Academia.eduAcademia.edu
Peterson & al. • Sporobolus: phylogeny and classification TAXON 63 (6) • December 2014: 1212–1243 A molecular phylogeny and new subgeneric classification of Sporobolus (Poaceae: Chloridoideae: Sporobolinae) Paul M. Peterson,1 Konstantin Romaschenko,1,2 Yolanda Herrera Arrieta3 & Jeffery M. Saarela4 1 Smithsonian Institution, Department of Botany, National Museum of Natural History, Washington D.C. 20013-7012, U.S.A. 2 M.G. Kholodny Institute of Botany, National Academy of Sciences, Kiev 01601, Ukraine 3 Instituto Politécnico Nacional, CIIDIR Unidad Durango-COFAA, Durango, C.P. 34220, Mexico 4 Canadian Museum of Nature, Botany Section, Research and Collections, Ottawa, Ontario K1P 6P4, Canada Author for correspondence: Paul M. Peterson, peterson@si.edu ORCHID (http://orcid.org): PMP, 0000-0001-9405-5528; KR, 0000-0002-7248-4193 DOI http://dx.doi.org/10.12705/636.19 Abstract The grass subtribe Sporobolinae contains six genera: Calamovilfa (5 spp. endemic to North America), Crypsis (10 spp. endemic to Asia and Africa), Psilolemma (1 sp. endemic to Africa), Spartina (17 spp. centered in North America), Sporobolus (186 spp. distributed worldwide), and Thellungia (1 sp. endemic to Australia). Most species in this subtribe have spikelets with a single floret, 1-veined (occasionally 3 or more) lemmas, a ciliate membrane or line of hairs for a ligule, and fruits with free pericarps (modified caryopses). Phylogenetic analyses were conducted on 177 species (281 samples), of which 145 species were in the Sporobolinae, using sequence data from four plastid regions (rpl32-trnL spacer, ndhA intron, rps16-trnK spacer, rps16 intron) and the nuclear ribosomal internal transcribed spacer regions (ITS) to infer evolutionary relationships and provide an evolutionary framework on which to revise the classification. The phylogenetic analysis provides weak to moderate support for a paraphyletic Sporobolus that includes Calamovilfa, Crypsis, Spartina, and Thellungia. In the combined plastid tree, Psilolemma jaegeri is sister to a trichotomy that includes an unsupported Urochondra-Zoysia clade (subtr. Zoysiinae), a strongly supported Sporobolus somalensis lineage, and a weakly supported Sporobolus s.l. lineage. In the ITS tree the Zoysiinae is sister to a highly supported Sporobolinae in which a Psilolemma jaegeri–Sporobolus somalensis clade is sister to the remaining species of Sporobolus s.l. Within Sporobolus s.l. the nuclear and plastid analyses identify the same 16 major clades of which 11 are strongly supported in the ITS tree and 12 are strongly supported in the combined plastid tree. The positions of three of these clades representing proposed sections Crypsis, Fimbriatae, and Triachyrum are discordant in the nuclear and plastid trees, indicating their origins may involve hybridization. Seven species fall outside the major clades in both trees, and the placement of ten species of Sporobolus are discordant in the nuclear and plastid trees. We propose incorporating Calamovilfa, Crypsis, Spartina, Thellungia, and Eragrostis megalosperma within Sporobolus, and make the requisite 35 new combinations or new names. The molecular results support the recognition of 11 sections and 11 subsections within Sporobolus s.l.; four sections are new: Airoides, Clandestini, Cryptandri, and Pyramidati; three sections are new combinations: Calamovilfa, Crypsis, and Spartina; four subsections are new combinations: Calamovilfa, Crypsis, Ponceletia, and Spartina; seven subsections are new: Actinocladi, Alterniflori, Floridani, Helvoli, Pyramidati, Spicati, and Subulati; 30 new combinations in Sporobolus: S. aculeatus, S. advenus, S. alopecuroides, S. alterniflorus, S. angelicus, S. arcuatus, S. bakeri, S. borszczowii subsp. acuminatus, S. borszczowii subsp. ambiguus, S. brevipilis, S. coarctatus, S. cynosuroides, S. densiflorus, S. factorovskyi, S. foliosus, S. hadjikyriakou, S. ×longispinus, S. maritimus, S. megalospermus, S. michauxianus, S. minuartioides, S. niliacus, S. pumilus, S. rigidus, S. rigidus var. magnus, S. spartinus, S. schoenoides, S. ×townsendii, S. turkestanicus, and S. vericolor; and five new names in Sporobolus: S. arenicola, S. ×eatonianus, S. hookerianus, S. mobberleyanus, and S. vaseyi are made. Lectotypes are designated for Crypsis factorovskyi, Heleochloa ambigua, and Torgesia minuartioides. Keywords Calamovilfa; classification; Crypsis; ITS; phylogeny; plastid DNA sequences; Pogononeura; Psilolemma; Spartina; Sporobolus; Thellungia; Zoysieae Supplementary Material The alignments are available in the Supplementary Data section of the online version of this article at http://ingentaconnect.com/content/iapt/tax INTRODUCTION In the most recent classification of the grass subfamily Chloridoideae Kunth ex Beilschm., the tribe Zoysieae Benth. includes the incertae sedis genus Urochondra C.E.Hubb. and two subtribes, Zoysiinae Benth. and Sporobolinae Benth. (Peterson & al., 2007, 2010a; Soreng & al., 2013). Zoysiinae includes a single genus, Zoysia Willd., with 11 species native to Australasia (Nightingale & al., 2005; Clayton & al., 2006). They are primarily mat-forming perennials with cylindrical racemes, Received: 26 Feb 2014 | returned for first revision: 20 May 2014 | last revision received: 2 Oct 2014 | accepted: 14 Oct 2014 | not published online ahead of inclusion in print and online issues || © International Association for Plant Taxonomy (IAPT) 2014 1212 Version of Record (identical to print version). TAXON 63 (6) • December 2014: 1212–1243 Peterson & al. • Sporobolus: phylogeny and classification spikelets that usually disarticulate below the glumes, lower glumes absent or much reduced, upper glumes laterally compressed and coriaceous, and 1–3-nerved hyaline lemmas with entire or mucronate apices. The subtribe Sporobolinae consists of: Calamovilfa (A.Gray) Hack. ex Scribn. & Southw. (5 spp. endemic to North America), Crypsis Aiton (11 spp. endemic to Asia and Africa), Pogononeura Napper (monotypic, endemic to East Africa), Spartina Schreb. (17 spp. centered in North America), and Sporobolus R.Br. (186 spp. worldwide) (Mobberley, 1956, Lorch, 1962; Napper, 1963; Thieret, 1966, 2003; Tan, 1985; Peterson & al., 2003, 2004, 2007, 2010a; Nightingale & al., 2005; Clayton & al., 2006; Kern, 2012; Saarela, 2012). The Sporobolinae share most of the same character trends as for the Zoysieae, i.e., spikelets with a single floret, spiciform inflorescences of numerous deciduous racemelets disposed along a central axis, lemmas usually rounded and rarely with apical awns, and glumes often modified and oddly shaped, but differ by having modified caryopses (pericarps free, reluctantly so in Spartina; a free pericarp that separates completely from the seed has been referred to as the “cistoid type” whereas the “follicoid type” has a free pericarp adjoining the seed; we do not know which subtype applies to Spartina, see Sendulsky & al., 1986; Yang & al., 2008), spikelets oriented abaxially along the axis (lemma is facing the rachis), lemmas that are similar in texture to the glumes, and paleas that are relatively long and about the same length as the lemma (Peterson & al., 2004, 2007). Zoysia species have a true caryopsis with fused pericarps, spikelets oriented adaxially along the axis (lemma facing away from the rachis), lemmas less firm than the glumes, and paleas relatively short or very reduced when compared with the lemma (Peterson & al., 2007). Urochondra was shown to have similar characteristics as Zoysia, and additionally, has beaked caryopses formed from thickened style bases (Clayton & Renvoize, 1986; Clayton & al., 2006; Peterson & al., 2010a). Based on sharing caryopses with free pericarps, 1-veined lemmas, and ciliate ligules (= a line of hairs), Hubbard (1947) suggested Crypsis, Urochondra, and Sporobolus be placed in the tribe Sporoboleae Stapf. Sporobolus is characterized in having single-flowered spikelets, 1-nerved (rarely 3-nerved) lemmas, fruits with free pericarps (cistoid type), or “modified caryopses” as proposed by Brandenburg (2003), and ligules a ciliate membrane or line of hairs (Peterson & al., 1995, 1997). Species of Sporobolus generally inhabit dry or stony soils to saline or alkaline sandy to clay loam soils in prairies, savannahs, and along disturbed roadsides (Clayton & Renvoize, 1986; Peterson & al., 1997). Numerous infrageneric classifications of Sporobolus have been proposed over the last century based primarily on morphology and anatomy. Stapf (1898) first divided the genus into two sections: Chaetorhachia Stapf and Eusporobolus Stapf. Pilger (1956) divided the latter section, which he elevated to Sporobolus subg. Sporobolus (Stapf) Pilg., into six groups based on life form and characteristics of the glumes and panicles. Based on caryopsis morphology, Bor (1960) divided Sporobolus into five unnatural groups (Baaijens & Veldkamp, 1991), and Clayton (1965) treated the Sporobolus indicus (L.) R.Br. complex in the tropics and subtropics. Working on the Malesian species, Baaijens & Veldkamp (1991) divided Sporobolus into five sections based on a leaf anatomical survey and overall morphology. More recently, Weakley & Peterson (1998) recognized the Sporobolus floridanus Chapm. complex to include five species in the southeastern United States, Shrestha & al. (2003) recognized seven clades within the genus, and Denham & Aliscioni (2010) recognized the S. aeneus complex to include five species. Recent major revisions of Sporobolus include Boechat & Longii-Wagner (1995) for Brazil, Simon & Jacobs (1999) for Australia, Peterson & al. (2003, 2009) for the United States and Canada, and Giraldo-Cañas & Peterson (2009) for Peru, Ecuador, and Colombia. Two subtypes of C4 photosynthesis based on nicotinamide adenine dinucleotide cofactor malic enzyme (NAD-ME) and phosphoenolpyruvate carboxykinase (PCK) have been found in the Zoysieae with some verified by biochemical assay (Gutierrez & al., 1974; Brown, 1977; Hattersley & Watson, 1992). Species with NAD-ME and PCK subtypes based on anatomical and biochemical determination have been found in Sporobolus. Based on anatomical descriptions, Calamovilfa, Crypsis, Pogononeura, Psilolemma S.M.Phillips, and Urochondra are NAD-ME or PCK. Spartina and Zoysia are PCK based on anatomical and biochemical determinations (Hattersley & Watson, 1992; Sage & al., 1999). The ecological and economic importance among members of the Sporobolinae is high since some species are dominant components of xeric grasslands (Calamovilfa longifolia (Hook.) Hack. ex Scribn & Southw., Spartina pectinata Link, Sporobolus airoides (Torr.) Torr., S. consimilus Fresen., S. heterolepis (A.Gray) A.Gray, S. junceus (P.Beauv.) Kunth, S. spicatus (Vahl) Kunth, and S. wrightii Munro ex Scribn.), coastal habitats (e.g., Sporobolus virginicus (L.) Kunth), such as intertidal mud flats, estuaries, coastal salt marshes (e.g., Spartina alterniflora Loisel. and S. maritima (Curtis) Fernald), and many are invasive (e.g., Crypsis alopecuroides (Piller & Mitterp.) Schrad., Spartina alterniflora, S. anglica C.E.Hubb., S. densiflora Brongn., Sporobolus africanus (Poir.) Robyns & Tournay, S. fertilis (Steud.) Clayton, S. indicus, and S. pyramidalis P.Beauv.) (Wood & Gaff, 1989; Watson & Dallwitz, 1992; Ainouche & al., 2009; Chelaifa & al., 2010). Molecular studies have provided new insights into the evolutionary history of Sporobolus, even though the number of species sampled for molecular studies has been rather small. In an earlier molecular study of Sporobolus, Ortiz-Diaz & Culham (2000) analyzed 42 species using the nuclear ribosomal DNA (ITS) region. They found strong support in their strict consensus tree for the monophyly of Sporobolus with the inclusion of Calamovilfa and Crypsis. Several other DNA-based phylogenies present Sporobolus as paraphyletic with Calamovilfa, Crypsis, Pogononeura, and Spartina embedded within (Hilu & Alice, 2001; Columbus & al., 2007; Bouchenak-Khelladi & al., 2008; Peterson & al., 2010a). Peterson & al. (2010a) recommended future expansion of Sporobolus to include all of these genera. Understanding the evolutionary history of the Sporobolinae is part of our long-range plan to elucidate the phylogeny and classification of the subfamily Chloridoideae. To accomplish Version of Record (identical to print version). 1213 Peterson & al. • Sporobolus: phylogeny and classification the immediate goal of understanding the evolutionary history of the Sporobolinae we are using a large dataset of 170 species of Chloridoideae to test the monophyly of Sporobolus and identify intrageneric taxonomic units. Here, we present a new phylogenetic analysis for 118 of the 186 species that belong to Sporobolus based on analysis of ITS and four plastid regions (rpl32-trnL, ndhA, rps16, rps16-trnK). We discuss morphological and anatomical characters supporting relationships and propose changes to the classification. The main objectives of our work are to discriminate among the major groups within Sporobolus and hypothesize basic evolutionary trends. In addition, we include a brief review of the chromosome numbers reported within the Zoysieae. MATERIALS AND METHODS Taxon sampling. — The taxon sampling consists of 281 samples, representing 175 species of grasses, of which 170 species are included in subfamily Chloridoideae; these are partitioned to represent the following five tribes (Soreng & al., 2013): Centropodieae with a single species, Triraphideae with two species, Eragrostideae with 12 species, Cynodonteae with 10 species, and Zoysieae with 148 species. Our sampling is principally focused on genera that are morphologically similar and phylogenetically related to Sporobolus, including a large sample of 144 species within the subtribe Sporobolinae (Peterson & al., 2010a). The dataset for Sporobolus includes 118 of the 186 species (63%) currently placed in the genus (Clayton & al., 2006). We tried to sample from all continents as many species of Sporobolus as possible and many of these specimens were obtained from existing collections housed in the United States National Herbarium. All groups and clades of Sporobolus species represented in previous molecular studies are more heavily sampled here. A complete list of taxa, voucher information, and GenBank numbers can be found in Appendix 1. Outside of the Chloridoideae, three species of Danthonioideae (Capeochloa cinta spp. sericea (N.P.Barker) N.P.Barker & H.P.Linder, Danthonia compressa Austin, Rytidosperma penicellatum (Labill.) Connor & Edgar), one species from Aristidoideae (Aristida gypsophila Beetle), and one species of Panicoideae (Chasmanthium latifolium (Michx.) H.O.Yates, phylogenetic root) were chosen as outgroups (Peterson & al., 2010a, 2011, 2012, 2014a). In the phylograms the native distribution of each species is indicated as follows: North America (red), South America (tan), Africa and Arabia (green), Australia and Pacific Islands (dark purple), Southeast Asia (light purple), and Europe (blue). DNA extraction, amplification, and sequencing. — All procedures were performed in the Laboratory of Analytical Biology (LAB) at the Smithsonian Institution. DNA isolation, amplification, and sequencing of the rpl32-trnL spacer and the ndhA intron (small single-copy region), the rps16-trnK spacer and the rps16 intron (large single-copy region), and ITS were accomplished following procedures outlined in Peterson & al. (2010a, b). We specifically targeted these four plastid regions, which were most informative in our previous studies on chloridoid grasses (Peterson & al., 2010a, b, 2011, 2012, 2014a, b). 1214 TAXON 63 (6) • December 2014: 1212–1243 Phylogenetic analyses. — We used Geneious v.5.3.4 (Drummond & al., 2011) for contig assembly of bidirectional sequences, and we used Muscle (Edgar, 2004) to align consensus sequences and adjust the final alignment. We conducted maximum likelihood (ML) and Bayesian analyses to infer overall phylogeny. The combined datasets were partitioned by region (i.e., there were five partitions). Nucleotide substitution models selected by Akaike’s information criterion, as implemented in jModelTest v.0.1.1 (Posada, 2008), were specified for each partition (Table 1). The ML analysis was conducted with GARLI v.0.951 (Zwickl, 2006). The maximum likelihood bootstrap analysis was performed with 1000 replicates, with 10 random addition sequences per replicate. The output file containing trees of ML found for each bootstrap dataset was read into PAUP* v.4.0b10 (Swofford, 2000) where the majorityrule consensus tree was constructed. Bootstrap (BS) values of 90%–100% were interpreted as strong support, 70%–89% as moderate, and 50%–69% as weak. Bayesian posterior probabilities (PP) were estimated using parallel version of the MrBayes v.3.1.2 (Huelsenbeck & Ronquist, 2001; Ronquist & Huelsenbeck, 2003) where the run of eight Markov chain Monte Carlo iterations was split between an equal number of processors. Bayesian analysis was initiated with random starting trees and was initially run for four million generations, sampling once per 100 generations. The analysis was run until the value of standard deviation of split sequences dropped below 0.01 and the potential scale reduction factor was close to or equal to 1.0. The fraction of the sampled values discarded as burn-in was set at 0.25. Posterior probabilities of 0.95–1.00 were considered as strong support. RESULTS Phylogenetic analyses. — Eighty-three percent (994/1199) of the sequences used in our study are newly reported here and in GenBank, and only 14.7% (206/1405) of the sequences are missing in the combined matrix (Appendix 1). The following species are only in the combined plastid tree: Calamovilfa curtissii (Vasey) Scribn., Sporobolus aldabrensis Renvoize, S. conrathii (Conrath & Hack.) Chiov., S. elongatus R.Br., S. floridanus, S. maderaspatanus Bor, S. micranthus (Steud.) T.Durand & Schinz, S. mildbraedii Pilg., S. olivaceus Napper, and Zoysia pacifica (Goudswaard) M.Hotta & Kuroki; and S. smutsii Napper and S. tenacissimus (L.f.) P.Beauv. are only in the ITS tree. Total alignment characters for individual regions are noted in Table 1. Plastid rpl32-trnL had the highest sequencing success; this region was recovered from 95.8% of taxa recovered in the dataset. Recovery of other regions ranged from 70.1% to 89.1%. There was hard incongruence between the combined plastid and ITS datasets (discussed below); therefore, we did not combine them and the two datasets were analyzed separately. We chose to emphasize 16 primarily homogeneous clades that exist in the ITS and combined plastid phylograms (Figs. 1, 2). Analysis of ITS sequences. — The phylogenetic tree derived from ITS sequences (Fig. 1) is well resolved with Version of Record (identical to print version). TAXON 63 (6) • December 2014: 1212–1243 Peterson & al. • Sporobolus: phylogeny and classification moderate support (BS = 71, PP = 1.00) for tribe Zoysieae (BS = 69%, PP = 0.95), strong support for subtribe Zoysiinae (BS = 100, PP = 1.00) and strong support for subtribe Sporobolinae (BS = 100, PP = 1.00). The Zoysiinae includes a monophyletic Zoysia (BS = 100, PP = 1.00) that is sister to Urochondra setulosa. Sporobolus is paraphyletic, as the Sporobolinae includes a weakly supported Psilolemma jaegeri (Pilg.) S.M.Phillips– Sporobolus somalensis clade (BS = 65, PP = 0.90) that is sister to a moderately supported clade (BP = 71, PP = 1.00) comprising the remaining species of Sporobolus as well as Calamovilfa, Crypsis, Spartina, and Thellungia. Within Sporobolus s.l. there are 11 strongly supported clades (B–G, I, J, M–O; BS = 91–100, PP = 1.00), three moderately supported clades (A, H, K; BS = 78–87, PP = 0.99–1.00), one clade supported only by Bayesian inference (X, BS < 50, PP = 0.95), and one unsupported clade (L). Species in clades A–O, X are listed in Table 2). The J–O clade is moderately supported (Fig. 1B, BS = 85, PP = 1.00) and contains species predominantly from North America. Within clade O there are three strongly supported subclades (BS = 96–100, PP = 1.00) that include: (1) Spartina alterniflora Loisel., S. anglica, S. foliosa Trin., S. maritima, and S. ×townsendii H.Groves & J.Groves; (2) S. bakeri Merr., S. ×caespitosa A.A.Eaton, S. ciliata Brongn., S. cynosuroides (L.) Roth., S. densiflora, S. gracilis, S. montevidensis Arechav., S. patens (Aiton) Muhl., and S. pectinata; and (3) S. spartinae (Trin) Merr. & Hitchc. Species of Sporobolus not in clades A–O include: the Sporobolus acinifolius Stapf–S. albicans Nees–S. tenellus (Spreng.) Kunth clade supported only by Bayesian inference (Fig. 1 clade X, BS < 50, PP = 0.95) that is sister to all remaining species in Sporobolus s.l. (PP = 0.68); Sporobolus oxylepsis Mez–S. robustus Kunth pair are sister to two accessions of S. consimilis (BS = 98, PP = 1.00), and together these are sister to the Thellungia advena–Eragrostis megalosperma pair (BS = 87, PP = 1.00); Sporobolus tourneuxii is sister to E–O clades; three accessions of Sporobolus buckleyi and four accessions of S. palmeri (BS = 52, PP = 0.69) are sister to clades J–O, and form a moderately supported North American clade (BS = 85, PP = 1.00); and Sporobolus rigens (Trin.) E.Desv. is sister to a clade comprising the L–O clades (BS = 98, PP = 1.00). Analysis of combined plastid sequences. — The phylogenetic tree based on combined plastid sequences (Fig. 2) is well resolved with weak support (BS = 51, PP = 0.71) for a paraphyletic Sporobolus that includes Calamovilfa, Crypsis, Spartina, and Thellungia. Pogononeura biflora Napper is aligned within the Cynodonteae. The Zoysieae clade is moderately supported (BS = 88, PP = 1.00) and Psilolemma is sister to a clade supported only by Bayesian posterior probabilities (BS < 50, PP = 0.96) containing a trichotomy with an unsupported Urochondra–Zoysia clade, a strongly supported (BS = 95, PP = 1.00) Sporobolus somalensis, and a weakly supported (BS = 51, PP = 0.71) Sporobolus s.l. A Sporobolus acinifolius–S. albicans–S. tenellus clade (Fig. 2 clade X, BS = 51, PP = 0.95) is sister to a lineage of the remaining species that includes 12 strongly supported clades Table 1. Characteristics of the five regions, rpl32-trnL, ndhA intron, rps16 intron, rps16-trnK and ITS, and parameters used in maximum likelihood and Bayesian analyses indicated by Akaike information criterion (AIC). rps16-trnK Combined plastid data ITS 964 954 4091 798 70.1 84.9 84.5 83.8 89.1 199 (83%) 781 (82%) 6,057.03 rpl32-trnL ndhA intron Total aligned characters 937 1236 Sequencing success (%) 95.8 rps16 intron Number of new sequences 229 (85%) 155 (79%) 198 (83%) Likelihood score (–lnL) 6,954.03 7,917.23 5,082.78 213 (84%) 19,070.08 Number of substitution types 6 6 6 6 – 6 Model for among-site rate variation gamma gamma gamma gamma – gamma Substitution rates 1.5591 2.3107 0.5085 1.3749 1.9527 1.0000 1.3196 2.1199 0.5392 1.6311 2.8176 1.0000 0.9545 1.1785 0.1955 0.9182 1.7342 1.0000 1.3190 2.7049 0.5019 1.1862 2.2382 1.0000 – 1.3286 3.0338 1.2604 0.9521 5.0943 1.0000 0.3598 0.1288 0.1242 0.3871 0.3778 0.1301 0.1524 0.3394 0.4061 0.1076 0.1521 0.3339 0.2975 0.1454 0.1506 0.4063 – 0.2670 0.1914 0.2346 0.3069 Character state frequencies Proportion of invariable sites 0.1814 0.2938 0.3078 0.2131 – 0.2174 Substitution model GTR + I + G TVM + G TIM3 + I + G TIM3 + G – GTR + I + G Gamma shape parameter (α) 1.0674 1.2902 1.1756 1.5083 – 1.1222 Version of Record (identical to print version). 1215 Peterson & al. • Sporobolus: phylogeny and classification TAXON 63 (6) • December 2014: 1212–1243 OUTGROUP 96 1.00 83 1.00 95 54 0.81 1.00 Gymnopogon grandiflorus Leptothrium rigidum Eleusine indica 100 Chloris barbata 1.00 Cynodon plectostachyus Melanocenchris abyssinica 97 Eragrostiella leioptera 100 1.00 Oropetium capense 1.00 68 Tripogon multiflorus 0.90 Urochondra setulosa 100 Zoysia japonica 100 1.00 1.00 100 Zoysia macrantha 1.00 Zoysia macrantha subsp. walshii 100 Psilolemma jaegeri Peterson 24247 65 1.00 Psilolemma jaegeri Peterson 24249 100 Sporobolus somalensis Boalev 317 0.90 1.00 Sporobolus somalensis Herruming 2022 Sporobolus albicans Sporobolus tenellus 0.95 Sporobolus acinifolius 0.57 Sporobolus farinosus 82 98 Sporobolus pectinellus Fay 7131 1.00 Sporobolus festivus 1.00 100 Sporobolus infirmus 1.00 100 Sporobolus stapfianus Laegaard 15939 Sporobolus africanus Peterson 24024 1.00 66 Sporobolus africanus Peterson 24121 75 0.89 72 Sporobolus pyramidalis Peterson 24150 0.94 Sporobolus pyramidalis Senaratne 6082 1.00 100 Sporobolus pectinellus Peterson 23978 1.00 Sporobolus molleri Gereau 5790 Sporobolus molleri Rwaburindore 2183 95 Sporobolus fertilis Raulerson 775 1.00 Sporobolus fertilis Gould 13535 85 71 Sporobolus jacquemontii Estrada 18964 71 1.00 1.00 Sporobolus jacquemontii Peterson 15902 68 Sporobolus indicus Peterson 22025 1.00 0.89 Sporobolus indicus Peterson 7337 Sporobolus berteroanus Sporobolus pseudairoides 0.82 Sporobolus myrianthus 67 Sporobolus creber 0.85 87 1.00 Sporobolus laxus Sporobolus natalensis Sporobolus sessilis Sporobolus tenuissimus 51 83 Sporobolus blakei 0.85 74 1.00 Sporobolus diandrus 0.99 86 Sporobolus trichodes Rzedowski 39901 0.99 Sporobolus atrovirens Peterson 22342 Sporobolus atrovirens Peterson 24661 Sporobolus atrovirens Peterson 24729 0.68 Sporobolus atrovirens Rosalen 3381 77 1.00 CYNODONTEAE ZOYSIINAE 69  0.95  ZOYSIEAE X  SPOROBOLINAE Sporobolus Sporobolus fimbriatus Peterson 24206 100 Sporobolus greenwayi 1.00 84 71 Sporobolus fimbriatus Peterson 24280 Sporobolus diffusus 0.99 0.97 6895 Sporobolus brockmanii 0.92 85 1.00 90 Sporobolus fimbriatus Peterson 24241 0.99 1.00 Sporobolus confinis 99 Sporobolus phyllotrichus 1.00 Sporobolus pellucidus 92 A B sect. Fimbriatae Sporobolus nervosus Sporobolus smutsii Sporobolus montanus 100 Sporobolus ruspolianus McKinnon s.n. 1.00 Sporobolus ruspolianus Bally 15581 Sporobolus ruspolianus Flemming 2136 100 100 Crypsis schoenoides 1.00 1.00 65 Crypsis aculeata Soreng 5469 0.97 Crypsis aculeata Soreng7940 100 Crypsis alopecuroides 1.00 100 Sporobolus helvolus Laegaard 17063 92 1.00 Sporobolus helvolus Peterson 24217 1.00 95 Sporobolus mitchellii 1.00 Sporobolus humilis 97 Eragrostis megalosperma Lazarides 5647 Eragrostis megalosperma Lazarides 4215 87 1.00 Eragrostis megalosperma Blake 6966 1.00 100 Thellungia advena Belson 1930 1.00 Thellungia advena Lazarides 4185 97 Sporobolus consimilis Collenette 17 98 1.00 Sporobolus consimilis Peterson 24252 99 Sporobolus oxylepsis Schlieben 6158 1.00 1.00 Sporobolus robustus Laegaard 17398 100 Sporobolus sanguineus Bidgood 2397 1.00 Sporobolus sanguineus Gereau 6014 100 1.00 100 Sporobolus subglobosus 100 1.00 Sporobolus panicoides 1.00 Sporobolus dinklagei 100 Sporobolus purpurascens Peterson 9453 1.00 99 Sporobolus aeneus 73 1.00 100 0.98 Sporobolus acuminatus Guala 1372 Sporobolus acuminatus Irwin 11586 1.00 Sporobolus linearifolius Sporobolus apicaulis Sporobolus eylesii 100 76 Sporobolus stolzii Peterson 23946 1.00 100 0.98 Sporobolus stolzii Richards 21377 69 0.67 1.00 Sporobolus stolzii Peterson 24133 Sporobolus pilifer 100 100 Sporobolus bogotensis 1.00 1.00 79 Sporobolus lasiophyllus Peterson 21820 98 0.96 Sporobolus lasiophyllus Peterson 21879 1.00 82 Sporobolus junceus Strong 2332 0.97 99 Sporobolus junceus Thierat 25181 1.00 76 Sporobolus purpurascens Swallen 10179 0.95 Sporobolus purpurascens Trovart 25 subsect. Helvoli subsect. Crypsis 1.00 subsect. Helvoli 54 0.80 88 1.00 0.1 Fig. 1B 1216 Version of Record (identical to print version). D sect. Triachyrum North America South America Africa & Arabia Australia & Pacific Southeast Asia Europe C sect. Crypsis 78 1.00 sect. Sporobolus 99 1.00 CENTROPODIEAE TRIRAPHIDEAE ERAGROSTIDEAE TAXON 63 (6) • December 2014: 1212–1243 Fig. 1A Sporobolus tourneuxii Sporobolus pungens Durandi 1846 Sporobolus pungens Zohary 489 100 Sporobolus virginicus Peterson 14311 1.00 87 Sporobolus virginicus Peterson 15683 0.88 96 1.00 99 Sporobolus virginicus Whistler 6132 1.00 Sporobolus virginicus Peterson 23820 E sect. Virginicae Sporobolus virginicus Baldini s.n. 100 Sporobolus kentrophyllus Bogdan 3306 1.00 Sporobolus kentrophyllus Mwasumbi 13049 100 Sporobolus rigidifolius 1.00 Sporobolus verdcourtii 66 Sporobolus uniglumis 100 1.00 64 1.00 84 Sporobolus scabriflorus 100 0.95 0.89 Sporobolus microprotus 1.00 Sporobolus spicatus Peterson 24230 64 0.61 92 Sporobolus spicatus Laegaard 17790 1.00 Sporobolus spicatus Peterson 24055 Sporobolus phleoides 87 78 Sporobolus nitens 1.00 100 Sporobolus australasicus Peterson 14404 0.99 99 54 1.00 Sporobolus australasicus Walsh 4237 1.00 0.52 100 Sporobolus caroli Saarela 1626 0.51 72 1.00 Sporobolus caroli Speak 1915 0.98 60 Sporobolus actinocladus Senaratne 6082 Sporobolus actinocladus Saarela 1670 0.98 Sporobolus actinocladus Batianoff s.n. Sporobolus actinocladus Saarela 1625 Sporobolus centrifugus 89 1.00 96 Sporobolus cordofanus Laegaard 15973 1.00 Sporobolus marginatus Rathay 664 100 Sporobolus scabridus 1.00 Sporobolus arabicus 62 Sporobolus ludwigii 67 0.81 100 Sporobolus tenacissimus 0.96 72 1.00 Sporobolus ioclados 0.99 Sporobolus pyramidatus Peterson 24868 81 Sporobolus coahuilensis Gonzales 3600 70 1.00 64 Sporobolus coahuilensis Peterson 10000 0.98 0.91 Sporobolus contractus Sporobolus coromandelianus Schweinfurth 896 Sporobolus coromandelianus Fosberg 51193 Sporobolus coromandelianus Peterson 24269 Sporobolus pyramidatus Peterson 18994 63 0.98 Sporobolus pyramidatus Peterson 21163 Sporobolus pyramidatus Garcia 3757 Sporobolus cordofanus Greenway 10191 Sporobolus pyramidatus Peterson 8920 61 Sporobolus pyramidatus Gooding 191 Sporobolus cordofanus Peterson 24232 Sporobolus marginatus Leippert 5101 Sporobolus domingensis F subsect. Subulati 100 1.00 G subsect. Spicati H subsect. Actinocladi 52 0.69  85 1.00 North American clade Sporobolus buckleyi Lira 546 Sporobolus buckleyi Piedra s.n. Sporobolus buckleyi Rodriguez s.n. Sporobolus palmeri Peterson 24862 100 Sporobolus palmeri Peterson 24955b 1.00 Sporobolus palmeri Peterson 24918 Sporobolus palmeri Peterson 24955a Sporobolus splendens 67 100 Sporobolus spiciformis Garcia 2638 0.69 1.00 Sporobolus spiciformis Garcia 2814 91 Sporobolus wrightii Peterson 10638 1.00 Sporobolus wrightii Peterson 24841 97 Sporobolus wrightii Peterson 19841 1.00 Sporobolus airoides Peterson 24895 Sporobolus airoides subsp. airoides Peterson 24587 Sporobolus airoides Peterson 10002 Sporobolus airoides subsp. airoides Peterson 24853 Sporobolus airoides Peterson 24956 Sporobolus texanus 100 Sporobolus nealleyi Peterson 17839 87 1.00 Sporobolus nealleyi Villarreal 1991 Sporobolus giganteus 1.00 Sporobolus flexuosus Valdes Reyna 2014 83 75 Sporobolus cryptandrus Peterson 24454 1.00 53 0.80 Sporobolus flexuosus Reeder 5477 0.80 68 Sporobolus cryptandrus Peterson 24485 0.98 Sporobolus cryptandrus Peterson 22003 Sporobolus rigens 77 Sporobolus compositus Sporobolus clandestinus Waterfall 5881 0.99 Sporobolus neglectus 98 Sporobolus clandestinus Freeman 6687 99 1.00 Sporobolus clandestinus Waterfall 12309 1.00 Sporobolus clandestinus Schuster 197 53 77 Sporobolus vaginiflorus var. ozarkanus 0.74 0.99 Sporobolus vaginiflorus Wieboldt 9596 0.60 97 Sporobolus vaginiflorus Rogers 40059 1.00 Sporobolus vaginiflorus Wherry s.n. Calamovilfa brevipilis 100 Calamovilfa arcuata 1.00 99 1.00 98 Calamovilfa longifolia Hatch 5738 97 1.00 98 Calamovilfa gigantea Long 1124 1.00 72 Calamovilfa gigantea Gates 17021 1.00 0.90 Calamovilfa gigantea Ungor 1018 100 Sporobolus silveanus 98 Sporobolus heterolepis 1.00 1.00 Sporobolus pinetorum 99 Sporobolus teretifolius McDonald 9988 1.00 Sporobolus teretifolius Peterson 14232 100 Spartina spartinae Reeder 4568 1.00 Spartina spartinae Villarreal 3201 Spartina foliosa 100 1.00 Spartina alterniflora Lakela 26573 96 100 Spartina alterniflora Naylov 236 Spartina anglica Matthews s.n. 1.00 1.00 93 56 91 Spartina anglica Williams s.n. a 1.00 0.99 Spartina anglica Williams s.n. b 53 Spartina maritima 67 0.89 Spartina ×townsendii 100 Spartina gracilis Lewis 78 1.00 Spartina gracilis Scoggan 15626 100 Spartina cynosuroides Fisher 33123 100 1.00 Spartina cynosuroides Hill 15630 1.00 Spartina gracilis Hendrickson 41 72 100 Spartina ×caespitosa 1.00 0.97 Spartina pectinata Cooperrider s.n. Spartina pectinata Dirig 2812 Spartina bakeri 100 1.00 Spartina patens Shchepanek 6426 Spartina patens Dutton 2536 75 Spartina patens Peterson 24435 0.91 Spartina ciliata 100 1.00 Spartina densiflora Peterson 19154 Spartina densiflora Lomer 5723 Spartina montevidensis Clayton 4723 subsect. Pyramidati I sect. Pyramidati Fig. 1A–B. Maximum-likelihood tree inferred from nuclear ribosomal ITS sequence data. Numbers above branches are bootstrap values; numbers below branches are posterior probabilities; color indicates native distribution (see legend); clades labeled A–O, X are discussed in text; vertical bar indicates our classification; scale bar = 10% substitutions/site. Peterson & al. • Sporobolus: phylogeny and classification 100 1.00 76 0.86 J sect. Airoides North America South America Africa & Arabia Australia & Pacific Southeastern Asia Europe M subsect. Calamovilfa N subsect. Floridani subsect. Ponceletia subsect. Alterniflori 0.1 subsect. Spartina O sect. Spartina L sect. Clandestini sect. Calamovilfa K sect. Cryptandri 1217 Peterson & al. • Sporobolus: phylogeny and classification TAXON 63 (6) • December 2014: 1212–1243 OUTGROUP CENTROPODIEAE TRIRAPHIDEAE ERAGROSTIDEAE 100 1.00 100 1.00 100 0.64 100 1.00 1.00 100 1.00 100 1.00 ZOYSIINAE  88 1.00 ZOYSIEAE CYNODONTEAE 0.96 91 1.00 96 X Sporobolus scabriflorus Sporobolus farinosus Sporobolus stapfianus Sporobolus pectinellus Fay 7131 100 100 Sporobolus festivus 1.00 Sporobolus infirmus 1.00 Sporobolus pyramidalis Peterson 24150 Sporobolus pyramidalis Senaratne 6082 Sporobolus molleri Gereau 5790 Sporobolus molleri Rwaburindore 2183 Sporobolus pectinellus Peterson 23978 Sporobolus tenuissimus Greenway 1745 Sporobolus diandrus 59 Sporobolus blakei 0.99 71 Sporobolus tenacissimus Sporobolus tenuissimus Peterson 9523 1.00 53 Sporobolus trichodes Sporobolus atrovirens Peterson 22342 1.00 100 1.00 Sporobolus atrovirens Peterson 24729 Sporobolus atrovirens Peterson 24661 Sporobolus atrovirens Rosalen 3381 96 Sporobolus myrianthus Sporobolus sessilis 1.00 96 1.00 100 Sporobolus africanus Peterson 24024 1.00 Sporobolus africanus Peterson 24121 Sporobolus fertilis Raulerson 775 96 1.00 Sporobolus fertilis Gould 13535 Sporobolus natalensis 1.00 88 54 1.00 79 Sporobolus creber 1.00 Sporobolus laxus 0.96 Sporobolus pseudairoides Sporobolus berteroanus 60 1.00 Sporobolus indicus Peterson 22025 Sporobolus indicus Peterson 7337 99 Sporobolus jacquemonthii Estrada 18964 1.00 Sporobolus jacquemontii Peterson 15902 A 100 1.00 1.00 100 1.00 100 1.00  51 0.71 Sporobolus 63 0.99 Sporobolus tourneuxii Sporobolus mildbraedii Sporobolus dinklagei 76 100 Sporobolus purpurascens Trovart 25 1.00 1.00 Sporobolus purpurascens Swallen 10179 96 Sporobolus purpurascens Peterson 9453 Sporobolus acuminatus Guala 1372 1.00 97 Sporobolus linearifolius Sporobolus acuminatus Irwin 11586 1.00 97 100 1.00 Sporobolus aeneus 1.00 Sporobolus apiculatus Sporobolus eylesii 87 Sporobolus junceus Strong 2332 1.00 Sporobolus junceus Thierat 25181 97 Sporobolus macrospermus Peterson 9857 1.00 97 Sporobolus lasiophyllus Peterson 21879 1.00 Sporobolus lasiophyllus Peterson 21870 96 Sporobolus bogotensis 1.00 Sporobolus lasiophyllus Peterson 21820 100 Sporobolus sanguineus Bidgood 2397 1.00 Sporobolus sanguineus Gereau 6014 100 Sporobolus panicoides Bidgood 1005 0.59 62 1.00 Sporobolus panicoides Smook 9865 99 Sporobolus micranthus 0.80 1.00 Sporobolus subglobosus 81 Sporobolus pilifer 1.00 100 Sporobolus stolzii Peterson 24133 100 1.00 Sporobolus stolzii Peterson 23946 1.00 Sporobolus stolzii Richards 21377 86 1.00 52 0.92 Sporobolus virginicus Peterson 15683 Sporobolus pungens Zohary 489 Sporobolus virginicus Peterson 14311 89 Sporobolus oxylepsis 96 1.00 1.00 Sporobolus robustus Sporobolus virginicus Baldini s.n. 74 Sporobolus humilis 0.99 59 Sporobolus virginicus Peterson 23820 Sporobolus virginicus Whistler 6132 Sporobolus fimbriatus Peterson 24206 100 Sporobolus greenwayi Sporobolus fimbriatus Peterson 24241 1.00 62 Sporobolus fimbriatus Peterson 24280 0.53 Sporobolus diffusus 99 Sporobolus confinis 1.00 Sporobolus brockmanii 100 Sporobolus nervosus 1.00 93 Sporobolus phyllotrichus 0.99 Sporobolus pellucidus Sporobolus maderaspatanus Sporobolus agrostoides Sporobolus montanus 100 1.00 65 0.82 Fig. 2B D E sect. Virginicae 54 North America South America Africa & Arabia Australia & Pacific Southeast Asia Europe sect. Sporobolus 100 1.00 Gymnopogon grandiflorus Leptothrium rigidum Pogononeura biflora Eleusine indica 100 Chloris barbata 1.00 Cynodon indicus Melanocenchris abyssinica Eragrostiella leioptera 100 100 Oropetium capense 1.00 1.00 Tripogon trifidus 100 Psilolemma jaegeri Peterson 24247 1.00 Psilolemma jaegeri Peterson 24249 Zoysia pacifica Lorence 9432 100 Zoysia pacifica Lorence 7651 1.00 100 Zoysia japonica 1.00 Zoysia macrantha Zoysia macrantha walshii 100 Urochondra setulosa Inckennon 181 1.00 Urochondra setulosa Rechinger 27496 Urochondra setulosa Bailey10868 Urochondra setulosa Baldini s.n. 95 Sporobolus somalensis Boalev 17 Sporobolus somalensis Herruming 2022 1.00 Sporobolus tenellus 51 100 Sporobolus acinifolius Smook 3530 51 0.95 1.00 Sporobolus acinifolius Smook 10167 100 Sporobolus albicans Smook 2459 0.93 1.00 Sporobolus albicans Smook 6270 sect. Triachyrum 100 1.00 B sect. Fimbriatae 100 1.00 0.2 Fig. 2A–B. Maximum-likelihood tree inferred from combined plastid (rpl32-trnL, ndhA, rps16, and rps16-trnK) sequences. Numbers above branches are bootstrap values; numbers below branches are posterior probabilities; color indicates native distribution (see legend); clades labeled A–O, X are discussed in text; vertical bar indicates our classification; scale bar = 20% substitutions/site. 1218 Version of Record (identical to print version). TAXON 63 (6) • December 2014: 1212–1243 Peterson & al. • Sporobolus: phylogeny and classification Fig. 2A 100 1.00 Sporobolus microprotus Sporobolus uniglumis Sporobolus spicatus Peterson 24055 Sporobolus spicatus Laegaard 17790 Sporobolus spicatus Peterson 24230 100 1.00 100 1.00 G subsect. Spicati Sporobolus nitens Sporobolus olivaceus 99 96 Sporobolus phleoides Sporobolus australasicus Peterson 14404 1.00 1.00 76 Sporobolus australasicus Walsh 4237 Sporobolus actinocladus Senaratne 6082 0.97 97 Sporobolus actinocladus Saarela 1625 1.00 Sporobolus actinocladus Batianoff s.n. 100 Sporobolus actinocladus Saarela1670 Sporobolus scabridus 1.00 Sporobolus caroli Saarela 1626 Sporobolus caroli Speak 1915 Sporobolus ludwigii Sporobolus subulatus 100 96 Sporobolus verdcourtii 1.00 94 Sporobolus arabicus 1.00 1.00 Sporobolus kentrophyllus Bogdan 3306 100 Sporobolus kentrophyllus Mwasumbi 13049 1.00 87 Sporobolus domingensis 1.00 Sporobolus ioclados 54 Sporobolus centrifugus 100 100 0.51 Sporobolus cordofanus Laegaard 15973 1.00 1.00 Sporobolus marginatus Rathay 664 100 90 Sporobolus marginatus Leippert 5101 1.00 1.00 Sporobolus coromandelianus Peterson 24269 Sporobolus coromandelianus Schweinfurth 896 100 Sporobolus cordofanus Greenway 10191 1.00 Sporobolus cordofanus Peterson 24232 Sporobolus pyramidatus Peterson 24868 Sporobolus contractus Sporobolus coahuilensis Gonzales 3600 90 Sporobolus coahuilensis Peterson 10000 1.00 Sporobolus pyramidatus Gooding 191 Sporobolus pyramidatus Peterson 18994 Sporobolus pyramidatus Garcia 3757 Sporobolus coromandelianus Fosberg 51193 Sporobolus pyramidatus Peterson 8920 Sporobolus pyramidatus Peterson 21163 Sporobolus neglectus Sporobolus consimilis Collenette 17 Sporobolus consimilis Peterson 24252 1.00 74 Crypsis aculeata Soreng 7940 100 1.00 100 Crypsis alopecuroides 1.00 1.00 Crypsis aculeata Soreng 5469 100 Crypsis schoenoides 1.00 100 Sporobolus ruspolianus Bally 15581 1.00 Sporobolus ruspolianus McKinnon s.n. 54 Sporobolus ruspolianus Flemming 2136 0.84 93 Sporobolus mitchellii 99 1.00 Sporobolus helvolus Laegaard 17063 Sporobolus helvolus Peterson 24217 1.00 Sporobolus texanus Sporobolus nealleyi Correll 18548 Sporobolus nealleyi Peterson 17839 Sporobolus nealleyi Villarreal 1991 0.72 Sporobolus cryptandrus Peterson 24454 62 Sporobolus cryptandrus Peterson 24485 0.56 Sporobolus flexuosus Reeder 5477 0.91 Sporobolus flexuosus Valdes Reyna 2014 Sporobolus giganteus 0.97 Sporobolus airoides Peterson 24895 93 Sporobolus airoides subsp. airoides Peterson 24587 1.00 Sporobolus airoides Peterson 24956 Sporobolus wrightii Peterson 10638 Sporobolus wrightii Peterson 19841 Sporobolus rigens Sporobolus airoides subsp. airoides Peterson 24853 91 Sporobolus vaginiflorus var. ozarkanus 69 1.00 Sporobolus splendens 0.96 61 Sporobolus spiciformis Garcia 2814 0.63 Sporobolus spiciformis Garcia 2638 Sporobolus airoides Peterson 10002 Sporobolus wrightii Peterson 24841 Sporobolus elongatus 0.98 Sporobolus palmeri Peterson 24918 100 1.00 Sporobolus palmeri Peterson 24955b Sporobolus palmeri Peterson 24862 Sporobolus palmeri Peterson 24955a 94 Sporobolus buckleyi Lira 546 0.67 1.00 Sporobolus buckleyi Piedra s.n. Sporobolus buckleyi Rodriguez s.n. 99 Eragrostis megalosperma Lazarides 5647 0.91 Eragrostis megalosperma Lazarides 4215 1.00 Eragrostis megalosperma Blake 6966 Thellungia advena Belson 1930 Thellungia advena Lazarides 4185 69 Sporobolus compositus 1.00 99 Sporobolus conrathii 1.00 94 Sporobolus aldabrensis Sporobolus clandestinus Freeman 6687 1.00 Sporobolus clandestinus Schuster 197 Sporobolus clandestinus Waterfall 12309 Sporobolus clandestinus Waterfall 5881 Sporobolus clandestinus Peterson 24422 Sporobolus vaginiflorus Peterson 24441 0.67 Sporobolus vaginiflorus Rogers 40059 Sporobolus vaginiflorus Wherry s.n. 1.00 Calamovilfa arcuata Calamovilfa brevipilis 1.00 1.00 Calamovilfa gigantea Long 1124 1.00 100 Calamovilfa curtissii 1.00 100 Calamovilfa longifolia 98 1.00 Calamovilfa gigantea Gates 17021 Calamovilfa gigantea Ungor 1018 1.00 H F subsect. Subulati I subsect. Pyramidati 63 1.00 subsect. Crypsis subsect. helvoli sect. Pyramidati subsect. Actinocladi C sect. Crypsis K sect. Cryptandri J  sect. Airoides North American clade M subsect. Calamovilfa 100 1.00 100 1.00 79 1.00 North America South America Africa & Arabia Australia & Pacific Southeast Asia Europe Sporobolus teretifolius Peterson 14232 Sporobolus floridanus Harper s.n. Sporobolus pinetorum Sporobolus teretifolius McDonald 9988 Sporobolus floridanus Curtiss s.n. 100 Sporobolus heterolepis Davidse 19101 Sporobolus silveanus 1.00 100 Spartina maritima Fernandez Casas 5537 100 1.00 Spartina maritima Marchant s.n. Spartina foliosa 1.00 100 Spartina alterniflora Naylov 236 1.00 90 Spartina alterniflora Lakela 26573 Spartina anglica Williams s.n. a 1.00 Spartina ×townsendii Saarela 791 1.00 Spartina anglica Williams s,n. b Spartina anglica Matthews s.n. 1.00 Spartina ×townsendii Hubbard s.n. Spartina spartinae Reeder 4568 Spartina spartinae Villarreal 3201 Spartina densiflora Peterson 19154 93 Spartina densiflora Lomer 5723 1.00 Spartina montevidensis Clayton 4723 75 Spartina cynosuroides Fisher 33123 Spartina cynosuroides Hill 5630 1.00 Spartina ciliata Rambo 56450 Spartina montevidensis Rosengurtt 10853 Spartina gracilis Lewis 1013 Spartina gracilis Scoggan 15626 Spartina patens Shchepanek 6426 Spartina patens Dutton 2536 Spartina bakeri Spartina patens Peterson 24435 0.69 Spartina gracilis Hendrickson s.n. Spartina ×caespitosa Eaton 587 Spartina pectinata Cooperrider s.n. Spartina pectinata Dirig 2812 N subsect. Floridani O sect. Calamovilfa L sect. Clandestini subsect. Ponceletia subsect. Spartina 0.2 sect. Spartina subsect. Alterniflori 1219 Peterson & al. • Sporobolus: phylogeny and classification (Fig. 2 clades A–C, F–J, L–O; BS = 93–100, PP = 1.00), two moderately supported clades (Fig. 2 clade D, BS = 76, PP = 1.00; Fig. 2 clade E, BS = 89, PP = 1.00), and one unsupported grade (Fig. 2K). The North American clade (J–O) received only Bayesian support (Fig. 2B, BS < 50, PP = 0.98). Within clade O there are two moderately to strongly supported subclades that include: (1) Spartina alterniflora, S. anglica, S. foliosa, S. maritima, and S. ×townsendii (BS = 100, PP = 1.00) and (2) S. bakeri, S. ×caespitosa, S. ciliata, S. cynosuroides, S. densiflora, S. gracilis, S. montevidensis, S. patens, and S. pectinata (BS = 75, PP = 1.00). The species composition of each clade in the combined plastid phylogram is nearly identical to the species composition given in the ITS-derived phylogram (Table 2). Species not in clades A–O include: Sporobolus tourneuxii sister to B, D, E–I clades; Sporobolus ludwigii sister to F and I clades; Sporobolus neglectus Nash sister to C, J–O clades; Sporobolus consimilis sister to clade C; Sporobolus elongatus R.Br. sister TAXON 63 (6) • December 2014: 1212–1243 to S. palmeri; and Sporobolus buckleyi, Eragrostis megalosperma, and Thellungia advena form a grade, all of these sister to clade L. Incongruences between the ITS and combined plastid phylograms. — The ITS/plastid incongruence scheme is shown in Fig. 3. There are three types of incongruences among the species within our trees which we define as follows: (1) those taxa that fall in different major clades in the nuclear and combined plastid trees, (2) those species that are outside the major clades in one of the two trees, and (3) those taxa that do not align in a major clade in either tree. The following species fall into category 1 (ITS clade listed first, then plastid): Sporobolus arabicus Boiss. (I, F), S. humilis J.Presl (C, E), S. scabridus S.T.Blake (I, H), S. scabriflorus Stapf ex Massey (G, A), S. vaginiflorus var. ozarkanus (Fernald) Shinners (L, J); category 2: S. conrathii (Conrath & Hack.) Chiov. (–, L), S. oxylepsis (–, E), S. neglectus (L, –), S. rigens (–, J), S. robustus (–, E); and category 3: Eragrostis megalosperma, S. buckleyi, S. con- Table 2. A proposed classification of the Sporobolinae and subgeneric classification of Sporobolus based on combined plastid and nuclear ITS DNA analysis. Letters in bold correspond to the clades (A–O, X) in Figs. 1–3; * indicates species not examined in this study; chromosome numbers are given in brackets [ ]. Sporobolinae Benth. Incertae sedis: Sporobolus somalensis Chiov. Psilolemma S.M.Phillips, Type: P. jaegeri (Pilg.) S.M.Phillips: P. jaegeri Sporobolus R.Br., Type: S. indicus (L.) R.Br. Incertae sedis: S. acinifolius Stapf, S. advenus (Stapf) P.M.Peterson, (Thellungia), S. albicans Nees [2n = 54], S. buckleyi Vasey [2n = 40], S. conrathii (Conrath & Hack.) Chiov., S. consimilis Fresen., S. elongatus R.Br. [2n = 36], S. megalospermus (F.Muell. ex Benth.) P.M.Peterson, S. oxylepsis Mez, S. palmeri Scribn., S. rigens (Trin.) Desv., S. tenellus (Spreng.) Kunth, S. tourneuxii Coss. S. sect. Airoides (Torr.) P.M.Peterson, Type: S. airoides (Torr.) Torr. (J): S. airoides [2n = 80, 90, 108, 126], S. spiciformis Swallen [2n = 40], S. splendens Swallen, S. wrightii Munro ex Scribn. [2n = 36] S. sect. Calamovilfa (A.Gray) P.M.Peterson, Type: S. brevipilus (Torr.) P.M.Peterson (M, N) subsect. Calamovilfa (A.Gray) P.M.Peterson (M): S. arcuatus (K.E.Rogers) P.M.Peterson, S. arenicola P.M.Peterson (Calamovilfa gigantea) [2n = 60], S. brevipilis, S. curtissianus (Vasey) P.M.Peterson, S. rigidus (Buckley) P.M.Peterson (Calamovilfa longifolia) [2n = 40, 60] subsect. Floridani P.M.Peterson, Type: S. floridanus Chapm. (N): *S. curtissii Small ex Kearney, S. floridanus, S. heterolepis (A.Gray) A.Gray [2n = 72], *S. interruptus Vasey [2n = 30], S. pinetorum Weakley & P.M.Peterson, S. silveanus Swallen, S. teretifolius R.M.Harper S. sect. Clandestini P.M.Peterson, Type: S. clandestinus (Biehler) Hitchc. (L): S. aldabrensis Renvoize, S. compositus (Poir.) Merr. [2n = 54, 88, 108], S. clandestinus, S. neglectus Nash [2n = 36], S. vaginiflorus (Torr. ex A.Gray) Alph.Wood [2n = 54] S. sect. Crypsis (Aiton) P.M.Peterson, Type: S. aculeatus (L.) P.M.Peterson (C): subsect. Crypsis (Aiton) P.M.Peterson (C, in part): S. aculeatus, S. alopecuroides (Pillar & Mitterp.) P.M.Peterson [2n = 16, 18], *S. borszczowii Regel, *S. factorovskyi (Eig) P.M.Peterson, *S. hadjikyriakou (Raus & H.Scholz) P.M.Peterson, *S. minuartioides (Bornm.) P.M.Peterson, *S. niliacus (Fig. & De Not.) P.M.Peterson (Crypsis vaginiflora) [2n = 48], S. schoenoides (L.) P.M.Peterson [2n = 32], *S. turkestanicus (Eig) P.M.Peterson subsect Helvoli P.M.Peterson, Type: S. helvolus (Trin.) T.Durand & Schinz (C, in part): S. helvolus [2n = 36], S. mitchellii (Trin) C.E.Hubb., S. ruspolianus Chiov. S. sect. Cryptandri P.M.Peterson, Type: S. cryptandrus (Torr.) A.Gray (K): S. cryptandrus [2n = 36, 38, 72], S. flexuosus (Thurb. ex Vasey) Rydb. [2n = 36, 38], S. giganteus Nash [2n = 36], S. nealleyi Vasey [2n = 40], S. texanus Vasey S. sect. Fimbriatae Veldkamp, Type: S. fimbriatus (Trin.) Nees (B): S. agrostoides Chiov., S. brockmanii Stapf, S. confinis (Steud.) Chiov., S. diffusus Clayton, S. fimbriatus [2n = 54], S. greenwayi Napper,*S. macranthus (Steud.) T.Durand & Schinz, S. maderaspatanus Bor [2n = 12], S. montanus (Hook.f.) Engl. [2n = 18], S. nervosus Hochst. [2n = 36], S. pellucidus Hochst., S. phyllotrichus Hochst., S. smutzii Stent S. sect. Pyramidati (P.M.Peterson) P.M.Peterson, Type: S. pyramidatus (Lam.) Hitchc. (F, G, H, I): subsect. Pyramidati P.M.Peterson (I): S. centrifugus (Trin.) Nees, S. coahuilensis Valdés-Reyna, S. contractus Hitchc. [2n = 36], S. cordofanus (Hochst. ex Steud.) Coss., S. coromandelianus (Retz.) Kunth [2n = 36], S. domingensis (Trin.) Kunth, S. ioclados (Nees ex Trin.) Nees [2n = 18], S. ludwigii Hochst., S. marginatus Hochst. ex A.Rich [2n = 18, 36]., S. pyramidatus [2n = 24, 36, 54], S. scabridus S.T.Blake, S. tenacissimus (L.f.) P.Beauv. 1220 Version of Record (identical to print version). TAXON 63 (6) • December 2014: 1212–1243 Peterson & al. • Sporobolus: phylogeny and classification similis, S. elongatus, S. palmeri, S. somalensis, S. tourneuxii, and Thellungia advena. There are topological differences in the placement of eight major clades (clades B–I) between the ITS and combined plastid tree. DISCUSSION Our phylogenetic trees provide weak to moderate support for a paraphyletic Sporobolus that includes Calamovilfa, Crypsis, Spartina, and Thellungia. Within the Sporobolinae, the Psilolemma jaegeri and Sporobolus somalensis lineages align outside the remaining species of Sporobolus. Within Sporobolus we identify 16 major clades of which 12 are strongly supported in the combined plastid tree and 11 are strongly supported in the ITS tree. The species included in these 16 major clades are given in Table 2 along with our proposed classification of the Sporobolinae. In Sporobolus we identified a North American clade (J–O) that is composed primarily of species indigenous to North America. The early diverging (deeply nested) subclades in our J–O clade are almost entirely composed of North American species (see Figs. 1B, 2B, North American clade) while derived clades include species with European, South American, African or Australian origins. Based on our results we propose incorporating Calamovilfa, Crypsis, Spartina, and Thellungia within Sporobolus, and make the requisite nomenclatural changes in the taxonomy section. In our discussion below we first address species that align outside the Sporobolinae in tribe Cynodonteae, then discuss species that do not align (incertae sedis) within one of the 16 major clades within Sporobolus. Next, we discuss each of the major clades within Sporobolus beginning with clade X and continuing with clades A through O. Finally, we include a summary of the chromosome base numbers for the Zoysieae and address incongruences between the ITS and combined plastid phylogenies. Table 2. Continued. subsect. Actinocladi P.M.Peterson, Type: S. actinocladus (F.Muell.) Muell. (H): S. actinocladus, S. australasicus Domin, S. caroli Mez, *S. contiguus S.T.Blake, *S. lenticularis S.T.Blake, S. olivaceus Napper, S. nitens Stent, *S. partimpatens R.Mills ex B.K.Simon, S. phleoides Hack., *S. pulchellus R.Br. subsect. Spicati P.M.Peterson, Type: S. spicatus (Vahl) Kunth (G): S. microprotus Stapf, S. scabriflorus Stapf ex Massey, S. spicatus, S. uniglumis Stent & J.M.Rattray subsect. Subulati P.M.Peterson, Type: S. subulatus Hack. (F): S. arabicus Boiss. [2n = 36], S. kentrophyllus (K.Schum. ex Engl.) Clayton [2n = 36], S. subulatus, S. verdcourtii Napper S. sect. Spartina (Schreb.) P.M.Peterson & Saarela, Type: S. cynosuroides (L.) P.M.Peterson & Saarela (O): subsect. Alterniflori P.M.Peterson & Saarela, Type: S. alterniflorus (Loisel.) P.M.Peterson & Saarela: S. alterniflorus [2n = 62], S. anglicus (C.E.Hubb.) P.M.Peterson & Saarela [2n = 120, 122, 124, 127], S. foliosus, (Trin.) P.M.Peterson & Saarela [2n = 60, 62], *S. ×longispicus (Hauman & Parodi ex St.-Yves) P.M.Peterson & Saarela, S. martimus (Curtis) P.M.Peterson & Saarela [2n = 60], S. ×townsendii (H.Groves & J.Groves) P.M.Peterson & Saarela [2n = 62] subsect. Ponceletia (Thouars) P.M.Peterson & Saarela, Type: S. mobberleyanus P.M.Peterson & Saarela (Spartina arundinacea): *S. mobberleyanus [2n = 40], S. spartinus (Trin.) P.M.Peterson & Saarela [2n =40] subsect. Spartina (Schreb.) P.M.Peterson & Saarela: S. bakeri (Merr.) P.M.Peterson & Saarela [2n = 40], S. coarctatus (Trin.) P.M.Peterson & Saarela (Spartina ciliata), S. cynosuroides (L.) P.M.Peterson & Saarela [2n = 40], S. densiflorus (Brongn.) P.M.Peterson & Saarela (= S. montevidensis), S. ×eatonianus P.M.Peterson & Saarela (Spartina ×caespitosa) [2n = 40], S. hookerianus P.M.Peterson & Saarela (Spartina gracilis) [2n = 40], S. michauxianus (Hitchc.) P.M.Peterson & Saarela (Spartina pectinta) [2n = 40], S. pumilus (Roth) P.M.Peterson & Saarela (Spartina patens) [2n = 40], *S. versicolor (Fabre) P.M.Peterson & Saarela S. sect. Sporobolus (Gruppe 1, Pilger, 1956; part of Truncatae, Bor, 1960; part of S. sect. Agrosticula (Raddi) Veldkamp, Baaijens & Veldkamp, 1991), Type: S. indicus (A): S. africanus (Poir.) Robyns & Tournay [2n = 18, 36], S. atrovirens (Kunth) Kunth [2n = 24], S. berteroanus (Trin.) Hitchc. & Chase, S. blakei De Nardi ex B.K.Simon, S. creber De Nardi, S. diandrus (Retz.) P.Beauv. [2n = 24], S. farinosus Hosok., S. fertilis (Steud.) Calyton [2n = 36], S. festivus Hochst. ex A.Rich. [2n = 20, 24, 36], *S. fourcadii Stent, S. indicus [2n = 18, 24, 36], S. infirmus Mez, S. jacquemontii Kunth [2n = 24], S. laxus B.K.Simon,*S. minor Trin. ex Kunth, S. molleri Hack. [2n = 12], S. natalensis (Steud.) T.Durand & Schinz, S. myrianthus Benth., S. pectinellus Mez, S. pseudairoides Parodi, S. pyramidalis P.Beauv. [2n = 24, 30], *S. quadratus Clayton, S. sessilis B.K.Simon, S. stapfianus Gand., S. tenuissimus (Mart. ex Schrank) Kuntze [2n = 12], S. trichodes Hitchc. S. sect. Triachyrum (Hochst. ex A.Braun) Veldkamp, Type: S. discosporus Nees (D): S. acuminatus (Trin.) Hack., *S. adustus (Trin.) Roseng., B.R.Arrill. & Izag., S. aeneus (Trin.) Kunth, *S. amaliae Veldkamp, S. apiculatus Boechat & Longhi-Wagner, S. bogotensis Swallen & García-Barr., *S. camporum Swallen,*S. cubensis Hitchc., S. dinklagei Mez, *S. discosporus, *S. eximius (Nees ex Trin.) Ekman, S. eylesii Stent & J.M.Rattray, *S. harmandii Henrard, S. junceus (P.Beauv.) Kunth, S. lasiophyllus Pilg., S. linearifolius Nicora, S. macropsermus Scribn. ex Beal, S. micranthus (Steud.) T.Durand & Schinz, S. mildbraedii Pilg., *S. multinodis Hack., *S. novoguineensis Baaijens, *S. nudiramus Boechat & Longhi-Wagner, S. panicoides A.Rich., *S. paniculatus (Trin.) T.Durand & Schinz, *S. paucifolius Boechat & Longhi-Wagner, S. pilifer (Trin.) Kunth [2n = 20, 40, 54], S. purpurascens (Sw.) Ham. [2n = 60], *S. recurvatus Boechat & Longhi-Wagner, *S. reflexus Boechat & Longhi-Wagner, S. sanguineus Rendle [2n = 20], *S. sciadocladus Ohwi, S. stolzii Mez, S. subglobosus Stapf ex C.E.Hubb. S. sect. Virginicae Veldkamp, Type: S. virginicus (L.) Kunth (E): S. humilis J.Presl [2n = 20], S. pungens (Schreb.) Kunth, S. robustus Kunth, S. virginicus [2n = 20, 30, 40 50, 60]. Version of Record (identical to print version). 1221 Peterson & al. • Sporobolus: phylogeny and classification TAXON 63 (6) • December 2014: 1212–1243 Cynodonteae. — Pogononeura biflora, a morphologically distinct genus with 2- or 3-flowered spikelets and short-awned lemmas (Clayton & Renvoize, 1986), was previously found embedded within the Sporobolus clade (Peterson & al., 2010a), whereas in our combined plastid phylogram it is placed in the Cynodonteae. The isotype consists of three culms, two of which are genuine P. biflora, and a third culm with an attached marking tag (P.J. Greenway 10091) that is Sporobolus cordofanus (Hochst. ex Steud.) Coss. Our original sample used in Peterson & al. (2010a) was taken from another mixed collection of P. biflora and S. cordofanus, and we apparently removed a leaf from the culm of the latter species (P.J. Greenway 10620, Turner & Watson, US), this being the basis for the earlier erroneous report. After resampling a leaf blade from the isotype specimen of P. biflora (Greenway 10091, US-2589348) and sequencing the rpl32-trnL plastid region, we found P. biflora to align within the Cynodonteae (Fig. 2A, see Cynodonteae). Sporobolinae and Sporobolus, incertae sedis. — We treat as incertae sedis those taxa that are not exclusively part of the 15 major clades in the ITS and combined plastid phylograms Plastid ITS (rpl32-trnL, ndhA, rps16, rps16-trnK) s ru flo ri s milis E G Sporobolus virginicus clade Afr Sp or ob ol us se H F I ct .C ry ps is s bridu s sca obolu us ic Spor ab us ar Sporobol cla de Sporobolus pyramidatus clade (F, G. H, I) Sporobolus neglectus N O North American clade L M Sporobolus airoides clade Sporobolus cryptandrus clade olu Sporob nus r. ozarka florus va s vagini Aus Afr olus hu Afr Aus Aus Afr Afr o Sp Sp orob Afr Aus us ol Sporobolus compositus clade Calamovilfa clade Sporobolus floridanus clade Spartina clade C J K L M N O Aus Afr b ro b ca Sporobolus rigens J K Afr Sporobolus fimbriatus clade Aus H F I D B Sporobolus junceus clade Afr G A Sporobolus indicus clade Sporobolus robustus Sporobolus oxylepsis Sporobolus consimilis Thellungia advena Eragrostis megalosperma C E X Sporobolus acinifolius–S. albicans–S. tenellus S.Afr Psilolemma Zoysia Urochondra Sporobolus somalensis North American clade A D B Afr X S.Afr Zoysia Urochondra Psilolemma Sporobolus somalensis Fig. 3. A comparison of the ITS and combined plastid phylograms. Bold letters in rectangular boxes indicate clades of Sporobolus species discussed in text and most clades include the predominant geographic distribution of its members abbreviated as: Afr (African), Aus (Australian), S.Afr (South African), and North American; unlabeled clades are of the mixed geographic origin; thick branches represent statistically supported relationships (high bootstrap of 89–100 and/or posterior probability of 0.95–1.00); thin branches indicate unsupported relationships; red branches indicate support not found in alternate phylogeny; dashed red lines show the transition of species between clades or at least sister to a clade; thick colored lines trace the transition of clades among major phylogenetic groups. 1222 Version of Record (identical to print version). TAXON 63 (6) • December 2014: 1212–1243 Peterson & al. • Sporobolus: phylogeny and classification (Figs. 1 and 2 clades A–O; see Table 2). Two species, Psilolemma jaegeri and Sporobolus somalensis, fall outside the main Sporobolus clade in the ITS and plastid trees. Sporobolus somalensis is an enigmatic species known only from Somalia and extending into the Ethiopian Ogaden (Phillips, 1995). Sporobolus somalensis forms an unsupported polytomy with the Zoysiinae and the Sporobolus clade in the combined plastid phylogram and is weakly supported as sister to Psilolemma jaegeri in the ITS phylogram (Fig. 1A, BS = 65, PP = 0.90), forming a clade that is sister to the remainder of the Sporobolinae. Sporobolus somalensis may deserve recognition at the generic level but we hesitate to provide a new name based on its differing affinities in the nuclear and plastid trees, and because there are few morphological characteristics delineating this from other species of Sporobolus. Based on subround lower glumes and upper glumes as long as the spikelet, Clayton (1971) described S. compactus Clayton, a presumed sister species to S. somalensis; S. compactus was not sampled here. Psilolemma jaegeri and S. somalensis are both mat-forming, stoloniferous perennials, although the latter species has open panicles with numerous 1-flowered spikelets while P. jaegeri has narrow and spike-like panicles with 4–14-flowered spikelets (Phillips, 1974, 1995; Clayton & al., 2006). Additional study of S. somalensis along with P. jaegeri will be necessary to determine their relationship to other members of Sporobolus s.l. Another option would be to include Psilolemma in Sporobolus, and, if so, then Zoysia and Urochondra would also have to be included in Sporobolus since in the plastid tree Psilolemma is sister to all members of the Zoysieae. Psilolemma jaegeri is somewhat unusual in that it has 3-veined lemmas, but there are other species of Sporobolus, i.e., S. acinifolius, S. albicans, S. fibrosus Cope (not sampled), S. palmeri, and S. subtilis Kunth (not sampled), and S. tenellus Kunth that share this trait (Phillips, 1974; Cope, 1999). With the exception of S. palmeri, from Mexico, these are all African taxa. The Australian genus Thellungia was initially described by Stapf to include a single species, T. advena Stapf. Phillips (1982) transferred this species into Eragrostis (E. advena (Stapf) S.M.Phillips), and more recently, based on plastid rps16 and nuclear waxy sequences, Ingram & Doyle (2004, 2007) have shown it to be embedded within Sporobolus and in our ITS tree it is sister to Eragrostis megalosperma (BS = 87, PP = 1.00). Thellungia has unique features such as multi-flowered (1–5), cleistogamous spikelets with long-curved rachillas (each floret readily disarticulates with a persistant rachilla joint), 1-veined (rarely 3) lemmas, and caryopses with free pericarps (Lazarides, 1997; Palmer & al., 2005). All of these characteristics, with the exception of multi-flowered spikelets, are common in species of Sporobolus. Thellungia is part of the Sporobolus lineage in our trees, but its placement is strongly discordant in our nuclear and plastid analyses. In the ITS tree it is part of a strongly supported clade comprising clades B, C and D plus a Sporobolus consimilis–S. oxylepsis–S. robustus clade, collectively a lineage of primarily African taxa whereas in the plastid tree it is part of a large North American lineage that includes clades J–O plus S. palmeri, S. buckleyi, S. elongatus, and clade C plus S. consimilis. Within the plastid North American clade Thellungia is sister (weakly supported, BS = 69, PP = 1.00) to the S. clandestinus clade (L). Given its discordant position in the nuclear and plastid trees, Thellungia advena likely had a hybrid origin, involving ancestors of different major clades. Although its origins are unclear, Thellungia advena is clearly a member of the Sporobolus clade and we make the necessary combination below to include the species in Sporobolus. Eragrostis megalosperma, an Australian endemic species, has several unusual morphological features and was reported by Lazarides (1997) and Palmer & al. (2005) to have no obvious relationships with other members of Eragrostis. However, E. megalosperma and Thellungia (Eragrostis) advena share ciliate ligules, spiciform panicles, multi-flowered spikelets that are often cleistogamous with a zig-zag rachilla, 1 or 3-veined lemmas, green stamens, and strongly compressed caryopses with free pericarps. Eragrostis megalosperma can be separated from Thellungia in having leaf sheaths that are longer than the internodes, 5–27-flowered spikelets (versus 1–5), and lemmas 1.8–2.5 mm long (versus 2.8–3 mm). Like, Thellungia, E. megalosperma is also a member of the Sporobolus clade and we make the new combination below. Sporobolus buckleyi from the southwestern U.S.A. and Mexico and S. palmeri, a Mexican endemic known from Durango and San Luis Potosí, form a weakly supported clade in the ITS tree. However, in the plastid tree S. buckleyi is sister to Eragrostis megalosperma, Thellungia plus the S. clandestinus complex (clade L). Morphologically, S. buckleyi and S. palmeri share the densely caespitose, perennial habit and open, diffuse panicles with primary branches without additional branches (naked) below on lower 1/4–1/2 of the axis (Espejo Serna, 2000; Peterson & al., 2004). Sporobolus palmeri differs from S. buckleyi in having shorter culms (13–50 versus 40–100 cm), longer spikelets (3.2–4.4 versus 1.2–2 mm), longer anthers (1.6–2.4 versus 0.2–0.4 mm), and longer caryopses (1.6–2.1 versus 0.6–1 mm). Our study has provided new insights into the taxonomy of S. palmeri (see Fig. 4). There is much confusion in the herbarium between S. palmeri and S. airoides (Torr.) Torr., a morphologically similar species but more widely distributed occurring throughout the U.S.A., Mexico, and introduced in Arabia (Peterson & al., 2003, 2004; Clayton & al., 2006). Sporobolus palmeri was collected by the first two authors on a 2012 trip to northeastern Mexico where it was found growing with S. airoides. In a subsequent survey of material in US, we found that only the type collection of S. palmeri made in the late 1890s and one other made in the early 1900s were correctly determined, while the 10 other specimens included in the S. palmeri folder were misidentified. Superficially, S. palmeri resembles S. airoides but differs by having shorter culms (13–50 versus 35–120(–150) cm), smaller leaf blades ((3–)5–20 cm × 0.6–1.4 mm versus (3–)10–45(–60) cm × (1–)2–5(–6) mm), smaller panicles (7–20 × 5–20 versus 15–45 × 15–25 cm), longer pedicels (2.5–10 mm versus 0.5–2 mm), longer spikelets (3.2–4.4 mm versus 1.3–2.8 mm), longer lemmas (3.2–4.3 mm versus 1.2–2.5 mm) that are 3- versus 1-veined, longer paleas (3.1–4.2 mm versus 1.1–2.4 mm), longer anthers (1.6–2.5 mm versus 1.1–1.8 mm), and longer modified caryopses (1.6–2.1 versus 1–1.4 mm; Peterson & al., 2003, 2004). In addition to being Version of Record (identical to print version). 1223 Peterson & al. • Sporobolus: phylogeny and classification TAXON 63 (6) • December 2014: 1212–1243 Fig. 4. Sporobolus palmeri Scribn. (P.M. Peterson 24862 & K. Romaschenko (US)). A, habit; B, sheath, ligule, and blade; C, spikelet with stigmas; D, lower glume; E, upper glume; F, spikelet with stamens; G, lemma; H, palea; I, palea enclosing lodicules and pistil; J, palea enclosing lodicules, pistil, and stamens; K, lodicules; L, caryopsis, dorsal view; M, caryopsis, ventral view; N, caryopsis, side view; O, caryopsis, cross section. — Drawn by Alice Tangerini. 1224 Version of Record (identical to print version). TAXON 63 (6) • December 2014: 1212–1243 Peterson & al. • Sporobolus: phylogeny and classification confused taxonomically, S. airoides and S. palmeri have been considered to be closely related. Both species were placed in the same strongly supported clade in a previous ITS analysis (Ortiz-Diaz & Culham, 2000), in contrast to our ITS tree in which S. palmeri is excluded from the S. airoides clade (Fig. 1, clade J). The specimen in the earlier analysis may have been misidentified. Unfortunately voucher specimens were not listed in that study and the sequences are not available in GenBank; thus it is not possible to check the original determination or to compare the earlier ITS sequence with our new ITS sequences for S. airoides and S. palmeri. Our analyses confirm that S. palmeri and S. airoides are not conspecific or even sister taxa, as they fall in different parts of the ITS and plastid trees (S. airoides in clade J, S. palmeri as noted above). An illustration of S. palmeri is given to familiarize the reader and other agrostologists with the general morphology of Sporobolus (Fig. 4). Clade X. — Three African taxa (Sporobolus acinifolius, S. albicans, S. tenellus), which have not previously been sampled in molecular studies, form a clade supported by Bayesian posterior probabilites in both ITS and combined plastid trees (Fig. 1A, PP = 0.95; Fig. 2A, BS = 51, PP = 0.95), and this clade is sister to the remaining species of Sporobolus. These southern African species are mat-forming, rhizomatous perennials with cartilaginous to subcartilaginous leaf blade margins, subdichotomously branched panicles (narrow in S. albicans), and small spikelets (1–2.5 mm long) with 3-veined lemmas (Gibbs Russell & al., 1991; Cope, 1999). Sporobolus fibrosus, S. salsus Mez, and S. subtilis are also morphologically similar to the three species in our study (Cope, 1999). The latter species also has a prolonged rachilla above the floret nearly as long as the floret (Stapf, 1898). We have preliminary results suggesting S. subtilis is embedded within the tribe Eragrostideae (Peterson & al., unpub.). Therefore, we hesitate to use S. sect. Chaetorhachia (type = S. subtilis) to delineate the species in clade X but will address this question in future studies. Three-veined lemmas may be derived independently in Eragrostis megalosperma, Psilolemma jaegeri, the S. acinifolius–S. albicans–S. tenellus lineage, S. palmeri (which is nested deep in Sporobolus), and Thellungia advena, or this may be a pleisiomorphic character retained in these lineages. We consider the X clade to be an ancestral lineage of unclear origin that requires further investigation. Therefore, in order to assess the monophyly of Sporobolus further we removed the members of the X clade (Sporobolus acinifolius, S. albicans, S. tenellus) from the ITS and combined plastid analyses since this lineage has some unique morphological features and is genetically isolated. We then reanalyzed each dataset. In both cases we obtained stronger support for the Sporobolus crown node (BS = 76 for ITS, 52 for combined plastid; PP = 1.00 for both). These results lend support for retaining Sporobolus as taxonomic unit. Clade A. — We find strong support for a lineage corresponding to the S. indicus complex, as recognized by previous authors (Pilger, 1956; Baiijens & Veldkamp, 1991). The Sporobolus indicus complex, treated here as S. sect. Sporobolus, consists of at least 23 species, as confirmed in our phylograms (see Table 2). Within this lineage, S. farinosus Hosok. is strongly supported as the sister species of the remainder of the lineage in both trees. In the plastid tree, S. scabriflorus is sister to S. farinosus, whereas in the ITS tree S. scabriflorus is part of the distantly related clade G, suggesting this taxon may be of hybrid origin. In the next deepest split in this clade, four species (S. festivus Hochst. ex A.Rich., S. infirmus Mez, S. pectinellus Mez, S. stapfianus Gand.) comprise a clade that is sister to a strongly supported clade of the rest of the sampled species in the plastid tree, whereas in the ITS tree these four species comprise a poorly supported grade that is sister to a strongly supported clade of the remaining species in this section. Several smaller clades of two to several species (the same species in both trees) are present in the ITS and plastid trees; e.g., the clade with S. tenuissimus (Mart. ex Schrank) Kuntze, S. blakei De Nardi ex B.K.Simon, S. diandrus (Retz.) P.Beauv., S. trichodes Hitchc., and S. atrovirens (Kunth) Kunth received stronger support (BS = 71, PP = 1.00) in the plastid tree. Relationships of other taxa in the clade vary slightly. For example, in the ITS tree five taxa (S. fertilis, S. jacquemontii Kunth, S. indicus, S. berteroanus (Trin.) Hitchc. & Chase, S. pseudairoides Parodi) and four taxa (S. myrianthus Benth., S. creber De Nardi, S. laxus B.K.Simon, S. natalensis (Steud.) T.Durand & Schinz) each form separate weakly to moderately supported clades, whereas in the plastid tree S. fertilis is part of the lineage that includes S. creber, S. laxus, and S. natalensis. Some of these taxa may be of hybrid origin. In addition to the 23 sampled species, we include three additional species (S. fourcadii Stent, S. minor Trin. ex Kunth, S. quadratus Clayton) in this section based on their morphology, as described in Clayton (1965). Clayton (1965) also recognized S. pellucidis Hochst., S. olivaceus Napper, and S. elongatus as occurring in the S. indicus complex. These taxa are not part of this lineage, and we treat them here in S. sect Fimbriatae Veldkamp (clade B), S. sect. Triachyrum (Hochst. ex A.Braun) Veldkamp (clade D), and incertae sedis, respectively. Sporobolus elongatus probably belongs in the S. indicus complex as placed by Pilger (1956), Jovet & Guédes (1968), Baiijens & Veldkamp (1991), Mandret (1992), Ortiz-Diaz & Culham (2000), and Shrestha & al. (2003). However, for S. elongatus we have data for a single plastid marker (rpl32-trnL) and in our plastid phylogram the affinities of this species are not conclusive. Morphological characteristics that support recognition of this clade include: long-lived annuals to perennials without stolons or cataphylls; conspicuously keeled and never pectinate leaf blades; densely to moderately contracted, occasionally rather open and diffuse, panicles; solitary branches along the lower culm nodes; very short lower glumes and longer upper glumes, the latter usually shorter than the lemma; ellipsoid to oblong (angular in cross-section) caryopses; and PCK leaf metabolism (Hattersley, 1987; Baiijens & Veldkamp, 1991). This lineage is widely distributed in North America, South America, Africa & Arabia, Australia & Pacific, and Southeast Asia (Figs. 1A, 2A). Clade B. — Our analyses identify a strongly supported clade including S. fimbriatus and allies. Sporobolus fimbriatus was included in group 4B by Pilger (1956) and more recently in S. sect. Fimbriatae (Baaijens & Veldkamp, 1991), as Version of Record (identical to print version). 1225 Peterson & al. • Sporobolus: phylogeny and classification treated here (Table 2). A S. fimbriatus lineage was also found by Ortiz-Diaz & Culham (2000) who included S. pyramidatus. Ortiz-Diaz & Culham (2000) noted that the morphology of S. pyramidatus does not correspond to that of other taxa included in S. sect. Fimbriatae. Their result is likely an error, as the multiple samples of S. pyramidatus sampled here are clearly part of clade I in our nuclear and plastid trees. The S. fimbriatus clade is almost entirely African with a single species, S. maderaspatanus Bor, found in India and Ceylon (Lazarides, 1994). Baaijens & Veldkamp (1991) described this section as having intravaginal branched culms, upper glumes slightly shorter to as long as the spikelets, and PCK leaf metabolism. Baaijens & Veldkamp (1991) also included S. agrostoides Chiov, S. brockmannii Stapf, and S. macranthelus Chiov. as members of S. sect Fimbriatae. Apparently, S. diffusus Clayton is the only annual member of the S. fimbriatus complex. Tetragonal to ellipsoid caryopses and short upper glumes 1/2–4/5 as long as the lemmas also characterize this lineage. Clade C. — We have included three widespread species of Crypsis in our study and these form a strongly supported clade (Figs. 1A, 2B; BS = 100, PP = 1.00) in the combined plastid and ITS phylograms; this Crypsis lineage is part of a broader, well-supported clade. In the ITS phylogram Sporobolus helvolus (Trin.) T.Durand & Schinz, S. mitchellii (Trin.) C.E.Hubb. ex S.T.Blake, and S. humilis form a strongly supported clade that is sister to Crypsis, and together this lineage is the sister to three accessions of S. ruspolianus Chiov. Ortiz-Diaz & Culham (2000) recovered a clade with 100% jacknife support that included Crypsis alopecuroides, S. helvolus, S. mitchellii, and S. tremulus (Willd.) Kunth. The latter species is morphologically very similar to S. virginicus but differs by having shorter lower glumes (Lazarides, 1994). Therefore, we recognize S. sect. Crypsis to include the four species of Sporobolus that are part of clade C in the ITS and plastid trees, along with nine species currently placed in Crypsis (Cope, 1999; Raus & Scholz, 2004; Clayton & al., 2006). Characters that support recognition of S. sect. Crypsis include: plants that are geniculate annuals or perennials with wiry culms, panicles short, < 12 cm long that are spike-like to subspiciform (ovate with stiffly spreading branches in S. ruspolianus), 1-flowered spikelets with glumes that are shorter than the lemma, and 1–3-veined lemmas. Within S. sect. Crypsis we recognize two subsections, Crypsis and Helvoli. Subsection Crypsis includes nine species, all formerly treated at the generic rank (see description in Taxonomy section) and subsect. Helvoli includes three species all having the perennial habit with culms that are decumbent, prostrate or erect, either rhizomatous or stoloniferous; panicles that are contracted, spiciform or open, 0.4–2 cm wide; and subterete spikelets 1.4–2 mm long. The discordant placement of S. humilis J.Presl found in clade C in the ITS tree and found in clade E in the plastid tree is discussed under clade E. Clade D. — Based on our phylograms we recognize the S. junceus clade (Sporobolus sect. Triachyrum) to include 33 species (see Table 2), 18 of which were surveyed in our DNA analysis. This lineage was previously identified in the ITS analysis of Ortiz-Diaz & Culham (2000), who sampled seven species, four of which were also sampled here (S. lasiophyllus 1226 TAXON 63 (6) • December 2014: 1212–1243 Pilg., S. macrospermus Scribn. ex Beal, S. purpurascens (Sw.) Ham., S. sanguineus Rendle). Palisot de Beavois (1812) first recognized the distinctive features of Sporobolus junceus by describing a new genus, Heleochloa P.Beauv. Later, Triachyrum Hochst. ex A.Braun was recognized to emphasize species that have panicles with five or more whorled primary branches and caryopses that are strongly compressed (Braun, 1841: 712). Pilger (1956) included five species of the S. junceus complex in his group 3A. Baaijens & Veldkamp (1991) included in this group S. pilifer (Trin.) Kunth, a species we surveyed, along with S. amaliae Veldkamp, S. harmandii Henrard, S. novoguineensis Baaijens, and S. sciadocladus Ohwi. The characteristics that unite the S. junceus complex are: caespitose habit with either annuals or perennials, leaf blades that are often heteromorphic (e.g., basal blades flat often with pectinate margins, and cauline blades involute with margins usually smooth), panicles that have whorled primary branches, upper glumes that are as long or longer than the floret, and caryopses that are spherical or laterally flattened. Weakley & Peterson (1998) suggested that S. junceus and S. purpurascens may be sibling species. This hypothesis is supported in part by our ITS tree, in which the North American samples of S. purpurascens and both samples of S. junceus are sister taxa, whereas in the plastid tree all samples of S. purpurascens and S. junceus are part of different, strongly supported subclades. In our ITS and plastid trees, clade D includes a subclade we call the South American S. aeneus (Trin.) Kunth complex, a group of some 14 traditionally recognized species that were recently revised to include only five species (Denham & Aliscioni, 2010). We sampled three species that have been placed in this group, S. aeneus, S. acuminatus (Trin.) Hack. (= S. aeneus var. aeneus in Denham & Aliscioni, 2010), and S. linearifolius Nicora. These three species and an accession of S. purpurascens collected in Ecuador form a strongly supported clade (Figs. 1A, 2A; BS = 99, 97, PP = 1.00). It is interesting that the accession of S. purpuracens from Ecuador does not align with the two other accessions of S. purpuracens, both collected in Texas, U.S.A. whereas in the plastid tree all three accessions of S. purpurascens form a strongly supported clade (Fig. 2A, BS = 100, PP = 1.00). We see no major morphological differences between these three accessions of S. purpurascens other than the North American plants are taller and have longer leaf blades. Several smaller two- to several-taxon clades are present in the nuclear and plastid trees, and in some cases their affinities in sect. Triachyrum are incongruent between the trees. In the plastid tree S. mildbraedii Pilg. and S. dinklagei Mez appear distinct from the rest of the clade. The placement of the former taxon reflects missing data as we have only the rpl32-trnL marker (see Appendix 1; ITS data were not obtained for this taxon). Sporobolus dinklagei, for which we obtained plastid data from three of the four regions, is on a long branch in the plastid tree, and is nested deeper in the ITS tree. Clade E. — This lineage is recovered in nuclear and plastid analyses with strong support and corresponds to Sporobolus sect. Virginicae Veldkamp. Based on possessing stolons, contracted and densely spikeleted panicles, fascicled to solitary branches, upper glumes as long as the spikelets, and C4 Version of Record (identical to print version). TAXON 63 (6) • December 2014: 1212–1243 Peterson & al. • Sporobolus: phylogeny and classification NAD-ME leaf metabolism, Baaijens & Veldkamp (1991) recognized the Sporobolus virginicus clade (Sporobolus sect. Virginicae) to include: S. consimilis, S. humilis, S. pungens (Schreb.) Kunth, and S. virginicus. Pilger (1956) recognized these same species in his group 2, along with S. compositus, S. spicatus, and S. rigens, which we place in other lineages or incertae sedis based on their positions in our trees. Ortiz-Diaz & Culham (2000) identified S. virginicus as a distinct lineage, but they did not sample other members of the lineage. In our study S. pungens and S. virginicus exclusively form a clade in the ITS phylogram, and in the plastid phylogeny these two species align with S. humilis, S. oxylepsis, and S. robustus. In constrast to the ITS tree, the four acessions of Sporobolus virginicus are not recovered as monophyletic in the combined plastid phylogeny, which indicates possible incomplete plastid lineage sorting in the speciation process. Sporobolus oxylepsis and S. robustus are sister taxa in the ITS tree, while S. humilis is part of clade C, as noted above. Sporobolus robustus is a tall species with individuals up to 1 m in height similar to S. consimilis (with which it is closely related in the ITS tree, but not in the plastid tree) with open panicles that bear densely spikeleted primary branches. Each primary branch in S. robustus and S. consimilis is remarkably similar to the entire inflorescence in S. humilis, S. pungens, and S. virginicus. Sporobolus oxylepsis is a small caespitose perennial that does not have stolons, rhizomes, or contracted panicles. Instead, S. oxylepsis has open and diffuse panicles with spikelets borne on long pedicels, and has short lower glumes less than 1/3 as long as the floret. The characteristics in S. oxylepsis do not support inclusion into S. sect. Virginicae, therefore we have placed S. oxylepsis in incertae sedis. We also include S. consimilis in incertae sedis because in the ITS phylogram it is sister to Thellungia advena and in the plastid analysis it is sister to clade C. Clade F. — This strongly supported clade, that has not previously been recovered in molecular studies, consists of two accessions of S. kentrophyllus (K.Schum. ex Engl.) Clayton that are sister to S. subulatus Hack.–S. verdcourtii Napper in our trees. In the plastid tree, S. arabicus joins clade F forming a trichotomy with the other two clades, whereas in the ITS tree S. arabicus is placed in clade I. Our data included only the plastid rps16 marker for S. arabicus and it seems best to tentatively place this taxon in clade I. Clayton (1974) placed S. verdcourtii and S. arabicus as synonyms of S. kentrophyllus and Cope (1999) placed S. arabicus and S. kentrophyllus as synonyms of S. ioclados (Trin.) Nees. We retain all four taxa as separate species since the samples are genetically distinct with some morphological variation as well. These African species are characterized in having the perennial habit with caespitose often tussocky culms, often connected by stolons, culms 15–80 cm tall; whorled primary panicle branches that are naked on lower 1/4–1/2; lower glumes 1/3–3/4 as long as the spikelet; upper glumes 2/3 to as long as the spikelet; and ellipsoid caryopses 0.8–2 mm long. We place the species of clade F in S. sect. Pyramidati subsect. Subulati (see discussion of clade I below). Clade G. — This strongly supported clade, consisting of only African species, has not previously been recovered in molecular studies. Three accessions of the primarily mat-forming, tufted perennial with pungent leaf blades, S. spicatus form a weakly or strongly supported clade (Fig. 1B, BS = 64, PP = 0.61; Fig. 2B, BS = 100, PP = 1.00) that is sister to a strongly supported S. microprotus Stapf–S. scabriflorus Stapf ex Massey–S. uniglumis Stent & J.M.Rattray clade (Fig. 1B, BS = 100, PP = 1.00) consisting of three small, caespitose annuals. However, in our plastid tree, S. scabriflorus is not a member of this clade and is placed in the S. indicus complex (clade A). There are three missing plastid markers (ndhA, rpl32-trnL, rps16-trnK) in our dataset for S. scabriflorus so this might be the underlying reason for the ambiguous results. Clayton (1974) placed S. scabriflorus as a synonym of S. microprotus but our ITS sequences are not identical and there seems to be some morphological characters that separate these species. Sporobolus scabriflorus has scabrous to minutely pubescent lemmas and the caryopses are obovate whereas most individuals of S. microprotus have glabrous or smooth lemmas and spherical to subglobose caryopses. Morphological characteristics that support recognition of clade G include: caespitose annuals or perennials, sometimes stoloniferous; leaf blades with pectinate-ciliate margins near the base; panicles with whorled primary branches, especially on the lower nodes, the primary branches bare below; lower glumes that are tiny, ovate to oblong scales < 1/3 as long as the spikelet, the scales often suppressed or lacking; upper glumes 2/3 to as long as the spikelet; and caryopses 0.7–1.1 mm long, elliptic, obovate to spherical or subglobose, usually laterally flattened. We place the species of clade G in S. sect. Pyramidati subsect. Spicati (see discussion of clade I below). Clade H. — Three endemic species from Australia, S. actinocladus (F.Muell.) F.Muell, S. australasicus Domin, and S. caroli Mez form a moderately supported clade (Fig. 1B, BS = 72, PP = 0.98) and are sister to the southern African, S. nitens Stent in the ITS tree. In the plastid tree four endemic Australian species (S. actinocladus, S. australasicus, S. caroli, S. scabridus) form a moderately supported clade (Fig. 2B, BS = 76, PP = 0.97) that includes the South American S. phleoides Hack., and all of these are sister to S. nitens–S. olivaceus Napper clade (Fig. 2B, BS = 99, PP = 1.00). Even though S. phleoides has an extremely narrow inflorescence and is nearly impossible to determine when the lower panicle branches are whorled, we include it in clade H since it is sister to the three Australian endemics in our combined plastid phylogram. Only a single plastid marker (rpl32-trnL) for S. olivaceus was included in our dataset and we have no ITS marker. These five species have not been previously recovered as a clade in molecular studies. There are four more endemic Australian species, S. contiguus S.T.Blake, S. lenticularis S.T.Blake, S. partimpatens R.Mills ex B.K.Simon, and S. pulchellus R.Br. that probably belong in this group but were not included in our analysis (Simon & Jacobs, 1999; Simon, 2005). The following shared morphological features support recognition of clade H: caespitose annuals, occasionally biennial or perennial, then with short rhizomes and stolons; leaf blade margins smooth or pectinate-ciliate; panicles with whorled primary branches, especially on the lower nodes, primary branches bare on lower 1/4–1/2; lower glumes 1/3–2/3 as long as the spikelet; upper glumes as long as the spikelet; and Version of Record (identical to print version). 1227 Peterson & al. • Sporobolus: phylogeny and classification caryopses 0.6–1.5 mm long, elliptic to oblong, often subterete, sometimes quadrangular or trigonous. We place the species of clade H in S. sect. Pyramidati subsect. Actinocladi (see discussion of clade I below). Clade I. — We refer to this lineage as the S. pyramidatus (Lam.) Hitchc. complex only because this species is the most wide-ranging member of this lineage in the Western Hemisphere. All species in clade I share the following morphological characteristics: caespitose annuals or rhizomatous perennials; leaf blade margins smooth or pectinate-ciliate, often cartilaginous, sometimes bearing stiff hairs; panicles with whorled primary branches, especially on the lower nodes, primary branches bare below; lower glumes 1/5 to nearly as long as the spikelet; upper glumes about as long as the spikelet, rarely longer; caryopses ellipsoid to obovoid, 0.6–1 mm long. Species in this clade are widely distributed in Africa, North and South America, and Australia; however the deepest split in the nuclear tree, a strongly supported clade (Figs. 1B, BS = 89, PP = 1.00) containing S. centrifugus (Trin.) Nees, S. cordofanus (Hochst. ex Steud.) Coss., and S. marginatus Hochst. ex A.Rich., contains only indigenous African species probably indicating African origins for the S. pyramidatus complex. In the plastid tree, the American S. domingensis (Trin.) Kunth is sister to the remaining species in the S. pyramidatus complex. There is strikingly little morphological and genetic variation among the wide ranging S. pyramidatus and S. coromandelianus (Retz.) Kunth, and the narrowly distributed S. coahuilensis Valdés-Reyna and S. contractus Hitchc. Species delimitation among these four morphologically similar entities needs clarification, requiring a worldwide approach. Likewise, the three accessions of S. cordofanus and two of S. marginatus are found in different, moderate to strongly supported, subclades. This could be the result of multiple gene copies (particularly in ITS), multiple origins of these taxa, or there could have been a mishandling or misidentification of our samples in the laboratory. Another possibility might be missing data since one accession of S. cordofanus (Greenway 10191) has only plastid marker (rpl32-trnL) and neither accession of S. marginatus has a complete set of plastid markers. Baaijens & Veldkamp (1991) had tentatively included S. coromandelianus in their S. sect Triachyrum (S. junceus complex) but noted it differed by numerous anatomical characters from other members. In the plastid tree a strongly supported clade containing “F, G, H, and I” lineages (Fig. 2B, BS = 96, PP = 1.00) is found and this clade is also present in the ITS tree but with less support (Fig. 1B, BS < 50, PP = 0.51). Many morphological features that delineate each of these clades separately are of course repeated in the F-G-H-I clade. The most obvious feature of whorled primary panicle branches is seen in the F-G-H-I clade and has arisen independently at least two times within Sporobolus since this character state is also found in the S. junceus complex (clade D). Therefore, we place all species in the F-G-H-I clade in a new section, S. sect. Pyramidati and within this section we recognize four subsections that correspond to the F (Subulati), G (Spicati), H (Actinocladi), and I (Pyramidati) clades. Morphological characteristics of S. sect. Pyramidati include: annual, biennial or perennial habit, sometimes rhizomatous or 1228 TAXON 63 (6) • December 2014: 1212–1243 stoloniferous; panicles with whorled primary branches, especially on the lower nodes; lower glumes 1/6–1/2 (–3/4) as long as the spikelet; and upper glumes 2/3 to as long as the spikelet. Clade J. — This clade was first recovered by Ortiz-Diaz & Culham (2000), and is recovered with strong support in the plastid and nuclear trees. We refer to this as the Sporobolus airoides complex, which consists of four caespitose perennials (S. airoides, S. spiciformis Swallen, S. splendens Swallen, S. wrightii) with spiciform (S. spiciformis) to pyramidal panicles and ascending or spreading primary branches, short spikelets 1.3–2.8 mm long, and lower glumes about 1/2 as long as the lemmas. All four species occur in alkaline soils and quite often are conspicuous members of the plant community on xeric flats and playas. Polyploid races as high as 14x (2n = 128, x = 9) have been found in Sporobolus airoides (Stebbins, 1985; Peterson & al., 2003). The South American S. rigens is a member of this clade and is found on a long branch in the combined plastid phylogram. We have included S. rigens in incertae sedis (see Table 2) since it aligns outside the S. airoides clade in our ITS tree. Ortiz-Diaz & Culham (2000) also found S. rigens in a separate clade outside of the S. airoides clade (S. sect. Airoides). Our plastid tree suggests that S. rigens shares a maternal parent that is part of, or perhaps an ancestor of a member of the S. airoides complex. Additional study of S. rigens, perhaps using low copy nuclear genes, is needed to clarify this result and elucidate its origin. Clade K. — The Sporobolus cryptandrus (Torr.) A.Gray lineage (S. sect. Cryptandri), a group of five species (S. cryptandrus, S. flexuosus (Thurb. ex Vasey) Rydb., S. giganteus Nash, S. nealleyi Vasey, S. texanus Vasey) is moderately supported as a clade in the ITS-derived phylogram (Fig 1B, BS = 87, PP = 1.00), and forms an unsupported grade basal to Sporobolus sect. Airoides (clade J) in the plastid tree, suggesting limited plastid variation among these closely related taxa. Ortiz-Diaz & Culham (2000) recovered this clade in their ITS analysis, which included four of the five species sampled here plus S. contractus. In our analyses, S. contractus is part of clade I. The five species in the S. cryptandrus complex are all located in the southwestern U.S.A./Mexico, and share the following morphological features: the caespitose perennial habit, lower branches of the panicles are usually included in the uppermost culm sheath, lower glumes that are 1/3 to nearly as long as the lemma, upper glumes about as long as the lemma, and ellipsoid to obovoid caryopses. Species in this complex tend to occur in salt-desert scrub and pinyon-juniper woodlands in slightly saline environments (Peterson & al., 2003). Although the complex is not monophyletic in the plastid data, this morphologically distinct lineage is supported in the ITS tree, thus we formally recognize this as a new section, S. sect. Cryptandri. Neither ITS or the plastid markers have sufficient discriminatory power to differentiate among accessions of S. cryptandrus, S. flexuosus, or S. giganteus. Apparently, these three taxa are closely related and they appear in the same clade in the ITS and plastid trees. Clade L. — Pilger (1956) delineated this as group 5 in his subgeneric treatment of Sporobolus and Riggins (1969, 1977) investigated most of the members of clade L in a study of the Version of Record (identical to print version). TAXON 63 (6) • December 2014: 1212–1243 Peterson & al. • Sporobolus: phylogeny and classification annual cleistogamous species and a biosystematic study of the Sporobolus asper (Michx.) Kunth (= S. compositus) complex. Our results support the derivation of Sporoblus clandestinus, S. compositus, S. neglectus, and S. vaginiflorus (Torr. ex A.Gray) Alph.Wood from a common ancestor. In the ITS tree one individual of S. clandestinus (Waterfall 5881) does not align with three other samples of S. clandestinus; rather, S. clandestinus (Waterfall 5881) and S. compositus form a clade that is the unsupported sister of the rest of the S. compositus complex whereas in the plastid tree all members of the complex are part of a strongly supported clade. This could indicate hybridization with a member of the highly variable S. compositus complex (Peterson & al., 2003, 2009), multiple origins of this taxon, or simply the occurrence of multiple copies since S. compositus (syn. S. asper (P.Beauv.) Kunth) is a known hexaploid (Riggins, 1977). Likewise, in the combined plastid tree S. vaginiflorus var. ozarkanus falls within the S. airoides clade and is sister to S. splendens whereas in the ITS tree it aligns with three other samples of S. vaginiflorus as expected. Acquisition of the S. airoides plastid haplotype is probably the result of an ancient hybridization event. Sporobolus neglectus also does not align within the combined plastid tree with other members of the S. compositus complex but is found as sister to the C plus the J–O clades. Important characters in the L lineage include panicles included in the uppermost sheath with cleistogamous spikelets and laterally flattened caryopses. In addition, we tentatively place S. aldabrensis Renvoize in this lineage since it shares a spiciform inflorescence (0.2–1.6 cm wide) with other members of the lineage, although we have data from only a single plastid (rpl32-trnL) marker. Important characters in this lineage are panicles included in the uppermost sheath with cleistogamous spikelets and laterally flattened caryopses. Based on only two plastid markers S. conrathii appears as a member of this clade (see Fig. 2B), although we are not convinced it is closely related since it differs morphologically in having diffuse, subdichotomously branched panicles (Gibbs Russell & al., 1991). OrtizDiaz & Culham (2000) sampled only S. compositus from this complex, which was placed in a clade with Calamovilfa, in contrast with our ITS results. Clade M. — This is the strongly supported Calamovilfa lineage, congruent with multiple molecular studies that have found Calamovilfa to be nested within Sporobolus (Ortiz-Diaz & Culham, 2000; Hilu & Alice, 2001; Columbus & al., 2007; Peterson & al., 2010a). No previous study has sampled all of the five Calamovilfa species (Thieret, 2003), as we do here. Based on caryopsis, embryo, lodicule, leaf epidermal, and anatomical characteristics, Reeder & Ellington (1960) pointed out the similarities of Calamovilfa with Sporobolus. Gray (1848) originally recognized Calamovilfa as a section of Calamagrostis, and later Hackel (1890) raised it to generic rank. Traditionally, agrostologists have emphasized the hairy callus to circumscribe the species of Calamovilfa. Reeder & Ellington (1960) concluded, “while such hairs are lacking among species of Sporobolus is apparently a matter of relatively minor taxonomic importance.” The occurrence of callus hairs 1/4 to 7/8 as long as the lemma and the disarticulation of the entire spikelet with intact caryopses are two synapomorphic characters that support recognition of clade M (C. arcuata K.E.Rogers, C. brevipilis (Torr.) Hack. ex Scribn. & Southw., C. curtissii (Vasey) Scribn., C. gigantea (Nutt.) Scribn. & Merr., C. longifolia). Thieret (1966, 2003) recognized two sections: sect. Calamovilfa, including C. arcuata, C. curtissii and C. brevipilis, distinguished primarily by short rhizomes and ligules to 0.7 mm long; and sect. Interior Thieret, including C. gigantea and C. longifolia, distinguished by elongate rhizomes and longer ligules (0.7–2.5 mm). Our plastid and nuclear analyses do not support his sectional classification. In the ITS tree, C. brevipilis, C. arcuata and C. longifolia are successive sister groups (all strongly supported) of C. gigantea (C. curtisii was not sampled for ITS), and in the plastid tree C. arcuata and C. brevipilis are a clade that is sister to a clade of C. gigantea, C. curtissii and C. longifolia. Clade N. — This clade consists of seven species (Table 2), five of which (S. curtissii Small ex Kearney, S. floridanus, S. pinetorum Weakley & P.M.Peterson, S. silveanus Swallen, S. teretifoliius R.M.Harper) were previously studied and attributed to the Sporobolus floridanus complex, a group found in pine savannahs and seeps of the coastal plain in southeastern U.S.A. (Weakley & Peterson, 1998). The plastid and nuclear trees include in this lineage S. heterolepis, a species distributed in northcentral U.S.A., which has been considered to be a close relative to members of clade N (Pilger, 1956; Weakley & Peterson, 1998). Sporobolus heterolepis was placed in a strongly supported clade with Calamovilfa in the matK analysis of Hilu & Alice (2001). Weakley & Peterson (1998) hypothesized a close relatioship between S. heterolepis and S. silveanus, which is supported by our plastid data. Sporobolus interruptus Vasey, an Arizonian endemic, has also been considered to be close to this lineage, and possibly the sister species of S. heterolepis (Weakley & Peterson, 1998). Although we have not sampled S. interruptus, we include it in this lineage based on its morphology. Members of the S. floridanus complex (including S. heterolepis and S. interruptus) share the following morphological features: perennial caespitose habit, tall culms ((0.2–)0.25–2(–2.5) m), shiny and indurated basal sheaths or dull and fibrous sheaths, open to somewhat contracted panicles that are generally longer than wide with 1–2(–3) primary branches at the lower nodes, long spikelets (3–7(–7.2) mm) that are purplish or plumbeous, spikelets with a glabrous callus and paleas, and caryopses that fall free from the lemma and palea at maturity. We recognize this lineage as Sporobolus sect. Calamovilfa subsect. Floridani. Weakley & Peterson (1998) also considered S. junceus and S. purpurascens to be closely related to the S. floridanus complex and noted the former two species can be distinguished in having distinctly whorled panicles branches in well-marked verticils. Our analyses do not support this, as these species are part of the distantly related clade D (S. sect. Triachyrum). In the ITS tree one individual of S. clandestinus (Waterfall 5881) does not align with three other samples of S. clandestinus; rather, S. clandestinus (Waterfall 5881) and S. compositus form a clade that is the unsupported sister of the rest of the S. compositus complex whereas in the plastid tree all members of Version of Record (identical to print version). 1229 Peterson & al. • Sporobolus: phylogeny and classification the complex are part of a strongly supported clade. Clades M and N are depicted as strongly supported sister clades in our trees (Figs. 1B, 2B; BS = 97, 98, PP = 1.00), consistent with earlier results (Hilu & Alice, 2001; Peterson & al., 2010a). It is not suprising that members of the S. floridanus complex are closely related to species of Calamovilfa since herbarium specimens of these two groups are often mistaken for one another (Weakley & Peterson, 1998). The morphological similarities between clades M and N include: robust culms usually 1–2.5 m tall with indurated (hardened) basal sheaths, a line of hairs for a ligule, panicles much longer than broad, spikelets with 1-veined glumes and lemmas, and caryopses with free pericarps (Peterson & al., 2003; Thieret, 2003). For this reason we recognize the species of clades M and N in separate subsections, Calamovilfa and Floridani of S. sect. Calamovilfa. Clade O. — This is the strongly supported Spartina lineage. Hubbard (1947) and Clayton & Renvoize (1986) suggested that Spartina, “lacks close relatives” and, based on panicles with spikes (multiple branches) that bear two rows on two sides of a somewhat flattened, triangular rachis (that superficially appears to be one-sided or pectinate) arrangement of the spikelets, included the genus in the Cynodonteae (Mobberley, 1956). Molecular studies have since firmly placed Spartina within the Sporobolinae, nested within Sporobolus, as reflected in recent classifications (Hilu & Alice, 2001; Columbus & al., 2007; Peterson & al., 2010a). These earlier analyses, which all had sparse sampling of Spartina, Sporobolus and relatives, variously placed Spartina in a strongly supported clade with Calamovilfa plus Sporobolus heterolepis (Hilu & Alice, 2001; matK), Calamovilfa (Columbus & al., 2007; combined ITS and trnL-F), and Calamovilfa longifolia plus Sporobolus teretifolius–S. pinetorum (Peterson & al., 2010a; combined ITS and plastid data). Our better-sampled trees are consistent with these earlier results. In our plastid tree Spartina is the sister group of a clade comprising Calamovilfa (clade M) and the Sporobolus floridanus complex (clade N), which includes S. heterolepis, S. teretifolius and S. pinetorum sampled in earlier studies. In the ITS tree Spartina is part of a well-supported clade that includes a clade of Calamovilfa (clade M) (plus a clade comprising S. compositus and one individual of S. clandestinus) and the Sporobolus floridanus complex (clade N), and the remaining members of the Sporobolus compositus complex (clade L). These three lineages (L, M, N) in the ITS tree form an unsupported clade. The affinities of clade L to Spartina in the plastid tree are less clear, although the lineage is part of the strongly supported North American clade that includes Spartina. Both datasets suggest that Spartina and several of the other major North American lineages are derived from a common ancestor. Within Spartina, our nuclear tree identifies three major lineages, one comprising the mostly tetraploid (2n = 40) Spartina gracilis, S. cynosuroides, S. ×caespitosa, S. pectinata, S. bakeri, S. patens, S. ciliata, and S. densiflora; one comprising the hexaploid (2n = 60, 62) S. alterniflora, S. foliosa, and S. maritima; and S. spartinae. This topology is congruent with, and better resolved than, the trees recovered in earlier phylogenetic analyses based on ITS and the plastid trnTtrnL region (Baumel & al., 2002; Fortune & al., 2008), with 1230 TAXON 63 (6) • December 2014: 1212–1243 the caveat that we did not sample S. arundinacea (Thouars) Carmich. The earlier plastid trees did not resolve the monophyly of the tetraploid clade; the increased resolution of this clade here likely reflects our analysis of more nucleotides (four gene regions vs. one). However, inferred relationships between S. densiflora and S. argentinenis (= S. spartinae) differ among studies. For the nuclear data, the trees differ only in the inferred relationships among S. cynosuroides, S. pectinata and S. gracilis. In the earlier ITS trees these form a polytomy with the other lineages in the tetraploid clade, but are fully resolved here. This may reflect alignment differences and/or the different phylogenetic analyses conducted (parsimony in the earlier studies and ML and Bayesian here). Our sampling includes S. ×townsendii, a sterile F1 hybrid of S. alterniflora (the female parent) and S. maritima (the male parent) and the precursor of the amphidiploid S. anglica (reviewed in Saarela, 2012); the parentage of S. ×townsendii was confirmed based on variation in plastid regions (trnT-trnL, rpl16) and molecular fingerprinting (Ferris & al., 1997; Baumel & al., 2002, 2003). Curiously, neither S. ×townsendii nor S. anglica were sampled in the earlier phylogenetic studies (Baumel & al., 2002; Fortune & al., 2007, 2008). They are included here, and in our phylogenetic trees, the plastid sequences are identical for all individuals of S. alterniflora, S. anglica and S. ×townsendii, consistent with S. alterniflora being the female parent of S. ×townsendii, and S. ×townsendii, in turn, being the progenitor of S. anglica. Spartina foliosa is the sister group of this latter clade, and S. maritima is the sister group of the S. foliosa and S. anglica–S. alterniflora–S. ×townsendii clade. Relationships among species in the hexaploid clade in the ITS trees are different. Spartina maritima and S. ×townsendii comprise a weakly supported clade that is the sister group of S. anglica, with ITS sequences different than those of its hybrid progenitor, and this strongly-supported three taxon clade is the sister group of a S. foliosa–S. alterniflora clade. The minor variation in ITS between S. anglica and S. ×townsendii may reflect post-origin directional concerted evolution in S. anglica. The plastid trnT-trnL region has also been used to identify hybrids between S. foliosa and S. alterniflora, and S. foliosa and S. densiflora in California, in combination with complementary data sources (Antilla & al., 2000, Ayres & al., 2008). Some hybrid individuals shared their plastid haplotypes with S. densiflora, and others with S. foliosa. Our sample of S. foliosa (Reeder 6652 & Reeder) was collected in Baja California Sur, Mexico, in 1975, where neither of these taxa is known to be introduced, and is thus highly unlikely to be a hybrid with either S. alterniflora (introduced to adjacent California in the 1970s; Spicher & Josselyn, 1985) or S. densiflora (introduced to California in the 1800s; Spicher & Josselyn, 1985; Bortolus, 2006). Although none of the samples analyzed here represent either of these hybrids, we expect that, if the hybrids were sampled with the plastid markers used here, the same haplotype patterns in trnTtrnL would be prevalent in these other plastid regions. Baumel & al. (2002) also sampled the nuclear waxy (GBSSI) locus, which is incongruent with ITS and plastid data in some respects. In the waxy trees the tetraploid species S. argentinensis Parodi (= S. spartinae) was sister to the hexaploid clade, and the Version of Record (identical to print version). TAXON 63 (6) • December 2014: 1212–1243 Peterson & al. • Sporobolus: phylogeny and classification heptaploid S. densiflora (2n = 70, Ayres & al., 2008, Fortune & al., 2008) was the sister group of the hexaploid plus S. argentinensis clade. Subsequent phylogenetic studies of Spartina, based on extensive cloning of the low-copy nuclear gene waxy, focused on the hexaploid species (Fortune & al., 2007) and S. densiflora (Fortune & al., 2008). In the former study, two major lineages were identified, neither of which was congruent with the clades identified in ITS and plastid analyses. Multiple copies of waxy representing divergent lineages were found in S. alterniflora and S. foliosa, and the hexaploid lineage was not found to be monophyletic; these data support an allopolyploid origin for the hexaploid clade. Multiple divergent copies were also found in other Spartina species, and the phylogenetic tree based on these sequences was similarly discordant with the tree inferred from ITS and plastid data (Fortune & al., 2007). This study also sampled waxy in other Chloridoideae taxa, and found the sequences of Thellungia advena, Sporobolus indica, Calamovilfa gigantea, and C. longifolia to be part of the Spartina lineage. Fortune & al. (2007) hypothesized that the two major waxy clades represent paralogous copies of the gene that were inherited by Spartina (i.e., the paralogous copies were present prior to the origin of the genus) and also by other members of the Chloridoideae. The placement of Sporobolus indicus (in clade A)—a taxon that shares a waxy paralogue with some Spartina species—near the base of the Sporobolinae in our analyses suggests that the gene duplication may have occurred early during, or prior to, the evolution of the Sporobolinae lineage. Broader sampling of waxy among taxa of Sporobolinae and other Chloridoid taxa is needed to discern this. Further study of waxy in S. densiflora identified three divergent copies of the gene, one in each major waxy clade, supporting a polyphyletic origin for this species involving a member of the tetraploid lineage (probably S. arundinacea) and a member of the hexaploid lineage (Fortune & al., 2008). An overview of the history of reticulation among Spartina species is given in Ainouche & al. (2009). In the seminal revisionary treatment of Spartina, Mobberley (1956) recognized three complexes that, with the exception of Spartina ciliata, correspond with the three subclades in our phylograms (Figs. 1B and 2B, clade O). Mobberley (1956) described complex 1 (Spartina arundinacea, S. spartinae) as having hard and slender culms, without rhizomes or with short (less than 1.5 cm) and thick rhizomes, panicles spike-like with closely imbricate spikes (multiple branches), spikelets lanceolate and closely imbricate, and upper glumes with hispid keels; complex 2 (S. alterniflora, S. anglica, S. foliosa, S. longispica [now considered to be a hybrid between S. alterniflora and S. densiflora; Bortolus, 2006], S. maritima, S. ×townsendii) as having thick, fleshy and succulent culms that become brownish in age with a distinctly disagreeable odor when fresh, smooth and glabrous leaf blades, and panicles with remote or moderately imbricate spikes, and upper glumes with glabrous, pilose, or rarely hispid keels; and complex 3 (S. bakeri, S. ×caespitosa, S. ciliata, S. cynosuroides, S. densiflora, S. gracilis, S. patens, S. pectinata, S. versicolor Fabre) as having hard culms often tinged or streaked with purple, scabrous leaf blades, panicle spikes more or less spreading and often tinged or streaked with purple, closely imbricate spikelets, and upper glumes with hispid keels. Although S. densiflora has a complicated reticulate origin, we include it in complex 3 on the basis of its morphology. Formal names for these Spartina lineages, hitherto referred to as the tetraploid and hexaploid lineages or clade I and clade II (e.g., Baumel & al., 2002; Fortune & al., 2007, 2008), should facilitate precise communication about these clades. We thus recognize Mobberley’s (1956) three complexes (with modification to his complex 1) as subsections within Sporobolus sect. Spartina: subsect. Ponceletia (complex 1), subsect. Alterniflori (complex 2), and subsect. Spartina (complex 3). Cytology. — Base chromosome numbers for the Zoysieae reported in Goldblatt & Johnson (1979–) are x = 6, 8, 9, 10, and 12; and the common base chromosome number (plesiomorphy) for the Chloridoideae is x = 10 (Peterson & al., 2007, 2010a). The following counts were reported in Goldblatt & Johnson (1979–), Baaijens & Veldkamp (1991), Simon & Jacobs (1999), Roodt & Spies (2003), and Peterson & al. (2003, 2004): x = 10 for 2 species of Calamovilfa; x = 8 for 3 species and x = 9 for 1 species of Crypsis; x = 10 for 14 species of Spartina; x = 6 for 8 species (sometimes reported as x = 12), x = 9 for 29 species, and x = 10 for 13 species of Sporobolus; and x = 10 for 2 species of Zoysia (see Table 2 for chromosome numbers). There are no known chromosome counts for Psilolemma or Urochondra. Obviously, cytological work has progressed more rapidly in Spartina (13 of the 59 chromosome counts in Table 2) since it is a dominant species of coastal habitats such as intertidal mud flats, estuaries, and salt marshes (Saarela, 2012). Hypothetically within Sporobolus s.l., 12 species in six clades have diploid populations, although only six species are known with only diploid chromosome reports, i.e., 2n = 12, 18 or 20 (Crypsis alopecuroides, Sporobolus maderaspatanus, S. molleri Hack., S. montanus (Hook.f.) Engl., S. sanguineus, S. tenuissimus). The x = 6 base chromosome number is found in clades A, B, and I; x = 9 base number is found in clades A, B, C, E, F, I, J, K, L, N, and X; base number x = 10 is found in clades A, C, D, E, J, K, M, N, and O. Since there are at least 120 species without a known chromosome number (67% listed in Table 2) it is not easy to draw meaningful conclusions. Only clade A (S. sect. Sporobolus) contains species with all three base numbers (x = 6, 9, and 10); clades B (S. sect. Fimbriatae) and I (S. subsect. Pyramidati) contain species with x = 6 and 9; and clades C (S. subsect. Helvoli), E (S. sect. Virginicae), J (S. sect. Airoides), K (S. sect. Cryptandri), and N (S. subsect. Floridani) contain species with x = 9 and 10. Incongruences between the ITS and combined plastid phylograms. — The two phylogenetic trees in our study of the Zoysieae based on combined plastid and ITS DNA sequences are incongruent and their topologies are not mutually exclusive (Fig. 3). The 16 major clades (A–O, X) were found in both analyses and have been maintained with high support in 12 clades in the combined plastid tree and 11 clades in the nuclear tree. In the combined plastid and ITS trees the X and A clades are shown to be the first and second diverging lineages, and the unity of the North American clade (J–O) and a group of mostly Austral-African clades (E–I) are also preserved. The placement of Sporobolus rigens outside the J clade in the ITS tree could be attributed to high amounts of homoplasy in the Version of Record (identical to print version). 1231 Peterson & al. • Sporobolus: phylogeny and classification nuclear dataset while the possession of “H” and “F” plastid haplotypes in S. scabridus and S. arabicus, respectively (both members of the I clade in the ITS tree), suggest possible hybridization events between these two sister lineages. One major structural difference that prevents congruence between the ITS and combined plastid trees is the B-C-D clade. TAXONOMY Because our molecular analysis renders Sporobolus paraphyletic, we propose incorporating Calamovilfa, Crypsis, Spartina, and Thellungia within Sporobolus. Expansion of the circumscription of Sporobolus to include these four genera requires the least amount of nomenclatural changes and still allows us to recognize a strongly supported monophyletic and morphologically cohesive unit. Since Spartina is the oldest genus, Peterson & al. (2014c) prepared a proposal supporting the conservation (nomina conservanda) of Sporobolus. Below, we list all species previously recognized in Calamovilfa, Crypsis, Spartina, and Thellungia and provide their names in Sporobolus. Our analysis supports the recognition of 11 sections and 11 subsections (see Table 2) within Sporobolus, and for consistency in rank, we propose new sectional and subsectional names below. Species not included in our DNA analysis are preceded by an asterisk (*). Sporobolus R.Br., Prodr.: 169. 1810, nom. cons. prop. – Type: Sporobolus indicus (L.) R.Br. (≡ Agrostis indica L.). = Pallasia Scop., Intr. Hist. Nat.: 72. 1777, non Pallassia Houttuyn 1775 ≡ Crypsis Aiton, Hort. Kew. 1: 48. 1789, nom. rej. prop. ≡ Antitragus Gaertn., Fruct. Sem. Pl. 2: 7. 1790, nom. illeg. superfl. ≡ Raddia Mazziari, Ionios Antologia 2: 448. 1834, non Raddia Bertol. 1819 – Type: Pallasia aculeata (L.) Kuntze (≡ Schoenus aculeatus L.; Sporobolus aculeatus (L.) P.M.Peterson). = Spartina Schreb., Gen. Pl.: 43. 1789, nom. rej. prop. – Type (designated by Mobberley in Iowa State Coll. J. Sci. 30: 477. 1956): Spartina cynosuroides (L.) Roth. (≡ Dactylis cynosuroides L.; Sporobolus cynosuroides (L.) P.M.Peterson & Saarela). = Ponceletia Thouars, Esquisse Fl. Tristan D’Acugna: 36. 1808, nom. rej. prop. – Type: Ponceletia arundinacea Thouars (≡ Sporobolus mobberleyanus P.M.Peterson & Saarela). = Heleochloa Host ex Roem., Collectanea: 233. 1809, nom. rej. prop. – Type: (designated by Nash in Britton & Brown, Ill. Fl. N. U.S., ed. 2, 1: 190. 1913): Heleochloa alopecuroides (Piller & Mitterp.) Host ex Roem. (≡ Phleum alopecuroides Piller & Mitterp.; Sporobolus alopecuroides (Pillar & Mitterp.) P.M.Peterson). = Agrosticula Raddi, Agrostogr. Bras.: 33. 1823 – Type: Agrosticula muralis Raddi (≡ Sporobolus muralis (Raddi) Hitchc. & Chase; = Sporobolus tenuissimus (Mart. ex Schrank) Kuntze). = Bennetia Raf. in Bull. Bot. (Geneva) 1: 220. 1830 – Type: Bennetia juncea Raf. ex B.D.Jacks. (≡ Agrostis juncea Michx., nom. illeg.; Sporobolus junceus (P.Beauv.) Kunth). 1232 TAXON 63 (6) • December 2014: 1212–1243 = Triachyrum Hochst. ex A.Braun in Flora 24(2): 712. 1841 – Type: Triachyrum adoense Hochst. ex A.Braun (= Sporobolus discosporus Nees). = Spermachiton Llanos, Fragm. Pl. Filip.: 25. 1851 – Type: Spermachiton involutum Llanos (= Sporobolus diandrus (Retz.) P.Beauv.). = Cryptostachys Steud., Syn. Pl. Glumac. 1: 181. 1854 – Type: Cryptostachys vaginata Steud. (≡ Sporobolus vaginatus (Steud.) Scribn.; = S. vaginiflorus (Torr. ex A.Gray) Alph. Wood). = Diachyrium Griseb. in Abh. Königl. Ges. Wiss. Göttingen 19: 257–258, t. 2, fig. 8. 1874 – Type: Diachyrium arundinaceum Griseb. (= Sporobolus rigens (Trin.) E.Desv.). = Bauchea E.Fourn., Mexic. Pl. 2: 87. 1886 – Type: Bauchea karwinskyi E.Fourn. (= Sporobolus wrightii Munro ex Scribn.). = Calamovilfa (A.Gray) Hack. ex Scribn. & Southw., True Grasses: 113. 1890 – Type (designated by Thieret in Castanea 31: 146. 1966): Calamovilfa brevipilis (Torr.) Hack. ex Scribn. & Southw. (≡ Arundo brevipilis Torr.; Sporobolus brevipilis (Torr.) P.M.Peterson). = Torgesia Bornm. in Mitth. Thüring. Bot. Vereins, n.s., 30: 83. 1913 – Type: (≡ Torgesia minuartioides Bornm.; Sporobolus minuartioides (Bornm.) P.M.Peterson). = Thellungia Stapf in Bull. Misc. Inform. Kew 1920(3): 97, fig. 1–11. 1920 – Type: Thellungia advena Stapf (≡ Sporobolus advenus (Stapf) P.M.Peterson). Sporobolus advenus (Stapf) P.M.Peterson, comb. nov. ≡ Thellungia advena Stapf in Bull. Misc. Inform. Kew 1920(3): 98, fig. 1–11. 1920 ≡ Eragrostis advena (Stapf) S.M.Phillips in Kew Bull. 37(1): 159. 1982 – Holotype: SWITZERLAND (introduced from Australia). Derendingen Mill, near Solothurn, 10 Aug–1 Sep 1918, R. Probst s.n. (K barcode 000643476 [image!]; isotypes: BRI, US No. 2947408!). Sporobolus megalospermus (F.Muell. ex Benth.) P.M.Peterson, comb. nov. ≡ Eragrostis megalosperma F.Muell. ex Benth., Fl. Austral. 7: 644–645. 1878 – Lectotype (designated by Lazarides in Austral. Syst. Bot. 10: 133. 1997): AUSTRALIA. Queensland, Port Curtis District, Rockhampton, 23°02′ S, 150°03′ E, Herb. F. Mueller 1877, O’Shanesy s.n. (K barcode 000643530 [image!]; isolectotype: BRI). = Sporobolus indicus var. intermedius Bailey in Queensland Agric. J. 30: 316. 1913. Sporobolus sect. Airoides P.M.Peterson, sect. nov. – Type: Agrostis airoides Torr. in Ann. Lyceum Nat. Hist. New York 1(1): 151–152. 1824 ≡ Sporobolus airoides (Torr.) Torr. Caespitose perennials, culms 30–250 cm tall. Panicles spiciform or pyramidal with widely spreading branches. Spikelets 1.3–2.8 mm long; lower glumes about 1/2 as long as the lemma. Species included: S. airoides, S. spiciformis Swallen, S. splendens Swallen, S. wrightii Munro ex Scribn. Version of Record (identical to print version). TAXON 63 (6) • December 2014: 1212–1243 Peterson & al. • Sporobolus: phylogeny and classification Sporobolus sect. Calamovilfa (A.Gray) P.M.Peterson, comb. & stat. nov. ≡ Calamagrostis subg. Calamovilfa A.Gray, Manual: 582. 1848 ≡ Calamovilfa (A.Gray) Hack. ex Scribn. & Southw., True Grasses: 113. 1890 – Type (designated by Thieret in Castanea 31: 146. 1966): Sporobolus brevipilis (Torr.) P.M.Peterson (≡ Arundo brevipilis Torr. ≡ Calamovilfa brevipilis (Torr.) Hack. ex Scribn. & Southw.). = Calamovilfa sect. Interior Thieret in Castanea 31(2): 150. 1966 – Type: Sporobolus curtissianus (Vasey) P.M.Peterson (≡ Calamovilfa giganteus (Nutt.) Scribn. & Merr. ≡ Calamagrostis gigantea Nutt.). As per Art. 11.6, the autonym Calamovilfa (A.Gray) Hack. ex Scribn. & Southw. sect. Calamovilfa has priority over the name that established it (i.e., C. sect. Interior). Sporobolus subsect. Calamovilfa (A.Gray) P.M.Peterson, comb. & stat. nov. ≡ Calamagrostis subg. Calamovilfa A.Gray, Manual: 582. 1848. [see Sporobolus sect. Calamovilfa entry above] Rhizomatous perennials; rhizomes covered with shiny, coriaceous scale-like leaves or with dull, persistent foliage leaves; culms 1–2.5 m tall. Sheaths indurated. Panicles mostly open or contracted at maturity, usually longer than wide. Spikelets 5–10.8 mm long; callus hairy, the hairs 1/4–7/8 as long as the lemma; paleas mostly pubescent. Caryopses falling with the lemma and the palea. Species included: 1. Sporobolus arcuatus (K.E.Rodgers) P.M.Peterson, comb. nov. ≡ Calamovilfa arcuata K.E.Rogers in Rhodora 72(789): 72–79, fig. 1–2. 1970 – Holotype: U.S.A. Tennessee, Cumberland Co., Along Daddy’s Creek Road from Rockwood to Crab Orchard about 7–8 mi from Crab Orchard at Antioch Bridge, 3 Oct 1968, K.E. Rogers 42409, A.J. Sharp, C. Delgadillo & W. Meijer (US No. 281796 [not found]; isotypes: BRIT No. 23386 [image!], ISC barcode 0000509 [image!], LAF, TAES, TENN, US No. 74241!). 2. Sporobolus arenicola P.M.Peterson, nom. nov. ≡ Calamagrostis gigantea Nutt. in Trans. Amer. Philos. Soc., n.s., 5: 143–144. 1835 (“1837”) ≡ Calamovilfa gigantea (Nutt.) Scribn. & Merr. in Circ. Div. Agrostol. U.S.D.A. 35: 2. 1901, non Sporobolus giganteus Nash – Holotype: U.S.A. Arkansas Territory, Habitat on the sandy banks of Great Salt River of the Arkansas, [1819], T. Nuttall s.n. (BM barcode BM001042438 [image!]; isotypes: PH barcode 00010144 [image!], US No. 865774A! fragm. ex BM, US No. A865773A! fragm. ex PH). The epithet refers to the sand dune habitat where the species is commonly found. 3. Sporobolus brevipilis (Torr.) P.M.Peterson, comb. nov. ≡ Arundo brevipilis Torr., Fl. N. Middle United States 1: 95. 1823 ≡ Calamagrostis brevipilis (Torr.) L.C.Beck, Bot. North. Middle States: 401. 1833 ≡ Ammophila brevipilis (Torr.) Benth. ex Vasey, Grass. U.S.: 29. 1883 ≡ Calamovilfa brevipilis (Torr.) Hack. ex Scribn. & Southw., True Grasses 113. 1890 – Holotype: U.S.A. New Jersey, 1820, s.coll. s.n. (NY barcode 00346013 [image!]; isotypes: NY barcode 00346015 [image!], US No. A865368! fragm. ex Herb. Torrey, US No. 78850! fragm. ex Herb. Torrey). 4. *Sporobolus vaseyi P.M.Peterson, nom. nov. ≡ Ammophila curtissii Vasey in Bull. Torrey Bot. Club 11: 7. 1884 ≡ Calamagrostis curtissii (Vasey) Vasey in Bot. Gaz. 15: 269. 1890 ≡ Calamovilfa curtissii (Vasey) Scribn. in Bull. Div. Agrostol. U.S.D.A. 17: 199. 1899, non Sporobolus curtissii Small ex Kearney – Holotype: U.S.A. Florida, Brevard Co., dry or moist pine barrens on Merritt’s Island, Indian River, Jul 1879, A.H. Curtiss 3412 (US No. 76420!; isotypes: BR barcode 0000006866068 [image!], GH barcode 00023345 [image!], MO Nos. 992438 & 992439 [images!], NY barcode 00327700 [image!], PH barcode 00002959 [image!]). The epithet commemorates George S. Vasey (1822–1893), an eminent agrostologist who in 1872 was appointed botanist of the USDA grass herbarium and in 1889 the Smithsonian Institution appointed Vasey honorary curator in the Department of Botany (Pennington, 2004). 5a. Sporobolus rigidus (Buckley) P.M.Peterson, comb. nov. ≡ Vilfa rigida Buckley in Proc. Acad. Nat. Sci. Philadelphia 14: 89. 1862 – Holotype: U.S.A. Oregon, [1834–35], T. Nuttall s.n. (PH barcode 00029017 [image!]). = Calamagrostis longifolia Hook., Fl. Bor.-Amer. 2: 241. 1840 ≡ Ammophila longifolia (Hook.) Benth. ex Vasey, Grass. U.S.: 29. 1883 ≡ Calamovilfa longifolia (Hook.) Hack. ex Scribn. & Southw., True Grasses: 113. 1890 ≡ Athernotus longifolius (Hook.) Lunell in Amer. Midl. Naturalist 4: 218. 1915, non Sporobolus longifolius (Torr.) Alph.Wood. 5b. *Sporobolus rigidus var. magnus (Scribn. & Merr.) P.M. Peterson, comb. nov. ≡ Calamovilfa longifolia var. magna Scribn. & Merr. in Circ. Div. Agrostol. U.S.D.A. 35: 3. 1901 – Holotype: U.S.A. Michigan, Allegan Co., lake shore at the mouth of the Kalamazoo River, 1894, W.A. Taylor s.n. (US No. 201912!). Sporobolus subsect. Floridani P.M.Peterson, subsect. nov. – Type: Sporobolus floridanus Chapm., Fl. South. U.S.: 550. 1860. Caespitose perennials; culms (0.2–)0.25–2(–2.5) m tall. Basal sheaths shiny and indurated or dull and fibrous. Panicles open at maturity to somewhat contracted, longer than wide, narrowly pyramidal to ovate; lower nodes with 1–2(–3) branches. Spikelets 3–7(–7.2) mm long, purplish or plumbeous; callus glabrous; paleas glabrous. Caryopses falling free from the lemma and palea. Species included: *S. curtissii Small ex Kearney, S. floridanus, S. heterolepis (A.Gray) A.Gray, *S. interruptus Vasey, S. pinetorum Weakley & P.M.Peterson, S. silveanus Swallen, S. teretifolius R.M.Harper. Version of Record (identical to print version). 1233 Peterson & al. • Sporobolus: phylogeny and classification Sporobolus sect. Clandestini P.M.Peterson, sect. nov. – Type: Sporobolus clandestinus (Biehler) Hitchc. (≡ Agrostis clandestina Biehler, Pl. Nov. Herb. Spreng.: 8. 1807). Caespitose annuals or perennials, sometimes with rhizomes. Panicles 0.2–1.6 cm wide, contracted, spiciform, spikelike, usually included in the uppermost sheath, terminal and axillary. Spikelets 1.3–9(–10) mm long, often cleistogamous. Caryopses laterally flattened. Species included: S. aldabrensis Renvoize, S. compositus (Poir.) Merr., S. clandestinus, S. neglectus Nash, S. vaginiflorus (Torr. ex A.Gray) Alph.Wood. Sporobolus sect. Crypsis (Aiton) P.M.Peterson, comb. & stat. nov. ≡ Crypsis Aiton, Hort. Kew. 1: 48. 1789 – Type: Sporobolus aculeatus (L.) P.M.Peterson (≡ Schoenus aculeatus L.). Geniculate annuals or perennials with wiry culms. Panicles short, < 12 cm long, spike-like to subspiciform (ovate with stiffly spreading branches in S. ruspolianus). Spikelets 1-flowered; glumes usually shorter than the lemma; lemmas 1–3-veined. Sporobolus subsect. Crypsis (Aiton) P.M.Peterson, comb. & stat. nov. ≡ Crypsis Aiton, Hort. Kew. 1: 48. 1789. [see Sporobolus sect. Crypsis entry above] Erect, geniculate, or prostrate annuals; culms 1–40(–90) cm long. Panicles 0.4–7.5 cm long, 0.2–0.8 cm wide, spiciform or capitate, often embraced or enclosed in the sheath. Spikelets 2–6 mm long, strongly laterally compressed; lemmas 2–5.2 mm long, keeled. Caryopses 1–2.5 mm long. Species included: 1. Sporobolus aculeatus (L.) P.M.Peterson, comb. nov. ≡ Schoenus aculeatus L., Sp. Pl.: 42. 1753 ≡ Crypsis aculeata (L.) Aiton, Hort. Kew 1: 48. 1789 – Lectotype (designated by Meikle, Fl. Cyprus 2: 1848. 1985): Loefling s.n. (LINN No. 68.3 [image!]). 2. Sporobolus alopecuroides (Piller & Mitterp.) P.M.Peterson, comb. nov. ≡ Phleum alopecuroides Piller & Mitterp., Iter Poseg. Sclavon.: 147, t. 16. 1783 ≡ Heleochloa alopecuroides (Piller & Mitterp.) Host, Icon. Descr. Gram. Austriac. 1: 23, t. 29. 1801 ≡ Crypsis alopecuroides (Piller & Mitterp.) Schrad., Fl. Germ. 1: 167. 1806 – Holotype: HUNGARY. Iter per Poseganum Slavoniae provinciam. 3a. *Sporobolus borszczowii Regel 3b. *Sporobolus borszczowii subsp. acuminatus (Trin.) P.M. Peterson, comb. & stat. nov. ≡ Crypsis acuminata Trin., Neue Entd. 2: 57. 1821 – Lectotype (designated by Tsvelev in Fedorov, Zlaki SSSR [Grasses of the Soviet Union]: 647. 1976): KAZAKHSTAN. Lower reaches of the Ural River (LE TRIN 1523B1! [Trinius herbarium collection housed at LE, given a microfiche number in Soreng & al., 1995]). 3c. *Sporobolus borszczowii subsp. ambiguus (Boiss. & Balansa ex Boiss.) P.M.Peterson, comb. nov. ≡ Heleochloa 1234 TAXON 63 (6) • December 2014: 1212–1243 ambigua Boiss. & Balansa ex Boiss., Fl. Orient. 5: 477. 1884 ≡ Crypsis ambigua (Boiss. & Balansa ex Boiss.) Lorch in Bull. Res. Council Israel, Sect. D, Bot. 11: 97. 1962 ≡ Crypsis acuminata subsp. ambigua (Boiss. & Balansa ex Boiss) Kit Tan, Fl. Turkey & E. Aegean Isl. 9: 584. 1985 – Lectotype (designated here): TURKEY. İzmir, Statión de Boudja, près de Smyrne, 150 m, 31 Aug. 1866, B. Balansa 1541 (W barcode 0027063 [image!]; isolectotype: W barcode 0048400 [image!]). 4. *Sporobolus factorovskyi (Eig) P.M.Peterson, comb. nov. ≡ Crypsis factorovskyi Eig in Leafl. Agric. Exp. Sta. Zionist Organ. Inst. 6: 58. 1927 – Lectotype (designated here): ISRAEL. Ramath-Gan near Tel-Aviv, banks of a rivulet, 21 Aug 1925, A. Eig Fl. Pal. Exs. nr. 4 (B barcode 10-0278899 [image!]; isolectotype: S No. G-1739 [image!]). 5. *Sporobolus hadjikyriakou (Raus & H.Scholz) P.M.Peterson, comb. nov. ≡ Crypsis hadjikyriakou Raus & H.Scholz in Willdenowia 34: 457. 2004 – Holotype: CYPRUS. Central Troodos area, Almyrolivadon, margin of marshy place, 1600 m, 23 Jul 1999, G.N. Hadjikyriakou 4721 (B barcode 10 0009595 [image!]; isotypes: B, BTU, Herb. Hadjikyriakou). 6. *Sporobolus minuartioides (Bornm.) P.M.Peterson, comb. nov. ≡ Torgesia minuartioides Bornm. in Mitth. Thüring. Bot. Vereins, n.s., 30: 84. 1913 ≡ Crypsis minuartioides (Bornm.) Mez in Repert Spec. Nov. Regni Veg. 17: 293. 1921 ≡ Heleochloa minuartioides (Bornm.) Pilg. in Engler & Prantl, Nat. Pflanzenfam., ed. 2, 14d: 62. 1956 – Lectotype (designated here): ISRAEL. Sarona, Aujah River, wet places, 15 m, 12 Jul 1912, J.E. Dinsmore B1515 (B barcode 10 0367373 [image!]; isolectoypes: B barcode 10 0367372 [image!], W No. 19160035574 [image!]. 7. *Sporobolus niliacus (Fig. & De Not.) P.M.Peterson, comb. nov. ≡ Crypsis niliaca Fig. & De Not. in Mém. Acad. Roy. Sci. Turin 14: 322. 1854 – Holotype: EGYPT. In insulis niloticis Aegypti inferioris (not located). = Phalaris vaginiflora Forssk., Fl. Aegypt.-Arab.: 18. 1775 ≡ Crypsis vaginiflora (Forssk.) Opiz, Naturalientausch 8: 83. 1823, non Sporobolus vaginiflorus (Torr. ex A.Gray) Alph.Wood. 8. Sporobolus schoenoides (L.) P.M.Peterson, comb. nov. ≡ Phleum schoenoides L., Sp. Pl.: 60. 1753 ≡ Crypsis schoenoides (L.) Lam., Tabl. Encycl. 1: 166, pl. 42, fig. 1. 1791 ≡ Heleochloa schoenoides (L.) Host, Icon. Descr. Gram. Austriac. 1: 23, pl. 30. 1801 – Lectotype (designated by Clayton in Polhill, Fl. Trop. E. Africa, Gramineae 2: 353. 1974): SPAIN. Löfling s.n. (LINN No. 81.7 [image!]; isolectotype: S No. 09-36889 [image!]). 9. *Sporobolus turkestanicus (Eig) P.M.Peterson, comb. nov. ≡ Crypsis turkestanica Eig in Agric. Rec. Agric. Exp. Sta., Tel Aviv. 2: 206. 1929 – Lectotype (designated by Tsvelev in Fedorov, Zlaki SSSR [Grasses of the Soviet Union]: 648. Version of Record (identical to print version). TAXON 63 (6) • December 2014: 1212–1243 Peterson & al. • Sporobolus: phylogeny and classification 1976): Perovskii post, Syr Darya district, Katan-Kamys demarcated area, 20 Jun 1914, M. Spiridonov s.n. (LE; isolectotype: LE). Sporobolus subsect. Helvoli P.M.Peterson, subsect. nov. – Type: Sporobolus helvolus (Trin.) T.Durand & Schinz. (≡ Vilfa helvola Trin.). Decumbent, prostrate or erect perennials with rhizomes or stolons; culms 8–60 cm long. Panicles 1–12.5 cm long, 0.4–2 cm wide, contracted, spiciform to open. Spikelets 1.4–2 mm long, subterete; lemmas 1.4–2 mm long, rounded on back without a keel. Caryopses 0.5–1 mm long. Species included: S. helvolus, S. mitchellii (Trin) C.E.Hubb. ex S.T.Blake, and S. ruspolianus Chiov. Sporobolus sect. Cryptandri P.M.Peterson, sect. nov. – Type: Sporobolus cryptandrus (Torr.) A.Gray, Manual: 576. 1848 (≡ Agrostis cryptandra Torr.). Caespitose perennials; culms 10–200 cm tall. Panicles with the lower branches usually included in the uppermost culm sheath. Spikelets 1.4–3.5(–4) mm long; lower glumes 0.5–2 mm long, 1/3 to nearly as long as the lemma; upper glumes 1.3– 3.5(–4) mm long, about as long as the lemma. Caryopses ellipsoid to obovoid. Species included: S. cryptandrus, S. flexuosus (Thurb. ex Vasey) Rydb., S. giganteus Nash, S. nealleyi Vasey, S. texanus Vasey Sporobolus sect. Pyramidati P.M.Peterson, sect. nov. –Type: Sporobolus pyramidatus (Lam.) Hitchc., Man. Grasses W. Ind.: 84. 1936 (≡ Agrostis pyramidata Lam). Caespitose annuals, biennials or perennials, sometimes rhizomatous or stoloniferous. Panicles with whorled primary branches, especially on the lower nodes. Lower glumes 1/6–1/2 (–3/4) as long as the spikelet; upper glumes 2/3 to as long as the spikelet. Sporobolus subsect. Actinocladi P.M.Peterson, subsect. nov. – Type: Sporobolus actinocladus (F.Muell.) F.Muell., Fragm. 8: 140. 1873 (≡ Vilfa actinoclada F.Muell.). Caespitose annuals, occasionally biennial or perennial, sometimes with short rhizomes and stolons. Leaf blade margins smooth or pectinate-ciliate. Panicles with whorled primary branches, especially on the lower nodes; primary branches bare on lower 1/4–1/2. Lower glumes 1/3–2/3 as long as the spikelet; upper glumes as long as the spikelet. Caryopses 0.6–1.5 mm long, elliptic to oblong, often subterete, sometimes quadrangular or trigonous. Species included: S. actinocladus, S. australasicus Domin, S. caroli Mez, *S. contiguus S.T.Blake, *S. lenticularis S.T. Blake, S. olivaceus Napper, S. nitens Stent, *S. partimpatens R.Mills ex B.K.Simon, S. phleoides Hack., *S. pulchellus R.Br. Sporobolus subsect. Pyramidati (P.M.Peterson) P.M.Peterson, stat. nov. Basionym: Sporobolus sect. Pyramidati P.M. Peterson in Taxon 63: 1235. 2014. [see Sporobolus sect. Pyramidati entry above] Caespitose annuals or rhizomatous perennials; culms 7– 100(–120) cm tall. Leaf blade margins smooth or pectinate-ciliate, often cartilaginous, sometimes bearing stiff hairs. Panicles with whorled primary branches, especially on the lower nodes; primary branches bare below. Lower glumes 1/5 to nearly as long as the spikelet; upper glumes about as long as the spikelet, rarely longer. Caryopses 0.6–1.2 mm long, ellipsoid to obovoid. Species included: S. centrifugus (Trin.) Nees, S. coahuilensis Valdés-Reyna, S. contractus Hitchc., S. cordofanus (Hochst. ex Steud.) Coss., S. coromandelianus (Retz.) Kunth, S. domingensis (Trin.) Kunth, S. ioclados (Nees ex Trin.) Nees, S. ludwigii Hochst., S. marginatus Hochst. ex A.Rich., S. pyramidatus, S. scabridus S.T.Blake, S. tenacissimus (L.f.) P.Beauv. Sporobolus subsect. Spicati P.M.Peterson, subsect. nov. – Type: Sporobolus spicatus (Vahl) Kunth, Révis. Gramin. 1: 67. 1829 (≡ Agrostis spicata Vahl, Symb. Bot. 1: 9. 1790). Caespitose annuals or perennials, sometimes stoloniferous. Leaf blades with pectinate-ciliate margins near the base. Panicles with whorled primary branches, especially on the lower nodes; primary branches bare below. Lower glumes < 1/3 as long as the spikelet, often suppressed or lacking, the scales ovate to oblong, tiny. Caryopses 0.7–1.1 mm long, elliptic, obovate to spherical or subglobose, usually laterally flattened. Species included: S. microprotus Stapf, S. scabriflorus Stapf ex Massey, S. spicatus, S. uniglumis Stent & J.M.Rattray. Sporobolus subsect. Subulati P.M.Peterson, subsect. nov. – Type: Sporobolus subulatus Hack. in J. Linn. Soc., Bot. 29: 65. 1891. Caespitose perennials, often with stolons; culms 15–80 cm tall, sometimes tussocky. Panicles with whorled primary branches; primary branches bare on lower 1/4–1/2. Lower glumes 1/3–3/4 as long as the spikelet; upper glumes 2/3 to as long as the spikelet. Caryopses 0.8–2 mm long, ellipsoid. Species included: S. arabicus Boiss., S. kentrophyllus (K.Schum. ex Engl.) Clayton, S. subulatus, S. verdcourtii Napper. Sporobolus sect. Spartina (Schreb.) P.M.Peterson & Saarela, comb. & stat. nov. ≡ Spartina Schreb., Gen. Pl.: 43. 1789 [see Spartina entry above in synonymy of Sporobolus] – Type: Sporobolus cynosuroides (L.) P.M.Peterson & Saarela (≡ Dactylis cynosuroides L.). Panicles with “spikes” or multiple branches that bear two rows on two sides of a somewhat flattened, triangular rachis, superficially appearing to be one-sided. Sporobolus subsect. Alterniflori P.M.Peterson & Saarela, subsect. nov. – Type: Sporobolus alterniflorus (Loisel.) P.M.Peterson & Saarela (≡ Spartina alterniflora Loisel.). Culms thick, fleshy and succulent, becoming brownish in age with a distinctly disagreeable odor when fresh; leaf blades smooth and glabrous. Panicles with subremote to moderately imbricate spikes. Spikelets closely imbricate; upper glumes with glabrous or pilose, sometimes hispid keels. Species included: Version of Record (identical to print version). 1235 Peterson & al. • Sporobolus: phylogeny and classification 1. Sporobolus alterniflorus (Loisel.) P.M.Peterson & Saarela, comb. nov. ≡ Spartina alterniflora Loisel., Fl. Gall.: 719. 1807 ≡ Trachynotia alterniflora (Loisel.) DC., Fl. Franç., ed. 3, 5: 279. 1815 ≡ Spartina stricta var. alterniflora (Loisel.) A.Gray, Manual, ed. 2: 552. 1856 ≡ Spartina glabra var. alterniflora (Loisel.) Merr. in Bull. Bur. Pl. Industr. U.S.D.A. 9: 9. 1902 ≡ Spartina maritima var. alterniflora (Loisel.) St.-Yves in Candollea 5: 25, 53, pl. 2, fig. 1–4. 1932 – Holotype: FRANCE. Sur les bord de l’Odo(…?), à Bayonne, dans une prairie au bout des allées marines, 20 Jun 1803, s. coll. s.n. (AV!). 2. Sporobolus anglicus (C.E.Hubb.) P.M.Peterson & Saarela, comb. nov. ≡ Spartina anglica C.E.Hubb. in Bot. J. Linn. Soc. 76: 364. 1978 ≡ Spartina townsendii var. anglica (C.E.Hubb.) Lambinon & Maquet, Nouv. Fl. Belgique, Luxembourg, N. France, ed. 3: 923: 1983 – Lectotype (designated by Saarela in PhytoKeys 10: 15. 2012): UNITED KINGDOM. West Sussex, Bosham, fruiging shore on mud-flats and muddy shingle, extending into water of Chichester Harbour, forming extensive masses, 17 Aug 1968, C.E. Hubbard S.17868A, sheet II (K barcode 000710270 [image!]; isolectotypes: K barcode 000710269 [image!], L No. 100190 [image!], S No. G-5726 [image!], US No. 2907471!). 3. Sporobolus foliosus (Trin.) P.M.Peterson & Saarela, comb. nov. ≡ Spartina foliosa Trin. in Mém. Acad. Imp. Sci. Saint-Pétersbourg, Sér. 6, Sci. Math., Seconde Pt. Sci. Nat. 6,4(1–2): 114. 1840 ≡ Spartina stricta var. foliosa (Trin.) Thurb. in Wilkes, U.S. Expl. Exped. 17(2): 487. 1874 – Holotype: U.S.A. California, 1831, D. Peters s.n. (LE; isotypes: US No. 610993! fragm. ex LE, US No. 92016! fragm.). 4. *Sporobolus ×longispicus (Hauman & Parodi ex St.-Yves) P.M.Peterson & Saarela, comb. nov. ≡ Spartina longispica Hauman & Parodi ex St.-Yves in Candollea 5: 27, 92. 1932 – Lectotype (designated by Parodi in a letter to A. Chase in Index to Grass Species 3: 336. 1962): ARGENTINA. Buenas Aires, Pipinas, 24 Mar 1923, L.R. Parodi 5030 (SI; isolectotype: US No. 0092012!). 5. Sporobolus maritimus (Curtis) P.M.Peterson & Saarela, comb. nov. ≡ Dactylis maritima Curtis, Pract. Observ. Brit. Grasses: 51. 1787 ≡ Spartina maritima (Curtis) Fernald in Rhodora 18: 180. 1916 ≡ Dactylis cynosuroides Loefl., Iter. Hispan.: 115. 1758 ≡ Dactylis stricta Ait., Hort. Kew. 1: 104. 1789 ≡ Spartina stricta (Ait.) Roth, Neue Beytr. Bot.: 101. 1802 – Type: Unknown. 6. Sporobolus ×townsendii (H.Groves & J.Groves) P.M.Peterson & Saarela, comb. nov. ≡ Spartina ×townsendii H.Groves & J.Groves in Rep. Bot. Exch. Club Brit Isles 1880: 37. 1881 – Holotype: ENGLAND. Mud flats, near Hythe, South Hants, 1 Sep 1879, H.Groves s.n. (BM barcode 001003965 [image!]; isotypes: C, K barcode 000710272 [image!], W No. 19160030795 [image!], W No. 19160030798 ex Herb. 1236 TAXON 63 (6) • December 2014: 1212–1243 Groves [image!], US No. 1127161! fragm. ex W, US No. 878793! fragm. ex Herb. Groves). Sporobolus subsect. Ponceletia (Thouars) P.M.Peterson & Saarela, comb. & stat. nov. ≡ Ponceletia Thouars, Esquisse Fl. Tristan D’Acugna: 36: 1808 – Type: Sporobolus mobberleyanus P.M.Peterson & Saarela (≡ Ponceletia arundinacea Thouars). Culms hard and slender without or with short and thick rhizomes < 1.5 cm long. Panicles spike-like with closely imbricate spikes. Spikelets lanceolate and closely imbricate; upper glumes with hispid keels. Species included: 1. *Sporobolus mobberleyanus P.M.Peterson & Saarela, nom. nov. ≡ Ponceletia arundinacea Thouars, Esquisse Fl. Tristan D’Acugna: 36. 1808 ≡ Spartina arundinacea (Thouars) Carmich. in Trans. Linn. Soc. London 12: 504. 1819, non Sporobolus arundinaceus (Trin.) Kunth – Holotype: SAINT HELENA. L.M.A. Du Petit-Thouars s.n. (P barcode 00439484 [image!]). The epithet commemorates David George Mobberley (1921– 2007), who authored an influential monograph of Spartina. 2. Sporobolus spartinus (Trin.) P.M.Peterson & Saarela, comb. nov. ≡ Vilfa spartinae Trin. in Mém. Acad. Imp. Sci. Saint-Pétersbourg, Sér. 6, Sci. Math., Seconde Pt. Sci. Nat. 6,4(1–2): 82. 1840 ≡ Spartina spartinae (Trin.) Merr. ex Hitchc. in Contr. U.S. Natl. Herb. 17(3): 329. 1913 – Holotype: U.S.A. Texas, Hooker s.n. (LE TRIN 1742.01!). Sporobolus subsect. Spartina (Schreb.) P.M.Peterson & Saarela, comb. & stat. nov. ≡ Spartina Schreb., Gen. Pl.: 43. 1789 [see Sporobolus sect. Spartina entry above] Culms hard, often tinged or streaked with purple; leaf blades scabrous. Panicle spikes more or less spreading, often tinged or streaked with purple. Spikelets closely imbricate; upper glumes usually with hispid keels. Species included: 1. Sporobolus bakeri (Merr.) P.M.Peterson & Saarela, comb. nov. ≡ Spartina bakeri Merr. in Bull. Bur. Pl. Industr. U.S.D.A. 9: 14. 1902 ≡ Spartina juncea var. bakeri (Merr.) St.-Yves in Candollea 5: 27, 91, t. 9, fig. c. 1932 – Holotype: U.S.A. Florida, east shores of Lake Ola, Near Tangerene, 19 Apr 1898, C.H. Baker 14 (US No. 81737!). 2. Sporobolus coarctatus (Trin.) P.M.Peterson & Saarela, comb. nov. ≡ Spartina coarctata Trin. in Mém. Acad. Imp. Sci. Saint-Pétersbourg, Sér. 6, Sci. Math., Seconde Pt. Sci. Nat. 6,4(1–2): 110. 1840 – Holotype: URUGUAY. Montivideo (LE TRIN 2056.01!) = Spartina ciliata Brongn. in Duperrey, Voy. Monde, Phan.: 15, t. 2. 1829, non Sporobolus ciliatus J.Presl. 3. Sporobolus cynosuroides (L.) P.M.Peterson & Saarela, comb. nov. ≡ Dactylis cynosuroides L., Sp. Pl.: 71. 1753 ≡ Tra- Version of Record (identical to print version). TAXON 63 (6) • December 2014: 1212–1243 Peterson & al. • Sporobolus: phylogeny and classification chynotia cynosuroides (L.) Michx., Fl. Bor.-Amer. 1: 64. 1803 ≡ Paspalum cynosuroides (L.) Brot., Fl. Lusit. 1: 83. 1804 ≡ Limnetis cynosuroides (L.) Rich., Syn. Pl. 1: 72. 1805 ≡ Spartina cynosuroides (L.) Roth, Catal. Bot. 3: 10. 1806 ≡ Cynodon cynosuroides (L.) Raspail in Ann. Sci. Nat., Bot. 5: 303. 1825 ≡ Spartina polystachya var. cynosuroides (L.) Kuntze, Revis. Gen. Pl.: 793. 1891 – Lectotype (designated by Hitchcock in Contr. U.S. Natl. Herb. 12: 121. 1908): U.S.A. Virginia, D. Clayton 577 (LINN No. 90.1 [image!]; isolectotypes: BM barcode 000051633 [image!], US No. A865636! fragm.). 4. Sporobolus densiflorus (Brongn.) P.M.Peterson & Saarela, comb. nov. ≡ Spartina densiflora Brongn. in Duperrey, Voy. Monde, Phan.: 14. 1829 – Holotype: CHILE. Concepcion, D’Urville s.n. (P No. 02243277!; isotype: US No. 2018! fragm. ex P & photo). = Spartina montevidensis Arechav. in Anales Mus. Nac. Montevideo 1: 378, t. 43. 1896. 5. Sporobolus ×eatonianus P.M.Peterson & Saarela, nom. nov. ≡ Spartina ×caespitosa A.A.Eaton in Bull. Torrey Bot. Club 25: 338. 1898 ≡ Spartina patens var. caespitosa (A.A.Eaton) Hitchc. in Rhodora 8(95): 210. 1906, non Sporobolus caespitosus Kunth – Lectotype (designated by McDonnell & Crow in Rhodora 81: 125. 1979): U.S.A. New Hampshire, Hampton Falls, 26 Aug 1896, A.A. Eaton 501 (NEBC barcode 00104543 [image!]). The epithet commemorates Alvah Augustus Eaton (1865– 1908), who originally described the species. 6. Sporobolus hookerianus P.M.Peterson & Saarela, nom. nov. ≡ Spartina gracilis Trin. in Mém. Acad. Imp. Sci. Saint-Pétersbourg, Sér. 6, Sci. Math., Seconde Pt. Sci. Nat. 6,4(1–2): 110. 1840, non Sporobolus gracilis (Trin.) Merr. – Holotype: CANADA. North America, Hooker s.n. (LE TRIN 2058.01!; isotype: US No. 0092014! fragm. ex LE). The epithet commemorates Sir William Jackson Hooker (1785–1865), who collected the type. 7. Sporobolus michauxianus (Hitchc.) P.M.Peterson & Saarela, comb. nov. ≡ Trachynotia cynosuroides Michx., Fl. Bor.Amer. 1: 64. 1803 ≡ Spartina michauxiana Hitchc. in Contr. U.S. Natl. Herb. 12: 153. 1908 – Holotype: U.S.A. Illinoensis, hauteurs des terrres, Michaux s.n. (P-MICH). = Spartina pectinata Link, Jahrb. Gewächsk. 1(3): 92–93. 1820, non Sporobolus pectinatus Hack. 8. Sporobolus pumilus (Roth) P.M.Peterson & Saarela, comb. nov. ≡ Spartina pumila Roth, Catal. Bot. 3: 10. 1806 – Holotype: U.S.A. New York, habitat prope, 1794, J.C.D. Schreber s.n. (B barcode 10 0367393 [image!] ex Herb. Roth). = Spartina patens (Aiton) Muhl., Descr. Gram.: 55. 1817 ≡ Dactylis patens Aiton, Hort. Kew. 1: 104. 1789, non Sporobolus patens Swallen. 9. *Sporobolus versicolor (Fabre) P.M.Peterson & Saarela, comb. nov. ≡ Spartina versicolor Fabre in Ann. Sci. Nat., Bot., ser. 3, 13: 183, pl. 3. 1849 – Holotype: Unknown. ACKNOWLEDGEMENTS We thank the National Geographic Society Committee for Research and Exploration (Grant No. 8848–10, 8087–06) for field and laboratory support, the Smithsonian Institution’s Restricted Endowments Fund, the Scholarly Studies Program, Research Opportunities, Atherton Seidell Foundation, Biodiversity Surveys and Inventories Program, Small Grants Program, the Laboratory of Analytical Biology, United States Department of Agriculture, and the Canadian Museum of Nature, all for financial support. We would also like to acknowledge Gabriel Johnson for help in the laboratory; Robert J. Soreng and Carol R. Annable for accompanying the first author on numerous field expeditions; Robert J. Soreng for many extended discussions pertinent to the manuscript; Alice Tangerini for preparing the illustration; Kanchi Gandhi and Gerry Moore for checking our Latin nomenclature; and Lynn G. Clark and two anonymous reviewers for providing helpful comments on the manuscript. LITERATURE CITED Ainouche, M., Fortune, P., Salmon, A., Parisod, C., Grandbastien, M.A., Fukunaga, K., Ricou, M. & Misset, M.T. 2009. Hybridization, polyploidy and invasion: Lessons from Spartina (Poaceae). Biol. Invas. 11: 1159–1173. http://dx.doi.org/10.1007/s10530-008-9383-2 Antilla, C., King, R., Ferris, C., Ayres, D. & Strong, D. 2000. Reciprocal hybrid formation of Spartina in San Francisco Bay. Molec. Ecol. 9: 765–770. http://dx.doi.org/10.1046/j.1365-294x.2000.00935.x Ayres, D., Zaremba, K., Sloop, C. & Strong, D. 2008. Sexual reproduction of cordgrass hybrids (Spartina foliosa × alterniflora) invading tidal marshes in San Francisco Bay. Diversity & Distrib. 14: 187–195. http://dx.doi.org/10.1111/j.1472-4642.2007.00414.x Baaijens, G.J. & Veldkamp, J.F. 1991. Sporobolus (Gramineae) in Malesia. Blumea 35: 393–458. Baumel, A., Ainouche, M.L., Bayer, R.J., Ainouche, A.K. & Misset, M.T. 2002. Molecular phylogeny of hybridizing species from the genus Spartina Schreb. (Poaceae). Molec. Phylogen. Evol. 22: 303–314. http://dx.doi.org/10.1006/mpev.2001.1064 Baumel, A., Ainouche, M., Misset, M., Gourret, J. & Bayer, R. 2003. Genetic evidence for hybridization between the native Spartina maritima and the introduced Spartina alterniflora (Poaceae) in south-west France: Spartina ×neyrautii re-examined. Pl. Syst. Evol. 237: 87–97. http://dx.doi.org/10.1007/s00606-002-0251-8 Boechat, S.C. & Longii-Wagner, H.M. 1995. O gênero Sporobolus (Poaceae: Chloridoideae) no Brasil. Acta Bot. Brasil. 9: 21–86. http://dx.doi.org/10.1590/S0102-33061995000100002 Bor, N.L. 1960. The grasses of Burma, Ceylon, India, and Pakistan. New York: Pergamon Press. Bortolus, A. 2006. The austral cordgrass Spartina densiflora Brong.: Its taxonomy, biogeography and natural history. J. Biogeogr. 33: 158–168. http://dx.doi.org/10.1111/j.1365-2699.2005.01380.x Bouchenak-Khelladi, Y., Salamin, N., Savolainen, V., Forest, F., Van de Bank, M., Chase, M.W. & Hodkinson, T.R. 2008. Large multigene phylogenetic trees of the grasses (Poaceae): Progress towards complete tribal and generic level sampling. Molec. Phylogen. Evol. 47: 488–505. http://dx.doi.org/10.1016/j.ympev.2008.01.035 Version of Record (identical to print version). 1237 Peterson & al. • Sporobolus: phylogeny and classification Brandenburg, D.M. 2003. Notes on free pericarps in grasses (Poaceae). J. Kentucky Acad. Sci. 64: 114–120. Braun, A. 1841. Bemerkungen über die Flora von Abyssinien (Fortsetzung). Flora 24 705–715. Brown, W.V. 1977. The Kranz syndrome and its subtypes in grass systematics. Mem. Torrey Bot. Club 23: 1–97. Chelaifa, H., Mahé, F. & Ainouche, M. 2010. Transcriptome divergence between the hexaploid salt-marsh sister species Spartina maritima and Spartina alterniflora (Poaceae). Molec. Ecol. 19: 2050–2063. http://dx.doi.org/10.1111/j.1365-294X.2010.04637.x Clayton, W.D. 1965. Studies in the Gramineae: VI. Kew Bull. 19: 287– 296. http://dx.doi.org/10.2307/4108070 Clayton, W.D. 1971. Studies in the Gramineae: XXIII. Kew Bull. 25: 247–252. http://dx.doi.org/10.2307/4103213 Clayton, W.D. 1974. 89. Sporobolus. Pp. 353–388 in: Polhill, R.M. (ed.), Flora of tropical East Africa: Gramineae, part 2. London: Crown Agents for Oversea Governments and Administrations. Clayton, W.D. & Renvoize, S.A. 1986. Genera graminum: Grasses of the World. Kew Bull. Addit. Ser. 13: 1–389. Clayton, W.D., Vorontsova, M.S., Harman, K.T. & Williamson, H. 2006 onwards. GrassBase – The online World grass flora. London The Board of Trustees, Royal Botanic Gardens, Kew. http://www .kew.org/data/grasses-db.html (accessed 14 Feb 2014). Columbus, J.T., Cerros-Tlatilpa, R., Kinney, M.S., SiqueirosDelgado, M.E., Bell, H.L., Griffith, M.P. & Refulio-Rodriguez, N.F. 2007. Phylogenetics of Chloridoideae (Gramineae): A preliminary study based on nuclear ribosomal internal transcribed spacer and chloroplast trnL-F sequences. Aliso 23: 565–579. http://dx.doi.org/10.5642/aliso.20072301.42 Cope, T. 1999. Gramineae. Pp. 1–261 in: Pope, G.V. (ed.), Flora Zambesiaca, vol. 10(2). Didcot, Great Britain: Marston Book Services. Denham, S.S. & Aliscioni, S.S. 2010. Species delimitation in the Sporobolus aeneus complex (Zoysieae, Chloridoideae, Poaceae) using the phylogenetic species concept. Taxon 59: 1765–1782. Drummond, A.J., Ashton, B., Buxton, S., Cheung, M., Cooper, A., Duran, C., Field, M., Heled, J., Kearse, M., Markowitz, S., Moir, R., Stones-Havas, S., Sturrock, S., Thierer, T. & Wilson, A. 2011. Geneious, version 5.3. http://www.geneious.com Edgar, R.C. 2004. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucl. Acids Res. 32: 1792–1797. http://dx.doi.org/10.1093/nar/gkh340 Espejo Serna, A., Lopez-Ferrari, A.R. & Valdés-Reyna, J. 2000. Poaceae Barnhart. In: Espejo Serna, A. & Lopez-Ferrari, A.R. (eds.), Las monocotyledóneas mexicanas: Una sinopsis florística, partes 9–11. México, D.F.: Consejo Nacional de la Flora de México, A.C., Universidad Autónoma Metropolitana-Izpalapa, and Comisíon Nacional para el conocimiento y uso de la Biodiversidad. Ferris, C., King, R.A. & Gray, A.J. 1997. Molecular evidence for the maternal parentage in the hybrid origin of Spartina anglica C.E. Hubbard. Molec. Ecol. 6: 185–187. http://dx.doi.org/10.1046/j.1365-294X.1997.00165.x Fortune, P., Schierenbeck, K., Ainouche, A., Jacquemin, J., Wendel, J. & Ainouche, M. 2007. Evolutionary dynamics of Waxy and the origin of hexaploid Spartina species (Poaceae). Molec. Phylogen. Evol. 43: 1040–1055. http://dx.doi.org/10.1016/j.ympev.2006.11.018 Fortune, P.M., Schierenbeck, K., Ayres, D., Bortolus, A., Catrice, O., Brown, S. & Ainouche, M.L. 2008. The enigmatic invasive Spartina densiflora: A history of hybridizations in a polyploidy context. Molec. Ecol. 17: 4304–4316. http://dx.doi.org/10.1111/j.1365-294X.2008.03916.x Gibbs Russell, G.E., Watson, L., Koekemoer, M., Smook, L., Barker, N.P., Anderson, H.M. & Dallwitz M.J. 1991. Grasses of southern Africa. Mem. Bot. Surv. S. Africa 58: 1–437. Giraldo-Cañas, D. & Peterson, P.M. 2009. Revisión de las species del género Sporobolus (Poaceae: Chloridoideae: Sporobolinae) del noroeste de Sudamerica: Perú, Ecuador, Colombia y Venezuela. Caldasia 31: 41–76. 1238 TAXON 63 (6) • December 2014: 1212–1243 Goldblatt, P. & Johnson, D.E. 1979–. Index to plant chromosome numbers (IPCN). Missouri Botanical Garden, St. Louis. http:// www.tropicos.org/Project/IPCN (accessed 22 May 2014). Gray, A. 1848. A manual of the botany of the northern United States. London: James Monroe and Company. Gutierrez, M., Gracen, V.E. & Edwards, G.E. 1974. Biochemical and cytological relationships in C4 plants. Planta 119: 279–300. http://dx.doi.org/10.1007/BF00388331 Hackel, E. 1890. The true grasses. New York: Henry Holt and Company. Hattersley, P.W. 1987. Variations in photosynthetic pathway. Pp. 49–64 in: Soderstrom, T.R., Hilu, K.W., Campbell, C.S. & Barkworth, M.E. (eds.), Grass systematics and evolution. Washington: Smithsonian Institution Press. Hattersley, P.W. & Watson, L. 1992. Diversification of photosynthesis. Pp. 38–116 in: Chapman, G.P. (ed.), Grass evolution and domestication. Cambridge, U.K.: Cambridge University Press. Hilu, K.W. & Alice, L.A. 2001. A phylogeny of Chloridoideae (Poaceae) based on matK sequences. Syst. Bot. 26: 386–405. http://dx.doi.org/10.1043/0363-6445-26.2.386 Hubbard, C.E. 1947. Urochondra setulosa (Trin.) C.E. Hubbard. Hooker’s Icon. Pl. 35: 1–11, t. 3457. Huelsenbeck, J.P. & Ronquist, F.R. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754–755. http://dx.doi.org/10.1093/bioinformatics/17.8.754 Ingram, A.L. & Doyle, J.J. 2004. Is Eragrostis (Poaceae) monophyletic? Insights from nuclear and plastid sequence data. Syst. Bot. 29: 545–552. http://dx.doi.org/10.1600/0363644041744392 Ingram, A.L. & Doyle, J.J. 2007. Eragrostis (Poaceae): Monophyly and infrageneric classification. Aliso 23: 595–604. http://dx.doi.org/10.5642/aliso.20072301.44 Jovet, P. & Guédes, M. 1968. Le Sporobolus indicus (L.) R. Br. var. fertilis (Steud.) Jov. & Guéd. naturlisé en France, avec une revue du groupe du Sporobolus indicus dans le monde. Bull. Centr. Études Rech. Sci., Biarritz 7: 47–75. Kern, V. 2012. Spartina Schreb. Pp. 204–208 in: Zuloaga, F.O., Rugolo, Z.E. & Anton, A.M. (eds.), Flora vascular de la Republica Argentina, vol. 3(1). Cordoba: Graficamente Ediciones. Lazarides, M. 1994. 119. Sporobolus. Pp. 419–429 in: Dassanayake, M.D. (ed.), A revised handbook of the flora of Ceylon, vol. 8, Poaceae. New Delhi: Amerind Publishing Co. Lazarides, M. 1997. A revision of Eragrostis (Eragrostideae, Eleusininae, Poaceae) in Australia. Austral. Syst. Bot. 10: 77–187. http://dx.doi.org/10.1071/SB96002 Lorch, J. 1962. A revision of Crypsis Ait. s.l. (Gramineae). Bull. Res. Council Israel Sect. D, Bot. 11: 91–116. Mandret, G. 1992. Etude de la variation phénotypique dans le groupe Sporobolus indicus (L.) R. Br. et incidence sur le plan systématique. Ph.D. dissertation. Paris: Museum national d’histoire naturelle. Mobberley, D.G. 1956. Taxonomy and distribution of the genus Spartina. Iowa State Coll. J. Sci. 30: 471–574. Napper, D.M. 1963. Notes on East African grasses. Kirkia 3: 112–131. Nightingale, M.E., Simon, B.K. & Weiller, C.M. 2005. Zoysia. Pp. 263–265 in: Mallet, K. (ed.), Flora of Australia, vol. 44B, Poaceae, 3. Melbourne: Commonwealth Scientific and Research Organization [CSIRO] Publishing. Ortiz-Diaz, J.J. & Culham, A. 2000. Phylogenetic relationships of the genus Sporobolus (Poaceae: Eragrostideae) based on nuclear ribosomal DNA ITS sequences. Pp. 184–188 in: Jacobs, S.W.L. & Everett, J. (eds.), Grasses: Systematics and evolution. Melbourne: Commonwealth Scientific and Research Organization [CSIRO] Publishing. Palisot de Beavois, A.M.F.J. 1812. Essai d’une nouvelle Agrostographie; ou Nouveaux genres des Graminées; avec figures représentant les caractères de tous les genres. Paris: Imprimerie de Fain, 1–182. http://dx.doi.org/10.5962/bhl.title.474 Palmer, J., Lazarides, M., McCusker, A. & Weiller, C.M. 2005. Version of Record (identical to print version). TAXON 63 (6) • December 2014: 1212–1243 Peterson & al. • Sporobolus: phylogeny and classification Eragrostis. Pp. 346–409 in: Mallet, K. (ed.), Flora of Australia, vol. 44B, Poaceae, 3. Melbourne: Commonwealth Scientific and Research Organization [CSIRO] Publishing. Pennington, S.J. 2004. The rebirth of the Contributions Series. Pl. Press (Washington) 7(4): 1, 14, 15. Peterson, P.M., Webster, R.D. & Valdés-Reyna, J. 1995. Subtribal classification of the New World Eragrostideae (Poaceae: Chloridoideae). Sida 16: 529–544. Peterson, P.M., Webster, R.D. & Valdés-Reyna, J. 1997. Genera of New World Eragrostideae (Poaceae: Chloridoideae). Smithsonian Contr. Bot. 87: 1–50. http://dx.doi.org/10.5479/si.0081024X.87 Peterson, P.M., Hatch, S.L. & Weakley, A.S. 2003. 17.30 Sporobolus R. Br. Pp. 115–139 in: Barkworth, M.E., Capels, K.M., Long, S. & Piep, M.B. (eds.), Flora of North America North of Mexico, vol. 25, Magnoliophyta: Commelinidae (in part): Poaceae, part 2. New York: Oxford University Press. Peterson, P.M., Valdés-Reyna, J. & Ortiz-Diaz, J.J. 2004. Sporobolus (Poaceae: Chloridoideae: Cynodonteae: Zoysieae: Sporobolinae) from northeastern Mexico. Sida 21: 553–589. Peterson, P.M., Columbus, J.T. & Pennington, S.J. 2007. Classification and biogeography of New World grasses: Chloridoideae. Aliso 23: 580–594. http://dx.doi.org/10.5642/aliso.20072301.43 Peterson, P.M., Hatch, S.L. & Weakley, A.S. 2009. 10.14 Sporobolus R. Br. Pp. 190–195, 421–425, 507 in: Anderton, L.K. & Barkworth, M.E. (eds.), Grasses of the Intermountain Region. Logan: Intermountain Herbarium and Utah State University Press. Peterson, P.M., Romaschenko, K. & Johnson, G. 2010a. A classification of the Chloridoideae (Poaceae) based on multi-gene phylogenetic trees. Molec. Phylogen. Evol. 55: 580–598. http://dx.doi.org/10.1016/j.ympev.2010.01.018 Peterson, P.M., Romaschenko, K. & Johnson, G. 2010b. A phylogeny and classification of the Muhlenbergiinae (Poaceae: Chloridoideae: Cynodonteae) based on plastid and nuclear DNA sequences. Amer. J. Bot. 97: 1532–1554. http://dx.doi.org/10.3732/ajb.0900359 Peterson, P.M., Romaschenko, K., Barker, N.P. & Linder, H.P. 2011. Centropodieae and Ellisochloa, a new tribe and genus in the Chloridoideae (Poaceae). Taxon 60: 1113–1122. Peterson, P.M., Romaschenko, K., Snow, N. & Johnson, G. 2012. A molecular phylogeny and classification of Leptochloa (Poaceae: Chloridoideae: Chlorideae) sensu lato and related genera. Ann. Bot. (Oxford) 109: 1317–1329. http://dx.doi.org/10.1093/aob/mcs077 Peterson, P.M., Romaschenko, K. & Herrera Arrieta, Y. 2014a. A molecular phylogeny and classification of the Cteniinae, Farragininae, Gouiniinae, Gymnopogoninae, Perotidinae, and Trichoneurinae (Poaceae: Chloridoideae: Cynodonteae). Taxon 63: 275–286. http://dx.doi.org/10.12705/632.35 Peterson, P.M., Romaschenko, K. & Soreng, R.J. 2014b. A laboratory guide for generating DNA barcodes in grasses: A case study of Leptochloa s.l. (Poaceae: Chloridoideae). Webbia 69: 1–12. http://dx.doi.org/10.1080/00837792.2014.927555 Peterson, P.M., Romaschenko, K., Herrera Arrieta, Y. & Saarela, J.M. 2014c. (2332) Proposal to conserve Sporobolus against Spartina, Crypsis, Ponceletia, and Heleochloa (Poaceae: Chloridoideae: Sporobolinae). Taxon 63: 1373–1374. http://dx.doi.org/10.12705/636.23 Phillips, S.M. 1974. 52. Psilolemma. Pp. 180–181 in: Polhill, R.M. (ed.), Flora of tropical East Africa, Gramineae, part 2. London: Crown Agents for Oversea Governments and Administrations. Phillips, S.M. 1982. A numerical analysis of the Eragrostideae (Gramineae). Kew Bull. 37: 133–162. http://dx.doi.org/10.2307/4114733 Phillips, S.M. 1995. Poaceae (Gramineae). Pp. 1–420 in: Hedberg, I. & Edwards, S. (eds.), Flora of Ethiopia and Eritrea, vol. 7. Addis Ababa: Addis Ababa University; Uppsala: Uppsala University. Pilger, R. 1956. Gramineae II. Unterfamilien: Micraioideae, Eragrostideae, Oryzoideae, Olyroideae. Pp. 1–168 in: Melchior H. & Werdermann, E. (eds.), Die natürlichen Pflanzenfamilien, 2nd ed., vol. 14d. Berlin: Duncker and Humblot. Posada, D. 2008. jModelTest: Phylogenetic model averaging. Molec. Biol. Evol. 25: 1253–1256. http://dx.doi.org/10.1093/molbev/msn083 Raus, T. & Scholz, H. 2004. Contribution to the flora of Cyprus: A new species of Crypsis (Poaceae). Willdenowia 34: 457–462. http://dx.doi.org/10.3372/wi.34.34211 Reeder, J.R. & Ellington, M.A. 1960. Calamovilfa, a misplaced genus of Gramineae. Brittonia 12: 71–77. http://dx.doi.org/10.2307/2805335 Riggins, R. 1969. The annual cleistogamous species of Sporobolus. M.S. thesis, Iowa State University, Ames, Iowa, U.S.A. Riggins, R. 1977. A biosystematics study of the Sporobolus asper complex (Gramineae). Iowa State J. Res. 51: 287–321. Ronquist, F. & Huelsenbeck, J.P. 2003. Mr Bayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574. http://dx.doi.org/10.1093/bioinformatics/btg180 Roodt, R. & Spies, J.J. 2003. Chromosome studies in the grass subfamily Chloridoideae. I. Basic chromosome numbers. Taxon 52: 557–566. http://dx.doi.org/10.2307/3647454 Saarela, J.M. 2012. Taxonomic synopsis of invasive and native Spartina (Poaceae, Chloridoideae) in the Pacific Northwest (British Columbia, Washington and Oregon), including the first report of Spartina ×townsendii for British Columbia, Canada. PhytoKeys 10: 25–82. http://dx.doi.org/10.3897/phytokeys.10.2734 Sage, R.F., Li, M.R. & Monson, R.K. 1999. The taxonomic distribution of C4 photosynthesis. Pp. 551–584 in: Sage, R.F. & Monson, R.K. (eds.), C4 plant biology. San Diego: Academic Press. http://dx.doi.org/10.1016/B978-012614440-6/50017-3 Sendulsky, T., Filgueiras, T.S. & Burman, A.G. 1986. Fruits, embryos, and seedlings. Pp. 31–36 in: Soderstrom, T.R., Hilu, K.W., Campbell, C.S. & Barkworth, M.E. (eds.), Grass systematics and evolution. Washington, D.C.: Smithsonian Institution Press. Shrestha, S., Adkins, S.W., Graham, G.C. & Loch, D.S. 2003. Phylogeny of the Sporobolus indicus complex, based on internal transcribed spacer (ITS) sequences. Austral. Syst. Bot. 16: 165–176. http://dx.doi.org/10.1071/SB02009 Simon, B.K. 2005. Sporobolus. Pp. 324–346 in: Mallet, K. (ed.), Flora of Australia, vol. 44B, Poaceae, 3. Melbourne: Commonwealth Scientific and Research Organization [CSIRO] Publishing. Simon, B.K. & Jacobs, S.W.L. 1999. Revision of the genus Sporobolus (Poaceae: Chloridoideae) in Australia. Austral. Syst. Bot. 12: 375– 448. http://dx.doi.org/10.1071/SB97048 Soreng, R.J., Peterson, P.M. & Annable, C. 1995. Trinius Herbarium, Komarov Botanical Institute, St. Petersburg: Guide to the microform collection. L.H. Bailey, IDC number BT-16. Hortorium, Cornell University, New York. Soreng, R.J., Davidse, G., Peterson, P.M., Zuloaga, F.O., Judziewicz, E.J., Filgueiras, T.S., Morrone, O. & Romaschenko, K. 2013 (continuously revised). A World-wide Phylogenetic Classification of Poaceae (Gramineae): căo (草), capim, çayır, çimen, darbha, ghaas, ghas, gish, gramas, graminius, gräser, grasses, gyokh, heben-ke, hullu, kasa, kusa, nyasi, pastos, pillu, pullu, zlaki, etc. http://www.tropicos.org/projectwebportal.aspx?pagename=Class ificationNWG&projectid=10 (accessed Jan 2014). Spicher, D. & Josselyn, M. 1985. Spartina (Gramineae) in northern California: Distribution and taxonomic notes. Madrono 32: 158–167. Stapf, O. 1898. Gramineae. Pp. 315, 578–589 in: Thiselton-Dyer, W.T. (ed.), Flora Capensis, vol. 7. London: Reeve. Stebbins, G.L. 1985. Polyploidy, hybridization, and the invasion of new habitats. Ann. Missouri Bot. Gard. 72: 824–832. http://dx.doi.org/10.2307/2399224 Swofford, D.L. 2000. PAUP*: Phylogenetic analysis using parsimony (*and other methods), version 4. Sunderland, Massachusetts: Sinauer. Tan, K. 1985. 117. Crypsis Aiton, nom. conserv. Pp. 582–587 in: Davis, P.H., Mill, R.R. & Tan, K. (eds.), Flora of Turkey and the East Aegean Islands, vol. 9. Edinburgh: Edinburgh University Press. Thieret, J.W. 1966. Synopsis of the genus Calamovilfa (Gramineae). Castanea 31: 145–152. Version of Record (identical to print version). 1239 Peterson & al. • Sporobolus: phylogeny and classification Thieret, J.W. 2003. 17.32 Calamovilfa Hack. Pp. 140–144 in: Barkworth, M.E., Capels, K.M., Long, S. & Piep, M.B. (eds.), Flora of North America north of Mexico, vol. 25, Magnoliophyta: Commelinidae (in part): Poaceae, part 2. New York: Oxford University Press. Watson, L. & Dallwitz, M.J. 1992. The grass genera of the World. Wallingford: CAB International. Weakley, A.S. & Peterson, P.M. 1998. Taxonomy of the Sporobolus floridanus complex (Poaceae: Sporobolinae). Sida 18: 247–270. Wood, J.N. & Gaff, D.F. 1989. Salinitiy studies with drought-resistant species of Sporobolus. Oecologia 78: 559–564. http://dx.doi.org/10.1007/BF00378748 TAXON 63 (6) • December 2014: 1212–1243 Yang, H.-Q., Yang, J.-B., Peng, Z.-H., Gao, J., Yang, Y.-M., Peng, S. & Li, D.-Z. 2008. A molecular phylogenetic and fruit evolutionary analysis of the major groups of the paleotropical woody bamboos (Gramineae: Bambusoideae) based on nuclear ITS, GBSSI gene and plastid trnL-F DNA sequences. Molec. Phylogen. Evol. 48: 809–824. http://dx.doi.org/10.1016/j.ympev.2008.06.001 Zwickl, D.J. 2006. Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. dissertation, University of Texas at Austin, Texas, U.S.A. Appendix 1. List of specimens sampled. Taxon (* asterisk indicates type for the genus name), voucher (collector, number, and where the specimen is housed), country of origin, and GenBank accession for DNA sequences of rpl32-trnL, ndhA, rps16, rps16-trnK and ITS regions (bold indicates new accession); a dash (–) indicates missing data. OUTGROUP: Aristida gypsophila Beetle, Peterson 15839 & Valdés-Reyna (US), Mexico, GU359977, GU359386, GU360286, GU360570, GU359267; Chasmanthium latifolium (Michx.) H.O.Yates, Peterson 22463 (US), U.S.A., GU359891, GU359379, GU360438, GU360517, GU359319; Danthonia compressa Austin, Peterson 21986 & Levine (US), U.S.A., GU359865, GU359370, GU360483, GU360521, GU359345; Capeochloa cincta subsp. sericea (N.P.Barker) N.P.Barker & H.P.Linder, Barker 1545 (GRA), South Africa, JF729173, JF729163, JF729181, JF729074, –; Rytidosperma pallidum (R.Br.) A.M.Humphreys & H.P.Linder, Peterson 19685, Saarela & Sears (US), U.S.A., GU359984, GU359518, GU360291, GU360671, GU359183; CENTROPODIEAE: *Ellisochloa rangei (Pilg.) P.M.Peterson & N.P.Barker, Barker 960 (BOL), Namibia, –, JF729166, JF729184, JF729079, JQ345167; TRIRAPHIDEAE: Neyraudia reynaudiana (Kunth) Keng ex Hitchcock, Soreng 5318 & Peterson (US), China, GU360003, GU359397, GU360272, –, GU359124; *Triraphis mollis R.Br., Peterson 14344, Soreng & Rosenberg (US), Australia, GU359933, GU359539, GU360336, GU360669, GU359187; ERAGROSTIDEAE: *Cottea pappophoroides Kunth, Peterson 21463, Soreng, LaTorre & Rojas Fox (US), Peru, GU359842, GU359363, GU360456, GU360600, GU359237; Ectrosia scabrida C.E.Hubb., Lazarides 4772 (US), Australia, GU359799, GU359476, GU360459, GU360497, GU359317; Enneapogon desvauxii P.Beauv., Peterson 21999 & Saarela (US), Mexico, GU359796, GU359474, GU360486, GU360495, GU359339; Entoplocamia aristulata (Hack. & Rendle) Stapf, Seydel 187 (US), South Africa, GU359793, GU359469, GU360468, GU360492, GU359342; Eragrostis desertorum Domin, Peterson 14358, Soreng & Rosenberg (US), Australia, GU359787, GU359471, GU360462, GU360545, GU359289; Harpachne harpachnoides (Hack.) B.S.Sun & S.Wang, Soreng 5288, Peterson & Sun Hang (US), China, GU359815, GU359435, GU360382, GU360611, GU359113; Pogonarthria squarrosa (Roem. & Schult.) Pilg., Mawi 180, Majengo, Salum & Samwe (MO), Tanzania, KM010693, KM010534, KM010918, KM011121, KM010325; *Psammagrostis wiseana C.A.Gardner & C.E.Hubb., Peterson 14345, Soreng & Rosenberg (US), Australia, GU359986, GU359533, GU360288, GU360703, GU359137; Schmidtia pappophoroides Steud. ex J.A.Schmidt, Smook 10558 (MO), South Africa, KM010697, KM010537, KM010921, KM011124, KM010328; Tetrachne dregei Nees, Jarman 120 (US), South Africa, GU359904, GU359513, GU360365, GU360622, GU359218; Uniola condensata Hitchc., Peterson 9342 & Judziewicz (US), Ecuador, GU359927, GU359534, GU360340, GU360649, GU359191; CYNODONTEAE: Pogononeura biflora Napper, Greenway 10091 (US), Tanzania, KM010694, –, –, –, –; Tripogoninae: Eragrostiella leioptera (Stapf) Bor, Chand 7961 (US), India, GU359827, GU359486, JQ345280, GU360529, GU359305; Melanocenchris abyssinica (R.Br. ex Fresen.) Hochst., DeWilde 6912 (MO), Ethiopia, JQ345355, JQ345228, JQ345310, JQ345268, JQ345198; Oropetium capense Stapf, Venter 9939 & Venter (MO), South Africa, KM010692, KM010533, KM010917, KM011120, KM010324; Tripogon multiflorus Miré & H.Gillet, Spellenberg 7441 (MO), Yemen, JQ345360, JQ345232, JQ345315, JQ345274, JQ345204; Eleusininae: Chloris barbata Sw., Peterson 22255 & Saarela (US), Mexico, GU359873, GU359377, GU360435, GU360514, GU359320; Cynodon plectostachyus (K.Schum.) Pilg., Troupin 11610 (US), Rwanda, GU359890, GU359356, GU360449, GU360592, GU359247; Eleusine indica (L.) Gaetrn., Peterson 21362, Saarela & Flores Villegas (US), Mexico, GU359797, GU359473, GU360472, GU360496, GU359338; Gymnopogoninae: Gymnopogon grandiflorus Roseng., B.R.Arill. & Izag., Peterson 16642 & Refulio-Rodriguez (US), Peru, GU359816, GU359436, GU360383, GU360581, GU359200; *Leptothrium rigidum Kunth, Davidse 3281 (MO), Jamaica, KF827662, KF827596, KF827727, KF827794, KF827541; ZOYSIEAE, Sporobolinae: Calamovilfa arcuata K.E.Rogers, Rogers 42409, Sharp & Delgadillo (US), U.S.A., KM010683, KM010528, KM010912, KM011110, KM010315; Calamovilfa brevipilis (Torr.) Hack. ex Scribn. & Southw., Strong 848, Kelloff, Schuyler, Wurdack & Churchill (US), U.S.A., KM010684, –, –, KM011111, KM010316; Calamovilfa curtissii (Vasey) Scribn., Curtiss 5729 (US), U.S.A., –, –, –, KM011112, –; Calamovilfa gigantea (Nutt.) Scribn. & Merr., Gates 17021 (US), U.S.A., KM010685, KM010529, KM010913, KM011113, KM010317; Calamovilfa gigantea (Nutt.) Scribn. & Merr., Long 1124 (BRY), U.S.A., KM010686, KM010530, KM010914, KM011114, KM010318; Calamovilfa gigantea (Nutt.) Scribn. & Merr., Ungor 1018 (US), U.S.A., KM010687, KM010531, KM010915, KM011115, KM010319; Calamovilfa longifolia (Hook.) Hack. ex Scribn. & Southw., Hatch 5738 & Bearden (US), U.S.A., GU359880, GU359357, GU360441, GU360548, GU359300; *Crypsis aculeata (L.) Aiton, Soreng 5469 & Peterson (US), China, GU359841, GU359362, GU360402, GU360599, GU359238; *Crypsis aculeata (L.) Aiton, Soreng 7940, Johnson, Johnson, Dzyubenko, Dzyubenko & Schilnikov (US), Russia, JQ345316, JQ345205, JQ345275, JQ345233, JQ345163; Crypsis alopecuroides (Piller & Mitterp.) Schrad., Soreng 7941, Johnson, Johnson, Dzubenko & Schilnikov (US), Russia, KM010688, KM010532, KM010916, KM011116, KM010320; Crypsis schoenoides (L.) Lam., Peterson 19814, Saarela & Sears (US), U.S.A., GU359840, GU359361, GU360455, GU360598, GU359239; Eragrostis megalosperma F.Muell. ex Benth., Blake 6966 (US), Australia, KM010689, –, –, KM011117, KM010321; Eragrostis megalosperma F.Muell. ex Benth., Lazarides 4215 (US), Australia, KM010690, –, –, KM011118, KM010322; Eragrostis megalosperma F.Muell. ex Benth., Lazarides 5647 (US), Australia, KM010691, –, –, KM011119, KM010323; Psilolemma jaegeri (Pilg.) S.M.Phillips, Peterson 24247, Soreng & Romaschenko (US), Tanzania, KM010695, KM010535, KM010919, KM011122, KM010326; Psilolemma jaegeri (Pilg.) S.M.Phillips, Peterson 24249, Soreng & Romaschenko (US), Tanzania, KM010696, KM010536, KM010920, KM011123, KM010327; Spartina ×townsendii H.Groves & J.Groves, Hubbard 12 (US), United Kingdom, KM010698, –, –, KM011125, –; Spartina ×townsendii H.Groves & J.Groves, Saarela 791 & Percy (UBC), Canada, KM010699, KM010538, KM010922, KM011126, KM010329; Spartina alterniflora Loisel., Lakela 26573 (US), U.S.A., KM010700, KM010539, KM010923, KM011127, KM010330; Spartina alterniflora Loisel., Naylov 236 (US), U.S.A., KM010701, KM010540, KM010924, KM011128, KM010331; Spartina anglica C.E.Hubb., Matthews s.n. (CAN), United Kingdom, KM010702, KM010541, KM010925, KM011129, KM010332; Spartina anglica C.E.Hubb., Williams 2004-1 (UBC), Canada, KM010703, KM010542, KM010926, KM011130, KM010333; Spartina anglica C.E.Hubb., Williams 2004-2 (UBC), Canada, KM010704, KM010543, KM010927, KM011131, KM010334; Spartina bakeri Merr., Killip 44361 (US), U.S.A., KM010705, KM010544, KM010928, KM011132, KM010335; Spartina ×caespitosa A.A.Eaton, Eaton 587 (US), U.S.A., KM010706, –, –, KM011133, KM010336; Spartina ciliata Brongn., Rambo 56450 (US), Brazil, KM010707, –, KM010929, KM011134, KM010337; *Spartina cynosuroides (L.) Roth, Fisher 33123 (US), U.S.A., KM010708, KM010545, KM010930, KM011135, KM010338; *Spartina cynosuroides (L.) Roth, Hill 15630 (US), U.S.A., KM010709, KM010546, KM010931, KM011136, KM010339; Spartina densiflora Brongn., Lomer 5723 (UBC), Canada, KM010710, KM010547, KM010932, KM011137, KM010340; Spartina densiflora Brongn., Peterson 19154, Soreng, Salariado & Panizza (US), Argentina, GU359916, GU359510, GU360352, JQ345271, GU359206; Spartina foliosa Trin., Reeder 6652 & Reeder (US), Mexico, KM010711, KM010548, KM010933, KM011138, KM010341; Spartina gracilis Trin., Hendrickson 41 (USZ), U.S.A., KM010712, KM010549, KM010934, KM011139, KM010342; 1240 Version of Record (identical to print version). TAXON 63 (6) • December 2014: 1212–1243 Peterson & al. • Sporobolus: phylogeny and classification Appendix 1. Continued. Spartina gracilis Trin., Lewis 78-1013 (CAN), Canada, KM010713, KM010550, KM010935, KM011140, KM010343; Spartina gracilis Trin., Scoggan 15626 (CAN), Canada, KM010714, KM010551, KM010936, KM011141, KM010344; Spartina maritima (Curtis) Fernald, Fernández Casas 5537, Castroviejo, Muñoz Garmendia & Susanna (US), Morocco, KM010715, KM010552, KM010937, KM011142, KM010345; Spartina maritima (Curtis) Fernald, Marchant s.n. (UBC), United Kingdom, KM010716, –, KM010938, KM011143, –; Spartina montevidensis Arechav., Clayton 4723 & Eiten (US), Brazil, KM010717, KM010553, KM010939, KM011144, KM010346; Spartina montevidensis Arechav., Rosengurtt 10853 (US), Uruguay, KM010718, –, –, KM011145, –; Spartina patens (Aiton) Muhl., Dutton 2536 (CAN), U.S.A., KM010719, KM010554, KM010940, KM011146, KM010347; Spartina patens (Aiton) Muhl., Peterson 24435, Romaschenko & Knapp (US), U.S.A., KM010720, –, KM010941, KM011147, KM010348; Spartina patens (Aiton) Muhl., Shchepanek 6426 & Dugal (CAN), Canada, KM010721, KM010555, KM010942, KM011148, KM010349; Spartina pectinata Link, Cooperrider s.n. (US), U.S.A., KM010722, KM010556, KM010943, KM011149, KM010350; Spartina pectinata Link, Dirig 2812 (US), U.S.A., KM010723, KM010557, KM010944, KM011150, KM010351; Spartina spartinae (Trin.) Merr. ex Hitchc., Reeder 4568 & C. Reeder (US), Mexico, KM010724, KM010558, KM010945, KM011151, KM010352; Spartina spartinae (Trin.) Merr. ex Hitchc., Villarreal 3201 (US), Mexico, KM010725, KM010559, KM010946, KM011152, KM010353; Sporobolus acinifolius Stapf, Smook 10167 (US), South Africa, KM010726, –, –, –, –; Sporobolus acinifolius Stapf, Smook 3530 (US), South Africa, KM010727, KM010560, KM010947, KM011153, KM010354; Sporobolus actinocladus (F.Muell.) F.Muell., Batianoff 04111164 (MEL), Australia, KM010728, KM010561, KM010948, KM011154, KM010355; Sporobolus actinocladus (F.Muell.) F.Muell., Saarela 1625, Peterson & Soreng (US), Australia, KM010729, KM010562, KM010949, –, KM010356; Sporobolus actinocladus (F.Muell.) F.Muell., Saarela 1670, Peterson & Soreng (US), Australia, KM010730, KM010563, KM010950, KM011155, KM010357; Sporobolus actinocladus (F.Muell.) F.Muell., Senaratne E6082-5 (US), Australia, KM010731, KM010564, KM010951, KM011156, KM010358; Sporobolus acuminatus (Trin.) Hack., Guala 1372 & Filgueiras (US), Brazil, KM010732, KM010565, KM010952, KM011157, KM010359; Sporobolus acuminatus (Trin.) Hack., Irwin 11586, Souza & Reis dos Santos (US), Brazil, KM010733, KM010566, KM010953, KM011158, KM010360; Sporobolus aeneus (Trin.) Kunth, Irwin 25327, Onishi, da Fonseca, Souza, Reis dos Santos & Ramos (US), Brazil, KM010734, –, KM010954, KM011159, KM010361; Sporobolus africanus (Poir.) Robyns & Tournay, Peterson 24024, Soreng, Romaschenko & Abeid (US), Tanzania, KM010735, KM010567, KM010955, KM011160, KM010362; Sporobolus africanus (Poir.) Robyns & Tournay, Peterson 24121, Soreng, Romaschenko & Abeid (US), Tanzania, KM010736, KM010568, KM010956, KM011161, KM010363; Sporobolus agrostoides Chiov., Semsei 2806 (US), Tanzania, KM010792, –, –, –, –; Sporobolus airoides (Torr.) Torr., Peterson 10002, Annable & Valdés-Reyna (US), Mexico, KM010737, KM010569, KM010957, KM011162, KM010364; Sporobolus airoides subsp. airoides, Peterson 24587 & Romaschenko (US), Mexico, KM010738, KM010570, KM010958, KM011163, KM010365; Sporobolus airoides subsp. airoides, Peterson 24853 & Romaschenko (US), Mexico, KM010739, KM010571, KM010959, KM011164, KM010366; Sporobolus airoides (Torr.) Torr., Peterson 24895 & Romaschenko (US), Mexico, KM010740, KM010572, KM010960, KM011165, KM010367; Sporobolus airoides (Torr.) Torr., Peterson 24956 & Romaschenko (US), Mexico, KM010741, KM010573, KM010961, KM011166, KM010368; Sporobolus albicans Nees, Smook 2459 & Russell (US), South Africa, KM010742, –, –, –, KM010369; Sporobolus albicans Nees, Smook 6270 (US), South Africa, KM010743, –, –, –, –; Sporobolus aldabrensis Renvoize, Fosberg 48867 (US), Seychelles, KM010744, –, –, –, –; Sporobolus apiculatus Boechat & Longhi-Wagner, Irwin 8041, Souza & Reis des Santos (US), Brazil, –, –, KM010962, KM011167, KM010370; Sporobolus arabicus Boiss., Rawi 10781, Jalili & Armer (US), Kuwait, –, –, KM010963, –, KM010371; Sporobolus atrovirens (Kunth) Kunth, Peterson 22342 & Saarela (US), Mexico, GU359915, GU359508, GU360315, GU360632, GU359207; Sporobolus atrovirens (Kunth) Kunth, Peterson 24661 & Romaschenko (US), Mexico, KM010746, KM010575, KM010964, KM011169, KM010373; Sporobolus atrovirens (Kunth) Kunth, Peterson 24729 & Romaschenko (US), Mexico, KM010747, KM010576, KM010965, KM011170, KM010374; Sporobolus atrovirens (Kunth) Kunth, Rosalen 3381 & Herrera (CIIDIR), Mexico, KM010748, KM010577, KM010966, KM011171, KM010375; Sporobolus australasicus Domin, Peterson 14404, Soreng & Rosenberg (US), Australia, KM010749, KM010578, KM010967, KM011172, KM010376; Sporobolus australasicus Domin, Walsh 4237 (MEL), Australia, KM010750, KM010579, KM010968, KM011173, KM010377; Sporobolus berteroanus (Trin.) Hitchc. & Chase, Peterson 8753, Annable & Poston (US), Ecuador, KM010751, –, –, KM011174, KM010378; Sporobolus blakei De Nardi ex B.K.Simon, Latz 10662 (MEL), Australia, KM010752, KM010580, KM010969, KM011175, KM010379; Sporobolus bogotensis Swallen & García-Barr., Peterson 14970 & Refulio Rodriguez (US), Peru, KM010753, –, KM010970, KM011176, KM010380; Sporobolus brockmanii Stapf, Gillet 4016 (US), Somalia, KM010754, KM010581, KM010971, KM011177, KM010381; Sporobolus buckleyi Vasey, Lira 546, Martinez, Alvarez, Ramirez, Medrod & Gamboa (CIIDIR), Mexico, KM010755, KM010582, KM010972, KM011178, KM010382; Sporobolus buckleyi Vasey, Piedra s.n. (CIIDIR), Mexico, KM010756, –, KM010973, KM011179, KM010383; Sporobolus buckleyi Vasey, Rodriguez 94 & Villareal (CIIDIR), Mexico, KM010757, KM010583, KM010974, KM011180, KM010384; Sporobolus caroli Mez, Saarela 1626, Peterson & Soreng (US), Australia, KM010759, KM010584, KM010976, KM011182, KM010386; Sporobolus caroli Mez, Speak 1915 (US), Australia, KM010760, KM010585, KM010977, KM011183, KM010387; Sporobolus centrifugus (Trin.) Nees, Hoener 2133 (US), South Africa, KM010761, KM010586, KM010978, KM011184, KM010388; Sporobolus clandestinus (Biehler) Hitchc., Freeman 6687 (US), U.S.A., KM010762, KM010587, KM010979, KM011185, KM010389; Sporobolus clandestinus (Biehler) Hitchc., Peterson 24422, Romaschenko & Knapp (US), U.S.A., KM010763, –, KM010980, KM011186, –; Sporobolus clandestinus (Biehler) Hitchc., Schuster 197 (US), U.S.A., KM010764, KM010588, KM010981, KM011187, KM010390; Sporobolus clandestinus (Biehler) Hitchc., Waterfall 12309 (US), U.S.A., KM010765, KM010589, KM010982, KM011188, KM010391; Sporobolus clandestinus (Biehler) Hitchc., Waterfall 5881 (US), U.S.A., KM010758, –, KM010975, KM011181, KM010385; Sporobolus coahuilensis Valdés-Reyna, Gonzales 3600 (CIIDIR), Mexico, KM010766, KM010590, KM010983, KM011189, KM010392; Sporobolus coahuilensis Valdés-Reyna, Peterson 10000 & Annable (US), Mexico, KM010767, KM010591, KM010984, KM011190, KM010393; Sporobolus compositus (Poir.) Merr., Brodowich 1305 (US), U.S.A., KM010745, KM010574, –, KM011168, KM010372; Sporobolus confinis (Steud.) Chiov., Peterson 24303, Soreng, Romaschenko & Mbago (US), Tanzania, KM010768, KM010592, KM010985, KM011191, KM010394; Sporobolus conrathii (Conrath & Hack.) Chiov., Smook 1444 (US), South Africa, KM010769, KM010593, –, –, –; Sporobolus consimilis Fresen., Collenette 17 (US), Somalia, KM010770, KM010594, KM010986, KM011192, KM010395; Sporobolus consimilis Fresen., Peterson 24252, Soreng, Romaschenko & Mbago (US), Tanzania, KM010771, KM010595, KM010987, KM011193, KM010396; Sporobolus contractus Hitchc., Perez 196 (US), Mexico, KM010772, –, KM010988, KM011194, KM010397; Sporobolus cordofanus (Hochst. ex Steud.) Coss., Greenway 10191 (US), Tanzania, KM010773, –, –, –, KM010398; Sporobolus cordofanus (Hochst. ex Steud.) Coss., Laegaard 15973 (US), Zimbabwe, KM010774, KM010596, KM010989, KM011195, KM010399; Sporobolus cordofanus (Hochst. ex Steud.) Coss., Peterson 24232, Soreng, Romaschenko & Mbago (US), Tanzania, KM010775, KM010597, KM010990, KM011196, KM010400; Sporobolus coromandelianus (Retz.) Kunth, Fosberg 51193, Mueller-Dombois, Wirawan, Cooray & Balakrishnan (US), Sri Lanka, KM010776, –, KM010991, KM011197, KM010401; Sporobolus coromandelianus (Retz.) Kunth, Peterson 24269, Soreng, Romaschenko & Mbago (US), Tanzania, KM010777, KM010598, KM010992, KM011198, KM010402; Sporobolus coromandelianus (Retz.) Kunth, Schweinfurth 896 & Nil (US), Ethiopia, KM010778, KM010599, KM010993, KM011199, KM010403; Sporobolus creber De Nardi, Brown 498 (MEL), Australia, KM010779, KM010600, KM010994, KM011200, KM010404; Sporobolus cryptandrus (Torr.) A.Gray, Peterson 24454, Romaschenko & Valdés-Reyna (US), Mexico, KM010780, KM010601, KM010995, KM011201, KM010405; Sporobolus cryptandrus (Torr.) A.Gray, Peterson 24485 & Romaschenko (US), Mexico, KM010781, KM010602, KM010996, KM011202, KM010406; Sporobolus diandrus (Retz.) P.Beauv., Peterson 14389, Soreng & Rosenberg (US), Australia, KM010782, KM010603, KM010997, KM011203, KM010407; Sporobolus diffusus Clayton, Lovett 2179, Handy & Bygott (DSM), Tanzania, KM010783, –, –, KM011204, KM010408; Sporobolus dinklagei Mez, Hale 11 (US), Liberia, KM010784, KM010604, KM010998, –, KM010409; Sporobolus domingensis (Trin.) Kunth, Swallen 10669 (US), U.S.A., KM010785, KM010605, KM010999, KM011205, KM010410; Sporobolus elongatus R.Br., Balansa 896 (US), New Caledonia, KM010786, –, –, –, –; Sporobolus eylesii Stent & J.M.Rattray, Wiche 717 (US), Malawi, KM010787, –, KM011000, –, KM010411; Sporobolus farinosus Hosok., Wood 3275 & Perlman (US), Guam, KM010788, KM010606, KM011001, KM011206, KM010412; Sporobolus fertilis (Steud.) Clayton, Gould 13535 (US), Sri Lanka, KM010789, KM010607, KM011002, KM011207, KM010413; Sporobolus fertilis (Steud.) Clayton, Raulerson 775 (US), Guam, KM010790, –, KM011003, KM011208, KM010414; Sporobolus festivus Hochst. ex A.Rich., Peterson 23853, Soreng, Romaschenko & Abeid (US), Tanzania, KM010791, Version of Record (identical to print version). 1241 Peterson & al. • Sporobolus: phylogeny and classification TAXON 63 (6) • December 2014: 1212–1243 Appendix 1. Continued. KM010608, KM011004, KM011209, KM010415; Sporobolus fimbriatus (Trin.) Nees, Peterson 24206, Soreng, Romaschenko & Mbago (US), Tanzania, KM010793, KM010609, KM011005, KM011210, KM010416; Sporobolus fimbriatus (Trin.) Nees, Peterson 24241, Soreng, Romaschenko & Mbago (US), Tanzania, KM010794, KM010610, KM011006, KM011211, KM010417; Sporobolus fimbriatus (Trin.) Nees, Peterson 24280, Soreng, Romaschenko & Mbago (US), Tanzania, –, KM010611, KM011007, KM011212, KM010418; Sporobolus flexuosus (Thurb. ex Vasey) Rydb., Reeder 5477 & Reeder (US), U.S.A., KM010795, –, KM011008, KM011213, KM010419; Sporobolus flexuosus (Thurb. ex Vasey) Rydb., Valdés-Reyna 2014 & Peterson (CIIDIR), Mexico, KM010796, KM010612, KM011009, KM011214, KM010420; Sporobolus floridanus Chapm., Curtiss s.n. (US), U.S.A., KM010797, –, –, –, –; Sporobolus floridanus Chapm., Harper s.n. (US), U.S.A., KM010798, –, –, –, –; Sporobolus giganteus Nash, Page 2628 (US), U.S.A., KM010800, –, KM011011, KM011216, KM010422; Sporobolus greenwayi Napper, Greenway 12526 (US), Tanzania, KM010801, KM010614, KM011012, –, KM010423; Sporobolus helvolus (Trin.) T.Durand & Schinz, Laegaard 17063 & Traore (US), Senegal, KM010802, –, KM011013, KM011217, KM010424; Sporobolus helvolus (Trin.) T.Durand & Schinz, Peterson 24217, Soreng, Romaschenko & Mbago (US), Tanzania, KM010803, KM010615, KM011014, KM011218, KM010425; Sporobolus heterolepis (A.Gray) A.Gray, Davidse 19101 (US), U.S.A., KM010804, –, KM011015, KM011219, KM010426; Sporobolus humilis subsp. humilis Veldkamp, Clayton 5879 (US), Sri Lanka, KM010805, KM010616, KM011016, KM011220, KM010427; *Sporobolus indicus (L.) R.Br., Peterson 22025 & Saarela (US), Mexico, GU359913, GU359504, GU360355, GU360630, GU359209; *Sporobolus indicus (L.) R.Br., Peterson 7337 & Annable (US), Panama, KM010806, KM010617, KM011017, KM011221, KM010428; Sporobolus infirmus Mez, Haines 332 (US), Nigeria, KM010807, KM010618, KM011018, KM011222, KM010429; Sporobolus ioclados (Nees ex Trin.) Nees, Smook 5920 (US), South Africa, KM010808, KM010619, KM011019, KM011223, KM010430; Sporobolus jacquemontii Kunth, Estrada 18964 (CIIDIR), Mexico, KM010809, KM010620, KM011020, KM011224, KM010431; Sporobolus jacquemontii Kunth, Peterson 15902 & Valdés-Reyna (US), Mexico, KM010810, KM010621, KM011021, KM011225, KM010432; Sporobolus junceus (P.Beauv.) Kunth, Strong 2332 (US), U.S.A., KM010811, KM010622, KM011022, KM011226, KM010433; Sporobolus junceus (P.Beauv.) Kunth, Thieret 25181 (US), U.S.A., KM010812, KM010623, KM011023, KM011227, KM010434; Sporobolus kentrophyllus (K.Schum. ex Engl.) Clayton, Bogdan 3306 (US), Kenya, KM010813, KM010624, KM011024, KM011228, KM010435; Sporobolus kentrophyllus (K.Schum. ex Engl.) Clayton, Mwasumbi 13049 (DSM), Tanzania, KM010814, –, KM011025, KM011229, KM010436; Sporobolus lasiophyllus Pilg., Peterson 21820 & Soreng (US), Peru, KM010815, KM010625, KM011026, KM011230, KM010437; Sporobolus lasiophyllus Pilg., Peterson 21870 & Soreng (US), Peru, KM010816, –, KM011027, KM011231, –; Sporobolus lasiophyllus Pilg., Peterson 21879, Soreng & Sanchez Vega (US), Peru, GU359912, GU359505, GU360356, GU360629, GU359210; Sporobolus laxus B.K.Simon, Simon 4166 (MEL), Australia, KM010817, KM010626, KM011028, KM011232, KM010438; Sporobolus linearifolius Nicora, Reitz 5292 (US), Brazil, KM010818, –, KM011029, –, KM010439; Sporobolus ludwigii Hochst., Smook 2857 (US), South Africa, KM010819, KM010627, KM011030, KM011233, KM010440; Sporobolus macrospermus Scribn. ex Beal, Peterson 9857 & Annable (US), Mexico, KM010820, –, KM011031, KM011234, –; Sporobolus maderaspatanus Bor, Davidse 8220 & Sumithraarachi (US), Sri Lanka, KM010821, –, –, –, –; Sporobolus marginatus Hochst. ex A.Rich., Leippert 5101 (US), Uganda, KM010822, –, KM011032, –, KM010441; Sporobolus marginatus Hochst. ex A.Rich., Rattray 664 (US), Zimbabwe, KM010823, KM010628, KM011033, –, KM010442; Sporobolus micranthus (Steud.) T.Durand & Schinz, Brain 3370 (US), Zimbabwe, –, –, KM011034, –, –; Sporobolus microprotus Stapf, Laegaard 17894 & Traore (US), Senegal, KM010824, KM010629, KM011035, KM011235, KM010443; Sporobolus mildbraedii Pilg., Milne-Redhead 8570 & Taylor (US), Tanzania, KM010825, –, –, –, –; Sporobolus mitchellii (Trin.) C.E.Hubb. ex S.T.Blake, Forster 22301 (MEL), Australia, KM010826, –, –, KM011236, KM010444; Sporobolus molleri Hack., Gereau 5790, Mbago & Kayombo (DSM), Tanzania, KM010827, –, –, KM011237, KM010445; Sporobolus molleri Hack., Rwaburindore 2183 (US), Uganda, KM010828, –, –, KM011238, KM010446; Sporobolus montanus (Hook.f.) Engl., Dusen 420 (US), Cameroon, KM010829, KM010630, KM011036, –, KM010447; Sporobolus myrianthus Benth., Gereau 3491, Lovett & Kayombo (DSM), Tanzania, KM010830, –, –, KM011239, KM010448; Sporobolus natalensis (Steud.) T.Durand & Schinz, Eddie 1141 (MEL), Australia, KM010831, KM010631, KM011037, KM011240, KM010449; Sporobolus nealleyi Vasey, Correll 18548 & Johnston (US), U.S.A., KM010832, –, KM011038, KM011241, –; Sporobolus nealleyi Vasey, Peterson 17839, Valdés-Reyna & Hinton (US), Mexico, KM010833, KM010632, KM011039, KM011242, KM010450; Sporobolus nealleyi Vasey, Villarreal 1991, Carranza & Valdez (CIIDIR), Mexico, KM010834, –, KM011040, KM011243, KM010451; Sporobolus neglectus Nash, Theodore 5890 & Cochrane (US), U.S.A., KM010835, –, KM011041, KM011244, KM010452; Sporobolus nervosus Hochst., Wood 2021 (US), Yemen, KM010836, KM010633, KM011042, KM011245, KM010453; Sporobolus nitens Stent, Laegaard 15893 (US), Zimbabwe, KM010837, KM010634, KM011043, KM011246, KM010454; Sporobolus olivaceus Napper, Ash 2921 (US), Ethiopia, KM010838, –, –, –, –; Sporobolus oxylepsis Mez, Schlieben 6158 (US), Tanzania, KM010839, –, KM011044, –, KM010455; Sporobolus palmeri Scribn., Peterson 24862 & Romaschenko (US), Mexico, KM010841, KM010636, KM011046, KM011248, KM010457; Sporobolus palmeri Scribn., Peterson 24918 & Romaschenko (US), Mexico, KM010842, KM010637, KM011047, KM011249, KM010458; Sporobolus palmeri Scribn., Peterson 24955a & Romaschenko (USZ), Mexico, KM010843, KM010638, KM011048, KM011250, KM010459; Sporobolus palmeri Scribn., Peterson 24955b & Romaschenko (US), Mexico, KM010844, KM010639, KM011049, KM011251, KM010460; Sporobolus panicoides A.Rich., Bidgood 1005, Mwasumbi & Vollesen (DSM), Tanzania, KM010845, –, –, –, –; Sporobolus panicoides A.Rich., Smook 9865 (US), South Africa, KM010846, KM010640, KM011050, –, KM010461; Sporobolus pectinellus Mez, Fay 7131 (US), Central African Republic, KM010847, –, KM011051, –, KM010462; Sporobolus pectinellus Mez, Peterson 23978, Soreng, Romaschenko & Abeid (US), Tanzania, KM010848, KM010641, KM011052, KM011252, KM010463; Sporobolus pellucidus Hochst., Fitzgerald 5226 (US), Tanzania, KM010849, –, KM011053, –, KM010464; Sporobolus phleoides Hack., Venturi 2039 (US), Argentina, KM010850, –, KM011054, KM011253, KM010465; Sporobolus phyllotrichus Hochst., Greenway 11844 & Kanuri (US), Tanzania, KM010851, –, KM011055, –, KM010466; Sporobolus piliferus (Trin.) Kunth, Peterson 24012, Soreng, Romaschenko & Abeid (US), Tanzania, KM010852, KM010642, KM011056, KM011254, KM010467; Sporobolus pinetorum Weakley & P.M.Peterson, Peterson 14233, Weakley & LeBlond (US), U.S.A., GU359911, GU359506, GU360358, KM011255, GU359211; Sporobolus pseudairoides Parodi, Wasum 2670 (US), Brazil, KM010853, –, KM011057, KM011256, KM010468; Sporobolus pungens (Schreb.) Kunth, Durandi s.n. (US), Spain, –, –, –, –, KM010469; Sporobolus pungens (Schreb.) Kunth, Zohary 489 & Amdursky (US), Israel, KM010854, KM010643, KM011058, KM011257, KM010470; Sporobolus purpurascens (Sw.) Ham., Peterson 9453 & Judziewicz (US), Ecuador, KM010855, KM010644, KM011059, KM011258, KM010471; Sporobolus purpurascens (Sw.) Ham., Swallen 10179 (US), U.S.A., KM010856, KM010645, KM011060, KM011259, KM010472; Sporobolus purpurascens (Sw.) Ham., Trouart 25 (US), U.S.A., KM010857, –, KM011061, KM011260, KM010473; Sporobolus pyramidalis P.Beauv., Peterson 24150, Soreng, Romaschenko & Abeid (US), Tanzania, KM010858, KM010646, KM011062, KM011261, KM010474; Sporobolus pyramidalis P.Beauv., Senaratne E6082-11 (US), Australia, KM010859, KM010647, KM011063, KM011262, KM010475; Sporobolus pyramidatus (Lam.) Hitchc., Garcia 3757 (CIIDIR), Mexico, KM010860, –, KM011064, KM011263, KM010476; Sporobolus pyramidatus (Lam.) Hitchc., Gooding 191-45 (US), U.S.A., –, –, –, KM011264, KM010477; Sporobolus pyramidatus (Lam.) Hitchc., Peterson 18994, GonzálezElizondo, Carter, Rosen, Guaglianone & Torres Soto (US), Mexico, KM010861, KM010648, KM011065, KM011265, KM010478; Sporobolus pyramidatus (Lam.) Hitchc, Peterson 21163, Saarela, Rosen & Reid (US), Mexico, GU359910, GU359507, GU360359, GU360628, GU359228; Sporobolus pyramidatus (Lam.) Hitchc., Peterson 24868 & Romaschenko (US), Mexico, KM010862, KM010649, KM011066, KM011266, KM010479; Sporobolus pyramidatus (Lam.) Hitchc., Peterson 8920, Annable & Poston (US), Ecuador, KM010863, –, KM011067, KM011267, KM010480; Sporobolus rigens (Trin.) Desv., Peterson 19224, Soreng, Salariado & Panizza (US), Argentina, GU359909, GU359517, GU360360, GU360627, GU359213; Sporobolus robustus Kunth, Laegaard 17398, Goudiaby, Madesn, Samba & Traore (US), Senegal, KM010864, KM010650, KM011068, KM011268, KM010481; Sporobolus ruspolianus Chiov., Bally 15581 & Melville (DSM), Somalia, KM010865, –, KM011069, KM011269, KM010482; Sporobolus ruspolianus Chiov., Flemming 2136 (US), Somalia, KM010866, KM010651, KM011070, KM011270, KM010483; Sporobolus ruspolianus Chiov., McKinnon s.n. (US), Somalia, KM010799, KM010613, KM011010, KM011215, KM010421; Sporobolus sanguineus Rendle, Bidgood 2397, Mbago & Vollesen (DSM), Tanzania, KM010867, –, –, KM011271, KM010484; Sporobolus sanguineus Rendle, Gereau 6014, Mbago, Kayombo & Lyanga (DSM), Tanzania, KM010868, –, –, KM011272, KM010485; Sporobolus scabridus S.T.Blake, Forster 20462 (MEL), Australia, KM010869, KM010652, KM011071, KM011273, KM010486; Sporobolus scabriflorus Stapf 1242 Version of Record (identical to print version). TAXON 63 (6) • December 2014: 1212–1243 Peterson & al. • Sporobolus: phylogeny and classification Appendix 1. Continued. ex Massey, Troupin 1319 (US), Congo (Kinshasa) Dem. Rep., KM010870, –, KM011072, –, KM010487; Sporobolus sessilis B.K.Simon, Senaratne E6095-1 (US), Australia, KM010871, KM010653, KM011073, KM011274, KM010488; Sporobolus silveanus Swallen, Waller 3128 & Bauml (US), U.S.A., KM010872, –, KM011074, KM011275, KM010489; Sporobolus smutsii Stent, Oakes 1454 (US), South Africa, –, –, –, –, KM010490; Sporobolus somalensis Chiov., Boalev 317 (US), Somalia, KM010873, KM010654, KM011075, –, KM010491; Sporobolus somalensis Chiov., Herruming 2022 (US), Somalia, KM010874, KM010655, KM011076, –, KM010492; Sporobolus spicatus (Vahl) Kunth, Baldini s.n. (US), Oman, KM010875, KM010656, KM011077, KM011276, KM010493; Sporobolus spicatus (Vahl) Kunth, Laegaard 17790 & Traore (US), Senegal, KM010876, KM010657, KM011078, KM011277, KM010494; Sporobolus spicatus (Vahl) Kunth, Peterson 24055, Soreng, Romaschenko & Abeid (US), Tanzania, KM010877, KM010658, KM011079, KM011278, KM010495; Sporobolus spicatus (Vahl) Kunth, Peterson 24230, Soreng, Romaschenko & Mbago (US), Tanzania, KM010878, KM010659, KM011080, KM011279, KM010496; Sporobolus spiciformis Swallen, Garcia 2638 (CIIDIR), Mexico, KM010879, KM010660, KM011081, KM011280, KM010497; Sporobolus spiciformis Swallen, Garcia 2814 (CIIDIR), Mexico, KM010880, KM010661, KM011082, KM011281, KM010498; Sporobolus splendens Swallen, King 1687 (US), Mexico, KM010881, KM010662, KM011083, KM011282, KM010499; Sporobolus stapfianus Gand., Laegaard 15939 (US), Zimbabwe, KM010882, –, KM011084, KM011283, KM010500; Sporobolus stolzii Mez, Peterson 23946, Soreng, Romaschenko & Abeid (US), Tanzania, KM010883, KM010663, KM011085, KM011284, KM010501; Sporobolus stolzii Mez, Peterson 24133, Soreng, Romaschenko & Abeid (US), Tanzania, –, KM010664, KM011086, KM011285, KM010502; Sporobolus stolzii Mez, Richards 21377 (US), Zambia, KM010884, KM010665, KM011087, KM011286, KM010503; Sporobolus subglobosus Stapf ex C.E.Hubb., Gambaga 581 (US), Ghana, KM010885, –, KM011088, –, KM010504; Sporobolus subulatus Hack., Peterson 24317, Soreng, Romaschenko & Mbago (US), Tanzania, KM010886, KM010666, KM011089, KM011287, KM010505; Sporobolus tenacissimus (L.f.) P.Beauv., Rusby 55 (US), Bolivia, –, –, –, –, KM010506; Sporobolus tenellus (Spreng.) Kunth, Smook 2874 (US), South Africa, KM010887, KM010667, KM011090, –, KM010507; Sporobolus tenuissimus (Mart. ex Schrank) Kuntze, Greenway 1745 (US), Tanzania, KM010888, KM010668, –, KM011288, –; Sporobolus tenuissimus (Mart. ex Schrank) Kuntze, Peterson 9523 & Judziewicz (US), Ecuador, KM010889, KM010669, KM011091, KM011289, KM010508; Sporobolus teretifolius R.M.Harper, McDonald 9988 (US), U.S.A., KM010890, KM010670, KM011092, KM011290, KM010509; Sporobolus teretifolius R.M.Harper, Peterson 14232, Weakley & LeBlond (US), U.S.A., GU359908, GU359509, GU360376, GU360626, GU359199; Sporobolus texanus Vasey, Churchill 2645 & Kaul (US), U.S.A., KM010891, KM010671, KM011093, KM011291, KM010510; Sporobolus tourneuxii Coss., Adam 19416 (US), Mauritania, KM010892, KM010672, KM011094, KM011292, KM010511; Sporobolus trichodes Hitchc., Rzedowski 39901 (CIIDIR), Mexico, KM010893, KM010673, KM011095, KM011293, KM010512; Sporobolus uniglumis Stent & J.M.Rattray, Robinson 48 (US), Zambia, KM010894, –, KM011096, –, KM010513; Sporobolus vaginiflorus (Torr. ex A.Gray) Alph.Wood, Peterson 24441, Romaschenko & Knapp (US), U.S.A., KM010895, –, KM011097, KM011294, –; Sporobolus vaginiflorus (Torr. ex A.Gray) Alph.Wood, Rogers 40059 (US), U.S.A., KM010896, –, KM011098, KM011295, KM010514; Sporobolus vaginiflorus (Torr. ex A.Gray) Alph.Wood, Wherry s.n. (US), U.S.A., KM010897, –, KM011099, KM011296, KM010515; Sporobolus vaginiflorus var. ozarkanus Fernald, Riggins 481 (US), U.S.A., KM010840, KM010635, KM011045, KM011247, KM010456; Sporobolus verdcourtii Napper, Vesey-Fitzgerald 5336 (US), Kenya, KM010898, KM010674, KM011100, KM011297, KM010516; Sporobolus virginicus (L.) Kunth, Peterson 14311, Soreng, Rosenberg & Macfarlane (US), Australia, KM010899, KM010675, KM011101, KM011298, KM010517; Sporobolus virginicus (L.) Kunth, Peterson 15683 & Soreng (US), Chile, GU359892, GU359502, GU360362, GU360610, GU359215; Sporobolus virginicus (L.) Kunth, Peterson 23820, Soreng, Romaschenko & Abeid (US), Tanzania, KM010900, –, KM011102, KM011299, KM010518; Sporobolus virginicus (L.) Kunth, Whistler 6132 (US), Polynesia, KM010901, KM010676, KM011103, KM011300, KM010519; Sporobolus wrightii Munro ex Scribn., Peterson 10638 & Annable (US), Mexico, KM010902, KM010677, KM011104, KM011301, KM010520; Sporobolus wrightii Munro ex Scribn., Peterson 19841 & Lara-Contreras (US), Mexico, GU359906, GU359511, GU360348, GU360624, GU359216; Sporobolus wrightii Munro ex Scribn., Peterson 24841 & Romaschenko (US), Mexico, KM010903, KM010678, KM011105, KM011302, KM010521; Thellungia advena Stapf, Belson 1930 (US), Australia, KM010904, –, –, KM011303, KM010522; Thellungia advena Stapf, Lazarides 4185 (US), Australia, KM010905, –, –, KM011304, KM010523; Zoysiinae: Urochondra setulosa (Trin.) C.E.Hubb., Bailey 10868 (US), Somalia, KM010906, KM010679, KM011106, KM011305, KM010524; Urochondra setulosa (Trin.) C.E.Hubb., Baldini s.n. (US), Oman, KM010907, KM010680, KM011107, KM011306, KM010525; Urochondra setulosa (Trin.) C.E.Hubb., Inckennon 181 (US), Somalia, KM010908, KM010681, KM011108, KM011307, KM010526; Urochondra setulosa (Trin.) C.E.Hubb., Rechinger 27496 (US), Pakistan, KM010909, KM010682, KM011109, KM011308, KM010527; Zoysia japonica Steud., Kuragadake s.n. (US), Japan, GU359923, GU359547, –, GU360643, GU359196; Zoysia macrantha subsp. walshii M.E.Nightingale, Loch 435 (US), Australia, GU359922, GU359548, GU360345, GU360642, GU359197; Zoysia macrantha Desv., Soreng 5913 & Peterson (US), Australia, GU360017, GU359558, GU360346, GU360641, GU359142; Zoysia pacifica (Goudswaard) M.Hotta & Kuroki, Lorence 7651 (US), U.S.A.Hawaii, KM010910, –, –, –, –; Zoysia pacifica (Goudswaard) M.Hotta & Kuroki, Lorence 9432 & Flynn (US), Kiribati, KM010911, –, –, –, –. Version of Record (identical to print version). 1243