Vascular epiphyte restoration using bromeliad transplants in Southern Costa Rica

Estefania Fernandez is a Bascom Fellow who recently finished her master’s thesis at the University of Montpelier, France. Last year, Estefania wrote about her preliminary results on tropical forest restoration and vascular epiphyte reintroductions in Costa Rica. Here, she describes the final results, recently published in Restoration Ecology.

img_0055-001

A transplanted bromeliad, Aechmea dactylina flowering in a 10-year old tree plantation.

Vascular epiphytes are plants that germinate and root on other plants without taking their nourishment from their host plant, and they represent 50% of the flora in some tropical forests and 9% of all vascular plants worldwide. If you are a plant lover, then you most likely have one or several vascular epiphytes in your house. Some of the most appreciated horticultural families include orchids (Orchidaceae), aroids (Araceae), and bromeliads (Bromeliaceae).

Vascular epiphytes also play key roles in our ecosystems. They are crucial to forest water and mineral recycling as they intercept rainfall and prevent rapid run-off and nutrient leaching. Vascular epiphytes are also exceptional microhabitats where invertebrate communities find refugia and birds and arboreal mammals forage.

ef-bromeliad-jg1-001

Transplanted individual of Werauhia gladioliflora

Despite their importance in forest ecosystems, vascular epiphytes are rarely taken into account in forest restoration. This is problematic because vascular epiphytes are often among the slowest plants to recolonize regenerating forests.

In 2015-2016, I tested whether transplanting epiphytes into young restoration sites could be a viable strategy to accelerate their reestablishment. I used a bromeliad for my experiment, Werauhia gladioliflora (H. Wendl.) J.R. Grant, which was common in remnant forest but had not been found during epiphyte surveys in nearby restoration areas. In March-June 2015, I transplanted 60 bromeliads into three restoration plantations near Las Cruces Biological Station in southern Costa Rica. I revisited the sites in January-February 2016, nine months after transplantation, to monitor survival and arthropod recolonization.

Happily, over 75% bromeliads survived and the number of arthropods on branches with bromeliads was seven times greater than in branches without bromeliads. Additionally, I observed that bromeliads buffered the local microclimate; during the driest and hottest times of the day, the interior of the bromeliads was moister and cooler than ambient air.

merge_pic

Transplanted individuals of Werauhia gladioliflora (left) hosted considerably more arthropods in their rosettes than could be found on the stems of trees that had not received a transplant. GN, JG, and MM are three study sites near Las Cruces Biological Station in southern Costa Rica. Photo by Dave Janas.

Restoring arboreal refugia

My research suggests that transplanting fallen epiphytes onto trees in restored sites contributes to the recovery of vascular epiphyte diversity in these ecosystems and has the additional benefits of bringing back arthropod diversity to these sites. Epiphytes, and specifically “tank” epiphytes that retain water in their rosettes, help stabilize microclimatic conditions, a critical function in light of climate change, which may put arboreal communities at special risk. Indeed, the body temperature of many animals such as invertebrates entirely depends on ambient temperatures but rising temperatures could push arboreal animal communities to the ground. Epiphytes offer ideal refugia from high temperatures and drought and their presence in tree canopies and understory is critical to preserve arboreal animal communities. Transplanting other epiphyte families or even entire epiphyte communities found on fallen branches could be tested in the future to broaden this strategy.

img_0053

Estefania inspects a flowering individual of an Aechmea dactylina transplant

This work was supported by a grant from the National Science Foundation.

Transplanted bromeliads improve microclimate and facilitate arthropods in restored forests

Estefania Fernandez is a masters student at the University of Montpellier, France. She spent the past six months working with scientists in the Center for Conservation and Sustainable Development on a tropical forest restoration experiment in southern Costa Rica.

Costa Rica is one of the world’s most biodiverse countries, hosting 4% of flowering plant species in an area representing only 0.03% of the Earth’s terrestrial surface. With a large diversity of ecosystems, ranging from mangroves to cloud forests, Costa Rica hosts a unique family of (almost exclusively) Neotropical plants: the Bromeliaceae, commonly called bromeliads. With their colorful inflorescences and strikingly patterned leaves, numerous bromeliads are cultivated around the world for their ornamental value. Less is known, however, about their ecology in tropical ecosystems, particularly in regenerating forests.

Werauhia gladioliflora rosette, showing its overlapping leaves.

Werauhia gladioliflora rosette, showing its overlapping leaves.

Many of the so-called “tank bromeliads” are epiphytes, meaning that they grow non-parasitically on other plants. These bromeliads have ample rosettes of overlapping leaves, capable of holding considerable amounts of water. These water tanks keep them hydrated, and plant detritus that accumulates in these structures also provides bromeliads with nutrients. Arthropods take refuge in bromeliad rosettes, and consequently these plants attract mammals and birds seeking prey. Mutualistic ants build their nests in bromeliad rhizospheres, or root zones, and frogs lay eggs in the tanks. When sufficiently numerous in tree canopies, bromeliads can stabilize local temperature and humidity.

Water stored inside a W. gladioliflora tank.

Water stored inside a W. gladioliflora tank. (Photo courtesy of Dave Janas)

Despite these important ecological roles, vascular epiphytes like bromeliads are often scarce in regenerating tropical forests. Their recovery could be slowed by limited seed dispersal or by a lack of suitable recruitment sites. One way to overcome dispersal limitation is to transplant individuals. In our study area in southern Costa Rica, transplanting bromeliads is relatively simple because they are easily found on fallen tree branches in the old growth forest reserve at Las Cruces Biological Station. We hypothesized that transplanting bromeliads from the old growth forest into 10-year old forest restoration sites would buffer local temperatures and increase arthropod abundance and diversity compared to bare, control branches.

Measuring local temperature in a transplanted Aechmea dactylina.

Measuring local temperature in a transplanted Aechmea dactylina.

To test our hypothesis, we transplanted 120 bromeliads into three restoration sites in southern Costa Rica. The restoration sites are part of the Islas Project, an NSF-funded restoration experiment led by Drs. Karen Holl and Rakan Zahawi. Bromeliads were sterilized and attached to tree branches in the restoration sites with twine. Each day, we measured the microsite temperature on branches with and without transplanted bromeliads, as well as ambient temperature in the nearby air. To characterize arthropod colonization, we extracted and identified arthropods (to order) from transplanted bromeliads after two and three weeks.

We found that transplanted bromeliads decreased local temperatures on tree branches, creating a less stressful microclimate for other organisms. Bromeliads also facilitated arthropods; transplanted bromeliads were quickly colonized, especially by ants. We also observed small frogs inside of some bromeliad tanks, but none on the bare branches where we did not transplant bromeliads.

We found this frog (Craugastor stejnegerianus) in a small  Catopsis sessiliflora tank. (Photo courtesy of Dave Janas)

We found this frog (Craugastor stejnegerianus) in a small Catopsis sessiliflora tank. (Photo courtesy of Dave Janas)

Our observations suggest that bromeliad transplantation can buffer microclimates and create useful structures for invertebrates. If so, this method could improve restoration outcomes for canopy flora and fauna. Given that this experiment was conducted over a single field season, it is still an open question whether transplanted bromeliads will survive over longer time periods. It will also be important to learn whether transplanted bromeliads will facilitate colonization by other epiphytic plants. We did find some evidence of this as ferns were already growing in several bromeliads’ rhizospheres after two months.