

# Systematic, phylogenetic and pollination studies of Specklinia (Orchidaceae) Karremans, Adam Philip

# Citation

Karremans, A. P. (2015, November 25). *Systematic, phylogenetic and pollination studies of Specklinia (Orchidaceae)*. Retrieved from https://hdl.handle.net/1887/36432

| Version:         | Corrected Publisher's Version                                                                                                          |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| License:         | <u>Licence agreement concerning inclusion of doctoral thesis in the</u><br><u>Institutional Repository of the University of Leiden</u> |
| Downloaded from: | https://hdl.handle.net/1887/36432                                                                                                      |

Note: To cite this publication please use the final published version (if applicable).

Cover Page



# Universiteit Leiden



The handle <a href="http://hdl.handle.net/1887/36432">http://hdl.handle.net/1887/36432</a> holds various files of this Leiden University dissertation

Author: Karremans, Adam Philip

**Title**: Systematic, phylogenetic and pollination studies of Specklinia (Orchidaceae) **Issue Date**: 2015-11-25

# **Chapter 6**

# Genetic similarity versus morphological divergence: phylogenetics of *Specklinia* (Orchidaceae)

Adam P. Karremans Federico J. Albertazzi Freek T. Bakker Diego Bogarín Marcel C.M. Eurlings Alec Pridgeon Franco Pupulin Barbara Gravendeel

The phylogenetic relationships within *Specklinia*, a recently re-established genus of the Orchidaceae (Pleurothallidinae), and related genera are re-evaluated using Bayesian analyses of nuclear ITS and chloroplast *matK* sequence data of a wide sampling of species. *Specklinia* is found basically biphyletic in the DNA based trees, with species alternatively assigned to *Muscarella* proven distinct, monophyletic and well recognizable. *Muscarella* is therefore recognized as distinct. *Specklinia* as such includes about 95 morphologically highly variable species. Their phenotypic differences had prompted the creation of up to eleven generic names within this relatively small group. Here we show not only that these morphologically divergent species are closely related, but also that they can still be recognized by certain conserved morphological traits. The genera *Acostaea, Areldia, Empusella, Cucumeria, Gerardoa, Pseudoctomeria, Sarcinula, Sylphia, Tribulago* and *Tridelta* are found imbedded within Specklinia, and therefore placed in synonymy. *Specklinia* is confirmed sister to a clade that includes *Platystele, Scaphosepalum* and *Teagueia*. Five well supported subgenera are proposed for *Specklinia* and are characterized both geographically and morphologically. The species belonging to each subgenus are listed. *Incaea* is synonymized with *Dryadella*, and *Rubellia* is reduced under *Platystele*. New combinations for several species of *Dryadella, Muscarella, Platystele* and *Specklinia* are proposed.

Keywords: molecular phylogeny; morphology; Pleurothallidinae; Specklinia; systematics; taxonomy

#### Introduction

How to adequately circumscribe a genus is still highly debatable. Genera, as well as other above species-level groupings, are frequently considered arbitrary groups of species. Arbitrariness is reduced by the implementation of objective methodologies that result in the establishment of biologically significant groups. Recent systematic work, especially such that include molecular data, tends to result in more inclusive generic delimitations, whereas work based on morphological data tends to result in narrower generic delimitations. Humphreys and Linder (2009) suggested that "good genera are predictive and stable", which can be attained assessing, for example, their morphological recognisability, monophyly and reproductive isolation (Scopece *et al.* 2010).

Traditionally, *Specklinia* Lindl. (Orchidaceae: Pleurothallidinae) had been considered a synonym of *Pleurothallis* R.Br. (Luer 1986). However, the generic limits of the mammoth genus *Pleurothallis* were recircumscribed (Pridgeon & Chase 2001) on the basis of molecular studies by Pridgeon *et al.* (2001). The authors presented new evidence to reestablish *Specklinia*, recognizing 86 species. Both in the bootstrap consensus trees of the *matK/trnL-F* dataset and the most parsimonious tree from the combined *matK/trnL-F/*ITS DNA dataset a morphologically highly heterogeneous set of taxa, including *Dryadella simula* (Rchb.f.) Luer, *Pleurothallis costaricensis* Rolfe, *P. lentiginosa* Lehmann & Kraezlin, *P. endotrachys* Rchb.f., *Acostaea costaricensis* Schltr., and species of the genera *Platystele* Schltr. and *Scaphosepalum* Pfitzer, are found together in a clade. In the tree obtained from the nrITS DNA matrix, based on a larger sampling, *P. lanceola* (Sw.) Sprengel —the type species of the genus *Specklinia*— was found together with *P. endotrachys*, *P. fulgens* Rchb.f., *P. lateritia* Endrés ex Rchb.f., *P. lentiginosa*, and *P. tribuloides* (Sw.) Lindl., forming a distinct subclade treated by the authors as the "core" *Specklinia*.

The recircumscribed *Specklinia* included species of Pleurothallis subgen. *Specklinia* [*P.* sects. *Hymenodanthae* Barb.Rodr., *Tribuloides* Luer, *Muscariae* Luer], subgen. *Empusella*, subgen. *Pseudoctomeria* and *Acostaea* Schltr., showing low levels of sequence divergence (Pridgeon & Chase 2001). Among the morphological features useful to define *Specklinia*, the authors indicated the, usually, small plants with a short stem with an annulus, the variously connate sepals, and the hinged lip; the sepals and petals of *Specklinia* mostly membranous; the column with a toothed apex; and ventral anther and stigma. However, even with the removal of the basal *Dryadella* Luer and the derived *Platystele* and *Scaphosepalum*, the resulting circumscription of *Specklinia* is variable both in terms of vegetative and floral morphology (Luer 2006; Pupulin *et al.* 2012; Bogarín *et al.* 2013b, Chapter 4; Karremans *et al.* 2013b).

*Specklinia* is thus difficult to characterize on the basis of a particular set of distinguishing morphological features (Karremans 2014, Chapter 7), promoting the creation of several new genera, expressly designed to fit one or more morphologically aberrant species of *Specklinia* (Luer 2004; 2006). Due to the different interpretations of the circumscription of *Specklinia*, it had been difficult to estimate the actual number of species belonging to the genus. Pridgeon (2005) accounted for 200 species, but one year later Luer (2006) reduced the genus to some 40 species. Most recently Barros & Trettel Rodrigues (2009) accounted for 420 binomials, about five times the original number transferred by Pridgeon & Chase (2001).

Here we have chosen to re-evaluate phylogenetic relationships among the species with Specklinia affinity using a wide range of evidence. Our approach is to combine a molecular phylogeny covering about half of the species that belong to the genus, with a morphological and geographical characterization, as well as the establishment of a subgeneric classification. Our main goal is to understand relationships among species of all the proposed genera within this species group: *Acostaea, Areldia* Luer, *Cucumeria* Luer, *Dryadella, Gerardoa* Luer, *Incaea* Luer, *Muscarella* Luer, *Platystele, Pseudoctomeria* Kraenzl., *Rubellia* (Luer) Luer, *Sarcinula* Luer, *Scaphosepalum, Specklinia, Sylphia* Luer, *Teagueia* (Luer) Luer, *Tribulago* Luer, *Tridelta* Luer, *Trigonanthe* (Schltr.) Brieger and *Verapazia* Archila.

#### Materials and methods

Specimens were field-collected or obtained from the living collections at Lankester Botanical Garden (JBL), University of Costa Rica, the Hortus botanicus in Leiden (L), or from the private collections of G. Villalobos in Costa Rica, G. Vierling in Germany, and W. Driessen, P. Dubbeldam, T. Sijm and J. Wubben in the Netherlands. Selection of material was done on the basis of availability and interspecific variation. At least one representative of the genera, subgenera, or other groupings accepted in the alternative classification systems was included in the sampling when available. Many of the species included are Costa Rican in distribution, reflecting the prevailing nature of the JBL collections; however, specimens from a wide geographical range have been included as well. Putative species are represented by more than a single accession whenever possible, in order to assure better species delimitation, reducing risks of laboratory mix-ups and in accounting for sequencing error. Vouchers of specimens used are kept in the liquid collections at JBL or L, unless specified otherwise (Table 7).

DNA sequences of *Masdevallia hornii* Königer (= *Phloeophila yupanki* (Luer & R.Váquez) Pridgeon & M.W.Chase), *Platystele catiensis* Karremans & Bogarín, *Platystele tica* Karremans & Bogarín, *Specklinia absurda* Bogarín, Karremans & R.Rincón, *Specklinia acoana* Bogarín, *Specklinia berolinensis* Bogarín, *Specklinia remotiflora* Pupulin & Karremans and *Specklinia succulenta* Bellone & Archila were obtained from the plants that served as type material (Chiron *et al.* 2012; Pupulin *et al.* 2012, Chapter 1; Bogarín *et al.* 2013b, Chapter 4; Bogarín *et al.* 2014; Fernández *et al.* 2014).

TABLE 7. List of vouchers and GenBank number used in the phylogenetic analyses. Scientific names mostly follow Pridgeon (2005).

| Taxon                                                             | Sequence<br>Voucher | GenBank Accession<br>Number ITS | GenBank Accession<br>Number matK | Sequence Source      |
|-------------------------------------------------------------------|---------------------|---------------------------------|----------------------------------|----------------------|
| Anathallis grayumii (Luer) Luer (1)                               | Karremans 2747      | KC425730                        | -                                | Karremans 2014       |
| Anathallis grayumii (Luer) Luer (2)                               | Pupulin 3794        | KC425731                        | KP012494                         | Karremans 2014       |
| Anathallis lewisiae (Ames) Solano & Soto Arenas                   | Bogarín 1056        | KC425733                        | KC425858                         | Karremans 2014       |
| Anathallis pabstii (Garay) Pridgeon & M.W.Chase                   | Karremans 4821      | KC425737                        | KC425859                         | Karremans 2014       |
| Anathallis rabei (Foldats) Luer                                   | Karremans 4794      | KC425738                        | KC425860                         | Karremans 2014       |
| Dryadella albicans (Luer) Luer                                    | Karremans 4861      | KC425742                        | KC425863                         | This Study           |
| Dryadella aviceps (Rchb. f.) Luer                                 | van den Berg 1989   | JQ306381                        | -                                | GenBank              |
| Dryadella edwallii (Cogn.) Luer                                   | Chase 305           | AF262824                        | AF265454                         | Pridgeon et al. 2001 |
| Dryadella guatemalensis (Schltr.) Luer                            | Karremans 3642      | KC425743                        | -                                | This Study           |
| Dryadella hirtzii Luer                                            | BGH-123364          | EF079367                        | EF079327                         | GenBank              |
| Dryadella kautskyi (Pabst) Luer                                   | van den Berg 1997   | JQ306380                        | -                                | GenBank              |
| Dryadella simula (Rchb. f.) Luer                                  | Chase 1095          | AF262825                        | AF265453                         | Pridgeon et al. 2001 |
| Dryadella susanae (Pabst) Luer                                    | Chiron 11240        | JQ306486                        | -                                | GenBank              |
| Echinosepala aspasicensis (Rchb.f.) Pridgeon & M.W.Chase          | Chase 971           | AF262905                        | -                                | Pridgeon et al. 2001 |
| Echinosepala aspasicensis (Rchb.f.) Pridgeon & M.W.Chase          | Bogarín 1945        | -                               | EU214340                         | GenBank              |
| Lankesteriana barbulata (Lindl.) Pridgeon & M.W. Chase            | Bogarín 8606        | KC425726                        | KC425856                         | Karremans 2014       |
| Lepanthopsis apoda (Garay & Dunst.) Luer                          | Pridgeon 126        | KF747841                        | -                                | This Study           |
| Pabstiella parvifolia (Lindl.) Luer (1)                           | Karremans 2680      | KC425812                        | KP012497                         | This Study           |
| Pabstiella parvifolia (Lindl.) Luer (2)                           | Karremans 2680      | KC425813                        | -                                | This Study           |
| Phloeophila nummularia (Rchb. f.) Garay (1)                       | Karremans 5959      | KF747839                        | KP012380                         | This Study           |
| Phloeophila nummularia (Rchb. f.) Garay (2)                       | Karremans 5982      | -                               | KP012381                         | This Study           |
| Phloeophila nummularia (Rchb. f.) Garay (3)                       | Stenzel 896         | KC425841                        | -                                | Stenzel 2004         |
| Phloeophila pelecaniceps (Luer) Pridgeon & M.W. Chase             | Chase 1128          | AF262810                        | AF265450                         | Pridgeon et al. 2001 |
| Phloeophila peperomioides (Ames) Garay (1)                        | None                | AF275690                        | AF291103                         | Pridgeon et al. 2001 |
| Phloeophila peperomioides (Ames) Garay (2)                        | Bogarín 7112        | KC425745                        | -                                | This Study           |
| Phloeophila pleurothallopsis (Kraenzl.) Pridgeon & M.W. Chase (1) | Chase 978           | AF262812                        | -                                | Pridgeon et al. 2001 |
| Phloeophila pleurothallopsis (Kraenzl.) Pridgeon & M.W. Chase (2) | Chase 5638          | AF262811                        | AF265451                         | Pridgeon et al. 2001 |
| Phloeophila pleurothallopsis (Kraenzl.) Pridgeon & M.W. Chase (3) | Karremans 4818      | KC425746                        | KP012495                         | This Study           |
| Phloeophila pleurothallopsis (Kraenzl.) Pridgeon & M.W. Chase (4) | Karremans 4856      | KC425747                        | KP012496                         | This Study           |
| Phloeophila yupanki (Luer & R.Vásquez) Pridgeon & M.W.Chase (1)   | Karremans 4858      | KC425748                        | KP012498                         | This Study           |
| Phloeophila yupanki (Luer & R.Vásquez) Pridgeon & M.W.Chase (2)   | Karremans 5706a     | KF747776                        | KP012382                         | This Study           |
| Phloeophila yupanki (Luer & R.Vásquez) Pridgeon & M.W.Chase (3)   | Karremans 5706b     | KF747777                        | -                                | This Study           |
| Platystele acicularis Luer & Hirtz                                | Karremans 5785      | KF747778                        | KP012383                         | This Study           |
| Platystele aurea Garay (1)                                        | Karremans 4807      | KC425762                        | -                                | This Study           |
| Platystele aurea Garay (2)                                        | Karremans 5707b     | -                               | -                                | This Study           |
| Platystele aurea Garay (3)                                        | Karremans 5707a     | KF747779                        | -                                | This Study           |
| Platystele beatricis P. Ortiz                                     | Karremans 4801      | KC425749                        | KP012499                         | This Study           |
| Platystele catiensis Karremans & Bogarín                          | Bogarín 9661        | -                               | KP012384                         | This Study           |
| Platystele caudatisepala (C.Schweinf.) Garay                      | Bogarín 10230       | -                               | KP012385                         | This Study           |
| Platystele compacta (Ames) Ames                                   | Karremans 4088      | KC425750                        | -                                | This Study           |
| Platystele consobrina Luer                                        | Karremans 4835      | KC425751                        | -                                | This Study           |
| Platystele gyroglossa Luer                                        | Karremans 4834      | KC425752                        | -                                | This Study           |
| Platystele hirtzii Luer                                           | Karremans 5755      | KF747780                        | -                                | This Study           |
| Platystele lancilabris (Rchb.f.) Schltr.                          | Bogarín 10593       | -                               | KP012386                         | This Study           |
| Platystele microtatantha (Schltr.) Garay                          | Bogarín 8022        | KF747781                        | -                                | This Study           |
| Platystele minimiflora (Schltr.) Garay                            | Karremans 5980      | KF747782                        | KP012387                         | This Study           |
| Platystele misasiana P. Ortiz                                     | Karremans 5768      | KF747783                        | KP012388                         | This Study           |
| Platystele misera (Lindl.) Garay (1)                              | Karremans 5749      | KF747784                        | KP012389                         | This Study           |
| Platystele misera (Lindl.) Garay (2)                              | Chase 5625          | AF262823                        | AF265470                         | Pridgeon et al. 2001 |
| Platystele ovatilabia (Ames & C. Schweinf.) Garay                 | Bogarín 3941        | KC425753                        | -                                | This Study           |
| Platystele oxyglossa (Schltr.) Garay                              | Karremans 4253      | KC425754                        | KP012500                         | This Study           |
| Platystele oxyglossa (Schltr.) Garay aff.                         | Karremans 5407      | KC425755                        | -                                | This Study           |
| Platystele propinqua (Ames) Garay                                 | C.M. Smith 500      | KF747785                        | KP012390                         | This Study           |
| Platystele reflexa Luer aff.                                      | Karremans 5733      | KC425756                        | -                                | This Study           |
| Platystele schmidtchenii Schltr.                                  | Karremans 5995      | KF747786                        | -                                | This Study           |
| Platystele stenostachya (Rchb.f.) Garay (1)                       | Bogarín 5806        | KF747787                        | -                                | This Study           |
| Platystele stenostachya (Rchb.f.) Garay (2)                       | Pupulin 7919        | KC425759                        | KP012501                         | This Study           |
| Platystele stenostachya (Rchh.f.) Garay (3)                       | Chase 5618          | AF262821                        | -                                | Pridgeon et al. 2001 |

#### TABLE 7. Continued.

| Taxon                                                                | Sequence<br>Voucher          | GenBank Accession<br>Number ITS | GenBank Accession<br>Number matK | Sequence Source      |
|----------------------------------------------------------------------|------------------------------|---------------------------------|----------------------------------|----------------------|
| Platystele tica Karremans & Bogarín                                  | Karremans 5829A              | KP012458                        | KP012391                         | This Study           |
| Platystele ximenae Luer & Hirtz                                      | Karremans 4865               | KC425760                        | KP012502                         | This Study           |
| Scaphosepalum anchoriferum (Rchb.f.) Rolfe                           | Bogarín 5418                 | KP012459                        | KP012392                         | This Study           |
| Scaphosepalum gibberosum (Rchb.f.) Rolfe                             | Chase 968                    | AF262817                        | AF265458                         | Pridgeon et al. 2001 |
| Scaphosepalum grande Kraenzl.                                        | Chase 1107                   | AF262819                        | -                                | Pridgeon et al. 2001 |
| Scaphosepalum medinae Luer & J. Portilla (1)                         | Karremans 4810a              | KC425763                        | -                                | This Study           |
| Scaphosepalum medinae Luer & J. Portilla (2)                         | Karremans 4810b              | KF747788                        | -                                | This Study           |
| Scaphosepalum microdactylum Rolfe                                    | Pupulin 7897                 | KP012460                        | KP012393                         | This Study           |
| Scaphosepalum ovulare Luer                                           | Karremans 4809               | KC425764                        | KP012503                         | This Study           |
| Scaphosepalum swertiifolium (Rchb.f.) Rolfe                          | Chase 1383                   | AF262818                        | -                                | Pridgeon et al. 2001 |
| Scaphosepalum swertiifolium (Rchb.f.) Rolfe aff.                     | Karremans 4811               | KC425765                        | KP012504                         | This Study           |
| Scaphosepalum ursinum Luer (1)                                       | Karremans 4817               | KC425766                        | -                                | This Study           |
| Scaphosepalum ursinum Luer (2)                                       | BGH-124283                   | EF079365                        | -                                | GenBank              |
| Scaphosepalum verrucosum (Rchh f.) Pfitzer (1)                       | Karremans 4812               | KC425767                        | KP012505                         | This Study           |
| Scaphosepalum verrucosum (Rehb f.) Pfitzer (2)                       | Chase 1331                   | AE262820                        | -                                | Pridgeon et al 2001  |
| Specklinia absurda Rogarín Karremans & Rincón (1)                    | Bogarín 9772                 | KC425826                        |                                  | This Study           |
| Specklinia absurda Bogarín, Karremans & Rincón (1)                   | Bogarín 9772<br>Bogarín 8711 | KC425827                        | KP012506                         | This Study           |
| Specklinia acanthodes (Luer) Pridaeon & MWChase                      | Dogurin 0711<br>Pridaeon 232 | KE747842                        | R1012500                         | This Study           |
| Specklinia asigularia (Amas & C Saluvainf) Dridgeon & M MChase       | Dupuliu 5222                 | KE747790                        | -                                | This Study           |
| Speckinia actuaris (Ames & C.Schweinj.) Priageon & M. W.Chase        | Pupuin 3232                  | KF/4//09                        | -                                | This Study           |
| Speckinia acoana Bogarin                                             | A. Kojas 7718                | KF/4/800                        | -                                | This Study           |
| Specklinia acrisepala (Ames & C.Schweinf.) Pridgeon & M.W.Chase (1)  | Karremans 3//0               | KC425768                        | -                                | This Study           |
| Specklinia acrisepala (Ames & C.Schweinf.) Pridgeon & M. W.Chase (2) | M. Fernandez 604             | KF/4//90                        | -                                | This Study           |
| Specklinia alajuelensis Karremans & Pupulin (1)                      | Karremans 5501               | KC425792                        | -                                | This Study           |
| Specklinia alajuelensis Karremans & Pupulin (2)                      | Karremans 3268               | KP012455                        | KP012411                         | This Study           |
| Specklinia alajuelensis Karremans & Pupulin (3)                      | Bogarin 2895                 | KP012454                        | KP012412                         | This Study           |
| Specklinia alajuelensis Karremans & Pupulin (4)                      | Karremans 3265               | KC425791                        | -                                | This Study           |
| Specklinia alata (A.Rich. & Galeotti) Solano & Soto Arenas           | Karremans 4840               | KC425806                        | -                                | This Study           |
| Specklinia alta (Luer) Luer                                          | Karremans 5721               | KF747791                        | KP012394                         | This Study           |
| Specklinia aristata (Hook.) Luer                                     | Stenzel 996                  | KC425842                        | -                                | Stenzel 2004         |
| Specklinia barbae (Schltr.) Luer (1)                                 | Karremans 5396               | KC425770                        | -                                | This Study           |
| Specklinia barbae (Schltr.) Luer (2)                                 | Karremans 4853               | KC425771                        | -                                | This Study           |
| Specklinia barbae (Schltr.) Luer (3)                                 | Karremans 3928               | KC425769                        | -                                | This Study           |
| Specklinia barbae (Schltr.) Luer (4)                                 | M. Fernández 646             | KP012461                        | KP012395                         | This Study           |
| Specklinia blancoi (Pupulin) Soto Arenas & Solano ano                | Karremans 5701               | KC425772                        | -                                | This Study           |
| Specklinia brighamii (S.Watson) Pridgeon & M.W.Chase (1)             | Karremans 4799               | KC425773                        | -                                | This Study           |
| Specklinia brighamii (S.Watson) Pridgeon & M.W.Chase (2)             | JBL-00887                    | KC425774                        | -                                | This Study           |
| Specklinia cabellensis (Rchb.f.) Karremans (1)                       | Karremans 5712               | KF747792                        | KP012396                         | This Study           |
| Specklinia cabellensis (Rchb.f.) Karremans (2)                       | Karremans 5712               | KF747793                        |                                  | This Study           |
| Specklinia cabellensis (Rchb.f.) Karremans (3)                       | Karremans 5712               | KF747794                        |                                  | This Study           |
| Specklinia cactantha (Luer) Pridgeon & M.W.Chase (1)                 | Karremans 5965               | KF747795                        | KP012397                         | This Study           |
| Specklinia cactantha (Luer) Pridgeon & M.W.Chase (2)                 | Karremans 5979               | KF747796                        | -                                | This Study           |
| Specklinia calyptrostele (Schltr.) Pridgeon & M.W.Chase (1)          | Pupulin 7060                 | KC425775                        | KP012507                         | This Study           |
| Specklinia calyptrostele (Schltr.) Pridgeon & M.W.Chase (2)          | Pupulin 7724                 | KF747798                        | KP012398                         | This Study           |
| Specklinia chontalensis (A.H.Heller & A.D.Hawkes) Luer (1)           | Pupulin 6543                 | KC425776                        | -                                | This Study           |
| Specklinia chontalensis (A.H.Heller & A.D.Hawkes) Luer (2)           | Pupulin 6543                 | KF747799                        | KP012399                         | This Study           |
| Specklinia claviculata (Luer & Hirtz) Luer                           | Karremans 4827               | KC425777                        | -                                | This Study           |
| Specklinia colombiana (Garav) Pridgeon & M.W.Chase aff.              | Karremans 4942               | KC425825                        | -                                | This Study           |
| Specklinia colombiana (Garay) Pridgeon & M.W.Chase (1)               | Karremans 3235               | KC425809                        | -                                | This Study           |
| Specklinia colombiana (Garay) Pridgeon & M.W.Chase (2)               | M. Fernández 481             | KC425810                        | -                                | This Study           |
| Specklinia condulata (Luer) Pridgeon & M.W.Chase (1)                 | Bogarín 7855                 | KP012462                        | -                                | This Study           |
| Specklinia condulata (Luer) Pridgeon & M W Chase (2)                 | M Fernández 170              | KP012463                        | -                                | This Study           |
| Specklinia condylata (Luer) Pridoeon & M W Chase aff                 | Chase 6808                   | AF262873                        | -                                | Pridgeon et al 2001  |
| Specklinia corniculata (Sw.) Steud. (4)                              | Karremane 5180               | KF747801                        | KP012400                         | This Study           |
| Specklinia corniculata (Sw.) Steud. (5)                              | IRI _02240a                  | KF747802                        | KP012401                         | This Study           |
| Specklinia corniculata (Sw.) Steud. (5)                              | IRI_022404                   | KE7/7002                        | KD012401                         | This Study           |
| Specklinia corniculata (Sw.) Steud. (1)                              | JBL-022400                   | VC/25791                        | Kr012402                         | This Study           |
| Speckunia corniculata (Sw.) Steud. (1)                               | JDL-02227                    | NC425/81                        | -                                | This Study           |
| Speckunia corniculata (Sw.) Steud. (2)                               | Stangel 000                  | NC425/82                        | -                                | Stopgel 2004         |
| эрескити сотпении (эж.) этеми. (э)                                   | SICH2EL 009                  | NC423044                        | -                                | SIGHZEI 2004         |

#### TABLE 7. Continued.

| Taxon                                                                   | Sequence<br>Voucher | GenBank Accession<br>Number ITS | GenBank Accession<br>Number matK | Sequence Source       |
|-------------------------------------------------------------------------|---------------------|---------------------------------|----------------------------------|-----------------------|
| Specklinia costaricensis (Rolfe) Pridgeon & M.W.Chase (1)               | Chase 5636          | AF262863                        | -                                | Pridgeon et al. 2001  |
| Specklinia costaricensis (Rolfe) Pridgeon & M.W.Chase (2)               | Bogarín 5643        | KC425783                        | -                                | This Study            |
| Specklinia costaricensis (Rolfe) Pridgeon & M.W.Chase (3)               | Chase 5612          | AF262862                        | AF265459                         | Pridgeon et al. 2001  |
| Specklinia cucumeris (Luer) Karremans (1)                               | Karremans 5757a     | KF747804                        | KP012403                         | This Study            |
| Specklinia cucumeris (Luer) Karremans (2)                               | Karremans 5757b     | KF747805                        | -                                | This Study            |
| Specklinia digitalis (Luer) Pridgeon & M.W.Chase                        | Karremans 5737      | KF747806                        | KP012404                         | This Study            |
| Specklinia displosa (Luer) Pridgeon & M.W.Chase (1)                     | Karremans 5713b     | KF747807                        | KP012405                         | This Study            |
| Specklinia displosa (Luer) Pridgeon & M.W.Chase (2)                     | Karremans 5713c     | KF747808                        | -                                | This Study            |
| Specklinia dodii (Garay) Luer                                           | Karremans 5963      | KF747809                        | KP012406                         | This Study            |
| Specklinia dunstervillei Karremans, Pupulin & Gravend. (1)              | Karremans 5966      | KP012456                        | -                                | This Study            |
| Specklinia dunstervillei Karremans, Pupulin & Gravend. (2)              | Karremans 5899      | -                               | KP012423                         | This Study            |
| Specklinia endotrachys (Rchb.f.) Pridgeon & M.W.Chase (1)               | Blanco 961a         | KC425784                        | KP012508                         | This Study            |
| Specklinia endotrachys (Rchb.f.) Pridgeon & M.W.Chase (2)               | Blanco 961b         | KF747810                        | KP012407                         | This Study            |
| Specklinia fimbriata (Ames & C. Schweinf.) Luer                         | Karremans 3718      | KC425785                        | -                                | This Study            |
| Specklinia fuegi (Rchb.f.) Solano & Soto Arenas (1)                     | Karremans 5600      | KC425786                        | KP012408                         | This Study            |
| Specklinia fuegi (Rchb.f.) Solano & Soto Arenas (2)                     | Karremans 5600      | KF747811                        | -                                | This Study            |
| Specklinia fulgens (Rchb.f.) Pridgeon & M.W.Chase (1)                   | Chase 5630          | AF262872                        | -                                | Pridgeon et al. 2001  |
| Specklinia fulgens (Rchb.f.) Pridgeon & M.W.Chase (2)                   | Karremans 3284      | KC425800                        | -                                | This Study            |
| Specklinia fulgens (Rchb.f.) Pridgeon & M.W.Chase (3)                   | JBL-001675          | KC425790                        | -                                | This Study            |
| Specklinia fulgens (Rchb.f.) Pridgeon & M.W.Chase (4)                   | Karremans 4843      | KC425788                        | -                                | This Study            |
| Specklinia fulgens (Rchb.f.) Pridgeon & M.W.Chase (5)                   | Karremans 3593      | KC425787                        | KP012409                         | This Study            |
| Specklinia gersonii Bogarín & Karremans                                 | Karremans 6025      | KP012457                        | KP012424                         | This Study            |
| Specklinia gracillima (Lindl.) Pridgeon & M.W.Chase (1)                 | Karremans 4831      | KC425793                        | -                                | This Study            |
| Specklinia gracillima (Lindl.) Pridgeon & M.W.Chase (2)                 | Karremans 5999      | KF747812                        | -                                | This Study            |
| Specklinia grisebachiana (Cogn.) Luer                                   | Stenzel 619         | KC425846                        | -                                | Stenzel 2004          |
| Specklinia grobyi (Bateman ex Lindl.) F.Barros (1)                      | Karremans 5463      | KF747813                        | -                                | This Study            |
| Specklinia grobyi (Bateman ex Lindl.) F.Barros (2)                      | JBL-10285           | KF747814                        | -                                | This Study            |
| Specklinia grobyi (Bateman ex Lindl.) F.Barros (3)                      | Pupulin 8187        | KC425799                        | -                                | This Study            |
| Specklinia grobyi (Bateman ex Lindl.) F.Barros (4)                      | Chiron 09357        | JQ306388                        | -                                | GenBank               |
| Specklinia grobyi (Bateman ex Lindl.) F.Barros (5)                      | Chase 1093          | AF262860                        | -                                | Pridgeon et al. 2001  |
| Specklinia grobyi (Bateman ex Lindl.) F.Barros (6)                      | Karremans 4220      | KC425794                        | -                                | This Study            |
| Specklinia grobyi (Bateman ex Lindl.) F.Barros (7)                      | Karremans 3759      | KC425796                        | -                                | This Study            |
| Specklinia grobyi (Bateman ex Lindl.) F.Barros aff. (1)                 | Karremans 4833      | KC425798                        | -                                | This Study            |
| Specklinia grobyi (Bateman ex Lindl.) F.Barros aff. (2)                 | Chiron 04524        | JQ306485                        | -                                | GenBank               |
| Specklinia grobyi (Bateman ex Lindl.) F.Barros aff. (3)                 | Karremans 5958      | KF747829                        | KP012413                         | This Study            |
| Specklinia guanacastensis (Ames & C.Schweinf.) Pridgeon & M.W.<br>Chase | Karremans 6018      | KP012464                        | KP012414                         | This Study            |
| Specklinia hastata (Ames) Pridgeon & M.W.Chase                          | Bogarín 4910        | KF747773                        | -                                | This Study            |
| Specklinia helenae (Fawc. & Rendle) Luer                                | Stenzel 766         | KC425847                        | -                                | Stenzel 2004          |
| Specklinia herpestes (Luer) Luer (1)                                    | Karremans 4082a     | KC425801                        | -                                | This Study            |
| Specklinia herpestes (Luer) Luer (2)                                    | Karremans 4082b     | KC425802                        | -                                | This Study            |
| Specklinia icterina Bogarín                                             | Bogarín 8767        | KC425778                        | -                                | This Study            |
| Specklinia lanceola (Sw.) Lindl. (1)                                    | Karremans 5503      | KC425803                        | -                                | This Study            |
| Specklinia lanceola (Sw.) Lindl. (2)                                    | Pridgeon s.n.       | KC425838                        | -                                | Pridgeon & Chase 2002 |
| Specklinia lanceola (Sw.) Lindl. (3)                                    | Chase 1433          | AF262861                        | -                                | Pridgeon et al. 2001  |
| Specklinia lentiginosa (F.Lehm. & Kraenzl.) Pridgeon & M.W.Chase (1)    | None                | AF275692                        | -                                | Pridgeon et al. 2001  |
| Specklinia lentiginosa (F.Lehm. & Kraenzl.) Pridgeon & M.W.Chase (2)    | Karremans 3011      | KC425804                        | -                                | This Study            |
| Specklinia lichenicola (Griseb.) Pridgeon & M.W.Chase                   | Stenzel 452         | KC425845                        | -                                | Stenzel 2004          |
| Specklinia llamachoi (Luer) Luer                                        | Stenzel 545         | KC425848                        | -                                | Stenzel 2004          |
| Specklinia longilabris (Lindl.) Luer                                    | Stenzel 895         | KC425849                        | -                                | Stenzel 2004          |
| Specklinia lugduno-batavae Karremans, Bogarín & Gravend. (1)            | Pupulin 7709        | KC425824                        | -                                | This Study            |
| Specklinia luis-diegoi (Luer) Luer (1)                                  | Karremans 5500      | KC425835                        | -                                | This Study            |
| Specklinia luis-diegoi (Luer) Luer (2)                                  | Karremans 5500      | KF747815                        | -                                | This Study            |
| Specklinia macroblepharis (Rchb. f.) Luer                               | Karremans 4860      | KC425805                        | -                                | This Study            |
| Specklinia megalops (Luer) Luer                                         | Karremans 4792      | KC425807                        | -                                | This Study            |
| Specklinia microphylla (A.Rich. & Galeotti) Pridgeon & M.W.Chase (1)    | Bogarín 9394        | KC425808                        | -                                | This Study            |
| Specklinia microphylla (A.Rich. & Galeotti) Pridgeon & M.W.Chase (2)    | JBL-00968           | KP012465                        | -                                | This Study            |
| Specklinia montezumae (Luer) Luer (1)                                   | Karremans 229       | KC425811                        | KP012509                         | This Study            |

#### TABLE 7. Continued.

| Taxon                                                               | Sequence<br>Voucher | GenBank Accession<br>Number ITS | GenBank Accession<br>Number matK | Sequence Source      |
|---------------------------------------------------------------------|---------------------|---------------------------------|----------------------------------|----------------------|
| Specklinia montezumae (Luer) Luer (2)                               | Karremans 5751      | KF747816                        | -                                | This Study           |
| Specklinia morganii (Luer) Luer (1)                                 | Karremans 5728a     | KF747817                        | KP012415                         | This Study           |
| Specklinia morganii (Luer) Luer (2)                                 | Karremans 5728b     | KF747818                        | -                                | This Study           |
| Specklinia mucronata (Lindl. ex Cogn.) Karremans                    | Stenzel 478         | KC425850                        | -                                | Stenzel 2004         |
| Specklinia obliauipetala (Acuña & C.Schweinf.) Karremans            | Stenzel 789         | KC425851                        | -                                | Stenzel 2004         |
| Specklinia pfavii (Rchh f.) Pupulin & Karremans (1)                 | Karremans 4825      | KC425814                        | KP012510                         | This Study           |
| Specklinia pfavii (Rehh f.) Pupulin & Karremans (2)                 | Karremans 3656      | KF747819                        | -                                | This Study           |
| Specklinia plavii (Rehb f.) Pupulin & Karremans (2)                 | IRI - 11086         | KE747820                        | _                                | This Study           |
| Specklinia picta (Lindl.) Pridaeon & M.W.Chase (1)                  | van den Berg 2146   | IO306384                        |                                  | GenBank              |
| Specklinia picta (Lindl.) Pridgeon & M W Chase (2)                  | Karremans 4836      | KC425815                        |                                  | This Study           |
| Specklinia picta (Lindl.) Pridaeon & M.W.Chase aff                  | Chiron 06131        | IO306385                        |                                  | GenBank              |
| Specklinia pisinna (Lindl.) Solano & Soto Arenas (1)                | Karramans 4797      | KC425795                        |                                  | This Study           |
| Specklinia pisinna (Lindl.) Solano & Solo Arenas (2)                | Karremans 1830      | KC425797                        |                                  | This Study           |
| Specklinia psichion (Luer) Luer (1)                                 | Rogarín 8299        | KC425816                        |                                  | This Study           |
| Specklinia psichion (Luer) Luer (2)                                 | Karramans 5955      | KE747821                        |                                  | This Study           |
| Specklinia guinguagata (Amas) Luar                                  | Karramane 2040      | KI/4/021<br>VC425917            | -                                | This Study           |
| Specklinia quinqueseta (Ames) Luer                                  | Kurremuns 3940      | KC425617                        | -<br>VD012416                    | This Study           |
| Specklinia recula (Luer) Luer (2)                                   | Karramana 5300a     | KF747022                        | KP012410                         | This Study           |
| Specklinia recula (Luer) Luer (2)                                   | Karremans 55000     | KF747625                        | KP012417                         | This Study           |
| Specklinia recula (Luer) Luer (3)                                   | Karremans 5852      | KF/4/624<br>VD012466            | KP012416                         | This Study           |
| Specklinia remotificana Dubulia de Komonomo (1)                     | Kurremuns 3623      | KP012400                        | -<br>VD012511                    | This Study           |
| Speckinia remotifiora Pupulin & Karremans (1)                       | Karremans 4/98a     | KC425818                        | KP012511                         | This Study           |
| Specklinia remotiflora Pupulin & Karremans (2)                      | Karremans 4798b     | KC425819                        | -                                | This Study           |
| Specklinia remotifiora Pupulin & Karremans (3)                      | Karremans 4854      | KC425820                        | -                                | This Study           |
| Specklinia remotifiora Pupulin & Karremans aff.                     | Chase 1303          | AF262859                        | AF265456                         | Pridgeon et al. 2001 |
| Specklinia schaferi (Ames) Luer                                     | Stenzel 453         | KC425852                        | -                                | Stenzel 2004         |
| Specklinia scolopax (Luer & R.Escobar) Pridgeon & M.W.Chase         | Karremans 4820      | KC425821                        | KP012512                         | This Study           |
| Specklinia segregatifolia (Ames & C.Schweinf.) Solano & Soto-Arenas | Bogarin 7990        | KC425822                        | -                                | This Study           |
| Specklinia simmleriana (Rendle) Luer                                | Karremans 4205      | KC425823                        | -                                | This Study           |
| Specklinia sp. (1)                                                  | Karremans 5988      | KF747774                        | KP012419                         | This Study           |
| Specklinia sp. (2)                                                  | Karremans 5989      | KF747775                        | KP012420                         | This Study           |
| Specklinia sp. (3)                                                  | Bogarín 9668        | KF747832                        | -                                | This Study           |
| Specklinia sp. (4)                                                  | Karremans 5962      | KF747828                        | KP012421                         | This Study           |
| Specklinia sp. (5)                                                  | Karremans 5997a     | KF747825                        | -                                | This Study           |
| Specklinia sp. (6)                                                  | Karremans 5997b     | KF747826                        | -                                | This Study           |
| Specklinia sp. (7)                                                  | Karremans 5996      | KF747827                        | KP012422                         | This Study           |
| Specklinia sp. (8)                                                  | Karremans 4823      | KC425779                        | KP012513                         | This Study           |
| Specklinia spectabilis (Ames & C.Schweinf.) Pupulin & Karremans (1) | Karremans 5250      | KC425829                        | -                                | This Study           |
| Specklinia spectabilis (Ames & C.Schweinf.) Pupulin & Karremans (2) | Bogarín 7401        | KC425830                        | -                                | This Study           |
| Specklinia spectabilis (Ames & C.Schweinf.) Pupulin & Karremans (3) | Karremans 5699      | KC425828                        | -                                | This Study           |
| Specklinia strumosa (Ames) Luer                                     | Karremans 4359      | KC425831                        | -                                | This Study           |
| Specklinia subpicta (Schltr.) F.Barros                              | Chiron 11046        | JQ306389                        | -                                | GenBank              |
| Specklinia succulenta Bellone & Archila                             | Bellone 680         | JQ306383                        | -                                | GenBank              |
| Specklinia tribuloides (Sw.) Pridgeon & M.W.Chase (1)               | Chase 5615          | AF262867                        | -                                | Pridgeon et al. 2001 |
| Specklinia tribuloides (Sw.) Pridgeon & M.W.Chase (2)               | Stenzel 634         | KC425853                        | -                                | Stenzel 2004         |
| Specklinia tribuloides (Sw.) Pridgeon & M.W.Chase (3)               | Karremans 3276      | KC425834                        | -                                | This Study           |
| Specklinia tribuloides (Sw.) Pridgeon & M.W.Chase (4)               | Karremans 4804a     | KC425832                        | -                                | This Study           |
| Specklinia tribuloides (Sw.) Pridgeon & M.W.Chase (5)               | Karremans 4804b     | KC425833                        | -                                | This Study           |
| Specklinia trichyphis (Rchb.f.) Luer                                | Stenzel 620         | KC425854                        | -                                | Stenzel 2004         |
| Specklinia trilobata (Luer) Pridgeon & M.W.Chase                    | Pridgeon 112        | KF747843                        | -                                | This Study           |
| Specklinia truncicola (Rchb.f.) F.Barros & L.R.S.Guim.              | JG 4131             | JQ306391                        | -                                | GenBank              |
| Specklinia turrialbae (Luer) Luer (1)                               | Karremans 5635      | KF747830                        | KP012425                         | This Study           |
| Specklinia turrialbae (Luer) Luer (2)                               | Karremans 5601      | KF747831                        | -                                | This Study           |
| Specklinia vierlingii Baumbach                                      | Pupulin 2894        | KC425780                        | -                                | This Study           |
| Specklinia vittariifolia (Schltr.) Pridgeon & M.W.Chase (1)         | Karremans 2945      | KP012452                        | KP012410                         | This Study           |
| Specklinia vittariifolia (Schltr.) Pridgeon & M.W.Chase (2)         | Karremans 5944      | KP012453                        | -                                | This Study           |
| Specklinia wrightii (Rchb.f.) Luer                                  | Stenzel 733         | KC425855                        | -                                | Stenzel 2004         |
| Teagueia tentaculata Luer & Hirtz                                   | Pridgeon 142        | KF747844                        | -                                | This Study           |
| Trichosalpinx notosibirica (T. Hashim.) Luer                        | Pridgeon 225        | KF747845                        | -                                | This Study           |

**DNA extraction and sequencing**:—Fresh leaf and flower cuttings of about 1 cm<sup>2</sup> were obtained from all the selected individuals of each species. Each individual sample was put into a polypropylene bag with silica gel to dry for about a week after which the silica was removed and new dry silica was added. Twenty mg of every individual sample was pulverized in liquid nitrogen with a Retsch MM 300 shaker for 5 min using three bullets/glass beads. Extraction was performed following the DNEasy Plant Mini Kit extraction protocol (QIAGEN). DNA concentration for each sample was adjusted to 10 µmol/l using a NanoDrop Spectrophotometer (ND 1000).

The nuclear ribosomal internal transcribed spacer (ITS) region was amplified using the methods and primers 17SE (ACGAATTCATGGTCCGGTGAAGTGTTCG) and 26SE (TAGAATTCCCCGGTTCGCCGCTGAC) for sequencing and amplification, described by Sun *et al.* (1994). The chloroplast gene matK was amplified and sequenced using the Kew *matK* primers 2.1aF (ATCCATCTGGAAATCTTAGTTC) and 5R (GTTCTAGCACAAGAAAGTCG). Amplification was done by preparing each sample with a PCR mix composed of genomic DNA, Dream Taq Buffer, dNTPs, both primers, Dream Taq, water, and the extracted DNA. Samples were amplified in a MJ Research PTC-200 Pelthier Thermal Cycler, using a temperature profile of 94°C/5 min, followed by 34 cycles of 94°C/30 s, 55°C/30 s, and 72°C/2 min, and finally 72°C/10 min. Sanger sequencing was performed by Macrogen (http://www.macrogen. com) or BaseClear (http://www.baseclear.com) on an ABI 3730xl (Applied Biosystems).

**Building the data sets**:—The STADEN (Staden *et al.* 2003) package was used for editing the sequences. Where more than one base pair was equally probable among the Sanger tracers, the Unicode nomenclature (IUPAC) was used. In a few cases the two reads for one sample were too short and there was no overlap, so Pregap was unable to build a contig. In these cases, the forward and reverse sequences were merged by filling in missing positions with Ns. Sequences were aligned manually in Mesquite v2.72 (Maddison & Maddison 2007). The ends of each data set were trimmed and sequences were edited manually.

After the alignments had been edited, additional sequences were obtained from Hagen Stenzel (Stenzel 2004), and from NCBI GenBank, the latter using nBLAST. *Echinosepala aspasicensis* (Rchb.f.) Pridgeon & M.W.Chase was used as outgroup in all cases, as this taxon has been suggested to be the most earliest-branching lineage of all included species (Pridgeon *et al.* 2001).

**Phylogenetic analysis:**—The nrITS, *matK* and nrITS+*matK* data sets were analyzed using the Find Model web server (available at http://www.hiv.lanl.gov/content/sequence/findmodel/findmodel.html) which uses MODELTEST [a program designed to compare different nested models of DNA substitution in a hierarchical hypothesis-testing framework (Posada & Crandall 1998)] to calculate the model scores, based on the AIC criterion. Gaps were small and scarce and therefore treated as missing data or eliminated from the data set. Phylogenetic inference with the maximum likelihood method was done using the randomized accelerated maximum likelihood (RAxML; Stamatakis, 2006). The nrITS+matK data set was analyzed using RAxML v8.1.11 (Stamatakis 2014), available on the CIPRES Science Gateway (Miller et al. 2010), with the GTR + CAT model. The program Bayesian Evolutionary Analysis and Sampling of Trees (BEAST; Drummond & Rambaut 2007) was used to analyze nrITS (results not shown), matK (results not shown), and nrITS + matK combined matrices. BEAST estimates rooted, time-measured phylogenies inferred using strict or relaxed molecular clock models, and was therefore preferred over Bayesian analyses methods. It is also a framework for testing evolutionary hypotheses without relying on a single tree topology. Substitution and clock models were set as unlinked. The GTR +  $\Gamma$  model included estimated frequencies, and 10 rate categories were used to model  $\Gamma$  distribution for both nrITS + matK. A relaxed clock model was used for both partitions; however, the model used for nrITS was Lognormal, while for matK it was set to Exponential, a better fit for the data. The used tree prior was speciation - yule birth, and the number of generations of the Markov Chain was set to 30,000,000.

Concatenating gene sequences for phylogenetic analysis can lead to artifacts, especially when discrepancies are found between the individual gene trees (Edwards *et al.* 2007; Kubatko & Degnan 2007). Therefore we tested whether strongly supported incongruence existed between our nrITS and *matK*-based trees. In the concatenated data set, nrITS sequences are directly followed by the *matK* sequence. In some cases one of the two sequences was not available but these were then equally analyzed as missing data. This was proven not to interfere with the final results when sampling size is large enough (Wiens 2006; Karremans 2010; Karremans *et al.* 2013a). Trees were visualized

in FigTree v.1.3.1 (Rambaut 2009). Posterior probability (PP) values and bootstraps were added to the branches of the trees using the labeling option. Branches were re-ordered decreasingly.

**Morphological characterization**:—The morphological dissimilarities among species of *Specklinia* has led to a proliferation of generic concepts, proposing the segregation of several small species groups from the genus. With 95 species in a broad sense, *Specklinia* includes at least the type species of the genera *Acostaea* Schltr., *Cucumeria* Luer, *Empusella* Luer, *Pseudoctomeria* Kraenzl., *Sarcinula* Luer, *Sylphia* Luer, and *Tribulago* Luer (Pridgeon 2005). The type of the monotypic genus *Gerardoa* Luer was also transferred to *Specklinia* (Luer 2004), and morphological similarity would suggest that the monotypic *Areldia* Luer and *Tridelta* Luer might also belong in a broad concept of *Specklinia*. Lastly, Luer (2006) segregated species of *Pleurothallis* R.Br. subgen. *Specklinia* (Lindl.) Garay sect. *Muscariae* Luer into *Muscarella* Luer, a genus that has been mostly considered a synonym of *Specklinia*. For discussion and characterization purposes the most frequently taxonomically used morphological characters were manually added to a "per clade" summarized tree. This was done by collapsing the node subtending each clade in the consensus tree obtained from the combined nrITS+*matK* dataset in the BEAST analysis, using FigTree v.1.3.1.

**Scanning Electron Microscopy (SEM)**:—Tissue samples of floral parts were prepared for SEM observation by harvesting tissue from flowers up to 48 h after the beginning of anthesis, fixing in FAA (ethanol 50%, acetic acid, formalin at a proportion of 18:1:1 v/v), and dehydration through a series of ethanol steps and critical-point drying using liquid CO<sub>2</sub>. Dried samples were mounted and sputter-coated with gold and observed with a JEOL JSM-5300 scanning electron microscope, at an accelerating voltage of 10 kV. All images were processed digitally.

**Macrophotography**:—Color illustrations of whole flowers and pollinaria were made using a Nikon® D5100, D5300 or D7100 digital camera, a DFC295 Leica® digital microscope color camera with Leica FireCam version 3.4.1 software, and an Epson® V370 Photo Scanner. Adobe Photoshop® was used for editing images and stacking whenever necessary.

**Geographical distribution patterns**:—For discussion and characterization purposes, geographical labels were manually added to a "per clade" summarized tree. This was done by collapsing the node subtending each clade in the consensus tree obtained from the combined nrITS+*matK* dataset in the BEAST analysis, using FigTree v.1.3.1. Geographical (Table 8) data were taken from known distributions reported in the literature, especially by Luer (1988; 1990; 1991; 2005; 2006). Only the two countries where the species of each clade were most represented are shown. A comparison of clade composition in four distant and well-botanized regions —Antilles, Brazil, Ecuador, and Mexico— is given for comparative purposes.

# Results

**Nomenclature**:—Taxon names follow Pridgeon (2005) unless indicated otherwise. Clades have been coded from A to J to simplify description of some species groups (Fig. 56).

**The diverse analyses:**—Six different analyses are presented here. Bayesian and likelihood methods are used to analyze the nrITS, *matK* and combined nrITS+*matK* matrices. The resulting consensus tree of the Bayesian and Likelihood analysis of the combined nrITS and *matK* matrices have been used to establish the clades (Fig. 56); those clades were not found back in all the tree topologies retrieved. The two support values from those analyses are given for each clade discussed here-forth. The resulting trees from the individual datasets can be found as supplementary files, their results are not presented here in detail. A summary of all the support values is given (Table 9). Differences between the separate analyses of the plastid *matK* and nuclear ITS matrices were found. Nevertheless, this is mostly due to the low resolution of the *matK* analyses and do not represent "hard" incongruences. The combined matrix mostly resulted in higher clade support and more consistent results and is thus preferred for the discussion. Concatenation of sequences was not always possible as fewer *matK* sequences were available.

| Country        | Clade A | Clade B | Clade C | Clade D | Clade E | Clades<br>A to E | Clade F<br>(Platy.) | Clade G<br>(Scaph.) | Clade H<br>(Teag.) | Clades<br>F to H | Clade I<br>(Musca.) | Clades<br>A to I | Clade J<br>(Dryad.) | Clades<br>A to J |
|----------------|---------|---------|---------|---------|---------|------------------|---------------------|---------------------|--------------------|------------------|---------------------|------------------|---------------------|------------------|
|                | -       |         | _       |         |         | (эреск.)         |                     |                     |                    |                  |                     |                  |                     | (10141)          |
| Belize         | 2       | 0       | 2       | 0       | 1       | 5                | 6                   | 0                   | 0                  | 6                | 1                   | 12               | 1                   | 13               |
| Bolivia        | 0       | 0       | 2       | 0       | 1       | 3                | 6                   | 2                   | 0                  | 8                | 6                   | 17               | 5                   | 22               |
| Brazil         | 0       | 0       | 2       | 0       | 0       | 2                | 4                   | 0                   | 0                  | 4                | 2                   | 8                | 17                  | 25               |
| Colombia       | 2       | 0       | 4       | 3       | 8       | 17               | 35                  | 20                  | 3                  | 58               | 12                  | 87               | 15                  | 102              |
| Costa Rica     | 16      | 2       | 6       | 2       | 6       | 32               | 16                  | 4                   | 0                  | 20               | 7                   | 59               | 5                   | 64               |
| Cuba           | 2       | 0       | 5       | 0       | 1       | 8                | 2                   | 0                   | 0                  | 2                | 5                   | 15               | 0                   | 15               |
| Dominican Rep. | 0       | 0       | 7       | 0       | 0       | 7                | 0                   | 0                   | 0                  | 0                | 2                   | 9                | 0                   | 9                |
| Ecuador        | 1       | 0       | 10      | 2       | 4       | 17               | 56                  | 35                  | 10                 | 101              | 29                  | 147              | 18                  | 165              |
| Guatemala      | 3       | 1       | 3       | 0       | 2       | 9                | 14                  | 1                   | 0                  | 15               | 5                   | 29               | 3                   | 32               |
| Guyana         | 3       | 0       | 3       | 0       | 1       | 7                | 2                   | 1                   | 0                  | 3                | 2                   | 12               | 0                   | 12               |
| Haiti          | 2       | 0       | 6       | 0       | 1       | 9                | 0                   | 0                   | 0                  | 0                | 2                   | 11               | 0                   | 11               |
| Honduras       | 3       | 1       | 2       | 0       | 2       | 8                | 5                   | 1                   | 0                  | 6                | 2                   | 16               | 2                   | 18               |
| Jamaica        | 3       | 0       | 1       | 0       | 1       | 5                | 0                   | 0                   | 0                  | 0                | 2                   | 7                | 0                   | 7                |
| Mexico         | 4       | 1       | 4       | 0       | 1       | 10               | 8                   | 1                   | 0                  | 9                | 2                   | 21               | 3                   | 24               |
| Nicaragua      | 4       | 1       | 2       | 0       | 1       | 8                | 4                   | 1                   | 0                  | 5                | 2                   | 15               | 2                   | 17               |
| Panama         | 11      | 2       | 6       | 2       | 7       | 28               | 18                  | 4                   | 0                  | 22               | 0                   | 50               | 6                   | 56               |
| Peru           | 0       | 0       | 1       | 0       | 0       | 1                | 7                   | 2                   | 1                  | 10               | 5                   | 16               | 9                   | 25               |
| Puerto Rico    | 0       | 0       | 0       | 0       | 0       | 0                | 0                   | 0                   | 0                  | 0                | 1                   | 1                | 0                   | 1                |
| Venezuela      | 2       | 0       | 1       | 0       | 1       | 4                | 9                   | 5                   | 0                  | 14               | 6                   | 24               | 1                   | 25               |

TABLE 8. Absolute numbers of species belonging to each clade reported per country. The figures are based largely on Luer (1988; 1990; 1991; 2005; 2006).

The *Specklinia* clade (Fig. 2 & 3; P.P.=61; Bp=56) is sister to a clade that includes accessions of the genera *Platystele*, *Scaphosepalum* and *Teagueia*. It can be subdivided into several subclades:

Clade A (Fig. 1 & 2; *Specklinia* subgen. *Specklinia*; P.P.=1; Bp=84) includes all species of *Specklinia* with reddish orange to greenish orange stained flowers. It includes the accessions of *Specklinia alajuelensis*, *S. barbae*, *S. blancoi*, *S. chontalensis*, *S. corniculata*, *S. displosa*, *S. dunstervillei*, *S. endotrachys* (type species of *Empusella*), *S. fulgens*, *S. gersonii*, *S. guanacastensis*, *S. lanceola* (type species of *Specklinia*), *S. lentiginosa* (type species of *Pseudoctomeria*) *S. montezumae* (type species of *Gerardoa*), *S. pfavii*, *S. psichion*, *S. remotiflora*, *S. spectabilis*, *S. tribuloides* (type species of *Tribulago*) and *S. vittariifolia*.

Clade B (Fig. 2 & 3; *Specklinia* subgen. *Sylphia*; P.P.=1; Bp=99) is sister to Clade A and contains the accessions of *Specklinia absurda*, *S. cucumeris* (type species of *Cucumeria*), *S. fuegi* (type species of *Sylphia*), and *S. turrialbae*.

Clade C (Fig. 2 & 3; *Specklinia* subgen. *Hymenodanthae*; P.P.=1; Bp=100) is sister to a clade including Clade A and Clade B (P.P.=0.97; Bp=39). It includes all species of *Specklinia* related to *S. grobyi*. The flowers of this group are characteristically whitish to yellowish, never stained orange. This includes *S. alta, S. calyptrostele, S. costaricensis, S. digitalis, S. dodii, S. gracillima, S. grobyi, S. grisebachiana, S. lichenicola, S. lugduno-batavae, S. microphylla, S. morganii, S. picta, S. pisinna, S. schaferi, S. subpicta, S. succulenta, S. trichyphis, S. truncicola and S. wrightii.* 

Clade D (Fig. 2 & 3; *Specklinia* subgen. *Acostaea*; P.P.=1; Bp=81) contains *Specklinia cactantha*, *S. luis-diegoi*, *S. colombiana* (type species of *Acostaea*), *S. recula* and *S. trilobata*.

Clade E (Fig. 2 & 3; Specklinia subgen. Sarcinula; P.P.=1; Bp=100) includes the accessions of Specklinia acoana, S. acrisepala, S. berolinensis, S. brighamii, S. condylata, S. scolopax, S. simmleriana and S. vierlingii.

Clade F (Fig. 2 & 3; *Platystele*; P.P.=0.72; Bp=54) includes the accessions of *Platystele aurea* (type species of genus *Rubellia*), which are sister to the type clade (P.P.=0.91; Bp=72), which includes the accession of *Platystele beatricis*, *P. catiensis*, *P. caudatisepala*, *P. compacta* (type species of *Platystele*), *P. consobrina*, *P. gyroglossa*, *P. hirtzii*, *P. microtatantha*, *P. minimiflora*, *P. misasina*, *P. misera*, *P. ovatilabia*, *P. oxyglossa*, *P. propinqua*, *P. schmidtchenii*, *P. stenostachya*, *P. tica* and *P. ximenae*.

Clade G (Fig. 2 & 3; *Scaphosepalum*; P.P.=0.87; Bp=52) includes the accessions of *Scaphosepalum* anchoriferum, S. clavellatum, S. gibberosum, S. grande, S. microdactylum, S. ovulare, S. swertiifolium, S. ursinum and S. verrucosum (type species of genus *Scaphosepalum*).

TABLE 9. Support values for selected clades obtained in the six different phylogenetic reconstructions made from the nrITS, *matK* and combined (nrITS+*matK*) matrices. Each matrix was analyzed by using Bayesian (BEAST) and Likelihood (RAxML) methods. Values are presented in the for of posterior probabilities (P.P.) in case of the BEAST analyses and bootstrap values (Bp) in the case of the RAxML analyses. Not Applicable (NA) is indicated when a clade consists of a single sequence. Unsupported (UN) is indicated when a clade is not found back.

|                     | nrITS BEAST | nrITS RAxML | matK BEAST | matK RAxML | Combined<br>BEAST | Combined<br>RAxML |
|---------------------|-------------|-------------|------------|------------|-------------------|-------------------|
| Clade A             | 1           | 75          | UN         | UN         | 1                 | 84                |
| Clade B             | 0.99        | 78          | 0.98       | 58         | 1                 | 98                |
| Clade C             | 1           | 100         | 1          | 94         | 1                 | 100               |
| Clade D             | 1           | 86          | NA         | NA         | 1                 | 81                |
| Clade E             | 1           | 100         | 0.99       | 50         | 1                 | 100               |
| Specklinia<br>(A-E) | 0.98        | 81          | UN         | UN         | 0.65              | 56                |
| Clade F             | 0.88        | 52          | 0.92       | 56         | 0.88              | 54                |
| Clade G             | 0.88        | 62          | 0.61       | UN         | 0.87              | 52                |
| Clade H             | NA          | NA          | NA         | NA         | NA                | NA                |
| Clade I             | 0.48        | UN          | 0.98       | 63         | 0.98              | 89                |
| Clade J             | 1           | 100         | 0.99       | 69         | 1                 | 98                |
| Phloeophila         | 1           | 91          | UN         | UN         | 1                 | 88                |



FIGURE 56. Phylogenetic relationship amongst the species of *Specklinia* and relatives inferred from the combined nrITS+*matK* dataset, summarized by clades. A. Using BEAST v1.6.0., where node values are posterior probabilities. B. using RAxML v8.1.11., where node values are bootstraps.

Clade H (Fig. 2 & 3; *Teagueia*) includes only the accession of *Teagueia tentaculata*. It is found sister to Clade *Scaphosepalum* (P.P.=0.74; Bp=54).

Clade I (Fig. 2 & 3; *Muscarella*; P.P.=0.98; Bp=89). It is sister to a highly supported clade (P.P.=1; Bp=99), which includes *Platystele*, *Scaphosepalum*, *Specklinia* and *Teagueia*. *Muscarella* includes the accessions of *Pabstiella* parvifolia, which are sister to the highly supported type clade (P.P.=1; Bp=99), that including *Specklinia alata*, *S*. aristata (type species of *Muscarella*), *S. cabellensis*, *S. claviculata*, *S. fimbriata*, *S. hastata*, *S. helenae*, *S. herpestes*, *S. llamachoi*, *S. longilabris*, *S. macroblepharis*, *S. marginata*, *S. megalops*, *S. mucronata*, *S. obliquipetala*, *S. quinqueseta*, *S. segregatifolia*, and *S. strumosa*.

Clade J (Fig. 2 & 3; *Dryadella*; P.P.=1; Bp=98) is sister to a highly supported clade (P.P.=0.94; Bp=97) including *Muscarella*, *Platystele*, *Scaphosepalum*, *Specklinia* and *Teagueia*. *Dryadella* includes the accessions of *Dryadella albicans*, *D. aviceps*, *D. edwallii*, *D. guatemalensis*, *D. hirtzii*, *D. kautskyi*, *D. simula*, *D. susanae* and *Phloeophila yupanki* (type species of *Incaea*).



FIGURE 57. Phylogenetic relationship amongst the species of *Specklinia* based on a combined nrITS + *matK* dataset, using BEAST v1.6.0. Node values are posterior probabilities. A. Tree with branches transformed to be of equal length. B. Branch lengths relate to the relative number of changes.



FIGURE 57. Continued



FIGURE 58. Phylogenetic relationship amongst the species of *Specklinia*. The tree was produced with an analysis of a combined nrITS + *matK* dataset using RAxML v8.1.11. Node values are bootstraps.

TABLE 10. Morphological recognition of the diverse clades within the Specklinia group.

| Taxon                                                   | Inflorescence                                                   | Flower Color                                             | Pollinaria           |
|---------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------|----------------------|
| Dryadella (Clade J)                                     | Successive, a single flower open<br>at the same time.           | Greenish yellow with purple<br>spots, streaks of stains. | Pollinia + Caudicles |
| Muscarella (Clade I)                                    | Successive, a single flower open at the same time.              | Greenish yellow with purple<br>spots, streaks of stains. | Pollinia + Caudicles |
| Teagueia (Clade H)                                      | Simultaneous, several flowers open at once.                     | Monochrome, color varying.                               | Pollinia + Viscidium |
| Scaphosepalum (Clade G)                                 | Successive, a single flower open<br>at the same time.           | Greenish yellow with purple<br>spots, streaks of stains. | Pollinia (naked)     |
| Platystele (Clade F)                                    | Varying from successively sin-<br>gle-flowered to simultaneous. | Monochrome, color varying.                               | Pollinia + Viscidium |
| Specklinia subgen. Specklinia<br>(Clade A)              | Successive, a single flower open at the same time.              | Monochrome reddish orange or<br>yellowish orange.        | Pollinia (naked)     |
| Specklinia subgen. Sylphia<br>(Clade B)                 | Successive, a single flower open<br>at the same time.           | Mostly whitish with some purple streaks.                 | Pollinia (naked)     |
| Specklinia subgen. Hymenanthae<br>(Clade C)             | Simultaneous, several flowers open at once.                     | Mostly monochrome purple,<br>yellow, green or whitish.   | Pollinia (naked)     |
| <i>Specklinia</i> subgen. <i>Acostaea</i><br>(Clade D)  | Successive, a single flower open<br>at the same time.           | Color varying.                                           | Pollinia (naked)     |
| <i>Specklinia</i> subgen. <i>Sarcinula</i><br>(Clade E) | Successive, a single flower open<br>at the same time.           | Greenish yellow with purple<br>spots, steaks of stains.  | Pollinia (naked)     |



**Morphology**:—Morphological characterization of clades (Fig. 59; Table 10) was achieved by evaluating the available plant material or, when no entire voucher was available, by relying on the cited literature, mostly Luer (2006). Most species of *Specklinia* (Clades A though E) do share a short stem (much shorter than the leaves), obtuse petals and a ligulate-oblong lip; however, a single synapomorphy is shared by all species —the pollinia are nude. The lack of a caudicle and viscidium in *Specklinia* and *Scaphosepalum* allows for each pollinium to be free, albeit adjacent (Fig. 60). In species of *Dryadella* and *Muscarella*, pollinia are linked by a flat, granular, bilobed caudicle (whale-tail type pollinarium). In *Platystele* and *Teagueia*, pollinia lack caudicles but are linked by a drop-like viscidium (bubble-like pollinarium). The latter is associated with the apical disposition of the anther and stigma in the column (Fig. 61).

Other characters that proved most consistently distinct among the clades were inflorescence type (Fig. 62), flower coloration patterns and lip and column features. Characters such as resupination (=orientation of the flowers in such a way that the labellum is in abaxial position), so-called fasciculate inflorescences associated with a reduction in the length of the rachis, long-apiculate sepals, and prominently winged columns seem to have evolved several times independently. A sensitive lip evolved several times independently in Pleurothallidinae, but in the *Specklinia* clade it evolved only once (subgen. *Acostaea*).

Inflorescence (Fig. 62). Successively developing inflorescences, with one or few flowers open at once, are found in clades A, B, D, E, F, G and I. Simultaneously developing inflorescences, typically with several flowers open at the same time, are found in clades C, F and H. An extremely reduced rachis on which the pedicels are clustered (so-called fascicled inflorescences) is found in clades A, E, F and I.

Resupination (Fig. 62). In general species of this group have resupinate flowers, with a few exceptions per clade. Notably, for clade G non-resupination is typical.

Flower color (Fig. 63 & 64). Species of most clades have white to green flowers diversely spotted, striped or suffused with purple. Exceptions are found in clades A, C, F and H, of which the flowers are diversely colored, but mostly monochrome. Reddish orange to yellowish orange flowers are characteristic of clade A.

Lateral sepals (Fig. 63 & 64). Lateral sepals are generally convergent, forming an obtuse to acute synsepal; exceptions are found in clades B, F, H and I where the lateral sepals are free and divergent, and frequently long-apiculate. In clade G, the lateral sepals form a basally concave synsepal and are apically narrowed and thickened, usually with thickened calli on the distal portion.

Petals (Fig. 63 & 64). Simple, obtuse to acute petals are found throughout all clades except for clade I, where the petals are characteristically fimbriate and acute to caudate.

Lip. The lip of species in clades A and C is simple, ligulate-oblong. The lip of species of clade E is similar but provided with a pair of basal lobules. The lip of species in clade B is unguiculate. The lip of species of clade D has a series of complex lobes and calli, in several species it is extremely sensitive to touch. In clades F and H the lip is ovate-cordate, and in the latter it embraces the column.

Column (Fig. 61). The column of the species belonging to clades A, B, C, D, E, G, I and J is elongate and slender, with an incumbent anther and a ventral stigma. The column of species of clade F and H is short and stout, and the anther and stigma are apical. The column of species of clade C and D have a pair of prominent, rounded wings near the apex and a pair of orbicular glands at the base. In clade I the column is characteristically inornate.

Pollinia (Fig. 60 & 61). The "whale-tail" type pollinia, connected by a dry, granulose, bilobate caudicle, are only found in clades I and J. In clades F and H the pollinia are minuscule, lack caudicles and are provided with a drop-like viscidium at the base. In clade A, B, C, D, E and G the pollinia lack caudicles and a viscidium.

**Geographical distribution**:—The genus *Specklinia* is widespread, extending from Mexico to Bolivia and Brazil, through Central America and the Antilles. Nevertheless, geographical patterns of clade diversity can be seen in the resulting phylogenetic trees (Table 8; Fig. 65). Clades A and B are predominantly Costa Rican and Panamanian in distribution. Clade C has two disjunct centers of diversity, one in Hispaniola (Haiti and Dominican Republic) and another in Ecuador. Clade D is best represented in Colombia, while Clade E has the highest species diversity in Costa Rica and Panama. In general terms, *Specklinia* (Clades A to E) is most diverse in Costa Rica and Panama, followed by Ecuador and Colombia with about half the species. The sister genera, in clades F, G, H and I are mostly Andean in distribution, all with the highest diversity in Ecuador and Colombia. Finally, Clade J has two disjunct centers of diversity, one in Ecuador/Colombia (Andes) and another in Brazil.



FIGURE 59. The combined nrITS + *matK* based phylogeny with the clades collapsed showing. 1: Pollinarium type. 2: Non-resupination. 3: Multi-flowered inflorescence 4: Apical anther. 5: Fascicled inflorescence. 6: Orange flowers.



FIGURE 60. Pollinarium variation within the Specklinia group. Whale-tail pollinia linked by a caudicle (A-B), Bubble-like pollinia, brought together by a drop-like liquid viscidium (C), naked pollinia, adjacent but free (D-H). A: Dryadella (AK6180). B: Muscarella strumosa (AK6450). C: Platystele aff. oxyglossa (MF789). D: Scaphosepalum microdactylum (DB10529). E: Scaphosepalum clavellatum (DB9218). F: Specklinia colombiana (DB8826). G: Specklinia condylata (MF173). H: Specklinia aff. endotrachys (AK5899). Photographs by A.P. Karremans.



FIGURE 61. Column variation within the Specklinia group. Incumbent anther, ventral stigma covered by a large bubble-shaped rostellum, pollinia free (A-E), apical anther and stigma, rostellum reduced (F). A: Specklinia barbae (Clade A; DB6483). B: Specklinia absurda (Clade B; DB9772). C: Specklinia grobyi (Clade C; AK4217). D: Specklinia recula (Clade D; AK5300). E: Specklinia berolinensis (Clade E; AK5806). F: Platystele aff. reflexa (AKsn). Figure nomenclature is: A - anther cap, P - pollinia, R - rostellum, S - stigma. Photographs by A.P. Karremans.



FIGURE 62. Inflorescence variation within the Specklinia group. Inflorescence simultaneous and elongate (A), simultaneous and fasciculate (B), successive and elongate (C-E), successive and fasciculate (F-H). A: Specklinia grobyi. B: Platystele umbellata. C: Specklinia pfavii. D: Muscarella fimbriata. E. Scaphosepalum microdactylum. F. Muscarella strumosa. G: Specklinia acrisepala. H: Specklinia fulgens. Photographs by A.P. Karremans, except for B, which was made by W. Driessen.



FIGURE 63. Representative species of each of the five clades of Specklinia. A-C: Specklinia subgen. Specklinia (Clade A). D-E: S. subgen. Sylphia (Clade B). F-G: S. subgen. Hymenodanthae (Clade C). H-I: S. subgen. Acostaea (Clade D). J-L: S. subgen. Sarcinula (Clade E). Photographs by A.P. Karremans.





B - Platystele caudatisepala (DB10230)

D - Scaphosepalum clavellatum (FP2665)

C - Platystele propinqua (AK4086)

D

E - Scaphosepalum microdactylum (FP8576) F - Teagueia rex (Driessen s.n.) G - Muscarella herpestes (AK4082) H - Muscarella quinqueseta (AK3940)

I - Muscarella segregatifolia (DB10439) J - Muscarella strumosa (DB10011) K - Dryadella guatemalensis (AK3642) L - Dryadella yupanki (AK5706)

FIGURE 64. Representative species of each of the genera sister to Specklinia. A-C: Platystele (Clade F). D-E: Scaphosepalum (Clade G). F: Teagueia (Clade H). G-J: Muscarella (Clade I). K-L: Dryadella (Clade J). All photographs were made by A.P. Karremans, except for A, G & L, which were made by W. Driessen. Overall distinct presence and absence patterns of species of each clade are also evident (Fig. 66). Clades A and B are absent from Brazil and Ecuador, whereas only B is absent from the Antilles. Clade C is present in all the evaluated areas, the Antilles, Brazil, Ecuador and Mexico. Clade D is absent from all except Ecuador. Clade E is absent from Brazil, rare in the Antilles and Mexico, but present in Ecuador. Clade F is rare in the Antilles and Brazil. Clade G is absent in the Antilles and rare in Brazil and Mexico. Clade H is absent from all areas except Ecuador. Clade I is present in all, but rare in Brazil. Clade J is absent from the Antilles, and present in all others. No distribution is given for Costa Rica and Panama because all clades are present except for clade H, which is endemic to the Andes.



FIGURE 65. The combined ITS+*matK* based phylogeny with the clades collapsed showing the number one and two countries with most species of each clade, respectively. BR = Brazil, CO = Colombia, CR = Costa Rica, EC = Ecuador, HI = Hispaniola (Dominican Republic + Haiti), MX = Mexico and PA = Panama.



FIGURE 66. The combined nrITS+matK based phylogeny with the clades collapsed showing the presence/absence of species of each clade in reference regions, the Antilles, Brazil, Ecuador and Mexico. A clade is considered rare if 5% or less of its species are present.

# Discussion

Our analysis with a broad sampling of *Specklinia* species proves that the genus by any current definition (Pridgeon & Chase 2001; Pridgeon 2005; Luer 2006; Barros & Trettel Rodrigues 2009) is not monophyletic, and is in need of recircumscription. Similar issues have been encountered in most analyses of individual genera in the Pleurothallidinae (Karremans 2010; Chiron *et al.* 2012; Karremans *et al.* 2013a). The morphological dissimilarities among species of *Specklinia* led to a proliferation of generic concepts, and to the proposal of segregating several small species groups from the genus. Clade A, which includes the type species of *Specklinia*, together with clades B, C, and D forms a highly supported monophyletic group in all our analyses (P.P.=1; Bp=81). The of clades A, B, C, D and E (here *Specklinia* clade) received much higher support in the nrITS only analyses (P.P.=0.98; Bp=81) vs the combined analyses (P.P.=0.65; Bp=56), this is due to the fact that the clade is not supported by the *matK* data. Conservatively, we have chosen also to include clade E within our concept of *Specklinia*, because even though that received low support, species belonging to that clade are hardly distinguishable morphologically from other *Specklinia*. Recognizing them as a separate genus is not only not supported by our data, but would also make *Specklinia* almost undiagnosable.

In this sense, *Specklinia* includes 95 species, amongst which are the type species of the genera *Acostaea*, *Areldia*, *Cucumeria*, *Empusella*, *Gerardoa*, *Pseudoctomeria*, *Sarcinula*, *Sylphia*, *Tribulago* and *Tridelta*. Recognizing these genera reduces *Specklinia* to just a few species and requires the recognition of quite a large number of additional generic names. As *Specklinia* in a broad sense has a manageable number of species and can be easily recognized morphologically we feel it unnecessary to recognize additional segregate generic concepts. Nevertheless, we believe the five clades here included within *Specklinia* (A, B, C, D and E) are distinct enough to warrant subgeneric recognition. They all form highly supported clades (P.P. $\geq$ 95; Bp $\geq$ 80) and are placed on well separated branches. They are composed by morphologically similar species with unique distribution patterns, and have been mostly recognized at one time or another as distinct units (4 out of 5 have been given at least one generic name).

Clades F, G and H include the type species of the genera *Platystele, Scaphosepalum* and *Teagueia* respectively (Fig. 1 & 2). The three are always found together in a well supported clade (P.P.=0.99; Bp=64) that is sister to *Specklinia*. The type species of genus *Rubellia*, *R. rubella* (=*Platystele aurea*), was found sister with moderate support (P.P.=0.88; Bp=54) to a well supported clade (P.P.=0.87; Bp=72) which includes all other species of *Platystele aurea* is quite similar to other species of the genus, the plant habit being indistinguishable from other *Platystele aurea* is quite similar to other species of the genus, the plant habit being indistinguishable from other *Platystele* species, and it also share the typical apical anther and stigma. We therefore believe it best not to recognize this monotypic genus as separate. *Rubellia*, which was previously unplaced (Pridgeon 2005), is therefore placed under synonymy of *Platystele*. Genus *Teagueia*, which had been previously associated with *Platystele* (Luer 1990), was found sister to *Scaphosepalum* instead (P.P.=0.91; Bp=54). Flower morphology of *Teagueia* species is similar to some *Platystele*. Nevertheless the plant habit, which is not under the pollinator's selective pressure, is indeed more similar to *Scaphosepalum*. A broader sampling of *Teagueia* species might clear up their phylogenetic relationships in the future. The *Scaphosepalum* clade had moderate support (P.P.=0.87; Bp=52), it includes of the accessions of species of the genus, including its type.

From *Specklinia* we do exclude the species found in clade I. The clade, which includes the type species of genus *Muscarella*, was found well supported in our analyses (P.P.=0.98; Bp=89). *Muscarella* was always found sister to a clade that includes *Platystele*, *Scaphosepalum*, *Specklinia* and *Teagueia*, and thus its inclusion within *Specklinia*, as proposed by Pridgeon & Chase (2001) and Pridgeon (2005) would make the genus paraphyletic.

Clade J includes the type species of genus *Dryadella*, in a highly support (P.P.=1; Bp=98) which includes all other species ascribed to the genus. The type species of *Incaea*, a monospecific genus that was previously unplaced, is here found embedded within *Dryadella*. The two are therefore synonymized, with *Dryadella* having priority.

**Incongruences between nrITS and** *matK*:—The nuclear ITS and plastid *matK* are the most commonly used genetic regions for phylogenetic reconstruction in Pleurothallidinae (Pridgeon *et al.* 2001; Chiron *et al.* 2012; Karremans *et al.* 2013a; Karremans 2014, Chapter 7). Nevertheless, those studies clearly show that the faster evolving nrITS has much higher resolution than the more conserved *matK*, especially at generic level or below. In the particular case of our study, the phylogenetic reconstruction based solely on *matK* suffered from the low sequence variation

and therefore had little resolution. *Specklinia* was not retrieved as monophyletic, and within Specklinia, clade A was also not retrieved. Nevertheless, all the other clades evaluated here (B through J) were diversely supported. One noteworthy difference is that clade E was found sister to clade G (P.P.=0.62; Bp 19) instead of it being sister to the rest of *Specklinia* (clades A, B, C and D) as was found in all nrITS and combined analyses. Even though the relationship between clade E and G is not highly supported, it also not very highly supported as a member of *Specklinia*, and it should be considered in future studies if the inclusion of clade E within *Specklinia* is adequate. Morphologically the species belonging to clade E are very difficult to set apart from other Specklinia, and it would not be advantageous to segregate them for the time being.

The phylogenetic reconstructions based solely on nrITS were very similar in structure to the combined analyses. The most noteworthy difference between the nrITS and combined analyses is that the *Specklinia* clade (sum of clades A, B, C, D and E) has a much higher support when *matK* is excluded (Bp=81 vs. Bp 56). This would be expected as it was mentioned previously that the *matK* data finds affinity of clade E with clade G instead of with the *Specklinia* clades. There are other seldom incongruences between nrITS and *matK*, but they can be considered "soft", as none have high support (most nodes collapse using a threshold 50 for the bootstrap support).

**Differences between Bayesian and ML**:—Between the Bayesian and ML analyses it is more accurate to talk about differences rather than incongruences. Although not directly comparable, support was overall lower in the RAxML (presented as bootstrap values) vs BEAST (presented as posterior probabilities) analyses. The main nodes discussed here, clades A through J, and the *Specklinia* clade (A through E), were all retrieved with the same species composition in both analyses. One slight difference is that sister to clades A and B in the RAxML analysis is clade D (Bp=19), while in the BEAST analysis it is clade C (P.P.=0.49); both with very low support. Some differences are found amongst species groups within each of the main clades. However, these too are not highly supported (P.P. $\leq$ 0.8; Bp $\leq$ 60), and have no impact on the discussion here.

**Recognition of groups at generic and subgeneric level**:—A common misconception amongst modern authors is that DNA data will in itself resolve taxonomic issues. DNA data albeit less subjective, is also subject to the correct application of names, data reading mistakes, and adequate interpretation of the observed variation (Karremans *et al.* 2015b, Chapter 2). In our view genera should be monophyletic, but also diagnosable and informative, and at the same time should both reflect past proposals in order to keep a stable classification.

Genetically it is difficult to establish a cut off value to recognize genera. Nevertheless, genetic distance, measured by the length of branches in the phylogenetic reconstructions can be a good point of comparison. Branch lengths in other genera presented here, for instance *Dryadella*, *Muscarella*, *Platystele* and *Phloeophila*, are similar or even longer than those observed within *Specklinia*, and only those of *Scaphosepalum* are significantly shorter (Fig. 57). It is also possible to compare sequence diversity as a measure of relative number of variable sites in the sequences belonging to each clade (Table 11). The combined nrITS + *matK* matrix includes 1576 characters. After excluding the outgroups (*Echinosepala* Pridgeon & M.W.Chase, *Anathallis* Barb.Rodr., *Lankesteriana* Karremans and *Trichosalpinx* Luer) the combined matrix shows variation in 637 characters corresponding to about 40% of the total characters analyzed. *Specklinia* by itself, which includes 57 of the 95 species attributable to the genus, shows variation in 28% of the total characters analyzed. *Platystele*, of which we analyzed less than a fifth of the known species, shows variation in 20% of the characters. *Muscarella*, with a larger sampling of *Muscarella* and *Platystele* species, both genera will have similar sequence variations as those observed in *Specklinia* or even more.

Within *Specklinia*, the lowest number of variable sites was found in clade E, with only 3%, while the highest is found in clade A, with 15%. This is undoubtably in part explained by the total and relative number of species analyzed, for clade E we analyzed only 8 species (44% of the total species that belong to the clade) while for clade A we analyzed 20 species (77% of the total). Nevertheless, not all the variation is explained by species number. In clade A for example, the ITS sequences of sister species can differ from 2% to up to 6% (Karremans *et al.* 2015b, Chapter 2; Karremans *et al.* 2015c, Chapter 3).

| TABLE 11. Species belonging to each representative clade; comparison of the here analyzed species, the total species            | s known   |
|---------------------------------------------------------------------------------------------------------------------------------|-----------|
| to belong the that particular clade, and the percentage of analyzed species as to the total. Variable sites in the co           | ombined   |
| nrITS+ <i>matK</i> dataset; variable sites amongst all sequences of specimens within each clade, the variable sites in relation | on to the |
| total number of sites (base pairs in the combined matrix = 1576). Not Applicable (NA) indicates clades with a single se         | quence.   |

|                     | Analyzed<br>Species | Total Species | Analyzed vs<br>Total (%) | Variable Sites | Variable vs<br>Total (%) |
|---------------------|---------------------|---------------|--------------------------|----------------|--------------------------|
| Clade A             | 20                  | 26            | 77                       | 236            | 15                       |
| Clade B             | 4                   | 5             | 80                       | 109            | 7                        |
| Clade C             | 20                  | 32            | 63                       | 212            | 13                       |
| Clade D             | 5                   | 12            | 42                       | 169            | 11                       |
| Clade E             | 8                   | 18            | 44                       | 51             | 3                        |
| Specklinia (A to E) | 57                  | 95            | 60                       | 445            | 28                       |
| Clade F             | 19                  | 100           | 19                       | 311            | 20                       |
| Clade G             | 9                   | 52            | 17                       | 96             | 6                        |
| Clade H             | 1                   | 14            | 7                        | NA             | NA                       |
| Clade I             | 19                  | 53            | 36                       | 278            | 18                       |
| Clade J             | 9                   | 55            | 16                       | 135            | 9                        |
| Phloeophila         | 4                   | 9             | 44                       | 134            | 9                        |

**Geographical patterns:**—As defined here *Specklinia* includes 95 species found growing from Mexico to Bolivia and Brazil, through Central America and the Antilles (Fig. 65). The highest species diversity can be found in Costa Rica and Panama, and it is also there where most clade diversity is found. Species of *Specklinia* are commonly found in Ecuador, but species from subgen. *Specklinia* (clade A) and subgen. *Sylphia* (clade B) are absent or rare. Several *Specklinia* species are known from the Antilles, with the notable exception of species from subgen. *Acostaea* (clade D) and subgen. *Sylphia* (clade B). The combination of geographical and genetic data allows for the interpretation that *Specklinia* has a north-Andean (Ecuador and Colombia) ancestry and that it diversified in southern Central America (Costa Rica and Panama) and the Antilles later on. Based on the similarity of species groups, the radiation into the Antilles most likely occurred through the North of Middle America (Mexico and Guatemala) rather than through South America (Venezuela).

*Platystele, Teagueia* and *Scaphosepalum*, the sister taxa of *Specklinia* (Fig. 65), are all of north-Andean ancestry. The Andes is also the center of diversity of these three genera (*Teagueia* being endemic); only a few species venturing into Central America. Those genera are, not surprisingly, almost absent from the Antilles. The whole clade is not well represented in Brazil either, strengthening the north-Andes to south-Central America speciation pattern of this group.

Species of other genera that have been placed in *Specklinia*:—Many Brazilian endemics have been treated as *Specklinia* (Luer 2004; Barros & Trettel Rodrigues 2009), but most of those actually belong to the genera *Anathallis* and *Pabstiella* (Luer 2007; 2009; Chiron *et al.* 2012). *Specklinia* species although uncommon do occur in Brazil, but it is only members of subgen. *Specklinia* that are found there. Those species can be recognized by multi-flowered inflorescences with whitish to yellowish flowers, a linear lip (vs. trilobate in *Pabstiella*), obtuse petals (vs. acute in *Anathallis*), a prominently winged column (vs. wingless in *Pabstiella*) with a toothed apex (vs. prominently fringed in *Anathallis*) and naked pollinaria (vs. pollinaria with granular caudicles in both *Anathallis* and *Pabstiella*).

Species of *Lankesteriana* Karremans have also been treated as *Specklinia* (Luer 2004). Nevertheless, Karremans (2014, Chapter 7) showed that these species are relatives of *Trichosalpinx* and *Zootrophion* instead, and are therefore only distant relatives of *Specklinia*. *Lankesteriana* species have linear to lanceolate petals (vs. elliptic in *Specklinia*) and the androclinium is conspicuously fimbriate (vs. androclinium erose or inornate), and pollinia with caudicles (vs. without caudicles in *Specklinia*).

A few dozen species previously placed in *Pleurothallis* subgen. *Acuminatia* Luer and *Pleurothallis* subgen. *Effusia* Luer were transferred to *Specklinia* by Luer (2004). Nevertheless these species are morphologically quite different from *Specklinia* species, and DNA data shows that they belong in *Stelis* (Karremans *et al.* 2013a).

#### Taxonomic consequences

*Specklinia* Lindl., Gen. Sp. Orch. PI., 8. 1830:—Lectotype: *Epidendrum lanceola* Sw., Nov. Gen. Sp. Prodr., 123. 1788 (selected by Garay & Sweet, J. Arnold Arb. 53: 528. 1972).

#### Synonyms:

Acostaea Schltr., Repert. Spec. Nov. Regni Veg., Beih. 19: 283. 1923.
Areldia Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 95: 255. 2004. *Cucumeria* Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 95: 257. 2004. *Empusella* Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 95: 258. 2004. *Gerardoa* Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 105: 86. 2006. *Pseudoctomeria* Kraenzl., Bull. Misc. Inform. Kew 1925(3): 116. 1925. *Sarcinula* Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 105: 201. 2006. *Sylphia* Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 105: 227. 2006. *Tribulago* Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 105: 226. 2004.

Species of *Specklinia* can be recognized by having ramicauls shorter than the leaves, an abbreviated stem with an annulus, sepals and petals mostly membranaceous, lateral sepals connate for at least half their length and convergent, petals mostly obtuse and entire (never acuminate or lanceolate), wider above the middle, and a linear to sub-rectangular lip hinged to the column foot. The column has a toothed androclinium, a pair of prominent rounded wings near the apex, ventral anther and stigma. The most unique feature shared between all members of *Specklinia* are the pollinaria that are flattened towards the base and that lack both caudicles and a viscidium.

#### Specklinia subgen. Acostaea (Schltr.) Karremans.

Bas. Acostaea Schltr., Repert. Spec. Nov. Regni Veg. Beih. 19: 22, 102, 283. 1923. Type: Acostaea costaricensis Schltr., Repert. Spec. Nov. Regni Veg. Beih. 19: 22, 102, 284. 1923. Lectotype designated by Summerhayes (1967).

Syn. Areldia Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 95: 255. 2004. Bas. Pleurothallis subgen. Dresslera Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 20: 38. 1986. Type: Pleurothallis dressleri Luer, Selbyana 3(1-2): 98-100, f. 152. 1976.

*Specklinia* subgen. *Acostaea* (Clade D) was highly supported and contains the species assigned to *Acostaea*, plus a few species of *Specklinia* and of *Sylphia*. The species are rare and regional, with the notable exceptions of *Specklinia* colombiana and *Specklinia recula*. They all share a tiny plant size, frequently creeping habit, elongate inflorescences and a column with prominent wings at the apex and a pair of glands on the column foot. It includes 12 species endemic to Costa Rica, Panama, Colombia and Ecuador, with a peak of diversity in Panama and Colombia.

#### Specklinia bicornis (Luer) Pridgeon & M.W.Chase

Bas. Acostaea bicornis Luer, Phytologia 54: 379. 1983.

Specklinia campylotyle (P.Ortiz) Pridgeon & M.W.Chase

Bas. Acostaea campylotyle P.Ortiz, Orquideología 13: 240. 1979.

Specklinia colombiana (Garay) Pridgeon & M.W.Chase, Lindleyana 16: 257. 2001.

Bas. Acostaea colombiana Garay, Orquideología 9: 112. 1974.

Syn. Specklinia mirifica Pridgeon & M.W.Chase, Lindleyana 16: 258. 2001.

Bas. Acostaea costaricensis Schltr., Repert. Spec. Nov. Regni Veg. Beih. 19: 284. 1923.

The best-known species of *Acostaea*, *A. costaricensis*, was renamed *Specklinia mirifica* by Pridgeon and Chase (2001) when *Acostaea* was placed under the synonymy of *Specklinia*. Nevertheless if *Specklinia colombiana* is considered a synonym then it would have priority. If they are considered different then the next name to be applicable to this concept would be *Acostaea glandulata* P.Ortiz and not *S. mirifica*.

Specklinia coronula (Luer) Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 95: 259. 2004.

Bas. Pleurothallis coronula Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 76: 171. 1999.

Specklinia cactantha (Luer) Pridgeon & M.W.Chase, Lindleyana 16: 257. 2001.

Bas. Pleurothallis cactantha Luer, Selbyana 3: 72. 1976.

Specklinia cycesis (Luer & R.Escobar) Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 95: 260. 2004.

Bas. Pleurothallis cycensis Luer & R.Escobar, Orquideología 20: 49. 1996.

Specklinia dressleri (Luer) Bogarín & Karremans, Lankesteriana 14(3): 262. 2014.

Bas. Pleurothallis dressleri Luer, Selbyana 3: 98. 1976.

No DNA data were available for *S. dressleri*, the type species of the monotypic genus *Areldia*, for this study. Nevertheless, plant and flower morphology suggest affinity with subgen. *Acostaea*. A creeping plant with a relatively long inflorescence with a single flower open at once is reminiscent of *S. luis-diegoi*, whereas the broad column wings and callus of the lip suggest affinity with *S. colombiana*.

Specklinia luis-diegoi (Luer) Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 95: 262. 2004.

Bas. Pleurothallis luis-diegoi Luer, Revista Soc. Boliv. Bot. 3: 55. 2001.

- *Specklinia recula* (Luer) Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 95: 263. 2004. Bas. *Pleurothallis recula* Luer, Lindleyana 11: 92. 1996.
- Specklinia tenax (Luer & R.Escobar) Pridgeon & M.W.Chase, Lindleyana 16: 259. 2001. Bas. *Acostaea tenax* Luer& R.Escobar, Orquideologia 15: 123. 1982.

Specklinia trilobata (Luer) Pridgeon & M.W.Chase, Lindleyana 16: 259. 2001.

Bas. Acostaea trilobata Luer, Selbyana 1(3): 216. 1975.

Specklinia unicornis (Luer) Pridgeon & M.W.Chase, Lindleyana 16: 259. 2001.

Bas. Acostaea unicornis Luer, Phytologia 54: 379. 1983.

Specklinia subgen. Hymenodanthae (Barb.Rodr.) Karremans.

Bas. *Pleurothallis* sect. *Hymenodanthae* Barb.Rodr., Gen. Sp. Orchid. 2: 9. 1882. Lectotype: *Pleurothallis grobyi* Bateman ex Lindl., Edwards's Bot. Reg. 21: t. 1797. 1835. Lectotype designated by Luer (1986).

Syn. Lepanthes sect. Longicaulae Barb.Rodr., Gen. Sp. Orchid. 2: 40. 1882. Type: Pleurothallis trilineata Barb. Rodr., Gen. Sp. Orchid. 1: 6--7. 1877. Lectotype designated by Luer (1986).

Syn. *Pleurothallis* subsect. *Longicaulae* (Barb.Rodr.) Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 20: 86. 1986. Bas. *Lepanthes* sect. *Longicaulae* Barb.Rodr., Gen. Sp. Orchid. 2: 40. 1882. Type: *Pleurothallis trilineata* Barb.Rodr., Gen. Sp. Orchid. 1: 6--7. 1877. Lectotype designated by Luer (1986).

Specklinia subgen. Hymenanthae (Clade C) is a highly supported clade that includes the species of the Specklinia grobyi-picta complex. Species belonging to this clade can be recognized as species of Specklinia s.l. by their convergent lateral sepals, the obtuse petals, ligulate lip and pollinaria without caudicles or viscidium, and within Specklinia by the inflorescence that is frequently elongate, exceeding the leaves, racemose, multi-flowered, with several flowers open at once, the flowers mostly monochrome purple, yellow, green or whitish, never orange, a column with a pair of prominent, rounded wings near the apex and a pair or orbicular glands at the base, and a linear-ligulate lip. This subgenus of 32 species has the widest distribution in the genus. It is the only clade of Specklinia found in all areas from Mexico, through Central America and the Antilles, south to Bolivia and Brazil. The most variable and widespread of all species of the genus, *S. grobyi*, belongs to this group. All species of Specklinia from Brazil, as well as most species of Specklinia from the Antilles, Ecuador and Mexico belong to this subgenus.

Specklinia acutiflora (Ruiz & Pav.) Pupulin, Anales Jard. Bot. Madrid 69(2): 167. 2012.

Bas. Humboldtia acutiflora Ruiz & Pav., Syst. Veg. Fl. Peruv. Chil. 1: 236. 1798.

Specklinia alta (Luer) Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 95: 258. 2004.

Bas. Pleurothallis alta Luer, Lindleyana 11(3): 143-144, f. 4. 1996.

Specklinia acutidentata (Cogn.) Luer = Specklinia grobyi

Specklinia barbosana (De Wild.) Campacci, Bol. CAOB 69-70: 27. 2008.

Bas. Pleurothallis barbosana De Wild, Gard. Chron. 39. 244. 1906.

Specklinia biglandulosa (Schltr.) Pridgeon & M.W.Chase = Specklinia grobyi

Specklinia bipapularis (Dod) Luer = Specklinia schaferi

Specklinia blepharoglossa (Luer) Luer = Specklinia grisebachiana Specklinia calvptrostele (Schltr.) Pridgeon & M.W.Chase, Lindlevana 16: 257. 2001. Bas. Pleurothallis calyptrostele Schltr., Repert. Spec. Nov. Regni Veg. Beih. 19: 23. 1923. Specklinia costaricensis (Rolfe) Pridgeon & M.W.Chase, Lindlevana 16: 257. 2001. Bas. Pleurothallis costaricensis Rolfe, Bull. Misc. Inform. Kew 1917(2): 80. 1917. Specklinia curtisii (Dod) Pridgeon & M.W.Chase, Lindlevana 16: 257. 2001. Bas. Pleurothallis curtisii Dod, Moscosoa 3: 111. 1984. Specklinia digitalis (Luer) Pridgeon & M.W.Chase, Lindlevana 16: 257. 2001. Bas. Pleurothallis digitalis Luer, Orquídea (Mexico City), n.s. 6(1): 3-4. 1976. Specklinia dodii (Garay) Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 95: 260. 2004. Bas. Pleurothallis dodii Garay, J. Arnold Arbor. 50: 463. 1969. Specklinia feuilletii Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 103: 311. 2005. Specklinia florulenta (Linden & Rchb.f.) Pridgeon & M.W.Chase = Specklinia picta Specklinia flosculifera (Luer) Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 95: 260. 2004. Bas. Pleurothallis flosculifera Luer, Lindlevana 14: 113. 1999. Specklinia formondii (Dod) Pridgeon & M.W.Chase, Lindlevana 16: 257. 2001. Bas. Pleurothallis formondii Dod, Moscosoa 3: 116. 1984. Specklinia gracillima (Lindl.) Pridgeon & M.W.Chase, Lindleyana 16: 257. 2001. Bas. Pleurothallis gracillima Lindl., Fol. Orchid. 9: 35. 1859. Specklinia grisebachiana (Cogn.) Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 95: 260. 2004. Bas. Pleurothallis grisebachiana Cogn. Symb. Antill. 6: 409. 1909. Specklinia grobyi (Bateman ex Lindl.) F.Barros, Hoehnea 10: 110. 1983 (1984). Bas. Pleurothallis grobyi Bateman ex Lindl., Edwards's Bot. Reg. 21: t. 1797. 1835. Specklinia jesupii (Luer) Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 95: 261. 2004. Bas. Pleurothallis jesupii Luer, Lindleyana 14: 116. 1999. Specklinia lichenicola (Griseb.) Pridgeon & M.W.Chase, Lindleyana 16: 258. 2001. Bas. Pleurothallis lichenicola Griseb., Cat. Pl. Cub.: 259. 1866. Specklinia lugduno-batavae Karremans, Bogarín & Gravend., Blumea 59: 180. 2015. Specklinia marginalis (Rchb.f.) F.Barros, Hoehnea 10: 110. 1983 [1984]. Bas. Pleurothallis marginalis Rchb.f., Bonplandia (Hannover) 3(15-16): 224-225. 1855. Specklinia microphylla (A.Rich. & Galeotti) Pridgeon & M.W.Chase, Lindleyana 16: 258. 2001. Bas. Pleurothallis microphylla A.Rich. & Galeotti, Ann. Sci. Nat., Bot., sér. 3, 3: 17. 1845. Specklinia mitchellii (Dod) Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 95: 262. 2004. Bas. Pleurothallis mitchellii Dod, Moscosoa 3: 109. 1984. Specklinia morganii (Luer) Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 95: 262. 2004. Bas. Pleurothallis morganii Luer, Lindleyana 11: 171. 1996. Specklinia mornicola (Mansf.) Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 95: 262. 2004. Bas. Pleurothallis mornicola Mansf., Ark. Bot. 22A(8): 13. 1929. Specklinia pectinifera Luer & Hirtz, Monogr. Syst. Bot. Missouri Bot. Gard. 105: 61. 2006. Specklinia picta (Lindl.) Pridgeon & M.W.Chase, Lindleyana 16: 259. 2001. Bas. Pleurothallis picta Lindl., Edwards's Bot. Reg. 21: t. 1797. 1835. Specklinia pisinna (Luer) Solano & Soto Arenas, Icon. Orchid. 5--6: xi. 2002 (2003). Bas. Pleurothallis pisinna Luer, Lindleyana 6(2): 105, f. 1991. Specklinia producta (Luer) Pridgeon & M.W.Chase, Lindleyana 16: 259. 2001. Bas. Pleurothallis producta Luer, Selvyana 3: 176. 1976. Specklinia schaferi (Ames) Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 95: 263. 2004. Bas. Pleurothallis schaferi Ames, Orchidaceae 7: 119. 1922. Specklinia stillsonii (Dod) Pridgeon & M.W.Chase, Lindleyana 16: 259. 2001.

Bas. Pleurothallis stillsonii Dod, Moscosoa 3: 107. 1984.

Specklinia subpicta (Schltr.) F.Barros, Orchid Memories: 19. 2004.

Bas. Pleurothallis subpicta Schltr., Anexos Mem. Inst. Butantan, Secc. Bot. 1(4): 42. 1922.

Specklinia trichyphis (Rchb.f.) Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 95: 264. 2004. Bas. Pleurothallis trichyphis Rchb.f., Flora 48: 276. 1865.

*Specklinia viridiflora* (Seehawer) F.J. de Jesus, R.Miranda & Chiron, Richardiana 14: 284-285. Bas. *Pleurothallis viridiflora* Seehawer, Die Orchidee 50: 637. 1999.

*Specklinia wrightii* (Rchb.f.) Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 95: 265. 2004. Bas. *Pleurothallis wrightii* Rchb.f., Flora 48: 276. 1865.

#### Specklinia subgen. Sarcinula Karremans.

Type: Pleurothallis condylata Luer, Selbyana 3:80. 1976.

Syn. Sarcinula Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 105: 201. 2006. Bas. Pleurothallis acicularis Ames & C.Schweinf., Sched. Orch. 10: 21-23. 1930.

*Specklinia* subgen. *Sarcinula* (Clade E) was found to be a highly supported clade, basically including the non-orange-flowered species of Luer's *Sarcinula*. The exact phylogenetic position of *Specklinia acicularis*, the type species of *Sarcinula*, remains unclear. With its narrow leaves it is an outlier amongst the other members of *Sarcinula*. However, floral coloration pattern also do not suggest affinity with subgen. *Specklinia*. Because of this uncertainty we prefer to describe subgenus *Sarcinula* with a different type species, one that is also "typical" for the group but ending up consistently in the same clade in all analyses.

Leaves are linear to narrowly obovate, the inflorescence is longer than the leaf, successive, with a single flower open at once, the rachis is reduced making the pedicels appear fasciculate, the flowers are yellowish to greenish diversely suffused, dotted or striped with purple or brown, and the lip has a pair of basal lobules. Eighteen species are distributed across Central America, Colombia and Ecuador, with the highest diversity in Costa Rica and Panama. A single species extends into Mexico and the Antilles, and one species is reported from Bolivia and another from the Guyanas. No species are known from Peru and Brazil.

Specklinia acanthodes (Luer) Pridgeon & M.W.Chase, Lindleyana 16: 256. 2001.

Bas. Pleurothallis acanthodes Luer, Selbyana 1(3): 222, f. 46. 1975.

Specklinia acicularis (Ames & C.Schweinf.) Pridgeon & M.W.Chase, Lindleyana 16: 256. 2001.

Bas. Pleurothallis acicularis Ames & C.Schweinf., Sched. Orch. 10: 21-23. 1930.

Specklinia acoana Bogarín, Lankesteriana 13(3). 2013.

Specklinia acrisepala (Ames & C.Schweinf.) Pridgeon & M.W.Chase, Lindleyana 16: 256. 2001.

Bas. Pleurothallis acrisepala Ames & C.Schweinf., Sched. Orch. 8: 22-23. 1925.

Specklinia alexii (A.H.Heller) Pridgeon & M.W.Chase, Lindleyana 16: 256. 2001.

Bas. Pleurothallis alexii A.H.Heller, Phytologia 14(1): 8-9, t. 4. 1966.

Specklinia areldii (Luer) Pridgeon & M.W.Chase, Lindleyana 16: 256. 2001.

Bas. Pleurothallis areldii Luer, Selbyana 2(4): 383-384. 1978.

- Specklinia berolinensis Bogarín, Lankesteriana 13(3). 2013.
- Specklinia brighamella (Luer) Pridgeon & M.W.Chase, Lindleyana 16: 256. 2001.

Bas. Pleurothallis brighamella Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 76: 171, f. 22a. 1999.

Specklinia brighamii (S.Watson) Pridgeon & M.W.Chase, Lindleyana 16: 256. 2001.

Bas. Pleurothallis brighamii S.Watson, Proc. Amer. Acad. Arts 23(2): 285-286. 1888.

Specklinia calderae (Luer) Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 95: 259. 2004.

Bas. Pleurothallis calderae Luer, Orquideología 22(1): 53-56. 2001.

Specklinia condylata (Luer) Pridgeon & M.W.Chase, Lindleyana 16: 257. 2001.

Bas. Pleurothallis condylata Luer, Selbyana 3:80. 1976.

Specklinia icterina Bogarín, Lankesteriana 13(3). 2013.

Specklinia purpurella (Luer) Pridgeon & M.W.Chase, Lindleyana 16: 259. 2001.

Bas. Pleurothallis purpurella Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 76: 176, f. 31a. 1999.

Specklinia rinkei (Luer) J.M.H.Shaw, Orchid Rev. 122(1308): 77. 2014.

Bas. Sarcinula rinkei Luer, Selbyana 30: 18, f. 35. 2009.

Specklinia scolopax (Luer & R.Escobar) Pridgeon & M.W.Chase, Lindleyana 16: 259. 2001.

Bas. Pleurothallis scolopax Luer, Orquideología 14(2): 172. 1981.

Specklinia simmleriana (Rendle) Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 95: 263. 2004.

Bas. Pleurothallis simmleriana Rendle, J. Bot. 38(451): 274-275. 1900.

Specklinia striata (H.Focke) Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 95: 264. 2004.

Bas. *Pleurothallis striata* H.Focke, Tijdschr. Wis-Natuurk. Wetensch. Eerste Kl. Kon. Ned. Inst. Wetensh. 4: 63-64. 1851.

Specklinia vierlingii Baumbach, Orchideen (Hamburg) 63(5): 405-406. 2012.

#### Specklinia subgen. Specklinia.

Type: Epidendrum lanceola Sw., Prodr. 123. 1788.

Syn. *Empusella* Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 95: 258. 2004. Bas. *Pleurothallis* subgen. *Empusella* Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 20: 41. 1986. Type: *Pleurothallis endotrachys* Rchb.f., Linnea 41: 95. 1876.

Syn. Gerardoa Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 105: 86. 2006. Bas. Pleurothallis montezumae Luer, Lindleyana 11(2): 83, f. 20. 1996.

Syn. *Pleurothallis* sect. *Apodae-caespitosae* Lindl., Fol. Orchid. ~*Pleurothallis*~ 35. 1859. Type: *Epidendrum corniculatum* Sw., Prodr. 123. 1788. Lectotype designated by Luer (1986).

Syn. *Pleurothallis* subsect. *Apodae-caespitosae* (Lindl.) Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 20: 84. 1986. Type: *Epidendrum corniculatum* Sw., Prodr. 123. 1788. Lectotype designated by Luer (1986).

Syn. *Pleurothallis* subgen. *Empusella* Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 20: 41. 1986. Type: *Pleurothallis endotrachys* Rchb.f., Linnea 41: 95. 1876.

Syn. *Pleurothallis* subgen. *Pseudoctomeria* (Kraenzl.) Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 20: 67. 1986. Bas. *Pseudoctomeria* Kraenzl., Bull. Misc. Inform. Kew 1925(3): 116. 1925. Type. *Pleurothallis lentiginosa* F.Lehm. & Kraenzl., Bot. Jahrb. Syst. 26(3--4): 446. 1899.

Syn. Pleurothallis sect. Tribuloides Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 20: 91. 1986. Bas. Epidendrum tribuloides Sw. Prodr. 123. 1788.

Syn. *Pseudoctomeria* Kraenzl., Bull. Misc. Inform. Kew 1925(3): 116. 1925. Bas. *Pleurothallis lentiginosa* F.Lehm. & Kraenzl., Bot. Jahrb. Syst. 26(3--4): 446. 1899.

Syn. *Tribulago* Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 95: 265. 2004. Bas. *Pleurothallis* sect. *Tribuloides* Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 20: 91. 1986. Type. *Epidendrum tribuloides* Sw. Prodr. 123. 1788.

*Specklinia* subgen. *Specklinia* (Clade A) includes morphologically highly diverse species, which is reflected in the number of generic names proposed for such a relatively low number of species. Nonetheless they can be recognized as species of the *Specklinia s.l.* clade by their convergent lateral sepals, obtuse petals, ligulate lip and pollinaria lacking caudicles and a viscidium, and within *Specklinia* particularly for their reddish-orange stained flowers. Orange-stained flowers are rare in the other clades of *Specklinia s.l.* The inflorescence is successive, rarely with more than one flower per inflorescence open at once. Such an inflorescence is also found in species assigned to subgen. *Sarcinula* (Clade E), but the pedicels of the flowers of species in subgen. *Specklinia* remain green (vs. papery) and can further be distinguished by the lack of a pair of basal lobes at the base of the lip.

This clade consists of 27 species distributed in Central America, Colombia, Venezuela, the Guyanas and the Antilles. The highest diversity is found in Costa Rica and Panama, which together account for 23 reported species. Two species are known from Mexico, and two from the Antilles. No species of this group seem to be present in Ecuador, Peru, Bolivia and Brazil.

Specklinia alajuelensis Karremans & Pupulin, Phytotaxa 218(2): 108. 2015.

Specklinia barbae (Schltr.) Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 95: 259. 2004.

Bas. Pleurothallis barbae Schltr., Repert. Spec. Nov. Regni Veg. Beih. 19: 104. 1923.

- Specklinia barboselloides (Schltr.) Pridgeon & M.W.Chase = Specklinia corniculata
- Specklinia blancoi (Pupulin) Soto Arenas & Solano, Icon. Orchid. 5--6: t. 669. 2002 (2003).
- Bas. Pleurothallis blancoi Pupulin, Caesiana 15: 1-4, f. 1-2. 2000.
- Specklinia chontalensis (A.H.Heller & A.D.Hawkes) Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 95: 259. 2004. Bas. Pleurothallis chontalensis A.H.Heller & A.D.Hawkes, Phytologia 14(1): 10-11. 1966.
- Specklinia corniculata (Sw.) Steud., Nomencl. Bot., ed. 2, 2: 489. 1841.
- Bas. Epidendrum corniculatum Sw., Prodr. 123. 1788.
- Specklinia displosa (Luer) Pridgeon & M.W.Chase, Lindleyana 16: 257. 2001.
- Bas. Pleurothallis displosa Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 76: 172, f. 24a. 1999.
- Specklinia emarginata Lindl., Gen. Sp. Orchid. Pl. 8-9. 1830. = Specklinia corniculata
- Specklinia dunstervillei Karremans, Pupulin & Gravend., PLoS ONE 10(7): e131971(5). 2015.
- Specklinia endotrachys (Rchb.f.) Pridgeon & M.W.Chase, Lindleyana 16: 257. 2001.
- Bas. Pleurothallis endotrachys Rchb.f., Linnea 41: 95. 1876.
- Specklinia exilis (C.Schweinf.) Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 95: 260. 2004. Bas. Pleurothallis exilis C.Schweinf., Fieldiana, Bot. 28(1): 1951.
- Specklinia fulgens (Rchb.f.) Pridgeon & M.W.Chase, Lindleyana 16: 257. 2001.
- Bas. Pleurothallis fulgens Rchb.f., Gard. Chron., n.s. 4(95): 516. 1875.
- Specklinia gersonii Bogarín & Karremans, Phytotaxa 218(2): 112. 2015.
- Specklinia glandulosa (Ames) Pridgeon & M.W.Chase, Lindleyana 16: 257. 2001.
- Bas. Pleurothallis glandulosa Ames, Sched. Orch. 6: 60-61. 1923.
- Specklinia guanacastensis (Ames & C.Schweinf.) Pridgeon & M.W.Chase, Lindleyana 16: 258. 2001.
- Bas. Pleurothallis guanacastensis Ames & C.Schweinf., Sched. Orch. 10: 27-29. 1930.
- Specklinia juddii (Archila) Pupulin & Karremans, Orchidee (Hamburg) 64(6): 480. 2013.
- Bas. Empusella judii Archila, Revista Guatemal. 15(1): 99. 2012.
- Specklinia lanceola (Sw.) Lindl., Gen. Sp. Orchid. Pl.: 8. 1830.
  - Bas. Epidendrum lanceola Sw., Prodr. 123. 1788.
- Specklinia lentiginosa (F.Lehm. & Kraenzl.) Pridgeon & M.W.Chase, Lindleyana 16: 258. 2001. Bas. Pleurothallis lentiginosa F.Lehm. & Kraenzl., Bot. Jahrb. Syst. 26(3--4): 446. 1899.
- Specklinia leptantha (Schltr.) Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 95: 261. 2004.
- Bas. Pleurothallis leptantha Schltr., Repert. Spec. Nov. Regni Veg. Beih. 7: 107. 1920.
- Specklinia minuta (Ames & C.Schweinf.) Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 95: 262. 2004.
- Bas. Pleurothallis minuta Ames & C.Schweinf., Sched. Orch. 10: 30-32. 1930.
- Specklinia montezumae (Luer) Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 95: 262. 2004.
  - Bas. Pleurothallis montezumae Luer, Lindleyana 11(2): 83, f. 20. 1996.
  - Syn. Nov.: Kraenzlinella rinkei Luer, Harvard Pap. Bot. 16(2): 326. 2011.

We were originally going to transfer *K. rinkei* to *Specklinia* based on the description and illustration. The short stem, long, petiolate leaves, short, successive inflorescences, lamellate ovaries, orange flowers, a pair of lobes at the base of the column foot, the lip with an apiculum beneath the tip, the disc with a pair of low, serrated calli and a conspicuous, acute anther, all suggested affinity with both *S. montezumae* and *S. fulgens*. The main difference being that the flowers of *K. rinkei* are non-resupinate. In the meantime we were able to obtain photographs of the specimen from which the type material was prepared from Bryon Rinke, and those show resupinate flowers of something which we believe is conspecific with *S. montezumae*.

- Specklinia pertenuis (C.Schweinf.) Karremans & Gravend., Phytotaxa 218(2): 116. 2015.
- Bas. Pleurothallis pertenuis C.Schweinf. Bot. Mus. Leafl. 8: 83. 1935.
- Specklinia pfavii (Rchb.f.) Pupulin & Karremans, Phytotaxa 63: 8. 2012.
- Bas. Pleurothallis pfavii Rchb.f., Flora 69(34): 555. 1886.
- Specklinia psichion (Luer) Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 95: 263. 2004.
- Bas. Pleurothallis psichion Luer, Lindleyana 11(2): 89, f. 24. 1996.
- Specklinia remotiflora Pupulin & Karremans, Phytotaxa 63: 11. 2012.

*Specklinia spectabilis* (Ames & C.Schweinf.) Pupulin & Karremans, Phytotaxa 63: 15. 2012). Bas. *Pleurothallis spectabilis* Ames & C.Schweinf., Sched. Orch. 8: 34-35. 1925.

*Specklinia tribuloides* (Sw.) Pridgeon & M.W.Chase, Lindleyana 16: 259. 2001. Bas. *Epidendrum tribuloides* Sw., Prodr. 123. 1788.

Specklinia vittariifolia (Schltr.) Pridgeon & M.W.Chase, Lindleyana 16: 259. 2001. Bas. Pleurothallis vittariifolia Schltr., Repert. Spec. Nov. Regni Veg. Beih. 19: 26. 1923.

### Specklinia subgen. Sylphia (Luer) Karremans.

Bas. Sylphia Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 105: 227. 2006. Type: *Pleurothallis turrialbae* Luer, Lindleyana 6(2): 105, 106--108, f. 1991.

Syn. *Cucumeria* Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 95: 257. 2004. Bas. *Pleurothallis* sect. *Cucumeres* Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 20: 81. 1986. Type. *Pleurothallis cucumeris* Luer, Selbyana 5(2): 162-163. 1979.

*Specklinia* subgen. *Sylphia* (Clade B). The inflorescence is successive, with one flower per inflorescence open at once. Flowers are resupinate, transparent whitish to greenish, diversely suffused with purple. The lateral sepals are divergent, free, and long-apiculate. Petals are obtuse. The lip is unguiculate. Pollinia lack caudicles and a viscidium.

This little group contains five species found in Costa Rica and Panama. A single species extends northward into Guatemala and Mexico. The type species of the polyphyletic *Sylphia*, *S. turrialbae*, is included in this clade. Together with the morphologically similar *S. absurda*, *S. echinata* and *S. fuegi* they form a natural group. The type of the monotypic *Cucumeria*, *S. cucumeris*, is included in this subgenus based on DNA data. However it is different morphologically from all other members. Future studies might reveal it does not belong here. Nevertheless, all of these species are morphologically "typical" within *Specklinia*, even *S. cucumeria*, which resembles *S. lentiginosa*.

Specklinia absurda Bogarín, Karremans & Rincón, Phytotaxa 115(2): 34. 2013.

Specklinia cucumeris (Luer) Bogarín & Karremans, Lankesteriana 14(3): 261. 2014.

Bas. Pleurothallis cucumeris Luer, Selbyana 5(2): 162-163. 1979.

*Specklinia echinata* (L.O.Williams) Soto Arenas & Solano, Icon. Orchid. (Mexico) 5-6: t. 670. 2002 (2003). Bas. *Pleurothallis fuegii* var. *echinata* L.O.Williams, Ann. Missouri Bot. Gard. 33(1): 120. 1946.

Specklinia fuegi (Rchb.f.) Solano & Soto Arenas, Icon. Orchid. 5-6: x. 2002 (2003). Bas. Pleurothallis fuegi Rchb.f., Beitr. Orchid.-K.C.Amer. 97-98, t. 10. f. 11-15. 1866.

Specklinia turrialbae (Luer) Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 95: 264. 2004.

Bas. Pleurothallis turrialbae Luer, Lindleyana 6(2): 105, 106-108, f. 1991.

# **Unplaced names:**

Specklinia mazei (Urb.) Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 95: 262. 2004.

Bas. Pleurothallis mazei Urb., Repert. Spec. Nov. Regni Veg. 15: 1004. 1917.

This is another morphologically aberrant species. We have been unable to study any living material or obtain DNA sequences of this species. There are several morphological features that would indicate an affinity to *Specklinia* rather than to *Anathallis*, including the short stem, the non-apiculate, short petals, the ligulate, hairless lip, and the pollinia lacing caudicles and a viscidium. Without further information we cannot place it more specifically.

# Specklinia aurantiaca (Dod) Karremans, comb. nov.

Bas. Cryptophoranthus aurantiacus Dod, Moscosoa 1(1): 50. 1976.

We have been unable to study any living material or obtain a DNA sequence of this aberrant species. It was designated as type species of the monospecific genus *Tridelta* Luer. Its phylogenetic placement is currently unknown. In the drawing and description we find some similarities with other species of *Specklinia* such as the broad column wings, almost linear lip and orange-colored flowers, and without further information we cannot place it more specifically.

#### **Excluded names:**

#### Pabstiella integripetala (E.Pessoa & F.Barros) Karremans.

Bas. Specklinia integripetala E.Pessoa & F.Barros, Nordic J. Bot. 32(2): 129, 131, f.1A-E. 2014.

The authors of this species compared it to *Muscarella semperflorens* (Lindl.) Luer [as *Specklinia semperflorens* (Lindl.) Pridgeon & M.W.Chase], and distinguished it by the "acute sepals, petals with entire margin and column with a clinandrium with an entire margin". Those characters, although rare in *Muscarella* are standard within *Pabstiella*, where this species clearly belongs.

Pabstiella brasilica Luer & Toscano, Harvard Pap. Bot. 17(2): 310, 312, f.5. 2011.

Syn.: Specklinia ianthina E.Pessoa & F.Barros, Nordic J. Bot. 32(2): 131, 132, f.1F-J. 2014.

The illustrations of *S. ianthina* and *P. brasilica* are extremely similar and the types come from neighboring localities. No explanation as to how these species can be distinguished from each other was provided by the authors, and therefore the names are here considered synonyms. The exact phylogenetic position of *Pabstiella brasilica* and its close relative *Anathallis spiculifera* (Lind.) Luer is still not resolved (to our knowledge). We believe both are related to *Madisonia kerrii* (Braga) Luer, a monospecific genus that is yet unplaced. Despite all these uncertainties, they certainly do not belong in *Specklinia*.

Specklinia alata (A.Rich. & Galeotti) Solano & Soto Arenas = Muscarella marginata Bas. Pleurothallis alata A.Rich. & Galeotti, Ann. Sci. Nat., Bot., sér. 3, 3: 17. 1845.

Specklinia bulbophylloides (Schltr.) Luer = Muscarella zephyrina Bas. Pleurothallis bulbophylloides Schltr., Repert. Spec. Nov. Regni Veg. 27: 50. 1929.

Specklinia discalis (Luer & J.Portilla) Luer = *Muscarella trullifera* Bas. *Pleurothallis discalis* Luer & J.Portilla, Selbyana 23: 35. 2002.

Dryadella Luer, Selbyana 2(2-3): 207. 1978.: Type: Masdevallia elata Luer, Phytologia 39(4): 199. 1978.

Synonym:

Incaea Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 105: 87. 2006. Type: *Pleurothallis yupanki* Luer & R.Vásquez, Phytologia 55(3): 203. 1984.

*Dryadella* as defined by Luer (2005) and Pridgeon (2005) is accepted. As such it includes 55 species, distributed from Mexico to Bolivia and Brazil, through Central America. They are absent from the Antilles. Vegetatively they are tufted little plants with narrow fleshy leaves. The flowers are frequently yellowish spotted with brown or purple. The sepals are caudate, and connate basally. The lip is bicallous, and hinged to the column foot by a slender claw. The column is broadly winged, with a ventral anther and stigma. The pollinia are "whale-tail" type, with a pair of flat caudicles. The genus is here modified only by the inclusion of the following species:

Dryadella yupanki (Luer & Vasquez) Karremans.

Bas. Pleurothallis yupanki Luer & R.Vásquez, Phytologia 55: 203. 1984.

The monospecific genus *Incaea* was previously unplaced in the Pleurothallidinae. In the analyses presented here its type species is placed amongst members of *Dryadella*. Morphologically *D. yupanki* is in fact similar to other species of this genus.

*Muscarella* Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 105: 94. 2006.:— Type: *Pleurothallis aristata* Hook. Ann. Nat. Hist. 2(1): 329--330, pl. 15. 1839.

#### Synonyms:

*Verapazia* Archila, Rev. Guatemalensis 2(3): 32--33, f. 1. 1999. This name is invalid for lack of indication of the type species under articles 9 and 10.

Pleurothallis R.Br. subgen. Specklinia (Lindl.) Garay sect. Muscariae Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 20: 89. 1986.

Species of *Specklinia* sect. *Muscariae* (Luer 1986), which later formed the genus *Muscarella* (Luer, 2006), have been mostly accepted as part of *Specklinia* (Pridgeon & Chase 2001; Pridgeon 2005). However, the genus forms a well-defined clade, which cannot be included within *Specklinia*. Species of *Muscarella* can be recognized by having a stem shorter than the leaves, inflorescences that are frequently lax-flexuous but can vary from elongate to fasciculate, always develop successively, and have one or rarely a few flowers open at the same time. Flowers are resupinate. Sepals are usually caudate, the petals fimbriate and acute to caudate. The column is elongate, without prominent wings or ornamentation. The pollinia are of the "whale-tail" type, with a dry, granulose, bilobate caudicle. *Muscarella* as defined by Luer (2006) is accepted. It then included 48 species, five species are added here to bring the total number up to 53.

Muscarella cabellensis (Rchb.f.) Karremans, comb. nov.

Bas. Pleurothallis cabellensis Rchb.f., Linnaea 22: 832 (1850).

Muscarella hastata (Ames) Karremans, comb. nov.

Bas. Pleurothallis hastata Ames, Orchidaceae 2: 268. 1908.

Muscarella mucronata (Lindl. ex Cogn.) Karremans, comb. nov.

Bas. Pleurothallis mucronata Lindl. ex Cogn. in I.Urban, Symb. Antill. 6: 424. 1909.

Muscarella obliquipetala (Acuña & C.Schweinf.) Karremans, comb. nov.

Bas. Pleurothallis obliquipetala Acuña & C.Schweinf., Bot. Mus. Leafl. 6: 3. 1938.

Muscarella segregatifolia (Ames & C.Schweinf.) Karremans, comb. nov.

Bas. Pleurothallis segregatifolia Ames & C.Schweinf., Sched. Orchid. 8: 33. 1925.

The accessions of *Pabstiella parvifolia* Lindl. that were included here showed affinities with *Muscarella* rather than *Pabstiella*. However, the type specimen of *P. parvifolia* is Brazilian and morphologically different from Costa Rican material. We do not venture into making a combination in *Muscarella* because it might well be that the type of *P. parvifolia* is a true *Pabstiella*, whereas what we are calling by that name might be another species.

*Platystele* Schltr., Repert. Spec. Nov. Regni Veg. 8: 565. 1910.: — Type: *Platystele bulbinella* Schltr., Repert. Spec. Nov. Regni Veg. 8(191-195): 565. 1910.

# Synonym:

*Rubellia* Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 95: 258. 2004. Bas. *Pleurothallis* subgen. *Rubellia* Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 20: 73. 1986. Type: *Pleurothallis rubella* Luer, Selbyana 3(3-4): 378-379, f. 289. 1977.

*Platystele* as defined by Luer (1990) and Pridgeon (2005) is accepted. As such *Platystele* includes 100 species that are found distributed from Mexico to Brazil and Bolivia, through Central America and the Antilles. Most species diversity is found in the northern Andes, especially Ecuador. Platystele species can be recognized by the small plants, the tiny flowers which are frequently flat with free and spreading segments, a simple lip, a short column with an apical anther and stigma. The genus is here modified only by the inclusion of the following species:

# Platystele aurea Garay, Orquideología 8(3): 182. 1973.

Syn. Pleurothallis rubella Luer, Selbyana 3(3-4): 378-379, f. 289. 1977.

Syn. Rubellia rubella (Luer) Luer, Monogr. Syst. Bot. Missouri Bot. Gard. 95: 258. 2004.

The monospecific genus *Rubellia* was previously unplaced in Pleurothallidinae. In the analyses presented here, its type species is placed sister to *Platystele* (Fig. 1 & 2). Its morphological similarities with species of *Platystele* had already been noted by Garay (1973) when he described *Platystele aurea*, a name frequently placed in synonymy of *Pleurothallis rubellia*. In our view, *Platystele aurea* and *Pleurothallis rubella* might represent two closely related yet different species. However, if considered synonyms, Garay's name has priority.

The genus *Rubellia* could have been kept separate from *Platystele* using the evidence presented here. However, the plants are similar to other members of the genus and the flowers share the apical anther and stigma and the presence of a glenion. Keeping *Rubellia* separate would not present any advantages.

*Scaphosepalum* Pfitzer, Nat. Pflanzenfam. 2(6): 136, 139. 1889[1888].:— Type: *Masdevallia ochthodes* Rchb.f., Bonplandia 3: 70. 1855.

*Scaphosepalum* as defined by Luer (1988), Pridgeon (2005) and Endara (2011) is accepted. We are able to account for 52 species in the genus, with a distribution from Costa Rica to Bolivia and the Guyana Shield, and the highest diversity in the northern Andes of Colombia and Ecuador. They are distinguished especially by the non-resupinate flowers and the lateral sepals forming a basally concave synsepal and that are apically narrowed and thickened, usually with thickened calli on the distal portion