème. On y décrit aussi le régime alimentaire des <strong>frugivore</strong>s que le<br />

chevauchement des espèces consommées par 13 différentes <strong>frugivore</strong>s et granivores<br />

a<strong>in</strong>si que leurs rôles respectifs dans cet écosystème. La taille des fruits et des gra<strong>in</strong>es<br />

semble être un des facteurs les plus déterm<strong>in</strong>ants dans la sélection alimentaire de tous<br />

les <strong>frugivore</strong>s. Les oiseaux mangent surtout des petits fruits tandis que pour les différents<br />

mammifères, la taille des fruits et gra<strong>in</strong>es augmentent proportionnellement avec la taille<br />

de leur gueule et de leur corps. Alors que les oiseaux sélectionnent les fruits rouges,<br />

pourpres et noirs, les lémuriens nocturnes ont une préférence pour les fruits succulents à<br />

enveloppe f<strong>in</strong>e. Pteropus rufus se délecte aussi de fruits succulents. Quant à la valeur<br />

nutritive des fruits consommés, les oiseaux favorisent les fruits au contenu en lipides très<br />

élevé alors que les mammifères (Eulemur fulvus collaris et Pteropus rufus) évite<br />

simplement ceux-ci. Cheirogaleus spp. et Microcebus rufus sélectionnent des fruits<br />

sucrés pour créer des réserves de graisses durant les périodes de torpeur. Le<br />

chevauchement des régimes alimentaires entre les différents <strong>frugivore</strong>s est relativement<br />

haut comparé aux autres sites, ce qui peut être expliqué par l’imprévisibilité de la<br />

disponibilité des fruits dans la forêt <strong>littoral</strong>e et, qui peut être le motif du nombre<br />

relativement bas des espèces <strong>frugivore</strong>s à Madagascar. Même s’il y avait un<br />

chevauchement important dans les régimes alimentaires, l’impact des différents<br />

<strong>frugivore</strong>s sur la dispersion des gra<strong>in</strong>es serait quand même différent a<strong>in</strong>si que leur rôle<br />

dans l’écosystème. Outre les <strong>frugivore</strong>s déjà mentionnés, il y a aussi des granivores dans<br />

la forêt <strong>littoral</strong>e (deux espèces de rongeurs endémiques et exotiques, une espèce de<br />

tourterelle et deux espèces de perroquet noir) qui consomment et détruisent les gra<strong>in</strong>es.<br />

Par contre les pigeons et bulbuls sont des dissém<strong>in</strong>ateurs importants qui transportent les<br />

gra<strong>in</strong>es dans les ouvertures de la végétation, là où ces espèces feront partie de la<br />

première phase de régénération de la forêt. E. f. collaris a un régime alimentaire très<br />

divers et, étant le plus grand <strong>frugivore</strong>, cette espèce est surtout importante en tant que<br />

dissém<strong>in</strong>atrice exclusive des grandes gra<strong>in</strong>es à l’<strong>in</strong>térieur d’un seul fragment de forêt.<br />

Cheirogaleus spp. et Microcebus rufus sont plutôt omnivores et dispersent surtout les<br />

gra<strong>in</strong>es des petits fruits pendant la période où ils sont actifs. Enf<strong>in</strong> la chauve-souris<br />

Pteropus rufus est l'espèce la plus importante pour la dispersion des gra<strong>in</strong>es à longue<br />

distance et assure en plus l’échange génétique entre les populations des plantes des<br />

différents fragments de forêt. Ce transport hétérogène des gra<strong>in</strong>es est essentiel dans un<br />

écosystème aussi fragmenté que celui de Sa<strong>in</strong>te Luce. Dans deux plus petits chapitres,<br />

nous attirons l’attention sur l’écologie alimentaire de Pteropus rufus et Coracopsis nigra<br />

et sur leur rôle en tant que dissém<strong>in</strong>ateurs et prédateurs de fruits parce que le régime<br />

alimentaire de ces deux espèces reste encore très peu connu à Madagascar.<br />

F<strong>in</strong>alement, nous comparons les caractéristiques de fruits et gra<strong>in</strong>es dans deux types de<br />

forêt complètement différentes à Madagascar: D'une part, la forêt <strong>littoral</strong>e de Sa<strong>in</strong>te Luce<br />

161


Résumé<br />

(Sud-est de Madagascar) et d’autre part, la forêt sèche caducifoliée (Ouest Madagascar).<br />

Cette étude nous permet de mieux comprendre le rôle des facteurs abiotiques (humidité,<br />

climat, sol) sur les caractéristiques des fruits et l’<strong>in</strong>fluence des <strong>frugivore</strong>s eux-mêmes qui<br />

exercent une pression sélective sur ces mêmes caractéristiques (<strong><strong>in</strong>teractions</strong> fauneflore).<br />

Les deux sites diffèrent fortement par les facteurs abiotiques qui y prévalent mais<br />

sont occupés par une communauté de <strong>frugivore</strong>s comparables. Ceci nous permet de<br />

vérifier si nos constatations et les résultats obtenus lors de cette étude sont valables<br />

aussi sur d'autres sites malgaches et de les <strong>in</strong>terpréter dans un cadre plus vaste. Il est<br />

clair que les caractéristiques de fruits sont assez différentes entre les deux sites. A<br />

Sa<strong>in</strong>te Luce, il y a beaucoup plus de baies et drupes succulentes à enveloppe f<strong>in</strong>e tandis<br />

qu'à Kir<strong>in</strong>dy, on retrouve plus de capsules déhiscentes et drupes à enveloppe épaisse.<br />

Biochimiquement le taux de lipides des fruits est plus élevé à Sa<strong>in</strong>te Luce. Les fruits de<br />

Kir<strong>in</strong>dy ont, quant à eux, un taux plus élevé de fibres, de tann<strong>in</strong>s et de composés azotés.<br />

Ces caractéristiques sont typiques d'une forêt caducifoliée et <strong>in</strong>diquent l'existence<br />

d'adaptations contre la déshydratation pendant la longue saison sèche. Quant à la<br />

sélection des fruits par les deux genres de lémuriens (Eulemur et Cheirogaleus) dans un<br />

même site a<strong>in</strong>si que entre les deux sites, les résultats montrent que les caractéristiques<br />

comme la taille de fruits et de gra<strong>in</strong>es, le type de végétation dans laquelle le fruit se<br />

retrouve, la couleur du fruit, le nombre de gra<strong>in</strong>es par fruits, la protection des gra<strong>in</strong>es et le<br />

taux des proté<strong>in</strong>es qui ne diffèrent pas entre les deux sites, ne sont pas pert<strong>in</strong>ents pour<br />

leur sélection alimentaire. Par contre, il existe une claire préférence pour des baies et<br />

drupes zoochores dans les deux sites même s’il y a une différence du po<strong>in</strong>t de vue de<br />

leur disponibilité entre Kir<strong>in</strong>dy et Sa<strong>in</strong>te Luce. Quant à la valeur nutritive, Eulemur fulvus<br />

collaris ignore les fruits riches en lipides à Sa<strong>in</strong>te Luce, tandis que Cheirogaleus medius<br />

sélectionne surtout des fruits sucrés à Sa<strong>in</strong>te Luce et Kir<strong>in</strong>dy pour préparer leur torpeur<br />

tel que précédemment mentionné. F<strong>in</strong>alement, nous avons trouvé que pour certa<strong>in</strong>es<br />

caractéristiques morphologiques (type de pulpe, odeur, enveloppe) et biochimiques<br />

(azotes, tann<strong>in</strong>s, ADF, NDF), ces espèces de lémuriens peuvent s’adapter étroitement à<br />

la disponibilité générale des fruits. Ces caractéristiques diffèrent dans les deux sites et<br />

les lémuriens mangent ce qui est à leur disposition. Sur la base de ces résultats, il<br />

semblerait que ces caractéristiques soient plutôt <strong>in</strong>fluencées par les conditions abiotiques<br />

spécifiques à chaque site que par les <strong><strong>in</strong>teractions</strong> strictes entre lémuriens <strong>frugivore</strong>s et<br />

les espèces consommées. Cette comparaison affaiblit les possibilités d'existence de la<br />

co-évolution, ce qui correspond à nos constatations précédentes. Nous dirions plutôt qu’il<br />

n’y a qu’une faible <strong>in</strong>fluence sélective des <strong>frugivore</strong>s sur les caractéristiques de fruits. Les<br />

lémuriens sont clairement assez flexibles que pour s’adapter à un régime alimentaire<br />

caractérisé par des fruits à morphologies différentes et avec une autre valeur nutritive,<br />

selon la disponibilité locale et ponctuelle en fruits de la région.<br />

Enf<strong>in</strong>, dans le chapitre f<strong>in</strong>al, nous commentons la situation actuelle de la forêt <strong>littoral</strong>e et<br />

nous nous permettons de formuler certa<strong>in</strong>s conseils pert<strong>in</strong>ents pour la conservation. En<br />

ce moment, la forêt <strong>littoral</strong>e de Sa<strong>in</strong>te Luce est composée de fragments fortement<br />

dégradés. Cette forêt risque donc de perdre beaucoup d’espèces de plantes et d'animaux<br />

endémiques dans un futur proche avec pour cause le déboisement et la dégradation<br />

progressive de l'habitat. L'<strong>in</strong>terruption des <strong><strong>in</strong>teractions</strong> entre les plantes et les animaux<br />

est une des plus grandes menaces pour cette région car elle suppose des changements<br />

consécutifs dans la régénération des plantes qui peut avoir des conséquences<br />

importantes pour la survie des espèces à plus long terme. Les cultures sur brûlis, les feux<br />

162


Résumé<br />

de brousse et la coupe du bois sont les causes plus importantes de cette dégradation et<br />

fragmentation de la forêt. Dans le futur, cette région sera en plus sujette à la fabrication<br />

du charbon et à l’extraction d’ilménite, ce qui représentent quelques menaces de plus à<br />

long terme. Par une forte fragmentation, les îlots de forêt deviennent de plus en plus<br />

isolés et mo<strong>in</strong>s accessibles pour les animaux arboricoles. L'échange génétique entre les<br />

populations d'oiseaux et de chauve-souris des différents fragments est crucial pour<br />

ma<strong>in</strong>tenir la dynamique de ces forêts. Les grandes gra<strong>in</strong>es ont peu de dissém<strong>in</strong>ateurs<br />

potentiels et méritent une attention spéciale en matière de Conservation. Par ailleurs, ces<br />

grands <strong>frugivore</strong>s nécessitent de grands habitats et sont donc les plus vulnérables face à<br />

la fragmentation du leur habitat. Non seulement la perte de l'habitat mais aussi une<br />

chasse excessive peut mener à l'<strong>in</strong>terruption des <strong><strong>in</strong>teractions</strong> entre les plantes et les<br />

animaux. Nos résultats prétendent avoir <strong>in</strong>diqué certa<strong>in</strong>es espèces-clés de la faune et de<br />

la flore qui méritent une attention spéciale et qu'il est urgent de protéger. Certa<strong>in</strong>es<br />

constatations de cette étude de doctorat peuvent être <strong>in</strong>tégrées concrètement et<br />

appliquées dans les analyses sur lesquelles se base la gestion de la faune et la<br />

Conservation. Tout d’abord, il est d’un grand <strong>in</strong>térêt de préserver activement et<br />

urgemment les fragments de forêts les plus grands et plus <strong>in</strong>tacts. Ils représentent les<br />

derniers réservoirs où plantes et animaux peuvent coloniser de nouveaux habitats.<br />

D'autre part, il est aussi nécessaire de stimuler la régénération de la forêt en <strong>in</strong>stallant<br />

des plantations et corridors qui stimulent le reboisement. Une participation active de la<br />

population locale est <strong>in</strong>dispensable pour la réussite de chaque plan de conservation dans<br />

la région. L'éducation environnementale dans les écoles locales est la façon idéale pour<br />

impliquer les Antanosy dans les projets de protection de l'environment. C’est l’unique<br />

manière de pouvoir les conva<strong>in</strong>cre de l’importance d'une conservation de leurs forêts<br />

pour eux-mêmes et les générations futures.<br />

En conclusion, nous espérons que ce doctorat soit parvenu à faire mieux comprendre la<br />

disponibilité des fruits et ces fluctuations dans la forêt <strong>littoral</strong>e du Sud-est de<br />

Madagascar. Nous avons établi un ensemble de données tridimensionnelles de 173<br />

espèces de plantes avec leurs caractéristiques phénologiques, morphologiques et<br />

biochimiques respectives. Nous avons aussi décrit le régime et la sélection alimentaire<br />

de différents <strong>frugivore</strong>s. Les résultats montrent que dans la forêt <strong>littoral</strong>e de Sa<strong>in</strong>te Luce<br />

les fruits juteux et succulents sont associés à leurs dissém<strong>in</strong>ateurs de gra<strong>in</strong>es de manière<br />

diffuse. Une haute imprévisibilité et une asymétrie dans les <strong><strong>in</strong>teractions</strong>, qui sont<br />

fortement <strong>in</strong>fluencés par des facteurs abiotiques, limitent les possibilités de pression<br />

sélective mutuelle. Les <strong>frugivore</strong>s consomment une grande variété de fruits et les fruits<br />

sont souvent mangés par plusieurs espèces d’animaux. De cette façon, le risque d’une<br />

trop forte dépendance est limitée lorsqu'un dissém<strong>in</strong>ateur particulier disparaît localement.<br />

Les facteurs abiotiques (précipitations, nature du sol, soleil, température) <strong>in</strong>fluencent plus<br />

les caractéristiques des fruits que les facteurs biotiques (les <strong>frugivore</strong>s eux-mêmes) dans<br />

la forêt <strong>littoral</strong>e de Madagascar. Certa<strong>in</strong>es <strong>frugivore</strong>s montrent, quant à eux, une grande<br />

flexibilité, notamment, en ce qui concerne leur nourriture et s’adaptent facilement à la<br />

disponibilité générale en fruits du site. Néanmo<strong>in</strong>s, il y a des préférences évidentes dans<br />

la nutrition de certa<strong>in</strong>s groupes taxonomiques mais qui n’ont apparemment pas eu<br />

d'impact important sur le développement de certa<strong>in</strong>es caractéristiques de fruits. De<br />

même, la composition et diversité d’espèces de <strong>frugivore</strong>s à un site peuvent différer dans<br />

le temps. Ceci est certa<strong>in</strong>ement le cas à Madagascar où de grandes espèces d’oiseaux<br />

et de lémuriens se sont éte<strong>in</strong>tes depuis l’arrivée des hommes. S'il y a eu un impact clair<br />

163


Résumé<br />

des <strong>frugivore</strong>s sur l’évolution des caractéristiques de fruits, cela a plutôt amené à des<br />

traits morphologiques très généraux. Ce sont surtout les facteurs abiotiques qui<br />

déterm<strong>in</strong>ent la relation fruit-<strong>frugivore</strong>. Il serait <strong>in</strong>téressant que les études futures à Sa<strong>in</strong>te<br />

Luce se concentrent sur le dest<strong>in</strong> des gra<strong>in</strong>es après dispersion pour compléter l'étude du<br />

cycle de dispersion. A<strong>in</strong>si la composition et régénération des communautés des plantes<br />

dans l’espace et le temps pourraient être encore mieux compris. Le rôle des<br />

dissém<strong>in</strong>ateurs souligne l’importance des forêts vides où des arbres à longévité élevée<br />

sont comme des reliques, les derniers témo<strong>in</strong>s de l'<strong>in</strong>terruption des <strong><strong>in</strong>teractions</strong> biotiques<br />

mutuelles à cause de la perturbation des habitats et de la chasse.<br />

164


REFERENCES<br />

References<br />

Andrianisa JA (1989) Observations phénologiques dans la Réserve Spéciale de Nosy<br />

Mangabe, Maroansetra. Mémoires de f<strong>in</strong> d’études, Ecole Supérieur des Sciences<br />

Agronomiques, Université d’Antananarivo, Madagascar<br />

Andrews JR, Birk<strong>in</strong>shaw CR (1998) A comparison between the daytime and nighttime<br />

diet, activity and feed<strong>in</strong>g height of the Black Lemur, Eulemur macaco (Primates:<br />

Lemuridae) <strong>in</strong> Lokobe <strong>forest</strong>, Madagascar. Folia Primatol 69:175-182<br />

Atsalis S (1999) Diet of the brown mouse lemur (Microcebus rufus) <strong>in</strong> Ranomafana<br />

national park, Madagascar. Int J Primatol 20:193-229<br />

Atsalis S (2000). Spatial distribution and population composition of the brown mouse lemur<br />

(Microcebus rufus) <strong>in</strong> Ranomafana National Park, Madagascar, and its implications<br />

for social organization. Am J Primatol 51:61-78<br />

Bairle<strong>in</strong> F (1996) <strong>Fruit</strong>-eat<strong>in</strong>g <strong>in</strong> birds and its nutritional consequences. Comp Biochem<br />

Physiol 113:215-224<br />

Baldi N (2002) Il ruola della fitochimica nella scelta alimentare di Eulemur fulvus collaris,<br />

una proscimmia del Madagascar. Unpublished Master Thesis, Pisa University,<br />

Italy<br />

Banack SA (1998) Diet selection and resource use by fly<strong>in</strong>g foxes (genus Pteropus).<br />

Ecology 79:1949–1967<br />

Banks M (2002) Littoral <strong>forest</strong> primate fauna <strong>in</strong> the Tolagnaro (Fort-Dauph<strong>in</strong>) region of<br />

south-eastern Madagascar. ONG Azafady Report<br />

Barton RA, Purvis A, Harvey PH (1995) Evolutionary radiation of visual and olfactory<br />

bra<strong>in</strong> systems <strong>in</strong> primates, bats and <strong>in</strong>sectivores. Philos T Roy Soc B 348:381-310<br />

Beier P, Noss RF (1998) Do habitat corridors provide connectivity? Conserv Biol<br />

12:1241-1252<br />

Birk<strong>in</strong>shaw CR (1999) The importance of the black lemur (Eulemur macaco) for seed<br />

dispersal <strong>in</strong> Lokobe Forest, Nosy be. In: Rakotosamimana B, Rakotosamimana H,<br />

Ganzhorn JU, Goodman SM (eds) New Directions <strong>in</strong> Lemur Studies. Kluwer<br />

Academic/Plenum Publishers, New York, pp 189-199<br />

Birk<strong>in</strong>shaw CR (2001) <strong>Fruit</strong> characteristics of species dispersed by the black lemur<br />

(Eulemur macaco) <strong>in</strong> the Lokobe Forest, Madagascar. Biotropica 33:478-486<br />

Bleher B, Böhn<strong>in</strong>g-Gaese K (2001) Consequences of <strong>frugivore</strong> diversity for seed dispersal,<br />

seedl<strong>in</strong>g establishment and the spatial pattern of seedl<strong>in</strong>gs and trees. Oecologia<br />

129:385-394<br />

Böhn<strong>in</strong>g-Gaese K, Gaese BH, Rabemanantasoa SB (1999) Importance of primary and<br />

secondary seed dispersal <strong>in</strong> the <strong>Malagasy</strong> tree Commiphora guillaum<strong>in</strong>i. Ecology<br />

80:821-832<br />

Bollen A, Van Elsacker L (2001) Tree dispersal strategies; a variety of possibilities <strong>in</strong><br />

<strong>in</strong>land <strong>littoral</strong> <strong>forest</strong> of SE-Madagascar. Abstract Poster BES meet<strong>in</strong>g, Read<strong>in</strong>g<br />

(UK), pp 20<br />

Bollen A, Donati G, Fietz J, Schwab D, Ramanamanjato J-B, Randrihasipara L, Van<br />

Elsacker L, Ganzhorn JU (2002) <strong>Fruit</strong> characteristics and fruit choice by frugivorous<br />

lemurs <strong>in</strong> a dry deciduous <strong>forest</strong> and a humid <strong>littoral</strong> <strong>forest</strong> of Madagascar. Abstract<br />

Oral Presentation. ATB-Conference Panama City (Panama), pp 11<br />

165


References<br />

Bollen A, Van Elsacker L (2002a) Feed<strong>in</strong>g ecology of Pteropus rufus (Pteropodidae) <strong>in</strong><br />

the <strong>littoral</strong> <strong>forest</strong> of Sa<strong>in</strong>te Luce, SE Madagascar. Acta Chiropterologica 4:33-47<br />

Bollen A, Van Elsacker L (2002b) Seed predation and secondary dispersal <strong>in</strong> <strong>littoral</strong><br />

<strong>forest</strong> (Sa<strong>in</strong>te Luce, SE Madagascar): an experimental approach. Abstract Poster.<br />

ATB-Conference Panama City (Panama), pp 135<br />

Bollen A, Van Elsacker L (2002c) Focal tree studies: Dypsis prestoniana as an example.<br />

Abstract. BENELUX Congress of Zoology Antwerp (Belgium), pp 57<br />

Bollen A, Van Elsacker L (2003) Measur<strong>in</strong>g fruit availability: data from the <strong>littoral</strong> <strong>forest</strong> of<br />

Sa<strong>in</strong>te Luce (SE-Madagascar). Abstract Poster ATB-Conference, Aberdeen<br />

(Scotland), pp 60<br />

Bollen A, Donati G, Fietz J, Schwab D, Ramanamanjato JB, Randrihasipara L, Van<br />

Elsacker L. and Ganzhorn JU (2003) <strong>Fruit</strong> characteristics <strong>in</strong> a dry deciduous and a<br />

humid <strong>littoral</strong> <strong>forest</strong> of Madagascar: evidence for selection pressure through abiotic<br />

constra<strong>in</strong>ts rather than seed dispersers. In: Dew L, Boubli JP (eds) <strong>Fruit</strong>s and<br />

<strong>frugivore</strong>s. Kluwer Publishers, Dordrecht, Chapter 6 (<strong>in</strong> press)<br />

Bonnaire L, Simmen B (1994) Taste perception of fructose solutions and diet <strong>in</strong><br />

Lemuridae. Folia Primatol 63:171-176<br />

Bourlière F (1985) Primate communities: their structure and role <strong>in</strong> tropical ecosystems.<br />

Int J Primatol 6:1-26<br />

Britt A (2000) Diet and feed<strong>in</strong>g behaviour of the black-and-white ruffed lemur (Varecia<br />

variegata variegata) <strong>in</strong> the Betampona Reserve, Eastern Madagascar. Folia<br />

Primatol 71:133-141<br />

Brugiere D, Gautier J-P, Moungazi A, Gautier-Hion A (2002) Primate diet and biomass <strong>in</strong><br />

relation to vegetation composition and fruit<strong>in</strong>g phenology <strong>in</strong> a ra<strong>in</strong> <strong>forest</strong> <strong>in</strong> Gabon.<br />

Int. J Primatol 23:999-1024<br />

Carlo TA, Collazo JA, Groom MJ (2003) Avian fruit preferences across Puerto Rican<br />

<strong>forest</strong>ed landscape: pattern consistency and implications for seed removal.<br />

Oecologia 134:119-131.<br />

Chapman CA (1995) Primate seed dispersal: coevolution and conservation implications.<br />

Evol Anthropol 4:74-82<br />

Chapman CA, Chapman LJ (1996) Frugivory and the fate of dispersed and nondispersed<br />

seeds of six African tree species. J Trop Ecol 12:491-504<br />

Chapman CA, Onderdonk DA (1998) Forests without primates: primate/plant<br />

codependency. Am J Primatol 45:127-141<br />

Chapman CA, Peres CA (2001) Primate conservation <strong>in</strong> the new millennium: the role of<br />

scientists. Evol Anthropol 10:16-33<br />

Chapman CA, Wrangham R (1994) Indices of habitat-wide fruit abundance <strong>in</strong> tropical<br />

<strong>forest</strong>s. Biotropica 26:160-171<br />

Chapman CA, Chapman LJ, Wrangham RW, Hunt K, Gebo D, Gardner L (1992a)<br />

Estimators of <strong>Fruit</strong> Abundance of Tropical Trees. Biotropica 24:527-531<br />

Chapman LJ, Chapman CA, Wrangham RW (1992b) Balanites wilsoniana: elephant<br />

dependent dispersal? J Trop Ecol 8:275-283<br />

Charles-Dom<strong>in</strong>ique P (2001) Relationships between seed dispersal and behavioural<br />

ecology In: Bongers F, Charles-Dom<strong>in</strong>ique P, Forget J-P, Thery M (eds)<br />

Nouragues:Dynamics and plant-animal <strong><strong>in</strong>teractions</strong>. Kluwer Academic Publishers,<br />

Dordrecht, pp 191-196<br />

166


References<br />

Charles-Dom<strong>in</strong>ique P, Atramentowicz M, Charles-Dom<strong>in</strong>ique M, Gerard H, Hladik A,<br />

Hladik CM, Prevost MF (1981) Les mammifères <strong>frugivore</strong>s arboricoles nocturnes<br />

d’une forêt guyanaise: <strong>in</strong>terrelations plantes-animaux. Terre Vie-Rev Ecol A<br />

35:341-435<br />

Cheke AS, Dahl JF (1981) The status of bats on western Indian Ocean islands, with<br />

special reference to Pteropus. Mammalia 45:205–238<br />

Clout MN (1989) Forag<strong>in</strong>g behaviour of glossy black cockatoos. Aust Wildlife Res 16:467-<br />

473<br />

Connell JH (1971) On the role of natural enemies <strong>in</strong> prevent<strong>in</strong>g competitive exclusion <strong>in</strong><br />

some mar<strong>in</strong>e animals and ra<strong>in</strong> <strong>forest</strong> trees. In: den Boer PJ, Gradwell PR (eds)<br />

Dynamics of populations. Centre for Agricultural Publish<strong>in</strong>g and Documentation,<br />

Wagen<strong>in</strong>gen, pp 289-312<br />

Corlett RT (1996) Characteristics of vertebrate-dispersed fruits <strong>in</strong> Hong Kong. J Trop Ecol<br />

12:819-833<br />

Corlett RT (1998) Frugivory and seed dispersal by vertebrates <strong>in</strong> the Oriental<br />

(Indomalayan) Region. Biol Rev 73:413–448<br />

Corlett RT (2002) Frugivores and seed dispersal <strong>in</strong> degraded tropical east asian<br />

landscapes. In: Levey DJ, Silva RW, Galetti M (eds) Seed dispersal and frugivory:<br />

Ecology, Evolution and Conservation. CAB International, New York, pp 451-465<br />

Curtis DJ (1997) The Mongoose lemur (Eulemur mongoz) a study <strong>in</strong> behavior and<br />

ecology. PhD Dissertation, University Zurich, Germany.<br />

Curtis DJ, Zaramody A (1998) Group size, home range use, and seasonal variation <strong>in</strong> the<br />

ecology of Eulemur mongoz. Int J Primatol 19:811-835<br />

Darw<strong>in</strong> C (1859) On the orig<strong>in</strong> of species by means of natural selection. John Murray,<br />

London<br />

Debussche M (1988) La diversité morphologique des fruits charnus en Languedoc<br />

méditerranéen: relations avec les caractéristiques biologiques et la distribution des<br />

plantes et avec les dissém<strong>in</strong>ateurs. Acta Oecol 9:37-52<br />

Debussche M, Isenmann P (1989) Fleshy fruit characters and the choices of bird and<br />

mammal seed dispersers <strong>in</strong> a Mediterranean region. Oikos 56:327-338<br />

Debussche M, Isenmann P (1992) A Mediterranean bird disperser assemblage<br />

composition and phenology <strong>in</strong> relation to fruit availability. Terre Vie-Rev Ecol A<br />

47:411-432<br />

Dew JL, Wright P (1998) Frugivory and seed dispersal by four species of primates <strong>in</strong><br />

Madagascar’s eastern ra<strong>in</strong> <strong>forest</strong>. Biotropica 30:425-437<br />

Djletati R, Brun B, Rumpler Y (1997) Meiotic study of hybrids <strong>in</strong> the genus Eulemur and<br />

taxonomic considerations. Am J Primatol 42:235-245<br />

Dom<strong>in</strong>y N, Lucas P (2002) The sensual side of primate food choice. Am J Phys Anthropol<br />

34:64<br />

Donati G (2002) L’attivita’ e le sue correlate ecologiche nel lemure bruno dal collare,<br />

Eulemur fulvus collaris (Lemuridae), nella <strong>forest</strong>a litorale di Ste Luce (Fort-Dauph<strong>in</strong>,<br />

Madagascar). PhD Dissertation, University of Pisa, Italy<br />

Donati G, Lunard<strong>in</strong>i A, Kappeler PM (1999) Cathemeral activity of red-fronted brown<br />

lemur (Eulemur fulvus rufus) <strong>in</strong> the Kir<strong>in</strong>dy Forest/CFPF. In: Rakotosamimana B,<br />

Rakotosamimana H, Ganzhorn JU, Goodman SM (eds) New Directions <strong>in</strong> Lemur<br />

Studies. Kluwer Academic/Plenum Publishers, New York, pp 119-137<br />

Dowsett-Lemaire F (1988) <strong>Fruit</strong> choice and seed dissem<strong>in</strong>ation by birds and mammals <strong>in</strong><br />

the evergreen <strong>forest</strong> of upland Malawi. Terre Vie-Rev Ecol A 43:251-285<br />

167


References<br />

Dowsett JR (2000) Le statut de perroquets vasa et noir C. vasa et C nigra et de<br />

l'<strong>in</strong>séparable a tête grise Agapornis canus à Madagascar. IUCN, Cambridge<br />

Dumetz N (1999) High plant diversity of lowland ra<strong>in</strong><strong>forest</strong> vestiges <strong>in</strong> eastern<br />

Madagascar. Biodivers Conserv 8:273-315<br />

Du Puy B (1996) Faunal <strong><strong>in</strong>teractions</strong> with the genus Adansonia <strong>in</strong> the Kir<strong>in</strong>dy Forest. In:<br />

Ganzhorn JU, Sorg JP (eds) Ecology and economy of a tropical dry <strong>forest</strong> <strong>in</strong><br />

Madagascar. Primate Report, 46-1, Gött<strong>in</strong>gen, pp 329-334<br />

Erikkson O, Ehrlen J (1998) Phenological adaptations <strong>in</strong> fleshy vertebrate-dispersed fruits<br />

of temperate plants. Oikos 82:617-621<br />

Felber HR (1984) Influence des pr<strong>in</strong>cipales propriétés physico-chimiques des sols et de<br />

la structure des peuplements sur le succès de la régénération naturelle d’essences<br />

représentatives sur des layons de débardage dans une forêt sèche de la côte<br />

occidentale de Madagascar. Master thesis, Fachbereich Waldbau, ETH Zurich<br />

Ferraro PJ (2001) The local costs of establish<strong>in</strong>g protected areas <strong>in</strong> low <strong>in</strong>come nations:<br />

Ranomafana National Park, Madagascar. Environmental policy work<strong>in</strong>g paper n°<br />

2001-006. Georgia State University<br />

Fietz J, Ganzhorn JU (1999) Feed<strong>in</strong>g ecology of the hibernat<strong>in</strong>g primate Cheirogaleus<br />

medius: how does it get so fat? Oecologia 121:157-164<br />

Fietz J (1999) Demography and float<strong>in</strong>g males <strong>in</strong> a population of Cheirogaleus medius. In:<br />

Rakotosamimanana B, Rasamimanana H, Ganzhorn JU, Goodman SM (eds) New<br />

Directions <strong>in</strong> Lemur Studies. Kluwer Academic/Plenum Publishers, New York, pp<br />

159-172<br />

Fischer KE, Chapman CA (1993) Frugivores and fruit syndromes: differences <strong>in</strong> patterns<br />

at the genus and species level. Oikos 66:472-482<br />

Flem<strong>in</strong>g TH (1979) Do tropical <strong>frugivore</strong>s compete for food? Am Zool 19:1157–1172<br />

Flem<strong>in</strong>g TH (1987) <strong>Fruit</strong> bats: prime movers of tropical seeds. Bats 5:3–8<br />

Flem<strong>in</strong>g TH (1992) How do fruit- and nectar-feed<strong>in</strong>g birds and mammals track their food<br />

resources. In: Hunter MD, Takayuki O, Price PW (eds) Effects of resource<br />

distribution on animal-plant <strong><strong>in</strong>teractions</strong>. Academic Press, San Diego, pp 355-391<br />

Flem<strong>in</strong>g TH, Breitwitsch R, Whitesides,GH (1987) Patterns of tropical <strong>frugivore</strong> diversity.<br />

Annu Rev Ecol Syst 18:91-109<br />

Flem<strong>in</strong>g TH, Heithaus ER, Sawyer WB (1977) An experimental analysis of the food<br />

location behavior of frugivorous bats. Ecology 58:619–627<br />

Frankie GW (1975) Tropical <strong>forest</strong> phenology and poll<strong>in</strong>ator plant coevolution. In: Gilbert<br />

LE, Raven PH (eds) Coevolution of animals and plants. University of Texas, Aust<strong>in</strong>,<br />

pp 192-207<br />

Freed BZ (1996) Co-occurrence among crowned lemurs (Lemur coronatus) and<br />

Sanford’s lemurs (Lemur fulvus sanfordi) of Madgascar. PhD Dissertation.<br />

Wash<strong>in</strong>gton University, St. Louis<br />

Fujita MS, Tuttle MD (1991) Fly<strong>in</strong>g foxes (Chiroptera: Pteropodidae): Threatened animals<br />

of key ecological and economic importance. Conserv Biol 5:455–463<br />

Galetti M (1993) Diet of the scaly-headed parrot (Pionus maximiliani) <strong>in</strong> a semideciduous<br />

<strong>forest</strong> <strong>in</strong> southeastern Brazil. Biotropica 25:419-425<br />

Galetti M, Pizo MA (1996) <strong>Fruit</strong> eat<strong>in</strong>g birds <strong>in</strong> a <strong>forest</strong> fragment <strong>in</strong> southeastern Brazil.<br />

Ararajuba 4:71-79<br />

Galetti M (2000) Frugivory by toucans (Rhampastidae) at two altitudes <strong>in</strong> the Atlantic ra<strong>in</strong><br />

<strong>forest</strong> of Brazil. Biotropica 32:842-850<br />

168


References<br />

Ganesh T, Davidar P (2000) Dispersal mode of tree species <strong>in</strong> wet <strong>forest</strong>s of southern<br />

Western Ghats. Curr Sci India 80:394-399<br />

Ganzhorn JU (1985) Utilization of eucalyptus and p<strong>in</strong>e plantations by brown lemurs <strong>in</strong> the<br />

eastern ra<strong>in</strong><strong>forest</strong> of Madagascar. Primate Conservation 6:34-35<br />

Ganzhorn JU (1987) A possible role of plantations for primate conservation <strong>in</strong><br />

Madagascar. Am J Primatol 12:205-215<br />

Ganzhorn JU (1988) Food partition<strong>in</strong>g among <strong>Malagasy</strong> primates. Oecologia 75:436-450<br />

Ganzhorn JU (2003) Effects of <strong>in</strong>troduced Rattus rattus on endemic small mammals <strong>in</strong> dry<br />

deciduous <strong>forest</strong> fragments of western Madagascar. Animal Conserv 6:147-157<br />

Ganzhorn JU, Abraham JP (1991) Possible role of plantations for lemur conservation <strong>in</strong><br />

Madagascar: food for folivorous species. Folia Primatol 56:171-176<br />

Ganzhorn JU, Kappeler PM (1996) Lemurs of the Kir<strong>in</strong>dy Forest. In: Ganzhorn JU, Sorg JP<br />

(eds) Ecology and economy of a tropical dry <strong>forest</strong> <strong>in</strong> Madagascar. Primate Report,<br />

46-1, Gött<strong>in</strong>gen, pp 257-274<br />

Ganzhorn JU, Schmid J (1998) Different population dynamics of Microcebus mur<strong>in</strong>us <strong>in</strong><br />

primary and secondary deciduous dry <strong>forest</strong> of Madagascar. Int J Primatol 19:785-<br />

796<br />

Ganzhorn JU, Sorg J-P (1996) Ecology and economy of a tropical dry <strong>forest</strong>. Primate<br />

Report, 46-1, Gött<strong>in</strong>gen<br />

Ganzhorn JU, Fietz J, Rakotovao E, Schwab D, Z<strong>in</strong>ner D (1999a) Lemurs and the<br />

regeneration of dry deciduous <strong>forest</strong> <strong>in</strong> Madagascar. Conserv Biol 13:794-804<br />

Ganzhorn JU, Goodman SM, Ramanamanjato J-B, Ralison J, Rakotondravony D,<br />

Rakotosamimanana B (2000) Effects of fragmentation and assess<strong>in</strong>g m<strong>in</strong>imum<br />

viable populations of lemurs <strong>in</strong> Madagascar. In: Rhe<strong>in</strong>wald G (ed) Isolated<br />

vertebrate communities <strong>in</strong> the tropics. Bonner zoologische Monographien Edition.<br />

Volume 46. Museum Alexander Koenig, Bonn, pp 265-272<br />

Ganzhorn JU, Lowry PP, Schatz GE, Sommer S (2001). The biodiversity of Madagascar:<br />

one of the world’s hottest hotspots on its way out. Oryx 35: 346-348<br />

Ganzhorn JU, Malcomber S, Andrianantoan<strong>in</strong>a O, Goodman SM (1997) Habitat<br />

characeristics and lemur species richness <strong>in</strong> Madagascar. Biotropica 29:331-343<br />

Ganzhorn JU, Wright PC, Ratsimbazafy J (1999b) Primate communities: Madagascar. In:<br />

Fleagle JG, Janson C, Reed KE (eds) Primate Communities. Cambridge University<br />

Press, Cambridge, pp 75-89<br />

Garber PA, Lambert JE (1998) Introduction to primate seed dispersal: Primates as seed<br />

dispersers: ecological processes and directions for future research. Am J Primatol<br />

45:3-8<br />

Garbutt N (1999) Mammals of Madagascar. Pica Press, UK<br />

Gautier-Hion A, Duplantier J-M, Quris R, Feer F, Sourd C, Decoux J-P, Dubost G,<br />

Emmons L, Erard C, Hecketsweiler P, Moungazi A, Roussilhon C, Thiollay J-M<br />

(1985) <strong>Fruit</strong> characters as a basis of fruit choice and seed dispersal <strong>in</strong> a tropic<br />

<strong>forest</strong> vertebrate community. Oecologia 65:324-337<br />

Gautier-Hion A, Gautier JP, Quiris R (1981) Forest structure and food availability as<br />

complementary factors <strong>in</strong>fluenc<strong>in</strong>g the habitat use by a troop of monkeys<br />

(Cercopithecus cephus). Terre Vie-Rev Ecol 35:511-536<br />

Gautier-Hion A, Michaloud G (1989) Are figs always keystone species for tropical<br />

frugivorous vertebrates? A test <strong>in</strong> Gabon. Ecology 70:1826-1833<br />

169


References<br />

Godfrey LR, Junger WL, Reed KE, Simons EL, Prithijit SC (1997) Inferences about past<br />

and present primate communities <strong>in</strong> Madagascar. In: Goodman SM, Patterson BD<br />

(eds) Natural change and human impact <strong>in</strong> Madagascar. Smithsonian Institution<br />

Press, Wash<strong>in</strong>gton and London, pp 218-256<br />

Goodman SM (1994) A description of a ground burrow of Eliurus webbi (Nesomy<strong>in</strong>ae)<br />

and case of cohabitation with an endemic bird (Brachypteraciidae,<br />

Brachypteracias). Mammalia 58:670-672<br />

Goodman SM, Sterl<strong>in</strong>g EJ (1996) The utilization of Canarium (Burseraceae) seeds by<br />

vertebrates <strong>in</strong> the Reserve Naturelle Integrale d’Andr<strong>in</strong>gitra, Madagascar. Fieldiana<br />

Zoology 85:83-99<br />

Goodman SM, Ganzhorn JU (1997) Rarity of figs (Ficus) on Madagascar and its<br />

relationship to a depauperate <strong>frugivore</strong> community. Terre Vie-Rev Ecol 52:321-329<br />

Goodman SM, Ganzhorn JU, Wilmé L (1997a) Observations at a Ficus tree <strong>in</strong> <strong>Malagasy</strong><br />

humid <strong>forest</strong>. Biotropica 29:480-488<br />

Goodman SM, Pidgeon M, Hawk<strong>in</strong>s AFA and Schulenberg S (1997b) Birds of<br />

southeastern Madagascar. Fieldiana: Zoological New Series, No 87. Field Museum<br />

of Natural History, Chicago<br />

Goodman SM, Ganzhorn JU, Rakotondravony D (<strong>in</strong> press) Introduction to mammals. In:<br />

Goodman SM, Benstead JP (eds) The Natural History of Madagascar. The University<br />

of Chicago Press, Chicago<br />

Green G, Sussman R (1990) De<strong>forest</strong>ation history of the eastern ra<strong>in</strong> <strong>forest</strong>s of<br />

Madagascar from satellite images. Science 248:212-215<br />

Goer<strong>in</strong>g HK, Van Soest PJ (1970) Forage fiber analysis. USDA Handbook. N379,<br />

Wash<strong>in</strong>gton DC<br />

Hampe A (1998) Field studies of the Black Parrot Coracopsis nigra <strong>in</strong> western<br />

Madagascar. Bullet<strong>in</strong> of African Bird Club 5:108-113<br />

Hampe A (2003) Large-scale geographical trends <strong>in</strong> fruit traits of vertebrate dispersed<br />

temperate plants. J Biogeogr 30:487-496<br />

Heithaus ER, Flem<strong>in</strong>g TH, Opler PA (1975) Forag<strong>in</strong>g patterns and resource utilitzation <strong>in</strong><br />

seven species of bats <strong>in</strong> a seasonal tropical <strong>forest</strong>. Ecology 56:841–854<br />

Hem<strong>in</strong>gway CA (1996) Morphology and phenology of seeds and whole fruit eaten by<br />

Milne-Edwards' sifaka, Propithecs diadema edwardsi, <strong>in</strong> Ranomafana National<br />

Park, Madagascar. Int J Primatol 17:637-657<br />

Hem<strong>in</strong>gway CA (1998) Selectivity and variability <strong>in</strong> the diet of Milne-Edwards ‘ Sifakas<br />

(Propithecus diadema edwardsi): Implications for folivory and seed-eat<strong>in</strong>g. Int J<br />

Primatol 19:355-377<br />

Herrera CM (1984) Determ<strong>in</strong>ants of plant-animal coevolution: the case of mutualistic<br />

dispersal of seeds by vertebrates. Oikos 44:132-141<br />

Herrera CM (1986) Vertebrate-dispersed plants: Why don’t they behave the way they<br />

should. In: Estrada A, Flem<strong>in</strong>g TH (eds) Frugivores and seed dispersal. Dr W Junk<br />

Publishers, Dordrecht, pp 5-18<br />

Herrera CM (1987) Vertebrate-dispersed plants of the Iberian Pen<strong>in</strong>sula: a study of fruit<br />

characteristics. Ecol Monogr 57:305-331<br />

Herrera CM (1989) Seed dispersal by animals: a role <strong>in</strong> Angiosperm diversification? Am<br />

Nat 133:309-322<br />

Herrera CM (1995) Plant-vertebrate seed dispersal systems <strong>in</strong> the Mediterranean:<br />

ecological evolutionary, and historical determ<strong>in</strong>ants. Annu Rev Ecol Syst 26:705-<br />

727<br />

170


References<br />

Hilton-Taylor C (2000) 2000 IUCN red list of threatened species. IUCN, Gland,<br />

Switzerland and Cambridge, United K<strong>in</strong>gdom<br />

Hladik CM, Charles-Dom<strong>in</strong>ique P, Petter JJ (1980) Feed<strong>in</strong>g strategies of five nocturnal<br />

prosimians <strong>in</strong> the dry <strong>forest</strong> of the West coast of Madagascar. In: Charles-<br />

Dom<strong>in</strong>ique P, Cooper HM, Hladik A, Hladik CM, Pages, E, Pariente GF, Petter-<br />

Rousseaux A, Schill<strong>in</strong>g A, Peter JJ (eds) Nocturnal <strong>Malagasy</strong> Primates: ecology,<br />

physiology and behaviour. Academic Press, New York, pp 41–73<br />

Hladik CM, Simmen B (1996) Taste perception and feed<strong>in</strong>g behaviour <strong>in</strong> non-human<br />

primates and human populations. Evol Anthropol 5:58-71<br />

Holl KD, Loik M, L<strong>in</strong> EHV, Samuels IA (2000) Tropical montane <strong>forest</strong> restoration <strong>in</strong><br />

Costa Rica: overcom<strong>in</strong>g barriers to dispersal and establishment. Restor Ecol 8:339-<br />

349<br />

Horvitz CC, Pizo MA, Bello y Bello H, LeCorff J, Dirzo R (2002) Are plant species that<br />

need gaps for recruitment more attractive to seed-dispers<strong>in</strong>g birds and ants than<br />

other species? In: Levey DJ, Silva RW, Galetti M (eds) Seed dispersal and<br />

frugivory: Ecology, Evolution and Conservation. CAB International, New York, pp<br />

145-160<br />

Howe HF (1977) Bird activity and seed dispersal of a tropical wet <strong>forest</strong> tree. Ecology<br />

58:539-550<br />

Howe HF (1979) Fear and frugivory. Am Nat 114:925-931<br />

Howe HF (1984) Constra<strong>in</strong>ts on the evolution of mutualism. Am Nat 125:853-865<br />

Howe HF (1993) Aspects of variation <strong>in</strong> a neotropical seed dispersal system. Vegetatio<br />

107/108:149-162<br />

Howe HF, Estabrook GF (1977) On <strong>in</strong>traspecific competition for avian dispersers <strong>in</strong><br />

tropical trees. Am Nat 111:817-832<br />

Howe HF, Smallwood J (1982) Ecology of seed dispersal. Annu Rev Ecol Syst 13:201-<br />

228<br />

Hutcheon JM (1994) The great red island: a future for its bats? Bats 12:10–13<br />

Humbert H (1936-1984) Flore de Madagascar et des Comores. Imprimerie officielle<br />

Tananarive, Muséum national d'histoire naturelle Paris, or Typographie Firm<strong>in</strong>-<br />

Didot-er C ie<br />

Iaconelli S, Simmen B (2002) Taste tresholds and supratreshold responses to tann<strong>in</strong>-rich<br />

plant extracts and qu<strong>in</strong><strong>in</strong>e <strong>in</strong> a primate species (Microcebus mur<strong>in</strong>us). J Chem Ecol<br />

28:2315-2326<br />

Ingle NR (2003) Seed dispersal by w<strong>in</strong>ds, birds, and bats between Philipp<strong>in</strong>e montane<br />

ra<strong>in</strong><strong>forest</strong> and successional vegetation. Oecologia 134: 251-261<br />

Iudica CA, Bonaccorso FJ (1997) Feed<strong>in</strong>g of the bat, Sturnira lilium, on fruits of Solanum<br />

riparium <strong>in</strong>fluences dispersal of this pioneer tree <strong>in</strong> <strong>forest</strong>s of northwestern<br />

Argent<strong>in</strong>a. Stud Neotrop Fauna E 32: 4–6<br />

Izhaki I. 2002. The role of fruit traits <strong>in</strong> determ<strong>in</strong><strong>in</strong>g fruit removal <strong>in</strong> east mediterranean<br />

ecosystems. In: Levey DJ, Silva RW, Galetti M (eds) Seed dispersal and frugivory:<br />

Ecology, Evolution and Conservation. CAB International, New York, pp 161-175<br />

Izhaki I, Kor<strong>in</strong>e C, Arad C (1995) The effect of bat (Rousettus aegypticus) dispersal on<br />

seed germ<strong>in</strong>ation <strong>in</strong> eastern Mediterranean habitats. Oecologia 101:335–342<br />

Jacobs GH (1995) Variations <strong>in</strong> primate colour vision: mechanisms and utility. Evol<br />

Anthropol 3:196-205<br />

Janson CH (1983) Adaptation of fruit morphology to dispersal agents <strong>in</strong> a Neotropical<br />

<strong>forest</strong>. Science 219:187-189<br />

171


References<br />

Janson CH, Chapman CA (1999) Resource and primate community structure. In: Fleagle<br />

JG, Janson C, Reed KE (eds) Primate Communities. Cambridge University Press,<br />

Cambridge, pp 237-267<br />

Janson CH, Stiles EW, White DW (1986) Selection of plant fruit<strong>in</strong>g traits by brown capuch<strong>in</strong><br />

monkeys: a multivariate approach. In: Estrada A, Flem<strong>in</strong>g TH (eds) Frugivores and<br />

Seed Dispersal. Dr W Junk Publishers, Dordrecht, pp 83-92<br />

Janzen DH (1970) Herbivores and the number of tree species <strong>in</strong> tropical <strong>forest</strong>s. Am Nat<br />

104:501-528<br />

Janzen DH (1980) When is it coevolution? Evolution 34:611-612<br />

Janzen DH (1981) Ficus ovalis seed predation by an Orange-ch<strong>in</strong>ned parakeet<br />

(Brotogeris jugularis) <strong>in</strong> Costa Rica. Auk 98:841-844<br />

Janzen DH (1983) Seed and pollen dispersal by animals: convergence <strong>in</strong> the ecology of<br />

contam<strong>in</strong>ation and sloppy harvest. Biol J L<strong>in</strong>n Soc 20:103-113<br />

Janzen DH (1988) Tropical dry <strong>forest</strong>s. The most endangered major tropical ecosystem.<br />

In: Wilson OE (ed) Biodiversity. National Academy Press, Wash<strong>in</strong>gton, pp 130-137<br />

Johns AD, Skorupa JP (1987) Responses of ra<strong>in</strong>-<strong>forest</strong> primates to habitat disturbance: a<br />

review. Int J Primatol 8:157-191<br />

Johnson SE (2002) Ecology and speciation <strong>in</strong> brown lemurs: white-collared lemurs<br />

(Eulemur albocollaris) and hybrids (Eulemur albocollaris X Eulemur fulvus rufus) <strong>in</strong><br />

South-eastern Madagascar. PhD Dissertation, University of Texas, Aust<strong>in</strong><br />

Jordano P (1983) Fig-seed predation and dispersal by birds. Biotropica 15:38-41<br />

Jordano P (1992) <strong>Fruit</strong>s and frugivory. In: Fenner M (ed) Seeds: the ecology of<br />

regeneration <strong>in</strong> plant communities. CAB International, Wall<strong>in</strong>gford, pp 105-156<br />

Jordano P (1995) Angiosperm fleshy fruits and seed dispersers: a comparative analysis<br />

of adaptation and constra<strong>in</strong>ts <strong>in</strong> plant-animal <strong><strong>in</strong>teractions</strong>. Am Nat 145:163-191<br />

Jordano P (2000) <strong>Fruit</strong>s and frugivory. In Fenner M (ed) Seeds: The ecology and<br />

regeneration of plant communities. CAB International, Wall<strong>in</strong>gford, pp 125-16<br />

Julliot C (1996) <strong>Fruit</strong> choice by red howler monkeys (Alouatta seniculus) <strong>in</strong> a tropical ra<strong>in</strong><br />

<strong>forest</strong>. Am J Primatol 40:261-282<br />

Julliot C (1997) Impact of seed dispersal by red howler monkeys Alouatta seniculus on<br />

the seed<strong>in</strong>g population <strong>in</strong> the understorey of tropical ra<strong>in</strong> <strong>forest</strong>. J Ecol 85:431-440<br />

Kalko EKV, Herre EA, Handley COJ (1996) Relation of fruit characteristics to fruit-eat<strong>in</strong>g<br />

bats <strong>in</strong> the New and Old World tropics. J Biogeogr 23:565-576<br />

Kannan R, James DA (1999) <strong>Fruit</strong><strong>in</strong>g phenology and the conservation of the great pied<br />

hornbill (Buceros bicornis) <strong>in</strong> Western Ghats of Southern India. Biotropica 31:167-<br />

177<br />

Kappeler PM, Ganzhorn JU (1994) The evolution of primate societies and communities <strong>in</strong><br />

Madagascar. Evol Anthropol 2:159-171<br />

Kerner A (1898) The natural history of plants, their form, growth, reproduction, and<br />

distribution. (English translation by FW Oliver) Holt, New York.<br />

Kitamura S, Yumoto T, Poonswad P, Chuailua P, Plongmai K, Maruhashi T, Noma N<br />

(2002) Interactions between fleshy fruits and <strong>frugivore</strong>s <strong>in</strong> a tropical seasonal <strong>forest</strong><br />

<strong>in</strong> Thailand. Oecologia 133:559-572<br />

Koechl<strong>in</strong> J, Guillaumet J-L, Morat P (1974) La forêt dense humide sempervirente de<br />

basse altitude et la forêt <strong>littoral</strong>e. In: Koechl<strong>in</strong> J, Guillaumet J-L, Morat P (eds) Flore<br />

et végétation de Madagascar J Cramer, Vaduz, pp 105–165<br />

172


References<br />

Kor<strong>in</strong>e C, Izhaki I, Arad Z (1998) Comparison of fruit syndromes between the Egyptian<br />

fruit-bat (Rousettus aegyptiacus) and birds <strong>in</strong> East Mediterranean habitats. Acta<br />

Oecol 19:147–153<br />

Kor<strong>in</strong>e C, Kalko EKV, Herre EA (1999) <strong>Fruit</strong> characteristics and factor affect<strong>in</strong>g removal<br />

<strong>in</strong> a Panamanian community of strangler figs. Oecologia 123:560-568<br />

Koptur S, Haber WA, Frankie GW, Baker HG (1988) Phenological studies of shrub and<br />

treelet species <strong>in</strong> tropical cloud <strong>forest</strong>s of Costa Rica. J Trop Ecol 4:323-346<br />

Kor<strong>in</strong>e C, Kalko EKV, Herre EA (2000) <strong>Fruit</strong> characteristics and factors affect<strong>in</strong>g fruit<br />

removal <strong>in</strong> a Panamanian community of strangler figs. Oecologia 123:560-568<br />

Knight RS, Siegfried WR (1983) Interrelationships between type, size, color of fruits and<br />

dispersal <strong>in</strong> Southern African trees. Oecologia 56:405-412<br />

Krebs CJ (1989) Ecological methodology. Harper and Row, New York<br />

Kull CA (2000) De<strong>forest</strong>ation, erosion and fire: degradation myths <strong>in</strong> the environmental<br />

history of Madagascar. Environ Hist 6:423-450<br />

Lambert JE (2002) Explor<strong>in</strong>g the l<strong>in</strong>k between animal frugivory and plant strategies: the<br />

case of primate fruit process<strong>in</strong>g and post-dispersal fate. In: Levey DJ, Silva RW,<br />

Galetti M (eds) Seed dispersal and frugivory: Ecology, Evolution and Conservation.<br />

CAB International, New York, pp 365-379<br />

Lambert JE, Garber PA (1998) Evolutionary and Ecological Implications of Primate Seed<br />

Dispersal. Am J Primatol 45:9-28<br />

Langrand O (1990) Guide to the birds of Madagascar. Yale University Press, New Haven-<br />

London<br />

Leighton M (1982) <strong>Fruit</strong> resources and patterns of feed<strong>in</strong>g , spac<strong>in</strong>g and group<strong>in</strong>g among<br />

sympatric Bornean hornbills (Bucerotidae). PhD, University of California<br />

Levey DJ, Bissell HA, O’Keefe SF (2000) Conversion of nitrogen to prote<strong>in</strong> and am<strong>in</strong>o<br />

acids <strong>in</strong> wild fruits. J Chem Ecol 26:179-1763<br />

Levey J, Benkman CW (1999) <strong>Fruit</strong>-seed disperser <strong><strong>in</strong>teractions</strong>: timely <strong>in</strong>sights from a<br />

long-term perspective. Tree 14:41-43<br />

Levey DJ, Moermond TC, Denslow JS (1993) In: McDade L, Bawa KS, Hepsenheide HA,<br />

Hartshorn GS (eds) La Selva: ecology and natural history of a neotropical<br />

ra<strong>in</strong><strong>forest</strong>. University of Chicago Press, Chicago, pp 282-294<br />

Lewis Environmental Consultants (1992a) Madagascar M<strong>in</strong>erals Project. Prelim<strong>in</strong>ary<br />

Environment Impact Assessment Study. Part I: Natural Environment. Appendix III:<br />

Flora. Report to QMM. Madagascar M<strong>in</strong>erals Project, Montreal and Antananarivo<br />

Lewis Environmental Consultants. (1992b). Madagascar M<strong>in</strong>erals Project. Prelim<strong>in</strong>ary<br />

Environment Impact Assessment Study. Part I: Natural Environment. Appendix IV:<br />

Fauna. Report to QMM. Madagascar M<strong>in</strong>erals Project, Montreal and Antananarivo<br />

Lieberman D (1982) Seasonality and phenology <strong>in</strong> a dry tropical <strong>forest</strong> <strong>in</strong> Ghana. J Ecol<br />

70:791-806<br />

Long E, Racey PA (submitted) Food availability and diet of Pteropus rufus <strong>in</strong> a gallery<br />

<strong>forest</strong> surrounded by sisal plantations <strong>in</strong> SE Madagascar. J Trop Ecol<br />

Lowry PPII, Schatz GE, Phillipson PB (1997) The classification of natural and<br />

anthropogenic vegetation <strong>in</strong> Madagascar. In: Goodman SM, Patterson BD (eds)<br />

Natural Change and Human Impact <strong>in</strong> Madagascar. Smithsonian Institution Press,<br />

Wash<strong>in</strong>gton, pp 93-123<br />

Marco DE, Paez SA (2002) Phenology and phylogeny of animal-dispersed plants <strong>in</strong> a dry<br />

Chaco <strong>forest</strong> (Argent<strong>in</strong>a). J Arid Environ 52:1-16<br />

173


References<br />

Marshall AG (1983) Bats, flowers and fruit: evolutionary relationship <strong>in</strong> the Old World. Biol<br />

J L<strong>in</strong>n Soc 20:115–135<br />

Mart<strong>in</strong> RD (1973) A review of the behaviour and ecology of the lesser mouse lemur<br />

(Microcebus mur<strong>in</strong>us JF Miller, 1777). In: Michael RP, Crook JH (eds) Comparative<br />

ecology and behaviour <strong>in</strong> primates. Academic Press, London, pp 1-68<br />

Mart<strong>in</strong>ez del Rio C (1994) Nutritional ecology of fruit-eat<strong>in</strong>g and flower-visit<strong>in</strong>g birds and<br />

bats. In: Langer P, Chivers DJ (eds) The Digestive System <strong>in</strong> Mammals: Food, Form<br />

and Function. Cambridge University Press, Cambridge, pp 103-127<br />

McConkey KR, Drake DR (2002) Ext<strong>in</strong>ct pigeons and decl<strong>in</strong><strong>in</strong>g bat populations: are large<br />

seeds still be<strong>in</strong>g dispersed <strong>in</strong> the tropical pacific? In: Levey DJ, Silva RW, Galetti M<br />

(eds) Seed dispersal and frugivory: ecology, evolution and conservation. CABI<br />

Publish<strong>in</strong>g, Wall<strong>in</strong>gford, pp 381-395<br />

McKey DS (1975) The ecology of coevolved seed dispersal systems. In: Gilbert E,<br />

Raven, AP (eds) Coevolution of animals and plants. University of Texas Press,<br />

Aust<strong>in</strong>, pp 159-191<br />

Medway FLS (1972) Phenology of a tropical ra<strong>in</strong> <strong>forest</strong> <strong>in</strong> Malaysia. Biol J L<strong>in</strong>n Soc<br />

4:117-146<br />

Meyers DM, Wright PC (1993) Resource track<strong>in</strong>g: food availability and Propithecus<br />

seasonal production. In: Kappeler PM, Ganzhorn JU (eds) Lemur Social Systems<br />

and their ecological basis Plenum Press, New York, pp 179-192<br />

Mills LS, Soulé ME, Doak DF (1993) The keystone-species concept <strong>in</strong> ecology and<br />

conservation. Bioscience 43:219–224<br />

Milton K, D<strong>in</strong>tzis FR (1981) Nitrogen to prote<strong>in</strong> conversion factors for tropical plant<br />

samples. Biotropica 13:177-181<br />

MIR Télédétection Inc. (1998) Etude sur la dé<strong>forest</strong>ation dans la région de Fort-Dauph<strong>in</strong>,<br />

Madagascar. Rapport F<strong>in</strong>al Soumis à QMM (Qit Madagascar M<strong>in</strong>erals).<br />

Madagascar M<strong>in</strong>erals Project, Antananarivo<br />

Mittermeier RA (1994) Lemurs of Madagascar. Conservation Intl, Wash<strong>in</strong>gton DC<br />

Mittermeier RA, Myers N, Thomsen JB (1998) Biodiversity hotspots and major tropical<br />

wilderness areas: approaches to sett<strong>in</strong>g conservation priorities. Conserv Biol<br />

12:515-520<br />

Moran MD (2003) Arguments for reject<strong>in</strong>g the sequential Bonferroni <strong>in</strong> ecological studies.<br />

Oikos 100: 403-405.<br />

Morellato LPC, Talora DC, Takahasi A, Bencke CC, Romera EC, Zipparro VB (2000)<br />

Phenology of Atlantic ra<strong>in</strong> <strong>forest</strong> trees: a comparative study. Biotropica 32:811-823<br />

Morelli V (2002) Il regime alimentare di Eulemur fulvus collaris nella <strong>forest</strong>a litorale del<br />

Madagascar: selezione e disponibilità delle risorse. Master Thesis, Pisa University,<br />

Italy<br />

Morland HS (1993) Seasonal behavioral variation and its relationship to thermoregulation.<br />

In: Kappeler PM, Ganzhorn JU (eds) Lemur Social Systems and their ecological<br />

basis Plenum Press, New York , pp 193-204<br />

Morrison DW (1978) Forag<strong>in</strong>g ecology and energetics of the frugivorous bat Artibeus<br />

jamaicensis. Ecology 59:716–723<br />

Morrison DW (1980) Efficiency of food utilization by fruit bats. Oecologia 45:270–273<br />

Moshier SL (1991) Ephemeris v5.1. Public doma<strong>in</strong> software.<br />

Oates JF, Swa<strong>in</strong> T, Zantovska J (1977) Secondary compounds and food selection by<br />

Colobus monkeys. Biochem Syst Ecol 5:317-321<br />

174


References<br />

Oliviera P, Marrero P, Nogales M (2002) Diet of the endemic Madeira Laurel Pigeon and<br />

fruit resource availability: a study us<strong>in</strong>g microhistological analyses. Condor<br />

104:811-822.<br />

Overdorff D (1988) Prelim<strong>in</strong>ary report on the activity cycle and diet of the red-bellied<br />

lemur (Lemur rubriventer) <strong>in</strong> Madagascar. Am J Primatol 16:143-153<br />

Overdorff DJ (1992) Differential patterns <strong>in</strong> flower feed<strong>in</strong>g by Eulemur fulvus rufus and<br />

Eulemur rubriventer <strong>in</strong> Madagascar. Am J Primatol 28:191-203<br />

Overdorff DJ (1993a). Similarities, differences and seasonal patterns <strong>in</strong> the diet of<br />

Eulemur rubriventer and Eulemur fulvus rufus <strong>in</strong> the Ranomafana National Park,<br />

Madagascar. Int J Primatol 14:721-753<br />

Overdorff DJ (1993b) Ecological and reproductive correlates to range use <strong>in</strong> red-bellied<br />

lemurs (Eulemur rubriventer) and rufous lemurs (Eulemur fulvus rufus). In:<br />

Kappeler PM, Ganzhorn JU (eds) Lemur Social Systems and their ecological basis<br />

Plenum Press, New York, pp 167-178<br />

Overdorff DJ (1996) Ecological correlates to activity and habitat use of two prosimian<br />

primates: Eulemur rubriventer and Eulemur fulvus rufus <strong>in</strong> Madagascar. Am J<br />

Primatol 40:327-342<br />

Overdorff DJ, Strait SG (1998) Seed handl<strong>in</strong>g by three prosimian primates <strong>in</strong><br />

Southeastern Madagascar: implications for seed dispersal. Am J Primatol 45:69-82<br />

Overdorff DJ and Strait SG (1998) Seed handl<strong>in</strong>g by three prosimian primates <strong>in</strong><br />

southeastern Madagascar: Implications for seed dispersal. Am J Primatol 45:69-82<br />

Palmeirim JM, Gorchov DL, Stoleson S (1989) Trophic structure of a neotropical <strong>frugivore</strong><br />

community: is there competition between birds and bats? Oecologia 79:403–411<br />

Parry-Jones K, Augee ML (1991) Food selection by grey-headed fly<strong>in</strong>g foxes (Pteropus<br />

poliocephalus) occupy<strong>in</strong>g a summer colony site near Gosford, New South Wales.<br />

Wildlife Res 18:111–124<br />

Pastor<strong>in</strong>i J, Forstner MR, Mart<strong>in</strong> RD (2000) Relationships among brown lemurs (Eulemur<br />

fulvus) based on mitochondrial DNA sequences. Mol Phylogenet Evol 16:418-429<br />

Petter JJ, Albignac R, Rumpler Y (1977) Faune de Madagascar: Mammifères Lémuriens.<br />

Volume 44. ORSTOM CNRS, Paris<br />

Phillipson PB (1996) Endemism and non-endemism <strong>in</strong> the flora of south-west Madagascar.<br />

In: Lourenco WR (ed) Biogeography of Madagascar. ORSTOM, Paris, pp 125-136<br />

Pizo MA (2002) The seed dispersers and fruit syndromes of Myrtaceae <strong>in</strong> the Brazilian<br />

Atlantic Forest. In: Levey DJ, Silva RW, Galetti M (eds) Seed dispersal and<br />

frugivory: Ecology, Evolution and Conservation. CAB International, New York, pp<br />

129-143<br />

Pizo MA, Simao I, Galetti M (1995) Diet and flock size of sympatric parrots <strong>in</strong> the Atlantic<br />

<strong>forest</strong> of Brazil. Ornitologia neotropical 6:87-95<br />

Porter LJ, Hem<strong>in</strong>gway RW (1990) Significance of condensed tann<strong>in</strong>s. In: Rowe JW (ed)<br />

Natural products of woody plants. Spr<strong>in</strong>ger-Verlag, New York, pp 988-1027<br />

Poulsen JR, Clark CJ, Connor EF, Smith TB (2002) Differential resource use by primates<br />

and hornbills: implications for seed dispersal. Ecology 83:228-240<br />

Preston K (1991) Madagascar: a natural history. Curtis Garratt limited, Oxford<br />

QIT Madagascar M<strong>in</strong>erals SA (2001) Projet Ilménite: Etude d’impact social et<br />

environmental. QMM, Antananarivo<br />

175


References<br />

Rabevohitra R, Lowry PP, Randrianjafy H, Razaf<strong>in</strong>drianilana N (1996) Rapport sur le<br />

projet “Assesment of Plant Diversity and Conservation Importance of East Coast<br />

Low Elevation <strong>Malagasy</strong> Ra<strong>in</strong> Forests”. Centre National de la recherché appliquée<br />

au développement rural CENRADERU-FOFIFA, Missouri Botanical Garden<br />

Racey PA, Nicoll ME (1984) Mammals. In: Stoddart DR (ed) Biogeography and ecology<br />

of the Seychelles Islands. Junk Press, Leiden, pp 607-627<br />

Raherilalao MJ (2001) Effets de la fragmentation de la forêt sur les oiseaux autour du<br />

parc national de Ranomafana (Madagascar). Terre Vie-Rev Ecol 56:389-406<br />

Rakotonir<strong>in</strong>a (1996) Composition and structure of the dry deciduous <strong>forest</strong> on sandy<br />

soils. Primate Report, 46-1, Gött<strong>in</strong>gen, pp 81-87<br />

Ralisomalala RC (1996) Role de Eulemur fulvus rufus (Audeberg, 1799) et de<br />

Propithecus verreauxi (A Grandier 1867) dans la dissem<strong>in</strong>ation de gra<strong>in</strong>es. Primate<br />

Report, 46-1, Gött<strong>in</strong>gen, pp 285-293<br />

Ramanamanjato J-B (2000) Fragmentation effects on reptile and amphibian biodiversity<br />

<strong>in</strong> the <strong>littoral</strong> <strong>forest</strong> of southeastern Madagascar. In: Rhe<strong>in</strong>wald G (ed) Isolated<br />

vertebrate communities <strong>in</strong> the tropics. Bonner zoologische Monographien Edition.<br />

Volume 46. Museum Alexander Koenig, Bonn, pp 297–308<br />

Ramanamanjato J-B, Ganzhorn JU (2001) Effects of <strong>forest</strong> fragmentation, <strong>in</strong>troduced<br />

Rattus rattus and the role of exotic tree plantations and secondary vegetation for the<br />

conservation of an endemic rodent and a small lemur <strong>in</strong> <strong>littoral</strong> <strong>forest</strong>s of southeastern<br />

Madagascar. Animal Conservation 4:175-183<br />

Randriamanal<strong>in</strong>a MH, Rafararano L, Babary L, Laha R (2000) Rapport des enguêtees sur<br />

le chasses dans les fokotany d’Ivondro, d’Erara et d’Etsilesy. Lemur news 5:11-14<br />

Rasmussen MA (1999) Ecological <strong>in</strong>fluences <strong>in</strong> two cathemeral primates, the mongoose<br />

lemur (Eulemur mongoz) and the common brown lemur (Eulemur fulvus fulvus).<br />

PhD Dissertation, Duke University, North Carol<strong>in</strong>a<br />

Ratsirarson J, Silander JA (1997) Factors affect<strong>in</strong>g the distribution of a threatened<br />

Madagascar palm species Dypsis decaryi. Pr<strong>in</strong>cipes 41:100-111<br />

Razafimizanilala AAM (1996) Introduction à l’étude écologique des forêts sub<strong>littoral</strong>es de<br />

Sa<strong>in</strong>te-Luce (Tolagnaro). Mémoire de diplôme d’études approfondies en sciences<br />

biologiques appliquées. Option ‘Ecologie végétale’. Université d’Antananarivo<br />

Renton K (2001) Lilac-crowned parrot diet and food resource availability: resource<br />

track<strong>in</strong>g by a parrot seed predator. Condor 103:62-69<br />

Rice WR (1989) Analyz<strong>in</strong>g tables of statistical tests. Evolution 43:223-225<br />

Richard AF (1977) The feed<strong>in</strong>g behaviour of Propithecus verreauxi. In: Clutton-Brock TH<br />

(ed) Primate ecology. Academic Press, London, pp 72-96<br />

Richard AF, Dewar RE (1991) Lemur ecology. Annu Rev Ecol Syst 22:145-175<br />

Ridley HN (1930) The dispersal of plants throughout the world. Reeve, Ashford, Kent<br />

Rigamonti MM (1993) Home range and diet <strong>in</strong> red ruffed lemurs (Varecia variegata rubra)<br />

on the Masoala Pen<strong>in</strong>sula, Madagascar. In: Kappeler PM, Ganzhorn JU (eds)<br />

Lemur Social Systems and their ecological basis, Plenum Press, New York, pp 25-<br />

39<br />

Sa<strong>in</strong>i MS, Dh<strong>in</strong>dsa MS, Toor TS (1994) Food of the rose-r<strong>in</strong>ged parakeet Psittacula<br />

krameri: a quantitative study. Journal of the Bombay Natural History Society 91:96-<br />

103<br />

176


References<br />

Sakai S, Momose K, Yumoto T, Nagamitsu T, Nagamasu H, Hamid AA, Nakashizuka T<br />

(1999) Plant reproductive phenology over four years <strong>in</strong>clud<strong>in</strong>g an episode of<br />

general flower<strong>in</strong>g <strong>in</strong> a lowland dipterocarp <strong>forest</strong>, Sarawak, Malaysia. Am J Bot<br />

86:1414-1436<br />

Schatz GE (2001) Generic Tree Flora of Madagascar. Royal Botanical Gardens, Kew and<br />

Missouri Botanical Garden Press<br />

Scharfe F, Schlund W (1996) Seed removal by lemurs <strong>in</strong> a dry deciduous <strong>forest</strong> of<br />

western Madagascar. Primate Report, 46-1, Gött<strong>in</strong>gen, pp 295-304<br />

Schatz GE (2001) Generic tree flora of Madagascar. Royal Botanical Gardens, Kew and<br />

Missouri Botanical Garden Press<br />

Schill<strong>in</strong>g A (1979) Olfactory communication <strong>in</strong> prosimians. In: Doyle GA, Mart<strong>in</strong> RD (eds)<br />

The study of prosimian behavior. Academic Press, New York, pp 461-542<br />

Schmid J (2000) Daily torpor <strong>in</strong> the gray mouse lemur (Microcebus mur<strong>in</strong>us) <strong>in</strong><br />

Madagascar: energetic consequences and biological significance. Oecologia<br />

123:175-183<br />

Shilton LA, Altr<strong>in</strong>gham JD, Compton SG, Whittaker RJ (1999) Old World fruit bats can be<br />

long-distance seed dispersers through extended retention of viable seed <strong>in</strong> the gut.<br />

Proc Roy Soc Lond B Bio 266:219–223<br />

Siegel S (1956) Non parametric statistics for the behavioural sciences. Mc Graw-Hill<br />

Book Company. New York<br />

Silva WR, De Marco P, Hasui E, Gomes VSM (2002) Patterns of fruit-<strong>frugivore</strong><br />

<strong><strong>in</strong>teractions</strong> <strong>in</strong> two Atlantic <strong>forest</strong> bird communities of south-eastern Brazil:<br />

implications for conservation. In: Levey DJ, Silva RW, Galetti M (eds) Seed<br />

dispersal and frugivory: Ecology, Evolution and Conservation. CAB International,<br />

New York, pp 423-436<br />

Smith JF (2001) High species diversity <strong>in</strong> fleshy fruited tropical understory plants. Am Nat<br />

157:646-653<br />

Smythe N (1970) Relationships between fruit<strong>in</strong>g sesons and seed dispersal methods <strong>in</strong> a<br />

neotropical <strong>forest</strong>. Am Nat 104:25-36<br />

Snow DW (1971) Evolutionary aspects of fruit-eat<strong>in</strong>g <strong>in</strong> birds. Ibis 113:194-202<br />

Snow DW (1981) Tropical frugivorous birds and their food plants: a world survey.<br />

Biotropica 13:1-14<br />

Soorae PS, Baker LR (2002) eds. Re-<strong>in</strong>troduction NEWS: Special Primate Issue,<br />

Newsletter of the IUCN/SSC Re-<strong>in</strong>troduction Specialist Group, AbuDhabi, UAE<br />

(21): 60 pp<br />

Sorg J-P, Rohner U (1996) Climate and tree phenology of the dry deciduous <strong>forest</strong>, the<br />

Kir<strong>in</strong>dy Forest. Primate Report, 46-1, Gött<strong>in</strong>gen, pp 57-80<br />

Spehn S, Ganzhorn JU (2000) Influence of seed dispersal by brown lemurs on removal<br />

rates of three Grewia species (Tiliaceae) <strong>in</strong> the dry deciduous <strong>forest</strong> of<br />

Madagascar. Ecotropica 6:13-21<br />

Stashko E, D<strong>in</strong>erste<strong>in</strong> E (1988) Methods of estimat<strong>in</strong>g fruit availability to frugivorous bats.<br />

In: Kunz TH. Ecological and behavioral methods <strong>in</strong> the study of bats. Smithsonian<br />

Institution Press, Wash<strong>in</strong>gton DC, pp 221–231<br />

Surridge AK, Osorio D, Mundy NI (2003) Evolution and selection of trichromatic vision <strong>in</strong><br />

primates. Trends Ecol Evol 18:198-205<br />

Sussman RW (1975) A prelim<strong>in</strong>ary study of the behavior and ecology of Lemur fulvus<br />

rufus Audebert 1800. In: Tattersal I, Sussman RW (eds) Lemur biology. Plenum<br />

Press, New York, pp 237-258<br />

177


References<br />

Tattersall I (1982) The primates of Madagascar. Columbia University Press, New York<br />

Terborgh J (1983) Five New World Primates; a study of comparative ecology. Pr<strong>in</strong>ceton<br />

University Press, New Jersey<br />

Terborgh J (1986a) Keystone plant resources <strong>in</strong> the tropical <strong>forest</strong>. In Soule ME (ed)<br />

Conservation Biology: the science of scarcity and diversity. S<strong>in</strong>auer, Sunderland,<br />

pp 330-344<br />

Terborgh J (1986b) Community aspects of frugivory <strong>in</strong> tropical <strong>forest</strong>s. In: Estrada A,<br />

Flem<strong>in</strong>g TH (ed) Frugivores and seed dispersal. W. Jung, Dordrecht, pp 371-384<br />

Terborgh J (1990) An overview of research at Cocha Cashu Biological Station. In: Gentry<br />

AH (ed) Four neotropical <strong>forest</strong>s. Yale University Press, New Haven, pp 48-59<br />

Terborgh J, Lopez L, Nuñez P, Rao M, Shahabudd<strong>in</strong> G, Orihuela G, Riveros M, Ascanio R,<br />

Adler GH, Lambert TD, Balbas L (2001) Ecological meltdown <strong>in</strong> predator-free <strong>forest</strong><br />

fragments. Science 294:1923-1926<br />

Tewksbury JJ, Levey DJ, Haddad NM, Sargent S, Orrock JL, Weldon A, Danielson BJ,<br />

Br<strong>in</strong>kerhoff J, Damschen EI, Townsend P (2002) Corridors affect plants, animals<br />

and their <strong><strong>in</strong>teractions</strong> <strong>in</strong> fragmented landscapes. PNAS 99: 12923-12926<br />

Thomas DW (1988) Analysis of diets of plant-visit<strong>in</strong>g bats. In: Kunz, TH (ed) Ecological<br />

and behavioral methods <strong>in</strong> the study of bats. Smithsonian Institution Press,<br />

Wash<strong>in</strong>gton, D.C., pp 211–220<br />

Tiffney BH (1984) Seed size, dispersal syndromes and the rise of angiosperms: evidence<br />

and hypothesis. Annals of Missouri Botanical Garden 71:551-576<br />

Tut<strong>in</strong> CEG, Williamson EA, Rogers ME, Fernandez M (1991) A case study of a plantanimal<br />

<strong>in</strong>teration: Cola lizae and lowland gorillas <strong>in</strong> the Lope Reserve, Gabon. J<br />

Trop Ecology 7:181-199<br />

Van der Pijl L (1969) Pr<strong>in</strong>ciples of dispersal <strong>in</strong> higher plants. Spr<strong>in</strong>ger Verlag, Berl<strong>in</strong>.<br />

Van Schaik CP (1986) Phenological changes <strong>in</strong> a Sumatran ra<strong>in</strong> <strong>forest</strong>. J Trop Ecol<br />

2:327-347<br />

Van Schaik CP, Terborgh JW, Wright SJ (1993) The phenology of tropical <strong>forest</strong>s:<br />

Adaptive Significance and Consequences for Primary Consumers. Annu Rev Ecol<br />

Syst 24:353-377<br />

Van Soest PJ (1994) Nutritional ecology of the rum<strong>in</strong>ant. Cornell University Press, Ithaca,<br />

New York<br />

Vasey N (2000) Niche separation <strong>in</strong> Varecia variegata rubra and Eulemur fulvus albifrons:<br />

I. Interspecific patterns. Am J Phys Anthropol 112: 411-431<br />

Voigt F (2001) E<strong>in</strong>fluss von Samenausbreitern auf die Häufigkeit von Fruchttypen <strong>in</strong><br />

tropischen Baumgeme<strong>in</strong>schaften. Master Thesis, Philips-Universitât-Marburg,<br />

Germany<br />

Voigt FA, Burkhardt JF, Verhaagh M, Böhn<strong>in</strong>g-Gaese K (2002) Regional differences <strong>in</strong> ant<br />

community structure and consequences for secondary dispersal of Commiphora<br />

seeds. Ecotropica 8: 59-66<br />

Voigt FA, Bleher B, Fietz J, Ganzhorn, Schwab D, Böhn<strong>in</strong>g-Gaëse K (submitted) A<br />

comparison of morphological and chemical fruit traits between two sites with different<br />

<strong>frugivore</strong> assemblages. Oecologia<br />

Wallace RB, Pa<strong>in</strong>ter RLE (2002) Phenological patterns <strong>in</strong> a southern Amazonian tropical<br />

<strong>forest</strong>: implications for susta<strong>in</strong>able management. Forest Ecol Manag 160:19-33<br />

Wallace AR (1879) Colour <strong>in</strong> Nature. Nature 19:580-581<br />

Wang BC, Smith TB (2002) Clos<strong>in</strong>g the dispersal loop. Trends Ecology Evol 17:379-385<br />

178


References<br />

Wenny DG (2000) Seed dispersal of a high quality fruit by specialized <strong>frugivore</strong>s: high<br />

quality dispersal? Biotropica 32:327-337<br />

Wheelwright NT (1986) A seven year study of <strong>in</strong>dividual variation <strong>in</strong> fruit production <strong>in</strong><br />

tropical bird-dispersed tree species <strong>in</strong> the family Lauraceae. In: Estrada A, Flem<strong>in</strong>g<br />

TH (eds) Frugivores and seed dispersal. Dr W Junk Publishers, Dordrecht, pp 19-<br />

35<br />

Wheelwright NT, Haber NA, Murray KG, Gu<strong>in</strong>don C (1984) Tropical fruit-eat<strong>in</strong>g birds and<br />

their food plants: a survey of a Costa Rican lower montane <strong>forest</strong>. Biotropica 16:<br />

173-192<br />

Willson MF & Traveset A (2000) The ecology of seed dispersal. In: Fenner M. (ed) Seeds.<br />

The ecology of regeneration <strong>in</strong> plant communities. CABI Publish<strong>in</strong>g, Wall<strong>in</strong>gford, pp<br />

85-110<br />

Willson MF, Whelan CJ (1990) The evolution of fruit colour <strong>in</strong> fleshy-fruited plants. Am<br />

Nat 136: 790-809<br />

Willson MF, Irv<strong>in</strong>e AK, Walsh NG (1989) Vertebrate dispersal syndromes <strong>in</strong> some<br />

Australian and New Zealand plant communities, with geographic comparisons.<br />

Biotropica 21:133-147<br />

Witmer MC, Van Soest PJ (1998) Contrast<strong>in</strong>g digestive strategies of fruit-eat<strong>in</strong>g birds.<br />

Funct Ecol 12:728-741<br />

Wright PC (1997a) Behavioral and ecological comparisons of Neotropical and <strong>Malagasy</strong><br />

primates. In K<strong>in</strong>zey WG (ed) New World Primates: Ecology, Evolution and<br />

Behavior, Ald<strong>in</strong>e de Gruyter, New York, pp 127-141<br />

Wright P (1997b) The future of biodiversity <strong>in</strong> Madagascar. In: Goodman SM, Patterson<br />

BD (eds) Natural change and human impact <strong>in</strong> Madagascar. Smithsonian Institution<br />

Press, Wash<strong>in</strong>gton and London, pp 381-405<br />

Wright PC (1999) Lemur traits and Madagascar ecology: cop<strong>in</strong>g with an island<br />

environment. Yearbook Phys Anthropol 42:31-72<br />

Wright PC, Mart<strong>in</strong> LB (1995) Predation, poll<strong>in</strong>ation, and torpor <strong>in</strong> two nocturnal primates:<br />

Cheirogaleus major and Microcebus rufus <strong>in</strong> the ra<strong>in</strong> <strong>forest</strong> of Madagascar. In:<br />

Alterman L, Doyle G, Izard K (eds) Creatures of the Dark: The Nocturnal<br />

Prosimians. Plenum Press, New York, pp 45-60<br />

Wunderle JM (1997) The role of animal seed dispersal <strong>in</strong> acceleration native <strong>forest</strong><br />

regeneration on degraded tropical lands. Forest Ecol Manag 99:223-235<br />

Wütherlich D, Azocar A, Garcia-Nuñez C, Silva JF (2001) Seed dispersal <strong>in</strong> Palicourea<br />

rigida a common treelet species from neotropical savannas. J Trop Ecol 17:449-<br />

458<br />

Wyner YR, Absher G, Amato E, Sterl<strong>in</strong>g R, Stumpf Y, Rumpler Y, DeSalle R (1999)<br />

Species concepts and determ<strong>in</strong>ation of historic gene flow patterns <strong>in</strong> Eulemur<br />

fulvus complex. Biol J L<strong>in</strong>n Soc 66:39-56<br />

Yamashita N (2002) Diets of two lemur species <strong>in</strong> different microhabitats <strong>in</strong> Beza<br />

Mahafaly special reserve, Madagascar. Int J Primatol 23:1025-1051<br />

Zamora R (2000) Functional equivalence <strong>in</strong> plant-animal <strong><strong>in</strong>teractions</strong>: ecological and<br />

evolutionary consequences. Oikos 88:442-447<br />

The format of the references is accord<strong>in</strong>g the lay-out of the journal Oecologia<br />

179


family<br />

Loganiaceae<br />

scientific name<br />

Anthocleista longifolia<br />

Dracaena reflexa var. nervosa<br />

Liliaceae<br />

Sarcolaenaceae<br />

Rutaceae<br />

Burseraceae<br />

Violaceae<br />

Rubiaceae<br />

Flacourtiaceae<br />

Rubiaceae<br />

Anacardiaceae<br />

Erythroxylaceae<br />

Lauraceae<br />

Euphorbiaceae<br />

Flacourtiaceae<br />

Euphorbiaceae<br />

Myricaceae<br />

Rubiaceae<br />

Sphaerosepalaceae<br />

Fabaceae<br />

Celastraceae<br />

Rubiaceae<br />

Ochnaceae<br />

Rubiaceae<br />

Taccaceae<br />

Ebenaceae<br />

Tricalysia cf. cryptocalyx<br />

Campylospermum obtusifolium<br />

nr vernacular name scientific name<br />

family<br />

nr vernacular name<br />

1 hazomamy an ala Apodytes sp. nov.<br />

Icac<strong>in</strong>aceae 26 lendemilahy<br />

2 rotry mena<br />

Syzygium sp.2<br />

Myrtaceae 27 fal<strong>in</strong>dandro<br />

3 raotry<br />

Dypsis nodifera<br />

Arecaceae 28 merama<strong>in</strong>tso Sarcolaena multiflora<br />

4 fandranabo<br />

Pandanus aff. longistylus Pandanaceae 29 ampoly<br />

Vepris eliotii<br />

5 ramirisa<br />

Homalium louvelianum<br />

Flacourtiaceae 30 ramy<br />

Canarium boiv<strong>in</strong>ii<br />

6 fandrikatany Smilax anceps<br />

Smilaceae 31 memboloa<br />

R<strong>in</strong>orea pauciflora<br />

7 fandrianakanga Polycardia phyllanthoides Celastraceae 32 fantsikaitrafotsy Pyrostria sp.<br />

8 akondronala Ophiocolea delph<strong>in</strong>ensis Bignoniaceae 33 bemalemy<br />

Bembicia uniflora<br />

9 amboralahy<br />

Tambourissa purpurea<br />

Monimiaceae 34 FT62<br />

Tarenna thouarsiana<br />

10 kambatrikambatri Brexia sp.<br />

Grossulariaceae 35 sisikandrongo Poupartia chapelieri<br />

11 x219<br />

Erythroxylum sp.<br />

Erythroxylaceae 36 fangora sp2 Erythroxylum nitidilum<br />

12 vahilengo<br />

Mor<strong>in</strong>da umbellata<br />

Rubiaceae 37 tavolohazo novembre Cryptocarya sp.<br />

13 ropasy sp.2<br />

Eugenia sp.<br />

Myrtaceae 38 voapaky vavy Uapaca <strong>littoral</strong>is<br />

14 x202<br />

Pittosporum polyspermum Pittosporaceae 39 zoramena<br />

Scolopia orientalis<br />

15 fotsivavo<br />

Polyalthia madagascariensis Annonaceae 40 mocarana<br />

Macaranga perrieri<br />

16 hazomamy marécage Apodytes dimidiata<br />

Icac<strong>in</strong>aceae 41 tsilaka<br />

Myrica spathulata<br />

17 fanolafotsy<br />

Asteropeia multiflora<br />

Theaceae 42 ?<br />

Canthium sp.<br />

18 vahabatra 3e M C<strong>in</strong>namosma madagascariensis Canellaceae 43 tsilavimb<strong>in</strong>anto Rhopalocarpus coriaceus<br />

19 x201<br />

Elaeocarpus alnifolius<br />

Elaeocarpaceae 44 mampay<br />

Cynometra cf. cloiselii<br />

20 nofotrako<br />

Vitex chrysomallium<br />

Verbenaceae 45 voavoantatsimo Mystrolylon aethiopicum<br />

21 fotombavy<br />

Leptolaena sp.<br />

Sarcolaenaceae 46 hazongalala<br />

22 ta<strong>in</strong>barika<br />

genus <strong>in</strong>det.<br />

Rubiaceae 47 hazombato<br />

23 x225<br />

Suregada baronii<br />

Euphorbiaceae 48 fantsikaitrama<strong>in</strong>ty Canthium variistipula<br />

24 fitorav<strong>in</strong>a<br />

Vepris fitorav<strong>in</strong>a<br />

Rutaceae 49 tavolo<br />

Tacca leontopetaloides<br />

25 voatsilana<br />

Schefflera ra<strong>in</strong>aliana<br />

Araliaceae 50 hazoma<strong>in</strong>ty<br />

Dyospyros sp.2<br />

Each number represent a certa<strong>in</strong> fruit species ('a' refers to the entire fruit and 'b' to the seed). One exception is 4b which referes to a fruitlet.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!