Skip to main content

Advertisement

Log in

Comprehensive investigation of Areca catechu tree peduncle biofiber reinforced biocomposites: influence of fiber loading and surface modification

  • Original Article
  • Published:
Biomass Conversion and Biorefinery Aims and scope Submit manuscript

Abstract

In recent scenario, biocomposites are considered counterpart to synthetic fiber reinforced polymer composites due to their comparable specific mechanical characteristics, sustainability, low energy consumption during manufacturing, low cost and biodegradable nature. In this investigation, the influence of fiber loading and sodium hydroxide (NaOH) treatment on thermo-mechanical, morphological and water absorption properties of Areca Catechu tree peduncle fibers (ACTPFs) reinforced in Unsaturated Polyester Resin (UPR) matrix biocomposite has been explored. The biocomposites with 40 wt.% of ACTPF exhibited maximum mechanical characteristics with tensile, flexural, hardness and impact properties of 63 MPa, 56 MPa, 68 HRRW and 5.33 J/cm2 respectively. Also, the NaOH treatment of ACTPF reinforcement improved the tensile, flexural, hardness and impact properties of biocomposite specimens by 3.9%, 4%, 4.12% and 4.4% respectively. The scanning electron microscopic (SEM) images, X-ray diffraction (XRD) spectrum and Fourier Transform Infrared (FTIR) spectrum of the biocomposites were witnessed to ensure its suitability in industrial applications. The acceptable hydrophilic nature, less density and thermal stability up to 237 °C of biocomposite specimens achieved through NaOH-treated ACTPF reinforcements suit well for interiors of automobile and aerospace sectors.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

This is an ongoing research work, and hence the data cannot be shared at this moment.

References

  1. Cheng P, Peng Y, Wang K, Le Duigou A, Yao S, Chen C (2023) Quasi-static penetration property of 3D printed woven-like ramie fiber reinforced biocomposites. Compos Struct 303:116313. https://doi.org/10.1016/j.compstruct.2022.116313

    Article  Google Scholar 

  2. Li T, Zhang Y, Jin Y, Bao L, Dong L, Zheng Y, Xia J, Jiang L, Kang Y, Wang J (2023) Thermoplastic and biodegradable sugarcane lignin-based biocomposites prepared via a wholly solvent-free method. J Clean Prod 386:135834. https://doi.org/10.1016/j.jclepro.2022.135834

    Article  Google Scholar 

  3. Giri AK, Mishra PC (2023) Optimization of different process parameters for the removal efficiency of fluoride from aqueous medium by a novel bio-composite using Box-Behnken design. J Environ Chem Eng 11(1):109232. https://doi.org/10.1016/j.jece.2022.109232

    Article  Google Scholar 

  4. Sanjay MR, Madhu P, Mohammad Jawaid P, Senthamaraikannan S, Senthil SP (2018) Characterization and properties of natural fiber polymer composites: a comprehensive review. J Clean Prod 172:566–581. https://doi.org/10.1016/j.jclepro.2017.10.101

    Article  Google Scholar 

  5. Rangappa SM, Siengchin S, Parameswaranpillai J, Jawaid M, Ozbakkaloglu T (2022) Lignocellulosic fiber reinforced composites: progress, performance, properties, applications, and future perspectives. Polym Compos 43(2):645–691. https://doi.org/10.1002/pc.26413

    Article  Google Scholar 

  6. Sanjay MR, Arpitha GR, Senthamaraikannan P, Kathiresan M, Saibalaji MA, Yogesha B (2019) The hybrid effect of Jute/Kenaf/E-glass woven fabric epoxy composites for medium load applications: impact, inter-laminar strength, and failure surface characterization. Journal of Natural Fibers 16(4):600–612. https://doi.org/10.1080/15440478.2018.1431828

    Article  Google Scholar 

  7. Yorseng K, Rangappa SM, Pulikkalparambil H, Siengchin S, Parameswaranpillai J (2020) Accelerated weathering studies of kenaf/sisal fiber fabric reinforced fully biobased hybrid bioepoxy composites for semi-structural applications: morphology, thermo-mechanical, water absorption behavior and surface hydrophobicity. Construct Build Mater 235:117464. https://doi.org/10.1016/j.conbuildmat.2019.117464

    Article  Google Scholar 

  8. Arun Prakash VR, Francis Xavier J, Ramesh G, Maridurai T, Siva Kumar K, Blessing Sam Raj R (2022) Mechanical, thermal and fatigue behaviour of surface-treated novel Caryota urens fibre–reinforced epoxy composite. Biomass Convers Bioref 12:5451–5461. https://doi.org/10.1007/s13399-020-00938-0

    Article  Google Scholar 

  9. Sabarinathan P, Annamalai VE, Rajkumar K, Vishal K, Dhinakaran V (2022) Synthesis and characterization of randomly oriented silane-grafted novel bio-cellulosic fish tail palm fiber–reinforced vinyl ester composite. Biomass Convers Bioref. https://doi.org/10.1007/s13399-022-02459-4

  10. Anand PB, Lakshmikanthan A, Chandrashekarappa MPG, Selvan CP, Pimenov DY, Giasin K (2022) Experimental investigation of effect of fiber length on mechanical, wear, and morphological behavior of silane-treated pineapple leaf fiber reinforced polymer composites. Fibers 10(7):56–69. https://doi.org/10.3390/fib10070056

    Article  Google Scholar 

  11. Tarique J, Sapuan SM, Khalina A, Ilyas RA, Zainudin ES (2022) Thermal, flammability, and antimicrobial properties of arrowroot (Maranta arundinacea) fiber reinforced arrowroot starch biopolymer composites for food packaging applications. Int J Biol Macromol 213:1–10. https://doi.org/10.1016/j.ijbiomac.2022.05.104

    Article  Google Scholar 

  12. Jenish I, Chinnasamy SGV, Basavarajappa S, SuyambulingamIndran D, Divya YL, Sanjay MR, Siengchin S (2022) Tribo-mechanical characterization of carbonized coconut shell micro particle reinforced with Cissus quadrangularis stem fiber/epoxy novel composite for structural application. J Nat Fibers 19(8):2963–2979. https://doi.org/10.1080/15440478.2020.1838988

    Article  Google Scholar 

  13. Suresh Babu J, Murthy VSS, Pradeep Kumar U, Sathiyamoorthy V, Saravanakumar A (2022) Novel Spinifex littoreus fibre and sugarcane biosilica on mechanical, wear, time dependent and water absorption behaviour of epoxy structural composite, Biomass Convers Bioref. https://doi.org/10.1007/s13399-022-02653-4

  14. Heckadka SS, Nayak SY, Raghavendra Kamath C, Adarsh SP, Samant R (2022) Characterization of a novel polyalthia longifolia mid-rib fibers as a potential reinforcement for polymer composites. J Nat Fibers 19(6):2106–2118. https://doi.org/10.1080/15440478.2020.1798847

    Article  Google Scholar 

  15. Ding L, Han X, Cao L, Chen Y, Ling Z, Han J, He S, Jiang S (2022) Characterization of natural fiber from manau rattan (Calamus manan) as a potential reinforcement for polymer-based composites. J Bioresour Bioprod 7(3):190–200. https://doi.org/10.1016/j.jobab.2021.11.002

    Article  Google Scholar 

  16. Lemita N, Deghboudj S, Rokbi M, Rekbi FML, Halimi R (2022) Characterization and analysis of novel natural cellulosic fiber extracted from Strelitzia reginae plant. J Compos Mater 56(1):99–114. https://doi.org/10.1177/00219983211049285

    Article  Google Scholar 

  17. Njoku CE, Omotoyinbo JA, Alaneme KK, Daramola MO (2022) Characterization of Urena lobata fibers after alkaline treatment for use in polymer composites. J Nat Fibers 19(2):485–496. https://doi.org/10.1080/15440478.2020.1745127

    Article  Google Scholar 

  18. Divya D, Jenish I, Raja S (2022) Comprehensive characterization of Furcraea selloa K. Koch peduncle fiber-reinforced polyester composites—effect of fiber length and weight ratio. Adv Mater Sci Eng 2022(Special Issue): Article ID 8099500. https://doi.org/10.1155/2022/8099500

  19. Ramesh M, Tamil Selvan M, Rajeshkumar L, Deepa C, Ahmad A (2022) Influence of Vachellia nilotica Subsp. indica tree trunk bark nano-powder on properties of milkweed plant fiber reinforced epoxy composites. J Nat Fibers 19(6):13776–13789. https://doi.org/10.1080/15440478.2022.2106341

    Article  Google Scholar 

  20. Mohan Prasad M, Sutharsan SM, Ganesan K, Ramesh Babu N, Maridurai T (2022) Role of sugarcane bagasse biogenic silica on cellulosic Opuntia dillenii fibre-reinforced epoxy resin biocomposite: mechanical, thermal and laminar shear strength properties. Biomass Convers Bioref. https://doi.org/10.1007/s13399-021-02154-w

  21. Prabhu L, Krishnaraj V, Sathish S, Gokulkumar S, Sanjay MR, Siengchin S (2020) Mechanical and acoustic properties of alkali-treated Sansevieria ehrenbergii/Camellia sinensis fiber–reinforced hybrid epoxy composites: incorporation of glass fiber hybridization. Appl Compos Mater 27:915–933. https://doi.org/10.1007/s10443-020-09840-4

    Article  Google Scholar 

  22. Rajeshkumar G, Hariharan V, Indran S, Sanjay MR, SuchartSiengchin J, Maran P, Al-Dhabi NA, Karuppiah P (2021) Influence of sodium hydroxide (NaOH) treatment on mechanical properties and morphological behaviour of phoenix sp. fiber/epoxy composites. J Polym Environ 29:765–774. https://doi.org/10.1007/s10924-020-01921-6

    Article  Google Scholar 

  23. Shi Y, Jiang J, Ye H, Sheng Y, Zhou Y, Foong SY, Sonne C, Chong WWF, Lam SS, Xie Y, Li J, Ge S (2023) Transforming municipal cotton waste into a multilayer fibre biocomposite with high strength. Environ Res 218:114967. https://doi.org/10.1016/j.envres.2022.114967

    Article  Google Scholar 

  24. Kumar S, Saha A (2022) Utilization of coconut shell biomass residue to develop sustainable biocomposites and characterize the physical, mechanical, thermal, and water absorption properties. Biomass Convers Bioref. https://doi.org/10.1007/s13399-022-03293-4

  25. Sharifi A, Mousavi SR, Ghanemi R, Mohtaramzadeh Z, Asheghi R, Mohammadi-Roshandeh J, Khonakdar HA, Hemmati F (2023) Extruded biocomposite films based on poly(lactic acid)/chemically-modified agricultural waste: tailoring interface to enhance performance. Int J Biol Macromol 233:123517. https://doi.org/10.1016/j.ijbiomac.2023.123517

    Article  Google Scholar 

  26. Poomathi S, Roji SSS (2022) Experimental investigations on Palmyra sprout fiber and biosilica-toughened epoxy bio composite. Biomass Convers Bioref. https://doi.org/10.1007/s13399-022-02867-6

  27. Karthik K, Prakash JU, Binoj JS, Mansingh BB (2022) Effect of stacking sequence and SiC nanoparticles on properties of carbon/glass/kevlar fiber reinforced hybrid polymer composites. Polym Compos 43(9):6096–6105. https://doi.org/10.1002/pc.26912

    Article  Google Scholar 

  28. Nooun P, Chueangchayaphan N, Ummarat N, Chueangchayaphan W (2023) Fabrication and properties of natural rubber/rice starch/activated carbon biocomposite-based packing foam sheets and their application to shelf life extension of ‘Hom Thong’ banana. Ind Crops Prod 195:116409. https://doi.org/10.1016/j.indcrop.2023.116409

    Article  Google Scholar 

  29. Balaji A, Kannan S, Purushothaman R, Mohanakannan S, Haja Maideen A, Swaminathan J, Karthikeyan B, Premkumar P (2022) Banana fiber and particle-reinforced epoxy biocomposites: mechanical, water absorption, and thermal properties investigation. Biomass Convers Bioref. https://doi.org/10.1007/s13399-022-02829-y

  30. Thooyavan Y, Kumaraswamidhas LA, Edwin Raj R, Binoj JS, BrailsonMansingh B (2022) Effect of combined micro and nano SiC particles addition on mechanical, wear and moisture absorption features of basalt bidirectional mat/vinyl ester composites. Polym Compos 43(5):2574–2583. https://doi.org/10.1002/pc.26557

    Article  Google Scholar 

  31. Khalili H, Bahloul A, Ablouh E-H, Sehaqui H, Kassab Z, Hassani F-Z, El Achaby M (2023) Starch biocomposites based on cellulose microfibers and nanocrystals extracted from alfa fibers (Stipa tenacissima). Int J Biol Macromol 226:345–356. https://doi.org/10.1016/j.ijbiomac.2022.11.313

    Article  Google Scholar 

  32. Alshahrani H, Prakash VRA (2022) Effect of silane-grafted orange peel biochar and areca fibre on mechanical, thermal conductivity and dielectric properties of epoxy resin composites. Biomass Convers Bioref. https://doi.org/10.1007/s13399-022-02801-w

  33. Xu K, Li Q, Xie L, Shi Z, Su G, Harper D, Tang Z, Zhou J, Du G, Wang S (2022) Novel flexible, strong, thermal-stable, and high-barrier switchgrass-based lignin-containing cellulose nanofibrils/chitosan biocomposites for food packaging. Ind Crops Prod 179:114661. https://doi.org/10.1016/j.indcrop.2022.114661

    Article  Google Scholar 

  34. Beims RF, Rizkalla A, Kermanshahi-pour A, Xu CC (2023) Reengineering wood into a high-strength, and lightweight bio-composite material for structural applications. Chem Eng J 454(1):139896. https://doi.org/10.1016/j.cej.2022.139896

    Article  Google Scholar 

  35. Prabhu P, Jayabalakrishnan D, Balaji V, Bhaskar K, Maridurai T, Arun Prakash VR (2022) Mechanical, tribology, dielectric, thermal conductivity, and water absorption behaviour of Caryota urens woven fibre-reinforced coconut husk biochar toughened wood-plastic composite. Biomass Convers Bioref. https://doi.org/10.1007/s13399-021-02177-3

  36. BrailsonMansingh B, Binoj JS, Anbazhagan VN, Hassan SA, Goh KL, Siengchin S, Sanjay MR, Mariatti M, Liu YC (2022) Characterization of Cocos nucifera L peduncle fiber reinforced polymer composites for lightweight sustainable applications. J Appl Polym Sci 139(22):e52245. https://doi.org/10.1002/app.52245

    Article  Google Scholar 

  37. Ruz-Cruz MA, Herrera-Franco PJ, Flores-Johnson EA, Moreno-Chulim MV, Galera-Manzano LM, Valadez-González A (2022) Thermal and mechanical properties of PLA-based multiscale cellulosic biocomposites. J Market Res 18:485–495. https://doi.org/10.1016/j.jmrt.2022.02.072

    Article  Google Scholar 

  38. Gauss C, Pickering KL (2023) A new method for producing polylactic acid biocomposites for 3D printing with improved tensile and thermo-mechanical performance using grafted nanofibrillated cellulose. Addit Manuf 61:103346. https://doi.org/10.1016/j.addma.2022.103346

    Article  Google Scholar 

  39. Raja T, Munuswamy DB, Francis RR, Vaidya G, Sundararaman S, Devarajan Y (2022) Experimental investigations on the effect of palm oil in kenaf fibre–reinforced basalt particulate hybrid biocomposite. Biomass Convers Bioref. https://doi.org/10.1007/s13399-022-02714-8

  40. Miranda-Valdez IY, Sebastian Coffeng Yu, Zhou LV, Xiang Hu, Jannuzzi L, Puisto A, Kostiainen MA, Mäkinen T, Koivisto J, Alava MJ (2023) Foam-formed biocomposites based on cellulose products and lignin. Cellulose 30:2253–2266. https://doi.org/10.1007/s10570-022-05041-3

    Article  Google Scholar 

  41. Alshahrani H, Arun Prakash VR (2022) Mechanical, fatigue and DMA behaviour of high content cellulosic corn husk fibre and orange peel biochar epoxy biocomposite: a greener material for cleaner production. J Clean Prod 374:133931. https://doi.org/10.1016/j.jclepro.2022.133931

    Article  Google Scholar 

  42. Binoj JS, Manikandan N, Mansingh BB, Anbazhagan VN, Bharathiraja G, Siengchin S, Sanjay MR, Indran S (2022) Taguchi’s optimization of areca fruit husk fiber mechanical properties for polymer composite applications. Fibers Polym 23:3207–3213. https://doi.org/10.1007/s12221-022-0365-2

    Article  Google Scholar 

  43. Qin L, Zhang Y, Fan Y, Li L (2023) Cellulose nanofibril reinforced functional chitosan biocomposite films. Polym Test 120:107964. https://doi.org/10.1016/j.polymertesting.2023.107964

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

JSB: investigation, writing—original draft. MJ: review and editing. BBM: writing—original draft. AKP: resources and supporting.

Corresponding author

Correspondence to Joseph Selvi Binoj.

Ethics declarations

Ethics approval and consent to participate

All the authors demonstrate that they have adhered to the accepted ethical standards of a genuine research study. Also, individual consent from all the authors was undertaken to publish the data prior submitting to journal.

Consent for publication

Written formal consent ensures that the publisher has the author’s permission to publish research findings.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Influence of fiber loading and sodium hydroxide treated biocomposites is explored here.

• Biocomposites with 40 wt.% fiber loading exhibited maximum mechanical characteristics.

• Scanning electron microscopic (SEM) images revealed failure pattern of biocomposites.

• X-ray diffraction (XRD) analysis exposed the crystalline nature of biocomposites.

• Fourier Transform Infrared (FTIR) analysis revealed the chemical bonds in biocomposites.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Binoj, J.S., Jaafar, M., Mansingh, B.B. et al. Comprehensive investigation of Areca catechu tree peduncle biofiber reinforced biocomposites: influence of fiber loading and surface modification. Biomass Conv. Bioref. (2023). https://doi.org/10.1007/s13399-023-04182-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13399-023-04182-0

Keywords

Navigation