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Abstract 

The genus Dioscorea comprises over 600 monocot plants commonly termed “yam”. Of these, 

five to ten species are cultivated; their edible tubers providing livelihood for ~100 million 

people. Production occurs almost exclusively in Low Income Food Deficit Countries (LIFDCs) 

and as such yams are vital for food security. A further fifteen to thirty species are grown, or 

harvested from the wild, to provide precursors for the industrial production of steroids, with 

an annual turnover estimated at ~$500-1000 million. In addition, numerous species are widely 

used in traditional medicines and over-harvesting has endangered many species. 

Yams have high-yield potential and high market value potential yet current breeding of yam is 

hindered by a lack of genomic information and genetic resources. New tools are needed to 

modernise breeding strategies and unlock the potential of yam to improve livelihood in LIFDCs.  

Furthermore, whilst the steroidal precursors of yams have been widely studied, limited 

research has been conducted on central metabolism of the crop. Recent literature highlighted 

that experimental flaws, analytical miscalculations and technical imprecision plagues historic 

studies providing impetus for re-investigation of Dioscorea using modern biochemical 

techniques.  

In the present work Gas Chromatography- Mass Spectrometry (GC-MS) based metabolomic 

investigation has been applied to collections of yam to assess the diversity of primary 

metabolism.  The GC-MS workflow was applied to a leaf-based collection comprising diverse 

species across clades of the genus and adapted to analyse tubers of elite lines from the global 

yam breeding program. 

Targeted analyses were undertaken by Liquid Chromatography (LC), coupled with detection by 

Photo Diode Array (PDA) or MS, to study the carotenoid compositions of breeding lines and 

survey the constitution of sterols in species previously reported as sterol-rich. 
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GC-MS based metabolite profiling on leaf extracts allowed the separation of genotypes into 

clades, species and morphological traits with a putative geographical origin. Additionally, the 

foliage material has been shown to be a potential renewable source of numerous high-value 

compounds. For example, shikimic acid was quantified to be up to 8% of dry weight in the 

leaves of species from the Testudinaria clade. Future bioprospecting of foliage can add-value 

from the waste steam of crop production and may aid species conservation as an alternative to 

the over-harvested tubers and/ or rhizomes. 

A visual pathway representation of the tuber metabolome has been delivered as a resource for 

quality trait evaluation of yam germplasm. Over 200 compounds were routinely measured in 

tubers, providing a major advance for chemotyping of the crop and chemotaxonomic 

classifications complemented molecular systematics. Biochemical redundancy within the 

global yam breeding program has been highlighted and accessions with relatively abundant 

fatty acid and pro-vitamin A contents identified.  

Finally, the sterol composition in the leaves and rhizomes of reportedly sterol-rich species was 

surveyed. The resultant profiles were complex with a large degree of qualitative differences 

amongst species. Whilst the majorly abundant sterols largely matched those in literature, 

numerous unknowns, including polyhydroxylated and glycosylated derivatives, were noted. 

Follow-up investigation will require detailed structural elucidation but the work has provided 

leads to revisit Dioscorea for new natural products. 

Overall, the work highlights the potential of exploiting the biochemical diversity of Dioscorea 

species to achieve food and income security and discover new, sustainable sources of 

medicines and high-value compounds. The use of metabolomics offers a dual benefit to the 

global breeding program: it can provide standalone near-future gains and can be 

complimentary to other ongoing large-scale ‘omic’ investigations. 
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1 INTRODUCTION 

1.1. Importance of Dioscorea genus 

Dioscorea is a monocot genus of over 600 herbaceous, liana plants commonly referred to as 

“yam”1. The genus is globally widespread with a predominantly tropical and sub-tropical 

distribution2. Five to ten species are majorly cultivated as a crop for their edible starchy 

tubers3,4, and yams are a staple for an estimated 60-100 million people5,6. Worldwide 

production is around 60MT per annum with over 97% taking place in Low Income Food Deficit 

Countries [LIFDC]7, as defined by the Food and Agricultural Organisation of the United Nation 

[FAO]8 (Table 1.1). Additional wild species are eaten in times of famine9,10 and Dioscorea spp. 

contribute at least 200 calories to over 300 million people daily5,11. Numerous species are 

widely used in traditional medicines12 and as poisons13, whilst an estimated fifteen to thirty 

species are grown, or harvested from the wild, to provide precursors used in industrial steroid 

synthesis14,15. These steroids have an estimated annual turnover of around $500-$1000 

million16,17. As such, Dioscorea are vital for food security, medical treatment and income 

generation, especially in the developing world. 

1.1.1. Taxonomic classification 

The genus has historically 

garnered botanical attention 

owing to diverse morphological 

characteristics and behaviours18 

such as a range of perennating 

organ types (e.g. individual, 

multiple or caudiciform tubers; 

rhizomes and aerial bulbils), 

twining of aerial stems and species that are annual, semi-perennial or perennial. Dioscorea are 

Figure 1.1. Taxonomy of Dioscoreales within the 
monocots. Phylogeny summarised from23. 
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typically dioecious, though monoecious species are known and plants typically have small, 

unisexual flowers; though some reportedly never flower19. Additionally, species may have 

winged or wingless seeds20 and fruits are typically six-seeded capsules but some species 

produce samaroids or berries21. 

 

The diverse characteristics and morphological plasticity under different climactic conditions 

(variables leaf arrangement and stem elongation, aerial bulbil and tuber development etc.)18 

meant that systematic classifications were for a long time unclear22,23; until Wilkin et al. 

conducted a large phylogenetic assembly of the genus and greatly simplified the taxonomy 

into 7-8 major clades24. Recently, Viruel et al. applied a phylogeographical approach with 

increased sampling and the genus has been arranged into 9 major clades2 (Figure 1.1 & Figure 

1.2). Furthermore, divergence times have been imposed to show evolutionary dispersal and 

speciation events; including support for the hypothesised Laurasian origin and world-wide 

divergence in the Oligocene and Miocene era. 

Despite these taxonomic classifications, species verification and discrimination are noted to be 

problematic24,25. Classical morphological characterisation of Dioscorea cannot discriminate 

between closely related species26 and genetic characterisation is hindered by Dioscorea having 

Figure 1.2. Phylogeny of genus Dioscorea. Major clades and subclades of Dioscorea. All clades 
and subclades are monophyletic, with the exception of Birmanica(*), whose members are 
derived from both Malagasy and Enantiophyllum clade. Phylogeny summarised from2. 
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multiple ploidy levels both across and within species5,27 (Table 1.2). Even with recent molecular 

biology techniques discrimination has proven difficult: DNA fingerprinting via various methods 

(e.g. Amplified fragment length polymorphism [AFLP] and chloroplast simple sequence repeats 

[cpSSRs]) do not resolve between closely related species28,29 and a recent genotyping by 

sequencing [GBS] analysis could not discriminate Guinea yam species even when combined 

with ploidy analysis30. 

1.2. Cultivation of Dioscorea 

Yam production takes place in over 50 countries worldwide (Figure 1.3). Over 90% of Dioscorea 

production takes places in Western Africa. Primarily grown as a subsistence crop, global 

production reached a net value of ~ Intl.$12 billion7. Demand outstrips supply and as such, 

yams are a high-value commodity31. 

Historically, yam production was focussed in a region termed the “yam belt”, comprising 

Cameroon, Nigeria, Benin, Togo, Ghana and Côte d’Ivoire9. As such, research and conservation 

efforts have been focused on this region. In recent years however, large-scale production in 

other African regions has been recognised32. Many countries achieve higher yields than those 

of the “yam-belt” and these are globally widespread, including Japan, Portugal and islands of 

the Caribbean and South Pacific. Moreover, Ethiopia is the only country within the top-five for 

both total production and yields attained7. 

1.2.1. Unique Husbandry 

Cultivation of yams is prehistoric and thought to have developed independently, giving rise to 

three centres of domestication: south-east Asia, central/ south America and sub-Saharan 

Africa33. In cultivation, yams are clonally propagated (via seed yams or whole tuber). However, 

African yam farmers selectively cross wild plants or crop–wild hybrids into their collection of 

clones34; a process termed “ennoblement”35. As such, the domestication process of yams is 

deemed ongoing36. 
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Figure 1.3. Global yam production. World map showing yam producing countries highlighted by a red circle. The size of the circle represents the relative 
average production during the period 1993-2013, as recorded by the Food and Agriculture Organization of the United Nations (FAO). Figure copied from 
FAOSTAT7. However, many countries have missing data or do not report on cultivation; notable exceptions are China and India. 
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Furthermore, ennoblement allows cultivated yams to retain a wider genetic basis and not 

suffer the same degree of chemical genetic diversity loss seen in domestication of other 

crops37, nor the depression effects of long-term inbreeding38 (Figure 1.4). McKey et al. 

proposed that ennoblement may in fact be selection for extraordinary phenotypic plasticity i.e. 

farmers selecting genotypes able to survive both wild and cultivated conditions39. On the other 

hand, some species such as D. alata are considered true cultigens i.e. no wild variety exists and 

for others, it is only very recently that wild ancestors have been discovered , as the case for D. 

trifida40. 

 

1.2.2. Agronomy 

Yam production is relatively expensive compared to other root and tuber crops due to high 

planting and labour costs, a long growing season and low yield per hectare31,41: the cost per 

1000 calories from yam is estimated at 4 times that for cassava (Manihot esculenta Crantz)42 

with  over 3 times the labour requirement43. Despite this, yields in Least Developed Countries 

[LDC] are similar to cassava and greater than sweet potato (Ipomoea batatas (L.) Lam.), 

plantain and bananas (Musa spp.)44 and yam has higher production value (by weight) than 

sweet potato and cassava and similar to that of potatoes (within Solanum spp.) for root and 

tuber crops (Table 1.1)43. Despite the fact that productivity is stagnating or declining in some 

areas, the amount of land allocated to the crop is still growing rapidly45. 

Figure 1.4. Cultivation of Dioscorea. Diagram showing how ennoblement practices allow the 
genetic basis of yams to be retained during domestication and cultivation. 
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1.2.3. Consumer preference 

Yams hold cultural and social importance31,46 and have preferred organoleptic properties 

compared with other carbohydrate sources, including cassava, potatoes and sweet potato14. 

The relatively long dormancy of yam tubers ensures a shelf life of the fresh tuber of up to six 

months without refrigeration, which makes them a valuable resource for periods of food 

scarcity11 (Table 1.2). Sensorial preference, coupled with better storage qualities compared to 

crops such as cassava and plantain47, have led to high-demand as a cash crop41. In Africa it has 

been noted that yam is a superior economic good and as income increases, consumers shift 

from cassava to yam45. 

The cultural importance of yams is widespread and yams form a central basis of many rituals 

and ceremonies of West Africa. One of the most wide-spread beliefs is the yam as a symbol of 

fertility, and as such tubers often play a part in marriage ceremonies45. Coursey and Coursey 

state how there appears to be a link between advanced civilisation and use of yam as a staple 

food in West Africa48. Furthermore, the authors claim that yam cultivation and the attached 

socio-religious cultures played an influential role in the development of these regions and 

political landscape throughout history. 

1.2.4. Nutritional importance 

Given their importance in West Africa, yams play a vital role in the nutrition of the region and 

the crop is one of the top three highest calorie contributors in numerous countries45. Despite 

root and tuber crops having low protein contents, in some regions yams are primary source of 

protein and as such are vital in low-developed regions. 
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Table 1.1. Comparison of crops important for the developing nations. 

1All values for Banana and plantain are for 2013, or the period 1994-2013. 
2Low Income Food Deficit Countries (LIFDCs), as defined by the FAO.  
3All growth rates refer to annual growth rates as provided by of FAO. 
 

Compared to alternative staples of the developing nations (cassava, sweet potato, banana), 

both yams and potato have a higher protein and amino-acid content43. Yams also have higher 

amounts of fibre, potassium and B vitamins than other root and tuber crops49. Additionally, 

Dioscorea spp. have been advocated as nutraceutical or functional foods for having high 

immunomodulatory, hypoglycemic and hypocholerestomic activity50. Many phytochemicals of 

yam are widely believed to have wide ranging health benefits and are used in a vast array of 

traditional medicines (see section 0). Furthermore, the starch has previously been used in 

industrial processes51. 

 Yams Banana & plantain1 Cassava Sweet Potato 

Global production 

(MT; 2014) 
68.11 

Banana: 107.40  

Plantain: 37.88 
270.28 104.45 

Production in LIFDCs2 

(MT; 2014) 
66.33 

Banana: 44.14 

Plantain: 27.59 
145.71 21.53 

Global gross production value 

(US$bn; 2013) 
20.86 

Banana: 34.30 

Plantain: 10.45 
46.84 26.80 

Gross production value in LIFDCs 

(US$bn; 2013) 
19.78 

Banana: 10.15 

Plantain: 7.43 
24.30 3.80 

Global yield 

(Tonne/Ha; 2014) 
8.88 

Banana: 21.05 

Plantain: 6.92 
11.16 13.00 

Yield in LIFDCs 

(Tonne/Ha; 2014) 
8.92 

Banana: 18.48 

Plantain: 6.30 
8.68 5.86 

Global production growth rate3 

(%; 1994-2014) 
3.22 

Banana: 3.97 

Plantain: 1.70 
3.01 -1.78 

Production growth rate in LIFDCs 

(%; 1994-2014) 
3.24 

Banana: 5.24 

Plantain: 1.82 
2.70 4.52 

Global Yield growth rate 

(%; 1994-2014) 
-0.74 

Banana: 1.89 

Plantain: 0.80 
1.08 -0.81 

Yield growth rate in LIFDCs 

(%; 1994-2014) 
-0.75 

Banana: 2.30 

Plantain: 0.90 
0.32 1.10 
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1.3. Use in medicines & industrial steroid production 

1.3.1. Ethnomedicine and traditional use 

Intertwined with their cultural importance, Dioscorea spp. are commonplace in traditional 

medicines16,52 and as poisons13,53, with usage documented to at least 2000BC54. The purported 

therapeutic benefits of yams are wide-spread ranging from anti-cancer and estrogenic to anti-

inflammatory and antispasmodic15. Biochemical studies have shown the breadth of 

compounds present from abundant saponins and phenolics55, toxic alkaloids56,57, 

norditerpenes, diarylheptanoids58 and dioscorealides59 and other high-value terpenoids60 and 

novel storage proteins61 etc. All parts of the plant have been used in various elixirs, tonics, 

concoctions, tinctures, topicals, ingestables and so on; however, the tuber or rhizome is most 

commonly used62. The usage in traditional medicines has also led to Dioscorea spp. being 

widely used in food supplements63, despite many containing compounds of concern for human 

health64. For use as both supplements and traditional medicines plants are typically harvested 

from the wild and due to over-exploitation, many species are now endangered9,12,65. 

1.3.2. Industrial steroid precursors 

The most important bioactives identified are steroidal C27 saponins and their presence in 

Dioscorea has long been known66. Dioscin is the most well studied saponin of Dioscorea, as the 

aglycone portion, diosgenin, is used as starting material for synthesis of many steroids67. The 

high abundance of diosgenin in yams of Mexico fuelled the Mexican steroid industry of the 

1940s-70s: Marker degradation allowed large-scale, affordable production of progesterone 

from diosgenin and paved the way for economic production of cortisone, the oral 

contraceptive pill and various other steroids. The Mexican steroid industry impacted global 

health, world culture68 and revolutionised the conduct of scientific research in industry, 

developing countries and the field as a whole69. 
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Steroids are among the top ten most-prescribed medicines from plant sources70 and on the 

World Health Organisation [WHO] model list of essential medicines71 as such, Dioscorea are 

regarded as a genus of economic importance72. In recent years, interest in saponins of yam has 

resurged. This is likely due to a wider recognition of biological activities and use in traditional 

medicines of Asia73 (esp. China74) and South American75 which are regions with rapidly 

increasing scientific output; coupled with the re-emergence of natural product space for drug 

discovery, largely driven by modern technological advances76. 

1.4. Scientific research on Dioscorea 

1.4.1. Biosynthesis and quantification of phytosteroids 

Steroids are defined by a skeletal cyclopentanoperhydrophenanthrene ring system. The first 

steroid compounds formed within plants cells are lanosterol and/ or cycloartenol, two 

steroidal alcohols (sterols), formed from cyclisation of squalene via the oxidised intermediate 

2, 3- oxidosqualene. Lanosterol and cycloartenol are then converted to cholesterol77,78 which is 

the basic precursor for C27-based steroids (Figure 1.5). The mechanisms of conversion from  

cholesterol to C27-based steroid derivatives are however not well understood, in part due to 

the fact that the enzymes involved are not very specific, comprised mostly of cytochrome P450 

monoxygenases (CYP)79–81, yet pathways can be phyla and species specific77. Furthermore, 

plants produce a diverse array of steroidal compounds; with up to 60 sterols found in 

individual plants and the nature of biotransformations appear to be environmentally 

dependent78. 

Contrasting with this; the biosynthetic pathways to squalene and other farnesyl 

pyrophosphate [FPP] - derived compounds and successors have largely been elucidated82,83 

(Figure 1.6). Research has predominantly been conducted on the model-plant Arabidopsis with 

specific focus on important crop-species such as Asian rice (Oryza sativa L.)84, maize (Zea mays 

L.)85 and tomato (Solanum lycopersicum L.)86. 
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Figure 1.5 Biosynthetic pathway from squalene to the steroid precursors. Epoxidation of 
squalene catalysed by (1) squalene epoxidase (SQE). Cyclisation of 2,3-oxidosqualene by (2) 
lanosterol synthase (LAS) or (3) cycloartenol synthase (CAS). Ten distinct enzymatic steps (4) 
convert lanosterol to cholesterol, governed by nine catalysts as reviewed in78, whilst eleven 
enzymatic conversions (5) convert cycloartenol to β-sitosterol, though both lanosterol and 
cycloartenol act as the precursors to the true sterols (6), with a preference for cycloartenol in 
plants87. 
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Historically, studies on yams have focused on quantification of phytosteroid content in tubers/ 

rhizomes and attempts to increase content to increase yield for industrial use. However, in 

2006, Vendl et al. undertook a comparative analysis of diosgenin content in the leaves of 

Dioscorea species and highlighted that previously reported values (including those for tuber) 

are incorrect and unreliable, due to a multitude of factors: imprecise techniques, non-

comparative methods, and analytical miscalculation88. In the following years, many species 

have been screened using more modern analytical techniques however, comparative analyses 

of a range of species is still lacking. 

Furthermore, historic literature lacks clarity regarding the biosynthetic pathway of individual 

steroidal compounds. Glycosylation is frequently cited as the final step of sapogenin 

biosynthesis however, most studies do not consider steroidal saponins89,90. Joly et al. indicated 

that the cholesterol backbone undergoes direct conversion to diosgenin91. An intermediate 

formed during the production of dioscin, furostanol I, was isolated from cell suspension 

cultures of D. deltoidea and it was suggested that the respective aglycone was an intermediate 

to diosgenin, or that biosynthesis proceeds via saponins92 (Figure 1.7). 

It is suggested that within the cell steroids exist only in conjugated forms93, though few studies 

consider diosgenin / dioscin individually. Additionally, interconversion between furostane 

(proto) and spirostane forms of steroidal compounds is unclear79,94 with few studies analysing 

both arrangements95. 

Recent work has revisited diosgenin biosynthesis via transcriptomic approaches in Dioscorea96, 

Asparagus racemosus Willd.97 with advances made in the identification of putative pathway 

intermediates and associated genes. Critically, an alternative pathway to diosgenin via 

sitosterol and sterol 3-β-D-glucoside was proposed after analysis of fenugreek (Trigonella 

foenum-graecum L.) showed that all contigs coding for enzymes for a saponin-directed route 

are present98 (Figure 1.7), yet the enzyme specificity for glycosylation and deglycosylation at 

specific residues remains unclear. 
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Figure 1.6. Isoprenoid 
biosynthesis in plants. 
Biosynthesis of isoprenoids 
occurs via the cytoplasmic 
mevalonate (MVA) pathway and 
plastid localised 2-C-methyl-D-
erythritol 4-phosphate (MEP) 
pathway. Sterol biosynthesis 
occurs via the MVA route, yet 
interplay between the pathways 
occurs via isopentenyl 
pyrophosphate exchange (IPP). 
CoA, coenzyme A; HMG, 3-
hydroxy-3-methylglutaryl; 
HMGR, HMG-CoA reductase; 
DMAPP, dimethylallyl 
pyrophosphate; FPP, farnesyl 
pyrophosphate; G3P, 
glyceraldehyde-3-phosphate; 
DXS, 1-Deoxy-D-xylulose 5 
phosphate (DXP) synthase; DXR, 
DXP reductoisomerase; GPP, 
geranyl pyrophosphate; GGPP, 
geranylgeranyl pyrophosphate. 
Copied from82. 
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Figure 1.7. Proposed 
biosynthetic pathways 
to diosgenin. Three 
proposed pathways to 
diosgenin, following 
(1) the widely 
accepted conversion 
via furostanol 
intermediates92,355 or 
from cholesterol (2), 
whereby glycosylation 
could be the final step 
in formation of 
sapogenin79. 
Alternatively, a route 
via β-sitosterol has 
been proposed (3), 
though enzyme 
specificity is unclear98. 
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Despite these new hypotheses, functional gene characterisation has been limited to squalene 

synthase99 and cycloartenol synthase100 of Dioscorea zingiberensis C.H. Wright. Cloning of 

furostanol 26-O-β-glucosidase involved in conversion of furostanol to spirostanol saponins has 

been achieved101, yet kinetic studies suggest non specificity. As such the pathway to diosgenin 

and regulation of production of phytosteroid precursors remains largely unknown. 

1.4.2. Current breeding program & genomics 

Yam breeding lagged far behind other tuber crops such as potato and cassava, not being 

attempted until the 1960s. Yam breeding programs are currently conducted in both short and 

long term, principally at the International Institute of Tropical Agriculture [IITA], Nigeria; which, 

in collaboration with the National Agricultural Research Systems [NARS] program of the FAO, 

holds the global mandate for yam research102. Other major research programs are conducted 

through a partnership of the National Institute of Agricultural Research [INRA], France and the 

French Agricultural Research Centre for International Development [CIRAD]; and at the Central 

Tuber Crops Research Institute [CTCRI], India103. 

Programmes focus on developing new varieties of yam with important agronomic and quality 

traits through genetic improvement, tissue-culturing and rapid propagation. Breeding targets 

are increasing yields, earliness of tuber sprouting, resistance to nematodes, anthracnose and 

yam mosaic virus along with tuber quality and dry matter content103,104 with the employment 

of genomics posed to rapidly speed up the development process105. In addition, the viability 

and adoption of new technologies along with the economic market and demand for yam and 

yam products are studied6,106. Breeding programs to develop new yam varieties are 

predominately based on genetic approaches 5,6. The genome sequencing of D. rotundata107, D. 

alata and D. dumetorum is currently underway along with numerous genetic diversity analysis 

via genotyping-by-sequencing [GBS] and whole genome re-sequencing [WGRS] of many 

accessions108–110. However, the genetics of yams is least understood among the major staple 

food crops. Yams are only distantly related to the well-studied monocot grasses  wheat, maize, 
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rice, and sorghum meaning that no convenient model exists for yam genomics14. Furthermore, 

polyploidy complicates genetic breeding (Table 1.2). Despite yam ploidy level having been 

correlated with numerous phenotypic and agronomic traits (including increased growth vigour, 

increased tolerance to abiotic and biotic  stress, and higher tuber yield111, and tuber colour, 

leaf morphology112 and sex30); only recently (post 2005) has the ploidy status of major edible 

yams been resolved, and the basic chromosome number of most species is still unknown and 

needs revisiting103. 

Table 1.2. Breeding information and genetics of some clonally propagated crops. 

 Yams Banana & plantain Cassava Sweet Potato 

Cultivated 

species 

10+ Dioscorea 

spp. 

Musa × paradisiaca L. 

[hybrid of M. acuminata 

Colla (AA) & M. 

balbisiana Colla (BB)] 

Manihot 

esculenta 

Crantz 

Ipomoea 

batatas (L.) 

Lam. 

Planting material Root tubers Corms 
Hardwood 

cuttings 

Sprout 

cuttings 

Growth period 

(months) 
8-11113 11-15114 9-24113 3-8113 

Breeding cycle 

length (years) 
9-11115 9116 6117 7118 

Postharvest 

storage life1 
4-6 months119 15 days120 1-7 days119 1-4 months119 

Ploidy 

2x – 10x 

(inter- & intra- 

species 

variation)103,121 

2n = 3x = 33 

(triploid)122 

banana: AAA, AAB 

plantain: ABB 

2n = 2x = 36 

(diploid)122 

2n = 6x = 90 

(hexaploid)122 

Inheritance 
Mixed disomic 

& polysomic 

Triploids are sterile 

Polysomic 
Disomic Polysomic 

Genome 

sequence2 

Underway (3 

species) 

M. acuminata: 2012123 

M. balbisiana: 2013124 
2012125 Underway 

Agrobacterium- 

mediated 

transformation3 

2014126 1995127 1996128 1995129 

1At ambient temperature, with curing or treatment as is standard for each crop. 
2Publicly available, high-quality reference sequence. 
3Refers only to transformation with Agrobacterium tumefaciens. 
 

Due to the lack of knowledge about the origin, diversity, and genetics of yam species the 

effectiveness of genetic improvement programs has been hindered103. The crop is touted as 
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difficult to work with: not easily amenable to many experimental techniques, lacking dedicated 

research tools and resources and plagued by numerous growth characteristics which hinder 

the speed of progress130. 

Because of difficulties (and costs) in measuring genetic traits, observable phenotypic traits and 

have been the prime approach used for evaluation during breeding programs & farmer 

selection. This is despite the aforementioned morphological diversity and lack of measurable 

characteristics to even discriminate species. The long breeding cycle and time-consuming 

evaluation means that developing new yam varieties is a lengthy process: at international and 

national levels, parent selection lasts between 9 to 11 years and then national varietal 

development programs take an equal amount of time. The process of developing to releasing a 

new variety last between 18 to 22 years, for D. alata and D. rotundata respectively115. 

1.4.3. Wider development: conservation & ‘-omics’ studies 

Other than phylogenetic or phenotypic characterisations (relating to botanic and taxonomic 

classification), no known research has been conducted across the breadth of clades within the 

genus Dioscorea. A reason for this is the difficulty of access to living material and that most 

major collections only hold a few species: those of agricultural relevance and some crop wild 

relatives. 

Genetic resources are expensive to maintain and for yam there are many fragmented 

collections that are not species diverse (e.g. Phillipine Root Crop Research and Training Centre 

[PhilRootCrops], Philippines; and Institute of Plant Physiology of Russian Academy of Sciences 

[IPPRAS], Russia; or largely not accessible (e.g. Leibniz Institute of Plant Genetics and Crop 

Plant Research [IPK], Germany; U.S. National Plant Germplasm Collection [NPGC], USA; and 

Millenium Seed Bank Partnership [MSBP], UK. Slowing progress with Dioscorea conservation 

further is the fact that typically in vitro plantlets have a 2 year propagation cycle131,132, thus are 

too slow growing to be efficiently used for research and no consensus has been reached for 

propagation conditions133. As such, field banks are vital. However, they are costly (labour and 
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land costs) and risky, with samples frequently lost103 (e.g. Centre for Pacific Crops and Trees 

[CePaCT], Fiji, Northern Philippines Root Crop Research and Training Centre [NPRCRTC] 

(Personal Communication, Grace Backian, 2013) Vanuatu Agricultural Research and Technical 

Centre [VARTC], Vanuatu (Personal Communication, Hana Chair, 2015). As such yams are high 

priority for crop wild relative conservation134. 

Despite this, a few transcriptomic studies have been undertaken, including comparison to 

other crops135 and medicinal plants136 and for targeted investigation of the flavonoid 

biosynthetic pathway137 or resistance to disease138. However, studies are mostly limited by 

poor functional annotation139,140. Regarding proteomic analysis, the only known proteomic 

studies have been targeted, focusing on the commercially important enzyme tyrosinase of D. 

alata141 and the ascorbate-glutathione pathway142. 

1.5. Metabolomics 

1.5.1. Approach and techniques 

Metabolomics is the systematic analysis of the complete composition of metabolites within 

cells and organisms, termed the “metabolome”. As metabolites are the intermediates or end 

products of cellular processes, the metabolome provides a biochemical representation of 

phenotype143. Metabolomic studies allow elucidation of biosynthetic pathways and integration 

with genomics, transcriptomics and proteomics is key in a systems biology approach to build 

informational networks and resolve complex biological processes144,145, functional genome 

annotation144,146 and understanding the biochemical response of systems under different 

condition or environments147. The great diversity of plant metabolites means that 

metabolomics has been quickly adopted within plant sciences148. 

Metabolome composition is dynamic and the concentration range of metabolites can vary over 

nine orders of magnitude (pM–mM). The large variation means that no single analytical 

approach can encompass all metabolites. Thus, metabolomic studies typically compromise to 
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provide reproducible, sensitive and accurate analysis, in as holistic manner as possible149 and 

careful experimental design and development of a robust analytical pipeline are vital to allow 

interpretation of results150,151. 

Initially, the field was divided into three major approaches152: 

1. Chemical fingerprinting – whereby as many metabolites (or metabolite signatures) are 

detected as possible, on a given platform or platforms, with little focus on identification of 

metabolites. The approach is used to rapidly assess whether differences in samples are 

detectable. 

2. Metabolite profiling - whereby sections of metabolism or compound classes are analysed 

in as broad as possible manner, with accurate identification and some degree of 

reproducible quantification (typically relative quantification is employed). 

3. Targeted analyses – whereby focus is on only specific metabolites or compound class to 

provide precise identification and accurate quantification (typically absolute 

quantification). 

However, as the field of metabolomics is rapidly evolving and technologies advancing, the 

boundaries between such divisions are closing, with metabolomics studies becoming both 

broader and more accurate in parallel. In addition, other terms have evolved to specify 

utilisation of the technique such a ‘metabolite mining’; which is commonly applied to studies 

where profiling is conducted yet, with more elaborate sample preparations (e.g. numerous 

fractionation and purifications) and often absolute quantification of target metabolites, for the 

aims of bioprospecting58,153–155. 

The major approaches used for metabolite detection are nuclear magnetic resonance 

spectroscopy [NMR] and mass spectrometry [MS] which is often hyphenated to some form of 

chromatography (most commonly gas chromatography [GC] or liquid chromatography 

[LC])156,157 (Table 1.3). However, other separation systems (e.g. capillary electrophoresis [CE] 
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and high performance thin layer chromatography [HPTLC]) and detection (e.g. flame ionisation 

detectors [FID], near-infrared spectroscopy [NIRS] and evaporative light scattering detectors 

[ELSD]) are also implemented; especially for targeted analysis of metabolites not easily 

amenable to these techniques. Additionally, more elaborate setups (e.g. Ultra performance 

[UP]LC-photodiode array [PDA]-MS/ (solid phase extraction [SPE])-NMR, GCxGC-MS and CE-

PDA-MS) are becoming more common, necessitated by the complexity of samples. 

Furthermore, MS is extended by the range of different analysers (e.g. triple quadrupole [QqQ], 

time-of-flight [TOF], orbitrap, Fourier transform ion cyclotron resonance [FTICR]) and 

ionisation methods (e.g. electron impact [EI], electrospray ionisation [ESI], atmospheric 

pressure chemical ionisation [APCI], matrix-assisted laser desorption ionisation [MALDI], 

desorption atmospheric pressure photoionisation [DAPPI]) and fragmentation (e.g. collision-

induced dissociation [CID], electron transfer dissociation [ETD]). Similarly, various NMR 

techniques extend the range of use (e.g. correlation spectroscopy [COSY] and nuclear 

Overhauser effect spectroscopy [NOESY]). 

1.5.2. Metabolomics applied for crop breeding and bioprospecting 

The quality of crop plants is a direct function of their metabolite content158 and implementing 

a metabolomics platform into breeding programs is advocated to accelerate crop 

improvements159. Use as a breeding tool is especially beneficial when genetic information is 

not available160, such as the case with yam. Metabolomics can provide a standalone 

measurement of phenotype; able to define flavour, fragrance, shelf life and physical attributes 

of the material at a particular time158. Integrating data with other ‘omics’ research can provide 

new insights on gene ontology and regulation, metabolism161, yield and natural crop diversity 

and is expected to shorten time for generation of elite lines162,163. 
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Table 1.3. Comparison of most common metabolomics platforms. 

 GC-MS LC-MS NMR 

Cost Low High High 

Throughput incl. 

sample prep time 
Low High Medium 

Resolution Low or High High High 

Sensitivity High High Low (µNMR is high) 

Reproducibility High Low High 

Quantification 
Relative (absolute via 

dose-response curves) 

Relative (absolute via 

dose response curves) 
Absolute (if 1H) 

Sample 

preparation 

Derivatisation 

necessary 

Usually no 

derivatisation 

No derivatisation 

needed 

Spectral 

deconvolution 
Easy and automated Difficult but automated 

Difficult, often 

manual 

Metabolite 

identification 
Large libraries available 

Limited libraries 

available 
Conclusive 

Analyte focus 

Primary metabolism, 

small molecules 

(mostly polar), gaseous 

phase sample 

Primary & secondary 

metabolism, large range 

of size and polarity, 

liquid phase sample 

Primary and 

secondary 

metabolism, gas, 

liquid or solid phase 

sample 

Data collated from 149,164–167. Comparisons are relative and only regard the three platforms. 
 

Numerous varied approaches have been conducted on crop plants such as equivalence studies 

between crops and GM varieties168–171, metabolite quantitative trait loci (mQTL) analysis172 and 

metabolite genome-wide association study (mGWAS)173 for marker-assisted breeding174–176 and 

screening of natural diversity in breeding collections148. 

Additionally, plant natural product research is poised to make a comeback155 and 

metabolomics is widely applied for bioprospecting and investigation into medicinal plants174. 

Furthermore, numerous studies have extended this further to link biochemical profiles to 

phylogenetic distances177 and hinted at exploration of the relationship between production of 

medicinal compounds and evolution178,179, climate adaptations180 and geographical 

distribution160,181,182.  Additionally, metabolomics approaches have been able to differentiate 

two plant species whose growth range overlaps and morphology does not distinguish183 and 
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growing locations for tobacco, showing location to have a stronger effect than the genetics of 

the cultivar184. 

1.5.3. Metabolomics applied to yam 

As with the other ‘-omics’ fields, metabolomics approaches have rarely been applied to 

Dioscorea and have solely regarded secondary metabolites. As previously explained (section 0), 

most research has focussed on the saponin content of tubers or rhizome185,186. Studies have 

typically employed LC-MS approaches in a mostly targeted manner and have resulted in the 

identification of numerous new compounds187–189. However, due to the vast array of 

techniques and limited diversity of sample material, these studies, and thus phytosteroid/ 

saponin quantities, often cannot be directly compared, repeating the limitation highlighted for 

historical work. 

A recent study applied a metabolomics approach to investigate diversity of phenolics55 and 

carotenoids190 in some Dioscorea species. The authors note the work was ‘explorative 

screening’, yet show inter- and intra- species diversity in Dioscorea species, emphasising the 

potential of further metabolomic investigation. 

Another study undertook GC-MS profiling on two New World species of Dioscorea and showed 

the essential oil from leaves to be a rich source of the high-value terpenoid elemol60. This also 

led to the identification of multicellular oil glands in the leaves and evidences that the foliage 

of Dioscorea, and not just the tuber/ rhizome, can be a source of high-value compounds.
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1.6. Aims and objectives 

Aim: To assess the biochemical diversity of yam central metabolism and improve current 

breeding practices for adding economic and nutritional value to production. 

Objective 1: Develop a workflow to study the primary metabolome of Dioscorea and profile a 

broad range of material (genus-wide, different plant organs). 

Objective 2: Apply targeted approaches to readdress the sterol and carotenoid composition of 

the crop. 

1.6.1. Justification 

Yams hold high potential nutritional, medicinal and economic value; however have been 

neglected in scientific research. Given the recent advances in ‘-omics’ fields and systems 

biology, re-exploration of the genus may unlock the potential of Dioscorea and develop the 

crop from  little understood and underutilised to being fully exploited for alleviating poverty, 

attaining food security, providing medicines, conserving biodiversity and understanding 

biological processes such as monocot evolution and saponin biosynthesis. 

Stemming for the lack of consensus in scientific literature of Dioscorea, metabolomics was 

selected as an analytical approach as it can be performed ‘blind’, with no assumed knowledge, 

is suitable for hypothesis generation and to identify early leads for further research144. 

Furthermore, the approach is relatively affordable (compared to other ‘-omics’ research) and 

able to provide standalone outputs for breeding. Metabolomics pipelines are commonly 

applied in breeding programs of numerous crops and as the work can be integrated with other 

‘-omics’ approaches (systems biology) can complement the current genomic investigations of 

the global yam breeding programme. 
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Additionally, metabolomics procedures are able to be applied to vast material types with 

relative ease, alleviating the problem of Dioscorea material not being easily amenable to many 

analytical techniques, which has hindered progress in other fields. 

The intermediary metabolism of Dioscorea has been little studied, even historically; therefore 

investigation should provide a wealth of new knowledge. For diversity analysis the foliage of 

yam will likely be easier to acquire than tuber or rhizome, due to the lack of conservation of 

Dioscorea material. As the foliage of yam has rarely been analysed it provides not only a 

resource for cross-genus study but also bioprospecting. Further targeted analyses can be 

conducted across different organ types, especially focussed on nutritionally relevant 

compounds within edible tubers from the breeding program. 
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2 MATERIALS AND METHODS 

2.1. Plant material 

2.1.1. Acquisition 

Dioscorea material was acquired from the Royal Botanic Gardens, Kew [Kew] from both the 

glasshouse (Table 2.1); and woodland collection (Table 2.2) the International Institute of 

Tropical Agriculture [IITA] field bank (Table 2.3) and through additional requests sent both 

personally and via the Botanic Gardens Conservation International [BGCI] (Table 2.4). 

Table 2.1. Dioscorea accessions collected from glasshouses of The Living Collection held at the 
Royal Botanic Gardens, Kew (http://epic.kew.org/index.htm). 
Dioscorea species 

[in text] Accession Date 

collected Glasshouse 
Native 

habitata Cladeb Perennating 

organ type(s)c 
elephantipes (L'Hér.) 

Engl. 

[D. elephantipes(1)] 
2007-447 21/11/2013 Tropical 

Nursery 

South Africa 

[SA] Africa- Testudinaria Caudiciform 

perennial tuber 
membranacea Pierre 

ex Prain & Burkill 

[D. membranacea] 

1998-4292 21/11/2013 Tropical 

Nursery 
Asia [Asia] Stenophora Rhizome 

elephantipes (L'Hér.) 

Engl. 

[D. elephantipes(2)] 
2012-54 21/11/2013 Tropical 

Nursery 

South Africa 

[SA] Africa-Testudinaria Caudiciform 

perennial tuber 

sylvatica Eckl. 

[D. sylvatica(1)] 1963-26704 21/11/2013 Tropical 

Nursery 

South Africa 

[SA] Africa-Testudinaria Perennial tuber 

sylvatica Eckl. 

[D. sylvatica(2)] 1963-26705 21/11/2013 Tropical 

Nursery 

South Africa 

[SA] Africa-Testudinaria Perennial tuber 

dumetorum (Kunth) 

Pax 

[D. dumetorum] 
1984-8405 21/11/2013 Tropical 

Nursery 

Tropical Africa 

[TA] 
Compound leaved-

Lasiophyton 

(Lasiophyton) 
Annual tuber & 

aerial bulbils 
antaly Jum. & 

H.Perrier 

[D. antaly] 

1998-523 21/11/2013 Tropical 

Nursery 

Madagascar 

[Mad] Compound leaved Annual tuber 

bulbifera L. 

[D. bulbifera(1)] 
1998-533 21/11/2013 Tropical 

Nursery 
Asia [Asia] Compound leaved 

(Opsophyton) 
Annual tuber & 

aerial bulbils 
cochleariapiculata De 

Wild 

[D. cochleari-

apiculata(1)] 

1998-2987 21/11/2013 Tropical 

Nursery 

Tropical Africa 

[TA] 
Compound leaved-

Lasiophyton Annual tuber 

pentaphylla L. 

[D. pentaphylla] 
1996-4313 21/11/2013 Tropical 

Nursery 
Asia [Asia] Compound leaved-

Botryosicyos 
Annual tuber & 

aerial bulbils 
sansibarensis Pax 

[D. sansibarensis(1)] 
1998-525 21/11/2013 Tropical 

Nursery 

Madagascar 

[Mad] Malagasy Perennial tuber 

& aerial bulbils 
altissima Lam. 

[D. altissima] 
2005-1233 21/11/2013 Tropical 

Nursery 

New World 

[NW] N.A.d Annual tuber 

http://epic.kew.org/index.htm
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Dioscorea species 

[in text] Accession Date 

collected Glasshouse 
Native 

habitata Cladeb Perennating 

organ type(s)c 
cayennensis Lam. 

subsp. rotundata 

(Poir.) J. Miège 

[D. rotundata] 
1976-1475 25/11/2013 Palm House 

Tropical Africa 

[TA] (Enantiophyllum) Annual tuber 

praehensilis Benth. 

[D. praehensilis] 
1960-1002 25/11/2013 Palm House 

Tropical Africa 

[TA] (Enantiophyllum) Annual tuber 

preussii Pax subsp. 

Preussii 

[D. preussii] 
1968-57006 25/11/2013 Palm House 

Tropical Africa 

[TA] 
Enantiophyllum 

(Macrocarpaea) Annual tuber 

minutiflora Engl. 

[D. minutiflora] 
1960-1001 25/11/2013 Palm House 

Tropical Africa 

[TA] 
Enantiophyllum 

(Enantiophyllum) Perennial tuber 

bulbifera L. 

[D. bulbifera(2)] 1987-1993 25/11/2013 Palm House Asia [Asia] Compound leaved 

(Opsophyton) 
Annual tuber & 

aerial bulbils 
sansibarensis Pax 

[D. sansibarensis(2)] 1598-543 25/11/2013 Palm House 
Madagascar 

[Mad] Malagasy Perennial tuber 

& aerial bulbils 
composita Hemsl. 

[D. composita(1)] 
1969-11715 25/11/2013 Palm House 

New World 

[NW] New World I Perennial tuber 

composita Hemsl. 

[D. composita(2)] 1978-1830 25/11/2013 Palm House 
New World 

[NW] New World I Perennial tuber 

alata L. 

[D. alata] 
1982-1316 25/11/2013 Palm House Asia (Asia) Enantiophyllum 

(Enantiophyllum) 
Annual tuber & 

aerial bulbils 
elephantipes (L'Hér.) 

Engl. 

[D. elephantipes(3)] 
2012-54 25/11/2013 Princess of 

Wales 

South Africa 

[SA] Africa-Testudinaria Caudiciform 

perennial tuber 
elephantipes (L'Hér.) 

Engl. 

[D. elephantipes(4)] 
2001-2252 25/11/2013 Princess of 

Wales 

South Africa 

[SA] Africa-Testudinaria Caudiciform 

perennial tuber 
cochleariapiculata De 

Wild 

[D. cochleari - 

apiculata(2)] 
1998-2987 25/11/2013 Princess of 

Wales 

Tropical Africa 

[TA] 
Compound leaved-

Lasiophyton Annual tuber 

rockii Prain & Burkill 

[D. rockii] 1996-4307 25/11/2013 Jodrell Asia [Asia] Stenophora Rhizome 

cochleariapiculata De 

Wild 

[D. cochleari - 

apiculata(3)] 
1998-515 25/11/2013 Jodrell 

Tropical Africa 

[TA] 
Compound leaved-

Lasiophyton Annual tuber 

glabra Roxb. 

[D. glabra] 1996-4312 25/11/2013 Jodrell Asia (Asia) Enantiophyllum Annual tuber 

cochleariapiculata De 

Wild 

[D. cochleari - 

apiculata(4)] 
1995-1459 25/11/2013 Jodrell 

Tropical Africa 

[TA] 
Compound leaved-

Lasiophyton Annual tuber 

a: Habitat used for geographical visualisation of AHC clustering (Figure 4). b: Clades from2 and/ 
or(29). c: Organ types from4 and field experience (Paul Wilkin). d: N.A. – Not applicable, where 
data is unavailable.
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2.1.2. Sampling 

Dioscorea material sourced from the Kew Living Collections were sampled on-site. Youngest 

mature leaf and petiole material was sampled. Materials were cut from the vine and quenched 

in liquid nitrogen immediately. Samples were lyophilised (two or three days using a Lyovac 

GT2, Leybold-Heraeus or Freezone 12 freeze dryer, Labconco), homogenised (via Qiagen tissue 

lyser LT or tissue lyser II) with steel bearings or in a food processor (Hinari MB280 Genie 

blender) and stored at −80 °C until further processing. For tuber or rhizome, material was 

harvested from the living plant and rinsed to remove any soil residue. Materials were frozen in 

liquid nitrogen and lyophilised (three days), homogenised via cryogenic mill (SPEX CertiPrep 

Freezer/Mill 6750) and stored as per leaf. 

Dioscorea materials from the IITA field bank were received in replicates of five per accession. 

For standard extractions three tubers per accession were sectioned laterally and longitudinally 

into 12; and 6 representative sections per tuber frozen in liquid nitrogen. Sections were 

pooled, freeze-dried, skin peeled and ground (via cryogenic mill) to a homogenous powder, 

prior to extraction. All samples were stored at -80 °C prior to further processing. Five 

accessions (TDa 98-01176, TDb 3059, TDc 04-71-2, TDd 08-14-42, TDr EHuRu) underwent 

spatial metabolomics analyses whereby one tuber was sectioned into individual head, middle 

and tail portions (Appendix 4.1). Each section was then processed as above and the peeled skin 

also analysed. Additionally, a tuber of these accessions was planted and grown in polytunnel at 

RHUL, UK. Both tuber and leaf material were harvested following 9 months growth (May 2014-

Jan. 2015). Tuber material was processed as per standard extracts, yet on the same day as 

harvest. Leaf material was processed as per the Kew Living Collections. 

Samples received from other sources (for validation analyses) were received in various 

conditions from fresh shipment, dried in silica, air, oven or freeze dried. The conditions of all 

material was visually assessed and lyophilised where necessary. Samples were homogenised 

and stored as per leaf material of the Kew Living Collections. 
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Table 2.2. Dioscorea accessions collected from the woodlands of The Living Collection held at the Royal Botanic Gardens, Kew (http://epic.kew.org/index.htm). 

Dioscorea species Accession Dates collected 
Native 

habitat
a Clade

b Perennating 
organ type(s) 

tokoro Makino ex 
Miyabe 

1979-5237 12/06/2014 23/09/2014 13/11/2015 20/08/2015 12/12/2015 28/06/2016 Asia Stenophora Rhizome 

nipponica Makino 1969-19664 
 

23/09/2014 13/11/2015 
   

Asia Stenophora Rhizome 

deltoidea Wall. ex 
Griseb. 

1963-26702 12/06/2014 
 

13/11/2015 
  

28/06/2016 Asia Stenophora Rhizome 

caucasica Lipsky 1980-2270 12/06/2014 
 

13/11/2015 
   

Caucasus Stenophora Rhizome 

villosa L. 1979-1673 12/06/2014 
 

13/11/2015 
   

North 
America 

Stenophora
c 

Rhizome 

communis (L.) Caddick 
& Wilkin 

1969-19666 12/06/2014 
 

13/11/2015 
  

28/06/2016 Europe 
Mediterranean 

[Tamus] 
Rhizome 

a:Habitats from eMonocot, available at (e-monocot.org)191. b: Clades from2,24; except for c: from192.

http://epic.kew.org/index.htm
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2.2. Profiling intermediary metabolism 

A detailed workflow for Dioscorea metabolomics via GC-MS can be found in Appendix 2. 

2.2.1. Extraction of metabolites for GC-MS 

Methanol (400 μL; Fluka HPLC grade) and water (400 μL; Fluka HPLC grade) were sequentially 

added to 10 mg aliquots of each sample in 2 mL plastic micro-centrifuge tubes (Greiner Bio-

One reaction tubes), vortexed at 3000 rpm for 8 seconds (VELP Scientifica ZX3 advanced vortex 

mixer) and rotated (Stuart rotator SB3) for 1 h at room temperature (22 °C). Chloroform 

(800 μL: Fluka HPLC grade) was added and the samples vortexed (3000 rpm, 10s) and 

centrifuged (3 min, 20,000 RCF; Eppendorf Centrifuge 5224) to partition extracts into upper 

(polar) and lower (organic) phases. A 100 μL aliquot of the polar phase was taken into glass 

vials (Supelco) and succinic-D4 acid (ISOTEC) added as internal standard (10 μL of 1 mg/mL 

solution). Additionally, a 400 μL aliquot of the non-polar phase, with myristic-D27 acid (10 μL of 

1 mg/mL solution; Cambridge Isotope Laboratories) as internal standard, was taken. Phases 

were dried under centrifugal evaporation (Genevac EZ-2 Plus) and stored at −80 °C until 

analyses. Leaf material of the Kew Living Glasshouse collections sample set was extracted on 

six independent occasions. Leaf material of the IITA genebank and Kew Living Woodland 

collections sample set was extracted on three independent occasions. D. mexicana and D. 

elephantipes for the compound atlas were extracted on three independent occasions. Samples 

received from RBGE were extracted once, due to limited availability of material. Samples from 

other sources were typically extracted from 1-3 times depending on availability of material. 

For tuber material three replicates per sample were analysed with some minor modification to 

the extraction protocol: complete phase separation of MeOH: H2O /CHCl3 required 

centrifugation (14,000 rpm) for 10 minutes. Polar phase aliquots were stored overnight at -20 

°C (Porkka freezer) and then dried under inert nitrogen (BOC). Samples were subsequently 

stored at -80 °C. 
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Table 2.3. Dioscorea accessions recieved from the global yam breeding program of the 
international Institute of Tropical Agriculture (IITA) field bank. 

Dioscorea species Abbreviation (in text) Accession Number 

alata L. TDa 

98/01176 
297 

98/001166 
291 

00/00194 

bulbifera L. TDb 

3059 

3079 

3072 

3688 

3048 

cayennensis Lam.  subsp. cayennensis  TDc 

04-71-2 

03-5 

95-17 

04-97-4 

dumetorum (Kunth) Pax  TDd 

08-38-8 

08-36-14 

3108 

08-14-42 

1315 

3112 

4118 

4088 

08-37-12 

3774 

08-37-27 

08-37-16 

3104 

08-38-57 

3947 

05-6 

3100 

08-36-12 

08-38-18 

3109 

3648 

08-14-6 

08-36-88 

08-13-1 

08-3879 

cayennensis Lam. subsp. rotundata (Poir.) J. Miège  TDr 

EHObia 

99/02607 

omi-Efun 

97/00917 

95/01932 

97/00793 

97/00777 

04-219 

EHuRu 

Ponna 
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2.2.2. GC-MS 

2.2.2.1. Derivatisation of metabolites for GC/MS analysis 

Samples were re-dried for 15 min under centrifugal evaporation before methoximation and 

silylation derivatisation via addition of methoxyamine hydrochloride ([MeOx]; Sigma-Aldrich; 

30 μL, 20 g/L in pyridine; Chromasolv) followed by N-methyl-N-

(trimethylsilyl)trifluoroacetamide ([MSTFA], 70 μL; Sigma-Aldrich); incubated (40 °C, 2 h using 

Techne Dri-Block DB-2A) after addition of each152. 

2.2.2.2. GC-MS analytical procedure  

Leaf material were analysed with a 7890A gas chromatography (GC) system coupled with a 

mass spectrometer (MS) 5795C MSD, equipped with a 7683 injector and autosampler system 

(Agilent Technologies). Tuber material was analysed with a 7890B GC coupled with a 5977A 

MSD, equipped with a GC80 autosampler (Agilent Technologies). GC-MS analysis followed a 

modified version of Enfissi et al.193, as described below: 

Samples (1 μL) were injected into the GC-MS with a split/splitless injector at 290 °C. The 

injection of samples was made in splitless mode with polar samples of the Kew Living 

Collections also repeated on a 1:10 split. Metabolites were separated on a DB-5MS + DG 30 m 

(plus 10 m Duraguard) ×250 μm ×0.25 μm column (J&W Scientific). The GC oven was held for 

3 min at 70 °C before ramping at 4 °C/min to 325 °C and held for a min. Helium (BOC) was the 

carrier gas at a flowrate of 1.3 mL/min. The interface with the MS was set at 280 °C and MS 

performed in full scan mode using 70 eV EI + and scanned from 50 to 1000 m/z. Retention time 

locking to ribitol (Sigma-Aldrich) or d4-succinic acid was used. A mixture of n-alkanes, ranging 

from 8 to 32 carbons, was used for retention index external calibration. 

Kew Living Glasshouse Collections sample sets (6) were run in two batches of three 

randomised-blocks, two months apart. This approach was used to assess robustness due to the 

lack of quality control samples. Samples of the IITA field bank and of the Kew Woodland 
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collection were run in three randomised blocks as independent batches, each a month apart. 

Samples for D. elephantipes of the compound atlas were analysed in three blocks within a 

single batch. All other analyses utilised randomised sampling designs where possible. 

2.2.2.3. GC-MS data processing 

To identify chromatogram components found in the Dioscorea profiles, a mass spectral library 

was constructed from in-house standards, the NIST ‘11 MS library (National Institute of 

Standards and Technology, USA) and the Golm Metabolome Database [GMD]194, with 

additional manual searches of MassBank195, Human Metabolome Database [HMDB]196 and the 

Yeast Metabolome Database [YMDB]197. Component peak identification and spectral 

deconvolution was performed using the Automated Mass Spectral Deconvolution and 

Identification System [AMDIS v2.71, NIST]198; using Kovat’s retention indices [RI] and MS for 

identification using the metabolomics reporting guidelines199,200. Each compound was assigned 

a representative ion and response areas were integrated and expressed relative to internal 

standard. 

All matches to NIST database were of a probability greater than 80 % and the in-house library 

extended throughout the study period to include unknowns. For material where only three or 

less replicates were analysed, peaks were only included if present in all replicates of a sample. 

In larger samples sets, outlying (qualitative and quantitative) peaks were manually 

investigated, since this is still most effective analysis method for GC-MS201,202. Where polar and 

non-polar datasets were combined; duplicates were removed by selecting the maximal 

response recorded per each compounds present in both phases. 
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Table 2.4. Dioscorea accessions sourced through the Botanic Gardens Conservation Initiative or personal requests. 

Dioscorea species Accession Donating Institute Donator Drying 

elephantipes (L'Hér.) Engl. Commercial Private collection Mark Levy Fresh 

elephantipes (L'Hér.) Engl. 19900643*A Royal Botanic Garden, Edinburgh Peter Brownless Silica 

elephantipes (L'Hér.) Engl. 19280228*B Royal Botanic Garden, Edinburgh Peter Brownless Silica 

mexicana Scheidw. 8813370 Sukkulenten-Sammlung Zürich Dr Urs Eggli. Fresh 

sylvatica Eckl.  19803437*A Royal Botanic Garden, Edinburgh Peter Brownless Silica 

sylvatica Eckl.  19803437*B Royal Botanic Garden, Edinburgh Peter Brownless Silica 

tokoro Makino 20051993 Royal Botanic Garden, Edinburgh Peter Brownless Silica 

tokoro Makino 19917359 University of Bayreuth 
Marianne 
Lauerer 

Oven dried 

tokoro Makino 2009115 Botanischer Garten der Johannes Gutenberg-Universität Mainz Ralf Omlor Silica 
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2.3. Profiling sterols 

2.3.1. Extraction of sterols 

Routinely, sterols were extracted via the methanol/ water: chloroform protocol, as per 

intermediary metabolite extraction (section 0). However, large scale extraction employed 

creating slurry of dried plant tissue with diethyl ether (Acros Organics, ACS grade), incubated 

at -80 °C overnight. The extract was filtered under pressure (using Whatman glass microfibre 

filter paper (GF/A grade) with Büchner funnel and KNF Neuberger vacuum pump D7-800) and 

the liquid dried in a rotary evaporator (22 °C). The dried extract was resuspended in diethyl 

ether and partitioned against water. The organic phase was removed, dried under inert 

nitrogen and samples were stored at -80 °C until further processing. 

2.3.2. LC-MS for sterols 

Samples were reconstituted in dichloromethane ([DCM]; HiPerSolv) and centrifuged at 14000 

rpm for 10 minutes. Samples were analysed using a maXis UHR Q-TOF mass spectrometer 

(Bruker Daltonics), on-line with a UPLC UltiMate 3000 (Dionex Softron). For chromatography, 

samples (20μl) were injected onto a reverse-phase (RP) column (2.1 x 150mm, C30, 3μm 

particle size; YMC Inc.) coupled to a RP guard column (4.6 x 20 mm, C30, 5μm particle size; 

YMC Inc.). The mobile phase was comprised of (A) methanol: water (1:1) containing 0.1% 

formic acid (Sigma-Aldrich), (B) methanol/ methyl tert-butyl ether (Fluka, HPLC grade) (1:1) 

containing 0.1% formic acid. Elution from the column with a flow rate of 1 ml/min was carried 

out from 100% A for 5 min, followed by a linear gradient to 75% B over 35 min, a step to 100% 

B held for 10 min and re-equilibration of the column at 100% A for 15 min. The column 

temperature was maintained at 30 °C and autosampler kept at 4 °C. 

APCI (Bruker Daltonics) ionisation temperature at 450 °C, dry gas (nitrogen) at 1.3 L/min and 

nebuliser and 2 bar. The APCI source settings for detection were: corona discharge voltage at 

6000 nA and a capillary voltage of 1.5 kV, with the end plate set at 500 V. A full MS scan was 

performed from 100–1600 m/z and MS/MS spectra were recorded at an isolation width of 0.5 
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m/z operating in “auto MS” mode with a collision energy ramp from 35 to 70 eV. Instrument 

calibration was performed externally prior to each sequence with ESI-TOF tuning mix (Agilent 

technologies) and automated post-run internal calibration was performed by injecting the 

same calibrant solution at the end of each sample run via a six port divert valve equipped with 

a 20μl loop. 

2.3.3. LC-MS sterol data processing 

Spectra were processed using Compass Data Analysis 4.0 (Bruker Daltonic) including 

chromatogram base-peak extraction, smoothing, compound dissection and deconvolution. 

Molecular formulas were calculated via SmartFormula and the spectra manually interpreted as 

per189,203,204 in order to identify compounds of sterol class. 

2.4. Profiling carotenoids 

2.4.1. Preparation of standards 

Standards were prepared using treatment with meta-chloroperoxybenzoic acid [mCPBA]205 

(Sigma-Aldrich, technical grade) and/ or dilute HCl206 (0.1M; conc. HCl from Fluka, analytical 

grade) and dried using a centrifugal evaporator. Standards were resuspended in ethyl acetate 

(Fluka, HPLC grade), volume adjusted to ensure well resolved spectra and compounds 

identified with comparison to reported retention times, spectra and elution orders205–207. 

2.4.2. Extraction of carotenoids 

Carotenoids were extracted followed a modified protocol from193,208, whereby 200mg of tissue 

was extracted in 15mL borosilicate glass test tubes (Fisherbrand). To each sample, 6mL of 

glacial chloroform:methanol (2:1) was added, vortexed (3000 rpm, 10 s) and stored for 15 min 

at -20 °C. Subsequently, 2mL of ice cold 100mM Tris-HCl buffer (pH 7.5 and containing 1M NaCl 

[Trizma base, Sigma-Aldrich; HCL, Fluka, Analytical grade; NaCl, BioXtra) was added. Samples 

were vortexed (3000 rpm, 10 s), centrifuged at 4000 rpm (Eppendorf Centrifuge 5810R) for 5 

minutes at 4 °C to facilitate phase separation, and the organic phase removed using glass 
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Pasteur pipette (Fisherbrand). Repeated extractions were undertaken until material was 

exhausted of visible colour (typically 1-2 extractions). Organic phases were dried in a rotary 

evaporator and stored at – 80 °C before further processing. 

Saponification involved the addition of (2mL) methanolic KOH (10%; KOH, Sigma, ACS grade), 

vortexing (3000 rpm, 10 s) and incubated at 40 °C for 15 min, followed by addition of 

chloroform (4mL), vortexing and incubation at -20 °C for 10 minutes. Phase separation was 

facilitated by addition of water (2mL) and then processed as per normal extractions however; 

the organic phase was washed with water (1 volume) twice further and then dried as before. 

For increased identification of carotenoids, larger extractions were carried out on selected 

samples, using 1 gram of material with extended centrifugation times of 10 mins. 

2.4.3. HPLC-PDA for isoprenoids 

Samples were analysed using a high performance liquid chromatography [HPLC] Waters 

Alliance 2600S system with a PDA (Waters 966; wavelength range 200-600 nm) A Waters 

Alliance model 2695 injection and solvent delivery system was used. 

Samples were reconstituted in ethyl acetate (50 µL) via sonication for 5 minutes at RT, 

centrifugation at 14000 rpm for 5 minutes and removal of the top 40 µL into glass vials with 

insert (Supelco). Prior to injection re-suspended samples were kept at 8 °C in the dark. Samples 

(20μl) were injected onto a reverse-phase (RP) column (4.6 x 250mm, C30, 5μm particle size; 

YMC Inc.) coupled to a RP guard column (4.6 x 20 mm, C30, 5μm particle size; YMC Inc.) at 25 

°C. The mobile phase was comprised of (A) methanol, (B) methanol/water (80:20, v/v) 

containing 0.2% (w/v) ammonium acetate (Sigma-Aldrich) and (C) tert-butyl methyl ether. 

Elution from the column with a flow rate of 1 ml/min was carried out from 95%A and 5%B for 

12 min, followed by a step to 80%A, 5%B and 15%C and a linear gradient to 30% A, 5%B and 

65% C for 18 min. The column was then returned to initial conditions over the next 30 min208. 

2.4.4. HPLC data processing 
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Peaks were manually integrated using Empower software (Waters Alliance). Samples were 

analysed continuously from 200-600 nm and peak areas extracted from recordings at 450 nm, 

350 nm and 286 nm. Identification of isoprenoids was performed by the comparison of 

spectral and chromatographic characteristics to standards and literature references209. 

2.4.5. LC-MS for carotenoids 

Concentrated samples were analysed using a maXis UHR Q-TOF mass spectrometer (Bruker 

Daltonics), on-line with a UPLC UltiMate 3000 with PDA detector (200-600 nm; Dionex 

Softron). Chromatographic procedures followed that of Perez-Fons210. Briefly, separations 

were made on an RP C30 3μm column (150×2.1 mm i.d.; YMC inc.) coupled to a 20×4.6 mm 

C30 guard column (YMC inc.). The mobile phase comprised of (A) methanol containing 0.1% 

formic acid (by vol.) and (B) tert-butyl methyl ether containing 0.1% formic acid (by vol.). A 

gradient mode was used, starting at 100% (A) for 5 min, stepped to 95% (A) for 4 min and 

followed by a linear gradient over 30 min to 25% (A). After this gradient (A) was a stepped 

down to 10% over 10 min. Initial conditions (100% A) were restored for 10 min after the 

gradient to re-equilibrate the system. The flow rate was 0.2 mL /min. Detection was performed 

by APCI in positive ionisation mode using the same setting as used for sterol profiling (section 

2.3.2). 

2.4.6. LC-MS carotenoid data processing 

Spectra were processed using Compass Data Analysis 4.0 (Bruker Daltonic). Base-peak UV 

chromatograms were extracted at 450nm wavelength and aligned to the base-peak 

chromatogram (~8s shift). Compounds were targeted via extracted ion-chromatograms of the 

[M+H] ion. 

2.5. Statistical analyses and visualisation 

All data analyses were performed using XLSTAT add-ins (Addinsoft) within Microsoft Excel. 
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Generalised Procrustes Analysis [GPA] was performed using the Commandeur algorithm with 

300 simulations. Agglomerative hierarchical clustering [AHC] was performed using complete 

linkage on the spearman dissimilarity matrix. Principal Component Analysis [PCA] was 

conducted on the Spearman correlation matrix. Partial Least Squares Discriminant Analysis 

[PLS-DA] was performed on centred and reduced variables and validated by a random subset 

of ≥25% of variables. Metabolite-metabolite correlations were performed via spearman 

correlation coefficients and heat-maps arranged via AHC or assignment of compounds into 

KEGG pathways211. Multiple correspondence analysis [MCA] was performed on binary 

presence/ absence variables tables. 

Scatterplots used all available data points. Due to the small sample sizes, it was chosen that 

further analysis was conducted using non-parametric tests. Kruskal-Wallis’ one way analysis of 

variance were performed and Monte Carlo permutations (10000) were used for p-value 

calculation. Conover-Iman post hoc tests (α=0.05) were Bonferroni- corrected and selection of 

most discriminatory metabolites based on the number of groups generated. All univariate tests 

were two-tailed. 

Visual displays (pathways, schemes etc.) were created in Microsoft Powerpoint. Chemical 

structures were drawn in Chemsketch version 10.02 (ACD/ Labs). 
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3 METHOD DEVELOPMENT AND APPLICATION FOR ANALYSING BIOCHEMICAL DIVERSITY 

IN THE GENUS DIOSOREA 

3.1. Introduction 

A robust workflow is crucial for all metabolomics studies as the approach requires 

reproducible measurement of diverse metabolic features across large sample sets; often 

analysed over a significant period of time. Within this work the complexities of metabolomics 

are increased due to limited material availability, intent that the developed platform be 

applicable to numerous species with little previous biochemical information, and requirement 

for the approach to be transferable and easily adapted or extended by other users. 

Numerous aspects of the workflow including extraction methods, technical repeatability and 

statistical analyses have been optimised to provide a core analytical approach and potential for 

further complementary analyses from limited material. The core approach has then been 

applied to analyse the biochemical diversity of Dioscorea from across the phylogenetic clades. 

3.2. Method Development 

3.2.1. Initial Method Choices 

At the time of development only leaf material was available from the sample set intended for 

investigation into the biochemical diversity across genus (Table 2.1) Due to the small amount 

of each sample available, many parameters of the experimental approach were selected based 

upon established methods202,212 to limit the material resources required for method 

development. These choices are justified below: 

Material acquisition and storage is an important factor in the development of the 

metabolomics platform as the approach is intended to integrate into large, long-term studies 

with sample sets being transferred for analysis to and from numerous locations. Drying of 

material allows sample preservation prior to extraction and easier transport of material 
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between localities213. Sampling into liquid nitrogen followed by lyophilisation was the 

preferred method selected, as rapid freezing provides instant quenching of metabolites and is 

a recommended approach for plant metabolomics166. 

Metabolites were chosen to be extracted from 10mg of dried sample as this was the smallest 

that could be weighed with accuracy and precision with the laboratory scale available. 

GC-MS analysis was decided as the central technique of the overall platform, largely due to 

relative affordability which allows widespread application. Profiling via GC-MS is considered 

the current gold standard technique166 providing good resolution, high reproducibility214 and 

can achieve broad compound coverage215. A wealth of available resources such as established 

protocols202, large compound libraries152 and analysis software215. An example of this 

advantage was the choice of AMDIS (Automated Mass Spectral Deconvolution and 

Identification) software to analyse data produced via GC-MS analysis. The software is freely 

available and provides sophisticated, easy and fast analysis of complex samples.  When 

coupled with the NIST MS Search tool this approach allows accurate automatic identification of 

compounds by comparison to commercially or publically available compound libraries216. In 

addition, AMDIS facilitates manual creation of easily shareable libraries which are compatible 

with different analytical platforms198. 

A classic methanol:water:chloroform extraction procedure was chosen for simplicity, as this 

extraction procedure is common for plant metabolomics studied via GC-MS analysis217. 

Extracts can also be aliquoted, dried and stored at -80 °C for long periods of time to allow 

repeated measures and other analytical techniques to be conducted on an individual extract. 

Derivatisation of aliquoted extracts undergoing GC-MS analysis was selected to improve 

properties for detection by GC-MS by lowering the polarity and increasing volatility of 

compounds, thus increasing sensitivity152. Again, an established approach: methoximation 

followed by silylation using MSTFA, was chosen218. 
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Once these decisions had been made, the parameters requiring further optimisation were 

focussed on. 

3.2.2. Optimisation of extractions 

The methanol:water:chloroform (1:1:2) extraction was optimised for repeatability and 

recovery of metabolites. The order of solvent addition was investigated via conducting 

extractions with different solvent addition order (Figure 3.1).

 

 

 

Figure 3.1. Optimisation of solvent addition order for metabolite extraction. Scattergram 
showing how solvent addition order affects the mean (+) number of metabolites extracted in 
polar (black) and non-polar (blue) phases. Samples with neutral (water) conditions (A, B, C, D) 
show less variation between the three replicates (o) compared to those under alkaline 
(1%KOH) conditions (D, E, F, G).  Letters signify the Initial solvent composition which was 
added then incubated for 1h prior to addition of remaining solvents for phase separation. A- 
MeOH:H2O:CHCl3; B- MeOH:H2O; C- MeOH; D-MeOH:CHCl3; E- MeOH:1%KOH:CHCl3; F- 
MeOH:1%KOH; G- MeOH; H- MeOH:CHCl3. 
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Additionally, an alkaline extraction was tested, modified from those tested on bacteria219 and 

fungi220;  as these are commonly sterol rich. Incubation for an hour with methanol:water (B), 

then addition of chloroform extracted the most metabolites in a repeatable manner (all three 

replicates clustered) for both polar and non-polar phases. Extracts conducted under alkaline 

conditions  (D, E, F & G) showed a similar trend as their non-adjusted counterparts (A, B, C & D, 

respectively) however, the variability between replicates was increased, especially within non-

polar fractions. 

The ratio of 

methanol:water in 

the first extraction 

step was also 

optimised. 

Extractions were 

conducted with the 

initial concentration 

of aqueous phase 

ranging from 20 to 

100 % methanol 

(Figure 3.2). The 

greatest average 

(mean) recovery of metabolites was 87 when using 50% methanol. This was also repeatable as 

evidenced by clustering of individual samples. Samples conducted using 100% methanol 

showed reduced a reduced number of metabolites extracted. 

The recovery of metabolites was investigated by conducting consecutive repeat extractions on 

individual samples and analysing each extraction independently (Table 3.1). Recovery rates for 

Figure 3.2. Optimisation of initial methanol concentration for 
metabolite extraction. Scattergram showing how the percentage of 
methanol affected the mean (+) number of metabolites recovered from 
polar extractions, performed in triplicate (o). 
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many compounds were low (<70% of the total extracted via three extractions) but there were 

no qualitative changes (new metabolites extracted) following multiple extractions on samples. 

Table 3.1. Average metabolite recovery following multiple extraction on individual samples. 

 

Extraction number 

Metabolite 1 2 3 

Lactic acid (2TMS) 21.97 54.61 23.42 

L-Alanine (2TMS) 100.00 0.00 0.00 

Hydroxylamine (3TMS) 36.57 56.17 7.26 

Malonic acid (2TMS) 100.00 0.00 0.00 

L-Valine (2TMS) 91.05 8.95 0.00 

Serine (2TMS) 84.29 15.71 0.00 

Ethanolamine (3TMS) 83.08 16.92 0.00 

L-Leucine (2TMS) 100.00 0.00 0.00 

Glycerol (3TMS) 47.45 27.49 25.06 

Phosphate (3TMS) 83.35 15.27 1.38 

Isoleucine (2TMS) 94.22 5.78 0.00 

L-Proline (2TMS) 100.00 0.00 0.00 

Glycine (3TMS) 100.00 0.00 0.00 

Succinic acid (2TMS) 31.26 33.20 35.53 

Fumaric acid (2TMS) 100.00 0.00 0.00 

L- Aspartic acid (2TMS) 100.00 0.00 0.00 

Malic acid (3TMS) 97.37 2.63 0.00 

Erythritol (4TMS) 100.00 0.00 0.00 

GABA (3TMS) 100.00 0.00 0.00 

Threonic acid (4TMS)  100.00 0.00 0.00 

Xylulose (4TMS) isomer 1 100.00 0.00 0.00 

Xylulose (4TMS) isomer 2 100.00 0.00 0.00 

Xylitol (5TMS) 100.00 0.00 0.00 

Ribitol (5TMS) 100.00 0.00 0.00 

Citric acid (4TMS) 100.00 0.00 0.00 
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Isocitric acid (4TMS) 100.00 0.00 0.00 

Fructose (1MEOX 5TMS) isomer 1 65.97 18.15 15.89 

Fructose (1MEOX 5TMS) isomer 2 66.67 33.33 0.00 

Galactose (1MEOX 5TMS) isomer 1 100.00 0.00 0.00 

Glucose (1MEOX 5TMS) isomer 1 66.43 33.57 0.00 

Galactose (1MEOX 5TMS) isomer 2 100.00 0.00 0.00 

Glucose (1MEOX 5TMS) isomer 2 65.12 15.82 19.06 

Mannitol (6TMS) isomer 1 100.00 0.00 0.00 

Mannitol (6TMS) isomer 2 100.00 0.00 0.00 

Inositol, scyllo (6TMS) 81.49 13.99 4.52 

Sedoheptulose (1MEOX 6TMS) 100.00 0.00 0.00 

Sucrose (8TMS) 78.82 18.05 3.13 

Maltose (1MEOX 8TMS) 100.00 0.00 0.00 

Melibiose (8TMS) isomer 1 85.82 14.18 0.00 

*Mean (n=3) recovery, expressed as a percentage of the total amount recorded from summing 
all three successive extracts. 
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3.2.3. Optimisation of Derivatisation 

The derivatisation times were optimised for both methoximation and silylation times and 

loading volumes on the GC-MS were selected to give greatest reproducible compound 

coverage149. The length of time that samples underwent methoximation reaction was 

investigated by conducting derivatisations of different reaction length in parallel (Figure 

3.3)221. 

Figure 3.3. Optimisation of methoximation time during derivatisation. Scattergram showing 
how the length of time that methoximation reaction occurs effects the mean (+) number of 
metabolites recovered from polar extracts of replicate samples (o). Embedded table shows 
that no unreacted fructose and glucose is measureable after 30 minutes incubation and the 
average (mean, n=3) repeatability (expressed in %CV) of isomer ratios recorded for these two 
sugars for each methoximation time. 
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Specific to the methoximation reaction is the ratio between sugar isomers and as such glucose 

and fructose were analysed in detail (Figure 3.3 embedded table). No unmodified glucose and 

fructose isomers were detected in samples with a reaction time longer than 30 minutes. A 180 

minute reaction time proved to be most stable (lowest CV) for the ratio between isomers of 

glucose and fructose, followed by 120 minutes. 

An overnight reaction gave an average of 87 recorded metabolites however upon manual 

inspection, many of these were found to be artefacts and contaminants. A 120 minute 

methoximation time provided both good stability between sugar isomers and also relatively 

high metabolite coverage (67) without contaminations. The shorter time would enhance the 

speed of screening and so was favoured over 180 minutes.  

 

The silylation time was also optimised via derivatising samples for different reaction lengths 

(Figure 3.4). Silylation reduces the polarity and increases the volatility of compounds in 

extracts making them more suited for GC-MS. Additionally, silylated products produce robust 

fragmentation patterns allowing for enhanced identification152. Variation was similar for all 

reaction lengths (similar distribution of replicates). A 120 minute reaction time was selected as 

Figure 3.4. Optimisation of silylation times during derivatisation. Scattergram showing how 
the length of time that silylation reaction occurs effects the mean (+; n=3) number of 
metabolites recovered from polar extracts of replicate samples (o). 
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this produced the highest number of recordable metabolites. Longer than this and samples 

may have shown thermal degradation. 

Following the optimisation of these parameters, the linear range of metabolite response was 

assessed by following the standard extraction procedure on different amounts of material (5, 

10 and 20 mg)221 and by taking a range of aliquots (10, 20, 50, 100 and 200 µL). A strong linear 

response (R2 > 0.98) was shown for 41 compounds measured (Table 3.2). It was noted that 

sampling  100 µL from polar extracts (800 µL total, extracted from 10 mg) overloaded the MS; 

however was necessary to achieve acceptable coverage of the metabolome. At this range (10 

mg x 100 µL = 1000) sugars (fructose, glucose, inositol and sucrose) are not within the linear 

response and so it was decided to also inject samples in a 1:10 split mode for quantification of 

sugars. 

3.2.4. Optimisation of software settings & statistical analysis 

Due to the complexities of chromatograms encountered during method development, the 

software settings on AMDIS were also decided upon to give most accurate metabolite 

identification with fewest misidentifications / false positives following manual curation. For 

this, the most conservative parameters of peak deconvolution were applied for polar extracts. 

However, less stringent parameters were selected for non-polar compounds. This largely 

results from the fact the polarity of such compounds means they are inherently less amenable 

to the analytical method (Appendix 3.1). Identification of peaks to reference databases etc. 

was conducted and authentic standards purchased if necessary for confirmation. Reporting of 

metabolite identification has been performed in line with the metabolomics standard 

initiative199,200 and all compounds analysed in the work put into a Dioscorea-specific metabolite 

library.
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Table 3.2. Linearity of metabolite response following extraction and loading volumes of 
different sample amount.  
Metabolite R2 Range*  Equation 

Lactic acid (2TMS) 0.9551 1000-4000 y = 6E-06x - 0.0029 

L-Alanine (2TMS) 0.9831 50-4000 y = 0.0001x - 0.0226 

Glycine (2TMS) 0.9668 500-4000 y = 2E-06x - 0.001 

Malonic acid (2TMS) 0.9888 1000-4000 y = 0.0004x - 0.0161 

L-Valine (2TMS) 0.9927 200-4000 y = 3E-05x - 0.0093 

Ethanolamine (3TMS) 0.9879 50-4000 y = 0.0007x - 0.0784 

L-Leucine (2TMS) 0.9801 500-4000 y = 2E-05x - 0.0102 

Phosphate (3TMS) 0.9864 50-4000 y = 0.0028x - 0.3814 

Isoleucine (2TMS) 0.9975 1000-4000 y = 3E-05x - 0.0087 

L-Proline (2TMS) 0.9988 1000-4000 y = 2E-05x - 0.0072 

Glyceric acid (3TMS) 0.9405 500-4000 y = 2E-05x - 0.011 

Fumaric acid (2TMS) 0.9243 50-4000 y = 2E-05x - 0.0052 

L-Serine (3TMS) 0.9824 50-4000 y = 0.0017x - 0.3024 

L-Threonine (3TMS) 0.9942 50-4000 y = 0.0003x - 0.042 

Malic acid (3TMS) 0.9806 50-4000 y = 0.002x - 0.4263 

Threitol (4TMS) 0.99 50-2000 y = 0.0007x - 0.0501 

Pyroglutamic acid (2TMS) 0.9995 50-4000 y = 0.0005x + 0.0243 

L-Aspartic acid (3TMS) 0.9947 50-1000 y = 0.0003x - 0.0373 

GABA (3TMS) 0.9919 50-4000 y = 0.0001x - 0.0244 

Xylulose (4TMS) isomer 2 0.9509 50-4000 y = 0.0032x - 0.8591 

Ornithine (3TMS) isomer 1 0.9983 1000-4000 y = 0.0003x - 0.1029 

Phenylalanine (2TMS) 0.9886 50-4000 y = 8E-05x - 0.0164 

L-Asparagine (2TMS) 0.9957 50-4000 y = 1E-04x - 0.0121 

Allantoin derivative 1 0.9749 50-4000 y = 0.0014x - 0.3783 

Xylitol (5TMS) 0.9972 200-4000 y = 8E-05x - 0.0109 

Ribitol (5TMS) 0.9905 500-4000 y = 7E-05x - 0.0221 
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Metabolite R2 Range*  Equation 

Putrescine (4TMS) 0.9971 1000-4000 y = 2E-05x - 0.0074 

Ornithine (3TMS) isomer 2 0.9418 50-4000 y = 6E-05x - 0.018 

Allantoin derivative 2 0.9766 50-4000 y = 0.0006x + 0.0548 

Methylfructoside (4TMS) 0.749 50-4000 y = 0.0003x - 0.1169 

Fructose (5TMS) isomer 1 0.9929 50-1000 y = 0.0177x - 8.0905 

Ornithine (4TMS)  0.9906 50-2000 y = 0.0016x - 0.1355 

Fructose (5TMS)  isomer 2 0.9993 50-1000 y = 0.0067x - 3.1931 

Citric acid (4TMS) 0.9952 200-2000 y = 0.0008x - 0.2785 

Arginine [-NH3] (3TMS) 0.9728 50-4000 y = 0.0004x - 0.1047 

Estra-1,3,5(10)-trien-6-one, (16α,17β)- (3TMS) 0.9909 100-2000 y = 0.0002x - 0.0694 

Fructose (1MEOX 5TMS) isomer 1 0.9909 50-500 y = 0.0123x + 3.7382 

Fructose (1MEOX 5TMS) isomer 2 0.9946 50-500 y = 0.0086x - 4.0927 

Glucose (1MEOX 5TMS) isomer 1 0.9846 50-500 y = 0.0024x - 1.1549 

Glucose (1MEOX 5TMS) isomer 2 0.9792 50-500 y = 0.0031x + 0.0165 

L-Lysine (4TMS) 0.996 200-1000 y = 0.0003x - 0.0787 

Mannitol (6TMS) isomer 1 0.9949  200-4000 y = 6E-05x - 0.0049 

L-Tyrosine (3TMS) 0.9501 1000-4000 y = 1E-05x - 0.0065 

Mannitol (6TMS) isomer 2 0.9917 100-2000 y = 0.0001x - 0.0503 

Glucopyranose (5TMS) 0.9785 200-1000 y = 0.0288x - 13.128 

Gluconic acid (6TMS) 0.9991 1000-4000 y = 5E-05x - 0.0517 

Inositol, scyllo (6TMS) 0.9541 50-500 y = 0.0046x - 1.1565 

Catechollactate (4TMS) 0.9834 500-4000 y = 2E-05x + 0.0024 

Dopamine (3TMS) 0.9949  50-2000 y = 0.0001x - 0.0145 

Sedoheptulose (1MEOX 6TMS) 0.9608 50-2000 y = 0.0002x - 0.0237 

Tryptophan (2TMS) 0.995 1000-4000 y = 6E-05x - 0.0644 

Inositol-2-phopsphate , myo- (7TMS) 0.9995 1000-4000 y = 2E-05x - 0.0076 

Sucrose (6TMS) 0.9879 50-500 y = 0.0283x + 1.4943 
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Metabolite R2 Range*  Equation 

Melibiose (8TMS) isomer 1 0.9858 1000-4000 y = 6E-05x - 0.0147 

Similar to Caffeic acid (3TMS) 1 0.988 1000-4000 y = 3E-05x - 0.0115 

Similar to Sucrose (8TMS) 2 0.8857 50-4000 y = 1E-05x - 0.0043 

Similar to Caffeic acid (3TMS) 3 0.9973 400-4000 y = 0.0003x - 0.0808 

*Range = mg of material * µL aliquot taken. Analyses in triplicate. 

 

Further to this, all statistical analysis was decided to be based upon exploratory statistics with 

any univariate analyses conducted using non-parametric techniques where necessary. Non-

parametric approaches are less powerful, yet more robust than parametric approaches222–224. 

These approaches are not limited by as many assumptions on datasets and thus were chosen 

given the fact no prior hypothesis were made for Dioscorea metabolomics. 

3.3. Biochemical diversity across genus 

To assess biochemical diversity across the genus, leaf material from a diverse species set of the 

Kew Living Collection (http://epic.kew.org/index.htm) were sampled. Collection excluded 

species which were in senescence or not in glasshouse as these species were deemed not 

comparable due to varying developmental stage and environmental conditions, respectively. In 

total, 28 accessions were sampled; comprising 19 species of 6 to 7 major phylogenetic 

clades2,24 with 8 sub-clades (Table 2.1). 

Following analysis of polar fractions on the GC-MS platform, 151 metabolic features were 

quantified relative to internal standard (Appendix 3.2). 

Compounds comprised carbohydrates, amino acids, some nucleotides, secondary metabolites, 

monoamines and derivatives and provided broad coverage of primary metabolism. 

Normality testing showed that data was not normally distributed. Principal Component 

Analysis [PCA] was performed on the Spearman correlation matrix. PCA showed that replicate 

http://epic.kew.org/index.htm
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samples clustered, however separate blocks of analytical runs could be distinguished 

(Appendix 3.3). 

To overcome this it was decided to conduct Generalised Procrustes Analysis [GPA], treating 

each sample set independently. The GPA analysis on data produced a consensus arrangement 

(Figure 3.5) which described 85% of total variation (Rc= 0.847). In this arrangement, replicate 

samples and those of the same species largely clustered. Species tended to group on the basis 

of phylogenetic and/ or morphological traits, however the model was complex. There was no 

apparent bias introduced due to the samples being grown in neither different glasshouse 

conditions nor the different dates of sampling. 

The consensus model generated was complex with over 10 dimensions above the 95th 

percentile (F-test). Of these, the first two dimensions describe a total of 48.56% of variation. D. 

membranacea and D. sylvatica(2) samples were shown to have most variance across 

replicates, deviating most from the consensus. Additionally, each replicate set was shown to 

give a comparable consensus arrangement with no particular replicate set deviating and thus 

all analytical batches provide the same general trends (Appendix 3.4). 

The complexities of the GPA model hindered detailed analysis and therefore ways to reduce 

and simplify the data were sought. Variance testing showed that a large number of 

metabolites showed multicollinearity. As a consequence, the number of metabolites within the 

GPA was reduced sequentially. Kruskal-Wallis testing was performed to identify the most 

discriminatory variables and Bonferoni-corrected Conover-Iman post-hoc tests used to classify 

variables on the basis of how many groups within the data they distinguished. 
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Figure 3.5. Generalised 

Procrustes Analysis on 

metabolites in polar 

extracts of leaves of the 

Kew Living Collection. 

Transformed 

configuration of the polar 

fraction of metabolite 

extracts from leaf of 

Dioscorea, analysed by 

Gas Chromatography- 

Mass Spectrometry for 

all six replicate analyses 

[Rc=0.847 (100th 

percentile); F1=78.998, 

F2=72.105 (p<0.0001). 
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GPA models were then created including variables that distinguished a minimum number of 

groups within the data, and if the consensus was deemed similar to original GPA (via manual 

visual inspection of F1 and F2), then the number of groups discriminated was increased, so as 

to reduce the variables included in the model. From this approach the 151 metabolites were 

reduced to 41 which gave a similar GPA model showing the same general trends (Figure 3.6). 

Further variable reduction was deemed to deviate too far from the consensus using all 

metabolites (Appendix 3.5). 

Analysis on the reduced GPA model showed that caudiciform species of the Southern and 

Montane Africa (Afr) clade or [Testudinaria] (comprising D. elephantipes and D. sylvatica) 

formed a distinct group characterised by abundance of shikimic acid and pyrogallol. The 

majority of Compound-leafed species (D. pentaphylla, D. cochleari-apiculata & D. dumetorum) 

migrated towards sucrose, citric acid; ascorbic acid and its degradation product erythronic acid 

to form a cluster (North on F1, West on F2). Exceptions to this were D. bulbifera and D. antaly. 

D. bulbifera showed a profile more similar to the cultivated species of Enantiophyllum e.g. D. 

alata and D. rotundata (in the same plane on F1) whereas D. antaly clustered with crop wild 

relatives of D. rotundata (D. praehensilis and D. minutiflora) and rhizomatous Stenophora 

lineages (D. membranacea, D. rockii) around the origin of the GPA. Species at the origin all 

presented higher levels of amino acids and monosaccharides. 

The species from the New World: D. composita (New World I clade) and D. altissima (CL 

personal communication, Paul Wilkin) clustered just West of the origin on F1 of the plot. D. 

alata and D. preussii (both Enantiophyllum) migrate from the origin, primarily due to the 

influence of scyllo-inositol. Glucose, fructose and xylulose are the predominant variables 

distinguishing D. rotundata from its crop wild relatives: D. praehensilis & D. minutiflora (all 

three Enantiophyllum). Samples of D. sansibarensis (Malagasy) were distinguishable on F2, yet 

not F1 with higher sugar content in one sample driving the separation. 
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Figure 3.6. Generalised Procrustes Analysis on reduced metabolite set in polar extracts of 

leaves of the Kew Living Collection. (a) Consensus configuration from a reduced dataset of the 

41 most discriminatory variables, with (b) loadings; which shows the same trends as using all 

metabolites in the analysis [Rc=0.898 (100th percentile); F1=85.499, F2=64.471 (p<0.0001)]. 
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Agglomerative Hierarchical Clustering (AHC) was conducted on the mean-averaged responses 

of all metabolites (Figure 3.7) and highlighted the affinity of D. rotundata and crop wild 

relatives: D. praehensilis and D. minutiflora (Enantiophyllum) with the basal lineages of 

Dioscorea: Stenophora and New World. Additionally, the Testudinaria clade (D. elephantipes 

and D. sylvatica) formed a tight cluster. Compound-leafed species formed two groups with an 

outlier present (e.g. the Malagasy species D. sansibarensis(1)) and again D. bulbifera absent, 

which clustered with the remaining Enantiophyllum. 

Figure 3.7. Clustering of Dioscorea based on metabolite profiles and relationship with 

phylogeny. Hierarchical tree of Dioscorea accessions based on mean (n=6) metabolite 

compositions shows relationship of chemotaxonomy with phylogenetic clades. Notably D. 

rotundata and crop-wild relatives (D. praehensilis and D. minutiflora) cluster with basal 

lineages of the Stenophora and New World I clades. 
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The cluster analysis was extended to metabolites (Appendix 3.6) and showed that 

biochemically-related compounds tended to group, with sugars related to starch (fructose, 

glucose, sucrose) clustering with TCA intermediates (citric acid, malic acid, fumaric acid)  and 

also shikimic acid and scyllo-inositol. Most amino acids also fell into clusters (e.g. isoleucine, 

lysine, valine, alanine, leucine, penylalanine, proline all form a single clade also with 

ethanolamine). D. pentaphylla could be distinguished from other species due to a high 

abundance of dopamine and derivative norepinephrine. D. antaly could be uniquely identified 

due to high abundance of phenols (catechin, epicatechin and gallocatechin in addition to 

abundance of arginine and ornithine). 

The linkage between phylogenetic clade and geographic distribution (and thus morphology) of 

Dioscorea is evolutionary-based2. As the metabolite profiles largely clustered by clade in the 

GPA plots (Figure 3.5 & Figure 3.6) it was decided to visualise the clustering in geographical 

context. To avoid bias, species results were averaged when biological replicates were present 

and a similar clustering pattern was attained (Appendix 3.7). Species were mapped based on 

linkage between geographical habitats (Figure 3.8). First-degree linkages were between Asian 

and New World species (Figure 3.8a) whilst most secondary-linkages comprised those between 

Asia and Tropical Africa (Figure 3.8b). Third-degree linkages were widespread especially within 

Africa, and to Africa, from both Asia and the New World (Figure 3.8c). 

3.4. Discussion 

No previous metabolomics studies have been attempted on Dioscorea and so a robust analysis 

pipeline needed development. Since all metabolomics studies are a compromise and no single 

protocol will allow complete metabolome analysis reproducibility of a chosen method is vital 

and thus was selected for within this work. 
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3.4.1. Method development 

3.4.1.1. Initial choices 

The platform developed is intended to be a reference point for future metabolomics studies 

on Dioscorea. Many aspects of the pipeline were chosen on the basis of it needing to be 

applicable to those in developing nations, and due to constraints such as limited sample 

availability. Whilst these choices were justified earlier, the limitations they impose will be 

briefly discussed: 

Though quenching of material into liquid nitrogen and lyophilisation (freeze-drying) prior to 

analyses are deemed preferable sampling approaches for metabolomics studies166, the effect 

of this treatment on chemical composition is not well studied225. Depletive effects on particular 

metabolites have been shown225,226 however, comparisons in potato tuber showed that 

metabolite profiles of freeze-dried and fresh material provide equal reproducibility221. As such, 

where absolute quantification is not desired, as is the case with this platform, use of freeze-

dried material is valid221. 

Interestingly, air-, sun- and silica- dried samples of Dioscorea were also viable for analysis 

(Chapter 5) This could simply result from the fact that the majority of this work is cross-species 

comparisons whereas most metabolomics studies are inter-species and thus variation between 

species is greater than the effects of sample processing. 

The GC-MS platform was selected, though alternatives such as NMR and LC-MS are available 

(reviewed in227,228). LC-MS based methodologies provide the most versatile approach for 

analysis of diverse compounds over a wide dynamic range and have thus become most popular 

for metabolomics studies229. By comparison GC-MS is more targeted towards intermediary 

metabolism and requires sample derivatisation. In most studies on Dioscorea secondary 

metabolites and saponins in particular; have been the focus. This previous knowledge could 

have provided a basis for complete profiling. 
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Figure 3.8. Geographical relationships of Dioscorea species from clustering on polar 

metabolites of the Kew Living Collection. World map showing relationships between Dioscorea 

species from Asia (Asia) to the New World (NW), Tropical Africa (TA), South Africa (SA) and 

Madagascar (Mad)  based on a: first-degree, b: second-degree and c: third-degree linkages of 

samples following clustering on species-averaged metabolite compositions. Inter-continental 

transport is shown by dotted lines. World maps (from https://openclipart.org/) were modified 

in Microsoft Powerpoint. 

https://openclipart.org/
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Furthermore, LC-MS sample preparation is often simpler; requiring no derivatisation 

procedures and so may have produced a higher throughput core analytical platform.  

Additionally, the higher resolution of typical LC-MS equipment may have allowed a higher 

proportion of identifiable metabolites to be measured, which is eminent given the large 

amount of unknowns recorded in this study. However, analysis of LC-MS data is often more 

time-consuming and difficult which would have limited transferability. Additionally, protocols 

here are also amenable for further analyses by LC-MS where necessary (as shown in Chapter 

5). 

Many reagents for derivatisation are possible and different parameters have largely been 

reviewed in230. Methoximation followed by silylation by MSTFA was shown early favour231, 

however other methods have been shown to outperform when regarding certain compound 

classes232–235. Derivatisation is known to be inaccurate for many amino acids217 and thermally 

labile compounds221.  In this protocol a linear response was recorded for many amino acid 

derivatives and so appears robust. Additionally, the large literature available on 

methoximation and silylation reactions and artefacts / contaminants meant these could be 

easily identified and excluded from analyses236,237. 

The free software AMDIS was selected to deconvolute peaks and for automatic identification 

of compounds against libraries. Many alternatives are available including other open software 

and that of proprietary nature. AMDIS performs favourably compared to other software215,238, 

however can be slow as it requires some manual curation201. Within this work the whole 

library was manually curated. 

3.4.1.2. Optimised parameters 

After the initial choices were made, further parameters of the extraction and derivatisation 

were optimised. The extraction parameters tested were the initial concentration of methanol 

solution and the order of solvent addition. 
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Solvent addition order in the two-phase methanol: water/chloroform extraction showed that 

incubation with methanol:water prior to chloroform addition gave the highest recovery of 

metabolites. It was also shown that samples extracted under alkaline conditions exhibited 

more variation between replicates, which could be caused by sample degradation under these 

conditions (Figure 3.1). 

The incubation time following initial solvent addition was kept at 1 hour, yet would also be a 

major parameter affecting metabolite recoveries. For example, when chloroform was in the 

initial solvent composition lower metabolite recoveries were recorded (Figure 3.2). This likely 

relates to metabolite stability in the solvent, as colour deterioration was evident over time. 

Samples extracted using 100% methanol showed a lower number of metabolites extracted; 

due to solvent miscibility no phase separation occurred for these samples and this may have 

reduced the number of compounds present in extract. Additionally, as only the polar phase 

was examined the increased non-polar molecules in this single-phase extract may have 

masked polar compounds. One extraction step was deemed acceptable as no further 

metabolites were extracted in subsequent extractions. Performing a single extraction shortens 

the analytical time and thus enables higher-throughput profiling. Due to low recoveries (Table 

3.1), quantification of many metabolites are not accurate however, relative quantification is 

unaffected. A low recovery rate was obtained for many compounds which may be due to the 

high starch (and sugar) content of material compromising extraction efficiency. 

Optimisation of the derivatisation reaction for Dioscorea showed that a two hour 

methoximation (Figure 3.3) followed by two hour silylation reaction allowed best recovery 

with stable isomer ratios (Figure 3.4). These reaction times are often specific to sugar content 

of material under analysis. In potato there are conflicting reports of length of time for 

complete methoximation reaction221,239. It is noted however that for sugars such as sucrose it is 

recommended that a short and low temperature methoximation is used, however this will be 

compromising the measurement of some metabolites221,240. The reaction temperature was 
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therefore kept low at 40 °C. However, full method validation would require combined 

investigation into reaction time and temperature, in addition to the stability of derivatives and 

matrix-specific response. 

Additionally, it was noted that overloading of the GC-MS was necessary to increase 

compounds detected. The high amounts of sugars increased the dynamic range of metabolites 

beyond that of the GC-MS. Overloading of samples allowed the less abundant metabolites to 

be recorded, whilst sugars could then be quantified using a split approach. This approach is 

common with overloading for increased metabolome coverage shown in241 and a split and 

splitless approach taken in193,242. 

Due to the limited number of parameters studied within this work, and fact that 

phytochemical profiling via metabolomics has rarely been conducted on diverse Dioscorea 

material, it is not possible to assess the protocol in comparison to other available methods 

such as solid-phase extraction, alternative solvents, micro-wave assisted or sonication 

approaches, supercritical fluid extraction etc. alongside interacting parameters such as time / 

temperature/ pH of extraction and derivatisation reactions. However, it has been shown that a 

robust approach allowing repeatable relative quantification has been achieved, evidenced by 

clustering of replicate samples analysed two months apart. 

3.4.2. Diversity set analysis 

Analysis on a diverse collection of Dioscorea showed robust complex metabolite profiles could 

be attained from a small quantity of leaf material of each species (Figure 3.5). Additionally, 

sub-selections of metabolites could be identified which were representative of the overall 

metabolomics profiles (Figure 3.6). This simplified analysis is of benefit as it allows faster 

phytochemical screening on limited plant material and quicker interpretation of data. The 

reduced complexity of data analysis allowed faster transferability and uptake of the 

metabolomic approach in growing regions of yam. 
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Data generated from the developed platform showed that related species cluster (e.g. D. 

elephantipes with D. sylvatica; D. dumetorum with D. cochleari-apiculata) and that the little 

studied species D. altissima clustered with D. pentaphylla and the other CL species. 

Interestingly, this matches the updated phylogeny of the genus (personal communication via 

Paul Wilkin, unpublished), supporting the potential that a metabolomics approach can provide 

over the conventional morphological descriptors used for characterisation243. Well-sampled 

phylogenetic study suggest that Stenophora and New World clades are the most basal2,24. 

Within this work, the rhizomatous species of these clades appear to be a centre of biochemical 

origin (mostly central in the GPA, Figure 3.6). Relationships of cluster analysis indicate, as 

previously hypothesised, that Dioscorea originated in Asia with early transfer to the New 

World2. Additionally, profiles obtained for compound-leafed (CL) and African and Southern 

montane (Afr) clades are largely distinct whilst species of the Enantiophyllum, Malagasy and 

Birmanica clades form a larger cluster overlapping other clades. This is not a surprise given that 

they are the youngest evolutionary lineages and Enantiophyllum in particular inhabits a large 

geographical area. Notably, D. rotundata and its crop wild relatives (D. minutiflora and D. 

praehensilis) have similar biochemical profiles to Stenophora species and thus suggest the 

occurrence of convergent evolution. Around 90% of Stenophora species are distributed in 

Asia244, yet none in Africa where the central breeding programs of Dioscorea are based. Thus, 

international co-operation will be greatly important for future breeding of these crops and 

capturing of traits from basal lineages. 

The verification of Dioscorea species is often noted to be problematic24,25. Furthermore, a 

recent genotyping by sequencing [GBS] analysis could not discriminate Guinea yam species 

even when combined with ploidy analysis30. Metabolomics can aid both identification and also 

assess biochemical diversity concurrently, which is extremely beneficial to on-going breeding 

programs. 
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Incorporating geographical habitats into cluster analysis showed that most linkages between 

species are with Asia and thus supporting an Asian origin (Figure 3.8). Additionally, early 

transport to the New World has been hypothesised in recent work2 and this lends support to 

this. Once all linkages are visualised it can be seen that many centres for species diversity exist 

(e.g. Asia, New World, Tropical Africa and Madagascar) and transport between them seems 

prolific. Though limited sampling will obviously hinder the depth that this representation can 

be relied upon, it is interesting to note similarities to the work of Viruel et al., even indicating a 

similar divergence pattern as per the three time-points highlighted in that work. 

Environmental condition confers a large influence on the metabolome and it is advocated to 

conduct studies on plants grown under numerous conditions to allow robust associations with 

other “-omics” traits etc245. In this study, robustness is partially evidenced as samples were 

from different conditions. 

3.4.3. Statistical methods 

In typical metabolomics studies, data pre-processing and correction is commonly applied246,247. 

For example, an integrity check followed by data filtering and normalisation is common. 

Typical examples include the removal/ replacement of zero values and scaling to a quality 

control pooled reference samples per batch. Limited material meant that a pooled quality 

control was not possible. 

GPA is a multi-block method to analyse multiple tables of variables recorded on the same set 

of objects. The method achieves a consensus configuration of objects by applying Procrustes 

transformation to each variables table and then Principal Component Analysis (PCA) on the 

covariance matrix of the consensus (mean average) of the transformed data tables.  GPA 

retains the relative distances of objects in each individual variables table. Procrustes 

transformation has the addition benefit of making each individual variable table as alike as 

possible and thus negates some differences in measurements that arise from the analytical 

platform itself. 
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GPA has been shown to be an effective approach for analysis of metabolomics data, especially 

useful in studies when representative QC material is not available for scaling of data, such as 

when sample material is limited or not available to be pooled prior to screening, often the case 

in large-scale studies.  Also, when comparisons across sample sets are taken at different times 

e.g. over multiple growth seasons, GPA removes the need for timely scaling of samples to 

QC’s. Additionally, different measurements, e.g. from improved compound libraries, can be 

integrated with previous data without the need to reanalyse all previous sample sets. 

3.5. Overall conclusions 

The platform represents progress for Dioscorea with potential to aid other studies, re-

interpretation of historic data and implementation in breeding programs. Use of this GC-MS 

platform could be widely applied as cost is not prohibitive for developing countries growing 

yams (when compared to LC-MS and other approaches). The ease of use and transferability of 

Dioscorea-specific compound libraries can provide the basis for metabolomics platform within 

breeding programs and allows the identification of diverse lineages. 

Additionally, the many unknown abundant compounds in species highlight the further work 

required but provide potential leads for bioprospecting of this crop. The platform has been 

designed to allow extended analysis of non-polar212 and secondary metabolites on other 

platforms248 (e.g. LC-MS / UPLC-PDA) from the same sample. This may prove useful, especially 

for species of the Stenophora and Compound-leafed clades which are widely utilised due to 

their high sterol and alkaloidal contents respectively. Therefore, the platform provides a basis 

for more holistic biochemical understanding of the economically, nutritionally and medicinally 

important yet understudied genus of Dioscorea. 
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4 EXTENSION OF THE METABOLOMICS PLATFORM AND APPLICATION TO THE GLOBAL YAM 

BREEDING PROGRAM 

4.1. Introduction 

Despite yam tubers being vital for food security in developing nations, a lack of genomic 

resources and information have hindered molecular breeding. To fully exploit the potential of 

this crop species the metabolomics platform developed (Chapter 3) has been applied to tuber 

material from the global yam breeding program. Utility of the metabolomics resource intends 

to add value to current discovery pipelines by providing a new tool which can be integrated 

with other ongoing ‘-omics’ approaches of the breeding program to fully exploit the potential 

of crop species. 

4.2. Platform modification 

The workflow devised in Chapter 3 was followed when analysing a set of 49 parental lines 

provided from the global yam breeding program at IITA (Table 2.3). The robustness of the 

method was previously evidenced (Chapter 3), and as such three biological replicates were 

chosen for analysis for each line. Tubers were sectioned into 12, and six sections pooled 

(Appendix 4.1) prior to lyophilisation and homogenisation to create a representative sample 

minimising internal metabolite gradients within the tuber (adapted from221,249). Additionally, 

minor modifications were required such as longer centrifugation step during extraction to 

facilitate phase separation and different drying of polar extracts (storage at -20oC overnight 

and then dried under inert nitrogen). Within this study, non-polar extracts were also 

analysed212. The data analysis followed much the same process however; it was selected to 

include non-identified metabolites. To ensure robustness of approach when using a decreased 

number of replicates, only metabolite peaks which were present in all three replicate samples 

were included in analyses. 
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4.3. Diversity across breeding programs 

4.3.1. Diversity across elite lines 

Following metabolomic analysis, 152 metabolites were identified in tuber material (Appendix 

4.2). Extension of the platform has allowed the measurement of phytosterols, fatty acids and 

their derivatives in addition to the compound classes shown in Chapter 3 (carbohydrates, 

amino acids, some nucleotides, secondary metabolites, monoamines and derivatives). 

Additionally, 89 unknown molecular features were measured (Appendix 4.3). 

Twenty-eight of the 152 identified compounds were detectable in both polar and non-polar 

extracts which is not unexpected given the crude nature of separation between phases. Of the 

152 identified compounds, 41 were not detected in one of more species, with 9 being unique 

to an individual species and a further 7 uniquely absent in only one species (Table 4.1). 

However, these differences were accession specific and it was not possible to classify species 

based on presence / absence profiles. 

Multivariate statistical analysis was conducted on both polar and non-polar extracts 

independently along with the combined data set. 

GPA analysis on the combined dataset showed that total metabolite profiles and the 

composition of identified metabolites provide the same separation of material (Figure 4.1). 

Hierarchical clustering on metabolites shows that biochemically related metabolites largely 

cluster. Additionally, the majority of unknowns cluster into 4 distinct groups (Appendix 4.4). 

Coupled with the distribution of unknowns across retention time and both phases of the 

method, it is speculated that this infers that particular metabolite classes are not well 

represented during identification steps. Three of the groups of unknowns flank fatty acid 

derivatives e.g. monolaurin, monomyristin, ethyl palmitate and are speculated to be related 

compounds. 
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Clustering on species using the combined dataset showed that species were largely 

distinguishable, though the species complex of D. cayennensis and D. rotundata showed 

overlap (Figure 4.2). Accessions of D. dumetorum accessions delineate to an individual lineage. 

Additionally, D. bulbifera and D. alata segregate into individual lineages. D. cayennensis and D. 

rotundata dissociate into two mixed-species lineages. 

Discrimination between species was also apparent when profiling polar extracts (Figure 4.3a), 

with separation along factor (F)1 driven by sugars and that on F2 via organic acids. 

Species discrimination was not possible following analysis on the non-polar dataset (Figure 

4.3b), though D. dumeotrum was largely distinct. Notably, accession TDd 3774 (D. dumetorum) 

contained high quantitative differences in sterols and fatty acids however presented a polar 

profile indiscriminate from many other accessions of the D. dumetorum (Figure 4.3a). 

Analyses of the non-polar compositions excluding TDd3774 allowed further segregation of 

samples (Figure 4.4), largely into two groups: D. dumetorum forming one group independent 

from all other accessions. The split is similarly to that of TDd3774 (Figure 4.3a), driven by 

increased abundance of fatty acids and phytosterols (Appendix 4.6). 

The combined dataset was reduced to allow simplified analysis, as was conducted in Chapter 3. 

Following Kruskal-Wallis testing, the most discriminatory factors were displayed to show the 

range of relative abundances across the most diverse accessions (Appendix 4.7). The 

accessions displayed were chosen on their locations within the polar and non-polar GPA plots 

to present individual variable differences in samples that show the largest holistic 

compositional differences. 
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Table 4.1. Qualitative metabolite differences between species following GC-MS analysis on tuber extracts. 

 

D. alata D. bulbifera D. cayennensis D. dumetorum D. rotundata 

Threonic acid, 1,4-lactone (2TMS) x x x 

 

x 

d-Erythrofuranose (3TMS) x 

 

x 

  Arabino-Hexos-2-ulose (4TMS) x x x 

  Erythritol (4TMS) x x x 

 

x 

1-Desoxy-pentitol (4TMS) isomer 1 x x x 

 

x 

1-Desoxy-pentitol (4TMS) isomer 2 x x 

  

x 

3-Hydroxynorvaline (3TMS) 

   

x 

 L-Cysteine (3TMS) x x x 

  Ornithine (3TMS) isomer 1 x x x 

  Phloroglucinol (3TMS) 

 

x x 

  Arabinofuranose (4TMS) isomer 2 x 

 

x x x 

Gluconic acid (1MEOX 5TMS) x x 

  

x 

Lyxose (1MEOX 4TMS) isomer 2 

 

x x 

  Similar to Phloroglucinol (3TMS) x x x 

   Glycerol-4-Phosphate (4TMS) x x x 

  Ornithine (4TMS) x 

 

x 
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D. alata D. bulbifera D. cayennensis D. dumetorum D. rotundata 

Protocatechuic acid (3TMS) 

 

x x 

  Homogentisic acid (3TMS) 

  

x 

  Galactaric acid (6TMS) x x x 

  3-Deoxy-arabino-hexaric acid (5TMS) 

  

x 

 

x 

L-Lysine (4TMS) 

  

x 

  L-Tyrosine (3TMS) 

 

x x 

  L-Ascorbic acid (4TMS) x x x 

 

x 

Similar to Gluconic acid (6TMS) 1 

  

x x x 

Pantothenic acid (3TMS) x x x 

 

x 

Similar to Gluconic acid (6TMS) 3 x 

    Gluconic acid (6TMS) 

  

x 

 

x 

Dopamine (3TMS) x x 

 

x 

 cis-10-Heptadecenoic acid (1TMS) x x x 

  Methyl stearate x x x 

 

x 

Tryptophan (2TMS) 

  

x 

  Linolenic acid (1TMS) x x 
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D. alata D. bulbifera D. cayennensis D. dumetorum D. rotundata 

Nonadecanoic acid (1TMS) x x x 

  Tricosanoic acid (1TMS) x 

 

x 

  Maltose (1MEOX 8TMS)  x 

    Similar to Sucrose (6TMS) x x x 

  Thymol glucopyranoside (4TMS) x x x 

 

x 

Catechin (5TMS) 

   

x 

 Gallocatechin (5TMS) x 

 

x x x 

Hexacosanoic acid (1TMS) x 

 

x 

 

x 

a-Tocopherol (1TMS)  x 

    Cholesterol (1TMS) 

    

x 

GC-MS analysis on the metabolite extracts of tuber material showed that 42 compounds were absent (x) in only some of the Dioscorea species. 
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Figure 4.1. Consensus GPA bi-plots following GC-MS analysis on tuber extracts. Consensus 
arrangements using (a) all metabolite features and (b) only identified metabolites shows the 
same species and sample discrimination. D. alata: orange, D. bulbifera: black, D. cayennensis: 
red, D. dumetorum: blue, D. rotundata: green. 
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Figure 4.2. Clustering via metabolite profiles following GC-MS analysis on tuber extracts. Dendrogram of yam breeding lines based on mean (n=3) measurements of 
identified compounds shows species cluster. D. alata: orange, D. bulbifera: black, D. cayennensis: red, D. dumetorum: blue, D. rotundata: green. 
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Figure 4.3. GPA plots on independent phases of tuber extracts. (a) Metabolite features of the polar phase show species separation but using (b) features in non-
polar phases does not. D. alata: orange, D. bulbifera: black, D. cayennensis: red, D. dumetorum: blue, D. rotundata: green. 
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Figure 4.4. GPA analysis on non-polar profiles of tuber material, excluding highly divergent 
accession TDd3774. (a) Consensus (n=3) bi-plot of samples. D. alata: orange, D. bulbifera: 
black, D. cayennensis: red, D. dumetorum: blue, D. rotundata: green. 
 

The scattergrams highlight the separation of TDd3774 due to fatty acids (linoleic acid, 

heptadecanoic acid and tetradecanoic acid), the high level of monosaccharides: glucose and 

fructose in TDb3072 and TDd3109 and complex distributions of amino acids across species and 

accessions. Using just these 33 most discriminatory compounds the major trends 

differentiating samples were beginning to be identifiable (Figure 4.5). 

An initial model of the tuber biochemical pathways has been created from all metabolites 

identified in the breeding program materials (Figure 4.6). 
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Figure 4.5. GPA analysis on tuber accessions using reduced set of metabolites. (a) Consensus sample configuration and (b) loadings plot for extracts for tuber 
material using only the 33 most discriminatory metabolite features, as selected via Kruskal-Wallis test. D. alata: orange, D. bulbifera: black, D. cayennensis: red, D. 
dumetorum: blue, D. rotundata: green. 
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Figure 4.6. Pathway representation of metabolites recorded in 
tubers of Dioscorea of breeding program. Visualisation shows 
comprehensive coverage of primary metabolome is possible 
via the GC-MS platform. Metabolites with preliminary 
identification are shown in green. Metabolites not detected 
by the platform are shown in red. 
 

Figure in three parts due to size: 

1. Starch and sugar metabolism 

2. Amino acid biosynthesis, TCA cycle & sterol biosynthesis 

3. Fatty acid biosynthesis 
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4.3.2. Detailed analysis on D. dumetorum 

The breeding materials comprised a majority of D. dumetorum accessions and so further 

detailed analyses were conducted on this species subset. 

Metabolite-metabolite correlation analysis across accessions showed that amino acids largely 

correlated with other amino acids, except aspartic acid which was negative correlation with 

amino acids. Sugars were largely negatively correlated with amino acids as was glycerol-4-

phosphate. Fatty acids positively correlate with their own compound classes and negatively 

with amino acids yet fatty acid derivatives negatively correlate with other fatty acids. 

Cholesterol and other sterol biosynthesis positively correlate with fatty acids and methyl 

stearate. Secondary metabolites correlate positively with amino acids and negatively with fatty 

acids. Nucleotides and cofactors positively correlate with amino acids (Figure 4.7). 

Cluster analysis upon the replicate-averaged dataset using only variables which significantly 

differentiate samples (Appendix 4.8) shows that 3 lineages can be distinguished (Figure 4.8). 

Using the classes as variables, a PLS-DA was conducted to investigate which compounds drove 

separation between the lineages (Figure 4.9). The PLS-DA model was validated with 85% 

accuracy and showed that samples of Class 1 (red branch) showed increased levels of amino 

acids and phosphate, Class 2 (green branch) were distinguished by glycerol mono-

pentadecanoate and homogentisic acid whilst Class 3 (blue branch) showed increased 

abundances of sugars and fatty acids. 
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 Figure 4.7. Metabolite-metabolite 
correlation analysis on D. dumetorum 
accessions. Spearman correlation 
between metabolites across all 
replicates (25 accessions, n=3) of D. 
dumetorum shows that compounds 
typically have significant correlations 
within compound class and between 
biochemically-related pathways. In the 
coloured area rectangles represent 
Spearman’s rho and in the black and 
white area, rectangles represent the 
respective p-value. Red lines separate 
different pathway assignments based 
on KEGG Pathway assignments211.  
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Figure 4.8. Clustering of D. dumetorum accessions using discriminatory metabolites. Complete linkage clustering on the spearman dissimilarity matrix of mean 
(n=3) metabolite abundances of discriminatory metabolites (Table 4.4) distinguished the D. dumetorum accessions into three groups: Class 1 (red), Class 2 (green) 
and Class 3 (blue). 
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Figure 4.9. PLS-DA analysis on D. dumetorum accessions using classes from hierarchical 
clustering. A regression model based upon classes following clustering of most discriminatory 
metabolites recorded in tuber extracts (Appendix 4.8) was 85% accurate using a validation 
subset of >25% observations. 
 

4.3.3. Spatial metabolomics 

Additional detailed study was conducted on five accessions:  TDa 98-01176, TDb 3059, TDc 04-

71-2, TDd 08-14-42 and TDr EHuRu. Metabolite gradients across the tuber were investigated 

whereby sections of head, middle, tail (Appendix 4.1) and also skin were analysed individually. 
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Analysis of the polar phases allowed relative quantification of 162 metabolites of which 93 

compounds were identified (Appendix 4.9). 

Initial exploratory analysis showed that the composition of the skin of all species was largely 

qualitatively different from the rest of the tuber. Additionally, it was apparent that gradients 

did exist between sections of tuber at least for D. rotundata, D. dumetorum, D. alata and D. 

bulbifera (Appendix 4.10). 

Following this, each species was analysed independently. Kruskal-Wallis testing was 

undertaken on the head, middle and tail sections to identify which metabolites showed 

significant (p=0.05) differences in abundance across the sections of tuber. A limited number of 

metabolites showed significant differences across different tuber sections; however these 

were species-specific with no single metabolite showing significant differences across sections 

for all species (Appendix 4.11). 

The scattergrams shows that compounds distinguishing sections of tuber are typically in higher 

abundance in the tail compared to that of the middle and head portions. All species except D. 

rotundata showed a gradient of malic acid concentration from highest abundance in tail to 

lowest in tuber. D. bulbifera showed a low-to-high gradient for many amino acids from head-

to-tail. The same gradient was evident in D. dumetorum but for sugars. Sections of D, 

rotundata showed the highest number of compounds which were significantly different in 

sections (16) however; there were not clear distribution patterns or metabolite gradients 

evident for many compounds. 

4.3.4. Tuber and leaf comparisons 

Additionally, the five accessions which underwent spatial metabolomics were grown in 

polytunnel at RHUL and analysis conducted on tuber and leaf material of same plants to 

investigate whether leaf metabolite profiles were representative of those of tuber.  In total 

337 metabolites were identified across the material. 
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Analysis on leaf and tuber material separately showed similar patterns of separation (Figure 

4.10a and Figure 4.10b); with replicates clustering and all species well defined. 

Combined analysis however highlighted that different compounds / scales of abundance must 

drive these trends and thus trends true for both tuber and leaf material for each species could 

not be identified (Figure 4.10c). As such, it was decided to conduct a PLS-DA analysis to identify 

if some metabolites could classify species correctly for both tuber and leaf material. 

An initial model was made using all 337 metabolites and species as the discriminant classifier 

(Appendix 4.12). From this model it was possible to predict species on the basis of tuber or leaf 

metabolites. The created model showed 90% accuracy on the validation subset. 

Detailed analysis also showed that particular compound classes were driving species 

characterisation (Appendix 4.13), such as D. dumetorum having a larger proportion of fatty 

acids and D. rotundata nucleic acids. Even when broad compound classes such as amino acids 

were not defining discrimination of species, such as for D. rotundata with D. alata and D. 

bulbifera; it was evidenced that separation was still apparent for more specific compound 

classes, with D. rotundata characterised by core amino acids in comparison to D. alata or D. 

bulbifera with other amino acids. 

Additionally a reduced model was created by using only the 50 top variable of importance 

(VIPs) in the initial projection (Figure 4.11). This reduced PLS-DA model was then able to 

predict species based on tuber / leaf metabolites with 100% accuracy on the validation subset 

and allowing compounds which contribute to the characterisation to be identified. D. 

dumetorum was defined by fatty acids, D. rotundata by TCA cycle intermediates and 

phosphate, and D. alata and D. bublifera both largely by sugars. 
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Figure 4.10. GPA analysis on the accessions grown in 
polytunnel at RHUL. Analysis on (a) leaf and (b) tuber 
materials show that the same trend of separation is present, 
yet analysis on (c) the combined dataset does not allow easy 
interpretation.  D. alata: orange, D. bulbifera: black, D. 
cayennensis: red, D. dumetorum: blue, D. rotundata: green. 
Leaf – circle, Tuber – squares. 
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4.4. Discussion 

A Dioscorea diversity panel consisting of lines from the global yam breeding program has been 

chemo-typed via a semi-automated GC-MS method. The extended platform has been applied 

to tuber material analysing both polar and non-polar phases and the large data generated can 

be integrated with other ‘-omics’ studies to add value to current breeding programs. From this 

work the first pathway representation of the yam tuber metabolome has been created (Figure 

4.6). 

4.4.1. Platform establishment 

Dioscorea tuber presents challenges for many analyses and these constraints limit the 

molecular resources available e.g. high polysaccharide (starch / sugar) and polyphenolic 

content hinders large-scale nucleic acid extractions for genomics and transcriptomics and lack 

of sequence data for homology searching of proteins14. However, simple modifications to 

conventional metabolomics methods (such as an extended centrifugation time and chilling of 

extracts prior to evaporation) have allowed robust and comprehensive biochemical analysis. 

The breadth of metabolite coverage of the devised platform for Dioscorea is comparable to 

that of metabolomics approaches conducted on more studied crops, irrespective of analytical 

platform e.g. potato (GC-MS  identification of 143 features)250, tobacco (143 metabolites 

identified via GC-SIM-MS) 184, rice (156 identified metabolites across 4 analytical platforms251, 

135 metabolites identified via LC-MS252, 121 metabolites identified via UPLC-MS/MS & GC-

MS253), brassica spp. (113 compounds identified via multiple GC-MS methods)254, wheat (112 

identified metabolites via GC-MS)241, tomato (70 metabolites from leaf and fruit via GC-MS)255, 

pepper (88 metabolites identified via various LC-MS(n) approached)256 and represents a 

technical advance in phytochemical screening of Dioscorea. The recording of all metabolite 

features provides the scope for further compound library development. 
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Figure 4.11. Reduced PLS-DA model using only top VIPs. (a) good prediction was attained with (b) metabolite loadings showing species projection. a) D. alata: 
orange, D. bulbifera: black, D. cayennensis: red, D. dumetorum: blue, D. rotundata: green. b) metabolites (orange), species prediction (blue). 
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4.4.2. Breeding program diversity 

Analysis of the 49 parental lines of the global yam breeding program allowed separation of 

species (Figure 4.1, Figure 4.2). This was previously demonstrated using leaf material and 

solely the polar metabolite profiles (Chapter 3, Figure 3.6). Independent analysis of polar and 

non-polar extracts evidenced that some trends are only identifiable when considering phases 

separately (Figure 4.3); such as the high fatty acids levels of accession TDd 3774 (Appendix 

4.5). This highlights a caveat of holistic techniques such as untargeted analyses and metabolite 

fingerprinting, where some particular features of data can be masked257. On a related note, 

metabolite identification is frequently recognised as a major challenge in the field222,258. Within 

this work clustering of samples showed the same trends when unidentified features were 

included and excluded (Figure 4.1a and Figure 4.1b respectively) i.e. identification is not a 

constraint. 

When analysing leaves, D. bulbifera was shown to be more biochemically similar to that of 

other widely cultivated species: D. alata and D. rotundata; than that of D. dumetorum in the 

same phylogenetic clade (compound-leaved) (Chapter 3). This was also shown when analysing 

extracts of tuber (Figure 4.5). Furthermore, relative quantification of the most discriminatory 

variables on the most diverse samples highlights that, for this sample set, differences in 

metabolite abundance are largely accession specific  (Appendix 4.7). This was also true for 

qualitative differences (Table 4.1) evidencing that biochemical diversity resides within the 

breeding lines. A current drawback for interpretation is that the relationship between overall 

metabolite composition and agronomic, organoleptic traits is largely unknown. Despite this 

many bioactive compounds have been measured and as such comparison of nutritional 

content can be made across the collection e.g. levels of amino acids, cholesterol, tocopherols, 

saturated vs unsaturated fatty acids etc. 
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4.4.3. Dumetorum analysis 

Detailed analysis on accession of D. dumtorum was undertaken and metabolite-metabolite 

correlations showed that many biochemically-related compounds correlate (Figure 4.7). Multi-

collinearity of data is typical of metabolomics studies and observed correlations are typically 

difficult to interpret regarding underlying biological meanings259. On the other hand; similarly 

to what was shown with biochemically related compounds clustering in (Chapter 3, Appendix 

3.6); the fact that most associations follow metabolic relationships evidences the robustness of 

technique. Redundancy of many accessions is also evidenced (large clustering on plots in 

Figure 4.2). When analysing D. dumetorum alone this is further shown in the fact that the 

samples can be reduced to 3 lineages (Figure 4.8) with highly accurate metabolic definability 

(Figure 4.9). For breeding however, compositional redundancy can offer some benefits in that 

breeding towards targeted traits may be attainable without global perturbance (analogous to 

the requirement of substantial equivalency in GM crops). This is already evidenced in accession 

TDd 3774, which despite altered fatty acid and sterol metabolism (Figure 4.3 & Appendix 4.5) 

was indistinguishable from the bulk of the collection for polar and overall metabolomic 

composition (Figure 4.2). 

4.4.4. Metabolite gradients 

Different sections of yam tuber show different agronomic and biochemical properties. As such, 

spatial metabolomics across different sections of tuber (head, middle, tail) was conducted. 

Despite different enzymatic activity having been shown from different sections260–262, 

significant gradients occurred for only a limited number of metabolites. Within these, most 

compounds are most abundant in the tail of tubers (Appendix 4.11). Previous studies could not 

define patterns of differing enzymatic activities and biochemical properties across head, 

middle and tail sections. The only agronomic trait consistently recorded is that earlier 

sprouting and/ or a larger yield of resultant tubers is seen when using the head portions of D. 

rotundata / D. cayennensis as planting material263,264, which is no evident in D. alata261. 
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Interestingly D. rotundata had many more significant metabolite differences between sections, 

though largely with mixed abundances. These differences may be related to different 

sprouting characteristics yet are not easy to define. 

Similarly, in potato tubers defining metabolite distribution patterns and agronomic relevance 

has been limited. Radial gradients have been shown for fructose, glucose, some amino acids 

and citric, malic and caffeic acids, yet longitudinal gradients weren’t evident in one study221, 

whilst other work showed that frutose-2,6-bisphosphate and sucrose did show longitudinal 

gradients, but large differences between individual potato tubers, plants and growing season 

meant conclusions were limited265. 

4.4.5. Leaf vs tuber metabolism 

Metabolite profiling both tuber and leaf material revealed that similar trends could be 

observed in leaf as for tuber material (Figure 4.10). Similar trends were also observable 

between leaf and tuber metabolite profiles of other root and tuber crops (sweet potato, 

potato and cassava; personal communication, Margit Drapal, 2015). 

Though the sample set was small, a sub-selection of metabolites could be used to accurately 

classify species for both leaf and tuber material (Figure 4.11). Future analysis using bigger 

datasets will be needed to validate if the leaf profiles can be representative or even predictive 

of tuber metabolite composition. If so, initial phenotypic screening of breeding programs could 

be undertaken on leaf material and profiling of root and tuber crops would be significantly 

more rapid; conducted prior to tuber formation; requiring less labour for material harvesting 

and analyses being cheaper and easier. 

Additionally, it was noted in this study that more metabolomic signatures were recorded when 

the crop was immediately harvested and sampled. Post-harvest losses of yam have been 

estimated anywhere up to 60% of total crop51. Time-series studies on each species could be 

undertaken to investigate whether crucial aspects of post-harvest deterioration can be 
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determined via metabolomics and whether leaf compositions could predict tuber post-harvest 

properties. 

4.5. Overall conclusions 

The metabolomics platform provides a valuable stand-alone resource for current breeding 

programs, allowing robust screening to identify biochemically diverse accessions and those 

with metabolite compositions of interest to breeding(as has been conducted on tomato and 

wild relatives255 and rice reviewed in266). Furthermore, the platform will only become more 

powerful when integrated with other ongoing ‘omics’ studies (advocated in224,267 and with 

various applications discussed in173,268,269). Integration with phenomic studies hopes to provide 

biomarkers for traits such as disease resistance151, yield, dormancy times and organoleptic 

properties270,271. Additionally, the resource can validate functional gene and enzyme 

annotations; the major limitation of current yam genome272 and transcriptome139 assemblies; 

by proving presence of downstream substrates and products273–275. Compared to NGS-based 

methods this approach can be more widely applied as the technique is more cost-accessible 

and methods and compound libraries are easily transferable. The use of multiple ‘-omic’ 

platforms will facilitate the deciphering of underlying molecular and biochemical mechanisms 

associated with traits of interest. This will add value to the discovery pipeline and facilitate 

future rational design and implementation of programmes for better varieties that are suitable 

for future sustainable intensification. Given current genetic resources, metabolomics offers a 

more viable approach for near-future gains than both conventional and gene based marker-

assisted breeding. 
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5 TARGETED ANALYSIS ON A RANGE OF DIOSCOREA MATERIAL FOR HIGH-VALUE 

COMPOUNDS 

5.1. Introduction 

Whilst investigating the biochemical diversity of Dioscorea material in the global breeding 

program (chapter 4) and across phylogenetic clades (chapter 3) compounds of high value were 

putatively identified. Targeted approaches have been developed and applied to validate 

previous identifications and further investigate high-value compound families of interest 

(carotenoids and sterols) across previously acquired and newly sourced materials. 

5.2. Results 

5.2.1. Sterol screening 

5.2.1.1. Rationale underlying the study 

Dioscorea tubers have been sourced due to an abundance of the steroid precursor diosgenin, 

used in industrial pharmaceutical synthesis. However, in 2012, Vendl et al.88 highlighted that 

erroneous measurements, imprecise techniques and incorrect comparisons that have plagued 

quantification in the literature. 

Broad, comparative research is lacking for many species. Additionally, the functional roles of 

diosgenin and derivatives and their biosynthesis are still unknown. As such, the leaf material 

analysed for phylogenetic diversity (chapter 3) underwent the extended analysis on non-polar 

metabolites previously conducted on tuber material (chapter 4). Additionally, further species 

were sourced from the woodland of the Kew Livings Collection as these largely comprise 

species of the Stenophora clade, which are historically sterol-rich. 
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5.2.1.2. Qualitative sterol differences 

A total of 38 sources of Dioscorea material (all material from Kew Living Collections) were 

screened for sterols over a period of two years (Appendix 5.1). Comparative analyses of 

qualitative differences have been undertaken so as to eliminate analytical variation over the 

time-period. A sorted binary plot of presence or absence for all possible sterol compounds 

highlights that the roots and leaf of D.tokoro and leaf material of D. alata had the highest 

number of recorded features (Table 5.1). Additionally, the features recorded in D. alata are 

common in many other species whereas those in D. tokoro are less commonly found across 

other members of the genus. 

Inter-species variation is present across both biological replicates and developmental stage of 

leaf e.g. between accessions of D. cochleari-apiculata and between old and young leaves of D. 

caucasica, respectively. 

Multiple correspondence analysis conducted solely on leaf material (Appendix 5.2) highlighted 

a separation between materials of the woodland and glasshouse collections, preventing 

detailed interpretation. As such, MCA was conducted on each set independently: 

Analyses on the Kew Glasshouse collection shows that some weak species- specific trends are 

apparent, evidenced by loose clustering of biological replicates (Figure 5.1a). However, overall 

separation did not seem to correspond with morphological or phylogenetic traits. Conducting a 

GPA on the material highlights the quantitative differences between accessions of species such 

as D. sansibarensis and also that the qualitative differences in D. alata and D. rockii are 

resultant from low abundant unknowns compounds. However, D. composita and D. antaly and 

D. membranacea accessions all cluster towards unknowns 2, 3 & 7 (Figure 5.1b). 
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Table 5.1. Binary sort visualisation of potential sterol compounds detected in non-polar extracts1 of Dioscorea material. 
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(1TMS) 
x x x x x x x x x X x x x x x x x x x x x x x x x x x x x x x X x x x x x x 

Stigmasterol 

(1TMS) 
x x x x x x x x x X x x x x x x x x x x x x x x x x x x x x x X x x x x x x 

β-sitosterol 

(1TMS) 
x x x x x x x x x X x x x x x x x x x x x x x x x x x x x x x X x x x x x x 

Squalene . x x x x x x x x X x . x . x . x x x . x x x x . x x . . . . X . x . . . . 

Unknown 15 . x x . x . x x . X . x x x x x . x . x x x x . . x x x x . x X x . . . . . 

Unknown 7 . x . x x x . . . . x x x x x x . . . . x . x x x x . . x . x X . . x x . x 

Cycloartenol 

(1TMS) 
x x . x . x x x x X . x x x . . . . . x x . . . . x x x . . . . . . x x x . 

Unknown 6 . . . x x . . x . . x x . x . x . . . x . . . . x . . x . x . . . . . . . . 

Stigmastanol 

(1TMS) 
. x . . . x x . . . . . . . . x . . . . . x x . . . . . x . x . . . . . . . 
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Cholesterol 

(1TMS) 
x . x . . . . x x X . . . . . . x x . . . . . . . . . . . . . . . . . . . . 

Unknown 10 . . . . . . . . . . . x x x . . . . . . . . . . x . . . . x . . . . . . . . 

Unknown 11 . x . . . x x . . . . . . . . . . . . . . x . x . . . . . . . . . . . . . . 

Unknown 13 . x . x . x x . . . . . . . . . . . . . . . . x . . . . . . . . . . . . . . 

β-amyrin 

(1TMS) 
x . . . . . . . x X . . . . . . . x . . . . . . . . . . . . . . . x . . . . 

Diosgenin 

(1TMS) 
x . x . . . . . . . . . . . . . x . x . . . . . . . . . . . . . . . . . . . 

Unknown 1 x . . . . . . . x . . . . . . . . . x . . . . . . . . . . . . . . . . . . . 

Unknown 3 . . . . x . . . . . . . . . . x . . . . . . . . . . . . . . . . x . . . . . 

Unknown 2 . . . . x . . . . . . . . . . . . . . . . . . . . . . . . . . . x . . . . . 

Unknown 4 x . . . . . . . . . . . . . . . . . x . . . . . . . . . . . . . . . . . . . 

Unknown 5 x . . . . . . . . . . . . . . . x . . . . . . . . . . . . . . . . . . . . . 



 

105 

 

to
ko

ro
 r

o
o

t 

al
at

a 

to
ko

ro
 

sy
lv

at
ic

a(
1

) 

co
ch

le
ar

i-
ap

ic
u

la
ta

(1
) 

p
ra

eh
en

si
lis

 

b
u

lb
if

er
a(

2
) 

co
m

m
u

n
is

 

co
m

m
u

n
is

 r
o

o
t 

d
el

to
id

ea
 r

o
o

t 

m
em

b
ra

n
ac

ea
 

A
n

ta
ly

 

ro
tu

n
d

at
a 

el
ep

h
an

ti
p

es
(3

) 

ro
ck

ii 

co
ch

le
ar

i-
ap

ic
u

la
ta

(3
) 

ca
u

ca
si

ca
 y

o
u

n
g 

d
el

to
id

ea
 

n
ip

p
o

n
ic

a 

sy
lv

at
ic

a(
2

) 

co
ch

le
ar

i-
ap

ic
u

la
ta

(2
) 

p
en

ta
p

h
yl

la
 

sa
n

si
b

ar
en

si
s(

1
) 

p
re

u
ss

ii 

el
ep

h
an

ti
p

es
(4

) 

gl
ab

ra
 

vi
llo

sa
 

el
ep

h
an

ti
p

es
(2

) 

d
u

m
et

o
ru

m
 

al
ti

ss
im

a 

sa
n

si
b

ar
en

si
s(

2
) 

co
m

p
o

si
ta

(2
) 

co
ch

le
ar

i-
ap

ic
u

la
ta

(4
) 

ca
u

ca
si

ca
 o

ld
 

el
ep

h
an

ti
p

es
(1

) 

b
u

lb
if

er
a(

1
) 

m
in

u
ti

fl
o

ra
 

co
m

p
o

si
ta

(1
) 

Unknown 8 . . . x . . . . . . . . . . . . . . . x . . . . . . . . . . . . . . . . . . 

Unknown 9 . . . . . . . . . . . . . . . . . . . . . . . . x . . . . x . . . . . . . . 

Unknown 12 . x . x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Unknown 16 x . x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Unknown 18 . . . . . . . . . . x . . . x . . . . . . . . . . . . . . . . . . . . . . . 

Unknown 19 x . x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Unknown 20 x . x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Unknown 14 . . . . . . . . . . x . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Unknown 17 . . . . . . . . . . . . . . x . . . . . . . . . . . . . . . . . . . . . . . 

 
A B B B B B B A A A B B B B B B A A A B B B B B B B A B B B B B B A B B B B 

Samples of both the Woodland (A) and Glasshouse (B) of the Kew Livings Collection were analysed in triplicate. Presence (x) and absence (.) of compound features 
were recorded. Samples and compound features have been sorted via the amount of positive (x) detections. Material regards leaf unless where the word ‘root’ is 
specified.
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Figure 5.1. . Putative sterols recorded in leaf extracts of the Kew Glasshouse Collection. (a) 
MCA, (b) GPA. Non-polar extracts of leaf material from the glasshouse collection were 
analysed by GC-MS in triplicate and detection / absence of sterol features recorded. Samples 
represented by blue circles. Compounds represented by red squares, known features labelled. 
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The high proportion of unknowns indicated that the GC-MS library was not comprehensive. 

Further authentic standards were purchased and analysed on the GC-MS platform and manual 

interpretation of spectra undertaken to identify derivatives. This approach extended the 

library to allow identification of 21 sterols with the putative identification of a further 4 

(Appendix 5.4). However, all previously recorded unknowns were still not identifiable. As such, 

it was decided to focus upon D. tokoro as this species showed most qualitative and 

quantitative divergence (Figure 5.2, Table 5.1) and the unknowns could be identified as 

spirostane-based structures. 

5.2.1.3. Identification of unknowns in D. tokoro 

Material of D. tokoro was requested and leaf material of three accessions was acquired Table 

2.4). Comparative analyses of the newly acquired D. tokoro with that from the Kew Woodland 

Collection showed vastly different profiles, however, the major peak in all samples was 

unknown 16 (Figure 5.3). The mass spectrum of unknown 16 was very similar to that of the 

spirostan-2,3-diol standard (Appendix 5.5), yet with a large difference of ~2 minutes in 

retention time and 40 retention indices. Further information about the authentic standard was 

requested from the supplier (Sigma CPR rare chemicals range) however the validity, purity, 

isomeric composition and source of this compound was unavailable. As such it was only 

possible to assign Unknown 16 as being a spirostan-diol. 

In addition to being unable to verify the spirostan-2,3-diol standard, commercial mass spectral 

libraries lack TMS derivatives of hydroxysterol aglycones and so prevent identification of 

Unknown 16 via GC-MS. To overcome this LC-(APCI+)-MS/MS analysis was conducted. 
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Figure 5.2. GPA analysis on woodland collection to show quantitative differences in sterol 
compositions.  (a) All woodland material and (b) excluding D. tokoro. Samples represented by 
blue circles. Compounds represented by red squares, known features labelled 
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5.2.1.4. LC-MS of sterol derivatives 

Separation of sterols via liquid chromatography is often noted as difficult276–278 with elaborate 

protocols necessary for analysis of free sterols, esterified and glycosylated derivatives 

including sample fractionation and clean-up279 and derivatisation280,281. Little work has 

focussed on hydroxysterols and published protocols only analyse a limited number of known 

compounds282. As such, many solvent mixtures and gradients were tested from the literature 

on C18, C30 and a CN column to assess resolution of sterols283,284. 

LC-MS analysis of non-polar extracts of D. tokoro material revealed 101 metabolite features 

(Appendix 5.6). On this chromatographic platform, the retention time and MS/MS of Unknown 

16 and main peak of the spirostan-2,3-diol standard were both in accordance (Figure 5.3). 

However due to the complexities of the extract and lack of information regarding the 

composition of standards, complete identification of Unknown 16 was not possible. Coupled 

with the data gathered from GC-MS analysis and literature, it seems probable that Unknown 

16 is a spirostan-2,3-diol isomer not represented in the standard. Alternatively, the hydroxy 

groups may be at different positions though this has not previously been reported for the 

epigenous material of D. tokoro. 

Brief analysis of the D. tokoro profile showed the presence of numerous hydroxy-sterol 

derivatives (Appendix 5.6). Due to the abundance of similar compounds (both polarity, 

fragmentation pattern etc.), detailed structural elucidation will require other techniques.
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Figure 5.3. Comparison of GC-MS profiles of D. tokoro accessions. Non-polar extracts of leaf 
material were analysed via the metabolomics platform. Accession (a) 20051993, (b) 1979-5237 
(c) 2009115 and (d) 19917359. The asterisk * denotes the largest recorded peak in all samples, 
unknown 16 (Appendix 5.1). 
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Figure 5.4. Typical LC-MS 
analysis of non-polar 
extract of D. tokoro leaf 
material. (a) Base-peak 
chromatogram of non-
polar D.tokoro extract, (b) 
MS/MS of Unknown 16 (+) 
and (c) MS/MS 
fragmentation of spirostan-
2,3-diol standard. Analysis 
was conducted using APCI+ 
ionisation with automated 
MS/MS acquisition. * 
indicates internal 
calibration standard. 
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5.2.2. Shikimic acid quantification 

During routine screening of leaf material from the Kew Glasshouse Collection (Chapter 3), 

many chromatograms presented an overloaded peak whose spectra and Kovat’s RI 

corresponded to that of shikimic acid (4TMS) reported in the NIST ’11 library (exampled in ). As 

such, authentic standard was purchased and the peak additionally verified via LC-(ESI-)-MS/MS 

(Appendix 5.7). Additionally, the only ester with shikimic acid identified in samples was 

caffeoyl shikimate (Appendix 5.8). 

A calibration curve of shikimic acid was produced (Appendix 5.9) and quantification 

undertaken via GC-MS following re-analysis of samples from the Kew Glasshouse collection on 

a 1:10 split ratio (Figure 5.6). Species of the African clade (D. elephantipes and D. sylvatica) 

showed the highest abundance of shikimic acid present in foliage. To validate this finding 

further material of these species were sourced (Table 2.4) and again showed an abundance of 

shikimic acid. 

Initially, it was believed that accumulation of shikimic acid may be related to the morphology 

of caudiciform tubers. As such material of other caudiciform species was requested. Only trace 

amounts found in the caudiciform species of the New World I clade; D. Mexicana, though only 

one biological replicate was sourced (Appendix 5.10). 

Further investigation upon shikimic acid presence in D. elephantipes was undertaken by 

analysing different organs of a single plant. GC-MS profiling was undertaken upon the leaf, 

stem, root and inner and outer cortex of the tuber separately. 

It was observed that 38 features could discriminate regions of a single plant (Figure 5.7). 

Shikimic acid however only discriminated the inner tuber, stem and leaf from the outer tuber 

and roots on the basis of higher abundance of shikimic acid in the former group. 
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Figure 5.5. Example chromatogram of polar extract from D. elephantipes leaf material analysed by GC-MS. Abundant peaks are: 1: Phosphate 
(3TMS), 2: Succinic-D4 acid (internal standard), 3: MSTFA, 4: Malic acid (3TMS), 5: GABA (3TMS), 6: Threonic acid (4TMS) 7: Xylulose (4TMS) isomer 
1, 8: Methylfructofuranoside (4TMS), 9: Shikimic acid (4TMS), 10: Fructose (1MEOX 5TMS) isomer 1, 11: Fructose (1MEOX 5TMS) isomer 2, 12: 
Galactose (1MEOX 5TMS) isomer 1, 13: Glucose (1MEOX 5TMS) isomer 1, 14: Glucose (1MEOX 5TMS) isomer 2, 15:  Inositol, myo (5TMS), 16: 
Sucrose (8TMS), 17: Melibiose (8TMS). Many major unknowns (*) are also present. 
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Figure 5.6. Quantification of shikimic acid in polar extracts of Dioscorea leaf material. Shikimic acid was measured as a 4TMS 
derivative via GC-MS analysis on polar extracts of leaf material (n=6). Relative response factor to internal standard used for 
quantification compared with authentic standard (Figure 5.9). Error bars represent 1 standard deviation. Letters show 
groups from Bonferroni-corrected Conover-Iman post hoc following Kruskal-Wallis. 
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Figure 5.7. GC-MS profiling on different organs of D. elephantipes. (a) PCA bi-plot 
of observations for all replicates (n=3) and (b) corresponding loading plot of 
metabolites. 
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5.2.3. Carotenoid screening 

Recent research on tropical crops has involved many bio-fortification efforts towards Vitamin 

A by increasing the content of β-carotene through both genetic modification (e.g. rice (Oryza 

sativa)285, maize (Zea mays)286, cassava (Manihot esculenta)287 &  banana (Musa spp.)288 or via 

capturing natural diversity through targeted breeding (e.g. taro (Colocasia esulenta)289). 

Dioscorea is largely considered to be low in β-carotene290 and studies showed that xanthophyll 

esters comprise the majority of carotenoids291,292. However, to complicate matters the 

literature on carotenoid composition of species is not only sparse yet also conflicting. This is 

especially the case for D. cayennensis, whereby numerous reports claim the major carotenoid 

of tuber is β-carotene293, whilst other reports indicate little or no β-carotene present in the 

species190,291. One study has shown that the major carotenoid of D. dumetorum is β-carotene-

5,8-epoxide294. Additionally, a wild relative of D. rotundata / D. cayennensis: D. schimperiana is 

reported to have appreciable level of β-carotene295. 

Akin to the studies on sterol contents, cross-species comparative studies on carotenoid 

content in Dioscorea are lacking. Recent study by Lebot et al. screened carotenoids of five 

Dioscorea species and showed significant inter- and intra-species variation190. However, the 

authors note the work as preliminary, largely due to the major peaks of D. bulbifera & D. 

cayennenis being unidentified. 

Carotenoid screening has been undertaken on a subset of accessions from the global breeding 

program and additional preliminary screening on a collection of material from the Kew 

Glasshouse collection. 

5.2.3.1. Initial method development 

The majority of work on yam has followed HarvestPlus protocol296, requiring a relatively large 

amount of material and extractions based on large volumes of acetone with saponification to 

simplify chromatograms. 
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 An extraction protocol  was designed to be faster and use smaller solvent volumes than those 

of previous work (Chapter  2, section 0). Initial analysis via UPLC-PDA showed very complex 

extracts and presenting poor chromatogrphic resolution of peaks. As such, HPLC-PDA analysis 

was conducted. The HPLC-PDA system utilised in this work has been well characterised208, and 

as such samples were typically analysed without saponification. 

Epoxy/ furanoid-carotenoid standards were created via a modified version of reaction with 

meta-Chloroperoxybenzoic acid and dilute HCl205, as these had not been characterised on 

under the chromatographic conditions used here (Appendix 5.11). 

5.2.3.2. Profiling of accessions 

Profiling showed both inter- and intra-species qualitative and quantitative (Appendix 5.12). 

Due to the complexity of samples, accessions were grouped according to which carotenoid was 

most abundant: D. dumetorum showed three distinct profiles, presenting an abundance of 

either ζ-carotene (e.g. TDd 3648 and TDd 3109 with ~105 and ~380µg/ 100µg DW 

respectively;Figure 5.8), mutatochrome (e.g. ~2015 and ~3060 µg/ 100µg DW in TDd 4118 and 

TDd 08-37-12 respectively; Figure 5.9) or β-carotene (e.g. ~325 µg/ 100µg DW in TDd 3100 and 

without epoxides; Figure 5.10). Samples of D. alata had a major peak of β-carotene and  13-cis-

β-carotene (β-carotene isomers levels ~270-290 µg/ 100µg DW; Figure 5.11) with other major 

components being neoxanthin esters. D. bulbifera was dominated by either free lutein (from 

~1062-1706 µg/ 100µg DWin all accessions except TDb 3079, where free lutein was absent; 

Figure 5.12)  or in a few accessions, lutein esters (2053-4771 µg/ 100µg DW). The profiles of 

accessions of D. cayennensis predominantey comprised various esters of neoxanthin (1609-

6186 µg/ 100µg DW) and esters of violaxanthin (Figure 5.13). D .rotundata showed profiles 

differing in amounts of the three main carotenoids accumulated: lutein (e.g. 174 µg/ 100µg 

DW free lutein in TDr EHuRu; Figure 5.14a), β-carotene (up to 257 µg/ 100µg DW) and 

xanthophyll esters (up to 1093 µg/ 100µg DW in TDr95-01932; Figure 5.14b).
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Figure 5.8. HPLC-PDA analysis on D. 
dumetorum TDd 3109. (a) HPLC profile 
at 450 nm with peaks numbered in 
order of average abundance (n=3). 1. ζ-
carotene isomer, 2. ζ-carotene isomer, 
3. ζ-carotene isomer, 4. Unknown 
(putative chlorophyll derivative), 5. 
Violaxanthin, 6. Violaxanthin ester and 
7. Lutein or antheraxanthin ester. (b) 
HPLC profile overlay at 450 nm (black), 
350 nm (blue) and 286 nm (blue). (c). 
Spectra of ζ-carotene recorded. 
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Figure 5.9. HPLC-PDA analysis on D. 
dumetorum TDd 4118. (a) HPLC profile at 
450 nm with peaks numbered in order of 
average abundance (n=3). 1. 
Mutatochrome, 2. β-carotene, 3. Lutein 
ester, 4. Lutein ester, 5. Lutein ester, 6. 
Luteochrome, 7. β-carotene-5,6-epoxide, 
8. cis-β-carotene, 9. Lutein ester, 10. 
Lutein. *indicates identification of 
Aurochrome. (b) HPLC profile overlay at 
450 nm (black), 350 nm (blue) and 286 nm 
(blue). (c). Spectra of mutatochrome 
recorded. 
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Figure 5.10. HPLC-PDA analysis on D. 
dumetorum TDd 08-36-8. (a) HPLC profile at 
450 nm with peaks numbered in order of 
average abundance (n=3). 1. β-carotene, 2. 
Violaxanthin isomer, 3. Luteoxanthin, 4. 
Violaxanthin isomer, 5. Mutatochrome, 6. β 
–cryptoxanthin, 7. Luteoxanthin, 8. Lutein 
ester, 9.Neoxanthin, 10. Chlorophyll 
degradant. (b) HPLC profile overlay at 450 
nm (black), 350 nm (blue) and 286 nm 
(blue). (c). Spectra of β-carotene recorded. 



 

121 

Figure 5.11. HPLC-PDA analysis on D. alata 
TDa 98-001176. (a) HPLC profile at 450 nm 
with peaks numbered in order of average 
abundance (n=3). 1. β-carotene, 2. , 3. cis- β-
carotene, 4. Lutein, 5. Neoxanthin ester, 6. 
Antheraxanthin isomer and 7. β-zeacarotene. 
(b) HPLC profile overlay at 450 nm (black), 
350 nm (blue) and 286 nm (blue). (c). Spectra 
of cis-β-carotene (left) and β-carotene (right) 
recorded. 
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Figure 5.12. HPLC-PDA analysis on D. bulbifera 
TDb 3072. (a) HPLC profile at 450 nm with 
peaks numbered in order of average 
abundance (n=3). 1. Lutein, 2. Neoxanthin 
ester, 3. Neoxanthin ester, 4. Lutein ester, 
5.Neoxanthin ester, 6. Unknown (Chlorophyll 
derivative), 7. Lutein ester, 8. Violaxanthin 
ester, 9.Neoxanthin ester, 10. Unknown, 11. 
Lutein ester. (b) HPLC profile overlay at 450 
nm (black), 350 nm (blue) and 286 nm (blue). 
(c) Spectra of putatively identified 
persicaxanthin (left) and persicachrome 
(right), also detected in the sample. 
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Figure 5.13. HPLC-PDA analysis on D. 
cayennensis TDc 04-71-2. (a) HPLC profile at 
450 nm with peaks numbered in order of 
average abundance (n=3). 1. Neoxanthin 
ester, 2. Neoxanthin ester, 3. Neoxanthin 
ester, 4. Neoxanthin ester, 5. Violaxanthin 
ester, 6. Neoxanthin ester, 7. Lutein or 
antheraxanthin ester, 8. Neoxanthin ester, 9. 
Lutein / antheraxanthin ester, 10. Neoxanthin 
ester. (b) HPLC profile overlay at 450 nm 
(black), 350 nm (blue) and 286 nm (blue). (c) 
Spectra of putatively identified persicaxanthin 
also detected In sample. 
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The apparent abundance of esters in many extracts required saponified samples to be 

analysed in order to confirm their prescence (Appendix 5.13). Even with comparisons between 

saponified and non-sapinified samples, coupled with the increased number of authentic 

compounds characterised on the system, a large number of chromatographic peaks remain 

unidentified. Additionally, large retention time shifts were evident between samples analysed 

at different times and as such comparative analysis of unknowns was not possible. 

Figure 5.14. HPLC-PDA analysis on D. rotundata accessions. (a) HPLC profile of TDr EHuRU at 
450 nm with peaks numbered in order of average abundance (n=3). 1. Lutein, 2. β-carotene 3. 
Violaxanthin, 4. Antheraxanthin, 5. Violaxanthin isomer. (b) HPLC profile of TDr 95-01932 at 
450nm with peaks numbered in order of average abundance (n=3). 1. β-carotene, 2. 
Neoxanthin ester, 3. Neoxanthin ester, 4. Neoxanthin ester, 5. Lutein or antheraxanthin ester, 
6. Violaxanthin ester, 7. Lutein or antheraxanthin ester, 8. Unknown, 9. Lutein, 10. 
Violaxanthin, 11. Unknown. 
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5.2.3.3. LC-MS identification of unknowns 

As noted, some samples of D. dumetorum presented profiles with an abundance of 

mutatochrome (Figure 5.9), identifed through matching of retention time and UV/Vis spectra 

with a prepared mutatochrome standard (Appendix 5.11). The profiles seen were also in line 

with compositions reported for some D. dumetorum samples,  by Ferede et al.294, on a 

different chromatographic system. To evidence the presence of mutatochrome in these 

accessions, analysis by LC-PDA-(APCI+)-MS was conducted and the identification was further 

supported by MS matches and UV/VIS (Figure 5.15). 

Many compounds were tentatively identified from the HPLC-PDA, using comparison with UV 

spectra and elution orders reported in literature, due to the fact it was not possible to acquire 

an authentic standard (e.g. β-zeacarotene207, persicaxanthin and persicachrome297 and β-

cryptoxathin-5,6-epoxide294). However, due the fact these compounds were in low abundance, 

detection via LC-MS was not achieved. As can be seen in Figure 5.15, low resolution is achieved 

on the system for these samples which may be a matrix effect in comparison to other samples 

previously characterised under the same conditions210. 

5.3. Discussion 

The screening conducted across diverse species (Chapters 3 and 4) highlighted the diversity of 

primary metabolism across the genus and different organs (leaf, tuber etc.). In this chapter, 

preliminary analyses have been conducted focussing on targeting compounds or compound 

classes for nutritional / medicinal benefit. 

A highlight of this work is the finding of metabolites in foliage at levels equivalent to those 

recorded for typical major leaf metabolites: glucose and fructose. This occurred across many 

species, such as D. antaly accumulating catechins, D. pentaphylla accumulating dopamine and 

D. elephantipes and D. sylvatica accumulating shikimic acid (Chapter 3, Figure 3.6).
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Within this chapter the abundance of shikimic acid in D. elephantipes and D. sylvatica was 

confirmed via numerous LC-MS and co-chromatography with authentic standard (Figure 5.6 

and Appendix 5.7) and quantified to show how within these species the metabolite is at levels 

which could be commercially relevant (Figure 5.6 and Appendix 5.9). Shikimic acid plays a 

central role in biosynthesis of aromatic amino acids in plants, fungi and bacteria and as such is 

measured in many metabolomics studies. However, high abundance of shikimic acid within the 

leaf material of Dioscorea accessions has not previously been reported. A precursor used in the 

production of the anti-viral oseltavimir (Tamiflu®) shikimic acid is typically sourced from the 

Figure 5.15. LC-PDA-MS analysis on TDd08-36-14 to identify mutatochrome. (a) Base-peak 
chromatogram (blue), extracted ion chromatogram at 553.433 m/z (orange) and base-peak 
UV chromoatogram  at 450nm (green) shows a peak (*) identified at mutatochrome on the 
basis of (b) UV/Vis spectra and (c) mass spectral data. 
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fruits of Chinese star anise (Illicium verum) and levels found in foliage of D. elephantipes and D. 

sylvatica are approaching those for Chinese star anise298. Both species are under threat due to 

harvesting of tuber for traditional medicines299. The annual foliage is deemed waste material 

and could be used as an alternative source of shikimic acid, potentially offering a profitable by-

product for African yam production and also a sustainable alternative to the destructive 

harvesting of tubers. 

Furthermore, it was attempted to investigate an underlying connection between metabolite 

and phenotype. Initially, it was hypothesised that the abundance of shikimic acid may be 

related to tuber morphology yet only trace amounts were detected in D. mexicana, a 

caudiciform species of the New World (Appendix 5.10). However, the hypothesis cannot be 

discarded as only one independent biological replicate could be sourced. Detailed study on D. 

elephantipes showed that different plant organs are easily definable by very few highly 

accumulated metabolites (Figure 5.7). The roots and outer caudex were abundant with 

trehalose and mannitol, both of which have high water retention capacities and may play a 

role in the high drought tolerance of this species, as has been proposed for other monocots: 

rice300 and wheat301 respectively. Additionally, the relatively increased levels of GABA in above 

ground foliage may represent a response to such stress302. 

Detailed investigations were also undertaken for sterols. Traditionally Dioscorea have been a 

source of diosgenin, a precursor for industrial steroid biosynthesis303,304. Whilst limited work 

has been undertaken on the foliage of most species, D. tokoro was widely studied due to the 

presence of hydroxysterols in aerial tissue or tissue culture305–312. These works were largely a 

results of a comparative study of sapogenin contents across yam species present in Japan 

which showed that D. tokoro and related species D. tenuipes uniquely contained sapogenins 

with a hydroxyl group at the C3
 position of the sterol backbone313. The work undertaken by 

Shionogi Research Laboratories was comprehensive involving complete purification and 

structural identification of many free sapogenin and corresponding saponins across different 
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stages of development308, environmental conditions and organs of the plant308,312. However, 

limited work has been published following these studies that were undertaken from the 1960’s 

to early ‘80’s. 

A cross-species study was undertaken in 2006, whereby, the foliage of ~18 species was 

analysed for diosgenin contents88. The study highlighted the inaccuracies of previous work and 

reliability of screening this sapogenin in foliage. As such, it was decided to screen all the foliage 

materials acquired for sterol and sapogenin content. 

Results showed that D. tokoro did have unique abundance of hydroxysterols as shown in 

previous work313. However, the structural identity of sterols could not be confirmed (Figure 5.3 

& Figure 5.4) but the diversity of the sterols in foliage across and within species has been 

highlighted (Table 5.1). Whilst sterols are often analysed via GC-MS314,315, recent advances 

have led to LC-MS techniques being utilised283 and within this work an analytical method for 

LC-MS analysis of hydroxysterol derivatives has been developed. The need for creation was 

after numerous failed attempts at applying methods reported in the literature to the Dioscorea 

material in this work. With regards to this, in addition to typically focussing on rhizome or 

tubers of Dioscorea, previous studies have not focused upon the steroidal components of non-

polar extracts instead targeting solely diosgenin185 and the glycosylated aqueous 

saponins186,188,189,316–318. Interestingly, this method could be used to gain insight into the 

addition of residues onto the sterol backbone, as the biosynthetic processes governing this in 

Dioscorea are only currently receiving focus101. Traditionally saponin studies have solely 

focussed on polar / aqueous phases89,319,320 and thus not encompassed the less-polar 

glycosides. The method here may provide a complementary tool to uncover the steroidal 

saponin biosynthesis pathway in yams. 

Finally, carotenoids were screened across a variety of accessions from the global breeding 

program (Table 2.4). Previous study had highlighted the diversity of carotenoids in Dioscorea190 
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however, many unidentified compounds remained; including those most abundant in the 

extracts. Within this work more comprehensive identification has been undertaken through 

the use of a well-defined method208 and verification of new authentic standards under the 

analytical conditions (Appendix 5.11). Despite this, some identification remains putative and 

minor unknowns are present. Furthermore, only the backbone carotenoid was characterised 

for esters; not the fatty acid compositions. Given than the absorption and bioavailability is 

influenced by fat content and solubility321, characterising the composition of esters (e.g. fatty 

acid) across accessions is crucial to allow breeding towards or identification of accessions with 

nutritional relevance. 

With regards to the conflicting reports of β-carotene in yams, the work here supports the 

report of β-carotene (and epoxide derivatives) being major carotenoids of D. dumetorum294 

and gives the first mass spectral evidence of mutatochrome in this species (Figure 5.15). D. 

dumetorum accessions with high β-carotene may have a metabolic block at β-carotene 

hydroxylase and abundant mutatochrome could be derived from non-specific action of 

zeaxanthin epoxidase (ZEP), rather than a natural degradation product, implied by the 

tendency to accumulate 5,8 monoepoxides. Accessions which accumulate ζ-carotene are 

within the collection and likely represent accessions which have a down regulated ZDS (ζ-

carotene desaturase). Additionally, regarding D. cayennensis, this work backs up the historical 

work of Martin et al.291 and the more recent screen by Lebot et al.190 showing that the major 

carotenoid of this species is xanthophyll esters. However, following saponification the 

presence of β-carotene is also evident (Appendix 5.12). As such, literature may only be 

conflicting in the lack of methodological detail given when reporting. 

D. alata and D. dumetorum also both have appreciable quantities of cis-β-carotene (Figure 

5.11 & Figure 5.9, respectively) which may be important as 9-cis-β-carotene is a precursor to 

the plant hormone family of strigolactones322, though more work in this aspect will need to be 

conducted, especially identification of geometric isomers. 
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Furthermore, this work has putatively identified persicaxanthin and persicachrome as present 

within Dioscorea. Interestingly, they were most abundant in D. bulbifera (Figure 5.12) whereby 

the aerial bulbils were analysed rather than tuber as with every other species. These C25-

epoxyapocarotenols are typically identified in some cultivars of peaches297,323 and plums324. 

Persicaxanthin is believed to derive from apo-12’-violaxanthin, whilst persicachrome is its 

furanoid rearrangement324. Whilst apocarotenoids do not resolve well on the system, in one 

accession a putative peak for apo-12’-violaxanthin was detected; however, this was only found 

in one replicate (data not shown) and concentration of extracts would be required to 

investigate this. 

Cleavage of C40-(9-)cis-epoxycarotenoids in plants gives rise to xanthoxin and respective C25-

apocarotenoid. This oxidative cleavage comprised the first committed step  of abscisic acid 

(ABA) biosynthesis via the indirect pathway postulated in plants325. Xanthoxin is then further 

converted to the plant hormone ABA326. Thus, the presence of persicaxanthin and 

persicachrome is typically present in fruits with high levels of ABA324,327 and therefore may be a 

useful line of study to investigate yam dormancy, given ABAs established yet unclear role 

within this process328,329. 

Studies in this chapter have provided excellent foundations for advancing the analysis of 

secondary metabolites in yam using modern approaches / techniques. The utilisation of 

diverse natural variation within the genus will aim identification in this understudied and 

underutilised crop. The potential for utilising Dioscorea foliage as biorefining feedstock has 

been evidenced in the exploration of shikimic acid, which in some species shows levels 

comparable to the currently used industrial source. Additionally, D. tokoro has been shown as 

a potential source of many hydroxysterols (Appendix 5.6), which could be used in synthesis of 

novel sterols. Despite historical study on the foliage of this species conducted by a 

pharmaceutical firm306,312,313, little information is available about industrial usage. The species 

holds interest as it is a temperate variety and therefore can grow well outdoors in many 
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countries with highly industrialised agriculture e.g. UK, USA, Japan, Western/Northern Europe 

etc. 

The biorefining potential of Dioscorea foliage is an option which could prove extremely 

valuable, given that many species are already grown in large quantity, yet the foliage is 

deemed as waste. As such, it could be used to provide vital secondary income for food 

production providing high-value products derived from a sustainable, renewable source. The 

high level of unknowns within the work (Chapter 3; Table 5.1,  & Figure 5.4) evidence the need 

for more elaborate screening. In turn, this could lead to the identification of multiple co-

products, enhancing the feasibility for economic uptake. Further screening could involve 

fractionation of samples to create a simpler extract for high-resolution analysis, multiple MS 

fragmentations at numerous collision energies for better structural elucidation and isolation 

and purification of unknowns followed by NMR for complete characterisation. Additional 

methods would be derivatisation or modification etc. to improve resolution and ionisation; 

sterols largely reviewed in330. Bioactivity testing, further modification of compounds via 

microbial transformation331 (even using the yam sugars as substrate) and characterisation of 

biosynthetic pathway for sterols and saponins, which has recently become underway96,98,99,101, 

and expression in other systems are all options which would need exploration. 

Regarding the carotenoid screening, the β-carotene contents of all accessions were low when 

compared to other comparable crops grown in the same geographical areas (e.g. cassava and 

sweet potato). Whilst accessions have been identified with increased β-carotene contents, it is 

personal opinion that breeding towards β-carotene high yam, whilst viable, is not beneficial 

and consumption of alternatives for Vitamin A uptake should be promoted. However, 

identification in this screen was comprehensive and has shown the presence of hormone 

precursors, which are rarely detected without specific methods. Given the importance of 

dormancy for yam, and the lack of understanding of the process in many tuberous crops, 

coupled with the benefit of Dioscorea being an evolutionary link between eudicots and the 
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grasses332 means that yam could be a model species for the study of dormancy via specialised 

targeted analysis on plant volatiles, hormones and carotenoid derivatives (eg. apocarotenoids). 

A plethora of studies have opened up which could lead to full realisation of  the potential of 

Dioscorea, seeking to understand complex metabolism to further breeding efforts and the 

potential of utilising yams to provide both income and medicine. 
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6 DISCUSSION 

6.1. Summary 

Dioscorea are globally cultivated but in Low-Income Food-Deficit Countries (LIFDCs)8 they are 

an essential staple food source for millions. In addition to their nutritional importance, the 

crop provides a valuable livelihood for subsistence farmers in these poverty stricken regions31. 

Like several other crop species in low income regions, the yam crop holds strong sociocultural 

relevance, commonly used in traditional medicines and as dowries. Despite their 

socioeconomic importance yams remain understudied and underutilised31,332. 

It is hoped that the work performed in the present study serves to highlight the potential gains 

possible through conservation and directed exploitation of the diversity present within the 

genus as a whole. This research represents the first holistic study of Dioscorea (primary) 

metabolism across a wide biochemical range of compound classes and genetically diverse 

material. Metabolomics has been evidenced as a highly valuable analytical tool for 

investigating yams with regards to biochemical screening of populations and nutrient 

composition for breeding programs (Chapters 4 and 5), natural and high-value products 

(Chapters 3 and 5), biodiversity and evolutionary studies (Chapters 3 and 4) and potential for 

further characterisation of biological processes such as mechanism of tuber dormancy and 

biosynthesis of species-specific compounds (Chapter 5). 

Metabolite profiles have been shown to be tightly interlinked with the phylogenetics of 

Dioscorea (Chapter 3). Since phylogenetic circumscriptions have previously been associated 

with morphological characteristics20,24, biogeographical range2 and speculated biochemical 

variance9;  metabolomics offers a complementary approach to use the biochemical variation to 

relate not solely to genetic diversity from phenotype to genotype143, but to extend this 

paradigm with respect to evolutionary time175, domestication status, traditional usage and 

environmental interplay. These further insights are only now coming to the foreground for 
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widely studied  crops such as wheat178, tomato179, tobacco184 and rice266; with 

chemotaxonomic-phylogenetic linkage shown in medicinally-relevant plant families Asteridae 

s.l.333 (now asterids) and Amaryllidoideae334. The similar achievement in yam represents an 

unprecedented technical advance. 

6.2. Application of metabolomics to diversity analysis and breeding programs 

The refinement of metabolomic procedures and generation of new yam specific tools provide 

a wealth of translatable resources which can be easily implemented to varying degrees 

depending on need. Modifications to common protocols (e.g. biphasic metabolite extraction, 

GC-MS methodology; Chapters 2, 3 and 4) and establishment of new procedures (e.g. targeted 

LC-(APCI+)-MS/ MS for hydroxysterols and carotenoid identification; Chapter 5) have 

generated large sets of data which are yet to be fully mined (e.g. unknowns for bioprospecting, 

assessment of interspecies redundancy in breeding program). The visual representation of 

primary metabolome and Dioscorea-specific compound libraries allow for easy expansion and 

can serve as a basis for creation of biochemical networks and interpretation of systems biology 

data, with similar resources available for many important plant species211,335. 

Metabolomics-directed breeding has been successfully applied to various crops; however 

these are typically established models with many other available resources. Examples of 

implementation of metabolomics in breeding programs are population screening, trait 

selection, investigation of diversity across landraces & wild relatives and investigation of 

equivalence for GM / mutant lines (largely reviewed in165,174,336–338). 

Regarding yam breeding however, even compared with other understudied root and tuber 

crops (e.g. cassava & sweet potato), yams have been neglected. Recent large-scale projects 

however are seeking to change this, from the genome sequencing of five edible species and 

genetic diversity analysis and phenotypic analysis of breeding collections for the major 
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cultivated varieties encompassing over 3000 accessions to new transformation and cross-

species breeding to generate enhanced lines110. 

Chemotyping of the elite parental lines in the global yam breeding program, undertaken in this 

work, sets the foundation for large-scale population screening. A high level of phytochemical 

redundancy has been identified within the collection; even across species. However, 

accessions showing broad metabolome alterations and those with specific pathway / 

compound class perturbations were identifiable, including those of nutritional and/ or likely 

sensorial value (e.g. fatty acid / cholesterol; Chapter 4). At current, limited metadata regarding 

the lines has been supplied which hinders interpretation: relating metabolite profiles to traits 

and phenotypic characteristics or genetic markers not being possible. Breeding efforts seem to 

be aligned to following the approaches used for the classically researched crops, whereby the 

genetic basis and linkage to phenotype is expected to provide genetic-marker directed 

breeding and open up the possibility of pyramiding elite traits into lines within a shorter 

breeding cycle. This has been particularly successful in maize, another polyploid crop; whereby 

metabolite signatures were shown to be comparably effective as SNPs for prediction of 

heterotic traits339. Crucially however, these techniques are applicable to maize due to it being 

allopolyploid and having a disomic inheritance pattern340. A caveat of applying this approach to 

yam is the limited understanding of genetic regulation of Dioscorea due to complex 

inheritance (with all forms of polyploidy present), thus vulnerability to inbreeding 

suppression341 and also the plasticity of phenotypic traits over environmental range36. 

Comparable efforts in potato for example have not achieved their potential due to similar 

drawbacks342,343, despite much larger research investment. 

Furthermore, the breeding projects currently conducted for genome sequencing and genetic 

diversity analysis are all somewhat independent, using numerous analytical approaches and 

sets of material yet lacking a centralised focus. The breeding programs typically cite 

characteristics such as yield, dormancy and resistance etc. as being desired103,105. These traits 
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are likely complex and as such the potential gains may not be realised. With regards to 

metabolomics, the utilisation for population screening (Chapter 4) and diversity analysis 

(Chapter 3) has already been evidenced. Given the close relationship of biochemical profiles 

and exhibited phenotypes, using metabolite markers (mQTLs) for desired traits is likely to be 

faster and cheaper than generating genetic markers344. Until the other resources being 

generated (such as genome sequences, transformation etc.) are not only available but also 

able to be utilised effectively then metabolomics-directed breeding seems to offer the most 

cost-effective and feasible way for near-future gains in yam breeding programs. With this in 

mind, it is advocated that all current projects implement a centralised systems biology 

approach whereby samples undergoing genetic diversity screening also undergo biochemical 

diversity screening at both a proteomic and metabolomics level. Extended studies can also 

investigate transcriptomic and phytochemical fluxes over time to provide a concerted breeding 

effort. 

Within this work, studies were typically comparative across species and then later followed 

with targeted analyses (Chapter 5) for validation. Current large-scale Dioscorea research 

typically regards each species independently and so may preclude the benefits of comparative 

work. Highlighting this point are the preliminary metabolomics studies of Lebot et al.55,190 and 

the transcriptomic studies of CRIAD139 which provide insight into diversity and domestication 

of Dioscorea. Domestication inherently selects for agronomic traits of interest and so study can 

impact breeding practices345. Furthermore recent reports of cross-species breeding in yam give 

an incentive to conduct both inter and intra species research. As such, the aforementioned 

tight linkage across the genus between morphology, biochemical profiles, phylogeny, 

biogeographical range and the ongoing domestication of species could therefore allow the 

genus Dioscorea to harbour insights in complex genetic evolutionary mechanisms which would 

not be possible in crops that have already lost most of their genetic basis through cultivation 

(e.g. tomato346). 
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6.3. Potential for metabolomics for bioprospecting and mechanism insight 

Biochemical diversity screening of Dioscorea revealed the foliage of some species within the 

genus as potential renewable sources of bioactives or precursors (Chapters 3 and 5). Though 

this finding was unexpected given that Dioscorea foliage has received little previous study, 

some limited referral to usage in traditional medicines is documented (refs). It has been shown 

that ethnobotanical use is linked to phylogeny and can predict species useful for 

biosprospecting347. Furthermore, the majority of approved drugs and drugs in clinical trials 

come from specific phylogenetic clusters348. Given the use of Dioscorea as source for steroid 

precursors and widely reported toxicity (resulting from suspected alkaloid content), it is not 

unfeasible that the genus holds further bioactives or high-value compounds. For example, a 

recent study showed the commercial potential of essential oil from the foliage of D.composita, 

as it is a rich source of elemol60: an insecticidal terpenoid of high-value for the fragrance 

industry. 

Numerous unknowns within current work (Chapter 3) give rise to further bioprospecting 

through data mining and extending studies to encompass further species and a wider range of 

analytical techniques. Interesting leads can then be followed up as was initiated for shikimic 

acid in the African clade and hydroxysterols of D. tokoro (Chapter 5). 

Overharvesting is a common problem for medicinal plants and natural reserves and wild 

sources of medicinal plants are typically exhausted within 10 to 20 years of collection. Loss of 

genetic variation and endangering of species has already been highlighted as a problem for 

numerous industrially sources Dioscorea species12,349. Replacing the use of rhizomes and tubers 

with foliage as a source of steroid precursors would promote conservation of species as yams 

would be used as a renewable annual source where increased biomass could lead to increased 

product and income. The abundance of other compounds, such as shikimic acid and dopamine 

(Chapter 3) offer new opportunities for a waste-stream derived income source for yam 

growers which can support and incentivise increasing production for food. Further 
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investigation of these leads is thus paramount and could help alleviate poverty within growing 

regions. 

Targeted analysis may also provide insight into biological mechanisms. For example, 

carotenoid analysis could prove key to understanding yam dormancy. Whilst most recent 

research within the area focussed upon investigation of Vitamin A precursors293–295, one study 

highlighted the breadth of diversity and range of compounds present across species, yet most 

remained unidentified190. As such, initial investigation in this work focussed on identification of 

carotenoids across tuber breeding material. Numerous cis/trans isomers, xanthophyll esters 

and putative identifications of epoxy-furanoid carotenoids and apocarotenoid compositions 

have been reported for the first time (Chapter 5). Given carotenoids vital importance in 

photosynthesis, photomorphogenesis, photoprotection and as precursors to numerous 

hormones and signalling molecules (e.g. ABA, apocarotenoids, strigolactones and volatiles)350 

understanding carotenoid regulations within the tuber is likely crucial to manipulate many 

aspects of plant development, especially dormancy, yield and nutrient efficiency for 

agricultural food production. 

Additionally, the biosynthetic pathways towards diosgenin and steroidal saponins are still not 

elucidated and factors affecting production not well understood. Recent work has relied on 

transcriptomic analysis in both yam96 and fenugreek98 to propose putative pathways and their 

possible localisation to organs, tissues or cells of the plant. However, the genetic complexity of 

these biosynthetic routes means that understanding has not advanced past that of research 

conducted in the late 1980s. Targeted investigation of sterols within this work (Chapter 5) 

provides techniques for the analysis of a diverse range of sterols, hydroxysterols and saponin 

intermediates and derivatives which have not been amenable for crude sample preparation 

previously. As advocated for breeding programs, integrating metabolomic analysis within a 

systems biology approach could elucidate the genes involved in synthesis and route taken, 

with further experiments such as isotopic labelling, gene cloning and characterisation etc. 
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undertaken to be conclusive. Comparative analysis of this sort has even been successfully 

applied to species that like yam lack genetic resources e.g. identification of biosynthetic routes 

to numerous medicinally-important compounds of Salvia351–353 and understanding the 

mechanisms governing triterpenoid saponin biosynthesis in dicots354. The knowledge can then 

be exploited to enhance production of high-value compounds and thus add further medicinal 

and economic value to yam. 

6.4. Recommended investigations based on previous results 

Numerous opportunities for further work have resulting from the preliminary investigations 

undertaken. However, the most viable in the near future are: 

1. Comprehensive carotenoid and phytohormone analysis over tuber storage time as an 

initial study of dormancy regulation (along with quality traits and vitamin A profiles). 

Appropriate storage treatments and measures (e.g. hormone application) can then be 

taken to manipulate dormancy times. 

2. Targeted metabolomics and RNA-seq across sterol diverse accessions to elucidate 

genes involved in sterol derivative biosynthesis. Genes can be cloned and expressed in 

alternative production systems such as yeast, or products fed into microbial 

transformation systems to generate new sterol products. 

3. Combined metabolomic profiling and phenotyping of the breeding collection to 

identify metabolite trait markers that can be used to speed up breeding to desired 

traits and for initial bioprospecting of foliage for waste-derived bioactives. Ideally this 

would then further be linked to the genomic analyses (e.g. WGS, GBS, WGRS) 

undertaken on the collection to allow system biology focussed crop breeding. 

Though these investigations are paramount to capitalising on the biochemical diversity present 

within Dioscorea, unanswered questions of scientific importance are grander in scope: 
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1. In relation to other plant families, how biochemically diverse are yams at genus, clade, 

species and intra-species levels?  

2. What role does diosgenin (and other sterols) play in both the vegetative and 

subterraneous tissues of Dioscorea; especially the unique hydroxysterols of D. tokoro? 

3. It seems that many species specifically accumulate individual compounds in 

abundance: why, where and how? 

Overall, it is hoped that this thesis serves as the starting point to realise Dioscorea not just as a 

crop of the developing nations but a genus that can provide numerous opportunities for food, 

medicine and income production along with novel insight into major biological mechanisms 

such as plant dormancy and development, evolutionary processes and domestication.
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7 Appendices 

Chapter 2 Appendix 

Standard Operating Procedure for Dioscorea metabolomics via GC-MS 

Schematic workflow for the analysis of primary metabolites via GC-MS from Dioscorea 

species. 
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Accession selection 

Material selection will depend on biological question to be answered. This GC-MS procedure 

will screen primary metabolism. Design experimental set-up on with this in mind.  

Ideal: Material grown in a controlled block design, minimum of three biological replicates / 

clones, complete set grown over more the one season. Only feasible for materials of breeding 

programs. Used for inter and intra-species study. 

Other scenario: Rare accessions mostly grown without biological replication. Repeat complete 

harvesting procedure a minimum of six times to attain six technical replicates. Include species 

replicates if possible. Repeat whole experiment over another growth season where possible. 

Used for inter-species studies only. 

For every accession selected for collection record as much of the following as possible:   

 Passport information (accession number, site of collection, year of donation) 

 Species status (verification status, taxonomic clade, ploidy)  

 Growth environment (in vitro, glasshouse, field) 

 Growth conditions (day/ night temperatures, rainfall/ watering, humidity, light 

intensity, media/soil pH, nutrients) 

 Quality traits (tuber yield, plant height, internode length, leaf size, above ground 

biomass etc.). 

Collect as much information as is possible as this will help data interpretation. 
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Harvesting of leaf material 

Before material collection, prepare a labelling system (preferably alphanumeric recoding) to 

ensure samples do not get mixed up throughout.  

Prepare: Labelled 50mL falcon tubes including collection date & harvesting location. Pierce 

3mm hole in all lids. Dewer of liquid nitrogen. 

 Always sample at the same time of day.  

 Select the youngest fully matured leaf material from Dioscorea vines, i.e. the highest 

fully opened leaf. 

 Make a blunt cut of vine just below petiole of leaf using secateurs, and rapidly put into 

falcon tube. 

 Place sample tube immediately into liquid nitrogen. Store at -80°C . 

 Record length of storage. 
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Sample preparation 

Lyophilisation 

Freeze-dry excess leaf material for experiment. 100g fresh weight becomes approximately 

10g when freeze-dried. Record fresh and dry weights if necessary. 

 Freeze-dry leaf material still in falcon in tube, in batches. Separate replicates into 

different batches. 

 Foil-cover freeze drier pots and add 5 falcon tubes to each pot. 

 Freeze-dry material for 2 days. (Freeze-dry material of temperate species for 3 days.) 

 Remove samples from freeze drier and visually inspect quality of drying. 

 Replace pierced lid with an intact lid and store at -80°C. 

Homogenisation 

Prepare: Labelled 2mL screw-cap plastic tubes. 

 Initially grind material in falcon tube using an ethanol rinsed glass rod. 

 Transfer ground material into 2mL screw-cap plastic tube.  

 Add 2 ethanol rinsed steel balls (3mm diameter) 

 Homogenise material via tissue lysing for 3 minutes at 30 rpm. 

 Remove steel balls and store material at -80°C.  

 Record dates of homogenisation and storage length. 
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Metabolite extraction 

Extractions can all be done at room temperature, so long as samples are protected from 

light. Keep extraction sets as small as possible.  

Prepare: Labelled 2mL Eppendorf tubes (include 2 extraction blanks and 2 QC samples for each 

extraction batch). Labelled 2 x 1.5mL Eppendorf tubes per each samples (one for polar and one 

for non-polar). Labelled 2 x 2 mL glass vials for GC-MS (polar vial with insert, non-polar 

without). Prepare 1mg/mL solution of internal standards (succinic-D4 acid and myristic-D27 

acid).  

 Weigh 10mg of sample into labelled 2mL Eppendorf tubes.  

 For every extraction set include two blank tubes with no sample for extraction blanks.  

 Make a pooled QC sample where possible and include 4 per each batch.  

 Add 400µl methanol to each sample and vortex on max (300rpm) for 8s. 

 Add 400µl water to each sample and vortex on max (3000rpm) for 8s. 

 Rotate sample for 1h at RT, 40 rpm. Foil-cover rotating wheel. 

 Add 800µl chloroform to samples, vortex for 10s on max. 

 Centrifuge all samples for 3minutes at 20,000RCF at room temperature. 

 Carefully remove tubes which are now partitioned into upper (polar) phase, an 

interphase and a lower (non-polar) phase. 

 Remove 100µl of the upper phase into glass vials with insert. 

 Carefully remove remaining 700µl of upper phase into 1.5mL Eppendorf. 

 Remove 400µl of lower phase into glass vial. 

 Remove remaining 400ul of lower phase into 1.5mL Eppendorf. 

 Add 10µl of succinic-D4 acid to polar samples in GC-MS vials. 

 Add 10µl of myristic-D27 acid to non-polar samples in GC-MS vials. 
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Extract storage 

 Dry all non-polar samples in centrifugal evaporator (low b.p. program and no light) for 

40 mins. 

 Dry polar samples in centrifugal evaporator (HPLC program and no light). Two hours 

for GC-MS samples and 6 hours for stored samples. 

 Store all samples at -80°C.  

Store all extracts dry. Storage for periods over a week in solvent leads to degradation. Keep 

time of storage to GC-MS analysis at a minimum & make sure sample batches of an 

experiment are stored for the same length of time.  

Deriviatisation for GC-MS analysis 

Prior to derivatising make an ordered black design for the GC-MS sequence of the whole 

experiment. Derivatise in blocks so no sample is derivatised longer than 36 hours before 

analysis. (Each batch can only contain ~24 samples (each GC-MS run is 72min). Extraction 

blanks should be analysed at start and end of sequence.  

Check GC-MS is in good working condition. 

Work in fume hood for derivatisation. 

Prepare: 5mL of 20g/L solution of MeOx in pyridine. Set heat-block to 40°C. 

 Calculate how many samples to use in a batch.  

 Remove samples from -80°C and dry in centrifugal evaporator (low b.p., no light,) for 

15 min. 

 Add 30ul of MeOx solution and place in heat block for 2h at 40°C. 

 Add 70ul of MSTFA to each sample and leave in heat block for another 2h at 40°C. 

 Remove from heat-block and place onto GC-MS. 
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GC-MS analysis 

Whilst samples are derivatising, GC-MS can be tuned, method loaded, sample sequence 

prepared and verified. Wash solutions made (acetone). Acetone blanks can be analysed at 

the start of the sequence (begin whilst samples are derivatising) to reduce column bleed. 

 Run derivatised samples. 

  If running polar samples, following analysis recap samples and store at 4°C.  

 Reanalyse polar samples in 1:10 split. 

 Save sample files as label_replicate number_date of analysis_order in run. 

Check sample files whilst running to check for errors. Sensitivity check, expected peak shapes 

etc. 

Data analysis  

Keep data workflow the same for all experiments, so can be comparative 

Creation of sample peak matrix 

 Data is saved in .d files. 

 Use AMDIS to manually check each sample – add unknown peaks to library if required. 

 Run complete experimental set in one batch job in AMDIS. Save report output. 

 Open ADMIS report and check that response of internal standard is <20% RSD in all 

samples. 

 Identify derivatisation contaminants / matrix contaminants and delete from peak 

tables. 

 Deduct the response of other metabolites detected in extraction blanks from sample 

extracts. 

 Normalise all peak values to internal standard. 

 Align data in sample peak matrix 
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 For peaks with repeated hits from ADMIS select maximum response for sample (use 

MAXA excel formula) 

 Discard peaks that are not detected in all replicates of at least one sample. 

Analysis on replicate blocks 

 Conduct a PCA analysis on the spearman correlation matrix.  

 Check that the trends in all replicate sets match. If not investigate why – separate via 

storage time, run batch, order in an analytical sequence etc and repeat where 

necessary. 

 Conduct a HCA via spearman dissimilarity 

 Conduct univariate statistics ie kruskall-wallis to identify most discriminatory variables 

and reduce sample set 

Analysis on total data set 

 When all replicate trends match, conduct a GPA analysis treating each replicate block 

independently. 

 Conduct HCA via spearman dissimilarity on all averaged samples 

When conducting any data analysis always opt for spearman correlation matrix. 

If combining data from different times, use components from GPA. 
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Chapter 3 Appendix 

Appendix 3.1. AMDIS deconvolution settings for Diosorea extracts.  
 

Deconvolution Parameter Polar Non-polar 

Component width 12 

Adjacent peak subtraction Two Two 

Resolution Low Low 

Sensitivity Very low Low 

Shape requirement High Medium 

Identification Parameter 

RI Window 9+0 (x0.01) 

Match factor penalty Average 

Maximum penalty 20 

No RI in library 10 



 

150 

Appendix 3.2 Metabolites idemntified* in polar extracts of leaf material following GC-MS analysis. 
 

Metabolite RT Confirmation status 
 

Reference ion Match 

Pyruvic acid (1MEOX 1TMS) 9.359 Standard 1 174 
 

Lactic acid (2TMS) 9.4242 Standard 1 117 
 

L-Alanine (2TMS) 10.5702 Standard 1 116 
 

Glycine (2TMS) 10.9753 Standard 1 102 
 

Malonic acid (2TMS) 13.7373 Database (NIST & GMD) 2 147 879 

L-Valine (2TMS) 14.0614 Standard 1 144 
 

Serine (2TMS) 15.4629 Standard 1 116 
 

Ethanolamine (3TMS) 15.7362 Database (NIST & GMD) 2 174 950 

L-Leucine (2TMS) 15.791 Standard 1 158 
 

Phosphate (3TMS) 15.9743 Standard 1 299 
 

Glycerol (3TMS) 16.0468 Standard 1 205 
 

Isoleucine (2TMS) 16.4676 Standard 1 158 
 

Nicotinic acid (1TMS) 16.6341 Standard 1 180 
 

L-Proline (2TMS) 16.6351 Standard 1 142 
 

Threonine (2TMS) 16.6474 Standard 1 117 
 

Maleic acid (2TMS) 16.9328 Standard 1 245 
 

Succinic acid (2TMS) 17.3484 Standard 1 247 
 

Picolinic acid (1TMS) 17.5452 Standard 1 180 
 

Glyceric acid (3TMS) 17.8092 Standard 1 292 
 

Itaconic acid (2TMS) 18.2112 Standard 1 215 
 

Fumaric acid (2TMS) 18.5332 Standard 1 245 
 

L-Serine (3TMS) 18.7878 Standard 1 204 
 

L-Threonine (3TMS) 19.6052 Standard 1 218 
 

Mesaconic acid (2TMS) 20.1052 Standard 1 184 
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Metabolite RT Confirmation status 
 

Reference ion Match 

L-Aspartic acid (2TMS) 20.7659 Standard 1 116 
 

Ornithine-1,5-lactam (2TMS) 21.7013 Database (NIST & GMD) 2 128 715 

Similar to L-Citrulline (3TMS) 22.0674 Database (NIST) 3 142 728 

Citramalic acid (3TMS) 22.16703 Database (NIST & GMD) 2 246 936 

Arabino-Hexos-2-ulose (4TMS) 22.5093 Database (NIST) 3 234 883 

Malic acid (3TMS) 22.8599 Standard 1 233 
 

Threitol (4TMS) 23.1639 Standard 1 217 
 

Pyroglutamic acid (1TMS) 23.2406 Standard 1 84 
 

Salicylic acid (2TMS) 23.2543 Standard 1 267 
 

Erythritol (4TMS) 23.3848 Standard 1 217 
 

L-Methionine (2TMS) 23.6206 Standard 1 176 
 

Pyroglutamic acid (2TMS) 23.7741 Standard 1 156 
 

Cytosine (2TMS) 23.8079 Standard 1 254 
 

L-Aspartic acid (3TMS) 23.7363 Standard 1 232 
 

GABA (3TMS) 24.0623 Standard 1 174 
 

Phenylalanine (1TMS) 24.4139 Standard 1 120 
 

2-Deoxyribose (1MEOX 3TMS) 24.5434 Database (NIST & GMD) 2 147 719 

Norvaline (3TMS) 24.6359 Database (NIST) 3 232 728 

L-Cysteine (3TMS) 24.7316 Standard 1 220 
 

Threonic acid (4TMS)  24.9568 Standard 1 292 
 

3-Hydroxybenzoic acid (2TMS) 25.0643 Database (NIST & Massbank) 2 267 944 

Tyrosol (2TMS) 25.1831 Database (NIST & YMDB) 2 179 861 

2-Isopropylmalic acid (3TMS) 25.2284 Database (NIST & GMD) 2 275 702 

Xylulose (4TMS) isomer 1 25.3134 Standard 1 306 
 

2-Ketoglutaric acid (1MEOX 2TMS) 25.4461 Standard 1 198 
 

Tropic acid (2TMS) 25.467 Database (NIST & GMD) 2 193 922 
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Metabolite RT Confirmation status 
 

Reference ion Match 

Xylulose (4TMS) isomer 2 25.6533 Standard 1 306 
 

L-Asparagine (2TMS) 25.9858 Standard 1 159 
 

2-Deoxypentitol (4TMS) 26.0009 Database (NIST) 3 219 823 

Pyrogallol (3TMS) 26.0216 Database (NIST) 2 239 813 

Ornithine (3TMS) isomer 1 26.4889 Standard 1 142 
 

Phenylalanine (2TMS) 26.6665 Standard 1 218 
 

Xylonic acid, 1,5-lactone (3TMS) 26.754 Database (NIST) 3 217 753 

4-Hydroxybenzoic acid (2TMS) 26.8256 Database (NIST & Massbank) 2 267 864 

Allantoin derivative 1 27.0981 Standard 1 403 
 

Spermine per-TMS II 27.1002 Database (NIST) 3 160 680 

Phloroglucinol (3TMS) 27.36 Database (NIST) 2 342 909 

Gluconic acid (1MEOX 5TMS) 27.4495 Database (NIST) 3 204 848 

3-Deoxy-pentonic acid (4TMS) 27.48 Database (NIST) 3 245 697 

Lyxose (1MEOX 4TMS) isomer 1 27.5198 Standard 1 217 
 

Lyxose (1MEOX 4TMS) isomer 2 27.927 Standard 1 217 
 

Similar to Phloroglucinol (3TMS) 27.895 Database (NIST) 3 342 697 

2,5-Furandicarboxylic acid (2TMS) 28.446 Database (NIST) 2 285 672 

Arabinonic acid-1,4-lactone (3TMS) 28.4615 Database (NIST & GMD) 2 217 809 

Hexestrol (2TMS) 28.5364 Database (NIST) 3 399 896 

Levoglucosan (3TMS) 28.8666 Database (NIST & GMD) 2 204 898 

Fucose (1MEOX 4TMS) isomer 1 29.2801 Database (NIST) 3 177 799 

Xylitol (5TMS) 29.395 Standard 1 217 
 

Ribitol (5TMS) 29.5139 Standard 1 217 
 

Glycerol-2-phosphate (4TMS) 29.6075 Standard 1 299 811 

Putrescine (4TMS) 29.6968 Standard 1 174 
 

Ornithine (3TMS) isomer 2 30.164 Standard 1 186 
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Metabolite RT Confirmation status 
 

Reference ion Match 

cis-Aconitic acid (3TMS) 30.305 Standard 1 375 
 

Vanillic acid (2TMS) 30.5492 Standard 1 297 
 

Glycerol-3-Phosphate (4TMS) 30.5735 Standard 1 299 
 

Allantoin derivative 2 30.6532 Standard 1 243 
 

Methylfructoside (4TMS) 30.9187 Database (NIST) 3 257 790 

σ-Coumaric acid (2TMS) 31.2649 Standard 1 293 
 

β-D-Galactofuranose (5TMS) 31.6034 Database (NIST) 3 217 747 

Fructose (5TMS) isomer 1 31.7068 Standard 1 437 
 

Fructose (5TMS)  isomer 2 31.8454 Standard 1 437 
 

Ornithine (4TMS)  31.9012 Standard 1 142 
 

Shikimic acid (4TMS) 32.0086 Standard 1 255 
 

Protocatechuic acid (3TMS) 32.0424 Standard 1 370 
 

Citric acid (4TMS) 32.1212 Standard 1 363 
 

Isocitric acid (4TMS) 32.2169 Standard 1 245 
 

Arginine [-NH3] (3TMS) 32.2295 Standard 1 256 
 

Cholestan-3-one, dimethylhydrazone, (5α) 32.3853 Database (NIST) 3 428 793 

2-Methylcitric acid (4TMS) isomer 1 32.5809 Standard 1 287 
 

Galactaric acid (6TMS) 32.6431 Database (NIST) 3 292 566 

Lysine (3TMS) 32.8334 Standard 1 200 
 

Adenine (2TMS) 33.1523 Standard 1 264 
 

Fructose (1MEOX 5TMS) isomer 1 33.4511 Standard 1 217 
 

Estra-1,3,5(10)-trien-6-one, (16α,17β)- (3TMS) 33.4955 Database (NIST) 3 428 922 

Fructose (1MEOX 5TMS) isomer 2 33.6752 Standard 1 217 
 

Galactose (1MEOX 5TMS) isomer 1 33.8469 Standard 1 319 
 

Glucose (1MEOX 5TMS) isomer 1 33.9195 Standard 1 319 
 

Gluconic acid-1,4-lactone (4TMS) 34.1226 Standard 1 465 
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Metabolite RT Confirmation status 
 

Reference ion Match 

Galactose (1MEOX 5TMS) isomer 2 34.435 Standard 1 319 
 

Glucose (1MEOX 5TMS) isomer 2 34.5246 Standard 1 319 
 

L-Lysine (4TMS) 34.6474 Standard 1 317 
 

Mannitol (6TMS) isomer 1 34.7737 Standard 1 319 
 

2-Methylcitric acid (4TMS) isomer 2 34.7791 Database (NIST) 3 287 828 

Similar to Gluconic acid-1,4-lactone (4TMS) 34.9368 Database (NIST) 3 465 779 

L-Tyrosine (3TMS) 34.9989 Standard 1 218 
 

p-Coumaric acid (2TMS) 35.0399 Standard 1 293 
 

Mannitol (6TMS) isomer 2 35.1049 Standard 1 319 
 

Hydrocaffeic acid (3TMS) 35.1515 Database (NIST & GMD) 2 398 897 

L-Ascorbic acid (4TMS) 35.3558 Standard 1 332 
 

Gallic acid (4TMS) 35.5052 Standard 1 458 
 

Similar to Gluconic acid (6TMS) 1 35.6125 Database (NIST) 3 292 873 

D-(+)-Arabitol (5TMS) 35.8448 Database (NIST) 3 394 790 

Cis-caffeic acid (3TMS) 35.9679 Database (NIST & GMD) 2 368 925 

Glucopyranose (5TMS) 36.2394 Database (NIST) 3 204 931 

Similar to Gluconic acid (6TMS) 2 36.2744 Database (NIST) 3 292 907 

Pantothenic acid (3TMS) 36.329 Database (NIST & GMD) 2 247 791 

Similar to Gluconic acid (6TMS) 3 36.3542 Database (NIST) 3 292 883 

Similar to Gluconic acid (6TMS) 4 36.4596 Database (NIST) 3 292 897 

4-Methylcinnamic acid (2TMS) 36.6129 Database (NIST) 3 338 728 

Gluconic acid (6TMS) 36.8781 Standard 1 292 
 

Inositol, scyllo (6TMS) 37.0687 Database (NIST & GMD) 2 318 902 

Catechollactate (4TMS) 37.9558 Database (NIST) 3 267 918 

Dopamine (3TMS) 38.2556 Standard 1 174 
 

Ferulic acid (2TMS) 38.666 Standard 1 338 
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Metabolite RT Confirmation status 
 

Reference ion Match 

Sedoheptulose (1MEOX 6TMS) 38.9789 Database (NIST) 3 319 819 

Norepinephrine (5TMS) 40.0127 Database (NIST & HMDB) 2 355 909 

Indolelactic acid (3TMS) 40.3231 Database (NIST & HMDB) 2 202 882 

Tryptophan (2TMS) 40.9577 Standard 1 202 
 

Sinapic acid (2TMS) 42.055 Standard 1 368 
 

Inositol-2-phopsphate , myo- (7TMS) 45.4494 Database (NIST & GMD) 2 318 879 

Uridine (3TMS) 46.1596 Standard 1 259 
 

Arbutin (5TMS) 48.9615 Database (NIST & GMD) 2 254 819 

Similar to Sucrose (8TMS) 1 48.9762 Database (NIST) 3 437 717 

1-Monopalmitin (2TMS) 49.0701 Database (NIST) 3 371 860 

Sucrose (6TMS) 49.8453 Standard 1 361 
 

Similar to Shikimic acid (4TMS) 50.1306 Database (NIST) 3 462 742 

Monostearin (2TMS) 52.615 Database (NIST) 3 399 854 

Epicatechin (5TMS) 53.8408 Standard 1 368 
 

Maltose (1MEOX 8TMS) 53.9376 Database (NIST & GMD) 2 361 791 

Catechin (5TMS) 54.2591 Standard 1 368 
 

Gallocatechin (5TMS) 54.9928 Standard 1 456 
 

Melibiose (8TMS) isomer 1 58.3839 Database (NIST) 3 361 826 

Similar to Caffeic acid (3TMS) 1 58.8334 Database (NIST) 3 396 785 

Quercetin (5TMS) 59.0218 Database (NIST & GMD) 2 575 808 

Similar to Caffeic acid (3TMS) 2 59.9191 Database (NIST) 3 396 712 

Similar to Sucrose (8TMS) 2 62.2223 Database (NIST) 3 361 871 

Similar to Caffeic acid (3TMS) 3 62.7086 Database (NIST) 3 396 760 

* Matches to NIST database showed a probability ≥ 80%. N.D. - Metabolite not detected. 
Confirmation level: (1) Co-chromatography with authentic standard, (2) RI and MS match with database, (3) MS match with database. 
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Appendix 3.3.  Principal Component 
Analysis on metabolites in polar 
extracts of leaves of the Kew Living 
Collection. Measurements were 
conducted on six replicates 
conducted in two batch of three 
(replicates 1 [black], 2 [red], 3 
[green] and replicates 4 [orange], 5 
[blue], 6 [purple] and show that the 
independent runs are 
distinguishable despite replicate 
samples largely clustering.  
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Appendix 3.4 Technical analysis of GPA. (a) Scree plot showing importance of dimensions (F 
value per dimension 1-27) in GPA analysis.(b) Residual by object shows that D. membranacea 
and D. sylvatica(2) show a larger degree of variation across the 6 replicates (outside of 
consensus) than other samples.(c) Residual by configuration shows that Replicate set 5 and 2 
deviated most from the consensus. Additionally, all configurations show a similar number of 
residuals, and thus an individual replicate set cannot be singled out for erroneous 
measurements. 
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Appendix 3.5. Testing of metabolite reduction on GPA consensus configurations. Consensus 
GPA bi-plots (n=6) on the polar fraction of leaf extracts from the 28 Dioscorea accessions using 
metabolites which following Bonferroni-corrected Conover-Iman post hoc (p<0.0001) following 
two-tailed Kruskal-Wallis’ one-way analysis of variance discriminate (a) ≥ 11 groups, (b) ≥ 13 
groups and (c) ≥ 15 groups. 
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Appendix 3.6. Heatmap of metabolite abundance for polar extracts of the Kew Living 
Collection. Mapping mean (n=6) range-scaled metabolite abundances following complete-
linkage clustering shows qualitative and quantitative differences across species. Notably, D. 
rotundata and crop-wild relatives (D. praehensilis and D. minutiflora) have a higher abundance 
of amino acids than other species; similar to rhizomatous lineages of the Stenophora clade. 
Grey squares indicate when a metabolite was not detected. 
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Appendix 3.7. Dendrogram of species and relationship with geographical habitat. Hierarchical tree of species-averaged Dioscorea accessions, based on mean (n=6) 
metabolite compositions shows relationship of chemotaxonomy with geographical habitat. 
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Chapter 4 Appendix 

Appendix 4.1. Sampling of tuber material. Sectioning of tubers into head (H), middle (M) and tail (T) portions for processing. For standard extraction H, M & T 
portions were pooled. 
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Appendix 4.2. Metabolites identified following GC-MS profiling on tuber material.  

Metabolite RI Phase Identification RT Ion Match 

Lactic Acid (2TMS) 1065.00 P+NP Standard 9.4242 117 
 

Glycolic acid (2TMS) 1081.51 P Standard 10.1998 147 
 

L-Alanine (2TMS) 1103.18 P+NP Standard 10.5702 116 
 

Hydroxylamine (3TMS) 1111.73 P+NP Database 10.771 249 740 

1-Piperidinecarboxaldehyde 1144.00 NP Database 12.1214 113 926 

Methyl phosphate (2TMS) 1179.60 NP Database 12.9495 241 904 

Malonic acid (2TMS) 1195.70 P Standard 13.5322 147 
 

L-Valine (2TMS) 1211.10 P Standard 14.0614 144 
 

Ethanolamine (3TMS) 1260.60 P+NP Standard 15.7362 174 950 

L-Leucine (2TMS) 1267.80 P Standard 15.8964 158 
 

Phosphate (3TMS) 1270.08 P+NP Standard 15.9743 299 
 

Glycerol (3TMS) 1271.63 P+NP Standard 16.0468 205 
 

L-Isoleucine (2TMS) 1288.10 P Standard 16.4676 158 
 

Nicotinic acid (1TMS) 1290.25 P Standard 16.6341 180 
 

L-Proline (2TMS) 1291.05 P Standard 16.6351 142 
 

Hypoxanthine (2TMS) 1298.03 P Database 17.0633 265 864 

Maleic acid (2TMS) 1300.30 P Standard 17.1373 245 
 

Glycine (3TMS) 1300.38 P+NP Standard 17.1421 174 
 

Succinic acid (2TMS) 1313.77 P+NP Standard 17.3484 247 
 

Glyceric acid (3TMS) 1327.75 P Standard 17.8092 292 
 

Itaconic acid (2TMS) 1340.75 P Standard 18.2112 215 
 

Uracil (2TMS) 1345.07 P Standard 18.3957 240 
 

Citraconic acid (2TMS) 1345.70 P Database 18.4131 147 906 

Fumaric acid (2TMS) 1349.88 P+NP Standard 18.5332 245 
 

Alanine (3TMS) 1351.93 P Standard 18.5742 188 
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Metabolite RI Phase Identification RT Ion Match 

L-Serine (3TMS) 1358.67 P+NP Standard 18.7878 204 
 

Threonic acid, 1,4-lactone (2TMS) 1368.60 P Database 19.4112 147 856 

L-Threonine (3TMS) 1381.90 P+NP Standard 19.6052 218 
 

Mesaconic acid (2TMS) 1399.35 P Standard 20.1052 184 
 

d-Erythrofuranose (3TMS) 1403.60 P Database 20.4639 147 886 

L- Aspartic acid (2TMS) 1423.30 P Standard 20.7659 116 
 

L-Homoserine (2TMS) 1447.00 P Database 21.8214 218 911 

2-Piperidone-amino (2TMS) 1450.90 P Database 21.9605 128 801 

Arabino-Hexos-2-ulose (4TMS) 1477.40 P Database 22.5093 234 883 

Malic acid (3TMS) 1487.30 P+NP Standard 22.8599 233 
 

Threitol (4TMS) 1498.35 P Standard 23.1639 217 
 

Erythritol (4TMS) 1505.80 P Standard 23.3953 217 
 

L-Methionine (2TMS) 1512.86 P Standard 23.6206 176 
 

Pyroglutamic acid (2TMS) 1513.70 P+NP Standard 23.7741 156 
 

L-Aspartic acid (3TMS) 1517.27 P+NP Standard 23.7363 232 
 

GABA (3TMS) 1523.60 P Standard 24.0623 174 
 

1-Desoxy-pentitol (4TMS) isomer 1 1530.20 P Database 24.1644 117 891 

1-Desoxy-pentitol (4TMS) isomer 2 1538.90 P Database 24.3668 117 876 

Erythronic acid (4TMS) 1540.50 P Standard 24.4068 292 
 

Phenylalanine (1TMS) 1542.07 P Standard 24.4139 120 
 

3-Hydroxynorvaline (3TMS) 1547.63 P Database 24.6359 232 728 

L-Cysteine (3TMS) 1549.80 P Standard 24.7316 220 
 

Threonic acid (4TMS) 1558.30 P Standard 24.9568 292 
 

3-Hydroxybenzoic acid (2TMS) 1561.30 P Database 25.0643 267 944 

Xylulose (4TMS) isomer 1 1577.33 P Standard 25.6533 306 
 

Pyrogallol (3TMS) 1594.70 P+NP Database 26.0216 239 813 
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Metabolite RI Phase Identification RT Ion Match 

Arabinofuranose (4TMS) isomer 1 1608.60 P Database 26.423 217 915 

Allantoin (derivative 1) 1607.65 P Standard 24.678 201 
 

Ornithine (3TMS) isomer 1 1612.30 P Standard 26.4889 142 
 

Phenylalanine (2TMS) 1617.95 P+NP Standard 26.6665 218 
 

Phloroglucinol (3TMS) 1622.45 P Database 27.0676 342 909 

Asparagine-H20 (3TMS) 1623.90 P Database 27.1003 315 880 

Arabinofuranose (4TMS) isomer 2 1626.70 P Database 27.2246 217 877 

Allantoin (derivative 2) 1632.10 P Standard 27.3642 403 
 

Lyxose (1MEOX 4TMS) isomer 1 1641.10 P Standard 27.5198 217 
 

Arabinofuranose (4TMS) isomer 3 1644.80 P Database 27.6448 217 858 

Gluconic acid (1MEOX 5TMS) 1644.43 P Database 27.6495 204 848 

3-Deoxy-pentonic acid (4TMS) 1645.70 P Database 27.68 245 697 

Lyxose (1MEOX 4TMS) isomer 2 1652.55 P Standard 27.7888 217 
 

Ribose (1MEOX 4TMS) 1659.50 P Database 27.7981 307 945 

Similar to Phloroglucinol (3TMS) 1660.93 P Database 27.895 342 909 

Similar to 5-Hydroxytryptophan (4TMS) 1662.63 NP Database 28.2188 290 855 

Arabinofuranose (4TMS) isomer 4 1672.90 P Database 28.446 217 914 

Xylitol (5TMS) 1690.30 P Standard 29.395 217 
 

Levoglucosan (3TMS) 1695.40 P Database 28.8666 204 898 

Fucose (1MEOX 4TMS) isomer 1 1709.95 P Database 29.2801 117 799 

Ribitol (5TMS) 1714.10 P Standard 29.5139 217 
 

Putrescine (4TMS) 1726.13 P Standard 29.6968 174 
 

Ornithine (3TMS) isomer 2 1743.30 P Standard 30.164 186 
 

cis-Aconitic acid (3TMS) 1747.95 P Standard 30.305 375 
 

Glycerol-4-Phosphate (4TMS) 1758.48 NP Standard 30.6514 299 
 

Allantoin (derivative 4) 1759.45 P Standard 30.7069 243 
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Metabolite RI Phase Identification RT Ion Match 

Fructose (5TMS) isomer 1 1796.80 P Standard 31.8454 437 
 

Ornithine (4TMS) 1808.70 P Standard 31.9012 142 
 

Shikimic acid (4TMS) 1809.00 P Standard 32.0086 255 
 

Protocatechuic acid (3TMS) 1812.65 P Standard 32.0424 370 
 

Citric acid (4TMS) 1811.77 P+NP Standard 32.1212 363 
 

Arginine [-NH3] (3TMS) 1819.88 P Standard 32.2295 256 
 

Homogentisic acid (3TMS) 1828.60 P Standard 32.4421 384 
 

Galactaric acid (6TMS) 1835.67 P Database 32.6431 292 566 

Tetradecanoic acid (1TMS) 1843.70 NP Sandard 32.8039 286 
 

Lysine (3TMS) 1843.80 P Standard 32.8334 200 
 

Fructose (1MEOX 5TMS) isomer 1 1863.35 P+NP Standard 33.4511 217 
 

Fructose (1MEOX 5TMS) isomer 2 1873.90 P+NP Standard 33.6752 217 
 

Galactose (1MEOX 5TMS) isomer 1 1877.50 P+NP Standard 33.9195 319 
 

Glucose (1MEOX 5TMS) isomer 1 1880.78 P Standard 33.8469 319 
 

Galactose (1MEOX 5TMS) isomer 2 1893.60 P Standard 34.355 319 
 

Glucose (1MEOX 5TMS) isomer 2 1901.80 P Standard 34.435 319 
 

3-Deoxy-arabino-hexaric acid (5TMS) 1912.10 P Database 34.6159 245 727 

L-Lysine (4TMS) 1913.40 P Standard 34.6474 317 
 

Mannitol (6TMS) isomer 1 1919.53 P Standard 34.9927 319 
 

Mannitol (6TMS) isomer 2 1926.45 P Standard 35.1049 319 
 

L-Tyrosine (3TMS) 1929.70 P Standard 35.2525 218 
 

L-Ascorbic acid (4TMS) 1938.60 P Standard 35.3558 332 
 

Pentadecanoic acid (1TMS) 1941.50 NP Standard 35.4441 299 
 

Similar to Gluconic acid (6TMS) 1 1951.63 P Database 35.7775 292 873 

Similar to Gluconic acid (6TMS) 2 1979.97 P Databse 36.4808 292 907 

Pantothenic acid (3TMS) 1983.40 P Database (NIST & GMD) 36.5313 247 791 
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Metabolite RI Phase Identification RT Ion Match 

Similar to Gluconic acid (6TMS) 3 1984.20 P Database 36.6034 292 883 

Similar to Gluconic acid (6TMS) 4 1988.27 P Database 36.7046 292 897 

Gluconic acid (6TMS) 2001.90 P Standard 36.9828 292 
 

Palmitoleic acid (1TMS) 2011.55 NP Standard 37.2443 311 
 

Inositol, scyllo (6TMS) 2016.33 P Database (NIST & GMD) 37.3613 318 902 

Hexadecanoic acid (1TMS) 2040.10 NP+P Standard 37.9725 313 
 

Dopamine (3TMS) 2066.15 P Standard 38.2556 174 
 

Inositol, myo (6TMS) 2076.30 NP Standard 38.7464 305 
 

Sedoheptulose (1MEOX 6TMS) isomer 1 2097.66 P Database (NIST) 39.253 319 819 

Sedoheptulose (1MEOX 6TMS) isomer 2 2100.70 P Database 39.3183 319 867 

cis-10-Heptadecenoic acid (1TMS) 2112.30 P Standard 39.5844 325 
 

Sedoheptulose (1MEOX 6TMS) isomer 3 2114.07 P Database 39.6085 319 858 

Methyl stearate 2121.45 NP Database 39.801 298 773 

Heptadecanoic acid (1TMS) 2138.03 NP Standard 40.0664 327 
 

Tryptophan (2TMS) 2187.85 P Standard 40.9577 202 
 

Monolaurin (2TMS) 2197.40 NP Database 41.5237 315 757 

Linoleic acid (1TMS) 2202.25 NP Standard 41.6109 337 913 

trans-9-Octadecenoic acid (1TMS) 2207.60 NP Database 41.7268 117 878 

Linolenic acid (1TMS) 2207.77 NP Standard 41.7445 335 
 

Oleic acid (1TMS) 2208.53 NP Standard 41.9054 399 
 

Octadecanoic acid (1TMS) 2236.50 NP+P Standard 42.2655 341 
 

Ethyl palmitate (2TMS) 2322.18 NP Database 44.1966 357 756 

Nonadecanoic acid (1TMS) 2334.80 NP Standard 44.4413 355 
 

1-Monomyristin (2TMS) 2386.90 NP Database 45.7051 343 894 

Inositol-2-phopsphate , myo- (7TMS) 2394.70 P+NP Database (NIST & GMD) 45.4494 318 879 

Eicosanoic acid (1TMS) 2432.65 NP Standard 46.7026 369 
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Metabolite RI Phase Identification RT Ion Match 

Glycerol, mono-pentadecanoate (2TMS) 2482.45 NP Database 47.4317 357 779 

2-Monopalmitin (2TMS) 2550.40 P Database 48.9353 313 852 

1-Monopalmitin (2TMS) 2579.30 NP+P Database (NIST) 49.0701 371 860 

Sucrose (6TMS) 2623.95 P+NP Standard 50.1348 361 
 

Docosanoic acid (1TMS) 2630.10 NP Standard 50.26 397 
 

2-Monoolein (2TMS) 2707.93 NP Database 51.6173 408 745 

Trehalose (8TMS) 2727.17 P Standard 51.9706 361 
 

Tricosanoic acid (1TMS) 2728.90 NP Standard 52.0711 411 
 

Maltose (1MEOX 8TMS) 2738.10 P Database (NIST & GMD) 53.9376 361 791 

2-Monostearin (2TMS) 2742.55 NP Database 52.297 129 860 

Monostearin (2TMS) 2771.70 NP+P Database (NIST) 52.615 399 854 

Similar to Sucrose (6TMS) 2821.30 P Database 53.5312 361 882 

Thymol glucopyranoside (4TMS) 2826.50 P Database 53.7417 361 808 

Tetracosanoic acid (1TMS) 2827.25 NP Standard 53.8196 245 
 

Catechin (5TMS) 2875.97 P Standard 54.2591 368 
 

Gallocatechin (5TMS) 2918.40 P Standard 54.9928 456 
 

Pentacosanoic acid (1TMS) 2926.50 NP Database 55.361 439 801 

Hexacosanoic acid (1TMS) 3027.30 NP Database 57.0056 453 605 

a-Tocopherol (1TMS) 3118.60 NP Standard 58.4084 502 
 

Cholesterol (1TMS) 3118.07 NP Standard 58.6271 329 
 

Campesterol (1TMS) 3221.97 NP Standard 60.2527 343 
 

Stigmasterol (1TMS) 3249.15 NP Standard 60.6264 394 
 

b-Sitosterol (1TMS) 3307.55 NP Standard 61.5679 396 
 

Metabolites were only recorded if detectable in all replicates of at least one sample. Compound identification based on matches to NIST library were all >80% 
probability.
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Appendix 4.3. Unidentified metabolite features consistently recorded during GC-MS profiling of 
tuber material.  

Metabolite RI Phase RT Ion 

Unknown - 1066.9 1066.9 NP 9.4547 131 

Unknown - 1080.9 1080.8 NP 9.958 73 

Unknown - 1123.9 1119.5 P 11.1236 169 

Unknown 1121.6 1121.6 NP 11.3012 140 

Unknown - 1126.1 1126.1 P 11.5076 255 

Unknown - 1155.6 1155.6 NP 12.4514 83 

Unknown -1172.7 1172.7 NP 12.826 140 

Unknown - 1204.8 1204.8 NP 13.8973 212 

Unknown - 1214.1 1214.1 NP 14.1897 308 

Unknown - 1241.4 1241.4 NP 15.1599 117 

Unknown - 1255.55 1255.55 NP 15.6218 298 

Unknown - 1261.9 1261.9 NP 15.791 117 

Unknown - 1300.35 1300.25 P 17.0654 232 

Unknown - 1308.425 1308.425 P 17.1632 209 

Unknown - 1336.1 1336.1 NP 18.0944 147 

Unknown - 1337.8 1337.8 NP 18.1007 193 

Unknown - 1355.25 1355.25 P 18.689 241 

Unknown - 1361.75 1361.75 P 18.9015 255 

Unknown - 1368.3 1367.45 P 19.3202 141 

Unknown - 1392.967 1392.967 P 19.9031 239 

Unknown - 1400.3 1400.3 NP 20.4438 170 

Unknown - 1422.35 1422.35 P 20.6859 228 

Unknown - 1427.3 1427.3 P 20.992 201 

Unknown - 1431.633 1431.633 P 21.1037 158 

Unknown - 1431.85 1431.85 P+NP 21.2738 243 

Unknown - 1442.8 1442.8 NP 21.6698 350 

Unknown - 1495.417 1495.417 P 23.1628 305 

Unknown - 1503.2 1503.2 P 23.2563 159 

Unknown - 1518.2 1518.2 NP 23.9876 211 

Unknown - 1519 1519 P 24.0298 278 

Unknown - 1527.433 1527.433 P 24.0697 217 

Unknown - 1529.95 1529.95 NP 24.1351 447 

Unknown - 1530.9 1530.9 NP 24.1676 263 

Unknown - 1531.8 1531.8 P 24.174 241 

Unknown - 1531.325 1531.325 P 24.2023 239 

Unknown - 1539.85 1539.85 NP 24.3811 111 

Unknown - 1547.15 1547.15 P 24.5676 219 

Unknown - 1553.6 1553.1 P 24.943 333 

Unknown - 1565.75 1565.75 P 25.1779 114 

Unknown - 1567.4 1567.4 P 25.2567 272 

Unknown - 1599.85 1599.85 P 26.37 258 

Unknown - 1602.3 1602.3 NP 26.3992 207 

Unknown - 1606.15 1606.15 P 26.4 204 

Unknown - 1647.9 1647.9 P 27.7252 271 
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Metabolite RI Phase RT Ion 

Unknown - 1668.1 1668.1 P 28.3584 231 

Unknown 1668.9 1668.9 NP 28.3786 279 

Unknown - 1669.45 1669.45 P 28.4386 330 

Unknown - 1678.7 1678.7 NP 28.587 159 

Unknown - 1688.85 1688.85 P 28.9463 299 

Unknown - 1709.35 1709.35 P 29.2525 305 

Unknown - 1722.25 1722.25 NP 29.5958 330 

Unknown - 1732.2 1732.2 P 29.898 392 

Unknown - 1735.3 1735.3 NP 30.0359 111 

Unknown - 1737.7 1737.7 NP 30.0905 292 

Unknown - 1744.9 1744.9 P 30.26 333 

Unknown - 1747.7 1747.7 NP 30.3 302 

Unknown - 1749.55 1749.55 P 30.3808 430 

Unknown - 1750.7 1750.7 NP 30.5735 217 

Unknown - 1760.4 1760.4 NP 30.7566 253 

Unknown - 1763.25 1763.25 P 30.8301 450 

Unknown - 1766 1766 P 30.8323 292 

Unknown - 1793.9 1793.9 P 31.4615 333 

Unknown - 1794.35 1794.35 P 31.8117 292 

Unknown - 1886.3 1886.3 NP 34.1826 333 

Unknown - 1915.65 1915.65 P 34.6613 273 

Unknown - 1919.1 1919.1 NP 34.7737 99 

Unknown 1945.6 1945.6 NP 35.6493 71 

Unknown - 1978.25 1978.25 P 36.1995 346 

Unknown - 1982.4 1982.4 NP 36.491 111 

Unknown - 1986.7 1986.7 NP 36.6393 111 

Unknown - 2006 2006 NP 37.1182 153 

Unknown -2039.7 2039.7 P 37.8851 439 

Unknown 2086.2 2086.2 NP 38.9856 294 

Unknown - 2093.3 2093.3 NP 39.2445 264 

Unknown - 2111.1 2111.1 P 39.4918 245 

Unknown - 2132.3 2132.3 NP 39.8457 174 

Unknown - 2153.7 2153.7 NP 40.5252 143 

Unknown - 2346.6 2346.6 P 44.6803 349 

Unknown - 2361.3 2361.3 P 44.9981 319 

Unknown - 2374.3 2374.3 NP 45.2662 318 

Unknown - 2497.1 2497.1 P 47.7359 321 

Unknown - 2531.275 2531.275 P 48.3735 512 

Unknown - 2612.6 2612.6 P 49.9243 289 

Unknown - 2618.5 2618.5 NP 50.0358 572 

Unknown - 2740.4 2740.4 NP 52.2708 395 

Unknown - 2806.8 2806.8 NP 53.4451 384 

Unknown - 2933.95 2933.95 NP 55.6379 193 

Unknown - 2963.7 2963.7 NP 56.1217 193 

Metabolite features were only recorded if detectable in all replicates of at least one sample.
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Appendix 4.4. Clustering of metabolites recorded in tuber extracts of accessions from breeding 
program. Clustering (spearman dissimilarity) on mean (n=3) metabolite abundances across the 
49 tuber accessions shows that biochemically-related compounds. 
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Appendix 4.5. Loading plots of GPA analysis on tuber extracts. Consensus configuration based 
on metabolite profiles from polar extracts of tuber material from parental lines of the global 
yam breeding program measured via GC-MS. 
 
Polar extracts 
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Non-polar extract 
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Non-polar excluding TDd3774 
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Appendix 4.7. Scattergrams of abundance of most discriminatory features* across most 

diverse* samples.  
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Scattergrams showing the abundance* of compounds which are most discriminatory** for 

tuber extracts from lines of the IITA yam breeding program in selected accessions; showing the 

mean (+), median (-) and individual measurements per sample (o) (n=3). 

 

*Abundance is response relative to internal standard (10µg D
4
-succinic acid and D

27
-myristic 

acid in polar and non-polar phases respectively). 

**Most discriminatory compounds were selected based on number of groups generated by 

Bonferroni-corrected (α≤ 0.05) Conover-Iman post-hoc following Kruskal-Wallis one way 

analysis of variance on all 49 lines. Diverse samples were chosen as those visually most 

divergent on the GPA plots of total, polar and non-polar phase (Figure 4.3). 
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Appendix 4.8. Metabolites of tuber extracts which differentiate accessions of D. dumetorum.  

Variable Kruskal-Wallis p-value 

L-Alanine (2TMS) < 0.0001 

L-Valine (2TMS) < 0.0001 

Ethanolamine (3TMS) 0.003576743 

L-Leucine (2TMS) < 0.0001 

Phosphate (3TMS) < 0.0001 

Glycerol (3TMS) 0.004173345 

L-Isoleucine (2TMS) < 0.0001 

Nicotinic acid (1TMS) 0.001066133 

L-Proline (2TMS) < 0.0001 

Hypoxanthine (2TMS) 0.00546422 

Maleic acid (2TMS) 0.016326329 

Glycine (3TMS) < 0.0001 

Glyceric acid (3TMS) 0.001728014 

Itaconic acid (2TMS) < 0.0001 

Fumaric acid (2TMS) 0.00480221 

Alanine (3TMS) 0.001110893 

L-Serine (3TMS) < 0.0001 

Threonic acid, 1,4-lactone (2TMS) < 0.0001 

L-Threonine (3TMS) < 0.0001 

Mesaconic acid (2TMS) 0.001363937 

d-Erythrofuranose (3TMS) 0.011262253 

L- Aspartic acid (2TMS) 0.001467585 

Unknown - 1431.633 0.000787059 

L-Homoserine (2TMS) 0.002506836 

2-Piperidone-amino (2TMS) 0.000106792 

Arabino-Hexos-2-ulose (4TMS) 0.000171054 

Malic acid (3TMS) 0.000146051 

Unknown - 1495.417 0.004166838 

Threitol (4TMS) < 0.0001 

L-Methionine (2TMS) < 0.0001 

Pyroglutamic acid (2TMS) 0.001229719 

L-Aspartic acid (3TMS) 0.001633682 

GABA (3TMS) < 0.0001 

Unknown - 1527.433 0.022908492 

1-Desoxy-pentitol (4TMS) isomer 1 < 0.0001 

Unknown - 1531.8 0.000218346 

Phenylalanine (1TMS) 0.000126761 

Unknown - 1547.15 0.00167658 

Unknown - 1553.6 0.018468676 

Threonic acid (4TMS) < 0.0001 

Unknown - 1565.75 0.017485855 

Unknown - 1567.4 0.002660084 

Xylulose (4TMS) isomer 1 0.001188398 

Allantoin (derivative 1) 0.000932646 
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Variable Kruskal-Wallis p-value 

Ornithine (3TMS) isomer 1 0.000401066 

Phenylalanine (2TMS) 0.000604804 

Lyxose (1MEOX 4TMS) isomer 1 0.001662098 

Arabinofuranose (4TMS) isomer 3 0.022908492 

3-Deoxy-pentonic acid (4TMS) 0.000492522 

Lyxose (1MEOX 4TMS) isomer 2 0.000342408 

Unknown - 1669.45 0.014546686 

Xylitol (5TMS) < 0.0001 

Unknown - 1709.35 0.016884606 

Ribitol (5TMS) < 0.0001 

Putrescine (4TMS) < 0.0001 

Ornithine (3TMS) isomer 2 0.000206052 

Unknown - 1744.9 0.000130616 

Unknown - 1763.25 0.002819098 

Unknown - 1793.9 < 0.0001 

Unknown - 1794.35 0.00351658 

Shikimic acid (4TMS) < 0.0001 

Arginine [-NH3] (3TMS) 0.001010367 

Homogentisic acid (3TMS) 0.001773858 

Tetradecanoic acid (1TMS) 0.045547846 

Lysine (3TMS) 0.000151925 

Fructose (1MEOX 5TMS) isomer 1 < 0.0001 

Fructose (1MEOX 5TMS) isomer 2 < 0.0001 

Galactose (1MEOX 5TMS) isomer 1 0.000170662 

Glucose (1MEOX 5TMS) isomer 1 0.003966956 

Galactose (1MEOX 5TMS) isomer 2 0.010739689 

Glucose (1MEOX 5TMS) isomer 2 0.012160976 

L-Lysine (4TMS) 0.000712516 

Unknown - 1915.65 < 0.0001 

Mannitol (6TMS) isomer 1 0.000204809 

Pentadecanoic acid (1TMS) 0.00015559 

Glucopyranose (5TMS) 0.029125718 

Similar to Gluconic acid (6TMS) 2 0.000384663 

Palmitoleic acid (1TMS) < 0.0001 

Inositol, scyllo (6TMS) 0.000114244 

Hexadecanoic acid (1TMS) 0.009556376 

Unknown 2086.2 < 0.0001 

Unknown - 2093.3 < 0.0001 

Sedoheptulose (1MEOX 6TMS) isomer 2 0.002957962 

cis-10-Heptadecenoic acid (1TMS) < 0.0001 

Methyl stearate < 0.0001 

Heptadecanoic acid (1TMS) 0.000402824 

Tryptophan (2TMS) 0.000230173 

Linoleic acid (1TMS) < 0.0001 

trans-9-Octadecenoic acid (1TMS) 0.001790906 

Linolenic acid (1TMS) < 0.0001 
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Variable Kruskal-Wallis p-value 

Oleic acid (1TMS) 0.003892913 

Nonadecanoic acid (1TMS) 0.000566845 

Eicosanoic acid (1TMS) 0.000185005 

Glycerol, mono-pentadecanoate (2TMS) 0.004732836 

Unknown - 2497.1 < 0.0001 

Unknown - 2612.6 0.00023663 

Docosanoic acid (1TMS) 0.000338966 

2-Monoolein (2TMS) 0.000136977 

Trehalose (8TMS) < 0.0001 

Tricosanoic acid (1TMS) 0.000602995 

Maltose (1MEOX 8TMS) < 0.0001 

Unknown - 2740.4 0.000304333 

Similar to Sucrose (6TMS) < 0.0001 

Thymol glucopyranoside (4TMS) 0.001725918 

Tetracosanoic acid (1TMS) 0.000839261 

Hexacosanoic acid (1TMS) < 0.0001 

Campesterol (1TMS) 0.007777392 

Stigmasterol (1TMS) 0.009745428 

b-Sitosterol (1TMS) 0.011073106 
Kruskall-Wallis analysis of variance conducted on metabolite recorded in tuber extracts of D. 
dumeoturm accessions showed that 110 compounds contributed significantly to sample 
discrimination into numerous groups as determined by Conover-Inman posthoc. p-values were 
Bonferroni-corrected. 
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Appendix 4.9. Metabolites identified following GC-MS on polar extracts of head, middle, tail 
and skin sections of tubers. 

RI Metabolite 

1064.5 Lactic acid (2TMS) Standard 

1090 Pyruvic acid (2TMS) Standard 

1104 L-Alanine (2TMS) Standard 

1170.3 AABA Database (GMD) 

1176.4 Methyl phosphate (2TMS) Database (GMD) 

1212.7 L-Valine (2TMS) Standard 

1241.7 Urea (2TMS) Database (NIST & GMD) 

1260.8 Ethanolamine (3TMS) Standard 

1266.867 L-Leucine (2TMS) Standard 

1268.875 Phosphate (3TMS) Standard 

1271.567 Glycerol (3TMS) Standard 

1288.35 L-Isoleucine (2TMS) Standard 

1289.95 Nicotinic acid (1TMS) Standard 

1290.9 L-Proline (2TMS)  Standard 

1299.25 Glycine (3TMS) Standard 

1300.25 Maleic acid (2TMS)  Standard 

1312.3 Succinic acid (2TMS) Standard 

1339.1 Citraconic acid (2TMS) Database (NIST) 

1348.633 Fumaric acid (2TMS) Standard 

1356.2 L-Serine (3TMS) Standard 

1367 Threonic acid-1,4-lactone (2TMS) Database (GMD) 

1380.6 L-Threonine (3TMS) Standard 

1397.6 Mesaconic acid (2TMS) Standard 

1420.4 L- Aspartic acid (2TMS) Standard 

1449 2-Piperidone-amino (2TMS) Database (GMD & HMDB) 

1467 Glutamine [-H2O] (2TMS) Database (GMD)  

1475.033 Arabino-Hexos-2-ulose (4TMS) Database (NIST) 

1484.5 Malic acid (3TMS) Standard 

1495.956 Threitol (4TMS) Standard 

1511 L-Methionine (2TMS) Standard 

1513.1 Pyroglutamic acid (2TMS) Standard 

1515.3 L-Aspartic acid (3TMS) Standard 

1521.7 GABA (3TMS) Standard 

1537.9 Erythronic acid (4TMS) Standard 

1545 Norvaline (3TMS) Database (NIST) 

1547.7 L-Cysteine (3TMS) Standard 

1555.55 Threonic acid (4TMS) Standard 

1574.8 Xylulose (4TMS) isomer 1 Standard 

1592.175 Pyrogallol (3TMS) Database (NIST) 

1604.1 Allantoin (derivative 1) Standard 

1615.35 Phenylalanine (2TMS) Standard 

1621.6 Asparagine-H20 (3TMS) Database (GMD) 

1629.5 Allantoin (derivative 2) Standard 

1656.75 Lyxose (1MEOX 4TMS) isomer 2 Standard 

1658.05 Similar to Phloroglucinol (3TMS) Database (NIST) 
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RI Metabolite 

1692.7 Levoglucosan (3TMS) Database (NIST & GMD) 

1711.4 Ribitol (5TMS) Standard 

1723.033 Putrescine (4TMS) Standard 

1740.333 Ornithine (3TMS) isomer 2 Standard 

1742.3 Similar to 2-Ketogluconic acid (1MEOX 5TMS) Database (NIST) 

1745.3 cis-Aconitic acid (3TMS) Standard 

1754.367 Ribonic acid (5TMS) Database (NIST & GMD) 

1756.183 Allantoin (derivative 3) Standard 

1806.5 Shikimic acid (4TMS) Standard 

1810.167 Protocatechuic acid (3TMS)  Standard 

1811.65 Citric acid (4TMS) Standard 

1822.333 Cholestan-3-one, dimethylhydrazone, (5α) Database (NIST) 

1840.9 Lysine (3TMS) Standard 

1861.867 Fructose (1MEOX 5TMS) isomer 1 Standard 

1870.9 Fructose (1MEOX 5TMS) isomer 2 Standard 

1874.5 Gluconic acid-1,5-lactone (4TMS) NIST & GMD 

1878.22 Galactose (1MEOX 5TMS) isomer 1 Standard 

1884.85 Glucose (1MEOX 5TMS) isomer 1 Standard 

1899.1 Galactose (1MEOX 5TMS) isomer 2 Standard 

1915.8 Mannitol (6TMS) isomer 1 Standard 

1952.475 Similar to Gluconic acid (6TMS) Database (NIST) 

1971.767 Glucopyranose (5TMS) Database (NIST & GMD) 

1998.667 Gluconic acid (6TMS) Standard 

2012.95 Inositol, scyllo (6TMS) Database 

2039.15 Hexadecanoic acid (1TMS) Standard 

2042.9 Galactaric acid (6TMS) Standard 

2064.85 N-Acetylglucosamine (1MEOX 4TMS) Database (NIST & GMD) 

2072.8 Inositol, myo (6TMS) Standard 

2081.4 Ferulic acid (2TMS) Standard 

2095.5 Sedoheptulose (1MEOX 6TMS) 1 Database (NIST) 

2097.267 Sedoheptulose (1MEOX 6TMS) 2 Database (NIST) 

2108.68 Sedoheptulose (1MEOX 6TMS) 3 Database (NIST) 

2183.4 Tryptophan (3TMS) Standard 

2236.12 Octadecanoic acid (1TMS)  Standard 

2293.175 Glucose-6-phosphate (1MEOX 6TMS) Standard 

2304.875 Glucose-6-phosphate (1MEOX 6TMS) Standard 

2360.2 2-O-D-glycerol-α-D-galactopyranoside (6TMS) Database (NIST) 

2393.025 Inositol-2-phopsphate , myo- (7TMS) Database (NIST & GMD) 

2577.7 1-Monopalmitin (2TMS) Database (NIST) 

2620 Sucrose (6TMS) Standard 

2722.1 Trehalose (8TMS) 1 Standard 

2736.15 Similar to Sucrose (6TMS) Database (NIST) 

2741.1 Maltose (1MEOX 8TMS) Database (NIST & GMD) 

2753.5 Trehalose (8TMS) 2 Standard 

2769.9 Monostearin (2TMS) Database 

2842.917 Epicatechin (5TMS) Standard 
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RI Metabolite 

2868.6 Catechin (5TMS) Standard 

2908.567 Gallocatechin (6TMS) Standard 

Tubers were sectioned into head, middle, tail and skin portions. Head, middle and tail sections 
were analysed in triplicate and the skin in duplicate. Metabolites were only recorded if 
detectable in all replicates of at least one sample. Compound identification based on matches 
to NIST library were all >80% probability. 
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Appendix 4.10. GPA analyses on polar extracts of individual sections of tuber. Tubers were 
sectioned into head, middle, tail (n=3) and skin (n=2) portions. (a) Consensus arrangement 
including the skin showed that skin portions were qualitatively different to other sections for 
all species. (b) Consensus arrangement excluding of the skin suggests compositional gradients 
are present across tubers. 
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Appendix 4.11. Scattergrams of metabolite abundance across different tuber sections. 
Visualisation of metabolites with significant (α ≤0.05) differences in abundance between head, 
middle and tail sections of tuber following Kruskal-Wallis analyses on each species individually. 
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Each replicate is represented by a black diamond, the median by a red vertical line and the 
mean by a red cross. 
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Appendix 4.12. PLS-DA analysis on total metabolite profiles of leaf and tuber. A PLS-DA model 

showed accurate species prediction created from measurement on both tuber and leaf 

materials. Leaf material seemed to show similar trends to tuber, yet more extreme. 
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Appendix 4.13. PLS-DA model loadings coloured by compound class. 

Broad compound classes 

 

amino acid (red square), carboxylic acid (grey cross e.g. x), fatty acid (purple triangle), nitrogen 
& phosphates (grey plus e.g. +), nucleic acid (black asterisk e.g. *), phenolic & terpenoid (green 
diamond), sugar (yellow circle), unknown (hollow black dot). 
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Specific compound classes 

 

essential amino acid (green square), other amino acids (red square), carboxylic acid (green 

cross e.g. x), unsaturated fatty acid (grey triangle), saturated fatty acid (bright pink triangle), 

other fatty acid (salmon pink triangle), nitrogen (purple plus e.g. +), phosphates (burgundy 

plus), nucleic acid (grey asterisk e.g. *), phenolic (green diamond), terpenoid (blue diamond), 

monosaccharide (orange circle), disaccharide (yellow circle), other sugar (blue circle), unknown 

(hollow black dot). 
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Chapter 5 Appendix 

Appendix 5.1. Identification of triterpenes in Dioscorea material. All peaks with a retention 
time after squalene were selected. Fatty acids, alkanes and derivatives were removed & the 
spectra of unknowns manually interpreted. All spectra which may be a terpenoid were 
retained. All analyses were conducted in triplicate. 

Metabolite RI Conf Manual inspection Ions 

Squalene 2795 1 Triterpenoid 69, 137 

Unknown 1 2824 3 
Sterol 

(1TMS, MW 342) 
414, 384, 184, 399 

Unknown 2 2839 3 Sterol 416, 401, 386, 

Unknown 3 2876 4 Unknown 474, 444, 459 

Unknown 4 2883 4 
unknown 

(1TMS, MW 430) 
502, 472 

Unknown 5 3014 3 
Spirostane sterol 
(1TMS, MW 396) 

139, 282, 396, 353 

Unknown 6 3035 3 
Sterol 

(2TMS, MW 415) 
559 

Unknown 7 3044 3 Sterol 396, 381, 275 

Unknown 8 3062 3 Sterol 520, 268, 505, 281 

Cholesterol 
(1TMS) 

3129 1 N/A 329, 129, 368, 458, 353 

Unknown 9 3133 4 Unknown 517, 487, 467 

Unknown 10 3147 4 Unknown 589, 501 

Unknown 11 3178 4 Unknown 428, 532, 275, 237 

Campesterol 
(1TMS) 

3213 1 N/A 343, 382, 129, 367, 472 

Stigmasterol 
(1TMS) 

3240 1 N/A 394, 484, 129, 255, 89 

Unknown 12 3268 3 Sterol 394, 379, 175 

Diosgenin 
(1TMS) 

3268 1 N/A 139, 282, 187, 372, 267 

Unknown 13 3274 3 Sterol 396, 381, 428 

Unknown 14 3285 4 Unknown 204, 121, 373, 269, 189 

β-sitosterol 
(1TMS) 

3296 1 N/A 396, 357, 129, 381, 486, 145 

Stigmastanol 
(1TMS) 

3300 2 (NIST, HMDB) N/A 488, 473, 215, 383 

Unknown 15 3308 3 
Sterol 

(1TMS, MW 412) 
386, 129, 296, 281 

β-amyrin 
(1TMS) 

3353 1 N/A 218, 203 

Unknown 16 3355 3 
Spirostane sterol 
(2TMS, MW 432) 

139, 187, 253, 372, 282, 147 

Cycloartenol 
(1TMS) 

3357 1 N/A 365, 408, 393 

Unknown 17 3420 4 Unknown 473, 488, 156 

Unknown 18 3445 4 Unknown 529, 187, 270, 257, 404 

Unknown 19 3472 4 
Spirostane sterol 
(3TMS, MW 448) 

230, 215, 343, 139 

Unknown 20 3517 3 
Sterol 

(3TMS, MW 432) 
558, 253, 147, 648, 343, 517 
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Appendix 5.2. MCA of sterol detection in all leaf 

material of the glasshouse and woodland collections of 

the Kew Livings Collection. Sterol features were 

analysed in non-polar extracts of material via GC-MS, 

performed in triplicate.   
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Appendix 5.3. MCA on sterols in Woodland collection. Consensus using (a) all material and (b) 
only leaf material shows similar arrangements. 
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Appendix 5.4. Sterol standards and manual identification. All standards were run under the same analytical conditions following derivatisation as per samples. 
 

Standard RI (Main peak) Structure Notes Identified Impurities Unidentified impurities 

Squalene 2795 
    

Dihydrocholesterol 

(1TMS) 
3119 

  

Coprostanol 

(1TMS)  

Cholesterol 

(1TMS) 
3129 

    

Ergosterol 

(1TMS) 
3181 

  

Coprostanol 

(1TMS)  

Sarasapogenin 

(1TMS) 
3195 (25S)-5β-spirostan-3β-ol 

  

Possibly smilagenin (1TMS) 

(25R)-5β-spirostan-3β-ol 

Campesterol 

(1TMS) 
3213 

    

Lanosterol 

(1TMS) 
3231 

  
Dihydrolanosterol Many 

Stigmasterol 

(1TMS) 
3240 

  

Stigmastanol 

(1TMS)  

Diosgenin 

(1TMS) 
3268 (25R)-spirost-5-en-3β-ol 

 

Yamogenin (1TMS) 

(25S)-spirost-5-en-3β-ol 

Unknown 

(MW 396) 

β-sitosterol 

(1TMS) 
3296 

    

Tigogenin 

(1TMS) 
3300 (25R)-5α-spirostan-3β-ol 

 

Neotigogenin (1TMS) 

(25S)-5α-Spirostan-3β-ol  

6-ketocholestanol 

(2TMS) 
3344 

    

β-amyrin 

(1TMS) 
3352 

  

α-amyrin 

(1TMS)  

Cycloartenol 

(1TMS) 
3357 

  

Cycloartanol 

(1TMS) 

Unknown 

(1TMS, MW 440) 

Lupeol 

(1TMS) 
3389 

    

Spirostan-2,3-diol 

(2TMS) 
3395 

3 major peaks: (1TMS, MW 412), 

(2TMS, MW 432) & (2TMS, MW 

432) 

Impure standard - likely to be  two spirostan-2,3-diol (2TMS) isomers [25R 

and 25S], 

Unknown (1TMS) 

Diosgenin (1TMS), 

Tigogenin (1TMS)  
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Appendix 5.5. Mass spectra of Unknown 16 in D. tokoro and closely related authentic standard of spirostan-2,3-diol. Non-polar extracts of leaf material were 
analysed via the metabolomics platform devised. Unknown 16 is predominant peak in all leaf material of D. tokoro analysed. Authentic standard of spirostan-2,3-
diol was analysed on the same platform under the same analytical condition following equal derivatisation procedure 

.



 

207 

Appendix 5.6. LC-MS identification of D.tokoro sterols. Putatively identified compounds with a steroidal backbone. 

# RT [min] m/z Formula Fragments 
           1 4.1 461.2898 C 27 H 41 O 6 461.2917 443.2822 271.1724 364.2071 

        2 5.2 447.3105 C 27 H 43 O 5 447.3117 429.301 289.2191 447.2393 303.1962 285.1854 349.2381 
     3 5.5 

  
481.3171 463.3078 445.2943 464.3151 305.2145 273.1846 

      

    
627.3786 

           4 6.3 463.3054 C 27 H 43 O 6 463.3074 445.2972 303.1975 427.2852 285.1866 463.3092 415.2926 409.2761 301.1812 
   5 6.7 447.3105 C 27 H 43 O 5 447.3096 429.2955 303.1947 

         6 7.2 463.3054 C 27 H 43 O 6 463.3076 445.2959 463.2521 365.2311 409.2743 427.2845 245.1602 
     6 

 
445.2949 C 27 H 41 O 5 

            7 8 431.3156 C 27 H 43 O 4 289.2193 431.3164 271.2075 253.1944 
        7 

 
611.379 C 33 H 55 O 10 289.2182 431.3187 413.3069 289.1782 

        8 8.9 
  

465.3227 627.3765 447.3078 463.3064 
        9 9.1 

  
447.3127 433.3336 447.3117 287.2033 447.2599 

       10 11.1 611.379 C 33 H 55 O 10 611.3808 461.2921 305.2124 269.1937 251.1823 449 
      11 11.4 461.2898 C 27 H 41 O 6 461.2917 433.3313 462.2931 317.1764 

        12 11.9 447.3105 C 27 H 43 O 5 289.2193 447.3133 271.2076 399.2919 285.1876 
       12 

 
465.3211 C 27 H 45 O 6 289.2184 447.313 271.2057 447.2472 399.2854 361.2759 463.2954 

     13 12.1 463.3054 C 27 H 43 O 6 463.3073 481.3174 445.298 
         13 

 
481.316 C 27 H 45 O 7 303.1979 289.218 447.3104 271.2074 464.3136 304.1556 427.2893 606.1865 461.285 433.3337 271.2074 253.1968 

14 13.2 447.3105 C 27 H 43 O 5 447.3125 429.3032 3569.9854 411.292 
        

    
287.2021 305.2128 319.1894 303.1971 269.1935 

       15 13.9 597.3633 C 32 H 53 O 10 269.194 411.2919 465.3208 567.6214 305.2212 
       16 14 

  
463.3066 447.3119 482.321 303.1972 319.1923 463.3055 285.1852 301.1806 305.2075 446.306 267.1747 

 17 15.1 465.3211 C 27 H 45 O 6 321.2021 305.2132 299.2415 465.3233 429.3019 317.2496 
      17 

 
595.3841 C 33 H 55 O 9 289.2182 433.3336 271.2081 253.1967 397.3161 595.3855 283.244 415.3235 
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# RT [min] m/z Formula Fragments 
           18 15.9 577.3735 C 33 H 53 O 8 447.3105 
           

    
397.3101 289.2179 

          19 16.3 449.3262 C 27 H 45 O 5 289.2179 433.3336 271.2075 253.1972 
        20 16.8 447.3105 C 27 H 43 O 5 303.1939 447.3144 285.1879 

         20 
 

465.3211 C 27 H 45 O 6 305.2134 
           21 17.1 447.3105 C 27 H 43 O 5 303.1939 447.3144 285.1879 

         

    
347.2236 287.2039 270.1954 

         22 17.6 533.3473 C 31 H 49 O 7 
            22 

 
695.4001 C 37 H 59 O 12 389.2352 269.1907 329.2169 251.183 

        23 17.7 431.3156 C 27 H 43 O 4 431.3163 287.2027 
          24 18.2 449.3262 C 27 H 45 O 5 305.2113 

           

    
289.2194 271.2071 449.3293 

         25 18.5 465.3211 C 27 H 45 O 6 303.1967 448.3177 
          

    
301.1804 447.3062 

          

    
273.186 255.1753 301.1818 

         26 18.9 581.3684 C 32 H 53 O 9 581.3701 595.3845 389.2239 269.1923 
        27 19.2 463.3054 C 27 H 43 O 6 463.3068 445.2963 365.2354 301.1823 319.1883 409.2698 

      28 19.6 415.3207 C 27 H 43 O 3 269.1919 431.316 413.3047 251.1815 377.287 
       28 

 
431.3156 C 27 H 43 O 4 305.2129 287.2031 269.1924 257.1928 251.179 447.312 395.2956 429.2999 

    28 
 

449.3262 C 27 H 45 O 5 
            28 

 
466.3527 C 27 H 48 N O 5 

            29 19.9 433.3312 C 27 H 45 O 4 433.3336 269.1909 289.2149 415.3212 
        30 20.5 431.3156 C 27 H 43 O 4 

            30 
 

449.3262 C 27 H 45 O 5 
            30 

 
611.379 C 33 H 55 O 10 

            31 21.5 431.3156 C 27 H 43 O 4 303.1971 447.3117 285.1865 267.1749 430.307 315.2342 411.293 6948.162 279.2098 393.2777 
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# RT [min] m/z Formula Fragments 
           31 

 
447.3105 C 27 H 43 O 5 

            32 22.4 449.3262 C 27 H 45 O 5 289.2182 271.2059 303.1924 432.3189 373.2742 449.3205 287.2039 
     33 22.9 413.305 C 27 H 41 O 3 

            33 
 

431.3156 C 27 H 43 O 4 
            33 

 
449.3262 C 27 H 45 O 5 

            33 
 

527.3367 C 32 H 47 O 6 
            33 

 
563.3578 C 32 H 51 O 8 

            33 
 

581.3684 C 32 H 53 O 9 
            34 23.1 431.3156 C 27 H 43 O 4 640.4177 449.3275 431.3169 

         34 
 

435.3469 C 27 H 47 O 4 314.1965 214.1407 427.2828 
         34 

 
449.3262 C 27 H 45 O 5 

            35 24.2 669.1661 C 29 H 33 O 18 668.4495 447.3129 
          36 24.5 

  
654.4339 314.1978 441.2982 

         37 25.5 397.3101 C 27 H 41 O 2 253.1971 379.3023 283.2454 
         37 

 
415.3207 C 27 H 43 O 3 271.2077 253.1971 415.3213 397.3077 283.2451 269.1906 

      37 
 

723.4314 C 39 H 63 O 12 397.3098 271.2098 253.1975 283.2389 379.3016 721.41 
      37 

 
869.4893 C 45 H 73 O 16 379.2964 415.3201 206.061 

         38 25.9 449.3262 C 27 H 45 O 5 431.3191 287.2023 269.1922 413.3056 289.2199 299.2377 429.2996 269.1373 
    38 

 
466.3527 C 27 H 48 N O 5 305.2126 287.2025 269.1905 449.3263 447.3091 431.3136 

      38 
 

595.3841 C 33 H 55 O 9 328.2122 228.1589 
          38 

 
902.5108 C 45 H 76 N O 17 

            39 26.2 433.3312 C 27 H 45 O 4 305.2128 287.2025 251.1797 447.3117 395.2962 431.3136 287.1273 271.2066 660.1004 
   39 

 
491.3367 C 29 H 47 O 6 

            40 26.4 415.3207 C 27 H 43 O 3 253.1963 397.3116 379.2999 283.2427 254.1722 281.23 395.2956 421.2253 377.2827 398.2029 251.1823 
 40 

 
449.3262 C 27 H 45 O 5 397.3108 253.1967 271.2082 283.244 380.3088 213.1603 255.0887 352.8208 

    40 
 

543.368 C 33 H 51 O 6 
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# RT [min] m/z Formula Fragments 
           40 

 
723.4314 C 39 H 63 O 12 

            40 
 

740.458 C 39 H 66 N O 12 
            41 27.2 433.0707 C 27 H 13 O 6 431.3161 413.3096 271.2023 287.2012 6452.686 269.1915 

      41 
 

433.3312 C 27 H 45 O 4 289.2183 433.3339 
          41 

 
595.3841 C 33 H 55 O 9 289.2186 271.2078 595.3808 

         42 27.7 397.3101 C 27 H 41 O 2 253.1975 397.31 379.3013 253.1627 7901.6257 271.2058 
      42 

 
415.3207 C 27 H 43 O 3 253.197 415.3185 271.1384 757.1889 

        42 
 

543.368 C 33 H 51 O 6 397.3112 253.1973 271.2073 283.2448 415.3214 379.2995 397.2438 
     42 

 
577.3735 C 33 H 53 O 8 

            42 
 

723.4314 C 39 H 63 O 12 
            43 28.5 491.3367 C 29 H 47 O 6 347.2233 287.2025 413.3079 

         44 30.1 415.3207 C 27 H 43 O 3 289.2182 271.2076 253.1968 433.3332 431.3151 
       44 

 
433.3312 C 27 H 45 O 4 

            45 
 

415.3207 C 27 H 43 O 3 
            46 30.6 533.0503 C 30 H 13 O 10 269.1934 

           47 32.3 447.3105 C 27 H 43 O 5 413.308 395.2962 
          47 

 
607.2538 C 34 H 39 O 10 269.1955 

           47 
 

611.467 C 39 H 63 O 5 
            48 35.7 447.0499 C 27 H 11 O 7 
            48 

 
461.2898 C 27 H 41 O 6 447.3123 303.1991 413.3077 411.2862 

        48 
 

607.2538 C 34 H 39 O 10 461.2909 363.2254 
          

    
611.4672 593.4588 609.2604 

         49 35.9 571.2538 C 31 H 39 O 10 461.2901 
           49 

 
571.4568 C 33 H 63 O 7 569.2402 482.1965 629.2554 

         50 36.2 723.5194 C 45 H 71 O 7 
            

    
445.2926 
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# RT [min] m/z Formula Fragments 
           

 
36.6 

  
445.2938 

           51 
   

855.5985 463.2979 347.2223 427.2882 
        52 36.7 612.3836 C 43 H 50 N O 2 289.2 

           52 37.5 773.5198 C 45 H 73 O 10 611.4653 593.4542 
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Appendix 5.7. LC-MS analysis of Dioscorea material for shikimic acid verification. (a) Typical base-peak chromatogram (black) of polar extract of D. sylvatica leaf 

material. Red peak indicates compound dissected in (b) whose mass spectra, fragmentation pattern and retention time match authentic shikimic acid standard.
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Appendix 5.8. LC-MS 
identification of caffeoyl 
shikimate. (a) Typical 
base-peak chromatogram 
(black) of polar extract of 
D. sylvatica leaf material. 
Red peak indicates 
compound dissected in (b) 
whose mass spectra, 
fragmentation pattern 
and retention time match 
caffeoyl shikimate. 
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Appendix 5.9. Calibration curve of shikimic acid. Authentic standard of shikimic acid was 
analysed following the devised metabolomics platform (Chapter 3). Shikimic acid was 
measured as a 4TMS derivative and relative response factor to internal standard recorded.   
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Appendix 5.10. Analysis of D. mexicana leaf material via GC-MS. Screening of polar extract of D. mexicana leaves showed the presence of shikimic acid may not be 
linked to caudiciform tuber morphology as only trace amounts were found. Total-ion chromatogram shown in black. Shikimic acid (4TMS) was qualified via the ion 
225 with an extracted-ion chromatogram at 255 m/z shown in red. 
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Appendix 5.11. Carotenoid identification on HPLC system. 

New standards 

Precursor Epoxidea Furanoidb 

β-carotene 

β-carotene 5,6-epoxide  mutatochrome (β-carotene 5,8-epoxide)  

β-carotene 5,6,5,6-diepoxide  
luteochrome (β-carotene 5,6,5,8-diepoxide) 

aurochrome (β-carotene 5,8,5,8-diepoxide) 

α-carotene α-carotene 5,6-epoxide 
 

lutein 
taraxanthin (lutein 5,6-

epoxide) 
(flavoxanthin/ chrysanthemaxanthin (lutein 5,8-epoxide) 

neoxanthin 
 

neochrome 

violaxanthin  
luteoxanthin 

 
auroxanthin 

antheraxanthin 
 

mutatoxanthin 

 a. Expoxide reaction carried out via mCPBA 
b. Furanoid reaarangement conducted via dilute HCl 



 

217 

Carotenoids characterised on HPLC system 

Carotenoid  RT Spectra 

cis-violaxanthin 10.88 (327.9) 439.1, 466.9 

neochrome isomer 1 11.245 399.4, 422.2, 448.8 

cis-neoxanthin 11.254 (327.9) 436.7, 463.2 

Violaxanthin 11.274 415, 439.1, 469.3 

trihydroxy lutein derivative 1a 11.28 437.9, 468.1 

trihydroxy lutein derivative 2a 11.593 437.9, 468.1 

neoxanthin 11.721 412.6, 436.7, 464.5 

neochrome isomer 2 11.896 399.4, 422.2, 448.8 

luteoxanthin 12.236 398.2, 422.2, 448.8 

taraxanthin (lutein 5,6-epoxide) isomer 1 12.449 415, 440.3, 468.1 

taraxanthin (lutein 5,6-epoxide) isomer 2 12.775 415, 437.9, 459.3 

auroxanthin isomer 1 13.404 380.1, 401.8, 425.8 

antheraxanthin 13.5 443, 477 

auroxanthin isomer 2 13.932 380.1, 401.8, 425.8 

flavoxanthin / chrysanthemaxanthin (lutein 5,8-epoxide) 14.46 421, 447.5 

auroxanthin isomer 3 15.387 380.1, 401.8, 425.8 

mutatoxanthin isomer 1 15.921 428.2, 453.6 

lutein 16.284 445.1, 472.9 / 443, 447 

mutatoxanthin isomer 2 16.779 428.2, 453.6 

zeaxanthin 17.625 450, 479 

β-carotene 5,6,5,6-diepoxide 17.888 416.2, 439.1, 469.3 

β-cryptoxanthin epoxidea 19.65 445, 474.8 

luteochrome (β-carotene 5,6,5,8-diepoxide)  19.664 398.2, 422.2, 448.8 

aurochrome (β-carotene 5,8,5,8-diepoxide) isomer 1 20.672 380.1, 401.8, 425.8 

aurochrome (β-carotene 5,8,5,8-diepoxide) isomer 2 20.974 380.1, 401.8, 425.8 

aurochrome (β-carotene 5,8,5,8-diepoxide) isomer 3 21.358 380.1, 401.8, 425.8 

α-carotene epoxide 21.712 416.2, 439.1, 469.3 

α-cryptoxanthina 22.181 445.1, 475.3 

β-carotene 5,6-epoxide 23.843 447.5, 475.3 

β-cryptoxanthina 24.16 451.2, 480.2 

mutatochrome (β-carotene 5,8-epoxide) 25.327 428.2, 453.6 

ζ-carotene isomer 1a 26.39 377.7, 399.4, 424.6 

ζ-carotene isomer 2a 26.6 377.7, 399.4, 424.6 

α-carotene 26.914 446.3, 475 

ζ-carotene isomer 3a 27.3 377.7, 399.4, 424.6 

β-carotene 28.661 453.6, 479.0 
a. Putative identification based on literature. 
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Appendix 5.12. Quantification of carotenoids in non-saponified Dioscorea extracts. All analyses were conducted in triplicate. Amounts presented are sum of all 
isomers.  

D. dumetorum 

(µg/100g DW)
a 

TDd4118 TDd3947 TDd3109 TDd08-37-12 TDd08-36-88 TDd1315 TDd3100 

Neoxanthin 16.72 ± 2.14 N.D 
  

N.D 
  

37.33 ± 3.90 24.08 ± 5.13 N.D 
  

35.12 ± 11.89 

Neochrome N.D 
  

N.D 
  

N.D 
  

N.D 
  

N.D 
  

N.D 
  

N.D 
  Violaxanthin 161.17 ± 15.25 96.02 ± 33.09 26.74 ± 7.86 319.79 ± 45.45 246.95 ± 57.52 119.59 ± 37.02 421.65 ± 129.65 

Luteoxanthin 44.31 ± 2.90 16.72 ± 1.14 N.D 
  

84.17 ± 5.17 42.68 ± 8.18 22.51 ± 0.08 79.37 ± 14.44 

Antheraxanthin 633.49 ± 22.21 23.99 ± 7.64 N.D 
  

780.55 ± 28.14 67.27 ± 14.88 34.80 ± 6.08 40.33 ± 16.31 

Lutein 30.20 ± 4.20 N.D 
  

N.D 
  

70.52 ± 8.21 N.D 
  

N.D 
  

18.60 ± 4.11 

β-cryptoxanthin
b 

N.D 
  

N.D 
  

N.D 
  

215.87 ± 13.78 33.76 ± 20.18 N.D 
  

N.D 
  β-cryptoxanthin epoxide

b 
N.D 

  
N.D 

  
N.D 

  
165.82 ± 3.91 N.D 

  
N.D 

  
N.D 

  Zeaxanthin N.D 
  

N.D 
  

N.D 
  

N.D 
  

N.D 
  

N.D 
  

25.54 ± 9.00 

Neoxanthin esters
b
  34.46 ± 2.41 N.D 

  
N.D 

  
37.99 ± 6.36 N.D 

  
N.D 

  
161.44 ± 71.31 

Violaxanthin esters
b 

131.00 ± 9.82 N.D 
  

20.92 ± 5.64 155.65 ± 15.29 N.D 
  

N.D 
  

N.D 
  Lutein / antheraxanthin 

esters
b 

995.95 ± 20.87 91.10 ± 28.55 18.07 ± 3.21 796.55 ± 45.06 34.79 ± 5.46 53.25 ± 8.16 147.01 ± 33.26 

α-carotene 104.12 ± 17.96 N.D 
  

N.D 
  

19.70 ± 1.32 N.D 
  

N.D 
  

N.D 
  β-carotene 540.11 ± 23.45 203.18 ± 55.90 N.D 

  
410.88 ± 20.21 113.81 ± 73.08 73.83 ± 10.28 324.45 ± 77.26 

β-carotene 5,6-epoxide 417.05 ± 8.71 52.44 ± 16.48 N.D 
  

903.08 ± 3.24 N.D 
  

N.D 
  

N.D 
  Mutatochrome 2016.32 ± 86.39 63.08 ± 22.71 N.D 

  
3063.70 ± 158.49 32.15 ± 4.13 N.D 

  
N.D 

  Luteochrome 286.04 ± 24.85 N.D 
  

N.D 
  

294.63 ± 15.27 N.D 
  

N.D 
  

N.D 
  Aurochrome 56.95 ± 7.64 N.D 

  
N.D 

  
N.D 

  
N.D 

  
N.D 

  
N.D 

  β-zeacarotene
b 

135.62 ± 42.34 N.D 
  

N.D 
  

146.44 ± 13.00 N.D 
  

N.D 
  

N.D 
  ζ-carotene

b 
N.D 

  
N.D 

  
380.11 ± 83.12 N.D 

  
18.37 ± 1.71 N.D 

  
N.D 

  Other carotenoids 490.79 ± 82.05 73.48 ± 17.68 46.81 ± 9.21 225.65 ± 13.60 91.53 ± 1.69 19.12 ± 3.65 135.53 ± 37.76 
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(µg/100g DW)
a 

TDd3104 TDd3108 TDd3648 TDd08-13-1 TDd08-36-12 TDd08-38-8 TDd08-37-07 

Neoxanthin N.D 
  

N.D 
  

N.D 
  

N.D 
  

N.D 
  

11.18 ± 2.50 N.D 
  Neochrome N.D 

  
N.D 

  
N.D 

  
N.D 

  
N.D 

  
12.35 ± 0.82 N.D 

  Violaxanthin 128.40 ± 30.70 86.14 ± 15.23 170.18 ± 25.23 153.07 ± 20.37 102.70 ± 26.84 127.52 ± 40.94 128.07 ± 1.10 

Luteoxanthin 19.20 ± 6.95 22.75 ± 1.57 32.40 ± 7.72 21.18 ± 1.42 24.31 ± 7.87 25.77 ± 0.50 N.D 
  Antheraxanthin 15.43 ± 3.46 28.48 ± 3.93 117.40 ± 27.35 33.77 ± 10.58 15.41 ± 1.99 25.39 ± 9.41 22.96 ± 7.62 

Lutein 21.25 ± 4.24 34.04 ± 1.81 52.25 ± 3.86 31.37 ± 1.60 16.69 ± 1.62 21.66 ± 4.52 21.85 ± 5.43 

β-cryptoxanthin
b 

N.D 
  

N.D 
  

N.D 
  

N.D 
  

N.D 
  

21.49 ± 3.02 N.D 
  β-cryptoxanthin epoxide

b 
N.D 

  
N.D 

  
N.D 

  
N.D 

  
N.D 

  
N.D 

  
N.D 

  Zeaxanthin N.D 
  

N.D 
  

N.D 
  

N.D 
  

N.D 
  

N.D 
  

N.D 
  Neoxanthin esters

b 
N.D 

  
66.32 ± 7.62 49.49 ± 10.88 21.81 ± 3.57 N.D 

  
N.D 

  
N.D 

  Violaxanthin esters
b 

N.D 
  

N.D 
  

N.D 
  

N.D 
  

N.D 
  

N.D 
  

N.D 
  Lutein / antheraxanthin 

esters
b 

32.46 ± 7.11 301.38 ± 146.58 763.68 ± 185.88 35.69 ± 1.87 48.81 ± 21.28 45.84 ± 7.30 44.20 ± 18.10 

α-carotene N.D 
  

27.21 ± 2.96 167.96 ± 42.47 N.D 
  

N.D 
  

N.D 
  

N.D 
  β-carotene 118.92 ± 18.68 250.03 ± 30.00 500.17 ± 75.14 127.10 ± 5.91 156.73 ± 46.01 93.72 ± 8.33 155.41 ± 29.44 

β-carotene 5,6-epoxide N.D 
  

48.27 ± 4.64 104.04 ± 21.57 N.D 
  

N.D 
  

N.D 
  

24.13 ± 2.86 

Mutatochrome N.D 
  

34.90 ± 6.70 540.64 ± 73.46 N.D 
  

30.76 ± 23.14 25.78 ± 7.68 33.00 ± 11.57 

Luteochrome N.D 
  

N.D 
  

N.D 
  

N.D 
  

N.D 
  

N.D 
  

N.D 
  Aurochrome N.D 

  
N.D 

  
N.D 

  
N.D 

  
N.D 

  
N.D 

  
N.D 

  β-zeacarotene
b 

N.D 
  

31.81 ± 3.94 N.D 
  

N.D 
  

N.D 
  

N.D 
  

N.D 
  ζ-carotene

b 
N.D 

  
N.D 

  
105.25 ± 33.92 N.D 

  
28.44 ± 12.83 20.13 ± 3.08 13.48 ± 2.83 

Other carotenoids 48.03 ± 10.37 N.D. 
  

219.91 ± 79.99 36.72 ± 2.88 N.D 
  

69.56 ± 17.02 60.47 ± 9.20 
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(µg/100g DW)
a 

TDd08-38-57 TDd3112 

Neoxanthin 13.35 ± 0.97 N.D 
  Neochrome N.D 

  
17.33 ± 2.65 

Violaxanthin 205.93 ± 17.05 122.63 ± 63.43 

Luteoxanthin 24.86 ± 4.66 43.94 ± 11.83 

Antheraxanthin 35.34 ± 14.48 N.D 
  Lutein 30.20 ± 21.46 21.27 ± 5.00 

β-cryptoxanthin
b 

N.D 
  

N.D 
  β-cryptoxanthin epoxide

b 
N.D 

  
N.D 

  Zeaxanthin N.D 
  

N.D 
  Neoxanthin esters

b
  38.76 ± 3.04 N.D 

  Violaxanthin esters
b 

N.D 
  

N.D 
  Lutein / antheraxanthin 

esters
b 

68.50 ± 9.39 33.21 ± 7.02 

α-carotene N.D 
  

N.D 
  β-carotene 146.35 ± 9.93 126.73 ± 33.50 

β-carotene 5,6-epoxide 26.67 ± 4.70 N.D 
  Mutatochrome N.D 

  
N.D 

  Luteochrome N.D 
  

N.D 
  Aurochrome N.D 

  
N.D 

  β-zeacarotene
b 

N.D 
  

N.D 
  ζ-carotene

b 
N.D 

  
N.D 

  Other carotenoids 67.60 ± 7.85 27.94 ± 7.32 

a. Estimated quantification relative to that of β-carotene dose-response curve measured at 450nm. 
b. Putative identification based on spectra, retention time and elution order reported in literature. 
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D. alata 

(µg/100g DW)
a
 TDa00-00194 TDa98-001166 TDa98-001176 

Violaxanthin N.D 
  

20.27 ± 3.69 N.D. 
  Antheraxanthin 70.76 ± 13.92 50.28 ± 4.36 N.D. 
  Lutein 86.27 ± 32.55 18.92 ± 1.30 35.02 ± 2.44 

Neoxanthin esters 240.38 ± 40.76 90.43 ± 16.27 28.04 ± 5.59 

Violaxanthin esters N.D. 
  

30.07 ± 4.14 N.D. 
  Lutein/antheraxanthin 

esters 44.40 ± 3.21 22.69 ± 5.36 52.79 ± 3.18 

β-carotene 289.56 ± 83.09 271.13 ± 5.91 237.61 ± 30.96 

β-zeacarotene 87.22 ± 8.93 19.28 ± 2.82 13.17 ± 0.17 

Other carotenoids N.D. 
  

30.06 ± 6.14 18.91 ± 2.70 

a. Estimated quantification relative to that of β-carotene dose-response curve measured at 450nm. 
b. Putative identification based on spectra, retention time and elution order reported in literature. 
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D. bulbifera 

(µg/100g DW)
a
 TDb3048 TDb3059 TDb3072 TDb3079 TDb3688 

Neoxanthin N.D. 
  

73.25 ± 16.68 76.39 ± 14.02 60.73 ± 12.42 64.53 ± 6.90 

Neochrome 17.86 ± 8.75 N.D. 
  

25.11 ± 7.05 N.D. 
  

N.D. 
  Violaxanthin 96.34 ± 14.00 111.55 ± 67.44 160.88 ± 23.31 N.D. 

  
N.D. 

  Luteoxanthin N.D. 
  

22.62 ± 4.72 N.D. 
  

N.D. 
  

13.24 ± 0.59 

Antheraxanthin 55.00 ± 0.77 28.94 ± 6.70 240.97 ± 68.75 840.91 ± 89.53 97.99 ± 10.97 

Lutein 1062.29 ± 14.48 1488.43 ± 357.23 1601.31 ± 273.73 N.D. 
  

1706.69 ± 222.70 

Neoxanthin esters
b 

6286.72 ± 357.59 3913.01 ± 1099.71 4138.04 ± 634.11 4431.59 ± 772.34 6637.97 ± 427.73 

Violaxanthin esters
b 

1947.20 ± 140.34 2046.37 ± 569.04 2416.46 ± 542.23 2026.11 ± 390.61 2244.86 ± 148.55 
Lutein / antheraxanthin 
esters

b 
2362.05 ± 78.34 3163.29 ± 882.80 2053.87 ± 269.63 2611.15 ± 379.87 4771.85 ± 744.54 

Other carotenoids 93.33 ± 44.54 735.77 ± 195.49 645.77 ± 123.19 365.63 ± 89.30 839.61 ± 178.24 

a. Estimated quantification relative to that of β-carotene dose-response curve measured at 450nm. 
b. Putative identification based on spectra, retention time and elution order reported in literature. 
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D. cayennensis 

(µg/100g DW)
a
 TDc03-5 TDc04-71-2 

Neoxanthin 18.92 ± 3.79 16.94 ± 0.54 

Neochrome 33.43 ± 3.64 N.D. 
  Violaxanthin 153.25 ± 21.19 163.93 ± 32.50 

Luteoxanthin 37.62 ± 3.75 N.D. 
  Antheraxanthin 16.74 ± 1.96 23.49 ± 5.63 

Lutein 37.86 ± 3.57 67.94 ± 30.29 

Neoxanthin ester
b 

1609.23 ± 143.43 6186.68 ± 2577.59 

Violaxanthin ester
b 

694.83 ± 64.74 1626.57 ± 631.12 
Lutein / antheraxanthin 
ester

b 
98.59 ± 8.05 924.66 ± 437.54 

Other carotenoids 367.75 ± 56.69 385.17 ± 143.00 

a. Estimated quantification relative to that of β-carotene dose-response curve measured at 450nm. 
b. Putative identification based on spectra, retention time and elution order reported in literature. 
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D. rotundata 

(µg/100g DW)
a
 TDr95-01932 TDr97-00917 TDr99-02607 TDrEHoBia TDrEHuRu TDrponna 

Neoxanthin N.D. 
  

23.53 ± 5.11 N.D. 
  

N.D. 
  

N.D. 
  

19.80 ± 1.66 

Violaxanthin 174.22 ± 64.91 206.68 ± 39.13 35.65 ± 20.34 146.65 ± 50.19 67.64 ± 34.59 206.85 ± 23.37 

Luteoxanthin 17.05 ± 1.40 16.31 ± 1.32 22.93 ± 9.87 21.13 ± 3.89 N.D. 
  

N.D. 
  Antheraxanthin 17.38 ± 3.55 37.02 ± 8.90 N.D. 

  
N.D. 

  
30.96 ± 1.37 21.00 ± 2.03 

Lutein 96.62 ± 16.88 96.38 ± 23.38 N.D. 
  

106.72 ± 11.21 174.89 ± 10.02 107.04 ± 5.54 

Neoxanthin ester
b 

756.26 ± 135.74 82.99 ± 22.98 588.06 ± 504.74 N.D. 
  

N.D. 
  

256.05 ± 36.25 

Violaxanthin ester
b 

337.09 ± 64.07 N.D. 
  

246.84 ± 157.06 N.D. 
  

N.D. 
  

45.29 ± 6.27 
Lutein / antheraxanthin 
ester

b 
276.60 ± 60.61 N.D. 

  
N.D. 

  
N.D. 

  
N.D. 

  
14.15 ± 4.16 

β-carotene 257.59 ± 69.79 143.44 ± 33.46 N.D. 
  

43.85 ± 2.64 43.48 ± 3.07 63.78 ± 2.37 

β-zeacarotene
b 

N.D. 
  

N.D. 
  

N.D. 
  

16.12 ± 0.62 N.D. 
  

N.D. 
  Other carotenoids 246.54 ± 42.20 23.92 ± 8.76 N.D. 

  
N.D. ± 0.00 N.D. 

  
19.21 ± 0.90 

a. Estimated quantification relative to that of β-carotene dose-response curve measured at 450nm. 
b. Putative identification based on spectra, retention time and elution order reported in literature. 
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Appendix 5.12. HPLC chromatograms following saponification of non-polar tuber extracts. 

TDr 95-01932  

 

(a) non saponified and (b) saponified.  
Presents a similar composition to all samples of D. cayennensis. 
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TDb 3688 

 

 (a) non-saponified and (b) saponified. 
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TDa00-00194

 

 (a) non-saponified and (b) saponified. 
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TDd 3648 

 

(a) non-saponified and (b) saponified. 
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