Skip to main content

Advertisement

Log in

Bioactive phytochemicals from shoots and roots of Salvia species

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

The plants of the genus Salvia L. are important medicinal herbs of the Lamiaceae family and some of them such as S. officinalis (sage), S. miltiorrhiza (red sage, Danshen) and S. sclarea (clary sage) have been used as medicinal plants in the folk medicine of several countries. In this review, we discuss the reports that have examined Salvia species with the aim of isolation of pure compounds with different biological activities. The phytochemical analyses of various sage plants have reported 10 monoterpenoids (110), 1 sesquiterpenoid (11), 8 labdane (1320), 15 ent-kaurane (2135), 82 abietane, rearranged abietane and tanshinone (36117), 3 icetexane (118120), 43 clerodane (121163), and 3 pimarane (164166) diterpenoids with cytotoxic and antimicrobial, antiprotozoal, antioxidant, phytotoxic and insecticide effects. The other heavier terpenoids, including 3 sesterterpenes (167169), 10 triterpenoids and β-sitosterol (170180) have been introduced as minor bioactive compounds in the sage plants. Sahandinone (107), 6,7-dehydroroyleanone, 7-α-acetoxyroyleanone (40), and tanshinone like diterpenoids have been isolated from the roots’ extracts of different Salvia species. On the other hand, several radical scavenger phenolic compounds like simple phenolics and caffeic acid derivatives (181201) including rosmarinic acid, flavonoids (202217) as well as phenolic diterpenoids, such as carnosol and carnosic acid have been isolated from the aerial parts of these plants. One pyrrole (218) and 3 antimicrobial oxylipins (219221) are among the other less detected constituents in the members of Salvias. Furthermore, sages also synthesize antifungal, antileishmanial and antimalarial phytochemicals in their roots and shoots, which are reviewed in this paper. We also examine the allelopathic phenomena and the ecologically important phytochemicals identified in different parts of the sage plants. Finally, antifeedant and insecticide phenomena, which are due to the presence of volatile monoterpenes and clerodane diterpenes in these plants, are discussed. Considering the presence of diverse biologically active phytochemicals in the sage plants, they can be suggested as suitable candidates for the formulation of valuable natural medicines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abd-Elazem IS, Chen HS, Bates RB et al (2002) Isolation of two highly potent and non-toxic inhibitors of human immunodeficiency virus type 1 (HIV-1) integrase from Salvia miltiorrhiza. Antivir Res 55(1):91–106

    Article  CAS  PubMed  Google Scholar 

  • Adzet T, Caiñigueral S, Iglesias J (1988) A chromatographic survey of polyphenols from Salvia species. Biochem Syst Ecol 16(1):29–32

    Article  Google Scholar 

  • Ali MS, Ibrahim SA, Ahmed S et al (2007) A new germacranolide and a new ceramide from Salvia nubicola (Lamiaceae). Z Naturforsch 62b:1333–1338

    Google Scholar 

  • Aoyagi Y, Yamazaki A, Nakatsugawa C et al (2008) Salvileucalin B, a novel diterpenoid with an unprecedented rearranged neoclerodane skeleton from Salvia leucantha Cav. Org Lett 10(20):4429–4432

    Article  CAS  PubMed  Google Scholar 

  • Arminante F, De Falco E, De Feo V et al. (2006). Allelopathic activity of essential oils from Mediterranean Labiatae. In: I international symposium on the Labiatae: advances in production, biotechnology and utilisation, vol 723

  • Azirak S, Karaman S (2008) Allelopathic effect of some essential oils and components on germination of weed species. Acta Agric Scand B-SP 58(1):88–92

    CAS  Google Scholar 

  • Bajalan I, Zand M, Rezaee S (2013) Allelopathic effects of aqueous extract from Salvia officinalis L. on seed germination of barley and purslane. Int J Agric Crop Sci 5(7):802–805

    Google Scholar 

  • Bartholomew B (1970) Bare zone between California shrub and grassland communities: the role of animals. Science 170(3963):1210–1212

    Article  CAS  PubMed  Google Scholar 

  • Bautista E, Maldonado E, Ortega A (2012) Neo-clerodane diterpenes from Salvia herbacea. J Nat Prod 75(5):951–958

    Article  CAS  PubMed  Google Scholar 

  • Bautista E, Toscano A, Calzada F et al (2013) Hydroxyclerodanes from Salvia shannoni. J Nat Prod 76(10):1970–1975

    Article  CAS  PubMed  Google Scholar 

  • Bi M, Chen J (2011) Danshensu-induced apoptosis in human hepatocellular carcinoma cell line SMMC7721. Chin J Gastroenterol 16(4):222–225

    Google Scholar 

  • Bisio A, Fraternale D, Damonte G et al (2009a) Phytotoxic activity of Salvia × jamensis. Nat Prod Commun 4(12):1621–1630

    CAS  PubMed  Google Scholar 

  • Bisio A, Fraternale D, Russo E et al (2009b) Salvia miniata Fernald (Lamiaceae): characterization of a new clerodane diterpenoid and phytotoxic activity of previously isolated diterpenes. Planta Med 75(09):PJ79

    Article  Google Scholar 

  • Bisio A, Damonte G, Fraternale D et al (2011) Phytotoxic clerodane diterpenes from Salvia miniata Fernald (Lamiaceae). Phytochemistry 72(2):265–275

    Article  CAS  PubMed  Google Scholar 

  • Bisio A, Schito AM, Ebrahimi SN et al (2015) Antibacterial compounds from Salvia adenophora Fernald (Lamiaceae). Phytochemistry 110:120–132

    Article  CAS  PubMed  Google Scholar 

  • Bonito MC, Cicala C, Marcotullio MC et al (2011) Biological activity of bicyclic and tricyclic diterpenoids from Salvia species of immediate pharmacological and pharmaceutical interest. Nat Prod Commun 6(8):1205–1215

    CAS  PubMed  Google Scholar 

  • Bouajaj S, Benyamna A, Bouamama H et al (2013) Antibacterial, allelopathic and antioxidant activities of essential oil of Salvia officinalis L. growing wild in the Atlas Mountains of Morocco. Nat Prod Res 27(18):1673–1676

    Article  CAS  PubMed  Google Scholar 

  • Calzada F, Yepez-Mulia L, Tapia-Contreras A et al (2010) Evaluation of the antiprotozoal activity of neo-clerodane type diterpenes from Salvia polystachya against Entamoeba histolytica and Giardia lamblia. Phytother Res 24(5):662–665

    CAS  PubMed  Google Scholar 

  • Cetin H, Cinbilgel I, Yanikoglu A et al (2006) Larvicidal activity of some Labiatae (Lamiaceae) plant extracts from Turkey. Phytother Res 20(12):1088–1090

    Article  PubMed  Google Scholar 

  • Chang JY, Chang CY, Kuo CC et al (2004) Salvinal, a novel microtubule inhibitor isolated from Salvia miltiorrhiza Bunge (Danshen), with antimitotic activity in multidrug-sensitive and -resistant human tumor cells. Mol Pharmacol 65(1):77–84

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Ding J, Ye YM et al (2002) Bioactive abietane and seco-abietane diterpenoids from Salvia prionitis. J Nat Prod 65(7):1016–1020

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Shi DY, Liu SL et al (2012) Tanshinone IIA induces growth inhibition and apoptosis in gastric cancer in vitro and in vivo. Oncol Rep 27(2):523–528

    CAS  PubMed  Google Scholar 

  • Chevallier A (1996) The encyclopedia of medicinal plants. Dorling Kindersley, London

    Google Scholar 

  • Clardy J, Walsh C (2004) Lessons from natural molecules. Nature 432(7019):829–837

    Article  CAS  PubMed  Google Scholar 

  • Climatia E, Mastrogiovannia F, Valeria M et al (2013) Methyl carnosate, an antibacterial diterpene isolated from Salvia officinalis leaves. Nat Prod Commun 8(4):429–430

    Google Scholar 

  • Dewick PM (2009) Medicinal natural products: a biosynthetic approach, 3rd edn. Wiley, West Sussex

    Book  Google Scholar 

  • Di Giorgio C, Delmas F, Tueni M et al (2008) Alternative and complementary antileishmanial treatments: assessment of the antileishmanial activity of 27 Lebanese plants, including 11 endemic species. J Altern Complem Med 14(2):157–162

    Article  Google Scholar 

  • Don MJ, Shen CC, Lin YL et al (2005) Nitrogen-containing compounds from Salvia miltiorrhiza. J Nat Prod 68(7):1066–1070

    Article  CAS  PubMed  Google Scholar 

  • Dziurzynski T, Ludwiczuk A, Glowniak K (2013) Biological activities of Salvia L. species. Curr Issues Pharm Med Sci 26(3):326–330

    Article  Google Scholar 

  • Ebrahimi SN, Zimmermann S, Zaugg J et al (2013) Abietane diterpenoids from Salvia sahendica-antiprotozoal activity and determination of their absolute configurations. Planta Med 79(2):150–156

    Article  CAS  PubMed  Google Scholar 

  • Efferth T, Kahl S, Paulus K et al (2008) Phytochemistry and pharmacogenomics of natural products derived from traditional chinese medicine and chinese materia medica with activity against tumor cells. Mol Cancer Ther 7(1):152–161

    Article  CAS  PubMed  Google Scholar 

  • Enriz RD, Baldoni HA, Zamora MA et al (2000) Structure-antifeedant activity relationship of clerodane diterpenoids. Comparative study with withanolides and azadirachtin. J Agr Food Chem 48(4):1384–1392

    Article  CAS  Google Scholar 

  • Farhat MB, Landoulsi A, Chaouch-Hamada R et al (2013) Phytochemical composition and in vitro antioxidant activity of by-products of Salvia verbenaca L. growing wild in different habitats. Ind Crop Prod 49:373–379

    Article  CAS  Google Scholar 

  • Farimani MM, Taheri S, Ebrahimi SN et al (2012) Hydrangenone, a new isoprenoid with an unprecedented skeleton from Salvia hydrangea. Org Lett 14(1):166–169

    Article  CAS  PubMed  Google Scholar 

  • Farjam MH, Rustaiyan A, Ezzatzadeh E et al (2013) Labdane-type diterpene and two flavones from Salvia sharifii rech. f. and Esfan. and their biological activities. Iran J Pharm Res 12(2):395–399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Firuzi O, Miri R, Asadollahi M et al (2013) Cytotoxic, antioxidant and antimicrobial activities and phenolic contents of eleven Salvia species from Iran. Iran J Pharm Res 12(4):801–810

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fraga BM, Díaz CE, Guadaño A et al (2005) Diterpenes from Salvia broussonetii transformed roots and their insecticidal activity. J Agric Food Chem 53(13):5200–5206

    Article  CAS  PubMed  Google Scholar 

  • Gang X, Fang Z, Xian-Wen Y et al (2011) neo-Clerodane diterpenoids from Salvia dugesii and their bioactive studies. Nat Prod Bioprospect 1(2):81–86

    Article  CAS  PubMed Central  Google Scholar 

  • Gökçe A, Whalon ME, Çam H et al (2006) Plant extract contact toxicities to various developmental stages of Colorado potato beetles (Coleoptera: Chrysomelidae). Ann Appl Biol 149(2):197–202

    Article  Google Scholar 

  • Gonzalez-Coloma A, Guadano A, Tonn CE et al (2005) Antifeedant/insecticidal terpenes from Asteraceae and Labiatae species native to Argentinean semi-arid lands. Z Naturforsch C 60(11–12):855–861

    CAS  PubMed  Google Scholar 

  • Grzegorczyk I, Matkowski A, Wysokińska H (2007) Antioxidant activity of extracts from in vitro cultures of Salvia officinalis L. Food Chem 104(2):536–541

    Article  CAS  Google Scholar 

  • Gu L, Weng X (2001) Antioxidant activity and components of Salvia plebeia R. Br.—a Chinese herb. Food Chem 73(3):299–305

    Article  CAS  Google Scholar 

  • Guerrero IC, Andrés LS, León LG et al (2006) Abietane diterpenoids from Salvia pachyphylla and S. clevelandii with cytotoxic activity against human cancer cell lines. J Nat Prod 69(12):1803–1805

    Article  CAS  PubMed  Google Scholar 

  • Habibi Z, Eftekhar F, Samiee K et al (2000) Structure and antibacterial activity of a new labdane diterpenoid from Salvia leriaefolia. J Nat Prod 63(2):270–271

    Article  CAS  PubMed  Google Scholar 

  • Harborne JB (1998) Introduction to ecological biochemistry, 3rd edn. Academic Press, London

    Google Scholar 

  • Hernández-Pérez M, Rabanal RM, Arias A et al (1999) Aethiopinone, an antibacterial and cytotoxic agent from Salvia aethiopis roots. Pharm Biol 37(1):17–21

    Article  Google Scholar 

  • Horiuchi K, Shiota S, Hatano T et al (2007) Antimicrobial activity of oleanolic acid from Salvia officinalis and related compounds on vancomycin-resistant enterococci (VRE). Biol Pharm Bull 30(6):1147–1149

    Article  CAS  PubMed  Google Scholar 

  • Hosseini B, Estaji A, Hashemi SM (2013) Fumigant toxicity of essential oil from Salvia leriifolia (Benth) against two stored product insect pests. Aust J Crop Sci 7(6):855–860

    Google Scholar 

  • Hussein AA, Meyer JJ, Jimeno ML et al (2007) Bioactive diterpenes from Orthosiphon labiatus and Salvia africana-lutea. J Nat Prod 70(2):293–295

    Article  CAS  PubMed  Google Scholar 

  • Jassbi AR, Zamanizadehnajari S, Azar PA et al (2002) Antibacterial diterpenoids from Astragalus brachystachys. Z Naturforsch C 57(11–12):1016–1021

    CAS  PubMed  Google Scholar 

  • Jassbi AR, Zamanizadehnajari S, Tahara S (2003) Polyphenolic antioxidant constituents from Rosa persica. J Pak Chem Soc 25(4):323–327

    CAS  Google Scholar 

  • Jassbi AR, Singh P, Krishna V et al (2004) Antioxidant study and assignments of NMR spectral data for 3′,4′,7-trihydroxyflavanone 3′,7-di-O-β-d-glucopyranoside (butrin) and its hydrolyzed product. Chem Nat Comp 40(3):250–253

    Article  CAS  Google Scholar 

  • Jassbi AR, Mehrdad M, Eghtesadi F et al (2006) Novel rearranged abietane diterpenoids from the roots of Salvia sahendica. Chem Biodivers 3(8):916–922

    Article  CAS  PubMed  Google Scholar 

  • Jassbi AR, Zamanizadehnajari S, Baldwin IT (2010) Phytotoxic volatiles in the roots and shoots of Artemisia tridentata as detected by headspace solid-phase microextraction and gas chromatographic-mass spectrometry analysis. J Chem Ecol 36(12):1398–1407

    Article  CAS  PubMed  Google Scholar 

  • Jassbi AR, Asadollahi M, Masroor M et al (2012) Chemical classification of the essential oils of the Iranian Salvia species in comparison with their botanical taxonomy. Chem Biodivers 9(7):1254–1271

    Article  CAS  PubMed  Google Scholar 

  • Jassbi A, Miri R, Alizadeh M et al (2014) Quantification of phenolic diterpenoids and rosmarinic acid in Salvia eremophila and Salvia santolinifolia by LC-DAD-MS. Austin Chromatogr 1(3):5

    Google Scholar 

  • Jassim SAA, Naji MA (2003) Novel antiviral agents: a medicinal plant perspective. J Appl Microbiol 95(3):412–427

    Article  CAS  PubMed  Google Scholar 

  • Jiang HL, Wang XZ, Xiao J et al (2013) New abietane diterpenoids from the roots of Salvia przewalskii. Tetrahedron 69(32):6687–6692

    Article  CAS  Google Scholar 

  • Jiang Y-y, Wang L, Zhang L et al (2014) Characterization, antioxidant and antitumor activities of polysaccharides from Salvia miltiorrhiza Bunge. Int J Biol Macromol 70:92–99

    Article  CAS  PubMed  Google Scholar 

  • Kamatou GPP, Van Vuuren SF, Van Heerden FR et al (2007) Antibacterial and antimycobacterial activities of South African Salvia species and isolated compounds from S chamelaeagnea. S Afr J Bot 73(4):552–557

    Article  CAS  Google Scholar 

  • Kamatou GPP, Van Zyl RL, Davids H et al (2008) Antimalarial and anticancer activities of selected South African Salvia species and isolated compounds from S. radula. S Afr J Bot 74(2):238–243

    Article  CAS  Google Scholar 

  • Kawahara N, Tamura T, Inoue M et al (2004) Diterpenoid glucosides from Salvia greggii. Phytochemistry 65(18):2577–2581

    Article  CAS  PubMed  Google Scholar 

  • Koşar M, Göger F, Hüsnü Can Başer K (2011) In vitro antioxidant properties and phenolic composition of Salvia halophila Hedge from Turkey. Food Chem 129(2):374–379

    Article  CAS  Google Scholar 

  • Lee DS, Lee SH, Noh JG et al (1999) Antibacterial activities of cryptotanshinone and dihydrotanshinone I from a medicinal herb, Salvia miltiorrhiza bunge. Biosci Biotech Biochem 63(12):2236–2239

    Article  CAS  Google Scholar 

  • Lee WYW, Cheung CCM, Liu KWK et al (2010) Cytotoxic effects of tanshinones from Salvia miltiorrhiza on doxorubicin-resistant human liver cancer cells. J Nat Prod 73(5):854–859

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Li J, Wang L et al (2012) Analysis of tanshinone IIA induced cellular apoptosis in leukemia cells by genome-wide expression profiling. BMC Complement Alt Med 12(5):1–10

    CAS  Google Scholar 

  • Loizzo MR, Abouali M, Salehi P et al (2014) In vitro antioxidant and antiproliferative activities of nine Salvia species. Nat Prod Res 28(24):2278–2285

    Article  CAS  PubMed  Google Scholar 

  • Lu Y, Yeap Foo L (2001) Antioxidant activities of polyphenols from sage (Salvia officinalis). Food Chem 75(2):197–202

    Article  CAS  Google Scholar 

  • Lu Y, Yeap Foo L (2002) Polyphenolics of Salvia—a review. Phytochemistry 59(2):117–140

    Article  CAS  PubMed  Google Scholar 

  • Lu Q, Zhang P, Zhang X et al (2009) Experimental study of the anti-cancer mechanism of tanshinone IIA against human breast cancer. Intl J Mol Med 24(6):773–780

    Article  CAS  Google Scholar 

  • Lusarczyk S, Zimmermann S, Kaiser M et al (2011) Antiplasmodial and antitrypanosomal activity of tanshinone-type diterpenoids from Salvia miltiorrhiza. Planta Med 77(14):1594–1596

    Article  Google Scholar 

  • Mancini E, Arnold NA, De Martino L et al (2009) Chemical composition and phytotoxic effects of essential oils of Salvia hierosolymitana Boiss. and Salvia multicaulis Vahl. var. simplicifolia Boiss. growing wild in Lebanon. Molecules 14(11):4725–4736

    Article  CAS  PubMed  Google Scholar 

  • Marin JJ, Romero MR, Blazquez AG et al (2009). Importance and limitations of chemotherapy among the available treatments for gastrointestinal tumours. Anti-Cancer Agents Med Chem (Formerly Curr Medl Chem-Anti-Cancer Agents) 9(2):162–184

  • Martínez-Vázquez M, Miranda P, Valencia NA et al (1998) Antimicrobial diterpenes from Salvia reptans. Pharm Biol 36(2):77–80

    Article  Google Scholar 

  • Martins N, Barros L, Santos-Buelga C et al (2015) Evaluation of bioactive properties and phenolic compounds in different extracts prepared from Salvia officinalis L. Food Chem 170:378–385

    Article  CAS  PubMed  Google Scholar 

  • Matkowski A, Zielińska S, Oszmiański J et al (2008) Antioxidant activity of extracts from leaves and roots of Salvia miltiorrhiza Bunge, S. przewalskii Maxim., and S. verticillata L. Bioresour Technol 99(16):7892–7896

    Article  CAS  PubMed  Google Scholar 

  • Mehmood S, Ahmad Z, Malik A et al (2008) Phytochemical studies on Salvia santolinifolia. J Chem Soc Pak 30(2):311–314

    CAS  Google Scholar 

  • Meng LH, Zhang JS, Ding J (2001) Salvicine, a novel DNA topoisomerase II inhibitor, exerting its effects by trapping enzyme-DNA cleavage complexes. Biochem Pharmacol 62(6):733–741

    Article  CAS  PubMed  Google Scholar 

  • Miski M, Ulubelen A, Johansson C et al (1983) Antibacterial activity studies of flavonoids from Salvia palaestina. J Nat Prod 46(6):874–875

    Article  CAS  PubMed  Google Scholar 

  • Miura K, Kikuzaki H, Nakatani N (2002) Antioxidant activity of chemical components from sage (Salvia officinalis L.) and thyme (Thymus vulgaris L.) measured by the oil stability index method. J Agric Food Chem 50(7):1845–1851

    Article  CAS  PubMed  Google Scholar 

  • Mokoka TA, Peter X, Fouche G et al (2014) Antileishmanial activity of 12-methoxycarnosic acid from Salvia repens Burch. ex Benth. (Lamiaceae). S Afr J Bot 90:93–95

    Article  CAS  Google Scholar 

  • Moridi Farimani M, Mazarei Z (2014) Sesterterpenoids and other constituents from Salvia lachnocalyx Hedge. Fitoterapia 98:234–240

    Article  CAS  PubMed  Google Scholar 

  • Moridi Farimani M, Miran M (2014) Labdane diterpenoids from Salvia reuterana. Phytochemistry 108:264–269

    Article  CAS  Google Scholar 

  • Moridi Farimani M, Bahadori MB, Taheri S et al (2011) Triterpenoids with rare carbon skeletons from Salvia hydrangea: antiprotozoal activity and absolute configurations. J Nat Prod 74(10):2200–2205

    Article  CAS  PubMed  Google Scholar 

  • Moujir L, Gutierrez-Navarro AM, San Andres L et al (1993) Structure-antimicrobial activity relationships of abietane diterpenes from Salvia species. Phytochemistry 34(6):1493–1495

    Article  CAS  Google Scholar 

  • Muller CH (1966) The role of chemical inhibition (allelopathy) in vegetational composition. Bull Torrey Bot Club 93(5):332–351

    Article  CAS  Google Scholar 

  • Muller WH, Muller CH (1964) Volatile growth inhibitors produced by Salvia species. Bull Torrey Bot Club 327–330

  • Muller CH, Muller WH, Haines BL (1964) Volatile growth inhibitors produced by aromatic shrubs. Science 143(3605):471–473

    Article  CAS  PubMed  Google Scholar 

  • Muller WH, Lorber P, Haley B (1968) Volatile growth inhibitors produced by Salvia leucophylla: effect on seedling growth and respiration. Bull Torrey Bot Club 415–422

  • Muller WH, Lorber P, Haley B et al (1969) Volatile growth inhibitors produced by Salvia leucophylla: effect on oxygen uptake by mitochondrial suspensions. Bull Torrey Bot Club 89–96

  • Neagu E, Paun G, Radu GL (2014) Chemical composition and antioxidant activity of Salvia officinalis concentrated by ultrafiltration. Roman Biotech Lett 19(2):9203–9211

    Google Scholar 

  • Newman DJ, Cragg GM (2012) Natural products as sources of new drugs over the 30 years from 1981 to 2010. J Nat Prod 75(3):311–335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ni W, Qian W, Tong X (2014) Cryptotanshinone induces apoptosis of HL-60 cells via mitochondrial pathway. Trop J Pharm Res 13(4):545–551

    Article  CAS  Google Scholar 

  • Nikmehr B, Ghaznavi H, Rahbar A et al (2014) In vitro anti-leishmanial activity of methanolic extracts of Calendula officinalis flowers, Datura stramonium seeds, and Salvia officinalis leaves. Chin J Nat Med 12(6):423–427

    PubMed  Google Scholar 

  • Nishida N, Tamotsu S, Nagata N et al (2005) Allelopathic effects of volatile monoterpenoids produced by Salvia leucophylla: inhibition of cell proliferation and DNA synthesis in the root apical meristem of Brassica campestris seedlings. J Chem Ecol 31(5):1187–1203

    Article  CAS  PubMed  Google Scholar 

  • Nizamutdinova IT, Lee GW, Son KH et al (2008) Tanshinone I effectively induces apoptosis in estrogen receptor-positive (MCF-7) and estrogen receptor-negative (MDA-MB-231) breast cancer cells. Int J Oncol 33(3):485–491

    CAS  PubMed  Google Scholar 

  • Noori S, Hassan ZM, Mohammadi M et al (2010) Sclareol modulates the Treg intra-tumoral infiltrated cell and inhibits tumor growth in vivo. Cell Immunol 263(2):148–153

    Article  CAS  PubMed  Google Scholar 

  • Orhan IE, Senol FS, Ercetin T et al (2013) Assessment of anticholinesterase and antioxidant properties of selected sage (Salvia) species with their total phenol and flavonoid contents. Ind Crop Prod 41:21–30

    Article  CAS  Google Scholar 

  • Pan TL, Hung YC, Wang PW et al (2010) Functional proteomic and structural insights into molecular targets related to the growth inhibitory effect of tanshinone IIA on HeLa cells. Proteomics 10(5):914–929

    CAS  PubMed  Google Scholar 

  • Pan ZH, Cheng JT, He J et al (2011) Splendidins A–C, three new clerodane diterpenoids from Salvia splendens. Helv Chim Acta 94(3):417–422

    Article  CAS  Google Scholar 

  • Pan ZH, Li Y, Wu XD et al (2012) Norditerpenoids from Salvia castanea Diels f. pubescens. Fitoterapia 83(6):1072–1075

    Article  CAS  PubMed  Google Scholar 

  • Pavela R (2004) Insecticidal activity of certain medicinal plants. Fitoterapia 75(7–8):745–749

    Article  PubMed  Google Scholar 

  • Pavela R (2005) Insecticidal activity of some essential oils against larvae of Spodoptera littoralis. Fitoterapia 76(7–8):691–696

    Article  CAS  PubMed  Google Scholar 

  • Pavlidou V, Karpouhtsis I, Franzios G et al (2004) Insecticidal and genotoxic effects of essential oils of Greek sage, Salvia fruticosa, and mint, Mentha pulegium, on Drosophila melanogaster and Bactrocera oleae (Diptera: Tephritidae). J Agric Urban Entomol 21(1):39–49

    CAS  Google Scholar 

  • Radtke OA, Yeap Foo L, Lu Y et al (2003) Evaluation of sage phenolics for their antileishmanial activity and modulatory effects on interleukin-6, interferon and tumour necrosis factor-α-release in RAW 264.7 Cells. Z Naturforsch C 58(5–6):395–400

    CAS  PubMed  Google Scholar 

  • Rajamanickam M, Kalaivanan P, Sivagnanam I (2013) Antibacterial and wound healing activities of quercetin-3-O-A-L-rhamnopyranosyl-(1→6)-β-D-glucopyranoside isolated from Salvia leucantha. Int J Pharm Sci Rev Res 22(1):264–268

    CAS  Google Scholar 

  • Rowshan V, Karimi S (2013). Essential oil composition and allelopathic affect of Salvia macrosiphon Boiss. on Zea mays L. Int J Agric Res Rev 3(4):788–794

  • Rungsimakan S, Rowan MG (2014) Terpenoids, flavonoids and caffeic acid derivatives from Salvia viridis L. cvar. Blue Jeans. Phytochemistry 108:177–188

    Article  CAS  PubMed  Google Scholar 

  • Sairafianpour M, Bahreininejad B, Witt M et al (2003) Terpenoids of Salvia hydrangea: Two new, rearranged 20-norabietanes and the effect of oleanolic acid on erythrocyte membranes. Planta Med 69(9):846–850

    Article  CAS  PubMed  Google Scholar 

  • Saric D, Kalodera Z, Lackovic Z (2010) Psychotropic plant Salvia divinorum Epl. & Jativa - the source of the most potent natural hallucinogen. Farmaceutski Glasnik 66(10):523–541

    CAS  Google Scholar 

  • Sener O, Arslan M, Demirel N et al (2009). Insecticidal effects of some essential oils against the confused flour beetle (Tribolium confusum du Val) (col.: Tenebrinoidea) in stored wheat. Asian J Chem 21(5):3995–4000

  • Serakta M, Djerrou Z, Mansour-Djaalab H et al (2013) Antileishmanial activity of some plants growing in Algeria: Juglans regia, Lawsonia inermis and Salvia officinalis. Afr J Trad Complement Alt Med 10(3):427–430

    CAS  Google Scholar 

  • Slameňová D, Mašterová I, Lábaj J et al (2004) Cytotoxic and DNA-damaging effects of diterpenoid quinones from the roots of Salvia officinalis L. on colonic and hepatic human cells cultured in vitro. Basic Clin Pharmacol Toxicol 94(6):282–290

    Article  PubMed  Google Scholar 

  • Sosa ME, Tonn CE, Giordano OS (1994) Insect antifeedant activity of clerodane diterpenoids. J Nat Prod 57(9):1262–1265

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Zhu H, Wang J et al (2009) Isolation and purification of salvianolic acid A and salvianolic acid B from Salvia miltiorrhiza by high-speed counter-current chromatography and comparison of their antioxidant activity. J Chromatogr B 877(8):733–737

    Article  CAS  Google Scholar 

  • Sung HJ, Choi SM, Yoon Y et al (1999) Tanshinone IIA, an ingredient of Salvia miltiorrhiza BUNGE, induces apoptosis in human leukemia cell lines through the activation of caspase-3. Exp Mol Med 31(4):174–178

    Article  CAS  PubMed  Google Scholar 

  • Tada M, Okuno K, Chiba K et al (1994) Antiviral diterpenes from Salvia officinalis. Phytochemistry 35(2):539–541

    Article  CAS  Google Scholar 

  • Tan N, Kaloga M, Radtke OA et al (2002) Abietane diterpenoids and triterpenoic acids from Salvia cilicica and their antileishmanial activities. Phytochemistry 61(8):881–884

    Article  CAS  PubMed  Google Scholar 

  • Tang Y, Wang M, Le X et al (2011) Antioxidant and cardioprotective effects of Danshensu (3-(3, 4-dihydroxyphenyl)-2-hydroxy-propanoic acid from Salvia miltiorrhiza) on isoproterenol-induced myocardial hypertrophy in rats. Phytomedicine 18(12):1024–1030

    Article  CAS  PubMed  Google Scholar 

  • Tepe B, Sokmen M, Akpulat HA et al (2006) Screening of the antioxidant potentials of six Salvia species from Turkey. Food Chem 95(2):200–204

    Article  CAS  Google Scholar 

  • Topçu G (2006) Bioactive triterpenoids from Salvia species. J Nat Prod 69(3):482–487

    Article  PubMed  CAS  Google Scholar 

  • Topçu G, Gören AC (2007) Biological activity of diterpenoids isolated from Anatolian Lamiaceae plants. Rec Nat Prod 1(1):1–16

    Article  Google Scholar 

  • Topçu G, Turkmen Z, Schilling JK et al (2008) Cytotoxic activity of some Anatolian Salvia extracts and isolated abietane diterpenoids. Pharm Biol 46(3):180–184

    Article  CAS  Google Scholar 

  • Ulubelen A, Miski M, Johansson C et al (1985) Terpenoids from Salvia palaestina. Phytochemistry 24(6):1386–1387

    Article  CAS  Google Scholar 

  • Ulubelen A, Topçu G, Eri C et al (1994) Terpenoids from Salvia sclarea. Phytochemistry 36(4):971–974

    Article  CAS  PubMed  Google Scholar 

  • Ulubelen A, Sönmez U, Topçu G et al (1996) An abietane diterpene and two phenolics from Salvia forskahlei. Phytochemistry 42(1):145–147

    Article  CAS  PubMed  Google Scholar 

  • Ulubelen A, Öksüz S, Kolak U et al (1999) Diterpenoids from the roots of Salvia bracteata. Phytochemistry 52(8):1455–1459

    Article  CAS  Google Scholar 

  • Ulubelen A, Öksüz S, Kolak U et al (2000) Antibacterial diterpenes from the roots of Salvia viridis. Planta Med 66(5):458–462

    Article  CAS  PubMed  Google Scholar 

  • Ulubelen A, Öksüz S, Topçu G et al (2001a) Antibacterial diterpenes from the roots of Salvia blepharochlaena. J Nat Prod 64(4):549–551

    Article  CAS  PubMed  Google Scholar 

  • Ulubelen A, Öksüz S, Topçu G et al (2001b) A new antibacterial diterpene from the roots of Salvia caespitosa. Nat Prod Lett 15(5):307–314

    Article  CAS  PubMed  Google Scholar 

  • Wagner EK, Hewlett MJ, Bloom DC et al (1999) Basic virology. Blackwell Science, Malden

    Google Scholar 

  • Walencka E, Rozalska S, Wysokinska H et al (2007) Salvipisone and aethiopinone from Salvia sclarea hairy roots modulate staphylococcal antibiotic resistance and express anti-biofilm activity. Planta Med 73(6):545–551

    Article  CAS  PubMed  Google Scholar 

  • Wang BQ (2010) Salvia miltiorrhiza chemical and pharmacological review of a medicinal plant. J Med Plants Res 4(25):2813–2820

    CAS  Google Scholar 

  • Wang X, Wei Y, Yuan S et al (2005) Potential anticancer activity of tanshinone IIA against human breast cancer. Int J Cancer 116(5):799–807

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Morris-Natschke SL, Lee KH (2007) New developments in the chemistry and biology of the bioactive constituents of Tanshen. Med Res Rev 27(1):133–148

    Article  PubMed  CAS  Google Scholar 

  • Weng X, Wang W (2000) Antioxidant activity of compounds isolated from Salvia plebeia. Food Chem 71(4):489–493

    Article  CAS  Google Scholar 

  • Wu YB, Ni ZY, Shi QW et al (2012) Constituents from Salvia species and their biological activities. Chem Rev 112(11):5967–6026

    Article  CAS  PubMed  Google Scholar 

  • Xu G, Yang J, Wang YY et al (2010) Diterpenoid constituents of the roots of Salvia digitaloides. J Agric Food Chem 58(23):12157–12161

    Article  CAS  PubMed  Google Scholar 

  • Xue Y, Wu Y, Zhu H et al (2014) Salviprzols A and B, C21- and C22-terpenoids from the roots of Salvia przewalskii Maxim. Fitoterapia 99:204–210

    Article  CAS  PubMed  Google Scholar 

  • Yang YC, Lee HS, Clark JM et al (2004) Insecticidal activity of plant essential oils against Pediculus humanus capitis (Anoplura: Pediculidae). J Med Entomol 41(4):699–704

    Article  CAS  PubMed  Google Scholar 

  • Yao F, Zhang DW, Qu GW et al (2012) New abietane norditerpenoid from Salvia miltiorrhiza with cytotoxic activities. J Asian Nat Prod Res 14(9):913–917

    Article  CAS  PubMed  Google Scholar 

  • Yildirim E, Kesdek M, Aslan I et al (2005) The effects of essential oils from eight plant species on two pests of stored product insects. Fresenius Environ Bull 14(1):23–27

    CAS  Google Scholar 

  • Yongmoon H, Lnkyung J (2013) Antifungal effect of tanshinone from Salvia miltiorrhiza against disseminated candidiasis. Yakhak Hoeji 57(2):119–124

    Google Scholar 

  • Zhang Z-F, Chen H-S, Peng Z-G et al (2008a) A potent anti-HIV polyphenol from Salvia yunnanensis. J Asian Nat Prod Res 10(3):252–255

    Article  CAS  Google Scholar 

  • Zhang ZF, Peng ZG, Gao L et al (2008b) Three new derivatives of anti-HIV-1 polyphenols isolated from Salvia yunnanensis. J Asian Nat Prod Res 10(5):391–396

    Article  CAS  PubMed  Google Scholar 

  • Zhen X, Cen J, Li YM et al (2011) Cytotoxic effect and apoptotic mechanism of tanshinone A, a novel tanshinone derivative, on human erythroleukemic K562 cells. Eur J Pharmacol 667(1–3):129–135

    Article  CAS  PubMed  Google Scholar 

  • Zheng HB, Zhang T, Row KH et al (2012) Tricuspone, a rearranged diterpenoid from Salvia tricuspis. Bull Korean Chem Soc 33(4):1360–1362

    Article  CAS  Google Scholar 

  • Zheng H, Chen Q, Zhang M et al (2013) Cytotoxic ent-kaurane diterpenoids from Salvia cavaleriei. J Nat Prod 76(12):2253–2262

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, Zhang Y, Ding XR et al (2007) Protocatechuic aldehyde inhibits hepatitis B virus replication both in vitro and in vivo. Antivir Res 74(1):59–64

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Wang X, J-h Liu et al (2012) Comparison of allelopathic effect of Salvia miltiorrhiza Bunge f. alba and Salvia miltiorrhiza on Scutellaria baicalensis. Shandong Sci 5:009

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Reza Jassbi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jassbi, A.R., Zare, S., Firuzi, O. et al. Bioactive phytochemicals from shoots and roots of Salvia species. Phytochem Rev 15, 829–867 (2016). https://doi.org/10.1007/s11101-015-9427-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-015-9427-z

Keywords

Navigation