Skip to main content

Advertisement

Log in

Essential Oil Contents of Hypericum linarioides, H. helianthemoides, and H. lydium with Their Biological Activities: Importance of Hypericum Genus in the Cosmeceutical and Pharmaceutical Industries

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

In the literature, more than 3000 studies have been carried out on species in the Hypericum genus in the last ten years, especially for H. perforatum. The importance of Hypericum species in traditional medicine and modern medicine is increasing day by day. From this point of view, the chemical composition of H. linarioides, H. helianthemoides, and H. lydium essential oils was analyzed by GC-MS/FID. In addition, their antioxidant, cytotoxic and antimicrobial activities along with their enzyme inhibitory potentials (cholinesterase, urease, tyrosinase, elastase and, collagenase) were defined. Also, in vitro and in silico studies of the major components of the species have been carried out on the studied enzymes. H. linarioides and H. helianthemoides were found to be rich in monoterpene hydrocarbons (63.96% and 43.86%, respectively), and H. lydium in sesquiterpene hydrocarbons (48.41%). The major components were indicated as α-pinene for H. linarioides (50.39%) and for H. helianthemoides (36.84%), and β-selinene for H. lydium (10.12%). H. lydium essential oil exhibited very high cytotoxic activity on breast cancer (MCF-7) (selectivity indices SI: 12) and colon cancer (HT-29) (SI: 2) cell lines. In particular, the selectivity indice value in MCF-7 cell lines of H. lydium could have natural therapeutic potential for breast cancer. H. lydium possessed neuropharmacological potential due to its high anticholinesterase activity. Since H. linarioides indicated high anti-aging potential (tyrosinase, elastase, and collagenase enzyme inhibitory activities), it could be used in the cosmetic industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. E. Y. Babacan, Z. Aytac, and M. Pinar, Pak. J. Bot., 49, 1763 (2017).

    Google Scholar 

  2. T. Baytop, Istanbul University Publications, 3255 (1984).

  3. M. Akdeniz, M. A. Yilmaz, A. Ertas, et al., J. Food Meas Charact., 14, 3194 (2020).

    Article  Google Scholar 

  4. C. Cirak and D. Kurt, Anadolu Journal of Aegean Agricultural Research Institute, 24, 42 (2014).

    Google Scholar 

  5. I. G. Medvetskaya, I. V. Popov, A. I. Medvetskii, et al., Pharm. Chem. J., 55, 460 (2021).

    Article  CAS  Google Scholar 

  6. V. Butterweck, CNS Drugs, 17, 539 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. M. Szymanski, M. Dudek-Makuch, E. Witkowska-Banaszczak, et al., Pharm. Chem. J., 54, 496 (2020).

    Article  CAS  Google Scholar 

  8. A. Cakir, S. Kordali, H. Kilic, and E. Kaya, Biochem. Syst. Ecol., 33, 245 (2005).

    Article  CAS  Google Scholar 

  9. T. Serbetci, N. Ozsoy, B. Demirci, et al., Ind. Crops Prod., 36, 599 (2012).

    Article  CAS  Google Scholar 

  10. C. Cirak and A. Bertoli, Nat. Prod. Res., 27, 100 (2013).

    Article  CAS  PubMed  Google Scholar 

  11. A. G. Pirbalouti, M. Fatahi-Vanani, L. Craker, and H. Shirmardi, Pharm. Biol., 52, 175 (2014).

    Article  Google Scholar 

  12. M. E. Grafakou, A. Diamanti, E. Antaloudaki, et al., Appl. Sci., 10, 2823 (2020).

    Article  CAS  Google Scholar 

  13. A. Smelcerovic, M. Spiteller, A. P. Ligon, et al., Biochem. Syst. Ecol., 35, 99 (2007).

    Article  CAS  Google Scholar 

  14. R. Boran and A. Ugur, Pharm. Biol., 55, 402 (2017).

    Article  PubMed  Google Scholar 

  15. N. Eruygur, E. Ucar, H. A. Akpulat, et al., Mol. Biol. Rep., 46, 2121 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. N. Radulovic, V. Stankov-Jovanovic, G. Stojanovic, et al., Food Chem., 103, 5 (2007).

    Article  Google Scholar 

  17. T. M. Sur, E. Akbaba, S. A. Hassan, and E. Bagci, J. Essent. Oil Res., 32, 79 (2020).

    Article  Google Scholar 

  18. A. R. Silva, O. Taofiq, I. C. F. R. Ferreira, and L. Barros, Ind. Crops Prod., 159, 113053 (2021).

    Article  CAS  Google Scholar 

  19. A. Cobanoglu and M. Sendir, Eur. J. Integr. Med., 34, 100995 (2020).

    Article  Google Scholar 

  20. D. Bakir, M. Akdeniz, A. Ertas, et al., J. Food Biochem., 44, e13350 (2020).

    Article  CAS  PubMed  Google Scholar 

  21. R. Re, N. Pellegrini, A. Proteggente, et al., Free Radical Bio. Med., 26, 1231 (1999).

    Article  CAS  Google Scholar 

  22. M. S. Blois, Nature, 181, 1199 (1958).

    Article  CAS  Google Scholar 

  23. R. Apak, K. Guclu, M. Ozyurek, and S. E. Karademir, J. Agr. Food Chem., 52, 7970 (2004).

    Article  CAS  Google Scholar 

  24. M. Mojarraba, M. S. Langzian, S. A. Emamic, et al., Rev. Bras Farmacogn., 23, 783 (2013).

    Article  Google Scholar 

  25. I. Yener, O. Tokul Olmez, A. Ertas, et al., Ind. Crop. Prod., 123, 442 (2018).

  26. G. L. Ellman, K. D. Courtney, V. Andres, and R. M. Featherstone, Biochem. Pharmacol., 7, 88 (1961).

    Article  CAS  PubMed  Google Scholar 

  27. Z. Hina, H. R. Ghazala, K. Arfa, et al., Eur. J. Med. Plants, 6, 223 (2015).

    Article  Google Scholar 

  28. V. J. Hearing and M. Jiménez, Int. J. Biochem., 19, 1141 (1987).

    Article  CAS  PubMed  Google Scholar 

  29. J. A. E. Kraunsoe, T. D. W. Claridge, and G. Lowe, Biochem., 35, 9090 (1996).

    Article  CAS  Google Scholar 

  30. T. S. A. Thring, P. Hili, and D. P. Naughton, BMC Complement. Altern. Med., 9, 27 (2009).

    Google Scholar 

  31. T. Kohno, H. Hochigai, E. Yamashita, et al., Biochem. Biophys Res. Commun., 344, 315 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. E. Carletti, J. P. Colletier, F. Dupeux, et al., J. Med. Chem., 53, 4002 (2010).

    Article  CAS  PubMed  Google Scholar 

  33. B. Deri, M. Kanteev, M. Goldfeder, et al., Sci. Rep., 6, 34993 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. I. Nakanishi, T. Kinoshita, A. Sato, and T. Tada, Biopolymers, 53, 434 (2020).

    Article  Google Scholar 

  35. I. Yener, S. Ozhan Kocakaya, A. Ertas, et al., Food Chem., 327, 127045 (2020).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdulselam Ertas.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akdeniz, M., Yener, I., Ertas, A. et al. Essential Oil Contents of Hypericum linarioides, H. helianthemoides, and H. lydium with Their Biological Activities: Importance of Hypericum Genus in the Cosmeceutical and Pharmaceutical Industries. Pharm Chem J 57, 1460–1468 (2023). https://doi.org/10.1007/s11094-023-03011-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-023-03011-y

Keywords

Navigation