Skip to main content

Chemistry, Biological Activities, and Uses of Latex from Selected Species of Apocynaceae

  • Reference work entry
  • First Online:
Gums, Resins and Latexes of Plant Origin

Abstract

Latex is a complex phytochemical that is mainly involved in the plant defense system. Several species belonging to the Apocynaceae family produce latex that is composed of diverse classes of phytochemicals including proteins, alkaloids, glycolipids, glycosides, acids, sterols, fatty acids, tannins, resins, oils, terpenoids/flavonoids, acetogenins, saponins, and allergens. These phytochemicals contain bioactive compounds with various biological activities such as antibacterial, antifungal, antiviral, antiamebic, anti-inflammatory, anticancer, antioxidant, and antivenom properties. Additionally, species within the Apocynaceae have palliative effects, which frequently promotes the usage of latex-bearing species in traditional and contemporary medical systems. This chapter addresses the chemical composition of latex and provides a summary of its biological activities in selected species of Apocynaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 379.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Šantić Ž, Pravdić N, Bevanda M, Galić K (2017) The historical use of medicinal plants in traditional and scientific medicine. Psychiatr Danub 29:787–792

    PubMed  Google Scholar 

  2. AbdullahiAA (2011) Trends and challenges of traditional medicine in Africa. Afr JTradit Complement Altern Med 8:115–123

    Google Scholar 

  3. Shakya AK (2016) Medicinal plants: future source of new drugs. Int J Herb Med 4:59–64

    Google Scholar 

  4. World Health Organization. Available online https://www.who.int/data/gho/data/themes/topics/topic-details/GHO/worldhealth-statistics. Accessed 17 Sep 2018

  5. Amzat J, Abdullahi AA (2008) Roles of traditional healers in the fight against HIV/AIDS. Stud Ethno Med 2:153–159

    Article  Google Scholar 

  6. Endress ME, Liede-Schumann S, Merve U (2014) An updated classification for Apocynaceae. Phytotaxa 159:175–194

    Article  Google Scholar 

  7. Chatora R (2003) An overview of the traditional medicine situation in the African region. Afr Health Mon 4:4–7

    Google Scholar 

  8. Endress ME (2004) Apocynaceae: brown and now. Telopea 10:525–541

    Google Scholar 

  9. Angiosperm Phylogeny Group (2009) An update of the angiosperm phylogeny group classification for the orders and families of flowering plants. APG III Bot J Linn Soc 161:105–121

    Article  Google Scholar 

  10. Rapini A (2012) Taxonomy “under construction”: advances in the systematics of Apocynaceae, with emphasis on the Brazilian Asclepiadoideae. Rodriguésia 63:075–088

    Article  Google Scholar 

  11. Fahn A (1979) Secretory tissues in plants. Academic Press, London

    Google Scholar 

  12. Pickard WF (2008) Laticifers and secretory ducts: two other tube systems in plants. New Phytol 177:877–888

    Article  PubMed  Google Scholar 

  13. Kumar G, Karthik L, Rao KVB (2011) A review on pharmacological and phytochemical profile of Calotropis gigantea Linn. Pharmacol Online 1:1–8

    Google Scholar 

  14. Nazar N, Goyder DJ, Clarkson JJ, Mahmood T, Chase MW (2013) The taxonomy and systematics of Apocynaceae: where we stand in 2012. Bot J Linn Soc 171:482–490

    Article  Google Scholar 

  15. Pereira DM, Ferreres F, Oliveira JM, Gaspar L, Faria J, Valentão P, Sottomayor M, Andrade PB (2010) Pharmacological effects of Catharanthus roseus root alkaloids in acetylcholinesterase inhibition and cholinergic neurotransmission. Phytomedicine 17:646–652

    Article  CAS  PubMed  Google Scholar 

  16. Alan CA, Wilkes B (1964) Studies on the suppression of immune responses by the periwinkle alkaloids vincristine and vinblastine. J Clin Investig 43:2394–2403

    Article  Google Scholar 

  17. Changwichit K, Khorana N, Suwanborirux K, Waranuch N, Limpeanchob N, Wisuitiprot W, Suphrom N, Ingkaninan K (2011) Bisindole alkaloids and secoiridoids from Alstonia macrophylla Wall. ex G. Don. Fitoterapia 82:798–804

    Article  CAS  PubMed  Google Scholar 

  18. Khyade MS, Kasote DM, Vaikos NP (2014) Alstonia scholaris (L.) R. Br. and Alstonia macrophylla Wall. ex G. Don: a comparative review on traditional uses, phytochemistry, and pharmacology. J Ethnopharmacol 153:1–18

    Google Scholar 

  19. Evert RF (2006) Esau’s plant anatomy. John Wiley & Sons, New York

    Book  Google Scholar 

  20. Lewinsohn TM (1991) The geographical distribution of plant latex. Chemoecology 2:64–68

    Article  Google Scholar 

  21. Keating RC (2003) Leaf anatomical characters and their value in understanding morphoclines in the Araceae. Bot Rev 68:510–523

    Article  Google Scholar 

  22. Van Die J (1955) A comparative study of the particle fractions from Apocynaceae latices. Ann Bot Gard 2:1–124

    Google Scholar 

  23. Heinrich G (1969) Elektronenmikroskopische beobachtungen zur entstehungsweise der exkretbehalter von Ruta graveolens, Citrus limon und Poncirus trifolialiata. Ost Bot 3:97–403

    Google Scholar 

  24. Hagel JM, Yeung EC, Facchini PJ (2008) Got milk? The secret life of laticifers. Trends Plant Sci 13:631–639

    Article  CAS  PubMed  Google Scholar 

  25. Konno K (2011) Plant latex and other exudates as plant defense systems: roles of various defence chemicals and proteins contained therein. Phytochemistry 72:1510–1530

    Article  CAS  PubMed  Google Scholar 

  26. Ramos MV, Aguiar VC, Melo VMM, Mesquita RO, Silvestre PP, Oliveira JS, Oliveira RSB, Macedo NMR, Alencar NMN (2007) Immunological and allergenic responses induced by latex fractions of Calotropis procera (Ait.) R. Br. J Ethnopharmacol 111:115–122

    Article  CAS  PubMed  Google Scholar 

  27. Dussourd DE (1995) Entrapment of aphids and whiteflies in lettuce latex. Ecol Popul Biol 88:163–172

    Google Scholar 

  28. Macel M (2011) Attract and deter: a dual role for pyrrolizidine alkaloids in plant-insect interactions. Phytochem Rev 10:75–82

    Article  CAS  PubMed  Google Scholar 

  29. Hansen I, Brimer L, Molgaard P (2003) Herbivore-deterring secondary compounds in heterophyllous woody species of the Mascarene Islands. Perspect Plant Ecol Evol Syst 6:187–203

    Article  Google Scholar 

  30. El-Sayed A, Handy GA, Cordell GA (1983) Catharanthus alkaloids XXXVIII. Confirming structural evidence and antineoplastic activity of the bisindole alkaloids leurosine-N’b-oxide (pleurosine) roseadine and vindolicine from Catharanthus roseus. J Nat Prod Res 46:517–527

    Google Scholar 

  31. Higashia B, De Almeidab R, Pilauc EJ, Gonçalvesd J, Gonçalvesae RAC, Braz de Oliveira AJ (2021) Metabolic profiling of monoterpenoid indole alkaloids from Tabernaemontana catharinensis (A. DC) latex by GC-MS. Phytochem Lett 41:6–13

    Article  CAS  Google Scholar 

  32. Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:1–15

    Article  CAS  Google Scholar 

  33. Takshak S (2018) Bioactive compounds in medicinal plants: a condensed review. SEJ Pharm Nat Med 1:1–35

    Google Scholar 

  34. Abotaleb M, Samuel SM, Varghese E, Varghese S, Kubatka P, Liskova A, Büsselberg D (2019) Flavonoids in cancer and apoptosis. Cancers 11:1–39

    Google Scholar 

  35. Upadhyay RK (2011) Plant latex: a natural source of pharmaceuticals and pesticides. Int J Green Pharm 5:1–12

    Article  Google Scholar 

  36. Nenaah GE (2013) Potential of using flavonoids, latex, and extracts from Calotropis procera (Ait.) as grain protectants against two coleopteran pests of stored rice. Ind Crop Prod 45:327–334

    Article  CAS  Google Scholar 

  37. Kopustinskiene DM, Jakstas V, Savickas ABernatoniene J (2020) Flavonoids as anticancer agents. Nutrients 12:1–25

    Article  CAS  Google Scholar 

  38. Sarg T (1993) Chemical constituents of Gomphocarpus sinaicus (Asclepiadaceae). Egypt J Pharm Sci 34:577–585

    Google Scholar 

  39. Samy RP, Rajendran P, Li F, Anandi NM, Stiles BG, Ignacimuthu S, Sethi G, Chow VT (2012) Identification of a novel Calotropis procera protein that can suppress tumor growth in breast cancer through the suppression of NF-κB pathway. PLoS One 7:e48514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Wen S, Chen Y, Lu Y, Wang Y, Ding L, Jiang M (2016) Cardenolides from the Apocynaceae family and their anticancer activity. Fitoterapia 112:74–84

    Article  CAS  PubMed  Google Scholar 

  41. Malcolm SB (1991) Cardenolide-mediated interactions between plants and herbivores. Herbivores: their interactions with secondary plant metabolites, vol 1, 1st edn. Academic Press, San Diego, pp 251–296

    Book  Google Scholar 

  42. Glynn IM (1957) The action of cardiac glycosides on sodium and potassium movements in human red cells. J Physiol 136:148–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Repke KRH (1985) New developments in cardiac glycoside structure-activity relationships. Trends Pharmacol Sci 6:275–278

    Article  CAS  Google Scholar 

  44. Green PW, Veitch NC, Stevenson PC, Simmonds MS (2011) Cardenolides from Gomphocarpus sinaicus and Pergularia tomentosa (Apocynaceae: Asclepiadoideae) deter the feeding of Spodoptera littoralis. Arthropod-Plant Inter 5:219–255

    Article  Google Scholar 

  45. Carter CA, Forney RW, Gray EA, Gehring AM, Schneider TL, Young DB, Lovett CM Jr, Scott L, Messer AC, Richardson DP (1997) Toxicarioside A. A new cardenolide isolated from Antiaris toxicaria latex-derived dart poison. Assignment of the 1H-and 13C-NMR shifts for an antiarigenin aglycone. Tetrahedron 53:13557–13566

    Article  CAS  Google Scholar 

  46. Züst T, Petschenka G, Hastings AP, Agrawal AA (2019) Toxicity of milkweed leaves and latex: chromatographic quantification versus biological activity of cardenolides in 16 Asclepias species. J Chem Ecol 45:50–60

    Article  PubMed  CAS  Google Scholar 

  47. Petschenka G, Fandrich S, Sander N, Wagschal V, Boppré M, Dobler S (2013) Stepwise evolution of resistance to toxic cardenolides via genetic substitutions in the Na+/K+-ATPase of milkweed butterflies (Lepidoptera: Danaini). Evolution 67:2753–2761

    Article  CAS  PubMed  Google Scholar 

  48. Agrawal AA, Petschenka G, Bingham RA, Weber MG, Rasmann S (2012) Toxic cardenolides: chemical ecology and coevolution of specialized plant-herbivore interactions. New Phytol 194:28–45

    Article  CAS  PubMed  Google Scholar 

  49. Agrawal AA, Patrick ET, Hastings AP (2014) Tests of the coupled expression of latex and cardenolide plant defense in common milkweed (Asclepias syriaca). Ecosphere 5:1–11

    Article  Google Scholar 

  50. Konno K (2011) Plant latex and other exudates as plant defense systems: roles of various defense chemicals and proteins contained therein. Phytochemistry 72:1510–1530

    Article  CAS  PubMed  Google Scholar 

  51. Hou S, Jamieson P, He P (2018) The cloak, dagger, and shield: proteases in plant-pathogen interactions. Biochem J 475:2491–2509

    Article  CAS  PubMed  Google Scholar 

  52. Freitas AP, Bitencourt FS, Brito GA, de Alencar NM, Ribeiro RA, Lima-Júnior RC, Ramos MV, Vale ML (2012) Protein fraction of Calotropis procera latex protects against 5-fluorouracil-induced oral mucositis associated with downregulation of pivotal pro-inflammatory mediators. Naunyn Schmiedeberg’s Arch Pharmacol 385:981–990

    Article  CAS  Google Scholar 

  53. Freitas CD, Oliveira JS, Miranda MR, Macedo NM, Sales MP, Villas-Boas LA, Ramos MV (2007) Enzymatic activities and protein profile of latex from Calotropis procera. Plant Physiol Biochem 45:781–789

    Article  CAS  PubMed  Google Scholar 

  54. de Alencar NM, da Silveira BF, de Figueiredo IS, Luz PB, Lima-Júnior RC, Aragão KS, Magalhães PJ, de Castro Brito GA, Ribeiro RA, de Freitas AP, Ramos MV (2017) Side-effects of Irinotecan (CPT-11), the clinically used drug for colon cancer therapy, are eliminated in experimental animals treated with latex proteins from Calotropis procera (Apocynaceae). Phytother Res 31:312–320

    Article  PubMed  CAS  Google Scholar 

  55. van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  PubMed  CAS  Google Scholar 

  56. Sinha M, Singh RP, Singh TP (2014) Current overview of allergens of plant pathogenesis related protein families. Sci World J 2014:1–17

    Google Scholar 

  57. Jucá TL, Ramos MV, Moreno FB, Viana de Matos MP, Marinho-Filho JD, Moreira RA, Monteiro-Moreira AC (2013) Insights on the phytochemical profile (cyclopeptides) and biological activities of Calotropis procera latex organic fractions. Sci World J 2013:1–10

    Article  CAS  Google Scholar 

  58. Ramos MV, de Oliveira RS, Pereira HM, Moreno FB, Lobo MD, Rebelo LM, Brandão-Neto J, de Sousa JS, Monteiro-Moreira AC, Freitas CD, Grangeiro TB (2015) Crystal structure of an antifungal osmotin-like protein from Calotropis procera and its effects on Fusarium solani spores, as revealed by atomic force microscopy: insights into the mechanism of action. Phytochemistry 119:5–18

    Article  CAS  PubMed  Google Scholar 

  59. Schmelzer GB, Gurib-Fakim A (2008) Medicinal plants. Backhuys Publishers, Netherlands

    Google Scholar 

  60. Naidoo CM, Naidoo Y, Dewir YH (2020) The secretory apparatus of Tabernaemontana ventricosa Hochst. ex A. DC. (Apocynaceae): laticifer identification, characterization, and distribution. Plan Theory 9:686–702

    CAS  Google Scholar 

  61. Schripsema J, Hermans-Lokkerbol A, Van der Heijden R, Verpoorte R, Svendsen AB, Van Beek TA (1986) Alkaloids of Tabernaemontana ventricosa. J Nat Prod 49:733–735

    Article  CAS  Google Scholar 

  62. Kokwaro JO (1976) Medicinal plants of East Africa. East African Literature. Kampala, Nairobi, Dar-es-Salaam

    Google Scholar 

  63. Merzaia AB, Riaz H, Rehman R, Nisar S, Azeem MW (2017) A review of toxicity, therapeutic and biological activities of Calotropis. Int J Chem Bio Sci 11:58–64

    Google Scholar 

  64. Saratha V, Pillai SI, Subramanian S (2011) Isolation and characterization of lupeol, a triterpenoid from Calotropis gigantea latex. Int J Pharm Sci Rev Res 10:54–57

    CAS  Google Scholar 

  65. Kadiyala M, Ponnusankar S, Elango K (2013) Calotropis gigantea (L.) R. Br (Apocynaceae): a phytochemical and pharmacological review. J Ethnopharmacol 150:32–50

    Google Scholar 

  66. Kirtikar KR, Basu BD (1999) Indian medicinal plants. International Book Distributor, Dehrandun

    Google Scholar 

  67. Kshirsagar A, Ingawale D, Ashok P, Vyawahare N (2009) Calotropis gigantea: a comprehensive review. Pharmacol Online 2:229–239

    Google Scholar 

  68. Gharge VG, Ghadge DM, Shelar PA, Yadav AV (2017) Importance of Pharmacognostic study of medicinal plants Calotropis gigantea (Linn.): a review. Int J Pharmacognosy 4:363–371

    CAS  Google Scholar 

  69. Kumari A, Sood N (2020) A comparative study of traditional knowledge of Calotropis procera and Calotropis gigantea among four villages of Jaipur district of Rajasthan. J Med Plants 8:16–20

    Google Scholar 

  70. Abraham KI, Joshi PN (1979) Studies on proteinases from Calotropis gigantea latex. 1. Purification and some properties of two proteinases containing carbohydrate. Biochim Biophys Acta 568:111–119

    Article  CAS  PubMed  Google Scholar 

  71. Pal G, Sinha NK (1980) Isolation, crystallization, and properties of calotropins DI and DI from Calotropis gigantea. Arch Biochem Biophys 202:321–329

    Article  CAS  PubMed  Google Scholar 

  72. Thakur S, Das P, Itoh T, Imai K, Matsumoto T (1984) Latex extractable of Calotropis gigantea. Phytochemistry 23:2085–2087

    Article  CAS  Google Scholar 

  73. Chitme HR, Chandra M, Kaushi S (2004) Studies on anti-diarrhoeal activity of Calotropis gigantea R. Br. in experimental animals. J Pharm Sci 7:70–75

    Google Scholar 

  74. Wang M, Mei W, Deng Y, Liu S, Wang Z, Dai H (2008) Cytotoxic cardenolides from the roots of Calotropis gigantea. Mod Pharma Res 1:4–9

    Google Scholar 

  75. Mahatma OP, Singhvi I, ShirsatMrunal SK, Dwivedi J, Vaya R (2010) Anti-inflammatory and antipyretic activities leaves of Calotropis gigantea (Linn). J Glob Pharma Tech 2:75–78

    Google Scholar 

  76. Bharathi P, Alex T, Ansa T, Krishnan S, Ravi TK (2011) Antibacterial activity of leaf extracts of Calotropis gigantea Linn against certain gram-negative and gram-positive bacteria. Int J Chem Sci 9:919–923

    Google Scholar 

  77. Rathod NR, Chitme HR, Irchhaiya R, Chandra R (2011) Hypoglycaemia effect of Calotropis gigantea Linn leaves and flowers in streptozotocin-induced diabetic rats. Oman Med J 26:104–110

    Article  PubMed  PubMed Central  Google Scholar 

  78. Prabhu S, Veeravel R (2015) Effect of dust formulation of milkweed (Calotropis gigantea R. Br.) different plant parts against Helicoverpa armigera (Hubner). III Int Symp Underutilized Plant Species 1241:537–540

    Google Scholar 

  79. Chan EWC, Sweidan NI, Wong SK, Chan HT (2017) Cytotoxic cardenolides from Calotropis species: a short review. Rec Nat Prod 11:334–344

    Article  CAS  Google Scholar 

  80. Sharma S, Kumari A, Sharma M (2016) Comparative GC-MS analysis of bioactive compounds in methanolic extract of Calotropis gigantea (L) WT Aiton leaf and latex. Int J Pharmacogn Phytochem Res 8:1823–1827

    Google Scholar 

  81. Arulmozhi S, Mazumder PM, Ashok P, Narayanan LS (2007) Pharmacological activities of Alstonia scholaris Linn. (Apocynaceae)-a review. Pharmacogn Rev 1:163–170

    CAS  Google Scholar 

  82. Vikneshwaran D, Viji M, Lakshmi KR (2008) A survey of the ethnomedicinal flora of the Sirumalai Hills, Dindugul District, India. Ethnobot Leafl 12:948–953

    Google Scholar 

  83. Pandey K, Shevkar C, Bairwa K, Kate AS (2020) Pharmaceutical perspective on bioactives from Alstonia scholaris ethnomedicinal knowledge, phytochemistry, clinical status, patent space, and future directions. Phytochem Rev 19:191–233

    Article  CAS  Google Scholar 

  84. Keawpradub N, Kirby GC, Steele JCP, Houghton PJ (1999) Antiplasmodial activity of extracts and alkaloids of three Alstonia pecies from Thailand. Planta Med 65:690–694

    Article  CAS  PubMed  Google Scholar 

  85. Mishra M (2020) Pharmacognostic and pharmacological activity of Alstonia scholaris a review. JETIR 9:986–996

    Google Scholar 

  86. Ganjewala D, Gupta AK (2013) Study on phytochemical composition, antibacterial and antioxidant properties of different parts of Alstonia scholaris Linn. Adv Pharm Bull 3:379–384

    PubMed  PubMed Central  Google Scholar 

  87. Kawiwong J, Injard A, Riankrasin A, Kamonlakorn K, Srisoithongsug P, Pekthong D, Parhira S (2020) Chemical constituents and antioxidant activity of the Alstonia scholaris latex extract. In: The 12th NPRU National Academic Conference, Nakhon Pathom Rajabhat University, July 9–10, Thailand

    Google Scholar 

  88. Da Silva TF, Coelho MRR, Vollú RE, Gourlat FRV, Alviano DS, Alviano CS, Seldin L (2011) Bacterial community associate with the trunk latex of Hancornia speciosa Gomes (Apocynaceae) grow in the northeast of Brazil. Anton Van Leeuw 9:523–532

    Article  CAS  Google Scholar 

  89. Silva GC, Braga FC, Lima MP, Pesquero JL, Lemos VS, Cortes SF (2011) Hancornia speciosa Gomes induces hypotensive effect through inhibition of ACE and increase on NO. J Ethnopharmacol 137:709–713

    Google Scholar 

  90. Da Silva AV, Soares AN, Ledo AS, Costa TS, Almeida CS, Amorim JA, Santos PS, Vitoria MF (2017) Uses and technological prospects for the Mangaba, a native fruit of Brazil. Afr J Biotechnol 16:307–311

    Google Scholar 

  91. Neto G, Guarim-Morais RG (2003) Medicinal plants resources in the Cerrado of Mato Grosso state, Brazil: a review. Acta Bot Bras 17:561–584

    Google Scholar 

  92. Santos PO, Barbosa Junior AM, Mélo DLFM, Trindade RC (2007) Study on the anti-microbial activity of the latex of Mangaba’s tree (Hancornia speciosa GOMES). Rev Bras Pl Med 9:108–111

    Google Scholar 

  93. Sampaio TS (2008) Phytochemical study of Hancornia speciosa Gomes: isolation, structural determination, and biological activity. Master Thesis – Federal University of Sergipe, São Cristóvão, pp 148

    Google Scholar 

  94. Floriano JF, Mota LSL, Furtado EL, Rossetto VJV, Graeff CFO (2013) Biocompatibility studies of natural rubber latex from different tree clones and collection methods. J Mater Sci Mater Med 25:461–470

    Article  PubMed  CAS  Google Scholar 

  95. Frade MA, Assis RV, Coutinho-Netto J, Andrade TA, Foss NT (2012) The vegetal biomembrane in the healing of chronic venous ulcers. An Bras Dermatol 87:45–51

    Article  PubMed  Google Scholar 

  96. Almeida LM, Floriano JF, Ribeiro TP, Magno LN, da Mota LS, Peixoto N, Mrué F, Melo-Reis P, Junior RD, de Oliveira Graeff CF, Gonçalves PJ (2014) Hancornia speciosa latex for biomedical applications: physical and chemical properties, biocompatibility assessment and angiogenic activity. J Mater Sci Mater Med 25:2153–2162

    Google Scholar 

  97. Almeida LM, Magno LN, Pereira AC, Guidelli ÉJ, Baffa Filho O, Kinoshita A, Goncalves PJ (2019) Toxicity of silver nanoparticles released by Hancornia speciosa (Mangabeira) biomembrane. Spectrochim Acta A Mol Biomol Spectrosc 210:329–334

    Article  CAS  PubMed  Google Scholar 

  98. D’Abadia PL, Bailao EF, Lino RS, Oliveira MG, Silva VB, Oliveira LA, Conceicao EC, Melo-Reis PR, Borges LL, GonÇalves PJ, Almeida LM (2020) Hancornia speciosa serum fraction latex stimulates the angiogenesis and extracellular matrix remodeling processes. An Acad Bras Ciênc 92:2

    Google Scholar 

  99. Marinho DG, Alviano DS, Matheus ME, Alviano CS, Fernandes PD (2011) The latex obtained from Hancornia speciosa Gomes possesses anti-inflammatory activity. J Ethnopharmacol 135:530–537

    Article  CAS  PubMed  Google Scholar 

  100. Santos Neves J (2019) Evaluation of the osteogenic potential of Hancornia speciosa latex in rat calvaria and its phytochemical profile. J Ethnopharmacol 183:151–158

    Article  CAS  Google Scholar 

  101. Pegorin GS, Leite MN, Antoniassi M, Chagas AL, Santana LA, Garms BC, Marcelino MY, Herculano RD, Cipriani Frade MA (2021) Physico-chemical characterization and tissue healing changes by Hancornia speciosa Gomes latex biomembrane. J Biomed Mater Res Part B: Appl Biomater 109:938–948

    Article  CAS  Google Scholar 

  102. Coombs G, Peter CI, Johnson SD (2009) A test for Allee effects in the self-incompatible wasp-pollinated milkweed Gomphocarpus physocarpus. Austral Ecol 34(6):688–697

    Article  Google Scholar 

  103. Pina S, Pedrosa C, Santos C, Feijóo B, Pego P, Vendrell C, Santos MJ, Prieto I (2014) Ocular toxicity secondary to Asclepias physocarpa: the balloon plant. Case Rep Ophthalmol Med 2014:1–5

    Google Scholar 

  104. Marzouk A (2009) Hepatoprotective triterpenes from hairy root cultures of Ocimum basilicum L. z Naturforsch 64:201–220

    Article  CAS  Google Scholar 

  105. Marzouk AM, Osman SM, Gohar AA (2016) A new pregnane glycoside from Gomphocarpus fruticosus growing in Egypt. Nat Prod Res 30:1060–1067

    Article  CAS  PubMed  Google Scholar 

  106. El Gamal M, Hanna A, Morsy N, Duddeck H, Simon A, Gáti T, Tóth G (1999) Complete 1H and 13c signal assignments of 5α-cardenolides isolated from Calotropis procera R. BR J Mol Struct 477:201–208

    Article  Google Scholar 

  107. Prachi S, Pradeep T (2014) 13α-methyl-27-norolean-14-en-3β-ol, a triterpene isolated from the stem of Euphorbia hirta (Linn.) possess anti-asthmatic properties. Res J Chem Sci 4:21–26

    Google Scholar 

  108. Kiranmayee P, Prabhudas N, Nandini HS, Kutty AVM (2020) Comparative analysis of transition and post-transition metal mediated Allamanda cathartica L latex nanoparticles on human peripheral blood mononuclear cells. Adv Nat Sci Nanosci Nanotechnol 11:015016

    Article  CAS  Google Scholar 

  109. Das Nelaturi P, Sriramaia NH, Nagaraj S, Kotakadi VS, Moideen Kutty AVV, Pamidimukkala K (2017) An in-vitro cytotoxic and genotoxic properties of Allamanda cathartica L. latex green NPs on human peripheral blood mononuclear cells. Nano Biomed Eng 9:34–323

    Google Scholar 

  110. Di Santo MP, Fait ME, Foresti ML, Morcelle SR (2014) Biocatalytic characterization of a naturally immobilized lipase found in Araujia sericifera Brot. (Apocynaceae) latex. Cat Sci Technol 4:1386–1394

    Article  CAS  Google Scholar 

  111. Shivaprasad HV, Rajesh R, Nanda BL, Dharmappa KK, Vishwanath BS (2009) Thrombin like activity of Asclepias curassavica L. latex: action of cysteine proteases. J Ethnopharmacol 123:106–109

    Article  CAS  PubMed  Google Scholar 

  112. Parhira S, Yang ZF, Zhu GY, Chen QL, Zhou BX, Wang YT, Liu L, Bai LP, Jiang ZH (2014) In vitro anti-influenza virus activities of a new lignan glycoside from the latex of Calotropis gigantea. PLoS One 9:1–13

    Article  CAS  Google Scholar 

  113. Parhira S, Zhu GY, Jiang RW, Liu L, Bai LP, Jiang ZH (2014) 2′-Epi-uscharin from the latex of Calotropis gigantea with HIF-1 inhibitory activity. Sci Rep 4:1–7

    Google Scholar 

  114. Parhira S, Zhu GY, Chen M, Bai LP, Jiang ZH (2016) Cardenolides from Calotropis gigantea as potent inhibitors of hypoxia-inducible factor-1 transcriptional activity. J Ethnopharmacol 194:930–936

    Article  CAS  PubMed  Google Scholar 

  115. Freitas CD, Freitas DC, Cruz WT, Porfírio CT, Silva MZ, Oliveira JS, Carvalho CP, Ramos MV (2017) Identification and characterization of two germin-like proteins with oxalate oxidase activity from Calotropis procera latex. Int J Biol Macromol 105:1051–1061

    Article  CAS  PubMed  Google Scholar 

  116. Ramos MV, Freitas AP, Leitão RF, Costa DV, Cerqueira GS, Martins DS, Martins CS, Alencar NM, Freitas LB, Brito GA (2020) Anti-inflammatory latex proteins of the medicinal plant Calotropis procera: a promising alternative for oral mucositis treatment. Inflamm Res 69:951–966

    Article  CAS  PubMed  Google Scholar 

  117. Rabelo AC, Borghesi J, Carreira AC, Hayashi RG, Bessa F, Barreto RD, da Costa RP, Cantanhede Filho AJ, Carneiro FJ, Miglino MA (2021) Calotropis procera (Aiton) Dryand (Apocynaceae) as an anti-cancer agent against canine mammary tumor and osteosarcoma cells. Res Vet Sci 138:79–89

    Google Scholar 

  118. Fujita K, Inui H (2021) Review: biological functions of major latex-like proteins in plants. Plant Sci 306:1–6

    Article  CAS  Google Scholar 

  119. Albuquerque TM, Alencar NM, Figueiredo JG, Figueiredo IS, Teixeira CM, Bitencourt FS, Secco DD, Araújo ES, Leão CAM, Ramos MV (2009) Vascular permeability, neutrophil migration and edematogenic effects induced by the latex of Cryptostegia grandiflora. Toxicon 53:5–23

    Article  CAS  Google Scholar 

  120. Viana CA, Oliveira JS, Freitas CD, Alencar NM, Carvalho CP, Nishi BC, Ramos MV (2013) Thrombin and plasmin-like activities in the latices of Cryptostegia grandiflora and Plumeria rubra. Blood Coagul Fibrin 24:386–392

    Article  CAS  Google Scholar 

  121. Ramos MV, Souza DP, Gomes MTR, Freitas CDT, Carvalho CPS, Júnior PAVR, Salas CE (2014) A phytopathogenic cysteine peptidase from latex of wild rubber vine Cryptostegia grandiflora. Protein J 33:199–209

    Article  CAS  PubMed  Google Scholar 

  122. Santos GJ, Oliveira ES, Pinheiro AD, da Costa PM, de Freitas JC, de Araújo Santos FG, Maia FM, de Morais SM, Nunes-Pinheiro DC (2018) Himatanthus drasticus (Apocynaceae) latex reduces oxidative stress and modulates CD4+, CD8+, FoxP3+ and HSP-60+ expressions in Sarcoma 180-bearing mice. J Ethnopharmacol 220:159–168

    Google Scholar 

  123. de Miranda ALP, Silva JR, Rezende CM, Neves JS, Parrini SC, Pinheiro ML, Cordeiro MC, Tamborini E, Pinto AC (2000) Anti-inflammatory and analgesic activities of the latex containing triterpenes from Himatanthus sucuuba. Planta Med 66:284–286

    Article  PubMed  Google Scholar 

  124. Silva JRA, Rezende CM, Pinto AC, Amaral ACF (2010) Cytotoxicity and antibacterial studies of iridoids and phenolic compounds isolated from the latex of Himatanthus sucuuba. Afr J Biotechnol 9:7357–7360

    CAS  Google Scholar 

  125. Soares DC, Andrade AL, Delorenzi JC, Silva JR, Freire-de-Lima L, Falcão CA, Pinto AC, Rossi-Bergmann B, Saraiva EM (2010) Leishmanicidal activity of Himatanthus sucuuba latex against Leishmania amazonensis. Parasitol Int 59:173–177

    Article  CAS  PubMed  Google Scholar 

  126. Da Silva MB, da Silva MP, dos Reis Júnior JDD, Lima CAC, de Oliveira SA (2021) Therapeutics activities of Amazonian plant Himatanthus sucuuba (Spruce ex Müll. Arg.) Woodson (Apocynaceae): a review. J Adv Biol Biotechnol 24:1–14

    Article  CAS  Google Scholar 

  127. Calero-Armijos LL, Herrera-Calderon O, Arroyo-Acevedo JL, Rojas-Armas JP, Hañari-Quispe RD, Figueroa-Salvador L (2020) Histopathological evaluation of latex of Bellaco-Caspi, Himatanthus sucuuba (Spruce) Woodson on wound healing effect in BALB/C mice. Vet World 13:1045–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Rao YV, Raju M (2016) Antioxidant and protease activities of seven native plant sources. IJBSM 7:1346–1350

    Article  Google Scholar 

  129. Mendonça PM, Lima MG, Albuquerque LR, Carvalho MG, Queiroz MM (2011) Effects of latex from “Amapazeiro” Parahancornia amapa (Apocynaceae) on blowfly Chrysomya megacephala (Diptera: Calliphoridae) post-embryonic development. Vet Parasitol 178:379–382

    Article  PubMed  Google Scholar 

  130. Lopes MB, Mendonça PM, Mallet JR, Carvalho MG, Queiroz M (2014) Bioactivity of the latex from Parahancornia amapa (Apocynaceae) on the development of Rhodnius nasutus (Hemiptera, Reduviidae, Triatominae) under laboratory conditions. RBE 58:379–383

    Google Scholar 

  131. Miladi M, Abdellaoui K, Hamouda AB, Boughattas I (2018) Toxicity of the active fraction of Pergularia tomentosa and the aggregation pheromone phenylacetonitrile on Schistocerca gregaria fourth-instar nymph: effects on behavior and acetylcholinesterase activity. J Plant Prot 13:201–216

    Google Scholar 

  132. Sequeiros C, Torres MJ, Trejo SA, Esteves JL, Natalucci CL, López LMI (2005) Philibertain g I, the most basic cysteine endopeptidase purified from the latex of Philibertia gilliesii hook. et Arn. (Apocynaceae). Protein J 24:445–453

    Article  CAS  PubMed  Google Scholar 

  133. Sequeiros C, Torres MJ, Nievas ML, Caffini NO, Natalucci CL, López LM, Trejo SA (2016) The proteolytic activity of Philibertia gilliesii latex. Purification of Philibertain g II. Appl Biochem Biotechnol 179:332–346

    Article  CAS  PubMed  Google Scholar 

  134. Rengaswami S, Venkatarao E (1960) Chemical components of Plumeria alba. Proc Indian Acad Sci 52:173–181

    Article  Google Scholar 

  135. Imrana M, Asif M (2020) Morphological, ethnobotanical, Pharmacognostical and pharmacological studies on the medicinal plant Plumeria alba Linn. (apocynaceae). AJMAP 6:54–84

    Google Scholar 

  136. Kusuma CG, Gubbiveeranna V, Sumachirayu CK, Bhavana S, Ravikumar H, Nagaraju S (2021) Thrombin-and plasmin-like and platelet-aggregation-inducing activities of Plumeria alba L. latex: action of cysteine protease. J Ethnopharmacol 273:114000–114009

    Article  CAS  PubMed  Google Scholar 

  137. Fernandes HB, Machado DL, Dias JM, Brito TV, Batista JA, Silva RO, Pereira AC, Ferreira GP, Ramos MV, Medeiros JVR, Aragão KS (2015) Laticifer proteins from Plumeria pudica inhibit the inflammatory and nociceptive responses by decreasing the action of inflammatory mediators and pro-inflammatory cytokines. Rev Bras Farmacogn 25:269–277

    Article  CAS  Google Scholar 

  138. Santana LDAB, Aragão DP, Araújo TDSL, de Sousa NA, de Souza LKM, Oliveira LES, da Cunha Pereira ACT, Ferreira GP, de Moraes Oliveira NV, da Silva SB, Sousa FBM (2018) Antidiarrheal effects of water-soluble proteins from Plumeria pudica latex in mice. Biomed 97:1147–1154

    CAS  Google Scholar 

  139. de Moraes Oliveira NV, da Silva Souza B, Moita LA, Oliveira LES, Brito FC, Magalhães DA, Batista JA, Sousa SG, de Brito TV, de Melo Sousa FB, Alves EHP (2019) Proteins from Plumeria pudica latex exhibit protective effect in acetic acid-induced colitis in mice by inhibition of pro-inflammatory mechanisms and oxidative stress. Life Sci 231:116535–116542

    Article  CAS  Google Scholar 

  140. Chamakuri SR, Suttee A, Mondal P (2020) An eye-catching and comprehensive review on Plumeria pudica Jacq. (Bridal Bouquet). Plant Arch 20:2076–2079

    Google Scholar 

  141. Oliveira LE, Moita LA, Souza BS, Oliveira NM, Sales AC, Barbosa MS, Silva FD, Farias AL, Lopes VL, França LF, Alves EH (2021) Latex proteins from Plumeria pudica reduce ligature-induced periodontitis in rats. Oral Dis 00:1–10

    Google Scholar 

  142. Rastogi RP, Mehrotra BN (1990) Compendium of Indian medicinal plants, vol 1. CSIR, New Delhi, pp 118–122

    Google Scholar 

  143. Chanda I, Basu SK, Dutta SK, Das SRC (2011) A protease isolated from the latex of Plumeria rubra Linn (Apocynaceae) 1: purification and characterization. Trop J Pharm Res 10:705–711

    CAS  Google Scholar 

  144. Patil CD, Patil SV, Borase HP, Salunke BK, Salunkhe RB (2012) Larvicidal activity of silver nanoparticles synthesized using Plumeria rubra plant latex against Aedes aegypti and Anopheles stephensi. Parasitol Res 110:1815–1822

    Article  PubMed  Google Scholar 

  145. Alencar NMND, Pinheiro RSP, Figueiredo ISTD, Luz PB, Freitas LBN, Souza TDFGD, Carmo LDD, Marques LM, Ramos MV (2015) The preventive effect on ethanol-induced gastric lesions of the medicinal plant Plumeria rubra: involvement of the latex proteins in the NO/cGMP/KATP signaling pathway. J Evid-Based Complement Altern Med 2015:1–10

    Article  Google Scholar 

  146. Rajasekhar KK, Shankarananth V, Venkateswarlu M, Nirosha M, Bindhu DT, Reddy KN (2009) Local anaesthetic activity of Tabernaemontana coronaria latex in frog and guinea pig. J Pharm Res 2:1691–1693

    CAS  Google Scholar 

  147. Singh MK, Usha R, Hithayshree K, Bindhu OS (2015) Hemostatic potential of latex proteases from Tabernaemontana divaricata (L.) R. Br. ex. Roem. and Schult. and Artocarpus altilis (Parkinson ex. FA Zorn) Forsberg. J Thromb Thromboly 39:43–49

    Article  CAS  Google Scholar 

  148. Banu SH, Nagashree S, Latha B, Chethankumar M (2017) Biochemical characterization of proteases isolated from the latex of Tabernaemontana divaricata L. and Carissa carandas L.: their role in hemostasis. J Pharmacogn Phytochem 6:06–09

    Google Scholar 

  149. Raju M, Rao YV (2020) Identification and characterization of proteases from Tabernaemontana divaricata. Agric Nat Res 54:279–286

    Google Scholar 

  150. da Silva Menecucci C, Mucellini KL, de Oliveira MM, Higashi B, de Almeida RTR, Porto C, Pilau EJ, Gonçalves JE, Gonçalves RAC, de Oliveira AJB (2019) Latex from Tabernaemontana catharinensis (A. DC)—Apocynaceae: an alternative for the sustainable production of biologically active compounds. Ind Crop Prod 129:74–84

    Article  CAS  Google Scholar 

  151. Arambewela LS, Ranatunge T (1991) Indole alkaloids from Tabernaemontana divaricata. Phytochemistry 30:1740–1758

    Article  CAS  Google Scholar 

  152. Kam TS, Pang HS, Choo YM, Komiyama K (2004) Biologically active ibogan and vallesamine derivatives from Tabernaemontana divaricata. Chem Biodivers 25:491–498

    Google Scholar 

  153. Low YY, Lim KH, Choo YM, Pang HS, Etoh T, Hayashi M, Kam TS (2010) Structure, biological activity, and a biomimetric partial synthesis of lirofolines, nocel pentacyclic indole alkaloids from Tabernaemontana. Tetrahedron Lett 51:269–272

    Article  CAS  Google Scholar 

  154. Sibi G, Wadhavan R, Singh S, Shukla A, Dhananjaya K, Ravikumar KR, Mallesha H (2013) Plant latex: a promising antifungal agent for post-harvest disease control. PJBS 16:1737–1743

    CAS  PubMed  Google Scholar 

  155. de Freitas CD, da Cruz WT, Silva MZ, Vasconcelos IM, Moreno FB, Moreira kRA, Monteiro-Moreira AC, Alencar LM, Sousa JS, Rocha BA, Ramos MV (2016) Proteomic analysis and purification of an unusual germin-like protein with proteolytic activity in the latex of Thevetia peruviana. Planta 243:1115–1128

    Article  PubMed  CAS  Google Scholar 

  156. Udo S, Ekpiken E (2016) The use of plant latex as a biocontrol agent for the inhibition of Moroccan watermelon mosaic virus (Mwmv) sourced from three latex producing plants. J Biopest 3:41–51

    Google Scholar 

  157. Cruz WT, Bezerra EH, Ramos MV, Rocha BA, Medina MC, Demarco D, Carvalho CPS, Oliveira JS, Sousa JS, Souza PF, Freire VN (2020) Crystal structure and specific location of a germin-like protein with proteolytic activity from Thevetia peruviana. Plant Sci 298:110590

    Article  CAS  PubMed  Google Scholar 

  158. Bastos ML, Sarmento RM, de Oliveira BM, da Silva RJ, Vale VV, Percário S, Dolabela MF (2020) Antitumor activity of Apocynaceae species used in Amazon traditional medicine. Res Soc Develop 9:19–57

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaser Hassan Dewir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Naidoo, C.M., Munsamy, A., Naidoo, Y., Dewir, Y.H. (2022). Chemistry, Biological Activities, and Uses of Latex from Selected Species of Apocynaceae. In: Murthy, H.N. (eds) Gums, Resins and Latexes of Plant Origin. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-91378-6_36

Download citation

Publish with us

Policies and ethics