Skip to main content

Advertisement

Log in

The influence of climate change on the suitable habitats of Allium species endemic to Iran

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Identifying the consequences of global warming on the potential distribution of plant taxa with high species diversity or a high proportion of endemic species is one of the critical steps in conservation biology. Here, present and future spatial distribution patterns of 20 Allium endemic species were predicted in Iran. In this regard, the maximum entropy model (MaxEnt) and seven environmental factors were applied. In addition, optimistic (RCP2.6) and pessimistic (RCP8.5) scenarios of 2050 and 2080 were also considered to predict the future spatial distributions. The results showed that annual mean temperature (BIO1), temperature annual range (P5–P6) (BIO7), soil organic carbon content, annual precipitation (BIO12), and depth of soil were the most important environmental variables affecting the distributions of the studied taxa. In total, the model predictions under the future scenarios represented that the suitable habitats for all Allium species endemic to Zagros except for A. saralicum and A. esfahanicum are most probably increased. In contrast, the suitable habitats for all species in Azerbaijan Plateau, Kopet Dagh-Khorassan region, and Alborz except for A. derderianum are most likely decreased under the future climate conditions. The present study indicates that the habitats of Alborz, Azarbaijan, and Kopet Dagh-Khorassan will be probably very fragile and vulnerable to climate change and most species will respond strongly negatively under applied scenarios, while Zagros species occupy new habitats by expanding their distributions. Therefore, determining conservation strategies for the species in these regions seems to be very important and high priority for decision makers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and material

Data are available from the authors upon reasonable request.

References

  • Abbasi, M., Fritsch, R. M., & Keusgen, M. (2008). Wild Allium species used as food and folk medicine in Iran. In: M. Keusgen, R.M. Fritsch, (Eds.), Proceedings, First Kazbegi workshop on Botany, taxonomy and phytochemistry of wild Allium L. species of the Caucasus and Central Asia 4–8 Kazbegi, Caucasus, Georgia. Marburg & Gatersleben pp. 25–30.

  • Abdelaal, M., Fois, M., Dakhil, M. A., Bacchetta, G., & El-Sherbeny, G. A. (2019a). Predicting the potential current and future distribution of the endangered endemic vascular plant Primula boveana Decne. ex Duby in Egypt. Plants, 9(8), 957. https://doi.org/10.3390/plants9080957

  • Abdelaal, M., Fois, M., Fenu, G., & Bacchetta, G. (2019b). Using MaxEnt modeling to predict the potential distribution of the endemic plant Rosa arabica Crép. in Egypt. Ecological Informatics, 50, 68–75. https://doi.org/10.1016/j.ecoinf.2019.01.003

    Article  Google Scholar 

  • Abolmaali, S., Torkesh Esfahani, M., & Boshri, H. (2017). Assessing impacts of climate change on endangered Kelossia odoratissima Mozaff species distribution using Generalized Additive Model. Journal of Natural Environment, 70(2), 243–254. https://doi.org/10.22059/JNE.2017.63853

  • Ahmadi, K., Alavi, S. J., Amiri, G. Z., Hosseini, S. M., Serra-Diaz, J. M. & Svenning, J.-C. (2020). The potential impact of future climate on the distribution of European yew (Taxus baccata L.) in the Hyrcanian forest region (Iran). International Journal of Biometeorology, 64(9), 1451–1462. https://doi.org/10.1007/s00484-020-01922-z

  • Ardestani, E. G., Tarkesh, M., Bassiri, M., & Vahabi, M. R. (2015). Potential habitat modeling for reintroduction of three native plant species in Central Iran. Jouranl of Arid Land, 7, 381–390. https://doi.org/10.1007/s40333-014-0050-4

    Article  Google Scholar 

  • Babar, S., Giriraj, A., Reddy, C. S., Jentsch, A., & Sudhakar, S. (2012). Species distribution models: Ecological explanation and prediction of an endemic and endangered plant species (Pterocarpus santalinus L.f.). Current Science 102(8), 1157–1165.

  • Bebber, D., & Gurr, S. (2019). Biotic interactions and climate in species distribution modelling. BioRxiv520320.

  • Bidarlord, M. (2019). Aq-dagh, a protected area with a unique species and habitat diversity in the south of Ardabil province. Iran Nature, 4(2), 91–99. https://doi.org/10.22092/IRN.2019.119041

  • Blok, D., Schaepman-Strub, G., Bartholomeus, H., Heijmans, M. M., Maximov, T. C., & Berendse, F. (2011). The response of Arctic vegetation to the summer climate: Relation between shrub cover, NDVI, surface albedo and temperature. Environmental Research Letters, 6(3), 035502. https://doi.org/10.1088/1748-9326/6/3/035502

    Article  Google Scholar 

  • Brandt, J. P., Flannigan, M. D., Maynard, D. G., Thompson, I. D., & Volney, W. J. A. (2013). An introduction to Canada’s boreal zone: ecosystem processes, health, sustainability, and environmental issues. Environmental Reviews, 21(4), 207–226. https://doi.org/10.1139/er-2013-0040

  • Chehregani, A., Azimishad, F., & Alizade, H. H. (2007). Study on antibacterial effect of some Allium species from Hamedan-Iran. International Journal of Agriculture and Biology, 9(6), 873–876.

    Google Scholar 

  • Corlett, R. T., & Westcott, D. A. (2013). Will plant movements keep up with climate change? Trends in Ecology & Evolution, 28(8), 482–488. https://doi.org/10.1016/j.tree.2013.04.003

    Article  Google Scholar 

  • Djamali, M., Akhani, H., Khoshravesh, R., Andrieu-Ponel, V., Ponel, P., & Brewer, S. (2011). Application of the Global Bioclimatic Classification to Iran: Implications for understanding the modern vegetation and biogeography. Ecologia Mediterranea, 37(1), 91–114. https://doi.org/10.3406/ecmed.2011.1350

    Article  Google Scholar 

  • D’Odorico, P., Okin, G. S., & Bestelmeyer, B. T. (2011). A synthetic review of feedbacks and drivers of shrub encroachment in arid grasslands. Ecohydrology, 5(5), 520–530. https://doi.org/10.1002/eco.259

    Article  Google Scholar 

  • Eldridge, D. J., Bowker, M. A., Maestre, F. T., Roger, E., Reynolds, J. F., & Whitford, W. G. (2011). Impacts of shrub encroachment on ecosystem structure and functioning: Towards a global synthesis. Ecology Letters, 14(7), 709–722. https://doi.org/10.1111/j.1461-0248.2011.01630.x

    Article  Google Scholar 

  • Elith, J., Graham, C. H., Anderson, R. P., & Dudı ́k, M., Ferrier, S., Guisan, A., Hijmans, R. J., Huettmann, F., Leathwick, J. R., Lehmann, A., Li, J., Lohmann, L. G., Loiselle, B. A., Manion, G., Moritz, C., Nakamura, M., Nakazawa, Y., Overton, J. McC., Peterson, A. T., Phillips, S. J., Richardson, K. S., Scachetti-Pereira, R., Schapire, R. E., Sobero N, J., Williams, S., Wisz, M. S., & Zimmermann, N. E. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29(2), 129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x

    Article  Google Scholar 

  • Elith, J., Kearney, M., & Phillips, S. (2010). The art of modelling range-shifting species. Methods in Ecology and Evolution, 1(4), 330–342. https://doi.org/10.1111/j.2041-210X.2010.00036.x

    Article  Google Scholar 

  • Erfanian, M. B., Sagharyan, M., Memariani, F., & Ejtehadi, H. (2021). Predicting range shifts of three endangered endemic plants of the Khorassan-Kopet Dagh floristic province under global change. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-88577-x

  • Facciola, S. (1990). Cornucopia. Vista, Kampong Publ.

    Google Scholar 

  • Fischer, W. B. (1968). Physical geography. W (pp. 3–110). Cambridge University.

    Google Scholar 

  • Fielding, A., & Bell, J. (1997). A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation, 24(1), 38–49. https://doi.org/10.1017/S0376892997000088

    Article  Google Scholar 

  • Fois, M., Fenu, G., & Bacchetta, G. (2016). Global analyses underrate part of the story: Finding applicable results for the conservation planning of small Sardinian islets flora. Biodiversity and Conservation, 25(6), 1091–1106. https://doi.org/10.1007/s10531-016-1110-1

    Article  Google Scholar 

  • Franklin, J. (2009). Mapping species distributions - spatial inference and prediction. Cambridge University Press.

    Google Scholar 

  • Fritsch, R. M., Abbasi, M., & Keusgen, M. (2007). Useful wild Allium species in northern Iran. Rostaniha, 7(2), 189–206.

    Google Scholar 

  • Fritsch, R. M., & Abbasi, M. (2009). New taxa and other contributions to the taxonomy of Allium L. (Alliaceae) in Iran. Rostaniha, 9(2), 1–76.

  • Fritsch, R. M., & Abbasi, M. (2013). A taxonomic review of Allium subg. Melanocrommyum in Iran. Institut für Pflanzengenetik und Kulturpflanzenforschung, Germany. 240 pp.

  • Ghorbani, M. (2013). The Economic Geology of Iran. Switzerland, Springer Nature.

  • Gilani, H., Arif Goheer, M., Ahmad, H., & Hussain, K. (2020). Under predicted climate change: Distribution and ecological niche modelling of six native tree species in Gilgit-Baltistan. Pakistan. Ecological Indicators, 111, 106049. https://doi.org/10.1016/j.ecolind.2019.106049

    Article  Google Scholar 

  • Guillera-Arroita, G., Lahoz-Monfort, J. J., Elith, J., Gordon, A., Kujala, K., Lentini, P. E., McCarthy, M. A., Tingley, R., & Wintle, B. A. (2015). Is my species distribution model fit for purpose? Matching data and models to applications. Global Ecology and Biogeography, 24(3), 276–292. https://doi.org/10.1111/geb.12268

    Article  Google Scholar 

  • Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135(2–3), 147–186. https://doi.org/10.1016/S0304-3800(00)00354-9

    Article  Google Scholar 

  • Haidarian Aghakhani, M., Tamartash, R., Jafarian, Z., Tarkesh Esfahani, M., & Tatian, M. (2017). Forecasts of climate change effects on Amygdalus scoparia potential distribution by using ensemble modeling in Central Zagros. Journal of RS and GIS for Natural Resources, 8(3), 1–14.

    Google Scholar 

  • Hartemink, A. E., & McSweeney, K. (2014). Soil carbon. Springer.

    Book  Google Scholar 

  • Hatfield, J. L., Boote, K. J., Kimball, B., Ziska, L., Izaurralde, R. C., Ort, D., Thomson, A. M., & Wolfe, D. (2011). Climate impacts on agriculture: Implications for crop production. Agronomy Journal, 103(2), 351–370. https://doi.org/10.2134/agronj2010.0303

    Article  Google Scholar 

  • Hedge, I. C., & Wendelbo, P. (1978). Patterns of distribution and endemism in Iran. Notes from the Royal Botanic Garden, Edinburgh, 36, 441–464.

    Google Scholar 

  • Hijmans, R. J., Phillips, S., Leathwick, J., & Elith, J. (2017). Package dismo. Available from: http://cran.rproject.org/web/packages/dismo/index.html

  • Homke, S. (2007). Timing of shortening and uplift of the Pusht-E Kuh arc in the Zagros fold-and- thrust belt (IRAN). Universidad de Barcelona Facultad de Geología, Departamento de Geodinámica y Geofísica.

    Google Scholar 

  • Homke, S., Verges, J., Garces, M., Emami, H., & Karpuz, R. (2004). Magnetostratigraphy of Miocene? Pliocene Zagros foreland deposits in the front of the Push-e Kush Arc (Lurestan Province, Iran). Earth and Planetary Sciences Letters, 225(3–4), 397–410. https://doi.org/10.1016/j.epsl.2004.07.002

    Article  CAS  Google Scholar 

  • Jose, V. S., & Nameer, P. O. (2020). The expanding distribution of the Indian Peafowl (Pavo cristatus) as an indicator of changing climate in Kerala, southern India: A modelling study using MaxEnt. Ecological Indicators, 110, 105930. https://doi.org/10.1016/j.ecolind.2019.105930

    Article  Google Scholar 

  • Kamenetsky, R., Gębura, J., & Winiarczyk, K. (2017). Germination strategy of Allium victorialis, a wild edible plant with high commercial potential. Botany, 95(2), 195–202. https://doi.org/10.1139/cjb-2016-0126

    Article  Google Scholar 

  • Keusgen, M., Jedelská, J., & Fritsch, R. M. (2008). Phytochemical analysis of Allium species from Central Asia. In: M. Keusgen, & R.M. Fritsch (Eds.), Proceedings, First Kazbegi workshop on Botany, taxonomy and phytochemistry of wild Allium L. species of the Caucasus and Central Asia, Kazbegi, Caucasus, Georgia. Marburg & Gatersleben pp. 103–130.

  • Khajoei Nasab, F., & Khosavi, A. R. (2020a). Identification of the areas of endemism (AOEs) of the genus Acantholimon (Plumbaginaceae) in Iran. Plant Biosystems, 154, 726–736. https://doi.org/10.1080/11263504.2019.1686078

    Article  Google Scholar 

  • Khajoei Nasab, F., Mehrabian, A., & Mostafavi, H. (2020b). Mapping the current and future distributions of Onosma species endemic to Iran. Journal of Arid Land, 12(6), 1031–1045. https://doi.org/10.1007/s40333-020-0080-z

    Article  Google Scholar 

  • Khanum, R., Mumtaz, A. S., & Kumar, S. (2013). Predicting impacts of climate change on medicinal asclepiads of Pakistan using Maxent modeling. Acta Oecologica, 49, 23–31. https://doi.org/10.1016/j.actao.2013.02.007

    Article  Google Scholar 

  • Levin, S. A., Muller-Landau, H. C., Nathan, R., & Chave, J. (2003). The ecology and evolution of seed dispersal: A theoretical perspective. Annual Review of Ecology. Evolution, and Systematics, 34, 575–604.

    Article  Google Scholar 

  • Lewis, R. J., Szava-Kovats, R., & Artel, M. P. (2016). Esti-mating dark diversity and species pools: Anempirical assessment of two methods. Methods in Ecology and Evolution, 7, 104–113.

    Article  Google Scholar 

  • Liu, C., White, M., & Newell, G. (2013). Selecting thresholds for the prediction of species occurrence with presence-only data. Journal of Biogeography, 40(4), 778–789. https://doi.org/10.1111/jbi.12058

    Article  Google Scholar 

  • Liu, L., Guan, L. L., Zhao, H. X., Huang, Y., Mou, Q. Y., Liu, K., Chen, T. T., Wang, X. Y., Zhang, Y., Wei, B., & Hu, J. (2021). Modeling habitat suitability of Houttuynia cordata Thunb (Ceercao) using MaxEnt under climate change in China. Ecological Informatics, 63, 101324. https://doi.org/10.1016/j.ecoinf.2021.101324

  • Loarie, S. R., Carter, B. E., Hayhoe, K., McMahon, S., Moe, R., Knight, C. A., & Ackerly, D. D. (2008). Climate change and the future of California's endemic flora. PLoS One, 3(6). https://doi.org/10.1371/journal.pone.0002502

  • Lorigooini, Z., Ayatollahi, S. A., Amidi, S., & Kobarfard, F. (2015). Evaluation of anti-platelet aggregation effect of some Allium species. Iranian Journal of Pharmaceutical Research, 14(4), 1225–1231.

    CAS  Google Scholar 

  • Lyberis, N., & Manby, G. (1999). Continental collision and lateral escape deformation in the lower and upper crust: An example from Caledonide Svalbard. Tectonics, 18(1), 40–63. https://doi.org/10.1029/1998TC900013

    Article  Google Scholar 

  • Ma, B., & Sun, J. (2018). Predicting the distribution of Stipa purpurea across the Tibetan Plateau via the MaxEnt model. BMC Ecology, 18, 10. https://doi.org/10.1186/s12898-018-0165-0

    Article  Google Scholar 

  • Manish, K., Telwala, Y., Nautiyal, D. C., & Pandit, M. K. (2016). Modelling the impacts of future climate change on plant communities in the Himalaya: A case study from Eastern Himalaya, India. Modeling Earth Systems and Environment, 2(2). https://doi.org/10.1007/s40808-016-0163-1

  • Mathias, A., & Chesson, P. (2013). Coexistence and evolutionary dynamics mediated by seasonal environmental variation in annual plant communities. Theoretical Population Biology, 84, 56–71. https://doi.org/10.1016/j.tpb.2012.11.009

    Article  Google Scholar 

  • Mehrabian, A. R. (2015). Distribution patterns and diversity of Onosma in Iran: With emphasis on endemism conservation and distribution pattern in SW Asia. Rostaniha, 16(1), 36–60. (in Persian).

    Google Scholar 

  • Mehrabian, A. R., Sayadi, S., Majidi Kuhbenani, M., Hashemi Yeganeh, V., & Abdoljabari, M. (2020). Priorities for conservation of endemic trees and shrubs of Iran: Important Plant Areas (IPAs) and Alliance for Zero Extinction (AZE) in SW Asia. Journal of Asia-Pacific Biodiversity, 13(2), 295–305. https://doi.org/10.1016/j.japb.2019.09.010

    Article  Google Scholar 

  • Mehrabian, A., Khajoei Nasab, F., & Amini Rad, M. (2021). Distribution patterns and priorities for conservation of Iranian endemic monocots: Determining the Areas of Endemism(AOEs). Journal of Wildlife and Biodiversity, 5(2), 69–87. https://doi.org/10.22120/JWB.2020.136616.1188

  • Memariani, F., Zarrinpour, V., & Akhani, H. (2016). A review of plant diversity, vegetation, and phytogeography of the Khorassan-Kopet Dagh floristic province in the Irano-Turanian region (northeastern Iran–southern Turkmenistan). Phytotaxa, 249(1), 8. https://doi.org/10.11646/phytotaxa.249.1.4

  • Milne, A., Banwart, S. A., Noellemeyer, E., Abson, D. J., Ballabio, C., Bampa, F., Bationo, A., Batjes, N. H., Bernoux, M., Bhattacharyya, T., Black, H., Buschiazzo, D. E., Cai, Z., Cerri, C. E., Cheng, K., Compagnone, C., Conant, R., Coutinho, H. L. C., de Brogniez, D., & de Calvalho Balieiro, F. (2015). Soil carbon, multiple benefits. Environmental Development, 13, 33–38. https://doi.org/10.1016/j.envdev.2014.11.005

    Article  Google Scholar 

  • Nazari, M., Mamedi, A., Hossein, M. B. (2018). The evaluation response of onion (Allium cepa) seed germination to temperature by thermal-time analysis and determine cardinal temperatures by using nonlinear regression. Iranian Journal of Field Crop Science, 48(4), 961–971. https://doi.org/10.22059/IJFCS.2017.217783.654198

  • Noroozi, J., Akhani, H., & Breckle, S.-W. (2008). Biodiversity and phytogeography of the alpine flora of Iran. Biodiversity and Conservation, 17(3), 493–521. https://doi.org/10.1007/s10531-007-9246-7

    Article  Google Scholar 

  • Noroozi, J., Talebi, A., Doostmohammadi, M., Rumpf, S. B., Linder, H. P., & Schneeweiss, G. M. (2018). Hotspots within a global biodiversity hotspot - areas of endemism are associated with high mountain ranges. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-28504-9

  • Noroozi, J., Talebi, A., Doostmohammadi, M., Manafzadeh, S., Asgarpour, Z., & Schneeweiss, G. M. (2019). Endemic diversity and distribution of the Iranian vascular flora across phytogeographical regions, biodiversity hotspots and areas of endemism. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-49417-1

  • Owens, P. R., & Rutledge, E. M. (2003). Soil morphology. In Encyclopedia of soil science in the environment. Elsevier Publishing Oxford England. pp. 511–520.

  • Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37(1), 637–669. https://doi.org/10.2307/annurev.ecolsys.37.091305.300000

    Article  Google Scholar 

  • Pauli, H., Gottfried, M., Reiter, K., Klettner, C., & Grabherr, G. (2007). Signals of range expansions and contractions of vascular plants in the high Alps: Observations (1994? 2004) at the GLORIA master site Schrankogel, Tyrol. Austria. Global Change Biology, 13(1), 147–156. https://doi.org/10.1111/j.1365-2486.2006.01282.x

    Article  Google Scholar 

  • Pearson, R. G., Thuiller, W., Araújo, M. B., Martinez-Meyer, E., Brotons, L., McClean, C., Miles, L., Segurado, P., Dawson, T. P., & Lees, D. C. (2006). Model-based uncertainty in species range prediction. Journal of Biogeography, 33(10), 1704–1711. https://doi.org/10.1111/j.1365-2699.2006.01460.x

    Article  Google Scholar 

  • Pecl, G. T., Araújo, M. B., Bell, J. D., Blanchard, J., Bonebrake, T. C., Chen, I. C., Clark, T. D., Colwell, R. K., Danielsen, F., Evengård, B., Falconi, L., Ferrier, S., Frusher, S., Garcia, R. A., Griffis, R. B., Hobday, A. J., Janion-Scheepers, C., Jarzyna, M. A., Jennings, S., & Lenoir, J. (2017). Biodiversity redistribution under climate change: Impacts on https://doi.org/10.1126/science.aai9214

  • Peterson, A. T., & Soberón, J. (2012). Species distribution modeling and ecological niche modeling: Getting the concepts right. Natureza & Conservação, 10(2), 102–107.

    Article  Google Scholar 

  • Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190(3–4), 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

    Article  Google Scholar 

  • Piedallu, C., Gegout, J. C., Bruand, A., & Seynave, I. (2011). Mapping soil water holding capacity over large areas to predict potential production of forest stands. Geoderma, 160, 355–366.

    Article  Google Scholar 

  • Popov, S. V., Shcherba, I. G., Ilyina, L. B., Nevesskaya, L. A., Paramonova, N. P., Khondkarian, S. O., & Magyar, I. (2006). Late Miocene to Pliocene palaeogeography of the Paratethys and its relation to the Mediterranean. Palaeogeography, Palaeoclimatology, Palaeoecology, 238, 91–106.

    Article  Google Scholar 

  • Pottier, J., Dubuis, A., Pellissier, L., Maiorano, L., Ros-sier, L., Randin, C. F., Vittoz, P., & Guisan, A. (2013). The accuracy of plant assemblage prediction from species distribution models varies along environmental gradients. Global Ecology and Biogeography, 22, 52–63.

    Article  Google Scholar 

  • Quevedo-Robledo, L., Pucheta, E., & Ribas-Fernández, Y. (2010). Influences of interyear rainfall variability and microhabitat on the germinable seed bank of annual plants in a sandy Monte Desert. Journal of Arid Environments, 74, 167–172.https://doi.org/10.1016/j.jaridenv.2009.08.002

  • Rabinowitch, H. D., & Currah, L. (2002). Allium crop science recent advances. CABI Pub.

  • Rajakaruna, N., & Boyd, R. S. (2008). Edaphic factor. In S. E. Jorgensen & B. D. Fath (Eds.), General ecology: Encyclopedia of ecology (2nd ed., pp. 1201–1207). Amsterdam, Elsevier Science.

  • Ratajczak, Z., Nippert, J. B., & Collins, S. L. (2012). Woody encroachment decreases diversity across North American grasslands and savannas. Ecology, 93(4), 697–703. https://doi.org/10.1890/11-1199.1

    Article  Google Scholar 

  • Rivas-Martínez, S., Sanchez-Mata, D., & Costa, M. (1999). North American boreal and western temperate forest vegetation. Departamento de Biología Vegetal (Botánica), Facultad de Biología, Campus Vegazana, Universidad de León.

  • Robiansyah, I. (2018). Assessing the impact of climate change on the distribution of endemic subalpine and alpine plants of New Guinea. Songklanakarin Journal of Science and Technology, 40, 701–709. https://doi.org/10.14456/sjst-psu.2018.66

  • Sangoony, H. (2016). Range shift of Bromus tomentellus Boiss. as a reaction to climate change in central Zagros, Iran. Applied Ecology and Environmental Research, 14(4), 85–100. https://doi.org/10.15666/aeer/1404_085100

  • Sadeghi Dinani, M., Zakeri Tehrani, N., & Shafiee, F. (2020). Bioassay guided fractionation of Allium austroiranicum by cytotoxic effects against ovary and cervical cancer cell lines. Research Journal of Pharmacognosy, 7(1), 1–6. https://doi.org/10.22127/RJP.2019.190642.1506

  • Scherrer, D., & Guisan, A. (2019). Ecological indicator values reveal missing predictors of species distributions. Scientific Reports, 9, 1–8. https://doi.org/10.1038/s41598-019-39133-1

    Article  CAS  Google Scholar 

  • Shakoor, A., Roshan, G., & Najafi Kani, A. A. (2010). Evaluating climatic potential for palm cultivation in Iran with emphasis on degree–day index. African Journal of Agricultural Research, 5(13), 1616–1626. https://doi.org/10.5897/AJAR09.081

    Article  Google Scholar 

  • Specht, C. E., & Keller, E. R. J. (1997). Temperature requirements for seed germination in species of the genus Allium L. Genet. Resour. Genetic Resources and Crop Evolution 44(6), 509–517. https://doi.org/10.1023/A:1008624831308

  • Stöcklin, J. (1974). Northern Iran: Alborz Mountains. Geological Society, London, Special Publications, 4(1), 213–234 Stuttgart.

  • Team, R. C. (2013). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. [14–09–2020]. http://www.R-project.org/

  • Thiers, B. (2019). Index herbarium: A global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. [2020-04-15]. https://sweetgum.nybg.org/ih

  • Thuiller, W., Midgley, G. F., Hughes, G. O., Bomhard, B., Drew, G., Rutherford, M. C., & Woodward, F. I. (2006). Endemic species and ecosystem sensitivity to climate change in Namibia. Global Change Biology, 12, 759–776. https://doi.org/10.1111/j.1365-2486.2006.01140.x

    Article  Google Scholar 

  • Uphof, J. C. (1968). Dictionary of economic plants. 2. edition, revised and enlarged. Lehre, 591 pp.

  • Vafaee, K., Dehghani, S., Tahmasvand, R., Saeed Abadi, F., Irian, S., & Salimi, M. (2019). Potent antitumor property of Allium bakhtiaricum extracts. BMC Complementary and Alternative Medicine, 19(1). https://doi.org/10.1186/s12906-019-2522-8

  • Valavi, R., Shafizadeh-Moghadam, H., Matkan, A. A., Shakiba, A., Mirbagheri, B., & Kia, S. H. (2018). Modelling climate change effects on Zagros forests in Iran using individual and ensemble forecasting approaches. Theoretical and Applied Climatology, 137(1–2), 1015–1025. https://doi.org/10.1007/s00704-018-2625-z

    Article  Google Scholar 

  • Van Vuuren, D. P., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard, K., & Rose, S. K. (2011). The representative concentration pathways: An overview. Climatic Change, 109(1–2), 5–31. https://doi.org/10.1007/s10584-011-0148-z

    Article  Google Scholar 

  • Walker, M. D., Wahren, C. H., Hollister, R. D., Henry, G. H., Ahlquist, L. E., Alatalo, J. M., Bret-Harte, M. S., Calef, M. P., Callaghan, T. V., Carroll, A. B., Epstein, H. E., Jónsdóttir, I. S., Klein, J. A., Magnússon, B., Molau, U., Oberbauer, S. F., Rewa, S. P., Robinson, C. H., Shaver, G. R., & Suding, K. N. (2006). From The Cover: Plant community responses to experimental warming across the tundra biome. Proceedings of the National Academy of Sciences of the United States, 103(5), 1342–1346. https://doi.org/10.1073/pnas.0503198103

    Article  CAS  Google Scholar 

  • Wang, C., Long, R., Wang, Q., & Wu, P. (2008). Effects of soil resources on species composition, plant diversity, and plant biomass in an alpine meadow, Qinghai-Tibetan plateau. Israel Journal of Ecology and Evolution, 54, 205–222. https://doi.org/10.1080/15659801.2008.10639613

    Article  CAS  Google Scholar 

  • Wehn, S., & Johansen, L. (2015). The distribution of the endemic plant Primula scandinavica, at local and national scales, in changing mountainous environments. Biodiversity, 16(4), 278–288. https://doi.org/10.1080/14888386.2015.1116408

    Article  Google Scholar 

  • Wendelbo, P. (1971). Alliaceae. In: K. H. Rechinger, (Ed.), Flora Iranica. Flora des iranischen Hochlandes und der umrahmenden Gebirge, Persien, Afghanistan, Teile von Westpakistan, Nordiraq, Azerbaidjan, Turkmenistan. No. 76. Graz, Akademische Druck- und Verlagsanstalt, 100 pp.

  • Yang, X.-Q., Kushwaha, S. P. S., Saran, S., Xu, J., & Roy, P. S. (2013). Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in Lesser Himalayan foothills. Ecological Engineering, 51, 83–87. https://doi.org/10.1016/j.ecoleng.2012.12.004

    Article  CAS  Google Scholar 

  • Yan, Y., & Tang, Z. (2019). Protecting endemic seed plants on the Tibetan Plateau under future climate change: Migration matters. Journal of Plant Ecology, 12(6), 962–971. https://doi.org/10.1093/jpe/rtz032

    Article  Google Scholar 

  • Yang, J., Zhou, S., Huang, D., & He, X. (2018). Phylogeography of two closely related species of Allium endemic to East Asia: Population evolution in response to climate oscillations. Ecology and Evolution, 8(16), 7986–7999. https://doi.org/10.1002/ece3.4338

    Article  Google Scholar 

  • Yilmaz, H., Yilmaz, O. Y., & Akyüz, Y. F. (2017). Determining the factors affecting the distribution of Muscari latifolium, an endemic plant of Turkey, and a mapping species distribution model. Ecology and Evolution, 7(4):1112–1124. https://doi.org/10.1002/ece3.2766

  • Zohary, M. (1973). Geobotanical foundations of the Middle East. Vol. 2, Gustav Fisher Verlag.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ahmadreza Mehrabian or Hossein Mostafavi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khajoei Nasab, F., Mehrabian, A., Mostafavi, H. et al. The influence of climate change on the suitable habitats of Allium species endemic to Iran. Environ Monit Assess 194, 169 (2022). https://doi.org/10.1007/s10661-022-09793-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-022-09793-0

Keywords

Navigation