Skip to main content
Log in

Extranuptial nectaries in bromeliads: a new record for Pitcairnia burchellii and perspectives for Bromeliaceae

  • Original Article
  • Published:
The Science of Nature Aims and scope Submit manuscript

Abstract

Nectar plays important roles in the relationship between plants and other organisms, both within pollination systems and as a defense mechanism. In the latter case, extranuptial nectaries (ENNs) usually attract patrolling arthropods that reduce herbivory. ENNs have been frequently reported within the “xeric clade” of Bromeliaceae, but their occurrence in other groups of bromeliads is largely unexplored, especially considering their position, secretory activity and structure. After observing the presence of ants constantly patrolling the inflorescences of Pitcairnia burchellii Mez, we searched for the presence, secretory activity, and structure of ENNs in this species. We also provide a brief review of the occurrence ENNs in Bromeliaceae. The distribution of nectaries was assessed using ant-exclusion experiments, while structural analysis was performed using standard methods for light and scanning electron microscopy. The presence of sugars in the secretion was assessed by thin-layer chromatography and glucose strip tests. Nectaries in P. burchelli are non-structured glands on the adaxial surface of floral bracts and sepals. Bracts and sepals are distinct spatial units that act over time in the same strategy of floral bud protection. Literature data reveals that ENNs might be more common within Bromeliaceae than previously considered, comprising a homoplastic feature in the family. Future perspectives and evolutionary and taxonomic implications are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  • Abrahamczyk S, Kessler M, Hanley D et al (2017) Pollinator adaptation and the evolution of floral nectar sugar composition. J Evol Biol 30:112–127

    Article  CAS  PubMed  Google Scholar 

  • Afzal S, Singh NK, Singh N, Chaudhary N (2021) Structural analysis of extrafloral nectaries of Senna occidentalis L.: insights on diversity and evolution. Planta 254:1–11

    Article  Google Scholar 

  • Ballego-Campos I, Paiva EAS (2018a) Mucilage secretion in the inflorescences of Aechmea blanchetiana: evidence of new functions of scales in Bromeliaceae. Flora 246–247:1–9

    Article  Google Scholar 

  • Ballego-Campos I, Paiva EAS (2018b) Colleters in the vegetative axis of Aechmea blanchetiana (Bromeliaceae): anatomical, ultrastructural and functional aspects. Aust J Bot 66:379–387

    Article  Google Scholar 

  • Ballego-Campos I, Forzza RC, Paiva EAS (2020) More than scales: evidence for the production and exudation of mucilage by the peltate trichomes of Tillandsia cyanea (Bromeliaceae: Tillandsioideae). Plants 9:1–15

    Article  Google Scholar 

  • Bentley BL (1977) Extrafloral nectaries and protection by pugnacious bodyguards. Annu Rev Ecol Systemat 8:407–427

    Article  CAS  Google Scholar 

  • Benzing DH (2000) Bromeliaceae: profile of an adaptive radiation. Cambridge University Press, New York

    Book  Google Scholar 

  • Bernardello G (2007) A systematic survey of floral nectaries. In: Nicolson SW, Nepi M, Pacini E (eds) Nectaries and Nectar. Springer, Dordrecht, pp 19–128

    Chapter  Google Scholar 

  • Brundrett MC, Kendrick B, Peterson CA (1991) Efficient lipid staining in plant material with Sudan red 7b or fluoral yellow 088 in polyethylene glycol-glycerol. Biotech Histochem 66:111–116

    Article  CAS  PubMed  Google Scholar 

  • Caspary R (1848) De Nectariis. Elverfeldae Impressit Iul Schellhoff, Bonn

    Google Scholar 

  • Delpino F (1875) Rapporti tra insetti e tra nettari estranuziali in alcune piante. Boll Soc Entomol Ital 7:69–90

    Google Scholar 

  • Elias TS (1983) Extrafloral nectaries: their structure and distribution. In: Bentley E, Elias TS (eds) The biology of nectaries. Columbia University Press, New York, pp 174–203

    Google Scholar 

  • Elias TS, Gelband H (1976) Morphology and anatomy of floral and extrafloral nectaries in Campsis (Bignoniaceae). Am J Bot 63:1349–1353

    Article  Google Scholar 

  • Fahn A (1979) Secretory tissue in plants. Academic Press, London

    Google Scholar 

  • Galetto L, Bernardello LM (1992) Extrafloral nectaries that attract ants in Bromeliaceae: structure and nectar composition. Can J Bot 70:1101–1106

    Article  CAS  Google Scholar 

  • Galetto L, Bernardello G (2005) Rewards in flowers: nectar. In: Dafni A, Kevan PG, Husband BC (eds) Practical Pollination Biology. Enviroquest Ltd, Cambridge, pp 216–313

    Google Scholar 

  • Givnish TJ, Millam KC, Berry PE, Sytsma KJ (2007) Phylogeny, adaptive radiation, and historical biogeography of Bromeliaceae inferred from ndhF sequence data. Aliso 23:3–26

    Article  Google Scholar 

  • Givnish TJ, Barfuss MHJ, Ee BV et al (2011) Phylogeny, adaptive radiation, and historical biogeography in Bromeliaceae: insights from an eight-locus plastid phylogeny. Am J Bot 98:872–895

    Article  PubMed  Google Scholar 

  • Givnish TJ, Barfuss MHJ, Ee BV et al (2014) Adaptive radiation, correlated and contingent evolution, and net species diversification in Bromeliaceae. Mol Phylogenetics Evol 71:55–78

    Article  Google Scholar 

  • Gomes-da-Silva J, Santos-Silva F, Forzza RC (2019) Does nomenclatural stability justify para/polyphyletic taxa? A phylogenetic classification in the xeric clade Pitcairnioideae (Bromeliaceae). System Biodivers 17:467–490

    Article  Google Scholar 

  • Groom P (1892) IX. On bud-protection in dicotyledons. transactions of the Linnean Society of London. 2nd Series. Botany 3:255–266

    Google Scholar 

  • Heil M (2011) Nectar: generation, regulation and ecological functions. Trends Plant Sci 16:191–200

    Article  CAS  PubMed  Google Scholar 

  • Heil M, Rattke J, Boland W (2005) Postsecretory hydrolysis of nectar sucrose and specialization in ant/plant mutualism. Science 308:560–563

    Article  CAS  PubMed  Google Scholar 

  • Heller S, Leme E, Schulte K, Benko-Iseppon AM, Zizka G (2015) Elucidating phylogenetic relationships in the Aechmea alliance: AFLP analysis of Portea and the Gravisia complex (Bromeliaceae, Bromelioideae). Syst Bot 40:716–725

    Article  Google Scholar 

  • Hornung-Leoni CT (2006) Nectar production in Pitcairnia imbricata (Bromeliaceae). J Bromel Soc 56:260–269

    Google Scholar 

  • Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 27:137A

  • Koptur S (1992a) Extrafloral nectary-mediated interactions between insects and plants. In: Bernays E (ed) Insect-Plant Interactions. CRC Press, Boca Raton, pp 85–132

    Google Scholar 

  • Koptur S (1992b) Plants with extrafloral nectaries and ants in Everglades habitats. Fla Entomol 75:38–50

    Article  Google Scholar 

  • Koptur S, William P, Olive Z (2010) Ants and plants with extrafloral nectaries in fire successional habitats on Andros (Bahamas). Fla Entomol 93:89–99

    Article  Google Scholar 

  • Lange D, Del-Claro K (2014) Ant-plant interaction in a tropical savanna: may the network structure vary over time and influence on the outcomes of associations? PLoS ONE 9:e105574

    Article  PubMed Central  PubMed  Google Scholar 

  • Lange D, Calixto ES, Del-Claro K, Stefani V (2021) Spatiotemporal niche-based mechanisms support a stable coexistence of ants and spiders in an extrafloral nectary-bearing plant community. J Anim Ecol 90:1570–1582

    Article  PubMed  Google Scholar 

  • Leroy C, Corbara B, Pélozuelo L, Carrias JF, Dejean A, Céréghino R (2012) Ant species identity mediates reproductive traits and allocation in an ant-garden bromeliad. Ann Bot 109:145–152

    Article  PubMed  Google Scholar 

  • Leroy C, Carrias JF, Corbara B et al (2013) Mutualistic ants contribute to tank-bromeliad nutrition. Ann Bot 112:919–926

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marazzi B, Gonzalez AM, Delgado-Salinas A, Luckow MA, Ringelberg JJ, Hughes CE (2019) Extrafloral nectaries in Leguminosae: phylogenetic distribution, morphological diversity and evolution. Aust Syst Bot 32:409–458

    Google Scholar 

  • Mehltreter K, Tenhaken R, Jansen S (2021) Nectaries in ferns: their taxonomic distribution, structure, function, and sugar composition. Am J Bot 109:46–57

    Article  Google Scholar 

  • Mesquita-Neto JN, Paiva EAS, Galetto L, Schlindwein C (2020) Nectar secretion of floral buds of Tococa guianensis mediates interactions with generalist ants that reduce florivory. Front Plant Sci 11:627

    Article  PubMed Central  PubMed  Google Scholar 

  • Moura MN, Santos-Silva F, Gomes-Da-Silva J, De AJPP, Forzza RC (2019) Between spines and molecules: a total evidence phylogeny of the Brazilian endemic genus Encholirium (Pitcairnioideae, Bromeliaceae). Syst Bot 44:14–25

    Article  Google Scholar 

  • Nascimento EA, Del-Claro K (2010) Ant visitation to extrafloral nectaries decreases herbivory and increases fruit set in Chamaecrista debilis (Fabaceae) in a Neotropical savanna. Flora 205:754–756

    Article  Google Scholar 

  • Nepi M (2007) Nectary structure and ultrastructure. In: Nicolson SW, Nepi M, Pacini E (eds) Nectaries and Nectar. Springer, Dordrecht, pp 129–166

    Chapter  Google Scholar 

  • Nepi M (2017) New perspectives in nectar evolution and ecology: simple alimentary reward or a complex multiorganism interaction? Acta Agrobot 70:1074

    Article  Google Scholar 

  • Nicolson SW (2007) Nectar consumers. In: Nicolson SW, Nepi M, Pacini E (eds) Nectaries and nectar. Springer, Dordrecht, pp 289–342

    Chapter  Google Scholar 

  • O’Brien TP, Feder N, McCully ME (1964) Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 59:368–373

    Article  Google Scholar 

  • Paiva EAS (2011) Petaline nectaries in Swietenia macrophylla (Meliaceae): distribution and structural aspects. Flora 206:484–490

    Article  Google Scholar 

  • Paiva EAS (2017) How does the nectar of stomata-free nectaries cross the cuticle? Acta Bot Bras 31:525–530

    Article  Google Scholar 

  • Pereira CC, Boaventura MG, de Castro GC, Cornelissen T (2020) Are extrafloral nectaries efficient against herbivores? Herbivory and plant defenses in contrasting tropical species. J Plant Ecol 13:423–430

    Article  Google Scholar 

  • Robards A (1978) An introduction to techniques for scanning electron microscopy of plant cells. In: Hall JL (ed) Electron microscopy and cytochemistry of plant cells. Elsevier/ North-Holland Biomedical Press, New York, pp 343–403

    Google Scholar 

  • Rogalski JM, Reis A, Rogalski M, Montagna T, Dos Reis, MS (2017) Mating system and genetic structure across all known populations of Dyckia brevifolia: a clonal endemic and endangered rheophyte bromeliad. J Heredity 108:299-307. https://doi.org/10.1093/jhered/esx011

  • Santos-Silva F, Saraiva DP, Monteiro RF, Pita P, Mantovani A, Forzza RC (2013) Invasion of the South American dry diagonal: what can the leaf anatomy of Pitcairnioideae (Bromeliaceae) tell us about it? Flora 208:508–521

    Article  Google Scholar 

  • Saraiva DP, Mantovani A, Forzza RC (2015) Insights into the evolution of Pitcairnia (Pitcairnioideae-Bromeliaceae), based on morphological evidence. Syst Bot 40:726–736

    Article  Google Scholar 

  • Saraiva DP, Forzza RC (2020) Pitcairnia in Flora do Brasil 2020. Jardim Botânico do Rio de Janeiro. http://reflora.jbrj.gov.br/reflora/floradobrasil/FB6307. Acessed 23 August 2020.

  • Sass C, Specht CD (2010) Phylogenetic estimation of the core Bromelioids with an emphasis on the genus Aechmea (Bromeliaceae). Mol Phylogenetics Evol 55:559–571

    Article  CAS  Google Scholar 

  • Schmid VS, Schmid S, Steiner J, Zillikens A (2010) High diversity of ants foraging on extrafloral nectar of bromeliads in the Atlantic rainforest of southern Brazil. Stud Neotrop Fauna Environ 45:39–53

    Article  Google Scholar 

  • Schmid VS, Langner S, Steiner J, Zillikens A (2014) Inflorescences of the bromeliad Vriesea friburgensis as nest sites and food resources for ants and other arthropods in Brazil. Psyche (london) 96095:9

    Google Scholar 

  • Schulte K, Zizka G (2008) Multi locus plastid phylogeny of Bromelioideae (Bromeliaceae) and the taxonomic utility of petal appendages and pollen characters. Candollea 63:209–225

    Google Scholar 

  • Schütz N (2011) Systematics and evolution of the genus Deuterocohnia Mez (Bromeliaceae). PhD Thesis. University of Kassel, Germany

    Google Scholar 

  • Scotland RW (2011) What is parallelism? Evol Dev 13:214–227

    Article  PubMed  Google Scholar 

  • Stahl E (1969) Thin-layer chromatography: a laboratory handbook, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  • Thiers B (Continuously updated) Index Herbariorum: a global directory of public herbaria and associated staff. http://sweetgum.nybg.org/science/ih/. Accessed 03 November 2020.

  • Vesprini JL, Galetto L, Bernardello G (2003) The beneficial effect of ants on the reproductive success of Dyckia floribunda (Bromeliaceae), an extrafloral nectary plant. Can J Bot 81:24–27

    Article  Google Scholar 

  • Vosgueritchian SB, Buzato S (2006) Reprodução sexuada de Dyckia tuberosa (Vell.) Beer (Bromeliaceae, Pitcairnioideae) e interação planta-animal. Bra J Bot 29:433–442

  • Weber MG, Porturas LD, Keeler KH (2015) World list of plants with extrafloral nectaries. www.extrafloralnectaries.org. Accessed 21 October 2020.

  • Weber MG, Keeler KH (2013) The phylogenetic distribution of extrafloral nectaries in plants. Ann Bot 111:1251–1261

    Article  PubMed  Google Scholar 

  • Wurdack KJ, Zartman CE (2019) Insights on the systematics and morphology of Humiriaceae (Malpighiales): androecial and extrafloral nectary variation, two new combinations, and a new Sacoglottis from Guyana. PhytoKeys 124:87–121

    Article  PubMed Central  PubMed  Google Scholar 

  • Zimmerman J (1932) Uber die extrafloralen Nektarien der Angiospermen. Beihefte Zur Botanische Zentralblatt 49:99–196

    Google Scholar 

Download references

Acknowledgements

The authors thank the ‘Fundação de Parques Municipais e Zoobotânica’ (FPMZB–Belo Horizonte, Brazil) and the ‘Jardim Botânico’ of the same institution, as well as the ‘Jardim Botânico do Rio de Janeiro’ (JBRJ–Rio de Janeiro, Brazil) for providing access to their collections. We also thank the BHZB, BHCB, and RB herbaria, as well as the ‘Centro de Microscopia – UFMG’ (CM-UFMG; Belo Horizonte, Brazil) and all the funding agencies.

Funding

This research was partially funded by the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG, process APQ-01926–18) and by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brazil (CAPES) – Finance Code 001. EASP and RCF received a research grant from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; grant 307353/2021–4 and 303059/2020–6, respectively). RCF receives a research grant from the Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ; grant E-26/202.778/2018) through the Programa Cientistas do Nosso Estado.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Ballego-Campos.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by: Tatiana Cornelissen

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ballego-Campos, I., Forzza, R.C. & Paiva, É.A.S. Extranuptial nectaries in bromeliads: a new record for Pitcairnia burchellii and perspectives for Bromeliaceae. Sci Nat 109, 28 (2022). https://doi.org/10.1007/s00114-022-01799-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00114-022-01799-5

Keywords

Navigation