Skip to main content
Log in

Floral structure of Cardiopteris (Cardiopteridaceae) with special emphasis on the gynoecium: systematic and evolutionary implications

  • Regular Paper
  • Published:
Journal of Plant Research Aims and scope Submit manuscript

Abstract

Cardiopteris, a small herbaceous genus, had long been placed in its own family, Cardiopteridaceae. However, the family was recently broadly circumscribed to include more genera in Aquifoliales. To better understand the morphological relationships of the genus and the family, I studied the floral anatomy and development of Cardiopteris using C. quinqueloba. As has been previously described, flowers are 5-merous with a unilocular gynoecium. I confirmed that the gynoecium is bicarpellate, possessing two dissimilar styles. An analysis of the development, structure, and vasculature of the gynoecium showed that it is pseudomonomerous, consisting of one fertile adaxial carpel and one solid sterile abaxial carpel. The adaxial carpel forms a thin style with a capitate stigma, whereas the abaxial carpel has a thick style, which develops into a freshy fruit appendage. Comparisons with flowers of other genera (Citronella, Gonocaryum, and Leptaulus) of Cardiopteridaceae as well as the other families (Aquifoliaceae, Helwingiaceae, Phyllonomaceae, and Stemonuraceae) of Aquifoliales showed that the pseudomonomerous gynoecium is very likely a synapomorphy to support the sister-group relationship between Cardiopteridaceae and Stemonuraceae. Moreover, contrary to all previous descriptions, Cardiopteris flowers were found to have an annular nectariferous disk at the base of the gynoecium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Angiosperm Phylogeny Group (2003) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Bot J Linn Soc 141:399–436

    Article  Google Scholar 

  • Angiosperm Phylogeny Group (2009) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APGIII. Bot J Linn Soc 161:105–121

    Article  Google Scholar 

  • Bentham G, Hooker JD (1862–1867) Genera Plantarum, vol 9. Reeve Co., London

  • Blume CL (1847) De genere Cardiopteri. Rumphia 3:205–207

    Google Scholar 

  • Cronquist S (1981) An integrated system of classification of flowering plants. Columbia University Press, New York

    Google Scholar 

  • Eckardt T (1937) Untersuchungen über Morphologie, Entwicklungsgeschichte und systematische Bedeutung des pseudomonomeren Gynoeceums. Nova Acta Leop 5:3–112

    Google Scholar 

  • Endress PK (1983) The early floral development of Austrobaileya. Bot Jahrb Syst 103:481–497

    Google Scholar 

  • Endress PK (1986) Floral structure, systematics, and phylogeny in Trochodendrales. Ann Missouri Bot Gard 73:297–324

    Article  Google Scholar 

  • Endress PK, Igersheim A (1997) Gynoecium diversity and systematics of the Laurales. Bot J Linn Soc 125:93–168

    Article  Google Scholar 

  • Engler A (1897) Icacinaceae. In: Engler A, Prantl K (eds) Die natürlichen Pflanzenfamilien, Teil, 3 (5). Wilhelm Engelmann, Leipzig, Germany, pp 233–257

    Google Scholar 

  • Engler A (1930) Saxifragaceae. In: Engler A, Prantl K (eds) Die natürlichen Pflanzenfamilien, Teil 18a. Wilhelm Engelmann, Leipzig, Germany, pp 74–226

    Google Scholar 

  • Eyde RH (1967) The peculiar gynoecial vasculature of Cornaceae and its systematic significance. Phytomorphology 17:172–182

    Google Scholar 

  • Fagerlind F (1945) Bau des Gynöceums, der Samenanlage und des Embryosackes bei einigen Repräsentanten der Familie Icacinaceae. Svensk Bot Tidskr 39:346–364

    Google Scholar 

  • González FA, Rudall PJ (2010) Flower and fruit characters in the early-divergent lamiid family Metteniusaceae, with particular reference to the evolution of pseudomonomery. Am J Bot 97:191–206

    Article  PubMed  Google Scholar 

  • Horne AS (1914) A contribution to the study of the evolution of the flower, with special reference to the Hamamelidaceae, Caprifoliaceae, and Cornaceae. Trans Linn Soc Ser 2 Bot 8:239–309

    Google Scholar 

  • Howard RA (1942) Studies of the Icacinaceae. V. A revision of the genus Citronella D. Don. Contr Gray Herb Harvard Univ 142:60–89

  • Hutchinson J (1973) The families of flowering plants, 3rd edn. Oxford University Press, Oxford

  • Igersheim A, Endress PK (1998) Gynoecium diversity and systematics of the paleoherbs. Bot J Linn Soc 127:289–370

    Article  Google Scholar 

  • Kårehed J (2001) Multiple origin of the tropical forest tree family Icacinaceae. Am J Bot 88:2259–2274

    Article  PubMed  Google Scholar 

  • Kong D-R, Peng H, Liang H-X (2002) A new type of embryo sac in Cardiopteris and its systematic implications. Acta Bot Sin 44:496–498

    Google Scholar 

  • Mabberley DJ (2008) Mabberley’s plant book. A portable dictionary of plants, their classification and uses. Cambridge University Press, New York

  • Matthews ML, Endress PK, Schönenberger J, Friis EM (2001) A comparison of floral structures of Anisophylleaceae and Cunoniaceae and the problem of their systematic position. Ann Bot 88:439–455

    Article  Google Scholar 

  • Oliver D (1895) Leptaulus daphnoides Benth. Hooker’s Icones Plantarum, Plate 2339, vol 4. Dalau & Co., London

  • Padmanabhan D (1961) A contribution to the embryology of Gomphandra polymorpha. Proc Natl Inst Sci India B 27:389–398

    Google Scholar 

  • Peng H, Howard RA (2008) Cardiopteridaceae. In: Wu CY, Raven PH, Hong DY (eds) Floral of China, vol 11. Science Press, Beijing

  • Ronse De Craene LP, Smets EF (1998) Meristic changes in gynoecium morphology, exemplified by floral ontogeny and anatomy. In: Owens SJ, Rudall PF (eds) Reproductive biology in systematics, conservation and economic botany. Royal Botanic Gardens, Kew, pp 85–112

  • Scholz H (1964) Celastrales. In: Melchior H (ed) A Engler’s Syllabus der Pflanzenfamilien. II. Gebrüder Borntraeger, Berlin, pp 289–300

    Google Scholar 

  • Schönenberger J, Endress PK (1998) Structure and development of the flowers in Mendoncia, Pseudocalyx, and Thunbergia (Acanthaceae) and their systematic implications. Int J Plant Sci 159:446–465

    Article  Google Scholar 

  • Sleumer H (1942) Peripterygiaceae. In: Engler A, Prantl K (eds) Die Natürlichen Pflanzenfamilien, 20b. Duncker & Humblot, Berlin, pp 397–400

    Google Scholar 

  • Sleumer H (1971) Icacinaceae. In: van Steenis CGGJ (ed) Flora Malesiana, vol 7. Noordhoff International Publishing, Leyden, pp 3–88

    Google Scholar 

  • Soltis DE, Smith SA, Cellinese N, Wurdack KJ, Tank DC, Brockington SF, Refulio-Rodriguez NF, Walker JB, Moore MJ, Carlsward BS, Bell CD, Matvis M, Crawley S, Black C, Diouf D, Xi Z, Rushworth CA, Gitzendanner MA, Sytsma KJ, Qiu Y-L, Hilu KW, Davis CC, Sanderson MJ, Beaman RS, Olmstead RG, Judd WS, Donoghue MJ, Soltis PS (2011) Angiosperm phylogeny: 17 genes, 640 taxa. Am J Bot 98:704–730

    Article  PubMed  Google Scholar 

  • Stevens PF (2001 onwards) Angiosperm phylogeny Website. http://www.mobot.org/MOBOT/research/APweb/ [accessed June 25, 2011]

  • Takhtajan A (1997) Diversity and classification of flowering plants. Columbia University Press, New York

    Google Scholar 

  • Takhtajan A (2009) Flowering plants, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Tank DC, Donoghue MJ (2010) Phylogeny and phylogenetic nomenclature of the Campanulidae based on an expanded sample of genes and taxa. Syst. Bot 35:425–441

    Article  Google Scholar 

  • Thorne RF (1992) Classification and geography of the flowering plants. Bot Rev (Lancaster) 58:225–348

    Article  Google Scholar 

  • Thorne RF, Reveal JL (2007) An updated classification of the class Magnoliopsida (“Angiospermae”). Bot Rev 73:67–182

    Article  Google Scholar 

  • Tobe H (1990) Reproductive morphology, anatomy, and relationships of Ticodendron. Ann Missouri Bot Gard 78:135–142

    Article  Google Scholar 

  • Tobe H, Raven PH (2008) Embryology of Koeberlinia (Koeberliniaceae): evidence for core-Brassicalean affinities. Amer J Bot 95:1475–1486

    Article  Google Scholar 

  • Tobe H, Raven PH (2011) Embryology of the Irvingiaceae, a family with uncertain relationships among the Malpighiales. J Plant Res 124:577–591

    Google Scholar 

Download references

Acknowledgments

I am grateful to Peter K. Endress and Louis P. Ronse De Craene for their valuable suggestions on the manuscript. The study was supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (No. 22570090) and the Global Center of Excellence Program A06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Tobe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tobe, H. Floral structure of Cardiopteris (Cardiopteridaceae) with special emphasis on the gynoecium: systematic and evolutionary implications. J Plant Res 125, 361–369 (2012). https://doi.org/10.1007/s10265-011-0450-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10265-011-0450-x

Keywords

Navigation