CHAPTER 1

INTRODUCTION

1.1 Introduction

1.1.1 Rationale and background for investigation

Nowadays, AIDS is one of the top causes of death of people in the world. From data between 1984 to 2006 of Ministry of Public Health found that the total of AIDS patients in the Thailand were 297,507 and the total of the death from HIV of Thailand were 83,906 (Ministry of Public Health, 2006).

Acquired immunodeficiency syndrome (AIDS) has evolved rapidly in to an epidemic and worldwide public health crisis. Following the identification of this human retrovirus called human immunodeficiency virus type 1 (HIV-1), many researches have been carried out intensively to discover some active compounds as anti HIV-1 agents and it enzyme inhibitors. Three HIV-1 enzymes are essential for the life cycle of the virus (Figure 1-1). HIV-1 reverse transcriptase (RT) is crucial for viral replication. HIV-1 protease (PR) processes viral proteins in to functional enzymes and structural proteins, thereby, facilitating maturation and infectivity of virion particles, whereas HIV-1 integrase (IN) mediates the integration of the transcribed double strand DNA into the host genome (Ng et al., 1997). For the first two enzymes, many synthetic inhibitors have been intensively used for AIDS treatments as a combination regimen or using alone. There are many available antiviral agents as HIV-1 PR inhibitors such as saquinavir (SQV), nelfinavir (NFV) and amprenavir (APV), while those of HIV-1 RT inhibitors are zidovudine (AZT), didanosine (DDI) and abacavir (1592U89) (Hirsch et al., 1998). However HIV-1 integrase is interesting target for new anti-AIDS agent because it can integrate DNA of virus into host cell. Therefore, searching for HIV-1 IN inhibitors from natural sources and from synthetic compounds have been intensively carried out. The compounds such as flavones, caffeic acid phenyl esters (CAPE), quercetagetin (Fesen et al., 1994), curcumin (Mazumder et al., 1995), tyrphostins (Mazumder et al., 1996),

CAPE amides, lignanolides (Cushman *et al.*, 1995), arylamides, hydrazides, napthoquinones (Fesen *et al.*, 1993), diaryl sulfones (Neamati *et al.*, 1997), chicoric acid (Lin *et al.*, 1999) and lamellarin α 20-sulfate (Reddy *et al.*, 1999) have been reported to show HIV-1 IN inhibitory effect. Surprisingly, there is no HIV-1 IN inhibitory substances from medicinal plants is promising in this regard, althought the multiplate integration assay is used as an appropriate method for screening a large number of samples on HIV-1 IN inhibitory activity.

Hau-Khao-Yen is a Thai medicinal plant which was found in many preparations of Thai traditional medicine textbooks (The Association of Traditional Medicine, 1952 and 1978; Pongboonrod, 1976; The palm leaf text studies program, 1982) and is an ingredient in as many as 2449 formulae (Division of Medical Research, 1986). These formulae are used to treat lymphopathy, dermopathy, venereal diseases, leprosy, cancer and AIDS as well as inflammatory conditions associated with diseases such as rheumatism, infectious diseases and other paincausing conditions. Selective interviews of traditional doctors of Southern Thailand (Itharat et al, 1998) found that they used Hua-Khao-Yen as an ingredient in their drug formulae for HIV patients. The selective interview was found that it was used to treat HIV patients (26.1 %), blood disease and abscess (43.5 %). It was found that 5 species were called in the same name, such as Dioscorea burmanica Pierre ex. Prain & Burkill, Dioscorea membranacea Pierre ex. Prain & Burkill, Smilax corbularia Kunth, Smilax glabra Roxb. and Pygmaeopremna herbacea Roxb. They were tested on biological activity against HIV-1 integrase and HIV-1 protease and showed that Smilax corbularia was a best type for anti HIV-1 integrase. The ethanolic and water extract showed IC₅₀ = 1.9 and 5.4 μ g/ml respectively (Tewtrakul *et al.*, 2006). However, the active compounds in the extract have not been reported. Therefore the aim of this study were to investigate the active compounds for anti HIV-1 integrase and antioxidant activities from isolation of this plant extract.

1.1.2 HIV-1 integrase assay

HIV-1 integrase (IN) is becoming an interesting target for development of new anti-AIDS agents. Viral IN is the enzyme that integrates the viral reverse transcribed DNA into hostcell DNA. During viral infection, IN catalyzes the excision of the last two nucleotides from each 3'-end, leaving the terminal dinucleotide CA-3'-OH at the resessed 3'-ends (3'-processing). After transport to the nucleus as a nucleoprotein complex, IN catalyzes a DNA strand transfer reaction involving the nucleophilic attack at these ends on the host DNA, which is called stand transfer or joining (Fujiwara and Mizuuchi, 1988; Katz and Skalka, 1994; Vink and plasterk, 1993)

Recently, there are many reports on HIV-1 IN inhibitory assay using isotopelabelled substrate and denaturing gel separation of reaction products (Fesen *et al.*, 1994; Mazumder *et al.*, 1997, 1995; Neamati *et al.*, 1997; Reddy *et al.*, 1999; Burke *et al.*, 1995). These *in vitro* methods are referred as standard integration assays and give clear results. However, they are inconvenient and time consuming, especially when screening inhibitors from many samples. Lately, an assay for HIV-1 IN activity using DNA-coated plates has been reported in a few papers (Chang *et al.*, 1996; Hazuda *et al.*, 1994; Vink *et al.*, 1994). It is a non-radioisotopic technique and can be used for screening the inhibitory activity of plant extracts or any compounds against HIV-1 IN.

In this method, 96 well plates were used for the screening test called a multiplate integration assay (MIA). It is simple, convenient and accurate and doses not require the centrifugation, electrophoresis or other DNA denaturation steps. This assay screens for both 3'-processing and 3'-strand transfer and can be used without any exposure to radioisotopes. In this study, we therefore used this assay method for screening the HIV-1 IN inhibitory substances. MIA is the method to measure the incorporation of digoxigenin-labelled target DNA in to long terminal repeat (LTR) donor DNA. For this assay, a biotin-labelled donor DNA is added into each well, which strongly bind with a streptavidin coated-well plate, followed by addition of digoxiginin-labelled target DNA, integrase enzyme and sample solution. After integration process, the ligated two double-stranded DNA is immobilized on streptavidin-coated wells and subsequently bound with an alkaline phosphatase (AP)-labelled anti-digoxigenin antibody. Finally, it is colorized by adding p-nitrophenylphosphate as a substrate. In basic solution (pH 9.5), AP hydrolyzes *p*-nitrophenylphosphate to *p*-nitrophenol which exhibits a yellow color.

The screening of medicinal plants for HIV-1 IN inhibitory activity has been a promising approach to find compounds that interfere with retroviral replication, until now.

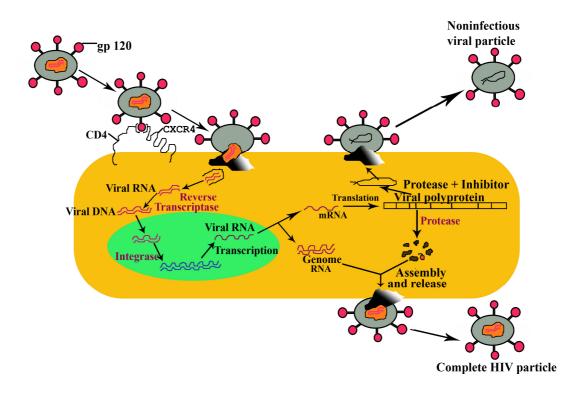


Figure 1-1 HIV-1 life cycle

1.1.3 Relative of Antioxidants with AIDS patients

In recent years the role of free radicals and reactive oxygen species (ROS) in human degenerative diseases of aging such as cancer, cardiovascular diseases, cataracts, brain dysfunction and immune system decline has become apparent. Free radicals or oxidants are energetically unstable and highly dangerous molecules which are constantly generated during body functions such as respiration, oxidative energy metabolism and immune activity. Free radicals are also produced from other sources (UV radiation, smoke, pollution, heavy metals, rancid fatty acid, etc.). Molecule oxygen is an oxidizing agent, that is it takes electron from another species (Halliwell and Gutteridge, 1999). The destructive effects of free radicals are far reaching, including cell membrane destruction via the interaction of fatty acid with oxygen to from dangerous peroxides (lipid peroxidation); genetic damage via DNA mutation; decline in immune function; increased inflammatory conditions; growth and spread of cancers; oxidation of LDL cholesteraol leading to atherosclerosis hormone disruption, contributing to diabetes and other systemic disorders (Halliwell and Gutteridge, 1990; Benzie, 2000).

Oxygen is a double-edged sword: although we require oxygen to survive, certain oxygen species (such as superoxide, hydrogen peroxide, hydroxyl radical and singlet oxygen) are toxic to the body. In healthy aerobic organisms, production of reactive oxygen species is approximately balanced by the antioxidant defence system in the body. These endogenous antioxidants can protect from damage caused by these harmful molecules, as well as from free radicals mention above. The body has evolved its own natural free radical scavengers, which include the antioxidant vitamins (Vitamin A and beta-carotene, several of the B-complex vitamins, Vitamin C and Vitamin E), the mineral selenium and the antioxidant enzyme systems such as SOD (superoxide dismutase), glutathione peroxidase and catalase, which are the backbone of the cellular antioxidant defence system. Damage from free radicals can be prevented and even reversed if there are sufficient concentrations of antioxidants, which work individually and together in the body. However, the endogenous antioxidant system in body is not able to respond to a rapid increase in oxidative stress so the small exogenous antioxidant molecule such as α -tocopherol, β -carotene, ascorbic acid or antioxidants from plant foods can prevent effects damage from oxygen free radicals (Dreher and Junod, 1996, Thurnham, 1993).

Acquired immune deficiency syndrome (AIDS) is a clinical disorder caused by a retrovirus infection and represents the end point in a progressive sequence of immunosuppressive changes. Vitamins can enhance disease resistance in animals and humans. As such they are important co-factors in optimal functioning of the immune systems. The effects of murine and human retrovirus infection on vitamin status are analyzed as co-factors in the development of severe immune dysfunction, AIDS. The properties of immunoenhancing antioxidative vitamins, vitamin A, B₆, B₁₂, C, E, and \Box -carotene, which are frequently low in AIDS patients, are evaluated relative to the development of immunodeficiency during retrovirus infection. Vitamin A, E, and B₁₂ deficiency accelerated the development of AIDS with low T cells, whereas their normalization retarded the development of immune dysfunction. The interactions between these vitamins and the immune system in human AIDS patients and animal models of AIDS are

reviewed. Our purpose is to provide data on how retrovirus infection can cause nutritional deficiencies that accentuate immune damage and to evaluate the potential therapeutic role of vitamins in the treatment of immune dysfunctions in AIDS patients. (Liang *et al*, 1999)

Antioxidants are in various forms. They are classified broadly in to two groups: antioxidant enzymes such as superoxide dismutase, catalase and glutathione peroxidase etc. and molecular antioxidants such as vitamin (C and E), mineral (selenium, zinc and manganese), carotenoids and flavonoids which are found in plants.

Therefore, the discovery of antioxidant compounds from plants is necessary especially the plants which was used as dietary food.

Botanical name	Family	Part us	sed	Extract	HIV-1	1 IN
						IC_{50} (µg/ml)
Acacia consinna DC.	Mimosa	aceae	Leaf	V	Water	3.8 ± 0.4
Adhatoda vasica Nees	Acantha	aceae	Leaf	Ι	Ethanol	12.0 ± 2.1
Andrographus panicula	ta Acantha	aceae	Leaf	I	Ethanol	12.0 ± 2.9
Wall ex. Ness				V	Water	1.5 ± 0.3
<i>Baleria lupulina</i> Lindl.	Acantha	aceae	Leaf	Ι	Ethanol	10.0 ± 2.0
				V	Water	10.0 ± 1.8
Bixa orellana L.	Bixaceae	Leaf		Ethanol	2.2	± 0.4
				V	Water	0.7 ± 0.1
Bixa orellana L.	Bixaceae	Seed		Ethanol	3.0	± 0.6
				v	Water	0.3 ± 0.1
Calophyllum inophyllur	<i>n</i> L. Guttifer	rea	Leaf	I	Ethanol	4.5 ± 0.8
				v	Water	4.0 ± 0.5
<i>Cassia angustifolia</i> Val	1 Caesalpiniaceae	Leaf		Ethanol	4.9	± 1.4
<i>Cassia fistula</i> L.	Caesalpiniaceae	Fruit		Ethanol	10.0	± 2.0
				v	Water	2.8 ± 0.5
Clinacanthus nutans Li	ndau Acantha	aceae	Leaf	I	Ethanol	2.8 ± 0.2
				v	Water	2.5 ± 0.3
Coleus parvifolius Bent	h. Labiata	e	Arial pa	urts I	Ethanol	9.2 ± 2.9
			-		Water	2.0 ± 0.6
Combretum quadrangu	are Combre	etaceae	Leaf		Ethanol	2.5 ± 0.2
Kurz				v	Water	2.9 ± 0.6
	Euphor	biaceae	Leaf			3.0 ± 0.4
	-					3.9 ± 1.2
Croton sublyratus Kurz Derris scandens Benth.	Euphor Papilior		Leaf Leaf		Ethanol Ethanol	

Table1-1 Thai medicinal plants for inhibition of HIV-1 IN (Tewtrakul et al., 2003)

Hibiscus sabdariffa L.	Malvaceae	Flower	Water	1.4 ± 0.2
Lawsonia inermis L.	Lythraceae	Leaf	Ethanol	2.1 ± 0.4
			Water	3.3 ± 0.4

Table 1-1 (Continuted)

Botanical name Far	nily Part use	ed Ex	stract HIV-1	IN
				IC ₅₀ (µg/ml)
Morinda citrifolia L.	Rubiaceae	Leaf	Ethanol	1.2 ± 0.3
			Water	6.0 ± 1.2
Myristica fragrans L.	Myristicaceae	Leaf	Ethanol	3.0 ± 0.4
			Water	2.3 ± 0.3
Ocimum basilicum L.	Labiatae	Leaf	Water	6.0 ± 2.0
Ocimum canum Sims	Labiatae	Leaf	Water	1.6 ± 0.3
Piper betle L.	Piperaceae	Leaf	Ethanol	4.0 ± 0.4
Piper nigrum L.	Piperaceae	Fruit	Water	8.0 ± 1.2
Piper ribesoides Wall. (A*)	Piperaceae	Stem	Water	0.9 ± 0.2
Piper ribesoides Wall. (A*)	Piperaceae	Leaf	Ethanol	0.6 ± 0.3
			Water	0.5 ± 0.1
Piper ribesoides Wall. (B**)	Piperaceae	Stem	Water	0.4 ± 0.2
Piper ribesoides Wall. (B**)	Piperaceae	Leaf	Ethanol	0.1 ± 0.2
			Water	4.1 ± 0.5
Piper sarmentosum Roxb.	Piperaceae	Leaf	Ethanol	1.2 ± 0.4
Plumbago indica L.	Plumbaginaceae	Leaf	Ethanol	6.0 ± 1.2
			Water	2.9 ± 0.4
Psidium guajava L.	Myrtaceae	Leaf	Ethanol	2.5 ± 0.5
			Water	1.7 ± 0.3

Quisqualis indica L.	Combretaceae	Leaf	Ethanol	2.0 ± 0.2
			Water	1.2 ± 0.2
Rhinacanthus nasutus Kurz	Acanthaceae	Leaf	Ethanol	0.8 ± 0.1
			Water	0.7 ± 0.1
Terminalia citrina Roxb.	Combretaceae	Fruit	Ethanol	2.7 ± 0.5
ex. Flemming			Water	0.3 ± 0.1
Theobroma cacao L.	Sterculiaceae	Leaf	Ethanol	8.0 ± 1.0
			Water	2.5 ± 0.6

Table 1-1 (Continuted)

Botanical name Fa	mily Part	used Extra	et HIV-1 I	N
			l	IC ₅₀ (µg/ml)
Thevetia peruviana Schum.	Apocynaceae	Leaf	Water	8.8 ± 1.0
Thunbergia laurifolia L.	Thunbergiacea	e Leaf	Ethanol	3.0 ± 0.4
			Water	2.8 ± 0.3
Tribulus terristris L.	Zygophyllacea	e Arial parts	Ethanol	8.0 ± 1.4
Zingiber officinale Roscoe	Zingiberaceae	Rhizome	Ethanol	4.0 ± 0.8
			Water	1.8 ± 0.3
Zingiber zerumbet Smith Zir	ngiberaceae Rhiz	zome Water	2.8	± 0.4

The results are the mean \pm S.D (n=4)

*A= lanceolate shaped leaf and **B= cordate shaped leaf, IC_{50} = 50 % inhibitory concentration on HIV-1 Integrase

 Table 1-2 Anti-HIV-1 integrase activity of compounds from the plants

Botanical name	Compounds F	HIV-1 IN [IC ₅₀ (μM)]	References
Acer okamotoanum	Quercetin 3- <i>O</i> -(2 ["] -	$18.1\pm1.3~\mu$ g/ml	Kim <i>et al.</i> , 1998
	gall-oyl)-α-L-		
	arabinopyranoside		
	Quercetin 3- <i>O</i> -(2", 6"	$24.2\pm6.6~\mu$ g/ml	
	- <i>O</i> -digalloyl)- β -D-		
	galactopyranoside		
Agastache rugosa	Rosmarinic acid 10	Ug/ml Kin	n <i>et al.</i> , 1999
Chrysanthemum -	Apigenin 7- O - β -D-	$7.2 \pm 3.4 \ \mu$ g/ml	Lee et al., 2003
morifolium	(4 ["] -caffeoyl) glucuror	nide	
Coleus parvifolius	Luteolin 5- O - β -D-	58.0 ± 8.2 TeV	vtrakul <i>et al.,</i>
	glucopyranoside	200	13
	Luteolin 1	1.0 ± 0.8	
	Luteolin 7-methyl ethe	er 11.0 ± 1.5	
	Luteolin 5- O - β -D-	20.0 ± 0.7	
	glucuronide		
	5- <i>0</i> -β - D-	70.0 ± 6.4	
	Glucopyranosyl-luteol	in-	
	7- methyl ether		
	Rosmarinic acid	5.0 ± 0.9	
	Rosmarinic acid-	3.1 ± 0.8	
	methyl ether		

Eclipta prostrata	Orobol	8.1 ± 0.5	Tewtrakul et al.,
	Wedelolactone	4.0 ± 0.2	2007
Lindera chunii	Hernandonine	16.3	Zhang et al., 2002
	Laurolistine	7.7	
	7-Oxohernangerine	18.2	
	Lindechunine A	21.1	

Table 1-2 (Continuted)

Botanical name	Compounds F	HIV-1 IN [IC ₅₀ (μΜ	1)] Re	ferences
Paeonia suffruticosa	(methanol extract)	15 µ g/ml		Au et al., 2001
Prunella vulgaris	(aqueous extract)	45 μ g/ml		Au et al., 2001
Salvia miltiorrhiza	Lithospermic acid	0.83		Abd-Elazem
	Lithospermic acid B	0.48		et al., 2002
Thevetia peruviana	Quercetin	15		Tewtrakul et al.,
Kaem	pferol	40	2002	
	Kaempferol 3- <i>O</i> -[β-Ι	59		
	- glucopyranosyl-(1—	→ 2)		
	- [β -D- glucopyranos	ide]		
	Quercetin 3-O-[(6-O-	7		
	sinapoyl)-β-D-glucop	oyranosyl		
	-(1→2)-β-D-			
	galactopyranoside			
	Kaempferol 3- <i>O</i> -[(6- <i>C</i>	D- 30		
	sinapoyl)- β -D-glucop	oyranosyl		
	-(1→2)-β-D-	- v		
	galactopyranoside			
	6- 2			

Quercetin 3-O-[(6-O- 5 feruloyl)- β -D-glucopyranosyl -(1 \rightarrow 2)- β -Dgalactopyranoside Kaempferol 3-O-[(6-O- 31 feruloyl)- β -D-glucopyranosyl -(1 \rightarrow 2)- β -Dgalactopyranoside

Table 1-2 (Continuted)

Tewtrakul et al.,
2002

1.2 Review of Literatures

1.2.1 Description and literature search of Smilax corbularia Kunth

Smilax corbularia (Smilacaceae), its synonym are *S. hypoglauca* Benth, *S. corbularia* Kunth var. *hypogauca* (Benth) T. Koyama, *S. Peguana* A.DC., *S. balansaeana* H.Bon ex Gagnep., *S. pseudochina* Lour. It is Thai vernacular names are Hua Khao Yen Wok, Hua Khao Yen Nuea. It is rather widely distributed in south-eastern Asia from Southern China and upper Burma through Thailand and Indonesia southwards to Malay Peninsula and south eastwards to Borneo (Koyama, 1975). It is found in tropical evergreen and lower mountain forests from sea level to ca. 2000 m. In Thailand, the rhizome is used to treat venereal disease (Perry, 1980) and cancer (Vimonkunakorn, 1979 and Pornprasert *et al.*, 1986).

The description of *S. corbularia* Kunth which is shown in Figure 1-2 is climber 2 to 4 m long; with woody stem, rather densely branched; branches straightish, internodes 3-10 cm long. Leaves are highly variable in shape and thickness; blades elliptic, 3-10 cm long, 1.5-5 cm wide, cuneate, rounded or shallowly cordate at base, the apex acuminate tip, coriaceous, freshgreen and shiny on upper surface, strongly glaucous and more or less white-powdery beneath, petioles short, 7-15 mm long, tendrils developing only on sterile branches and stems. Flowering branches 5-20 cm long, upper leaves reduced to bracts. Umbels with peduncles 5-12 mm long, staminate umblels 10 to 40 flowered, pistillate 8 to 20 flowered. Staminate perianth reddish, tepals free. Stamen 6, nearly sessile; anther elliptic, 1.3 mm long. Pistillate perianth greenish to yellowish, 1.5-2 mm long; tepals oblique ovary ellipsoid, contracted at apex, 2 mm long, 1.5 mm wide, capped with 3-lobed stigma. Staminodes 3, needle-like, 1.25 mm long. Berries globose, 6-8 mm across, purplish-black, 1-to-3 seeded. (Koyama, 1975)

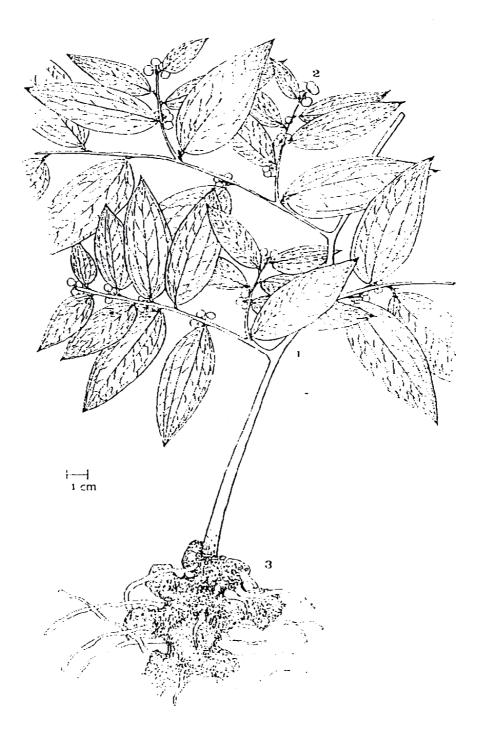


Figure 1-2Smilax corbularia Kunth; 1. branch; 2. fruit; 3. rhizome

(From Booyarattanakornkit and Chantaptavan, 1993)

1.2.2 General data of the Genus Smilax

The genus *Smilax* is composed of 350 species, which are widely distributed in the tropical and temperate zones throughout the world and especially in tropical regions of East Asia, South and North America, such as *Smilax corbularia, Smilax china, Smilax glyciphylla, Smilax glabra, Smilax macrophylla, Smilax medica and Smilax bracteata* (Bernardo *et al.,* 1996).

Smilax, a large genus of climbers of the family Smilacacea and the plants in this genus were mostly woody climbers with reticilate-veined broad leaves and differ from Liliaceae in having true vessels in the conducting tissue of leaves. The possession of such vessels in leaves has so far not been seen in the order Monocotyledons and became this character in association with usually dioecious flowers it is suggested that a new family named Smilacaceae should be informed (Koyama, 1981)

The rhizomes or tuberous root of several species of the genus *Smilax* are called Radix Sarsaparilla (Chadha *et al.*, 1972). Sarsaparilla (USP 1920 to 1955, NF 1955 to 1965) is the dried root of the following *Smilax* species (Clause and Tyler, 1965 and Osol *et al.*, 1950)

Smilax aristolochiaefolia Miller, known in commerce as Mexican, Vera Cruz, Tampico or Gray Sarsaparilla.

S. regelii Killip et Morton known in commerce as Hondurus or Brown Sarsaparilla.

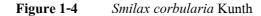
S. febrifuga Kunth known in commerce as Ecuadorian Sarsaparilla.

S. ornate Hook.f. known as camaica, Costa Rica known as central American or Red Sarsaparilla.

The rhizome of *Smilax china* Linn., a native of China and Japan, has been employed under the name of China root for similar purposes with official sarsaparilla. *Smilax glabra* Roxb. has been official in the chinese Pharmacopoiea (1988).

Sarsaparilla was used in the treatment of syphilis and skin diseases (Chadha *et al.*, 1972). The chief constituents are sarsasaponin, smilagenin and other phytosterols (β -

sitosterol, stigmasterol), parillin and smilacin, previously reported as glycosides (Clause and Tyler, 1965).


1.2.3 Smilax species in Thailand

The Smilacaceae in Thailand were surveyed by Tetsue Koyama (Koyama, 1981) and proposed to include two genera *Smilax* (24 species and 8 subspecies) and *Heterosmila* (3 species). The recorded vernacular names of *Smilax* (Smithinand, 2001 and Koyama, 1981) and uses are as follows (Table 1-3).

Figure 1-3Smilax corbularia Kunth leaves and flowers

Smilax species Vernacular name Uses References S. biumbellata Khueang bai lai _ เขืองใบลาย T. Koyama S. blummei A.DC. Kram Chang Root used for anti-Chuwsakul, 1997 กรามช้าง diarrhea and sore throat in Northern Thailand Khueang Lueng Perry, 1980 S. bracteata Presl ssp. Root was used to เขืองเหลือง treat post partum haemorrhage as a depurative, as emmenagogue, antisyphilitic and uterine tonic in Phillipines S. calophylla A.DC. Hua Ya Kum Root was used as Burkill, 1996 Lung aphrodisiac, treat ห้วยากำลัง gonorrhea and

Table1-3: Smilax species in Thailand, their vernacular names and uses

tonic in Sumatrana

and Malay Peninsular

Smilax species Ve	rnacular name	Uses	References
S. china Linn.	Khao-Yen Nuea Roo	ot was used for	Kirtikar <i>et al.,</i>
ข้า^	วเย็นเหนือ syp	hilis, ganorrhea	1981
		and as a tonic	in
		Malay Penisul	ar, as
		aphrodisiac sti	mulant
		in India	
		Rhizome used	asPerry, 1980
		aphrodisiac an	d antidote
		against mercu	rial
		poisoning in E	Castern Asia
S. china Linn.	Khao-Yen Nuea	Root was used	for Wasuwat, 1967
	ข้าวเย็นเหนือ	treatment of ca	ancer
		in Thailand	
S. corbularia Kunth	Hua-khao-yen-	Rhizome used	to be Pornsiriprasert
ssp. corbularia	nuea	remedy for tre	ating 1986

	หัวข้าวเย็นเหนือ	cancer		
<i>S. corbularia</i> Kunth s Synandra (Gagnep.)	-	-	-	
S. davidiana A.DC.	Khueang Thon เบื่องโทน	-	-	

Smilax species	Vernacular name	Uses	References
S. extensa Wall.ex	Khueang	-	-
A.DC.	Phangnga		
	เขืองพังงา		
S. glabra Roxb.	Yahua,	Rhizome used asChien	and Adam,
	Khaoyentai a tonic	1979	
	ยาหัว หัวข้าวเย็นใต้	antirheumatic in	
		Vietnam	
		Root used for	Kapur, 1983
		veneral disease	
		and sores in India	
		Rhizome was used	Fukunaga <i>et a</i>
		for chronic skin disease	1997
		and syphilis in China	

S. griffithi A.DC.	Khaoyennuan	-	-
	หัวข้าวเย็นนวล		
S. lancifolia Roxb.	Thaoyangdong	Root was used for	Chadha, 1972
	(South-easthern) rheuma	tism and	
	เถายั้งคง	rheumatic pain as	
	Dao, Namdao,	a poultice over	
	(Northern)	the affect part	
	เคา หนามเคา		

Smilax species	Vernacular name	Uses	References
<i>S. luzonensis</i> Presl	Khuang (Eastern) -Yanthat, Falaep (Peninsular) เงื่อง ย่านทาด ฟ้าแลบ	-	_
S. megacarpa A.DC.	Khueang Luk Daeng เงื่องลูกแคง	Root was used as galactogogue and for childbirth in Indo-China	Perry, 1980
<i>S. microchina</i> T. Hua K Koyama หัวข้าว	-	-	

S. microphylla	-	Root was used for Perry, 198	30
C.H. Wright		galactogogue and	
ssp. microphylla		for childbirth in	
		Indo-China	

S. microphylla	Khueang Phu
C.H. Wright ssp เขื่องภู	
elongata (Warb.) T.	
Koyama	
S. inversa T. Koyama	Yan Khot
	ย่านกด

Smilax species	Vernacular name	Uses	References
S. myosotifolia A.DC.	Khao-Yen Bai Bang ข้าวเย็นใบบาง	Rhizome, leaves Burkill and fruit was used for aphrodisiac and as remedy for syphilis on Malay	, 1966
<i>S. ovalifolia</i> Roxb.	Thaowan yang เถาวัลย์ยัง	Rhizome was use as a substitute for sarsaparilla in India and for treating venereal diseases on Malay Penisular	Perry, 1980

S. perfoliata Lour	Kamlungkhwaithuk (Peninsular) กำลังควายถึก	Fresh leaves used for menorhagia in India	Nagaraju and Rao, 1990
		Root was used for treatment venereal disease in India	Chadha, 1972
S. pottingeri Prian	Khueang Haeng Tomdum เขืองแห้งต้นดำ	-	-

Smilax species	Vernacular name	Uses	References
S. rigida Kunth	-	-	-
ssp. <i>rigida</i>			
S. rigida Kunth ssp	Khueng Bai Phum	-	-
<i>myrtillus</i> (A.DC.) T.	เขืองใบพุ่ม		
Koyama			
S. siamensis	Khueng Sayam	Root used as	Anderson, 1986
T. Koyama	เขืองสยาม	decoction for	
		body pain in	

S. verticalis Gagnep	Khruadao (Northern) เครื่อเดา	-	-
<i>S. zeylanica</i> Linn.	Khueang Phuang	Root was used for	Kirtikar <i>et al.,</i>
	Klom	treatment of	1981
	เขื่องพวงกลม	venereal disease	
		and skin diseases	
		In India, for	
		gonorrhoea and other	
		discharges from mucous	
		membrane in Nepal	

Thailand

Table1-3 (continued)

Smilax species	Vernacular name	Uses	References
<i>S. zeylanica</i> Linn.	Khueang Phuang	Root used to	Girach et al., 1994
ssp.	Klom	enhance fertility	
	เขืองพวงกลม	in India	
<i>S. zeylanica</i> Linn. ssp.	Khueang Phuang	-	-
hemsleyana	Klom Doi		
T. Koyama	เชื่องพวงกถมดอย		

24

1.3 Biological activity of Smilax species

The investigation of biological activities of *Smilax* species summarized in Table 1-5 were found that almost results of studying are cytotoxic activity, and anti-inflammatory activity.

The dried rhizome of *Smilax corbularia* Kunth which was identified to be one of Hua-Khao-Yen is used in Thai traditional formulae against cancer by a decoction made with four other plants species (*Polygala chinensis, Ludwigia hyssopifolia, Cinnacanthus siamensis,* and *Canna indica*). This preparation was tested for cytotoxicity againt CA-9KB cells and in the rat. Results showed that this preparation was inactive against KB cell (*in vitro*) but active with *in vivo* test by IP injection (Pornsiriprasart *et al*, 1986). This preparation showed immunostimulant activity and cytotoxic activity against K562 erythroleukemic cells. It also increased the release of tumor necrosis factor-alpha from monocyte/macrophages (Vongsakul and Ketsaard, 1995).

Studied on anti-HIV-1 integrase of plant in *Smilax* species were shown in Table 1-4. It was found that the ethanolic extract of *Smilax corbularia* exhibited the highest activity against HIV-1 IN (IC₅₀= 1.9 μ g/ml) (Tewtrakul *et al.*, 2006).

Studies on anti-HIV and related activities of *Smilax* species such as antiinflammatory, antihepatotoxic, antiallergic, antianalphylactic, antibacterial activities are shown in Table 1-5.

Table 1-4Anti-HIV-1 integrase activity of different species of Hua-Khao-Yen (Tewtrakul*et al.*, 2006).

Botanical name	Family Extrac	t IC ₅₀ µg/2	ml)±S.D.
			HIV-1 IN
Dioscorea burmanica Pierre ex. Prain & Burkill	Dioscoreaceae	Water 4	$.5\pm0.8$
Dioscorea burmanica		Ethanol	4.7 ± 0.4
Dioscorea membranacea Pierre ex. Prain & Burk	cill Dioscoreaceae	Water	>100
Dioscorea membranacea		Ethanol	>100
Smilax corbularia Kunth	Smilacaceae Wa	ater 5	5.4 ± 0.5
Smilax corbularia		Ethanol	1.9 ± 0.2
Smilax glabra Roxb.	Smilacaceae	Water 8	3.5 ± 0.8
Smilax glabra		Ethanc	bl 6.7 ± 0.4
Pygmaeopremna herbacea Roxb.	Verbenaceae	Water	>100
Pygmaeopremna herbacea		Ethanc	ol >100
Suramin (positive control for HIV-1 IN)		3.4	4 ± 0.1

The results are IC₅₀ \pm S.D., n=4 for HIV-1 IN inhibitory activity

The results indicated that the ethanolic (EtOH) extract of *Smilax corbularia* possessed the most potent inhibitory activity against HIV-1 IN with an IC₅₀ value of 1.9 μ g/ml, the water extract of *Smilax corbularia* (IC₅₀ = 5.4 μ g/ml), the ethaanolic extract of *Smilax glabra* (IC₅₀ = 6.7 μ g/ml) and the water extract of *Smilax glabra* (IC₅₀ = 8.5 μ g/ml). The ethanolic extract of *Smilax corbularia* exhibited the highest anti-HIV-1 IN activity with IC₅₀ value (1.9 μ g/ml) approximately two-fold higher activity than suramin (IC₅₀ = 3.4 μ g/ml), a positive control.

Smilax species	Plant part	Activity Re	sult of biological activity	References
S. anceps	Dried aerial pa	rt Antibacterial	Methanolic extract weakly active against Staphyllococcus aureas, Escheric Pseudomonas aeruginosa, Salmo but inactive against Candida albi	mella typhi
S. aspera	Aerial part	Cytotoxic	EtOH:Water (1:1) extract inactive CA-9 KB cell line (IC ₅₀ >20 μ g/n	
	Dried leaves	Antioxidant	Hexane extract showed antioxida but methanolic extract showed w	
S. china*	Dried rhizome	Antitumor	Ethanolic extract (defatted with p inactive CA-Ehrlich-Ascites, Sar Leuk-SN3 at dose 250 mg/ml (IP	

 Table 1-5 Smilax species and biological activity

* Smilax species found in Thailand

Smilax species	Plant part	Activity Res	ult of biological activity	References
S. china*	Dried rhizome	Cytotoxic	Ethanolic extract (defatted against Hela cell (IC_{50} = 33	with petroleum ether) Woo <i>et al.</i> , 1977 μ g/ml)
	Dried entire	Antitumor	Water extract inactive with CA-Enr Ascites at dose 150 mg/kg	C .
	Dried root	Cytotoxic	Chloroform extract inactive and human SNU-1cell (IC_5	-
	Dried stem	Cytotoxic	Water extract inactive agai mammary micro alveolar a against cell human embryo	nd weakly active

* Smilax species found in Thailand

Table 1-5 (continued)

<i>Smilax</i> species	Plant part	Activity Result	t of biological activity	References	3
S. china*	Dried leaves	Cytotoxic	Methanolic extract ina cell line at concentrati	active against CA-9KB ion 50 μ g/ml	Arisawa, 1994
	Dried rhizome	Cytotoxic	Water extract showed against HE-1 at conce and active against CA at concentration 120 J	entration 50 µg/ml -JCT-26 cell line	Sato, 1990
	Dried stem	Cytotoxic	EtOH extract of <i>S. chi</i> against the KB, Hela a	<i>ina</i> exhibited cytotoxicity and DLD-1 cell lines	Kuo, <i>et al.</i> , 2005

* Smilax species found in Thailand

Smilax species P	Plant part	Activity Res	ult of biological activity	References
S. corbularia*	Dried root	Antitumor	Water extract active <i>in vivo</i> in rat (IP)	e against tumor Pornsiriprasert <i>et al.</i> , 1986
	Dried root	Immuno-	A water extract of Thai rem	nedy which had Vongsakul and
		stimulant	this plant component on the	e effect or cells Ketsaard, 1995
		activity	involved in cancer immunit	y, natural killer (NK)
			cell and monocyte/macroph	nages, was studied
			in 13 breast cancer patients	
			Treatment of the patients w	ith the extract for
			2 week significantly increase	sed NK cell. It also
			increased the release of tur	nor necrosis factor

from monocyte/macrophages (dose 0.5 l/day in female). The extract showed cytotoxic activity

against K 562 erythroleukemic cells

* Smilax species found in Thailand

Smilax species	Plant part	Activity Res	ılt of biological activity	References
S. corbularia*	Dried root	Cytotoxic	Water extract weak activity a	gainst CA-KB Pornsiriprasert <i>et al.</i> , 1986
	Dried rhizome	HIV-1 integr and protease	ase Ethanolic and water extract showed hi HIV-1 integrase (IC ₅₀ = 1.9 and 5.4 μ g/ml respectively)	-
S. glabra*	Dried rhizome	Psoriasis treatment	Water extract of plant mixture and 7 plants) was used in 108 human	

with psoriasis. The result showed effectiveness

after 3-4 weeks of administration

* Smilax species found in Thailand

Smilax species	Plant part	Activity Resul	t of biological activity	References
S. glabra*	Dried root	Prostaglandin synthetase inhibition	Hot water extract showed active at 750) μg/ml Kiuchi <i>et al.,</i> 1983
	Dried rhizome	Antiallergic	Decoction of multi-component prepara which contained this plant showed activity by given oral route in rat	ation Kakimoto <i>et al.,</i> 1984

Dried root	Antitumor	Water extract and methanolic extract inactive	Kosuge et al.,
		against CA-Ehrich-Ascites at dose 150 mg/kg	1985
		(IP mouse)	

* Smilax species found in Thailand

Smilax species	Plant part	Activity	Result of bio	logical activity	References	
S. glabra*	Dried rhizome	Anti	-inflammatory	Decoction of multi-component prepa	ration	Kakimoto et al.,
			of thi	is plant showed activity when given	1984	
			by oral route	in rat by adjuvant induced		
	arthritis but inactive with carrageenan-					
			induce pedal	edema and mustard-induced		
		swel	ling			

	Dried root	Cytotoxic	Water extract and methanolic extract inactive against Hela cell at concentration 0.1 mg/ml	Kosuge <i>et al.,</i> 1985
	Tuber	Antioxidant	Methanolic extract inactive at oncentration 50 μ g/ml	Kim <i>et al</i> , 1994
* Smilax species for	and in Thailand			

Smilax species	Plant part	Activity R	Result of biological activity	References
S. glabra*	Dried rhizome	Antibacte	rial Hot water extract active	against <i>Klebsiella</i> Franzblau and
			pneumoniae (MIC 1.6 mg/ml) bu	ut inactive Cross 1986
			against Escherichia coli, Proteus	s vulgaris,
			Pseudomonas aeroginosa, Salmo	onella typhimurium,
			Staphyllococcus aureus, Streptoe	coccus faecalis
			and Candida albicans (MIC > 1 .	.6 mg/ml)

D	Dried root	Antiviral	Hot water extract active against Herpes	Zheng, 1988
			virus type1 at 100 μ g/ml (<i>in vitro</i>)	
D	Dried rhizome	Apoptosis induction	Water extract active against NPC	Xu et al., 2000
		at concentration	10 µg/ml	

* Smilax species found in Thailand

Smilax species	Plant part	Activity	Result of biol	ogical activity	References
S. glabra*	Dried rhizome	HIV	IIV-1 integrase Ethanolic and water extract showed high		Tewtrakul et al.,
		and	protease	activity against HIV-1 integrase	2006
				(IC ₅₀ = 6.7 and 8.5 μ g/ml respectively)	

Dried root	Antihepatotoxic	Water soluble fraction exhibited	Xu et al., 2000
	activity (dose	100 mg/kg)	
Dried rhizome	Anti-inflammatory	Water extract active at dose 400 mg/ml	Jiang <i>et al.</i> , 1997
	intrag	gastric in rat (adjuvant-induced arthritis,	
	carag	ennan-induced pedal edema and	
	cotto	n pellete granuloma)	

* Smilax species found in Thailand

Smilax species	Plant part	Activity	Result of biological activity	References
S. glabra*	Rhizome	Cyto	The effects of 24 h incubation with	Thabrew et al.,
			different concentrations (0-50 mg/ml)	2005
			of the extracts on HepG2 cells were	

determined

	Dried root	Antihyperglycemia	Methanolic extract showed activity		Fukunaga <i>et al.,</i>
		at o	at dose 20 mg/kg injected IP to male		
mice in NIDDM model					
	Dried root	Anti-inflammatory	Water extract inactive orally in rat (formalin pedal edema)		Jiang <i>et al.</i> , 1997
* Smilax species found in Thailand					
Table 1-5 (continued)					
Smilax species	Plant part	Activity Result of b	iological activity	References	

S. glaucophylla	Entire plant	Antispasmodic	Ethanolic-water (1:1) extract active		Dhar et al., 1968
		in gu	inea pig ileum (acetylcholine and		
		hista	mine-induced spasms		
S. glyciphylla	Leaves	Antioxidant	A hot water extract of the Australian		Cox et al., 2005
			native sarsaparilla Smilax glyciphylla		
			inhibited peroxidation of phosphatidylcholine		
			liposomes initiated by Fe ²⁺ /ascorbate		
			$(IC_{50} = 10 \ \mu g/ml)$		
S. lanceolata	Dried root	Antibacterial	Ethanolic extract active against Bacillus		Heinrich et al.,
			subtilis (concentration used 1.0 μ g/spot),	1992	
		Esch	erichia coli (concentration used 20.0		
		µg/spot)			

Smilax species	Plant part	Activity Resu	lt of biological activity	Refere	ences
S. laurifolia	Dried aerial	Antibacterial	Cyclohexane extract	active against Bacillus	Mc Chesney and
	Part		subtilis, ethyl acetate extract a	ctive against	Adam, 1985
			Bacillus subtilis, Psei	ıdomonas aeruginosa	
			and Staphylococcus a	uureus, water extract was	
			active against Staphy	lococcus aureus	
S. lundellii	Dried rhizome	Antibacterial,	Ethanolic extract acti	ve against Staphylococcus	Caceres et al.,
		antifungal and	d <i>aureus</i> (MIC= 1 μ g/n	ml), Pseudomonas aeruginos	sa 1998
		antiyeast	(MIC= 5 μ g/ml) and	water extract active against	
			Staphylococcus aureus (MIC=	= 10 µg/ml). Ethanolic	
			extract active against Aspergil	llus flavus,	
		Мусс	osporum gypseum, Cryptococcus i	neoformans	
		(MIC= 0.5 μ	g/ml) and Candida albicans		
			(MIC= 5 μ g/ml)		

Smilax species	Plant part	Activity Result of I	Diological activity Reference	nces
S. medica	Dried rhizome	Antifungal	Compounds of this extract demonstrated weak antifungal activity against the human pathogenic yeasts <i>Candida albicans, C. glabrata, and</i> <i>C. tropicalis,</i> with MIC values between 12.5 and 50 µg/ml	Sautour <i>et al.,</i> 2005
S. ovalifolia*	Dried entire plant	Anti-inflammatory	Water extract showed activity with carragenan induced pedal edema (gastric intubation of rat at dose 500 mg/kg)	Tariq <i>et al.,</i> 1985
S. regelli	Dried root	Antihepatotoxic	Ethanolic extract exhibited activity (carbon tetrachloride induced hepatotoxic and given intragastric route of rat (500 mg/kg)	Rafatullah <i>et al.,</i> 1991

* Smilax species found in Thailand

Smilax species Pl	ant part Acti	vity Result of bio	logical activity	References
S. regelli	Dried root	Antifungal	Hot water extract active against Epidermophyton floccosum, Microsporum canis and Trichophyton mentagrophytes (MIC= 1 µg/ml)	Caseres <i>et al.,</i> 1991
S. riparia	Seed induction	Cell differeniation concentration	Ethanolic extract active in Leuk-HL60 at 25 μ g/ml	Hata <i>et al.,</i> 1998
S. riparia var ussuriensis	Dried aerial part	Cytotoxic	Methanolic extract inactive with CA-9KB cell at concentration 50 µg/ml	Arisawa <i>et al.,</i> 1994

Smilax species	Plant part	Activity Result of	biological activity	References
S. sarsaparilla	Dried rhizome	Anti-inflammatory	Ethanolic extract active with carrageenan-induced pedal edema and cotton pellet granuloma	Ageel et al., 1989
			(intragastric rat at dose 500 mg/ml)	
S. sieboldii	Dried aerial	Cytotoxic	Water extract inactive against CA- human colorectal SNU-C4 and CA- human-colorectal-SNU-1 at	Hyun <i>et al.</i> , 1994
			concentration 300 μ g/ml	

S. spinosa	Dried root	Antibacterial	Ethanolic extract active against	Casares et al.,	
			Esherichia coli, Staphylococcus	1987	
aureus (30 μ g/disc)					

1.4 Chemical constituents of Smilax species

The chemical constituents previously isolated from *Smilax* species of *Smilax* compounds isolated from their roots are sapogenins and their glycosides, whilst flavonoids and flavonoid glycoside compounds have been found in mainly the leaves.

There are no report for isolated compounds of anti-HIV-1 integrase and antioxidant activities.

The chemical compounds and structures which have been isolated from all *Smilax* are summarized in Table 1-6.

Botanical name Plant	part (Chemical constituents References	
S. aristolochiaefolia	Roots	Steroid sapogenin	Tschesche et al.,
		[sarsasapogenin, 1960	
		parillin, smilagenin],	
		Sterol [sitosterol,	
		stigmasterol],	
		Steroid saponin	
		[sarsaparilloside]	
		Saponin [asparagoside A,	Mahato <i>et al.,</i>
		desglucodesrhamnoparillin,	1982
		desglucoparillin]	
S. aspera	Roots	Sapogenin [tigogenin]	Laorga and Pinar,
		Sarsasapogenin	1960
		29-Norcycloartanol	Chada, 1972
		Asperagenin	Tschesche et al.,
			1974
		Yamogenin	Mahato <i>et al.</i> ,
			1982
		Flavonoid phenolic	Longo and
		[cyanidin-3-O-rutinoside,	Vasapllo, 2006

Table 1-6: Chemical investigation of Smilax species

pelargonidin-3-O-

rutinoside]

[bockioside A, bockioside B]	Guo <i>et al.,</i> 2004 Li <i>et al.,</i> 2002
bockioside B] acteata Rhizomes $(2s, 3s)-5-O-\beta-D-$ glucopyranosyloxy-6- methyl-3'-methoxy- 3,7,3'-trihydroxyflavan, $(2s, 3s)-5-O-\beta-D-$ glucopyranosyloxy-6-methyl -4'-methoxy- $3,7,4'-trihydroxyflavan,3\beta-\{3',5'-dihydroxyphenyl\}$	Li <i>et al.,</i> 2002
glucopyranosyloxy-6- methyl-3'-methoxy- 3,7,3'-trihydroxyflavan, $(2s, 3s)$ -5- O - β -D- glucopyranosyloxy-6-methyl -4'-methoxy-3,7,4'- trihydroxyflavan, 3β -{3',5'-dihydroxyphenyl}	Li <i>et al.</i> , 2002
methyl-3'-methoxy- 3,7,3'-trihydroxyflavan, (2s, 3s)-5- O - β -D- glucopyranosyloxy-6-methyl -4'-methoxy-3,7,4'- trihydroxyflavan, 3 β -{3',5'-dihydroxyphenyl}	
3,7,3'-trihydroxyflavan, (2s, 3s)-5- O - β -D- glucopyranosyloxy-6-methyl -4'-methoxy-3,7,4'- trihydroxyflavan, 3 β -{3',5'-dihydroxyphenyl}	
(2s, 3s)-5- O - β -D- glucopyranosyloxy-6-methyl -4'-methoxy-3,7,4'- trihydroxyflavan, 3 β -{3',5'-dihydroxyphenyl}	
glucopyranosyloxy-6-methyl -4'-methoxy-3,7,4'- trihydroxyflavan, 3β -{3',5'-dihydroxyphenyl}	
-4'-methoxy-3,7,4'- trihydroxyflavan, 3β -{3',5'-dihydroxyphenyl}	
trihydroxyflavan, 3β -{3',5'-dihydroxyphenyl}	
$_{3\beta-\{3',5'-dihydroxyphenyl\}}$	
-	
-2α -{4"-hydroxyphenyl}-	
dihydrobenzofuran-5-	
carbaldehyde,	
{1-p-O-coumaroy1-6-O-	
feruroyl}- β -D-fructofuranosyl-	
α -D-glucopyranoside,	
{1-p-O-coumaroyl-3,6-di-	
O -feruroyl}- β -D-fructofuranosyl	

$$\label{eq:alpha} \begin{split} &- \alpha \text{-} D \text{-} g \text{lucopyranoside}, \\ &\{6 \text{-} O \text{-} f e r u r o y l\} \text{-} \beta \text{-} D \text{-} \\ & f r u c t o f u r a n o s y l \text{-} \{6 \text{-} O \text{-} a c e t y l\} \\ & - \alpha \text{-} D \text{-} g \text{lucopyranoside} \end{split}$$

Botanical name Plan	it part Chei	nical constituents Ref	erences
S. china*	Tubers	Smilacin	Kawasaki et al.,
		Sarsasaponin	1966
		Diosgenin	
S. china*	Tubers	N ² -(2-hydroxysuccin	oyl) Kaisai <i>et al.</i> , 1983
		arginine	
S. china*	Rhizomes	Dioscin, Gracillin,	Kim et al., 1989
		Methyl protogracillir	1,
		Methyl protodioscin	
	Rhizomes	Smilasides A-F	Kuo <i>et al.,</i> 2005
S. corbularia*	Rhizome	Diosgenin	Sukdayan <i>et al.,</i>
			1985
S. excelsa	Roots	Tigogenin	Iskenderov et al.,
			1970

		Diosgenin	Mahato et al.,
			1982
S. glabra*	Rhizomes	Sterol [campesterol, stigmasterol, diosgenin,	Tsukamoto <i>et al.,</i> 1963
		β -sitosterol]	

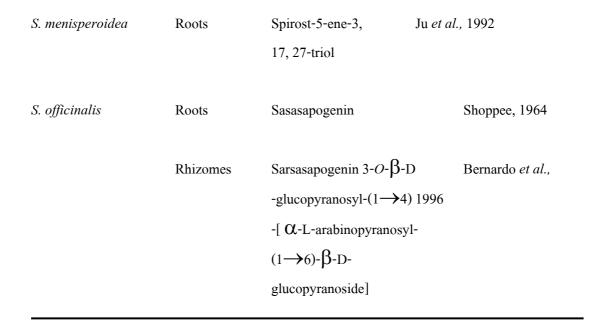
*Smilax species found in Thailand

Botanical name Pla	nt part Che	mical constituents References	
S. glabra*	Leaves	Flavonoid [quercetin, kaemferol]	Chien <i>et al.</i> , 1979
	Rhizomes	Flavonoid [astilbin, engeletin]	
	Rhizomes	Flavonoid [astilbin, daucosterol, isoengeletin]	Cao <i>et al.,</i> 1993
	Rhizomes	Flavonoid [isoastilbin, isoengeletin]	Chen <i>et al.</i> , 1996
		Chromone [smiglabin]	Li et al., 1996
		6,7-dihydroxy-3-methoxyl- isoflavone	Yi <i>et al.</i> , 1998

Chromone [eurryphin]	Chen et al., 1999
Flavonoid [smitilbin,	
dihydroquercetin,	
resveratrol, 5-0-	
caffeoylshikimic acid]	
Phenylpropanoid [helonioside	Chen et al., 2000
A, smilaglaside A,	
smilaglaside B]	

*Smilax species found in Thailand

Botanical name Plant part Chemical constituents References						
S. glabra*	Rhizomes	Milaglaside C	Chen <i>et al.</i> , 2000			
		Smilaglaside D				
		Smilaglaside E				
		Flavonoid [smitilbin]	Ng and Yu, 2001			
		Astibin				
		Eurryphin				
		Engeletin				
		Dihydroquercetin				
		Resveratrol				
		5-O-caffeoylshikimic acid				
	Rhizomes	Astilbin	Du et al., 2005			
		Isoastilbin				

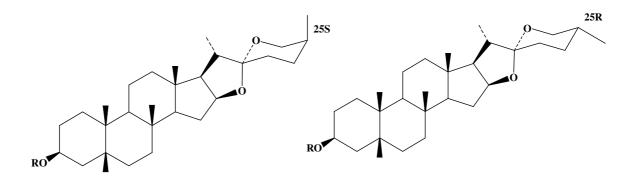

S. glycyphylla	Leaves	Glycyphyllin or	Williams, 1967	
		Phloretin 2-rhamnoside		
S. lebrunii	Roots	Spirost-5-ene-3,17,27- Ju et a	<i>l.</i> , 1993	
		triol		
S. medica	Roots	Sarsasapogenin	Shoppee, 1964	
		Pollinasterol	Devys et al., 1969	

*Smilax species found in Thailand

Botanical name Plant part		nemical constituents References		
S. medica	Roots	(25R)-5 β -spirostan-3 β -ol	Sautour et al.,	
		3- <i>O</i> -β-D-glucopyranosyl-	2005	
		(1 → 6)-[β-D-		
		glucopyranosyl		
		-(1→2)-[β-D-		
		glucopyranosyl		
		-(1→4)]-β-D		
		- glucopyranoside,		
		(25R)-5 β -spirostan-3 β -ol		
		3- <i>O</i> -β-D-glucopyranosyl-		
		(1→6)-[β-D-		

glucopyranosyl $-(1\rightarrow 4)]-\beta-D$ - glucopyranoside, $(25R)-3\beta,5\beta,22\alpha$ methoxyfurostann- 3β , 26-diol-3-O- β -Dglucopyranosyl- $(1\rightarrow 6)-[\beta$ -Dglucopyranosyl $-(1\rightarrow 2)-[\beta$ -Dglucopyranosyl $-(1\rightarrow 4)]-\beta$ -D -glucopyranosyl 26-O- β -D-glucopyranoside,

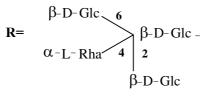
Botanical name Plant part		emical constituents Referenc	es
S. medica	Roots	(25R)-5β-spirostan	Sautour <i>et al.,</i>
		-3β-ol 3-0-β-D-	2005
		glucopyranosyl-	
		(1 → 6)-[β-D-	
		glucopyranosyl	
		-(1→2)]-β-D-	
		glucopyranoside	

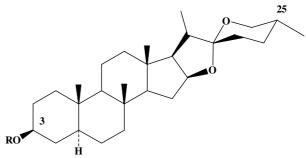


Botanical name Plant part Chemical constituents References

S. officinalis	Rhizomes	Neotigogenin 3- O - β -D- Bernardo <i>et al.</i> ,	
		glucopyranosyl-(1→4)-	1996
		[α -L-arabinopyranosyl-	
		(1 → 6)-β-D-	
		glucopyranoside],	
		25S-spirostan-6-β-ol	
		$3-O-\beta$ -D-glucopyranosyl	
		-(1→4)-[α-L-	
		arabinopyranosyl- $(1 \rightarrow 6)$]-	
		β -D-glucopyranoside	
S. ornata	Roots	Smilagenin	Shoppee, 1964
		Sarsasapogenin	
		β -sitosterol	
		Smilacin	
S. parvifolia	Roots	Diosgenin	Sharma <i>et al.,</i>
		Diosgenin-3-	1980
		O - β -D-glucopyranoside	
S. pseudochina	Roots	Essential oil	Chu et al., 1945
		Hexose	
		Tannin	
		Alkaloids	
		Phytosterol	
		β -linolic	

Oleic acid


Botanical name Plant part		Chemical constituents	References	
				Woo et al., 1992
S. sieboldii	Roots	Sieboldin A	Sieboldin A	
		Sieboldin B		
S. sieboldii	Roots	Smilaxin A		Akahori et al.,
		Smilaxin B		1963
		Smilaxin C		
		Tigogenin		
		Neotigoginin		
		Laxogenin		

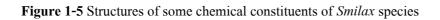


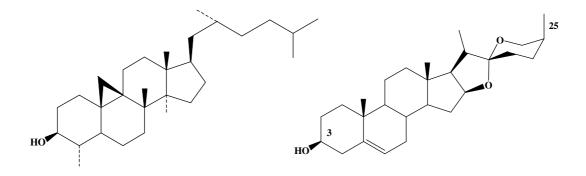
Sarsasapogenin or Pargenin (R=H)

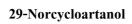
Smilagenin

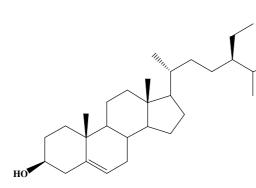
Parillin

Desglucodesrhamnoparillin

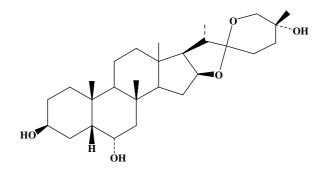

Asparagoside A (R= β -D-Glc-)

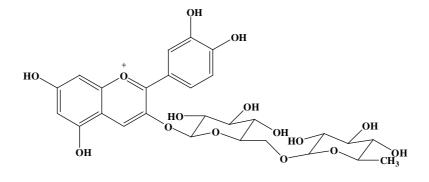

R
$$\beta$$
-D-Glc $-\frac{6}{\beta}$ -D-Glc-

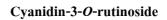

Tigogenin

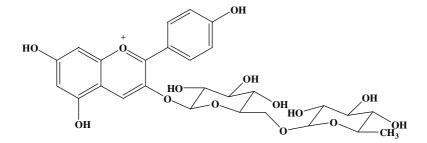

Desglucoparillin

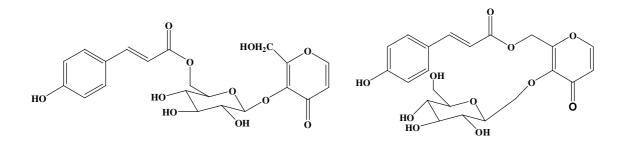
$$\mathbf{R}= \begin{array}{c} \beta - D - Glc & \mathbf{6} \\ \alpha - L - Rha & \mathbf{4} \end{array} \beta - D - Glc - \mathbf{6}$$

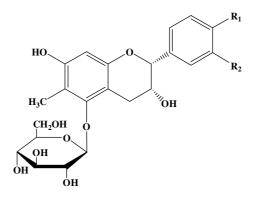



Yamogenin Manual Andrewski Andrewsk


β-Sitosterol


Stigmasterol

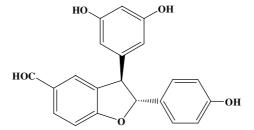

Asperagenin



Pelargonidin-3-O-rutinoside

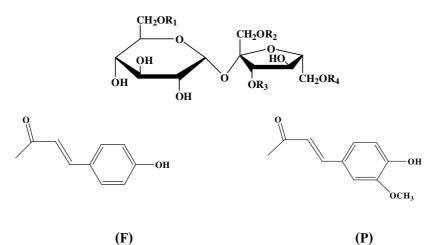
Bockioside A

Bockioside B



$$R_1 = OH, R_2 = OCH_3$$

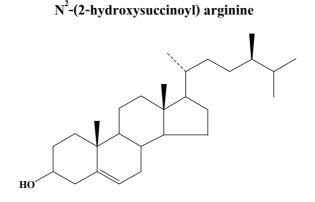
 $(2s, 3s) \hbox{-} 5 \hbox{-} 0 \hbox{-} \beta \hbox{-} D \hbox{-} glucopy ranos y loxy \hbox{-} 6 \hbox{-} methyl \hbox{-} 3' \hbox{-} methoxy \hbox{-} 3, 7, 3' \hbox{-} Trihydroxy flavan$


$R_1 = OCH_3, R_2 = OH$

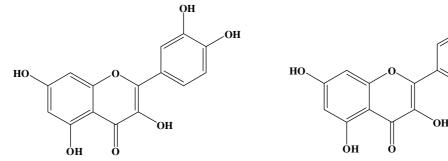
(2s, 3s)-5-O- β -D-glucopyranosyloxy-6-methyl-4'-methoxy-3,7,4'-Trihydroxyflavan

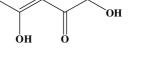
 $_{3\beta-\{3', 5'-dihydroxyphenyl\}-2\alpha-\{4''-hydroxyphenyl\}-dihydrobenzofuran-5-carbaldehyde}$

Figure 1-5 (Continued)

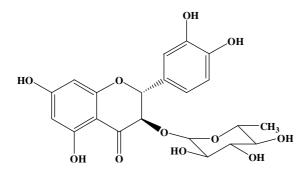

 $R_1=R_3=H, R_2=P, R_4=F$ 1-p-*O*-coumaroyl-6-*O*-feruroyl}- β -D-fructofuranosyl- α -D-glucopyranoside

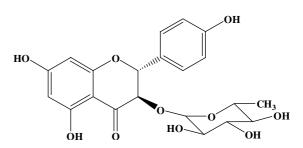
R₁=**H**, **R**₂=**P**, **R**₃=**R**₄=**F**


1-p-*O*-coumaroyl-3,6-di-*O*-feruroyl}-β-D-fructofuranosyl-α-D-glucopyranoside

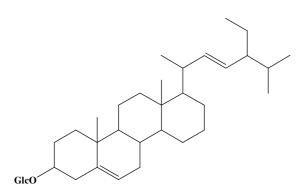

R₁=CH₃CO, R₂=R₃=H, R₄=F

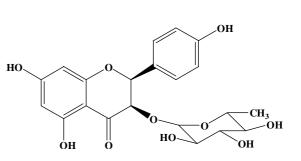
 $\begin{array}{l} 6-O\mbox{-}ferurovl\ensuremath{\}-B-D-}fructofuranosvl\ensuremath{-}\{6-O\mbox{-}acetvl\ensuremath{\}-}a\mbox{-}D\ensuremath{-}gluconvranoside \\ \mbox{HOOCCH}_2CH(OH)CONHCH(COOH)CH}_2CH_2CH_2NHC(NH)NH_2 \end{array}$


Campesterol



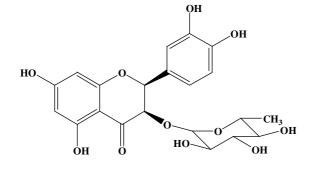
Kaemf

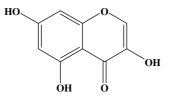




Engel

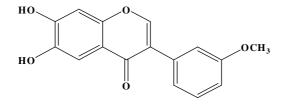
Astilbi

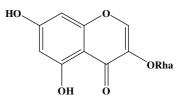


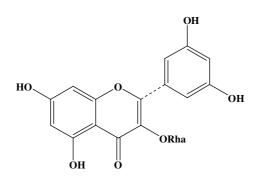


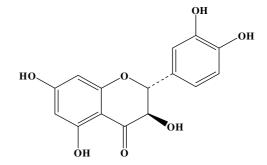
Daucoste

Isoengel

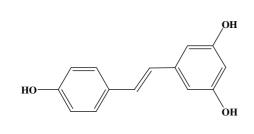

OH

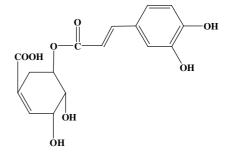




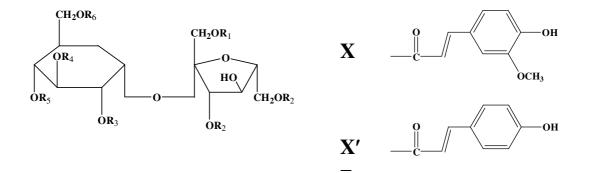


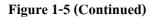
6,7-Dihydroxy-3-methoxyl -

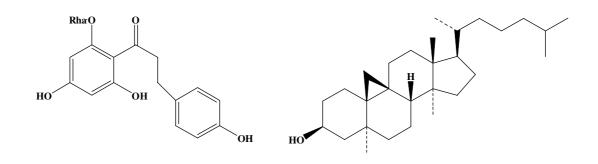




Smitilb in

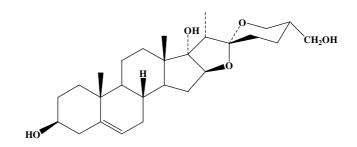

Dihydroque

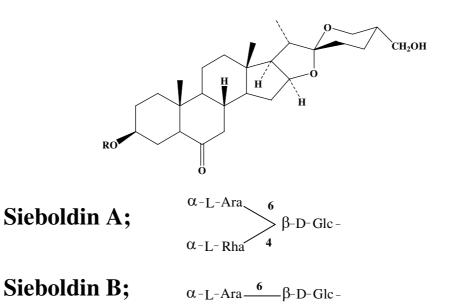

 \mathbf{R}_2 \mathbf{R}_3

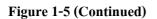

R₁

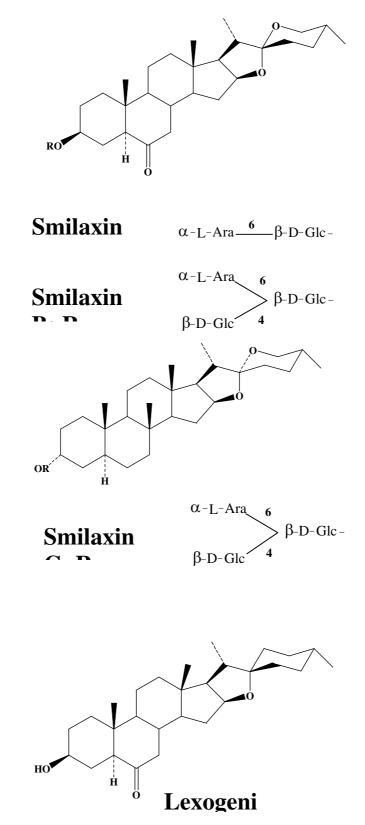
 R_4 R_5 R_6

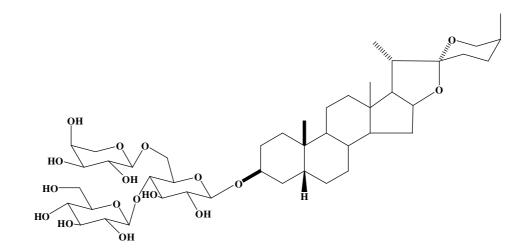
Helonioside Smilaglaside A Smilaglaside B Smilaglaside C Smilaglaside D Smilaglaside E


Η	Χ	Η	Η	Η	Η
X	X	Ac	Η	Ac	Ac
X	X	Ac	Η	Η	Ac
Η	X	Ac	Η	Ac	Ac
X′	X	Ac	Η	Ac	Ac
X′	X	Ac	Η	Η	Ac

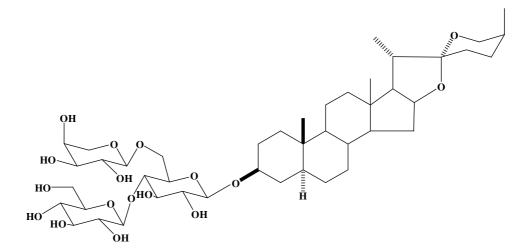


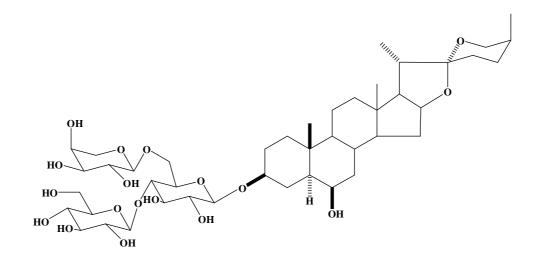

Glycyphyllin or Phloretin-2-

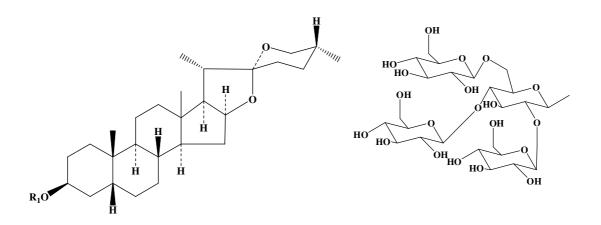

Pollinaster



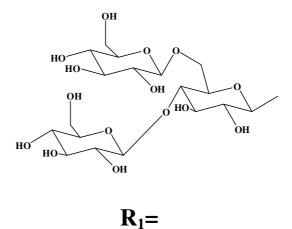
Spirost-5-ene-3,17,27-

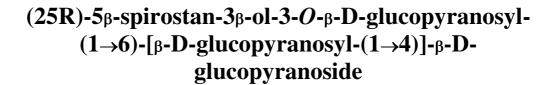


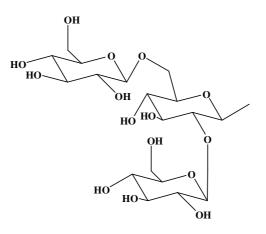



Sarsasapogenin 3-O- β -D-glucopyranosyl-(1 \rightarrow 4)-[α -L-arabinopyranosyl-(1 \rightarrow 6)- β -D-glucopyranoside]

Neotigogenin 3-O- β -D-glucopyranosyl- $(1\rightarrow 4)$ - $[\alpha$ -L-arabinopyranosyl- $(1\rightarrow 6)$ - β -D-glucopyranoside]

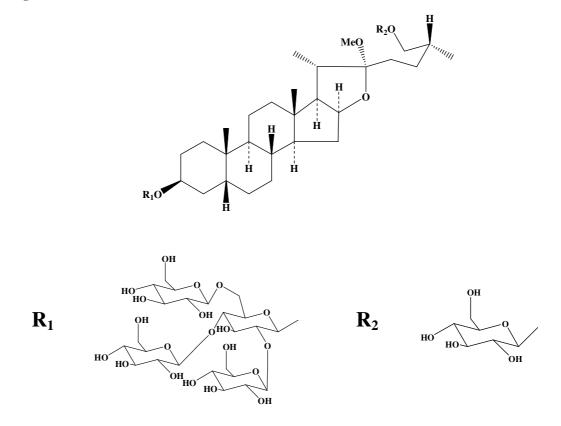


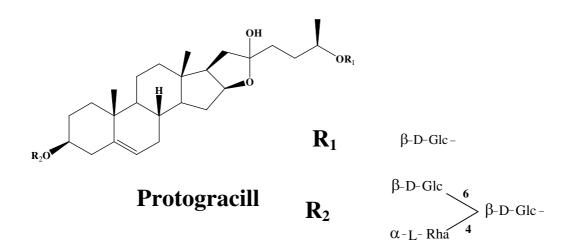

25S-spirostan-6β-ol 3-*O*-β-D-glucopyranosyl- $(1\rightarrow 4)$ -[α-L-arabinopyranosyl- $(1\rightarrow 6)$]-β-D-glucopyranoside



 $\mathbf{R}_1 =$

(25R)-5 β -spirostan-3 β -ol-3-*O*- β -D-glucopyranosyl-(1 \rightarrow 6)-[β -D-glucopyranosyl-(1 \rightarrow 2)-[β -D-glucopyranosyl-(1 \rightarrow 4)]- β -D-glucopyranoside





 $R_1 =$

 $(25R)-5_{\beta}-spirostan-3_{\beta}-ol-3-O-_{\beta}-D-glucopyranosyl-(1\rightarrow 6)-[_{\beta}-D-glucopyranosyl-(1\rightarrow 2)]-_{\beta}-D-glucopyranoside$

(25R)- 3_{β} , 5_{β} , 22_{α} -methoxyfurostann- 3_{β} , 26-diol-3-O- $_{\beta}$ -D-glucopyranosyl -(1 \rightarrow 6)-[$_{\beta}$ -D-glucopyranosyl-(1 \rightarrow 2)-[$_{\beta}$ -D-glucopyranosyl-(1 \rightarrow 4)]-

1.5 Objectives

The objectives of the thesis are to study:

- 1.5.1 The antioxidant activity of the ethanolic extract of *Smilax corbularia*.
- 1.5.2 The activity of anti-HIV-1 integrase of the ethanolic extract of *Smilax corbularia*.
- 1.5.3 The isolation and structural elucidation of active compounds possessing the antioxidant and HIV-1 integrase inhibitory effect.