Academia.eduAcademia.edu
Molecular Phylogenetics and Evolution 109 (2017) 33–58 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Time to split Salvia s.l. (Lamiaceae) – New insights from Old World Salvia phylogeny Maria Will ⇑, Regine Claßen-Bockhoff Johannes Gutenberg-Universität, Institut für Spezielle Botanik, Anselm-Franz-von-Bentzel-Weg 2, 55099 Mainz, Germany a r t i c l e i n f o Article history: Received 25 May 2016 Revised 22 December 2016 Accepted 30 December 2016 Available online 3 January 2017 Keywords: Salvia Polyphyly Classification Phylogeny Sections Parallel evolution a b s t r a c t Aims: Salvia L. is widely known as the largest genus in the mint family. A morphological modification of the androecium (lever-like stamens) was used to support this genus. However, molecular data revealed that Salvia is polyphyletic. Since phylogenetic studies largely underrepresented Old World Salvia species, we filled this gap and combined new data with existing sequences. The aim of our study was the identification of well-supported clades that provide the basis for evolutionary and taxonomic conclusions. Methods: We included ITS data (internal transcribed spacer) from 220 Salvia species, 86 of which were sequenced for the first time. Additionally, the highly variable plastid marker rpl32-trnL was sequenced, providing new data for 100 Salvia species. These sequences were combined with the accessions available from GenBank. Old World Salvia is represented herein with 57% of its species. The two datasets were analyzed separately using BI and ML approaches. Results: Our data confirm that Salvia is polyphyletic with four distinct evolutionary lineages (Clade I-IV), including five additional genera. The clades strongly reflect the geographical distribution, i.e., Clade IV (East Asia), Clade III (Southwest Asia to Northern Africa), and Clade II (America). The origin of Salvia s. s. (Clade I) is most likely Southwest Asia. A high degree of parallel character evolution was identified in most of the Old World sections. Based on our results, we reconstructed the evolution and biogeography of Salvia s.l. and propose to split this large group into six genera, each supported by geographical distribution, morphology, and karyology. Conclusion: Salvia s.l. is a polyphyletic group that was originally regarded as a genus because its species share a derived stamen structure. However, phylogenetic data clearly indicate that this floral trait and other morphological characters evolved in parallel. Our study illustrates that the combination of different data sets allows a comprehensive reconstruction of taxa and characteristic evolution, both of which are a precondition for future revision. Ó 2016 Published by Elsevier Inc. 1. Introduction 1.1. Salvia L. – a highly polyphyletic genus Large genera, including Astragalus, Euphorbia, Minuartia, Psychotria, Ranunculus and Solanum, have repeatedly been found to be non-monophyletic (Bruyns et al., 2006; Dillenberger and Kadereit, 2014; Emadzade et al., 2010; Hörandl et al., 2005; Nepokroeff et al., 1999; Osaloo et al., 2003; Rastipishe et al., Abbreviations: NW, New World; OW, Old World; SW, Southwest; BLB, Bering Land Bridge; NALB, North Atlantic Land Bridge; MRCA, Most Recent Common Ancestor. ⇑ Corresponding author. E-mail addresses: maria.will@uni-oldenburg.de (M. Will), classenb@uni-mainz. de (R. Claßen-Bockhoff). http://dx.doi.org/10.1016/j.ympev.2016.12.041 1055-7903/Ó 2016 Published by Elsevier Inc. 2011; Weese and Bohs, 2007; Zimmermann et al., 2010). In contrast to paraphyly (Hörandl, 2006; Hörandl and Stuessy, 2010; Zander, 2008), polyphyly is unacceptable to describe natural groups and demands taxonomic consequences. Because it is rather unpopular to split well-known genera, new concepts for classification should not be introduced lightly (e.g., Kress et al., 2005; Kučera et al., 2013; Mansion, 2004; Whitten et al., 2007) but also should not be delayed for practical or sentimental reasons. Salvia is well-known for its ornamental, medicinal, hallucinogenic, or esculent plants (Clebsch, 2008; Froissart, 2008). To date, approximately 980 species have been recognized, most of which are restricted to the New World (NW1), the most important center of species diversity (Appendix A, see Wester and Claßen-Bockhoff, 2011; Bedolla-García et al., 2011; Martínez-Gordillo and LozadaPérez, 2011; Turner, 2011; Véliz Pérez and Quedensley, 2011; 34 M. Will, R. Claßen-Bockhoff / Molecular Phylogenetics and Evolution 109 (2017) 33–58 Fernández Alonso, 2012; González-Gallegos and Castro-Castro, 2012; González-Gallegos et al., 2012a, 2012b; Iltis et al., 2012; Sagástegui Alva and Rodríguez Rodríguez, 2012; GonzálezGallegos, 2013; González-Gallegos and Castro-Castro, 2013; Gonzáles-Gallegos and Gama-Villanueva, 2013; González Gallegos et al., 2013; Fragoso-Martínez and Martínez-Gordillo, 2013; Turner, 2013; Fernández-Alonso, 2014; González-Gallegos, 2014; González-Gallegos and Aguilar-Santelises, 2014; LaraCabrera et al., 2014; Fragoso-Martínez et al., 2015; GonzálezGallegos, 2015; Bedolla-García and Zamudio, 2015). Further hotspots of species richness are located in the Old World (OW2), where approximately 350 spp. are found (Appendix B, see Thulin, 1993; Vural and Adigüzel, 1996; Van Jaarsveld, 1999; Dönmez, 2001; Haber and Semaan, 2004; Hamazaoğlu et al., 2005; Yıldırımlı and Ertekin, 2008; Ilçim et al., 2009; Thulin, 2009; Celep and Dog ˘an, 2010; Kahraman et al., 2011b; Zhu et al., 2011; Hu et al., 2013; Takano et al., 2014; Celep et al., 2015). The major characteristic supporting Salvia as a genus is the peculiar modification of its stamens. The latter have a lever-like structure and function, a characteristic that has also been described as a key innovation for the genus (Claßen-Bockhoff et al., 2004b). Together with the calyx and corolla morphology, ‘stamen types’ have been consistently used to separate Salvia from other genera (Harley et al., 2004). However, despite this morphological support, the phenotypic diversity (Plate 1A–S) in Salvia has repeatedly caused conflicting opinions regarding classification (Table 1). 1.2. Taxonomic history In the early nineteenth century, various attempts were made towards a classification of Salvia with the introduction of different subgenera and sections (Bentham, 1832–36, 1848, 1876; Boissier, 1879; Briquet, 1897; Bunge, 1873). A split of the genus into various genera was even proposed (Rafinesque, 1837). These early treatments were largely based on morphology and only partly on the species distribution (e.g., Bunge, 1873). Rafinesque (1837) accepted 28 small genera instead of one large Salvia genus. Unfortunately, his specimens were not preserved, and little information on the characteristics supporting and separating these genera are currently available (Merrill, 1949; Von Hagen, 1947). Nonetheless, the names have been published and must be considered for future taxonomic revisions. As a first example, Pleudia Raf. has recently been resurrected (Will et al., 2015). Two further names proposed by Rafinesque are under consideration for resurrection, i.e., for the Calosphace and Audibertia clades, both of which are now a subject of taxonomic revision (Mark Porter, personal communication). Bentham (1832–36), in contrast, proposed 14 sections based on morphology and distribution. Later, he arranged the species in 12 sections (Table 2; Bentham, 1848). In a third study, Bentham (1876) included Salvia in the tribe Monardeae, together with Perovskia Karel, Dorystaechas Boiss et. Heldr., Meriandra Benth., Salviastrum Scheele, Audibertia, Rosmarinus L., Monarda L., Blephilia Raf., and Ziziphora L. He established four subgenera, Salvia, Sclarea, Calosphace and Leonia, to further classify the 12 sections (Table 2). The geographical distribution and morphology of the calyx, corolla and stamens were the main arguments for his classification. Bentham’s 1876 classification is still used today. Six species, originally placed in a separate genus, i.e., Audibertia Benth., were later accepted as Salvia sect. Audibertia Benth. (Epling, 1938). Bunge (1873) basically revised the OW sections accepted by Bentham (1848), in particular the Southwest (SW3) Asian ones. His classification is only partially comparable to the one of Bentham (1876) since he accepted different taxonomic groups (Table 2). Boissier (1879) adopted the subsectional system of Bunge with a few changes (Table 2). Briquet (1897) provided the most recent subgeneric classification and arranged approximately 500 Salvia species in 17 sections and eight subgenera (Table 2). He considered Salviastrum, Polakia Stapf and Ramona Greene (=Audibertia Benth. sensu Boissier, 1879) as genera distinct from, but closely related to, Salvia (Table 1). Together, these genera were included in the tribe Salvieae. Many subsequent studies have addressed the infrageneric classification of Salvia s.l. (e.g., Dos Santos, 1991, 1995, 1996; Dos Santos et al., 2005; El-Gazzar et al., 1968; Emboden and Lewis, 1967; Epling, 1938, 1939; Espejo-Serna and Ramamoorthy, 1993; Fernández-Alonso, 2006; Fujita, 1970; Hedge, 1974a; Hrubý, 1962; Huang and Wu, 1975; Jenks et al., 2013; Kahraman et al., 2010, 2011a; Lippert, 1979; Neisess, 1983; Peter, 1936; Peterson, 1978; Pobedimova, 1954; Reales et al., 2004; Reisfield, 1987; Rosúa and Blanca, 1986, 1988; Stibal, 1934, 1935; Strachan, 1982; Torke, 2000; Walker and Elisens, 2001; Wang et al., 2013; Whitehouse, 1949). Hrubý (1962) suggested the elevation of some subsections to the genus level, a taxonomic approach that was also proposed by Rafinesque (1837) more than one century earlier. Hedge (1974a, 1982a, 1982b) revised Old World Salvia. In his study on African Salvia (Hedge, 1974a), he referred to Bentham’s sections and introduced ‘species groups’. The latter were based on morphology (e.g., floral and stamen morphology) and distribution. In his later treatments of SW Asian Salvia (Hedge, 1982a, 1982b) he focused on N African/SW Asian disjunctions and discussed their relationships (Davis and Hedge, 1971; Hedge, 1974a). While the corresponding treatments provided clear insights into the morphological relationships of Salvia in Africa, Turkey, and Iran (Hedge, 1974a, 1982a, 1982b), a synopsis of all OW species has remained difficult since the ‘species groups’ in Africa and SW Asia did not correspond to each other. Within the Flora of Turkey, ‘species groups’ were not explicitly named but indicated by horizontal dots (Hedge, 1982a, pp. 402–403). Hedge’s concept of ‘species groups’ not only contributed to a better understanding of relationships in OW Salvia, but it also provided the most up-to-date infrageneric classification for the corresponding local floras. 1.3. Molecular data: a new perspective on Salvia The first molecular studies of Salvia rejected monophyly for the genus in its traditional circumscription (Walker et al., 2004). Indeed, the species were highly supported in four different clades that were closely related to Dorystaechas, Meriandra, Perovskia, Rosmarinus, and Zhumeria Rech. f. & Wendelbo. Walker et al. (2004) revealed three clades (I-III). Later, a slight increase in sampling placed the genus Zhumeria (Rechinger and Wendelbo, 1967) in a derived position within one of these clades, which was thus renamed Salvia ‘clade III’ (Walker and Sytsma, 2007). Will and Claßen-Bockhoff (2014) recognized the latter as two independent lineages and distinguished Clade III (SW Asian Salvia species and Zhumeria) and Clade IV (E Asian Salvia). The existing molecular studies are either restricted to a small subset of species or reflect the flora of a certain region (Jenks et al., 2011, 2013; Li et al., 2013; Sudarmono, 2007; Sudarmono and Okada, 2008; Takano and Okada, 2011; Walker et al., 2015). Thereby, relationships between clades remain largely unresolved. The present study adds new sequences for OW Salvia and combines them with the existing molecular data for NW and OW Salvia. The aim of our study is the identification of well-supported clades providing the basis for evolutionary and taxonomic conclusions. M. Will, R. Claßen-Bockhoff / Molecular Phylogenetics and Evolution 109 (2017) 33–58 35 Plate 1. Phenotypic diversity of Salvia s.l. Distribution in brackets; NW = New World, OW = Old World; A–J Clade I (Salvia s.s.; subclades based on Will and Claßen-Bockhoff, 2014); A S. scabra, B S. namaensis, C S. thermarum (all three I-A; OW); D S. roemeriana, E S. texana (both I-B; NW); F S. judaica (Salvia verticillata-group; OW); G S. canariensis, H S. indica, I S. broussonetii (all three I-C; OW); J S. officinalis (I-D; OW); K-S species excluded from Salvia s.s.; K S. florida Benth., L S. splendens Sellow ex Wied-Neuw., M S. patens, N S. carduacea Benth., O S. apiana (all five Clade II; NW); P S. aegyptiaca (III-A; OW); Q S. glutinosa, R S. evansiana var. evansiana, S S. chienii (all three IV; OW); Photographs: L. Cairampoma (K), R. Claben-Bockhoff (P), P. Wester (C-E, I, L-O, Q), M. Will (A, B, F-H, J, R-S); figures not on the same scale. 36 M. Will, R. Claßen-Bockhoff / Molecular Phylogenetics and Evolution 109 (2017) 33–58 Table 1 Taxonomic treatment of genera closely related to Salvia. + confirmation of previous classification. Bentham Briquet Rechinger and Wendelbo (1967) (1832–36) (1848) (1876) (1897) Meriandrac Perovskiaa Dorystaechasb + Audibertiae Rosmarinusg + + + + + Salviastrumd + + + + + + Ramonaf + Polakiah Zhumeriai a b c d e f g h i Perovskia Karel (3 spp.; W-Asia). Dorystaechas Boiss et. Heldr. (monospecific.; SW-Asia). Meriandra Benth. (2 spp.; Ethiopia and Himalaya). Salviastrum Scheele (4 spp.; Texas); formerly also accepted as Salvia sect. Salviastrum (Gray, 1872; Torrey, 1859). Audibertia Benth. (originally 6 spp., NW). Ramona Greene (California; Greene (1892) accepted representatives of Audibertia Benth. in his new genus with Ramona polystachya (Benth.) as type species. Rosmarinus L. (monospecific; Mediterranean Area). Polakia Stapf (monospecific; SW-Asia), P. paradoxa Stapf is synonym to Salvia aristata Aucher ex Benth. (Behçet and Avlamaz, 2009). Zhumeria majdae Rech. f. & Wendelbo (monospecific; S-Iran). Table 2 Subgeneric classification of the genus Salvia. Early concepts based on a broad taxon sampling are considered here; + confirmation of previous sections, - previous sectional status not accepted;  = sphace; # = species not included; § = subsection; NW = New Word; OW = Old Word; sect. = section; subg. = subgenus. Bentham a b c d e f g h i j k l m n o p q r s Bunge Boissier Briquet Distribution (1832–36) (1848) (1876) (1873) (1879) (1897) Sect. Sect. Subg. Sect. Sect. Sect. Subg. OW Eusphace + Salvia Eusphace Benth. p.p.a Eusphace Benth. Salvia Benth. Drymo Hymeno + + Physo  Bungeb + Hymeno  p.p.c § Simplicifoliae § Pinnatae -j + Hymeno  Benth. x x x x x x Gymno -e – – – Horminum Aethiopis + + Sclarea + Clono  Bungeh Gongro  Bunge Homalo  Bunge + -i + +i + # # # Notio  (Benth.) Bungeo Eremo  Bungep # # # # +q Plethio + Echino m Pycno n Hetero Notio + + + + Hemi + Calo Micro +s -s Leonia Calo – – + + Nacto  Briq.d Schraderia (Moench) Briq. Gymno(Benth.) Briq.f Allagospagon Maxim.g Allagospadonopsis Briq. x x Horminum (Mönch) Benth. Stenarrhena (Don) Briq. § Gongro  (Boiss.) Briq. j § Homalo  (Boiss.) Briq.k +l Sclarea (Mönch) Benth. x x x x x Leonia (Llav. et Lex.) Benth. + + + + + + + Neo  Briq.r + # – # – + – Viasala Briq. Covola (Medik.) Briq. x x x x x Jungia (Moench) Briq. Only S. rosaefolia Sm. Only S. aristata Auch. Only SW-Asian spp. Only African spp. Monospecific sect. Gymnosphace Benth. (S. saxicola Benth.) included in sect. Notiosphace Benth. Monospecific (S. saxicola Benth.; India). Monospecific (S. piasezkii Maxim.; China). Sect. Aethiopis Benth. p.p.: species with stamen characters of sect. Aethiopis and calyx characteristics of sect. Hymenosphace; S. compressa Vahl. Sect. Aethiopis Benth. p.p.: S. compressa (sect. Clonosphace Bunge) included in sect. Homalosphace Bunge. Sect. Gongrosphace and Physosphace Bunge; Boissier (1879) transferred S. aristata from Physosphace Bunge to § Gongrosphace (Boiss.) Briq. Sect. Homalosphace and Clonosphace Bunge. Syn.: Gallitrichum Jord. et Fourr. Monospecific (S. carduaca Benth.), recognized as genus Audibertia by Bentham (1848). Only two NW spp.: S. columbariae Benth. and S. leonia Benth. Sect. Notiosphace Benth. p.p.: only E-Asian and Australian spp. Sect. Notiosphace Benth. p.p.: only SW-Asian spp. Notiosphace Benth. ex parte [. . .] Calyx [. . .] interdum ut in Pletiosphace dorso bisulcate (p. 592). Only S. nilotica which was placed in Heterosphace by Bentham (1848). Originally two NW spp.: S. occidentalis Swartz and S. misella Humb. et Kunth.; Bentham (1848) included sect. Microsphace Benth. in sect. Calosphace Benth. NW x x x x x 37 M. Will, R. Claßen-Bockhoff / Molecular Phylogenetics and Evolution 109 (2017) 33–58 2. Materials and methods 2.1. Taxon sampling Plant material was collected in the field or obtained from herbaria and living collections. As far as possible, specimens from the natural distribution of the corresponding species were used. Data for Salvia s.l. and ten additional genera are provided (Table 3). Five of these genera represent the out-groups, while Dorystaechas, Meriandra, Perovskia, Rosmarinus, Zhumeria, and Salvia are considered the in-group based on current molecular data (Table 4). All major lineages encompassing Salvia species identified in the study by Walker and Sytsma (2007) are represented, including Clade II. Since this particular lineage was repeatedly supported by several molecular studies (Jenks et al., 2011, 2013; Walker et al., 2004, 2015; Walker and Sytsma, 2007; Will and ClabenBockhoff, 2014), it is only sampled herein using a small subset of species. The number of Salvia species accepted in NW (Appendix A) and OW Salvia (Appendix B) is based on literature research and a reduction of synonyms for doubtful taxa (Alziar, 1988– 1993; Behçet and Avlamaz, 2009; Boissier, 1879; Clement, 1999; Codd, 1985; Cooke, 1908; Cramer, 1981; Feinbrun-Dothan, 1978; Table 3 Plant material included in this study. Sequences generated in this study are indicated by a DNA accession number (acc. No.); ACECR = Academic Center for Education Culture and Research (Iran); BG HH = Botanical Garden Hamburg (Germany); cult. = cultivated; PSL METU = Plant Systematics Lab. Department of Biological Sciences, Middle East Technical University, Ankara (Turkey); RBGE = Royal Botanical Garden Edinburgh (UK); herbarium acronyms according to Index Herbariorum; locality: given only explicitly for material collected in the natural distribution area. Afg = Afghanistan; Azerb = Azerbaijan; Canary Isl = Canary Islands; Kurd = Kurdistan; Mad. = Madagascar; Pak = Pakistan; Taj = Tajikistan; Uzb = Uzbekistan; Yug = Yugoslawia. Taxon Locality Collinsonia canadensis L. Dorystaechas hastata Boiss. & Heldr. ex Benth. Anatolia Hyptis laniflora Benth. Horminum pyrenaicum L. Lepechinia calycina (Benth.) Epling ex Munz Lepechinia lamiifolia (Benth.) Epling Lepechinia mexicana (S. Schauer) Epling Melissa axillaris (Benth.) Bakh.f. Melissa officinalis L. Meriandra bengalensis (Konig ex Roxb.) Benth. Perovskia atriplicifolia Benth. Rosmarinus officinalis L. Salvia absconditiflora Greuter & Burdet (syn. S. cryptantha Montbret & Aucher ex Benth.) S. adenocaulon H.P.Davis S. adenophylla Hedge & Hub.-Mor. S. aegyptiaca L. Anatolia S. aerea Levl. SW China S. aethiopis L. Armenia Armenia S. S. S. S. S. S. S. S. S. S. S. S. africana-caerulea L. africana-lutea L. albicaulis Benth albimaculata Hedge & Hub.-Mor amplexicaulis Lam. anatolica Hamzaoğlu & Duran aramiensis Rech.fil. areysiana Deflers argentea L. ariana var. ariana Hedge arisanensis Hayata aristata Aucher Anatolia Anatolia S Africa S Africa Anatolia Yug Anatolia Anatolia Yemen Italy Afg Taiwan Iran Iran S. atrocyanea Epl. S. atropatana Bunge Anatolia Voucher DNA GenBank acc. No. Collector with number (herbaria) acc. No. rpl32-trnL nrITS JBW 958 Raiche s.n. (UCBG 1984.0696) Albach D6-4 (University Oldenburg) Cult. RBGE1972-0177D Cult. RBGE1972-0177D B. Drew 41 Isolate K36721 Cult. RBGE 1997-2109a M. Will 63 (MJG 003069) Trusty 28 (FTG, ex hort. Fairchild Tropical Gard.) Drew 197 B. Drew 178 B. Drew 164 D. E. Boufford et al. 24526 M. Will 64 (MJG 003068) B. Drew 70 JBW 2527 (cult. USA/WIS) Lavranus & Newton 15796 (MO 2633828) M. Will 65 (MJG 003070) – – 213 – – – – – 390 – – – – – 388 – – – 472/ 374 – 389 – 92/ 258 69 70 204 – – – – – 281 – 230 81 1 71 299 72 73 282 57 297 – 417 – 289 – 74 – JQ669291 KJ747319 JQ669302 – JQ669317 – JQ669315 KJ747327 – JQ669324 JQ669325 JQ669326 JQ669334 KJ747325 JQ669335 – – – DQ667248 JQ669087 KJ584248 DQ667252 HQ418845 – JF301548 DQ667257 KJ584247 AY506654 JF301344 JF301348 JF301350 JQ669114 KJ584249 JF301353 DQ667291 DQ667329 KJ584242 JQ669352 KJ747310 JQ669364 KU578211 DQ667223 KJ584197 DQ667241 KU563839 KU578149 KU578218 KJ747314 – – – – – KU578150 – KJ747271 KJ747273 KJ747274 KU578219 KU578151 KU578221 KU578247 KJ747315 KJ747299 KU578152 – KJ747264 JQ669365 – – KU578153 KU563828 KU563789 KJ584245 DQ667285 EU169469 EU169466 EU169467 KC473229 KJ584163 DQ667272 KJ584204 KJ584205 KJ584206 KU563790 KU563829 KU563840 KU563791 – KJ584164 KU563843 AB295100 – DQ667280 KJ584244 DQ667270 KU563841 JBW 2524 (cult. USA/WIS) M. Will 66 (MJG 003071) JBW 2558 (cult. USA/WIS) S. Bagherpour 435 (PSL METU) F. Celep 1251 (PSL METU) F. Celep 1500 (PSL METU) M. Kuschewitz s.n. (cult. BG HH) McLeish 3728 (E) Isolate S0609 Isolate S0610 Isolate S0618 Isolate 511190202 J. Hellwig s.n. 26/6/02 (MJG 009919) J. Hellwig s.n. 26/6/02 (MJG 009919) P. Wester 319 (MJG 041401) P. Wester 342 (MJG 041393) P. Wester 340 (MJG 041403) F. Celep 1032 (PSL METU) D. Podlech 28360 (M 56468) S. Bagherpour 304 (PSL METU) F. Celep 1400 (PSL METU) Thulin 8472 (UPS) R. Claben-Bockhoff s.n. Mai 2002 (MJG) D. Podlech & K. Jarmal 30029 (M 52749) H. Okada et al. 5677 Y. Ajani 1569 (ACECR) Wedelbo & Assadi s.n. (E) Rechinger s.n. Iter Iranicum VIII, 1974 (M) Isolate x140 A. Kahraman 1570 (PSL METU) (continued on next page) 38 M. Will, R. Claßen-Bockhoff / Molecular Phylogenetics and Evolution 109 (2017) 33–58 Table 3 (continued) Taxon S. aucheri ssp. canescens (Boiss. & Heldr.) Celep, Kahraman & Dogan Locality Anatolia S. aurita L.fil. S. austriaca Jacq. S. S. S. S. S. S. axillaris Moe. et Sesse & Benth. aytachii Vural & Adıgüzel ballsiana (Rech.fil.) Hedge bariensis Thulin blepharochlaena Bedge & Hub.-Mor. bowleyana Dunn S. S. S. S. S. brachyantha (Bordz.) Pobed. brevilabra Franch. broussonetii Benth. bucharica M.Popov bulleyana Diels Austria Mexico Anatolia Anatolia Somalia Anatolia SW China Anatolia SW China Taj China S. cabulica Benth. Afg S. cadmica Boiss. S. caespitosa Montb. & Auch. ex Benth. Anatolia Anatolia S. canariensis L. S. S. S. S. S. candelabrum Boiss. candidissima ssp. occidentalis Hedge candidissima Vahl. cassia Rech.fil. castanea Diels. f. castanea Diels. Anatolia Anatolia China China f. glabrescens Stib. f. pubescens Stib. S. cavaleriei Lévl. var. simplicifolia Stib. S. cedronella Boiss. S. ceratophylla L. S. chamelaeagnea Berg. S. chienii E.Peter S. chinensis Benth. S. chionantha Boiss. S. S. S. S. chloroleuca Rech.fil. & Aell. chrysophylla Stapf cyanescens Boiss. & Bal. cyclostegia Stib. SW China Anatolia Anatolia rpl32-trnL nrITS F. Celep 1245 (PSL METU) 239 KU578248 KJ584193 Archibald 7670 (E) P. Wester 324 (MJG 041405) – 11/ 424 – 280 – 377 79 283 80 – – 83 – 29 270 250 – KJ747276 DQ667286 KJ584218 – KJ747261 JQ669366 KU578220 KU578215 KJ747316 KU578210 – – KU578154 – KJ747293 KU578222 KU578203 DQ667323 – DQ667294 – KU563841 – KU563793 EF373645 EU592037 KU563844 EF373636 KJ584226 KU563794 KU563780 – – KU578223 KU578224 KJ584189 DQ667287 KU563795 KU563796 KJ747295 – KJ747255 KJ747300 – KU578190 – – – – – – – – – – KU578146 KJ747289 KJ747322 – – KU578155 KJ584227 DQ667256 KJ584190 KJ584165 DQ667261 KU563845 KU563781 KC473231 EU169463 EU169464 EU169460 EU169461 EU169462 KC473232 EF373618 KU563797 – KJ584210 KJ584250 DQ132868 EF373647 KU563846 KU578156 KU578157 KU578158 – – – – – – KJ747308 – KJ747263 – KJ747312 KU578159 KU578204 – – – – – KJ747296 – KU578197 KU578226 KU563847 KU563848 KU563849 EU169465 EU169475 KC473234 KU563782 DQ667332 EF373640 KJ584187 DQ667258 KJ584176 DQ132865 – KU563830 KU563783 DQ667255 DQ132869 EF014348 EU169473 KC473235 KJ584179 DQ667290 KU563882 – R. Claben-Bockhoff s.n. 2004 (cult. BG Mz) R. Claben-Bockhoff s.n. 12.06.2003 (MJG) JBW 3038 (WIS) S. Bagherpour 412 (PSL METU) A. Kahraman 1505 (PSL METU) Thulin 9424 (UPS) F. Celep 1217 (PSL METU) L. Zhang 05008 (TRISAU, China) A. Kahraman 1572 (PSL METU) Y.H. Zhou 06011 (TRISAU, China) § M. Will 33 (MJG 041537) M.G. Pimenov, E.V. Kljuykov, I. Mukumov 113 (MW) Sino-Amer. Bot. Exped. No 412; 24 June 1984 (HUH 144417) Freitag 137713 (M) Ghafoor & Goodman 5148 (E) F. Celep 1426 (PSL METU) F. Celep 1544 (PSL METU) M. Will 46 (MJG 041565) Cult. RBGE 1986–0478 M. Will 42 (MJG 041557) F. Celep 1487 (PSL METU) Cult. RBGE 1999-2202A F. Celep 1411 (PSL METU) Boufford et al. 33005 (HUH 286714) Isolate 511190205 Isolate S0617 Isolate S0619 Isolate S0612 Isolate S0621 Isolate S0623 Isolate 511190206 Z.J. Yang 06006 (TRISAU, China) § F. Celep 1455 (PSL METU) A. Kahraman 1378 (PSL METU) P. Wester 314 (MJG 041407) M. Will 61 (MJG 003066) AnH0305-21 Iran Anatolia Anatolia H. Akhani 11027 (M) F. Celep 1464 (PSL METU) A. Kahraman 1593 (PSL METU) Isolate S0620 Isolate S0611/voucher S011 (TRISAU, China) Isolate 511190209 D.E. Boufford & B. Bartholomew 24763 (HUH 144426) Boufford & Bartholemew 24763 (MO 4026698) Z.J. Yang 05005 (TRISAU, China) § M. Will 34 (MJG 04155) Cult. RGB E 1988-2283A M. Will 96 (MJG 003100) XingJ0305-1 E. Gamal Eldin s.n. 3.5.1991 (GOET) F. Celep 1330 (PSL METU) Boufford et al. 35075 (HUH 272649) Cult. RBG Edinbourgh 1999-2200A YunN0309-3 China China SW China S. deserta Schang S. disermas L. (syn. S. rugosa in GenBank) S. disjuncta Fern. S. divaricata Montbret & Auch. ex Benth. GenBank acc. No. acc. No. F. Celep 1464 (PSL METU) S. daghestanica Sosn. S. deserti Dcne. S. dichroantha Stapf S. digitaloides Diels DNA Anatolia SW China S. cynica Dunn Voucher Collector with number (herbaria) Egypt Anatolia China Guatemala Anatolia Isolate S0605 Isolate 511190211 P. Wester 326 (MJG 041413) Goldblatt 7500 (E) P. Wester 296 (MJG 041288) A. Kahraman 1591 (PSL METU) 322 – 85 86/ 256 5 – 62 201 – 165 251 – – – – – – – – 88 89 52 53 – – 90/ 257 308 91 93 – – – 248 – – 276 – 286 – 335 94 253 – – – – – 15 – 176 97 39 M. Will, R. Claßen-Bockhoff / Molecular Phylogenetics and Evolution 109 (2017) 33–58 Table 3 (continued) Taxon Locality S. dolomitica Codd Voucher DNA GenBank acc. No. Collector with number (herbaria) acc. No. rpl32-trnL nrITS KJ747290 – – KJ747262 KU578163 KU578167 KU578227 KJ584214 DQ667322 KJ584167 KJ584166 KU563870 KU563850 KU563819 X. Fan 04001 (TRISAU, China) § Isolate S0606 Isolate S0622 Isolate S0607 Isolate S0616 isolate 511190212 S. Bagherpour 493 (PSL METU) F. Celep 1082 (PSL METU) F. Celep 1373 (PSL METU) P. Wester 490 (MJG 041430) Strohbach 149 (E) Sudarmono et al. Jap03/68 (BO) Sudarmono et al. Jap05/69 (BO) Sudarmono et al. Jap05/70 (BO) A. Takano 091001-1(HYO) A. Takano 091028-1 (HYO) A. Takano 090930-3 (HYO) 82 – 267 217 177 95 96/ 405 202 – – 415 – – – – – – – – 98 260 100 393 – – – – – – – KU578225 – – KJ747323 – – – – – – – – KJ747266 KU578168 KJ747256 KJ747320 – – – – – – – KU563818 EF373621 FJ593405 KJ584251 DQ132867 EF014349 EF373624 EU169468 EU169470 EU169472 EU169474 KC473236 – KU563851 KJ584195 KU563881 DQ667281 AB295104 AB295105 AB295106 AB541120 AB541119 AB541121 F. Celep 1196 (PSL METU) JBW 2568 (cult. USA/WIS) M. Kuschewitz s.n. (cult. BG Mz) JBW 2511 (WIS) S. Bagherpour 534 (PSL METU) H. Okada et al. 5676 A. Kahraman 1516 (PSL METU) F. Celep 1427 (PSL METU) P. Wester 389 (MJG 009886) JBW 2516 R. Claben-Bockhoff 1/05 (MJG 009888) Boufford et al. 35205 (HUH 286716) JBW 2577 A. Kahraman 1295 (PSL METU) A. Kahraman 1468 (PSL METU) Rechinger 47123 (E) J. Hellwig s.n. 6/18/02 (MJG 009920) Isolate 511190214 F. Celep 1061(PSL METU) A. Kahraman 1354 (PSL METU) Y. Ajani 1600 (ACECR) A. Kahraman 1539 (PSL METU) M. Will 30 (MJG 041550) (Okada) Jap03/72 (BO) Sudarmono et al. Jap03/34 (BO) Sudarmono et al. Jap02/33 (BO) Sudarmono et al. Jap03/37 (BO) Sudarmono et al. Jap01/16 (BO) Jap02/56 (BO) Jap03/34 (BO) Jap03/45 (BO) Jap03/03 (BO) M. Will 57 (MJG 003061) M. Kuschewitz s.n. (MJG 009325) Isolate 511190215 101 – 214 – 102 – 103 104 375 – 40 252 – 105 242 – – – 106 407 419 107 447 – – – – – – – – – 409 44 – – – – JQ669367 KU578170 – KU578216 KU578246 KU578165 – KJ747313 KJ747324 – KU578228 KJ747257 – – – – KU578196 KU578171 KU578172 KJ747265 – – – – – – – – – KU578160 KU578173 – KJ584253 DQ667250 KU563774 DQ667215 – AB295099 – KU563799 KU563875 DQ667216 KJ584246 KJ584252 DQ667239 KU563800 KJ584192 DQ667288 DQ667265 KC473238 KU563876 KU563876 KU563852 KU563853 KJ584191 AB266241 AB295096 AB295093 AB295094 AB295095 AB266240 AB266237 AB266238 AB266239 KJ584241 KU563831 KC473239 O. Neustrueva-Knorring 4857 (M) [as Schraderia korolkovii (Regl. et Schmalh.) Pobed.] A. Takano 090704-2 (HYO) A. Kahraman 1575 (PSL METU) 323 – KU563801 – 108 – KU578245 AB541114 KU563820 S. dominica L. Cyprus S. engelmannii A.Grey S. eriophora Boiss. & Kotschy S. euphratica Montb. & Aucher ex Benth. Anatolia Anatolia P. Wester 321 (MJG 041411) JBW 3200 (cult. USA/WIS) A. Seregin, D. Sokoloff, M. Remizova A-211 (MW) M. Kuschewitz s.n. (MJG 009323) P. Wester 360 (MJG 009885) A. Kahraman 1581 (PSL METU) A. Kahraman 1585A (PSL METU) (syn. S. cerino-pruinosa var. pilosa) S. evansiana Hand.-Mzt. Anatolia SW China A. Kahraman 1530B (PSL METU) X. Fan 04002 (TRISAU, China) § var. evansiana Hand.-Mzt. S. flava Forrest ex Diels M. Will 55 (MJG 003060) YunN0309-4 SW China var. flava Forrest ex Diels var. megalantha Diels S. S. S. S. S. S. freyniana Bornm. frigida Boiss. fruticosa Miller funerea Jones garipensis E.Meyer ex Benth glabrescens Makino Anatolia Anatolia Anatolia California Japan Japan Japan var. glabrescens Makino var. purpureomaculata (Makino) K.Inoue ex T.Shimizu S. glutinosa L. S. S. S. S. S. S. greatai Brandegee halophila Hedge hayatana Makino hedgeana Dönmez heldreichiana Boiss. ex Bentham henryi Grey S. S. S. S. S. herbanica A.Santos & M.Fernández heterochroa Fern. hians Royle huberi Hedge hydrangaea Benth. (syn. S. dracocephaloides in NCBI) S. hylocharis Stib. S. hypargeia Fisch. & Mey. S. S. S. S. S. hypoleuca Benth. indica L. interrupta Schousb. isensis Nakai ex Rara japonica Thunb. var. japonica Thunb. Anatolia USA Anatolia Anatolia Anatolia Texas USA Canary Isl China Anatolia Anatolia Armenia Anatolia Anatolia Iran Anatolia Japan Japan Japan Japan Japan Japan Japan Japan Japan S. judaica Boiss. S. jurisicii Košanin S. kiaometiensis f. pubescens Stib. S. korolkovii Rgl. & Schmalh. Tian Shan S. koyamae Makino S. kronenburgii Rech.fil. Anatolia (continued on next page) 40 M. Will, R. Claßen-Bockhoff / Molecular Phylogenetics and Evolution 109 (2017) 33–58 Table 3 (continued) Taxon S. komarovii Pobed. (syn. S. trautvetteri Rgl. var. zarawschanica Lipsky) S. S. S. S. S. S. S. S. S. kurdica Boiss. & Hohen ex Benth. lanata Roxb. lanceolata Lam. lanigera Poir. leriifolia Benth. leucodermis Baker liguliloba Sun limbata C.A.Meyer lutescens var. crenata (Makino) Murata Locality Voucher DNA GenBank acc. No. Collector with number (herbaria) acc. No. rpl32-trnL nrITS Russia Neutrueva-Knorring & Tzetkova s.n. 1953 (M) 313 – KU563868 Anatolia Iraq/Kurd NW Pak S Africa N Africa Iran Mad Simon s.n. (M) Rechinger 11637 (M) Rechinger 30.587 (M) P. Wester 1129 (NBG) A. El-Banhawy 11 (University Ismailia, Egypt) Rechinger 50987 (M) Clement, Phillipson & Rafamantanantsoa 2137 (E) Anatolia Japan A. Kahraman 1571 (PSL METU) (Tsukaya) Jap04/73 (BO) S. Fuse 4556 (HYO) (Sudarmono et al.) Jap05/74 (BO) Seto G. 1-X-2005 (OSA) A. Takano 090702-1(HYO) Cult. BG Mz 200764650 A. Kahraman 1540 (PSL METU) Podlech & Jarmal 29.817 (M 52671) F. Celep 1020 (PSL METU) 321 288 326 264 198 303 348 – 109 – – – – – 451 110 290 111 – KU578212 – KJ747277 – KU578194 KJ747280 – KU578174 – – – – – KU578166 KU578229 KU578191 KU578230 KU563776 KU563821 KU563878 KJ584201 KJ584185 KU563878 KJ584220 EU592036 KU563854 AB266243 AB353206 AB266242 AB295097 AB541125 KU563873 – – KU563802 268 KU578201 KU563880 246 325 – 265 212 112 – – – – – – – – – – 113 395 183 114 316 162 115 296 78 435 117 436 64 – – – – – – – – – 274 287 224 48 399 185 – – – – – 420 – KU578231 JQ669368 KJ747297 KJ747307 KU578169 – – – – – – – – – – KU578175 – KU578198 KU578195 – KJ747283 KU578232 – KJ747281 KJ747284 – KJ747258 – – – – – – – – – – KU578205 KU578193 KU578176 – KU578233 KU578199 – JQ771324 JQ669369 JQ771326 – KU578177 KU563785 KU563805 DQ667220 KJ584184 KJ584171 KU563855 DQ667264 EF373590 EF373597 EF373604 EF373606 EF373609 EF373611 EF373612 EU169480 EU169481 KU563856 KU563885 KU563884 KU563869 KU563857 KJ584208 – KJ584200 KJ584234 KJ584217 KU563827 KJ584229 KU563777 AB295103 AB295101 AB295102 AB541117 AB541118 AB541113 AB541123 AB541122 AB541116 KU563786 KU563833 KU563832 KU563834 KU563803 KU563883 DQ667225 – JF301355 – KC473251 – var. lutescens (Roidz.) Koidz. Japan var. stolonifera G.Nakai S. lyrata L. S. macrochlamys Boiss. & Kotschy S. macrosiphon Boiss. _ S. marashica Ilçim, Celep & Doğan Anatolia Afg Anatolia S. margaritae Botsch. S. S. S. S. S. maximowicziana Hemsl. maymanica Hedge mellifera Greene merjamie Forsk. microstegia Boiss. & Bal. (S. verbascifolia in GenBank) S. milthiorrhiza Bunge f. alba C.Y.Wu & H.W.Li var. miltiorrhiza Bunge S. modesta Boiss. S. mohavensis Greene S. moniliformis Fern. S. montbretii Benth. S. moorcroftiana Wall. ex Benth. S. muirii L.Bolus S. multicaulis Vahl. S. namaensis Schinz S. napifolia Jacq. S. nilotica (Juss. ex) Jacq. Tajuk SSR, Turkestan China Afg USA Armenia Anatolia Armenia E China N China NE China SW China N China NE China NE China Anatolia California Mexico Anatolia Afg Anatolia SW Africa Anatolia S. nipponica Miq. Japan var. nipponica Miq. as var. kisoensis var. trisecta (Matsum.) Honda S. nubicola Wall. ex Sweet S. nutans L. C Nepal C Russia S. nydeggeri Hub.-Mor. S. oaxacana Fern. S. officinalis L. Anatolia S. oligophylla Auch. ex Benth. Iran M.G. Pimenov, E.V. Kljuykov, M.G. Vasilyeva, L.P. Tomkovich, T.V. Lavrova 127-1 (MW) Boufford et al. 35285 (HUH 226267) Moh. Amin 154 (M 52655) JBW 2550 (WIS) M. Will 83 (MJG 003113) J. Hellwig s.n. (MJG 009884) F. Celep 1539 (PSL METU) J. Hellwig s.n. (MJG 009884) L. Zhang 05001 (TRISAU, China) L. Zhang 05002 (TRISAU, China) L. Zhang 05005 (TRISAU, China) L. Zhang 05006 (TRISAU, China) L. Zhang 05007 (TRISAU, China) H.Q. Yu 05001 (TRISAU, China) H.Q. Yu 05001 (TRISAU, China) Isolate S0627 Isolate S0625 F. Celep 1543 (PSL METU) P. Wester 517 (MJG 041380) A. Espejo & M. Crone 21 (MJG 040167) A. Kahraman 1381 (PSL METU) Anders 3627 (M 52651) P. Wester 328 (MJG 041409) S. Bagherpour 282 (PSL METU) W. Giess & M. Müller 14319 (M) P. Wester 330 (MJG 041415) M. Will 28 (MJG 041552) F. Celep 1109 (PSL METU) M. Will 49 (MJG 041538) U. Hecker g3186 (MJG 003079) H. Okada et al. 5665 Sudarmono et al. Jap03/66 (BO) H. Okada et al. 5667 A. Takano 090701-2 (HYO) Y. Ibaragi s. n. (HYO) N. Fujii s. n. (HYO) A. Takano 090617-1 (HYO) A. Takano 090617-8 (HYO) M. Ogawa 13452 (HYO) A. Suchorukow s.n. IX. 2009 (MW) A. Suchorukow s.n. VII. 2001 (MW) M. Will s.n. (MJG 041554) M. Will 40 (MJG 041553) F. Celep 1491 (PSL METU) P. Wester 259 (MJG 040630) JBW 2580 (cult. USA/WIS) Voucher 2160 M. Palma s.n. UCBG 7.0083 Voucher 2153 HFFBU Isolate 511190230 Y. Ajani 1569 (ACECR) 41 M. Will, R. Claßen-Bockhoff / Molecular Phylogenetics and Evolution 109 (2017) 33–58 Table 3 (continued) Taxon S. omeiana Stib. S. omerocalyx Hayata var. prostrata Satake S. pachystachys Trautv. S. palaestina Benth. S. paohsingensis C.Y.Wu S. patens Cav. S. pauciflora Kunth Locality SE China Anatolia Anatolia SW China S. penstemonoides Kunth & Bouché S. persepolitana Boiss. S. S. S. S. S. phlomoides ssp. phlomoides Asso pilifera Benth. pinnata L. pisidica Benth. plebeia R.Br. S. plectranthoides Griff. S. S. S. S. poculata Náb. polystachya Cav. potentillifolia Boiss. & Heldr. ex Benth. pratensis L. S. pratii Hemsl. S. przewalskii Maxim. Texas Iran Morocco Anatolia Anatolia Anatolia Afg Japan SW China China Anatolia Anatolia C Russia China SW China S. pterocalyx Hedge S. pygmaea Matsum. var. simplicior Hatus. ex T.Yamaz. S. quezelii Hedge & Afzal-Rafii S. radula Benth. S. ranzaniana Makino S. recognita Fisch. & Meyer S. repens Burch. ex Benth. S. cf. repens Burch. ex Benth. S. reuterana Boiss. S. rhytidea Benth. S. ringens Sm. S. roborowskii Max. Afg S. roemeriana Scheele USA Texas Anatolia Anatolia E Azerb Iran S. rosifolia Sm. S. russellii Benth. S. sahendica Boiss. & Buhse S. scabiosifolia Lam. S. scabra L. S. schimperi Benth. S. schizochila Stib. S. schlechteri Briq. S. sclarea L. S. sclareoides Brot. S. serico-tomentosa Rech.fil. S. sessilifolia Baker Anatolia S Africa Anatolia Iran NE Afg SW China Yemen Anatolia Armenia Anatolia Mad Voucher DNA GenBank acc. No. Collector with number (herbaria) acc. No. rpl32-trnL nrITS Z.J. Yang 05001 (TRISAU, China) § A. Takano 070523–1 (HYO) A. Takahashi 4596 (HYO) A. Takahashi 4601 (HYO) A. Takano 091001–3 (HYO) A. Kahraman 1443 (PSL METU) F. Celep 1083 (PSL METU) Isolate 511190231 Cult RBGE 1973–9197 Isolate S0615/voucher S015 (TRISAU, China) Isolate 511190233 Isolate 511190232 JBW 2578 (cult. USA/WIS) P. Wester 386 (MJG 041327) Sh. Zarre, S. Mashayekhi, F. Taeb, A .Pirani & H. Moazeni 35213 (MSB 116594) R. Vogt 10336 & Ch. Oberprieler 4784 (B 100145114) A. Kahraman 1506 (PSL METU) F. Celep 1416 (PSL METU) F. Celep 1457 (PSL METU) Podlech 30610 (M 52986) Sudarmono et al. Jap04/75 (BO) L. Zhang 05010 (TRISAU, China) Isolate 511190233 Boufford et al. 37470 (HUH 272906) Isolate S0624 A. Kahraman 1560 (PSL METU) Breedlove & Mahoney 72286 (UC) F. Celep 1457 (PSL METU) A. Suchorukow s.n. VII 2003 (MW) Isolate S0628 Ho et al. 2084 (HUH 144453) Cult. RBGE 1993-2067A YunN0309-1 H.F. Guo 2017272 (PE) – – – – – 120 400 – – – – – – 376 324 – – – – – – KJ747304 – JQ669370 – – – – KU578162 KU578178 EF373642 AB353203 AB353204 AB353205 AB541124 KU563804 KJ584175 KC473252 DQ667253 EU169476 KC473254 KC473253 DQ667221 KU563871 KU563858 337 121 122 123 312 – – – 247 – 124 – 126 275 – 249 – – – – – – 349 – – 128 328 – 153 61 437 295 294 209 – – – – 465 154 155 271 421 416 55 310 466 – 31 244 278 – – 208 156 332 KJ747309 KU578208 KU578217 KU578234 – – – – KU578207 – KU578179 JQ669371 KU578235 KU578180 – KU578206 JQ669372 – – – – – KU578200 – – KU578249 – – KU578236 KJ747282 – KU578181 KU578182 KU578213 – – – – – KU578209 KU578148 KU578183 KU578184 KU578237 KJ747285 – – – KJ747286 KJ747305 – JQ669373 – – KU578238 – KJ584186 – KU563798 KU563806 KU563788 AB295107 EF373648 KC473255 KU563787 EU169479 KU563859 JF301356 KU563807 KU563835 EU169486 KU563784 DQ667254 DQ132862 EF053400 EF014346 EF373627 EU169471 – AB295098 AB541126 KU563808 KJ584180 AB287375 KU563808 KJ584232 KJ584231 KU563860 KU563861 KU563810 EF373630 EU169477 DQ667289 DQ667211 KU563872 – KU563824 KU563778 KU563862 KU563811 KJ584233 KJ584174 KJ584168 KC473273 KJ584235 KJ584162 KU563775 DQ667222 KC473274 KU563836 KU563822 KJ584224 Z.J. Yang 06005 (TRISAU, China) § Isolate S0613 P. Wendelbo, I. Hedge & L. Ekberg W8550 (E 00253001) H. Okada et al. 5671 A. Takano 100111-1 (HYO) F. Celep 1626 (PSL METU) Germishuizen 3950 (MO) Okada 5698 S. Bagherpour 380 (PSL METU) M. Will 50 (MJG 041931) P. Wester 325 (MJG 041412) D. Podlech & Sh. Zarre 55240 (MSB 89758) Podlech 12466 (M) M. Kuschewitz s.n. May 2004 (MJG 009332) Z.J. Yang 06008 (TRISAU, China) § SBQ 852 (E) JBW 2515 (WIS) P. Wester 350 (MJG 041332) A. Kahraman 1470 (PSL METU) A. Kahraman 1542 (PSL METU) Ilkka Kukkonen 7951 (MW) Y. Ajani 1576 (ACECR) M. Will 67 (MJG 003072) M. Will 37 (MJG 041549) Podlech 36057 (M 55003) M. Will 72 (MJG 003099) 511190253 P. Wester 323a (MJG 041416) F. Celep 1492 (PSL METU) J. Hellwig s.n. 23.06.2002 (MJG 010799) JBW 2527 (cult. USA/WIS) Isolate 511190254 M. Kuschewitz s.n. June 2004 (MJG 009334) F. Celep 1403 (PSL METU) Jongkind & Rapanarivo 929 (MO 4870099) (continued on next page) 42 M. Will, R. Claßen-Bockhoff / Molecular Phylogenetics and Evolution 109 (2017) 33–58 Table 3 (continued) Taxon S. S. S. S. S. S. S. S. S. Locality smyrnaea Boiss. somalensis Vatke spinosa L. staminea Benth. stenophylla Burch. ex Benth. substolonifera Stibal suffruticosa Benth. suffruticosa x bracteata Banks & Sol. summa A.Nelson Voucher DNA GenBank acc. No. Collector with number (herbaria) acc. No. rpl32-trnL nrITS Egypt Anatolia S Africa F. Celep 1053 (PSL METU) M. Will 77 (MJG 003119) A. El-Banhawy 14 (University Ismailia, Egypt) Max Nydegger 43701 (M 106730) Burgoyne & Snow 4805 (MO 5649981) Anatolia Anatolia Texas USA Anatolia A. Kahraman 1527 (PSL METU) A. Kahraman 1414 (PSL METU) JBW 1972 USA (WIS) P. Wester 373 (MJG 041338) A. Kahraman 1568 (PSL METU) C Russia Anatolia Morocco Anatolia Texas Texas A. Suchorukow s.n. VIII 1994 (MW) S. Bagherpour 440 (PSL METU) W. Lippert 25355 (M) F. Celep 1425 (PSL METU) P. Wester 362 (MJG 041477) P. Wester 362 (MJG 041477) P. Wester 336 (MJG 041398) Podlech 43384 (M 54979) F. Celep 1759 (PSL METU) S. Bagherpour 502 (PSL METU) Cult. MJG 200764580 Breckle 4963 (E) A. Kahraman 1532 Z.J. Yang 06008 (TRISAU, China) § Dickoré 14538 (MSB 144138) YunN0309-5 133 340 199 307 330 – 402 157 – 190 118 – 273 136 304 158 191 – 23 314 138 139 336 – 166 – 291 – – – – 413 67 141 150 51 167 211 160 77 231 – 161 147 – KU578239 KJ747311 KJ747303 – KJ747260 – KU578240 KU578241 – KU578164 KJ747292 – – KU578147 KJ747270 KU578242 KJ747267 – KJ747288 – KU578188 – KU578214 – KU578243 – – – – – KJ747306 – KJ747298 KU578192 – KU578161 KU578185 KU578186 KU578202 KJ747268 – KU578244 KU578187 – KU563812 KJ584240 KJ584173 KU563863 KJ584237 EF373646 KU563813 – DQ667217 KU563874 KJ584181 EU169485 KJ584177 KU563864 KJ584228 KU563814 KJ584199 DQ667321 KJ584239 KJ584169 KU563865 KU563815 KU563816 DQ667283 – EF373633 KU563779 DQ132870 EF014347 EF373614 EU169478 KJ584170 KJ584182 KJ584183 KU563866 KU563826 KU563825 KU563837 KU563838 KU563879 KJ584198 DQ667320 KU563817 KU563842 AB541115 – 148 – – – – 422 – – – KU578189 – – – – KJ747317 JQ669381 – EU169485 KU563867 EF373615 EF014344 DQ132866 EU169482 KJ584243 DQ667336 DQ667335 Anatolia S. sylvestris L. (syn. S. tesquicola Kiok. & Pobed.) S. syriaca L. S. taraxacifolia Hook.fil. S. tchihatcheffii (Fisch. & Hey.) Boiss. S. texana (Scheele) Torr. S. S. S. S. thermarum Van Jaarsv. tingitana Etl. tobeyi Hedge tomentosa Miller Morocco Anatolia Anatolia S. S. S. S. trichocalycina Benth. trichoclada Benth. tricuspis Franch. trijuga Diels Anatolia SE China China S. veneris Hedge S. verbenaca L. Cyprus Syria Anatolia Anatolia S. vermifolia Bedge & Huber-Morath S. verticillata ssp. amasiaca (Freyn & Bornm.) Bornm. S. virgata Jacq. S. viscosa Jacq. S. vvendenskii E.V.Nikitina S. whitehouseii Alziar Anatolia Anatolia Anatolia Kirgisiya Texas Texas Anatolia Anatolia S. wiedemannii Boiss. S. xanthocheila Boiss. ex Benth. S. S. S. S. x sakuensis Naruh. & Hihara x sylvestris yosgadensis Freyn et Bornm. yunnanensis Wright Zhumeria majdae Rech.fil. & Wendelbo Isolate S0608 Foley, M.J.Y. 1701 (E) W. Licht SYR 307 (MJG 003082) F. Celep 1408 (PSL METU) S. Bagherpour 521 (PSL METU) M. Will 32 (MJG 041555) F. Celep 1540 (PSL METU) F. Celep 1513 (PSL METU) F. Celep 1647 (PSL METU) Lažkov, G.A. s.n. 2006-06-09 (W 2007-14397) P. Wester 352 (MJG 041389) P. Wester 352 (MJG 041389) F. Celep 1361 (PSL METU) A. Kahraman 1573 (PSL METU) A. Takano 090704-3 (HYO) Anatolia SW China S. Bagherpour 441 (PSL METU) X. Fan 04003 (TRISAU, China) § Iran YunN0309-2 Isolate S0604 F. Sharififar 1651 (ACECR) Wendelbo 15793 (V 21730) Ghazi s.n.(V 01176) Table 4 Number of species and accessions per marker. With respect to the recent molecular findings the ‘in-group’ includes Salvia s.l. and the five non-Salvia genera Dorystaechas, Meriandra, Perovskia, Rosmarinus, and Zhumeria; NW = New World; OW = Old World; number of Salvia species sequenced for the first time in brackets. nrITS rpl32-trnL Genera Species Accs. Genera Species [new] Accs. Outgroups Ingroup Non-Salvia Former Salvia NW OW 5 6 5 1 – – 8 222 5 217 19 198 13 343 11 332 25 307 5 5 4 1 – – 7 165 4 161 15 146 10 176 7 169 15 154 Total 11 230 356 10 172 [86] [4] [82] [100] [5] [95] 186 M. Will, R. Claßen-Bockhoff / Molecular Phylogenetics and Evolution 109 (2017) 33–58 Greuter et al., 1986; Harvey et al., 1912; Hedge, 1957, 1959, 1960, 1961, 1964, 1966, 1972a, 1972b, 1974a, 1980, 1982a, 1982b, 1982c, 1985, 1988, 1998, 2001; Hedge and Lamond, 1968; Huang and Wu, 1975, 1978; Li and Hedge, 1994; Migahid, 1978; Mouterde, 1983; Nikitina, 1962; Ohwi, 1984; Peter, 1936; Pobedimova, 1954; Post, 1933; Rechinger fil, 1943; Santos and Fernandez, 1986; Stewart, 1972; Stibal, 1934, 1935; Sun, 1977; Thiébaut, 1953). 2.2. DNA extraction, amplification, and sequencing Total genomic DNA was obtained from silica dried or herbarium leaf material. DNA was extracted according to the manufacturer’s protocol for the NucleoSpinÒ plant DNA extraction kit (Macherey-Nagel, Düren, Germany). The standard 25-lL PCR reaction mix consisted of 2 mM MgCl2, 200 lM dNTPs, 1 pM primer, 0.025 U/lL Taq polymerase, and 0.5–1.0 lL of DNA extract in the reaction buffer provided by the polymerase manufacturer. The PCR reactions were carried out in Biometra T3 and PTC 100 MJ Research thermocyclers using the following program: 60 s at 94 °C (pre-treatment), 35 cycles of 20 s at 94 °C, 30 s at 55 °C, 60 s at 72 °C, and a post-treatment (80 s at 55 °C and 8 min at 72 °C). The whole internal transcribed spacer region was sequenced as a single piece using ITS-A and ITS-4 primers (Noyes and Rieseberg, 1999; White et al., 1990). For chloroplast sequences, we used rpl32 and trnLUGA primers (Shaw et al., 2007). All PCR products were purified according to the manufacturer’s protocol using either ExoSAP-IT PCR Product Clean-up (Affymetrix UK Ktd., Wooburn Green, UK) or the NucleoSpinÒ Extract II kit (Macherey-Nagel, Düren, Germany). Cycle sequencing was performed using ABI Prism BigDye Ready Reaction Mix (Applied Biosystems, Foster City, California, USA) with the same primers used for the PCR amplifications. Products were purified with SephadexTM G50 (VWR International GmbH, Darmstadt, Germany) and sequenced on a 16-capillary ABI 3130xl automated sequencer (Life Technologies GmbH, Darmstadt, Germany) at Johannes Gutenberg-University Mainz (Germany). 2.3. Sequence alignment and phylogenetic analyses Sequencing was conducted in two directions. Forward and reverse sequences were edited manually, merged into consensus sequences using SequencerTM 4.1.2. (GeneCodeCorp., Ann Arbor, Michigan, USA) and aligned manually in McClade4.1 (Maddison and Maddison, 2000). Ambiguously aligned regions were identified manually and excluded from the analyses. Partitions were defined for the ITS dataset before the best-fit models of nucleotide substitution were selected with jModeltest 2.1.1 (Darriba et al., 2012). The maximum likelihood (ML) search, bootstrapping (BS; RAxMLHPC BlackBox v.7.4.4; Stamatakis, 2006; Stamatakis et al., 2008) and Bayesian inference (BI; MrBayes v.3.1.2 on XSEDE; Ronquist and Huelsenbeck, 2003) were performed using the CIPRES Science Gateway v.3.3 server (Miller et al., 2011). For BI, we ran four Markov chains simultaneously for 40 million generations to analyze the datasets. Two independent runs were performed with sampling every thousandth generation. The burn-in (10%; 4.000) was determined with Tracer v.1.5 implemented in BEAST (Drummond and Rambaut, 2007) to generate a 50% majority rule consensus trees with posterior probabilities (PP) using MrBayes v.3.1.2. Absent partitions were coded as missing data (‘?’). Nuclear (ITS) and plastid (rpl32-trnLUGA) data were analyzed separately to identify incongruences. For the calculation, accessions with a 100% identical sequence were reduced to one haplotype. This is indicated in the text and illustrations by a slash separating the accession numbers. 43 3. Results 3.1. Phylogenetic reconstructions (Fig. 1) The two simplified topologies for Salvia s.l. (Fig. 1) illustrate the major clades identified based on nuclear and plastid data. Four highly supported clades, including Salvia species and additional genera (Clade I–IV), were identified in the ITS dataset (Fig. 2): (1) Clade I (Salvia s.s.), (2) Clade II (most NW Salvia + Dorystaechas + Meriandra), (3) Clade III (SW Asian Salvia with Zhumeria) and IV (E Asian Salvia) (Fig. 1). Within Clade I (Figs. 1 and 3), four major lineages were identified: (1) subclade I-B, (2) subclade I-A, (3) S. taraxacifolia, the S. verticillata group, subclade I-C, and S. leriifolia as one weakly supported clade (PP = 0.95), and (4) subclade I-D. Phylogenetic reconstructions based on the plastid data support the same major lineages but are better resolved (Figs. 1 and 4). Clades II, III, and IV form one clade (PP = 1.00/99% BS). A sister relationship of Clade II and IV is only found in the ML analysis (84% BS). Clade I is found in trichotomy with Rosmarinus and Perovskia. Together, these three branches are highly supported as one clade (PP = 1.00/98% BS). The plastid marker suggests a sister relationship of subclade I-C and S. leriifolia, which was not found in the ITS dataset. Together, the two are sisters to subclade I-D, but this relationship is not supported by the Bayesian analysis (90% BS) (Fig. 1). Both, ML and BI make up subclade I-B, which is sister to a clade formed by S. taraxacifolia, the S. verticillata group, and subclade I-A. In contrast to the ITS tree, subclade I-B is only weakly supported in the ML analysis of the cp dataset (76% BS). 3.1.1. nrITS dataset (Figs. 2 and 3) Clade IV (Fig. 2B; PP = 1.00/100% BS) includes all E Asian species that fall into three distinct subclades, i.e., (1) IV-A (30 spp./85 accs.), (2) IV-B (16 spp./47 accs.), and (3) IV-C (S. plebeia; 4 accs.). Within subclades IV-A and B, some terminal groups are wellsupported, but the relationships among them are unresolved. A similar pattern is observed for Clade III (Fig. 2A; PP = 1.00/99% BS), which contains two major lineages: (1) Zhumeria, which is sister to S. margaritae (78% BS), and (2) a branch (PP = 1.00/98% BS) that splits in three species-poor subclades (III-A, B, and C). Clade II (Fig. 2A; PP = 1.00/100% BS) includes Dorystaechas and Meriandra in a polytomy with an American clade of Salvia species, comprising all members of the sects. Calosphace Benth. (subclade II-A) and Audibertia (Benth.) Epling (subclades II-B and II-C). Clade I (Fig. 3; PP = 1.00/80% BS) represents Salvia s.s. It contains all members of the Salvia sect. Aethiopis Benth. (I-C and S. leriifolia), Hemisphace Benth. (S. verticillata-group), Heterosphace Benth. (I-A, I-B), Hymenosphace Benth. (I-A, I-C, I-D), Pletiosphace Benth. (I-C), and all species recognized in the genus Salviastrum Scheele (I-B). The ITS data highly support 137 spp./177 accs. nested in Clade I (Fig. 3) with three highly supported subclades, i.e., (1) ID, (2) I-B, and (3) I-A, which are sister to an unresolved and weakly supported clade with containing S. taraxacifolia, I-C, S. leriifolia, and the S. verticillata group. Subclade I-A contains two species from E Africa (S. nilotica and S. somalensis) and all Madagascan and South African species, except one accession of S. garipensis derived from GenBank. The clade is poorly resolved with only a few small terminal clades supported, of which one comprises the Madagascan endemic S. sessilifolia and S. leucodermis. Subclade I-B is composed of NW Salvia species with Salvia lyrata as sister to a clade with two well-supported subclades (Fig. 3). Another highly supported subclade, the Salvia verticillatagroup (Europe, SW Asia), is found in a polytomy with S. taraxacifo- 44 M. Will, R. Claßen-Bockhoff / Molecular Phylogenetics and Evolution 109 (2017) 33–58 Fig. 1. Overview of the phylogenetic trees based on nuclear (nrITS) and chloroplast (rpl32-trnL) data. Clades containing Salvia species were reduced to black triangles and highlighted by grey boxes; light grey = Salvia s.s.; dark grey = Clades II, III, and IV; non-Salvia genera highlighted in bold; only support values P75% (BS) and P0.95 (PP) are illustrated; sequences derived from GenBank (NCBI) are indicated by accession numbers. lia (Northern Africa, Maroco), S. leriifolia (Madagascar) and subclade I-C (Fig. 3). Subclade I-C (Fig. 3) represents the Salvia sects. Aethiopis Benth. and Pletiosphace Benth., with one representative of sect. Hymenosphace Benth. (S. canariensis). The relationships remain largely unresolved except for seven subclades with taxa from Central and SW Asia, the Canary Islands, S Africa, and the Circum Mediterranean Area. Subclade I-D (Fig. 3) is highly supported and contains 39 spp. (49 accs.) from S Europe, N Africa, and SW and Central Asia. 3.1.2. rpl32-trnL-dataset (Fig. 4) As in the nuclear dataset, Clade IV (all E Asian samples), Clade III (SW Asian Salvia and Zhumeria), and Clade II (NW Salvia and Dorystaechas) are highly supported. Together, these three clades form a monophylum with Clade III as sister to the remainder. M. Will, R. Claßen-Bockhoff / Molecular Phylogenetics and Evolution 109 (2017) 33–58 45 Fig. 2. Phylogenetic tree of Salvia s.l. based on ITS data. A Clade I (Salvia s.s.) and Clade IV were reduced to black triangles; B resolved topology for Clade IV; only support values P70% (BS) and P0.95 (PP) are illustrated; two species (S. chienii DQ132868 and S. evansiana FJ593405) most likely misplaced in the tree are indicated by #; large bar = taxa listed by Bentham (1848), medium-sized bar = sectional placement according to more recent treatments of the corresponding taxa, e.g., for E Asian (Stibal, 1934– 35; Sun, 1977) and SW Asian species (Bunge, 1873), small bar = classification assumed in this study. 46 M. Will, R. Claßen-Bockhoff / Molecular Phylogenetics and Evolution 109 (2017) 33–58 Fig. 3. Phylogenetic tree of Salvia s.s. (Clade I) based on ITS data. Only support values P70% (BS) and P0.95 (PP) are illustrated; four species (S. disermas DQ667290, S. garipensis DQ667281, S. anatolica 72, and S. absconditiflora 258) that are likely misplaced in the tree are indicated by #. M. Will, R. Claßen-Bockhoff / Molecular Phylogenetics and Evolution 109 (2017) 33–58 47 Fig. 4. Phylogenetic tree of Salvia s.l. based on rpl32-trnL data. Non-Salvia genera are highlighted (bold); only support values P70% (BS) and P0.95 (PP) are illustrated. 48 M. Will, R. Claßen-Bockhoff / Molecular Phylogenetics and Evolution 109 (2017) 33–58 Within Clade III, two subclades with Salvia species (III-A, III-B) are found in a trichotomy with Zhumeria. Subclade III-A represents Salvia sect. Eremosphace Bunge distributed from the Canary Islands throughout N Africa to the Arabian Peninsula and SW Asia. Within this clade, S. deserti is highly supported as sister to the remainder (Fig. 4). The four species nested in subclade III-B are restricted to SW and Central Asia. The placement of S. margaritae in one clade with S. vvedenskii, S. pterocalyx, and S. aristata (Fig. 4) slightly differs from the one suggested by nuclear data. Here, S. margaritae is sister to Zhumeria instead of being grouped with the corresponding Salvia species (78% BS; Fig. 2A). American Salvia species representing sects. Calosphace and Audibertia are highly supported in Clade II, where they are found in a trichotomy with the OW genus Dorystaechas. In contrast to the ITS data, S. greatai, S. funerea (both II-B), and S. mellifera (II-C) form one clade representing Salvia sect. Audibertia (PP = 0.95/82% BS), which is sister to Clade II-A (Calosphace; PP = 1.00/84% BS). Clade I (Salvia s.s.) is found in a trichotomy with Perovskia and Rosmarinus. The topology of Clade I slightly differs from the one suggested by nuclear data. The sister relationship of subclades IC (including S. leriifolia) and I-D proposed by the ML analysis, for example, is not supported by the ITS data (Fig. 1). Furthermore, the plastid data propose that subclades I-B and I-A (including the S. verticillata group and S. taraxacifolia) are one clade. Within Clade I, all subclades except I-B are highly supported. In contrast to the topology based on the ITS data, subclade I-A is closely related to S. taraxacifolia and the S. verticillata group. Together with S. nilotica, and S. somalensis, these three lineages form one large unresolved clade. Within the S African and Madagascan branch, two clades are identified (Fig. 4). Subclade I-B corresponds to the one suggested by the ITS data but has lower statistical support. Subclade I-C contains 59 taxa (61 accs.) from SW and Central Asia, Europe, the Canary Islands, and S Europe. They fall into three major lineages: (1) S. leriifolia, (2) a polytomy of S. phlomoides ssp. phlomoides, S. hypargeia, S. montbretii, and S. daghestanica, and (3) a large unresolved clade containing 54 taxa in four subclades. The plastid data do not confirm the monophyly of S. microstegia and S. sclarea, which is contradicts the ITS data for S. sclarea. Further incongruences concern single species nested in subclade I-C, i.e., S. jurisicii is sister to S. nutans based on the ITS data (Fig. 3) but sister to S. virgata based on the cp data (Fig. 4). In contrast, the nuclear data support S. virgata and S. viscosa as one clade. Subclade I-D contains 47 taxa (50 accs.), and although resolution is low, four clades can be identified within the polytomy: (1) S. maymanica and S. aytachii, (2) S. multicaulis and S. marashica, (3) S. interrupta and S. candelabrum, and (4) one highly supported clade encompassing eight SW Asian taxa. For the following species, the sequences were treated as one haplotype: (1) S. anatolica, S. blepharochleana, S. absconditiflora, and S. fruticosa, (2) S. caespitosa, S. kurdica, S. ringens, and S. tomentosa, (3) S. aramiensisa and S. pilifera, and (4) S. ballsiana and S. rosifolia. 4. Discussion Our data support the polyphyly of Salvia s.l. suggested by previous studies (Walker et al., 2004; Walker and Sytsma, 2007; Moon et al., 2010; Drew and Sytsma, 2012; Will and Claben-Bockhoff, 2014) using a much broader sampling, especially for the OW taxa. We confirm that Salvia species fall in four clades (Clade I-IV). Old World species are nested in three distinct clades (Clade I, III, and IV), and NW Salvia are placed in two independent evolutionary lineages, i.e., Clade II and subclade I-B. Although the relationships are not resolved at the species level, we are able to distinguish well- defined clades, thus providing a molecular background for future revisions (see Will et al., 2015). 4.1. Taxonomic conclusions Based on current knowledge, we propose to split the former genus Salvia into six genera (Fig. 5). It is not the intention of the present paper to provide a taxonomic revision and key. Instead, we identify clades and name them based on previously published generic names to indicate that they could be elevated to generic rank after revision. This process is helpful even now, since the use of existing clade names (I, II, III, ‘III’, and IV), as well as the name Salvia itself, are confusing. Since the type species of the genus, S. officinalis (Jarvis, 2007), is nested within Clade I, this clade represents Salvia s.s. 4.1.1. Salvia s.s. (Clade I) Salvia s.s. is split into several well-supported subclades with morphologically heterogeneous species (Plate IA-J). Subclade I-B contains only NW species (Plate ID-E), while all other subclades include exclusively OW species. 4.1.1.1. Salvia verticillata group. This subclade represents the Salvia sect. Hemisphace Benth. Within Clade I, this is the only section sensu Bentham (1832–36) and subsequent taxonomic treatments confirmed to be monophyletic. The species can be recognized by verticillasters with many (up to 40) small flowers (Plate 1F). The latter have blue corollas with falcate upper lips and almost completely reduced lower lever arms lacking thecae. These stamens can no longer act as staminal levers (Hildebrand, 1865; ClabenBockhoff et al., 2004a). 4.1.1.2. Subclade I-A. Chloroplast data suggest a close relationship of the Salvia verticillata group and subclade I-A. Regarding phenotypic diversity, the latter is by far the most heterogeneous within Salvia s.s. It is characterized by a broad range of stamen modifications, ranging from levers with fertile lower thecae to completely reduced ones (Will and Claßen-Bockhoff, 2014). Species are restricted to the African continent and Madagascar. Floral characters such as corolla size, shape, and color are extraordinarily diverse among species (Plate IA-C), most likely reflecting adaptation to the pollinator diversity in Southern Africa (Will and Claßen-Bockhoff, 2014). 4.1.1.3. Subclade I-B. The NW species nested in subclade I-B represent two different taxonomic groups. Salvia species representing Salviastrum Scheele are supported as monophyletic, while representatives of Salvia sect. Heterosphace Benth. (I-B) are paraphyletic with respect to Salviastrum (Figs. 3 and 4). Based on their restricted distribution in the southern states of N America (Fig. 6B), chromosome numbers (2n = 28; Walker and Elisens, 2001; Ward, 1984), and floral morphology (i.e., calyx, corolla, stamen characters), subclade I-B should be newly described on a subgeneric rank of Salvia s.s. The idea to combine Salviastrum and the NW representatives of Salvia sects. Heterosphace has be previously proposed by Torrey (1859), Walker et al. (2004), and Whitehouse (1949), although there are marked differences in the flowers (Plate 1D and E). 4.1.1.4. Subclade I-C. All species that are nested in this subclade represent Salvia subgen. Sclarea Benth. (Salvia sect. Aethiopis Benth. and sect. Plethiosphace Benth.) excluding S. canariensis (Salvia sect. Hymenosphace Benth.). All sect. Aethiopis is within subclade I-C except for S. leriifolia, which is found in a polytomy with subclade I-C (Fig. 3). M. Will, R. Claßen-Bockhoff / Molecular Phylogenetics and Evolution 109 (2017) 33–58 49 Fig. 5. Phylogenetic tree for Salvia s.l. illustrating well-supported clades identified in both datasets. Support values for ITS above and for rpl32-trnL below the branches; + = maximal support (PP = 1.00/100% BS); dotted lines = nodes that are only supported by plastid data; number of taxa represented in the corresponding clade and total number of species assumed in this group (Appendix C) indicated in brackets; light grey bars = OW species; dark grey bars = NW species. The monophyly of this subclade has been previously suggested by different molecular markers and smaller sample sets (Walker et al., 2004; Walker and Sytsma, 2007; Will and Claben-Bockhoff, 2014). However, the relationships within subclade I-C remain unresolved, and further studies are needed to address sectional delimitations. Species of subclade I-C are characterized by reduced 50 M. Will, R. Claßen-Bockhoff / Molecular Phylogenetics and Evolution 109 (2017) 33–58 Fig. 6. Distribution of Salvia s.l. and related genera. A: Note the disjunct distribution of S. glutinosa (IV-A) and the remainder of subclade IV-A and IV-B; B: major subclade of Salvia s.s.; subclade I-B slightly overlapping with Clade II-A; C: distribution of S. plebeia (IV-C); distribution of subclade III-B likely extending further into C Asia; D: non-Salvia genera closely related to Salvia s.s.: Perovskia atriplicifolia and Rosmarinus officinalis; Clade II: Dorystaechas hastata and Meriandra bengalensis; Clade III: Zhumeria majdae. Distribution based on Behçet and Avlamaz (2009), Bokhari and Hedge (1976), Hedge (1960, 1986), Hedge and Lamond (1968), Hedge and Wendelbo (1978), Jenks et al. (2013), Nikitina (1962), Mabberley (2008), Meusel et al. (1978), Sales et al. (2010), local floras (see material and methods) and IPNI, http://.plants.usda.gov/core/profile? symbol=SARO3 (accessed 03.07.2014); template of the map provided by the German earth science portal (www.mygeo.info). lower lever arms lacking fertile thecae and falcate corollas (Plate 1G-I). They have a disjunct distribution with few species restricted to S Africa and the majority restricted to Europe and SW and Central Asia (Fig. 6B). According to Bentham (1832–36), three sections were included in Salvia subgen. Sclarea: sect. Aethiopis Benth, sect. Horminum Benth., and sect. Plethiosphace Benth. However, the placement of S. canariensis (Plate 1G) in subclade I-C is in clear conflict with the current classification. The species that was originally grouped in Salvia subgen. Salvia Benth. sect. Hymenosphace Benth. is indeed sister to S. broussonetii (Plate 1I) from Salvia subgen. Sclarea Benth. sect. Aethiopis Benth. (Fig. 3). This unexpected relationship, which has been previously discussed in greater detail by Will and Claßen-Bockhoff (2014), reflects the parallel characteristic evolution in S. canariensis and some S African and SW Asian members of Salvia sect. Hymenosphace (Fig. 3; I-A and I-D). All members of Salvia sect. Plethiosphace Benth. investigated herein are placed in subclade I-C, but the relationships between the species remain unresolved. Salvia viridis (monotypic Salvia sect. Horminum Benth.) is not included in the present study, but a previous molecular study (Walker et al., 2004) highly support its position in this subclade. 4.1.1.5. Subclade I-D. The resolution is low within this highly supported lineage. The two sections placed within the clade, i.e., Salvia sect. Aethiopis Benth. and sect. Hymenosphace Benth., are nonmonophyletic (Fig. 3). Representatives of subclade I-D have fertile, at least subfertile, thecae on the lower lever arms of their stamens. Compared with subclade I-C, the corolla of Salvia species nested in subclade I-D is comparatively large, and the upper lip is rather straight (Plate 1J). Furthermore, there seems to be a tendency towards the expression of lobed or even compound leaves within both sections. Current data support a taxonomic concept of Salvia s.s. that is consistent with the species distribution, as previously suggested by Bunge (1873) and Briquet (1897). 4.1.2. Clade II According to the cp data, the NW Clade II is weakly supported and sister to OW Clade IV. Based on current data, we propose to split Clade II (Fig. 5) into four different genera, i.e., Dorystaechas, Meriandra (both OW), Lasemia Raf. (II-A; NW), and Ramona Greene (II-B and C; both NW) (Fig. 5). Lasemia and Ramona are largely congruent with Salvia subgen. Calosphace (Epling, 1939) and Salvia sect. Audibertia (Neisess, 1983), which was recently proposed as Salvia subgen. Audibertia (Walker et al., 2015). With respect to their morphology, distribution, and molecular data (Fig. 2), it is most parsimonious to regard Dorystaechas and Meriandra as relicts (Bokhari and Hedge, 1971; Hedge, 1986, 1992; Henderson et al., 1968; Will et al., 2015). M. Will, R. Claßen-Bockhoff / Molecular Phylogenetics and Evolution 109 (2017) 33–58 4.1.2.1. Lasemia Raf. (subclade II-A). Subclade II-A represents all NW species formerly placed in Salvia sect. Calosphace (Dos Santos et al., 2005; Drew and Sytsma, 2012; Jenks et al., 2013; Walker et al., 2004, 2015; Walker and Sytsma, 2007). It is phenotypically diverse (Plate 1K-M) and extraordinarily rich in species. Nevertheless, the following characteristics support this subclade and its elevation to the generic rank of Lasemia Raf.: (1) species distribution ranges from the southern US to S and Central America (Fig. 6B), (2) straight lower lever arms that lack a fertile theca, and (3) a basic chromosome number of 2n = 22, with many polyploid species (e.g., Alberto et al., 2003; Harley and Heywood, 1992; Mercado et al., 1989; Palomino et al., 1986). 4.1.2.2. Ramona Greene (subclades II B and C). Subclades II B and C correspond to Salvia sect. Audibertia (Benth.) Epling (see also Walker et al., 2015). Taxa are restricted to California and Baja California (Fig. 6B) and placed in two distinct lineages: (1) Salvia sect. Echinosphace Benth. (II-B) and (2) Salvia sect. Audibertia (Benth.) Epling (II-C). The former is characterized by the occurrence of toothed or even spiny leaves, many flowers arranged in compact verticillasters, and fertile thecae on the lower lever arms (Plate 1N). The basic chromosome number in this clade is 2n = (30) 32 and/or 64 (Epling et al., 1962; Neisess, 1983). The plastid data suggest that subclades II-B and II-C are sister to each other (Fig. 4), which is in accordance with the classification concept proposed by Neisess (1983). 4.1.3. Clade III This clade is split into three subclades with Salvia species (III-A to C), which can be distinguished based on the ITS data (Fig. 5). We propose to recognize two distinct genera, i.e., Pleudia Raf. (subclades III-A and C) and Polakia Stapf (subclade III-B) (Will et al., 2015). 4.1.3.1. Pleudia Raf. (subclades III-A and C). Subclades III-A and C include species that are morphologically and ecologically closely related and are clearly distinct from the remainder of Clade III. Will et al. (2015) recently re-established the genus Pleudia Raf., which can be recognized by the combination of the following characteristics: (1) low growing, greatly branched shrubs or suffruticose herbs, often appearing as dwarf shrubs, usually <40 cm; (2) small leaves, usually with revolute margins; (3) small flowers, usually less than 10 mm; (4) few-flowered verticillasters with shortlived flowers (Plate 1P); (5) upper lip of the corolla ± straight; (6) stamens at least partially exposed, very short connections, lower thecae fertile or sometimes reduced (very small or even sterile); and (7) small nutlets. 4.1.3.2. Polakia Stapf (subclade III B). Species nested in subclade III-B occur in dry habitats similar to the ones described for Pleudia. However, they have been traditionally separated from Pleudia based on their morphology and distribution (Bunge, 1873; Briquet, 1897; Pobedimova, 1954; Will et al., 2015). To date, 16 species from Central and SW Asia belong to this group. The latter seem to correspond to Salvia sect. Physosphace Bunge and Salvia subgen. Macrosphace Pobed. sensu Pobedimova (1954). We sampled one of the five species from subgen. Macrosphace (S. margaritae Botsch,) and two representatives from Salvia sect. Physosphace (S. aristata and S. vvedenskii), all of which were placed in subclade III-B (Fig. 4). The position of S. aristata, formerly placed in Salvia sect. Eusphace sensu Bentham, again illustrates the parallel characteristic evolution in a non-monophyletic section (Fig. 4). Molecular data appear to support the classification introduced by Pobedimova (1954), who underscored some morphological similarities between Salvia subgen. Macrosphace and Salvia sect. Physosphace Bunge. However, the existing delimitation of the 51 corresponding subgenus and section is not very clear and must be refined. The following attributes are characteristic of Polakia: (1) comparatively large corollas (P25 mm) and calyces (generally >15 mm); (2) long pedicels (P5 mm up to 20 mm); (3) large, occasionally lobed or even compound leaves; and (4) large seeds (Behçet and Avlamaz, 2009; Hedge, 1960, 1974b, 1982b; Nikitina, 1962; Pobedimova, 1954). 4.1.4. Glutinaria Raf. (Clade IV) Based on morphological and molecular data, 97 species are expected to nest in subclades IV-A and IV-B (Appendix C), with S. plebeia being the single species representing subclade IV-C. All species of Clade IV are restricted to E Asia with only few exceptions, e.g., S. glutinosa (Eurasia) and S. plebeia (Fig. 6C). Clade IV is extraordinarily homogenous with respect to its basic chromosome number of x = 8 (Afzal-Rafii, 1980; Ayyangar and Vembu, 1984; Bir and Saggoo, 1981; Bir and Sidhu, 1980; Bir et al., 1978; Hihara et al., 2001; Jee et al., 1989; Markova and Ivanova, 1982; Saggoo and Bir, 1986; Sales et al., 2010; Shiuchi and Kanemoto, 2001; Song et al., 2010; Strid and Franzen, 1983; Sudarmono and Okada, 2008; Vir Jee and Kachroo, 1985; Vij and Kashyap, 1975, 1976; Wang et al., 2009; Wu and Huang, 1975; Yang et al., 2004, 2009; Zhao et al., 2006). This characteristic strongly supports the monophyly of Clade IV. Although it is possible to accept three distinct subclades and to split Clade IV into three distinct genera, we propose only one validly published name for the clade (Fig. 5) since it is not yet possible to provide a good set of characteristics (synapomorphy) for each subclade. Regarding Clades IV-A, B, and C, the following names merit consideration for future revision, either in the sectional or generic rank: (1) Glutinaria Raf. (subclade IV-A) with S. glutinosa as the type species, (2) Sobiso Raf. (subclade IV-B) with S. japonica as the type species, and (3) Notiosphace (Benth.) Bunge corresponding to subclade IV-C. 4.1.4.1. Subclades IV-A and IV-B. Molecular data largely support the classification sensu Stibal (1934, 1935) (Fig. 2A), with all representatives of Salvia subgen. Eusalvia Stib. sect. Eurysphace Stib. nested in subclade IV-A. However, it remains uncertain whether the S. substolonifera group (S. substolonifera and S. trijuga; Fig. 2B) is closely related to the remainder of the clade. The former classification and morphology of the two species link it rather with the species nested in subclade IV-B (Fig. 2B). Molecular data suggest that Salvia subgen. Sclarea (Moench) Benth. sect. Drymosphace Benth. is paraphyletic with respect to Salvia subgen. Gymnosphace (Benth.) Stib. We recognize subclades IV-A and IV-B and highlight the need for further molecular studies. More parsimony-informative characteristics and a higher resolution are needed to revise Clade IV and to support it with morphological characteristics. Based on current knowledge and the unresolved backbone of Clade IV, we do not yet provide a morphological set of characteristics to distinguish subclades IV-A and IV-B. As in other lineages with Salvia species, the distribution and karyology appear to be suitable characteristics supporting the monophyly. 4.1.4.2. Subclade IV-C. Our results support previous molecular studies (Sudarmono and Okada, 2008; Takano and Okada, 2011) indicating that S. plebeia represents the only species in Salvia sect. Notiosphace Benth. (Fig. 2B). Sales et al. (2010) provided detailed information regarding the isolated position and taxonomic history of S. plebeia, which appears suitable to elevate S. plebeia to generic rank. The relationship of S. plebeia to some other small-flowered Salvia species from E Asia originally also placed it in the section Nothiophace sensu Bentham (Bentham, 1832–36, 1848), which must be 52 M. Will, R. Claßen-Bockhoff / Molecular Phylogenetics and Evolution 109 (2017) 33–58 rejected. Today, it is clear that the section sensu Bentham is polyphyletic. We strongly support the dissolution of Salvia sect. Notiosphace Benth. based on the phylogeny and species distribution, as previously proposed by Bunge (1873). In this case, the clade should be recognized as the genus Notiosphace (Benth.) Bunge. 4.2. Salvia in space and time – distribution and dispersal The current topology largely reflects the species distribution. It suggests that America was colonized twice, most likely by species distributed in SW Asia. Walker and Sytsma (2006) suggested that the closest relatives of the former Calosphace and Audibertia members occur in Asia. This assertion was also supported by Drew and Sytsma (2012). However, the distribution patterns, biogeography, and putative migration routes of species placed in Salvia s.l. raise many questions. A precondition to answer these questions is the calibration of a broadly sampled phylogenetic dataset. 4.2.1. Divergence time estimations Drew and Sytsma (2012) provided an initial approach to elucidate not only the distribution of ancestral lineages but also to determine the divergence times (Fig. 7). The authors performed a molecular study of Mentheae and represented Salvia s.l. with five non-Salvia genera and nine Salvia species. Although the sampling for Salvia s.l. was restricted, some approximations concerning its age were suggested. Drew and Sytsma (2012) conclude that all subtribes of the Nepetoideae arose 34 million years ago (Ma). According to the divergence interval, the most recent common ancestor (MRCA) of Salvia s.l. existed in the late Eocene (34 Ma) to the middle Oligocene (26 Ma). The node supporting Clades II, III, IV, and related genera as one clade was found to have originated approximately at the Oligocene-Miocene border (Drew and Sytsma, 2012) (Fig. 7). This lineage is thus older than the MRCA of Salvia s.s. (Clade I), which diversified between the middle-tolate Miocene (15–6 Ma). The MRCA of Rosmarinus and Perovskia, which are sister to Clade I, was found to diverge most likely during the early to middle Miocene. This age might indicate the relict status of the two genera (Will et al., 2015). The comparatively early existence of the MRCA of Rosmarinus and Perovskia conflicts with the age estimate proposed by Peñuelas et al. (2001). The authors suggested that Rosmarinus evolved under Mediterranean climate conditions, which were assumed to occur in Europe since approximately 3.2 Ma. Suc (1984) discussed an additional, more recent ‘xeric phase’ (2.3 Ma) that also caused climatic and vegetation changes in Europe. Current data suggest that Rosmarinus either evolved during earlier periods of aridification in its contemporary distribution range or likely originated elsewhere before it was dispersed to the Mediterranean. 4.2.2. Fossil sites and fossil records Age estimates are largely congruent with known fossil records for Salvia s.l. (Table 5). However, some of them remain doubtful, and in particular those fossils assigned to NW representatives of Clade II are quite young (Table 5). Within the largely unresolved subclades II-B and C (Taylor and Ayers, 2006; Walker and Sytsma, 2006), it is quite complicated to allocate them to a certain node. For species of subclade II-C, numerous fossil packrat middens were recorded with age estimates spanning from the Holocene to the late Pleistocene (Anderson and Van Devender, 1991; Betancourt et al., 1986; Cole, 1986, 1990; King and Van Devender, 1977; Nowak et al., 1994; Spaulding, 1983, 1990; Van Devender, 1987; Wells, 1976). This time frame corresponds to the postglacial vegetation change from Juniperus-dominated woodlands to desert scrubs, e.g., in the Mohave region (Wells, 1976). The corresponding fossils (Table 5; Fig. 7) might reflect an adaptation to increasing aridification in this region and probably supply insights into recent ecological adaptations. However, the comparatively recent records especially are not suitable for a more detailed fossil-based calibration of Salvia s.l. Only the oldest fossil record assigned to NW Salvia sect. Audibertia (Table 5) allocated to the upper Miocene of Alaska (Fig. 8A, black asterisk) (Emboden, 1964; Müller, 1981) seems to be useful for this purpose. The age of this fossil is in accordance with the age estimate for the MRCA of S. greatai and S. mellifera (Fig. 8) in Drew and Sytsma (2012). Several fossil reports cited in the literature cannot be confirmed herein, including Claben-Bockhoff et al. (2004b), Kaya and Kutluk Fig. 7. Most recent common ancestors (MRCA) of the Mentheae subtribe. Phylogenetic tree and slightly modified dating after Drew and Sytsma (2012); grey bars = 95% confidence intervals for estimated mean dates; numbers on branches indicate references for fossil records according to Table 5; dotted lines mark the border between geochronological units; Ma = million years ago; Plio. = Pliocene, Quat. = Quaternary. M. Will, R. Claßen-Bockhoff / Molecular Phylogenetics and Evolution 109 (2017) 33–58 53 Table 5 Fossil records for Salvia s.l. Geochronological units are taken from literature; references for fossils are given as in italics in Fig. 7; for clade names (I–IV) and the corresponding subclades (A–D) see Fig. 8B; abbreviations for fossilized structures (fossils): c = calyx; l = leaf; m = macrofossil; n = nutlet; p = pollen;? = data not available or not clearly indicated; y B.P. = years before present; localityies: Am = America, W = West. a b c Clade Taxon Fossil Locality Age [y B.P.] Reference I I-B I-B ? I-D verticillata lyrata Salvia sp. cf. officinalis n m c n Thuringia (Germany) Nebraska (US) Texas (US) Thuringia (Germany) Plio-/Pleistocene 1.8–1.7  106 Holocene 2.000 ( 9.000) ? Pliocene 1 2 3 4 Mai et al. (1963)a Baker (2000) Wells (1976) Mai and Walter (1988) II II ? II-A II-A II-A II-B II-C II-C II-C II-C II-C II-C II-C II-C II-C Salvia sp. Salvia sp. cf. Salvia pinguifolia b pinguifolia b Audibertia-type cf. funerea dorrii dorrii dorrii mohavensis mohavensis mohavensis mohavensis mohavensis m c p m m p m m m m p m m m l W-USA Texas (US) Ecuador (S-Am) Arizona (US) Arizona (US) Alaska California (US) California (US) Great Basin (US) Nevada (US) Sonora (US) California (US) Colorado River (US) California (US) Arizona (US) Late Holocene 670 ± 40–1.450 ± 160 ? Pleisto/Holocene 13.070 ± 270 Early Holocene 7.970 Wisconsin 12.700 Upper Miocene Late Wisconsin 10.460 Late Wisconsin 10.260–10.210 >13.000 Mid-to-Late-Holocene 30.000 Pleisto/Holocene Wisconsin 12.390 ± 340 >10.000 Late Wisconsin 10.460–10.210 Early Holocene 14.120–10.540 5 3 6 7 8 9 10 10 11 12 13 14 15 10 7 Betancourt et al. (1986) Wells (1976) Colinvaux et al. (1997) Van Devender (1987) Scott Anderson and Van Devender (1991) Emboden (1964) Spaulding (1983) Spaulding (1983) Spaulding (1990) Nowak et al. (1994) King and Van Devender (1977) Cole (1986) Cole (1990) Spaulding (1983) Van Devender (1987) IV-A IV-A cf. glutinosa cf. glutinosa n n ? Alsace (France) ? Pliocene 16 17 Geissert et al. (1990) Teodoridis et al. (2009) ? ? Salvia sp. Salvia sp. ? p Europe Crimea Plio-/Pleistocene Holocene 18 19 Mai (1995) Cordova and Lehman (2005) c According to Mai and Walter (1988) the nutlet illustrated in Mai et al. (1963) is more likely Origanum vulgare L. foss. Syn. S. ballotiflora Benth. Pollen similar to the extant species: S. funerea, S. californica, and S. greatae. Fig. 8. Salvia s.l. in time and space. A: Distribution of Salvia s.l., putative migration routes and fossil sites; BLB = Bering Land Bridge; D = Dorystaechas; M = Meriandra; NALB = North Atlantic Land Bridge; P = Perovskia; R = Rosmarinus; Z = Zhumeria; white arrows indicate repeated colonization of S Africa and dispersal from the Eastern Cape to Madagascar; hatched arrows (dark grey) indicate the repeated colonization of the Canary Islands from two different mainland sources; red arrow illustrate the dispersal from E Asia to Eurasia reflected by S. glutinosa; black arrows correspond to dispersal events from the OW to America reflected by two distinct lineages; ? = route uncertain; template of the map provided by the German earth science portal (www.mygeo.info). B: Simplified phylogenetic tree; nodes discussed in the text are indicated by capital letters; colors reflect distribution areas. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 54 M. Will, R. Claßen-Bockhoff / Molecular Phylogenetics and Evolution 109 (2017) 33–58 (2007), and Valiente-Banuet et al. (2006). The latter suggested a Quaternary origin for Salvia sect. Calosphace Benth. (II-A) based on the fruit morphology and refer to ‘a fossil-calibrated phylogeny of Salvia’ provided by Walker et al. (2004), which is actually not provided by the corresponding reference. Regarding members of the Calosphace (Fig. 7: S. axillaris and relatives), it is more likely that their diversification and radiation are correlated to the recent uplift of the Andes. In contrast to this comparatively recent putative origin, Reisfield (1987) argued that Calosphace might be derived from an OW ancestor reaching Mexico in the Neogene. Data provided by Drew and Sytsma (2012) suggest a comparatively old age for the MRCA of Calosphace, which is in accordance with the hypothesis of Reisfield (1987). In contrast, a recent diversification might be assumed for the derived lineages within Calosphace. 4.2.3. Biogeography and dispersal Regarding the origin of Salvia s.l., Claßen-Bockhoff et al. (2004b) hypothesized that the group probably originated in the OW, i.e., in the Mediterranean area. Current data support this hypothesis for Clades I, II, and III. The authors suggest that the high species diversity in the NW Salvia sect. Calosphace should be interpreted as a recent diversification. For Africa and America, they hypothesized a southwards-directed migration via tropical mountain routes during the Miocene and Pliocene. Regarding the dispersal into the New World, it remains uncertain whether species used the Bering Land Bridge (BLB4) (Claßen-Bockhoff et al., 2004b) or the North Atlantic Land Bridge (NALB5). Drew and Sytsma (2012) provided age estimates for the Most Recent Common Ancestor (MRCA6) of NW Salvia nested in Clade II and a Dorystaechas/Meriandra clade. This age estimate falls in a time frame when both the BLB and the NALB still provided suitable biotic connections between the OW and NW (e.g., Briggs, 1987; Gladenkov et al., 2002; Milne, 2006; Wen, 1999; Xiang et al., 2000) (Fig. 7). Thus, it is not possible to determine the migration route that accounts for the dispersal of Clade II into the NW. However, the BLB seems to be more likely with respect to the Audibertia pollen fossil from Alaska, which was assigned to the Upper Miocene (Emboden, 1964) (Fig. 8A). Regarding the dispersal of subclade I-B progenitors into the NW, both routes are possible. However, based on the current distribution of Clade I (Fig. 8A), one might argue that the NALB is more likely than the BLB (compare Kadereit and Baldwin, 2012). In summary, it is likely that two colonizations of America occurred at different times and via different routes. S Africa and the Canary Islands were also repeatedly colonized (Will and Claßen-Bockhoff, 2014). There were two independent dispersal events to the latter from different mainland sources, i.e., from Clades I (Salvia s.s.) and III (Salvia s.l.). The nonmonophyly of the Canary Island species is reflected by their morphological divergence, which allows one to easily distinguish the two lineages and recognize them as two distinct genera (Will et al., 2015). 5. Conclusions The present molecular and morphological data allow the reconstruction of the evolution of Salvia species, to date providing the broadest sampling of OW Salvia. It is evident that Salvia s.l. is highly polyphyletic, thus demanding revision. Parallelisms such as an expanding calyx, flower shape, and even stamen construction, which were largely used as supporting characteristics for the genus sensu lato and for sections are clearly not a reliable basis for taxonomy and revisions. In light of the available molecular data, we encourage a process to revise Salvia s.l. on a clade-byclade basis. The present data provide a strong background for understanding evolutionary tendencies in the former genus Salvia. It is possible to briefly characterize the identified clades and to suggest validly published names regarding the generic rank for each of them. The proposed new genera largely reflect the geographic distribution, indicating that dispersal events likely triggered speciation. Acknowledgments For helpful comments and discussion, we thank B. Gehrke, M. Pirie, M.S. Dillenberger, and J.W. Kadereit (all Mainz, Germany). We gratefully acknowledge F. Celep (Ankara, Turkey) for providing us with species material from Turkey. Additional material was provided by D. Albach (Oldenburg, Germany), Y. Ajani (Mainz, Germany), S. Bagherpour (Ankara, Turkey), A. El-Banhawy (Reading, UK), A. Kahraman (Ankara, Turkey), M. Kuschewitz (Mainz, Germany), A.P. Sukhorukov (Moscow, Russia), M. Thulin (Uppsala, Sweden), and P. Wester (Düsseldorf, Germany). We thank all curators and colleagues making herbarium material available at ACECR (Iran), B, E, EA, GOET, HUH, M, MJG, MO, MPU, MW, and PSL METU (Ankara). Furthermore, we thank E. Martin (Konya, Turkey) for sharing preliminary data from chromosome counts in Salvia, the staff members of the Botanical Garden at Mainz for cultivating plant material and N. Schmalz (Mainz, Germany) for proofreading and helpful comments. Financial support was provided by the Faculty of Biology, Office of Gender Affairs and Equal Opportunity, the Erasmus TM Mobility Program (all Johannes Gutenberg-University Mainz, Germany) and the DFG Cl81/10-1. We thank the two anonymous reviewers for their constructive criticism. Appendix A. Supplementary material Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.ympev.2016.12. 041. References Afzal-Rafii, Z., 1980. Lamiaceae. In: Löve, A. (Ed.), Chromosome Number Reports LXVII. Taxon, vol. 29, pp. 365–366. Alberto, C.M., Sanso, A.M., Xifreda, C.C., 2003. Chromosomal studies in species of Salvia (Lamiaceae) from Argentina. J. Linn. Soc. (Bot.) 141, 483–490. http://dx. doi.org/10.1046/j.1095-8339.2003.t01-1-00178.x. Alziar, G., 1988-1993. Catalogue synonymique des Salvia L. du monde (Lamiaceae). I à VI. Biocosme Mésogéen. Nice 5, 87–136. 6, 79–115; 6, 163–204; 7, 59–109; 9, 413–497; 10, 33–117. Anderson, R.S., Van Devender, T.R., 1991. Comparison of pollen and macrofossils in packrat (Neotama) middens: a chronological sequence from the Waterman mountains of southern Arizona, U.S.A. Rev. Palaeobot. Palynol. 68, 1–28. Ayyangar, K.R., Vembu, B., 1984. On the karyomorphological nuances between two species of Salvia Linn. Proc. Indian Sci. Congr. Assoc., vol. 71. Baker, R.G., 2000. Holocene environments reconstructed from plant macrofossils in stream deposits from southeastern Nebraska, USA. Holocene 10, 357–365. http://dx.doi.org/10.1191/095968300676039397. Bedolla-García, B.Y., Lara-Cabrera, S.I., Zamudio, S., 2011. Two new species of Salvia (Lamiaceae) from west central Mexico. Acta Bot. Mex., 51–63 Bedolla-García, B.Y., Zamudio, S., 2015. Four new species of Salvia (Lamiaceae) from http://dx.doi.org/ central Mexico. Phytotaxa 217, 035–052. 10.11646/phytotaxa.217.1.3. Behçet, L., Avlamaz, D., 2009. A new record for Turkey: Salvia aristata Aucher ex Benth. (Lamiaceae). Turk. J. Bot. 33, 61–63. http://dx.doi.org/10.3906/bot-080814. Bentham, G., 1832-1836. Salvia. In: Bentham, G. (Ed.), Labiat. Gen. J. Ridgway & Sons Picadilli, London, pp. 190–312. Bentham, G., 1848. Labiatae. In: De Candolle, A.P. (Ed.), Prodromus, vol. 12. Treuttel & Würtz, Paris, pp. 262–358. Bentham, G., 1876. Labiatae. In: Bentham, G., Hooker, J.D. (Eds.), Gen. Pl. 2. Reeve & Co., London, pp. 1160–1196. M. Will, R. Claßen-Bockhoff / Molecular Phylogenetics and Evolution 109 (2017) 33–58 Betancourt, J.L., Van Devender, T.R., Rose, M., 1986. Comparison of plant macrofossils in woodrat (Neotoma sp.) and porcupine (Erethizon dorsatum) middens from the Western United States. J. Mammal. 67, 266–273. Bir, S.S., Kumari, S., Shoree, S.P., Sagoo, M.S., 1978. Cytological studies in certain Bicarpellatae from north and central India. J. Cytol. Genet. 13, 99–106. Bir, S.S., Saggoo, M.I.S., 1981. Cytopalynology of certain Acanthaceae and Labiatae. J. Palynol. 17, 93–102. Bir, S.S., Sidhu, M., 1980. Cyto-palynological studies on weed flora of cultivable lands of Patiala district (Punjab). J. Palynol. 16, 85–105. Boissier, E., 1879. Salvia. In: Boissier, E. (Ed.), Fl. Orient. Georg, H., Genevae et Basileae, pp. 590–636. Bokhari, M.H., Hedge, I.C., 1971. Observations on the tribe Meriandreae of the Labiatae. Notes Roy. Bot. Gard. Edinb. 31, 53–67. Bokhari, M.H., Hedge, I.C., 1976. Zhumeria (Labiatae): anatomy, taxonomy and affinities. Iran. J. Bot. 1, 1–10. Briggs, J.C., 1987. Developments in Palaeontology and Stratigraphy. Elsevier, Amsterdam. Briquet, J., 1897. Labiatae. In: Engler, H.G.A., Prantl, K.A.E. (Eds.), Nat. Pflanzenfam.. Engelmann, Leipzig, pp. 182–286. Bruyns, P.V., Mapaya, R.J., Hedderson, T.J., 2006. A new subgeneric classification for Euphorbia (Euphorbiaceae) in southern Africa based on ITS and psbA-trnH sequence data. Taxon 55, 397–420. http://dx.doi.org/10.2307/25065587. Bunge, A., 1873. Labiatae Persicae. Mem. Acad. Sci. Petersb. Ser. 7 (21), 40–53. Celep, F., Doğan, M., 2010. Salvia ekimiana (Lamiaceae), a new species from Turkey. Ann. Bota. Fenn. 47, 63–66. http://dx.doi.org/10.5735/085.047.0108. Celep, F., Dirmenci, T., Güner, O., 2015. Salvia hasankeyfense (Lamiaceae), a new species from Hasankeyf (Batman, South-eastern Turkey). Phytotaxa 227, 289– 294. http://dx.doi.org/10.11646/phytotaxa.227.3.9. Claßen-Bockhoff, R., Crone, M., Baikova, E., 2004a. Stamen development in Salvia L.: homology reinvestigated. Int. J. Plant Sci. 165, 475–498. Claßen-Bockhoff, R., Speck, T., Tweraser, E., Wester, P., Thimm, S., Reith, M., 2004b. The staminal lever mechanism in Salvia L. (Lamiaceae): a key innovation for adaptive radiation? Org. Divers. Evol. 4, 189–205. http://dx.doi.org/10.1016/j. ode.2004.01.004. Clebsch, B., 2008. The New Book of Salvias: Sages for Every Garden. Timber Press, Cambridge, UK. Clement, R.A., 1999. Labiatae. In: Grierson, A.J.C., Long, D.G. (Eds.), Fl. Bhutan, vol. 2 (2). Royal Botanic Gardens Edinb. and the Royal Government of Bhutan, Edinb, pp. 970–975. Codd, L.E., 1985. Salvia. In: Leistner, O.A., (Ed.), Fl. South. Afr. 28(4) Lamiaceae. Pretoria, Botanical Research Institute, Department of Agriculture and Water Supply, Pretoria, pp. 79–101. Cole, K.L., 1986. The lower Colorado River Valley: a Pleistocene desert. Quatern. Res. 25, 392–400. http://dx.doi.org/10.1016/0033-5894(86)90010-4. Cole, K.L., 1990. Reconstruction of past desert vegetation along the Colorado River using packrat middens. Palaeogeogr. Paleoclimatol. Palaeoecol. 76, 349–366. http://dx.doi.org/10.1016/0031-0182(90)90120-V. Colinvaux, P.A., Bush, M.B., Steinitz-Kannan, M., Miller, M.C., 1997. Glacial and postglacial pollen records from the Ecuadorian Andes and Amazon. Quatern. Res. 48, 69–78. http://dx.doi.org/10.1006/qres.1997.1908. Cooke, T., 1908. Salvia. In: Fl. Bombay, (2)1 Compositae to Gramineae. Taylor & Francis, London, pp. 473–475. Cordova, C.E., Lehman, P.H., 2005. Holocene environmental change in southwestern Crimea (Ukraine) in pollen and soil records. Holocene 15, 263–277. http://dx. doi.org/10.1191/0959683605hl791rp. Cramer, L.H., 1981. Labiatae. In: Dassanayake, M.D. (Ed.), Fl. Ceylon., vol. 3. Amerind Publishing Co., New Delhi, pp. 108–194. Darriba, D., Taboada, G.L., Doallo, R., Posada, D., 2012. JModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9, 772. http://dx.doi.org/ 10.1038/nmeth.2109. Davis, P.H., Hedge, I.C., 1971. Floristic links between NW Africa and SW Asia. Ann. Nat. Mus. Wien 75, 43–57. Dillenberger, M.S., Kadereit, J.W., 2014. Maximum polyphyly: multiple origins and delimitation with plesiomorphic characters require a new circumscription of Minuartia (Caryophyllaceae). Taxon 63, 64–88. http://dx.doi.org/10.12705/ 631.5. Dönmez, A.A., 2001. A new Turkish species of Salvia L. (Lamiaceae). Bot. J. Linn. Soc. 137, 413–416. http://dx.doi.org/10.1006/bojl.2001.0482. Dos Santos, E.P., 1991. Genre Salvia L. sous-genre Calosphace (Benth.) Benth. section Nobiles (Benth.) Epl. (Labiatae). Bradea 5, 436–453. Dos Santos, E.P., 1995. Phylogenie et phytogeographie du genre Salvia L. section Rudes (Benth.) Epl. (Lamiacees). Biogeographica 71, 15–32. Dos Santos, E.P., 1996. Révision de la section Rudes (Benth.) Epling du genre Salvia L. sousgenre Calosphace (Benth.) Benth. (Labiatae). Candolle 51, 19–57. Dos Santos, E.P., Paton, A.J., Savolainen, V., 2005. Phylogeny and evolution on Salvia subgenus Calosphace (Lamiaceae): a Brazilian view. 17. IBC. Vienna, Austria (poster). Drew, B.T., Sytsma, K.J., 2012. Phylogenetics, biogeography, and staminal evolution in the tribe Mentheae (Lamiaceae). Am. J. Bot. 99, 933–953. http://dx.doi.org/ 10.3732/ajb.1100549. Drummond, A.J., Rambaut, A., 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214. http://dx.doi.org/10.1186/1471-2148-7214. El-Gazzar, A., Watson, L., Williams, W.T., Lance, G.N., 1968. The taxonomy of Salvia: a test of two radically different numerical methods. J. Linn. Soc. (Bot.) 60, 237– 250. 55 Emadzade, K., Lehnebach, C., Lockhart, P., Hörandl, E., 2010. A molecular phylogeny, morphology and classification of genera of Ranunculeae (Ranunculaceae). Taxon 59, 809–828. Emboden, W.A., 1964. Pollen morphology of the genus Salvia, section Audibertia. Pollen Spores 6, 527–536. Emboden, W.A., Lewis, H., 1967. Terpenes as taxonomic characters in Salvia section Audibertia. Brittonia 19, 152–160. Epling, C., 1938. The Californian salvias. A review of Salvia, section Audibertia. Ann. Mo. Bot. Gard. 25, 95–188. Epling, C., 1939. A Revision of Salvia, Subgenus Calosphace, vol. 10. Verl. d. Repertoriums, Berlin. Epling, C., Lewis, H., Raven, P.H., 1962. Chromosomes of Salvia section Audibertia. Aliso 5, 217–221. Espejo-Serna, A., Ramamoorthy, T.P., 1993. Revisión taxonómica de Salvia sección Sigmoideae (Lamiaceae). Acta Bot. Mex. 23, 65–102. Feinbrun-Dothan, N., 1978. Salvia. Fl. Palaestina, vol. 3. Isr. Acad. Sci., Jerusalem, pp. 133–145. Fernández-Alonso, J.L., 2006. Revisión taxonómica de Salvia sect. Siphonantha (Labiatae). An. Jard. Bot. Madrid. 63, 145–157. Fernández Alonso, J.L., 2012. Salvia guacana, una nueva Labiatae de Colombia con flores resupinadas y sinopsis de Salvia sect. Tubiflorae. Rev. Acad. Colomb. Cienc. 36, 517–533. Fernández-Alonso, J.L., 2014. Salvia guaneorum (Labiatae), a new species from the Chicamocha Canyon, Colombia. Phytotaxa 156, 221–228. http://dx.doi.org/ 10.11646/phytotaxa.156.4.4. Fragoso-Martínez, I., Martínez-Gordillo, M., 2013. Una nueava especie del género Salvia sección Membranaceae de Guerrero, México. Acta Bot. Mex. 103, 1–9. Fragoso-Martínez, I., Martínez-Gordillo, M., De Luna, E., 2015. Salvia semiscaposa (Lamiaceae) a new species from Nanchititla, Mexico. Phytotaxa 219, 058–068. http://dx.doi.org/10.11646/phytotaxa.219.1.4. Froissart, C., 2008. La connaicance des sauges. Aix-en-Provence, France. Fujita, Y., 1970. Evolution of chromosome numbers in the Lamiaceae, especially its relation to the classification and phylogeny of the genus Salvia based on the constituents of essential oils. Acta Phytotaxon. Geobot. 24, 113–121. Geissert, F., Gregor, H.-J., Mai, D.H., 1990. Die ‘‘Saubaggerflora”, eine Frucht- und Samenflora aus dem Grenzbereich Miozän-Pliozän von Sessenheim im Elsaß (Frankreich). Doc. Nat. 57, 67–68. Gladenkov, A.Y., Oleinik, A.E., Marincovich, L., Barinov, K.B., 2002. A refined age for the earliest opening of Bering Strait. Palaeogeogr. Paleoclimatol. Palaeoecol. 183, 321–328. González-Gallegos, J.G., 2013. Salvia albicalyx and Salvia topiensis (Lamiaceae), two new species from Durango, Mexico. Phytotaxa 77, 9–18. http://dx.doi.org/ 10.11646/phytotaxa.77.1.3. González-Gallegos, J.G., 2014. Revision of Salvia subg. Calosphace sect. Membranaceae (Lamiaceae). Telopea 16, 43–81. http://dx.doi.org/10.7751/ telopea20147483. González-Gallegos, J.G., 2015. Two New Salvia Species (Lamiaceae) from the Sierra Madre Occidental, Durango, Mexico. Syst. Bot. 40 (4). http://dx.doi.org/10.1600/ 036364415X690139. González-Gallegos, J.G., Aguilar-Santelises, Y.R., 2014. Salvia tilantongensis (Lamiaceae), una especie nueva de la Mixteca Alta de Oaxaca, México. Acta Bot. Mex. 109, 1–22. González-Gallegos, J.G., Castro-Castro, A., 2012. Salvia cualensis and Salvia cualensis var. perezii (Lamiaceae), two new taxa from the Sierra de El Cuale, Jalisco, Mexico. Phytotaxa 74, 47–58. González-Gallegos, J.G., Castro-Castro, A., 2013. New insights on Salvia platyphylla (Lamiaceae) and description of S. pugana and S. albiterrarum, two new species http://dx.doi.org/ from Jalisco, Mexico. Phytotaxa, 93. 10.11646/phytotaxa.93.2.1. Gonzáles-Gallegos, J.G., Gama-Villanueva, O.J., 2013. Resurrection of Salvia species (Lamiaceae) recently synonymized in Flora Mesoamericana. Phytotaxa 151, 1– 24. http://dx.doi.org/10.7751/telopea20147483. González-Gallegos, J.G., Morales-Arias, J.G., Rodríguez-Hernández, J.L., 2012a. Salvia cacomensis (Lamiaceae), a new species from Jalisco, Mexico. Rev. Mex. Biodiv. 83, 341–346. http://dx.doi.org/10.1007/s12228-012-9297-2. González Gallegos, J.G., Vázquez García, J.A., Cházaro Basáñez, M.J., 2013. Salvia carreyesii, Salvia ibugana and Salvia ramirezii (Lamiaceae), three new species from Jalisco, Mexico. Rev. Mex. Biodiv. 84, 7–19. http://dx.doi.org/10.7550/ rmb.29131. González-Gallegos, J.G., Vázquez-García, J.A., Santana-Michel, F.J., Cuevas-Guzmán, R., Guzmán-Hernández, L., 2012b. Salvia meera, S. rogersiana, S. santanae and S. concolor var. iltisii (Lamiaceae), three new species and a variety from Jalisco, Mexico. Rev. Mex. Biodiv. 83, 591–604. http://dx.doi.org/10.7550/rmb.26217. Gray, J.T., 1872. Notes on Labiatae. Proc. Am. Acad. Arts Sci. 8, 365–372. Greene, E.L., 1892. On certain Californian Labiatae. Pittonia 2, 301–302. Greuter, W., Burdet, H.M., Long, G., 1986. Salvia. In: Greuter, W., Burdet, H.M., Long, G. (Eds.), Med.-Checklist. 3, Dicotyledones (Convolvulaceae – Labiatae). Conservatoire Jard. bot., Genève. Haber, R.M., Semaan, M.T., 2004. Salvia fairuziana (Lamiaceae), a new species from Lebanon. Novon 14, 437–439. Hamazaoğlu, E., Duran, A., Pınar, N.M., 2005. Salvia anatolica (Lamiaceae), a new species from East Anatolia, Turkey. Ann. Bot. Fenn. 42, 215–220. Harley, R.M., Heywood, C.A., 1992. Chromosome numbers in tropical American Labiatae. In: Harley, R.M., Reynolds, T. (Eds.), Adv. Labiate Sci.. Roy. Bot. Gard., Kew, pp. 211–246. 56 M. Will, R. Claßen-Bockhoff / Molecular Phylogenetics and Evolution 109 (2017) 33–58 Harley, R.M., Atkins, S., Budantsev, A.L., Cantino, P.D., Conn, B.J., Grayer, R., Harley, M.M., Kok, R., Krestovskaja, T., Morales, R., Paton, A.J., Ryding, O., Upson, T., 2004. Labiatae. In: Kadereit, J.W. (Ed.), Families and Genera of Vascular Plants, vol. VII. Springer, Berlin Heidelberg, pp. 167–275. Harvey, W.H., Sonder, O.W., Thiselton-Dyer, W.T., Hill, A.W., 1912. Salvia. In: Thiselton-Dyer, W.T., Hill, A.W. (Eds.), Fl. Capensis, V Sect. I: Acanthaceae to Proteaceae. L. Reeve, London, pp. 307–333. Hedge, I.C., 1957. Studies in East Mediterranean species of Salvia. Notes Roy. Bot. Gard. Edinb. 22, 173–188. Hedge, I.C., 1959. Studies in East Mediterranean species of Salvia: II. Notes Roy. Bot. Gard. Edinb. 23, 47–69. Hedge, I.C., 1960. Two remarkable new Salvias from Afghanistan. Notes Roy. Bot. Gard. Edinb. 23, 163–165. Hedge, I.C., 1961. Studies in East Mediterranean species of Salvia: VI. Notes Roy. Bot. Gard. Edinb. 23, 559–567. Hedge, I.C., 1964. Salvia. In: Rechinger, K.H. (Ed.), Fl. Lowland Iraq. Verl. J. Cramer, Weinheim, pp. 523–527. Hedge, I.C., 1966. Studies in the flora of Afghanistan III an account of Salvia. Notes Roy. Bot. Gard. Edinb. 26, 407–425. Hedge, I.C., 1972a. Salvia. In: Tutin, T.G., Heywood, V.H., Burges, N.A., Moore, D.M., Valentine, D.H., Walters, S.M., Webb, D.A. (Eds.), Fl. Europaea, vol. 3. Cambridge Univ. Press, Cambridge, pp. 188–192. Hedge, I.C., 1972b. Salvia in Madagascar. Notes Roy. Bot. Gard. Edinb. 32, 1–11. Hedge, I.C., 1974a. A revision of Salvia in Africa including Madagascar and the Canary Islands. Notes Roy. Bot. Gard. Edinb. 33, 1–121. Hedge, I.C., 1974b. A further note on Salvia tetrodonta. Notes Roy. Bot. Gard. Edinb. 33, 295–299. Hedge, I.C., 1980. Salvia. In: Davis, P.H. (Ed.), Materials for a Flora of Turkey XXXVII. Notes Roy. Bot. Gard. Edinb., vol. 38, pp. 47–49. Hedge, I.C., 1982a. Salvia. In: Davis, P.H. (Ed.), Fl. Turkey, vol. 7. Edinb. Univ. Press, Edinb, pp. 400–461. Volume. Hedge, I.C., 1982b. Salvia. In: Rechinger, K.H. (Ed.), Fl. Iranica. Akad.. Druck- und Verl, Graz, pp. 403–476. Hedge, I.C., 1982c. Studies in the flora of Arabia: II Some new and interesting species of Labiatae. Notes Roy. Bot. Gard. Edinb. 40, 63–73. Hedge, I.C., 1985. Labiatae. In: Meikle, R.D. (Ed.), Fl. Cyprus, vol. 2. Roy. Bot. Gard., Kew, pp. 1287–1299. Hedge, I.C., 1986. Labiatae of South-West Asia: diversity, distribution and endemism. Proc. Roy. Soc. Edinb. B 89, 23–35. Hedge, I.C., 1988. Salvia. In: Davis, P.H. (Ed.), Fl. Turkey, vol. 10. Edinb. Univ. Press, Edinb, p. 210. Hedge, I.C., 1992. A global survey of the biogeography of the Labiatae. In: Harley, R. M., Reynolds, T. (Eds.), Advances in Labiate Science. Royal Bot. Gard, Kew, pp. 7– 18. Hedge, I.C., 1998. Salvia. In: Hedge, I.C., Clement, R.A., Paton, A.J., Phillipson, P.B. (Eds.), Fl. Madagascar, Famille 175. Labiatae. Labor de Phanérogamie, Paris, Mus. Nat. Hist. Nat., pp. 52–94. Hedge, I.C., 2001. Salvia. In: Davis, P.H. (Ed.), Fl. Turkey, vol. 11. Edinb. Univ. Press, Edinb, pp. 209–210. Hedge, I.C., Lamond, J.M., 1968. Studies in the flora of Afghanistan: VII. Notes Roy. Bot. Gard. Edinb. 28, 89–161. Hedge, I.C., Wendelbo, P., 1978. Patterns of distribution and endemism in Iran. Notes Roy. Bot. Gard. Edinb. 36, 441–464. Henderson, D.M., Prentice, H., Hedge, I.C., 1968. Pollen morphology of Salvia and some related genera. Grana Palynol. 8, 70–85. Hihara, S., Iwatsubo, Y., Naruhashi, N., 2001. A new natural hybrid of Salvia (Lamiaceae) from Japan, Salvia x sakuensis. J. Phytogeogr. Taxon 49, 163–170. Hildebrand, H., 1865. Ueber die Befruchtung der Salvia-Arten mit der Hülfe von Insekten. Jahrb. Wiss. Bot. 4, 451–478. Hörandl, E., 2006. Paraphyletic versus monophyletic taxa – evolutionary versus cladistic classifications. Taxon 55, 564–570. http://dx.doi.org/10.2307/ 25065631. Hörandl, E., Paun, O., Johansson, J., Lehnebach, C., Armstrong, T., Chen, L., Lockhart, P., 2005. Phylogenetic relationships and evolutionary traits in Ranunculus s.l. (Ranunculaceae) inferred from ITS sequence analysis. Mol. Phylogenet. Evol. 36, 305–327. http://dx.doi.org/10.1016/j.ympev.2005.02.009. Hörandl, E., Stuessy, T.F., 2010. Paraphyletic groups as natural units of biological classification. Taxon 59, 1641–1653. Hrubý, K., 1962. Key to the supraspecific taxa of the genus Salvia. Preslia 34, 368– 373. Hu, G.-X., Liu, Y., Xu, W.-B., Liu, E.-D., 2013. Salvia petrophila sp. nov. (Lamiaceae) from north Guangxi and south Guizhou, China. Nord. J. Bot. 32, 190–195. http:// dx.doi.org/10.1111/j.1756-1051.2013.00221.x. Huang, T.C., Wu, J.T., 1975. A revision of Formosan Salvia. Taiwania 20, 213–228. Huang, T.C., Wu, J.T., 1978. Labiatae. In: Li, H.L., Liu, T.S., Huang, T.C., Koyama, T., de Vol, C.E. (Eds.), Fl. Taiwan, vol. 4. Epoch Publishing Co., Ltd., Taipei, pp. 509–519. Ilçim, A., Celep, F., Doğan, M., 2009. Salvia marashica (Lamiaceae), a new species from Turkey. Ann. Bot. Fenn. 46, 75–79. Iltis, H.H., González-Gallegos, J.G., Cochrane, T.S., Vázquez-García, J.A., 2012. A new species and a new subspecies of Salvia (Lamiaceae) from Jalisco and Michoacán, Mexico. Brittonia 64, 343–352. http://dx.doi.org/10.1007/s12228-012-9237-1. Jenks, A.A., Walker, J.B., Kim, S.C., 2011. Evolution and origins of the Mazatec hallucinogenic sage, Salvia divinorum (Lamiaceae): a molecular phylogenetic approach. J. Plant. Res. 124, 593–600. http://dx.doi.org/10.1007/s10265-0100394-6. Jenks, A., Walker, J., Kim, S., 2013. Phylogeny of New World Salvia subgenus Calosphace (Lamiaceae) based on cpDNA (psbA-trnH) and nrDNA (ITS) sequence data. J. Plant. Res. 126, 483–496. http://dx.doi.org/10.1007/s10265-012-0543-1. Jarvis, C., 2007. Order Out of Chaos. Linnaean Plant Names and their Types. Linnean Soc. London Nat. Hist. Mus., London, UK. Jee, V., Dhar, U., Kachroo, P., 1989. Cytogeography of some endemic taxa of Kashmir Himalaya. Proc. Indian Nat. Sci. Acad. B: Biol. Sci. 55, 177–184. Kadereit, J.W., Baldwin, B.G., 2012. Western Eurasian–western North American disjunct plant taxa: the dry-adapted ends of formerly widespread north temperate mesic lineages – and examples of long-distance dispersal. Taxon 61, 3–17. Kahraman, A., Celep, F., Doğan, M., Bagherpour, S., 2010. A taxonomic revision of Salvia euphratica sensu lato and its closely related species (sect. Hymenosphace, Lamiaceae) using multivariate analysis. Turk. J. Bot. 34, 261–276. Kahraman, A., Celep, F., Dogan, M., Guerin, G.R., Bagherpour, S., 2011a. Mericarp morphology and its systematic implications for the genus Salvia L. section Hymenosphace Benth. (Lamiaceae) in Turkey. Plant Syst. Evol. 292, 33–39. http://dx.doi.org/10.1007/s00606-010-0394-y. Kahraman, A., Doğan, M., Celep, F., 2011b. Salvia siirtica sp. nov. (Lamiaceae) from Turkey. Nord. J. Bot. 29, 397–401. http://dx.doi.org/10.1111/j.17561051.2011.00916.x. Kaya, A., Kutluk, H., 2007. Pollen morphology of Acinos Miller species growing in Turkey. J. Integr. Plant Biol. 49, 1386–1392. http://dx.doi.org/10.1111/j.17447909.2007.00453.x. King, J.E., Van Devender, T.R., 1977. Pollen analysis of fossil packrat middens from the Sonoran Desert. Quatern. Res. 8, 191–204. Kress, W.J., Liu, A.-Z., Newman, M., Li, Q.-J., 2005. The molecular phylogeny of Alpinia (Zingiberaceae): a complex and polyphyletic genus of gingers. Am. J. Bot. 92, 167–178. http://dx.doi.org/10.3732/ajb.92.1.167. Kučera, J., Košnar, J., Werner, O., 2013. Partial generic revision of Barbula (Musci: Pottiaceae): re-establishment of Hydrogonium and Streblotrichum, and the new genus Gymnobarbula. Taxon 62, 21–39. Lara-Cabrera, S., Bedolla-García, B.Y., Zamudio, S., 2014. Salvia tonaticensis (Lamiaceae), a rare new species from Mexico. Brittonia 66, 1–7. http://dx.doi. org/10.1007/s12228-012-9297-2. Li, X.W., Hedge, I.C., 1994. Lamiaceae. In: Wu, Z.Y., Raven, P.H. (Eds.), Fl. China, vol. 17. Sci. Press, Beijing, China & Missouri Bot. Gard., St. Louis, US, pp. 50–299. Li, Q.Q., Li, M.H., Yuan, Q.J., Cui, Z.H., Huang, L.Q., Gen, X.P., 2013. Phylogenetic relationships of Salvia (Lamiaceae) in China: evidence from DNA sequence datasets. J. Syst. Evol. 51, 184–195. http://dx.doi.org/10.1111/j.17596831.2012.00232.x. Lippert, W., 1979. Zur Kenntnis von Salvia Sektion Salvia im Westlichen Mittelmeergebiet. Mitt. Bot. Staatssamml. München. 15, 397–423. Mabberley, D., 2008. Mabberley’s Plant Book: A Portable Dictionary of Plants, their Classification and Uses. Cambridge Univ. Press, New York. Maddison, D.R., Maddison, W.P., 2000. MacClade 4.0: Analysis of Phylogeny and Character Evolution. Sinauer Assoc., Sunderland. Mai, D.H., 1995. Tertiäre Vegetationsgeschichte Europas: Methoden und Ergebnisse. Gustav Fischer Verlag, Jena, Stuttgart, New York. Mai, D.H., Majewski, J., Unger, K.P., 1963. Pliozän und Altpleistozän von Rippersroda in Thüringen. Geologie 12, 765–815. Mai, D.H., Walter, H., 1988. Die pliozänen Floren von Thüringen, DDR. Quartärpalaeontology 7, 55–297. Mansion, G., 2004. A new classification of the polyphyletic genus Centaurium Hill (Chironiinae, Gentianaceae): description of the New World endemic Zeltnera, and reinstatement of Gyrandra Griseb. and Schenkia Griseb. Taxon 53, 719–740. Markova, M.L., Ivanova, P.S., 1982. Karyological study of the genus Salvia L. in Bulgaria. Filologija 20, 3–19. Martínez-Gordillo, M., Lozada-Pérez, L., 2011. Una nueva especie de Salvia (Lamiaceae) de Guerrero, México. Brittonia 63, 211–214. http://dx.doi.org/ 10.1007/s12228-010-9152-2. Mercado, P., Ramamoorthy, T.P., Palomino, G., 1989. Karyotypes of five mexican species of Salvia subgenus Calosphace (Lamiaceae). Cytologia 54, 605–608. Merrill, E.D., 1949. Index Rafinesquianus: The Plant Names Published by C. S. Rafinesque With Reductions, and a Consideration of His Methods, Objectives, and Attainments. Arnold Arboretum of Harvard Univ.. Meusel, H., Jäger, E., Rauschert, S., Weinert, E., 1978. Karten. Band II. Gustav Fischer, Jena. Migahid, A.M., 1978. Salvia. In: Migahid, A.M. (Ed.), Fl. Saudi Arabia 1. second rev. and illus. ed. Riyadh Univ., Riyadh, Saudi Arabia, pp. 464–465. Miller, M.A., Pfeiffer, W., Schwartz, T., 2011. The CIPRES science gateway: a community resource for phylogenetic analyses. In: Proceedings of the 2011 TeraGrid Conference: Extreme Digital Discovery. ACM, Salt Lake City, Utah, pp. 1–8. http://dx.doi.org/10.1145/2016741.2016785. Milne, R.I., 2006. Northern hemisphere plant disjunction: a window on tertiary land bridges and climate change? Ann. Bot. 98, 465–472. http://dx.doi.org/10.1093/ aob/mcl148. Moon, H.-K., Smets, E., Huysmans, S., 2010. Phylogeny of tribe Mentheae (Lamiaceae): the story of molecules and micromorphological characters. Taxon 59, 1065–1076. Mouterde, P., 1983. Salvia. In: Charpin, A., Dittrich, M. (Eds.), Nouv. Fl. Liban et Syrie. Dar el-Machreq SARL, Beyrouth, Liban, pp. 155–171. Müller, J., 1981. Fossil pollen records of extant angiosperms. Bot. Rev. 47, 1–142. Neisess, K.R., 1983. Evolution, Systematics, and Terpene Relationships of Salvia Section Audibertia (Ph.D. Thesis). Univ. of Calif., Riverside, p. 327. M. Will, R. Claßen-Bockhoff / Molecular Phylogenetics and Evolution 109 (2017) 33–58 Nepokroeff, M., Bremer, B., Sytsma, K.J., 1999. Reorganization of the genus Psychotria and tribe Psychotrieae (Rubiaceae) inferred from ITS and rbcL sequence data. Syst. Bot. 24, 5–27. http://dx.doi.org/10.2307/2419383. Nikitina, E.V., 1962. Salvia vvedenskii. In: Vvedenskiĭ, A.I. (Ed.), Flora Kirghiz SSR Academy of Sciences of the Kirghiz SSR, Frunze, pp. 377–378 (in Russian). Nowak, C.L., Nowak, R.S., Tausch, R.J., Wigand, P.E., 1994. A 30000 year record of vegetation dynamics at a semi-arid locale in the Great Basin. J. Veg. Sci. 5, 579– 590. Noyes, R.D., Rieseberg, L.H., 1999. ITS sequence data support a single origin for North American Astereae (Asteraceae) and reflect deep geographic divisions in Aster s.l. Am. J. Bot. 86, 398–412. Ohwi, J., 1984. Fl. Japan. Smithsonian Institution, Washington, DC (in Japanese). Osaloo, S.K., Maassoumi, A.A., Murakami, N., 2003. Molecular systematics of the genus Astragalus L. (Fabaceae): phylogenetic analyses of nuclear ribosomal DNA internal transcribed spacers and chloroplast gene ndhF sequences. Plant Syst. Evol. 242, 1–32. http://dx.doi.org/10.1007/s00606-003-0014-1. Palomino, G., Mercado, P., Ramamoorthy, T.P., 1986. Chromosomes of Salvia subgenus Calosphace (Lamiaceae), a preliminary report. Cytologia 51, 381–386. Peñuelas, J., Lloret, F., Montoya, R., 2001. Severe drought effects on Mediterranean woody flora in Spain. For. Sci. 47, 214–218. Peter, E., 1936. Revision der indischen und tibetanischen Arten der Gattung Salvia L. Feddes Repert. Spec. Nov. Regni Veget. 39, 173–186. Peterson, K.M., 1978. Systematic studies of Salvia L. subgenus Calosphace (Benth.) Benth. in Benth. & Hook section Farinaceae (Epling) Epling (Lamiaceae) (Ph.D. Thesis). Univ. of Maryland, Baltimore, p. 191. Pobedimova, E.G., 1954. Labiatae. In: Shishkin, B.K. (Ed.), Fl. U.S.S.R., vol. XXI. Program Sci. Translations, Jerusalem, Israel, pp. 178–260 (english translation, 1977). Post, G.E., 1933. Fl. Syria, Palestine and Sinai. Am. Press., Beirut, pp. 347–362. Rafinesque, C.S., 1837. Centuria VIII. In: Rafinesque, C.S. (Ed.), Synopticla Flora – Flora Telluriana. H. Probasco, Philadelphia, pp. 83–94. Rastipishe, S., Pakravan, M., Tavassoli, A., 2011. Phylogenetic relationships in Ranunculus species (Ranunculaceae) based on nrDNA ITS and cpDNA trnL-F sequences. Prog. Biol. Sci. 1, 41–47. Reales, A., Rivera, D., Palazon, J.A., Obon, C., 2004. Numerical taxonomy study of Salvia sect. Salvia (Labiatae). Bot. J. Linn. Soc. 145, 353–371. http://dx.doi.org/ 10.1111/j.1095-8339.2004.00295.x. Rechinger fil, K.H., 1943. Fl. Aegaea, vol. 105(1). Springer, Wien, pp. 518–522. Rechinger, K.H., Wendelbo, P., 1967. Zhumeria, eine neue Labiaten-Gattung aus SüdIran. Nytt Mag. Bot. 14, 39–43. Reisfield, A.S., 1987. Systematic Studies in Salvia L. (Lamiaceae) with special emphasis on subgenus Calosphace (Benth.) Benth. section Dusenostachys Epl. (Master thesis) Univ. of Wisconsin, Madison, p. 423. Ronquist, F., Huelsenbeck, J.P., 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574. http://dx.doi.org/10.1093/ bioinformatics/btg180. Rosúa, J.L., Blanca, G., 1986. Revisión del género Salvia L. (Lamiaceae) en el Mediterráneo Occidental: la sección Salvia. Acta Bot. Malacitana. 11, 227–271. Rosúa, J.L., Blanca, G., 1988. Revisión del género Salvia L. sect. Aethiopis Benth. (Lamiaceae) en el Metiterráneo Occidental. Collectanea Bot. 17, 205–236. Sagástegui Alva, A., Rodríguez Rodríguez, E.F., 2012. Una nueva especie de Salvia (Lamiaceae) del Norte de Perú. Rev. Peruana Biol. 19. Saggoo, M.I., Bir, S.S., 1986. Meiotic studies on some east Himalayan members of family Labiatae. J. Indian Bot. Soc. 65, 304–309. Sales, F., Hedge, I.C., Christie, F., 2010. Salvia plebeia R.Br.: taxonomy, phytogeography, autogamy and myxospermy. Pak. J. Bot. 42, 99–110. Santos, A., Fernandez, M., 1986. Salvia herbanica spec. nova (Labiatae) en la flora de Fuerteventura (I. Canarias). Lazaroa 9, 51–54. Shaw, J., Lickey, E.B., Schilling, E.E., Small, R.L., 2007. Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am. J. Bot. 94, 275–288. Shiuchi, T., Kanemoto, T., 2001. Chromosome numbers of plants cultivated in the Botanic Garden of Toyama (2). Bull. Bot. Gard. Toyama 6, 47–51. Song, Z.Q., Wang, J.H., Xie, Y.I., 2010. Karyological studies of Salvia miltiorrhiza in China. Caryologia 63, 269–277. Spaulding, W.G., 1983. Late Wisconsin macrofossil records of desert vegetation in the American Southwest. Quatern. Res. 19, 256–264. Spaulding, W.G., 1990. Vegetation dynamics during the last deglaciation, southeastern Great Basin, U.S.A. Quatern. Res. 33, 188–203. Stamatakis, A., 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688– 2690. http://dx.doi.org/10.1093/bioinformatics/btl446. Stamatakis, A., Hoover, P., Rougemont, J., 2008. Rapid bootstrap algorithm for the RAxML web-servers. Syst. Biol. 75, 758–771. http://dx.doi.org/10.1080/ 10635150802429642. Stewart, R.R., 1972. Salvia. In: Nasir, E., Ali, S.I. (Eds.), Fl. West Pakistan. Fakhri Printing Press, Karachi, pp. 630–632. Stibal, E., 1934. Labiatae – Salvia L. (nebst Revision der chinesischen und ostbirmanischen Arten der Gattung). Acta Hort. Gothob. 9, 101–145. Stibal, E., 1935. Revision der Gruppe der Salvia japonica. Acta Hort. Gothob. 10, 55– 69. Strachan, J.L., 1982. A revision of the Salvia dorrii complex (Lamiaceae). Brittonia 34, 151–169. Strid, A., Franzen, R., 1983. Chromosome numbers in flowering plants from Greece. Willdenowia 13, 329–333. 57 Suc, J.P., 1984. Origin and evolution of the Mediterranean vegetation and climate in Europe. Nature 307, 429–432. Sudarmono, H.O., 2007. Speciation process of Salvia isensis (Lamiaceae), a species endemic to serpentine areas in the Ise-Tokai district, Japan, from the viewpoint of the contradictory phylogenetic trees generated from chloroplast and nuclear DNA. J. Plant. Res. 120, 483–490. http://dx.doi.org/10.1007/s10265-007-0075-2. Sudarmono, S., Okada, H., 2008. Genetic differentiations among the populations of Salvia japonica (Lamiaceae) and its related species. HAYATI J. Biosci. 15, 18–26. Sun, H.T., 1977. Salvia. In: Wu, C.W., Li, H.W. (Eds.), Fl. Reip. Pop. Sin.. Sci. Press, Beijing, pp. 70–196 (in Chinese). Takano, A., Okada, H., 2011. Phylogenetic relationships among subgenera, species, and varieties of Japanese Salvia L. (Lamiaceae). J. Plant. Res. 124, 245–252. http://dx.doi.org/10.1007/s10265-010-0367-9. Takano, A., Sera, T., Kurosaki, N., 2014. A new species of Salvia (Lamiaceae) from Chugoku District, Japan, Salvia akiensis sp. nov. Acta Phytotax. Geobot. 65, 99– 104. Taylor, R.M., Ayers, T.J., 2006. Systematics of Salvia pachyphylla (Lamiaceae). Madroño 53, 11–24. http://dx.doi.org/10.3120/0024-9637(2006) 53[11:SOSPL] 2.0.CO;2. Teodoridis, V., Kvaček, Z., Uhl, D., 2009. Pliocene palaeoenvironment and correlation of the Sessenheim-Auenheim floristic complex (Alsace, France). Palaeodiversity 2, 1–17. Thiébaut, J., 1953. Salvia. In: Thiébaut, J. (Ed.), Fl. Libano-Syriénne, vol. 3. C.N.R.S., Paris, pp. 55–62. Thulin, M., 1993. Salvia (Labiatae) in the mountains of Northern Somalia. Opera Bot. 121, 145–148. Thulin, M., 2009. Salvia geminata sp. nov. with remarkable stamen arrangement from southern Yemen, with notes on S. areysiana (Lamiaceae). Nord. J. Bot. 27, 336–338. http://dx.doi.org/10.1111/j.1756-1051.2009.00538.x. Torke, B., 2000. A revision of Salvia sect. Ekmania (Lamiaceae). Brittonia 52, 265– 302. Torrey, J., 1859. Salvia. Botany of the Boundary, vol. 2/1. C. Wendel, Washington, p. 132. Turner, B.L., 2011. Recension of Mexican species of Salvia sect. Stanleyana (Lamiaceae). Phytoneuron 23, 1–6. Turner, B.L., 2013. Taxonomic overview of the Mexican species of Salvia sect. Flocculosae (Lamiaceae). Phytoneuron 36, 1–11. Valiente-Banuet, A., Rumebe, A.V., Verdú, M., Callaway, R.M., 2006. Modern Quaternary plant lineages promote diversity through facilitation of ancient Tertiary lineages. Proc. Natl. Acad. Sci. U.S.A. 103, 16812–16817. http://dx.doi. org/10.1073/pnas.0604933103. Van Devender, T.R., 1987. Holocene vegetation and climate in the Puerto Blanco Mountains, Southwestern Arizona. Quartern. Res. 27, 51–72. http://dx.doi.org/ 10.1016/0033-5894(87)90049-4. Van Jaarsveld, E.J., 1999. Salvia thermara, a new species from the Western Cape, South Africa. Bothalia 29, 100–102. Véliz Pérez, M.E., Quedensley, T.S., 2011. Salvia carrilloi (Lamiaceae), a new species from Guatemala. J. Bot. Res. Inst. Tex. 5, 471–474. Vij, S.P., Kashyap, S.K., 1975. In IOPB chromosome number reports XLVIII. Taxon 24, 367–372. Vij, S.P., Kashyap, S.K., 1976. Cytological studies in some North Indian Labiatae. Cytologia 41, 713–719. Vir Jee, D.U., Kachroo, P., 1985. Chromosomal conspectus of some alpine-subalpine taxa of Kashmir Himalaya. Chromosome Inf. Serv. 39, 33–35. Von Hagen, V.W., 1947. Rafinesque – the unnatural Naturalist. Nat. Hist. 56, 296– 303. Vural, M., Adigüzel, N., 1996. A new species from Central Anatolia: Salvia aytachii M. Vural et N. Adigüzel (Labiatae). Turk. J. Bot. 20, 531–534. Walker, J.B., Elisens, W.J., 2001. A revision of Salvia section Heterosphace (Lamiaceae) in western North America. Sida 19, 571–589. Walker, J.B., Sytsma, K.J., 2006. A molecular phylogenetic analysis of Salvia subgenus Audibertia. In: Walker, J.B. (Ed.), Systematics of the Genus Salvia (Lamiaceae). Univ. of Wisconsin-Madison, U.S, pp. 133–194 (Ph.D. Thesis). Walker, J.B., Sytsma, K.J., 2007. Staminal evolution in the genus Salvia (Lamiaceae): molecular phylogenetic evidence for multiple origins of the staminal lever. Ann. Bot. 100, 375–391. http://dx.doi.org/10.1093/aob/mcl176. Walker, J.B., Sytsma, K.J., Treutlein, J., Wink, M., 2004. Salvia (Lamiaceae) is not monophyletic: implications for the systematics, radiation, and ecological specializations of Salvia and tribe Mentheae. Am. J. Bot. 91, 1115–1125. http://dx.doi.org/10.3732/ajb.91.7.1115. Walker, J.B., Drew, B.T., Sytsma, K.J., 2015. Unravelling species relationships and diversification within the iconic California Floristic Province sages (Salvia Subgenus Audibertia, Lamiaceae). Syst. Bot. 40, 826–844. http://dx.doi.org/ 10.1600/036364415X689285. Wang, M., Zhang, L., Ding, C.B., Yang, R.W., Zhou, Y.H., Yang, Z.J., Yin, Z.Q., 2009. Meiotic observations of eight taxa in the genus Salvia. Caryologia 62, 334–340. Wang, M., Zhao, H.X., Wang, L., Wang, T., Yang, R.W., Wang, X.L., Zhou, Y.H., Ding, C. B., Zhang, L., 2013. Potential use of DNA barcoding for the identification of Salvia based on cpDNA and nrDNA sequences. Gene 528, 206–215. http://dx.doi.org/ 10.1016/j.gene.2013.07.009. Ward, D.E., 1984. Chromosome counts from New Mexico and Mexico. Phytologia 56, 55–60. Weese, T.L., Bohs, L., 2007. A three-gene phylogeny of the genus Solanum (Solanaceae). Syst. Bot. 32, 445–463. http://dx.doi.org/10.1600/ 036364407781179671. 58 M. Will, R. Claßen-Bockhoff / Molecular Phylogenetics and Evolution 109 (2017) 33–58 Wells, P.V., 1976. Macrofossil analysis of wood rat (Neotoma) middens as a key to the Quaternary vegetation history of arid America. Quatern. Res. 6, 223–248. Wen, J., 1999. Evolution of Eastern Asian and Eastern North American disjunct distributions in flowering plants. Annu. Rev. Ecol. Syst. 30, 421–455. Wester, P., Claßen-Bockhoff, R., 2011. Pollination syndromes of New World Salvia species with special reference to bird pollination. Ann. Mo. Bot. Gard. 98, 101– 155. http://dx.doi.org/10.3417/2007035. White, T.J., Bruns, T., Lee, S., Taylor, J.W., 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR Protocols: A Guide to Methods and Applications. Academic Press, New York, pp. 315–322. Whitehouse, E., 1949. Revision of Salvia section Salviastrum Gray. Field Lab. 17, 151– 165. Whitten, W.M., Blanco, M.A., Williams, N.H., Koehler, S., Carnevali, G., Singer, R.B., Endara, L., Neubig, K.M., 2007. Molecular phylogenetics of Maxillaria and related genera (Orchidaceae: Cymbidieae) based on combined molecular data sets. Am. J. Bot. 94, 1860–1889. http://dx.doi.org/10.3732/ajb.94.11.1860. Will, M., Claßen-Bockhoff, R., 2014. Why Africa matters: evolution of Old World Salvia (Lamiaceae) in Africa. Ann. Bot. 114, 61–83. http://dx.doi.org/10.1093/ aob/mcu081. Will, M., Schmalz, N., Claßen-Bockhoff, R., 2015. Towards a new classification of Salvia s.l. – (re)establishing genus Pleudia Raf. Turk. J. Bot. 39, 693–707. http:// dx.doi.org/10.3906/bot-1405-34. Wu, J.-T., Huang, T.-C., 1975. Biosystematic studies of Formosan Salvia. Taiwania 20, 77–98. Xiang, Q.-Y., Soltis, D.E., Soltis, P.S., Manchester, S.R., Crawford, D.J., 2000. Timing the Eastern Asian-Eastern North American floristic disjunction: molecular clock corroborates paleontological estimates. Mol. Phylogenet. Evol. 15, 462–472. http://dx.doi.org/10.1006/mpev.2000.0766. Yang, Z., Xun, G., Yuezhi, P., 2004. Cytological study of six Salvia species (Lamiaceae) from the Hengduanshan Mountains region of China. Caryologia 57, 360–366. Yang, Z., Zhang, L., Zhao, H., Yang, R., Ding, C., Zhou, Y., Wan, D., 2009. Chromosome numbers of some species of Salvia (Lamicaeae) from Sichuan Province, China. Nord. J. Bot. 27, 287–291. http://dx.doi.org/10.1111/j.1756-1051.2009.00376.x. Yıldırımlı, S ß ., Ertekin, A.S., 2008. Salvia ertekinii Yıldırımlı, sp. nov. Sistematik Bot. Dergisi- Herb J. Syst. Bot. 15, 5–8. Zander, R.H., 2008. Evolutionary inferences from non-monophyly on molecular trees. Taxon 57, 1182–1188. Zhao, H., Zhang, L., Fan, X., Yang, R., Ding, C., Zhou, Y., 2006. Studies on chromosome numbers of Salvia miltiorrhiza, S. flava and S. evansiana. China J. Chin. Mater. Med. 31, 1847–1849. http://dx.doi.org/10.3417/1055-3177(2007) 17[206: TNSISS]2.0.CO;2. Zhu, Z.-Y., Min, B.-Q., Wang, Q.-L., 2011. Taxa nova Salviorum labiatarum. Bull. Bot. Res. 31, 1–3. http://dx.doi.org/10.7525/j.issn.1673-5102.2011.01.001. Zimmermann, N.F.A., Ritz, C.M., Hellwig, F.H., 2010. Further support for the phylogenetic relationships within Euphorbia L. (Euphorbiaceae) from nrITS and trnL-trnF IGS sequence data. Plant Syst. Evol. 286, 39–58. http://dx.doi.org/ 10.1007/s00606-010-0272-7.