Skip to main content

Nonvolatile Memory-Based Internet of Things: A Survey

  • Chapter
  • First Online:
Artificial Intelligence-based Internet of Things Systems

Abstract

Nonvolatile memory (NVM), such as NAND flash memory, resistive random access memory (ReRAM), ferroelectric RAM (FeRAM), etc., has been used widely in Internet of Thing (IoT) systems as a secondary storage. These types have the benefits of high performance, high scalability, and less area space. However, NVMs still have many challenges such as lifespan, vulnerable for attack, and cost. In this chapter, we present a survey of techniques that have been introduced to exploit the pros and mitigate the cons of NVMs when used for designing IoT systems. We classify these techniques along several dimensions to highlight their similarities and differences. Keeping in consideration that NVMs are rapidly growing in IoT systems, we believe that this chapter will encourage and motivate further researcher and scientists in the field of software technology for NVM-based IoT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use the following acronyms frequently in this chapter: application programming interface (API), convolution neural network (CNN), deep neural network (DNN), dynamic RAM (DRAM), embedded flash (eFlash), erasable programmable read-only memory (EPROM), error-correcting code (ECC), polyethylene glycol dimethacrylate (pEGDMA), execute in place (XIP), flash translation layer (FTL), finite impulse response filter (FIR), garbage collection (GC), hard disk drive (HDD), initiated chemical vapor deposition (iCVD), Landau-Lifshitz-Gilbert (LLG), magnetic RAM (MRAM), magnetic tunneling junction (MTJ), microcontroller unit (MCU), nonvolatile large-scale integrated (NV-LSI), one-state error recovery (OER), phase-change memory (PCM), polymer-intercalated resistive random access memory (i-RRAM), radio-frequency identification (RFID), self-write termination (SWT), silicon-oxide-nitride-oxide-silicon (SONOS), single NVM-based self-write termination (SWT1R-nvFF), single/multi/triple level cell (SLC/MLC/TLC), solid-state disk (SSD), spin-transfer torque random access memory (STT-RAM), static RAM (SRAM), storage class memory (SCM), storage memory management unit (SMMU), store energy (ES), structured query language (SQL), system on chip (SOC), ternary content-addressable memory (TCAM), true random number generator using write speed variation of oxide-based RRAM (TRNG-UWSVOR), and ultra large-scale integration (ULSI).

References

  1. Al-Turjman, F., Zahmatkesh, H., & Shahroze, R. (2019). An overview of security and privacy in smart cities’ IoT communications. Transactions on Emerging Telecommunications Technologies, e3677. https://doi.org/10.1002/ETT.3677

  2. Ghoneim, M., & Hussain, M. (2015). Review on physically flexible nonvolatile memory for internet of everything electronics. Electronics, 4, 424–479.

    Article  Google Scholar 

  3. Rostam, A., & Abdullah, R. (2019). A proposed framework: Enhanced automated duplication algorithm for flash application. In Intelligent and interactive computing (pp. 377–387). Springer.

    Chapter  Google Scholar 

  4. Mittal, S., & Vetter, J. S. (2015). A survey of software techniques for using non-volatile memories for storage and main memory systems. IEEE Transactions on Parallel and Distributed Systems, 27, 1537–1550.

    Article  Google Scholar 

  5. Lee, B.-H., Bae, H., Seong, H., Lee, D.-I., Park, H., Choi, Y. J., Im, S.-G., Kim, S. O., & Choi, Y.-K. (2015). Direct observation of a carbon filament in water-resistant organic memory. ACS Nano, 9, 7306–7313.

    Article  Google Scholar 

  6. Pourshirazi, B., Beigi, M. V., Zhu, Z., & Memik, G. (2019). Writeback-aware LLC management for PCM-based main memory systems. ACM Transactions on Design Automation of Electronic Systems (TODAES), 24, 18.

    Article  Google Scholar 

  7. Mittal, S. (2018). A survey of ReRAM-based architectures for processing-in-memory and neural networks. Machine Learning and Knowledge Extraction, 1, 75–114.

    Article  Google Scholar 

  8. Jeloka, S., Wang, Z., Xie, R., Khanna, S., Bartling, S., Sylvester, D., & Blaauw, D. (2018). Energy efficient adiabatic FRAM with 0.99 PJ/bit write for IoT applications. In 2018 IEEE symposium on VLSI circuits (pp. 85–86). IEEE.

    Google Scholar 

  9. Chi, P., Li, S., Cheng, Y., Lu, Y., Kang, S. H., & Xie, Y. (2016). Architecture design with STT-RAM: Opportunities and challenges. In 2016 21st Asia and South Pacific design automation conference (ASP-DAC) (pp. 109–114). IEEE.

    Chapter  Google Scholar 

  10. De, A., Khan, M. N. I., & Ghosh, S. (2016). Attack resilient architecture to replace embedded flash with STTRAM in homogeneous IoTs. arXiv preprint arXiv:1606.00467.

    Google Scholar 

  11. De, A., Khan, M. N. I., Park, J., & Ghosh, S. (2017). Replacing eFlash with STTRAM in IoTs: Security challenges and solutions. Journal of Hardware and Systems Security, 1, 328–339.

    Article  Google Scholar 

  12. Balsamo, D., Elboreini, A., Al-Hashimi, B. M., & Merrett, G. V. (2017). Exploring arm mbed support for transient computing in energy harvesting IoT systems. In 2017 7th IEEE international workshop on advances in sensors and interfaces (IWASI) (pp. 115–120). IEEE.

    Chapter  Google Scholar 

  13. Bando, Y., Watanabe, K., Maeda, K.-I., Kudo, H., Ishiyama, M., Kunimatsu, A., Nakai, H., Takahashi, M., & Oowaki, Y. (2015). Caching mechanisms towards single-level storage systems for internet of things. In 2015 symposium on VLSI circuits (VLSI circuits) (pp. C132–C133). IEEE.

    Chapter  Google Scholar 

  14. Deguchi, Y., & Takeuchi, K. (2018). 3D-NAND flash solid-state drive (SSD) for deep neural network weight storage of IoT edge devices with 700x data-retention lifetime extension. In 2018 IEEE international memory workshop (IMW) (pp. 1–4). IEEE.

    Google Scholar 

  15. Shi, J., Zhang, H., Bai, Y., Han, G., & Jia, G. (2018). A novel data aggregation preprocessing algorithm in flash memory for IoT based power grid storage system. IEEE Access, 6, 57279–57290.

    Article  Google Scholar 

  16. Senni, S., Torres, L., Sassatelli, G., & Gamatie, A. (2017). Non-volatile processor based on MRAM for ultra-low-power IoT devices. ACM Journal on Emerging Technologies in Computing Systems (JETC), 13, 17.

    Google Scholar 

  17. Lo, C.-P., Chen, W.-H., Wang, Z., Lee, A., Hsu, K.-H., Su, F., King, Y.-C., Lin, C. J., Liu, Y., Yang, H., et al. (2016). A ReRAM-based single-NVM nonvolatile flip-flop with reduced stress-time and write-power against wide distribution in write- time by using self-write-termination scheme for nonvolatile processors in IoT era. In 2016 IEEE international electron devices meeting (IEDM) (pp. 16–13). IEEE.

    Google Scholar 

  18. Ueki, M., Takeuchi, K., Yamamoto, T., Tanabe, A., Ikarashi, N., Saitoh, M., Nagumo, T., Sunamura, H., Narihiro, M., Uejima, K., et al. (2015). Low-power embedded ReRAM technology for IoT applications. In 2015 symposium on VLSI technology (VLSI technology) (pp. T108–T109). IEEE.

    Chapter  Google Scholar 

  19. Yang, J., Lin, Y., Fu, Y., Xue, X., & Chen, B. (2017). A small area and low power true random number generator using write speed variation of oxide based RRAM for IoT security application. In 2017 IEEE international symposium on circuits and systems (ISCAS) (pp. 1–4). IEEE.

    Google Scholar 

  20. Dinesh, M. K., & Bhakthavatchalu, R. (2016). Storage memory/NVM based executable memory interface IP for advanced IoT applications. In 2016 international conference on recent trends in information technology (ICRTIT) (pp. 1–9). IEEE.

    Google Scholar 

  21. Cai, H., Wang, Y., de Barros Naviner, L. A., Yang, J., & Zhao, W. (2017). Exploring hybrid STT-MTJ/CMOS energy solution in near-/sub-threshold regime for IoT applications. IEEE Transactions on Magnetics, 54, 1–9.

    Google Scholar 

  22. Chang, M.-F., Lin, C.-C., Lee, A., Chiang, Y.-N., Kuo, C.-C., Yang, G.-H., Tsai, H.-J., Chen, T.-F., & Sheu, S.-S. (2017). A 3T1R nonvolatile TCAM using MLC ReRAM for frequent-off instant-on filters in IoT and big-data processing. IEEE Journal of Solid-State Circuits, 52, 1664–1679.

    Article  Google Scholar 

  23. Chien, T.-K., Chiou, L.-Y., Sheu, S.-S., Lin, J.-C., Lee, C.-C., Ku, T.-K., Tsai, M.-J., & Wu, C.-I. (2016). Low-power MCU with embedded ReRAM buffers as sensor hub for IoT applications. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 6, 247–257.

    Article  Google Scholar 

  24. Prasad, R. S., Chaturvedi, N., Gurunarayanan, S., et al. (2019). A low power high speed MTJ based non-volatile SRAM cell for energy harvesting based IoT applications. Integration, 65, 43–50.

    Google Scholar 

  25. Kouznetsov, I., Ramkumar, K., Prabhakar, V., Hinh, L., Shih, H., Saha, S., Govindaswamy, S., Amundson, M., Dalton, D., Phan, T., et al. (2018). 40 nm ultralow-power charge-trap embedded NVM technology for IoT applications. In 2018 IEEE international memory workshop (IMW) (pp. 1–4). IEEE. Non-volatile memory based Internet of Things: A survey 23.

    Google Scholar 

  26. Lu, Y. (2016). Ultra-low-energy IoT memory architectures based on embedded STT-MRAM. In 2016 international symposium on VLSI technology, systems and application (VLSI-TSA) (p. 1). IEEE.

    Google Scholar 

  27. Chang, M.-F., Chuang, C.-H., Chiang, Y.-N., Sheu, S.-S., Kuo, C.-C., Cheng, H.-Y., Sampson, J., & Irwin, M. J. (2016). Designs of emerging memory based non-volatile TCAM for Internet-of-Things (IoT) and big-data processing: A 5t2r universal cell. In 2016 IEEE international symposium on circuits and systems (ISCAS) (pp. 1142–1145). IEEE.

    Chapter  Google Scholar 

  28. Xu, Y., Yang, L., Hou, Z., Huo, Q., & Qiu, K. (2017). Energy-efficient cache management for NVM-based IoT systems. In 2017 IEEE international symposium on parallel and distributed processing with applications and 2017 IEEE international conference on ubiquitous computing and communications (ISPA/IUCC) (pp. 491–493). IEEE.

    Chapter  Google Scholar 

  29. Rao, S., Shashikanth, K., Srinivas, R., & Sunita, M. (2017). Magnetic ram based filter design for low power signal processing in IoT applications. In 2017 14th IEEE India Council international conference (INDICON) (pp. 1–6). IEEE.

    Google Scholar 

  30. Sun, B., Liu, D., Yu, L., Li, J., Liu, J., Zhang, W., & Torng, T. (2018). MRAM co-designed processing-in-memory CNN accelerator for mobile and IoT applications. arXiv preprint arXiv:1811.12179.

    Google Scholar 

  31. Jayakumar, H., Raha, A., Stevens, J. R., & Raghunathan, V. (2017). Energy-aware memory mapping for hybrid FRAM-SRAM MCUS in intermittently-powered IoT devices. ACM Transactions on Embedded Computing Systems (TECS), 16, 65.

    Google Scholar 

  32. Hayashikoshi, M., Noda, H., Kawai, H., Murai, Y., Otani, S., Nii, K., Matsuda, Y., & Kondo, H. (2018). Low-power multi-sensor system with power management and nonvolatile memory access control for IoT applications. IEEE Transactions on Multi-Scale Computing Systems, 4, 784–792.

    Article  Google Scholar 

  33. Valea, E., Da Silva, M., Di Natale, G., Flottes, M.-L., Dupuis, S., & Rouzeyre, B. (2018). Si ECCS: Secure context saving for IoT devices. In 2018 13th international conference on design & technology of integrated systems in nanoscale era (DTIS) (pp. 1–2). IEEE.

    Google Scholar 

  34. Lai, H.-J., Huang, R.-Y., Huang, J.-Y., & Tsou, Y.-T. (2018). STT-MRAM application on IoT data privacy protection system. In 2018 IEEE international conference on consumer electronics-Taiwan (ICCE-TW) (pp. 1–5). IEEE.

    Google Scholar 

  35. Kobayashi, M., Murase, T., & Kuriyama, A. (2000). A longest prefix match search engine for multi-gigabit IP processing. In 2000 IEEE international conference on communications. ICC 2000. Global convergence through communications. Conference record, Volume 3 (pp. 1360–1364). IEEE.

    Chapter  Google Scholar 

  36. Fazio, M., Celesti, A., Villari, M., & Puliafito, A. (2014). The need of a hybrid storage approach for IoT in PaaS cloud federation. In 2014 28th international conference on advanced information networking and applications workshops (pp. 779–784). IEEE.

    Chapter  Google Scholar 

  37. Dou, C., Chen, W.-H., Chen, Y.-J., Lin, H.-T., Lin, W.-Y., Ho, M.-S., & Chang, M.-F. (2017). Challenges of emerging memory and memristor based circuits: Nonvolatile logics, IoT security, deep learning and neuromorphic computing. In 2017 IEEE 12th international conference on ASIC (ASICON) (pp. 140–143). IEEE.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Izzat Alsalibi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Alsalibi, A.I., Shambour, M.K.Y., Abu-Hashem, M.A., Shehab, M., Shambour, Q., Muqat, R. (2022). Nonvolatile Memory-Based Internet of Things: A Survey. In: Pal, S., De, D., Buyya, R. (eds) Artificial Intelligence-based Internet of Things Systems. Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-030-87059-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87059-1_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87058-4

  • Online ISBN: 978-3-030-87059-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics