Skip to main content
Log in

Possible Role of Light and Polyamines in the Onset of Somatic Embryogenesis of Coffea canephora

  • Research
  • Published:
Molecular Biotechnology Aims and scope Submit manuscript

Abstract

The concentration of free and bound polyamines was studied during the somatic embryogenesis induction process in Coffea canephora explants. In the present study we show that when the induction of somatic embryogenesis in C. canephora is carried out under light conditions and in the presence of the plant growth regulator, benzylaminopurine, a cytokinin, a faster response to induction is obtained. In the darkness, the response is delayed for more than 20 days, and the number of embryos is smaller. In the absence of benzylaminopurine no embryogenic response was observed. The pronounced changes in the levels of putrescine, spermidine, and spermine, both free and bound, found in C. canephora suggest that a close correlation exists between polyamine biosynthesis and somatic embryogenesis in C. canephora during a period of cellular differentiation associated with the induction of somatic embryogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ADC:

Arginine decarboxylase

BA:

Benzylaminopurine

DFMA:

(α-DL-difluoromethylarginine

Kin:

Kinetin

LEDs:

Light-emitting diodes

NAA:

Naphthalene acetic acid

Pas:

Polyamines

Put:

Putrescine

PEM:

Proembryogenic masses

SE:

Somatic embryogenesis

Spd:

Spermidine

Spm:

Spermine

References

  1. Zimmerman, J. L. (1993). Somatic embryogenesis: A model for early development in higher plants. Plant Cell, 5, 1411–1423.

    Article  Google Scholar 

  2. Hoshino, T., & Cuello, J. (2006). Environmental design considerations for somatic embryogenesis. In Mujib, A. & Samaj, J (Eds.), Somatic embryogenesis (pp. 25–34). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  3. Quiroz-Figueroa, F. R., Rojas-Herrera, R., Galaz-Avalos, R. M., & Loyola-Vargas, V. M. (2006). Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell Tissue and Organ Culture, 86, 285–301.

    Article  Google Scholar 

  4. Robie, C. A., & Minocha, S. C. (1989). Polyamines and somatic embriogénesis in carrot. I. The effects of difluoromethylornithine and difluoromethylarginina. Plant Science, 65, 45–54.

    Article  CAS  Google Scholar 

  5. Minocha, S. C., Papa, N. S., Khan, A. J., & Samuelsen, A. I. (1991). Polyamines and somatic embryogenesis in carrot. III. Effects pf methylglyoxal bis(guanylhydrazone). Plant and Cell Physiology, 32, 395–402.

    CAS  Google Scholar 

  6. Khan, A. J., & Minocha, S. C. (1991). Polyamines and somatic embryogenesis in carrot. II. The effects of cyclohexylammonium phosphate. Journal of Plant Physiology, 137, 446–452.

    CAS  Google Scholar 

  7. Nakagawa, R., Ogita, S., Kubo, T., & Funada, R. (2006). Effect of polyamines and l-ornithine on the development of proembryogenic masses of Cryptomeria japonica. Plant Cell Tissue and Organ Culture, 85, 229–234.

    Article  CAS  Google Scholar 

  8. Silveira, V., Santa-Catarina, C., Tun, N. N., Scherer, G. F. E., Handro, W., Guerra, M. P., & Floh, E. I. S. (2006). Polyamine effects on the endogenous polyamine contents, nitric oxide release, growth and differentiation of embryogenic suspension cultures of Araucaria angustifolia (Bert.) O. Ktze. Plant Science, 171, 91–98.

    Article  CAS  Google Scholar 

  9. Walden, R., Cordeiro, A., & Tiburcio, A. F. (1997). Polyamines: Small molecules triggering pathways in plant growth and development. Plant Physiology, 113, 1009–1013.

    Article  CAS  Google Scholar 

  10. Kevers, C., Le Gal, N., Monteiro, M., Dommes, J., & Gaspar, T. (2000). Somatic embryogenesis of Panax ginseng in liquid cultures: A role for polyamines and their metabolic pathways. Plant Growth Regulation, 31, 209–214.

    Article  CAS  Google Scholar 

  11. Minocha, R., Smith, D. R., Reeves, C., Steele, K. D., & Minocha, S. C. (1999). Polyamine levels during the development of zygotic and somatic embryos of Pinus radiata. Physioligia Plant, 105, 155–164.

    Article  CAS  Google Scholar 

  12. Santanen, A., & Simola, L. K. (1992). Changes in polyamines metabolism during somatic embriogénesis in Picea abies. Journal of Plant Physiology, 140, 475–480.

    CAS  Google Scholar 

  13. Yadav, J. S., & Rajam, M. V. (1997). Spatial distribution of free and conjugated polyamines in leaves of Solanum melongena L. associated with differential morphogenetic capacity: Efficient somatic embryogenesis with putrescine. Journal of Experimental Botany, 48, 1537–1545.

    CAS  Google Scholar 

  14. Monteiro, M., Kevers, C., Dommes, J., & Gasper, T. (2002). A specific role for spermidine in the initiation phase of somatic embryogenesis in Panax ginseng CA meyer. Plant Cell Tissue and Organ Culture, 68, 225–232.

    Article  CAS  Google Scholar 

  15. Amarasinghe, V., & Carlson, J. E. (1994). Subcellular localization of polyamines in embryogenic callus of white spruce (Picea glauca). Canadian Journal of Botany, 72, 788–793.

    Article  CAS  Google Scholar 

  16. Feirer, R. P., Mignon, G., & Litvay, J. D. (1984). Arginine decarboxylase and polyamines required for embryogenesis in the wild carrot Daucus carota. Science, 223, 1433–1435.

    Article  CAS  Google Scholar 

  17. Feirer, R. P., Wann, S. R., & Einspahr, D. W. (1985). The effects of spermidine synthesis inhibitors on in-vitro plant development. Plant Growth Regulation, 3, 319–327.

    Article  CAS  Google Scholar 

  18. Kaur-Sawhney, R., Shekhawat, N. S., & Galston, A. W. (1985). Polyamine levels as related to growth, differentiation and senescence in protoplast-derived cultures of Vigna aconitifolia and Avena sativa. Plant Growth Regulation, 3, 329–337.

    Article  CAS  Google Scholar 

  19. Hadrami, I., & D’Auzac, J. (1992). Effects of polyamines biosynthetic inhibitors on somatic embryogenesis and cellular polyamines in Hevea brasiliensis. Journal of Plant Physiology, 140, 33–36.

    Google Scholar 

  20. Cvikrová, M., Binarová, P., Cenklová, V., Eder, J., & Macháeková, I. (1999). Reinitiation of cell division and polyamine and aromatic monoamine levels in alfalfa explants during the induction of somatic embryogenesis. Physioligia Plant, 105, 330–337.

    Article  Google Scholar 

  21. Calheiros, M. B. P., Vieira, L. G. E., & Fuentes, S. R. L. (1994). Effects of exogenous polyamines on direct somatic embryogenesis in coffee. R. Bras. Fisiol. Veg, 6, 109–114.

    CAS  Google Scholar 

  22. Shoeb, F., Yadav, J. S., Bajaj, S., & Rajam, M. V. (2001). Polyamines as biomarkers for plant regeneration capacity: Improvement of regeneration by modulation of polyamine metabolism in different genotypes of indica rice. Plant Science, 160, 1229–1235.

    Article  CAS  Google Scholar 

  23. Verhagen, S. A., & Wann, S. R. (1989). Norway spruce somatic embryogenesis: High-frequency initiation from light-cultured mature embryos. Plant Cell Tissue and Organ Culture, 16, 103–111.

    Article  Google Scholar 

  24. Halperin, W. (1970). Embryos from somatic plant cells. In: Padykula, H.A. (Eds.), Control mechanisms in the expression of cellular phenotypes (pp. 169–191). New York: Academic Press.

    Google Scholar 

  25. Michler, C. H., & Lineberger, R. D. (1987). Effects of light on somatic embryo development and abscisic levels in carrot suspension cultures. Plant Cell Tissue and Organ Culture, 11, 189–207.

    Article  Google Scholar 

  26. D’Onofrio, C., Morini, S., & Bellocchi, G. (1998). Effect of light quality on somatic embryogenesis of quince leaves. Plant Cell Tissue and Organ Culture, 53, 91–98.

    Article  Google Scholar 

  27. Bach, A., & Krol, A. (2001) Effect of light quality on somatic embryogenesis in Hyacinthus orientalis L. “Delft’s Blue” Biological Bulletin Poznan 38, 103–107.

    Google Scholar 

  28. Takanori, T., & Cuello, J. (2005). Regulating radiation quality and intensity using narrow-band LEDs for optimization of somatic embryogenesis. In Proceedings of the 2005 Annual Meeting of the American Society of Agricultural Engineers (pp. 1–12). .

  29. Latkowska, M. J., Kvaalen, H., & Appelgren, M. (2000). Genontype dependent blue and red light inhibition of the proliferation of the embryogenic tissue or Norway spruce. In Vitro Cellular and Developmental Biology-Plant, 36, 57–60.

    Article  Google Scholar 

  30. Kintzios, S. E., & Taravira, N. (1997). Effect of genotype and light intensity on somatic embryogenesis and plant regeneration in melon (Cucumis melo L.). Plant Breed, 116, 359–362.

    Article  CAS  Google Scholar 

  31. Kaldenhoff, R., Henningsen, U., & Richter, G. (1994) Gene activation in suspension-cultured cells of Arabidopsis thaliana during blue-light-dependent plantlet regeneration. Planta, 195, 182–187.

    Article  CAS  Google Scholar 

  32. Torné, J. M., Moysset, L., Claparols, I., & Simón, E. (1996). Photocontrol of somatic embryogenesis and polyamine content in Araujia sericifera petals. Physiologia Plantarum, 98, 413–418.

    Article  Google Scholar 

  33. Torné, J. M., Moisset, L., Santos, M., & Simón, E. (2001). Effect of light quality on somatic embryogenesis in Araujia sericifera. Physiologia Plantarum, 111, 405–411.

    Article  Google Scholar 

  34. Torné, J. M., Rodriguez, P., Manich, A., Claparols, I., & Santos, M. A. (1997). Embryogenesis induction in petals of Araujia sericifera. Plant Cell Tissue and Organ Culture, 51, 95–102.

    Article  Google Scholar 

  35. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.

    Article  CAS  Google Scholar 

  36. Quiroz-Figueroa, F. R., Fuentes-Cerda, C. F. J., Rojas-Herrera, R., & Loyola-Vargas, V. M. (2002). Histological studies on the developmental stages and differentiation of two different somatic embryogenesis systems of Coffea arabica. Plant Cell Reports, 20, 1141–1149.

    Article  CAS  Google Scholar 

  37. Yasuda, T., Fujii, Y., & Yamaguchi, T. (1985). Embryogenic callus induction from Coffea arabica leaf explants by benzyladenine. Plant & Cell Physiology, 26, 595–597.

    CAS  Google Scholar 

  38. Tiburcio, A. F., Kaur-Sawhney, R., & Galston, A. W. (1986). Polyamine metabolism and osmotic stress. Plant Physiology, 82, 375–378.

    CAS  Google Scholar 

  39. Flores, H. E., & Galston, A. W. (1982). Polyamines and plant stress: activation of putrescine biosynthesis by osmotic shock. Science, 217, 1259–1261.

    Article  CAS  Google Scholar 

  40. Santana-Buzzy, N., Rojas-Herrera, R., Galaz-Avalos, R. M., Ku-Cauich, R., Mijangos-Cortés, J., Gutiérrez-Pacheco, L. C., Canto-Flick, A., Quiroz-Figueroa, F. R., & Loyola-Vargas, V. M. (2007). Advances in coffee tissue culture and its practical applications. In Vitro Cellular & Developmental Biology-Plant, 43, 507–520.

    Article  CAS  Google Scholar 

  41. Jiménez V. M., & Thomas, C. (2006). Participation of plant hormones in determination and progression of somatic embryogenesis. In A. Mujib & J. Samaj (Eds.), Somatic embryogenesis (pp. 103–118). Berlin, Heidelberg: Springer.

    Chapter  Google Scholar 

  42. Staritsky, G. (1970) Embryoid formation in callus tissues of coffee. Acta Botanica Neerlandica, 19, 509–514.

    Google Scholar 

  43. Montague, M. J., Koppenbrink, J. W., & Jaworski, E. G. (1978). Polyamine metabolism in embryogenic cells of Daucus carota I. Changes in intracellular content and rates of synthesis. Plant Physiology, 62, 430–433.

    CAS  Google Scholar 

  44. Montague, M. J., Armstrong, T. A., & Jaworski, E. G. (1979). Polyamine metabolism in embryogenic cells of Daucus carota II. Changes in arginine decarboxylase activity. Plant Physiology, 63, 341–345.

    Article  CAS  Google Scholar 

  45. Meijer, E. G. M., & Simmonds, J. (1988). Polyamine levels in relation to growth and somatic embryogenesis in tissue cultures of Medicago sativa L. Journal of Experimental Botany, 39, 787–794.

    Article  CAS  Google Scholar 

  46. Amarasinghe, V., Dhami, R., & Carlson, J. E. (1996). Polyamine biosynthesis during somatic embryogenesis in interior spruce (Picea glauca × Picea engelmannii complex). Plant Cell Reports, 15, 495–499.

    Article  CAS  Google Scholar 

  47. Li, Z., & Burritt, D. J. (2003). Changes in endogenous polyamines during the formation of somatic embryos from isogenic lines of Dactylis glomerata L. with different regenerative capacities. Plant Growth Regulation, 40, 65–74.

    Article  CAS  Google Scholar 

  48. Slocum, R. D., Kaur-Sawhney, R., & Galston, A. W. (1984). The physiology and biochemistry of polyamines in plants. Archives of Biochemistry and Biophysics, 235, 283–303.

    Article  CAS  Google Scholar 

  49. Huang, X. L., Li, X. J., Li, Y., & Huang, L. Z. (2001). The effect of AOA on ethylene and polyamine metabolism during early phases of somatic embryogenesis in Medicago sativa. Physiologia Plantarum, 113, 424–429.

    Article  CAS  Google Scholar 

  50. Steiner, N., Santa-Catarina, C., Silveira, V., Floh, E., & Guerra, M. (2007). Polyamine effects on growth and endogenous hormones levels in Araucaria angustifolia embryogenic cultures. Plant Cell, Tissue and Organ Culture, 89, 55–62.

    Article  CAS  Google Scholar 

  51. Roustan, J.-P., Latché, A., & Fallot, J. (1994). Role of ethylene on induction and expression of carrot somatic embryogenesis: Relationship with polyamine metabolism. Plant Science, 103, 223–229.

    Article  CAS  Google Scholar 

  52. Maatar, A., & Hunault, G. (1997). Influence des régulateurs de croissance sur la teneur des tissus en polyamines libres lors de l’induction de l’embryogenèse somatique chez le fenouil (Foeniculum vulgare Miller). Comptes Rendus de l’Academie des Sciences - Series III - Sciences de la Vie, 320, 245–251.

    Article  CAS  Google Scholar 

  53. Sánchez-Gras, M. C., & Segura, J. (1988) Morphogenesis in vitro of Sideritis angustifolia: Effects of auxins, benzyladenine and spermidine. Plant Science, 57, 151–158.

    Article  Google Scholar 

  54. Niemi, K., Sarjala, T., Chen, X., & Haggman, H. (2007) Spermidine and the ectomycorrhizal fungus Pisolithus tinctorius synergistically induce maturation of Scots pine embryogenic cultures. Journal of Plant Physiology, 164, 629–635.

    Article  CAS  Google Scholar 

  55. Kong, L., Attree, S. M., & Fowke, L. C. (1998). Effects of polyethylene glycol and methylglyoxal bis(guanylhydrazone) on endogenous polyamine levels and somatic embryo maturation in white spruce (Picea glauca). Plant Science, 133, 211–220.

    Article  CAS  Google Scholar 

  56. Minocha, R., Minocha, S. C., & Long, S. (2004). Polyamines and their biosynthetic enzymes during somatic embryo development in red spruce (Picea rubens Sarg.). In Vitro Cellular and Developmental Biology-Plant, 40, 572–580.

    Article  CAS  Google Scholar 

  57. Pedroso, M. C., Primikirios, N., Roubelakis-Angelakis, K. A., & Pais, M. S. (1997). Free and conjugated polyamines in embryogenic and non-embryogenic leaf regions of camellia leaves before and during direct somatic embryogenesis. Physiologia Plantarum, 101, 213–219.

    Article  CAS  Google Scholar 

  58. Blázquez, S., Piqueras, A., Serna, M. D., Casas, J. L., & Fernández, J.-A. (2004) Somatic embryogenesis in saffron: Optimisation through temporary immersion and polyamine metabolism. Acta Horticulturae, 650, 269–276.

    Google Scholar 

  59. Mengoli, M., Bagni, N., Luccarini, G., & Nuti, R. V., Serafini-Fracassini, D. (1989). Daucus carota cell cultures: Polyamines and effect of polyamine biosynthesis inhibitors in the preembryogenic phase and different embryo stages. Journal of Plant Physiology, 134, 389–394.

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Francisco Quiroz for his help to take the pictures, Emily Wortman-Wunder for editorial assistance, and the members of Jorge Vivanco’s laboratory for helpful discussion. V.M.L.V. is recipient of a scholarship from CONACYT (75351), Mexico. This work is partially funded by CONACYT (Grant No. 61415).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor M. Loyola-Vargas.

Additional information

We would like to dedicate this paper to Dra. Estela Sánchez, the pioneer of the Plant Biochemistry in Mexico, on occasion of her 75th anniversary.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 635 kb)

(DOC 19 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

De-la-Peña, C., Galaz-Ávalos, R.M. & Loyola-Vargas, V.M. Possible Role of Light and Polyamines in the Onset of Somatic Embryogenesis of Coffea canephora . Mol Biotechnol 39, 215–224 (2008). https://doi.org/10.1007/s12033-008-9037-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12033-008-9037-8

Keywords

Navigation