Skip to main content
Log in

Recovery of ultramafic soil functions and plant communities along an age-gradient of the actinorhizal tree Ceuthostoma terminale (Casuarinaceae) in Sabah (Malaysia)

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

Pioneer plants may improve the ecological restoration of degraded ultramafic areas by plant-soil interaction processes. In this study, we assess the effect of the pioneer actinorhizal tree C. terminale (Casuarinaceae) on the recovery of plant communities and soil functions on degraded tropical ultramafic sites.

Methods

Soil and plant samples were collected along a tree-age gradient in two degraded ultramafic sites in Sabah (Northern Borneo, Malaysia): a Technosol and a Leptosol. Chemical composition of plants and soils, and biological activity of soils were assessed at both sites. Plant colonisation was assessed by plot vegetation surveys.

Results

An improvement in soil fertility parameters (pH reduction from 8.5 to 6.8, an increase in the concentrations of several nutrients and enhanced soil enzyme activities) was observed along the C. terminale age gradient. However, plant cover and diversity was only improved around mature trees at the site that was not impacted by mining.

Conclusion

C. terminale promotes the recovery of several soil functions, mainly related to the storage and recycling of N, P, K, S. Besides plant-soil feedback, other environmental factors (i.e. exposition to sunlight, drought) may play an important role on revegetation of ultramafic soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adam G, Duncan H (2001) Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biol Biochem 33:943–951

    Article  CAS  Google Scholar 

  • Adhikari K, Hartemink AE (2016) Linking soils to ecosystem services—a global review. Geoderma 262:101–111

    Article  CAS  Google Scholar 

  • Alexander EB (2004) Serpentine soil redness, differences among peridotite and serpentinite materials, Klamath Mountains, California. Int Geol Rev 46:754–764

    Article  Google Scholar 

  • Benson DR, Dawson JO (2007) Recent advances in the biogeography and genecology of symbiotic Frankia and its host plants. Physiol Plant 130:318–330

    Article  CAS  Google Scholar 

  • Binkley DAN, Giardina C (1998) Why do tree species affect soils? The warp and woof of tree-soil interactions. In: Plant-induced soil changes: processes and feedbacks. Springer, pp 89–106

  • Bolan NS, Hedley MJ, White RE (1991) Processes of soil acidification during nitrogen cycling with emphasis on legume based pastures. Plant Soil 134:53–63

    Article  CAS  Google Scholar 

  • Bradshaw A (1997) Restoration of mined lands—using natural processes. Ecol Eng 8:255–269

    Article  Google Scholar 

  • Bradshaw A (2000) The use of natural processes in reclamation - advantages and dificulties. Landsc Urban Plan 51:89–100

    Article  Google Scholar 

  • Brady KU, Kruckeberg AR, Bradshaw HD Jr (2005) Evolutionary ecology of plant adaptation to serpentine soils. Annu Rev Ecol Evol Syst 36:243–266

    Article  Google Scholar 

  • Braun-Blanquet J (1964) Pflanzensociologie: Grundzüge der Vegetationskunde, 3rd edn. Springer-Verlag, Vienna

    Book  Google Scholar 

  • Burges A, Epelde L, Benito G, Artetxe U, Becerril JM, Garbisu C (2016) Enhancement of ecosystem services during endophyte-assisted aided phytostabilization of metal contaminated mine soil. Sci Total Environ 562:480–492

    Article  CAS  PubMed  Google Scholar 

  • Connell JH, Slatyer RO (1977) Mechanisms of succession in natural communities and their role in community stability and organization. Am Nat 111:1119–1144

    Article  Google Scholar 

  • Dawson JO (2007) Ecology of actinorhizal plants. In: Pawlowski K, Newton WE (eds) Nitrogen-fixing actinorhizal symbioses. Springer, pp 199–234

  • De Deyn GB, Cornelissen JH, Bardgett RD (2008) Plant functional traits and soil carbon sequestration in contrasting biomes. Ecol Lett 11:516–531

    Article  PubMed  Google Scholar 

  • Diagne N, Arumugam K, Ngom M, Nambiar-Veetil M, Franche C, Narayanan KK, Laplaze L (2013) Use of Frankia and actinorhizal plants for degraded lands reclamation. Biomed Res Int 2013:1–9

    Article  CAS  Google Scholar 

  • Dick RP, Breakwell DP, Turco RF (1996) Soil enzyme activities and biodiversity measurements as integrative microbiological indicators. In: Doran JW, Jones AJ (eds) Methods for assessing soil quality. SSSA, Madison, pp 247–271

    Google Scholar 

  • Dick LK, Jia G, Deng S, Dick RP (2013) Evaluation of microplate and bench-scale β-glucosidase assays for reproducibility, comparability, kinetics, and homogenization methods in two soils. Biol Fertil Soils 49:1227–1236

    Article  CAS  Google Scholar 

  • Diem HG, Duhoux E, Zaid H, Arahou M (2000) Cluster roots in Casuarinaceae: role and relationship to soil nutrient factors. Ann Bot 85:929–936

    Article  CAS  Google Scholar 

  • Dörken VM, Parsons RF (2017) Morpho-anatomical studies on the leaf reduction in Casuarina: the ecology of xeromorphy. Trees:1–13

  • Echevarria G (2018) Genesis and behaviour of ultramafic soils and consequences for nickel biogeochemistry. In: Baker AJM, Echevarria G, Morel J-L, van der Ent A (eds) Agromining: extracting unconventional resources from plants. Springer Nature, Cham, pp 135–156

    Chapter  Google Scholar 

  • Echevarria G, Morel JL (2015) Technosols of mining areas. In: Araújo CW, de Souza VS, Galvão MB, Rodrigues E (eds) Tópicos em Ciência do Solo. Sociedade Brasileira de Ciência do Solo, Brasil, pp 92–111

  • Galey ML, van der Ent A, Iqbal MCM, Rajakaruna N (2017) Ultramafic geoecology of south and Southeast Asia. Bot Stud 58:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guillot S, Hattori K (2013) Serpentinites: essential roles in geodynamics, arc volcanism, sustainable development, and the origin of life. Elements 9:95–98

    Article  CAS  Google Scholar 

  • Hayes P, Turner BL, Lambers H, Laliberté E (2014) Foliar nutrient concentrations and resorption efficiency in plants of contrasting nutrient-acquisition strategies along a 2-million-year dune chronosequence. J Ecol 102:396–410

    Article  CAS  Google Scholar 

  • Izquierdo I, Caravaca F, Alguacil MM, Hernández G, Roldán A (2005) Use of microbiological indicators for evaluating success in soil restoration after revegetation of a mining area under subtropical conditions. Appl Soil Ecol 30:3–10

    Article  Google Scholar 

  • Johnson LAS (1988) Notes on Casuarinaceae III: the new genus Ceuthostoma. Telopea 3:133–137

    Article  Google Scholar 

  • Jongerius A, Heintzberger G (1963) The preparation of mammoth-sized thin sections. Netherlands Soil Survey Institute, Wageningen

    Google Scholar 

  • Jongerius A, Heintzberger G (1975) Methods in soil micromorphology: a technique for the preparation of large thin sections. Stichting voor Bodemkartering, Wageningen

    Google Scholar 

  • Kandeler E, Gerber H (1988) Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol Fertil Soils 6:68–72

    Article  CAS  Google Scholar 

  • Kazakou E, Dimitrakopoulos PG, Baker AJM et al (2008) Hypotheses, mechanisms and trade-offs of tolerance and adaptation to serpentine soils: from species to ecosystem level. Biol Rev 83:495–508

    CAS  PubMed  Google Scholar 

  • Kirkby E (2012) Introduction, definition and classification of nutrients. In: Marschner P (ed) Marschner’s mineral nutrition of higher plants (third edition). Elsevier, pp 3–5

  • Lambers H, Hayes PE, Laliberté E, Oliveira RS, Turner BL (2015) Leaf manganese accumulation and phosphorus-acquisition efficiency. Trends Plant Sci 20:83–90

    Article  CAS  PubMed  Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42:421–428

    Article  CAS  Google Scholar 

  • Maharudrappa A, Srinivasamurthy CA, Nagaraja MS et al (2000) Decomposition rates of litter and nutrient release pattern in a tropical soil. J Indian Soc Soil Sci 48:92–97

    Google Scholar 

  • McCoy SG, Ash J, Jaffré T (1996) The effect of Gymnostoma deplancheanum (Casuarinaceae) litter on seedling establishment of new caledonian ultramafic maquis species. Australian Centre for Minesite Rehabilitation Research

  • McCoy S, Jaffré T, Rigault F, Ash JE (1999) Fire and succession in the ultramafic maquis of New Caledonia. J Biogeogr 26:579–594

    Article  Google Scholar 

  • Morford SL, Houlton BZ, Dahlgren RA (2011) Increased forest ecosystem carbon and nitrogen storage from nitrogen rich bedrock. Nature 477:78–81

    Article  CAS  PubMed  Google Scholar 

  • Mudd GM, Jowitt SM (2014) A detailed assessment of global nickel resource trends and endowments. Econ Geol 109:1813–1841

    Article  CAS  Google Scholar 

  • O’Dell RE, Claassen VP (2009) Serpentine revegetation: a review. Northeast Nat 16:253–271

    Article  Google Scholar 

  • Oksanen J, Blanchet G, Friendly M, et al (2017) vegan: Community Ecology Package. R package version 2.4–4

  • Oviedo R, Faife-Cabrera M, Noa-Monzón A, Arroyo J, Valiente-Banuet A, Verdú M (2014) Facilitation allows plant coexistence in Cuban serpentine soils. Plant Biol 16:711–716

    Article  CAS  PubMed  Google Scholar 

  • Pulsford SA, Lindenmayer DB, Driscoll DA (2016) A succession of theories: purging redundancy from disturbance theory. Biol Rev 91:148–167

    Article  Google Scholar 

  • Raous S, Becquer T, Garnier J, Martins ÉS, Echevarria G, Sterckeman T (2010) Mobility of metals in nickel mine spoil materials. Appl Geochem 25:1746–1755

    Article  CAS  Google Scholar 

  • Rigg LS, Enright NJ, Perry GLW, Miller BP (2002) The role of cloud combing and shading by isolated trees in the succession from Maquis to rain Forest in New Caledonia. Biotropica 34:199–210

    Article  Google Scholar 

  • Sayed WF (2011) Improving Casuarina growth and symbiosis with Frankia under different soil and environmental conditions. Folia Microbiol (Praha) 56:1–9

    Article  CAS  Google Scholar 

  • Shane MW, Lambers H (2005) Cluster roots: a curiosity in context. Plant Soil 274:101–125

    Article  CAS  Google Scholar 

  • Sheoran V, Sheoran AS, Poonia P (2010) Soil reclamation of abandoned mine land by revegetation: a review. Int J Soil Sediment Water 3:Article 13

    Google Scholar 

  • Skene KR (1998) Cluster roots: some ecological considerations. J Ecol 86:1060–1064

    Article  Google Scholar 

  • Tordoff GM, Baker AJM, Willis AJ (2000) Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere 41:219–228

    Article  CAS  PubMed  Google Scholar 

  • Valdés M (2007) Frankia ecology. In: Pawlowski K, Newton WE (eds) Nitrogen-fixing Actinorhizal symbioses. Springer, pp 49–71

  • van der Ent A, Edraki M (2018) Environmental geochemistry of the abandoned Mamut copper mine (Sabah) Malaysia. Environ Geochem Health 40:189–207

    Article  CAS  PubMed  Google Scholar 

  • van der Ent A, Baker AJM, Van Balgooy MMJ, Tjoa A (2013) Ultramafic nickel laterites in Indonesia (Sulawesi, Halmahera): mining, nickel hyperaccumulators and opportunities for phytomining. J Geochem Explor 128:72–79

    Article  CAS  Google Scholar 

  • van der Ent A, Rajakaruna N, Boyd R et al (2015a) Global research on ultramafic (serpentine) ecosystems (8th international conference on serpentine ecology in Sabah, Malaysia): a summary and synthesis. Aust J Bot

  • van der Ent A, Repin R, Sugau J, Wong KM (2015b) Plant diversity and ecology of ultramafic outcrops in Sabah (Malaysia). Aust J Bot 63:204–215

    Article  Google Scholar 

  • van der Ent A, Erskine PD, Mulligan DR et al (2016) Vegetation on ultramafic edaphic “islands” in Kinabalu Park (Sabah, Malaysia) in relation to soil chemistry and elevation. Plant Soil 403:77–101

    Article  CAS  Google Scholar 

  • van der Ent A, Cardace D, Tibbett M, Echevarria G (2018) Ecological implications of pedogenesis and geochemistry of ultramafic soils in Kinabalu Park (Malaysia). Catena 160:154–169

    Article  CAS  Google Scholar 

  • Vergutz L, Manzoni S, Porporato A, Novais RF, Jackson RB (2012) Global resorption efficiencies and concentrations of carbon and nutrients in leaves of terrestrial plants. Ecol Monogr 82:205–220

    Article  Google Scholar 

  • Waring BG, Álvarez-Cansino L, Barry KE, Becklund KK, Dale S, Gei MG, Keller AB, Lopez OR, Markesteijn L, Mangan S, Riggs CE, Rodríguez-Ronderos ME, Segnitz RM, Schnitzer SA, Powers JS (2015) Pervasive and strong effects of plants on soil chemistry: a meta-analysis of individual plant ‘Zinke’effects. Proc R Soc B Biol Sci 282:20151001

    Article  CAS  Google Scholar 

  • Whiting SN, Reeves RD, Richards D, Johnson MS, Cooke JA, Malaisse F, Paton A, Smith JAC, Angle JS, Chaney RL, Ginocchio R, Jaffre T, Johns R, McIntyre T, Purvis OW, Salt DE, Schat H, Zhao FJ, Baker AJM (2004) Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation. Restor Ecol 12:106–116

    Article  Google Scholar 

  • Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50:775–780

    Article  CAS  PubMed  Google Scholar 

  • Yang R, Guo F, Zan S, Zhou G, Wille W, Tang J, Chen X, Weiner J (2015) Copper tolerant Elsholtzia splendens facilitates Commelina communis on a copper mine spoil. Plant Soil 397:201–211

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Sabah Biodiversity Centre provided C. Quintela-Sabarís with the Access and Export Licences to develop this research in Sabah (Malaysia). Local support provided by Mr. Geofarry Gunsalam and personnel in Monggis Substation (Kinabalu Park) is warmly acknowledged. C. Quintela-Sabarís Postdoctoral contract and this research have been funded by the French National Research Agency through the national program “Investissements d’avenir” with the reference ANR-10-LABX-21-01/LABEX RESSOURCES21, and by Region Lorraine (France). A. van der Ent is the recipient of a Discovery Early Career Researcher Award (DE160100429) from the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celestino Quintela-Sabarís.

Additional information

Responsible Editor: Jennifer Powers.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 3829 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quintela-Sabarís, C., Auber, E., Sumail, S. et al. Recovery of ultramafic soil functions and plant communities along an age-gradient of the actinorhizal tree Ceuthostoma terminale (Casuarinaceae) in Sabah (Malaysia). Plant Soil 440, 201–218 (2019). https://doi.org/10.1007/s11104-019-04085-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-019-04085-y

Keywords

Navigation