Skip to main content

Natural History and Ecology of Caterpillar Parasitoids

  • Chapter
  • First Online:
Caterpillars in the Middle

Part of the book series: Fascinating Life Sciences ((FLS))

Abstract

Parasitoids are among the most diverse and important enemies of caterpillars. They are key components of the multitrophic communities in which caterpillars are sandwiched, and they have played a profound role in shaping caterpillar morphology, ecology, physiology, and behavior. Here, we review the natural histories and ecologies found in major parasitoid groups, with focus on the ichneumonoid wasps (especially Braconidae) and the Tachinidae (or “bristle flies”). We briefly examine aspects of the community patterns of caterpillar parasitoids, caterpillar traits that influence parasitism, host ranges of parasitoids, and what recent research employing genetic data is beginning to reveal about caterpillar-parasitoid associations. Finally, we assess how major anthropogenic environmental changes including habitat loss and fragmentation, invasive species, global warming, and agricultural intensification are affecting parasitoids and their interactions with hosts.

figure a

Head-on caterpillar of Eumorpha pandorus (Sphingidae; ventral side up), covered with the silk cocoons of a microgastrine braconid (probably Cotesia species), with an egg of a tachinid fly on its face, photographed in northern Arkansas. Photo: Kenji Nishida, Wakayama, Japan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguirre H, Shaw SR (2014a) Meteorus Haliday (Hymenoptera: Braconidae) parasitoids of Pyralidae: description and biology of two new species and first record of Meteorus desmiae Zitani, 1998 from Ecuador. J Nat Hist 48:2375–2388

    Google Scholar 

  • Aguirre H, Shaw SR (2014b) Neotropical species of Meteorus Haliday (Hymenoptera: Braconidae: Meteorinae) parasitizing Arctiinae (Lepidoptera: Noctuoidea: Erebidae). Zootaxa 3779:353–367

    Article  PubMed  Google Scholar 

  • Aguirre H, Shaw SR, Berry JA, de Sassi C (2014) Description and natural history of the first micropterous Meteorus species: M. orocrambivorus sp. n. (Hymenoptera, Braconidae, Euphorinae), endemic to New Zealand. J Hymenopt Res 38:45–57

    Article  Google Scholar 

  • Aguirre H, de Almeida LP, Shaw SR, Sarmiento CE (2015) An illustrated key to Neotropical species of the genus Meteorus Haliday (Hymenoptera, Braconidae, Euphorinae). Zookeys 489:33–94

    Article  Google Scholar 

  • Ahmadou S, Brevaoult T, Benoit L, Chapis M-P, Galan M, Couer d’acier A, Delvare G, Sembene M, Haran J (2019) Deciphering host-parasitoid interactions and parasitism rates of crop pests using DNA metabarcoding. Sci Rep 9:3646

    Article  CAS  Google Scholar 

  • Anderson RM, Dallar NM, Pirtel NL, Connors CJ, Mickley J, Bagchi R, Singer MS (2019) Bottom-up and top-down effects of forest fragmentation differ between dietary generalist and specialist caterpillars. Front Ecol Evol 7:452

    Article  Google Scholar 

  • Araujo RO, Vivallo F, Santo BF (2018) Ichneumonid wasps of the subfamily Mesochorinae: new replacement names, combinations, and an updated key to the World genera. Zootaxa 4521:52–60

    Article  PubMed  Google Scholar 

  • Areekul-Butcher B, Quicke DLJ (2011) Revision of Aleiodes (Hemigyroneuron) parasitic wasps (Hymenoptera: Braconidae: Rogadinae) with reappraisal of subgeneric limits, descriptions of new species and phylogenetic analysis. J Nat Hist 45:1403–1476

    Article  Google Scholar 

  • Arias-Penna CD, Whitfield JB, Janzen DH, Hallwachs W, Dyer LA, Smith MA, Hebert PDN, Fernández-Triana JL (2019) A species-level taxonomic review and host associations of Glyptapanteles (Hymenoptera, Braconidae, Microgastrinae) with an emphasis on 136 new reared species from Costa Rica and Ecuador. ZooKeys 890:1–685

    Article  PubMed  PubMed Central  Google Scholar 

  • Arnaud PH Jr (1978) A host-parasite catalog of North American Tachinidae (Diptera). USDA Misc Publ 1319. 860 pp

    Google Scholar 

  • Askew RR, Shaw MR (1986) Parasitoid communities: their size, structure, and development. In: Waage JK, Greathead D (eds) Insect parasitoids. Academic, London, pp 225–264

    Google Scholar 

  • Baer CS, Marquis RJ (2020) Between predators and parasitoids: Complex interactions among shelter traits, predation and parasitism in a shelter-building caterpillar community. Funct Ecol 00:1–13. https://doi.org/10.1111/1365-2435.13641

    Article  Google Scholar 

  • Barbosa P, Segarra AE, Gross P, Caldas A, Ahlstrom K, Carlson RW, Ferguson DC, Grissell EE, Hodges RW, Marsh PM, Poole RW, Schauff ME, Shaw SR, Whitfield JB, Woodley NE (2001) Differential parasitism of macrolepidopteran herbivores on two deciduous tree species. Ecology 82:698–704

    Article  Google Scholar 

  • Barbosa P, Tammaru T, Caldas A (2004) Is parasitism of numerically dominant species in macrolepidopteran assemblages independent of their abundance? Basic Appl Ecol 5:357–366

    Article  Google Scholar 

  • Battisti A, Bernardi M, Ghiraldo C (2000) Predation by the hoopoe (Upupa epops) on pupae of Thaumetopoea pityocampa and the likely influence on other natural enemies. Biocontrol 45:311–323

    Article  Google Scholar 

  • Beckage NE, Drezen J-M (eds) (2012) Parasitoid viruses: symbionts and pathogens. Elsevier, London

    Google Scholar 

  • Belshaw R (1994) Life history characteristics of Tachinidae (Diptera) and their effect on polyphagy. In: Hawkins BA, Sheehan W (eds) Parasitoid community ecology. Oxford University Press, Oxford, pp 145–162

    Google Scholar 

  • Bezemer TM, Harvey JA, Cronin JT (2014) Response of native insect communities to invasive plants. Annu Rev Entomol 59:119–141

    Article  CAS  PubMed  Google Scholar 

  • Blaschke JS, Stireman JO III, O’Hara JE, Cerretti P, Moulton JK (2018) Molecular phylogenetics and piercer evolution in the bug-killing flies (Diptera: Tachinidae: Phasiinae). Syst Entomol 43:218–238

    Article  Google Scholar 

  • Boettner GH, Elkinton JS, Boettner CJ (2000) Effects of a biological control introduction on three nontarget native species of saturniid moths. Conserv Biol 14:1798–1806

    Article  PubMed  Google Scholar 

  • Boivin G, van Baaren J (2008) The role of larval aggression and mobility in the transition between solitary and gregarious development in parasitoid wasps. Ecol Lett 3:469–474

    Article  Google Scholar 

  • Broad GR, Shaw MR, Fitton MG (2018) Ichneumonid Wasps (Hymenoptera: Ichneumonidae): their Classification and Biology. Handbook Ident Br Insec 7(12) 418 pp

    Google Scholar 

  • Burington ZL (2017) Evolution and biogeography of the tachinid flies with focus on the tribe Blondeliini (Insecta: Diptera: Tachinidae). PhD dissertation, Wright State University

    Google Scholar 

  • Burington ZL, Inclán-Luna DJ, Pollet M, Stireman JO III (2020) Latitudinal patterns in tachinid parasitoid diversity (Diptera: Tachinidae): a review of the evidence. Insect Cons Divers 13:419–431

    Article  Google Scholar 

  • Carmean D (1991) Biology of the Trigonalyidae (Hymenoptera), with notes on the vespine parasitoid Bareogonalos canadensis. NZ J Zool 18:209–214

    Article  Google Scholar 

  • Carmean D (1995) Trigonalyidae. In: Hanson PE, Gauld ID (eds) The Hymenoptera of Costa Rica. Oxford University Press, pp 187–192

    Google Scholar 

  • Carmean D, Kimsey L (1998) Phylogenetic revision of the parasitoid wasp family Trigonalidae (Hymenoptera). Syst Entomol 23:35–76

    Article  Google Scholar 

  • Caron V, Myers J, Gillespie D (2010) The failure to discriminate: Superparasitism of Trichoplusia ni Hübner by a generalist tachinid parasitoid. Bull Entomol Res 100:255–261

    Google Scholar 

  • Carvalheiro LG, Buckley YM, Memmott J (2010) Diet breadth influences how the impact of invasive plants is propagated through food webs. Ecology 91:1063–1074

    Article  PubMed  Google Scholar 

  • Cerretti P (2010) I tachinidi della fauna italiana (Diptera Tachinidae), con chiave interattiva dei generi ovest-paleartici. Vol. I. Centro Nazionale Biodiversita Forestale – Verona. Cierre Edizioni, Verona 573 pp

    Google Scholar 

  • Cerretti P, O'Hara JE, Wood DM, Shima H, Inclán DJ, Stireman JO III (2014) Signal through the noise? Phylogeny of the Tachinidae (Diptera) as inferred from morphological evidence. Syst Entomol 39:335–353

    Article  Google Scholar 

  • Cerretti P, Stireman JO III, Pape T, Marinho MAT, Rognes K, Grimaldi D (2017) First definitive fossil of an oestroid fly (Diptera: Calyptratae: Oestroidea) and the dating of oestroid divergences. PLoS One 12:e0182101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chandra G, Gupta VK (1977) Ichneumonologia Orientalis Part VII: the tribes Lissonotini and Banchini (Hymenoptera: Ichneumonidae: Banchinae). Orient Insect Monogr 7:1–290

    Google Scholar 

  • Chase JM, Blowes SA, Knight TM, Gerstner K, May F (2020) Ecosystem decay exacerbates biodiversity loss with habitat loss. Nature 584:238–243

    Article  CAS  PubMed  Google Scholar 

  • Chidawanyika F, Mudavanhu P, Nyamukondiwa C (2019) Global climate change as a driver of bottom-up and top-down factors in agricultural landscapes and the fate of host-parasitoid interactions. Front Ecol Evol 7:1–13

    Google Scholar 

  • Clausen CP (1940) Entomophagous insects. McGraw-Hill Book Company, New York

    Google Scholar 

  • Clausen CP (1978) Introduced parasites and predators of arthropod pests and weeds: a review

    Google Scholar 

  • Clavel J, Julliard R, Devictor V (2011) Worldwide decline of specialist species: toward a global functional homogenization? Front Ecol Environ 9:222–228

    Article  Google Scholar 

  • Colinet D, Mathe-Hubert H, Allemand R, Gatti J-L, Poirie M (2013) Variability of venom components in immune suppressive parasitoid wasps: from a phylogenetic to a population approach. J Insect Physiol 59:205–212

    Article  CAS  PubMed  Google Scholar 

  • Condon MA, Scheffer SJ, Lewis ML, Wharton R, Adams DC, Forbes AA (2014) Lethal interactions between parasites and prey increase niche diversity in a tropical community. Science 343:1240–1244

    Article  CAS  PubMed  Google Scholar 

  • Couchoux C, Seppä P, van Nouhuys S (2016) Strong dispersal in a parasitoid wasp overwhelms habitat fragmentation and host population dynamics. Mol Ecol 25:3344–3355

    Article  CAS  PubMed  Google Scholar 

  • Croft BA, Brown AWA (1975) Responses of arthropod natural enemies to insecticides. Annu Rev Entomol 20:285–335

    Article  CAS  PubMed  Google Scholar 

  • Dadelahi S, Shaw SR, Aguirre H, de Almeida LF (2018) A taxonomic study of Costa Rican Leptodrepana with descriptions of twenty-four new species (Hymenoptera: Braconidae: Cheloninae). Zookeys 750:59130

    Article  Google Scholar 

  • Dasch CE (1971) Ichneumon-flies of North America north of Mexico: 6. Mesochorinae. Volume 16. Mem Am Entomol Inst 16:1–376

    Google Scholar 

  • Dasch CE (1974) Neotropic Mesochorinae. Volume 22. Mem Am Entomol Inst 22:1–509

    Google Scholar 

  • Davies KF, Margules CR, Lawrence JF (2004) A synergistic effect puts rare, specialized species at greater risk of extinction. Ecology 85:265–271

    Article  Google Scholar 

  • Delucchi V (1982) Parasitoids and hyperparasitoids of Zeiraphera diniana [Lep, Tortricidae] and their pole in population control in outbreak areas. Entomophaga 27:77–92

    Article  Google Scholar 

  • Desneux N, Decourtye A, Delpuech J-MN (2007) The sublethal effects of pesticides on beneficial arthropods. Annu Rev Entomol 52:81–106

    Article  CAS  PubMed  Google Scholar 

  • Desurmont GA, Köhler A, Maag D et al (2017) The spitting image of plant defenses: effects of plant secondary chemistry on the efficacy of caterpillar regurgitant as an anti-predator defense. Ecol Evol 7:6304–6313

    Article  PubMed  PubMed Central  Google Scholar 

  • Desurmont GA, Guiguet A, Turlings T (2018) Invasive insect herbivores as disrupters of chemically-mediated tritrophic interactions: effects of herbivore density and parasitoid learning. Biol Invasions 20:195–206

    Article  Google Scholar 

  • Dindo ML (2011) Tachinid parasitoids: are they to be considered as koinobionts? Biocontrol 56:249–255

    Article  Google Scholar 

  • Doutt RL, Viggiani G (1968) The classification of the Trichogrammatidae (Hymenoptera: Chalcidoidea). Proc Calif Acad Sci 35:477–586

    Google Scholar 

  • Drost YC (1991) Development of oviposition behavior of Brachymeria intermedia, a parasitoid of the gypsy moth, Lymantria dispar. PhD dissertation, University of Massachusetts, Amherst

    Google Scholar 

  • Dunne JA, Williams RJ, Martinez ND (2002) Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecol Lett 5:558–567

    Article  Google Scholar 

  • Dyer LA (1995) Tasty generalists and nasty specialists? A comparative study of antipredator mechanisms in tropical lepidopteran larvae. Ecology 76:1483–1496

    Article  Google Scholar 

  • Dyer LA (1997) Effectiveness of caterpillar defenses against three species of invertebrate predators. J Res Lep 35:1–16

    Google Scholar 

  • Dyer LA, Gentry G (1999) Larval defensive mechanisms as predictors of successful biological control. Ecol Appl 9:402–408

    Article  Google Scholar 

  • Dyer LA, Singer MS, Lill JT, Stireman JO, Gentry GL, Marquis RJ, Ricklefs RE, Greeney HF, Wagner DL, Morais HC, Diniz IR, Kursar TA, Coley PD (2007) Host specificity of Lepidoptera in tropical and temperate forests. Nature 448:606–700

    Article  CAS  Google Scholar 

  • Dyer LA, Richards LA, Short SA, Dodson CD (2013) Effects of CO2 and temperature on tritrophic interactions. PLoS ONE 8:e62528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eggleton P, Belshaw R (1992) Insect parasitoids: an evolutionary overview. Philos Trans R Soc Lond Ser B Biol Sci 337:1–20

    Article  Google Scholar 

  • Eggleton P, Gaston KJ (1990) “Parasitoid” species and assemblages: convenient definitions or misleading compromises? Oikos 59:417–421

    Article  Google Scholar 

  • Eggleton P, Gaston KJ (1992) Tachinid host ranges: a reappraisal (Diptera: Tachinidae). Entomol Gaz 43:139–143

    Google Scholar 

  • Elkinton JS, Boettner GH (2012) Benefits and harm caused by the introduced generalist tachinid, Compsilura concinnata, in North America. BioControl 57:277–288

    Article  Google Scholar 

  • Farkas TE, Singer MS (2013) Can caterpillar density or host-plant quality explain host-plant-related parasitism of a generalist forest caterpillar assemblage? Oecologia 173:971–983

    Article  PubMed  Google Scholar 

  • Fatouros NE, Huigens ME (2012) Phoresy in the field: natural occurrence of Trichogramma egg parasitoids on butterflies and moths. BioControl 57:493–502

    Article  Google Scholar 

  • Feener DH Jr, Brown BV (1997) Diptera as parasitoids. Annu Rev Entomol 42:73–97

    Article  CAS  PubMed  Google Scholar 

  • Fenoglio MS, Srivastava D, Valladares G, Cagnolo L, Salvo A (2012) Forest fragmentation reduces parasitism via species loss at multiple trophic levels. Ecology 93:2407–2420

    Article  PubMed  Google Scholar 

  • Fernandez-Triana J, Janzen D, Hallwachs W, Whitfield J, Smith M, Kula R (2014a) Revision of the genus Pseudapanteles (Hymenoptera, Braconidae, Microgastrinae), with emphasis on the species in Area de Conservación Guanacaste, northwestern Costa Rica. ZooKeys 446:1–82

    Article  Google Scholar 

  • Fernandez-Triana J, Whitfield J, Rodriguez J, Smith M, Janzen D, Hajibabaei M, Burns J, Solis A, Brown J, Cardinal S, Goulet H, Hebert P (2014b) Review of Apanteles sensu stricto (Hymenoptera, Braconidae, Microgastrinae) from Area de Conservación Guanacaste, northwestern Costa Rica, with keys to all described species from Mesoamerica. ZooKeys 383:1–565

    Article  Google Scholar 

  • Fernandez-Triana J, Shaw MR, Boudreault C, Beaudin M, Broad GR (2020) Annotated and illustrated checklist of Microgastrinae parasitoid wasps (Hymenoptera: Braconidae). Zookeys 920:1–1089

    Article  PubMed  PubMed Central  Google Scholar 

  • Finney GL, Flanders SE, Smith HS (1947) Mass culture of Macrocenturs ancylivorus and its host, the potato tuber moth. Hilgardia 17:437–483

    Article  Google Scholar 

  • Fleming A, Wood D, Smith M, Dapkey T, Hallwachs W, Janzen D (2019) Twenty-two new species in the genus Hyphantrophaga Townsend (Diptera: Tachinidae) from Area de Conservación Guanacaste, with a key to the species of Mesoamerica. Biodivers Data J 7:e29553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forbes AA, Bagley RK, Beer M, Hippee AC, Widmayer HA (2018) Quantifying the unquantifiable: why Hymenoptera – not Coleoptera – is the most speciose animal order. BMC Ecol 18:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Fordyce JA (2010) Host shifts and evolutionary radiations of butterflies. Proc R Soc B 277:3735–3743

    Article  PubMed  PubMed Central  Google Scholar 

  • Forister ML, Dyer LA, Singer MS, Stireman JO, Lill JT (2012) Revisiting the evolution of ecological specialization, with emphasis on insect-plant interactions. Ecology 93:981–991

    Google Scholar 

  • Forrest JRK (2016) Complex responses of insect phenology to climate change. Curr Opin Insect Sci 17:49–54

    Article  PubMed  Google Scholar 

  • Fortier JC (2000) Description of a new gregarious species of Aleiodes Wesmael (Hymenoptera: Braconidae: Rogadinae). J Hymenopt Res 9:288–291

    Google Scholar 

  • Foster KR, Wenseleers T, Ratnieks FLW (2006) Kin selection is the key to altruism. Trends Ecol Evol 21:57–60

    Article  PubMed  Google Scholar 

  • Gámez-Virués S, Perović D, Gossner M et al (2015) Landscape simplification filters species traits and drives biotic homogenization. Nat Commun 6:8568

    Article  PubMed  CAS  Google Scholar 

  • Garraway EB, Bailey AJA, Freeman BE, Parnell JR, Emmel TC (2008) Insect conservation and islands. Springer, Dordrecht, pp 189–203

    Book  Google Scholar 

  • Garro LS, Shimbori EM, Penteado-Dias AM, Shaw SR (2017) Four new species of Aleiodes (Hymenoptera: Braconidae: Rogadinae) from the Neotropical Region. Can Entomol 149:560–573

    Article  Google Scholar 

  • Gates MW, Heraty JM, Schauff ME, Wagner DL, Whitfield JB, Wahl DB (2002) Survey of parasitic Hymenoptera on leaf miner in California. J Hymenopt Res 11:213–270

    Google Scholar 

  • Gauld ID (1991) The Ichneumonidae of Costa Rica, 1. Introduction, keys to subfamilies, and keys to the species of the lower Pimpliform subfamilies Rhyssinae, Poemeniinae, Acaenitinae and Cylloceriinae. Mem Am Entomol Inst 47:1–589

    Google Scholar 

  • Gauld I, Bolton B (1988) The Hymenoptera. Oxford University Press, British Museum of Natural History

    Google Scholar 

  • Gauld ID, Fitton MG (1984) An introduction to the Ichneumonidae of Australia. British Museum of Natural History, London

    Google Scholar 

  • Gauld ID, Gaston KJ, Janzen DH (1992) Plant allelochemicals, tritrophic interactions and the anomalous diversity of tropical parasitoids: the "nasty" host hypothesis. Oikos 65:353–357

    Article  Google Scholar 

  • Gauld ID, Sithole R, Gomez JU, Godoy C (2002) The Ichneumonidae of Costa Rica, 4. Mem Am Entomol Inst 66:1–768

    Google Scholar 

  • Gentry G, Dyer L (2002) On the conditional nature of Neotropical caterpillar defenses against their natural enemies. Ecology 83:3108–3119

    Google Scholar 

  • Ghahari H, Gibson GAP, Viggiani G (2021) Chalcidoidea of Iran (Insecta: Hymenoptera). CAB International, London. 480 pp

    Book  Google Scholar 

  • Gibson GA, Fusu L (2016) Revision of the Palaearctic species of Eupelmus (Eupelmus) Dalman (Hymenoptera: Chalcidoidea: Eupelmidae). Zootaxa 4081:1–331

    Article  PubMed  Google Scholar 

  • Gibson GAP, Huber JT, Woolley JB (eds) (1997) Annotated Keys to the Genera of Nearctic Chalcidoidea (Hymenoptera). NRC Research Press, Ottawa

    Google Scholar 

  • Godfray HCJ (1994) Parasitoids: behavioral and evolutionary ecology. Princeton University Press, Princeton

    Book  Google Scholar 

  • Godfray HCJ, Blacquiere T, Field LM, Hails RS, Potts SG, Raine NE, Vanbergen AJ, McLean AR (2015) A restatement of recent advances in the natural science evidence base concerning neonicotinoid insecticides and insect pollinators. Proc R Soc Lond B Biol Sci 282:20151821

    Google Scholar 

  • González E, Landis DA, Knapp M, Valladares G (2020) Forest cover and proximity decrease herbivory and increase crop yield via enhanced natural enemies in soybean fields. J Appl Ecol 57:2296–2306

    Article  Google Scholar 

  • Gordh G, Legner LE, Caltagirone LE (1999) Chapter 15, biology of parasitic Hymenoptera. In: Bellows TS, Fisher TW (eds) Handbook of biological control. Academic, pp 355–381

    Chapter  Google Scholar 

  • Gravel D, Massol F, Canard E, Mouillot D, Mouquet N (2011) Trophic theory of island biogeography. Ecol Lett 14:1010–1016

    Article  PubMed  Google Scholar 

  • Greathead DJ, Greathead AH (1992) Biological control of insect pests by insect parasitoids and predators: the BIOCAT database. Biocontrol News Info 13:61N–68N

    Article  Google Scholar 

  • Greeney HF, Stireman JO III (2002) Emergence of parasitic flies from adult Actinote diceus (Nymphalidae: Acraeinae) in Ecuador. J Lep Soc 55:79–80

    Google Scholar 

  • Greeney HF, Dyer LA, Smilanich AM (2012) Feeding by lepidopteran larvae is dangerous: a review of caterpillars’ chemical, physiological, morphological, and behavioral defenses against natural enemies. Invertebr Surviv J 9:7–34

    Google Scholar 

  • Grimaldi D, Engel MS (2005) The evolution of the insects. Cambridge University Press, Cambridge

    Google Scholar 

  • Gripenberg S, Hamer NIA, Brereton TOM, Roy DB, Lewis OT (2011) A novel parasitoid and a declining butterfly: cause or coincidence? Ecol Entomol 36:271–281

    Article  Google Scholar 

  • Grissell EE, Schauff ME (1997) Chapter 3. Superfamily Chalcidoidea. In: Gibson GA, Huber JT, Wooley JB (eds) Annotated keys to the genera of Nearctic Chalcidoidae. NRC Research Press, Ottawa, pp 45–116

    Google Scholar 

  • Gross P (1993) Insect behavioral and morphological defenses against parasitoids. Annu Rev Entomol 38:251–273

    Google Scholar 

  • Guerrieri E, Noyes J (2005) Revision of the European species of Copidosoma Ratzeburg (Hymenoptera: Encyrtidae), parasitoids of caterpillars (Lepidoptera). Syst Entomol 30:97–174

    Article  Google Scholar 

  • Haddad NM, Brudvig LA, Clobert J et al (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1:e1500052

    Article  PubMed  PubMed Central  Google Scholar 

  • Hallmann CA, Sorg M, Jongejans E et al (2017) More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS One 12:e0185809

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hance T, van Baaren J, Vernon P, Boivin G (2007) Impact of extreme temperatures on parasitoids in a climate change perspective. Annu Rev Entomol 52:107–126

    Article  CAS  PubMed  Google Scholar 

  • Hansen AC, Glassmire AE, Dyer LA, Smilanich AM (2017) Patterns in parasitism frequency explained by diet and immunity. Ecography 40:803–805

    Article  Google Scholar 

  • Hanson PE, Gauld ID (1995) The Hymenoptera of Costa Rica. Oxford University Press, Oxford

    Google Scholar 

  • Hansson C (2002) Eulophidae of Costa Rica (Hymenoptera, Chalcidoidea). Mem Am Entomol Inst 67:1–290

    Google Scholar 

  • Haran J, Delvare G, Vayssieres JF, Benoit L, Cruaud P, Rasplus J-Y, Cruaud A (2018) Increasing the utility of barcode databases through high-throughput sequencing of amplicons from dried museum specimens, an example on parasitic Hymenoptera (Braconidae). Biol Control 122:93–100

    Google Scholar 

  • Hardy NB, Otto SP (2014) Specialization and generalization in the diversification of phytophagous insects: tests of the musical chairs and oscillation hypotheses. Proc R Soc B 281:20132960

    Article  PubMed  PubMed Central  Google Scholar 

  • Hassell MP (2000) Host-parasitoid population dynamics. J Anim Ecol 69:543–566

    Article  Google Scholar 

  • Hawkins BA (1994) Patterns and process in host–parasitoid interactions. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hawkins BA, Sheehan W (eds) (1994) Parasitoid community ecology. Oxford University Press, Oxford

    Google Scholar 

  • Hawkins BA, Cornell HV, Hochberg ME (1997) Predators, parasitoids, and pathogens as mortality agents in phytophagous insect populations. Ecology 78:2145–2152

    Article  Google Scholar 

  • Heinrich G (1977) Ichneumoninae of Florida and neighboring states (Hymenoptera: Ichneumonidae, subfamily Ichneumoninae). Vol. 9 in Arthropods of Florida and neighboring land areas, Florida Department of Agriculture & Consumer Services, pp 1–350

    Google Scholar 

  • Henneman ML, Memmott J (2001) Infiltration of a Hawaiian community by introduced biological control agents. Science 293:1314–1316

    Article  CAS  PubMed  Google Scholar 

  • Heraty JM, Darling DC (1984) Comparative morphology of the planidial larvae of Eucharitidae and Perilampidae (Hymenoptera: Chalcidoidea). Syst Entomol 9(3):309–328

    Article  Google Scholar 

  • Heraty JM, Burks RA, Cruaud A, Gibson GA, Liljeblad P, Munro J (2013) A phylogenetic analysis of the megadiverse Chalcidoidea (Hymenoptera). Cladistics 29:466–542

    Article  PubMed  Google Scholar 

  • Herting B (1960) Biologie der westpalarktischen Raupenfliegen. Dipt., Tachinidae. Monogr Angew Entomol 16, 188 pp

    Google Scholar 

  • Hinz R, Short J (1983) Life history and systematic position of the European Alomya species. Entomol Scand 14:462–466

    Google Scholar 

  • Holt RD (1977) Predation, apparent competition, and the structure of prey communities. Theor Popul Biol 12:197–229

    Article  CAS  PubMed  Google Scholar 

  • Holt RD, Lawton JH, Polis GA, Martinez ND (1999) Trophic rank and the species-area relationship. Ecology 80:1495–1504

    Google Scholar 

  • Hrcek J, Godfray HCJ (2015) What do molecular methods bring to host–parasitoid food webs? Trends Parasitol 31:30–35

    Article  PubMed  Google Scholar 

  • Hrcek J, Miller SE, Quicke DLJ, Smith MA (2011) Molecular detection of trophic links in a complex insect host–parasitoid food web. Mol Ecol Resour 11:786–794

    Article  PubMed  Google Scholar 

  • Hrcek J, Miller SE, Whitfield JB, Shima H, Novotny V (2013) Parasitism rate, parasitoid community composition and host specificity on exposed and semi-concealed caterpillars from a tropical rainforest. Oecologia 173:521–532

    Article  PubMed  Google Scholar 

  • Huber JT (1986) Systematics, biology, and hosts of the Mymaridae and Mymarommatidae (Insecta: Hymenoptera). Entomography 4:185–243

    Google Scholar 

  • Ichiki R, Shima H (2003) Immature Life of Compsilura concinnata (Meigen) (Diptera: Tachinidae). Ann Entomol Soc Am 96:161–167

    Article  Google Scholar 

  • Ichiki R, Ho G, Wajnberg E, Kainoh Y, Tabata J, Nakamura S (2012) Different uses of plant semiochemicals in host location strategies of the two tachinid parasitoids. Naturwissenschaften 99:687–694

    Article  CAS  PubMed  Google Scholar 

  • Inclán DJ, Cerretti P, Marini L (2014) Interactive effects of area and connectivity on the diversity of tachinid parasitoids in highly fragmented landscapes. Landsc Ecol 29:879–889

    Article  Google Scholar 

  • Inclán DJ, Cerretti P, Gabriel D, Benton TG, Sait SM, Kunin WE, Gillespie MAK, Marini L (2015) Organic farming enhances parasitoid diversity at the local and landscape scales. J Appl Ecol 52:1102–1109

    Article  Google Scholar 

  • Jackson DJ (1961) Observations on the biology of Caraphractus cinctus Walker (Hymenoptera: Mymaridae), a parasitoid of the eggs of Dytsicidae (Coleoptera). 2. Immature stages and seasonal history with a review of mymarid larvae. Parasitology 51:269–294

    Article  Google Scholar 

  • Janz N, Nylin S (2008) The oscillation hypothesis of host-plant range and speciation. In: Tilmon K (ed) Specialization, speciation, and radiation: the evolutionary biology of herbivorous insects. University of California Press, Berkeley, pp 203–215

    Google Scholar 

  • Janz N, Nylin S, Wahlberg N (2006) Diversity begets diversity: host expansions and the diversification of plant-feeding insects. BMC Evol Biol 6:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Janzen DH (1981) The peak in North American ichneumonid species richness lies between 38-degrees and 42-degrees-N. Ecology 62:532–537

    Article  Google Scholar 

  • Janzen DH (1995) The caterpillars and their parasitoids of a tropical dry forest. Tachinid Times 8:1–3

    Google Scholar 

  • Janzen DH, Hallwachs W (2009) Dynamic database for an inventory of the macrocaterpillar fauna, and its food plants and parasitoids, of Area de Conservacion Guanacaste (ACG), northwestern Costa Rica. http://janzen.sas.upenn.edu. Accessed Dec 2020

  • Jeffries MJ, Lawton JH (1984) Enemy-free space and the structure of ecological communities. Biol J Linn Soc 23:269–286

    Article  Google Scholar 

  • Jeffs CT, Lewis OT (2013) Effects of climate warming on host–parasitoid interactions. Ecol Entomol 38:209–218

    Article  Google Scholar 

  • Jones GZ, Shaw SR (2012) Ten new species of Meteorus (Braconidae: Hymenoptera) from Ecuador reared at the Yanayacu Biological Center for Creative Studies. Zootaxa 3547:1–23

    Article  Google Scholar 

  • Jonsson M, Buckley HL, Case BS, Wratten SD, Hale RJ, Didham RK (2012) Agricultural intensification drives landscape-context effects on host–parasitoid interactions in agroecosystems. J Appl Ecol 49:706–714

    Google Scholar 

  • Kageyama A, Sugiura S (2016) Caterpillar hairs as an anti-parasitoid defence. Sci Nat 103:86

    Article  CAS  Google Scholar 

  • Kainoh Y, Tamaki Y (1982) Searching behavior and oviposition of the egg-larval parasitoid, Ascogaster reticulatus Watanabe (Hymenoptera: Braconidae). Appl Entomol Zool 17:194–206

    Article  Google Scholar 

  • Kankaanpää T, Vesterinen E, Hardwick B et al (2020) Parasitoids indicate major climate-induced shifts in arctic communities. Glob Chang Biol 00:1–20. https://doi.org/10.1111/gcb.15297

    Article  Google Scholar 

  • Kautz AR, Gardiner MM (2019) Agricultural intensification may create an attractive sink for Dolichopodidae, a ubiquitous but understudied predatory fly family. J Insect Conserv 23:453–465

    Article  Google Scholar 

  • Keeler MS, Chew FS, Goodale BC, Reed JM (2006) Modelling the impacts of two exotic invasive species on a native butterfly: top-down vs. bottom-up effects. J Anim Ecol 75:777–788

    Article  PubMed  Google Scholar 

  • Kitson JJM, Hahn C, Sands RJ, Straw NA, Evans DM, Lunt DH (2019) Detecting host-parasitoid interactions in an invasive Lepidopteran using nested tagging DNA-metabarcoding. Mol Ecol 28:471–483

    Article  CAS  PubMed  Google Scholar 

  • Kittel RN, Austin AD, Klopfstein SA (2016) Molecular and morphological phylogenetics of chelonine parasitoid wasps (Hymenoptera: Braconidae), with a critical assessment of divergence time estimations. Mol Phylogenet Evol 101:224–241

    Article  PubMed  Google Scholar 

  • Koptur S (1985) Alternative defenses against herbivores in Inga (Fabaceae: Mimosoideae) over an elevational gradient. Ecology 66:1639–1650

    Google Scholar 

  • Krauth SJ, Williams AH (2006) Notes on Taeniogonalos gundlachii (Hymenoptera: Trigonalidae) from Wisconsin. Great Lakes Entomol 39:54–58

    Google Scholar 

  • Kula RR, Dix-Luna O, Shaw SR (2012) Review of Ilatha Fischer (Hymenoptera: Braconidae: Alysiinae) including descriptions of six new species and a key to species. Proc Entomol Soc Wash 114:293–328

    Article  Google Scholar 

  • Landis DA, Menalled FD (1998) Ecological considerations in the conservation of effective parasitoid communities in agricultural systems. In: Barbosa P (ed) Conservation biological control. Academic, New York, pp 101–121

    Chapter  Google Scholar 

  • Landis DA, Wratten SD, Gurr GM (2000) Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu Rev Entomol 45:175–201

    Article  CAS  PubMed  Google Scholar 

  • LaSalle J, Gauld ID (1991) Parasitic Hymenoptera and the biodiversity crisis. Redia 74:315–334

    Google Scholar 

  • Le Corff J, Marquis RJ, Whitfield JB (2000) Temporal and spatial variation in a parasitoid community associated with the herbivores that feed on Missouri Quercus. Environ Entomol 29:181–194

    Article  Google Scholar 

  • Letourneau DK, Allen SGB, Stireman JO III (2012) Perennial habitat fragments, parasitoid diversity and parasitism in ephemeral crops. J Appl Ecol 49:1405–1416

    Article  Google Scholar 

  • Letourneau DK, Kula RR, Sharkey MJ, Stireman JO III (2015) Habitat eradication and cropland intensification may reduce parasitoid diversity and natural pest control services in annual crop fields. Elementa 3:000069

    Google Scholar 

  • Libra M, Tulai S, Novotny V, Hrcek J (2019) Elevational contrast in predation and parasitism risk to caterpillars in a tropical rainforest. Entomol Exp Appl 167:922–931

    Article  Google Scholar 

  • Lill JT, Marquis RJ, Ricklefs RE (2002) Host plants influence parasitism of forest caterpillars. Nature 417:170–173

    Article  CAS  PubMed  Google Scholar 

  • López R, Ferro DN, Van Driesche RG (1995) Two tachinid species discriminate between parasitized and non-parasitized hosts. Ent Exp Appl 74:37–45

    Article  Google Scholar 

  • López-Núñez FA, Heleno RH, Ribeiro S, Marchante H, Marchante E (2017) Four-trophic level food webs reveal the cascading impacts of an invasive plant targeted for biocontrol. Ecology 98:782–793

    Article  PubMed  Google Scholar 

  • LoPresti EF, Morse DH (2013) Costly leaf shelters protect moth pupae from parasitoids. Arthro-Plant Interact 7:445–453

    Article  Google Scholar 

  • Malo F (1961) Phoresy in Xenufens (Hymenoptera: Trichogrammatidae). A parasite of Caligo eurylochus (Lepidoptera: Nymphalidae). J Econ Entomol 54:465–466

    Article  Google Scholar 

  • Marquis RJ, Lill JT, Forkner RE, Le Corff J, Landoski J, Whitfield JB (2019) Declines and resilience of leaf chewing insects on Missouri oaks following spring frost and summer drought. Front Ecol Evol 7:396

    Article  Google Scholar 

  • Martinson HM, Fagan WF (2014) Trophic disruption: a meta-analysis of how habitat fragmentation affects resource consumption in terrestrial arthropod systems. Ecol Lett 17:1178–1189

    Article  PubMed  Google Scholar 

  • Martorana L, Foti MC, Rondoni G, Conti E, Colazza S, Peri E (2017) An invasive insect herbivore disrupts plant volatile-mediated tritrophic signalling. J Pest Sci 90:1079–1085

    Article  Google Scholar 

  • Matthews TJ, Cottee-Jones HE, Whittaker RJ (2014) Habitat fragmentation and the species–area relationship: a focus on total species richness obscures the impact of habitat loss on habitat specialists. Divers Distrib 20:1136–1146

    Article  Google Scholar 

  • McCabe TL (1998) Dipterous parasitoids from adults of moths (Lepidoptera). Entomol News 109:325–328

    Google Scholar 

  • Michalková V, Valigurová A, Dindo ML, Vanhara J (2009) Larval morphology and anatomy of the parasitoid Exorista larvarum (Diptera: Tachinidae), with an emphasis on cephalopharyngeal skeleton and digestive tract. J Parasitol 95:544–554

    Article  PubMed  Google Scholar 

  • Mondor EB, Roland J (1998) Host searching and oviposition by Leschenaultia exul, a tachinid parasitoid of the forest tent caterpillar, Malacosoma disstria. J Insect Behav 11:583–592

    Article  Google Scholar 

  • Montgomery GA, Dunn RR, Fox R, Jongejans E, Leather SR, Saunders ME, Shortall CR, Tingley MW, Wagner DL (2020) Is the insect apocalypse upon us? How to find out. Biol Conserv 108327

    Google Scholar 

  • Montllor CB, Bernays EA (1993) Invertebrate predators and caterpillar foraging. In: Stamp NE, Casey TM (eds) Caterpillars: ecological and evolutionary constraints on foraging. Chapman & Hall, New York, pp 170–202

    Google Scholar 

  • Montoya JM, Pimm SL, Solé RV (2006) Ecological networks and their fragility. Nature 442:259–264

    Article  CAS  PubMed  Google Scholar 

  • Munro VMV, Henderson IM (2002) Nontarget effect of entomophagous biocontrol: shared parasitism between native lepidopteran parasitoids and the biocontrol agent Trigonospila brevifacies (Diptera: Tachinidae) in foresthabitats. Environ Entomol 31:388–396

    Article  Google Scholar 

  • Murphy SM, Lill JT, Smith DR (2009) A scattershot approach to host location: uncovering the unique life history of the trigonalid hyperparasitoid Orthogonalys pulchella (Cresson). Am Entomol 55:82–87

    Article  Google Scholar 

  • Murphy SM, Lill JT, Bowers MD, Singer MS (2014) Enemy free space for parasitoids. Environ Entomol 43:1465–1474

    Article  PubMed  Google Scholar 

  • Myers JH, Cory JS (2017) Biological control agents: invasive species or valuable solutions? In: Vilà M, Hulme P (eds) Impact of biological invasions on ecosystem services, Invading nature – Springer series in invasion ecology, vol 12. Springer, Cham, pp 191–202

    Chapter  Google Scholar 

  • Nagarkatti S, Nagaraja H (1977) Biosystematics of Trichogramma and Trichogrammatoidea species. Annu Rev Entomol 22:157–176

    Article  Google Scholar 

  • Narendran TC, Amareswara Rao S (1987) Biosystematics of Chalcididae (Chalcidoidea: Hymenoptera). Proc Ind Acad Sci (Anim Sci) 96:543–550

    Article  Google Scholar 

  • Nénon J-P, Boivin G, Le Lannic J, van Baaren J (2011) Functional morphology of the mymariform and sacciform larvae of the egg parasitoid Anaphes victus Huber (Hymenoptera: Mymaridae). Can J Zool 73:996–1000

    Article  Google Scholar 

  • Novotny V, Drozd P, Miller SE, Kulfan M, Janda M et al (2006) Why are there so many species of herbivorous insects in tropical rainforests? Science 313:1115–1118

    Article  CAS  PubMed  Google Scholar 

  • Noyes JS (2021) Universal Chalcidoidea database. Available at: http://www.nhm.ac.uk/chalcidoids

  • Noyes JS, Valentine EW (1989) Mymaridae (Insecta: Hymenoptera) – introduction and review of genera. Fauna NZ 17:1–95

    Google Scholar 

  • O’Hara JE (1985) Oviposition strategies of the Tachinidae, a family of beneficial parasitic flies. Univ Alberta Agric For Bull 8:31–34

    Google Scholar 

  • O’Hara JE, Henderson SJ, Wood DM (2020) Preliminary checklist of the Tachinidae of the world. Version 2.0. PDF document, 1039 pages. Available at: http://www.nadsdiptera.org/Tach/WorldTachs/Checklist/Worldchecklist.html. Accessed 4 Sept 2020

  • Ode PJ (2006) Plant chemistry and natural enemy fitness: effects on herbivore and natural enemy interactions. Annu Rev Entomol 51:163–185

    Article  CAS  PubMed  Google Scholar 

  • Parker HL (1931) Macrocentrus gifuensis Ashmead, a polyembryonic braconid parasite in the European corn borer. Tech Bull USDA 230:1–32

    Google Scholar 

  • Parry D (2009) Beyond Pandora’s box: quantitatively evaluating non-target effects of parasitoids in classical biological control. Biol Invasions 11:47–58

    Article  Google Scholar 

  • Pennacchio F, Strand MR (2006) Evolution of developmental strategies in parasitic Hymenoptera. Annu Rev Entomol 51:233–258

    Google Scholar 

  • Pereira HM, Leadley PW, Proença V et al (2010) Scenarios for global biodiversity in the 21st century. Science 330:1496–1501

    Article  CAS  PubMed  Google Scholar 

  • Pereira FF, Kassab SO, Ferreira Calado VR, Vargas EL, de Oliveira HN, Zanuncio JC (2015) Parasitism and Emergence of Tetrastichus howardi (Hymenoptera: Eulophidae) on Diatraea saccharalis (Lepidoptera: Crambidae) Larvae, Pupae and Adults. Fla Entomol 98:377–380

    Article  Google Scholar 

  • Pérez-Benavides AL, Fernando Hernández-Baz F, González JM, Romero-Nápoles J, Hanson PE, Zaldívar-Riverón A (2020) Integrative taxonomy to assess the species richness of chalcidoid parasitoids (Hymenoptera) associated to Bruchinae (Coleoptera: Chrysomelidae) from Mexico. Rev Mex Biodivers 91:e913492

    Article  Google Scholar 

  • Peters RS, Baur H (2011) A revision of the Dibrachys cavus species complex (Hymenoptera: Chalcidoidea: Pteromalidae). Zootaxa 2937:1–30

    Article  Google Scholar 

  • Peters RS, Krogmann L, Mayer C et al (2017) Evolutionary history of the Hymenoptera. Curr Biol 27:1013–1018

    Article  CAS  PubMed  Google Scholar 

  • Petrice TR, Strazanac JS, Butler L (2004) A survey of hymenopteran parasitoids of forest Macrolepidoptera in the central Appalachians. J Econ Entomol 97:451–459

    Article  CAS  PubMed  Google Scholar 

  • Poinar GO (1979) Nematodes for biological control of insects. CRC Press, Boca Raton

    Google Scholar 

  • Polilov AA (2012) The smallest insects evolve anucleate neurons. Arthrop Struct Dev:4129–4134

    Google Scholar 

  • Purrington FF (1979) Biology of the hyperparasitic wasp Perilampus similis (Hymenoptera: Perilampidae). Great Lakes Entomol 12:63–66

    Google Scholar 

  • Quicke DLJ (1997) Parasitic wasps. Chapman and Hall/Springer, Dordrecht

    Google Scholar 

  • Quicke DLJ (2015) The braconid and ichneumonid parasitoid wasps: biology, systematics, evolution and ecology. Wiley-Blackwell, London

    Google Scholar 

  • Quicke DLJ, Austin AD, Fagan-Jeffries EP, Hebert PDN, Butcher BA (2020) Recognition of the Trachypetidae stat.n. as a new extant family of Ichneumonoidea (Hymenoptera), based on molecular and morphological evidence. Syst Entomol 45:771–782

    Google Scholar 

  • Raff JW (1934) Observations on sawflies of the genus Perga, with notes on some reared primary parasites of the families Trigonalidae, Ichneumonidae, and Tachinidae. Trans Proc Roy Soc Vict 47:54–77

    Google Scholar 

  • Remmel T, Davison J, Tammaru T (2011) Quantifying predation on folivorous insect larvae: the perspective of life-history evolution. Biol J Linn Soc 104:1–18

    Article  Google Scholar 

  • Rodriguez JJ, Fernandez Triana J, Whitfield JB, Smith MA, Erwin TL (2013) Extrapolations from field studies and known faunas converge on much higher estimates of world microgastrine parasitoid wasp species richness. Ins Conserv Divers 6:530–536

    Article  Google Scholar 

  • Roland J, Taylor PD (1997) Insect parasitoid species respond to forest structure at different spatial scales. Nature 386:710–713

    Article  CAS  Google Scholar 

  • Roslin T, Hardwick B, Novotny V et al (2017) Higher predation risk for insect prey at low latitudes and elevations. Science 356:742–744

    Article  CAS  PubMed  Google Scholar 

  • Rougerie R, Smith MA, Fernandez-Triana J, Lopez-Vaamonde C, Ratnasingham S, Hebert PD (2011) Molecular analysis of parasitoid linkages (MAPL): gut contents of adult parasitoid wasps reveal larval host. Mol Ecol 20:179–186

    Article  PubMed  Google Scholar 

  • Ryan RB (1990) Evaluation of biological control: introduced parasites of larch casebearer (Lepidoptera: Coleophoridae) in Oregon. Environ Entomol 19:1873–1881

    Article  Google Scholar 

  • Ryan RB (1997) Before and after evaluation of biological control of the larch casebearer (Lepidoptera: Coleophoridae) in the Blue Mountains of Oregon and Washington, 1972–1995. Environ Entomol 26:703–715

    Article  Google Scholar 

  • Ryan RB, Tunnock S, Ebel FW (1987) The larch casebearer in North America. J For 85:33–39

    Google Scholar 

  • Sabrosky CW, Reardon RC (1976) Tachinid parasities of the gypsy moth, Lymantria dispar, with keys to adults and puparia. Misc Pubs Entomol Soc Am 10:1–126

    Google Scholar 

  • Salcido DM, Forister ML, Garcia Lopez H, Dyer LA (2020) Loss of dominant caterpillar genera in a protected tropical forest. Sci Rep 10:422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Bayo F, Wyckhuys KAG (2019) Worldwide decline of the entomofauna: a review of its drivers. Biol Conserv 232:8–27

    Google Scholar 

  • Scaffner JV, Griswold CL (1934) Macrolepidoptera and their parasites reared from field collections in the northeastern part of the United States. USDA Miscellaneous Publication, Washington

    Google Scholar 

  • Schauff ME (1984) The Holarctic genera of Mymaridae (Hymenoptera: Chalcidoidea). Mem Entomol Soc Wash 12:1–67

    Google Scholar 

  • Shaw MR (1983) On the evolution of endoparasitism: the biology of some genera of Rogadinae (Braconidae). In: Gupta VK (ed) Studies on the Hymenoptera: a collection of articles on Hymenoptera commemorating the 70th birthday of Henry K. Townes, vol 20. Contributions of the American Entomological Institute, pp 307–328

    Google Scholar 

  • Shaw MR (1994) Parasitoid host ranges. In: Hawkins BA, Sheehan W (eds) Parasitoid community ecology. Oxford University Press, Oxford, pp 111–144

    Google Scholar 

  • Shaw MR (2002) Host ranges of Aleiodes species and an evolutionary hypothesis. In: Melika G, Thuroczy C (eds) Parasitic wasps: evolution, systematics, biodiversity and biological control. Agroinform Kiado, Budapest, pp 321–327

    Google Scholar 

  • Shaw SR (1995) In: Hanson P, Gauld ID (eds) Chapter 12.2, Braconidae. The Hymenoptera of Costa Rica. Oxford University Press, London, pp 431–463

    Google Scholar 

  • Shaw SR (2004) Essay on the evolution of adult-parasitism in the subfamily Euphorinae (Hymenoptera: Braconidae). Proc Russ Entomol Soc St Petersburg 75:1–15

    Google Scholar 

  • Shaw SR (2006) Aleiodes wasps of eastern forests: a guide to parasitoids and associated mummified caterpillars, Technology Transfer Series. Forest Health Technology Enterprise Team, Morgantown, 121 pp

    Google Scholar 

  • Shaw SR (2014) Planet of the bugs. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Shaw SR (2017) Subfamily Cheloninae. In: Wharton RA, Marsh PM, Sharkey MJ (eds) Identification manual of the New World Genera of the Family Braconidae (Hymenoptera), 2nd ed, vol 1. International Society of Hymenopterists Special Publication, Washington, DC, pp 198–207

    Google Scholar 

  • Shaw MR, Huddleston T (1991) Classification and biology of braconid wasps. Handbooks for the identification of British insects, Volume 7, Part 11. Royal Entomological Society of London, London, 126 pp

    Google Scholar 

  • Shaw SR, Nishida K (2005) A new species of gregarious Meteorus (Hymenoptera: Braconidae) reared from caterpillars of Venadicodia caneti (Lepidoptera: Limacodidae) in Costa Rica. Zootaxa 1028:49–60

    Article  Google Scholar 

  • Shaw SR, Marsh PM, Fortier JC (1997) Revision of North American Aleiodes (Part 1): the pulchripes Wesmael species-group in the New World (Hymenoptera: Braconidae, Rogadinae). J Hymenopt Res 6:10–35

    Google Scholar 

  • Shaw SR, Shimbori EM, Penteado-Dias AM (2020) A revision of the Aleiodes bakeri (Brues) species subgroup of the A. seriatus species group with the descriptions of 18 new species from the Neotropical Region. Zookeys 964:41–107

    Article  PubMed  PubMed Central  Google Scholar 

  • Shimbori EM, Shaw SR (2014) Twenty-four new species of Aleiodes Wesmael from the eastern Andes of Ecuador with associated biological information (Hymenoptera, Braconidae, Rogadinae). Zookeys 405:1–81

    Article  Google Scholar 

  • Shimbori EM, Bortoni MA, Shaw SR, Soussa-Gessner C d S, Cerântola P d CM, Penteado-Diaz AM (2019) Revision of the new World genera Adelius Haliday and Paradelius DeSaeger (Hymenoptera: Braconidae: Cheloninae: Adeliini). Zootaxa 4571:151–200

    Article  Google Scholar 

  • Simmonds FJ (1947) The biology of Phytodietus pulcherrimus (Cress.) (Ichneumonidae, Tryphoninae), parasitic on Loxostege sticticalis L. in North America. Parasitology 38:150–156

    Google Scholar 

  • Singer MS, Stireman JO III (2003) Does anti-parasitoid defense influence host-plant selection by a generalist caterpillar? Oikos 100:554–562

    Article  Google Scholar 

  • Singer MS, Rodrigues D, Stireman JO III, Carriere Y (2004) Comparing bi-trophic and tri-trophic causes of host use in a phytophagous insect. Ecology 85:2747–2753

    Article  Google Scholar 

  • Slinn HL, Richards LA, Dyer LA, Hurtado P, Smilanich AM (2018) Across multiple species, Phytochemical diversity and herbivore diet breadth have cascading effects on herbivore immunity and parasitism in a tropical model system. Front Plant Sci 9:656

    Article  PubMed  PubMed Central  Google Scholar 

  • Smilanich AM, Dyer LA, Gentry GL (2009) The insect immune response and other putative defenses as effective predictors of parasitism. Ecology 90:1434–1440

    Article  PubMed  Google Scholar 

  • Smith KGV (1981) A tachinid (Diptera) larva in the abdomen of an adult moth (Geometridae). Entomol Gaz 32:174–176

    Google Scholar 

  • Smith MA, Woodley NE, Janzen DH, Hallwachs W, Hebert PDN (2006) DNA barcodes reveal cryptic host-specificity within the presumed polyphagous members of a genus of parasitoid flies (Diptera: Tachinidae). Proc Natl Acad Sci U S A 103:3657–3662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith MA, Wood DM, Janzen DH, Hallwachs W, Hebert PDN (2007) DNA barcodes affirm that 16 species of apparently generalist tropical parasitoid flies (Diptera, Tachinidae) are not all generalists. Proc Natl Acad Sci U S A 104:4967–4972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith MA, Rodriguez JJ, Whitfield JB, Deans AR, Janzen DH, Hallwachs W, Hebert PDN (2008) Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections. Proc Natl Acad Sci U S A 105:12359–12364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith DR, Janzen DH, Hallwachs W, Smith AM (2012) Hyperparasitoid wasps (Hymenoptera, Trigonalidae) reared from dry forest and rain forest caterpillars of Area de Conservación Guanacaste, Costa Rica. J Hymenopt Res 29:119–144

    Article  Google Scholar 

  • Sow A, Brévault T, Benoit L, Chapuis M-P, Galan M, Coeur D’acier A, Delvare G, Sembène M, Haran J (2019) Deciphering host-parasitoid interactions and parasitism rates of crop pests using DNA metabarcoding. Sci Rep 9:1–12

    Article  CAS  Google Scholar 

  • Stigenberg J, Ronquist F (2011) Revision of the Western Palearctic Meteorini (Hymenoptera, Braconidae), with a molecular characterization of hidden Fennoscandian species diversity. Zootaxa 3084:1–95

    Article  Google Scholar 

  • Stireman JO III (2005) The evolution of generalization? Parasitoid flies and the perils of inferring host range evolution from phylogenies. J Evol Biol 18:325–336

    Article  PubMed  Google Scholar 

  • Stireman JO III (2016) Community ecology of the “other” parasitoids. Curr Opin Insect Sci 14:87–93

    Article  PubMed  Google Scholar 

  • Stireman JO III, Singer MS (2003a) Determinants of parasitoid-host associations: insights from a natural tachinid-lepidopteran community. Ecology 84:296–310

    Article  Google Scholar 

  • Stireman JO III, Singer MS (2003b) What determines host range in parasitoids? An analysis of a tachinid parasitoid community. Oecologia 135:629–638

    Article  PubMed  Google Scholar 

  • Stireman JO III, Singer MS (2018) Tritrophic niches of insect herbivores in an era of rapid environmental change. Curr Opin Insect Sci 29:117–125

    Article  PubMed  Google Scholar 

  • Stireman JO III, Dyer LA, Janzen DH, Singer MS, Lill JT, Marquis RJ et al (2005) Climatic unpredictability and parasitism of caterpillars: implications of global warming. Proc Natl Acad Sci U S A 102:17384–17387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stireman JO III, O’Hara JE, Wood DM (2006) Tachinidae: evolution, behavior, and ecology. Annu Rev Entomol 51:525–555

    Article  CAS  PubMed  Google Scholar 

  • Stireman JO III, Greeney HF, Dyer LA (2009) Species richness and host associations of Lepidoptera-attacking Tachinidae in the northeast Ecuadorian Andes. J Insect Sci 9:39

    Article  PubMed  PubMed Central  Google Scholar 

  • Stireman JO III, Dyer LA, Greeney HF (2017) Specialized generalists? Food web structure of a tropical tachinid-caterpillar community. Insect Conserv Divers 10:367–384

    Article  Google Scholar 

  • Stireman JO III, Cerretti P, O’Hara JE, Moulton JK (2019) Molecular phylogeny and evolution of world Tachinidae. Mol Phylogenet Evol 139:106358

    Article  PubMed  Google Scholar 

  • Strand MR, Obrycky JJ (1996) Host specificity of insect parasitoids and predators. Bioscience 46:422–429

    Article  Google Scholar 

  • Tilman D, Fargione J, Wolff B, D’Antonio C, Dobson A, Howarth R, Schindler D, Schlesinger WH, Simberloff D, Swackhamer D (2001) Forecasting agriculturally driven global environmental change. Science 292:281–284

    Article  CAS  PubMed  Google Scholar 

  • Timms LL, Walker SC, Smith SM (2012) Establishment and dominance of an introduced herbivore has limited impact on native host-parasitoid food webs. Biol Invasions 14:229–244

    Article  Google Scholar 

  • Timms LL, Bennett AMR, Buddle CM, Wheeler TA (2013) Assessing five decades of change in a high Arctic parasitoid community. Ecography 36:1227–1235

    Article  Google Scholar 

  • Timms LL, Schwarzfeld M, Sääksjärvi IE (2016) Extending understanding of latitudinal patterns in parasitoid wasp diversity. Insect Conserv Divers 9:74–86

    Article  Google Scholar 

  • Townes HK (1969) Genera of Ichneumonidae, Part 3 (Lycorininae, Banchinae, Scolobatinae, Porizontinae). Mem Am Entomol Inst 13:1–307

    Google Scholar 

  • Townes HK, Townes M (1978) Ichneumon flies of America north of Mexico: 7. Subfamily Banchinae, tribes Lissonotini and Banchini. Mem Am Entomol Inst 26:1–614

    Google Scholar 

  • Tscharntke T, Klein A-M, Kruess A, Steffan-Dewenter I, Thies C (2005) Landscape perspectives on agricultural intensification and biodiversity – ecosystem service management. Ecol Lett 8:857–874

    Article  Google Scholar 

  • Tschorsnig H-P (2017) Preliminary host catalogue of Palaearctic Tachinidae (Diptera). http://www.nadsdiptera.org/Tach/WorldTachs/CatPalHosts/Home. Accessed Sept 2020

  • Turlings TCJ, Tumlinson JH, Lewis WJ (1990) Exploitation of herbivore-induced plant odors by host seeking parasitic wasps. Science 250:1251–1253

    Article  CAS  PubMed  Google Scholar 

  • Tylianakis JM, Binzer A (2014) Effects of global environmental changes on parasitoid–host food webs and biological control. Biol Control 75:77–86

    Article  Google Scholar 

  • Tylianakis J, Laliberté E, Nielsen A, Bascompte J (2010) Conservation of species interaction networks. Biol Conserv 143:2270–2279

    Article  Google Scholar 

  • Valigurová A, Michalková V, Koník P, Dindo M, Gelnar M, Vaňhara J (2014) Penetration and encapsulation of the larval endoparasitoid Exorista larvarum (Diptera: Tachinidae) in the factitious host Galleria mellonella (Lepidoptera: Pyralidae). Bull Entomol Res 104:203–212

    Article  PubMed  CAS  Google Scholar 

  • van Achterberg C (1979) A revision of the subfamily Zelinae auct. (Hymenoptera, Braconidae). Tijdschr Entomol 122:241–479

    Google Scholar 

  • van Achterberg C (1983) Revisionary notes on the subfamily Gnamptodontinae, with description of eleven new species (Hymenoptera, Braconidae). Tijdschr Entomol 126:25–57

    Google Scholar 

  • van Achterberg C, Shaw SR (2009) A new species of the genus Homolobus from Ecuador (Hymenoptera: Braconidae: Homolobinae). Zool Meded 83:805–810

    Google Scholar 

  • van Achterberg C, Shaw MR, Quicke DLJ (2020) Revision of the western Palaearctic species of Aleiodes Wesmael (Hymenoptera, Braconidae, Rogadinae). Part 2: revision of the A. apicalis group. Zookeys 919:1–259

    Article  PubMed  PubMed Central  Google Scholar 

  • van Driesche RG (2008) Biological control of Pieris rapae in New England: Host suppression and displacement of Cotesia glomerata by Cotesia rubecula (Hymenoptera: Braconidae). Fla Entomol 91:22–25

    Article  Google Scholar 

  • van Driesche RG, Nunn C, Pasqual A (2004) Life history pattern, host plants, and habitat determinants of population survival of Pieris napi oleracea interacting with an introduced braconid parasitoid. Biol Control 29:278–287

    Article  Google Scholar 

  • van Nouhuys S (2005) Effects of habitat fragmentation at different trophic levels in insect communities. Ann Zool Fenn 42:433–447

    Google Scholar 

  • Vance AM (1932) The biology and morphology of the braconid Chelonus annulipes Wesmael, a parasite of the European corn borer. Tech Bull USDA 233:1–28

    Google Scholar 

  • Várkonyi G, Roslin T (2013) Freezing cold yet diverse: dissecting a high-arctic parasitoid community associated with Lepidoptera hosts. Can Entomol 145:193–218

    Article  Google Scholar 

  • Vet LEM, Dicke M (1992) Ecology of infochemical use by natural enemies in a tritrophic context. Annu Rev Entomol 47:141–172

    Article  Google Scholar 

  • Visser ME, Gienapp P (2019) Evolutionary and demographic consequences of phenological mismatches. Nat Ecol Evol 12:879–885

    Article  Google Scholar 

  • Waage J, Greathead D (1986) Insect parasitoids. In: 13th symposium of the Royal Entomological Society of London, Academic, London

    Google Scholar 

  • Waage J, Hassell M (1982) Parasitoids as biological control agents – a fundamental approach. Parasitology 84:241–268

    Article  Google Scholar 

  • Wagner DL (2005) Caterpillars of Eastern North America. Princeton University Press, Princeton. 512 pp

    Google Scholar 

  • Wagner DL, Grames EM, Forister ML, Berenbaum MR, Stopak D (2021) Insect decline in the Anthropocene: death by a thousand cuts. Proc Natl Acad Sci 118:e2023989118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward SF, Aukema BH, Fei S, Liebhold AM (2020) Warm temperatures increase population growth of a nonnative defoliator and inhibit demographic responses by parasitoids. Ecology 101:e​​03156

    Google Scholar 

  • Weinstein P, Austin AD (1991) The host relationships of trigonalid wasps (Hymenoptera: Trigonalyidae), with a review of their biology and catalogue to world species. J Nat Hist 25:399–433

    Article  Google Scholar 

  • Whitfield JB (1988) Two new species of Paradelius (Hymenoptera: Braconidae) of North America with biological notes. Pan-Pac Entomol 64:313–319

    Google Scholar 

  • Whitfield JB, Wagner DL (1991) Annotated key to the genera of Braconidae (Hymenoptera) attacking leafmining Lepidoptera in the holarctic region. J Nat Hist 25:733–754

    Google Scholar 

  • Wilson EO (2005) Kin selection as the key to altruism: its rise and fall. Soc Res 72:159–166

    Article  Google Scholar 

  • Wilson JK, Ruiz L, Davidowitz G (2020) Within-host competition drives energy allocation trade-offs in an insect parasitoid. PeerJ 8:e8810

    Article  PubMed  PubMed Central  Google Scholar 

  • Wirta HK, Hebert PDN, Kaartinen R, Prosser SW, Várkonyi G, Roslin T (2014) Complementary molecular information changes our perception of food web structure. Proc Natl Acad Sci U S A 111:1885–1890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamashita K, Zhang K, Ichiki R, Nakamura S, Furukawa S (2019) Novel host immune evasion strategy of the endoparasitoid Drino inconspicuoides. Bull Entomol Res 109:643–648

    Google Scholar 

  • Yeates DK, Greathead D (1997) The evolutionary pattern of host use in the Bombyliidae (Diptera): a diverse family of parasitoid flies. Biol Linn Soc 60:149–185

    Article  Google Scholar 

  • Yoshimoto CM (1990) A review of the genera of New World Mymaridae (Hymenoptera: Chalcidoidea). In: Flora and fauna handbook, vol 7. Sandhill Crane Press Inc, Gainsville, pp 1–166

    Google Scholar 

  • Yu DS (2014) Taxapad. Home of Ichneumonoidea

    Google Scholar 

  • Yu DS, van Achterberg K, Horstmann K (2016) World Ichneumonoidea 2011. Taxonomy, Biology, Morphology and Distribution. Taxapad.com. Canada

    Google Scholar 

  • Zaldívar-Riverón A, Shaw MR, Sáez AG, Mori M, Belokoblylskij SA, Shaw SR, Quicke DLJ (2008) Evolution of the parasitic wasp subfamily Rogadinae (Braconidae): phylogeny and evolution of lepidopteran host ranges and mummy characteristics. BMC Evol Biol 8:1–20

    Article  Google Scholar 

  • Zitani NM, Shaw SR (2002) From meteors to death stars: variations on a silk thread. Am Entomol 48:228–225

    Article  Google Scholar 

  • Zitani NM, Shaw SR, Janzen DH (1998) Systematics of Costa Rican Meteorus (Hymenoptera: Braconidae: Meteorinae) species lacking a dorsope. J Hymenopt Res 7:182–208

    Google Scholar 

  • Zong S-X, Sheng M-L, Luo Y-Q, Lu C-K (2012) Lissonota holcocerica Sheng sp.n (Hymenoptera: Ichneumonidae) parasitizing Holcocerus hippophaecolus (Lepidoptera: Cossidae) from China. J Insect Sci 112:1–7

    Google Scholar 

Download references

Acknowledgments

We would like to thank Suzanne Koptur and Robert Marquis for inviting us to contribute to this edited volume and providing valuable feedback as well as three reviewers (including RJ Marquis and JB Whitfield) whose comments served to improve this chapter. We also thank Steve Marshall and Kenji Nishida for granting us permission to publish their photos. Stireman was supported in part by NSF DEB 1442134 and Shaw in part by DEB 14-42110 during the preparation of this chapter. Any opinions, findings, and conclusions expressed are those of the authors and do not necessarily reflect the views of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stireman, J.O., Shaw, S.R. (2022). Natural History and Ecology of Caterpillar Parasitoids. In: Marquis, R.J., Koptur, S. (eds) Caterpillars in the Middle. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-86688-4_8

Download citation

Publish with us

Policies and ethics