Skip to main content

Advances in Edible Pine Nut Trees (Pinus spp.) Breeding Strategies

  • Chapter
  • First Online:
Advances in Plant Breeding Strategies: Nut and Beverage Crops

Abstract

In response to the increasing demand for food and nutrition, there is an urgent need to improve the structure of grain production. The development and utilization of resources such as edible pine nuts will effectively alleviate the demand for grain crops. Edible pine nuts are an important food resources, are nutrient rich and may be a useful component and supplement of a healthy diet. In order to meet the growing demand for pine nuts, their economic value should be fully understood and existing wild pine nut resources should be sustainably managed to increase productivity. In order to achieve this, research into pine nut improvement and production should be strengthened; part of this process is the development of a selective breeding program. This chapter explains the collection, conservation, management, development and utilization of edible pine nut tree germplasm resources in a breeding strategy, and presents case studies where improvements to seed quality and pine nut production have been achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrimi M (2017) Growth of Stone pine (Pinus pinea L.) European provenances in central Chile. iForest 10:353–354

    Article  Google Scholar 

  • Bernardo R (2008) Molecular markers and selection for complex traits in plants: Learning from the last 20 years. Crop Sci 48(5):1649–1664

    Article  Google Scholar 

  • Bishop-Hurley SL, Zabkiewicz RJ, Grace L et al (2001) Conifer genetic engineering: transgenic Pinus radiata (D. Don) and Picea abies (Karst) plants are resistant to the herbicide Buster. Plant Cell Rep 20:235–243

    Article  CAS  Google Scholar 

  • Chen MM, Feng FJ, Sui X et al (2010) Construction of a framework map for Pinus koraiensis Sieb. et Zucc. using SRAP, SSR and ISSR markers. Trees 24(4):685–693

    Article  CAS  Google Scholar 

  • Ellis D, Roberts D, Ben S et al (1989) Transformation of white spruce and other conifer species by Agrobacterium tumefaciens. Plant Cell Rep 8(1):16–20

    Article  CAS  PubMed  Google Scholar 

  • Feng FJ, Sui X, Chen MM et al (2010) Mode of pollen spread in clonal seed orchard of Pinus koraiensis. J Bio Chem 1(1):33–39

    CAS  Google Scholar 

  • Fernandes DC, Freitas JB, Czeder LP et al (2010) Nutritional composition and protein value of the baru (Dipteryx alata Vog.) almond from the Brazilian Savanna. J Sci Food Arg 90:1650–1655

    Article  CAS  Google Scholar 

  • Find JI, Hargreaves CL, Reeves CB (2014) Progress towards initiation of somatic embryogenesis from differentiated tissues of radiata pine (Pinus radiata D. Don) using cotyledonary embryos. In Vitro Cell Dev-Pl 50:190–198

    Article  Google Scholar 

  • Guo TW, Su J, Yuan WC et al (2015) The clone and function analysis of the FLO/LFY genes in Pinus massoniana. Mol Plant Breed 13:2320–2332. (In Chinese)

    Google Scholar 

  • Harada H, Sakagami H, Konno K et al (1988) Induction of antimicrobial activity by antitumor substances from pine cone extract of Pinus parviflora Sieb. et Zucc. Anticancer Res 8(4):581–587

    CAS  PubMed  Google Scholar 

  • Heffner EL, Lorenz AJ, Jannink JL et al (2010) Plant breeding with genomic selection: gain per unit time and cost. Crop Sci 50(5):1681–1690

    Article  Google Scholar 

  • Kang KS, Lindgren D (1998) Fertility variation and its effect on the relatedness of seeds in Pinus densiflora, Pinus thunbergii and Pinus koraiensis clonal seed orchards. Silvae Genet 47:196–201

    Google Scholar 

  • Kang YH, Kim KK, Kim TW et al (2015) Anti-atherosclerosis effect of pine nut oil in high-cholesterol and high-fat diet fed rats and its mechanism studies in human umbilical vein endothelial cells. Food Sci Biotech 24(1):323–332

    Article  CAS  Google Scholar 

  • Klimaszewska K, Overton C, Stewart D et al (2011) Initiation of somatic embryos and regeneration of plants from primordial shoots of 10-year-old somatic white spruce and expression proWles of 11 genes followed during the tissue culture process. Planta 233:635–647

    Article  CAS  PubMed  Google Scholar 

  • Lelu-Walter MA, Thompson D, Harvengt L et al (2013) Somatic embryo-genesis in forestry with a focus on Europe state-of-the-art, benefits, challenges and future direction. Tree Genet Genome 9:883–899

    Article  Google Scholar 

  • Li ZH, Qian ZQ, Liu ZL et al (2016) The complete chloroplast genome of Armand pine Pinus armandii, an endemic conifer tree species to China. Mitochondr DNA 27(4):2635–2636

    CAS  Google Scholar 

  • Lim TK (2012) Pinus koraiensis. In: Edible medicinal and non-medicinal plants, vol 4 fruits. Springer, New York, pp 297–303

    Chapter  Google Scholar 

  • Lindgren D, Matheson AC (1986) An algorithm for increasing the genetic quality of seed from seed orchards by using the better clones in higher proportions. Silvae Genet 35:173–177

    Google Scholar 

  • Liu JJ, Sturrock RN, Benton R (2013) Transcriptome analysis of Pinus monticola primary needles by RNA-seq provides novel insight into host resistance to Cronartium ribicola. BMC Genomics 14:884–889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ma JL, Zhang LW, Cheng D et al (1992) Geographic distribution of Pinus koraiensis in the world. J Northeast For Univ 20:40–47

    Google Scholar 

  • Mao ZJ, Yuan XY, Zu YG et al (2003) Study on the seed morphological. Characteristics and the seed coat microstructure of Pinus sibirica and Pinus koraiensis. Scientia Silvae Sinicae 39(4):155–158. (In Chinese)

    Google Scholar 

  • Marcelo CD, Adriana PM (2005) A FLORICAULA/LEAFY gene homolog is preferentially expressed in developmenting female cones of the pine Pinus caribaea var. caribaea, Genet. Mol Biol 28:299–307

    Google Scholar 

  • Meuwissen TH, Hayes BJ, Goddard ME (2001) Prediction of total genetic value using genome-wide dense marker maps. Genetics 157(4):1819–1829

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mo C, Zhang HX, Zhang L et al (2017) Variations in nutrition compositions and morphology characteristics in different hybrid combination of Korean pine (Pinus koraiensis). Bull Botan Res 37(5):700–708. (In Chinese)

    Google Scholar 

  • Morris JW, Castle LA, Morris RO (1989) Efficacy of different Agrobacterium tumefaciens strains in transformation of pinaceous gymnosperms. Physiol Mol Plant Pathol 34(5):451–461

    Article  Google Scholar 

  • Muranty H, Jorge V, Bastien C et al (2014) Potential for marker-assisted selection for forest tree breeding: lessons from 20 years of MAS in crops. Tree Genet Genomes 10:1491–1510

    Article  Google Scholar 

  • Mutke S (2012) Mediterranean stone pine: botany and horticulture. Horticultural Reviews. Wiley-Blackwell, New York, pp 153–201

    Google Scholar 

  • Mutke S, Gordo J, Gil L (2005) Cone yield characterization of a stone pine (Pinus pinea L.) clone bank. Silvae Genet 54(4):189–197

    Article  Google Scholar 

  • Nasri N, Khaldi A, Fady B et al (2005) Fatty acids from seeds of Pinus pinea L.: Composition and population profiling. Phytochemistry 66:1729–1735

    Article  CAS  PubMed  Google Scholar 

  • Nergiz C, Donmez I (2004) Chemical composition and nutritive value of Pinus pinea L. seeds. Food Chem 86(3):365–368

    Article  CAS  Google Scholar 

  • Niu SH, Li ZX, Yuan HW et al (2013) Transcriptome characterisation of Pinus tabuliformis and evolution of genes in the Pinus phylogeny. BMC Genomics 14:263–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu SH, Yuan L, Zhang YC et al (2014) Isolation and expression profiles of gibberellin metabolism genes in developing male and female cones of Pinus tabuliformis. Funct Integr Genom 14:697–705

    Article  CAS  Google Scholar 

  • Niu SH, Liu C, Yuan HW et al (2015) Identification and expression profiles of sRNAs and their biogenesis and action-related genes in male and female cones of Pinus tabuliformis. BMC Genomics 16:693–706

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oh-Hara T, Sakagami H, Kawazoe Y et al (1990) Antimicrobial spectrum of lignin-related pine cone extracts of Pinus parviflora Sieb. et Zucc. In Vivo 4(1):7–12

    CAS  PubMed  Google Scholar 

  • Parasharami VA, Naik VB, VonArnoid S et al (2006) Stable transformation of mature zygotic embryos and regeneration of transgenic plants of chir pine (Pinus roxbughii Sarg.). Plant Cell Rep 24(12):708–714

    Article  CAS  PubMed  Google Scholar 

  • Park S, Lim Y, Shin S et al (2013) Impact of Korean pine nut oil on weight gain and immune responses in high-fat diet-induced obese mice. Nutr Res Pract 7(5):1363–1367

    Article  CAS  Google Scholar 

  • Park S, Shin S, Lim Y et al (2016) Korean pine nut oil attenuated hepatic triacylglycerol accumulation in high – fat diet – induced obese mice. Nutrients 8(2):403–417

    Google Scholar 

  • Petrova EA, Goroshkevich SN, Politov DV et al (2008) Population genetic structure and mating system in the hybrid zone between Pinus sibirica Du Tour and Pinus pumila (Pall.) Regel at the eastern Baikal Lake shore. Ann For Res 51:19–30

    Google Scholar 

  • Petrova EA, Goroshkevich SN, Belokon MM et al (2014) Distribution of the genetic diversity of the Siberian stone pine, Pinus sibirica Du Tour, along the latitudinal and longitudinal profiles. Russ J Genet 50(5):467–482

    Article  CAS  Google Scholar 

  • Pettenella D, Masiero M, Masood Awan HU, Vidale E (2014) Market developments for pine products: actors and patterns of trade in a changing market conditions. Proceedings of the “5th International Conference on Mediterranean Pines,” Solsona (Spain), 22–26 Sept 2014

    Google Scholar 

  • Politov DV, Belokon MM, Maluchenko OP et al (1999) Genetic evidence of natural hybridization between Siberian stone pine, Pinus sibirica Du Tour, and dwarf Siberian pine, P. pumila (Pall.) Regel. Forest Genet 6(1):41–48

    Google Scholar 

  • Ren HD, Duan FW, Wang ZF (2006) Global pine nut species resource, production, market and prospects for China. World For Res 19(2):28–33

    Google Scholar 

  • Rey M, Gonzalez MV, Ordas RJ et al (1996) Factors affecting transient gene expression in cultured radiata pine cotyledons following particle bombardment. Physiol Plant 96:630–636

    Article  CAS  Google Scholar 

  • Ronald PC (2014) Lab to farm: applying research on plant genetics and genomics to crop improvement. PLoS Biol 12(6):e1001878. https://doi.org/10.1371/journal.pbio.1001878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sajid A, Manzoor Q, Iqbal M et al (2018) Pinus roxburghii essential oil anticancer activity and chemical composition evaluation. EXCLI J 17:233–245

    PubMed  PubMed Central  Google Scholar 

  • Salajova T, Salaj J, Kormutak A (1999) Initiation of embryogenic tissues and plantlet regeneration from somatic embryos of Pinus nigra Arn. Plant Sci 145:33–40

    Article  CAS  Google Scholar 

  • Santos CS, Pinheiro M, Silva AI et al (2012) Searching for resistance genes to Bursaphelenchus xylophilus using high throughput screening. BMC Genomics 13:599–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sathe SK, Seeram NP, Kshirsagar HH et al (2008) Fatty acid composition of California grown almonds. J Food Sci 73:607–614

    Article  CAS  Google Scholar 

  • Savage GP (2001) Chemical composition of walnuts (Juglans regia L.) grown in New Zealand. Plant Food Hum Nutr 56:75–82

    Article  CAS  Google Scholar 

  • Sederoff R, Stomp AM, Chilton WS, Moore LW (1986) Gene transfer into loblolly pine by Agrobacterium tumefaciens. Nat Biotech 4:647–649

    Article  CAS  Google Scholar 

  • Sharma OC, Murkute AA, Kanwar MS (2010) Assessing genetic divergence in seedling trees of Persian walnut (Juglans regia). Indian J Agr Sci 80:360–363

    Google Scholar 

  • Stomp AM, Loopstra C, Chilton WS et al (1990) Extended host range of Agrobacterium tumefaciens in the genus Pinus. Plant Physiol 92(4):1226–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stomp AM, Weissinger A, Sederoff RR (1991) Transient expression from microprojectile-mediated DNA transfer in Pinus taeda. Plant Cell Rep 10:187–190

    Article  CAS  PubMed  Google Scholar 

  • Sun TP (2010) Gibberellin-GID1-DELLA: a pivotal regulatory module for plant growth and development. Plant Phys 154(2):567–570

    Article  CAS  Google Scholar 

  • Tai YH (2000) The effects of thinning intensity on growing and fruiting of Pinus armandi seed production forests. Yunnan For Sci Technol 1:9–14. (In Chinese)

    Google Scholar 

  • Tang W, Newton RJ (2005) Peroxidase and catalase activities are involved in direct adventitious shoot formation induced by thidiazuron in eastern white pine (Pinus strobus L.) zygotic embryos. Plant Phys Biochem 43:760–769

    Article  CAS  Google Scholar 

  • Tang W, Ronald J, Newton RJ et al (2007) Genetic transformation and gene silencing mediated by multiple copies of a transgene in eastern white pine. J Exp Bot 58(3):545–554

    Article  CAS  PubMed  Google Scholar 

  • Terézia S, Jana M, Laurence J et al (2005) Stable transformation of embryogenic tissues of Pinus nigra Arn. using a biolistic method. Biotechnol Lett 27:899–903

    Article  CAS  Google Scholar 

  • Tian L, Séguin A, Charest PJ (1997) Expression of the green fluorescent protein gene in conifer tissues. Plant Cell Rep 16:267–271

    Article  CAS  PubMed  Google Scholar 

  • Venkatachalam M, Sathe SK (2006) Chemical composition of selected edible nut seeds. J Agr Food Chem 54:4705–4714

    Article  CAS  Google Scholar 

  • Walter C, Smith DR, Connett MB et al (1994) A biolistic approach for the transfer and expression of a gusA reporter gene in embryonic cultures of Pinus radiata. Plant Cell Rep 14:69–74

    CAS  PubMed  Google Scholar 

  • Walter C, Grace LJ, Wagner A et al (1998) Stable transformation and regeneration of transgenic plants of Pinus radiata D. Don. Plant Cell Rep 17:460–468

    Article  CAS  PubMed  Google Scholar 

  • Walter C, Charity J, Grace L et al (2002) Gene technologies in Pinus radiata and Picea abies: tools for conifer biotechnology in the 21st century. Plant Cell Tissue Org Cult 70:3–12

    Article  CAS  Google Scholar 

  • Wang HR (2002) Genetic resources, tree improvement and gene conservation of haploxylon pines in east Asia. Scientia Silvae Sinicae 38(5):140–145. (In Chinese)

    CAS  Google Scholar 

  • Wang ZY, Chen XQ (2004) Functional evaluation for effective compositions in seed oil of Korean pine. J For Res 15(3):215–217

    Article  Google Scholar 

  • Wang G, Fan XL, Shen XH et al (2009) Cryopreservation of Korean pine somatic calli. J Shanghai Jiaotong Univ (Agric Sci) 27(3):223–229. (In Chinese)

    Google Scholar 

  • White TL, Adams WT, Neale DB (2007) Forest genetics. CAB International, Oxfordshire

    Book  Google Scholar 

  • Wolff RL, Pedronoa F, Pasquier E et al (2000) General characteristics of Pinus spp. Seed fatty acid compositions and importance of ∆5-Olefinic acids in the taxonomy and phylogeny of the genus. Lipids 35:1–22

    Article  CAS  PubMed  Google Scholar 

  • Xia M, Zhou XF, Zhao SD et al (2001) RAPD analysis on genetic diversity of natural populations of Pinus koraiensis. Acta Ecolog Sinica 21(5):730–737. (In Chinese)

    Google Scholar 

  • Xie K, Miles EA, Calder PC (2016) A review of the potential health benefits of pine nut oil and its characteristic fatty acid pinolenic acid. J Funct Foods 23:464–473

    Article  CAS  Google Scholar 

  • Xu JR (1988) Application of Repeatability in Tree Breeding. J Beijing For Univ 10:97–102. (In Chinese)

    CAS  Google Scholar 

  • Yue PM, Fan C, Si LD et al (2005) Studies of LEAFY homologue genes in higher plants. Chinese Bull Botany 22(5):605–613

    Google Scholar 

  • Zhang Z, Zhang HG, Yang CP et al (2015) Clonal variation in nutritional components of Korean pine (Pinus koraiensis) seed collected from seed orchards in northeastern China. J For Res. https://doi.org/10.1007/s1167601501545

  • Zhao Y, Dai Y, Li YP (2012) Genetic diversity for clonal seed orchard of Pinus armandii. J Northeast For Univ 40(10):4–11. (In Chinese)

    Google Scholar 

  • Zheng WJ (1983) Chinese flora of woody plants. China Forestry Publishing House, Beijing

    Google Scholar 

  • Zhu XD, Li TS, Liu XZ et al (2006) Studies on fruiting quantity of Pinus armandii clones in the seed orchard and the seed quality. J Southwest For Coll 26(2):48–51. (In Chinese)

    CAS  Google Scholar 

  • Zobel BJ, Talbert BJ (1984) Applied forest tree improvement. Wiley, New York, 449 p

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendices

Appendices

1.1 Appendix I: Research Institutes Relevant to Edible Pine Nut Trees (Pinus spp.)

Institution

Specialization and research activities

Contact information and website

School of Forestry, Northeast Forestry University, China

Clonal variations in nutritional components of P. koraiensis seeds collected from seed orchards

Prof. Dr. H G. Zhang

Logan Campus, School of Forestry, Northeast Forestry University, Harbin, 26 Hexing Road, China

Telephone: (86)0451–82,191,536

E-mail: hanguozhang1@sina.com

School of Forestry, Northeast Forestry University, China

Somatic embryogenesis and cryopreservation of P. koraiensis

Prof. Dr. H L. Shen

Logan Campus, School of Forestry, Northeast Forestry University, Harbin, 26 Hexing Road, China

Telephone: (86)13069875355

E-mail: shenhl-cf@nefu.edu.cn

Beijing Forestry University, China

Studies on fruiting quantity of P. armandii clones in the seed orchard and the seed quality

Prof. Dr. X H. Shen

Logan Campus, School of Forestry, Beijing Forestry University, 35 east qinghua road, haidian district, Beijing, China

E-mail: sxlkyhyc@163.com

Unidad de Anatomía, Fisiología y Genética Forestal, ETSI Montes, U.P.M., Ciudad Universitaria s/n

Variability of Mediterranean stone pine cone production: yield loss as response to climate change

Prof. Dr. L. Gil

Telephone: (34)913367113

Fax: (34)915439557

E-mail: luis.gil@upm.es

Russian Academy of Sciences, Siberian

Branch

Crossbreeding

Prof. Dr. N. Sergej

Logan Campus,

Siberian Branch, Filial of the Forest Institute, Academichesky pr., 2, Tomsk, Russia

E-mail: gorosh@forest.tsc.ru

Grupo Silvicultura Mediterraénea

Breeding P. pinea uniform varieties

R. Calama

Logan Campus,

Apdo. 8111, Madrid 28,080, Spain

E-mail: rcalama@inia.es

Telephone: (34)913476868

Fax: (34)9–13,572,293

Korea Forest Research Institute, Chungju, Korea

Clonal variation in flowering abundance of P. koraiensis

Prof. Dr. I S. Kim

Logan Campus,

Forest Seed Research Center, Chungju, Korea

P.O. Box 24, Suwon, Kyonggido,

441–350, Republic of Korea

1.2 Appendix II: Genetic Resources of Edible Pine Nut Tree

Country

Cultivar

Important traits

Heilongjiang province, China

Pinus koreansis – HG14

High oil content

Heilongjiang province, China

P. koreansis – LK20

High oil content

Heilongjiang province, China

P. koreansis – NB66

High yield

Heilongjiang province, China

P. koreansis – HG23

High yield

Heilongjiang province, China

P. koreansis – LK27

High protein content

Yunnan province, China

P. armandii – yema9

High yield

Yunnan province, China

P. armandii – CX42

High yield

Yunnan province, China

P. armandii – CX44

High yield

Yunnan province, China

P. armandii – CX56

High yield

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, H., Zhang, Z. (2019). Advances in Edible Pine Nut Trees (Pinus spp.) Breeding Strategies. In: Al-Khayri, J., Jain, S., Johnson, D. (eds) Advances in Plant Breeding Strategies: Nut and Beverage Crops. Springer, Cham. https://doi.org/10.1007/978-3-030-23112-5_9

Download citation

Publish with us

Policies and ethics