Skip to main content

Abstract

The process of wide hybridization refers to hybrids created through interspecific or intergeneric crosses of related species to extract useful and novel traits that protect or enhance the yield or quality of the domesticated crop. Sorghum contains approximately 25 recognized species that show significant variation in plant morphology, genetic and genomic diversity with an eightfold range in DNA content, and geographic distribution. Traits that increase the value of sorghum production have been reported in many of these species including resistance to sorghum midge, shootfly, and spotted stem borer. However, introgression of any traits has only been possible with species in the section Eusorghum due to pre- and post-fertilization barriers that isolate the other species. Now the creation of wide hybrids has been expanded beyond section Eusorghum. The Inhibition of Alien Pollen (Iap) gene that makes it possible to overcome pre-fertilization barriers by reducing adverse pollen–pistil interactions has been used to produce additional interspecific hybrids with species from sections Chaetosorghum, Parasorghum, and Stiposorghum. Post-fertilization barriers can be eliminated through embryo rescue techniques and the use of 2n gametes. Using 2n gametes as a vehicle to transfer genes by creating bridges that overcome ploidy and genomic differences between species is now being explored. With the chemical hybridizing agent trifluoromethanesulfonamide (TFMSA) the number of parental combinations and the number of florets that are emasculated are no longer limiting factors when developing strategies for creating wide hybrids. Accessing via wide hybridization novel traits that were previously unavailable is now possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Janabi S, McClelland M, Petersen C, Sobral B (1994) Phylogenetic analysis of organellar DNA sequences in the Andropogoneae:Saccharinae. Theor Appl Genet 88:933–944

    Article  CAS  PubMed  Google Scholar 

  • Arriola PE, Ellstrand NC (1997) Fitness of interspecific hybrids in the genus Sorghum: persistence of crop genes in wild populations. Ecol Appl 2:512–518

    Article  Google Scholar 

  • Avni A, Edelman M (1991) Direct selection for paternal inheritance of chloroplasts in sexual progeny of Nicotiana. Mol Gen Genet 225:273–277

    Article  CAS  PubMed  Google Scholar 

  • Bapat DR, Mote UN (1982) Sources of shootfly resistance in Sorghum. J Maharashtra Agric Univ 7:238–240

    Google Scholar 

  • Bartek M, Hodnett G, Burson B, Stelly D, Rooney W (2012) Pollen tube growth after intergeneric pollinations of iap-homozygous sorghum. Crop Sci 52:1553–1560

    Article  Google Scholar 

  • Bathurst N (1954) The amino-acids of grass pollen. J Exp Bot 5:253–256

    Article  CAS  Google Scholar 

  • Bedinger P, Broz A, Tovar-Mendez A, McClure B (2017) Pollen-pistil interactions and their role in mate selection. Plant Phys 173:79–90

    Article  CAS  Google Scholar 

  • Benmoussa M, Suhendra B, Aboubacar A, Hamaker B (2006) Distinctive sorghum starch granule morphologies appear to improve raw starch digestibility. Starch/Stӓrke 58:92–99

    Article  CAS  Google Scholar 

  • Bennett H, Merwine N (1966) Meiotic behavior of a Hodo Sorgo Χ Johnsongrass hybrid. Crop Sci 6:127–131

    Article  Google Scholar 

  • Berding N, Roach B (1987) Germplasm collection, maintenance, and use. In: Heinz DJ (ed) Sugarcane improvement through breeding. ISBN: 0-444-42769-4

    Google Scholar 

  • Bernard S, Jewell D (1985) Crossing maize with sorghum, Tripsacum and millet: the products and their level of development following pollination. Theor Appl Genet 70:474–483

    Article  CAS  PubMed  Google Scholar 

  • Biancucci M, Mattioli R, Forlani G, Funck D, Costantino P, Trovato M (2015) Role of proline and GABA in sexual reproduction of angiosperms. Front Plant Sci 6:680. https://doi.org/10.3389/fpls.2015.00680

    Article  PubMed  PubMed Central  Google Scholar 

  • Bourne B (1935) A comparative study of certain morphological characters of sugarcane х sorgo hybrids. J Agric Res 50:539–552

    Google Scholar 

  • Brar D, Khush G (1997) Alien introgression in rice. Plant Mol Biol 35:35–47

    Article  CAS  PubMed  Google Scholar 

  • Bretagnolle F, Thompson J (1995) Gametes with the somatic chromosome number: mechanisms of their formation and role in the evolution of autopolyploid plants. New Phytol 129:1–22

    Article  Google Scholar 

  • Brink R, Cooper D (1947a) The endosperm in seed development. Bot Rev 13:423–477

    Article  Google Scholar 

  • Brink R, Cooper D (1947b) The endosperm in seed development (concluded). Bot Rev 13:479–541

    Article  Google Scholar 

  • Brooking I (1976) Male sterility in Sorghum bicolor (L.) Moench induced by low night temperature. 1. Timing of the stage of sensitivity. Aust J Plant Physiol 3:589–596

    CAS  Google Scholar 

  • Brown M (1943) Haploid plants in Sorghum. J Hered 34:163–166

    Article  Google Scholar 

  • Burgos NR, Norsworthy JK, Scott RC, Smith KL (2008) Weedy red rice (Oryza sativa) status after 5 years of imidazolinone-resistant rice technology in Arkansas. Weed Technol 22:200–208

    Google Scholar 

  • Carputo D, Monti L, Werner J, Frusciante L (1999) Uses and usefulness of endosperm balance number. Theor Appl Genet 98:478–484

    Article  Google Scholar 

  • Casady A, Anderson K (1952) Hybridization, cytological and inheritance studies of a sorghum cross- autotetraploid sudangrass Χ (Johnsongrass Χ 4n sudangrass). Agron J 44:189–194

    Article  Google Scholar 

  • Chapman V, Riley R (1970) Homoeologous meiotic chromosome pairing in Triticum aestivum in which chromosome 5B is replaced by an alien homoeologue. Nature 226:376–377

    Article  CAS  PubMed  Google Scholar 

  • Cox T, Hatchett J, Sears R, Gill B (1994) Registration of KS92WGRC26, Hessian fly-resistant hard red winter wheat germplasm. Crop Sci 34:1138–1139

    Google Scholar 

  • Cox T, Bender M, Picone C, Van Tassel D, Holland J, Brummer E, Zoeller B, Paterson A, Jackson W (2002) Breeding perennial grain crops. Crit Rev Plant Sci 21:59–91

    Article  Google Scholar 

  • Cox T, Glover J, van Tassel D, Cox C, DeHaan L (2006) Prospects for developing perennial grain crops. BioScience 56:649–659

    Google Scholar 

  • Cox S, Nabukalu P, Paterson A, Kong W, Auckland S, Rainville L, Cox S, Wang S (2018a) High proportion of diploid hybrids produced by interspecific diploid х tetraploid Sorghum hybridization. Genet Resour Crop Evol 65:387–390

    Article  CAS  Google Scholar 

  • Cox S, Nabukalu P, Paterson A, Kong W, Nakasagga S (2018b) Development of perennial grain sorghum. Sustainability 10:172

    Article  Google Scholar 

  • CSIRO (1978a) Sorghum spp. hybrid. (forage sorghum hybrids) cv Silk. J Aust Inst Agric Sci 44:219–221

    Google Scholar 

  • CSIRO (1978b) Sorghum spp. hybrid. (sweet Sudan grass hybrids) cv. Sucro. J Aust Inst Agric Sci 44:218–219

    Google Scholar 

  • de Wet J (1978) Systematics and evolution of Sorghum Sect. Sorghum (Gramineae). Am J Bot 65:477–484

    Article  Google Scholar 

  • de Wet J, Harlan J (1971) The origin and domestication of Sorghum bicolor. Econ Bot 25:128–135

    Article  Google Scholar 

  • de Wet J, Gupta S, Harlan J, Grassl C (1976) Cytogenetics of introgression from Saccharum into Sorghum. Crop Sci 16:568–572

    Article  Google Scholar 

  • Della Porta G, Ederle D, Bucchini L, Prandi M, Verderio A, Pozzi C (2008) Maize pollen mediated gene flow in the Po valley (Italy): source–recipient distance and effect of flowering time. Eur J Agron 28:255–265

    Article  Google Scholar 

  • Dempewolf H, Baute G, Anderson J, Kilian B, Smith C, Guarino L (2017) Past and future use of wild relatives in crop breeding. Crop Sci 57:1070–1082

    Article  Google Scholar 

  • den Nijs T, Peloquin S (1977) The role of the endosperm in hybridization. Am Potato J 54:488–489

    Google Scholar 

  • Dhaliwal S, King P (1978) Direct pollination of Zea mays ovules in vitro with Z. mays, Z. Mexicana and Sorghum bicolor pollen. Theor Appl Genet 53:43–46

    Article  CAS  PubMed  Google Scholar 

  • Dillon SL, Lawrence PK, Henry RJ, Ross L, Price HJ, Johnston JS (2004) Sorghum laxiflorum and S. macrospermum, the Australian native species most closely related to the cultivated S. bicolor based on ITS1 and ndhF sequence analysis of 25 Sorghum species. Plant Syst Evol 249:233–246

    Article  Google Scholar 

  • Dillon SL, Lawrence PK, Henry RJ, Price HJ (2007a) Sorghum resolved as a distinct genus based on combined ITS1, ndhF and Adh1 analyses. Plant Syst Evol 268:29–43

    Article  Google Scholar 

  • Dillon SL, Shapter FM, Henry RJ, Cordeiro G, Izquierdo L, Lee LS (2007b) Domestication to crop improvement: genetic resources for Sorghum and Saccharum (Andropogoneae). Ann Bot 100:975–989

    Article  PubMed  PubMed Central  Google Scholar 

  • Doggett H (1988) Sorghum. ISBN: 0-582-46345-9

    Google Scholar 

  • Dresselhaus T, Franklin-Tong N (2013) Male-female crosstalk during pollen germination, tube growth and guidance, and double fertilization. Mol Plant 6:1018–1036

    Article  CAS  PubMed  Google Scholar 

  • Dresselhaus T, Lausser A, Márton M (2011) Using maize as a model to study pollen tube growth and guidance, cross-incompatibility and sperm delivery in grasses. Ann Bot 108:727–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dresselhaus T, Sprunck S, Wessel G (2016) Fertilization mechanisms in flowering plants. Curr Biol 26:R125–R139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duara B, Stebbins G (1952) A polyhaploid obtained from a hybrid derivative of Sorghum halepense Χ S. vulgare var. sudanense. Genetics 37:369–374

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duncan R, Bramel-Cox P, Miller F (1991) Contributions of introduced sorghum germplasm to hybrid development in the USA. In: Shands HL, Wiesner LE (eds) Use of plant introductions in cultivar development. Part 1, vol 17. ISBN: 9780891185345

    Google Scholar 

  • Duodu K, Nunes A, Delgadillo I, Parker M, Mills E, Belton P, Taylor J (2002) Effect of grain structure and cooking on Sorghum and Maize in vitro protein digestibility. J Cereal Sci 35:161–174

    Article  CAS  Google Scholar 

  • Duvall MR, Doebley JF (1990) Restriction site variation in the chloroplast genome of Sorghum (Poaceae). Syst Bot 15:472–480

    Article  Google Scholar 

  • Dweikat I (2005) A diploid, interspecific, fertile hybrid from cultivated sorghum, Sorghum bicolor, and the common Johnsongrass weed Sorghum halepense. Mol Breed 16:93–101

    Article  Google Scholar 

  • Dwivedi S, Upadhaya H, Stalker H, Blair M, Bertioli D, Nielen S, Ortiz R (2008) Enhancing crop gene pools with beneficial traits using wild relatives. Plant Breed Rev 30:179–230

    Article  CAS  Google Scholar 

  • Ejeta G, Grenier C (2005) Sorghum and its weedy hybrids. In: Gressel J (ed) Crop ferality and volunteerism. ISBN: 978-0-8493-2895-4

    Google Scholar 

  • Ellstrand NC (2014) Is gene flow the most important evolutionary force in plants? Am J Bot 5:737–753

    Article  Google Scholar 

  • Endrizzi J (1957) Cytological studies of some species and hybrids in the Eu-Sorghums. Bot Gaz 119:1–10

    Article  Google Scholar 

  • Endrizzi J, Morgan D (1955) Chromosomal interchanges and evidence for duplication in haploid Sorghum vulgare. J Hered 46:201–208

    Article  Google Scholar 

  • Fannon J, Gray J, Gunawan N, Hubeer K, BeMiller J (2004) Heterogeneity of starch granules and the effect of granule channelization on starch modification. Cellulose 11:247–254

    Article  CAS  Google Scholar 

  • Feltus F, Hart G, Schertz K, Casa A, Kresovich E, Abraham E, Klein P, Brown P, Paterson A (2006) Alignment of genetic maps and QTLs between inter- and intra-specific sorghum populations. Theor Appl Genet 112:1295–1305

    Article  CAS  PubMed  Google Scholar 

  • Franzmann B (1993) Ovipositional antixenosis to Contarinia sorghicola (Coquillett) (Diptera: Cecidomyiidae) in grain sorghum. J Aust Ent Soc 32:59–64

    Article  Google Scholar 

  • Franzmann B, Hardy A (1996) Testing the host status of Australian indigenous sorghums for the sorghum midge. In: Proceedings of the third Australian Sorghum Conference Tamworth, 20 to 22 February 1996. AIAS occasional publication 93, pp 365–367

    Google Scholar 

  • Funk D, Winter G, Baumgarten L, Forlani G (2012) Requirement of proline synthesis during Arabidopsis reproductive development. BMC Plant Biol 12:191

    Article  CAS  Google Scholar 

  • Garber E (1950) Cytotaxonomic studies in the genus Sorghum. Univ Calif Publ Bot 23:283–361

    Google Scholar 

  • Gomez M, Islam-Faridi M, Zwick M, Czeschin D, Hart G, Wing R, Stelly D, Price H (1998) Tetraploid nature of Sorghum bicolor (L.) Moench. J Hered 89:188–190

    Article  Google Scholar 

  • Goodman R, Hauptli H, Crossway A, Knauf V (1987) Gene transfer in crop improvement. Science 236:48–54

    Article  CAS  PubMed  Google Scholar 

  • Gororo N, Eagles H, Eastwood R, Nicolas M, Flood R (2002) Use of Triticum tauschii to improve yield of wheat in low-yielding environments. Euphytica 123:241–254

    Article  Google Scholar 

  • Gressel J, Levy AA (2014) Use of multicopy transposons bearing untitness genes in weed control: four example scenarios. Plant Physiol 166:1221–1231

    Google Scholar 

  • Gressel J (2015) Dealing with transgene flow of crop protection traits from crops to their relatives. Pest Manag Sci 71:658–667

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Harlan J, de Wet J, Grassl C (1976) Cytology of backcross four individuals derived from a Saccharum-Sorghum hybrid. Caryologia 29:351–359

    Article  Google Scholar 

  • Gupta S, de Wet J, Harlan J (1978) Morphology of Saccharum-Sorghum hybrid derivatives. Am J Bot 65:936–942

    Article  Google Scholar 

  • Hadley H (1953) Cytological relationships between Sorghum vulgare and S. halepense. Agron J 45:139–114

    Article  Google Scholar 

  • Hadley H (1958) Chromosome numbers, fertility and rhizome expression of hybrids between grain sorghum and Johnsongrass. Agron J 50:278–282

    Article  Google Scholar 

  • Hadley H, Mahan J (1956) The cytogenetic behavior of the progeny from a backcross (Sorghum vulgare х S. halepense х S. vulgare). Agron J 48:102–106

    Article  Google Scholar 

  • Hajjar R, Hodgkin T (2007) The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica 156:1–13

    Article  Google Scholar 

  • Harlan J (1976) Genetic resources in wild relatives of crops. Crop Sci 16:329–333

    Article  Google Scholar 

  • Harlan J, de Wet J (1971) Toward a rational classification of cultivated plants. Taxon 20:509–517

    Article  Google Scholar 

  • Harlan J, de Wet J (1975) On Ö. Winge and a prayer: the origins of polyploidy. Bot Rev 41:361–390

    Article  Google Scholar 

  • Harris K (1979) Descriptions and host ranges of the sorghum midge, Contarinia sorghicola (Coquillett) (Diptera: Cecidomyiidae), and of eleven new species of Contarinia reared from Gramineae and Cyperaceae in Australia. Bull Ent Res 69:161–182

    Article  Google Scholar 

  • Hawkins JS, Ramachandran D, Henderson A, Freeman J, Carlise M, Harris A, Willison-Headley Z (2015) Phylogenetic reconstruction using four low-copy nuclear loci strongly supports a polyphyletic origin of the genus Sorghum. Ann Bot 116:291–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Henzell R, Franzmann B, Brengman R (1994) Sorghum midge resistance research in Australia. Int Sorghum Mill Newslett 35:41–47

    Google Scholar 

  • Heslop-Harrison Y, Reger B, Helsop-Harrison J (1984a) Wide hybridization: pollination of Zea mays L. by Sorghum bicolor (L.) Moench. Theor Appl Genet 70:252–258

    Article  Google Scholar 

  • Heslop-Harrison Y, Reger B, Heslop-Harrison J (1984b) The pollen-stigma interaction in the grasses. 6. The stigma (‘silk’) of Zea maize L. as host to the pollens of Sorghum bicolor (L.) Moench and Pennisetum americanum (L.) Leeke. Acta Bot Neerlandica 33:205–227

    Article  Google Scholar 

  • Higashiyama T, Yang W (2017) Gametophyte pollen tube guidance: attractant peptides, gametic controls, and receptors. Plant Phys 173:112–121

    Article  CAS  Google Scholar 

  • Hills MJ, Hall L, Arnison PG, Good AG (2007) Genetic use restriction technologies (GURTs): strategies to impede transgene movement. Trends Plant Sci 12:177–183

    Article  CAS  PubMed  Google Scholar 

  • Hiscock S, Allen A (2008) Diverse cell signaling pathways regulate pollen-stigma interactions: the search for consensus. New Phytol 179:286–317

    Article  CAS  PubMed  Google Scholar 

  • Hoan N, Sarma N, Siddiq E (1997) Identification and characterization of new sources of cytoplasmic male sterility in rice. Plant Breed 116:547–551

    Article  Google Scholar 

  • Hodnett G, Rooney W (2018) Male sterility induction of sorghum using chemical hybridizing agent TFMSA trifluoromethanesulfonamide. Can J Plant Sci 98:1–7

    Article  CAS  Google Scholar 

  • Hodnett G, Burson B, Rooney W, Dillon S, Price H (2005) Pollen-pistil interactions result in reproductive isolation between Sorghum bicolor and divergent Sorghum species. Crop Sci 45:1403–1409

    Article  Google Scholar 

  • Hodnett G, Hale A, Packer D, Stelly D, da Silva J, Rooney W (2010) Elimination of a reproductive barrier facilitates intergeneric hybridization of Sorghum bicolor and Saccharum. Crop Sci 50:1188–1195

    Article  Google Scholar 

  • Huelgas V, Lawrence P, Adkins S, Mufti M, Godwin I (1996) Utilization of the Australian native species for sorghum improvement. In: Foale MA, Henzell RG, Kniepp JF (eds) Proceedings of the Third Australian Sorghum Conference Tamworth, 20 to 22 February 1996, vol 93. pp 369–375

    Google Scholar 

  • Jalani B, Moss J (1980) The site of action of the crossability genes (Kr 1 , Kr 2) between Triticum and Secale. I. Pollen germination, pollen tube growth, and number of pollen tubes. Euphytica 29:571–579

    Article  Google Scholar 

  • James J (1978) Maize X Sorghum. Maize Genet Cooper Newslett 52:12–13

    Google Scholar 

  • James J (1979) New types of maize x Tripsacum and maize x Sorghum hybrids—their use in maize improvement. In: Proceedings of the 10th meeting of the Maize and Sorghum Section of Eucarpia, European Association for Research on Plant Breedings, Varna. pp 17–19

    Google Scholar 

  • Jena K, Khush G (1990) Introgression of genes from Oryza officinalis Well ex Watt to cultivated rice, O. sativa L. Theor Appl Genet 80:737–745

    Article  CAS  PubMed  Google Scholar 

  • Jessup R, Whitmire D, Farrow Z, Burson B (2012) Molecular characterization of non-flowering perennial Sorghum spp. hybrids. Am J Exp Agric 2:9–20

    Google Scholar 

  • Jessup R, Burson B, Foster J, Heitholt J (2017a) Registration of seed sterile, perennial Sorghum spp. [Sorghum bicolor (L.) Moench х S. halepense (L.) Pers.] hybrid ‘PSH09TX15’. J Plant Reg 11:320–323

    Article  Google Scholar 

  • Jessup R, Klein R, Burson B, Murray S, Washburn J, Heitholt J, Foster J (2017b) Registration of perennial Sorghum bicolor х S. propinquum line PSH12TX09. J Plant Reg 11:76–79

    Article  Google Scholar 

  • Ji Q, Oomen R, Vincken J, Bolam D, Gilbert H, Suurs L, Visser R (2004) Reduction of starch granule size by expression of an engineered tandem starch-binding domain in potato plants. Plant Biotech J 2:251–260

    Article  CAS  Google Scholar 

  • Johnston S, Hanneman R (1980) Support of the endosperm balance number hypothesis utilizing some tuber-bearing Solanum species. Am Potato J 57:7–14

    Article  Google Scholar 

  • Jordan DR, Mace ES, Cruickshank AW, Hunt CH, Henzell RG (2011) Exploring and exploiting genetic variation from unadapted sorghum germplasm in a breeding program. Crop Sci 51:1444–1457

    Article  Google Scholar 

  • Kamala V, Singh SD, Bramel PJ, Rao DM (2002) Sources of resistance to downy mildew in wild and weedy sorghums. Crop Sci 42:1357–1360

    Article  Google Scholar 

  • Kamala V, Sharma D, Rao DM, Varaprasad K, Bramel P (2009) Wild relatives of sorghum as sources of resistance to sorghum shoot fly, Atherigona soccata. Plant Breed 128:137–142. https://doi.org/10.1111/j.1439-0523.2008.01585.x

    Article  Google Scholar 

  • Kamala V, Sharma H, Rao D, Varaprasad K, Bramel P, Chandra S (2012) Interactions of spotted stem borer Chilo partellus with wild relatives of sorghum. Plant Breed 131:511–521. https://doi.org/10.1111/j.1439-0523.2012.01966.x

    Article  Google Scholar 

  • Katsiotis A, Hanneman RE, Forsberg RA (1995) Endosperm balance number and the polar-nuclei activation hypothesis for endosperm development in interspecific crosses of Solanaceae and Gramineae, respectively. Theor Appl Genet 91:848–855

    Article  CAS  PubMed  Google Scholar 

  • Kern J, Atkins R (1972) Free amino acid content of the anthers of male-sterile and fertile lines of grain sorghum, Sorghum bicolor (L.) Moench. Crop Sci 12:835–839

    Article  CAS  Google Scholar 

  • Kidd H (1952) Haploid and triploid Sorghum. J Hered 43:204

    Article  Google Scholar 

  • Kim C, Wang X, Lee TH, Jakob K, Lee GJ, Paterson AH (2014) Comparative analysis of Miscanthus and Saccharum reveals a shared whole-genome duplication but different evolutionary fates. Plant Cell 26(6):2420–2429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koba T (1997) Crossability genes of common wheat responsible for intergeneric hybridization. Gamma Field Symp 36:61–69

    Google Scholar 

  • Komolong B, Chakraborty S, Ryley M, Yates D (2002) Identity and genetic diversity of the sorghum ergot pathogen in Australia. Aust J Agric Res 53:621–628

    Article  Google Scholar 

  • Kong W, Guo H, Goff V, Lee T, Kim C, Paterson A (2014) Genetic analysis of vegetative branching in sorghum. Theor Appl Genet 127:2387–2403

    Article  CAS  PubMed  Google Scholar 

  • Kong W, Kim C, Goff V, Zhang D, Paterson A (2015) Genetic analysis of rhizomatousness and its relationship with vegetative branching of recombinant inbred lines of Sorghum bicolor х S. propinquum. Am J Bot 102:718–724

    Article  PubMed  Google Scholar 

  • Kreiner J, Kron P, Husband B (2017) Evolutionary dynamics of unreduced gametes. Trends Genet 33:583–593

    Article  CAS  PubMed  Google Scholar 

  • Krogaard H, Andersen A (1983) Free amino acids of Nicotiana alata anthers during development in vivo. Physiol Plant 57:527–531

    Article  CAS  Google Scholar 

  • Krolow KD (1970) Investigations on compatibility between wheat and rye. Z Pflanzen 64:44–72

    Google Scholar 

  • Kuhlman L, Burson B, Klein P, Klein R, Stelly D, Price H, Rooney W (2008) Genetic recombination in Sorghum bicolor х S. macrospermum interspecific hybrids. Genome 51:749–756

    Article  CAS  PubMed  Google Scholar 

  • Kuhlman L, Burson B, Stelly D, Klein P, Klein R, Price H, Rooney W (2010) Early-generation germplasm introgression from Sorghum macrospermum into sorghum (S. bicolor). Genome 53:419–429

    Article  CAS  PubMed  Google Scholar 

  • Kuvshinov V, Anisimov A, Yahya BM (2004) Barnase gene inserted in the intron of GUS—a model for controlling transgene flow in host plants. Plant Sci 167:173–182

    Article  CAS  Google Scholar 

  • Kuvshinov V, Anisimov A, Yahya BM, Kanerva A (2005) Double recoverable block of function—a molecular control of transgene flow with enhanced reliability. Environ Biosaf Res 4:103–112

    Article  CAS  Google Scholar 

  • Lange W, Wojciechowska B (1976) the crossing of common wheat (Triticum aestivum L.) with cultivated rye (Secale cereal L.). I. Crossability, pollen grain germination and pollen tube growth. Euphytica 25:609–620

    Article  Google Scholar 

  • Laurie D, Bennett M (1989) Genetic variation in sorghum for the inhibition of maize pollen tube growth. Ann Bot 64:675–681

    Article  Google Scholar 

  • Lausser A, Dresselhaus T (2010) Sporophytic control of pollen tube growth and guidance in grasses. Biochem Soc Trans 38:631–634

    Article  CAS  PubMed  Google Scholar 

  • Lazarides M, Hacker J, Andrew M (1991) Taxonomy, cytology and ecology of indigenous Australian sorghums (Sorghum Moench: Andropogoneae: Poaceae). Aust Syst Bot 4:591–635

    Article  Google Scholar 

  • Leflon M, Hüsken A, Njontie C, Kightley S, Pendergrast D, Pierre J, Renard M, Pinochet X (2010) Stability of the cleistogamous trait during the flowering period of oilseed rape. Plant Breed 1291:13–18

    Article  Google Scholar 

  • Leport L, Larher F (1988) Free proline levels in aerial parts of several species of higher plants at flowering stage. C R Acad Sci 307:299–304

    CAS  Google Scholar 

  • Lin B (1984) Ploidy barrier to endosperm development in maize. Genetics 107:103–115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Liu H, Wen J, Peterson PM (2014) Infrageneric phylogeny and temporal divergences in Sorghum (Andropogonodae, Poaceae) based on low-copy nuclear and plastid sequences. PLoS One 9:e104933

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Loussaert D (2004) Trihalogenated methylsulfonamides as specific male gametocides. Sex Plant Reprod 16:299–307

    Article  CAS  Google Scholar 

  • Luo MC, Yen C, Yang JL (1992) Crossibility percentages of bread wheat landraces from Sichuan Province, China with rye. Euphytica 61:1–7

    Article  Google Scholar 

  • Luu D, Passelègue E, Dumas C, Heizmann P (1998) Pollen-stigma capture is not species discriminant within the Brassicaceae family. C R Acad Sci Paris Sci 321:747–755

    Article  Google Scholar 

  • Mattioli R, Biancucci R, Lonoce C, Costantino P, Trovato M (2012) Proline is required for male gametophyte development in Arabidopsis. BMC Plant Biol 12:236. http://www.biomedcentral.com/1471-2229/12/236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McClure W (1962) Frequency of interspecific crossing between Sorghum vulgare Pers and Sorghum halepense (L.) Pers and between Sorghum vulgare Pers and Sorghum almum Parodi. Master Thesis Oklahoma State Univ

    Google Scholar 

  • McClure W (1965) Cytological and morphological observations in crosses between diploid and tetraploid sorghum. PhD Thesis Oklahoma State Univ

    Google Scholar 

  • Mok D, Peloquin S (1975) The inheritance of three mechanisms of diplandroid (2n pollen) formation in diploid potatoes. Heredity 35:295–302

    Article  Google Scholar 

  • Moriya A (1940) Contributions to the cytology of genus Saccharum I. Observations on the F1 progeny of sugar cane—sorghum hybrids. Cytologia (Tokyo) 11:117–135

    Article  Google Scholar 

  • Morrell PL, Williams-Coplin TD, Lattu AL, Bowers JE, Chandler JM, Paterson AH (2005) Crop-to-weed introgression has impacted allelic composition of Johnsongrass populations with and without recent exposure to cultivated sorghum. Mol Ecol 7:2143–2154

    Article  CAS  Google Scholar 

  • Mutegi E, Sagnard F, Muraya M, Kanyenji B, Rono B, Mwongera C, Marangu C, Kamau J, Parzies H, de Villiers S, Semagn K (2010) Ecogeographical distribution of wild, weedy and cultivated Sorghum bicolor (L.) Moench in Kenya: implications for conservation and crop-to-wild gene flow. Gen Res Crop Evol 57:243–253

    Article  Google Scholar 

  • Nabukalu P, Cox T (2016) Response to selection in the initial stages of a perennial sorghum breeding program. Euphytica 209:103–111

    Article  CAS  Google Scholar 

  • Nair N (1999) Production and cyto-morphological analysis of intergeneric hybrids of Sorghum х Saccharum. Euphytica 108:187–191

    Article  Google Scholar 

  • Ng’uni D, Geleta M, Fatih M, Bryngelsson T (2010) Phylogenetic analysis of the genus Sorghum based on combined sequence data from cpDNA regions and ITS generate well-supported trees with two major lineages. Ann Bot 105:471–480

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nishiyama I, Yabuno T (1983) A mechanism of the alteration of crossability in artificial Avena polyploids. Jpn J Genet 58:51–57

    Article  Google Scholar 

  • Ohadi S, Hodnett G, Rooney W, Bagavathiannan M (2017) Gene flow and its consequences in Sorghum spp. Crit Rev Plant Sci 36:367–385

    Article  Google Scholar 

  • Parodi L (1943) Una nueva especie de Sorghum cultivada en las Argentina. Rev Argentina Agron 10:361–372

    Google Scholar 

  • Paterson A, Schertz K, Lin Y, Liu S, Chang Y (1995) The weediness of wild plants: molecular analysis of genes influencing dispersal and persistence of Johnsongrass, Sorghum halepense (L.). Pers. Proc Natl Acad Sci U S A 92:6127–6131. https://doi.org/10.1073/pnas.92.13.6127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips S (1995) Poaceae: Sorghum purpureosericeum description. In: Hedberg I, Edwards S (eds) Flora of Ethiopia and eritrea, vol 7. Swedish Science Press, Sweden, p 301

    Google Scholar 

  • Piper J, Kulakow P (1994) Seed yield and biomass allocation in Sorghum bicolor and F1 and backcross generations of S. bicolor Χ S. halepense hybrids. Can J Bot 72:468–474

    Article  Google Scholar 

  • Prescott-Allen C, Prescott-Allen R (1986) The first resource: wild species in the North American economy. Yale Univ Press, New Haven

    Book  Google Scholar 

  • Price H, Hodnett G, Burson B, Dillon S, Rooney W (2005a) A Sorghum bicolor х S. macrospermum hybrid recovered by embryo rescue and culture. Aust J Bot 53:579–582

    Article  Google Scholar 

  • Price H, Dillon S, Hodnett G, Rooney W, Ross L, Johnston S (2005b) Genome evolution in the genus Sorghum (Poaceae). Ann Bot 95:219–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Price H, Hodnett G, Burson B, Dillon S, Stelly D, Rooney W (2006) Genotype dependent interspecific hybridization of Sorghum bicolor. Crop Sci 46:2617–2622

    Article  CAS  Google Scholar 

  • Qu L, Li L, Lan Z, Dresselhaus T (2015) Peptide signaling during the pollen tube journey and double fertilization. J Exp Bot 66:5139–5150

    Article  CAS  PubMed  Google Scholar 

  • Ramalashmi K, Prathima P, Mohanraj K, Nair N (2014) Expression profiling of sucrose metabolizing genes in Saccharum, Sorghum and their hybrids. Appl Biochem Biotechnol 174:1510–1519

    Article  CAS  PubMed  Google Scholar 

  • Ramesh B, Reddy G (1984) Maize X Sorghum hybridization. Maize Genet Cooper Newslett 58:100–101

    Google Scholar 

  • Reger B, James J (1982) Pollen germination and pollen tube growth of sorghum when crossed to maize and pearl millet. Crop Sci 22:140–144

    Article  Google Scholar 

  • Rieseberg LH, Wendel JF (1993) Introgression and its consequences in plants. Hybrid Zones Evol Process 70:109

    Google Scholar 

  • Riley R, Chapman V (1967) The inheritance of wheat of crossability with rye. Genet Res 9:259–267

    Article  Google Scholar 

  • Rooney WL (2016) Effective utilization of sorghum diversity for improved performance and specialty traits. Sorghum Improvement Conference of North America. Manhattan, KS

    Google Scholar 

  • Roque E, Gomez MD, Ellul P, Wallbraun M, Madueno F, Beltran JP, Canas LA (2007) The PsEND1 promoter: a novel tool to produce genetically engineered male-sterile plants by early anther ablation. Plant Cell Rep 26:313–325

    Article  CAS  PubMed  Google Scholar 

  • Rosenow D, Dahlberg J (2000) Collection, conversion and utilization of sorghum. In: Smith CW, Fredericksen RA (eds) Sorghum: origin, history, technology, and production. ISBN: 0-471-24237-3

    Google Scholar 

  • Salaman R (1985) The history and social influence of the potato. Cambridge University Press, London, p 685

    Google Scholar 

  • Sanchez A, Bosch M, Bots M, Nieuwland J, Feron R, Mariani C (2004) Pistil factors controlling pollination. Plant Cell 16:S98–S106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schertz KF, Clark LE (1967) Controlling dehiscence with plastic bags for hand crosses in sorghum. Crop Sci 7:540–542

    Article  Google Scholar 

  • Schertz K, Dalton L (1980) Sorghum. In: Fehr WR, Hadley HH (eds) Hybridization of crop plants. ASA and CSSA, Madison, WI

    Google Scholar 

  • Sengupta S, Weibel D (1968) Cytological study in hybrids of Sorghum almum (Gramineae). Proc Okla Acad Sci 49:4–9

    Google Scholar 

  • Serna-Saldivar S, Rooney L (1995) Structure and chemistry of sorghum and millets. In: Dendy D (ed) Sorghum and millets, chemistry and technology

    Google Scholar 

  • Shapter F, Henry R, Lee L (2008) Endosperm and starch granule morphology in wild cereal relatives. Plant Gen Res Character Util 6:85–97

    Article  Google Scholar 

  • Shapter FM, Crowther A, Fox G, Godwin ID, Watson-Fox L, Hannah IJC, Norton SL (2018) The domestication, spread and uses of sorghum as a crop. In: Rooney W (ed) Achieving sustainable cultivation of sorghum, vol 2: Sorghum utilization around the world. ISBN: 978-1-78676-124-8

    Google Scholar 

  • Sharma H (1985) Screening for sorghum midge resistance and resistance mechanisms. In: Proceedings, international sorghum entomology workshop, 15–21 July 1984, College Station, Texas, USA. International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru. pp 275–292

    Google Scholar 

  • Sharma H, Franzmann B (2001) Host-plant preference and oviposition of the sorghum midge, Stenodiplosis sorghicola (Coquillett) (Dipt. Cecidomyiidae) towards wild relatives of sorghum. J Appl Ent 125:109–114

    Article  Google Scholar 

  • Sharma H, Mukuru S, Manyasa E, Were J (1999) Breakdown of resistance to sorghum midge, Stenodiplosissorghicola. Euphytica 109:131–140

    Article  Google Scholar 

  • Shivanna K, Seetharama N (1997) Wide hybridization in sorghum: Studies on crossability barriers in the cross S. bicolor x S. dimidiatum using excised spikelets. Int Sorghum Mill Newslett 38:96–98

    Google Scholar 

  • Simpson C (1991) Pathways for introgression of pest resistance into Arachis hypogaea L. Peanut Sci 18:22–26

    Article  Google Scholar 

  • Singh B, Roy S, Bhattacharyya S (1993) Late blight of potato. Int J Trop Plant Dis 11:17–42

    Google Scholar 

  • Singh R, Verma P, Singh S (2002) Variability through distant hybridization in progeny of sugarcane. Indian Sugar 52:33–36

    Google Scholar 

  • Slatkin M (1987) Gene flow and the geographic structure of natural populations. Science 15:787–792

    Article  Google Scholar 

  • Spangler RE (2003) Taxonomy of Sarga, Sorghum, and Vacoparis (Poaceae: Andropogoneae). Aust Syst Bot 16:279–299

    Article  Google Scholar 

  • Spangler R, Zaitchik B, Russo E, Kellogg E (1999) Andropogoneae evolution and generic limits in Sorghum (Poaceae) using ndhF sequences. Syst Bot 24:267–281

    Article  Google Scholar 

  • Sreenivasan T, Ahloowalia B, Heinz D (1987) Cytogenetics. In: Heinz DJ (ed) Sugarcane improvement through breeding

    Google Scholar 

  • Stebbins G (1958) The inviability, weakness, and sterility of interspecific hybrids. Adv Gen 9:147–215

    Article  CAS  Google Scholar 

  • Stephens J, Miller F, Rosenow D (1967) Conversion of alien sorghums to early combine genotypes. Crop Sci 7:396

    Article  Google Scholar 

  • Subramonian N (1991) Chromosome behavior in sugarcane х sorghum hybrids. Cytologia 56:11–15

    Article  Google Scholar 

  • Sun Y, Suksayretrup K, Kirkham M, Liang G (1991) Pollen tube growth in reciprocal interspecific pollinations of Sorghum bicolor and S. versicolor. Plant Breed 107:197–202

    Google Scholar 

  • Sun Y, Skinner DZ, Liang GH, Hulbert SH (1994) Phylogenetic analysis of Sorghum and related taxa using internal transcribed spacers of nuclear ribosomal DNA. Theor Appl Genet 89:26–32

    Article  CAS  Google Scholar 

  • Surendran C, Chandrasekharan N, Chandresekharan P, Rangasamy S (1988) Fodder sorghum Co27 for increased nutritious fodder. Madras Agri J 75:33–36

    Google Scholar 

  • Tang H, Liang G (1988) The genomic relationship between cultivated sorghum [Sorghum bicolor (L.) Moench] and Johnsongrass [S. halepense (L.) Pers.]: a re-evaluation. Theor Appl Genet 76:277–284

    Article  Google Scholar 

  • Terajima Y, Matsuoka M, Irei S, Sakaigaichi T, Fukuhara S, Ujihara K, Ohara S, Sugimoto A (2007) Breeding for high biomass sugarcane and its utilisation in Japan. Proc Int Soc Sugar Cane Technol 26:759–763

    Google Scholar 

  • Tesso T, Ejeta G, Chandrashekar A, Huang C, Tandjung A, Lewamy M, Axtell J, Hamaker B (2006) A novel modified endosperm texture in a mutant high-protein digestibility/high-lysine grain sorghum (Sorghum bicolor (L.) Moench). Cereal Chem 83:194–201

    Article  CAS  Google Scholar 

  • Ukai Y, Nakagawa H (2012) Plant mutation breeding and biotechnology. In: Shu QY, Forster BP, Nakagawa H (eds) Strategies and approaches in mutant population development for mutant selection in seed propagated crops. https://doi.org/10.1079/9781780640853.0209

  • Vavilov N (1938) Interspecific hybridization in breeding and evolution. Izvestiia. Seriiabiologicheskaia 543–563

    Google Scholar 

  • Vavilov N (1949/1950) The origin, variation, immunity and breeding of cultivated plants. Chron Bot 13:168–313

    Google Scholar 

  • Venkatraman R, Thomas R (1932) Sugarcane-sorghum hybrids. Part I. General outline and early characters. Ind J agric Sci 2:19–27

    Google Scholar 

  • Washburn J, Murray S, Burson B, Klein R, Jessup R (2013) Targeted mapping of QTL regions for rhizomatousness in chromosome SBI-01 and analysis of overwintering in a Sorghum bicolor × S. propinquumpopulation. Mol Breed 31:153–162

    Article  PubMed  Google Scholar 

  • Weider C, Stamp P, Christov N, Hüsken A, Foueillassar X, Camp KH, Munsch, M (2009) Stability of cytoplasmic male sterility in maize under different environmental conditions. Crop Sci 49(1):77–84

    Google Scholar 

  • Wu T (1993) Cytological and morphological relationships between Sorghum laxiflorum and S. bicolor. J Hered 84:484–489

    Article  Google Scholar 

  • Yoshida H, Itoh JI, Ohmori S, Miyoshi K, Horigome A, Uchida E, Kimizu M, Matsumura Y, Kusaba M, Satoh H, Nagato Y (2007) Superwoman1-cleistogamy, a hopeful allele for gene containment in GM rice. Plant Biotech J 5:835–846

    Article  CAS  Google Scholar 

  • Young W, Teetes G (1977) Sorghum entomology. Ann Rev Ent 22:193–218

    Article  Google Scholar 

  • Zhang W, Cao Y, Zang M, Zhu X, Ren S, Long Y, Gyawali Y, Chao S, Xu S, Cai X (2017) Meiotic homoeologous recombination-based alien gene introgression in the genomics era of wheat. Crop Sci 57:1189–1198

    Article  CAS  Google Scholar 

  • Zinkl G, Zwiebel B, Grier D, Preuss D (1999) Pollen-stigma adhesion in Arabidopsis: a species-specific interaction mediated by lipophilic molecules in the pollen exine. Development 126:5431–5440

    CAS  PubMed  Google Scholar 

  • Zwick M, Islam-Faridi M, Zhang H, Hodnett G, Gomez M, Kim J, Price H, Stelly D (2000) Distribution and sequence analysis of the centromere-associated repetitive element CEN38 of Sorghum bicolor (Poaceae). Am J Bot 87:1757–1764

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. L. Hodnett .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hodnett, G.L., Norton, S.L., Ohadi, S., Bagavathiannan, M.V., Rooney, W.L. (2020). Wide Hybridization and Utilization of Wild Relatives of Sorghum. In: Tonapi, V.A., Talwar, H.S., Are, A.K., Bhat, B.V., Reddy, C.R., Dalton, T.J. (eds) Sorghum in the 21st Century: Food – Fodder – Feed – Fuel for a Rapidly Changing World. Springer, Singapore. https://doi.org/10.1007/978-981-15-8249-3_4

Download citation

Publish with us

Policies and ethics