Skip to main content
Log in

Identification and Characterization of Pediococcus Species from Piper betle (Betel) Leaves

  • Published:
Current Microbiology Aims and scope Submit manuscript

Abstract

Betel vine is an edible creeper used in folk medicine to aid digestion since time immemorial. It is an ideal candidate deemed for the bioprospection of endophytic microorganisms with valuable attributes. This study aimed at the characterization of potential bacteria from fermented betel leaves. We report the presence of Pediococcus species with probiotic properties from betel. The isolated organisms were subjected to preliminary biochemical analysis and exhibited growth at 37°C and pH 6.7 with fermented glucose, sucrose and lactose without the evolution of CO2. Also, the organisms presented tolerance to 6.5% NaCl and 0.3% bile salt. The three isolates assimilated cholesterol dispensed in the medium and when exposed to E. coli evinced antagonism. Based on the 16S rRNA sequencing and phylogenetic tree analysis, the organisms were identified to be Pediococcus acidilactici and Pediococcus pentosaceus. Both the organisms when functionally characterized displayed beta-galactosidase, amylase and esterase activities, but Pediococcus pentosaceus had a substantial effect proving its candidature for probiotic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Semjonovs P, Zikmanis P (2008) Evaluation of novel lactose-positive and exopolysaccharide-producing strain of Pediococcus pentosaceus for fermented foods. Eur Food Res Technol 227(3):851–856

    Article  CAS  Google Scholar 

  2. Drider D, Bendali F, Naghmouchi K, Chikindas ML (2016) Bacteriocins: not only antibacterial agents. Probiotics Antimicrob Proteins 8(4):177–182

    Article  CAS  Google Scholar 

  3. Ilavenil S, Vijayakumar M, Kim DH, Valan Arasu M, Park HS, Ravikumar S, Choi KC (2016) Assessment of probiotic, antifungal and cholesterol-lowering properties of Pediococcus pentosaceus KCC-23 isolated from Italian ryegrass. J Sci Food Agric 96(2):593–601

    Article  CAS  Google Scholar 

  4. Naghmouchi K, Drider D, Kheadr E, Lacroix C, Prévost H, Fliss I (2006) Multiple characterizations of Listeria monocytogenes sensitive and insensitive variants to diverging M35, a new pediocin-like bacteriocin. J Appl Microbiol 100(1):29–39

    Article  CAS  Google Scholar 

  5. Ashrethalatha A, Aarthy U, Poonkodi T, Narayanan RB (2016) Identification and molecular characterization of Lactic Acid Bacteria (LAB) species from the medicinal plant Cissus quadrangularis (Pirandai). Int Food Res J 23(6):2695

    CAS  Google Scholar 

  6. Priyanka TR, Kanagam N, Narayanan RB (2019) Isolation and characterization of the probiotic potential of Lactobacillus species from Zingiber officinale. Int J Eng Sci Technol 7(4):173–177

    Google Scholar 

  7. Datta A, Ghoshdastidar S, Singh M (2011) Antimicrobial property of Piper betle leaf against clinical isolates of bacteria. Int J Pharm Sci Res 2(3):104–109

    Google Scholar 

  8. Tokatlı M, Gülgör G, Baǧder Elmacı S, Arslankoz Ișleyen N, Özçelik F (2015) In vitro properties of potential probiotic indigenous lactic acid bacteria originating from traditional pickles. Biomed Res Int 2015:315819

    Article  Google Scholar 

  9. Kanjwani DG, Marathe TP, Chiplunkar SV, Sathaye SS (2008) Evaluation of immunomodulatory activity of methanolic extract of Piper betel. Scand J Immunol Res 67(6):589–593

    Article  CAS  Google Scholar 

  10. Pin KY, Chuah AL, Rashih AA, Mazura MP, Fadzureena J, Vimala S, Rasadah MA (2010) Antioxidant and anti-inflammatory activities of extracts of betel leaves (Piper betle) from solvents with different polarities. J Trop For Sci 22(4):448–455

    Google Scholar 

  11. Bhattacharya S, Subramanian M, Roychowdhury S, Bauri AK, Kamat JP, Chattopadhyay S, Bandyopadhyay SK (2005) Radioprotective property of the ethanolic extract of Piper betel leaf. J Radiat Res 46(2):165–171

    Article  Google Scholar 

  12. Arawwawala LDAM, Arambewela LSR, Ratnasooriya WD (2014) Gastroprotective effect of Piper betle Linn. leaves grown in Sri Lanka. J Ayurveda Integr Med 5(1):38

    Article  CAS  Google Scholar 

  13. Majumdar B, Roy CS, Roy A, Bandyopadhyay SK (2003) Effect of ethanol extract of Piper betle Linn. Leaf on healing of NSAID-induced experimental ulcer – a novel role of free radical scavenging action. Indian J Exp Biol 41(4):311–315

    PubMed  Google Scholar 

  14. McDonald LC, McFeeters RF, Daeschel MA, Fleming HP (1987) A differential medium for the enumeration of homofermentative and heterofermentative lactic acid bacteria. Appl Environ Microbiol 53(6):1382–1384

    Article  CAS  Google Scholar 

  15. Julendra H, Suryani AE, Istiqomah L, Damayanti E, Anwar M, Fitriani N (2017) Isolation of lactic acid bacteria with cholesterol-lowering activity from digestive tracts of Indonesian native chickens. Media Peternakan Fakultas Peternakan Institut Pertanian Bogor 40(1):35–41

    Google Scholar 

  16. Tomaro-Duchesneau C, Jones ML, Shah D, Jain P, Saha S, Prakash S (2014) Cholesterol assimilation by Lactobacillus probiotic bacteria: an in vitro investigation. Biomed Res Int 2014:380316

    Article  Google Scholar 

  17. Miller JM (1972) Assays for β-galactosidase. In: Miller JM (ed) Experiments in molecular genetics, Cold Spring Harbor laboratory. Cold Spring Harbor, New York, pp 352–355

    Google Scholar 

  18. Alumed S, Divatar M, Gajare S, Shivalee A, Kattimani L (2016) Isolation and screening of Lactobacillus sp. KLSA 22 lactase production under submerged fermentation. Eur J Biomed Pharm Sci 3(4):574–579

    Google Scholar 

  19. Gonçalves C, Rodriguez-Jasso RM, Gomes N, Teixeira JA, Belo I (2010) Adaptation of dinitrosalicylic acid method to microtiter plates. Anal Methods 2(12):2046–2048

    Article  Google Scholar 

  20. Matthews A, Grbin PR, Jiranek V (2007) Biochemical characterisation of the esterase activities of wine lactic acid bacteria. Appl Microbiol Biotechnol 77(2):329–337

    Article  CAS  Google Scholar 

  21. Kieronczyk A, Skeie S, Langsrud T, Yvon M (2003) Cooperation between Lactococcus lactis and nonstarter lactobacilli in the formation of cheese aroma from amino acids. Appl Environ Microbiol 69(2):734–739

    Article  CAS  Google Scholar 

  22. Green PM, Giannelli F (1994) Direct sequencing of PCR-amplified DNA. Mol Biotechnol 1(2):117–124

    Article  CAS  Google Scholar 

  23. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791

    Article  Google Scholar 

  24. Kavitha S, Jeevaratnam K (2016) Molecular characterization of lactobacilli isolated from Piper betle L. var. Pachaikodi and Comparative analysis of the antimicrobial effects of isolate Lactobacillus plantarum KJB23 and betel leaves extract. Food Biotechnol 30(2):123–136

    Article  CAS  Google Scholar 

  25. Banwo K, Sanni A, Tan H (2013) Functional properties of Pediococcus species isolated from traditional fermented cereal gruel and milk in Nigeria. Food Biotechnol 27(1):14–38

    Article  Google Scholar 

  26. Bartkiene E, Juodeikiene G, Zadeike D, Viskelis P, Urbonaviciene D (2015) The use of tomato powder fermented with Pediococcus pentosaceus and Lactobacillus sakei for the ready-to-cook minced meat quality improvement. Food Technol Biotechnol 53(2):163–170

    PubMed  PubMed Central  Google Scholar 

  27. Ladha G, Jeevaratnam K (2018) Probiotic potential of Pediococcus pentosaceus LJR1, a bacteriocinogenic strain isolated from rumen liquor of goat (Capra aegagrus hircus). Food Biotechnol 32(1):60–77

    Article  CAS  Google Scholar 

  28. Minervini F, Celano G, Lattanzi A, Tedone L, De Mastro G, Gobbetti M, De Angelis M (2015) Lactic acid bacteria in durum wheat flour are endophytic components of the plant during its entire life cycle. Appl Environ Microbiol 81(19):6736–6748

    Article  CAS  Google Scholar 

  29. Garvie EI (1986) Genus Pediococcus. In: Sneath PHA, Mair ME, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology. Williams and Wilkins, Baltimore, pp 1075–1079

    Google Scholar 

  30. Vernekar AA, Vijayalaxmi KG (2019) Nutritional composition of fresh and dehydrated betel leaves. J Pharm Innov 8(4):602–605

    CAS  Google Scholar 

  31. Yang E, Fan L, Yan J, Jiang Y, Doucette C, Fillmore S, Walker B (2018) Influence of culture media, pH and temperature on growth and bacteriocin production of bacteriocinogenic lactic acid bacteria. AMB Express 8(1):10

    Article  Google Scholar 

  32. Stern RM, Frazier WC (1941) Physiological characteristics of lactic acid bacteria near the maximum growth temperature: I. growth and acid production 1, 2. J Bacteriol 42(4):479

    Article  CAS  Google Scholar 

  33. Ahmed T, Kanwal R, Ayub N (2006) Influence of temperature on growth pattern of Lactococcus lactis, Streptococcus cremoris and Lactobacillus acidophilus isolated from camel milk. Biotechnol 5(4):481–486

    Article  Google Scholar 

  34. Uchida K (2000) Diversity and ecology of salt tolerant lactic acid bacteria: Tetragenococcus halophilus in Soy Sauce fermentation. Jpn J Lactic Acid Bact 11(2):60–65

    Article  Google Scholar 

  35. Pereira DI, Gibson GR (2002) Cholesterol assimilation by lactic acid bacteria and bifidobacteria isolated from the human gut. Appl Environ Microbiol 68(9):4689–4693

    Article  CAS  Google Scholar 

  36. Balgir PP, Kaur B, Kaur T, Daroch N, Kaur G (2013) In vitro and in vivo survival and colonic adhesion of Pediococcus acidilactici MTCC5101 in human gut. Biomed Res Int 2013:583850

    Article  Google Scholar 

  37. Chanalia P, Gandhi D, Attri P, Dhanda S (2018) Purification and characterization of β-galactosidase from probiotic Pediococcus acidilactici and its use in milk lactose hydrolysis and galactooligosaccharide synthesis. Bioorg Chem 77:176–189

    Article  CAS  Google Scholar 

  38. Tanous C, Kieronczyk A, Helinck S, Chambellon E, Yvon M (2002) Glutamate dehydrogenase activity: a majorcriterion for the selection of flavour-producing lactic acidbacteria strains. Ant Leeuwenhoek 82:271–278

    Article  CAS  Google Scholar 

  39. de Azevedo PODS, Converti A, Gierus M, de Souza Oliveira RP (2019) Antimicrobial activity of bacteriocin-like inhibitory substance produced by Pediococcus pentosaceus: from shake flasks to bioreactor. Mol Biol Rep 46(1):461–469

    Article  Google Scholar 

Download references

Funding

No funding was received for the proposed work.

Author information

Authors and Affiliations

Authors

Contributions

Keerthana, C., developed the experimental strategy, analysed the data and wrote this manuscript. Narayanan, R.B., refined the strategy and mentored the work. Both authors approve the final manuscript.

Corresponding author

Correspondence to R. B. Narayanan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keerthana, C., Narayanan, R.B. Identification and Characterization of Pediococcus Species from Piper betle (Betel) Leaves. Curr Microbiol 78, 198–205 (2021). https://doi.org/10.1007/s00284-020-02270-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00284-020-02270-2

Navigation