Skip to main content

Advertisement

Log in

Out of the mud: two new species of Hippeastrum (Amaryllidaceae) from the Doce and Jequitinhonha River basins, Brazil

  • Original Article
  • Published:
Plant Systematics and Evolution Aims and scope Submit manuscript

Abstract

In 2015, Brazil faced the worst environmental disaster in its history, when the collapse of an iron ore dam dumped millions of tons of tailings into the Doce River. In this paper, we describe two Hippeastrum species native to localities directly involved in the tragedy. The dam was located in the foothills of Serra do Caraça, a mountain range in the state of Minas Gerais, from where we describe the endemic H. carassense; H. velloziflorum was first found on an inselberg located on the banks of the Doce River, in the neighboring state of Espírito Santo. Comments on their distribution, ecology, and phenology are provided, as well as comparisons with the most similar taxa. The conservation status of the two new species is preliminarily assessed, and both are considered threatened with extinction. We also compared their leaf anatomy and micromorphology with related species of Amaryllidaceae. Based on nrDNA ITS, we infer the phylogenetic position of H. velloziflorum, a taxon with several unique morphological characters for Hippeastrum, as the first branch in subgenus Hippeastrum. The placement of H. velloziflorum in Hippeastrum is also supported by anatomical and cytological data. The somatic chromosome number was 2n = 22, and the karyotype formula was 2n = 8m + 12sm + 2st chromosome pairs. An identification key to the species of Hippeastrum occurring in the Doce and Jequitinhonha River basins is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aires URV, Santos BSM, Coelho CD, da Silva DD, Calijuri ML (2018) Changes in land use and land cover as a result of the failure of a mining tailings dam in Mariana, MG, Brazil. Land Use Policy 70:63–70. https://doi.org/10.1016/j.landusepol.2017.10.026

    Article  Google Scholar 

  • Albuquerque-Lima S, Domingos-Melo A, Nadia TC, Bezerra ELS, Navarro DMAF, Milet-Pinheiro P, Machado IC (2020) An explosion of perfume: Mass flowering and sphingophily in the Caatinga dry region in Brazil. Pl Spec Biol 35:243–255. https://doi.org/10.1111/1442-1984.12277

    Article  Google Scholar 

  • Altınordu F, Peruzzi L, Yu Y, He X (2016) A tool for the analysis of chromosomes: KaryoType. Taxon 65: 586–592. https://doi.org/10.12705/653.9

  • Alves-Araújo A, Pessoa E, Alves M (2012) Caracterização morfoanatômica de espécies de Amaryllidaceae ss e Alliaceae ss do Nordeste brasileiro. Revista Caatinga 25:68–81

    Google Scholar 

  • Alves RJV, da Silva NG (2011) O fogo é sempre um vilão nos campos rupestres? Biodiversity Brasil 1:120–127

    Google Scholar 

  • Ambrósio RV (2014) Situação fundiária dos Parques Estaduais de Minas Gerais. MSc Thesis, Universidade Federal de Lavras, Lavras

  • ANA. Agência Nacional de Águas (2016) Encarte Especial sobre a Bacia do Rio Doce, Rompimento da Barragem em Mariana (MG). Available at: https://arquivos.ana.gov.br/RioDoce/EncarteRioDoce_22_03_2016v2.pdf. Accessed 18 Dec 2020

  • Andrades R, Guabiroba HC, Hora MS, Martins RF, Rodrigues VL, Vilar CC, Giarrizzo T, Joyeux JC (2020) Early evidences of niche shifts in estuarine fishes following one of the world’s largest mining dam disasters. Mar Pollut Bull 154:111073. https://doi.org/10.1016/j.marpolbul.2020.111073

    Article  CAS  PubMed  Google Scholar 

  • Aranha Filho JLM, Fritsch PW, Almeda F, Martins AB (2005) Two new species of Symplocos Jacq. (Symplocaceae) from Minas Gerais. Brazil Proc Calif Acad Sci 56:295–303

    Google Scholar 

  • Arroyo S (1982) The chromosomes of Hippeastrum, Amaryllis and Phycella (Amaryllidaceae). Kew Bull 37:211–216. https://doi.org/10.2307/4109962

    Article  Google Scholar 

  • Arroyo SC, Cutler DF (1984) Evolutionary and taxonomic aspects of the internal morphology in Amaryllidaceae from South America and southern Africa. Kew Bull 39:467–498. https://doi.org/10.2307/4108592

    Article  Google Scholar 

  • Bachman S, Moat J, Hill AW, de la Torre J, Scott B (2011) Supporting Red List threat assessments with GeoCAT: geospatial conservation assessment tool. ZooKeys 150:117–126. https://doi.org/10.3897/zookeys.150.2109

    Article  Google Scholar 

  • Baker HG (1961) The adaptation of flowering plants to nocturnal and crepuscular pollinators. Quart Revista Biol 36:64–73

    Article  Google Scholar 

  • Baker HG, Hurd PD (1968) Intrafloral ecology. Annual Rev Entomol 13:385–414

    Article  Google Scholar 

  • Barthlott W, Neinhuis C, Cutler D, Ditsch F, Meusel I, Theisen I, Wilhelmi H (1998) Classification and terminology of plant epicuticular waxes. Bot J Linn Soc 126:237–260. https://doi.org/10.1111/j.1095-8339.1998.tb02529.x

    Article  Google Scholar 

  • Bawa KS (1990) Plant-pollinator interactions in tropical rain forests. Annual Revista Ecol Evol Syst 21:399–422. https://doi.org/10.1146/annurev.es.21.110190.002151

    Article  Google Scholar 

  • Bernardino AF, Pais FS, Oliveira LS, Gabriel FA, Ferreira TO, Queiroz HM, Mazzuco ACA (2019) Chronic trace metals effects of mine tailings on estuarine assemblages revealed by environmental DNA. PeerJ 7:e8042. https://doi.org/10.7717/peerj.8042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohnenberger EJ (2011) Territorialidades em tensão no Vale do Jequitinhonha: territórios de vida e territórios como recurso do capital. Graduation monograph, Universidade Estadual Paulista, Presidente Prudente

    Google Scholar 

  • Bonecker ACT, Castro MS, Costa PG, Bianchini A, Bonecker SLC (2019) Larval fish assemblages of the coastal area affected by the tailings of the collapsed dam in southeast Brazil. Reg Stud Mar Sci 32:100848. https://doi.org/10.1016/j.rsma.2019.100848

    Article  Google Scholar 

  • Borsali EF (2012) A flora vascular endêmica do quadrilátero Ferrífero, Minas Gerais, Brasil: Levantamento das espécies e padrões de distribuição geográfica. MSc Thesis, Universidade Federal de Minas Gerais, Belo Horizonte

  • Brandham PE, Bhandol PS (1997) Chromosomal relationships between the genera Amaryllis and Hippeastrum (Amaryllidaceae). Kew Bull. 52:973–980. https://doi.org/10.2307/4117824

    Article  Google Scholar 

  • BRASIL (2020) Cadastro Nacional de Unidades de Conservação. Available at: https://www.mma.gov.br/areas-protegidas/cadastro-nacional-de-ucs. Accessed 17 Dec 2020

  • Burke A (2003) Inselbergs in a changing world—global trends. Diversity Distrib 9:375–383. https://doi.org/10.1046/j.1472-4642.2003.00035.x

    Article  Google Scholar 

  • Burrows GE (2001) Comparative anatomy of the photosynthetic organs of 39 xeromorphic species from subhumid New South Wales. Austral Int J Pl Sci 162:411–430. https://doi.org/10.1086/319579

    Article  Google Scholar 

  • Buzato S, Sazima M, Sazima I (2000) Hummingbird-pollinated floras at three Atlantic Forest sites. Biotropica 32:824–841

    Article  Google Scholar 

  • Campos RR, de Azevedo ÚR, Vasconcelos MF (2013) Análise de elementos da diversidade natural na proposição de conectividade de habitats da porção sudeste do Quadrilátero Ferrífero, Minas Gerais. Geonomos 21: 84–91. https://doi.org/10.18285/geonomos.v21i2.275

  • Campos-Rocha A, Meerow AW, Dutilh, JHA (2018) Two new critically endangered species of Hippeastrum (Amaryllidaceae) from the Brazilian Cerrado. Phytotaxa 360: 91–102. https://doi.org/10.11646/phytotaxa.360.2.1

  • Campos-Rocha A, Meerow AW, Lopes EFM, Semir J, Mayer JL, Dutilh JH (2017) Eithea lagopaivae, a new critically endangered species in the previously monotypic genus Eithea Ravenna (Amaryllidaceae). PhytoKeys 85:45–58. https://doi.org/10.3897/phytokeys.58.13369

    Article  Google Scholar 

  • Campos-Rocha A, Meerow AW, Lopes EFM, Semir J, Mayer JLS, Dutilh JHA (2019) New and reassessed species of Griffinia (Amaryllidaceae) from the Brazilian Atlantic Forest. Syst Bot 44:310–318. https://doi.org/10.1600/036364419X15562052252199

    Article  Google Scholar 

  • Carmo FFD (2010) Importância ambiental e estado de conservação dos ecossistemas de cangas no Quadrilátero Ferrífero e proposta de áreas-alvo para a investigação e proteção da biodiversidade em Minas Gerais. MSc Thesis, Universidade Federal de Minas Gerais, Belo Horizonte

  • Carmo FF, Kamino LHY, Tobias Junior R, de Campos IC, Carmo FF, Silvino G, Mauro ML, Rodrigues NUA, Miranda MPS, Pinto CEF (2017) Fundão tailings dam failures: the environment tragedy of the largest technological disaster of Brazilian mining in global context. Perspect Ecol Conserv 15:145–151. https://doi.org/10.1016/j.pecon.2017.06.002

    Article  Google Scholar 

  • Carvalho AS, Matos R (2016) O ciclo madeireiro e a devastação da Mata Atlântica da bacia do rio Doce na primeira metade do século XX. In: Revista Geografias (Edição Especial Vale do Rio Doce), UFMG, Belo Horizonte, pp 175–202

  • Carvalho MS, Ribeiro KD, Moreira RM, Almeida AM (2017) Concentração de metais no rio Doce em Mariana, Minas Gerais, Brasil. Acta Brasil 1: 37–41. https://doi.org/10.22571/Actabra13201758

    Article  Google Scholar 

  • Chautems A, Dutra VF, Fontana AP, Peixoto M, Perret M, Rossini J (2019) Three new species of Sinningia (Gesneriaceae) endemic to Espírito Santo, Brazil. Candollea 74: 33–42. https://doi.org/10.15553/c2019v741a5

  • Chaves AV, Vasconcelos MF, Freitas GHS, Santos FR (2019) Vicariant events in the montane hummingbird genera Augastes and Schistes in South America. Ibis 162:1060–1067. https://doi.org/10.1111/ibi.12777

    Article  Google Scholar 

  • Chiodi-Filho C (2019) Balanço das exportações e importações brasileiras de rochas ornamentais em 2019. Associação Brasileira da Indústria de Rochas Ornamentais, São Paulo, São Paulo. Available at: https://abirochas.com.br/wp-content/uploads/2020/02/Informe_01_2020_Balanco_2019.pdf. Accessed 17 Jan 2021

  • CNCFlora (2012a) Hippeastrum brasilianum in Lista Vermelha da flora brasileira versão 2012. Centro Nacional de Conservação da Flora. Available at: http://cncflora.jbrj.gov.br/portal/pt-br/profile/Hippeastrum brasilianum. Accessed 13 Dec 2020

  • CNCFlora (2012b) Hippeastrum papilio in Lista Vermelha da flora brasileira versão 2012.2. Centro Nacional de Conservação da Flora. Available at: http://cncflora.jbrj.gov.br/portal/pt-br/profile/Hippeastrum papilio. Accessed 13 Dec 2020

  • CNCFlora (2012c) Hippeastrum psittacinum in Lista Vermelha da flora brasileira versão 2012.2. Centro Nacional de Conservação da Flora. Available at: http://cncflora.jbrj.gov.br/portal/pt-br/profile/Hippeastrum psittacinum. Accessed 13 Dec 2020

  • Coelho ALN (2007) Alterações hidrogeomorfológicas no médio-baixo Rio Doce/ES. PhD Thesis, Universidade Federal Fluminense, Niterói

  • Coimbra KTO, Alcântara E, de Souza Filho CR (2020) Possible contamination of the Abrolhos reefs by Fundao dam tailings, Brazil-New constraints based on satellite data. Sci Total Environm 733:138101. https://doi.org/10.1016/j.scitotenv.2020.138101

    Article  CAS  Google Scholar 

  • Colleta RCLD, Silva IV (2008) Morfoanatomia foliar de microorquídeas de Ornithocephalus Hook. e Psygmorchis Dodson & Dressler. Acta Bot Brasil 22:1068–1076. https://doi.org/10.1590/S0102-33062008000400017

    Article  Google Scholar 

  • Colli-Silva M, Reginato M, Cabral A, Forzza RC, Pirani JR, Vasconcelos TNDC (2020) Evaluating shortfalls and spatial accuracy of biodiversity documentation in the Atlantic Forest, the most diverse and threatened Brazilian phytogeographic domain. Taxon 69:567–577. https://doi.org/10.1002/tax.12239

    Article  Google Scholar 

  • Couto DR, Dias HM, Pereira MCA, Fraga CN, Pezzopane JEM (2016) Vascular epiphytes on Pseudobombax (Malvaceae) in rocky outcrops (inselbergs) in Brazilian Atlantic Rainforest: basis for conservation of a threatened ecosystem. Rodriguesia 67:583–601. https://doi.org/10.1590/2175-7860201667304

    Article  Google Scholar 

  • Covre, (2018) Inventário florístico de inselbergs no sul do estado do Espírito Santo como subsídio para criação de uma unidade de conservação. Universidade Federal do Espírito Santo, Jêronimo Monteiro, Graduation monograph

    Google Scholar 

  • Dahlgren RMT, Clifford HT (1982) The Monocotyledons: a comparative study. Academic Press, London

    Google Scholar 

  • D’Azeredo Orlando MT, Galvão ES, Cavichini AS, Rangel CVGT, Orlando CGP, Grilo CF, Soares J, Oliveira KSS, Sá F, Costa Junior A, Bastos AC, Quaresma VS (2020) Tracing iron ore tailings in the marine environment: An investigation of the Fundão dam failure. Chemosphere 257:127184. https://doi.org/10.1016/j.chemosphere.2020.127184

    Article  CAS  Google Scholar 

  • de Paula LFA, Negreiros D, Azevedo LO, Fernandes RL, Stehmann JR, Silveira FAO (2015) Functional ecology as a missing link for conservation of a resource-limited flora in the Atlantic forest. Biodiversity Conserv 24:2239–2253. https://doi.org/10.1007/s10531-015-0904-x

    Article  Google Scholar 

  • de Paula LF, Mota NF, Viana PL, Stehmann JR (2017) Floristic and ecological characterization of habitat types on an inselberg in Minas Gerais, southeastern Brazil. Acta Bot Brasil 31:199–211. https://doi.org/10.1590/0102-33062016abb0409

    Article  Google Scholar 

  • Dickison W (2000) Integrative plant anatomy, 1st edn. Academic Press, San Diego

    Google Scholar 

  • Diniz JMFS, Ferreira BAS, Borges LAC, Júnior FWA (2018) Detecção de desmatamentos em Zonas de Amortecimento: um estudo de caso nas Unidades de Conservação das Bacias do Rio Pardo e Jequitinhonha, Minas Gerais. Advances Forest Sci 5: 417–423. https://doi.org/10.34062/afs.v5i3.6276

    Article  Google Scholar 

  • DNPM (2017) Anuário Mineral Brasileiro: principais substâncias metálicas. Departamento Nacional de Produção Mineral, Brasília

  • dos Reis DA, Roeser HMP, Santiago ADF (2020) Impacto ambiental nos sedimentos do tributário do Rio Doce após o rompimento da barragem de Fundão. Res Soc Developm 9:1–22. https://doi.org/10.33448/rsd-v9i2.1895

    Article  Google Scholar 

  • Drummond GM, Martins CS, Machado ABM, Sebaio FA, Antonini Y (2005) Biodiversidade em Minas Gerais: um atlas para sua conservação, 2th edn. Fundação Biodiversitas, Belo Horizonte

  • Duarte EB, Neves MA, Oliveira FB, Martins ME, Oliveira CHR, Burak DL, D’Azeredo Orlando MT, Rangel CVGT (2021) Trace metals in Rio Doce sediments before and after the collapse of the Fundão iron ore tailing dam. SE Brazil Chemosphere 262:127879. https://doi.org/10.1016/j.chemosphere.2020.127879

    Article  CAS  Google Scholar 

  • Dutilh JHA (1987) Investigações citotaxonomicas em populações brasileiras de Hippeastrum Herb. MSc Thesis, Universidade Estadual de Campinas, Campinas

  • Dutilh JHA (1989) Morphological variation in a population of Hippeastrum Herb. Herbertia 45:152–155

    Google Scholar 

  • Dutra GM, Rubbioli EL, Horta LS (2002) Gruta do Centenário, Pico do Inficionado (Serra da Caraça), MG - A maior e mais profunda caverna quartzítica do mundo. In: Schobbenhaus C, Campos DA, Queiroz ET, Winge M, Berbert-Born MLC (eds) Sítios Geológicos e Paleontológicos do Brasil, v.1, 1th edn. DNPM/CPRM - Comissão Brasileira de Sítios Geológicos e Paleobiológicos (SIGEP), Brasília, pp 431–441

  • Espindola HS, Wendling IJ (2008) Elementos biológicos na configuração do território do Rio Doce. Varia Hist 24:177–197. https://doi.org/10.1590/S0104-87752008000100009

    Article  Google Scholar 

  • Evert RF (2006) Esau’s plant anatomy, 3rd edn. Wiley, Hoboken

    Book  Google Scholar 

  • Faegri K, van der Pijl L (1980) The principles of pollination ecology, 3rd edn. Pergamon Press, Oxford

    Google Scholar 

  • Felix CMP, Neves JAL, Silva R, Nascimento RGS, Silva RT, Nollet F, Cordeiro JMP, Lucena RFP, Felix LP (2019) In: Marhold K et al. (eds), IAPT chromosome data 31. Taxon 68: 1374–1380. https://doi.org/10.1002/tax.12176

  • Fernandes GW, Goulart FF, Ranieri BD, Coelho MS, Dales K, Boesche N, Bustamante M, Carvalho FA, Carvalho DC, Dirzo R, Fernandes S (2016) Deep into the mud: ecological and socio-economic impacts of the dam breach in Mariana, Brazil. Nat Conserv 14:35–45. https://doi.org/10.1016/j.ncon.2016.10.003

    Article  Google Scholar 

  • Fischer G (2018) Acelerações em escala regional: A transformação do vale do Rio Doce, ca. 1880–1980. Varia Hist 34:445–474. https://doi.org/10.1590/0104-87752018000200007

    Article  Google Scholar 

  • Fitzsimons JA, Michael DR (2016) Rocky outcrops: A hard road in the conservation of critical habitats. Biol Conserv 211:36–44. https://doi.org/10.1016/j.biocon.2016.11.019

    Article  Google Scholar 

  • Flory WS (1977) Overview of chromosome evolution in the Amaryllidaceae. Nucleus 20:70–88

    Google Scholar 

  • Fonseca PG, Fonseca IG (2016) Brazil’s greatest environmental catastrophe. Environm Policy Law 46:334–337

    Article  Google Scholar 

  • Fonty É, Sarthou C, Larpin D, Ponge JF (2009) A 10-year decrease in plant species richness on a neotropical inselberg: detrimental effects of global warming? Global Change Biol 15:2360–2374. https://doi.org/10.1111/j.1365-2486.2009.01923.x

    Article  Google Scholar 

  • Frainer G, Siciliano S, Tavares DC (2016) Franciscana calls for help: the short and long-term effects of Mariana’s disaster on small cetaceans of South-eastern Brazil. In: Anonymous (ed), International Whaling Commission Papers SC/66b/SM/04. International Whaling Commission. Bled. Available at: https://archive.iwc.int/?r=5982

  • Francini-Filho RB, Cordeiro MC, Omachi CY, Rocha AM, Bahiense L, Garcia GD, Tschoeke D, Almeida MG, Rangel TP, Oliveira BCV, Almeida DQR, Menezes R, Mazzei EF, Joyeux J, Rezende CE, Thompson CC, Thompson FL (2019) Remote sensing, isotopic composition and metagenomics analyses revealed Doce River ore plume reached the southern Abrolhos Bank Reefs. Sci Total Environm 697:134038. https://doi.org/10.1016/j.scitotenv.2019.134038

    Article  CAS  Google Scholar 

  • Frazão A, Lohmann LG, Costa ER, Demarco D (2020) Structure of long-tubed white corollas: A case study from the trumpet-creeper family (Bignoniaceae). Flora 268:151598. https://doi.org/10.1016/j.flora.2020.151598

    Article  Google Scholar 

  • Furtado JF (2009) A história do Vale do Jequitinhonha. Cad Leste 8:77–178

    Google Scholar 

  • Futuyma DJ, Moreno G (1988) The evolution of ecological specialization. Annual Revista Ecol Syst 19:207–233. https://doi.org/10.1146/annurev.es.19.110188.001231

    Article  Google Scholar 

  • Gabriel FA, Silva AG, Queiroz HM, Ferreira TO, Hauser-Davis RA, Bernardino AF (2020a) Ecological risks of metal and metalloid contamination in the Rio Doce estuary. Integr Environm Assess Managem 5:655–660. https://doi.org/10.1002/ieam.4250

    Article  CAS  Google Scholar 

  • Gabriel FA, Hauser-Davis RA, Soares L, Mazzuco AC, Rocha RC, Saint Pierre TD, Saggioro E, Correia FV, Ferreira TO, Bernardino AF (2020b) Contamination and oxidative stress biomarkers in estuarine fish following a mine tailing disaster. PeerJ 8:e10266. https://doi.org/10.7717/peerj.10266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garbin ML, Saiter FZ, Carrijo TT, Peixoto AL (2017) Breve histórico e classificação da vegetação capixaba. Rodriguesia 68:1883–1894. https://doi.org/10.1590/2175-7860201768521

    Article  Google Scholar 

  • García NB, Meerow AW, Soltis DE, Soltis PS (2014) Testing deep reticulate evolution in Amaryllidaceae tribe Hippeastreae (Asparagales) with ITS and Chloroplast sequence data. Syst Bot 39:75–89. https://doi.org/10.1600/036364414X678099

    Article  Google Scholar 

  • García N, Meerow AW, Arroyo-Leuenberger S, Oliveira RS, Dutilh JH, Soltis PS, Judd WS (2019) Generic classification of Amaryllidaceae tribe Hippeastreae. Taxon 68:481–498. https://doi.org/10.1002/tax.12062

    Article  Google Scholar 

  • Garcia LC, Ribeiro DB, Oliveira F, Ochoa-Quintero JM, Laurance WF (2017) Brazil’s worst mining disaster: Corporations must be compelled to pay the actual environmental costs. Ecol Appl 27:5–9. https://doi.org/10.1002/eap.1461

    Article  PubMed  Google Scholar 

  • Gibson AC (1996) Structure-function relations of warm desert plants, 1st edn. Springer, Berlin

    Book  Google Scholar 

  • Gomes LEO, Correa LB, Sá F, Neto RR, Bernardino AF (2017) The impacts of the Samarco mine tailing spill on the Rio Doce estuary, Eastern Brazil. Mar Pollut Bull 120:28–36. https://doi.org/10.1016/j.marpolbul.2017.04.056

    Article  CAS  PubMed  Google Scholar 

  • Gonçalves RN (1997) Diagnóstico ambiental da Bacia do Rio Jequitinhonha: diretrizes gerais para ordenação territorial. Fundação Instituto Brasileiro de Geografia e Estatística, Salvador. Available at: https://biblioteca.ibge.gov.br/visualizacao/livros/liv95902.pdf. Accessed 17 Jan 2021

  • Gonella PM, Rivadavia F, Sano PT (2012) Re-establishment of Drosera spiralis (Droseraceae), and a new circumscription of D. graminifolia. Phytotaxa 75: 43–57. https://doi.org/10.11646/phytotaxa.75.1.4

  • Gonella PM, Rivadavia F, Fleischmann A (2015) Drosera magnifica (Droseraceae): the largest New World sundew, discovered on Facebook. Phytotaxa 220: 257–267. https://doi.org/10.11646/phytotaxa.220.3.4

  • Gontijo BM (2008) Uma geografia para a Cadeia do Espinhaço. Megadiversidade 4:7–14

    Google Scholar 

  • Gontijo BMG (2001) Implicações do plantio generalizado de Eucaliptus no empobrecimento social e da biodiversidade do alto/médio Jequitinhonha–MG. Bol Paul Geogr 77:57–78

    Google Scholar 

  • Guerra M (2008) Chromosome numbers in plant cytotaxonomy: concepts and implications. Cytogenet Genome Res 120:339–350. https://doi.org/10.1159/000121083

    Article  CAS  PubMed  Google Scholar 

  • Guerra MBB, Teaney BT, Mount BJ, Asunskis DJ, Jordan BT, Barker RJ, Santos EE, Schaefer CEG (2017) Post-catastrophe analysis of the Fundão tailings dam failure in the Doce River system, Southeast Brazil: Potentially toxic elements in affected soils. Water Air Soil Pollut 228:252. https://doi.org/10.1007/s11270-017-3430-5

    Article  CAS  Google Scholar 

  • Hatje V, Pedreira RM, de Rezende CE, Schettini CAF, de Souza GC, Marin DC, Hackspacher PC (2017) The environmental impacts of one of the largest tailing dam failures worldwide. Sci Rep 7:10706. https://doi.org/10.1038/s41598-017-11143-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hopper SD (2009) OCBIL theory: towards an integrated understanding of the evolution, ecology and conservation of biodiversity on old, climatically buffered, infertile landscapes. Pl Soil 322:49–86. https://doi.org/10.1007/s11104-009-0068-0

    Article  CAS  Google Scholar 

  • Hora AM, Dias CA, Guedes GR (2013) Bacia Hidrográfica do Rio Doce: do processo de territorialização à atual importância econômica no cenário estadual. Revista Econ Pol Hist Econ 9:5–36

    Google Scholar 

  • Horridge GA, Tamm SL (1969) Critical point drying for scanning electron microscopy study of ciliary motion. Science 163:817–818. https://doi.org/10.1126/science.163.3869.817

    Article  CAS  PubMed  Google Scholar 

  • Hunter JT (2016) Differences in functional trait distribution between inselberg and adjacent matrix floras. Int J Ecol 2016:6417913. https://doi.org/10.1155/2016/6417913

    Article  Google Scholar 

  • IBGE (2017) Fitofisionomias. Base de dados em geociência. Avaliable at: https://www.ibge.gov.br/geociencias/downloads-geociencias.html. Accessed 17 Jan 2021

  • IUCN (2012) IUCN Red list categories and criteria, version 3.1, 2th edn. IUCN, Gland and Cambridge

  • IUCN (2019) Guidelines for using the IUCN Red List Categories and Criteria. Version 14. Prepared by the Standards and Petitions Subcommittee. Available at: http://www.iucnredlist.org/documents/RedListGuidelines.pdf. Accessed 17 Jan 2021

  • Jacobi CM, Carmo FD (2008) Diversidade dos campos rupestres ferruginosos no Quadrilátero Ferrífero, MG. Megadiversidade 4:24–32

    Google Scholar 

  • Jacobi CM, Carmo FF, Vincent RC, Stehmann JR (2007) Plant communities on ironstone outcrops: a diverse and endangered Brazilian ecosystem. Biodiversity Conserv 16:2185–2200. https://doi.org/10.1007/s10531-007-9156-8

    Article  Google Scholar 

  • Jensen WA (1962) Botanical histochemistry. WH Freeman & Co, San Francisco

    Google Scholar 

  • Johnson SD, Moré M, Amorim FW, Haber WA, Frankie GW, Stanley DA, Cocucci AA, Raguso RA (2017) The long and the short of it: a global analysis of hawkmoth pollination niches and interaction networks. Funct Ecol 31:101–115. https://doi.org/10.1111/1365-2435.12753

    Article  PubMed  Google Scholar 

  • Johnson KP, Malenke JR, Clayton DH (2009) Competition promotes the evolution of host generalists in obligate parasites. Proc Roy Soc B 276:3921–3926. https://doi.org/10.1098/rspb.2009.1174

    Article  Google Scholar 

  • Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27:137–138

    Google Scholar 

  • Kasecker TP, Silva JMC, Rapini A, Ramos-Neto MB, Andrade MJG, Giulietti AM, Queiroz LP (2009) Áreas-chave para espécies raras de fanerógamas. In: Giulietti AM, Rapini A, Andrade MJG, Queiroz LP, Silva JMC (eds) Plantas raras do Brasil, Conservação Internacional, Belo Horizonte, pp 433–471

  • Knauer LG (2007) O Supergrupo Espinhaço em Minas Gerais: considerações sobre sua estratigrafia e seu arranjo estrutural. Geonomos 15: 81–90. https://doi.org/10.18285/geonomos.v15i1.109

  • Koçyigit M, Tuna M (2016) Taxonomic remarks on the genus Sternbergia L. (Amaryllidaceae) in Turkey based on leaf anatomy, karyosystematic analysis and nuclear DNA content. Phytotaxa 265: 238–250. https://doi.org/10.11646/phytotaxa.265.3.4

  • Leão TC, Fonseca CR, Peres CA, Tabarelli M (2014) Predicting extinction risk of Brazilian Atlantic Forest angiosperms. Conserv Biol 28:1349–1359. https://doi.org/10.1111/cobi.12286

    Article  PubMed  Google Scholar 

  • Leme EM, Fraga CN, Kollmann LJ, Fontana AP (2008) Three New Alcantarea species from Espírito Santo and Minas Gerais, Brazil. J Bromeliad Soc 58:205–217

    Google Scholar 

  • Leroux O (2012) Collenchyma: a versatile mechanical tissue with dynamic cell walls. Ann Bot (Oxford) 110:1083–1098. https://doi.org/10.1093/aob/mcs186

    Article  Google Scholar 

  • Levan A, Fredga K, Sandberg AA (1964) Nomenclature for centromeric position on chromosomes. Hereditas 52:201–220. https://doi.org/10.1111/j.1601-5223.1964.tb01953.x

    Article  Google Scholar 

  • Lopes EFM (2019) Morfoanatomia foliar e micromorfologia de Asparagales: Griffinieae (Amaryllidaceae), Hypoxidaceae e Hagenbachia (Asparagaceae). PhD Thesis, Universidade Estadual de Campinas, Campinas

  • Loza-Cornejo S, Terrazas T (2003) Epidermal and hypodermal characteristics in North American Cactoideae (Cactaceae). J Pl Res 116:7–33. https://doi.org/10.1007/s10265-002-0066-2

    Article  Google Scholar 

  • Machado CG, Coelho AG, Santana CS, Rodrigues M (2007) Beija-flores e seus recursos florais em uma área de campo rupestre da Chapada Diamantina, Bahia. Revista Brasil Ornitol 15:267–279

    Google Scholar 

  • Manning JC, Snijman DA (2002) Hawkmoth-pollination in Crinum variabile (Amaryllidaceae) and the biogeography of sphingophily in southern African Amaryllidaceae. S African J Bot 68:212–216. https://doi.org/10.1016/S0254-6299(15)30422-1

    Article  Google Scholar 

  • Marques GGL (2015) Anatomia do escapo floral e da folha de espécies de Hippeastrum Herb. e Habranthus Herb.(Amaryllidaceae J. St.-Hil.) ocorrentes no Distrito Federal, Brasil. MSc Thesis, Universidade de Brasília, Brasília

  • Martinelli G (2007) Mountain biodiversity in Brazil. Brazil J Bot 30:587–597. https://doi.org/10.1590/S0100-84042007000400005

    Article  Google Scholar 

  • Medeiros AO, Missagia BS, Brandão LR, Callisto M, Barbosa FA, Rosa CA (2012) Water quality and diversity of yeasts from tropical lakes and rivers from the Rio Doce basin in Southeastern Brazil. Brazil J Microbiol 43:1582–1594. https://doi.org/10.1590/S1517-83822012000400043

    Article  CAS  Google Scholar 

  • Meerow AM (1987) A monograph of Eucrosia (Amaryllidaceae). Syst Bot 12:460–492. https://doi.org/10.2307/2418883

    Article  Google Scholar 

  • Meerow AW, Snijman DA (1998) Amaryllidaceae. In: Kubitzki K (ed) The families and genera of vascular plants III. Springer, Berlin, pp 83–110. https://doi.org/10.1007/978-3-662-03533-7

  • Meerow AW, Guy CL, Li Q-B, Yang S-L (2000) Phylogeny of the American Amaryllidaceae based on nrDNA ITS sequences. Syst Bot 25:708–726. https://doi.org/10.2307/2666729

    Article  Google Scholar 

  • Meerow AW, Francisco-Ortega J, Kuhn DN, Schnell RJ (2006) Phylogenetic relationships and biogeography within the Eurasian clade of Amaryllidaceae based on plastid ndhF and nrDNA ITS sequences: Lineage sorting in a reticulate area? Syst Bot 31:42–60. https://doi.org/10.1600/036364406775971787

    Article  Google Scholar 

  • Meerow AW, Reed ST, Dunn C, Schnell E (2017) Fragrance Analysis of Two Scented Hippeastrum Species. HortScience 52: 1853–1860. https://doi.org/10.21273/HORTSCI12471-17

  • Mello-Silva R (2018) Land of the Giants. Remarkable botanical findings highlight a new area for conservation in Brazil. Rodriguesia 69:933–937. https://doi.org/10.1590/2175-7860201869245

    Article  Google Scholar 

  • Melo FR (2004) Primatas e áreas prioritárias para a conservação da biodiversidade no vale do rio Jequitinhonha, Minas Gerais. PhD Thesis, Universidade Federal de Minas Gerais, Belo Horizonte

  • Meyer FS, Kollmann LJ, Fraga CN, Goldenberg R (2018) Four new rupicolous species of Pleroma (Melastomataceae) endemic to Espírito Santo, Brazil. Phytotaxa 348: 235–253. https://doi.org/10.11646/phytotaxa.348.4.1

  • Miranda LS, Marques AC (2016) Hidden impacts of the Samarco mining waste dam collapse to Brazilian marine fauna – an example from the staurozoans (Cnidaria). Biota Neotrop 16:e20160169. https://doi.org/10.1590/1676-0611-BN-2016-0169

    Article  Google Scholar 

  • MMA. Ministério do Meio Ambiente, (2007) Áreas Prioritárias para a Conservação, Uso Sustentável e Repartição de Benefícios da Biodiversidade Brasileira: Atualização — Portaria nº9, de 23 de janeiro de 2007. Biodiversidade 31:1–301

    Google Scholar 

  • Morton JK (1965) The experimental taxonomy of the West African species of Pancratium L. (Amaryllidaceae). Kew Bull 19: 337. https://doi.org/10.2307/4108085

  • Mota RC, Barros F, Stehmann JR (2009) Two new species of Orchidaceae from Brazil: Bulbophyllum carassense and Lepanthopsis vellozicola. Novon 19:380–387. https://doi.org/10.3417/2007057

    Article  Google Scholar 

  • Muñoz M, Riegel R, Seemann P, Peñailillo P, Schiappacasse F, Núñez J (2011) Relaciones filogenéticas de Rhodolirium montanum Phil. y especies afines, basadas en secuencias nucleotídicas de la región ITS y análisis cariotípico. Gayana Bot 68:40–48. https://doi.org/10.4067/S0717-66432011000100005

    Article  Google Scholar 

  • Naranjo CA (1969) Cariotipos de nueve espécies argentinas de Rhodophiala, Hippeastrum, Zephyranthes y Habranthus (Amaryllidaceae). Kurtziana 5:67–87

    Google Scholar 

  • Naranjo CA, Andrada AB (1975) El cariotipo fundamental en el genéro Hippeastrum Herb. (Amaryllidaceae). Darwinia 19:566–582

    Google Scholar 

  • Neri D (2020) A quem interessa a mineração no Caraça? In: Almeida E (ed) Brasil de Fato, 14 Dec, 2020. Belo Horizonte, Minas Gerais. Available at: https://www.brasildefatomg.com.br/2020/12/14/artigo-a-quem-interessa-a-mineracao-no-caraca

  • O’Brien TP, Feder N, McCully ME (1964) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59:368–373. https://doi.org/10.1007/BF01248568

    Article  Google Scholar 

  • Oliveira CT (2010) A flora do complexo rupestre altomontano da Serra do Caraça (Minas Gerais) e suas relações fitogeográficas. MSc Thesis, Universidade Federal de Minas Gerais, Belo Horizonte

  • Oliveira RS (2012) O gênero Hippeastrum Herb. (Amaryllidaceae) no Brasil: evidência de evolução reticulada e análise de caracteres florais. PhD Thesis, Universidade Estadual de Campinas, Campinas

  • Oliveira RS, Abrahão A, Pereira C, Teodoro GS, Brum M, Alcantara S, Lambers H (2016a) Ecophysiology of campos rupestres plants. In: Fernandes GW (ed) Ecology and conservation of mountaintop grasslands in Brazil, Springer, Cham, pp 227–272. https://doi.org/10.1007/978-3-319-29808-5_11

  • Oliveira RS, Semir J, Dutilh JHA (2013) Four new endemic species of Hippeastrum (Amaryllidaceae) from Serra da Canastra, Minas Gerais State, Brazil. Phytotaxa 145: 38–46. https://doi.org/10.11646/phytotaxa.145.1.4

  • Oliveira RS, Urdampilleta JD, Dutilh JHA (2017) A new Hippeastrum (Amaryllidaceae) species from Brazil. Phytotaxa 307: 147–152. https://doi.org/10.11646/phytotaxa.307.2.6

  • Oliveira U, Paglia AP, Brescovit AD, de Carvalho CJ, Silva DP, Rezende DT, Leite FSF, Batista JAN, Barbosa JPPP, Stehmann JR, Ascher JS, Vasconcelos MF, Marco P Jr, Löwenberg-Neto P, Dias PG, Ferro VG, Santos AJ (2016b) The strong influence of collection bias on biodiversity knowledge shortfalls of Brazilian terrestrial biodiversity. Diversity Distrib 22:1232–1244. https://doi.org/10.1111/ddi.12489

    Article  Google Scholar 

  • Oliveira U, Soares-Filho BS, Santos AJ, Paglia AP, Brescovit AD, de Carvalho CJB, Silva DP, Rezende DT, Leite FSF, Batista JAN, Barbosa JPPP, Stehmann JR, Ascher JS, Vasconcelos MF, Marco P, Löwenberg-Neto P, Ferro VG (2019) Modelling highly biodiverse areas in Brazil. Sci Rep 9:6355. https://doi.org/10.1038/s41598-019-42881-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliveira-Filho AT, Tameirão-Neto E, Carvalho WAC, Werneck M, Brina AE, Vidal CV, Rezende SC, Pereira JAA (2005) Análise florística do compartimento arbóreo de áreas de Floresta Atlântica sensu lato na região das Bacias do Leste (Bahia, Minas Gerais, Espírito Santo e Rio de Janeiro). Rodriguesia: 185–235. https://doi.org/10.1590/2175-78602005568715

  • Omachi CY, Siani SM, Chagas FM, Mascagni ML, Cordeiro M, Garcia GD, Thompson CC, Siegle E, Thompson FL (2018) Atlantic Forest loss caused by the world’s largest tailing dam collapse (Fundão Dam, Mariana, Brazil). Remote Sens Appl Soc Environm 12:30–34. https://doi.org/10.1016/j.rsase.2018.08.003

    Article  Google Scholar 

  • Palu PL (2012) Orquídeas. In: Ottoni C. (ed) Serra do Caraça. V & M do Brasil, Belo Horizonte

  • Pérez Cuadra V, Cambi V (2014) Morphoanatomical functional traits in xerophytic species of a saline environment. Int J Exp Bot 83:389–396

    Google Scholar 

  • PBCM (2013) Plano de manejo da RPPN “Santuário do Caraça”. Província Brasileira da Congregação da Missão, Catas Altas and Santa Bárbara

  • Pena NTL, Alves-Araújo A (2017) Angiosperms from rocky outcrops of Pedra do Elefante, Nova Venécia, Espírito Santo, Brazil. Rodriguesia 68:1895–1905. https://doi.org/10.1590/2175-7860201768522

    Article  Google Scholar 

  • Perrone R, Salmeri C, Brullo S, Colombo P, De Castro O (2015) What do leaf anatomy and micromorphology tell us about psammophilous Pancratium maritimum L. (Amaryllidaceae) in response to sand dune conditions? Flora 213:20–31. https://doi.org/10.1016/j.flora.2015.03.001

    Article  Google Scholar 

  • Pigott JP (2000) Environmental weeds and granite outcrops: possible solutions in the “too hard basket.” J R Soc West Aust 83:135–137

    Google Scholar 

  • Pinto LPS, Bede LC (2010) Biodiversidade e conservação nos Vales dos Rios Jequitinhonha e Mucuri. Ministério do Meio Ambiente, Brasília

  • Pinto-Junior HV, Villa PM, Pereira MCA, Menezes LFT (2020) The pattern of high plant diversity of Neotropical inselbergs: highlighting endemic, threatened and unique species. Acta Bot Brasil 34:645–661. https://doi.org/10.1590/0102-33062020abb0129

    Article  Google Scholar 

  • Piratelli AJ (1992) Ecologia comportamental de beija-flores em duas espécies de Hippeastrum Herb. (Amaryllidaceae) na região de Atibaia, Estado de São Paulo. MSc Thesis, Universidade Estadual de Campinas, Campinas

  • Piratelli AJ (1997) Comportamento alimentar de beija-flores em duas espécies de Hippeastrum Herb. (Amaryllidaceae). Revista Brasil Biol 57:261–273

    Google Scholar 

  • Porembski S (2000) The invasibility of tropical granite outcrops (‘inselbergs’) by exotic weeds. J Roy Soc W Austral 83:131–137

    Google Scholar 

  • Porembski S (2003) Epiphytic orchids on arborescent Velloziaceae and Cyperaceae: Extremes of phorophyte specialisation. Nordic J Bot 23:505–512. https://doi.org/10.1111/j.1756-1051.2003.tb00424.x

    Article  Google Scholar 

  • Porembski S (2007) Tropical inselbergs: habitat types, adaptive strategies and diversity patterns. Revista Brasil Bot 30:579–586. https://doi.org/10.1590/S0100-84042007000400004

    Article  Google Scholar 

  • Porembski S, Martinelli G, Ohlemüller R, Barthlott W (1998) Diversity and ecology of saxicolous vegetation mats on inselbergs in the Brazilian Atlantic rainforest. Diversity Distrib 4:107–119. https://doi.org/10.1046/j.1365-2699.1998.00013.x

    Article  Google Scholar 

  • Porembski S, Silveira FA, Fiedler PL, Watve A, Rabarimanarivo M, Kouame F, Hopper SD (2016) Worldwide destruction of inselbergs and related rock outcrops threatens a unique ecosystem. Biodiversity Conserv 25:2827–2830. https://doi.org/10.1007/s10531-016-1171-1

    Article  Google Scholar 

  • Quadra GR, Roland F, Barros N, Malm O, Lino AS, Azevedo GM, Thomaz JR, Andrade-Vieira LF, Praça-Fontes MM, Almeida RM, Mendonça RF (2019) Far-reaching cytogenotoxic effects of mine waste from the Fundão dam disaster in Brazil. Chemosphere 215:753–757. https://doi.org/10.1016/j.chemosphere.2018.10.104

    Article  CAS  PubMed  Google Scholar 

  • Queiroz HM, Nóbrega GN, Ferreira TO, Almeida LS, Romero TB, Santaella ST, Bernardino AF, Otero XL (2018) The Samarco mine tailing disaster: A possible time-bomb for heavy metals contamination? Sci Total Environm 637:498–506. https://doi.org/10.1016/j.scitotenv.2018.04.370

    Article  CAS  Google Scholar 

  • Queiroz HM, Ying SC, Abernathy M, Barcellos D, Gabriel FA, Otero XL, Nóbrega GN, Bernardino AF, Ferreira TO (2021) Manganese: The overlooked contaminant in the world largest mine tailings dam collapse. Environm Int 146:106284. https://doi.org/10.1016/j.envint.2020.106284

    Article  CAS  Google Scholar 

  • Radford AE, Dickison WC, Massey JR, Bell CR (1974) Vascular plant systematics. Harper & Row, New York

    Google Scholar 

  • Rambaut A (2019) FigTree Version 1.44. Avaliable at: http://tree.bio.ed.ac.uk/software/figtree/. Accessed 20 Apr 2021

  • Reis RC (2019) Os Botocudos no Vale do Rio Doce: o estado da violência e a luta pela terra. In: Vilarino MTB, Genovez PF (eds) Caminhos da luta pela terra no Vale do Rio Doce: conflitos e estratégias. Ed. Univale, Governador Valadares, pp 45–67

  • Renger FE, Noce CM, Romano AW, Machado N (1994) Evolução sedimentar do Supergrupo Minas: 500 Ma. de registro geológico no Quadrilátero Ferrífero, Minas Gerais, Brasil. Geonomos 2: 1–11. https://doi.org/10.18285/geonomos.v2i1.227

  • Ribas RP, Caetano RM, Gontijo BM, de Azevedo Xavier JH (2016) Afforestation in the rupestrian grasslands: the augmenting pressure of Eucalyptus. In: Fernandes (ed) Ecology and conservation of mountaintop grasslands in Brazil. Springer, Switzerland, pp 395–414. https://doi.org/10.1007/978-3-319-29808-5_17

  • Rodrigues LC, Rodrigues M (2014) Flowers visited by hummingbirds in the open habitats of the southeastern Brazilian mountain tops: species composition and seasonality. Brazil J Biol 74:659–676. https://doi.org/10.1590/bjb.2014.0097

    Article  CAS  Google Scholar 

  • Rosa GAB, Farro APC, Guerra F, Trarbach J, Crepaldi MOS, Nunes SF, Costalonga S, Luber UJ, Formigoni MH (2019) As áreas protegidas e os impactos ambientais sobre as espécies ameaçadas de extinção no Espírito Santo. In: Fraga CN, Formigoni MH, Chaves FG (eds) Fauna e flora ameaçadas de extinção no estado do Espírito Santo, Instituto Nacional da Mata Atlântica, Santa Teresa, pp 42–81

  • Rudall PJ, Chen ED, Cullen E (2017) Evolution and development of monocot stomata. Amer J Bot 104:1122–1141. https://doi.org/10.3732/ajb.1700086

    Article  CAS  Google Scholar 

  • Rudorff N, Rudorff CM, Kampel M, Ortiz G (2018) Remote sensing monitoring of the impact of a major mining wastewater disaster on the turbidity of the Doce River plume off the eastern Brazilian coast. ISPRS J Photogramm Remote Sensing 145:349–361. https://doi.org/10.1016/j.isprsjprs.2018.02.013

    Article  Google Scholar 

  • Salgado AAR, Carmo FF (2015) ‘Quadrilátero Ferrífero’: A Beautiful and Neglected Landscape Between the Gold and Iron Ore Reservoirs. In: Migoń P (ed) Landscapes and Landforms of Brazil. Springer, Dordrecht, pp 319–330. https://doi.org/10.1007/978-94-017-8023-0_29

  • Salino A, Stehmann JR, Lombardi JA, Mota RC, Carvalho FA, Mota NFO (2006) Flora das áreas prioritárias dos Rios Jequitinhonha e Mucuri. In: Pinto LPS, Bede LC (eds) Biodiversidade e Conservação nos Vales dos Rios Jequitinhonha e Mucuri. Ministério do Meio Ambiente, Brasília 32–92

  • Sardou Filho R, Matos GMM, Mendes VA, Iza ERHF (2013) Atlas de rochas ornamentais do estado do Espírito Santo. Companhia de Pesquisa de Recursos Minerais, Brasília

  • Segura FR, Nunes EA, Paniz FP, Paulelli ACC, Rodrigues GB, Braga GÚL, Pedreira Filho WR, Barbosa F Jr, Cerchiaro G, Silva FF, Batista BL (2016) Potential risks of the residue from Samarco’s mine dam burst (Bento Rodrigues, Brazil). Environm Pollut 218:813–825. https://doi.org/10.1016/j.envpol.2016.08.005

    Article  CAS  Google Scholar 

  • Silberbauer-Gottsberger I, Gottsberger G (1975) Über sphingophile Angiospermen Brasiliens. Pl Syst Evol 123:157–184. https://doi.org/10.1007/BF00989402

    Article  Google Scholar 

  • Silva DDC, Bellato CR, Marques Neto JDO, Fontes MP (2018) Trace elements in river waters and sediments before and after a mining dam breach (Bento Rodrigues, Brazil). Quim Nova 41: 857–866. https://doi.org/10.21577/0100-4042.20170252

  • Silva Junior CA, Coutinho AD, Oliveira-Júnior JF, Teodoro PE, Lima M, Shakir M, Gois G, Johann JA (2018) Analysis of the impact on vegetation caused by abrupt deforestation via orbital sensor in the environmental disaster of Mariana, Brazil. Land Use Policy 76:10–20. https://doi.org/10.1016/j.landusepol.2018.04.019

    Article  Google Scholar 

  • Simioni PF, Eisenlohr PV, Pessoa MJG, da Silva IV (2017) Elucidating adaptive strategies from leaf anatomy: Do Amazonian savannas present xeromorphic characteristics? Flora 226:38–46. https://doi.org/10.1016/j.flora.2016.11.004

    Article  Google Scholar 

  • Sonter LJ, Barrett DJ, Soares-Filho BS, Moran CJ (2014a) Global demand for steel drives extensive land-use change in Brazil’s Iron Quadrangle. Global Environm Change 26:63–72. https://doi.org/10.1016/j.gloenvcha.2014.03.014

    Article  Google Scholar 

  • Sonter LJ, Moran CJ, Barrett DJ, Soares-Filho BS (2014b) Processes of land use change in mining regions. J Cleaner Prod 84:494–501. https://doi.org/10.1016/j.jclepro.2014.03.084

    Article  Google Scholar 

  • SOSMA & INPE (2020) Aqui tem mata? Available at: https://www.aquitemmata.org.br/. Accessed 18 Jan 2021

  • Sossai MF (2018) Atlas da Mata Atlântica do estado do Espírito Santo: 2007–2008/2012–2015. IEMA, Cariacica

  • Spamer H (2017) Monumento Natural dos Pontões Capixabas: identidade pomerana na luta por direitos e território. MSc Thesis, Universidade de Brasília, Brasília

  • Stearn WT (2004) Botanical Latin, 4th edn. Timber Press, Portland

    Google Scholar 

  • Stireman JO (2005) The evolution of generalization? Parasitoid flies and the perils of inferring host range evolution from phylogenies. J Evol Biol 18:325–336. https://doi.org/10.1111/j.1420-9101.2004.00850.x

    Article  PubMed  Google Scholar 

  • Swofford DL (2002) PAUP*: Phylogenetic Analysis Using Parsimony (*and other methods), version 4. Sinauer Associates, Sunderland

    Google Scholar 

  • Thiers, B (2020) Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden's Virtual Herbarium, Bronx. Available at: http://sweetgum.nybg.org/science/ih/. Accessed 13 Dec 2020

  • Tomlinson PB (1974) Development of the stomatal complex as a taxonomic character in the monocotyledons. Taxon 23:109–128. https://doi.org/10.2307/1218094

    Article  Google Scholar 

  • Vale (2019) Projeto de Ampliação da Mina de Fazendão - Relatório de Impacto Ambiental (RIMA). Available at: http://www.vale.com/brasil/PT/aboutvale/servicos-para-comunidade/minas-gerais/Documents/projetos/documentos/RIMA.pdf. Accessed 21 Dec 2020

  • Van der Merwe AM, van der Walt JJA, Marais EM (1994) Anatomical adaptations in the leaves of selected fynbos species. S Afr J Bot 60:99–107. https://doi.org/10.1016/S0254-6299(16)30639-1

    Article  Google Scholar 

  • Vasconcelos MF (2000) Reserva do Caraça: história, vegetação e fauna. Aves 1:3–7

    Google Scholar 

  • Vasconcelos MF, Salino A, Vieira MVO (2002) A redescoberta de Huperzia rubra (Cham.) Trevisan (Lycopodiaceae) e o seu atual estado de conservação nas altas montanhas do sul da Cadeia do Espinhaço. Minas Gerais Unimontes Ci 3:45–50

    Google Scholar 

  • Vasconcelos MF, Lopes LE, Machado CG, Rodrigues M (2008) As aves dos campos rupestres da Cadeia do Espinhaço: diversidade, endemismo e conservação. Megadiversidade 4:221–241

    Google Scholar 

  • Versieux LM, Machado TM (2012) A new ornithophilous yellow-flowered Vriesea (Bromeliaceae) from Serra do Caraça, Minas Gerais, Brazil. Phytotaxa 71: 36–41. https://doi.org/10.11646/phytotaxa.71.1.7

  • Versieux LM, Wendt T (2007) Bromeliaceae diversity and conservation in Minas Gerais state, Brazil. Biodiversity Conserv 16:2989–3009. https://doi.org/10.1007/s10531-007-9157-7

    Article  Google Scholar 

  • Viveros RS (2010) Pteridófitas da Serra do Caraça, Minas Gerais, Brasil. MSc Thesis, Universidade Federal de Minas Gerais, Belo Horizonte

  • Vogelmann TC, Martin G (1993) The functional significance of palisade tissue: penetration of directional versus diffuse light. Pl Cell Environm 16:65–72. https://doi.org/10.1111/j.1365-3040.1993.tb00845.x

    Article  Google Scholar 

  • Vogelmann TC, Nishio JN, Smith WK (1996) Leaves and light capture: light propagation and gradients of carbon fixation within leaves. Trends Pl Sci 1:65–70. https://doi.org/10.1016/S1360-1385(96)80031-8

    Article  Google Scholar 

  • Weiglin C (2001) Scanning electron microscopy of the leaf epicuticular waxes of the genus Gethyllis L. (Amaryllidaceae) and prospects for a further subdivision. S African J Bot 67:333–343. https://doi.org/10.1016/S0254-6299(15)31137-6

    Article  Google Scholar 

  • Zico JT (1990) Caraça: parque natural e arquivo do colégio. O Lutador, Belo Horizonte

Download references

Acknowledgements

We thank Marcelo Vasconcelos for authorizing the use of the photograph (Fig. 7b) and information about Hippeastrum carassense; Gustavo H. Shimizu and Luiz Menini-Neto for the images of H. velloziflorum (Fig. 10g and 10i, respectively); Edimar Lopes, Gilberto Bellozi, and Patrícia Messias for assistance with the images; Carlos Eduardo G. R. Schaefer for his useful environmental analysis of soil; Mauro Peixoto and Suzana Martins for their support on several occasions; Ricardo Goffi for his comments on the draft of the manuscript; the curators of the herbaria BHCB, CEPEC, and MBML for the availability of the type specimens; Kyoko Nakamura (USDA-ARS, Miami, FL) for the DNA sequencing and Klei Sousa for the line drawings. The financial support of this work by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) is gratefully acknowledged; JLSM thanks CNPq for productivity grants (303664/2020-7).

Funding

This study was funded by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. ACR, APF, JHAD, OBCR, and RCM did the field work. ACR, AWM, and RCM performed most of the morphological comparative studies. The first draft of the manuscript was written by ACR, and all authors commented on previous versions of the manuscript. ACR, AWM, and RMM prepared figures and tables. ACR and JLSM made all the anatomical investigation and discussion. RMM performed the experiments and chromosome analysis; JHAD and RMM discussed the data. AWM and NBG collected the DNA sequences and ran the phylogenetic analyses; AWM and ACR discussed the data. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Antonio Campos-Rocha.

Ethics declarations

Conflicts of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Availability of data

The DNA sequences generated and/or analyzed during the current study are available in the GenBank database.

Additional information

Handling editor: Mauricio Bonifacino.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (TXT 31 KB)

Information on Electronic Supplementary Material

Information on Electronic Supplementary Material

Online Resource 1. Alignment of ITS sequences used in this paper. The alignment is in fasta format.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Campos-Rocha, A., Meerow, A.W., Machado, R.M. et al. Out of the mud: two new species of Hippeastrum (Amaryllidaceae) from the Doce and Jequitinhonha River basins, Brazil. Plant Syst Evol 308, 22 (2022). https://doi.org/10.1007/s00606-022-01805-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00606-022-01805-3

Keywords

Navigation