Skip to main content

Advertisement

Log in

Conservation strategy for aquatic plants: endangered Ottelia acuminata (Hydrocharitaceae) as a case study

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

Knowledge of the extent and structure of genetic diversity and a species’ ecological niche are integral to formulating management plans for the conservation of threatened species. This is particularly important for aquatic organisms, which are especially vulnerable to human-induced environmental degradation and experience rapid global decline. To develop a proper conservation strategy for a threatened aquatic plant, Ottelia acuminata (Hydrocharitaceae), we utilized species distribution modeling (SDM) to delimit its potentially suitable range, both under the current climate and the climate expected in the near future, and employed AFLP to analyze the extent and structure of genetic variation over its entire distribution range. The within-population genetic diversity (He = 0.085) was lower than in the other species of Hydrocharitaceae studied using AFLP. The structuring of the genetic variation corresponded well to the distribution of previously described phenotypic varieties. There was 100% clustering of individuals according to their population origin suggesting a lack of inter-population gene flow. Based on the results of SDM and population genetic analysis we recommend (i) collecting seeds from all extant populations for seed banking through cryopreservation and the creation of living collections; (ii) reintroductions after restoration of once-occupied habitats utilizing plants of local origin, or, if the local variety has been extirpated, utilizing the most genetically similar population representing the same phenotypic variety; and (iii) experimental introduction of the species into lakes, ponds and small rivers in protected areas within the identified suitable range utilizing either a single population or a mix of populations belonging to the same genetic or phenotypic group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Booy G, Hendriks RJJ, Smulders MJM, Van Groenendael JM, Vosman B (2000) Genetic diversity and the survival of populations. Plant Biol 2:379–395

    Article  Google Scholar 

  • Breed MF, Stead MG, Ottewell KM, Gardner MG, Lowe AJ (2013) Which provenance and where? Seed sourcing strategies for revegetation in a changing environment. Conserv Genet 14:1–10

    Article  Google Scholar 

  • Broadhurst LM, Lowe A, Coates DJ, Cunningham SA, McDonald M, Vesk PA, Yates C (2008) Seed supply for broadscale restoration: maximizing evolutionary potential. Evol Appl 1:587–597

    PubMed  PubMed Central  Google Scholar 

  • Dalrymple SE, Banks E, Stewart GB, Pullin AS (2012) A meta-analysis of threatened plant reintroductions from across the globe. In: Maschinski J, Haskins EH (eds) Plant reintroduction in a changing climate: promises and perils. Island Press, Washington, D.C., pp 31–50

    Chapter  Google Scholar 

  • DeMauro MM (1994) Development and implementation of a recovery program for the federal threatened Lakeside daisy (Hymenoxys acaulis var. glabra). In: Bowles ML, Whelan CJ (eds) Restoration of endangered species: conceptual issues, planning, and implementation. Cambridge University Press, Cambridge, pp 298–321

    Chapter  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Evans SM, Sinclair EA, Poore AGB, Steinberg PD, Kendrick GA, Verges A (2014) Genetic diversity in threatened Posidonia australis seagrass meadows. Conserv Genet 15:717–728

    Article  Google Scholar 

  • Fenster CB, Dudash MR (1994) Genetic considerations for plant population restoration and conservation. In: Bowles ML, Whelan CJ (eds) Restoration of endangered species: conceptual issues, planning, and implementation. Cambridge University Press, Cambridge, pp 34–63

    Chapter  Google Scholar 

  • Forsman A, Wennersten L (2016) Inter-individual variation promotes ecological success of populations and species: evidence from experimental and comparative studies. Ecography 39:630–648

    Article  Google Scholar 

  • Frankham R (2010) Where are we in conservation genetics and where do we need to go? Conserv Genet 11:661–663

    Article  Google Scholar 

  • Frankham R, Ballou JD, Eldridge MDB, Lacy RC, Ralls K, Dudash MR, Fenster CB (2011) Predicting the probability of outbreeding depression. Conserv Biol 25:465–475

    Article  PubMed  Google Scholar 

  • Godefroid S, Piazza C, Rossi G, Buord S, Stevens A-D, Aguraiuja R, Cowell C, Weekley CW, Vogg G, Iriondo JM, Johnson I, Dixon B, Gordon DR, Magnanon S, Valentin B, Bjureke K, Koopman R, Vicens M, Virevaire M, Vanderborght T (2011) How successful are plant species reintroductions? Biol Conserv 144:672–682

    Article  Google Scholar 

  • Godo T, Lu Y, Guan K (2003) Present state of Ottelia acuminata (Gagnep.) Dandy (Hydrocharitaceae) in Yunnan Province, China. Bull Bot Gardens Toyama 8:49–54

    Google Scholar 

  • Hamrick JL, Godt MJW (1996) Effects of life history traits on genetic diversity in plant species. Philos Trans Royal Soc Lond Ser B-Biol Sci 351:1291–1298

    Article  Google Scholar 

  • Hamrick JL, Linhart YB, Mitton JB (1979) Relationships between life history characteristics and electrophoretically detectable genetic variation in plants. Annu Rev Ecol Syst 10:173–200

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hu X, Jin X, Du B, Zhu J (2005) Submerged macrophyte of Lake Erhai and its dynamic change. Res Environ Sci 18:1–4

    Google Scholar 

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23:254–267

    Article  CAS  PubMed  Google Scholar 

  • IUCN/SSC (2013) Guidelines for reintroductions and other conservation translocations. Version 1.0. IUCN Species Survival Commission, Gland, Switzerland

  • Jiang Z, Li H, Dao Z (2005) Ottelia acuminata var. songmingensis, a new variety of the Hydrocharitaceae from Yunnan, China. Guihaia 25:424–425

    Google Scholar 

  • Jiang ZT, Li H, Dao ZL, Long CL (2010) Ethnobotanical study on Ottelia acuminata, an aquatic edible plant occurring in Yunnan. J Inner Mongolia Normal Univ 39:163–168

    Google Scholar 

  • Jones CJ, Edwards KJ, Castaglione S, Winfield MO, Sala F, Van de Wiel C, Bredemeijer G, Vosman B, Matthes M, Daly A (1997) Reproducibility testing of RAPD, AFLP and SSR markers in plants by a network of European laboratories. Mol Breeding 3:381–390

    Article  CAS  Google Scholar 

  • Li H (1981) Classification, distribution and phylogeny of the genus Ottelia. Acta Phytotaxon Sinica 19:29–42

    Google Scholar 

  • Li H (1985) The flourishing and declining of Ottelia acuminata in the lake Dian Chi. J Yunnan Univ 7:138–142

    Google Scholar 

  • Li H (1988) Aquatic vegetation of Qilu Lake. J Yunnan Univ 10:81–88

    Google Scholar 

  • Li H, Shang YM (1989) Aquatic vegetation in Lake Erhai, Yunnan. Mt Res 7:166–174

    CAS  Google Scholar 

  • Li Y, Lin L, Lu X, Li Y (2012) Preliminary study on Yuxi wetland aquatic vegetation and its companion species. J Yunnan Agric Univ 27:590–599

    CAS  Google Scholar 

  • Liang S, Li G (2007) Ottelia acuminata in Jingxi County. Wetl Sci Manag 3:15

    Google Scholar 

  • Manni F, Guerard E, Heyer E (2004) Geographic patterns of (genetic, morphologic, linguistic) variation: how barriers can be detected by using Monmonier’s algorithm. Hum Biol 76:173–190

    Article  PubMed  Google Scholar 

  • Maschinski J, Falk DA, Wright SJ, Possley J, Roncal J, Wendelberger KS (2012) Optimal locations for plant reintroductions in a changing world. In: Maschinski J, Haskins KE (eds) Plant reintroduction in a changing climate: promises and perils. Island Press, Washington

    Chapter  Google Scholar 

  • McKay JK, Christian CE, Harrison S, Rice KJ (2005) “How local is local?’’ A review of practical and conceptual issues in the genetics of restoration. Restor Ecol 13:432–440

    Article  Google Scholar 

  • Menges ES (2008) Restoration demography and genetics of plants: when is a translocation successful? Aust J Bot 56:187–196

    Article  Google Scholar 

  • Michalski SG, Durka W (2012) Assessment of provenance delineation by genetic differentiation patterns and estimates of gene flow in the common grassland plant Geranium pratense. Conserv Genet 13:581–592

    Article  Google Scholar 

  • Monmonier MS (1973) Maximum-difference barriers: an alternative numerical regionalization method. Geogr Anal 5:245–261

    Article  Google Scholar 

  • Neale JR (2012) Genetic considerations in rare plant reintroduction: practical applications (or How are we doing?). In: Maschinski J, Haskins KE, Raven PH (eds) Plant reintroduction in a changing climate. Island Press/Center for Resource Economics, Washington, pp 71–88

    Chapter  Google Scholar 

  • Orsenigo S (2018) Editorial: how to halt the extinction of wetland-dependent plant species? The role of translocations and restoration ecology. Aquat Conserv 28:772–775

    Article  Google Scholar 

  • Orsenigo S, Gentili R, Smolders AJP, Efremov A, Rossi G, Ardenghi NMG, Citterio S, Abeli T (2017) Reintroduction of a dioecious aquatic macrophyte (Stratiotes aloides L.) regionally extinct in the wild. Interesting answers from genetics. Aquat Conserv 27:10–23

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Phillips SJ, Dudik M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Phillips G, Willby N, Moss B (2016) Submerged macrophyte decline in shallow lakes: what have we learnt in the last forty years? Aquat Bot 135:37–45

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference and population structure from multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Qin H-N, Yang Y, Dong S-Y, He Q, Jia Y et al (2017) Threatened species list of China’s higher plants. Biodivers Sci 25:696–744

    Article  Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237

    Article  Google Scholar 

  • Rohlf F (2000) NTSYS-pc. Numerical taxonomy and multivariate analysis system, Version 21.0 e. Applied Biostatistics Inc., New York

    Google Scholar 

  • Sand-Jensen K, Riis T, Vestergaard O, Larsen SE (2000) Macrophyte decline in Danish lakes and streams over the past 100 years. J Ecol 88:1030–1040

    Article  Google Scholar 

  • Schaal BA, Leverich WJ, Rogstad SH (1991) Comparison of methods for assessing genetic variation in plant conservation biology. In: Falk DA, Holsinger KE (eds) Genetics and conservation of rare plants. Oxford University Press, New York, pp 123–134

    Google Scholar 

  • Seddon PJ, Armstrong DP, Maloney RF (2007) Developing the science of reintroduction biology. Conserv Biol 21:303–312

    Article  PubMed  Google Scholar 

  • Sinclair E, Krauss S, Cheetham B, Hobbs R (2010) High genetic diversity in a clonal relict Alexgeorgea nitens (Restionaceae): implications for ecological restoration. Aust J Bot 58:206–213

    Article  Google Scholar 

  • Stacy EA (2001) Cross-fertility in two tropical tree species: evidence of inbreeding depression within populations and genetic divergence among populations. Am J Bot 88:1041–1051

    Article  CAS  PubMed  Google Scholar 

  • State Environmental Protection Bureau of China (1987) List of rare and endangered plants in China. Science Press, Beijing

    Google Scholar 

  • Volis S (2016) Species-targeted plant conservation: time for conceptual integration. Israel J Plant Sci 63:232–249

    Article  Google Scholar 

  • Volis S (2018) Securing a future for China’s plant biodiversity through an integrated conservation approach. Plant Divers 40:91–105

    Article  PubMed  PubMed Central  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walters C, Berjak P, Pammenter N, Kennedy K, Raven P (2013) Preservation of Recalcitrant Seeds. Science 339:915–916

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Xie Y (2004) China species red list. Higher Education Press, Beijing

    Google Scholar 

  • Wang QF, Guo YH, Haynes RR, Hellquist CB (2010) Hydrocharitaceae. In: Wu ZY, Peter HR (eds) Flora of China. Science Press and Missouri Botanical Garden Press, Beijing and St. Louis

    Google Scholar 

  • Waycott M, Barnes PAG (2001) AFLP diversity within and between populations of the Caribbean seagrass Thalassia testudinum (Hydrocharitaceae). Mar Biol 139:1021–1028

    Article  CAS  Google Scholar 

  • Weeks AR, Sgro CM, Young AG, Frankham R, Mitchell NJ, Miller KA, Byrne M, Coates DJ, Eldridge MDB, Sunnucks P, Breed MF, James EA, Hoffmann AA (2011) Assessing the benefits and risks of translocations in changing environments: a genetic perspective. Evol Appl 4:709–725

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang J, Li J, Li J-W, Li M, Zhang Y (2012) Summarize on the research of the hydro-bios and aquatic environment in Fuxian lake and Xingyun lake. Yunnan Geogr Environ Res 24:98–102

    Google Scholar 

  • Yeh FC, Rong-Cai Y, Boyle T (1998) POPGENE VERSION 131. University of Alberta, Center for International Forestry Research, Edmonton

    Google Scholar 

  • Zavodna M, Abdelkrim J, Pellissier V, Machon N (2015) A long-term genetic study reveals complex population dynamics of multiple-source plant reintroductions. Biol Conserv 192:1–9

    Article  Google Scholar 

  • Zhai S, Guo Q, Fan C, Hou S (2012) Study on the biological characteristics of rare and endangered Ottelia acuminata var. lunnanensis and its protection. North Horticult 2012–08:81–83

    Google Scholar 

  • Zhang G, Yang Q, Yang D, Chang F, Han Q, Liu F, Li W (2011) Flora studies on aquatic angiosperm in wetland of Erhai Lake Basin. J Hydroecol 32:1–8

    Google Scholar 

  • Zhang Y, Jeppesen E, Liu X, Qin B, Shi K, Zhou Y, Thomaz SM, Deng J (2017) Global loss of aquatic vegetation in lakes. Earth Sci Rev 173:259–265

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank two anonymous reviewers for helpful comments. This research was supported by the National Natural Science Foundation of China (31760048, 31460050).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-Hong Zhang or Sergei Volis.

Additional information

Communicated by David Hawksworth.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, JL., Yu, YH., Zhang, JW. et al. Conservation strategy for aquatic plants: endangered Ottelia acuminata (Hydrocharitaceae) as a case study. Biodivers Conserv 28, 1533–1548 (2019). https://doi.org/10.1007/s10531-019-01740-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-019-01740-9

Keywords

Navigation