| 1  | Phylogenetic relationships in the genus Avena based on                                                                                              |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | the nuclear <i>Pgk1</i> gene                                                                                                                        |
| 3  | Yuanying Peng <sup>1</sup> , Pingping Zhou <sup>1,2</sup> , Jun Zhao <sup>1</sup> , Junzhuo Li <sup>1</sup> , Shikui Lai <sup>1</sup> , Nicholas A. |
| 4  | Tinker <sup>3</sup> , Shu Liao <sup>1</sup> , Honghai Yan <sup>1,2*</sup>                                                                           |
| 5  |                                                                                                                                                     |
| 6  | <sup>1</sup> Triticeae Research Institute, Sichuan Agricultural University, Chengdu, People's                                                       |
| 7  | Republic of China                                                                                                                                   |
| 8  | <sup>2</sup> Collaborative Innovation Center of Tissue Repair Material of Sichuan Province, China                                                   |
| 9  | West Normal University, Nanchong, People's Republic of China                                                                                        |
| 10 | <sup>3</sup> Ottawa Research and Development Centre, Agriculture and Agri-Food Canada,                                                              |
| 11 | Ottawa, Canada                                                                                                                                      |
| 12 | *Corresponding author                                                                                                                               |
| 13 | E-mail: Honghai_yan@outlook.com                                                                                                                     |
| 14 |                                                                                                                                                     |
| 15 |                                                                                                                                                     |
| 16 |                                                                                                                                                     |
| 17 |                                                                                                                                                     |
| 18 |                                                                                                                                                     |
| 19 |                                                                                                                                                     |
| 20 |                                                                                                                                                     |
| 21 |                                                                                                                                                     |

# 22 Abstract

| 23 | The phylogenetic relationships among 76 Avena taxa, representing 14 diploids,                          |
|----|--------------------------------------------------------------------------------------------------------|
| 24 | eight tetraploids, and four hexaploids were investigated by using the nuclear plastid                  |
| 25 | 3-phosphoglycerate kinase gene( <i>Pgk1</i> ). A significant deletion (131 bp) was detected            |
| 26 | in all the C genome homoeologues which reconfirmed a major structural divergence                       |
| 27 | between the A and C genomes. Phylogenetic analysis indicated the $C_p$ genome is                       |
| 28 | more closely related to the polyploid species than is the $C_{v}$ genome. Two haplotypes               |
| 29 | of <i>Pgk1</i> gene were obtained from most of the AB genome tetraploids. Both types of                |
| 30 | the <i>barbata</i> group showed a close relationship with the $A_s$ genome diploid species,            |
| 31 | supporting the hypothesis that both the A and B genomes are derived from an $A_s$                      |
| 32 | genome. Two haplotypes were also detected in A. agadiriana, which showed close                         |
| 33 | relationships with the $A_{s}$ genome diploid and the $A_{c}$ genome diploid, respectively,            |
| 34 | emphasizing the important role of the A <sub>c</sub> genome in the evolution of <i>A. agadiriana</i> . |
| 35 | Three homoeologues of the <i>Pgk1</i> gene were detected in five hexaploid accessions.                 |
| 36 | The homoeologues that might represent the D genome were tightly clustered with                         |
| 37 | the tetraploids A. marrocana and A. murphyi, but did not show a close relationship                     |
| 38 | with any extant diploid species.                                                                       |
| 20 | Introduction                                                                                           |

**39** Introduction

The genus *Avena* L. belongs to the tribe Aveneae of the grass family
(Poaceae). It contains approximately 30 species [1-4] reflecting a wide range of
morphological and ecological diversity over the temperate and subtropical regions
[5]. The evolutionary history of *Avena* species has been discussed for decades, and

| 44 | remains a matter of debate despite considerable research effort in this field.                          |
|----|---------------------------------------------------------------------------------------------------------|
| 45 | Cytologically, three ploidy levels are recognized in the genus Avena: diploid,                          |
| 46 | tetraploid, and hexaploid, with a base number of seven chromosomes [6, 7]. The                          |
| 47 | diploids are divided clearly into two distinct lineages with the A and C genomes. All                   |
| 48 | hexaploid species share the same genomic constitution of ACD, corroborated by                           |
| 49 | fertile interspecific crosses among each other, as well as by their similar genome                      |
| 50 | sizes [8]. With less certainty, the tetraploids have been designated as AB or AA, AC or                 |
| 51 | DC, and CC genomes [9]. It is noteworthy that the B and D genomes within the                            |
| 52 | polyploid species have not been identified in any extant diploid species. There are                     |
| 53 | three C genome diploid species, which have been grouped into two genome types                           |
| 54 | $(C_{\rm p}  \text{and}  C_{\nu})$ according to their karyotypes [10]. Both types show a high degree of |
| 55 | chromosome affinity to the polyploid C genome [9-14], but none have been                                |
| 56 | undisputedly identified as the C genome progenitor of the polyploids.                                   |
| 57 | The A genome origin of polyploid oats has also been under intense scrutiny.                             |
| 58 | However, there is no conclusive evidence regarding which the A genome diploid                           |
| 59 | contributed to the polyploid oats. There are up to 12 species designated as A                           |
| 60 | genome diploids. These species have been further subdivided into five sub-types of                      |
| 61 | $A_c$ , $A_d$ , $A_l$ , $A_p$ and $A_s$ genomes, according to their karyotypes [6, 7]. Most research    |
| 62 | based on karyotype comparisons [6, 15], in situ hybridization [11, 16-18], as well as                   |
| 63 | the alignments of nuclear genes [13, 14] suggest that one of the $A_s$ genome species                   |
| 64 | may be the A genome donor of polyploid oats. Alternatively, some studies have                           |

65 proposed the A<sub>c</sub> genome diploid *A. canariensis* [19], or the A<sub>l</sub> genome diploid *A.* 

66 *longiglumis* [9, 12] as the most likely A genome donor.

| 67 | The absence of diploids with the B and D genomes complicates the B and D              |
|----|---------------------------------------------------------------------------------------|
| 68 | genome donor identification. It is generally accepted that both B and D genomes are   |
| 69 | derived from A genomes, due to the high homology between the B and A genomes          |
| 70 | [11, 20], as well as between the D and A genomes [16, 19, 21]. Our recent study       |
| 71 | based on high-density genotyping-by-sequencing (GBS) markers [9] provided strong      |
| 72 | evidence that the three tetraploid species formerly designated as AC genomes are      |
| 73 | much closer to the C and D genomes of the hexaploids than they are to the             |
| 74 | hexaploid A genome. These findings suggest that the hexaploid D genome exists in      |
| 75 | the extant tetraploids. However, no extant diploid species, even the $A_c$ genome     |
| 76 | diploid A. canariensis, which was considered as the most likely D genome progenitor   |
| 77 | based on direct evidence from morphological features [22] and indirect evidence       |
| 78 | from fluorescent in situ hybridization (FISH) [18], showed enough similarity to the D |
| 79 | genome of tetraploid and hexaploid oats to warrant consideration as a direct D        |
| 80 | genome progenitor.                                                                    |
| 81 | In the case of the B genome, an initial study of chromosome pairing of                |
| 82 | hybrids between the AB genome tetraploids and the $A_{s}$ genome diploids suggested   |
| 83 | that the B genome arose from the $A_s$ genome through autoploidization [23].          |
| 84 | Recently, another GBS study [19] showed that the AB genome tetraploid species fell    |

85 into a tight cluster with  $A_s$  genome diploids, also supporting the hypothesis that the

86 B genome arose through minor divergence following autoploidization. However,

| 87  | other evidence from C-banding [24], FISH [17], RAPD markers [25], and DNA                       |
|-----|-------------------------------------------------------------------------------------------------|
| 88  | sequence alignment [14] has indicated a clear distinction between A and B genomes,              |
| 89  | suggesting an allotetraploid origin of the AB genome tetraploid species. The most               |
| 90  | probable A genome progenitor of the AB genome tetraploids is assumed to be an $A_s$             |
| 91  | genome diploid species, while the B genome of these species remains controversial.              |
| 92  | Single or low copy nuclear genes are widely used in phylogenetic analyses                       |
| 93  | due to their bi-parental inheritance and to the informativeness of mutations. Such              |
| 94  | studies have successfully revealed multiple polyploid origins, and clarified                    |
| 95  | hybridization events in a variety of plant families [26, 27]. In a previous study [14],         |
| 96  | we investigated the relationships among Avena species by sequencing the                         |
| 97  | single-copy nuclear acetyl-coA carboxylase gene (Acc1). The results provided some               |
| 98  | useful clues to the relationships of Avena species.                                             |
| 99  | The <i>Pgk1</i> gene, which encodes the plastid 3-phosphoglyceratekinase, is                    |
| 100 | another nuclear gene that has been widely used to reveal the evolutionary history of            |
| 101 | the Triticum/Aegilops complex due to its single copy status per diploid chromosome              |
| 102 | in grass [26, 28, 29]. The <i>Pgk1</i> gene is now considered to be superior to the <i>Acc1</i> |
| 103 | gene in phylogenetic analysis, since it has more parsimony informative sites than the           |
| 104 | Acc1 gene [26, 29]. In the present study, we sequenced cloned Pgk1gene copies                   |
| 105 | from 76 accessions representing the majority of Avena species, in an attempt to                 |
| 106 | further clarify evolutionary events in this important genus.                                    |
| 107 | Materials and Methods                                                                           |

# Materials and Methods

# 108 Plant materials

| 109 A total of 76 accessions from 26 Avena species were investigated to r | epresent |
|---------------------------------------------------------------------------|----------|
|---------------------------------------------------------------------------|----------|

- 110 the geographic range of six sections in *Avena*, together with one accession from
- 111 *Trisetopsis turgidula* as a functional outgroup (Table 1). All seeds were provided by
- 112 Plant Gene Resources of Canada (PGRC) or the National Small Grains Collection,
- 113 Agriculture Research Service, United States Department of Agriculture (USDA, ARS)
- 114 with the exception of the three accessions of *A. insularis*, which were kindly provided
- by Dr. Rick Jellen, Brigham Young University, Provo, UT, USA. The species A.
- 116 *atherantha*, *A. hybrida*, *A. matritensis* and *A. trichophylla* described in Baum's [1]
- 117 monograph and A. prostrata described by Ladizinsky [30] were not included due to a
- 118 lack of viable material.
- 119 Table 1. List of materials used in the present study including species, haplomes,
- 120 accession number, origin, abbreviation displayed in MJ network, and the sequence
- 121 number in Genbank (<u>https://www.ncbi.nlm.nih.gov</u>).

| Таха                                                    | Haplomes       | Accession | Origin <sup>*</sup> | Abbrev- | Genbank   |
|---------------------------------------------------------|----------------|-----------|---------------------|---------|-----------|
| IdXd                                                    |                | Number    |                     | iation  | Accession |
| Section Ventricosa                                      |                |           |                     |         |           |
| <i>A. clauda</i> Dur.                                   | Cp             | CN 19242  | Turkey              | CLA1_1  | KU888786  |
|                                                         |                | CN 21378  | Greece              | CLA2_1  | KU888787  |
|                                                         |                | CN 21388  | Algeria             | CLA3_1  | KU888804  |
|                                                         |                | CN 24695  | Turkey              | CLA4_1  | KU888784  |
| <i>A. eriantha</i> Dur.<br>(syn <i>A. pilosa</i> Bieb.) | C <sub>p</sub> | Clav 9050 | United Kingdom      | ERI1_1  | KU888785  |
|                                                         |                | PI 367381 | Madrid, Spain       | ERI2_1  | KU888805  |
| <i>A. ventricosa</i> Balansa ex<br>Coss.                | C <sub>v</sub> | CN 21405  | Algeria             | VEN1_1  | KU888806  |
|                                                         |                | CN 39706  | Azerbaijan          | VEN2_1  | KU888807  |
| Section Agraria                                         |                |           |                     |         |           |
| A. brevis Roth                                          | A <sub>s</sub> | Clav 1783 | German              | BRE1_1  | KU888707  |

|                                      |                | Class 0112 | <b>F</b>         |             | KU 000740 |
|--------------------------------------|----------------|------------|------------------|-------------|-----------|
|                                      |                | Clav 9113  | Europe           | BRE2_1      | KU888718  |
| A him mine And                       | •              | PI 258545  | Portugal         | BRE3_1      | KU888710  |
| A. hispanica Ard.                    | A <sub>s</sub> | CN 25676   | Portugal         | HIS1_1      | KU888714  |
|                                      |                | CN 25727   | Portugal         | HIS2_1      | KU888711  |
|                                      |                | CN 25766   | Portugal         | HIS3_1      | KU888709  |
|                                      |                | CN 25778   | Portugal         | HIS4_1      | KU888712  |
| A. nuda L.                           | As             | PI 401795  | Netherlands      | NUD1_1      | KU888734  |
| A. strigose Schreb.                  | As             | PI 83722   | Australia        | STR1_1      | KU888719  |
|                                      |                | PI 158246  | Lugo, Spain      | STR2_1      | KU888713  |
|                                      |                | Clav 9066  | Ontario, Canada  | STR3_1      | KU888708  |
| Section Tenuicarpa                   |                |            |                  |             |           |
| <i>A. agadiriana</i> Baum &<br>Fedak | AB             | CN 25837   | Africa: Morocco  | AGA1_1      | KU888753  |
|                                      |                |            |                  | AGA1_2      | KU888774  |
|                                      |                | CN 25854   | Africa: Morocco  | AGA2_1      | KU888777  |
|                                      |                |            |                  | AGA2_2      | KU888754  |
|                                      |                | CN 25856   | Africa: Morocco  | AGA3_1      | KU888776  |
|                                      |                |            |                  | AGA3_2      | KU888751  |
|                                      |                | CN 25863   | Africa: Morocco  | AGA4_1      | KU888775  |
|                                      |                | CN 25869   | Africa: Morocco  | AGA5_1      | KU888752  |
|                                      |                |            |                  | AGA5_2      | KU888778  |
| <i>A. atlantica</i> Baum &<br>Fedak  | A <sub>s</sub> | CN 25849   | Africa: Morocco  | ATL1_1      | KU888757  |
|                                      |                | CN 25859   | Africa: Morocco  | ATL2_1      | KU888756  |
|                                      |                | CN 25864   | Africa: Morocco  | ATL3_1      | KU888739  |
|                                      |                | CN 25887   | Africa: Morocco  | ATL4_1      | KU888737  |
|                                      |                | CN 25897   | Africa: Morocco  | ATL5 1      | KU888736  |
| <i>A. barbata</i> Pott ex Link       | AB             | PI 296229  | Northern, Israel | BAR1_1      | KU888723  |
|                                      |                | PI 337802  | Izmir, Turkey    | BAR2_1      | KU888722  |
|                                      |                |            |                  | BAR2_2      | KU888732  |
|                                      |                | PI 337826  | Greece           | BAR3_1      | KU888720  |
|                                      |                | PI 282723  | Northern, Israel | _<br>BAR4_1 | KU888729  |
|                                      |                |            | Macedonia,       | _           |           |
|                                      |                | PI 337731  | Greece           | BAR5_1      | KU888731  |
|                                      |                | PI 367322  | Beja, Portugal   | BAR6_1      | KU888730  |
| A. canariensis Baum et al            | A <sub>c</sub> | CN 23017   | Canary Islands   | CAN1_1      | KU888779  |
|                                      |                | CN 23029   | Canary Islands   | CAN2_1      | KU888782  |
|                                      |                | CN 25442   | Canary Islands   | CAN3_1      | KU888780  |
|                                      |                | CN 26172   | Canary Islands   | CAN4_1      | KU888783  |
|                                      |                | CN 26195   | Canary Islands   | CAN5_1      | KU888781  |
| <i>A. damascena</i> Rajah &<br>Baum  | A <sub>d</sub> | CN 19457   | Syria            | DAM1_1      | KU888744  |
|                                      |                | CN 19458   | Syria            | DAM2_1      | KU888745  |

|                             |        | CN 19459  | Syria               | DAM3_1      | KU888747 |
|-----------------------------|--------|-----------|---------------------|-------------|----------|
| A. hirtula Lag.             | As     | CN 19530  | Antalya, Turkey     | HIR1_1      | KU888738 |
|                             |        | CN 19739  | Algeria             | HIR2_1      | KU888762 |
|                             |        | CN 21703  | Morocco             | HIR3_1      | KU888717 |
| A. longiglumis Dur.         | Ai     | Clav 9087 | Oran, Algeria       | LON1_1      | KU888741 |
|                             |        | Clav 9089 | Libya               | LON2_1      | KU888749 |
|                             |        | PI 367389 | Setubal, Portugal   | LON3_1      | KU888750 |
| <i>A. lusitanica</i> Baum   | As     | CN 25885  | Morocco             | LUS1_1      | KU888746 |
|                             |        | CN 25899  | Morocco             | LUS2_1      | KU888748 |
|                             |        | CN 26265  | Portugal            | LUS3_1      | KU888742 |
|                             |        | CN 26441  | Spain               | LUS4_1      | KU888763 |
| A. wiestii Steud.           | As     | PI 53626  | Giza, Egypt         | WIE1_1      | KU888715 |
|                             |        | Clav 9053 | Ontario, Canada     | WIE2_1      | KU888716 |
| Section Ethiopica           |        |           |                     |             |          |
| A. abyssinica Hochst.       | AB     | PI 411163 | Seraye, Eritrea     | ABY1_1      | KU888724 |
|                             |        | PI 411173 | Tigre, Ethiopia     | ABY2_1      | KU888740 |
|                             |        |           |                     | ABY2_2      | KU888725 |
| A. vaviloviana Mordv.       | AB     | PI 412761 | Eritrea             | VAV1_1      | KU888743 |
|                             |        |           |                     | VAV1_2      | KU888728 |
|                             |        | PI 412766 | Shewa, Ethiopia     | VAV2_1      | KU888726 |
|                             |        |           |                     | VAV2_2      | KU888735 |
| Section Pachycarpa          |        |           |                     |             |          |
| A. insularis Ladiz.         | AC(DC) | sn        | Sicily, Italy       | INS1_1      | KU888794 |
|                             |        |           |                     | INS1_2      | KU888705 |
|                             |        | 6-B-22    | Sicily, Gela, Italy | INS2_1      | KU888706 |
|                             |        |           |                     | INS2_2      | KU888796 |
|                             |        | INS-4     | Sicily, Gela, Italy | INS3_1      | KU888790 |
|                             |        |           |                     | INS3_2      | KU888704 |
| A. maroccana Grand.         |        |           |                     |             |          |
| (syn. <i>A magna</i> Murphy | AC(DC) | Clav 8330 | Morocco             | MAR1_1      | KU888773 |
| et Terrell)                 |        |           |                     |             |          |
|                             |        |           |                     | MAR1_2      | KU888799 |
|                             |        | Clav 8331 | Khemisset,          | MAR2_1      | KU888721 |
|                             |        |           | Morocco             | 1017 (112_1 | 10000721 |
|                             |        |           |                     | MAR2_2      | KU888800 |
| A. murphyi Ladiz.           | AC(DC) | CN 21989  | Spain               | MUR1_1      | KU888767 |
|                             |        |           |                     | MUR1_2      | KU888802 |
|                             |        | CN 25974  | Morocco             | MUR2_1      | KU888769 |
|                             |        |           |                     | MUR2_2      | KU888788 |
| Section Avena               |        |           |                     |             |          |
| A.fatua L.                  | ACD    | PI 447299 | Gansu, China        | FAT1_1      | KU888768 |
|                             |        |           |                     | FAT1_2      | KU888795 |
|                             |        | PI 544659 | United States       | FAT2_1      | KU888764 |
|                             |        | 0         |                     |             |          |

|                                                 |     |           |                          | FAT2_2<br>FAT2_3 | KU888760<br>KU888798 |
|-------------------------------------------------|-----|-----------|--------------------------|------------------|----------------------|
| A.occidentalis Dur.                             | ACD | CN 4547   | Canary Islands,<br>Spain | OCC1_1           | KU888791             |
|                                                 |     | CN 23036  | Canary Islands,<br>Spain | OCC2_1           | KU888755             |
|                                                 |     |           |                          | OCC2_2           | KU888803             |
|                                                 |     |           |                          | OCC2_3           | KU888771             |
|                                                 |     | CN 25942  | Morocco                  | OCC3_1           | KU888733             |
|                                                 |     |           |                          | OCC3_2           | KU888789             |
|                                                 |     |           |                          | OCC3_3           | KU888758             |
|                                                 |     | CN 25956  | Morocco                  | OCC4_1           | KU888801             |
|                                                 |     |           |                          | OCC4_2           | KU888772             |
| A. sativa L.                                    | ACD | PI 194896 | Gonder, Ethiopia         | SAT1_1           | KU888727             |
|                                                 |     |           |                          | SAT1_2           | KU888759             |
|                                                 |     |           |                          | SAT1_3           | KU888793             |
|                                                 |     | PI 258655 | Russian<br>Federation    | SAT2_1           | KU888797             |
|                                                 |     |           |                          | SAT2_2           | KU888766             |
|                                                 |     |           |                          | SAT2_3           | KU888761             |
| A. sterilis L.                                  | ACD | PI 411503 | Alger, Algeria           | STE1_1           | KU888765             |
|                                                 |     | PI 411656 | Tigre, Ethiopia          | STE2_1           | KU888792             |
|                                                 |     |           |                          | STE2_2           | KU888770             |
| Outgroup                                        |     |           |                          |                  |                      |
| <i>Trisetopsis turgidula</i><br>Röser & A. Wölk |     | PI 364343 | Maseru, Lesotho          |                  | KU888808             |

<sup>\*</sup> Origin represents the collection site of wild material where this information is

123 available, otherwise it represents the earliest source for which information is

124 available.

# 125 DNA isolation, cloning and sequencing

126 Genomic DNA was isolated from fresh leaves of single plants following a

127 standard CTAB protocol [31]. *Pgk1* gene sequences were amplified by using a pair of

- 128 *Pgk1*-specific primers, PGKF1 (5'-TCGTCCTAAGGGTGTTACTCCTAA-3') and PGKR1
- 129 (5'-ACCACCAGTTGAGATGTGGCTCAT-3') described by Huang et al. [28]. Polymerase

| 130 | chain reactions (PCR) were carried out under cycling conditions reported previously                         |
|-----|-------------------------------------------------------------------------------------------------------------|
| 131 | [26]. After estimating the size by 1.0% agarose gel, PCR products were purified using                       |
| 132 | the QIAquick gel extraction kit (QIAGEN Inc., USA). The purified products were                              |
| 133 | cloned into the pMD19-T vector (Takara) following the manufacturer's instructions.                          |
| 134 | Initially, 6-8 positive clones from each of four accessions from 4 diploid                                  |
| 135 | species, including A. canariensis ( $A_c$ ), A. longiglumis ( $A_l$ ), A. strigosa ( $A_s$ ), and A. clauda |
| 136 | (C <sub>p</sub> ), were sequenced to confirm that the <i>Pgk1</i> gene was present in <i>Avena</i> diploid  |
| 137 | species as a single copy. After confirming its single copy status in diploid species, 2-3                   |
| 138 | positive clones were selected and sequenced from each accession of the remaining                            |
| 139 | diploid species. In order to isolate all possible homoeologous sequences in polyploid                       |
| 140 | species, 4-6 positive clones from each accession of the tetraploid species and 5-10                         |
| 141 | positive clones from each accession of the hexaploid species were selected and                              |
| 142 | sequenced. All the cloned PCR products were sequenced on both strands by a                                  |
| 143 | commercial company (Sangon Biotech Co., Ltd., Shanghai, China) based on Sanger                              |
| 144 | sequencing technology.                                                                                      |

# 145 Sequence alignment and phylogenetic analysis

146The homology of sequences was verified using the BLAST program in NCBI. In147order to reduce the matrix size of the dataset, redundant sequences were removed,148keeping one representative sequence if several identical sequences were derived149from the same accession. Sequences were aligned using ClustalW software with150default parameters [32] followed by manual correction. Substitution saturation of151*Pgk1* sequences was examined using DAMBE version 5 [33] by calculating and plotting10

| 152 | pairwise rates of transitions and transversions against sequence divergence under   |
|-----|-------------------------------------------------------------------------------------|
| 153 | the TN93 model. Phylogenetic trees were created by using Maximum parsimony          |
| 154 | (MP), and Bayesian inference (BI). MP analysis was performed on PAUP* 4.0b10 [34]   |
| 155 | using the heuristic search with 100 random addition sequence replicates and Tree    |
| 156 | Bisection-Reconnection (TBR) branch swapping algorithms. Bootstrapping with 1000    |
| 157 | replicates was estimated to determine the robustness of formed branches [35]. Gaps  |
| 158 | in the sequence alignment were disregarded using the option 'gapmode=missing',      |
| 159 | which is consistent with an assumption that insertion/deletion events are an        |
| 160 | independent stochastic process from SNP substitutions. BI analysis was carried out  |
| 161 | by using MrBayes v3.2 [36]. The best-fit substitution model for BI analysis was     |
| 162 | GTR+F+I, which was determined by using MrModelTest v2.3 under Akaike                |
| 163 | information criteria (AIC) (http://www.ebc.uu.se/systzoo/staff/nylander.html). Four |
| 164 | Markov chain Monte Carlo (MCMC) chains with default priors settings were run        |
| 165 | simultaneously. To ensure the two runs converged onto the stationary distribution,  |
| 166 | 6,000,000 generations were run to make the standard deviation of split frequencies  |
| 167 | fall below 0.01. Samples were taken every 100 generations. The first 25% samples    |
| 168 | from each run were discarded as the "burn-in". The 50% majority-rule consensus      |
| 169 | tree was constructed from the remaining trees. Posterior probability (PP) values    |
| 170 | were used to evaluate the statistical confidence of each node.                      |
| 474 | Notwork analysis                                                                    |

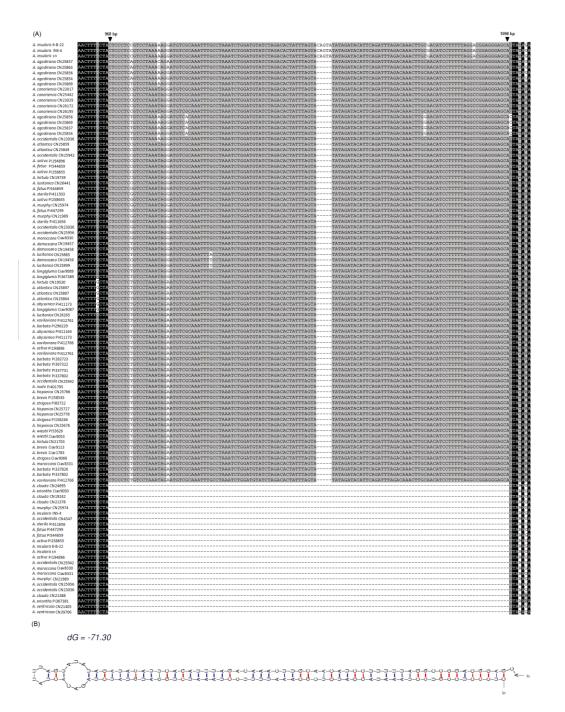
**Network analysis** 

172 The median-joining (MJ) network [37] method has been demonstrated to be 173 an effective method for assessing the relationship in closely related lineages [38],

| 174 | and thus was app | lied in this stud | y. As MJ alg | gorithms are d | lesigned for |
|-----|------------------|-------------------|--------------|----------------|--------------|
|-----|------------------|-------------------|--------------|----------------|--------------|

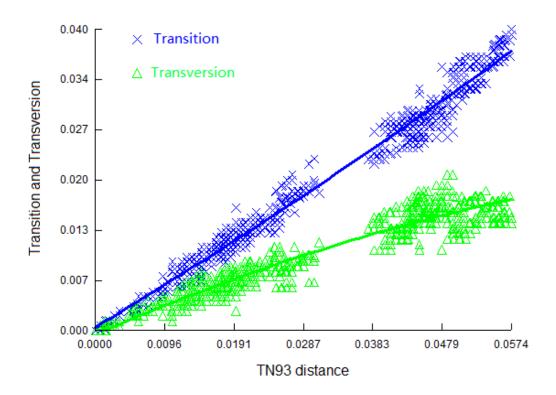
- non-recombining molecules [37], DNA recombination was test by using a pragmatic
- 176 approach-Genetic Algorithm Recombination Detection (GARD), described by Pond et
- al. [39]. The test was carried out on a web-based interface for GARD at
- 178 http://www.datamonkey.org/GARD/. Building upon this test, the intron data was
- used for MJ reconstruction due to the absence of recombination signal, while
- 180 potential recombination signals were detected in the exon regions. The MJ network
- analyses was performed using the Network 4.6.1.4 program (Fluxus Technology Ltd,
- 182 Clare, Suffolk, UK).
- **183 Results**

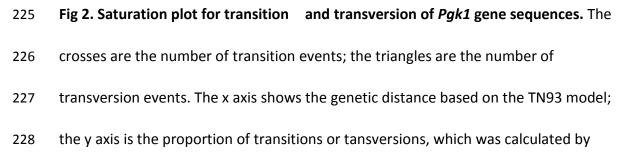
#### **184** Sequence analysis


185 A total of 237 clones were sequenced from 76 accessions of 26 Avena species. Following removal of the redundant sequences within each accession, 104 186 sequences were identified, including one from each of the 44 diploid accessions, 37 187 188 unique sequences from 22 tetraploids, and 23 from 10 hexaploids. Theoretically, 44 189 homoeologues should be isolated from 22 tetraploid accessions, and 30 single-copy 190 homoeologues were expected from 10 hexaploid accessions. However, the full number of expected homoeologues were not isolated from every polyploid species 191 192 for various potential reasons. In particular, within the AB genome tetraploid species A. barbata, only one copy was detected in five of its six accessions, whereas two very 193 194 similar (only one site varied in exon 2) copies were detected in the sixth accession. This also happened in the hexaploid species A. sterilis, for which two accessions 195

provided only two homoeologues each. For these taxa, the missing genome type
might be detected by screening a larger number of positive clones, but it is also
possible that these accessions contain genomes of high similarity or autopolyploid
origin. Another possibility that cannot be ruled out within the polyploids is the loss
of one gene copy through homoeologous recombination or deletion.

201


All of the Pgk1 gene sequences isolated in this study contain 5 exons and 4


introns, covering a total length from 1391 bp to 1527 bp, which is consistent with 202 203 previous studies of this gene in wheat [28] and Kengyilia [26]. The alignment of Pak1 204 sequences including both exons and introns resulted in a matrix of 1539 nucleotide positions, of which 11.6% (179/1539) were variable, and 10.1% (155/1539) were 205 206 parsimony informative. The nucleotide frequencies were 0.264 (A), 0.304 (T), 0.199 207 (C), and 0.232 (G). A significant (131-bp) insertion/deletion feature (Fig 1A) occurred at position 968, whereby all non-C genome type sequences contained the inserted 208 209 (or non-deleted) region. Further analysis indicated that this region is likely an 210 inserted inverted repeat, which belongs to the MITE stowaway element. Its 211 secondary structure is shown in Fig 1B. This insertion/deletion event could be used 212 as a genetic marker for rapid diagnosis of Avena species containing the C genome.



- Fig 1. Pgk1 gene sequence analysis. (A) Partial alignment of the amplified Pgk1 gene
- of Avena species (B) Secondary structure of the deletion sequence between the A
- and C genomes.
- 216 **Phylogenetic analyses**

| 217 | The substitution plot for <i>Pgk1</i> (Fig 2) indicated that the <i>Pgk1</i> gene was not |
|-----|-------------------------------------------------------------------------------------------|
| 218 | saturated and that it could be used for phylogenetic analysis. Phylogentic trees of 76    |
| 219 | Avena accessions with the oat-like species Trisetopsis turgidula as outgroup were         |
| 220 | generated through maximum parsimony and Bayesian inference approaches on the              |
| 221 | non-redundant dataset. The parsimony analysis resulted in 80 equally parsimonious         |
| 222 | trees (consistency index (CI) =0.632, retention index (RI) =0.954). BI analysis inferred  |
| 223 | an almost identical tree topology as the MP analysis, so the MP results were selected     |
| 224 | to describe this study (Fig 3).                                                           |





- using the number of transitions or transversions divided by the sequence length. The
- 230 curves show the trends of the variance of transitions and transversions with the

#### 231 genetic distance increasing.

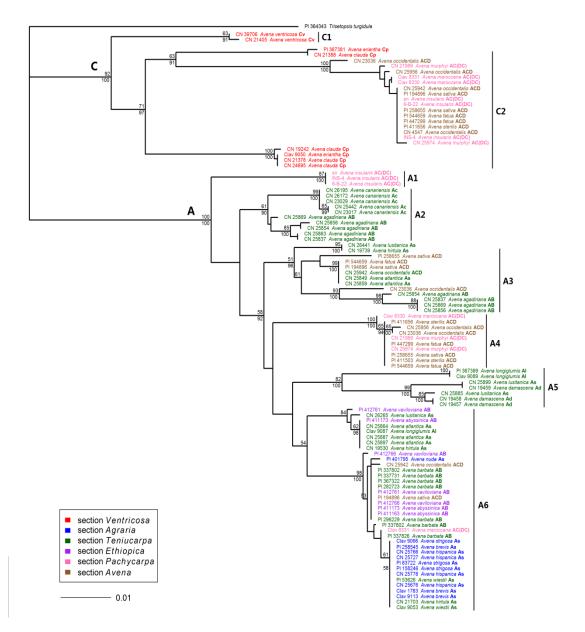



Fig 3. Maximum parsimony tree derived from *Pgk1* sequence data. The tree was
 constructed using a heuristic search with TBR branch swapping. Numbers above and
 below the branches are bootstrap support (BS) values ≥50% and Bayesian posterior

probability (PP) values ≥90%. Accession number, species name and haplome are
indicated for each taxon.

| 237 | Fig 3 shows that the <i>Pgk1</i> gene sequences from 76 Avena accessions were                |
|-----|----------------------------------------------------------------------------------------------|
| 238 | split into two distinct clades with high BS (100% and 92%) and PP (100% and 100%)            |
| 239 | support. One clade contained all C-genome type sequences, hence referred to as the           |
| 240 | C genome clade. The other clade contained all sequences from the species carrying            |
| 241 | the A genome, henceforth, referred to as the A genome clade. The C genome clade              |
| 242 | was composed of two major subclades. All $C_{\nu}$ genome diploids and two $C_{p}$ genome    |
| 243 | diploid accessions formed the subclade C1 with 63% BS and 91% PP support, while              |
| 244 | subclade C2 included four $C_p$ diploids accessions, seven AC(DC) genome tetraploid          |
| 245 | accessions and nine hexaploid accessions with 71% BS and 97% PP support. The Pgk1            |
| 246 | gene sequences in the A genome clade were further split into six major subclades.            |
| 247 | The AC(DC) genome tetraploid species A. insularis was distinct from the other                |
| 248 | species, consequently forming a monophyletic clade (A1) with high BS (87%) and PP            |
| 249 | (100%) support. All five accessions of the $A_c$ genome diploid species A. canariensis       |
| 250 | and one genome homoeologue of the AB genome tetraploid species A. agadiriana                 |
| 251 | clustered together into subclade A2. Subclade A3 was composed of four accessions             |
| 252 | of the AB genome tetraploids A. agadiriana, five hexaploid accessions (A.                    |
| 253 | occidentalis CN 23036 and CN 25942, A. sativa PI 194896 and PI 258655, A. fatua PI           |
| 254 | 544659) and four $A_s$ genome diploid accessions ( <i>A. atlantica</i> CN25849 and CN 25859, |
| 255 | A. lusitanica CN 26441, and A. hirtula CN 19739). One genome sequence of the                 |
| 256 | AC(DC) genome tetraploids (without <i>A. insularis</i> ) and the hexaploids formed a 17      |

| 257 | homogeneous clade (A4) that was separated from other species with high BS (100%)     |
|-----|--------------------------------------------------------------------------------------|
| 258 | and PP (100%) support. The subclade A5 consisted of the $A_d$ genome diploid A.      |
| 259 | damascena, the $A_1$ genome diploid A. longiglumis, and the $A_s$ genome diploid A.  |
| 260 | lusitanica. The remaining sequences from the A genome diploids and the AB genome     |
| 261 | tetraploids (without A. agadiriana) formed a relatively broader cluster A6, together |
| 262 | with two hexaploid accessions (A. sativa PI 194896 and A. occidentalis CN 25942)     |
| 263 | and one AC (DC) genome tetraploid accession (A. maroccana Clav 8831).                |
| 264 | Three groups of haplotypes of <i>Pgk1</i> sequences were identified in five          |
| 265 | hexaploid accessions (A. fatua PI 544659, A. occidentalis CN 25942, CN 23036, and A. |
| 266 | sativa PI 194896, PI 258655). These sequences fell into four subclades. One group    |
| 267 | clustered with the C genome diploids in subclade C2, and one group clustered with    |
| 268 | AC(DC) genome tetraploids in subclade A4. We hypothesize that these two types        |
| 269 | represent homoeologues from the C and D genomes, respectively. A third and fourth    |
| 270 | group fell into subclades A3 and A6. Since these two groups are highly separated, it |
| 271 | is possible that they represent different A-genome events leading to different       |
| 272 | hexaploid lineages.                                                                  |

273 Network analysis

To gain better insight into relationships within closely related lineages, MJ network reconstruction based on the haplotypes of *Pgk1* sequences was employed. Due to the potential presence of recombination in the exon regions, the intron data was used for MJ network reconstruction. A total of 40 haplotypes were derived from 104 *Pgk1* gene sequences (Fig 4). This low level of haplotype diversity demonstrates

| 279 | the high conservation of this gene within genus Avena. The MJ network recovered a     |
|-----|---------------------------------------------------------------------------------------|
| 280 | nearly identical phylogenetic reconstruction to that based on the MP and BI trees,    |
| 281 | therefore we identified the clades from the MP results (Fig 3) within the MJ network  |
| 282 | (Fig 4). Based on the topology and frequency of haplotypes, the MJ network was split  |
| 283 | into two main groups. The two major groups representing two distinct types of         |
| 284 | haplotypes (A and C genomes) were distinguished due to the 131 bp                     |
| 285 | insertion/deletion. Ten C genome haplotypes were observed, which were much less       |
| 286 | diverse than the 30 A genome haplotypes. The two main groups were further             |
| 287 | subdivided into clusters corresponding to the eight MP-based subclades discussed      |
| 288 | earlier. The only divergence was that the AC(DC) genome tetraploids A. insularis,     |
| 289 | which formed a separate clade (A1) in MP and BI trees, fell into together with the AB |
| 290 | genome tetraploid A. agadiriana and the $A_c$ genome diploid A. canariensis to form a |
| 291 | relatively broad cluster in the MJ network (A1&A2).                                   |

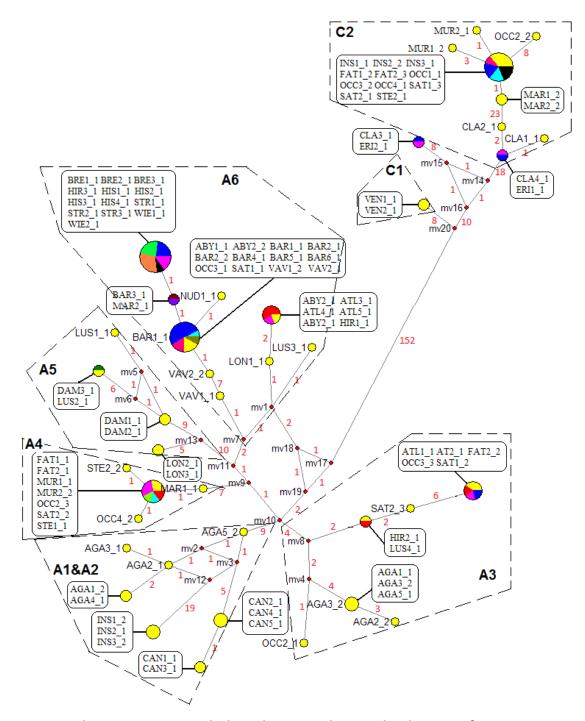



Fig 4. Median-joining networks based on 40 *Pgk1* gene haplotypes of intron regions

293 derived from 26 Avena species. Each circular node represents a single haplotype,

- with relative size being proportional to the frequency of that haplotype. Distinct
- 295 colors in the same haplotype node represent different species sharing the same
- 296 haplotype (colors are arbitrary). Median vectors (mv) represent the putative missing

| 297 | intermediates. Numbers along network branches indicate the number of bases          |
|-----|-------------------------------------------------------------------------------------|
| 298 | involved in mutations between two nodes. Clusters (surrounded by dashed lines) are  |
| 299 | named based on clade names shown in the MP tree (Fig 3). Three-letter               |
| 300 | abbreviations of species names are listed in Table 1. The numbers immediately after |
| 301 | each species abbreviation represent different accessions of the same species, and   |
| 302 | the number following the underscore identifies different haplotypes from the same   |
| 303 | accession.                                                                          |

# 304 **Discussion**

#### **Two distinct diploid lineages exist in genus** *Avena.*

306 A significant 131 bp insert/deletion separated all Avena diploid species into two distinct groups representing the A and C genomes, respectively (Figs 1 and 4). 307 308 These groups were also separated based on the MP or BI analysis that ignored gaps (Fig 3), indicating that the separation of A and C genomes is the most ancient major 309 articulation in the genus Avena, a result that is consistent with most other literature 310 311 [13, 14, 40]. MJ network analysis revealed that the C genome diploids have much 312 lower levels of haplotype diversity than the A genome diploids. Within the C genome 313 diploids, the  $C_p$  genome haplotypes were relatively more diverse than those of the  $C_v$ genome. These results might be explained by the geographic distribution of these 314 315 species. The A genome diploids are distributed in a large region between latitude 20 and 40° N, while the C genome diploid species are restricted to a narrow territory 316 along the Mediterranean shoreline [1]. The geographic distributions of the C genome 317

diploid species are overlapping, but the range of the  $C_p$  genome diploid species is much broader than that of the  $C_v$  genome diploid species [41].

320 The A genome diploid species are the most diverse set of species in genus Avena, and chromosome rearrangements have occurred during the divergence of 321 A-genomes from a common progenitor [41], resulting in the subdivision of the A 322 genome into five types, of which we have investigated four. Our results showed that 323 324 species with genome types  $A_c$ ,  $A_l$ , and  $A_d$  formed groups that correspond well with 325 previously reported structural differences. However, the  $A_s$  genome diploids appear 326 to be much more diverse than previously reported, and are scattered into different 327 subclades (Fig 3). Baum [1] divided all  $A_s$  genome diploids into two sections, section Agraria and section Tenuicarpa. All species of section Agraria have florets with a 328 329 domesticated (non-shattering) base, whereas the other A<sub>s</sub> species share relatively 330 narrow spikelets. However, classification based on simple morphological traits is increasingly controversial. In this study, the  $A_s$  genome diploid species of section 331 332 Agraria showed high degree of genetic homogeneity, consistently forming their own 333 subclade A6, but other As genome species in section *Tenuicarpa* did not have their own subclade. A. wiestii showed a close relationship with the species of section 334 Agraria, suggesting that it may be better-classified within that section. This result is 335 336 in agreement with previous studies based on RAPD (Perchuk et al. 2002) and karyotypic comparisons (Badaeva et al. 2005). Accessions of the other two A<sub>s</sub> 337 338 genome species of section Tenuicarpa (A. atlantica and A. hirtula) were scattered into different subclades. These results were also observed in other studies (Peng et 339

| 340 | al. 2010, Yan et al. 2014). A. lusitanica, another A <sub>s</sub> species of section Tenuicarpa, was |
|-----|------------------------------------------------------------------------------------------------------|
| 341 | diverged from other $A_{s}$ species, but showed a close relationship to those with the $A_{d}$       |
| 342 | genome species A. damascena. This divergence has also been observed in many                          |
| 343 | other studies [8, 9, 14, 40]. These, and other incongruences between morphological                   |
| 344 | characters and genetic differences raise questions about appropriate taxonomical                     |
| 345 | classifications among A <sub>s</sub> genome species.                                                 |

### 346 The A<sub>s</sub> and A<sub>c</sub> genomes played roles in the AB tetraploid

#### 347 formation.

348 Four recognized species have been proposed to have an AB genome composition. Of these, A. barbata, A. abyssinica and A. vaviloviana are grouped into 349 a biological species known as the barbata group, while A. aqadiriana is distinct [25, 350 351 42]. Our results confirmed the reported structural differences between these two groups (Fig 3). Two different Pak1 gene sequences were detected from most of the 352 AB genome tetraploids, supporting their allotetraploid origins. However, the 353 354 genomes of A.barbata showed the least divergence, with only one of six A. barbata 355 accessions providing multiple sequences, both of which were very similar. It seems 356 that little divergence has occurred within the genome of A. barbata compared with that of A. abyssinica and A.vaviloviana, suggesting that A. barbata is the ancestral 357 358 version of the species within the *barbata* group. This is supported by two lines of evidence. First, both A. abyssinica and A.vaviloviana are semi-domesticated forms 359 360 that occur almost exclusively in Ethiopia, whereas the wild A. barbata are more geographically distributed, but can still be found close to the abyssinica and 361

| 362        | vaviloviana forms [43]. The second line of evidence was provided by FISH and                                                                                                                                                                                                                                                                        |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 363        | Southern hybridization [17], which found some B chromosomes of A. vaviloviana are                                                                                                                                                                                                                                                                   |
| 364        | involved in inter-genomic translocations, while these rearrangements were not                                                                                                                                                                                                                                                                       |
| 365        | detected in <i>A. barbata</i> . There is little doubt that the A genome diploids have been                                                                                                                                                                                                                                                          |
| 366        | involved in the formation of the <i>barbata</i> species. Some studies have suggested that                                                                                                                                                                                                                                                           |
| 367        | both the A and B genomes of <i>barbata</i> species are diverged A <sub>s</sub> genomes [16, 23, 44],                                                                                                                                                                                                                                                |
| 368        | while some others proposed that the B genome might have originated from other A                                                                                                                                                                                                                                                                     |
| 369        | genome diploid species [24, 25, 45]. In this study, both types of <i>Pgk1</i> sequences                                                                                                                                                                                                                                                             |
| 370        | detected from the barbata group showed high degree of genetic homogeneity with                                                                                                                                                                                                                                                                      |
| 371        | the $A_s$ genome diploids (Fig 3), thus it was impossible to determine which type                                                                                                                                                                                                                                                                   |
| 372        | represents the A or B genome.                                                                                                                                                                                                                                                                                                                       |
| 373        | The recently discovered tetraploid species A. agadiriana was also proposed                                                                                                                                                                                                                                                                          |
| 374        | to have an AB genome composition because of its high affinity with A. barbata [23].                                                                                                                                                                                                                                                                 |
| 375        | However, this designation has been questioned due to chromosomal divergences                                                                                                                                                                                                                                                                        |
| 376        | between A. agadiriana and the barbata species, as revealed by cytological studies                                                                                                                                                                                                                                                                   |
| 377        |                                                                                                                                                                                                                                                                                                                                                     |
|            | [45, 46] and by molecular data [9, 13, 14]. In the current study, two distinct types of                                                                                                                                                                                                                                                             |
| 378        | [45, 46] and by molecular data [9, 13, 14]. In the current study, two distinct types of <i>Pgk1</i> sequences were obtained in <i>A. agadiriana</i> . One copy clustered with the $A_c$                                                                                                                                                             |
| 378<br>379 |                                                                                                                                                                                                                                                                                                                                                     |
|            | <i>Pgk1</i> sequences were obtained in <i>A. agadiriana</i> . One copy clustered with the A <sub>c</sub>                                                                                                                                                                                                                                            |
| 379        | <i>Pgk1</i> sequences were obtained in <i>A. agadiriana</i> . One copy clustered with the A <sub>c</sub> genome species <i>A. canariensis</i> , whereas the other copy fell into cluster A3 with the                                                                                                                                                |
| 379<br>380 | <i>Pgk1</i> sequences were obtained in <i>A. agadiriana</i> . One copy clustered with the A <sub>c</sub> genome species <i>A. canariensis</i> , whereas the other copy fell into cluster A3 with the A <sub>s</sub> species <i>A. atlantica</i> , <i>A. hirtula</i> , <i>A. lusitanica</i> , and the hexaploids <i>A. occidentalis</i> , <i>A</i> . |

from the *barbata* group, and that one of its two genomes originates from the A<sub>c</sub>
genome species *A. canariensis*, whereas the other one is closely related to the A<sub>s</sub>
species.

## 387 The tetraploid species A. maroccana and A. murphyi are

**closely related to the hexaploids, while** *A. insularis* is

#### 389 diverged.

The other tetraploid group (Avena sect. Pachycarpa) contains three species, A. 390 391 maroccana, A. murphyi, and the recently discovered A. insularis. Initial studies based 392 on genomic in situ hybridization [47] supported an AC genome designation for these species. However, this designation has been challenged by FISH analysis, which has 393 revealed that this set of tetraploid species, like the D chromosomes of the hexaploid 394 395 oats, lacks a repetitive element that is diagnostic of the A genome [18]. This, together with other molecular evidence [14, 48] and our recent whole-genome 396 analysis based on GBS markers [9], suggests that these tetraploid species contain the 397 398 genome designated as D in hexaploid oats, and that they are more properly designated as DC genome species. 399 400 In the present study, two distinct *Pqk1* homoeologues were detected in each of the three AC(DC) species, with each pair falling consistently into two clusters 401 402 within the C and the A genome clades, respectively (Fig 3). The C-copy sequences of these tetraploids clustered consistently with the C-type homoeologues of the 403 hexaploids, while the A/D genome homoeologues, with the exception of these from 404 A. insularis and one sequence from A. maroccana (Clav 8331) fell into subclade A4 405 25

| 406 | along with a set of sequences from the hexaploid oats (Fig 3). Considering that the            |
|-----|------------------------------------------------------------------------------------------------|
| 407 | other <i>Pgk1</i> gene sequences from the hexaploid oats clustered with the C or A             |
| 408 | genome diploids, we deduced that the sequences falling in subclade A4 must                     |
| 409 | represent the D genome homoeologues of the hexaploids and of the AC(DC) species                |
| 410 | A. maroccana and A. murphyi. This result is not fully consistent with our previous             |
| 411 | GBS study: although A. maroccana and A. murphyi were very similar to hexaploid oat             |
| 412 | and were designated as DC genomes, our GBS work suggested that A. insularis was                |
| 413 | also a DC genome that was even more similar to the hexaploids [9]. Examining the               |
| 414 | existing literature, all three of these tetraploid species have variously been                 |
| 415 | considered as the tetraploid ancestor of the hexaploids [4, 9, 49]. In view of the             |
| 416 | genome structure of these tetraploids [24, 50] and the meiotic chromosome paring               |
| 417 | of their interspecific hybrids [51], all of these tetraploids are proposed to have             |
| 418 | diverged from a common ancestral tetraploid after the occurrence of some large                 |
| 419 | chromosome rearrangements [24, 50]. However, it cannot be ruled out that these                 |
| 420 | tetraploids might have originated independently from different diploid ancestors,              |
| 421 | since they have shown close relationships with different diploid species [40].                 |
| 422 | Interestingly, in network analysis (Fig 4), the A/D-type homoeologues of A. insularis          |
| 423 | fell into a group with the $A_c$ genome species A. canariensis and the AB genome               |
| 424 | species A. agadiriana. In fact, previous studies have revealed that A. canariensis is          |
| 425 | closely related to the DC genome tetraploids [15]. These results suggest a possibility         |
| 426 | that A. canariensis was involved in contributing an early version of a D genome in all         |
| 427 | three AC(DC) genome tetraploids. Nevertheless, we do not have an explanation for <sup>26</sup> |

428 why the D genome copy of *Pqk1* in *A. insularis* could have diverged so far from the

- 429 version found in the hexaploids, especially since the C genome copies remain
- 430 identical.

432

#### The genome origins of the hexaploid species. 431

It is now generally accepted that two distinct steps were involved in the evolution of hexaploid oats. The first step would have been the formation of a DC 433 genome hybrid from ancestral D and C genome diploids, followed by doubling of the 434 chromosomes to form an allotetraploid. The second step would have involved 435 436 hybridization of a DC tetraploid with a more recent A genome diploid, followed by

doubling of the triploid hybrid [9, 13]. 437

The diploid progenitor of the hexaploid C genome was probably restricted to 438

439 the narrow geographic range where the three extant C genome diploids are

distributed. However, numerous inter-genomic translocations among hexaploid 440

chromosomes [9, 11, 52, 53] have deceased the homology between the C genome 441

442 diploids and the hexaploid C genome, making the identification of the C genome

443 donor of the hexaploids challenging. In this study, the  $C_{p}$  genome species shared the

highest degree of genetic similarity with both the DC genome tetraploids, as well as 444

with the hexaploids, leading us to conclude that a C<sub>p</sub> genome species was the C 445

446 genome donor of the polyploids. This conclusion is supported by other evidence

from nuclear genes [13, 54]. This is important, since it was recently demonstrated 447

448 that the maternal tetraploid and hexaploid genomes originated from an A genome

species, not from a C genome species [55], rendering comparisons to the C<sub>v</sub> vs C<sub>p</sub> 449

450 maternal genomes irrelevant in determining the origin of the nuclear C genome in451 the hexaploids.

| 452 | The A genome origin of the hexaploids remains a matter of debate, and many                 |
|-----|--------------------------------------------------------------------------------------------|
| 453 | A genome diploids have been suggested as putative diploid progenitors, as                  |
| 454 | summarized by Peng et al [13]. FISH analysis showed that an $A_s$ -specific DNA repeat     |
| 455 | was restricted to the $A_s$ and $A_l$ genomes, as well as the hexaploid A genome [18]. In  |
| 456 | this study, a close relationship between the $A_s$ genome diploid A. atlantica was         |
| 457 | observed for some hexaploid haplotypes in the phylogenetic tree (Fig 3) and the MJ         |
| 458 | network (Fig 4). An A. atlantica genome origin is consistent with previous studies         |
| 459 | based on IGS-RFLP analysis [12] and the <i>ppcB1</i> gene [40]. However, there is evidence |
| 460 | in our work that some hexaploids may have an alternate A genome origin, closer to          |
| 461 | the Agraria section of $A_s$ diploids. The presence of multiple A genome origins could     |
| 462 | explain variable results that have been reported in studies of hexaploid phylogeny.        |
| 463 | In this study, strong evidence is presented for a D genome origin in the                   |
| 464 | tetraploids A. maroccana and A. murphyi (Figs 3-4). However, these D genome                |
| 465 | sequences did not show a close relationship with any diploid species investigated in       |
| 466 | this study. Other than the discrepancy with A. insularis, this result is consistent with   |
| 467 | our recent GBS study [9]. One factor that may hinder the discovery of a D genome           |
| 468 | progenitor is the presence of inter-genomic translations among all three genomes in        |
| 469 | the hexaploid [9, 53]. Two hexaploid accessions (A.occidentalis CN 25942 and A.            |
| 470 | sativa PI 194896) did not contribute haplotypes that clustered with the putative D         |
| 471 | genome sequences (Subclade A4 in Fig 3). Although this may be a result of 28               |

472 incomplete sampling, it may also result from inter-genomic translations that have473 duplicated or eliminated copies of *Pgk1*.

| 474 | In conclusion, this is the most comprehensive study to date that investigates         |
|-----|---------------------------------------------------------------------------------------|
| 475 | a phylogeny in genus Avena using a single informative nuclear gene. It confirms or    |
| 476 | clarifies most previous work, and presents strong evidence in support of a working    |
| 477 | hypothesis for the origin of hexaploid oat. However, many questions still remain, and |
| 478 | these will be best addressed through further studies involving multiple nuclear genes |
| 479 | or whole genomes. We are collaborating on work that will provide exome-based          |
| 480 | gene diversity studies, but this work will require complete hexaploid reference       |
| 481 | sequences before it can be properly analyzed. Such reference sequences are            |
| 482 | currently in progress, so the next few years may see a revolution in our              |
| 483 | understanding of Avena phylogeny. Nevertheless, as many researcher in this field are  |
| 484 | aware, the polyploid species in this genus have experienced extensive chromosome      |
| 485 | rearrangement, which will continue to complicate phylogenetic studies. It may even    |
| 486 | be necessary to generate a pan-genome hexaploid reference sequence before             |
| 487 | definitive statements can be made.                                                    |
|     |                                                                                       |

# 488 Acknowledgements

We are very grateful to the Plant Gene Resources of Canada (PGRC), the
National Small Grains Collection, Agriculture Research Service, United States
Department of Agriculture (USDA, ARS) and Dr. Rick Jellen, Brigham Young University

- 492 providing seed materials. We also thank the anonymous reviewers for the useful
- 493 comments on this manuscript.

# 494 **Reference**

- 495 1. Baum BR. Oats: wild and cultivated. A monograph of the genus Avena L.(Poaceae):
- 496 Minister of Supply and Services; 1977.
- 497 2. Baum BR, Fedak G. Avena atlantica, a new diploid species of the oat genus from
- 498 Morocco. Canadian Journal of Botany. 1985;63(6): 1057-1060.
- 499 3. Baum BR, Fedak G. A new tetraploid species of Avena discovered in Morocco. Canadian
- 500 Journal of Botany. 1985;63(8): 1379-1385.
- 501 4. Ladizinsky G. A new species of *Avena* from Sicily, possibly the tetraploid progenitor of
- hexaploid oats. Genetic Resources and Crop Evolution. 1998;45(3): 263-269.
- 503 5. Lin L, Liu Q. Geographical distribution of Avena L. (Poaceae). Journal of Tropical &
- 504 Subtropical Botany. 2015;2: 111-122.
- 505 6. Rajhathy T, Thomas H. Cytogenetics of oats (Avena L.): Genetics Society of Canada;
- 506 1974.
- 507 7. Thomas H. Cytogenetics of Avena. In: Marshall HG, Sorrells ME, editors. Oat Science and
- 508 Technology. Agronomy Monograph. Madison, WI: American Society of Agronomy, Crop
- 509 Science Society of America; 1992. pp. 473-507.
- 510 8. Yan H, Martin SL, Bekele WA, Latta RG, Diederichsen A, Peng Y, et al. Genome size
- 511 variation in the genus *Avena*. Genome. 2016;59(3): 209-220.

| 512 | 9.  | Yan H, Bekele WA, Wight CP, Peng Y, Langdon T, Latta RG, et al. High-density marker      |
|-----|-----|------------------------------------------------------------------------------------------|
| 513 |     | profiling confirms ancestral genomes of Avena species and identifies D-genome            |
| 514 |     | chromosomes of hexaploid oat. Theoretical and Applied Genetics. 2016;129(11):            |
| 515 |     | 2133-2149.                                                                               |
| 516 | 10. | Rajhathy T, Thomas H. Chromosomal differentiation and speciation in diploid Avena. III.  |
| 517 |     | Mediterranean wild populations. Canadian Journal of Genetics and Cytology. 1967;9(1):    |
| 518 |     | 52-68.                                                                                   |
| 519 | 11. | Chen Q, Armstrong K. Genomic in situ hybridization in Avena sativa. Genome.              |
| 520 |     | 1994;37(4): 607-612.                                                                     |
| 521 | 12. | Nikoloudakis N, Katsiotis A. The origin of the C-genome and cytoplasm of Avena           |
| 522 |     | polyploids. Theoretical and Applied Genetics. 2008;117(2): 273-281.                      |
| 523 | 13. | Peng Y-Y, Wei Y-M, Baum BR, Yan Z-H, Lan X-J, Dai S-F, et al. Phylogenetic inferences in |
| 524 |     | Avena based on analysis of FL intron2 sequences. Theoretical and Applied Genetics.       |
| 525 |     | 2010;121(5): 985-1000.                                                                   |
| 526 | 14. | Yan H-H, Baum BR, Zhou P-P, Zhao J, Wei Y-M, Ren C-Z, et al. Phylogenetic analysis of    |
| 527 |     | the genus Avena based on chloroplast intergenic spacer psbA-trnH and single-copy         |
| 528 |     | nuclear gene <i>Acc1</i> . Genome. 2014;57(5): 267-277.                                  |
| 529 | 15. | Fominaya A, Vega C, Ferrer E. Giemsa C-banded karyotypes of Avena species. Genome.       |
| 530 |     | 1988;30(5): 627-632.                                                                     |
| 531 | 16. | Katsiotis A, Hagidimitriou M, Heslop-Harrison JS. The close relationship between the A   |
| 532 |     | and B genomes in Avena L. (Poaceae) determined by molecular cytogenetic analysis of      |

- 533 total genomic, tandemly and dispersed repetitive DNA sequences. Annals of Botany.
- 534 1997;79(2): 103-109.
- 535 17. Irigoyen M, Loarce Y, Linares C, Ferrer E, Leggett M, Fominaya A. Discrimination of the
- 536 closely related A and B genomes in AABB tetraploid species of Avena. Theoretical and
- 537 Applied Genetics. 2001;103(8): 1160-1166.
- 538 18. Linares C, Ferrer E, Fominaya A. Discrimination of the closely related A and D genomes
- 539 of the hexaploid oat *Avena sativa* L. Proceedings of the National Academy of Sciences.
- 540 1998;95(21): 12450-12455.
- 19. Chew P, Meade K, Hayes A, Harjes C, Bao Y, Beattie AD, et al. A study on the genetic
- relationships of *Avena* taxa and the origins of hexaploid oat. Theoretical and Applied
- 543 Genetics. 2016;129(7): 1405-1415.
- 544 20. Linares C, González J, Ferrer E, Fominaya A. The use of double fluorescence in situ
- 545 hybridization to physically map the positions of 5S rDNA genes in relation to the
- 546 chromosomal location of 18S-5.8S-26S rDNA and a C genome specific DNA sequence in
- 547 the genus *Avena*. Genome. 1996;39(3): 535-542.
- 548 21. Leggett J, Markhand G, editors. The genomic structure of Avena revealed by GISH.
- 549 Proceedings of the Kew Chromosome Conference IV; 1995.
- 550 22. Baum BR, Rajhathy T, Sampson DR. An important new diploid Avena species discovered
- on the Canary Islands. Canadian Journal of Botany. 1973;51(51): 759-762.
- 552 23. Leggett JM, Thomas H. Oat evolution and cytogenetics. In: Welch RW, editor. The Oat
- 553 Crop World Crop Series: Springer, Dordrecht; 1995. pp. 120-149.

- 554 24. Fominaya A, Vega C, Ferrer E. C-banding and nucleolar activity of tetraploid Avena
- 555 species. Genome. 1988;30(5): 633-638.
- 556 25. Badaeva E, Shelukhina OY, Goryunova S, Loskutov I, Pukhalskiy V. Phylogenetic
- 557 relationships of tetraploid AB-genome Avena species evaluated by means of
- 558 cytogenetic (C-banding and FISH) and RAPD analyses. Journal of Botany. 2010; 2010.
- 559 26. Fan X, Sha LN, Zeng J, Kang HY, Zhang HQ, Wang XL, et al. Evolutionary dynamics of the
- 560 *Pgk1* gene in the polyploid genus *Kengyilia* (Triticeae: Poaceae) and its diploid relatives.
- 561 Plos One. 2012;7(2): e31122.
- 562 27. Sha LN, Fan X, Wang XL, Dong ZZ, Zeng J, Zhang HQ, et al. Genome origin, historical
- 563 hybridization and genetic differentiation in Anthosachne australasica (Triticeae;
- 564 Poaceae), inferred from chloroplast *rbcL*, *trn*H-*psb*A and nuclear *Acc1* gene sequences.
- 565 Ann Bot. 2017;119(1): 95-107.
- 28. Huang S, Sirikhachornkit A, Faris JD, Su X, Gill BS, Haselkorn R, et al. Phylogenetic
- 567 analysis of the acetyl-CoA carboxylase and 3-phosphoglycerate kinase loci in wheat and
- other grasses. Plant Molecular Biology. 2002;48(5-6): 805-820.
- 569 29. Chen Q, Kang HY, Fan X, Wang Y, Sha LN, Zhang HQ, et al. Evolutionary history of
- 570 Triticum petropavlovskyi Udacz. et Migusch. inferred from the sequences of the
- 571 3-Phosphoglycerate kinase gene. Plos One. 2013;8(8): e71139.
- 572 30. Ladizinsky G. Avena prostrata: a new diploid species of oat. Israel J Bot. 1971: 297-301.
- 573 31. Doyle J. A rapid DNA isolation procedure for small quantities of fresh leaf tissue.
- 574 Phytochemical Bulletin. 1987;19(1): 11-15.

- 575 32. Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of
- 576 progressive multiple sequence alignment through sequence weighting, position-specific
- 577 gap penalties and weight matrix choice. Nucleic Acids Research. 1994;22(22):
- 578 4673-4680.
- 579 33. Xia X. DAMBE5: A comprehensive software package for data analysis in molecular
- 580 biology and evolution. Molecular Biology and Evolution. 2013;30(7): 1720-1728.
- 581 34. Swofford DL. PAUP: Phylogenetic analysis using parsimony (and other metods). Version
- 582 4.0b.10. Sunderland: Sinauer Associates. 2003.
- 583 35. Felsenstein J. Confidence limits on phylogenies: an approach using the bootstrap.
- 584 Evolution. 1985;39(4): 783-791.
- 585 36. Huelsenbeck JP, Ronquist F. MRBAYES: Bayesian inference of phylogenetic trees.
- 586 Bioinformatics. 2001;17(8): 754-755.
- 587 37. Bandelt HJ, Forster P, Röhl A. Median-joining networks for inferring intraspecific
- 588 phylogenies. Molecular Biology and Evolution. 1999;16(1): 37-48.
- 589 38. Kilian B, Özkan H, Deusch O, Effgen S, Brandolini A, Kohl J, et al. Independent wheat B
- 590 and G genome origins in outcrossing *Aegilops* progenitor haplotypes. Molecular Biology
- 591 and Evolution. 2007;24(1): 217-227.
- 39. Pond SLK, Frost SDW, Muse SV. HyPhy: hypothesis testing using phylogenies.
- 593 Bioinformatics. 2005;21(5): 676-679.
- 40. Liu Q, Lin L, Zhou X, Peterson PM, Wen J. Unraveling the evolutionary dynamics of
- 595 ancient and recent polyploidization events in *Avena* (Poaceae). Scientific Reports.
- 596 2017;7: 41944.

- 597 41. Loskutov IG, Rines HW. Avena. In: Kole C, editor. Wild crop relatives: genomic and
- 598 breeding resources: Springer; 2011. pp. 109-183.
- 599 42. Drossou A, Katsiotis A, Leggett JM, Loukas M, Tsakas S. Genome and species
- 600 relationships in genus Avena based on RAPD and AFLP molecular markers. Theoretical
- 601 and Applied Genetics. 2004;109(1): 48-54.
- 43. Ladizinsky G. Studies in Oat Evolution: Springer Berlin Heidelberg; 2012.
- 44. Holden JHW. Species relationships in the Avenue. Chromosoma. 1966;20: 75-124.
- 45. Shelukhina OY, Badaeva ED, Brezhneva TA, Loskutov IG, Pukhalsky VA. Comparative
- analysis of diploid species of *Avena* L. using cytogenetic and biochemical markers:
- 606 Avena canariensis Baum et Fedak and A. longiglumis Dur. Russian Journal of Genetics.
- 607 2008;44(6): 694-701.
- 46. Jellen EN, Gill BS. C-banding variation in the Moroccan oat species Avena agadiriana

609 (2n=4x=28). Theoretical and Applied Genetics. 1996;92(6): 726-732.

- 47. Jellen EN, Gill BS, Cox TS. Genomic in situ hybridization differentiates between A/D- and
- 611 C-genome chromatin and detects intergenomic translocations in polyploid oat species
- 612 (genus Avena). Genome. 1994;37(4): 613-618.
- 48. Oliver RE, Jellen EN, Ladizinsky G, Korol AB, Kilian A, Beard JL, et al. New Diversity Arrays
- 614 Technology (DArT) markers for tetraploid oat (*Avena magna Murphy* et Terrell) provide
- 615 the first complete oat linkage map and markers linked to domestication genes from
- 616 hexaploid *A. sativa* L. Theoretical & Applied Genetics. 2011;123(7): 1159-1171.
- 49. Ladizinsky G, Zohary D. Notes on species delimination, species relationships and
- 618 polyploidy in *Avena* L. Euphytica. 1971;20(3): 380-395.

- 50. Shelukhina OY, Badaeva ED, Loskutov IG, Pukhal'sky VA. A comparative cytogenetic
- 620 study of the tetraploid oat species with the A and C genomes: Avena insularis, A. magna,
- and *A. murphyi*. Russian Journal of Genetics. 2007;43(6): 613-626.
- 622 51. Ladizinsky G. Cytogenetic relationships between Avena insularis (2n=28) and both A.
- 623 *strigosa* (2n=14) and *A. murphyi* (2n=28). Genetic Resources and Crop Evolution.
- 624 1999;46(5): 501-504.
- 625 52. Irigoyen ML, Linares C, Ferrer E, Fominaya A. Fluorescence in situ hybridization mapping
- 626 of Avena sativa L. cv. SunII and its monosomic lines using cloned repetitive DNA
- 627 sequences. Genome. 2002;45(6): 1230-1237.
- 53. Sanz MJ. A new chromosome nomenclature system for oat (*Avena sativa L*. and *A*.
- 629 *byzantina* C. Koch) based on FISH analysis of monosomic lines. Theoretical and Applied
- 630 Genetics. 2010;121(8): 1541-1552.
- 631 54. Cheng DW, Armstrong KC, Drouin G, Mcelroy A, Fedak G, Molnar SD. Isolation and
- 632 identification of *Triticeae* chromosome 1 receptor-like kinase genes (*Lrk10*) from diploid,
- tetraploid, and hexaploid species of the genus *Avena*. Genome. 2003;46(1): 119-127.
- 55. Fu YB. Oat evolution revealed in the maternal lineages of 25 Avena species. Scientific
- 635 Reports. 2018;8(1): 4252.
- 636
- 637