Skip to main content
Log in

Leaf anatomy of Vriesea (Tillandsioideae–Bromeliaceae)

  • Original Research
  • Published:
Brittonia Aims and scope Submit manuscript

Abstract

The Bromeliaceae are a largely Neotropical family originating in open, dry environments. Vriesea Lindl., the third largest genus of the family, is traditionally divided between two sections. About 90% of the species of the genus occur in Brazil, where the centre of diversity is the Atlantic Rainforest. Leaf morphoanatomical studies conducted on bromeliad species have confirmed the importance of structural characters for ecological, and also for systematic purposes. Because of the wide morphological, ecological and taxonomic diversity of Vriesea, and its importance in ecosystems associated with the Atlantic Rainforest, we selected 24 Vriesea species and used anatomical and histochemical analyses to describe the leaf anatomy aiming to identify potential systematic characters, and point out possible traits that responded to environmental conditions during the evolution of the genus. The leaves are hypostomatic with peltate trichomes. They present epidermis with thickened cell walls, with lignin and pectin, covered by cuticle and epicuticular wax. The mechanical hypodermis is usually one-layered. Water-storage parenchyma occurs in both surfaces of the leaf blade. The chlorenchyma is located in the median portion of the blade. Air lacunae are associated with brachiform parenchyma. The vascular bundles are collateral, arranged alternately with the air lacunae and surrounded by a sheath of sclerified and/or parenchyma cells. Extravascular fibres occur in most of the species and are positioned below the mechanical hypodermis on the adaxial surface of the leaf blade. Leaf anatomical analysis can be useful in differential characterisation of small groups of related species but does not seem to reflect species assemblages according to the taxonomic sections or substrate type, but is consistent among the Brazilian analysed species of Vriesea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3.
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Literature cited

  • Adams III W. W. & C. E. Martin. 1986. Morphological changes accompanying the transition from juvenile (atmospheric) to adult (tank) forms in the Mexican epiphyte Tillandsia deppeana (Bromeliaceae). American Journal of Botany 73: 1207–1214.

    Article  Google Scholar 

  • Arruda, R. C. O. & A. F. Costa. 2003. Foliar anatomy of five Vriesea sect. Xiphion (Bromeliaceae) species. Selbyana 24: 180–189.

    Google Scholar 

  • Barfuss, M. H. J., R. Samuel, W. Till & T. F. Stuessy. 2005. Phylogenetic relationships in subfamily Tillandsioideae (Bromeliaceae) based on DNA sequence data from seven plastid regions. American Journal of Botany 92: 337–351.

    Article  CAS  PubMed  Google Scholar 

  • Barfuss, M. H. J., W. Till, E. M. C. Leme, J. P. Pinzón, J. M. Manzanares, H. Halbritter, R. Samuel & G. K. Brown. 2016. Taxonomic revision of Bromeliaceae subfam. Tillandsioideae based on a multi-locus DNA sequence phylogeny and morphology. Phytotaxa 279: 1–97.

  • Benzing, D. H., K. Henderson, B. Kessel & J. Sulak. 1976. The absorptive capacities of bromeliad trichomes. American Journal of Botany 63: 1009–1014.

    Article  Google Scholar 

  • Benzing D. H., J. Seemann & A. Renfrow. 1978. The foliar epidermis in Tillandsioideae (Bromeliaceae) and its role in habitat selection. American Journal of Botany 65: 359–365.

    Article  Google Scholar 

  • Benzing, D. H., T. J. Givnish & D. Bermudes. 1985. Absorptive trichomes in Brocchinia reducta (Bromeliaceae) and their evolutionary and systematic significance. Systematic Botany 10: 81–91.

    Article  Google Scholar 

  • Benzing, D. H. 2000. Bromeliaceae: profile of an adaptive radiation. Cambridge University Press, London.

    Book  Google Scholar 

  • Bouchenak-Khelladi, Y., A. M. Musaya & H. P. Linder. 2014. A revised evolutionary history of Poales: origins and diversification. Botanical Journal of the Linnean Society 175: 4–16.

    Article  Google Scholar 

  • Brauns, F. E. & D. A. Brauns. 1960. The chemistry of lignin covering the literature for the 1949–1958. Academic Press, San Diego.

    Google Scholar 

  • Bukatsch, F. 1972. Bemerkungen zur doppel farburng Astrablau-Safranin. Mikrokosmos 6: 255.

    Google Scholar 

  • Butcher, D. & E. J. Gouda. 2020. The new bromeliad taxon list. http://botu07.bio.uu.nl/bcg/taxonList.php.

  • Buzato, S., M. Sazima & I. Sazima. 2000. Hummingbird-pollinated floras at three Atlantic Forest sites. Biotropica 32: 824–841.

    Article  Google Scholar 

  • Costa, A. F., M. G. L. Wanderley & R. L. Moura. 2007. Vriesea (Bromeliaceae). Pp. 126–155. In: T. S. Melhem, M. G. L. Wanderley, S. E. Martins, S. L. Jung-Mendaçolli, G. J. Shepherd & M. Kirizawa (eds), Flora Fanerogâmica do Estado de São Paulo, FAPESP, São Paulo.

    Google Scholar 

  • Costa, A. F. & T. Wendt. 2007. Bromeliaceae na região de Macaé de Cima, Nova Friburgo, Rio de Janeiro, Brazil. Rodriguésia 58: 905–939.

    Article  Google Scholar 

  • Costa, A. F., J. Gomes-da-Silva & M. G. L. Wanderley. 2014. Vriesea (Bromeliaceae, Tillandsioideae): taxonomic history, and morphology of the Brazilian lineage. Journal of the Torrey Botanical Society 141: 338–352.

    Article  Google Scholar 

  • Costa, A. F., J. Gomes-da-Silva & M. G. L. Wanderley. 2015. Vriesea (Bromeliaceae, Tillandsioideae): a cladistic analysis of eastern Brazilian species based on morphological characters. Rodriguésia 66: 429–440.

    Article  Google Scholar 

  • Couto, D. R. 2017. Revisão taxonômica e filogenia de Stigmatodon Leme, G.K. Br. & Barfuss (Bromeliaceae - Tillandsioideae): um grupo especialista de faces verticais dos inselbergs do leste do Brasil. PhD thesis, Universidade Federal do Rio de Janeiro, Brazil.

  • Curtis, J. D., N. R. Lersten & G.P. Lewis. 1996. Leaf anatomy, emphasizing unusual “concertina” mesophyll cells, of two East African legumes (Caesalpinoideae, Leguminosae). Annals of Botany (Oxford) 78: 55–59.

    Article  Google Scholar 

  • De Santo, A. V., A. Alfani & P. De Luca. 1976. Water vapour uptake from the atmosphere by some Tillandsia species. Annals of Botany (Oxford) 40: 391–394.

    Article  Google Scholar 

  • Evert, R. F. 2013. Anatomia das plantas de Esau, 1st ed. Blucher, São Paulo.

    Google Scholar 

  • Fahn, A. & D. F. Cutler. 1992. Xerophytes. Encyclopedia of Plant Anatomy, Band XIII Teil 3, Gebrüder Borntraeger, Stuttgart.

    Google Scholar 

  • Feder, N. & T. P. O’Brien. 1968. Plant microtechnique: some principles and new methods. American Journal of Botany 55: 123–142.

    Article  Google Scholar 

  • Gahan, P. B. 1984. Plant histochemistry and cytochemistry—an introduction. Academic Press Inc., London.

    Google Scholar 

  • George, B., E. Suttie, A. Merlin & X. Deglise. 2005. Photodegradation and photostabilisation of wood—the state of the art. Degradation and Stability 88(2): 268–274.

    Article  CAS  Google Scholar 

  • Gilmartin, A. J. & G. K. Brown. 1987. Bromeliales, related monocots, and resolution of relationships among Bromeliaceae subfamilies. Systematic Botany 12: 494–500.

    Article  Google Scholar 

  • Givnish, T. J., K. C. Millan, T. M. Evans, J. Hall, J. C. Pires, P. E. Berry & K. J. Sytsma. 2004. Ancient vicariance or recent long-distance dispersal? Inferences about phylogeny and South American-African disjunctions in Rapateaceae and Bromeliaceae based on ndhF sequence data. International Journal of Plant Science 135(4 Suppl.): S35–S54.

    Article  Google Scholar 

  • Givnish, T. J., K. C. Millam, P. E. Berry & K. J. Sytsma. 2007. Phylogeny, adaptive radiation, and historical biogeography of Bromeliaceae inferred from ndhF sequence data. Pp. 3–26. In: J. T. Columbus, E. A. Friar, J. M. Porter, L. M. Prince, M. G. Simpson (eds.), Monocots: comparative biology and evolution—Poales. Rancho Santa Ana Botanic Garden, Claremont.

    Google Scholar 

  • Givnish, T. J., M. H. J. Barfuss, B. V. Ee, R. Riina, K. Schulte, R. Horres, P. A. Gonsiska, R. S. Jabaily, D. M. Crayn, A. C. Smith, K. Winter, G. K. Brown, T. M. Evans, B. K. Holst, H. Luther, W. Till, G. Zizka, P. E. Berry & K. J. Sytsma. 2011. Phylogeny, adaptive radiation, and historical biogeography in Bromeliaceae: insights from an eight-locus plastid phylogeny. American Journal of Botany 98: 872–895.

    Article  PubMed  Google Scholar 

  • Givnish, T. J., M. H. J. Barfuss, B. V. Ee, R. Riina, K. Schulte, R. Horres, P. A. Gonsiska, R. S. Jabaily, D. M. Crayn, A. C. Smith, K. Winter, G. K. Brown, T. M. Evans, B. K. Holst, H. Luther, W. Till, G. Zizka, P. E. Berry & K. J. Sytsma. 2014. Adaptive radiation, correlated and contingent evolution, and net species diversification in Bromeliaceae. Molecular Phylogenetics and Evolution 71: 55–78.

    Article  PubMed  Google Scholar 

  • Gobara, B. N. K. 2015. Caracterização da capacidade de indução ao CAM em plantas de Vriesea gigantea (Bromeliaceae) sob déficit hídrico. MSc thesis, Universidade de São Paulo, Brazil.

    Google Scholar 

  • Gomes-da-Silva, J., F. A. C. Vargens, R. C. O. Arruda & A. F. Costa. 2012. A morphological cladistic analysis of the Vriesea corcovadensis group (Bromeliaceae: Tillandsiodeae), with anatomical descriptions: new evidence of the non-monophyly of the genus. Systematic Botany 37: 641–654.

    Article  Google Scholar 

  • Gomes-da-Silva, J. & T. T. Souza-Chies. 2017. What actually is Vriesea? A total evidence approach in a polyphyletic genus of Tillandsioideae (Bromeliaceae, Poales). Cladistics 2017: 1–19.

  • Jensen, W. A. 1962. Botanical histochemistry: principles and pratice. W. H. Freeman & Co., San Francisco.

    Google Scholar 

  • Johansen, D. A. 1940. Plant microtechnique. MacGraw-Hill Comp. Book Inc., London.

    Google Scholar 

  • Kessous, I. M., B. Neves, D. R. Couto, B. Paixão-Souza, L. C. Pederneiras, R. L. Moura, M. H. J. Barfuss, F. Salgueiro & A. F. Costa. 2020. Historical biogeography of a Brazilian lineage of Tillandsioideae (subtribe Vrieseinae, Bromeliaceae): the Paranaean Sea hypothesized as the main vicariant event. Botanical Journal of the Linnean Society 192: 625–641.

    Google Scholar 

  • Klason, P. 1929. Beiträge zur Konstitution des Fichtenholz-Lignins. Berichte der deutschen chemischen Gesellschaft 62: 2523–2526.

    Article  Google Scholar 

  • Kleingesinds, C. K. 2016. Bactérias diazotróficas em Guzmania monostachia (Bromeliaceae): identificação, sinalização e colonização dos tecidos foliares. PhD thesis, Universidade de São Paulo, Brazil.

  • Kleingesinds, C. K., B. N. K. Gobara, D. Mancilha, M. A. Rodrigues, D. Demarco & H. Mercier. 2018. Impact of tank formation on distribution and cellular organization of trichomes within Guzmania monostachia rosette. Flora–Morphology, Distribution, Functional Ecology of Plants 2431: 11–18.

    Article  Google Scholar 

  • Kowalski, V., P. P. D. A. Pereira, F. M. C. Oliveira, M. E. Costa & R. C. Tardivo. 2016. Are the wing’s cells alive? Study case in Vriesea trichomes. Rodriguesia 67: 427–435.

    Article  Google Scholar 

  • Leme, E. M. C. & A. F. Costa. 1994. Vriesea botafogensis e Vriesea saundersii, duas espécies distintas. Bromélia 1: 11–18.

    Google Scholar 

  • Leme, E. M., H. Halbritter & M. H. Barfuss. 2017. Waltillia, a new monotypic genus in Tillandsioideae (Bromeliaceae) arises from a rediscovered, allegedly extinct species from Brazil. Phytotaxa 299: 1–35.

    Article  Google Scholar 

  • Langeron, M. 1949. Précis de microscopie. Masson et Cie. Ed., Paris.

    Google Scholar 

  • Machado, T. M. 2017. Aplicação de next generation sequence na filogenia da subfamília Tillandsioideae e estudos taxonômicos no complexo Vriesea itatiaiae. PhD thesis, Universidade Federal de Minas Gerais, Brazil.

  • Machado, T. M., O. Loiseau, M. Paris, A. Weigand, L. M. Versieux, J. R. Stehmann, J. R C. Lexer & N. Salamin. 2020. Systematics of Vriesea (Bromeliaceae): phylogenetic relationships based on nuclear gene and partial plastome sequences. Botanical Journal of the Linnean Society, 192: 656–674.

    Article  Google Scholar 

  • Maclean, R. C. & W. R. Ivemey-Cook. 1952. Textbook of practical botany. Longmans Greenands Co., London.

    Google Scholar 

  • Males, J. 2016. Think tank: water relations of Bromeliaceae in their evolutionary context. Botanical Journal of the Linnean Society, 181: 415–440.

    Article  Google Scholar 

  • Mantovani, A. & R. R. Iglesias. 2005. Quando aparece a primeira escama? Estudo comparativo sobre o surgimento de escamas de absorção em três espécies de bromélias terrestres de restinga. Rodriguésia 73–84.

  • Martinelli, G., C. M. Vieira, M. Gonzalez, P. Leitman, A. Piratininga, A. F. Costa & R. C. Forzza. 2008. Bromeliaceae da Mata Atlântica brasileira: lista de espécies, distribuição e conservação. Rodriguésia, 59: 209–258.

    Article  Google Scholar 

  • Mauseth, J. D. 1988. Plant anatomy. The Benjamin/Cummings Publishing Company, California.

    Google Scholar 

  • Melo Santos, A. M., D. R. Cavalcanti, J. M. C. D. Silva & M. Tabarelli. 2007. Biogeographical relationships among tropical forests in north-eastern Brazil. Journal of Biogeography, 34: 437-446.

    Article  Google Scholar 

  • Mez, C. 1896. Monographiae phanerogamarum. Prodomi Nunc Continuatio, Nunc Revisio, editore et proparte auctore Casimiro de Candolle, 1–990.

  • Moura, R. L. 2011. Revisão taxonônica do grupo Vriesea platynema Gaudich. (Bromeliaceae). PhD thesis, Universidade Federal do Rio de Janeiro, Brazil.

  • Palací A., G. K. Brown & D. E. Tuthill. 2004. Vegetative morphology and leaf anatomy of Catopsis (Tillandsioideae: Bromeliaceae). Selbyana 25: 138–150.

    Google Scholar 

  • Papini, A., G. Tani, P. Di Falco & L. Brighigna. 2009. The ultrastructure of the development of Tillandsia (Bromeliaceae) trichome. Flora–Morphology, Distribution, Functional Ecology of Plants 205: 94–100.

    Article  Google Scholar 

  • Pereira, T. A. R. 2011. Anatomia foliar de Bromeliaceae Juss. do Parque Estadual do Itacolomi, Minas Gerais, Brasil. MSc thesis, Universidade Federal de Viçosa, Brazil.

  • Pew, J. C. 1951 Structural aspects of the color reaction of lignin with phenols. Journal of the American Chemical Society 73: 1678–1685.

    Article  CAS  Google Scholar 

  • Pierce, S., K. Maxwell, H. Griffiths & K. Winter. 2001. Hydrophobic trichome layers and epicuticular wax powders in Bromeliaceae. American Journal of Botany 88: 1371–1389.

    Article  CAS  PubMed  Google Scholar 

  • Proença, S. L. & M. G. Sajo. 2007. Anatomia foliar de bromélias ocorrentes em áreas de cerrado do estado de São Paulo, Brazil. Acta Botanica Brasilica 21: 657–673.

    Article  Google Scholar 

  • Reinert, F., M. V. Leal-Costa, N. E. Junqueira & E. S. Tavares. 2011. Are sun- and shade-type anatomy required for the acclimation of Neoregelia cruenta? Anais da Academia Brasileira de Ciências 85: 561–573.

    Article  Google Scholar 

  • Sazima, M., S. Buzato & I. Sazima. 1999. Bat-pollinated flower assemblages and bat visitors at two Atlantic Forest sites in Brazil. Annals of Botany 83: 705–712.

    Article  Google Scholar 

  • Scatena, V. L. & S. Segecin. 2005. Anatomia foliar de Tillandsia L. (Bromeliaceae) dos Campos Gerais, Paraná, Brasil. Brazilian Journal of Botany 28: 635–649.

    Article  Google Scholar 

  • Silva, A. S. 2013. Anatomia foliar de Vriesea Lindl. (Tillandsioideae, Bromeliaceae). Monography, Universidade do Estado do Rio de Janeiro, Brazil.

  • Shields, L. M. 1950. Leaf xeromorphy as related to physiological and structural influences. Botanical Review 16: 399–447.

    Article  Google Scholar 

  • Smith, L. B. & R. J. Downs. 1977. Tillandsioideae (Bromeliaceae). Flora Neotropica Monograph 14: 663–1492.

    Google Scholar 

  • Stefano, M., A. Papini & L. Brighigna. 2007. A new quantitative classification of ecological types in the bromeliad genus Tillandsia (Bromeliaceae) based on trichomes. Revista de Biologia Tropical 56: 191–203.

    Google Scholar 

  • Strehl, T. 1983. Forma, distribuição e flexibilidade dos tricomas foliares usados na filogenia de Bromeliáceas. Iheringia Serie Botanica 31: 105–119.

    Google Scholar 

  • Taboga, S. R. & P. S. L. Vilamaior. 2013. Citoquímica. Pp. 42–50. In: H. F. Carvalho & S. M. Recco-Pimentel (eds.), A Célula. Editora Manole, Barueri.

    Google Scholar 

  • Tomlinson, P. B. 1969. Comelinales–Zingiberales. Pp. 193–294. In: C. R. Metcalfe (ed.), Anatomy of the monocotyledons: III. Claredon Press, Oxford.

    Google Scholar 

  • Uribbe, F. P. 2014. Variação morfológica em Vriesea procera (Mart. ex Schult. & Schult. f.) Wittm. (Bromeliaceae,Tillandsioideae). MSc thesis, Universidade Federal do Rio de Janeiro, Brazil.

  • Versieux, L. M., P. M. Elbl, M. G. L. Wanderley & N. L. Menezes. 2010. Alcantarea (Bromeliaceae) leaf anatomical characterization and its systematic implications. Nordic Journal of Botany 28: 385–397.

    Article  Google Scholar 

  • Versieux, L. M., T. Barbará, M. G. L. Wanderley, A. Calvente, M. F. Fay & C. Lexer. 2012. Molecular phylogenetics of the Brazilian giant bromeliads (Alcantarea, Bromeliaceae): implications for morphological evolution and biogeography. Molecular Phylogenetics and Evolution, 64: 177–189.

    Article  PubMed  Google Scholar 

  • Voltolini, C. H., A. Reis & M. Santos. 2009. Leaf morphoanatomy of the rheophyte Dyckia distachya Hassler (Bromeliaceae). Revista Brasileira de Biociências 7: 335–343.

    Google Scholar 

Download references

Acknowledgements

We thank the staff of the Laboratory of Bromeliaceae Systematics and Laboratory of Plant Anatomy at the Museu Nacional of the Universidade Federal do Rio de Janeiro for assistance with field work and structural analyses, respectively. This study forms part of the master’s thesis of C.G.F., which was carried out in the Programa de Pós-graduação em Ciências Biológicas (Botânica), Museu Nacional, Universidade Federal do Rio de Janeiro (UFRJ), and was supported by funds from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). A.S.S. was supported by a scholarship from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; Proc. 106916/2012-2). A.F.C. was supported by a productivity grant from CNPq (Proc. 305704/2018-4) and research grant from the Ministério da Ciência, Tecnologia, Inovações e Comunicações (MCTIC)/CNPq/Ministério da Educação (MEC)/CAPES, Programa de Capacitação em Taxonomia (PROTAX) (Proc. 562187/2010-3). B.S.H. was supported by research grant from the Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) (Proc. E-26/200.088/2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Gomes Faria.

Appendix

Appendix

Appendix 2 Results of histochemical tests carried out on fully developed leaves of Vriesea species (+, positive, -, negative)
Appendix 3 States of anatomical characters selected in Vriesea species. (NSWP = number of strata of the water-storage parenchyma; ACl = arrangement of the chlorenchyma; SCC = shape of the chloremchyma cells; AAC = arrangement of arm-cells; be= broadly elliptical; ne= narrowly elliptical; bf= both faces; ads = adaxial surface; abs= abaxial surface; cc-cv = concaveconvex; lin= linear; ca = compactly arranged ; ws= widely spaced; ea= elongated anticlinally; ep= elongated periclinally; tru= truncated; obli = oblique; ns = not seen; + = present; - = absent).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faria, C.G., Silva, A.S., de Melo, R.K.P. et al. Leaf anatomy of Vriesea (Tillandsioideae–Bromeliaceae). Brittonia 73, 27–52 (2021). https://doi.org/10.1007/s12228-020-09645-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12228-020-09645-6

Keywords

Navigation