Skip to main content
Log in

Comparative study on the chloroplast genomes of five Larix species from the Qinghai-Tibet Plateau and the screening of candidate DNA markers

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Five Larix species (L. griffithii, L. speciose, L. himalaica, L. kongboensis, and L. potaninii var. australis), have survived on the Qinghai-Tibet Plateau (QTP) under specific climate conditions for decades. The lack of genomic information seriously hinders research on the evolution, conservation and ecology of these Larix resources. In this study, complete chloroplast (cp) genomes of the 5 species were assembled and compared based on next generation sequencing technology combined with polymerase chain reaction validation. The results show that the 5 cp genomes are relatively conservative in size, gene content and arrangement, and border variation. Phylogenetic analysis showed that the species are closely related as well as to seven other species of the same genus. In addition, the 5 cp genomes contained few simple sequence repeats and relatively low nucleotide variability; thus, 12 candidate polymorphic cp DNA markers will be helpful for further research on relevant population genetics. These results will provide valuable genetic information for the conservation, evolution and ecology of these species and their relatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinform 30(15):2114–2120

    Article  CAS  Google Scholar 

  • Bondar EI, Putintseva YA, Oreshkova NV, Krutovsky KV (2019) Siberian larch (Larix sibirica Ledeb) chloroplast genome and development of polymorphic chloroplast markers. BMC Bioinform 20(1):38

    Article  CAS  Google Scholar 

  • Dong WP, Xu C, Li CH, Sun JH, Zuo YJ, Shi S, Cheng T, Guo JJ, Zhou SL (2015) ycf1, the most promising plastid DNA barcode of land plants. Sci Rep 5:8348

    Article  CAS  Google Scholar 

  • Fu L (1983) Flora of Tibet. China Science and Technology Press. Beijing. Pp. 373–377

  • Fu L, Li N, Mill RR (1999) Flora of China. Science Press and Missouri Botanical Garden Press. Beijing. pp. 11–52

  • Gao C, Deng Y, Wang J (2019) The complete chloroplast genomes of Echinacanthus species (Acanthaceae): Phylogenetic relationships, adaptive evolution, and screening of molecular markers. Front Plant Sci 9:1989

    Article  Google Scholar 

  • Gao XY, Zhang X, Meng HH, Li J, Zhang D, Liu CN (2018) Comparative chloroplast genomes of Paris sect. Marmorata: insights into repeat regions and evolutionary implications. BMC Genom 19(10):878

    Article  CAS  Google Scholar 

  • Greiner S, Lehwark P, Bock R (2019) Organellar genome DRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res 47(W1):W59–W64

    Article  CAS  Google Scholar 

  • Hahn C, Bachmann L, Chevreux B (2013) Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads-a baiting and iterative mapping approach. Nucleic Acids Res 41(13):e129

    Article  CAS  Google Scholar 

  • Han K, Li J, Zeng S, Liu ZL (2017) Complete chloroplast genome sequence of Chinese larch (Larix potaninii var. chinensis), an endangered conifer endemic to China. Conserv Genet Resour 9(1):111–113

    Article  Google Scholar 

  • Hao Z, Cheng T, Zheng R, Xu H, Zhou Y, Li M, Lu F, Dong Y, Liu X, Chen J, Shi J (2016) The complete chloroplast genome sequence of a relict conifer Glyptostrobus pensilis: Comparative analysis and insights into dynamics of chloroplast genome rearrangement in Cupressophytes and Pinaceae. PLoS ONE 11(8):e0161809

    Article  Google Scholar 

  • Healey A, Furtado A, Cooper T, Henry RJ (2014) Protocol: a simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species. Plant Methods 10:21

    Article  Google Scholar 

  • Ishizuka W, Tabata A, Ono K, Fukuda Y, Hara T (2017) Draft chloroplast genome of Larix gmelinii var japonica: insight into intraspecific divergence. J For Res 22(6):393–398

    Article  CAS  Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinform 28(12):1647–1649

    Article  Google Scholar 

  • Kim SC, Lee JW, Lee MW, Baek SH, Hong KN (2018) The complete chloroplast genome sequences of Larix kaempferi and Larix olgensis var koreana (Pinaceae). Mitochondrial DNA Part B 3(1):36–37

    Article  Google Scholar 

  • Kofler R, Schlotterer C, Lelley T (2007) SciRoKo: a new tool for whole genome microsatellite search and investigation. Bioinform 23(13):1683–1685

    Article  CAS  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Method 9(4):357

    Article  CAS  Google Scholar 

  • Lee SI, Nkongolo K, Park D, Choi IY, Choi AY, Kim NS (2019) Characterization of chloroplast genomes of Alnus rubra and Betula cordifolia, and their use in phylogenetic analyses in Betulaceae. Genes Genom 41(3):305–316

    Article  CAS  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinform 25(11):1451–1452

    Article  CAS  Google Scholar 

  • Lin CP, Huang JP, Wu CS, Hsu CY, Chaw SM (2010) Comparative chloroplast genomics reveals the evolution of Pinaceae genera and subfamilies. Genome Biol Evol 2:504–517

    Article  Google Scholar 

  • Liu L, Wang Z, Huang LJ, Wang T, Su YJ (2019) Chloroplast population genetics reveals low levels of genetic variation and conformation to the central-marginal hypothesis in Taxus wallichiana var mairei, an endangered conifer endemic to China. Ecol Evol 9(20):11944–11956

    Article  Google Scholar 

  • Liu Y, Zheng W, Fu L (1978) Flora of China. China Science and Technology Press, Beijing, pp 168–196

    Google Scholar 

  • Ni ZX, Zhou PY, Xu M, Xu LA (2018) Development and characterization of chloroplast microsatellite markers for Pinus massoniana and their application in Pinus (Pinaceae) species. J Genet 97(1):53–59

    Article  CAS  Google Scholar 

  • Parks M, Cronn R, Liston A (2009) Increasing phylogenetic resolution at low taxonomic levels using massively parallel sequencing of chloroplast genomes. BMC Biol 7(1):84

    Article  Google Scholar 

  • Qiu DY, Yang J, Feng L, Ni DW, Huang CX, Li ZH (2018) Complete plastid genome of Larix potaninii var macrocarpa, an endangered conifer endemic to China. Conserv Genet Resour 10(2):187–189

    Article  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  CAS  Google Scholar 

  • Wang S, Yang CP, Zhao XY, Chen S, Qu GZ (2018) Complete chloroplast genome sequence of Betula platyphylla: gene organization, RNA editing, and comparative and phylogenetic analyses. BMC Genom 19:950

    Article  CAS  Google Scholar 

  • Worth JRP, Liu L, Wei F, Tomaru N (2019) The complete chloroplast genome of Fagus crenata (subgenus Fagus) and comparison with F. engleriana (subgenus Engleriana). Peer J 7:e7026

    Article  Google Scholar 

  • Wu CS, Lin CP, Hsu CY, Wang RJ, Chaw SM (2011) Comparative chloroplast genomes of pinaceae: insights into the mechanism of diversified genomic organizations. Genome Biol Evol 3:309–319

    Article  CAS  Google Scholar 

  • Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinform 20(17):3252–3255

    Article  CAS  Google Scholar 

  • Yang XM, Zhou TT, Su XY, Wang GB, Zhang XH, Guo QR, Cao FL (2020) Structural characterization and comparative analysis of the chloroplast genome of Ginkgo biloba and other gymnosperms. J For Res. https://doi.org/10.1007/s11676-019-01088-4

    Article  Google Scholar 

  • Zhou T, Ruhsam M, Wang J, Zhu HH, Li WL, Zhang X, Xu YC, Xu FS, Wang XM (2019) The complete chloroplast genome of Euphrasia regelii, Pseudogenization of ndh genes and the phylogenetic relationships within Orobanchaceae. Front Genet 10:444

    Article  CAS  Google Scholar 

  • Zimmermann HH, Harms L, Epp LS, Mewes N, Bernhardt N, Kruse S, Stoof-Leichsenring KR, Pestryakova LA, Wieczorek M, Trense D, Herzschuh U (2019) Chloroplast and mitochondrial genetic variation of larches at the Siberian tundrataiga ecotone revealed by de novo assembly. PLoS ONE 14(7):0216966

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiqiang Guo or Weilie Zheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: This work was supported by the National Natural Science Foundation of China (31660215), the Construction Project for First-Class Ecology Discipline in Guizhou (GNYL [2017] 007), China, and Major Scientific and Technological Projects of Guizhou Province ([2018]5261), China.

The online version is available at http://www.springerlink.com

Corresponding editor: Yanbo Hu.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Q., Li, H., Qian, Z. et al. Comparative study on the chloroplast genomes of five Larix species from the Qinghai-Tibet Plateau and the screening of candidate DNA markers. J. For. Res. 32, 2219–2226 (2021). https://doi.org/10.1007/s11676-020-01279-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-020-01279-4

Keywords

Navigation