Skip to main content
Log in

The Origin and Resource Potential of Wild and Cultivated Species of the Genus of Oats (Avena L.)

  • REVIEWS AND THEORETICAL ARTICLES
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The genus Avena L. includes cultivated species of great practical importance, segetal weeds, and wild species, which are interesting as potential sources of valuable traits for breeding purposes. Until now, there has been considerable disagreement in understanding the size of the genus, especially regarding the isolation of rare specialized species from aggregate species. The review focuses on the analysis of the authors’ and published data on comparative genomics and taxonomy of species of the genus and discusses the use of different genetic markers in molecular genetic studies for identifying oat species. Modern studies of the genus are largely based on molecular phylogenetic and karyological data. In particular, many studies are focused on the relationships between the only perennial tetraploid species A. macrostachya and diploid species of the genus Avena. This article examines the relationships between the genome of this unique autotetraploid species, formed before the evolutionary division of the genus into separate genomes, and the A and C genomes of other species. On the other hand, oats are well studied with respect to agronomic and economically important traits using traditional field and laboratory methods. Molecular markers are often used to isolate the sources of biotic stress tolerance. The selection of oat genotypes characterized by disease resistance, in particular, to fusarium infection and the accumulation of mycotoxin deoxynivalenol (DON) in grain, is carried out using quantitative trait loci (QTLs) mapping strategy. QTLs that controlled resistance to mycotoxin accumulation were identified. In addition, QTLs were detected that, with an increase in the length of the growing season and plant height, decreased the accumulation of DON mycotoxin in the oat kernel. The use of marker-assisted selection (MAS) for the identification of genotypes resistant to the most important diseases of oats and for other breeding traits is discussed. Modern approaches to genotyping of breeding important traits are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Loskutov, I.G., Oves (Avena L.): rasprostranenie, sistematika, evolyutsiya i selektsionnaya tsennost’ (Oats (Avena L.): Distribution, Taxonomy, Evolution and Breeding Value), St. Petersburg: Vseross. Inst. Rastenievod., 2007.

  2. Loskutov, I.G. and Rines, H.W., Wild crop relatives: genomic and breeding resources, in Avena, Berlin: Springer-Verlag, 2011, pp. 109—183.

    Google Scholar 

  3. Loskutov, I.G., Melnikova, S.V., and Bagmet, L.V., Eco-geographical assessment of Avena L. wild species at the VIR herbarium and Genebank collection, Genet. Resour. Crop Evol., 2017, vol. 64, pp. 177—188. https://doi.org/10.1007/s10722-015-0344-1

    Article  CAS  Google Scholar 

  4. Gagkaeva, T.Y., Gavrilova, O.P., Orina, A.S., et al., Response of wild Avena species to fungal infection of grain, Crop J., 2017, vol. 5, pp. 499—508.

    Article  Google Scholar 

  5. Ociepa, T., The oat gene pools—review about the use of wild species in improving cultivated oat, J. Cent. Eur. Agric., 2019, vol. 20, pp. 251—261. https://doi.org/10.5513/JCEA01/20.1.2044

    Article  Google Scholar 

  6. Linnaeus, C., Species Plantarum, Kiesewetter: Stockholmiæ, 1753, vol. 1.

  7. Linnaeus, C., Species Plantarum, Kiesewetter: Stockholmiæ, 1762, vol. 2.

  8. Fuller, D.Q. and Allaby, R., Seed dispersal and crop domestication: shattering, germination and seasonality in evolution under cultivation, Annu. Plant Rev., 2009, vol. 38, pp. 238—295. https://doi.org/10.1002/9781119312994.apr0414

    Article  Google Scholar 

  9. Vavilov, N.I., The law of homologous series in variation, J. Genet., 1922, vol. 12, no. 1, pp. 47—89.

    Article  Google Scholar 

  10. Baum, B.R., Oats: Wild and Cultivated. A Monograph of the Genus Avena L. (Poaceae), Ottawa: Minister of Supply and Services Canada, 1977.

  11. Baum, B.R., Typification of Linnaean species of oats, Avena, Taxon, 1974, vol. 23, pp. 579—583.

    Article  Google Scholar 

  12. The Plant List: version 1.1. 2013. http://www.theplantlist.org/. Accessed January 1, 2020.

  13. Tsvelev, N.N. and Probatova, N.S., Zlaki Rossii (Cereals of Russia), Moscow: KMK, 2019.

  14. Ladizinsky, G., Studies in Oats Evolution, Heidelberg: Springer-Verlag, 2012.

    Book  Google Scholar 

  15. Dobrzhansky, T., A critique of the species concept in biology, Philosophy of Science, 1935, vol. 2, pp. 344—355.

    Article  Google Scholar 

  16. Rodionov, A.V., Shneyer, V.S., Gnutlkov, A.A., et al., Dialectics of species: from initial uniformity, through the maximum possible diversity to final uniformity, Bot. Zh., 2020, vol. 105, no. 7, pp. 3—21. https://doi.org/10.31857/S0006813620070091

    Article  Google Scholar 

  17. Rodionov, A.V., Shneyer, V.S., Punina, E.O., et al., The law of homologous series in variation for systematics, Russ. J. Genet., 2020, vol. 56, no. 11, pp. 1277—1287. https://doi.org/10.1134/S1022795420110071

    Article  Google Scholar 

  18. Ladizinsky, G. and Zohary, D., Notes on species delimitation, species relationships and polyploidy in Avena L., Euphytica, 1971, vol. 20, pp. 380—395.

    Article  Google Scholar 

  19. Yan, H., Martin, S.L., Bekele, W.A., et al., Genome size variation in the genus Avena, Genome, 2016, vol. 59, pp. 209—220. https://doi.org/10.1139/gen-2015-0132

    Article  PubMed  Google Scholar 

  20. Fu, Y.B., Oat evolution revealed in the maternal lineages of 25 Avena species, Sci. Rep., 2018, vol. 8, p. 4252. https://doi.org/10.1038/s41598-018-22478-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Fu, Y.B., Li, P., and Biligetu, B., Developing chloroplast genomic resources from 25 Avena species for the characterization of oat wild relative germplasm, Plants, 2019, vol. 8, no. 11, p. 438. https://doi.org/10.3390/plants8110438

    Article  CAS  PubMed Central  Google Scholar 

  22. Latta, R.G., Bekele, W.A., Wight, C.P., and Tinker, N.A., Comparative linkage mapping of diploid, tetraploid, and hexaploid Avena species suggests extensive chromosome rearrangement in ancestral diploids, Sci. Rep., 2019, vol. 9, p. 12298. https://doi.org/10.1038/s41598-019-48639-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Flora Europaea, vol. 1: Psilotaceae to Platanaceae, Tutin, T.G. et al., Eds., New York: Cambridge Univ. Press, 1993, 2nd ed.

    Google Scholar 

  24. Tsvelev, N.N., About intraspecific taxa in higher plants, in Problemy teoreticheskoi morfologii i evolyutsii vysshikh rastenii (Challenges in Theoretical Morphology and Evolution of Higher Plants), Moscow: KMK, 2005, pp. 60—68.

  25. Baum, B.R., Rajhathy, T., and Sampson, D.R., An important new diploid Avena species discovered on the Canary Islands, Can. J. Bot., 1973, vol. 51, pp. 759—762.

    Article  Google Scholar 

  26. Baum, B.R. and Fedak, G., Avena atlantica, a new diploid species of the oat genus from Morocco, Can. J. Bot., 1985, vol. 63, pp. 1057—1060.

    Article  Google Scholar 

  27. Baum, B.R. and Fedak, G., A new tetraploid species of Avena discovered in Morocco, Can. J. Bot., 1985, vol. 63, pp. 1379—1385.

    Article  Google Scholar 

  28. Morikawa, T. and Leggett, J.M., Isozyme polymorphism and genetic differentiation in natural populations of a new tetraploid species Avena agadiriana, from Morocco, Genet. Resour. Crop Evol., 2005, vol. 52, pp. 363—370. https://doi.org/10.1007/s10722-005-2248-y

    Article  CAS  Google Scholar 

  29. Shneyer, V.S. and Kotseruba, V.V., Cryptic species in plants and their detection by genetic differentiation between populations, Ekol. Genet., 2014, vol. 12, no. 3, pp. 12—31.

    Article  Google Scholar 

  30. Nishiyama, I., Cytogenetical studies in Avena, Cytologia, 1936, vol. 7, pp. 276—281.

    Article  Google Scholar 

  31. Rajhathy, T. and Morrison, J.W., Chromosome morphology in the genus Avena, Can. J. Bot., 1959, vol. 37, pp. 331—337.

    Article  Google Scholar 

  32. Leitch, I. and Bennett, M., Genome downsizing in polyploid plants, Biol. J. Linn. Soc., 2004, vol. 82, pp. 651—663.

    Article  Google Scholar 

  33. D'Hont, A., Denoeud, F., Aury, J.M., et al., The banana (Musa acuminata) genome and the evolution of monocotyledonous plants, Nature, 2012, vol. 488, pp. 213—217. https://doi.org/10.1038/nature11241

    Article  CAS  PubMed  Google Scholar 

  34. Rodionov, A.V., Amosova, A.V., Belyakov, E.A., et al., Genetic consequences of interspecific hybridization, its role in speciation and phenotypic diversity of plants, Russ. J. Genet., 2019, vol. 55, no. 3, pp. 278—294. https://doi.org/10.1134/S1022795419030141

    Article  CAS  Google Scholar 

  35. Loskutov, I.G., Interspecific crosses in the genus Avena L., Russ. J. Genet., 2001, vol. 37, no. 5, pp. 467—475. https://doi.org/10.1023/A:1016697812009

    Article  CAS  Google Scholar 

  36. Maughan, P.J., Lee, R., Walstead, R., et al., Genomic insights from the first chromosome-scale assemblies of oat (Avena spp.) diploid species, BMC Biol., 2019, vol. 17, p. 92. https://doi.org/10.1186/s12915-019-0712-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rajhathy, T. and Thomas, H., Cytogenetics of Oats, Ottawa: Miscellaneous Publication of the Genetic Society of Canada, 1974, no. 2, pp. 1—90.

  38. Badaeva, E.D., Shelukhina, O.Y., Diederichsen, A., et al., Comparative cytogenetic analysis of Avena macrostachya and diploid C-genome Avena species, Genome, 2010, vol. 53, pp. 125—137. https://doi.org/10.1139/G09-089

    Article  CAS  PubMed  Google Scholar 

  39. Badaeva, E.D., Shelukhina, O.Y., Goryunova, S.V., et al., Phylogenetic relationships of tetraploid AB-genome Avena species evaluated by means of cytogenetic (C-banding and FISH) and RAPD analyses, J. Bot., 2010, vol. 2010, p. 742307. https://doi.org/10.1155/2010/742307

    Article  Google Scholar 

  40. Badaeva, E.D., Shelukhina, O.Y., Dedkova, O.S., et al., Comparative cytogenetic analysis of hexaploid Avena L. species, Russ. J. Genet., 2011, vol. 47, no. 6, pp. 691–702. https://doi.org/10.1134/S1022795411060068

    Article  CAS  Google Scholar 

  41. Jellen, E.N., Phillips, R.L., and Rines, H.W., C-banded karyotypes and polymorphisms in hexaploid oat accessions (Avena spp.) using Wright’s stain, Genome, 1993, vol. 36, pp. 1129—1137.

    Article  CAS  PubMed  Google Scholar 

  42. Rodionov, A.V., The genetic activity of G-and R-band DNA in human mitotic chromosomes, Genetika (Moscow), 1985, vol. 21, no. 12, pp. 2057—2065.

    CAS  PubMed  Google Scholar 

  43. Sumner, A.T., Chromosome Banding, London: Unwin, Hyman, 1990.

    Google Scholar 

  44. Nishibuchi, G. and Déjardin, J., The molecular basis of the organization of repetitive DNA-containing constitutive heterochromatin in mammals, Chromosome Res., 2017, vol. 25, pp. 77—87. https://doi.org/10.1007/s10577-016-9547-3

    Article  CAS  PubMed  Google Scholar 

  45. Holmquist, G., The mechanism of C-banding: depurination and β-elimination, Chromosoma, 1979, vol. 72, pp. 203—224.

    Article  CAS  PubMed  Google Scholar 

  46. Fominaya, A., Loarce, Y., Montes, A., and Ferrer, E., Chromosomal distribution patterns of the (AC) 10 microsatellite and other repetitive sequences, and their use in chromosome rearrangement analysis of species of the genus Avena, Genome, 2017, vol. 60, pp. 216—227. https://doi.org/10.1139/gen-2016-0146

    Article  CAS  PubMed  Google Scholar 

  47. Rodionov, A.V., Tyupa, N.B., Kim, E.S., et al., Genomic configuration of the autotetraploid oat species Avena macrostachya inferred from comparative analysis of ITS1 and ITS2 sequences: on the oat karyotype evolution during the early events of the Avena species divergence, Russ. J. Genet., 2005, vol. 41, no. 5, pp. 518—528. https://doi.org/10.1007/s11177-005-0120-y

    Article  CAS  Google Scholar 

  48. Inda, L.A., Segarra-Moragues, J.G., Müller, J., et al., Dated historical biogeography of the temperate Loliinae (Poaceae, Pooideae) grasses in the northern and southern hemispheres, Mol. Phylogenet. Evol., 2008, vol. 46, pp. 932—957. https://doi.org/10.1016/j.ympev.2007.11.022

    Article  CAS  PubMed  Google Scholar 

  49. Wang, X., Wang, J., Jin, D., et al., Genome alignment spanning major Poaceae lineages reveals heterogeneous evolutionary rates and alters inferred dates for key evolutionary events, Mol. Plant, 2015, vol. 8, pp. 885—898. https://doi.org/10.1016/j.molp.2015.04.004

    Article  CAS  PubMed  Google Scholar 

  50. Leggett, J.M. and Markhand, G.S., The genomic structure of Avena revealed by GISH, Proceedings of the Fourth Chromosome Conference, Kew: The Royal Botanical Gardens, 1995, pp. 133—139.

  51. Jellen, E.N., Gill, B.S., and Cox, T.S., Genomic in situ hybridization differentiates between A/D- and C-genome chromatin and detects intergenomic translocations in polyploid oat species (genus Avena), Genome, 1994, vol. 37, pp. 613—618.

    Article  CAS  PubMed  Google Scholar 

  52. Luo, X., Tinker, N.A., Zhou, Y., et al., Genomic relationships among sixteen species of Avena based on (ACT) 6 trinucleotide repeat FISH, Genome, 2018, vol. 61, pp. 63—70. https://doi.org/10.1139/gen-2017-0132

    Article  CAS  PubMed  Google Scholar 

  53. Katsiotis, A., Hagidimitriou, M., and Heslop-Harrison, J.S., The close relationship between the A and B genomes in Avena L. (Poaceae) determined by molecular cytogenetic analysis of total genomic, tandemly and dispersed repetitive DNA sequences, Ann. Bot., 1997, vol. 79, pp. 103—109.

    Article  CAS  Google Scholar 

  54. Raina, S.N. and Rani, V., GISH technology in plant genome research, Methods Cell Sci., 2001, vol. 23, pp. 83—104.

    Article  CAS  PubMed  Google Scholar 

  55. Orgaard, M. and Heslop-Harrison, J.S., Investigations of genome relationships between Leymus, Psathyrostachys and Hordeum inferred by genomic DNA: DNA in situ hybridization, Ann. Bot., 1994, vol. 73, pp. 195—203.

    Article  Google Scholar 

  56. Hayasaki, M., Morikawa, T., and Tarumoto, I., Intergenomic translocations of polyploid oats (genus Avena) revealed by genomic in situ hybridization, Genes Genet. Syst., 2000, vol. 75, pp. 167—171.

    Article  CAS  PubMed  Google Scholar 

  57. Linares, C., Irigoyen, M.L., and Fominaya, A., Identification of C-genome chromosomes involved in intergenomic translocations in Avena sativa L., using cloned repetitive DNA sequences, Theor. Appl. Genet., 2000, vol. 100, pp. 353—360.

    Article  CAS  Google Scholar 

  58. Chaffin, A.S., Huang, Y.F., Smith, S., et al., A consensus map in cultivated hexaploid oat reveals conserved grass synteny with substantial sub genome rearrangement, Plant Genome, 2016, vol. 9, no. 2, pp. 1—21. https://doi.org/10.3835/plantgenome2015.10.0102

    Article  CAS  Google Scholar 

  59. Yan, H., Bekele, W.A., Wight, C.P., et al., High-density marker profiling confirms ancestral genomes of Avena species and identifies D-genome chromosomes of hexaploid oat, Theor. Appl. Genet., 2016, vol. 129, pp. 2133—2149. https://doi.org/10.1007/s00122-016-2762-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Singh, R., Ming, R., and Yu, Q.Y., Comparative analysis of GC content variations in plant genomes, Trop. Plant Biol., 2016, vol. 9, pp. 136—149. https://doi.org/10.1007/s12042-016-9165-4

    Article  CAS  Google Scholar 

  61. Jiang, J., Birchler, J.A., Parrott, W.A., and Dawe, R.K., A molecular view of plant centromeres, Trends Plant Sci., 2003, vol. 8, no. 12, pp. 570—575.

    Article  CAS  PubMed  Google Scholar 

  62. Matassi, G., Montero, L.M., Salinas, J., and Bernardi, G., The isochore organization and the compositional distribution of homologous coding sequence in the nuclear genome of plants, Nucleic Acids Res., 1989, vol. 17, pp. 5273—5290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Tatarinova, T.V., Alexandrov, N.N., Bouck, J.B., and Feldmann, K.A., GC3 biology in corn, rice, sorghum and other grasses, BMC Genomics, 2010, vol. 11, p. 308. https://doi.org/10.1186/1471-2164-11-308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Andreozzi, L., Federico, C., Motta, S., et al., Compositional mapping of chicken chromosomes and identification of the gene-richest regions, Chromosome Res., 2001, vol. 9, pp. 521—532.

    Article  CAS  PubMed  Google Scholar 

  65. Costantini, M. and Musto, H., The isochores as a fundamental level of genome structure and organization: a general overview, J. Mol. Evol., 2017, vol. 84, pp. 93—103. https://doi.org/10.1007/s00239-017-9785-9

    Article  CAS  PubMed  Google Scholar 

  66. Blanc, G. and Wolfe, K.H., Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes, Plant Cell, 2004, vol. 16, pp. 1667—1678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Panchy, N., Lehti-Shiu, M., and Shiu, S.H., Evolution of gene duplication in plants, Plant Physiol., 2016, vol. 171, pp. 2294—2316. https://doi.org/10.1104/pp.16.00523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bekele, W.A., Wight, C.P., Chao, S.M., et al., Haplotype-based genotyping-by-sequencing in oat genome research, Plant Biotechnol. J., 2018, vol. 16, pp. 1452—1463. https://doi.org/10.1111/pbi.12888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. O’Donoughue, L.S., Sorrells, M.E., Tanksley, S.D., et al., A molecular linkage map of cultivated oat, Genome, 1995, vol. 38, pp. 368—380.

    Article  PubMed  Google Scholar 

  70. Foresman, B.J., Oliver, R.E., Jackson, E.W., et al., Genome-wide association mapping of barley yellow dwarf virus tolerance in spring oat (Avena sativa L.), PLoS One, 2016, vol. 11, no. 5. e0155376. https://doi.org/10.1371/journal.pone.0155376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Loarce, Y., Navas, E., Paniagua, C., et al., Identification of genes in a partially resistant genotype of Avena sativa expressed in response to Puccinia coronate infection, Front. Plant Sci., 2016, vol. 7, p. 731. https://doi.org/10.3389/fpls.2016.00731

    Article  PubMed  PubMed Central  Google Scholar 

  72. Admassu-Yimer, B., Bonman, J.M., and Esvelt Klos, K., Mapping of crown rust resistance gene Pc53 in oat (Avena sativa), PLoS One, 2018, vol. 13, no. 12. e0209105. https://doi.org/10.1371/journal.pone.0209105

    Article  PubMed  PubMed Central  Google Scholar 

  73. Rines, H.W., Miller, M.E., Carson, M., et al., Identification, introgression, and molecular marker genetic analysis and selection of a highly effective novel oat crown rust resistance from diploid oat, Avena strigosa, Theor. Appl. Genet., 2018, vol. 131, pp. 721—733. https://doi.org/10.1007/s00122-017-3031-0

    Article  CAS  PubMed  Google Scholar 

  74. Rines, H.W., Molnar, S.J., Tinker, N.A., and Phillips, R.L., Oat, in Genome Mapping and Molecular Breeding in Plants, V. 1: Cereals and Millets, Berlin: Springer-Verlag, 2006, pp. 211—242.

  75. Orr, W. and Molnar, S.J., Development of PCR-based SCAR and CAPS markers linked to β-glucan and protein content QTL regions in oat, Genome, 2008, vol. 51, pp. 421—425. https://doi.org/10.1139/G08-026

    Article  CAS  PubMed  Google Scholar 

  76. Tanhuanpää, P., Manninen, O., Beattie, A., et al., An updated doubled haploid oat linkage map and QTL mapping of agronomic and grain quality traits from Canadian field trials, Genome, 2012, vol. 55, pp. 289—301. https://doi.org/10.1139/g2012-017

    Article  CAS  PubMed  Google Scholar 

  77. Carlson, M.O., Montilla-Bascon, G., Hoekenga, O.A., et al., Multivariate genome-wide association analyses reveal the genetic basis of seed fatty acid composition in oat (Avena sativa L.), Genes, Genomes, Genetics, 2019, vol. 9, pp. 2963—2975. https://doi.org/10.1534/g3.119.400228

    Article  CAS  Google Scholar 

  78. Newell, M.A., Asoro, F.G., Scott, M.P., et al., Genome-wide association study for oat (Avena sativa L.) beta-glucan concentration using germplasm of worldwide origin, Theor. Appl. Genet., 2012, vol. 125, pp. 1687—1696. https://doi.org/10.1007/s00122-012-1945-0

    Article  CAS  PubMed  Google Scholar 

  79. Tumino, G., Voorrips, R.E., Rizza, F., et al., Population structure and genome-wide association analysis for frost tolerance in oat using continuous SNP array signal intensity ratios, Theor. Appl. Genet., 2016, vol. 129, pp. 1711—1724. https://doi.org/10.1007/s00122-016-2734-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Tumino, G., Voorrips, R.E., Morcia, C., et al., Genome-wide association analysis for lodging tolerance and plant height in a diverse European hexaploid oat collection, Euphytica, 2017, vol. 213, p. 163. https://doi.org/10.1007/s10681-017-1939-8

    Article  Google Scholar 

  81. Isidro-Sánchez, J., D’Arcy Cusack, K., Verheecke-Vaessen, C., et al., Genome-wide association mapping of Fusarium langsethiae infection and mycotoxin accumulation in oat (Avena sativa L.), Plant Genome, 2020, vol. 2020. e20023. https://doi.org/10.1002/tpg2.20023

    Article  CAS  Google Scholar 

  82. He, X., Skinnes, H., Oliver, R.E., et al., Linkage mapping and identification of QTL affecting deoxynivalenol (DON) content (Fusarium resistance) in oats (Avena sativa L.), Theor. Appl. Genet., 2013, vol. 126, pp. 2655—2670. https://doi.org/10.1007/s00122-013-2163-0

    Article  CAS  PubMed  Google Scholar 

  83. Bjørnstad, Å. and Skinnes, H., Resistance to Fusarium infection in oats (Avena sativa L.), Cereal Res. Commun., 2008, vol. 36, suppl. 6, pp. 57—62. https://doi.org/10.1556/crc.36.2008.suppl.b.9

    Article  Google Scholar 

  84. Esvelt Klos, K., Huang, Y.F., Bekele, W.A., et al., Population genomics related to adaptation in elite oat germplasm, Plant Genome, 2016, vol. 9, no. 2, pp. 1—12. https://doi.org/10.3835/plantgenome2015.10.0103

    Article  CAS  Google Scholar 

  85. Zimmer, C.M., Ubert, I.P., Pacheco, M.T., and Federizzi, L.C., Molecular and comparative mapping for heading date and plant height in oat, Euphytica, 2018, vol. 214, p. 101. https://doi.org/10.1007/s10681-018-2182-7

    Article  CAS  Google Scholar 

  86. Siculella, L., Damiano, F., Cortese, M.R., et al., Gene content and organization of the oat mitochondrial genome, Theor. Appl. Genet., 2001, vol. 103, pp. 359—365.

    Article  CAS  Google Scholar 

  87. Pathania, A., Kumar, R., Kumar, V.D., et al., A duplicated coxI gene is associated with cytoplasmic male sterility in an alloplasmic Brassica juncea line derived from somatic hybridization with Diplotaxis catholica, J. Genet., 2007, vol. 86, pp. 93—101.

    Article  CAS  PubMed  Google Scholar 

  88. Soltis, P.S. and Soltis, D.E., Ancient WGD events as drivers of key innovations in angiosperms, Curr. Opin. Plant Biol., 2016, vol. 30, pp. 159—165. https://doi.org/10.1016/j.pbi.2016.03.015

    Article  PubMed  Google Scholar 

  89. Rines, H.W., Gengenbach, B.G., Boylan, K.L., and Storey, K.K., Mitochondrial DNA diversity in oat cultivars and species, Crop Sci., 1988, vol. 28, pp. 171—176.

    Article  Google Scholar 

  90. Kuroiwa, T., Review of cytological studies on cellular and molecular mechanisms of uniparental (maternal or paternal) inheritance of plastid and mitochondrial genomes induced by active digestion of organelle nuclei (nucleoids), J. Plant Res., 2010, vol. 123, pp. 207—230. https://doi.org/10.1007/s10265-009-0306-9

    Article  CAS  PubMed  Google Scholar 

  91. Ramsey, A.J. and Mandel, J.R., When one genome is not enough: organellar heteroplasmy in plants, Annu. Plant Rev. Online, 2018, vol. 2, pp. 619—658. https://doi.org/10.1002/9781119312994.apr0616

    Article  Google Scholar 

  92. Moon, E., Kao, T.H., and Wu, R., Rice chloroplast DNA molecules are heterogeneous as revealed by DNA sequences of a cluster of genes, Nucleic Acids Res., 1987, vol. 15, pp. 611—630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang, T., Li, Y., Shi, Y., et al., Low frequency transmission of a plastid-encoded trait in Setaria italica, Theor. Appl. Genet., 2004, vol. 108, pp. 315—320.

    Article  CAS  PubMed  Google Scholar 

  94. Kiang, A.S., Connolly, V., McConnell, D.J., and Kavanagh, T.A., Paternal inheritance of mitochondria and chloroplasts in Festuca pratensis—Lolium perenne intergeneric hybrids, Theor. Appl. Genet., 1994, vol. 87, pp. 681—688.

    Article  CAS  PubMed  Google Scholar 

  95. Bildanova, L.L., Badaeva, E.D., Pershina, L.A., et al., Molecular study and C-banding of chromosomes in common wheat alloplasmic lines obtained from the backcross progeny of barley—wheat hybrids Hordeum vulgare L. (2n = 14) × Triticum aestivum L. (2n = 42) and differing in fertility, Russ. J. Genet., 2004, vol. 40, no. 12, pp. 1383—1391. https://doi.org/10.1007/s11177-005-0066-0

    Article  CAS  Google Scholar 

  96. Rodionov, A.V., Amosova, A.V., Krainova, L.M., et al., Phenomenon of multiple mutations in the 35S rRNA genes of the C subgenome of polyploid Avena L., Russ. J. Genet., 2020, vol. 56, no. 6, pp. 674–683. https://doi.org/10.1134/S1022795420060095

  97. Clement, M., Posada, D.C.K.A., and Crandall, K.A., TCS: a computer program to estimate gene genealogies, Mol. Ecol., 2000, vol. 9, pp. 1657—1659.

    Article  CAS  PubMed  Google Scholar 

  98. Murias dos Santos, A., Cabezas, M.P., Tavares, A.I., et al., tcsBU: a tool to extend TCS network layout and visualization visualization, Bioinformatics, 2015, vol. 32, pp. 627—628. https://doi.org/10.1093/bioinformatics/btv636

    Article  CAS  PubMed  Google Scholar 

  99. Montilla-Bascón, G., Sánchez-Martín, J., Rispail, N., et al., Genetic diversity and population structure among oat cultivars and landraces, Plant Mol. Biol. Rep., 2013, vol. 31, pp. 1305—1314. https://doi.org/10.1007/s11105-013-0598-8

    Article  Google Scholar 

  100. Nikoloudakis, N., Bladenopoulos, K., and Katsiotis, A., Structural patterns and genetic diversity among oat (Avena) landraces assessed by microsatellite markers and morphological analysis, Genet. Res. Crop Evol., 2016, vol. 63, pp. 801—811. https://doi.org/10.1007/s10722-015-0284-9

    Article  CAS  Google Scholar 

  101. Baohong, G., Zhou, X., and Murphy, J.P., Genetic variation within Chinese and Western cultivated oat accessions, Cereal Res. Commun., 2003, vol. 31, pp. 339—346.

    Article  CAS  Google Scholar 

  102. Achleitner, A., Tinker, N.A., Zechner, E., and Buerstmayr, H., Genetic diversity among oat varieties of worldwide origin and associations of AFLP markers with quantitative traits, Theor. Appl. Genet., 2008, vol. 117, pp. 1041—1053. https://doi.org/10.1007/s00122-008-0843-y

    Article  CAS  PubMed  Google Scholar 

  103. He, X. and Bjørnstad, Å., Diversity of North European oat analyzed by SSR, AFLP and DArT markers, Theor. Appl. Genet., 2012, vol. 125, pp. 57—70. https://doi.org/10.1007/s00122-012-1816-8

    Article  PubMed  Google Scholar 

  104. Paczos-Grzęda, E., Sowa, S., Boczkowska, M., and Langdon, T., Detached leaf assays for resistance to crown rust reveal diversity within populations of Avena sterilis, Plant Dis., 2019, vol. 103, pp. 832—840. https://doi.org/10.1094/PDIS-06-18-1045-RE

    Article  PubMed  Google Scholar 

  105. Okoń, S., Paczos-Grzęda, E., Ociepa, T., et al., Avena sterilis L. genotypes as a potential source of resistance to oat powdery mildew, Plant Dis., 2016, vol. 100, pp. 2145—2151. https://doi.org/10.1094/PDIS-11-15-1365-RE

    Article  PubMed  Google Scholar 

  106. Comeau, A., Barley yellow dwarf virus resistance in the genus Avena, Euphytica, 1984, vol. 33, pp. 49—55. https://doi.org/10.1007/BF00022749

    Article  Google Scholar 

  107. Mohler, V., Stadlmeier, M., Sood, A., et al., Genetic analysis of new sources of seedling resistance to powdery mildew and crown rust in oat, Resistance Breeding—From Pathogen Epidemilogy to Molecular Breeding (Tagungsband der Vereinigung der Pflanzenzüchter und Saatgutkaufleute Österreichs, 69. Jahrestagung, 19—21 November, Raumberg-Gumpenstein, 2018), Tulln: Department für Nutzpflanzenwissenschaften Universität für Bodenkultur Wien, 2019, pp. 29—31.

  108. McCartney, C.A., Stonehouse, R.G., Rossnagel, B.G., et al., Mapping of the oat crown rust resistance gene Pc91, Theor. Appl. Genet., 2011, vol. 122, pp. 317—325. https://doi.org/10.1007/s00122-010-1448-9

    Article  CAS  PubMed  Google Scholar 

  109. Rines, H.W., Porter, H.L., Carson, M.L., and Ochocki, G.E., Introgression of crown rust resistance from diploid oat Avena strigosa into hexaploid cultivated oat A. sativa by two methods: direct crosses and through an initial 2x, 4x synthetic hexaploid, Euphytica, 2007, vol. 158, pp. 67—79. https://doi.org/10.1007/s10681-007-9426-2

    Article  Google Scholar 

  110. Suneson, C.A. and Marshall, H.G., Cold resistance in wild oats, Crop Sci., 1967, vol. 7, pp. 667—668.

    Article  Google Scholar 

  111. Lapinski, B. and Rachvalska, A., Using Avena macrostachya to improve winter hardiness of oats in Poland, Tr. Prikl. Bot., Genet. Sel., 2017, vol. 178, no. 1, pp. 58—67. https://doi.org/10.30901/2227-8834-2017-1-58-67

    Article  Google Scholar 

  112. Loskutov, I.G., Shelenga, T.V., Konarev, A.V., et al., The metabolomic approach to the comparative analysis of wild and cultivated species of oats (Avena L.), Russ. J. Genet., Appl. Res., 2017, vol. 7, no. 5, pp. 501—508. https://doi.org/10.1134/s2079059717050136

    Article  CAS  Google Scholar 

  113. Beleggia, R., Rau, D., Laido, G., et al., Evolutionary metabolomics reveals domestication-associated changes in tetraploid wheat kernels, Mol. Biol. Evol., 2016, vol. 33, pp. 1740—1753. https://doi.org/10.1093/molbev/msw050A

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Loskutov, I.G., Shelenga, T.V., Konarev, A.V., et al., Biochemical aspects of interactions between fungi and plants: a case study of fusarium in oats, S.-kh. Biol., 2019, vol. 54, no. 3, pp. 575—588. https://doi.org/10.15389/agrobiology.2019.3.575rus

    Article  Google Scholar 

  115. Loskutov, I.G., Shelenga, T.V., Konarev, A.V., et al., Modern approach to structuring the variety diversity of the naked and hulled forms of cultural oats (Avena sativa L.), Ekol. Genet., 2020, vol. 18, no. 1, pp. 27—41. https://doi.org/10.17816/ecogen12977

    Article  Google Scholar 

  116. Loskutov, I.G., Shelenga, T.V., Konarev, A.V., et al., Differentiation among oat varieties from the VIR collection according to their degree of breeding level on the basis of metabolomic profiling, Euphytica, 2021 (in press).

  117. Tripathi, V., Mohd, A.S., and Ashraf, T., Avenanthramides of oats: medicinal importance and future perspectives, Pharmacogn. Rev., 2018, vol. 12, pp. 66—71. https://doi.org/10.4103/phrev.phrev_34_17

    Article  Google Scholar 

  118. Redaelli, R., Dimberg, L., Germeier, C.U., et al., Variability of tocopherols, tocotrienols and avenanthramides contents in European oat germplasm, Euphytica, 2016, vol. 207, pp. 273—292. https://doi.org/10.1007/s10681-015-1535-8

    Article  CAS  Google Scholar 

  119. Leonova, S., Gnutikov, A., Loskutov, I., et al., Diversity of avenanthramide content in wild and cultivated oats, Proc. Appl. Bot., Genet. Breed., 2020, vol. 181, no. 1, pp. 30—47. https://doi.org/10.30901/2227-8834-2020-1-30-47

    Article  Google Scholar 

  120. Sang, S. and Chu, Y., Whole grain oats, more than just a fiber: role of unique phytochemicals, Mol. Nutr. Food Res., 2017, vol. 61, no. 7, p. 1600715. https://doi.org/10.1002/mnfr.201600715

    Article  CAS  Google Scholar 

  121. Carraro-Lemes, C.F., Scheffer-Basso, S.M., Deuner, C., and Berghahn, S., Analysis of genotypic variability in Avena spp. regarding allelopathic potentiality, Planta Daninha, 2019, vol. 37, pp. 1—12. https://doi.org/10.1590/S0100-83582019370100100

    Article  Google Scholar 

  122. Tiwari, U. and Cummins, E., Meta-analysis of the effect of beta-glucan intake on blood cholesterol and glucose levels, Nutrition, 2011, vol. 27, pp. 1008—1016. https://doi.org/10.1016/j.nut.2010.11.006

    Article  CAS  PubMed  Google Scholar 

  123. Loskutov, I.G. and Polonskii, V.I., Content of β-glucans in oat grain as a perspective direction of breeding for health products and fodder (a review), S.-kh. Biol., 2017, vol. 52, no. 4, pp. 646—657.

    Google Scholar 

  124. Joyce, S.A., Kamil, A., Fleige, L., and Gahan, C.G., The cholesterol-lowering effect of oats and oat beta glucan: modes of action and potential role of bile acids and the microbiome, Front. Nutr., 2019, vol. 6, p. 171. https://doi.org/10.3389/fnut.2019.00171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Shewry, P.R., Piironen, V., Lampi, A.-M., et al., Phytochemical and fiber components in oat varieties in the HEALTHGRAIN diversity screen, J. Agr. Food Chem., 2008, vol. 56, pp. 9777—9784. https://doi.org/10.1021/jf801880d

    Article  CAS  Google Scholar 

  126. Redaelli, R., Del Frate, V., Bellato, S., et al., Genetic and environmental variability in total and soluble β-glucan in European oat genotypes, J. Cereal Sci., 2013, vol. 57, pp. 193—199. https://doi.org/10.1016/j.jcs.2012.09.003

    Article  CAS  Google Scholar 

  127. Polonskiy, V., Loskutov, I., and Sumina, A., Biological role and health benefits of antioxidant compounds in cereals, Biol. Commun., 2020, vol. 65, no. 1, pp. 53—67. https://doi.org/10.21638/spbu03.2020.105

    Article  Google Scholar 

  128. Welch, R.W., Leggett, J.M., and Lloyd, J.D., Variation in the kernel (1 → 3)(1 → 4)-β-D-glucan content of oat cultivars and wild Avena species and its relationship to other characteristics, J. Cereal Sci., 1991, vol. 13, pp. 173—178. https://doi.org/10.1016/S0733-5210(09)80034-9

    Article  CAS  Google Scholar 

  129. Welch, R.W., Brown, J.C.W., and Leggett, J.M., Interspecific and intraspecific variation in grain and groat characteristics of wild oat (Avena) species: very high groat (1 → 3),(1 → 4)-β-D-glucan in an Avena atlantica genotype, J. Cereal Sci., 2000, vol. 31, pp. 273—279. https://doi.org/10.1006/jcrs.2000.0301

    Article  CAS  Google Scholar 

  130. Sikora, P., Tosh, S.M., Brummer, Y., and Olsson, O., Identification of high β-glucan oat lines and localization and chemical characterization of their seed kernel β-glucans, Food Chem., 2013, vol. 137, pp. 83—91. https://doi.org/10.1016/j.foodchem.2012.10.007

    Article  CAS  PubMed  Google Scholar 

  131. Carreno-Quintero, N., Bouwmeester, H.J., and Keurentjes, J.J., Genetic analysis of metabolome—phenotype interactions: from model to crop species, Trends Genet., 2013, vol. 29, pp. 41—50. https://doi.org/10.1016/j.tig.2012.09.006

    Article  CAS  PubMed  Google Scholar 

  132. Innovation for Food and Health “OATS 2016” (Abstracts of Oral and Poster Presentation, the 10th Int. Oat Conf), St-Petersburg: Federal Research Center the N.I. Vavilov All-Russian Institute of Plant Genetic Resources, 2016.

  133. Leggett, J.M., Classification and speciation in Avena, Oat Sci. Technol., 1992, vol. 33, pp. 29—52.

    Google Scholar 

  134. Rodionova, N.A., Soldatov, V.N., Merezhko, V.E., et al., Oat, in Kul’turnaya flora (Cultivated Flora), Moscow: Kolos, 1994, vol. 2, part 3.

Download references

Funding

This study was supported by the Russian Foundation for Basic Research (grant no. 19-116-50133 Expansion). Some of our own experiments presented in the paper were supported by the Russian Foundation for Basic Research (grant nos. 17-00-00340, 17-00-0037, 17-00-0038) and by the St. Petersburg State University (grant PURE ID 60256916).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Gnutikov.

Ethics declarations

Conflict of interest. The authors declare that they have no conflicts of interest.

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Statement of compliance with standards of research involving humans as subjects. This article does not contain any research involving humans as a subject.

Additional information

Translated by N. Maleeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loskutov, I.G., Gnutikov, A.A., Blinova, E.V. et al. The Origin and Resource Potential of Wild and Cultivated Species of the Genus of Oats (Avena L.). Russ J Genet 57, 642–661 (2021). https://doi.org/10.1134/S1022795421060065

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795421060065

Keywords:

Navigation