Skip to main content

The Forests of the Upper Rio Negro (North-Western Amazon) and Adjacent South-Western Orinoco Basins: A Phytosociological Classification

  • Chapter
  • First Online:
Psammic Peinobiomes

Abstract

This chapter presents the first attempt at a phytosociological analysis of forests in the upper Rio Negro (north-western Amazon) and adjacent south-western Orinoco basins, based on both floristic composition and species relative dominance. The region harbors unique plant communities that thrive under very wet climatic conditions on oligotrophic soils, drained by (mostly) black, white, or clear water rivers. The floristic composition and classification of the vegetation types were determined using data from 226 inventory plots where all individuals of diameter at breast height (DBH) ≥ 2.5 cm were measured. A set of 1368 species corresponding to 387 genera and 94 families of vascular plants was used to perform a two-way indicator species analysis (TWINSPAN). We defined the phytosociological class Eperuo leucanthae—Eperuetea purpureae, composed of seven forest communities at association level and a larger group integrated by one undetermined association. There are two orders at the highest rank. The first order (Heveo guianensis—Eperuetalia purpureae) includes three alliances and six associations, and contains the forests that grow on sandy, acidic, and extremely leached soil substrate. The Oenocarpodo batauae—Eperuion leucanthae alliance comprises two typical upper Rio Negro associations: the Amazonian caatinga and the “yévaro” forests (Micrandro elatae-Micrandretum spruceii and Oenocarpodo batauae-Eperuetum purpureae). The second order (Goupio glabrae—Minquartiion guianensis) corresponds to forests drained by white and clear waters, growing on clay soils. Data on the floristic diversity and the main environmental factors that determine the structure and floristic composition of these plant communities are presented.

“Sábado víspera de la Santísima Trinidad (3 de junio de 1542)… ..vimos una boca de otro río grande á la mano siniestra, que entraba en el que nosotros navegávamos, el agua del cual era negra como tinta, y por esto le pusimos nombre del Río Negro, el cual corría tanto y con tanta ferocidad que en más de veinte leguas hacia raya en la otra abu, sin resolver la una con la otra” (Fr. Gaspar de Carvajal. Relación del viaje de Francisco de Orellana al río Amazonas—1541–1542).

“On some black-water rivers, such as the Pacimoni, the Atabapo, and the Rio Negro in some parts of its course, the breadth of inundated land is entirely clad with bushes and small trees of very equable height, on the skirts of which the Virgin Forest rises abruptly to a height more than twice as great. This is called by the natives ‘caatinga-gapo.’ Besides these differences of aspect, the natives will tell you there are other more intrinsic ones.” (Notes of botanist on the Amazon and Andes, Richard Spruce, 1908)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abraão MB, Shepard GH Jr, Nelson BW, Baniwa JC, Andrello G, Yu DW (2009) Baniwa vegetation classification in the white-sand Campinarana habitat of the Northwest Amazon. In: Johnson LM, Hunn E (eds) Landscape ethnoecology: concepts of biotic and physical space. Berghahn Books, New York and Oxford, pp 83–115

    Google Scholar 

  • Almeida A, Futada S, Klein T (2016) Protected areas and indigenous lands in the Amazon region are affected by more than 17,500 mining processes. https://www.socioambiental.org/en/node/5044

  • Alvez-Valles CM, Balslev H, Garcia-Villacorta R, Carvalho FA, Menini Neto L (2018) Palm species richness, latitudinal gradients, sampling effort, and deforestation in the Amazon region. Acta Bot Bras 32(4):527–539

    Article  Google Scholar 

  • Anderson AB (1981) White-sand vegetation of Brazilian Amazonia. Biotropica 13(3):199–210

    Article  Google Scholar 

  • ANLA (2020) Autoridad Nacional de Licencias Ambientales, Minambiente, Bogotá, Colombia. http://www.anla.gov.co/. (Accessed 05 Octuber 2020)

  • Antonelli A, Zizka A, Antunes Carvalho F, Scharn R, Bacon CD, Silvestro C, Condamine FL (2018) Amazonia is the primary source of neotropical biodiversity. Proc Nat Acad Sci (USA) 115:6034–6039

    Article  CAS  PubMed  Google Scholar 

  • Arellano-Peña H, Rangel-Ch JO (2015) A solution to the high bias in estimates of carbon held in tropical forest above-ground biomass. arXiv:1508.03667v1 [q-bio.QM]

    Google Scholar 

  • Arellano-Peña H, Bernal-Gutiérrez G, Calero-Cayopare A, Castro-L F, Lozano A, Bernal-Linares DS, Méndez-R C, Aymard G (2019) The first botanical exploration to the upper Cuiarí (Cuyarí) and Isana rivers, upper Río Negro basin, Guainía department. Colombia Harvard Papers in Botany 24(2):83–102

    Article  Google Scholar 

  • Aymard G (2001) Estructura y composición florística en bosques de tierra firme del alto Río Orinoco, sector La Esmeralda. Estado Amazonas Venezuela Acta Botánica Venezuelica 23(2):123–156

    Google Scholar 

  • Aymard, G (in preparation) “Proyecto Inventario de los Recursos Naturales de la Guayana Venezolana” (PIRNRG): Nine years of botanical expeditions (1985–1994). Boletín de Historia de las Geociencias en Venezuela

    Google Scholar 

  • Aymard G, Stergios B, Cuello N (1989) Informe sobre la vegetación del Interfluvio Orinoco-Atabapo, sector “Los Pozos” (03°10' N; 67°17' O). Departamento Atabapo. Territorio Federal Amazonas, Venezuela. Boletín Técnico (Programa de R. N. R. UNELLEZ-Guanare. Venezuela) 15:170–219

    Google Scholar 

  • Aymard G, Schargel R, Berry PE, Stergios B (2009) Estudio de los suelos y la vegetación (estructura, composición florística y diversidad) en bosques macrotérmicos no-inundables, estado Amazonas Venezuela (aprox. 01° 30′ - 05° 55′ N; 66° 00′ - 67° 50′ O). Biollania ed esp 9:6–251

    Google Scholar 

  • Aymard G, Arellano-Peña H, Minorta-C V, Castro-Lima F (2016) First report of Rhabdodendraceae for the vascular flora of Colombia and the upper Río Negro basin, with comments on phytogeography, habitats, and distribution of Rhabdodendron amazonicum. Harv Pap Bot 21:5–21

    Article  Google Scholar 

  • Baker PA, Fritz SC, Battisti DS, Dick CW, Vargas OM, Asner GP, Martin RE, Wheatley A, Prates I (2020) Beyond refugia: new insights on quaternary climate variation and the evolution of biotic diversity in tropical South America. In: Rull V, Carnaval A (eds) Neotropical diversification. Springer, Berlin, pp 51–70

    Chapter  Google Scholar 

  • Ballesteros MM (1995) Estructura, biomasa e inventario de nutrientes de la Caatinga baja Amazónica y su comparación con el bosque de tierra firme (Departamento del Vaupés, Colombia), Tesis MSc Universidad de los Andes, Facultad de Ciencias, Postgrado de Ecología Tropical. Mérida, Venezuela

    Google Scholar 

  • Berry P, Aymard G (1997) “A historic Portage” revisited. Biollania ed esp 6:263–273

    Google Scholar 

  • Berry P, Wiedenhoeft AC (2004) Micrandra inundata (Euphorbiaceae), a new species with unusual wood anatomy from black-water river banks in southern Venezuela. Syst Bot 29:125–133

    Article  Google Scholar 

  • Bongers F, Engelen D, Klinge H (1985) Phytomass structure of natural plant communities on spodosols in southern Venezuela: the bana woodland. Vegetatio 63(1):13–34

    Article  Google Scholar 

  • Boubli JP (2002) Lowland floristic assessment of Pico da Neblina National Park, Brazil. Plant Ecol 160:149–167

    Article  Google Scholar 

  • Braun-Blanquet J (1979) Plant sociology, the study of plant communities. Transl by Fueller GD and Conard HS. Mc Graw-Hill, New York

    Google Scholar 

  • Brewer-Carías C (1988) Cerro de la Neblina: Resultados de la Expedición 1986-1987. In: Fundación para el Desarrollo de las Ciencias Físicas, Matemáticas y Naturales, Caracas. Venezuela

    Google Scholar 

  • Bush MB, McMichael CN (2016) Holocene variability of an Amazonian hyperdominant. J Ecol 104(5):1370–1378

    Article  Google Scholar 

  • Bush MB, de Oliveira BPE, Colinvaux PA, Miller MC, Moreno JE (2004) Amazonian paleoecological histories: one hill, three watersheds. Paleoegeography, Palaeoclimatology, Palaeoecology 214:359–393

    Article  Google Scholar 

  • Cano A, Stevenson PR (2009) Diversidad y composición florística de tres tipos de bosque en la estación biológica Caparú, Vaupés. Revista Colombia Forestal 12:63–80

    Article  Google Scholar 

  • Capurucho JMG, Borges SH, Cornelius C, Prata EMB, Costa FM, Campos P, Sawakuchi AO, Rodrigues Zular A, Aleixo A, Bates JM, Ribas CC (2020) Patterns and processes of diversification in Amazonian white sand ecosystems: insights from birds and plants. In: Rull V, Carnaval A (eds) Neotropical diversification: patterns and processes. Fascinating Life Sciences, Springer, Cham, pp 245–270

    Chapter  Google Scholar 

  • Cárdenas-López D, Barreto Silva JS, Arias García JC, Murcia García UG, Salazar Cardona CA, Méndez Quevedo O (2007) Caracterización ytipificación forestal de ecosistemas en el municipio de Inírida y el corregimiento de Cacahual (Guainía); una zonificación forestall para la ordenación de los recursos. Sinchi y Corporación para el Desarrollo Sostenible del norte y el oriente Amazónico, Bogotá, 252 p

    Google Scholar 

  • Carvajal de Fr. G. (1848) Descubrimiento del río de las Amazonas según la relación hasta ahora inédita del viaje de Francisco de Orellana. (Edited by J. T. Medina.) Imp. E. Rasco, Sevilla, España

    Google Scholar 

  • Chave J, Andalo C, Brown S, Cairns MA, Chambers JQ, Eamus D, Fölster H, Fromard F, Higuchi N, Kira T, Lescure JP, Nelson BW, Ogawa H, Puig H, Riéra B, Yamakura T (2005) Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145:87–99

    Article  CAS  PubMed  Google Scholar 

  • Cintra JP (2011) Magni Amazoni Fluvii: o mapa do Conde de Pagan. Anais do 1° Simpósio Brasileiro de Cartografia Histórica. Belo Horizonte, Brasil 1:1–20

    Google Scholar 

  • Cintra JP (2012a) O mapa das cortes e as fronteiras do Brasil. Boletim Ciências Geodésicas, sec Artigos (Curitiba) 8(3):421–445

    Article  Google Scholar 

  • Cintra JP (2012b) Cartography and historical maps: techniques, applications and peculiarities. Revista Brasileira de Cartografia (Rio de Janeiro) 64(6):901–918

    Google Scholar 

  • Cintra JP, de Oliveira RH (2014) Nicolas Sanson and his map: the course of the Amazon River. Acta Amazon 44(3):353–366

    Article  Google Scholar 

  • Cintra JP, Freitas JC (2011) Sailing down the Amazon River: La Condamine’s map. Surv Rev 43:550–566

    Article  Google Scholar 

  • Cintra JP, Furtado JF (2011) A Carte de l’Amérique Méridionale de Bourguignon D’Anville: eixo perspectivo de uma cartografia amazónica comparada. Revista Brasileira de História 31:273–316

    Article  Google Scholar 

  • Clark H, Liesner R, Berry P, Fernández A, Aymard G, Maquirino P (2000) Catálogo anotado de la flora del área de San Carlos de Río Negro, Venezuela. Scientia Guaianae 11:101–316

    Google Scholar 

  • Clinebell RR, Phillips OL, Gentry AH, Stark N, Zuurihg H (1995) Prediction of neotropical tree and liana species richness from soil and climatic data. Biodivers Conserv 4:56–90

    Article  Google Scholar 

  • Colinvaux PA, de Oliveira PE, Bush MB (2000) Amazonian and neotropical plant communities on glacial time-scales: the failure of the aridity and refuge hypotheses. Quat Sci Rev 19:141–169

    Article  Google Scholar 

  • Condit R, Hubbell SP, Lafrankie JV, Sukumar R, Manokaran N, Foster BR, Ashton PS (1996) Species-area and species-individual relationships for tropical trees: a comparison of three 50-ha plots. J Ecol 84(4):549–562

    Article  Google Scholar 

  • Coomes DA, Grubb PJ (1996) Amazonian caatinga and related communities at La Esmeralda, Venezuela: forest structure, physiognomy and floristics, and control by soils factors. Vegetatio 122:167–191

    Article  Google Scholar 

  • Cordeiro RC, Turcq BJ, Sifeddine A, Lacerda LD, Silva Filho EV, Gueiros BB, Cunha YPP, Santelli RE, Pádua EO, Pachinelam SR (2011) Biogeochemical indicators of enviromnental changes from 50 ka to 10 ka. Palaeogeogr Palaeoclimatol Palaeoecol 299:426–436

    Article  Google Scholar 

  • Córdoba MP, Etter A (2001) Flora Puinawai. In: Etter A, Baptsite LG, Córdoba M, Muñoz Y, Repizzo A, Romero M, Álvarez M, Escobar F, Fernández F, Mendoza H, Rojas A (eds) Puinawai y Nukak. Caracterización ecológica de dos reservas nacionales naturales de la Amazonia Colombiana. Pontificia Universidad Javeriana, Colciencias, Inst A von Humboldt y Fundación FES, Bogotá, Colombia, pp 102–107

    Google Scholar 

  • Cortesão J (1965) História do Brasil nos velhos mapas. Tomos 1 e 2. Ministério das Relações Exteriores, Instituto Rio Branco, Rio de Janeiro, Brasil

    Google Scholar 

  • Cuevas E, Medina E (1986) Nutrient dynamics within Amazonian forest ecosystems I. nutrient flux in fine litter fall and efficiency of nutrient utilization. Oecologia 68:466–472

    Article  CAS  PubMed  Google Scholar 

  • Cuevas E, Medina E (1991) Phosphorus/nitrogen interactions in adjacent Amazon forests with contrasting soils and water availability. In: Tiessen H, López-Hernández D, Salcedo TH (eds) Regional workshop 3: south and Central America. Saskatchewan Institute of Pedology, pp 84–94

    Google Scholar 

  • D'Apolito C, Absy ML, Latrubesse EM (2017) The movement of pre-adapted cool taxa in north-Central Amazonia during the last glacial. Quat Sci Rev 169:1–12

    Article  Google Scholar 

  • de La Condamine CM (1745) Relation Abrégée d’un Voyage fait dans l’Intériéur de l’Amérique Méridionale, Depuis la Côtes de la Mer du Sud, jusqu’aux Côtes du Brésil & de la Guyane, en Descendant la Riviere des Amazones. Veuve Pissot, Paris, France

    Google Scholar 

  • Dexter K, Chave J (2016) Evolutionary patterns of range size, abundance and species richness in Amazonian angiosperm trees. PeerJ 4:e2402. https://doi.org/10.7717/peerj.2402

    Article  PubMed  PubMed Central  Google Scholar 

  • Dezzeo N, Maquirino P, Berry PE, Aymard G (2000) Principales tipos de bosques en el área de San Carlos de Río Negro, Venezuela. Scientia Guaianae 11:15–36

    Google Scholar 

  • Draper F, Costa FRC, Arellano G, Phillips OL, Duque A, Macía MJ, ter Steege H, Asner GP, Aymard G et al (2021) Amazon tree dominance across forest strata. Nature Ecol Evol. https://doi.org/10.1038/s41559-021-01418-y

  • Dubroeucq D, Volkoff B (1998) From Oxisols to spodosols and histosols: evolution of the soil mantles in the Rio Negro basin (Amazonia). Catena 32:245–280

    Article  Google Scholar 

  • Ducke A (1938) A Flora do Curicuriarí, afluente do Rio Negro, observada em viagens com a comissão demarcadora das fronteiras do setor Oeste. In: Anais da Primeira Reuniao Sul-Americana de Botanica 3 (1):389-398. Rio de Janeiro

    Google Scholar 

  • Ducke A (1944) Flora do Rio Urubú (observações realizadas durante as viagens da comissão que escolheria as tierras para a colônia agricola nacional do Amazonas). Boletim Ministerio da Agricultura, Servico Florestal do Brasil, Rio de Janeiro

    Google Scholar 

  • Ducke A (1954) Notas sobre a fitogeografia Amazônia Brasileira. Boletim técnico do Instituto Agronômico do Norte 29:1–62

    Google Scholar 

  • Duivenvoorden JF, Cavelier J, García A, Grandez C, Macia M, Romero-Saltos H, Sánchez M, Valencia R (2005) Density and diversity of plants in relation to soil nutrient reserves in well-drained upland forests in NW Amazonia. Biologiske Skrifter 55:25–35

    Google Scholar 

  • Espinoza JC, Ronchail J, Guyot JL, Cochonneau G, Naziano F, Lavado W, de Oliveira E, Pombosa R, Vauchel P (2009) Spatio-temporal rainfall variability in the Amazon basin countries (Brazil, Peru, Bolivia, Colombia, and Ecuador). Int J Climatol 29(11):1574–1594

    Article  Google Scholar 

  • Fine PV, Miller ZJ, Mesones I, Irazuzta S, Appel HM, Stevens MH, Sääksjärvi I, Schultz JC, Coley PD (2006) The growth-defense trade-off and habitat specialization by plants in Amazonian forests. Ecology 87(7):S150–S162

    Article  PubMed  Google Scholar 

  • Fine PV, García-Villacorta R, Pitman NCA, Mesones I, Kembel SW (2010) A floristic study of the white-sand forests of Peru. Ann Mo Bot Gard 97:283–305

    Article  Google Scholar 

  • ForestPlots.net, Blundo C, Carilla J, Grau R, Malizia A, Malizia L, Osinaga-Acosta O et al (554 co-authors) (2021) Taking the pulse of Earth’s tropical forests using networks of highly distributed plots. Biol Conserv. https://doi.org/10.1016/j.biocon.2020.108849

  • Franco W, Dezzeo N (1994) Soils and water regime in the terra firme-caatinga forest complex near San Carlos de Río Negro, state of Amazonas. Venezuela Interciencia 19(6):305–316

    Google Scholar 

  • Fritz S (1717) Description abrégée du Maragnon, et des missions établies aux environs de ce grand fleuve, tirée d’un mémoire espagnole du père Samuel Fritz, missionaire de la Compagnie de Jésus. Lettres Édifiantes et Curieuses, Écrites des Missions Etrangeres, par Quelques Missionaires de la Compagnie de Jesus 12:212–231

    Google Scholar 

  • Fritz S (1726) Beschreibung des Fluß Maragnon und deren Missionen. Der Neuer Welt-Bott 5(111):59–61

    Google Scholar 

  • Fritz S (1755) Descripcion abreviada del rio Marañón, y de las missions establecidas en sus contornos—Sacada de una memoria española del padre Samuèl Fritz, Missionero de la Compañia de Jesus. Cartas edificantes, y Curiosas, Escritas de las Missiones Estrangeras, por Algunos Missioneros de la Compañia de Jesus [Traducidas del idioma francés por el padre Diego Davin, de la Compañia de Jesus] 8:42-50

    Google Scholar 

  • Fritz S (1819) Description abrégée du Maragnon, et des missions établies aux environs de ce grand fleuve, tirée d’un mémoire espagnole du père Samuel Fritz, missionaire de la Compagnie de Jésus. Lettres édifiantes et curieuses, écrites des Missions Étrangères Nouvelle Édition. Mémoires d’Amérique [Lyon] 5:172–180

    Google Scholar 

  • García-Villacorta R, Dexter KG, Pennington T (2016) Amazonian white-sand forests show strong floristic links with surrounding oligotrophic habitats and the Guiana shield. Biotropica 48:47–57

    Article  Google Scholar 

  • Gentry AH (1982) Neotropical floristic diversity: phytogeographical connections between central and South America: Pleistocene climatic fluctuations or an accident of the Andean orogeny? Ann Mo Bot Gard 69:557–593

    Article  Google Scholar 

  • Gentry AH (1988a) Tree species richness of upper Amazonian forests. Proceedings of the National Academy of Sciences USA 85:156–159

    Article  CAS  Google Scholar 

  • Gentry AH (1988b) Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann Mo Bot Gard 75:1–34

    Article  Google Scholar 

  • Gentry AH (1993) Diversity and floristic composition of lowland forest in Africa and South America. In: Goldblatt P (ed) Biological relationships between Africa and South America. Yale University Press, New Haven, pp 500–547

    Chapter  Google Scholar 

  • Goulding M, Leal Carvalho M, Ferreira EG (1988) Rio Negro, rich life in poor water (Amazonian diversity and foodchain ecology as seen through fish communities). SPB Academic Publishing, The Netherlands

    Google Scholar 

  • Häggi C, Chiessi CM, Merkel U, Mulitza S, Prange M, Schulz M, Schefuß E (2017) Response of the Amazon rainforest to late Pleistocene climate variability. Earth Planet Sci Lett 479:50–59

    Article  Google Scholar 

  • Haykin S (2009) Neural networks and learning machines, 3rd edn. Pearson Prentice Hall, Upper Saddle River, New Jersey, USA

    Google Scholar 

  • Herrera R (1979) Nutrient distribution and cycling in an Amazon Caatinga rainforest on Spodosols in southern Venezuela. PhD. thesis. University of Reading

    Google Scholar 

  • Herrera R (1985) Nutrient cycling in Amazonian forests. In: Prance GT, Lovejoy TE (eds) Key environments: Amazonia. Pergamon Press, Oxford, pp 95–105

    Google Scholar 

  • Hill MO (1979) TWINSPAN-a Fortran program for arranging multivariate data in an ordered two-way table of classification of individuals and attributes. Cornell University, Ithaca, NY

    Google Scholar 

  • Hofhansl F, Chacón-Madrigal E, Fuchslueger L, Jenking D, Morera-Beita A, Plutzar C, Silla F, Andersen KM, Buchs DM, Dullinger S, Fiedler K, Franklin O, Hietz P, Huber W, Quesada CA, Rammig A, Schrodt F, Vincent AG, Weissenhofer A, Wanek W (2020) Climatic and edaphic controls over tropical forest diversity and vegetation carbon storage. Sci Rep 10:5066. https://doi.org/10.1038/s41598-020-61868-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hooghiemstra HT, van der Hammen T, Cleef AM (2002) Paleoecología de la flora boscosa. In: Guariguata MR, Kattan GH (eds) Ecología y conservación de bosques Neotropicales. Editorial Libro Universitario Regional, Costa Rica, pp 43–58

    Google Scholar 

  • Hooghiemstra HT, Wijninga VM, Cleef AM (2006) The paleobotanical record of Colombia; implications for biogeography and biodiversity. Annals of Missouri Botanical Garden 93:297–325

    Article  Google Scholar 

  • Hoorn C, Wesselingh FP, ter Steege H, Bermudez MA, Mora A, Sevink J, Sanmartín I, Sánchez-M A, Anderson CL, Figueiredo JP, Jaramillo C, Riff D, Negri RF, Hooghiemstra HT, Lundberg J, Stadler T, Särkinen T, Antonelli A (2010) Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330:927–931

    Article  CAS  PubMed  Google Scholar 

  • Hoorn C, Bogotá-A GR, Romero-Báez M, Lammertsma E, Flantua SGA, Dantas EL, Dino R, do Carmo DA, Chemale F Jr (2017) The Amazon at sea: onset and stages of the Amazon river from a marine record, with special reference to Neogene plant turnover in the drainage basin. Glob Planet Chang 153:51–65

    Article  Google Scholar 

  • Hopkins MJG (2019) Are we close to knowing the plant diversity of the Amazon? An Acad Bras Cienc 91(3):1–7. https://doi.org/10.1590/0001-3765201920190396

    Article  Google Scholar 

  • Householder JE, Schöngart J, Piedade MTF, Junk WJ, ter Steege H, Montero JC, de Assis RL, de Aguiar DPP, Pombo MM, Quaresma AC, Demarchi LO, Parolin P, Lopes A, Feitoza GV, Durgante FM, Albuquerque BW, Chu A, Enßlin D, Fabian T, Fettweiß K, Hirsch M, Hombach M, Hubbuch A, Hutter B, Jäger T, Kober-Moritz R, Lindner MKR, Maier F, Nowak J, Petridis Z, Schierling L, Snjaric E, Egger G, Schneider E, Damm C, Wittmann F (2021) Modeling the ecological responses of tree species to the flood pulse of the Amazon Negro River floodplains. Front Ecol Evol 9:628606. https://doi.org/10.3389/fevo.2021.628606

    Article  Google Scholar 

  • Hubbell SP, He F, Condit R, Borda-de Agua L, Kellner J, ter Steege H (2008) How many tree species are there in the Amazon and how many of them will go extinct? Proc Nat Acad Sci USA 105:11498–11504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huber O (1987) Consideraciones sobre el concepto de Pantepui. Pantepui 2:2–10

    Google Scholar 

  • Huber O (1994) Recent advances in the phytogeography of the Guayana region, South America. Mémoires de la Société de Biogéographie 4:53–63

    Google Scholar 

  • Huber O (1995a) History of botanical exploration. In: Berry PE, Holst B, Yatskievych K (eds) Flora of Venezuelan Guayana, vol I. Timber Press, Portland, Oregon, pp 63–95

    Google Scholar 

  • Huber O (1995b) Geographical and physical features. In: Berry PE, Holst B, Yatskievych K (eds) Flora of Venezuelan Guayana, vol I. Timber Press, Portland, Oregon, pp 1–62

    Google Scholar 

  • Huber O (1995c) Vegetation. In: Berry PE, Holst B, Yatskievych K (eds) Flora of Venezuelan Guayana, vol I. Timber Press, Portland, Oregon, pp 97–192

    Google Scholar 

  • Huber O, Wurdack JJ (1984) History of botanical exploration in Territorio Federal Amazonas, Venezuela. Smithson Contrib Bot 56:1–86

    Article  Google Scholar 

  • IGAC (2014) Departamento del Guainía: Estudio general de suelos y zonificación de la tierra, escala 1:100.000/Instituto Geográfico Agustín Codazzi. Subdirección de Agrología. Imprenta Nacional de Colombia, Bogotá

    Google Scholar 

  • IGAC (2018) Estudio general de suelos y zonificación de tierras departamento de Vichada, escala 1.100.000/Instituto Geográfico Agustín Codazzi. Subdirección de Agrología. Imprenta Nacional de Colombia, Bogotá

    Google Scholar 

  • Janzen DH (1974) Tropical Blackwater rivers, animals and mass fruiting by the Dipterocarpaceae. Biotropica 6:69–103

    Article  Google Scholar 

  • Junk WJ, Piedade MTF, Schöngart J, Cohn-Haft M, Adeney JM, Wittmann FA (2011) Classification of major naturally-occurring Amazonian lowland wetlands. Wetlands 31:623–640

    Article  Google Scholar 

  • Klinge H (1965) Podzol soils in the Amazon basin. J Soil Sci 16(1):96–103

    Article  Google Scholar 

  • Klinge H (1967) Podzol soils: a source of Blackwater rivers in Amazonia. Atas do Simpósio sobre a Biota Amazônica 3:117–125

    Google Scholar 

  • Klinge H, Herrera R (1983) Phytomass structure of natural plant communities on spodosols in southern Venezuela: the tall Amazon caatinga forest. Plant Ecol 53:65–84

    Article  Google Scholar 

  • Klinge H, Medina E (1979) Rio Negro caatingas and Campinas, Amazonas states of Venezuela and Brazil. In: Specht RL (ed) Heathlands and related shrublands. Elsevier Scientific Publications, New York, pp 483–488

    Google Scholar 

  • Klinge H, Medina E, Herrera R (1977) Studies on the ecology of Amazon caatinga forest in southern Venezuela. Part 1: general features. Acta Cientifica Venezolana 28:270–276

    CAS  Google Scholar 

  • Kristiansen T, Svenning JC, Grandez C, Salo J, Balslev H (2009) Commonness of Amazonian palm (Arecaceae) species: cross-scale links and potential determinants. Acta Oecol 35(4):554–562

    Article  Google Scholar 

  • Kubitzki K (1989) The ecogeographical differentiation of Amazonian inundation forests. Plant Syst Evol 162:285–304

    Article  Google Scholar 

  • Kubitzki K (1990) The psammophilous flora of northern South America. Mem N Y Bot Gard 64:248–253

    Google Scholar 

  • Kubitzki K (1991) Dispersal and distribution in Leopoldinia (Palmae). Nord J Bot 11:429–432

    Article  Google Scholar 

  • Landrum LR (1986) The life and botanical accomplishments of Boris Alexander Krukoff. Adv Econ Bot 2:1–96

    Google Scholar 

  • Latrubesse EM, Stevaux JC (2015) The Anavilhanas and Mariuá archipelagos: fluvial wonders from the Negro River, Amazon Basin. In: Carvalho-Viera B, Rodrigues-Salgado AA, Cordeiro-Santos L (eds) Landscapes and landforms of Brazil. World geomorphological landscapes series. Springer, Dordrecht, Heidelberg, New York, London, pp 157–170

    Chapter  Google Scholar 

  • Levis C, Costa FRC, Bongers F, Peña-Claros M, Clement CR, Junqueira AB, Neves EG, Tamanaha EK, Figueiredo FOG, ter Steege ter H et al. (2017) Persistent effects of pre-Columbian plant domestication on Amazonian forest composition. Science 355(6328):925–931

    Google Scholar 

  • Lisbôa PL (1975) Estudos da vegetação das Campinas Amazonica - II. Observaçôes gerais e revisão bibliográfica sobre as campinas amazónicas de areia branca. Acta Amazon 5:211–223

    Article  Google Scholar 

  • Lleras E (1997) Upper Rio Negro region (Brazil, Colombia, Venezuela). In: Davies SD, Heywood VH, Herrera-MacBryde O, Villa-Lobos J, Hamilton AC (eds) Centres of plant biodiversity. Volumen 3: The Americas. World Wildlife Fund for Nature & The World Conservation Union, Cambridge, UK, pp 333-337

    Google Scholar 

  • Lopes de Sousa B (1955) Indios e exploraçoes geográficas. Publicação no. 110. Conselho Nacional de Proteção aos Índios, Ministério da Agricultura, Rio de Janeiro, Brasil

    Google Scholar 

  • Lopes de Sousa B (1959) Do Rio Negro ao Orenoco (A Terra-O Homen). Publica no. 111. Conselho Nacional de Proteção aos Índios, Ministério da Agricultura, Rio de Janeiro, Brasil

    Google Scholar 

  • Luize BG, Lima Magalhães JÃL, Queiroz H, Lopes MA, Venticinque EM, de Moraes Novo EML, Silva TSF (2018) The tree species pool of Amazonian wetland forests: which species can assemble in periodically waterlogged habitats? PLosOne 13(5):1–13

    Article  Google Scholar 

  • Mägdefrau K, Wutz A (1961) Leichthölzer und Tonnenstämme in Schwarzwassergebieten und Dornbuschwäldern des tropischen Südamerika. Forstwissenschaftliches Centralblatt 80:17–28

    Article  Google Scholar 

  • Marengo JA, Williams RE, Alves LM, Soares WR, Rodriguez DA (2016) Extreme seasonal climate variations in the Amazon basin: droughts and floods. In: Nagy L, Forsberg BR, Artaxo P (eds) Interactions between biosphere, atmosphere and human land use in the Amazon basin. Ecological studies 227. Springer, Heidelberg, Berlin, pp 54–76

    Google Scholar 

  • McCune B, Mefford MJ (2016) PC-ORD multivariate analysis of ecological data, Version 7.0. Wild Blueberry Media, Corvalis, Oregon, USA

    Google Scholar 

  • Medina E (2000) El Proyecto Amazonas del Instituto Venezolano de Investigaciones Científicas: Origen y desarrollo. Scientia Guaianae 11:1–6

    Google Scholar 

  • Medina E, Garcia V, Cuevas E (1990) Sclerophylly and oligotrophic environments: relationships between leaf structure, mineral nutrient content, and drought resistance in tropical rain forests of the upper Río Negro region. Biotropica 22:51–64

    Article  Google Scholar 

  • Meggers BJ (1979) Climatic oscillation as a factor in the prehistory of Amazonia. Am Antiq 44(2):252–266

    Article  Google Scholar 

  • Meggers BJ (1994) Archeological evidence for the impact of mega-Niño events on Amazonia during the past two millennia. Climate Change 28:321–338

    Article  CAS  Google Scholar 

  • Montoya E, Lombardo U, Levis C, Aymard G, Mayle FE (2020) Human contribution to Amazonian diversity: pre-Columbian legacy to current plant communities. In: Rull V, Carnaval A (eds) Neotropical diversification. Springer, Berlin, pp 495–520

    Chapter  Google Scholar 

  • Morley RJ (2011) Cretaceous and tertiary climate change and the past distribution of megathermal rainforests. In: Bush MB, Flenley JR, Gosling WD (eds) Tropical rainforest responses to climatic change, 2nd edn. Springer-Verlag, Berlin-Heidelberg, pp 1–34

    Google Scholar 

  • Moyersoen B (1993) Ectomicorrizas y micorrizas vesículo-arbuscalares en caatinga Amazónica del sur de Venezuela. Scientia Guianeae 3:1–83

    Google Scholar 

  • Nascimento MN, Renato-C GSM, Turcq CB, Moreira LS, Bush MB (2019) Vegetation response to climatic changes in western Amazonia over the last 7,600 years. J Biogeogr 46(11):2389–2406

    Article  Google Scholar 

  • Nelson WB, Ferreira CAC, da Silva MF, Kawasaki ML (1990) Endemism centres, refugia and botanical collection density in Brazilian Amazonia. Nature 345:714–716

    Article  Google Scholar 

  • Neves EG (1998) Paths in dark waters: archaeology as indigenous history in the upper Rio Negro basin, Northwest Amazon. PhD thesis, Indiana University, USA

    Google Scholar 

  • Olivares I, Svenning JC, van Bodegom PM, Balslev H (2015) Effects of warming and drought on the vegetation and plant diversity in the Amazon Basin. Bot Rev 81(1):1–28

    Article  Google Scholar 

  • Oliveira-Filho AT, Dexter KG, Pennington RT, Simon MF, Bueno ML, Neves DM (2021) On the floristic identity of Amazonian vegetation types. Biotropica. https://doi.org/10.1111/btp.12932

  • Pagan BF (1655) Relation Historique et Géographique de la Grande Rivière des Amazones dans l’ Amérique. Gardin Bensogne, Paris, France

    Google Scholar 

  • Pennington RT, Lavin L, Prado DE, Pendry CA, Pell SK, Butterworth CA (2004) Historical climatic change and speciation: neotropical seasonally dry forest plants shows pattern of both tertiary and quaternary diversifications. Philos Trans Royal Soc B London 359:515–538

    Article  Google Scholar 

  • Peñuela MC (2014) Understanding Colombian Amazonian white sand forests. PhD Thesis, Utrecht University, The Netherlands

    Google Scholar 

  • Pereira da Silva J (2008) Carta e inventario enviados per A. Rodrigues-Ferreiradesde Barcelos el 17 de abril de 1786. In: Monteiro Soares JP Ferrão C (ed) Viagem ao Brasil de Alexander Rodrigues Ferreira volume 3. [Correspondência 1a parte (1779–1788); “Transcrição, Establecimiento do Texto e Notas” de J. Pereira da Silva] Kapa Editorial, Petrópolis, Brasil, pp 80–86

    Google Scholar 

  • Phillips O, Miller JS (2002) Global patterns of plant diversity: Alwyn H Gentry’s forest 980 transect data set Monographs Systematic Botany 89:1-319. Missouri Botanical Press

    Google Scholar 

  • Pitman NC, Mogollón H, Dávila N, Ríos M, García-Villacorta R, Guevara JE, Baker T, Monteagudo A, Phillips O, Vásquez-Martínez R, Ahuite M, Aulestia M, Cárdenas-López D, Cerón C, Loizeau PA, Neill D, Nuñez P, Palacios W, Spichiger R, Valderrama R (2008) Tree community change across 700 km of lowland Amazonian forest from the Andean foothills to Brazil. Biotropica 40:525–535

    Article  Google Scholar 

  • Pombo de Souza MM (2012) Estrutura e composicao das comunidades de arvores na bacia do alto rio Negro. Master’s Thesis, Instituto Nacional de Pesquisas da Amazônia-INPA, Manaus, Brasil

    Google Scholar 

  • Prance GT (1980) A terminologia dos tipos de florestas amazonicas sujeitas a inundaçao. Acta Amazon 10:495–504

    Article  Google Scholar 

  • Prance GT (1989) American tropical forests. In: Lieth H, Werger MJA (eds) Tropical rain Forest ecosystems, ecosystems of the world 14B. Elsevier, Amsterdam, The Nerderlands, pp 99–132

    Chapter  Google Scholar 

  • Prance GT (2001) Amazon ecosystems. In: Asher-Levin S (ed) Encyclopedia of biodiversity, A-C, vol 1. Academic Press, New York, pp 145–157

    Chapter  Google Scholar 

  • Prance GT, Nelson BW, Freitas da Silva M, Daly DC (1984) Projeto Flora Amazônica: eight years of binational botanical expeditions. Acta Amazonica 14(Supl. 1/2):5–29

    Article  Google Scholar 

  • Putz FE (1983) Liana biomass and leaf area of a “terra firme” forest in the Rio Negro basin, Venezuela. Biotropica 15:185–189

    Article  Google Scholar 

  • Putz FE, Mooney HA (1991) The biology of vines. Cambridge University Press, Cambridge

    Google Scholar 

  • Quesada CA, Lloyd J, Anderson LO, Fyllas NM, Schwarz M, Czimczik CI (2011) Soils of Amazonia with particular reference to the RAINFOR sites. Biogeosciences 8:1415–1440

    Article  CAS  Google Scholar 

  • Quesada CA, Phillips OL, Schwarz M, Czimczik CI, Baker TR, Patino S, Fyllas NM, Hodnett MG, Herrera R, Almeida S, Alvarez-Dávila E, Arneth A, Arroyo L, Chao KJ, Dezzeo N, Erwin T, di Fiore A, Higuchi N, Honorio Coronado E, Jimenez EM, Killeen T, Torres-Lezama A, Lloyd G, Lopez-González G, Luizão FJ, Malhi Y, Monteagudo A, Neill DA, Nuñez Vargas P, Paiva R, Peacock J, Peñuela MC, Peña Cruz A, Pitman N, Priante Filho N, Prieto A, Ramírez H, Rudas A, Salomão R, AJB S, Schmerler J, Silva N, Silveira M, Vásquez R, Vieira I, Terborgh J, Lloyd J (2012) Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences 9:2203–2246

    Article  Google Scholar 

  • Rice HA (1910) The river Uaupés. Geogr J 35(6):682–700

    Article  Google Scholar 

  • Rice HA (1914) Further explorations in the North-Western Amazon Valley. Geogr J 44(2):137–168

    Article  Google Scholar 

  • Rice HA (1918) Notes on the Rio Negro (Amazonas). Geogr J 52(4):205–218. [“The journey… was made during the first three months of 1917”]

    Article  Google Scholar 

  • Rice HA (1921) The Río Negro, the Casiquiare Canal, and the upper Orinoco, September 1919-April 1920. Geogr J 63(5):321–244

    Article  Google Scholar 

  • Rice HA (1928) The Rio Branco, Uraricuera, and Parima. Geogr J 71(2):113–143

    Article  Google Scholar 

  • Richards PW (1952) The tropical rain forest. Cambridge University Press, Cambridge

    Google Scholar 

  • Ricklefs RE (1987) Community diversity: relative roles of local and regional processes. Science 235:167–171

    Article  CAS  PubMed  Google Scholar 

  • Riina R, Berry PE, Huber O, Michelangeli FA (2019) Pantepui plant diversity and biogeography. In: Rull V, Vegas-Vilarrúbia T, Huber O, Señaris J (eds) Biodiversity of Pantepui: the pristine “lost world” of the neotropical Guiana highlands. Academic Press, Cambridge, pp 121–147

    Chapter  Google Scholar 

  • Ríos-Villamizar EA, Adeney JM, Junk WJ, Piedade MTF (2020) Physicochemical features of Amazonian water typologies for water resources management. IOP Conf Series: Earth and Environmental Science 427:012003. https://doi.org/10.1088/1755-1315/427/1/012003

    Article  Google Scholar 

  • Rodrigues WA (1961) Aspectos fitosociológicos das caatingas do rio Negro. Boletim do Museu Paraense Emílio Goeldi (Botânica) 15:3–41

    Google Scholar 

  • Rodriguez-Zorro PA, Turcq B, Cordeiro RC, Moreira LS, Costa RL, McMichael CH, Behling H (2018) Forest stability during the early and late Holocene in the igapó floodplains of the Rio Negro, northwestern Brazil. Quat Res 89(1):75–89

    Article  CAS  Google Scholar 

  • Romero-G GA, Gómez-D CA, González-Ñañez AG (2019) Las cuatro “Yavitas”. Boletín de historia de las Geociencias en Venezuela 131:1–133

    Google Scholar 

  • Rudas A, Prieto A, Rangel JO (2002) Principales tipos de vegetación de La Ceiba (Guainía), Guayana Colombiana. Caldasia 24:243–365

    Google Scholar 

  • Ruiz-Pessenda LC, de Oliveira PE, Mofatto M, Brito de Medeiros V, Francischetti- García RJ, Aravena R, Bendassoli JA, Zuniga-Leite A, Saad AR, Etchebehere ML (2009) The evolution of a tropical rainforest/grassland mosaic in southeastern Brazil since 28,000 14C yr BP based on carbon isotopes and pollen records. Quat Res 71:437–452

    Article  Google Scholar 

  • Sabatier D, Grimaldi M, Prévost MF, Guillaume J, Gedron M, Desso M, Curmi P (1997) The influence of soil cover organization on the floristic and structural heterogeneity of a Guianan rain forest. Plant Ecol 131:81–108

    Article  Google Scholar 

  • Salamanca S (1983) La vegetación de la Orinoquia-Amazonia: fisiografía y formaciones vegetales. Colombia Geográfica 10:5–31

    Google Scholar 

  • Saldarriaga JG, West DC (1986) Holocene fires in the northern Amazon basin. Quat Res 26:358–366

    Article  Google Scholar 

  • Sanford RL, Cuevas E (1996) Root growth and rhizosphere interactions in tropical forests. In: Mulkey SS, Chazdon RL, Smith AP (eds) Tropical forest plant ecophysiology. Chapman & Hall, USA, pp 268–300

    Chapter  Google Scholar 

  • Sanford RL, Saldarriaga JG, Clark KE, Uhl C, Herrera R (1985) Amazon rain-forest fires. Science 227:53–55

    Article  PubMed  Google Scholar 

  • Santos JOS, Potter PE, Reis NJ, Hartmann LA, Fletcher IR, McNaughton NJ (2003) Age, source, and regional stratigraphy of the Roraima supergroup and Roraima-like outliers in northern South America based on U-pb geochronology. Geol Soc Am Bull 115(3):331–348

    Article  CAS  Google Scholar 

  • Schargel R, Marvez P (2009) Suelos. En: Aymard G (ed) Estudio de los suelos y la vegetación (estructura, composición florística y diversidad) en bosques macrotérmicos no-inundables, estado Amazonas Venezuela (aprox. 01° 30′ - 05° 55’ N; 66° 00′ -- 67° 50’ O). Biollania ed esp 9:99–108

    Google Scholar 

  • Schargel R, Aymard A, Berry P (2000) Características y factores formadores de Spodosoles en el sector Maroa-Yavita, Amazonía Venezolana. Revista UNELLEZ de Ciencia y Tecnología 18(1):85–96

    Google Scholar 

  • Schultes RE (1983) Richard Spruce: an early ethnobotanist and explorer of the Northwest Amazon and northern Andes. J Ethnobiol 3(2):139–147

    Google Scholar 

  • Schulman L, Toivonen T, Ruokolainen K (2007) Analysing botanical effort in Amazonia and correcting for it in species range estimation. J Biogeogr 34:1388–1399

    Article  Google Scholar 

  • Silva-Souza KJP, Souza AF (2020) Woody plant subregions of the Amazon forest. J Ecol 108(6):2321–2335. https://doi.org/10.1111/1365-2745.13406

    Article  Google Scholar 

  • Spruce R (1908) Notes of botanist on the Amazon and Andes (being records of travel on the Amazon and its tributaries, the Trombetas, Rio Negro, Uaupés, Casiquiare, Pacimoni, Huallaga and Pastasa; as also to the cataracts of the Orinoco along the eastern side of the Andes of Peru and Ecuador, and the shores of the Pacific, during the years 1849–1864). Volume edited by AR Wallace. The Macmillan Company, London

    Google Scholar 

  • Steyermark JA (1982) Relationships of some Venezuelan forest refuges with lowland tropical floras. In: Prance DT (ed) Biological diversification in the tropics. Columbia University Press, New York, pp 182–220

    Google Scholar 

  • Stokes MF, Goldberg SL, Perron JT (2018) Ongoing river capture in the Amazon. Geophys Res Lett 45:5545–5552

    Article  Google Scholar 

  • Stropp J, ter Steege H, Malhi Y, ATDN and RAINFOR (2009) Disentangling regional and local tree diversity in the Amazon. Ecography 32:46–54

    Article  Google Scholar 

  • Stropp J, van der Sleen P, Assunção PA, Lopes da Silva A, ter Steege H (2011) Tree communities of white-sand and terra-firme forests of the upper Rio Negro. Acta Amazon 41:521–544

    Article  Google Scholar 

  • Stropp J, van der Sleen P, Quesada CA, ter Steege H (2014) Herbivory and habitat association of tree seedlings in lowland evergreen rainforest on white-sand and terra-firme in the upper Rio Negro. Plant Ecol Diversity 7(1–2):255–265

    Article  Google Scholar 

  • Stropp J, Umbelino B, Correia BRA, Campos-Silva JV, Ladle RJ, Malhado ACM (2020) The ghosts of forests past and future: deforestation and botanical sampling in the Brazilian Amazon. Ecography 43:1–11

    Article  Google Scholar 

  • Takeuchi M (1961) The structure of the Amazonian vegetation. III Campina forest in the Río Negro region. J Fac Sci, University of Tokyo (Sect Bot 3) 8(2):27–35

    Google Scholar 

  • Takeuchi M (1962a) The structure of the Amazonian vegetation. IV High Campina forest in the upper Rio Negro. J Fac Sci, University of Tokyo (Sect Bot 3) 8(5):279–288

    Google Scholar 

  • Takeuchi M (1962b) The structure of the Amazonian vegetation V. Tropical rain forest near Uaupés. J Fac Sci: University of Tokyo (Sect Bot 3) 8(6):289–296

    Google Scholar 

  • Takeuchi M (1962c) The structure of the Amazonian vegetation. VI igapo. J Fac Sci, University of Tokyo (Sect Bot 3) 8(7):297–304

    Google Scholar 

  • Tenreiro-Aranha B de F (1906) As exploraçoes e os exploradores do Rio Uaupés. Arquivo do Amazonas, año I, I (2):23–54 (23 de octubre), Manaos, Brasil

    Google Scholar 

  • Ter Braak CJE (1987) The analysis of vegetation-environment relationships by canonical correspondence analysis. Vegetatio 69:69–77

    Article  Google Scholar 

  • ter Steege H, Pitman NC, Sabatier D, Castellanos H, van der Hout P, Daly DC, Silveira M, Phillips O, Vasquez R, van Andel T, Duivenvoorden J, de Oliveira AA, Ek R, Lilah R, Thomas R, van Essen J, Baider C, Maas P, Mori S, Terborgh J, Nuñez P, Mogollón H, Morawetz W (2003) A spatial model of tree α-diversity and tree density for the Amazon. Biodivers Conserv 12:2255–2277

    Article  Google Scholar 

  • ter Steege H, Pitman NC, Phillips O, Chave J, Sabatier D, Duque A, Molino DF, Prévost MF, Spichiger R, Castellanos H, von Hildebrand P, Vasquez R (2006) Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443(28):444–447

    Article  PubMed  Google Scholar 

  • ter Steege H, ATDN (Amazon Tree Diversity Network: collective author) and RAINFOR (The Amazon Forest Inventory Network: collective author) (2010) Contribution of current and historical processes to patterns of tree diversity and composition of the Amazon. In: Hoorn C, Wesseling FP (eds) Amazonia landscape and species evolution: a look into the past. Wiley-Blackwell Publishing Ltd, pp 347–359

    Google Scholar 

  • ter Steege H, Pitman NC, Sabatier D, Baraloto C, Salomão RP, Guevara JE, Phillips OL, Castilho CV, Magnusson WE, Molino JF, Monteagudo A, Núñez P, Montero JC, Feldpausch et al (2013) Hyper-dominance in the Amazonian tree flora. Science 342:325–335

    Google Scholar 

  • ter Steege H, Vaessen RW, Cárdenas-López D, Sabatier D, Antonelli A, Mota de Oliveira S, Pitman NCA, Jørgensen PM, Salomão RP (2016) The discovery of the Amazonian tree flora with an updated checklist of all known tree taxa. Sci Rep 6:29549. https://doi.org/10.1038/srep29549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ter Steege H, Mota de Oliveira S, Pitman NCA, Sabatier D, Antonelli A, Guevara Andino JE, Aymard G, Salomão RP (2019a) Towards a dynamic list of Amazonian tree species. Sci Rep 9:3501. https://doi.org/10.1038/s41598-019-40101-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ter Steege H, Henkel TW, Marimon BS, Pitman NCA, Phillips O, Aymard G, Salomão AR et al (2019b) Rarity of monodominance in hyperdiverse Amazonian forests. Sci Rep 9:13822. https://doi.org/10.1038/s41598-019-50323-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ter Steege H, Prado HPI, Lima RF, Pos E, de Souza CL, de Andrade Lima Filho D, Salomão RP, Phillips OL, Aymard G et al (2020) Biased-corrected richness estimates for the Amazonian tree flora. Sci Rep 10:10130. https://doi.org/10.1038/s41598-020-66686-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuomisto H, Moulatlet GM, Balslev H, Emilio T, Figueiredo FOG, Pedersen D, Ruokolainen K (2016) A compositional turnover zone of biogeographical magnitude within lowland Amazonia. J Biogeogr 43:2400–2411

    Article  Google Scholar 

  • Tuomisto H, Van Doninck J, Ruokolainen K, Moulatlet GM, FOG F, Sirén A, Zuquim G (2019) Discovering floristic and geoecological gradients across Amazonia. J Biogeogr 46(8):1734–1748

    Article  Google Scholar 

  • Uhl C, Murphy P (1981) A comparison of productivities and energy values between slash and burn agriculture and secondary succession in the upper Rio Negro region of the Amazon Basin. Agro-Ecosystems 7(1):63–83

    Article  Google Scholar 

  • Valencia R, Foster R, Villa G, Condit R, Svenning JC, Hernández C, Romeleroux R, Losos E, Magaard E, Balslev H (2005) Trees species distributions and local habitat variation in the Amazon: a large forest plot in eastern Ecuador. J Ecol 92:214–229

    Article  Google Scholar 

  • van der Hammen T (1972) Changes in vegetation and climate in the Amazon basin and Sur-rounding areas during the Pleistocene. Geologie Mijnbouw 51:641–643

    Google Scholar 

  • van der Hammen T (2006) Bases para una prehistoria ecológica amazónica y el caso Chiribiquete. In: Morcote-Ríos G, Mora-Camargo S, Franky-Calvo C (eds) Pueblos y paisajes antiguos de la selva amazónica. Universidad Nacional de Colombia, Facultad de Ciencias, Bogotá, Taraxacum, Smithsonian Institution, Washington DC, pp 29–48

    Google Scholar 

  • van der Hammen T, Absy ML (1994) Amazonia during the last glacial. Palaeogeogr Palaeoclimatol Palaeoecol 109:247–261

    Article  Google Scholar 

  • Vareschi V (1963) La bifurcación del Orinoco. Observaciones hidrográficas y ecológicas de la expedición conmemorativa de Humboldt del año 1958. Acta Cient Venez 14(4):98–103

    Google Scholar 

  • Vazquez F (1881) Relación de lo que Sucedió en la Jornada de Omagua y Dorado hecha por el Gobernador Pedro de Orsúa [“Advertencia Preliminar” de Feliciano Ramírez de Arellano, Marqués de la Fuensanta del Valle]. Sociedad de Bibliófilos Españoles, Madrid

    Google Scholar 

  • Vitousek PM, Sanford RL (1986) Nutrient cycling in moist tropical forest. Annu Rev Ecol Syst 17:137–167

    Article  Google Scholar 

  • von Bauer PP (1919) NW-Amazonien: Ein Beitrag zur Geographie Äquatorial-Amerikas. Rudolf M, Rohrer, Brünn

    Google Scholar 

  • Walker WS, Gorelika SR, Baccinia A, Aragon-Osejo JL, Josse C, Meyerd C, Macedo MN, Augusto C, Rios S, Katan T, Almeida de Souza A, Cuellar S, Llanos A, Zager I, Díaz Mirabal G, Solvika KK, Farina MK, Moutinho P, Schwartzmand S (2020) The role of forest conversion, degradation, and disturbance in the carbon dynamics of Amazon indigenous territories and protected areas. Proc Nat Acad Sci USA 117(6):3015–3025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wesselingh FP, Hoorn C, Kroonenberg SB, Antonelli A, Lundberg JG, Vonhof HB, Hooghiemstra H (2010) On the origin of Amazonian landscapes and biodiversity: a synthesis. In: Hoorn C, Wesselingh F (eds) Amazonia, landscape and species evolution. Wiley-Blackwell, Oxford, pp 421–432

    Google Scholar 

  • Westhoff V, van der Maarel E (1973) The Braun-Blanquet approach. In: Whittaker RH (ed) Handbook of vegetation science, vol 5. Junk, The Hague, pp 617–726

    Google Scholar 

  • Wittmann F, Marques MC, Júnior GD, Budke JC, Piedade MTF, Wittmann de Oliveira A, Montero JC, de Assis RL, Targhetta N, Parolin P, Junk WJ, Householder JE (2017) The Brazilian freshwater wetscape: changes in tree community diversity and composition on climatic and geographic gradients. PLoS One 12(4):1–18

    Article  CAS  Google Scholar 

  • Wurdack JJ (1971) The Melastomataceae collections of A. Rodrigues Ferreira Taxon 20:595–596

    Article  Google Scholar 

  • Zinck A (1986) El inventario de los recursos naturales de la Guayana en marcha. Pantepui 1:2–16

    Google Scholar 

  • Zucchi A (2006) Ríos de aguas blancas y negras, asentamientos, organización social y patrones migratorios de grupos Arawacos del alto negro venezolano. In: Morcote-Ríos G, Mora-Camargo S, Franky-Calvo C (eds) Pueblos y paisajes antiguos de la selva amazónica. Universidad Nacional de Colombia. Facultad de Ciencias, Bogotá, Taraxacum, Smithsonian Institution, Washington DC, pp 157–170

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support provided by indigenous communities with particular reference to the Baniwa and Kuripako nations, who have contributed directly and indirectly to build and collect information and scientific field material used in this contribution. The first and last authors also thank Germán Bernal-Gutiérrez, a CEO of –Greenlife– for providing logistic and economic support to set up 12 permanent plots located in faraway and unexplored botanical places in the upper Guianía river basin, Guainía department, Colombia, which made this undertaking possible. Finally, we thank Ernesto Medina and Alfred Zinck for their comments on earlier versions of this text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Arellano-Peña .

Editor information

Editors and Affiliations

1 Electronic Supplementary Material

Data 3.1

Phytosociological table showing the TWINSPAN classification of the 1368 species and 226 inventory plots (PDF 71963 kb)

Data 3.2

Table showing the localities of 226 inventory plots and the phytosociological classification of the forest communities in the Rio Negro Region (PDF 164012 kb)

Appendices

Appendix 3.1: Phytosociological Classification and Description of the New Alliances and Associations of the Forest Communities in the Rio Negro Region

Phytosociological classification

Physiognomy and composition

Syntaxonomy

Ecology and distribution

ORDEN I

1. Parahancornio surrogatae Aldinion latifoliae all. Nov. (Figs. 3.5 and 3.6)

Typus: Aldino latifolia - Terminalietum ochroprumnae (this study; Appendix 3.1 (this information is available in the following link:

https://1drv.ms/f/s!AsgLjs_JMencgZsGYB0kltyDnwkilg).

Lowlands forests of the Parahancornia surrogata - Aldina latifolia alliance

Cover area: 81,621.43 km2 (Figs. 3.5 and 3.6)

The forest communities of this alliance are of medium to high stature (25–35 m tall), characterized by the presence of trees of: Apocynaceae, Euphorbiaceae, Lauraceae, Fabaceae, Malvaceae, Moraceae, Myristicaceae, and Sapotaceae

This alliance is defined on the basis of 24 samples that included 279 species, 166 genera in 62 families. This syntaxon is named with the elective species Parahancornia surrogata and the dominant legume species Aldina latifolia. Within the elective species are: Calophyllum brasiliense, Glandonia williamsii, Caraipa longipedicellata, Sloanea laurifolia, Hevea nitida, Mollia speciosa, Pachira nitida and Licania mollis. Other species can be found in Appendix 1. This alliance includes two new associations: Aldino latifoliae - Terminalietum ochroprumnae and Caraipo longipedicellatae - Micrandretum spruceii

The Parahancornia surrogata - Aldina latifolia alliance is found on slightly elevated positions in depressions, and on a sandy, somewhat poorly drained Entisols and spodosols. It is exposed to water-logging and also more susceptible to short droughts than other poorly or very poorly drained sandy soils, due to the shallow depth to the coarse sandy saprolite. This alliance is compound by forests on white sands, “terra firme,” and seasonally flooded forests with or without palm dominance.

1.1 Aldino latifoliae - Terminalietum ochroprumnae assoc. nov. (Figs. 3.5 and 3.6).

Typus: Plot no. CC_130, TWINSPAN ID 69. Coordinates datum WGS84 LAT 3.6877, LON -67.4550. Altitude 89 m. Colombia. (Appendix 2; this information is available in the following link:

https://1drv.ms/f/s!AsgLjs_JMencgZsGYB0kltyDnwkilg)

Forests of terminalia ochroprumna and Aldina latifolia

Cover area: 11,703.52 km2 (Figs. 3.5 and 3.6)

The forests of terminalia ochroprumna and Pachira nitida are medium to high in stature and density, composed by trees with a DBH average greater than 10 cm. In this association, the following species registered the largest height: Vochysia catingae (26.1 m), Parkia discolor (25.7 m), terminalia ochroprumna (21.3 m), Elaeoluma crispa (18 m), and Aldina latifolia (16 m). The species with the highest physiognomic expression (relativized units) are: Aldina latifolia (5.7%), Calophyllum brasiliense (5.6%), Hevea guianensis (5.1%), Pachira nitida (4.9%), Humiriastrum excelsum (3.3%), Leptabalanus wurdackii (3.1%), Elaeoluma crispa (2.9%) and Mollia lepidota (2.8%).

This association is defined on the basis of 7 samples that included 90 species, 61 genera in 27 families. The name of this syntaxon was based on the elective species, the legume Aldina latifolia and terminalia ochroprumna, the most dominant and exclusive species. In this association, Elaeoluma crispa was registered as exclusive species as well. Within the elective species are: Pachira nitida, Macrolobium multijugum, Mollia lepidota, Peltogyne paniculata, Swartzia sericea, Tachigali paniculata, Humiriastrum excelsum, and Leptobalanus apetalus. Other species can be found in the Appendix 3.1.

This vegetation community consists of low caatingas on white sand and seasonally flooded forests in black water. The forest of the association Aldino latifoliae Terminalietum ochroprumnae was determined based on seven (7) samples located in Colombia (i.g., along the Atabapo river in the border with Venezuela). Detailed information about these localities are found in Appendix 3.2.

1.2. Caraipo longipedicellatae -Micrandretum spruceii assoc. nov. (Figs. 3.5 and 3.6)

Typus: Plot CC_153, TWINSPAN ID 92. Coordinates datum WGS84 LAT 3.0986, LON -67.7889. Altitude 110 m. Colombia. (Appendix 3.1)

Forests of Caraipa longipedicellata and Micrandra sprucei

Cover area: 69,917.91 km2 (Figs. 3.5 and 3.6)

The forests of Caraipa longipedicellata and Micrandra sprucei exhibit medium statures and densities. These are composed of trees with a DBH average greater than 10 cm. In some areas there are some emergent trees of up to 35 m. The highest heights were recorded to Parahancornia negroensis (35 m), P. surrogata (28 m), Discophora guianensis (26.5 m), Caraipa llanorum (21.5 m), and Micrandra sprucei (20 m). Some of the species that present a high physiognomic expression in this syntaxon are: Micrandra sprucei (18.7%), Aspidosperma verruculosum (8.9%), Henriquezia nitida (6.6%), Caraipa longipedicellata (5.4%), Parahancornia surrogata (3.2%), Pradosia schomburgkiana (1.8%), Chrysophyllum amazonicum (1.8%), and Doliocarpus novogranatensis (1.5%).

This association is defined on the basis of 17 samples that included 222 species, 145 genera and 60 families. This syntaxon is named with the elective species Caraipa longipedicellata and the dominant species Micrandra sprucei; Humiria crassifolia and Cyrilla racemiflora were recorded as exclusive species. Micrandra sprucei, Compsoneura debilis, and Caraipa longipedicellata are among the elective species

This association includes caatingas on white sands, “terra firme” forests, and seasonally flooded forests in black water with or without palms dominance over poorly drained sandy soils. A substrate that tolerate considerable differences in drainage classes, probably by the root mat develops in the litter layer.

The forest of the association Caraipo longipedicellatae Micrandretum spruceii was described based on 17 samples located in Colombia (e.g., Atabapo and Guasacavi rivers, near of Inirida, Mirití, Mitú towns, and the “Serranía de Naquén”) and Venezuela (e.g., along San Carlos de Río Negro-Solano road). Detailed information about these localities is found in Appendix 3.2.

2. Oenocarpodo batauae - Eperuion leucanthae all. Nov. (Figs. 3.5 and 3.6)

Typus: Micrandro elatae - Micrandretum spruceii (this study; Appendix 3.1)

Lowlands forests of the Oenocarpus bataua and Eperua leucantha

Cover area: 38,073.06 km2 (Figs. 3.5 and 3.6)

The forest communities of this alliance are forests of medium to high stature, reaching to 40 m height. These are characterized by the presence of trees of Apocynaceae, Arecaceae, Lauraceae, Fabaceae, Malvaceae, Moraceae, and Myristicaceae.

This alliance is defined on the basis of 61 samples that included 852 species, 323 genera in 87 families. Oenocarpus bataua (as the elective species) and Eperua leucantha (as the dominant) were chosen to coined the name of this syntaxon. The exclusive species are: Erisma micranthum, Retiniphyllum concolor, and Hevea rigidifolia.

Eperua leucantha, Clathrotropis glaucophylla, Macrolobium limbatum, and Micrandra sprucei were registered as elective species.

This alliance comprises two new upper Rio Negro typical associations such as the Amazonian caatinga, and the “Yévaro” forests (Micrandrum elatum - Micrandrum spruceae and Oenocarpodo batauae Eperuetum purpureae).

This alliance contains low and high Caatingas on white sands, “terra firme” forests and seasonally flooded forests in black water with or without palms dominance. The Oenocarpus batauaEperua leucantha alliance is located on elevated positions in depressions, very poorly drained sandy Spodosols on plains, with similar characteristics to the Spodosols located in the San Carlos de Rio Negro (Herrera 1979, 1985; Schargel and Marvez 2009).

2.1. Micrandro elatae - Micrandretum spruceii assoc. nov. (Figs. 3.5 and 3.6)

Typus: Plot CC_154, TWINSPAN ID 93. Coordinates datum WGS84 LAT 3.0833, LON -67.7833. Altitude 108 m. Colombia. (Appendix 1)

Forests of Micrandra elata and Micrandra sprucei

Cover area: 21,835.99 km2 (Figs. 3.5 and 3.6)

The forests of Micrandra elata and M. sprucei are of medium stature (28 and 25 m) and high density composed of trees with a DBH greater than 10 cm. Calophyllum brasiliense (30 m), Hevea benthamiana (30 m), H. guianensis (30 m), and Sloanea floribunda (30 m) recorded the highest heights in this formation. The species with the biggest dominance expression (relativized units) are: Micrandra sprucei (25.4%), M. elata (6.9%), Caraipa longipedicellata (4.1%), Hevea benthamiana (3.1%), Eperua leucantha (3.0%), E. obtusata (2.8%), Hevea pauciflora (2.7%), Micrandra sprucei (2.7%), and Macrolobium limbatum (2.1%).

This association is defined on the basis of 18 samples that included 255 species, 136 genera in 52 families. This syntaxon was named used Micrandra elata (the elective species) and Micrandra sprucei as the dominant. Chrysophyllum bombycinum and Hevea benthamiana were recorded as exclusive species. Among the elective species are: Micrandra sprucei, M. elata, Macrolobium limbatum, Ficus guianensis, Caraipa longipedicellata, and Mucoa duckei.

This kind of vegetation is composed of low and high caatingas on white sands, “terra firme” forests and seasonally flooded forests over black and white water with or without palms dominance. The forest of the association Micrandrum elatum-Micrandrum spruceanum can be found on areas in upper Rio Negro over poorly drained sandy soils. This community tolerates considerable differences in drainage classes. This association was determined based on 18 samples located in Colombia (e.g., near Inírida, Almidón/La Ceiba area, Chorro Bocón at Inírida river, Campo Alegre at Cuiarí river) and Venezuela (e.g., La Esmeralda, upper Orinoco river, along Maroa-Yavita road). Detailed information on these localities is found in Appendix 3.2.

2.2. Oenocarpodo batauae - Eperuetum purpureae assoc. nov. (Figs. 3.5 and 3.6)

Typus: Plot CC_115, TWINSPAN ID 54. Coordinates datum WGS84 LAT 3.3822, LON -67.3386. Altitude 101 m. Colombia. (Appendix 3.1)

Forests of Oenocarpus bataua and Eperua purpurea

Cover area: 16,237.07 km2 (Figs. 3.5 and 3.6)

The forests of Oenocarpus bataua and Eperua purpurea are medium to tall stature and high density. These are composed of trees with a DBH average diameter greater than 10 cm. The canopy of the forest is composed of trees of between 20 and 40 m with a dense cover and great number of palms. In this association, the following species registered the highest heights: Eperua purpurea (46 m), Erisma japura (40 m), Eschweilera tessmannii (40 m), Monopteryx uaucu (40 m), Pseudoxandra leiophylla (37 m), Vochysia grandis (37 m), and Oenocarpus bataua (25 m). The species with the most physiognomic expression are Eperua purpurea (10.3%), Micrandra sprucei (6.3%), Swartzia parvifolia (4.4%), Eperua leucantha (3.6%), Leopoldinia piassaba (3.2%), Monopteryx uaucu (3.1%), Erisma japura (3.0%), Oenocarpus bataua (2.4%), and Aldina kunhardtiana (2.0%).

This association is defined on the basis of 44 samples that included 761 species, 297 genera in 82 families. The elective species Oenocarpus bataua and the dominant species Eperua purpurea, were chosen to coined the name of this syntaxon. Within the elective species are: Brosimum utile, Minquartia guianensis, Virola elongata, Pseudolmedia laevigata, Clathrotropis glaucophylla, Iryanthera crassifolia, Erisma splendens, Ocotea aciphylla, Roucheria Columbiana, and Leopoldinia piassaba.

This association harbors the low and high caatingas on white sands, “terra firme” forests and seasonally flooded forests over mixed water with palms dominance. The forest of the association Oenocarpodo batauae Eperuetum purpureae can be found on areas in the upper Rio Negro over poorly drained sandy soils. This type of vegetation was described based on samples located in Colombia (e.g., along Atabapo river, Nabuquén at Inírida river, upper Isana river) and Venezuela (Casiquiare channel, near San Carlos de Río Negro). Detailed information on these localities is found in Appendices 3.2, 3.3 and 3.4.

3. Monopterygo uaucus - Eperuion purpureae all. Nov. (Figs. 3.5 and 3.6)

Typus: Aldino heterophyllae Eperuetum leucanthae (this study; Appendix 3.1)

Lowlands forests of Monopteryx uaucu and Eperua purpurea

Cover area: 120,675.10 km2 (Figs. 3.5 and 3.6)

The communities of this alliance are composed of forests of medium to high stature (up to 30–45 m tall), characterized by the presence of emergent trees. According to the abundance, frequency and basal area values, the most important families are Apocynaceae, Arecaceae, Lauraceae, Fabaceae, Malvaceae, Moraceae, and Myristicaceae.

This alliance is defined on the basis of 27 samples, that included 919 species, corresponding to 314 genera in 78 families. Monopteryx uaucu as the elective species, and Eperua purpurea as the dominant were chosen to coined the name of this syntaxon. Within the elective species are: Eperua leucantha, Hevea guianensis, Micrandra sprucei, M. spruceana, Brosimum guianense, Erisma japura, Eschweilera pedicellata, Monopteryx uaucu, Iryanthera laevis, Zygia claviflora, Micropholis guyanensis, and Abarema jupunba. Other species can be shown in Appendix 3.1.

This kind of vegetation assembles low and high Caatingas on white sands and “terra firme” forests. The Monopteryx uaucuEperua purpurea alliance hold forests with four vertical layers. This forest was located on a poorly drained sandy Entisol in depression, on a moderately drained Ultisol on a hill, and a poorly drained Inceptisol on a foot-slope of a low hill. Both the Ultisol and the Inceptisol have sandy loam, and sandy clay loam textures below the sandy surface horizon (Schargel and Marvez 2009).

3.1. Aldino heterophyllae Eperuetum leucanthae assoc. nov. (Figs. 3.5 and 3.6)

Typus: Plot S_6, TWINSPAN ID 218. Coordinates datum WGS84 LAT −0.1007, LON -66.8804. Brazil. (Appendix 3.1)

Forests of Aldina heterophylla and Eperua leucantha

Cover area: 9358.28 km2 (Figs. 3.5 and 3.6)

The forests of Aldina heterophylla and Eperua leucantha are of medium stature and high density. These are composed of trees with a DBH average greater than 10 cm. In some areas there are some emergent trees of up to 46 m; the highest heights were recorded to Scleronema micranthum (46.4 m), Brosimum utile (35 m), Erisma laurifolium (35 m), protium alvarezianum (35 m), Swartzia tomentifera (34.4 m), Eperua purpurea (30 m), E. leucantha (30 m), and Aldina heterophylla (28.1 m). Several species presented higher physiognomic expression in this syntaxon (relativized units) such as: Eperua leucantha (13.1%), E. purpurea (9.4%), Monopteryx uaucu (7.3%), Aldina heterophylla (4.7%), Clathrotropis macrocarpa (3.6%), Micrandra spruceana (3.0%), Scleronema micranthum (2.2%), Swartzia polyphylla (1.6%), and Swartzia tomentifera (1.3%).

This association is defined on the basis of 19 samples that included 716 species, 262 genera in 70 families. This syntaxon is named used Aldina heterophylla (the exclusive species) and Eperua leucantha (the dominant species). In this vegetation pattern, Chamaecrista adiantifolia, Sloanea obtusifolia, Himatanthus obovatus, Pradosia schomburkiana, and Vitex sprucei were identified as exclusive species. Within the elective species are: Swartzia tomentifera, Trattinnickia glaziovii, Ocotea rhynchophylla, Sandwithia guyanensis, Brosimum rubescens, Pouteria cuspidata, Bocageopsis pleiosperma, Virola calophylla, Erisma calcaratum, Micrandra spruceana, Hevea guianensis, Chimarrhis duckeana, Couma guianensis, and Cyrillopsis paraensis.

This kind of vegetation harbors low caatingas on white sands and “terra firme” forests. The forest of the association Aldino heterophyllae - Eperuetum leucanthae can be found on areas in the upper Rio Negro growing on poorly drained sandy soils; it tolerates considerable differences in drainage class. This association was determined based on 19 samples located in Brazil (e.g., São Gabriel da Cachoeira, middle Içana river, Pico da Neblina National Park), Colombia (e.g., Punta de Tigre, upper Isana river) and Venezuela (i.g. Mawarinuma river at the base of “Sierra de la Neblina”) as well. Detailed information on these localities is found in Appendix 3.2.

3.2. Eperuo purpureae - Erismetum japurae assoc. nov. (Figs. 3.5 and 3.6)

Typus: Plot P6, TWINSPAN ID 191. Coordinates datum WGS84 LAT 2.2071, LON -68.2781. Colombia. (Appendix 3.1)

Forests of Eperua purpurea and Erisma japura

Cover area: 111.316.82 km2 (Figs. 3.5 and 3.6)

The forests of Eperua purpurea and Erisma japura have a medium to tall stature, high density and great number of palms. The trees have a DBH average greater than 10 cm. In this association the following species have the highest heights: Pouteria ucuqui (45 m), Eschweilera collina (44 m), Brosimum utile (40 m), Micropholis brochidodroma (40 m), Swartzia floribunda (40 m), Allantoma lineata (35 m), Ecclinusa ramiflora (35 m), and Goupia glabra (35 m). The species with most physiognomic expression (relativized units) are: Erisma japura (18.3%), Eperua purpurea (13.9%), Goupia glabra (3.3%), Heterostemon conjugatus (2.9%), Ecclinusa ramiflora (2.9%), Swartzia pinnata (2.5%), Sandwithia heterocalyx (2.5%), Pseudosenefeldera inclinata (2.1%), Hevea guianensis (2.1%), and Eschweilera pedicellata (2.0%).

This association is defined on the basis of 8 samples, that included 332 species, 169 genera in 55 families. Eperua purpurea (as elective species) and Erisma japura (as the dominant) were chosen to name this taxon. Within the elective species are: Protium crassipetalum, Aldina kunhardtiana, Heterostemon conjugatus, Swartzia pinnata, Clathrotropis glaucophylla, Oenocarpus bacaba, Ecclinusa bullata, Helianthostylis steyermarkii, and Pouteria guianensis. Other species can be shown in the Appendix 3.1.

This association assembles the “terra firme” forests and the tall caatingas. The forest of the association Eperuo purpureae Erismetum japurae can be found on areas in the upper Rio Negro growing on poorly drained sandy and clay soils; it tolerates considerable differences in drainage classes. This kind of vegetation was described based on eight (8) samples located in Colombia (e.g., mouth of Naquén river, Puerto Colombia - Guainía) and Venezuela (e.g., Maroa-Yavita road). Detailed information on these localities is found in Appendix 3.2.

ORDER II

1. Goupio glabrae - Minquartiion guianensis all. Nov. (Figs. 3.5 and 3.6)

Typus: Eschweilero parviflorae - Mouririetum grandiflorae (this study; Appendix 1)

Lowlands forests of the Eschweilera parviflora and Mouriri grandiflora

Cover area: 333,950.47 km2 (Figs. 3.5 and 3.6)

The forest communities of this alliance are medium to high in stature, up to 45 m tall. These communities are characterized by the presence of trees of Arecaceae, Burseraceae, Lauraceae, Lecythidaceae, Fabaceae, Melastomataceae, Moraceae, Myristicaceae, Olacaceae, Rubiaceae, Sapindaceae, and Sapotaceae.

This alliance is defined on the basis of 95 samples that included 1983 species, 532 genera in 120 families. This syntaxon is named with the exclusive species Goupia glabra and the dominant species Minquartia guianensis. In this vegetation alliance others exclusive species were: Abuta grandifolia, Cynometra marginata, Mabea nitida, Clarisia racemosa, Oenocarpus minor, and Richeria grandis. The elective species are: Dendrobangia boliviana, Siparuna guianensis, Mouriri grandiflora, Virola elongata, Heterostemon mimosoides, Trichilia micrantha, and Xylopia nervosa. This alliance includes two associations: An undefined named compound by Attalea Maripa and Brosimum utile, and the Eschweilero parviflorae - Mouririetum grandiflorae.

This alliance is compound by “terra firme” forests, forests with palm dominance and seasonally flooded forests in white and clear waters with or without palm dominance. The Eschweilea parvifloraMouriri grandiflora order is located on in the transition between alluvial plains and the hills (“lomeríos”) over Ultisol and poorly drained Entisol.

1.1 Attalea Maripa - Brosimum utile (Figs. 3.5 and 3.6).

Representative plot no. P2, TWINSPAN ID 187. Coordinates datum WGS84 LAT 1.7449, LON -69.7660. Altitude 193 m. Colombia, Venezuela and Brazil (Appendix 3.1)

Forests of Attalea Maripa and Brosimum utile

Cover area: 267,160.37 km2 (Figs. 3.5 and 3.6)

The forests of Attalea Maripa and Mespilodaphe cymbarum are communities of medium to high stature and density, mainly composed by trees with a DBH average greater than 15 cm. This analysis was outline such as an undefined association. The canopy of the forest is composed of trees with heights between 20 and 40 m. Brosimum utile, Euterpe precatoria, Matayba elegans, Eschweilera parviflora, and Virola elongata being the most abundant species. Some of the highest heights were recorded in Minquartia guianensis (58 m), Aldina latifolia (40 m), Brosimum utile (40 m), Caryocar glabrum (40 m), Eschweilera parviflora (40 m), Mespilodaphe cymbarum (40 m), Vochysia assua (40 m), V. grandis (40 m), and Attalea Maripa (20 m).To this syntaxon the species with the biggest dominance expression are Eschweilera parviflora (3.0%), Attalea Maripa (1.9%), Goupia glabra (1.7%), Allantoma lineata (1.6%), Swartzia tomentifera (1.5%), Euterpe precatoria (1.4%), Minquartia guianensis (1.3%), Chaetocarpus schomburgkianus (1.3%), and Brosimum utile (1.2%).

This kind of vegetation was defined on the basis of 68 samples, that included 1905 species, 516 genera in 117 families. This group of undefined associations registered Attalea Maripa as the elective species, and Brosimum utile as the dominant. As exclusive species were registered: Brosimum utile, Zygia cataractae, Maprounea guianensis, Mouriri acutiflora, Garcinia madruno, Piper arboreum, protium laxiflorum, Zygia inaequalis, and Homalolepis cedron. Other exclusive species can be shown in the Appendix 3.1. Among the elective species are: Gustavia augusta, Myrcia fallax, protium stevensonii, Inga acrocephala, Macrosamanea amplissima, Maquira calophylla, Duguetia quitarensis, and Gustavia acuminata. Other species can be shown in Appendix 1.

This vegetation is represented by “terra firme” forests, flooded forests with palm dominance, and seasonally flooded forests with or without palm dominance. The forest of Attalea Maripa and Brosimum utile assembles 68 samples located in Brazil (e.g., near Manaus city, Uatuma river, Pico da Neblina National Park), Colombia (i.g. Cumaribo-Vichada, Mitú, middle Caquetá river, “El Retiro” (“La Lindosa”), Inírida river, near mouth of “caño Bocón,” Guaviare river, upper Isana river) and Venezuela (e.g., along Casiquiare river, middle and lower Ventuari river). Detailed information on these localities is found in Appendix 3.2.

1.2 Eschweilero parviflorae - Mouririetum grandiflorae assoc. nov. (Figs. 3.5 and 3.6). Typus: Plot CC_173, TWINSPAN ID 112. Coordinates datum WGS84 LAT 3.7917, LON -67.8197. Altitude 108 m. Colombia. (Appendix 3.1).

Forests of Eschweilera parviflora and Erisma laurifolium

Cover area: 66,790.09 km2 (Figs. 3.5 and 3.6)

The forests of Eschweilera parviflora and Erisma laurifolium are communities of medium to high stature and density, mainly composed of trees with a DBH average greater than 15 cm. Protium divaricatum, Eschweilera parviflora, Brosimum utile, Pouteria baehniana, Mouriri grandiflora, Clathrotropis brachypetala, and Virola elongata being the most abundant species. In this association following species registered the highest heights Clathrotropis glaucophylla (35 m), Eperua purpurea (35 m), Erisma laurifolium (35 m) Goupia glabra (35 m), Vochysia splendens (33 m), Caryocar glabrum (32 m), Qualea ingens (32 m), Eschweilera parviflora (30 m), and Mouriri grandiflora (30 m). Some of the species that present a high physiognomic expression in this syntaxon (relativized units) are: Eperua purpurea (5.2%), Caryocar glabrum (4.2%), Mouriri nigra (3.4%), Goupia glabra (2.9%), Leopoldinia piassaba (2.7%), Leptobalanus apetalus (2.6%), Eschweilera parviflora (2.6%), protium divaricatum (2.4%), Virola elongata (2.2%), and Mouriri grandiflora (1.8%).

This association is defined on the basis of 28 samples that included 373 species, 176 genera and 60 families. This syntaxon is named with the exclusive species Eschweilera parviflora and the dominant species Mouriri grandiflora. In this vegetation pattern Pouteria baehniana was registered as exclusive species. Within the elective species are: Clathrotropis brachypetala, Mouriri grandiflora, Eschweilera parviflora, Virola elongata, protium divaricatum, Erisma laurifolium, and Aptandra tubicina. Other species can be shown in the Appendix 1.

This association is compound by “terra firme” forests and seasonally flooded forests with or without palms dominance. The forest of the association Eschweilero parviflorae Mouririetum grandiflorae was determined based on 28 samples located in Colombia (e.g., Guaviare river at mouth Inírida river, near Inírida, Nukak reservation). Detailed information on these localities is found in Appendix 3.2.

2. Astrocaryo chambirae - Socrateion exorrhizae all. Nov. (Figs. 3.5 and 3.6).

Representative plot. GB_8, TWINSPAN ID 172. Coordinates datum WGS84 LAT 2.4232, LON -72.3699. Colombia. (Appendix 3.1)

Lowlands forests of the Astrocaryum chambira and Socratea exorrhiza without indefinite associations

Cover area: 6958.74 km2 (Figs. 3.5 and 3.6)

The forest communities of this alliance are medium to high stature, up to 25–30 m tall, characterized by the high presence of palms and trees of Burseraceae, Lauraceae, Lecythidaceae, Fabaceae, Melastomataceae, Moraceae, Myristicaceae, Rubiaceae, Sapindaceae, and Sapotaceae. Some of the highest heights were recorded in Vochysia splendens (26.5 m), Virola marleneae (22.4 m), Clathrotropis macrocarpa (21.4 m), Socratea exorrhiza (13.9 m), and Astrocaryum chambira (9.3 m). The species with most physiognomic expression are Erythroxylum macrophyllum (6.8%), Psychotria remota (6.0%), Palicourea raveniana (6.0%), Sorocea muriculata (4.8%), Theobroma subincanum (2.5%), Socratea exorrhiza (2.3%), Astrocaryum chambira (2.1%), Miconia punctata (2.0%), Pseudolmedia laevis (1.8%), and Clathrotropis macrocarpa (1.8%).

This alliance is defined on the basis of 16 samples that included 102 species, 79 genera and 39 families. Astrocaryum chambira (as the elective species) and Socratea exorrhiza (as the dominant) were chosen to name this syntaxon. As exclusive species were registered: Inga tessmannii, Psychotria remota and Jacaratia spinosa. The elective species are: Calycophyllum megistocaulum, Astrocaryum chambira, Pseudolmedia laevis, Euterpe precatoria, and Socratea exorrhiza.

This alliance is composed of “terra firme” forests with palms dominance, located in the transitions between the alluvial plains and the terraces over Entisol and Ultisol soils. This kind of vegetation was described based on 16 samples located in Colombia (e.g., San José del Guaviare. Nabuquén creek, Puinawai natural reserve). Detailed information on these localities is found in Appendix 3.2.

Appendix 3.2 Botanical Explorations in the Rio Negro Basin: A Review

1.1 Introduction

The record of human occupation in the upper Rio Negro basin, based on ceramic shards, dates back to between 3750 (Sanford et al. 1985) and 3570 (Neves 1998) years B.P. Other data, based on soil charcoal samples, dates human occupation to between 640 and 250 years B.P. for the top 20 cm soil layers, and between 6260 and 530 years B.P for the lower 20–90 cm soil layers (Saldarriaga and West 1986). It is interesting that the dates reported by these authors correspond with dry episodes in the Amazon basin and surrounding areas (van der Hammen 1972; Bush and McMichael 2016). The authors suggest that dry and humid periods alternated from 6000 to 400 B.P. The age estimated from charcoal and shards confirms that the region has been subjected to fires during extreme dry periods, and indicates periods of human disturbance (e.g., shifting cultivation) for the last 3750 years.

It is well known that the region comprising the upper Río Negro and Orinoco basins was traveled, explored, and inhabited for several millennia by ancestral groups such as the Makú-Puinave, the Arawak, and the Tucano (Zucchi 2006). Migrations or movements of these ancestral groups came from the Central Amazon region to the Rio Negro basin approximately 4500–3500 B.P. (Meggers 1979), perhaps escaping the devastating droughts or Mega-Niño events that took place in Central Amazonia during this time (Meggers 1994; van der Hammen 2006; Olivares et al. 2015). No doubt, the Río Negro basin was relatively well explored by the earliest inhabitants of the region, who were able to classify vegetation types and its most important plant species before Europeans arrived (Abraão et al. 2009). Also, Pre-Columbian populations categorized Amazonian rivers by the color of their water, and they knew that water color was related with fish richness or soil fertility (Junk et al. 2011).

1.2 The Journeys

1.2.1 Fifteenth to Nineteenth Centuries

The first Iberian journeys down the Amazon river, from the Andes to the Atlantic Ocean, were undertaken by two groups of Spaniards, one commanded by Francisco de Orellana (1541–1542) and later by Pedro de Ursúa (1560–1561) accompanied by, among others, the infamous Lope de Aguirre. Chronicles of these travels, written by Fray G. de Carvajal in the case of Orellana’s saga (Carvajal 1848), and by several witnesses and second-hand accounts in the case of Ursúa and Aguirre’s (e.g., Vazquez 1881), spoke of large areas of forest along the Amazon river and numerous, well-populated native villages. During Orellana’s journey a mighty black water river was sighted flowing from “El Poniente,” and was called “Río Negro” (Carvajal 1848).

After the two Iberian voyages down the Amazon river, the interest in knowing the Amazon basin in greater detail took a remarkable impact at the cartographic level, especially by the French, Portuguese, and Jesuits and Franciscans priests (Cintra 2012a). The first accurate map of the Amazon River was drawn by French cartographers, including one by Count of Blaise François Pagan (1655) and several by Nicolas Sanson (1656, 1657, 1680, 1698, and 1699), drawn and engraved during the golden age of French cartography (Cortesão 1965). Pagan’s map, Magni Amazoni Fluvii (Pagan 1655), is considered the most remarkable of all the charts, not just of the Amazonas river, but of the whole of Amazon basin (Cortesão 1965; Cintra 2011). It was based mainly on the account of Father Cristóbal de Acuña, who descended the river with Pedro Teixeira in 1639, and determined some latitudes and estimated distance in leagues between consecutive locations. This chart was the first established canvas of the meridians and parallels that scientifically situated the Amazon and took full advantage of the geographic data supplied by the discoverers. Nicolas Sanson (the royal cartographer of France) published his first Amazonas map in 1656. He improved his first map with several versions published in 1657, 1680, 1698, and 1699. The maps of the Amazon River traced by Sanson present precise geographic coordinates considering its time, shows a well-determined prime meridian, and also employs a creative methodology to deduce longitudes from latitudes and distances that had been covered (Cintra and de Oliveira 2014). After Pagan’s and Sanson’s maps, the Jesuit priest Samuel Fritz drew a map of the Amazon in 1691 and later had one engraved in 1707. Much simplified versions of Fritz’ map were first published in 1717 (engraved in French), 1726 (in German), 1755 (in Spanish), and in 1819 (a second version in French), accompanying an extract of his description of the “Maragnon.” Of the map engraved in 1707, apparently, only a few copies circulated are fewer are extant; the other four maps were published in “Lettres Édifiantes et Curieuses” (in Fritz 1717 and 1819, for the first and second versions in French, respectively), in Der Neüer Welt-Bott (Fritz 1726, in German), and “Cartas edificantes, y Curiosas” (Fritz 1755), journals then little read outside religious circles. It is evident that the scientific cartography of Amazonas begins with the map of Count of Pagan (for a review see: Cintra 2011, 2012b; Cintra and Freitas 2011; Cintra and Furtado 2011; Cintra and de Oliveira 2014).

Some years later, researchers started collecting plants and studying the vegetation of the Amazon river. Charles de La Condamine, who navigated this river in 1743, wrote the first biological report (de La Condamine 1745). European scientists considered his expedition the beginning of the great era of Amazonian travel (ter Steege et al. 2016). La Condamine remarked on numerous plant products such as curare, the arrow poison, derived from Strychnos spp. (Loganiaceae); he also documented for the first time the quinine tree, Cinchona officinalis L. (Rubiaceae) and the rubber tree, Hevea spp. (Euphorbiaceae). However, the first known large collection of Amazon plants was made by Alexandre Rodrigues Ferreira (1756–1815) during his voyage of 1783–1792 (Wurdack 1971). He explored the Amazon river and its main tributaries, including the Rio Negro and Rio Branco between 1785 and 1786, where his itinerary notably included the Isana and Vaupés rivers (Pereira da Silva 2008). His group collected and drew numerous plants and animals during this expedition. Asteranthos brasiliensis Desf. (Scytopetalaceae), with showy yellow, fused petals, and an actinomorphic androecium, is an endemic genus of the Rio Negro basin, and perhaps one of the most extraordinary plants they documented (see Fig. 3.12 on the text of Chap. 3).

Fig. 3.12
A photo of a yellow flower with stamen and pollen at the center.

Asteranthos brasiliensis Desf. Lecythidaceae. Predominantly occupies a geographical range from Eastern Colombia and stretches to incorporate Southern Venezuela and Northern Brazil, with a specific concentration in the Upper Río Negro region. This species is classified as arboreal and grows best primarily in hydric or moisture-rich environments—image captured by H. ter Steege

Later, “caño” Pimichín and the rivers Guianía and upper reaches of the Río Negro were explored by the famous naturalists F. H. A. von Humboldt and A. J. A. Bonpland (in April 1800), gathering the first biological collections of that section of the Río Negro basin. They were followed by C. F. P. von Martius and J. B. von Spix (1819–1820), A. Plée (1821), L. Reidel (1828), J. B. Natterer (1830–1832), R. H. Schomburgk (1839; 1855), P. J. Ayres (1842–1844), A. R. Wallace (1850–1851), and R. Spruce (1850–1854), at a time when scientists in Europe were fascinated by the tremendous diversity of fishes, insects, mammals and plants being discovered, and before modern scientific research on ecology and evolutionary biology.

Richard Spruce (1817–1893) was remarkable among all personalities above mentioned. He was a pioneer botanical explorer of the north-west Amazon and the northern Andes in the middle of the last century. He collected ca 7000 botanical specimens and made numerous important botanical discoveries. This British botanist, who opened up the Rio Negro region to science between 1850 and 1854, must be counted amongst the greatest naturalists ever to have engaged in collecting and studies anywhere in unexplored Neotropical territories (Schultes 1983). As a result of his meticulous observation and insatiable curiosity, a basis for our understanding of great areas of the Amazon was early and most firmly laid. Not only did Spruce advance taxonomy and floristics, but he was also a notable bryologist and made many important observations in ethnology, ethnobotany, linguistics, and geology (Spruce 1908).

1.2.2 Nineteenth to twentieth Centuries

The Portuguese and later Brazilians started an ambitious plan of exploration in the Rio Negro during the nineteenth century, shortly after the consolidation of Amazonas province in 1850. Several explorers visited the watersheds of main affluents (for a review see: Tenreiro-Aranha 1906). After this period, the exploration of the Rio Negro basin and its most important rivers continued with the work of, among others, G. Wallis (1863–1864), J. W. H. Traill (1874), J. Barbosa Rodrigues (1884–1885), P. H. W. Taubert (1896), E. H. G. Ule (1901–1902), É. Bommechaux (1903), G. A. E. Hübner (1903–1907, 1914), C. T. Koch-Grünberg (1903–1905), J. Huber (1904), H. Schmidt and L. Weiss (1907–1908), W. A. Ducke (1910–1932, 1933–1936, 1941–1942), J. G. Kuhlmann (1918), and D. E. Melin (1924). Also, it is important to point out that large sections of the Rio Negro and some of its tributaries, as well as the Casiquiare and the upper Orinoco, were extensively explored in the first quarter of the twentieth century by H. A. Rice and P. P. von Bauer. Their emphasis was geographical exploration; unfortunately, little biological material was collected, but important cartographical material resulted from their travels (Rice 1910, 1914, 1918, 1921, 1928; von Bauer 1919).

To this list of explorers, we should also mention the many plant collectors who worked on behalf of commercial horticultural houses in Europe and the United States who, although remaining largely anonymous, were behind the discovery and introduction of many plant species, particularly orchids, bromeliads, and other ornamental plants.

After the Treaty of Bogotá between Colombia and Brazil was signed in 1907, the Brazilian government started another program of exploration in the Rio Negro basin in 1927–1929, under the charge of Marshall Boaberges Lopes de Sousa. The botanist on this expedition, F. von Luetzelburg made significant botanical collections and annotations of types of vegetation of the upper Rio Negro (Lopes de Sousa 1955, 1959); he also visited the Casiquiare channel (Huber and Wurdack 1984). Attalea luetzelburgii (Burret) Wess. Boer (Arecaceae), a palm with subterranean stems represents a notable species among the numerous plants collected during his expedition.

The exploration of the Río Negro basin continued with the field work of G. H. H. Tate (1928–1929), E. G. Holt, W. Gehriger and E. R. Blake (1930–1931), B. A. Krukoff (1936), J. Cuatrecasas (1939), R. de Lemos Fróes (1941–1952), Ll. Williams (1942), J. A. Steyermark (1944; 1970), P. H. Allen (1943–1945), F. Cardona-Puig (1946), R. E. Schultes and F. López (1947–1948), J. Murça Pires (1947–1952), G. A. Black (1947–1950), B. Maguire et al. (1950–1966), J. J. Wurdack et al. (1951–1959), H. García-Barriga (1951), R. Romero-Castañeda (1952), A. Fernández-Pérez (1953), W. A. Rodrigues (1954–1968), V. Vareschi and K. Mägdefrau (1958–1962), L. A. Garay (1960), G. Eiten (1963), J. Ewel (1964), N. T. da Silva and U. Brazâo (1966), E. Medina (1968), L. Ruiz-Terán and J. Bautista (1968), M. Fariñas et al. (1969), J. A. Steyermark, C. Brewer-Carias and G. C. K. Dunsterville (1970), P. Maas (1971), B. Manara (1971), and G. T. Prance (1971). As shown here, numerous botanists, anthropologists, and ecologists have visited the Rio Negro basin to study the flora, vegetation, ethnography, and inhabitants in the last two hundred years. In the last five decades, fieldwork was carried out primarily by botanists, ecologists, and naturalists from the three countries that share the Rio Negro basin. Multiple studies have been done, too numerous to cited them all here.

Besides this remarkable amount of fieldwork, thousands of plant collections from Amazonia (including some from the Rio Negro) were products of the 8 expeditions to the Amazon basin conducted by B. A. Krukoff in 1923–1950 (Landrum 1986), and the 25 expeditions sponsored by the bi-national plant collecting program “Projeto Flora Amazônica” (Prance et al. 1984).

In addition, thousands of botanical specimens were collected in Brazil during the execution of the “Biological Dynamics of Forest Fragments Project (BDFFP)” set up near Manaus, and resulting from the field work conducted by “Instituto Amazónico de Investigaciones Científicas SINCHI” for nearly three decades in the Colombian Amazon. Likewise, in Venezuela, many botanical collections and publications resulted from: the interdisciplinary and multi-national project conducted by the “Instituto Nacional de Investigaciones Científicas (IVIC),” perhaps the most detailed study of Amazon caatinga and terra-firme forests ever conducted in the Upper Rio Negro (Medina 2000); the “Proyecto inventario de los recursos naturales de la región Guayana-PIRNRG-” (Zinck 1986); and the expeditions to “Serranía de la Neblina” (Brewer-Carías 1988). Finally, we must cite the collections generated by “Proyecto inventario de los recursos naturales de la región Guayana-PIRNRG-”, conducted by “CVG-Tecmin” (Corporación Venezolana de Guayana-Técnica Minera, C.A.) and other national and international institutions, a major effort to inventory the natural resources of the Venezuelan Guayana. As part of this project, a multidisciplinary team studied the upper Rio Negro and Orinoco basins in 1990–1992, which gathered large sets of plant specimens, ecological data (Aymard 2001), as well as soils and rocks samples. This field work resulted in the discovery of numerous new plant species and the gathering of data for a chorological report for this region (Aymard, in preparation).

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arellano-Peña, H. et al. (2023). The Forests of the Upper Rio Negro (North-Western Amazon) and Adjacent South-Western Orinoco Basins: A Phytosociological Classification. In: Zinck, J.A., Huber, O., García Montero, P., Medina, E. (eds) Psammic Peinobiomes. Ecological Studies, vol 247. Springer, Cham. https://doi.org/10.1007/978-3-031-20799-0_3

Download citation

Publish with us

Policies and ethics