The forest vegetation of Ramal de Guaramacal in the Venezuelan Andes - Cuello & Cleef 2009

Page 1

Phytocoenologia, 39 (1), 109–156 Berlin – Stuttgart, April 21, 2009

The forest vegetation of Ramal de Guaramacal in the Venezuelan Andes by Nidia L. CUELLO A, Guanare, Venezuela and Antoine M. CLEEF, Amsterdam, The Netherlands with 12 figures, 9 photographs, 5 tables and 3 appendices Abstract. Montane forest community composition of Ramal de Guaramacal, Venezuelan Andes, was studied along the altitudinal gradient on both sides of the range with different slope expositions. Thirty five 0.1 ha plots were surveyed, with variable intervals of 30 to 150 meters between 1350 m and 2890 m and nine plots of variable size (50 m2 to 400 m2) were surveyed in dwarf forests located between 2800–3050 m. A total of 388 morphospecies with dbh ≥ 2.5 cm, corresponding to 189 genera and 78 families of vascular plants, were recorded from a total of 45 forest plots. The TWINSPAN phytosociological classification, based on both floristic composition and species relative abundance, revealed seven forest communities at association level, grouped in three alliances and one montane forest order group. Three subandean forest (LMRF) communities and four Andean – high Andean forest (UMRF-SARF) communities are distinguished and described according to the Zürich-Montpellier method. The Geo nomo undatae–Posoquerion c o ri a c e a e alliance contains two subandean forest communities (S i m ir o ery throxyli–Quararibeetum magn i f i c a e and C o n c h o c a rp o l a re n si s– C o u ssa re e t u m m o ri t z i a na e ); the Farameo killipii–Prunion mori t z i a n a e alliance contains one subandean forest community (C ro i z a t io b revipetiolatae–Wettinietum praem o rsa e ) and one Andean forest community (S c h e f f l e ro f e rru g i n e a e – Cy bianthetum laurifolii) and the R u i l o p e z i o p a l t o n i o i d e s– C y b i a n t h i o n m a rg i n a t i i alliance includes one Andean (Geissantho andini–Mico n i e t u m j a h n i i ) and two high Andean forest communities (G a u l t he r io anastomosantis–Hesperomeletum ob t u si f o l i a e and the Li b a n o t h a m n e t u m g ri f f i n i i ). Altitudinal zonation, forest floristic diversity, composition and forest structure is discussed between slopes and along the altitudinal gradient and compared, where possible, to other montane forests. In LMRF, Rubiaceae, Lauraceae and Melastomataceae are the most speciose of woody families. In UMRF, the Lauraceae family is still the most diverse, followed by Melastomataceae and Myrtaceae, while in SARF the Asteraceae and Ericaceae are the most species rich families. The structure of the montane forests of Ramal de Guaramacal becomes more compressed towards higher elevations. LMRF are dense and of medium height, with canopies up to 25 m tall, while UMRF canopies can reach up to 18 m, and those of SARF are only 6–8 (10) m tall. Basal area was slightly increased on the North than on the South slopes and shows different patterns against altitude between slopes. More diversity and density of palms, lianas and climbers is clearly observed in LMRF, but richness of liana species is also important in SARF forests. Forest altitudinal zonation is variable between the North and South slopes of Guaramacal, with the forest zones of UMRF on the windward South slope, tending toward reaching lower elevations than on the opposite and drier North slope. There is a low altitudinal limit of the upper forest (Upper Forest Line or UFL) apparently caused by the “top effect”. eschweizerbartxxx ingenta

Keywords: floristic composition, forest structure, Lower Montane Rain forest, Upper Montane Rain Forest, Subalpine Rain Forest, phytosociological classification, altitudinal zonation, Venezuela, Andes.

Introduction Montane forests of the northern Andes are fragile ecosystems of significant biological and ecological diversity with a complex biogeographical history, and playing a major role in the regional hydrological balance (Gentry 1995, Cavalier & Goldstein 1989, Cavelier et al. 1996, Holder 2006, Kappelle & Brown 2001). Despite increased attention and conservation interest of the northern Andean forest ecosystem over the past two decades (Henderson et al. 1991, Churchill et al. 1995, Gentry 1995, Luteyn & Churchill 2000, Kappelle & Brown 2001, Van der Hammen et al. 1984), studies on montane forests of the Venezuelan Andes remain limited in area, subject and time. The majority of studies have been carried out in the montane forests of the state of Mérida. DOI: 10.1127/0340 – 269X/2009/0039 – 0109

phyto_39_1.indb 109

The silvicultural studies of La Mucuy and La Carbonera (Lamprecht 1954, Veillon 1965, 1985), vegetation ecology (Vareschi 1953, 1956, Yánez 1998); floristic analysis (Kelly et al. 1994, 2004); and several studies focusing on different aspects of ecophysiology, population ecology and hydroecology of cloud forests (Brun 1979, ICAE 2005), aspects of diversity, structure and biogeography on a succesional and mature forest stands close to the town of Mérida (Schneider et al. 2000, Schneider 2001) are particularly noteworthy. Few Andean montane forest areas outside of Mérida State have been studied (Bono 1996, Ortega et al. 1987, Cuello 1996, 1999, 2002 and Dorr et al. 2000). Beyond the Andes, other montane forest areas previously studied are Coastal Cordillera (Huber 1986, Howorth & Pendry 2006); Cerro El Avila (Vareschi 1955, Steyermark 0340 – 269X/09/0039 – 0109 $ 21.60 © 2009 Gebrüder Borntraeger, D-14129 Berlin · D-70176 Stuttgart

01.04.2009 11:57:21


110

N. L. Cuello A & A. M. Cleef

& Huber 1978, Meier 2004) and Cerro Copey in Margarita Island (Sugden 1985). On tropical mountains, the altitudinal limit of forest formations varies with latitude (Troll 1959, 1968) or in response to local or regional peculiarities of topography or climate (Grubb & Whitmore 1966, Monasterio & Reyes 1980, van der Hammen & Cleef 1986, van der Hammen 1995, Lauer et al. 2001, Richter 2003). In the tropical Andes, the distribution of vegetation types and their qualitative and quantitative composition are thought to be determined largely by gradients of temperature, rainfall, and relative humidity (van der Hammen & Cleef 1986, van der Hammen 1995), and horizontal precipitation and mist deposition (Bendix et al. 2006, Richter & Moreira-Muñoz 2005). Gradients of temperature have pronounced effects on the pattern of vegetation zonation, especially at the limits of the upper forest line (Troll 1973, Rundel 1994). In the northern Andes, altitudinal vegetation zonation has been distinguished as lowland tropical forests from 0–1000 m, lower montane (LMRF) or subandean forests from 1000–2300 m, upper montane (UMRF) or Andean forests from 2300–3500 (3200– 3600) m and high Andean forests from 3500 (3000– 3500)-3900 m. Open paramo vegetation is found over 3200–3900 m up to the nival zone (>4800–5000 m) (Cuatrecasas 1934, 1958, Van der Hammen 1974, Cleef et al. 1984, Van der Hammen & Hooghiemstra 2001). The existence of altitudinal zonation with discrete vegetation belts in the northern Andes (Cuatrecasas 1958, van der Hammen 1974) versus a continuous change in species composition in tropical mountains, have been subject of discussion. Some quantitative studies in other tropical mountain areas support the existence of discrete vegetation belts (Kitayama 1992, Hemp 2006), while other studies have been less conclusive about zonation (Nakashizucha et al. 1992, Kappelle et al. 1995, Lieberman et al. 1996, Vásquez & Givnish 1998). Differences in their scope, sampling methods, and analytical techniques may account for the discrepancy in their conclusions (Cuello 1996, 2000, Hemp 2006). In the Venezuelan Andes, six ecological altitudinal zones have been recognized (Sarmiento et al. 1971, Monasterio 1980b, Monasterio & Reyes 1980, Ataroff & Sarmiento 2004): (1) a Basal zone from piedemont to 1000 m, (2) a Subandean zone between 1000 and 2000 m, (3) a Lower Andean zone between 2000 and 3000 m, (4) an Upper Andean zone between 3000 and 4000 m, (5) a High Andean zone between 4000 and 4800 m and (6) a Snow zone above 4800 m. The distribution of vegetation types along altitudinal zones in the Venezuelan Andes differs between humid and dry slopes (Sarmiento et al. 1971, Monasterio 1980b, Monasterio & Reyes 1980, Ataroff & Sarmiento 2004). As elsewhere, the Venezuelan Andes are suffering increased human intervention. Many areas of montane forests continue to be converted into areas of ag-

eschweizerbartxxx ingenta

phyto_39_1.indb 110

ricultural or other land uses, while basic biodiversity studies remain scarce (Ataroff 2001). Fortunately, due to their steep slopes and inaccessibility there are still large parts of the Venezuelan Andes, with or without legal protection, where natural vegetation remains relatively undisturbed. One of such areas is Ramal de Guaramacal, the larger part of which is enclosed within a national park (Cruz Carrillo or Guaramacal National Park), not presently subject to a strong human intervention. The main goal of the present study is to identify, define and characterize the montane rain forest vegetation of Ramal de Guaramacal and to establish a syntaxonomic scheme or classification, based on analysis of the physiognomy, floristic composition, ecological relations and spatial distribution of the different vegetation communities. This work was conducted within the framework of a larger project aiming to study the floristic and vegetation diversity of the Guaramacal National Park (Cuello 1999, 2000, 2002, 2004). The classification of the paramo vegetation of the Guaramacal summit area is described separately (Cuello & Cleef, submitted).

Study Area Geography The Ramal de Guaramacal is a mountain range extending approximately 30 kilometers northeast towards the eastern end of the Venezuelan Andes between 9 ° 05−21’ N and 70 ° 00−20’ W. (Fig. 1). Parts of the Boconó Municipality in the State of Trujillo and Sucre Municipality of the Portuguesa state are included. This formation, in its larger extension, reaches altitudes over 2000 m. The Guaramacal range includes summits of 3130 m in Páramo de Guaramacal; 2970 m in Páramo El Pumar; 2800 m in Páramo Agua Fría and 2600 m in Páramo Los Rosarios. Much of the surface area of the Ramal de Guaramacal is protected by the Gral. Cruz Carrillo Nacional Park (or Guaramacal National Park), which includes, from the lowermost level of 1600 m, an approximate surface area of 21,466 hectares. Climate The climate of the Venezuelan Andean cordillera, as in the whole country is largely determined by the Intertropical Convergence Zone (ITCZ). The great altitudinal interval, with respect to the Llanos in combination with full exposition to trade winds causes high precipitation of at least 3000 mm/year from low altitude up to approximately 2400 m on the southeastern slopes. From this position upwards and northwards, precipitation decreases to around 2000 mm on the northern slopes (Reaud-Thomas 1989). The climate is characterized by a dry season from November to

01.04.2009 11:57:21


The forest vegetation of Ramal de Guaramacal in the Venezuelan Andes

111

eschweizerbartxxx ingenta

Fig. 1. Geographic position of Ramal de Guaramacal in the Andes of Venezuela, with the outline of the National Park. Park sectors: A-Guaramacal, B-Agua Fría, C-Qda. Honda-El Santuario.

March and a rainy season from April to October. Maximum precipitation occurs during June and July (Cuello & Barbera 1999). Temperatures remain low throughout the year, averaging around 18 to 20 °C between 1000 to 1500 m, and 9 to 12 °C in the zone above 2500 m. According to Grubb (1977) and

phyto_39_1.indb 111

Sarmiento (1986) the decrease of temperature with altitude (lapse rate) is around 0.6 °C/100 m. Above 2000 m the nights are cold and seasonal frosts may occur at altitudes over 2,500 m (Reaud-Thomas 1989, Urriola 1999).

01.04.2009 11:57:21


112

N. L. Cuello A & A. M. Cleef

Geology Ramal de Guaramacal is a mountain chain aligned to the South of the Boconó fault (Schubert 1980) and to the North of the Calderas fault. It constitutes a homogeneous block separated from the rest of the mountain range (and limiting in the North and West) by the interandean valley of Boconó River. To the South (Llanos slope) steep slopes descend towards the Calderas fault, from there, the smaller mountain formations decrease in altitude towards the piedemont (400 m) (Urriola 1999). This mountain chain is the product of orogenic processes which built the equatorial Andes. Some of the most important geological formations of the Venezuelan Andean Cordillera are displayed, from the oldest bedrock of the Precambric and the Paleozoic, to more recent deposits of the Neogene (Tertiary and Quaternary period). The most predominant geologic formations in Ramal de Guaramacal are: Sabaneta (Paleozoic), Palmarito (Paleozoic) y El Santuario or Gobernador (Tertiary), and, in the North slope at the end of the Boconó Fault, the Sierra Nevada formation (Grupo Iglesias, Upper Precambric) (Ministerio de Minas e Hidrocarburos, s/f; Urriola 1999) is present. In the Páramo de Guaramacal area (Sector A), the Sabaneta formation predominates. This old formation consists of a sequence of gray to brown sandstones intercalated with limolites and red to redviolet sandstones. Around Páramo El Pumar (Sector C), the Santuario, or Gobernador, formation (Tertiary) arises. This formation consists of 80 % friables to hardened gray quartzeous sandstones becoming brownish under weathered conditions, being locally conglomerated in thick layers with intercalations of light colored limolites, and laminations of dark lutites, being occasionally calcareous and making up to 20 % of the formation (Urriola 1999).

eschweizerbartxxx ingenta

Soils The soils of Guaramacal are determined by a set of climatic, geologic, and topographic conditions as well as vegetation characteristics for this mountainous landscape (Marvez & Schargel 1999). Periglacial phenomena are also an important landscape feature at the highest altitudes with paramos and Andean forests. This is also true for the Guaramacal range. Glacial lakes, different types of morraines, roches mouttonnées, etc. account for the past presence of a glacial snow and ice cap in the summit zone. The high precipitation of the region favors intense lixiviation and acidification of the soils; thus, acid soils of low pH (<5) predominate. The soils under forests and paramos generally display high organic matter content due to low temperatures and acid conditions which markedly reduce the activity of soil microorganisms. The steep slopes and the elevated water content of soils on weathered rocks, favor mass movements and landslides at different spatiotempo-

phyto_39_1.indb 112

ral intervals; also determining substantial variability in soil depth and coarse fragment content (diameter > 2 mm). The predominance of sandstone of the Sabaneta and El Santuario formations accounts for a high sand content of the soils. Nevertheless, the presence of fine grained sedimentary lutites causes clayey soils in some localities. The soils of the study area are predominantly of the Entisols, Inceptisols and Ultisols order (Marvez & Schargel 1999). Morphological and chemical characteristics of some of the soil profiles representative of Ramal de Guaramacal (from Marvez & Schargel 1999) are presented in Appendix 3. Vegetation The vegetation of Guaramacal Park area is predominantely represented by montane rain forests with height and density decreasing with altitude (Cuello 2002). Subparamo and of paramo vegetation is evident from 2700 m; however, forest vegetation patches mixed with open paramo can be found to elevations of up to 2900—3000 m in the summit zone. The montane forests of Ramal de Guaramacal are in the Tropical Lower Montane Very Wet Forest and Tropical Montane Rain Forest zones of the Holdridge climatic life zone system (Ewel et al. 1976). According to Huber & Alarcon (1988) the forests of Guaramacal are classified as ‘Bosques ombrófilos submontanos/montanos siempreverdes’. Previous geobotanical explorations and flora research Botanical exploration of Ramal de Guaramacal started in the 1960’s when a rural road between Mosquey (Boconó – North slope) and the village of Guaramacal (South slope) was constructed, to provide access to a complex of communication antennas installed in the summit of Páramo de Guaramacal (Ortega et al. 1987, Dorr et al. 2000). The first floristic exploration was conducted by G.C.K. Dunsterville in 1963, who exploited this new track to collect orchids while workers still were felling trees for the new road (Dunsterville & Garay 1965, Dorr 1999). Julian Steyermark visited Guaramacal at a later date, accompanied by Marvin Rabe in 1966; in 1970, with Basset Maguire and Celia K. Maguire; and finally alone in 1971 (Dorr 1999). During the 1970’s several botanists visited the Guaramacal range; the late Luis Enrique Ruiz-Terán, being among them in 1973. Dana Griffin III collected bryophytes in 1975; José Cuatrecasas in 1978 for Espeletiinae (Asteraceae), and James L. Luteyn in 1978 mainly for Ericaceae and other species of the paramo. Manuel Lopez-Figueiras and Mason Hale also collected lichens in Guaramacal in 1979 (Dorr 1999).

01.04.2009 11:57:22


The forest vegetation of Ramal de Guaramacal in the Venezuelan Andes

During the 1980’s, staff of Herbario Universitario (PORT) of the Universidad Nacional Experimental de los Llanos ‘Ezequiel Zamora’ (UNELLEZ) in Guanare, headed by Francisco Ortega, Basil Stergios and Gerardo Aymard, made the first effort to catalogue the Guaramacal flora (Ortega et al. 1987, Rivero & Ortega 1989). In many of their visits they were accompanied by botanists from the United States of America, among them were Ronald Liesner and Henk van der Werff from the Missouri Botanical Garden; Alan R. Smith of the University of California, Berkeley; and Laurence J. Dorr, previously of the New York Botanical Garden (Dorr 1999). In 1995, the first author initiated a floristic research project studying vegetation across an elevational gradient using plots for the vegetation analysis (Cuello 1996), consequently initiating explorations in other, more remote, areas of Ramal de Guaramacal. Simultaneously, Basil Stergios (UNELLEZ) and Laurence Dorr (Smithsonian Institution) initiated a project to document the Flora of Guaramacal. This poject initially served as a supporting framework for the present study of the Guaramacal vegetation. The combined efforts of botanical exploration and floristic survey, together with contributions from an integrated multidisciplinary team of researchers from UNELLEZ, generated publication of a reference book dealing with several aspects of the nature of the Guaramacal National Park (Cuello 1999). In addition to the first results detailing forest composition and diversity (Cuello 1996, 2000, 2002, 2004), a first Catalogue of the vascular plants of Guaramacal National Park (Dorr et al. 2000) has also been published. This catalogue accounts for a total 147 families, 517 genera and 1227 species of vascular plants. During the last twenty years, as a result of continued integrated survey and botanical exploration, ca. 40 species new to science have been discovered in the Guaramacal range (Morillo 1988, Axelius & D’ Arcy 1993, Badillo 1994, Carnevali & Ramírez 1998, Aymard et al. 1999, Taylor 2002, Stergios & Dorr 2003, Stancik 2004, Niño et al. 2005, Cuello & Aymard 2008, for the species list see also Stergios 1999 and Dorr et al. 2000). The combined intensive vegetation surveys by the first author and botanical explorations by B. Stergios, L. Dorr and M. Niño (UNELLEZ) over the past ten years, have resulted in the addition of several new records to the Dorr et al. (2000) catalogue (see forthcoming paper Cuello et al. in prep.). Collections of non-vascular plants have been neglected in Guaramacal to date. Despite the collections made during the 70’s, a published list of bryophytes and lichens from Guaramacal does not yet exist. Only a few of the most prominent and conspicuous of bryophyte and lichen species present have been recently collected by first author, mainly from páramo vegetation. Many of the collections are undetermined at PORT, with only a present account of ca. 55 bryophyte species and 20 species of lichens.

phyto_39_1.indb 113

113

Methods Field surveys

eschweizerbartxxx ingenta

The fieldwork was carried out during 1995, 1996, 1999, 2003, 2005 and 2006 (see Appendix 2.). The study area was divided into three sectors: (A) Guaramacal, (B) Agua Fría and (C) El Santuario (Fig. 1). Sector A corresponds to both slopes (N and S) in the central and higher part of the mountain range. This area is crossed North-South by a road that leads up to the telecommunication repeater antennas at the top of the mountain (Páramo de Guaramacal) and then descends to the village of Guaramacal on the South slope. Sector B comprises both slopes of the northeastern end of Ramal de Guaramacal with. This sector includes samplings sites named after nearby villages and rivers. Such sites are “La Peña” and “Río Frío” on the South slope, Trujillo state; “La Divisoria” and “El Alto”, at the border of Trujillo and Portuguesa states on the South slope; and “Laguna Negra” in Trujillo state and “El Mogote”, at the border of Trujillo and Portuguesa states on the North slope. Sector C corresponds to the north-western end of the Park, and includes the site known as “Qda. Honda – El Santuario”. Within the park access remains limited to the only existing road in the Guaramacal sector, whereas the other sites (La Divisoria, El Alto, El Mogote, Agua Fría, Río Frío, Laguna Megra and El Santuario) could only be reached on foot using new or existing pathways in the forest. The old paths crossing the mountain are also locally known as “caminos reales”; having previously served as commercial connections between towns located on the South side of Ramal de Guaramacal and the city of Boconó and its surroundings. On the South slope of Agua Fría sector it was also possible to survey forests below the Park boundaries (1350 – 1550 m). The discovery of these natural forests at low altitude provided the opportunity to document information on this region of the country. No other forest inventories are known from slopes at these altitudes. On the North slope of the same sector, the lowest plot was at 1650 m, near the locality of El Mogote, also located outside the Park boundary. The forest survey contained a total of 45 samples (total area 3.705 hectares) located at different altitudes between 1300 and 3000 m, distributed throughout the different Park sectors (Fig. 1, Appendix 2). The samples include 35 plots of 1000 m2 (20 m x 50 m, divided in subunits of 10 m x 10 m) each. The forests located at higher elevations, due to access difficulties, low stature and low diversity of species, were surveyed in smaller plots. These include two plots of 400 m2, one of 300 m2, two of 200 m2, three of 100 m2 and two of 25 m2 (see Table 2(b), Appendix 2). The altitudinal intervals between sampling sites were variable between 30 to 150 meters. The plots were selected taking into account accessibility, topography and vegetation physiognomy. Thus, plots

01.04.2009 11:57:22


114

N. L. Cuello A & A. M. Cleef

were laid out in relatively accessible sites of less steep slope where possible and under a rather continuous canopy. In the highest and steepest part of the South slope, in the “Guaramacal” sector, the plots were laid out in sites where forest had been affected by nearby landslides. This was inevitable reflecting natural conditions, since the South slope is steeper than the North slope (Fig. 11). On the South slope of Agua Fría sector, the maximum altitude surveyed was 2125 m. Traveling by foot to this altitude was extremely difficult as the mountain relief in this sector is comprised of contiguous small ranges with low summits (1900–2000 m). From 1300 m (altitude of base camp), these lower summits had to be crossed (with lower valleys between at 1700 m) in order to reach the forest limits at around 2450 m. Unfortunately, the opportunity to arrive at this location remained unrealised at this time. Within each plot, all rooted individuals – trees, shrubs, lianas, tall and thick-stem or climbing terrestrial herbs and hemiepiphytes– ≥ 2.5 cm dbh (diameter at breast height, taken at 1.3 m from the base of the trunk, or lower for shrubs and thick-stemmed herbs) were recorded, labeled with numbered aluminum tags and their dbh and height recorded. The 2.5 cm dbh minimum size was chosen to include most of the small woody understory species, as well as lianas and hemiepiphytes, and to make samples comparable with the studies of Gentry (1982, 1992, 1995). Epiphytes, non-vascular plants, small herbs and other growth forms with stems < 2.5 cm were not surveyed. Height of trees was estimated using a 2 m clipper pole as reference. Multistemmed species were counted as single individuals, but entire stem diameters were recorded for calculation of basal area. The same criterion was applied to multiple aerial roots of hemiepiphytes, such as Clusia. Individuals were assigned to morphospecies; a voucher sample of each morphospecies collected from each plot. For ambiguous species multiple vouchers were collected. Morphospecies were later matched for all plots. As voucher samples from plots were mostly sterile, general collections of fertile specimens outside the plots were also made. Some individuals (mainly lianas or very tall trees) could not be vouchered. In these cases, only registry of growth form, dbh and height were taken. For each site, collections and observations of other species not included in the surveys, herbs and epiphytes for instance, were made. In total over 2000 botanical numbers were collected under the number of N. Cuello (et al.) from nr. 915 to 2900 and A. Licata from nr. 150 to 690 (see Appendix 1).

sulted. Some specimens were sent to specialists at other institutions to confirm identification. All specimens collected have been deposited at PORT, some duplicates have been sent to VEN, MER, MERF, MO and US. All the information and field data were stored and handled using Microsoft Excel. The total listing of the inventoried species together with their respective collection numbers appears in Appendix 1. For the physiognomic characterization of the forests structural profiles of 20 m x 10 m (Fig. 2–10) were elaborated in the direct neighborhood of some of the surveyed plots. The sites selected for the elaboration of profiles are georeferenced in Appendix 2. A data matrix of the relative abundance of 360 species and 44 plots was processed with TWINSPAN (Hill 1979) using the program PC-Ord 4 (McCune & Mefford 1999). The resulting TWINSPAN was interpreted in terms of syntaxonomical classification of the vegetation, on the basis of floristic affinities, according to the Zürich-Montpellier approach (Braun-Blanquet 1979, Westhoff & van der Maarel 1973). For forest descriptions we followed Cuatrecasas’s (1934) classification of subandean, Andean and high Andean forest. However, for discussion and comparison with other montane forests, we also referred to the equatorial montane rain forest zonation of LMRF, UMRF and SARF by Grubb (1977) used also elsewhere in the equatorial tropics.

eschweizerbartxxx ingenta

Data processing and analysis Identification and processing of botanical specimens was made at Herbarium PORT of the Universidad de los Llanos (UNELLEZ) in Guanare, Venezuela. Other herbaria, such as MO and US, were also con-

phyto_39_1.indb 114

Results Flora diversity A total of 388 morphospecies with dbh ≥ 2.5 cm, corresponding to 189 genera and 78 families of vascular plants, were recorded from the 45 forest plots in Ramal of Guaramacal. These include: 4 families, 6 genera and 13 species of pteridophytes; 5 families, 13 genera and 19 species of monocots; 68 families, 170 genera and 355 species of dicots; and 1 gymnosperm species Podocarpus oleifolius var. macrostachyus. From the total of 388 morphospecies, 309 were identified to species level, 55 to genus, 9 to family and 15 were not identified. An additional 177 species of vascular epiphytes, herbs and small shrubs were annotated and collected for forest description, but not documented in the plot surveys. All the species registered and collected from the plots are listed in Appendix 1. Table 1 presents the most speciose families and genera based on the plot data from this study. Six families were represented by 20 or more species, while 3 genera were found with 10 or more congeners. Forest structure Table 2 (a and b) summarizes the structural parameters of the different plots by sector, slope exposure

01.04.2009 11:57:22


The forest vegetation of Ramal de Guaramacal in the Venezuelan Andes

115

Table 1. Most diverse woody plant families with dbh ≥ 2.5 cm (>10 species) and genera (>5 species) in the plots of the montane forests of Ramal de Guaramacal, Andes, Venezuela. Families

Species

LAURACEAE RUBIACEAE MELASTOMATACEAE MYRTACEAE ASTERACEAE MYRSINACEAE ERICACEAE EUPHORBIACEAE

34 30 27 24 20 12 12 10

Genera

Species 21 19 13 8 7 6 6 5

Ocotea Miconia Eugenia Piper Persea Palicourea Psychotria Cybianthus

Table 2(a) Summary of structural parameters for each forest 0.1 ha plot by slope and Sector of Ramal de Guaramacal, Venezuela. Species richness, number of individuals, basal area, mean and maximum height, canopy height, mean and maximum diameter (in cm). Slope

Sector

Alt. m

Guaramacal

1850 1960 2070 2100 2170 2300 2350 2400 2480 2580 2750 2870 2890 1830 1900 2100 2260 1880 2100 2250 1950 2100 2300 2470 2580 1330 1450 1550 1600 1770 1800 1875 1880 1950 2125

Plot Num Num Basal Nr. spp Ind Area

Tree height

Diameter

Max. Med. Canopy Max. Med.

North

Agua Fría

North-west (Qda. Honda) Guaramacal

Agua Fría South

Average Total

phyto_39_1.indb 115

5 1 19 2 18 3 20 4 17 16 39 37 35 14 25 26 27 21 22 23 7 9 8 6 24 28 29 13 10 31 11 30 15 12 32

36 41 46 35 41 50 60 59 36 33 41 18 27 53 60 44 61 43 55 35 36 29 31 31 34 40 45 47 52 45 42 38 43 42 42

eschweizerbartxxx ingenta

182 358 446 401 316 377 479 547 602 413 458 231 423 390 320 492 438 227 324 257 500 301 306 378 309 154 191 265 328 376 482 342 472 506 420 371.74 13011

4.57 2.66 6.64 3.31 5.00 8.57 5.19 6.91 4.59 5.67 5.20 4.35 3.65 4.94 7.08 5.15 5.43 4.65 5.35 4.03 4.62 2.82 2.98 2.98 3.78 3.76 3.63 5.44 4.95 4.37 5.96 3.73 4.01 5.96 5.37 4.78 167.3

24 20 24 18 26 21 22 19 23 19 17 16 12 24 28 26 24 32 30 18 22 20 21 13 18 28 27 24 25 28 26 26 25 18 24

7.3 8.0 7.6 6.5 9.4 7.1 8.1 6.5 7.0 8.6 9.8 8.2 6.7 7.3 10.8 9.4 9.1 11.6 10.4 8.6 8.9 7.7 7.9 6.5 8.6 10.4 8.8 11.7 7.3 11.5 7.2 11.5 7.2 6.7 9.9

10-20 10-15 10-18 10-15 10-20 8-15 8-15 6-15 6-14 6-14 7-14 6-12 5-10 10-20 8-24 9-23 7-18 14-29 13-26 7-14 9-18 9-13 9-16 8-11 8-14 10-24 10-24 13-22 12-20 11-24 12-20 11-22 15-22 9-13 9-18

64.0 38.2 114.6 62.1 90.0 111.4 60.0 108.2 127.3 69.0 42.7 44 40 64.0 116.5 61.0 105 83 70 50 76 76 41.4 50 56 69 82 123 105 34 90 61 66 85 56

9.2 7.2 7.9 7.1 9.3 10.5 7.9 8.3 6.3 9.4 8.6 10.1 8 9.2 7.8 6.9 8.2 9.9 8.5 9.5 6.32 7.84 8.3 7.7 8.0 11.7 8.6 8.68 7.93 9.1 6.73 8.9 6.82 7.28 6.5 8.29

01.04.2009 11:57:22


116

N. L. Cuello A & A. M. Cleef

Table 2(b) Summary of structural parameters for forest plots (< 0.1 ha) in Ramal de Guaramacal, Andes, Venezuela. Slope

Sector

Alt. m

Plot

Plot Num Total Aver- Basal area Num age Ind/ Ind/ plot 100 m2

Nr. 2474 North Guaramacal 2810

33

spp 300

Diameter

Area Max. Med. Canopy Max. Med.

29

175

58.3

0.97

12

6.1

6-10

27

6.8

38

200

21

407

203.5

0.91

8.3

4.5

3-6

13

4.7

2830

PL3

100

10

41

41.0

0.19

4.3

2.8

2-4

16

6.8

2870

36

500

21

172

34.4

1.71

12

5.8

5-10

41.5

7.7

3050

34

200

18

263

131.5

0.81

6.5

4.1

3-5

21

5.3

3050

44

100

12

131

131

0.26

6

3.5

3-4

17

4.1

2950

41

400

22

272

68.0

1.77

10

6.2

5-8

25

6.9

South Guaramacal 2950

40

200

19

277

138.5

1.1

6

3.6

3-5

27.5

5.6

3060

43

50

14

92

184

0.25

5

3.1

3-5

12.8

5.2

and elevation. A total of 14,895 individuals with dbh ≥ 2.5 cm were recorded in a total of 3,705 ha of accumulated forest plot. The number of individuals per 0.1-ha plot varied from 154 to 602, with an average density of 372. On the North slope, density in 0.1 ha plots increased with altitude up to 2480 m, decreasing towards 2890 m. However, in forest plots (SARF) over 2900 m altitude a high density of low diameter individuals occurs with an average density of 110.02 individuals in 100 m2 plots (about to 1100 individuals extrapolated to 0.1 ha). The canopy height was variable within plots, but generally decreased with altitude. Taller emergent trees were found at every altitude. Maximum and mean diameter was variable among plots, the individual with the greatest diameter (127.3 cm) found at 2480 m.

eschweizerbartxxx ingenta

Forest classification The interpretation of the TWINSPAN table, based on affinities of floristic composition and relative species abundance, allowed recognition of seven vegetation communities at association level, grouped in three alliances and one major group equivalent to order level (Table 3). Three subandean forest (LMRF) communities and four Andean – high Andean forest (UMRF-SARF) communities are distinguished. The classification and description of the forest vegetation communities of Ramal de Guaramacal are presented below. Montane forest order group of Meliosma tachirensis and Alchornea grandiflora Physiognomy: This group of forests concerns humid montane cloud forest communities belonging to both subandean and Andean forest. These forests are dense, with a high number of thin-stemmed individuals and a medium-high canopy (25–30 m) in sub-

phyto_39_1.indb 116

Tree height

andean forests to medium-low (15–20 m) in Andean forests. The presence of a high bryophyte cover on tree trunks is characteristic. Composition and syntaxonomy: Among the characteristic large tree canopy species of this forest group are Alchornea grandiflora, Beilschmiedia tovarensis, Billia rosea, Elaeagia karstenii, Hieronyma cf. oblonga, Miconia cf. dolichopoda, Ruagea pubescens, Tetrorchidium rubrivenium. Common hemiepiphitic trees are Clusia trochiformis and Clusia alata. Also are frequent the lianas and vines Blakea schlimii, Celastrus liebmannii, Macleania rupestris, Mikania stuebelii and Psammisia hookeriana. Besleria pendula and the tree ferns Cyathea fulva and C. pungens are also common among the smaller trees of up to 6 m tall. Diagnostic species of the subcanopy are Geissanthus fragans, Meliosma tachirensis, Miconia theaezans, Piper longispicum var. glabratum. This group of forests with Meliosma tachirensis and Alchornea grandiflora could be considered as a provisional order, in which, the following two alliances are recognized: Geo n o mo u n d atae– P osoquerion coriaceae and F arameo killip ii–Prunion moritzian ae. Ecology and distribution: The forest communities belonging to the montane forest order group of Meliosma tachirensis–Alchornea grandiflora are found from 1350 m on the South slope, from 1650 m on the North slope and up to around 2600 m on Ramal de Guaramacal. Ge o n o mo u n d ata e – Po s o q uerion c o ria c e a e all. nov. Typus: Simiro erythroxylonis – Quararibeetum magnificae (this study). Table 3. Subandean forests of the Geonoma undata – Posoqueria coriacea alliance

01.04.2009 11:57:22


The forest vegetation of Ramal de Guaramacal in the Venezuelan Andes

117

Table 3. Phytosociological table of montane forests of Ramal de Guaramacal, Venezuela. 1: S i m i ro e ry t h ro x y l o n i s– Q u a r a r ib e e tum magnificae; 1.1: typicum; 1.2: bunchosi e t o su m a rm e n i a c e a e . 2: C o n c h o c a rp o l a re n si s– C o u ssa re t u m m o r it z ianae. 3: Croizatio brevipetiolatae–Wettin i e t u m p ra e m o rsa e ; 3.1: h e d y o sm e t o su m c u a t re c a z a n u m ; 3.2: v a r. P r o tium tovarense. 4: Schefflero ferrugineae– C y b i a n t h e t u m l a u ri f o l i i ; 4.1: t y p i c u m ; 4.2: m i c o n i e t o su m sua v e o le n t is . 5: Geissantho andini–Miconietum jahnii; 5.1: Subcommunity of Freziera serrata. 6: L i b a n o t h a m n e t u m g ri f f i n ii. 7: G a u ltherio anastomosantis–Hesperomeletum o b t u si f o l i a e . Plot No. 13 28 29 5 21 22 11 14 Area 1x10 (m2) 100 100 100 100 100 100 100 100 No. of Species (DBH 2.5 cm) 47 40 45 36 43 55 42 53 E 1 1 1 1 1 2 1 1 l 4 3 4 8 8 1 8 6 e 5 3 5 5 8 0 0 5 0 0 0 0 0 0 0 v 0 Slope exposure S S S N NO NO S N Park sector B B B A C C B B Order Alliance Geonomo undatae -Posoq. coriaceae Association 1 2 Subassociation 1.1 1.2 Variant Subandean forests (LMRF) Assoc. 1. Simiro erythroxyli - Quararibeetum magnificae 5 3 1 3 . . . 1 Simira erythroxylon 3 1 2 1 . . . 1 Parathesis venezuelana 1 1 4 . . . . 2 Urera caracasana 4 3 . 4 1 . . . Quararibea magnifica 1 3 . 3 . . . . Cuatresia riparia 1 1 . 1 1 . . . Picramnia sp. . 1 2 . . . . 1 Aegiphila floribunda . . . 3 . . . 1 Diplazium hians 1 . 1 . . . . . Inga edulis 1 . 1 . . . . . Vasconcella microcarpa . . . 1 . . . 1 Ocotea cernua . . 1 . . . . 1 Huertea glandulosa Subassoc. 1.1. typicum 1 2 . . . . . 3 Aphelandra macrophylla 2 1 . . . . . 3 Psychotria trichotoma 1 1 . . . . . 1 Alchornea glandulosa . 1 . . . . . 3 Cecropia sararensis 3 2 . . . . . . Ocotea sp. C 2 3 . . . . . . Stylogyne longifolia . 2 . . . . 1 2 Hippotis albiflora 1 1 . . . . . . Matisia sp. 1 . . . . . . 1 Nectandra aff. membranacea 1 1 . . . . . . Trichilia pallida . . . . . . . 2 Zygia bisingula . . . . . . . 2 Ficus sp. . . . . . . . 2 Paullinia capreolata 2 . . . . . . . Tammsia anomala 2 . . . . . . . Trichilia hirta . 2 . . . . . . Piper hispidum Subassoc. 1.2. bunchosietosum armeniaceae . . 4 . . . . . Acalypha macrostachya . . 4 1 2 . . . Psychotria fortuita . . 2 1 . . . . Bunchosia armeniaca . 1 1 4 . . . . Pleurothyrium costanense . 1 1 1 . . . . Ficus tonduzii . . 3 . . . . . Saurauia tomentosa . . . 2 . . . . Diplazium celtidifolium . . . 2 2 . . . Piper s p. (Liana) . . 2 . . . . . Hydrangea aff. peruviana . . . 1 1 . . . Cestrum bigibbosum . . . 1 1 . . . Solanum nudum Assoc. 2. Conchocarpo larensis - Coussaretum moritzianae . . . . 2 1 1 . Coussarea moritziana . . . . . 5 1 4 Conchocarpus larensis . . . . 1 . 4 . Alsophila erinacea . . . 1 1 1 1 . Sloanea guianensis . . . . 1 1 1 . Miconia lonchophylla . . . . . 1 1 . Meliosma pittieriana . . . . 1 . 2 . Cyathea kalbreyeri . . . . . 1 . . Eschweilera perumbonata . . . . . 1 . 1 Chrysophyllum cf. cainito . . . 1 1 . . . Sloanea rufa . . . . 2 . . 1 Mouriri barinensis . . . . . . 3 . Asplundia vagans . . . . . . 1 . Pseudolmedia rigida . . . 1 1 1 . . Dussia coriacea . . . . . 1 . . Eugenia grandiflora . . . . . 1 . . Eugenia sp. 1 . . . . 1 1 . . Inga aff. densiflora . . . . . . 1 . Machaerium cf. floribundum . . . . . . 1 1 Picramnia sp. A . . . . . 1 . . Ocotea rubrinervis . . . . 1 . . . Stylogyne sp. A . . . 1 3 . . . Eugenia sp. 3 . . . . 2 . . . Chionanthus sp. . . . . . . 2 . Tocoyena costanensis . . . . . . . . Petrea pubescens . . . . . 2 . . Piper arboreum . . . . . . 2 . Eugenia sp. . . . . . . 1 . Salacia aff. cordata . . . . . . . . Clusia sp. 1 . . 2 . . . 1 . Cecropia telenitida . . . . 1 . . . Eugenia sp. 2 . . . . . 1 . . Prunus cf. skutchii . . . . . . . . Simira lezamae

phyto_39_1.indb 117

10

25

12

19

26

32

15

30

31

17

20

23

27

16

33

8

39

35

36

37

38

43

44 PL3 34

40

41

100

100

100 100

100

100 100

100

100

100

100

100

100

100 100 100

100

100

100

100

30

100 100 100

100

100

100

40

100

20

5

10

10

20

20

40

52

60

35

2

3

41

41

42

46

44

42

43

38

45

60

35

61

33

29

31

29

34

31

41

27

21

18

17

9

10

10

18

19

22

1 6 0 0 S B

1 2 2 2 1 1 1 2 9 1 3 1 9 9 9 0 0 0 0 7 6 5 5 7 0 0 0 0 0 0 0 0 N N N N N S S N B A A A A A B A Meliosma tachirensis - Alchornea grandiflora

2 3 5 0 N A

2 2 5 0 NO C

2 2 6 0 N B

2 5 8 0 N A

2 4 7 4 N B

2 4 7 0 S A

2 1 0 0 S A

2 5 8 0 S A

2 3 0 0 S A

2 7 5 0 N A

2 8 9 0 N A

2 8 7 0 N A

2 8 7 0 N A

2 8 1 0 N A

3 0 6 0 S A

3 0 5 0 N A

2 8 3 0 N A

3 0 5 0 N A

2 9 5 0 S A

2 9 5 0 S A

50

18

1

7 36

4 59

36

2 2 1 1 1 2 2 1 1 8 8 7 4 4 0 2 8 7 7 5 8 0 5 0 5 0 0 0 N S S S S N N B B B B B A A montane forest order group Farameo killipii - Prunion moritzianae

3

6

9

24

Ruilopezio paltonioides - Cybianthion marginati 5 6 7

4 4.1

3.1

5.1

4.2

3.2

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . 1 . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . 1 .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . . .

3 5 . 1 1 1 1 1 2 1 1 . 1 . 1 . . . . 1 . . . . 2 . . . . . . . .

3 . 1 1 3 . . 2 1 1 . . 1 . . 1 . 1 1 . 1 . . . . . . 1 1 . . . 1

. . . . . . . . . . . . . 1 . . . . . . . . . . . . . . . . . . .

. . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . 1 . . . . . . . 1 . . . . . . . . . . . . . . . . . . .

1 . . 3 . . . . 2 1 . . . . . . . . . . . . . . . . . . . . . 1 .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . . .

. . . . 1 . . 1 . . . . . . . . . . . . . . . . . . . . . . . . .

1 . . 1 . . . . 1 1 . . . 1 . . . . . 1 . . . . . . . . . 1 . . 1

. . . . 2 . . . . . . . . . . 1 . . . . . . . . . . . . 1 . . . .

. . . . . . 1 . . . . . . . . . . . . . 1 . . . . . . . . . . . .

. . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . 1 . .

. . . . . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . .

. . . 1 . . 3 1 . . . . . . . . 1 . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

eschweizerbartxxx ingenta

01.04.2009 11:57:22


118 Plot No. 13 28 29 5 21 22 11 14 Area 1x10 (m2) 100 100 100 100 100 100 100 100 No. of Species (DBH • 2.5 cm) 47 40 45 36 43 55 42 53 E 1 1 1 1 1 2 1 1 l 4 3 4 8 8 1 8 6 e 5 3 5 5 8 0 0 5 0 0 0 0 0 0 0 v 0 Slope exposure S S S N NO NO S N Park sector B B B A C C B B Order Alliance Geonomo undatae -Posoq. coriaceae Association 1 2 Subassociation 1.1 1.2 Variant Alliance 1. Geonomo undatae - Posoquerion coriaceae 1 3 2 2 2 . 1 1 Guarea kunthiana . . . 1 1 2 1 5 Pouteria baehniana 1 4 . 1 . 1 4 1 Geonoma undata . 1 . 3 5 1 2 . Calatola venezuelana . 2 1 2 2 . 2 1 Posoqueria coriacea . 1 . 2 . . 2 . Rudgea nebulicola 1 1 . 1 . 1 1 1 Matayba camptoneura . . . . . . 2 3 Mabea occidentalis . 1 . 1 1 1 1 . Persea peruviana 1 1 2 . 2 . . . Eugenia moritziana . 1 . 1 1 . . . Marcgravia brownei . . . . . . . 1 Tapirira guianensis . . 1 . . 1 . . Gordonia fruticosa . . 1 . . . 1 . Psychotria longirostris . 1 . . . . 1 . Rollinia mucosa 1 . . . . . . . Trigynaea duckei 1 . . . 1 . . . Hydrangea cf. preslii 1 . . . . . 1 . Ficus nymphaeifolia 1 . . . . . . . Nectandra aff. purpurea . 1 . . . . 1 . Paullinia cf. latifolia Assoc. 3. Croizatio brevipetiolatae - Wettinietum praemorsae . . . . . 5 . . Croizatia brevipetiolata . . . . . 2 3 . Wettinia praemorsa . . . . 1 . . . Meriania grandidens . . . . . 2 1 . Aniba cf. cinnamomiflora . . . . . . . . Cybianthus cuspidatus . . . . . 1 . . Miconia cf. minutiflora . . . . 1 . . . Elaeagia ruiz-teranii . . . . . . . . Ocotea sp. A . . . . . . . . Miconia lucida . . . . . 1 1 . Hedyosmum cf. gentryi . . . . . 1 . . Faramea guaramacalensis . . . . . 1 . . Maytenus sp. A . . . . . . . . Ocotea aff. puberula . . . . . 1 . . Myrcia acuminata 3.2. var. Protium tovarense . . . . . 2 1 . Protium tovarense . . . . . . . . Coccoloba cf. llewelynii . . . . . . . . Aiphanes stergiosii . . . . . . . . Persea meridensis . . . . . . . . Miconia sp. B . . . . . . . . Myrcia sp.1 Subassoc. 3.1. hedyosmetosum cuatrecazanum . Hedyosmum cuatrecazanum . . . . . . . . . 1 . . . . . Palicourea demissa . . . . . . . . Sapium stylare . . 1 . . . . . Aegiphila ternifolia . . . 2 3 . . . Casearia tachirensis . . . . . . . . Palicourea puberulenta . . . 2 1 . . . Meriania macrophylla . . . . . . . . Perrottetia quinduensis . . . . 1 . . . Guettarda crispiflora . . . . 1 . . . Turpinia occidentalis . . . . . . . . Cestrum darcyanum . . 1 . . . . . Miconia amilcariana Andean Forest (UMRF) Assoc. 4. Schefflero ferrugineae - Cybianthetum laurifolii . . . . . . . . Cybianthus laurifolius . . . . . . . . Myrsine coriacea . . . . . . . . Schefflera ferruginea . . . . . . . . Hedyosmum crenatum . . . . . . . . Miconia ulmarioides . . . . . . . . Ilex laurina . . . . . . . . Drimys granadensis . . . . . . . . Prestoea acuminata . . . . 1 . . . Palicourea apicata . . . . . . . . Weinmannia glabra . . . . . . . . Rhipidocladum geminatum . . . . . . . . Podocarpus oleifolius . . . . . . . . Ilex myricoides . . . . . . . . Persea aff. mutisii . . . . . . . . Weinmannia fagaroides . . . . . . . . Byrsonima sp. . . . . . . . . Ocotea jelski . . . . . . . . Ilex sp.2 . . . . . . . . Persea sp.1 . . . . . . . . Byrsonima karstenii

phyto_39_1.indb 118

N. L. Cuello A & A. M. Cleef 10

25

12

19

26

32

15

30

31

17

20

23

27

16

33

8

39

35

36

37

38

43

44 PL3 34

40

41

100

100

100 100

100

100 100

100

100

100

100

100

100

100 100 100

100

100

100

100

30

100 100 100

100

100

100

40

100

20

5

10

10

20

20

40

52

60

35

2

3

41

41

42

46

44

42

43

38

45

60

35

61

33

29

31

29

34

31

41

27

21

18

17

9

10

10

18

19

22

1 6 0 0 S B

1 2 2 2 1 1 1 2 9 1 3 1 9 9 9 0 0 0 0 7 6 5 5 7 0 0 0 0 0 0 0 0 N N N N N S S N B A A A A A B A Meliosma tachirensis - Alchornea grandiflora

2 3 5 0 N A

2 2 5 0 NO C

2 2 6 0 N B

2 5 8 0 N A

2 4 7 4 N B

2 4 7 0 S A

2 1 0 0 S A

2 5 8 0 S A

2 3 0 0 S A

2 7 5 0 N A

2 8 9 0 N A

2 8 7 0 N A

2 8 7 0 N A

2 8 1 0 N A

3 0 6 0 S A

3 0 5 0 N A

2 8 3 0 N A

3 0 5 0 N A

2 9 5 0 S A

2 9 5 0 S A

50

18

1

7 36

4 59

36

2 2 1 1 1 2 2 1 1 8 8 7 4 4 0 2 8 7 7 5 8 0 5 0 5 0 0 0 N S S S S N N B B B B B A A montane forest order group Farameo killipii - Prunion moritzianae

3

6

9

24

Ruilopezio paltonioides - Cybianthion marginati 5 6 7

4 4.1

3.1

5.1

4.2

3.2 1 2 1 . 1 3 1 3 . . . 1 1 . . 1 . . 1 .

1 2 . 1 1 2 1 . 1 . . 1 . . . . . . . .

. . . 1 . . . . 1 . . . . . . . . . . .

1 . . . . . . . . . . . 1 . . . . . . .

1 . . . . . . . 1 . . . . . . . . . . .

. 2 . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. 1 . . . . 1 . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. 1 . . . . . . . . . . . . . . . . . .

. . . . . . 1 . . . . . . . . . . . . .

. . 1 . . . 2 . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. 2 . 1 3 . . . . 1 . . . .

1 4 . 3 . . . 1 1 1 . . . .

5 2 1 1 . 1 1 . . . . . . .

5 . 2 . 1 . 4 1 . . . . . .

5 2 1 . . 1 . . . . . . . .

2 5 . 3 2 1 1 . 2 . . . 2 .

. 5 1 . . . . 1 . . 1 1 . .

4 5 1 1 1 1 1 1 1 . 1 1 . 2

4 4 2 2 . . 1 . 1 1 . . 2 .

5 5 1 . . . . . 1 1 1 . . .

2 5 1 . . . 1 . 2 . 1 1 . 1

. 2 . 2 3 . . 1 1 1 . . . .

. 1 . 2 . 1 . . 1 2 . . . 1

1 1 . 2 . 1 . . . 2 1 . . 2

. . . . . . . . . . . . . .

. . . . . . 1 . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. 3 . . . . 1 . 1 . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. 3 . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

1 . . . . .

2 . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . 1 . .

2 . . . . .

1 1 . . . .

. . . 1 . .

. 2 . 1 . .

. 1 1 . 2 .

4 2 2 1 . 2

5 1 1 2 . .

4 2 2 2 . 1

. . . . . .

. . . . . .

. . . 1 . .

. . . . . .

. 1 . . . .

. . . . . .

. . . 1 . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . . . . . . . .

. . . 1 . . . . . . . .

2 2 2 1 1 2 2 1 1 1 . 1

2 3 1 1 1 3 . . . . 1 .

3 2 2 1 3 . 2 3 1 1 1 .

. . . . . 2 . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . 1 . 1 . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. 3 . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . 2 . . . . 1 . . . .

. . . . . . . . . . . .

. . . . . . . . . . . 1

. . . . . . . . . . 1 .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . 3 . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . 1 . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. 1 . . . . . . . . . . . . . . . . . .

. . . . . . . 3 . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . 1 . . . . . . . . . . .

. . . . . 1 . . . . . 1 . . . 1 . . . .

. . . . . . . . 2 . . . . . . . . . . .

. . . . . 1 . . . 1 . . . . . . . . . .

. . . . 2 . . . 2 2 . . . . . . . . . .

2 1 1 3 3 1 1 . . 1 . 1 1 . . . 1 . . 1

1 2 2 4 2 1 1 . 3 2 4 1 . 1 . . . . . .

1 1 1 3 3 . 1 . 4 1 . . . . . . . . . .

4 1 1 2 . 1 1 1 3 . . . . . . 1 . 1 1 .

2 1 1 2 2 1 . 1 2 2 . 1 . . . 1 . . . .

4 1 1 2 . 2 1 . 3 3 3 2 2 2 . . 1 . 2 .

4 1 2 . 2 1 . 2 . 3 . 2 3 1 2 1 1 . . 2

1 1 . . 1 . . 1 1 . . . . . . . . . . .

. . . . . 1 . 1 . . . . . . . . . . . .

3 1 2 3 . 1 1 . . . 2 . . 1 4 . . 1 . .

2 2 1 . 1 1 . 1 . . . . . . . . . 1 . .

1 1 . . . . 1 . . . 2 2 1 1 1 . . . . .

. . . . . . 1 . . . . . . . . . . . . .

. . . . . . 2 . . . . . . . . . . . . .

. . . . . . 1 . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . 1 . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . .

eschweizerbartxxx ingenta

01.04.2009 11:57:22


The forest vegetation of Ramal de Guaramacal in the Venezuelan Andes Plot No. Area 1x10 (m2) No. of Species (DBH • 2.5 cm) E l e v Slope exposure Park sector Order Alliance Association Subassociation Variant

13

28

29

5

21

22

11

14

10

25

12

19

26

32

15

30

31

17

20

23

27

16

33

8

39

35

36

37

38

43

44 PL3 34

40

41

100

100

100

100

100

100

100

100

100

100

100 100

100

100 100

100

100

100

100

100

100

100 100 100

100

100

100

100

30

100 100 100

100

100

100

40

100

20

5

10

10

20

20

40

47

40

45

36

43

55

42

53

52

60

35

41

41

42

46

44

42

43

38

45

60

35

61

33

29

31

29

34

31

41

27

21

18

17

9

10

10

18

19

22

1 4 5 0 S B

1 3 3 0 S B

1 4 5 0 S B

1 8 5 0 N A

1 8 8 0 NO C

2 1 0 0 NO C

1 8 0 0 S B

1 6 5 0 N B

1 6 0 0 S B

1 2 2 2 1 1 1 2 9 1 3 1 9 9 9 0 0 0 0 7 6 5 5 7 0 0 0 0 0 0 0 0 N N N N N S S N B A A A A A B A Meliosma tachirensis - Alchornea grandiflora

2 3 5 0 N A

2 2 5 0 NO C

2 2 6 0 N B

2 5 8 0 N A

2 4 7 4 N B

2 4 7 0 S A

2 1 0 0 S A

2 5 8 0 S A

2 3 0 0 S A

2 7 5 0 N A

2 8 9 0 N A

2 8 7 0 N A

2 8 7 0 N A

2 8 1 0 N A

3 0 6 0 S A

3 0 5 0 N A

2 8 3 0 N A

3 0 5 0 N A

2 9 5 0 S A

2 9 5 0 S A

1.1

3 50

Geonomo undatae -Posoq. coriaceae 1 2 1.2

. . . . . . . . Viburnum tinoides . . . . . . . . Arthrostylidium venezuelae . . . . . . . . Palicourea jahnii . . . . . . . . Pentacalia vicelliptica Subassoc. 4.1. typicum . . . . . . . . Calyptranthes cf. meridensis . . . . . . . . Brunellia cf. integrifolia . . . . . . . . Panopsis suaveolens . . . . . . . . Myrcia aff. guianensis . . . . . . . . Dioicodendron dioicum . . . . . . . . Gaiadendron punctatum . Ilex truxillensis var. bullatissima . . . . . . . . . . . . . . . Meliosma venezuelensis . . . . . . . . Symplocos bogotensis . . . . . . . . Ocotea sericea Subassoc. 4.2. miconietosum suaveolentis . . . . . . . . Critoniopsis paradoxa . . . . . . . . Hedyosmum sp. A . . . . . . . . Miconia suaveolens . . . . . . . . Hyeronima scabrida . . . . . . . . Aegiphila moldenkeana . . . . . . . . Chusquea purdieana . . . . . . . . Ocotea sp. B . . . . . . . . Monnina meridensis Alliance 2. Farameo killipii - Prunion moritzianae . . . . . . . . Faramea killipii . . . . . . . . Clethra fagifolia . . . . . . . . Anaectocalyx bracteosa . . . . . . . . Cyathea pauciflora . . . . . . . . Prunus moritziana . . . . . . . . Zanthoxylum melanostictum . . . . . . . 1 Cyathea caracasana . . . . . . . . Cybianthus iteoides . . . . 2 . . . Eugenia cf. tamaensis . Weinmannia aff. balbisiana . . . . . . . . . . . . . . . Rudgea tayloriae . . . . 1 . . . Aiouea dubia . . . . . . . . Miconia mesmeana . . . . . . . . Miconia tovarensis . . . . . . . . Myrcia cf. sanisidrensis . . . . . . . . Ocotea vaginans . . . . . . 1 . Hieronyma moritziana . . . . . . . . Symbolanthus vasculosus . . . . . . . . cf. Elaeoluma nuda . . . . . . . . Ocotea leucoxylon . . . . . . . . Mikania banisteriae . . . . . . . . Citronella costaricensis . . . . . . . . Geonoma jussieuana . . . . . . . . Diogenesia tetrandra . . . . . . . . Ocotea cf. hexanthera . . . . . . . . Saurauia yasicae . . . . . . . . Dicksonia sellowiana . . . . . . . . Mikania nigropunctulata . . . . . . . . Eugenia albida Montane forest order group of Meliosma tachirensis and Alchornea grandiflora 1 . . . 1 . . . Clusia trochiformis 1 . 2 1 2 1 2 . Alchornea grandiflora . . 1 1 3 1 3 . Piper longispicum . . 1 . . 1 . . Clusia alata . . 1 . . 1 1 . Miconia theaezans 2 2 . . . . 1 . Ruagea pubescens . 2 2 . 1 1 . . Geissanthus fragrans . 1 . . . 1 1 . Besleria pendula . . . . . . . . Cyathea fulva . . . . 1 1 . . Beilschmiedia tovarensis . . . 1 1 1 . 1 Billia rosea . . . . 1 1 . . Hieronyma cf. oblonga . . 1 . . . . . Psammisia hookeriana . 1 . . 1 1 1 . Blakea schlimii . . . . 2 . . . Meliosma tachirensis . 1 . 1 . . . . Sphaeradenia laucheana . . 1 1 . . 2 1 Tetrorchidium rubrivenium . . . . 1 . 1 . Palicourea angustifolia . . . . . . 1 1 Dendropanax arboreus . . 1 . . . . . Ocotea karsteniana . . . . . . 1 1 Eugenia cf. oerstediana 1 1 1 . . . . 1 Miconia cf. dolichopoda . . . 1 1 . . . Trichilia septentrionalis

phyto_39_1.indb 119

2

18

1

7

119

36

4 59

36

2 2 1 1 1 2 2 1 1 8 8 7 4 4 0 2 8 7 7 5 8 0 5 0 5 0 0 0 N S S S S N N B B B B B A A montane forest order group Farameo killipii - Prunion moritzianae

3

6

9

24

Ruilopezio paltonioides - Cybianthion marginati 5 6 7

4 4.1

3.1

5.1

4.2

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

3.2 . . . .

. . . .

. 1 . .

1 . . .

. . . 1

. . . .

. . . .

. . . .

. . 1 .

1 . . .

. 1 . .

. . . .

. . . .

. . . .

. . . 1

. . . .

. . . .

. . 1 .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

1 . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

1 . . . 1 . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . 1 . . . . . .

. . . . . . . . . .

. . . . . . . . . .

2 . . . . . . . . .

2 . . . . . . . . .

. 1 . . . . . . . .

. 1 . . . . . . . .

. . . . . . . . . .

3 1 1 1 1 1 1 1 1 .

2 1 1 1 . . . . . .

1 1 1 . 1 1 . 1 1 1

3 1 . . . . 1 . . 1

1 2 . 1 1 . 1 . . .

2 . . . . . . . . .

. . . . . 1 . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . 1 . .

. . . . . 1 . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

1 2 . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

1 3 . . . . . .

. . . . . . . .

. . . . . . . .

. . . 1 . . . .

1 . . . . . . .

3 . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

3 1 3 1 2 3 1 2

4 2 1 1 1 . 1 .

2 2 3 1 . . . .

4 4 . 2 . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . 1 . . . . . . . . . . . . . . . . . .

1 . . . . . . . . . . . . . . . . . 1 . 1 . . . . . . . .

2 1 . . 1 . . . 3 . . 1 1 . . 2 1 . 1 . . 1 . . . 1 . . .

. . . . 1 . . . . . . . . . . 1 1 . 1 . . 1 . . . . . . .

1 . . . 1 1 . 2 1 . . 1 . 2 . . 1 . . . . . . . . . . . .

1 1 1 1 1 1 2 . . 1 1 . . 2 1 1 1 . . . . . . . . 1 . . .

2 . 1 . 1 1 . 1 . 1 . . . . 1 . . 1 1 1 . . 1 . . . . . .

1 . . . 1 2 . 2 . . . 2 . . . 1 1 . . . 2 . . . . . . . 1

2 1 1 2 1 . . . 1 1 2 . . . 1 . . . . 1 1 . . . 2 . . 1 .

1 1 1 2 1 1 . 1 . 1 2 1 1 . . 1 . . . . . . . . . . . . .

. . 1 . . 1 1 . 1 1 . . . . 2 . . 1 . 1 . . 1 . . . 1 . .

1 1 1 4 1 3 . 2 . . . . . . . . . 1 1 . . . . 1 . . . . .

. . 1 . 1 1 . 1 . . . . . 1 . . 1 . . . . . . . . . . . .

4 1 3 1 1 1 3 1 3 . . 1 . . . . 1 1 1 1 . 1 . . . 1 . . .

3 2 3 . 1 . 3 . . . . 1 . . . . . . . . . 1 . . . . 1 . .

2 1 2 . 1 2 . . 2 2 . 1 . . . 2 1 1 1 1 . . 1 1 . . . 1 .

1 1 3 . 2 . 2 2 . 2 . . . . 3 . . 2 . . . . . . . . . . .

4 . 3 2 1 1 1 1 1 . 2 1 . . 2 . . . . 1 1 . . . 2 . 1 . .

4 1 2 1 . . . . . . . . 1 . . . . . . . . . . . . . . . 1

1 1 1 2 . . . . . . 1 . . . . . . . . . . . . . . . . . .

. 5 1 . 1 . 2 . . . . . . . . . . . . . . . . . . . . . .

. 2 1 3 . 1 . . . . 1 . 4 3 . . . . . . . . . . . . . . .

. 2 1 . 1 . . . . 1 . . . . . 1 . . . . . . . 2 . . . . .

1 2 . 2 . . . . . . 1 . . 2 . . 1 1 . . . . 1 . . . . . .

. 2 . . . . . . . . . . 1 . . . . . . . . . . . . . . . .

. 1 . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 1 . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. 1 1 1 2 . 1 1 . . . 1 . . . 1 . . 2 . 1 . .

. 1 2 . 1 . 1 1 2 1 1 1 1 2 1 . . 1 1 . 2 1 .

. 1 3 . 2 2 2 . . 1 . . 1 . 1 . 1 . . . . . 1

1 1 3 . 1 3 1 . 2 2 1 1 . . 1 . 1 . . . . . 1

. 1 3 1 2 1 1 . 1 1 . 1 . 1 1 . 1 . . . . 1 1

. 3 2 . . . 1 3 . 1 1 1 . 2 . . 1 3 1 1 . . .

1 1 . . 2 2 2 . . 1 1 2 . 1 . . . . . 1 . . .

1 1 1 1 . 1 1 . 3 2 1 1 1 1 . . . . . 1 . . .

. 2 2 1 . 1 1 2 2 1 1 2 . 1 . . 1 3 1 1 . . .

. 1 1 . . 2 . 1 1 1 1 1 1 1 1 . . . . . . . .

2 . 2 . 1 3 . 2 . . 1 2 . . . . 1 . . . . . .

. 1 1 1 . 1 1 3 1 1 1 . 1 1 . 5 . . 1 . . . .

2 3 . . . . . 2 2 1 1 . 1 1 1 1 . . . . 2 . .

. 2 1 1 . 1 1 2 3 1 1 . . . 2 . . 1 2 . . . .

2 1 1 . 1 1 . . . . 1 1 1 . 1 . . . . 1 . . .

2 . . 2 . . . 1 . . . . . . . . . . . 1 . . 1

3 3 1 . . . 1 . 1 2 1 1 2 . 1 . 1 . . 1 . 1 .

3 1 . 2 . . 1 . . . 1 . 2 . . 1 . . . . . . .

2 1 . 1 1 . . . 1 1 1 . . . . 2 . . . 1 . 1 .

3 . . 1 1 . . . . . . . . . . . . . . . . . .

4 . . 2 . . . . . . . . . . . 3 . . . . . . .

2 . . 3 1 . . . . . . . . . 1 . . 1 . . . . .

4 2 . 2 3 . 1 . . . . 1 . . . . 1 . . . 2 . .

3 . . 4 1 . . . 1 . . . 1 . . . . . . . . . 1

3 . . 3 3 2 . . . . . . . . 1 . . . . . . . .

. . . 1 . . . . 1 . . . . . . . . . . . . . .

. . . . . . . . 1 . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . 1 . . . . . . . . . .

eschweizerbartxxx ingenta

01.04.2009 11:57:22


120 Plot No. Area 1x10 (m2) No. of Species (DBH • 2.5 cm) E l e v Slope exposure Park sector Order Alliance Association Subassociation Variant

N. L. Cuello A & A. M. Cleef 13

28

29

5

21

22

11

14

10

25

12

19

26

32

15

30

31

17

20

23

27

16

33

8

39

35

36

37

38

43

44 PL3 34

40

41

100

100

100

100

100

100

100

100

100

100

100 100

100

100 100

100

100

100

100

100

100

100 100 100

100

100

100

100

30

100 100 100

100

100

100

40

100

20

5

10

10

20

20

40

47

40

45

36

43

55

42

53

52

60

35

2

3

41

41

42

46

44

42

43

38

45

60

35

61

33

29

31

29

34

31

41

27

21

18

17

9

10

10

18

19

22

1 4 5 0 S B

1 3 3 0 S B

1 4 5 0 S B

1 8 5 0 N A

1 8 8 0 NO C

2 1 0 0 NO C

1 8 0 0 S B

1 6 5 0 N B

1 6 0 0 S B

1 2 2 2 1 1 1 2 9 1 3 1 9 9 9 0 0 0 0 7 6 5 5 7 0 0 0 0 0 0 0 0 N N N N N S S N B A A A A A B A Meliosma tachirensis - Alchornea grandiflora

2 3 5 0 N A

2 2 5 0 NO C

2 2 6 0 N B

2 5 8 0 N A

2 4 7 4 N B

2 4 7 0 S A

2 1 0 0 S A

2 5 8 0 S A

2 3 0 0 S A

2 7 5 0 N A

2 8 9 0 N A

2 8 7 0 N A

2 8 7 0 N A

2 8 1 0 N A

3 0 6 0 S A

3 0 5 0 N A

2 8 3 0 N A

3 0 5 0 N A

2 9 5 0 S A

2 9 5 0 S A

50

Geonomo undatae -Posoq. coriaceae 1 2 1.2

1.1

18

1

7 36

4 59

36

2 2 1 1 1 2 2 1 1 8 8 7 4 4 0 2 8 7 7 5 8 0 5 0 5 0 0 0 N S S S S N N B B B B B A A montane forest order group Farameo killipii - Prunion moritzianae

3

6

9

24

Ruilopezio paltonioides - Cybianthion marginati 5 6 7

4 4.1

3.1

5.1

4.2

. . . . . . . . . . 1 .

. 1 . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . 1 . 1

. . . 1 . . . 1 . . . .

. . 1 . 1 . . . . . . .

1 . . . 1 . . . . . . .

. . 1 . . . 1 . 1 . . .

1 . . . . . . . . 1 . .

2 . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . 1 . . . . . .

. . . . . . . . . . . .

1 . . 2 . . . . 1 1 . .

. . . . . . . . . . . .

. . 1 . . . . . . . . .

3.2 . 2 . . . . . . . . . .

. 2 . . . . 1 1 1 . . .

2 . 1 . . . . . . . . .

. . . . . . . . . . . .

1 . 1 2 1 . . . 1 . . .

. . 1 . . . . . . . . .

. . . . . . 1 1 . 1 . .

. . 1 . . 1 . . . . . 1

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . 2 .

. . . . . . . . 1 . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . 1 . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

1 . . 1 . . .

1 . . . . . .

. . . 1 . . .

3 . . . . . .

5 2 1 2 1 . .

2 1 2 2 2 1 1

1 4 3 2 1 1 .

. 2 4 . . 2 2

1 . 1 . . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . 1 1 . .

. 1 . 1 . 1 .

1 1 . 1 . . .

. . . . . . Hedyosmum translucidum . . . . . . Freziera serrata . . . . . . Weinmannia auriculata . . . . . . Weinmannia karsteniana . . . . . . Macrocarpaea bracteata . . . . . . Ocotea calophylla Assoc. 6. Libanothamnetum griffinii . . . . . . Libanothamnus griffinii Assoc. 7. Gaultherio anastomosantis - Hesperomeletum obtusifoliae . . . . . . Hesperomeles obtusifolia . . . . . . Diplostephium obtusum . . . . . . Gaultheria anastomosans . . . . . . Pentacalia greenmanniana . . . . . . Ageratina theifolia Alliance 3. Ruilopezio paltonioides - Cybianthion marginati . . . . . . Miconia tinifolia . . . . . . Cybianthus marginatus . . . . . . Myrsine dependens . . . . . . Vaccinium corymbodendron . . . . . . Pentacalia cachacoensis . . . . . . Ruilopezia paltonioides . . . . . . Blechnum schomburgkii . . . . . . Monochaetum discolor . . . . . . Symplocos tamana . . . . . . Ilex guaramacalensis . . . . . . Themistoclesia dependens . . . . . . Monnina sp. . . . . . . Chusquea angustifolia . . . . . . Chaetolepis lindeniana

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .

4 . . . . .

. . . . . .

. 1 . . 1 1

3 . . . . .

3 3 3 2 1 1

. . . . . .

1 . . . . .

. . . . . .

. . 1 1 . .

. . . . . .

. . . . . .

. . 2 . . .

. . . . . .

. . . . . .

. . . . . .

. . Ocotea floribunda . . Weinmannia sorbifolia . . Ocotea macropoda . . Elaeagia karstenii . 1 Tabebuia guayacan . 1 Clusia sp. A . . Sloanea brevispina . . Macleania rupestris . . Mikania stuebelii . . Celastrus liebmannii . . Cyathea pungens . . Geonoma orbignyana Assoc. 5. Geissantho andini - Miconietum jahnii . . Weinmannia lechleriana . . Geissanthus andinus . . Miconia jahnii . . Oreopanax discolor . . Disterigma alaternoides . . Thibaudia floribunda . . Pentacalia theifolia Subcommunity 5.1. Freziera serrata

Ageratina neriifolia 20(1) Allophylus cf. glabratus 18(1) Alsophila angelii 27(1) Anthurium eminens 29(1) Anthurium ginesii 24(1) Anthurium humboldtianum 27(1) Anthurium nymphaeifolium 15(1) Anthurium smaragdinum 21(1) Bacharis brachylaenoides 39(1) Bredemeyera sp. 25(1) Brunellia acutangula 6(1) Calyptranthes sp. 27(1) Cecropia sp. 25(1) Cestrum buxifolium 24(1) cf. Escallonia hispida 27(1) Chrysophyllum sp. 22(1) Cissus trianae 15(1) Citharexylum venezuelense 13(1) Coccoloba sp. 28(1) Coffea arabica 10(1)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

5

5

5

5

1

.

.

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

. . . . .

1 2 . . .

1 4 . . .

1 . . . .

. . . . .

2 1 . . 1

3 . 1 . .

. . . . .

3 4 3 . .

4 2 3 1 1

4 1 1 2 .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

1 . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

1 . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

. . . . . . . . . . . . . .

2 . . . . . . . 1 . 1 . . .

2 . . . . . . . . . . . . .

1 . . . . . . . . . . . . .

. . . . . . . . . . . . . .

1 . . . . . . . . . 1 . . .

. . . . . . . . 1 . 1 . . .

. 2 . . . . . . 4 . . . . .

. . . . 1 . . . . . . . . .

2 . . . . . . . . . . . . .

1 . . . . . . . . . . . . .

1 . . . . . . . . . . . . .

3 1 3 1 1 . . 1 3 1 1 . . .

5 4 4 1 1 1 1 1 5 2 1 1 1 1

4 4 3 2 1 1 . . 3 2 1 1 . .

5 2 3 2 2 . 1 . 3 3 . . 2 .

1 3 1 1 1 1 1 2 1 1 . 1 . .

2 2 2 1 . . 1 . . . . . . .

1 4 1 . 1 1 1 . . . . . . .

2 5 . 3 . 2 4 2 . 2 2 . . .

1 5 2 3 1 1 3 1 1 1 . 1 . 1

2 5 3 3 2 1 4 . 1 1 . . . .

3 5 4 4 2 3 . . 1 1 2 1 1 .

eschweizerbartxxx ingenta

Cupania cf. scrobiculata 13(1)

Henriettella sp. 25(1)

Nectandra sp. 13(1)

Randia cf. dioica 14(1)

Cyathea aff. straminea 27(1) Cybianthus stapfii 38(1) Dichapetalum pedunculatum 25(1) Disterigma sp. 27(1) Drymonia crassa 18(1) Elaeagia myriantha 5(1) Elateriopsis oerstedii 28(1)

Henriettella tovarensis 10(1) Hesperomeles sp. 36(1) Hoffmannia pauciflora 21(1) Hydrangea sp.1 22(1) Hypericum paramitanum 40(1) Ilex sp.1 5(1) Ladenbergia cf. buntingii 13(1)

Neea sp. 13(1) Ocotea aff. tarapotana 14(1) Ocotea auriculata 5(1) Ocotea sp. 33(1) Ocotea terciopelo 20(1) Oreopanax sp. 38(1) Ossaea micrantha 21(1)

Rhamnus sphaerosperma 27(1) Roupala barnettiae 32(1) Ruagea glabra 1(1) Ruellia tubiflora 3(1) Schlegelia spruceana 14(1) Sloanea laurifolia 1(1) Smilax kunthii 20(1)

Endlicheria sp. 25(1) Eschweilera sp. nov. 13(1) Eugenia sp. 33(1) Eugenia triquetra 37(1) Eugenia sp. 2 39(1) Ficus tovarensis 25(1) Fuchsia membranacea 37(1) Gaultheria erecta 38(1) Greigia albo-rosea 20(1) Hedyosmum racemosum 1(1) Heisteria acuminata 28(1) Henriettella cf. verrucosa 14(1)

Markea sp. 20(1) Mascagnia sp. 10(1) Meliosma meridensis 4(1) Mendoncia tovarensis 14(1) Miconia donaeana 29(1) Miconia elvirae 41(1) Miconia sp. C (hibrido) 3(1) Mikania houstonians 22(1) Mikania sp.1 20(1) Monnina sp.2? 41(1) Morus insignis 28(1) Myrcianthes sp. 3(1)

Panopsis sp. 31(1) Paragynoxis cuatrecasasii 39(1) Paragynoxis venezuelae 6(1) Persea ferruginea 23(1) Persea sp.2 27(1) Persea sp.3 14(1) Piper aduncum 5(1) Piper phytolaccifolium 13(1) Piper sp. 18(1) Piper veraguense 22(1) Psychotria amita 22(1) Psychotria cf. lindenii 10(1)

Solanum aturense 18(1) Solanum confine 3(1) Sphaeropteris sp. 3(1) Talauma sp. 13(1) Ternstroemia acrodantha 4(1) Ternstroemia sp. A 17(1) Ternstroemia sp.B 16(1) Vismia baccifera 7(1) Zanthoxylum acuminatum 6(1)

Physiognomy and composition: The forest communities of this alliance are humid forests of medium to high stature, up to 25–30 m tall, characterized by the presence of high trees of: Rubiaceae, Euphorbiaceae, Lauraceae, Sapotaceae, Melastomataceae, Moraceae, Bombacaceae, Meliaceae and Rutaceae being among the most important according to abundance, frequency and basal area. The most diverse families by species represented are Rubiaceae, Lauraceae, Melastomataceae, Myrtaceae, Euphorbiaceae and Meliaceae.

phyto_39_1.indb 120

A: Guaramacal; B: Agua Fria, C: El Santuario

Among the canopy species can be found Calatola venezuelana, Ficus nymphaeifolia, Gordonia fruticosa, Matayba camptoneura, Mouriri barinensis, Nectandra aff. purpurea, Persea peruviana, Posoqueria coriacea, Pouteria baehniana, Tapirira guianensis and Trigynaea duckei. In the subcanopy are common: Eugenia moritziana, Geonoma undata, Guarea kunthiana, Mabea occidentalis, Psychotria longirostris, Rollinia mucosa and Rudgea nebulicola. Some lianas can also be found in these forests, such as: Hydrangea

01.04.2009 11:57:22


The forest vegetation of Ramal de Guaramacal in the Venezuelan Andes

cf. preslii, Marcgravia brownei, Paullinia cf. latifolia and Salacia aff. cordata. Syntaxonomy: This alliance is defined on the basis of ten 0.1-ha plots that include 211 species with dbh ≥ 2.5 cm, corresponding to 123 genera and 60 families of vascular plants. The diagnostic species in the canopy are Posoqueria coriacea and Pouteria baehniana. In the subcanopy small trees of Matayba camptoneura and Guarea kunthiana, and the palm Geonoma undata are also diagnostic. This alliance includes two associations: Simiro e r y t h r o x y l i – Q u a ra ri be e tu m magn ificae and C o n cho c a rpo l a re nsi s– Cou s sareetu m m o r it z i a na e . Ecology and distribution: The Geonoma undata– Posoqueria coriacea alliance of subandean forest groups the forest communities located on the lower slopes of Ramal de Guaramacal, in particular areas of remnant forests near and beyond the border of the National Park. 1. S im ir o e ry thro x y l on i s– Q ua rarib eetu m m a g n i f ic a e assoc. nov. Typus: Cuello Plot No. 28. 1880 m, Table 3. Photo 2. Subandean forests of Simira erythroxylon and Quararibea magnifica Physiognomy and composition: The subandean forests of Simira erythroxylon var. meridensis and Quararibea magnifica display a medium stature and density, mainly composed of mature trees with an average diameter greater than 10 cm and a few thin

eschweizerbartxxx ingenta

121

individuals. The canopy of the forest is composed of trees of between 10 to 28 m with a dense cover; Simira erythroxylon var. meridensis, Quararibea magnifica, ocotea cernua and Posoqueria coriacea being the most abundant species. In some areas there are some emergent trees of up to 32 m, such as: Pleurothyrium costanense, Casearia tachirensis, Sloanea aff. guianensis and Simira erythroxylon var. meridensis, being among the most abundant. Simira erythroxylon var. meridensis is also common in the subcanopy (5 – 10 m), together with treelets of Parathesis venezuelana, Aegiphila floribunda, Inga edulis, Miconia cf. dolichopoda, Trichilia pallida, Vasconcella microcarpa, the small trees, Cuatresia riparia, Picramnia sp. C. and the tree ferns Cyathea pungens and C. caracasana. Among the most abundant lianas and climbers present are: Anthurium eminens, A. smaragdinum, Campyloneuron ophiocaulon, Elateriopsis oerstedii, Paullinia capreolata, Piper sp., Smilax spinosa, Sphaeradenia laucheana and Trichomanes radicans. Epidendrum unguiculatum, Guzmania mitis, Maxillaria nigrescens, Mezobromelia capituligera, Peperomia ouabianae, P. peltoidea, P. portuguesensis and Polytaenium lineatum stand out among the epiphytes. The understory is rich in terrestrial ferns, such as: Asplenium alatum, Didymochlaena truncatula, Diplazium celtidifolium, D. hians, Polystichum muricatum, some of them reaching heights of up to 2 m. The terrestrial orchid Corymborkis flava, the palm Chamaedorea pinnatifrons, and shrubs like Urera caracasana, Psychotria fortuita and several species of

Photo 1. Aspect of the subandean forest of the North slope of Ramal de Guaramacal. Forests with whitish canopies of Cecropia telenitida above of the recreative area “Laguna de los cedros” at 1800 m.

phyto_39_1.indb 121

01.04.2009 11:57:23


122

N. L. Cuello A & A. M. Cleef

the genus Piper, such as P. hispidum, P. dilatatum and P. aduncum, are also present, among others. Syntaxonomy: This association is defined on the basis of ten 0.1-ha plots with 127 species with dbh ≥ 2.5 cm. The diagnostic species are Simira erythroxylon in the canopy, and Parathesis venezuelana in the subcanopy. Two subassociations can be recognized: subass. typicum and bunchosietosum armeniacae. Ecology and distribution: The subandean forest of the association S i m i ro e ryth rox yl o nis–Quarar i b e e t u m m a g n i fi c a e can be found on the southern slope of Ramal de Guaramacal, sector Agua Fría, in the surroundings of Río Frío, (1300–1500 m); in the northwestern sector of Qda. Honda (1800–2100 m); and on the northern slope, around the recreative area Laguna de los Cedros (1800–1900 m) (Photo 1).

Simiro e ry th ro x y lo n is – Qu ara rib e e tu m ma g n ific a e 1.1 subassociation typicum nov. Typus: Cuello Plot No. 28, 1450 m. Photo 2. Subassociation of Simira erythroxylon Physiognomy and composition: The canopy trees reach 10–24 m with a dense cover. The composition is as described for the association; Simira erythroxylon, Pouteria baehniana and Quararibea magnifica, also being abundant, along with other species like Cecropia sararensis, Eugenia moritziana, Hippotis albifora, Tammsia anomala and Trichilia pallida. The subcanopy differs from that of the association by the major presence of Alchornea glandulosa, Hippotis albiflora, Rudgea nebulicola, Simira lezamae, Stylogyne longifolia and the palm Geonoma undata, which can reach

eschweizerbartxxx ingenta

Photo 2. Interior of plot 29 of the subandean forest of the association S i m i ro e ry t h ro x y l o n i s– Qu a ra ri b e e t u m m a g n if ic a e subassociation typicum at 1450 m in the Agua Fría-Río Frío sector on the South slope.

phyto_39_1.indb 122

01.04.2009 11:57:23


The forest vegetation of Ramal de Guaramacal in the Venezuelan Andes

0.1-ha plots, with a total of 67 species with dbh ≥ 2.5 cm. The diagnostic species of the subassociation are Bunchosia armeniaca, Psychotria fortuita and Pleurothyrium costanense.

heights of 14 m. Among the small trees and shrubs of 3 to 6 m, Aphelandra macrophylla, Cuatresia riparia and Psychotria trichotoma are prominent. Further occurances of the shrubs: Palicourea petiolaris, Piper phytolaccifolium, Psychotria patria, Randia dioica, Ruellia tubiflora var. tetrastichantha, Winterigia solanacea; stranglers like Dioscorea coriacea; epiphytes as Dichaea sp., Elleanthus graminifolius, Jacquiniella teretifolia and Peperomia peltoidea; ferns like Asplenium uniseriale; large perennial herbs like Heliconia hirsuta and Sphaeradenia laucheana; and small herbs: Heppiella viscida, Ichnanthus nemorosus, Solanum pentaphyllum, Sanicula liberta, and Begonia trispathulata are also present in the ground layer.

Ecology and distribution: The forests of the subassociation of Bunchosia armeniaca are those patches of subandean forest between 1800 and 1900 m on the northern and northwestern slope of Ramal de Guaramacal. Their extension is limited by the Park border. In general this altitudinal interval is occupied by human activities throughout the North slope. This community can be recognized from distance by presence of Cecropia telenitida (“yagrumo blanco”) due to its conspicuous white color leaf pubescence (Photo 1). This species typically constitutes a zone of forest on the North slope in Guaramacal, generally corresponding to the zone of cloud cover accumulation at around 1800–2000 m. Subandean forest with Cecropia telenitida or vicariant species can also easily be observed elsewhere in the Andes of both Venezuela and Colombia (Cuatrecasas 1958; Smith 1985; Cleef et al. 2003).

Syntaxonomy: The subassociation is defined on the basis of three 0.1-ha plots with 83 species with dbh ≥ 2.5 cm. The diagnostic species in the canopy are Alchornea glandulosa, Cecropia sararensis and ocotea sp. C. Aphelandra macrophylla and Psychotria trichotoma are diagnostic in the subcanopy. Other species found in the forest only of this subassociation, albeit at very low density and frequency, are: Citharexylum venezuelense, Coccoloba sp., Cupania cf. scrobiculata, Eschweilera sp. nov. (Cuello 1832), Heisteria acuminata, Ladenbergia cf. buntingii, Nectandra sp. (Cuello 1838), Neea sp. (Cuello 1851), Morus insignis, Miconia donaeana and Talauma sp. (Cuello 1745). Ecology and distribution: The forests of the Simiro erythroxylonis – Quararibeetum magnificae subassociation typicum are located between 1300 and 1500 m, on the South slope, near the border of PortuguesaTrujillo states and also in the surroundings of the Río Frío (sector B – Agua Fría). These forests represent the few remaining extensions of undisturbed mature forest of this altitudinal zone. S im iro ery throxy l oni s– Q u a ra ri be etum m agni fi c ae 1.2. subassociation bu nc ho si e to sum a rmen iacae nov. Typus: Cuello Plot No. 5, Fig. 2. Subassociation of Bunchosia armeniaca Physiognomy and composition: Physiognomy and composition as described for the association; Acalypha macrostachya, Calatola venezuelana, Cecropia telenitida, Ficus tonduzii and Pleurothyrium costanense being more abundant in the canopy. This subassociation differs from the typicum subassociation by the subcanopy presence of Bunchosia armeniaca, Cestrum bigibbosum, Hydrangea aff. peruviana, Psychotria fortuita, Saurauia tomentosa and Solanum nudum, and the high density of Diplazium celtidifolium in the understory. Syntaxonomy: The forests of the subassociation bunchosietosum armeniacae are represented by two

phyto_39_1.indb 123

123

2. Con cho carp o larensis–Co u ssareetum moritzian ae assoc. nov. Typus: Cuello Plot No. 10. Table 3, Fig. 3 Subandean forests of Conchocarpus larensis y Coussarea moritziana eschweizerbartxxx ingenta

Physiognomy and composition: The canopy height is between 10 and 25 m, with emergent trees of up to 30 m and a species compositon as described for the alliance. Some of the most abundant species in the canopy are Coussarea moritziana, Miconia lonchophylla, Aniba cf. cinnamomiflora, Protium tovarense, Eschweilera perumbonata, Chrysophyllum cf. cainito, Tocoyena costanensis subsp. andina and Sloanea guianensis. Among the subcanopy trees (3—10 m tall), Piper longispicum var. glabratum, Mabea occidentalis, Croizatia brevipetiolata, Hedyosmum cf. gentryi, Conchocarpus larensis, Meliosma pittieriana, Tabebuia guayacan, Rudgea nebulicola, Faramea guaramacalensis, Petrea pubescens, Eugenia cf. tamaensis, and the palms Geonoma undata and Wettinia praemorsa stand out. Lianas are also abundant in this community. Among them are Clusia sp.1, Dichapetalum pedunculatum, Hydrangea sp. 1 (Cuello 2211), Machaerium cf. floribundum, Mascagnia sp. A, Mendoncia tovarensis, Mikania houstonians, Salacia aff. cordata, Schlegelia spruceana, the climber Asplundia vagans and hemiepiphytic trees such as Clusia alata y C. trochiformis. The most common epiphytic species are the ferns Asplenium raddianum, Microgramma percusa, the bromeliads Guzmania mitis and Mezobromelia capituligera, and the orchids Pleurothallis biserrula, Scaphyglottis summersii and Trichocentrum pulchrum.

01.04.2009 11:57:23


124

N. L. Cuello A & A. M. Cleef

eschweizerbartxxx ingenta

Fig. 2. Subandean forest of the association Sim i ro e ry t h ro x y l o n i s– Qu a ra ri b e e t u m m a g n i f c a e subassoc. b un c h o s ie t u m armen iacae. Plot 5: 1850 m, North slope. Af: Aegiphila floribunda; Ba: Bunchosia armeniaca; Ct: Cecropia telenitida; Em: Eugenia moritziana; Gk: Guarea kunthiana; Hp: Hydrangea peruviana; Md: Miconia cf. dolichopoda; Pc: Pleurothyrium costanense; Pf: Psychotria fortuita; Poc: Posoqueria coriacea; Pv: Parathesis venezuelana; Se: Simira erythroxylon; Uc: Urera caracasana.

Among the common small trees and shrubs less than 3 m tall are: Besleria pendula, Dendropanax arboreus, Eugenia cf. oerstediana, Psychotria amita, P. cf. lindenii, Piper aequale, and the tree ferns Alsophila erinacea, Cyathea kalbreyeri and C. fulva. In some places there are also dense colonies of large-leaved perennial herbs such as Sphaeradenia laucheana, Heliconia hirsuta and Renealmia nicolaioides. Small herbs like Heppiela viscida and ferns such as Danaea moritziana, Arachniodes denticulada, and Asplenium radicans are present in the ground layer. Syntaxonomy: The association of Co n cho carp o l a r e n s is –Cou ssa re e tu m m o ri tz i a nae is defined

phyto_39_1.indb 124

on the basis of five 0.1 ha-plots, with 145 species with dbh ≥ 2.5 cm. This forest association can be distinguished from the other two forest associations of the alliance by the diagnostic presence of Conchocarpus larensis, Coussarea moritziana, Meliosma pittieriana, Hedyosmum cf. gentryi, Pseudolmedia rigida and Cyathea kalbreyeri. Other diagnostic species in this association, although of lesser abundance and frequency, but absent elsewhere are: Alsophila erinacea, Asplundia vagans, Eugenia grandiflora, Machaerium cf. floribundum, Petrea pubescens, Piper arboretum, Salacia aff. cordata and Tocoyena costanensis.

01.04.2009 11:57:23


The forest vegetation of Ramal de Guaramacal in the Venezuelan Andes

125

eschweizerbartxxx ingenta

Fig. 3. Subandean forest of the association Conc h o c a rp o l a re n si s– C o u ssa re t u m m o ri t z i a n a e . Plot 10: 1650 m, South slope. Cc: Chrysophyllum caimito; Ccu: Cybianthus cuspidatus; Cm: Coussarea moritziana; Cl: Conchocarpus larensis; Da: Dendropanax arboreus; Gu: Geonoma undata; Ho: Hyeronima oblonga; Mo: Mabea occidentalis; Mb: Mouriri barinensis; Mp: Meliosma pittierana; Pp: Petrea pubescens; Pl: Psychotria cf. lindenii; Wp: Wettinia praemorsa.

The canopy species Aniba cf. cinnamomiflora, Protium tovarense, Miconia lonchophylla, Sloanea guianensis and Wettinia praemorsa present in this association, are also absent from the previous association of the alliance, but are common in the forest of the C r o i za ti o b re v i pe ti ol a ta e – Wettin ietu m p r a e m o r s a e of the Fa ra m e o ki l l i p i i–P ru n ion m o r i t z ia n a e . Ecology and distribution: The forests of the Co n chocarpo larensis–Coussareetum moritzianae are located mainly at the northeastern end of Ramal de Guaramacal (sectors Laguna Negra, El Mogote, El Alto) at altitudes between 1600 and 1900 m on both the North and South slopes, as well as at 2100 m in the northwestern sector of Qda. Honda.

phyto_39_1.indb 125

F a ra meo k illip ii–Pru n io n mo ritzia n ae All. nov. Typus: Croizatio brevipetiolatae–Wettinietum praemorsae (this study). Table 3. Subandean and Andean forests of the Faramea killipii and Prunus moritziana alliance Physiognomy and composition: These are humid forests with a moderate to high density of trees of medium to tall height. The most important trees with regards to abundance, frequency and basal area belong to the families Euphorbiaceae, Melastomataceae, Rubiaceae, Arecaceae, Clusiaceae, Lauraceae, Cyatheaceae, Chloranthaceae, Myrtaceae and Cunoniaceae. The top ten most diverse families are: Melastomataceae, Lauraceae, Rubiaceae, Euphorbiaceae, Myrtaceae, Myrsinaceae, Cyatheaceae, Clusiaceae, Arecaceae and Chloranthaceae.

01.04.2009 11:57:23


126

N. L. Cuello A & A. M. Cleef

eschweizerbartxxx ingenta

Fig. 4. Subandean forest of the association of C ro i z a t i o b re v i p e t i o l a t a e – We t t i n i e t u m p ra e m o rsa e. Plot 1: 1960 m, North slope. Ac: Aniba cinnamomiflora; Ag: Alchornea grandiflora; Bp: Besleria pendula; Br: Billia rosea; Cb: Croizatia brevipetiolata; Cc: Cybianthus cuspidatus; Er: Elaeagia ruiz-teranii; Gf: Geissanthus fragrans; Mth: Miconia theaezans; Op: ocotea puberula; Pa: Palicourea angustifolia; Pp: Palicourea puberulenta; Pm: Persea meridensis; Pl: Piper longispicum var. glabratum; Pb: Pouteria baheniana; Sc: Symbolanthus calygonus; Sg: Sloanea guianensis; Wp: Wettinia praemorsa.

The main canopy species are the same as mentioned for the forest group of Meliosma tachirensis and Alchornea grandiflora. Additionally, important canopy species for the forest of this alliance are: cf. Elaeoluma nuda, Hieronyma moritziana, Prunus moritziana, ocotea leucoxylon, O. vaginans, Weinmannia balbisiana and Zanthoxylum melanostinctum. Common subcanopy species are Faramea killipii, Clethra fagifolia and Eugenia cf. tamaensis. In these forests lianas and vines, like Mikania banisteriae, Diogenesia tetrandra, Mikania nigropunctulata are also common. Very common shrubs in the understory are: Cybianthus iteoides and Symbolanthus vasculosus. Syntaxonomy: Two associations are recognized in this alliance, defined from 23 plots that include 228 species with dbh ≥ 2.5 cm belonging to 118 genera and 60 families.

phyto_39_1.indb 126

Prunus moritziana and Zanthoxylum melanostictum are diagnostic in the canopy; Faramea killipii and Clethra fagifolia in the subcanopy. For this alliance, Miconia tovarensis, Rudgea tayloriae, the tree ferns Cyathea caracasana and C. pauciflora and the treelets Anaectocalyx bracteosa and Cybianthus iteoides are also considered diagnostic. This alliance contains the subandean forest association of Croizatio brevipetiolatae– Wettinietum praemorsae, and the Andean forest association of Sch efflero ferrugin eae–Cy b ianthetum laurifolii. Ecology and distribution: The alliance of Faramea killipii and Prunus moritziana includes subandean and Andean forest communities present at altitudes between 1770 and 2600 m on the South slope, and from 1950 to ~2600 m on the North slope.

01.04.2009 11:57:23


The forest vegetation of Ramal de Guaramacal in the Venezuelan Andes

127

Fig. 5. Subandean forest of the association Croiza t i o b re v i p e t i o l a t a e – We t t i n i e t u m p ra e m o rsa e subassoc. h e d y o s m e t o s u m cuatrecazanum. Plot 2: 2100 m, North slope. Ag: Alchornea grandiflora; Bt: Beilschmiedia tovarensis; Ct: Casearia tachirensis; Cb: Croizatia brevipetiolata; Dt: Dussia tessmannii; Er: Elaeagia ruiz-teranii; En: Elaeoluma nuda; Gf: Geissanthus fragans; Hc: Hedyosmum cuatrecazanum; Pd: Palicourea demissa; Pl: Piper longispicum var. glabratum; Pm: Prunus moritziana; Pp: Palicourea puberulenta; Rp: Ruagea pubescens; Th: Turpinia heterophylla; Wp: Wettinia praemorsa. eschweizerbartxxx ingenta

3. C r o i z ati o b re v i pe ti ol a ta e – Wettin ietu m p r a e m o r s a e assoc. nov. Typus: Cuello Plot No. 1. Table 3, Fig. 4, 5. Subandean forests of Croizatia brevipetiolata and Wettinia praemorsa Physiognomy and composition: These forests are of medium stature and density. They display a canopy that reaches between 15 to 25 m in height, with some emergent trees of 26 to 30 m tall. Among the canopy species, besides those mentioned for the alliance and higher group, Aniba cinnanomiflora, Elaeagia ruiz-teranii, Protium tovarense, Miconia lucida and Sloanea guianensis are more prominent. The height of the subcanopy reaches between 5 and 15 m with the dominance of the palm Wettinia praemorsa, occasionally reaching up to 25 m. Croizatia brevipetiolata is very abundant in the subcanopy layer, together with Palicourea angustifolia, Piper longispicum var. glabratum and Geissanthus fragrans, among others. The parasitic Aethanthus nodosus is also a regular occurance in the canopy.

phyto_39_1.indb 127

Common epiphytic species are the ferns Asplenium auriculatum, A. cuspidatum, A. harpeodes, Elaphoglossum cuspidatum, E. eximium, Hymenophyllum polyanthus, Melpomene xiphopteroides, Polypodium fraxinifolium, P. funckii, Polytaenium lineatum, Terpsichore subtilis, T. taxifolia and T. xanthotrichia. Bromeliads such as Guzmania mitis, Mezobromelia capituligera and species of Aechmea, Racinaea and Tillandsia are present. Epiphytic Philodendron fraternum is characteristic for the canopy as well. Among the species of the lower treelets layer (up to 5 m): Besleria pendula, the little palms Geonoma jussieuana, Geonoma undata, the tree ferns Cyathea fulva, C. pauciflora, C. kalbreyeri, C. caracasana, Dicksonia sellowiana and the perennial large herbs Sphaeradenia laucheana and Anthurium nymphaeifolium stand out. Syntaxonomy: The association Cro izat io brevip etio latae–Wettinietu m p raemorsae is defined on the basis of twelve 0.1-ha plots which contained 154 species with dbh ≥ 2.5 cm.

01.04.2009 11:57:23


128

N. L. Cuello A & A. M. Cleef

The diagnostic species in the canopy are: Wettinia praemorsa, Meriania grandidens, and Miconia lucida; and Croizatia brevipetiolata as well as Wettinia praemorsa in the subcanopy. In this association one subassociation and one variant are recognized: the subassociation of hedyosmetosum cuatrecazanum and the variant of Protium tovarense. Ecology and distribution: The forests of the Croizatia brevipetiolata and Wettinia praemorsa association include a more or less homogenous zone between 1700 and ca.~2300 m altitude along both slopes of Ramal de Guaramacal. The locally known “mapora palm” (Wettinia praemorsa) is common, and these forests are consequently known as “maporales”. These forests can display some variations in composition and structure between 1700 and 1900 m on the southern slope (variant of Protium tovarense), and between 2100 and ~2300 m on the northern slope (subass. h e d y o s m e to sum c ua tre c a z a n um), generally however, they maintain a more uniform composition between 1900 and 2200 m on both slopes. C r o i z a ti o brev i pe ti ol a tae – W e tti ni e tum pra em ors ae 3.1. subassociation h e d yo sm e tosu m cu atrecazan u m nov. Typus: Cuello Plot No. 2. Table 3, Fig. 5. Subassociation of Hedyosmum cuatrecazanum

eschweizerbartxxx ingenta

The diagnostic species in the canopy are Casearia tachirensis, Hedyosmum cuatrecazanum, Palicourea demissa and Sapium stylare. Diagnostic species in the subcanopy are: Aegiphila ternifolia, Cestrum darcyanum, Croizatia brevipetiolata and Trichilia septentrionalis. Ecology and distribution: The subandean forests of the subassociation hedyosmetosum cuatrecazanum are located between 2100 and 2300 m altitude on the northern slope of Guaramacal. These forests (example at 2300 m) are on slopes of 20–25 % inclination, and on soils of variable depth (0 to 100 cm), with sandy textures with 20–50 % of coarse fragments, dark brown reddish colors in the superficial layers (0 to 20 cm) and yellowish red colors in the deep layers (20–100 cm). pH increases with depth from 4 to 4.4; while the percentage of organic matter diminishes from 7.5 to 3 %. 3.2. Variant of Protium tovarense Representative rel.: Cuello Plot No. 30. Table 3, Photo 3 Physiognomy and composition: The forests of the variant of Protium tovarense are of medium stature and density. They display a dense canopy, of 15 to 25 m in height with some emergent of trees of up to 30 m. Basically, they are made up by the same species indicated for the association, but differing in the higher abundance of Protium tovarense, Coccoloba cf. llewelynii, Weinmannia sorbifolia, Hedyosmum cf. gentryii, Weinmannia glabra, Myrcia acuminata, Meliosma tachirensis, Miconia lucida, among others. The subcanopy layer reaches between 8 and 12 m. Common species are Aiphanes stergiosii, Cyathea pauciflora, C. fulva, C. kalbreyeri, Eschweilera perumbonata, Eugenia tamaensis, Matayba camptoneura, Myrcia cf. sanisidrensis, Palicourea apicata and Weinmannia glabra. Further observed in this community are, the vine Cissus obliqua, the epiphytes Columnea sanguinea, Mezobromelia capituligera; the climbing fern Hypolepis nigricens, the shrubs Notopleura steyermarkiana, Symbolanthus vasculosus, Cavendishia bracteata, the little palm Geonoma jussieuana and the terrestrial clubmoss Huperzia reflexa.

Physiognomy and composition: The canopy of the forest reaches between 10 and 25 m in height; emergent trees reaching up to 28 m. The composition is in agreement with the description for the association. Casearia tachirensis, Perrottetia quinduensis, Meriania macrophylla, Miconia theaezans var. longifolia, Sapium stylare and Turpinia occidentalis are important in the canopy. Species that may sometimes reach the canopy as well are: Aegiphila ternifolia, Hedyosmum cuatrecazanum, Trichilia septentrionalis and the palm Wettinia praemorsa. Among the smaller trees, 5 to 10 m tall, are: Croizatia brevipetiolata, Eugenia cf. tamaensis, Geissanthus fragrans, Hedyosmum cuatrecazanum, Meriania grandidens, Palicourea demissa, P. puberulenta, Piper longispicum var. glabratum and Prunus moritziana. In the layer of small trees and shrubs from 2 to 5 m, the tree ferns Cyathea fulva and Sphaeropteris sp., as well as treelets of Cestrum darcyanum, Gordonia fruticosa, Guarea kunthiana, Miconia amilcariana, M. mesmeana subsp. longipetiolata, Persea peruviana, Saurauia yasicae, Solanum confine and Trichilia hirta; the shrubs Cybianthus cuspidatus and Ruellia tubiflora var. tetrastichantha and the low palms Geonoma orbigniana and G. jussieuana were recorded.

Syntaxonomy: The variant of Protium tovarense is defined on the basis of three 0.1-ha plots with a total of 75 species with dbh ≥ 2.5 cm. These forests are distinguished by the presence of the character species Protium tovarense and Weinmannia sorbifolia, as well as the palm Aiphanes stergiosii (6 to 12 m). This palm, although abundant in these forests, seems to have a very restricted distribution since its existence is known only from this community from where the species was originally described.

Syntaxonomy: The subassociation of hedyosmetosum cuatrecazanum is defined on the basis of three 0.1-ha plots with 72 woody species with dbh ≥ 2.5 cm.

Ecology and distribution: The forests of the variant of Protium tovarense are located between (1600) 1700 and 1900 m of altitude on the South slope of Ramal de Guaramacal, sector Agua Fría, in the border zone

phyto_39_1.indb 128

01.04.2009 11:57:24


The forest vegetation of Ramal de Guaramacal in the Venezuelan Andes

129

Photo 3. Interior of the subandean forest of plot 30 of C ro i z a t i o b re v i p e t i o l a t a e – We t t i n i e t u m p ra e m o rsa e variant of Protium tovarense at 1875 m. South slope, Agua Fría-La Peña sector.

between Portuguesa and Trujillo states (“Alto de La Divisoria de La Concepción”) and above of the small village “La Peña de Agua Fría”. These forests are on sites with very steep slopes and shallow wet soils with a large amount of great rock fragments. Because of their inaccesibility they remain very pristine forests. In the forests near Alto de La Divisoria de La Concepción, trees of Podocarpus oleifolius could be observed growing close to the top of the mountain to around 1900 m altitude. 4. S c h e f f l e ro fe rru g i n e a e – Cyb ianth etum l a u r i f o li i assoc. nov. Typus: Cuello Plot No. 4. Table 3, Fig. 6, 7. Andean forests of Schefflera ferruginea and Cybianthus laurifolius Physiognomy and composition: Humid cloud forests, with a canopy height of between 8–18 m, with some emergent isolated trees up to 22 m. Among the most common canopy species are: Eugenia cf. tamaensis, Ilex myricoides, Miconia tinifolia, ocotea aff. karsteniana, Podocarpus oleifolius var. macrostachyus, Trichilia septentrionalis and Weinmannia glabra. The community structure is dominated by a great abundance of small diameter individuals (<10 cm dbh). Species with high abundance include Calyptranthes meridensis, Clethra fagifolia, Critoniopsis paradoxa, Cybianthus laurifolius, Eugenia cf. tamaensis, Faramea killipii, Hedyosmum crenatum, Ilex laurina, Miconia ulmarioides, Myrsine coriacea, Palicourea apicata, Schefflera ferruginea, Weinmannia glabra, among others. Hemiepiphytic trees like Clusia alata and C. trochiformis are also common in the canopy. Epiphytes are very abundant; among them: Pecluma

phyto_39_1.indb 129

eschweizerbartxxx ingenta

divaricata, Peperomia peltoidea, Racinaea sp., a diversity of orchid species of the genera Pleurothallis (P. semiscabra, P. archidiaconi, P. siphoglossa, P. bivalvis, among others), and Stelis. The parasitic Aetanthus nodosus and the hemiepiphytic climber Sphaeradenia laucheana are also present, as well as several species of vines of the Ericaceae and Asteraceae families, such as Diogenesia tetrandra, Macleania rupestris, Mikania nigropunctulata, M. stuebelii, Pentacalia vicelliptica and Themistoclesia dependens. In the lower layer, small melastomataceous trees (2–3 m tall) or shrubs abound, such as: Anaectocalyx bracteosa, Miconia ulmarioides and M. suaveolens. The tree ferns Cyathea fulva, C. caracasana, C. pauciflora and Dicksonia sellowiana are very common. Colonies of the bamboo Rhipidocladum geminatum are also very abundant. Very common shrubs in the understory belong to Notopleura steyermarkiana. The small palms Geonoma jussiaeana and G. orbigniana and the small shrub Psychotria aubletiana are also frequent. Among the terrestrial herbs Lycopodium jussiaei, Rhynchospora tuerckheimii, R. immensa and the terrestrial shortstemmed fern Culcita coniifolia are distinguished. Syntaxonomy: The forest association Schefflero ferrugin eae–Cy b ian th etum laurifolii is defined based on eleven plots (ten of 0.1-ha and one of 0.03-ha) with 158 species with dbh ≥ 2.5 cm. Diagnostic species are: Cybianthus laurifolius, Hedyosmum crenatum, Miconia ulmarioides, Myrsine coriacea and Schefflera ferruginea. Ecology and distribution: The forest community of the association Sch efflero ferr ugineae– Cy b ian th etum lau rifolii represents a transitio-

01.04.2009 11:57:24


130

N. L. Cuello A & A. M. Cleef

nal type between the subandean and Andean forests, located over 2300 m altitude on the northern slope and to even lower altitudes (2100–2250 m) in areas near crests or lower summits. Characteristic of these sites is a greater density of thin-stemmed treelets with a low canopy. A group of tree species of much smaller leaves like those of the Andean forest, is also found intermingled with common large-leaved species of the subandean forest. This transitional condition seems similar to that described by Kelly et al. (1994). S c heffl e ro fe rrugi ne ae – C y b i a nthetum l a uri fol i i 4.1. subassociation typicum nov. Typus: Cuello Plot No. 4. Table 3, Fig. 6. Subassociation of Cybianthus laurifolius Physiognomy and composition: Forest structure and composition as described for the association. Additionally important canopy species are: Dioicodendron dioicum, Gaiadendron punctatum, Ilex truxillensis var. bullatisima, Meliosma venezuelensis, Myrcia aff. guianensis, ocotea sericea and Symplocos bogotensis.

Syntaxonomy: The forest Schefflero ferrugineae –Cy b ian th etum laurifolii subassociation typicum is defined on seven plots, with 96 species with dbh ≥ 2.5 cm. The diagnostic species are Brunellia cf. integrifolia, Calyptranthes cf. meridensis, Palicourea apicata and Panopsis suaveolens. Ecology and distribution: The forests of the subassociation of Cybianthus laurifolius are located between 2350 -2580 m on the North slope of Guaramacal sector. This community was also observed throughout the mountain ridge between 2260 and 2570 m on the North slope of Agua Fría sector, and in the same conditions at 2250 m on the North-West slope in El Santuario sector.

Sch efflero fe rru g in e a e – Cy b ia n th e tu m la u rifo lii 4.2. subassociation micon ieto su m su aveolentis nov. Typus: Cuello Plot No. 6. Table 3, Fig. 7. Subassociation of Miconia suaveolens

eschweizerbartxxx ingenta

Fig. 6. Andean forest of the association Scheffl e ro f e rru g i n e a e – C y b i a n t h e t u m l a u ri f o l i i . Plot 4: 2450 m., North slope. Cl: Cybianthus laurifolius; Cf: Cyathea fulva; Fk: Faramea killipii; Im: Ilex myricoides; Mt: Miconia tinifolia; Po: Podocarpus oleifolius var. macrostachyus; Sf: Schefflera ferruginea; Ta: Ternstroemia acrodontha; Wg: Weinmannia glabra.

phyto_39_1.indb 130

01.04.2009 11:57:24


The forest vegetation of Ramal de Guaramacal in the Venezuelan Andes

131

These forests differ from those of the subassociation typicum by the diagnostic presence of Critoniopsis paradoxa, Hedyosmum sp. A, Hyeronima scabrida and Miconia suaveolens, which, with the exception of Critoniopsis paradoxa, are absent from that subassociation.

Physiognomy and composition: These forests have a very irregular canopy between 8 and 15 m and a few emergent isolated trees that can reach up to 18 or 20 m. Some of the highest trees are: Alchornea grandiflora, Miconia theazans, M. tinifolia, M. tovarensis and Prunus moritziana. Hemiepiphytic trees Clusia trochiformis and C. alata, with multiple aerial roots are also abundant. Common canopy species are Aegiphila moldenkeana, Clethra fagifolia, Critoniopsis paradoxa, Cybianthus laurifolius, Hedyosmum translucidum, Hedyosmum sp. A, H. crenatum, Ilex laurina, Weinmannia lechleriana and W. fagaroides. The presence of tree ferns is very common, being Cyathea pauciflora the most abundant. Small trees of Melastomataceae, like: Miconia suaveolens, M. mesmeana subsp. longipetiolata, M. theaezans and Anaectocalyx bracteosa; and shrubs like Symbolanthus vasculosus, the bamboo Chusquea purdieana and the palm Geonoma jussieuana, are frequent in the understory.

Ecology and distribution: The forests of the subassociation of Miconia suaveolens are located between 2100 and 2600 m on the South slope of Guaramacal sector. These rain forests are located in areas with very steep slopes apparently affected more by landslides. Mass movements are frequent and widely observed at the highest elevations of the South slope triggered by the high precipitation. In general these forests have a low diversity of species; some species common to the stable sites at the same altitude on the North slope are absent. A greater abundance of species with stilt roots, indicative of plant adaptation to steep surfaces under a wet climate, are present (Cleff et al. 1984).

Syntaxonomy: The forests of subassociation mic o n i e t o s u m su a v e o l e n ti s are represented by four 0.1-ha plots with 73 species with dbh ≼ 2.5 cm.

eschweizerbartxxx ingenta

Fig. 7. Andean forest of the association Scheffle ro f e rru g i n e a e – C y b i a n t h e t u m l a u ri f o l i i . subassoc. m i c o n i e t o s u m s u a veo lentis. Plot 6: 2500 m, South slope. Ca: Clusia alata; Cf: Clethra fagifolia; Cp: Critoniopsis paradoxa; Cp: Cyathea pauciflora; Gj: Geonoma jussieuana; Hs: Hyeronima scabrida; Mth: Miconia theazans; Ms: Miconia suaveolens; Mto: Miconia tovarensis; Mv: Meliosma venezuelensis; Hsp: Hedyosmum sp. A; Wl: Weinmannia lechleriana. Rt:Rudgea tayloriae.

phyto_39_1.indb 131

01.04.2009 11:57:24


132

N. L. Cuello A & A. M. Cleef

R u i l opez i o pal toni oi de s– C y b i a nthi on m a rgi nati all. nov. Typus: G ei ssa n tho a n di n i – Mi c o ni etum jahn ii (this study). Table 3 High Andean forests of the Ruilopezia paltonioides– Cybianthus marginatus alliance Physiognomy and composition: Dense and low rain forests with a canopy of 5 (3) to 12 (14) m in height, conformed by thin-stemmed, small-leaved trees. Asteraceae, Ericaceae, Myrsinaceae, Melastomataceae, Cunoniaceae and Aquifoliaceae are the most diverse and predominant families. These forests share the diagnostic canopy species Cybianthus marginatus, Ilex guaramacalensis, Miconia tinifolia, Myrsine dependens, Symplocos tamana and the espeletinioid species Ruilopezia paltonioides. Other common species are the small trees Monochaetum discolor, Pentacalia cachacoensis, Vaccinium corymbodendron, the tree fern Blechnum schomburgkii in the understory, and the liana Themistoclesia dependens. Syntaxonomy: Three associations are recognized in this alliance, defined from 11 variably sized plots that include 69 species with dbh ≥ 2.5 cm, belonging to 47 genera and 28 families of vascular plants. The forest communities grouped in this alliance are (1) G e i ssa n tho a nd i ni – Mi c on i e tum jah n ii, with a possible subassociation of Freziera serrata; (2)

Gaultherio anastomosantis–Hesperomeletu m o b tu sifoliae association, and (3) the conspicuous dwarf forest association Libanothamnetum griffinii. Ecology and distribution: The alliance of Ruilopezia paltoniodes and Cybianthus marginatus groups Andean and high Andean forests located between 2750 and 2950 m direct under the summit zone of Ramal de Guaramacal. This altitudinal zone is characterized by high relative humidity, permanent fogs and frequent rain showers, indicated by a high cover of epiphytic mosses and liverworts. 5. Geissanth o an d ini–M icon ietum jahnii assoc. nov. Typus: Plot No. 37. Table 3, Fig. 8, Photo 5. Andean/high Andean forests of Geissanthus andinus and Miconia jahnii Physiognomy and composition: These Andean/high Andean forests are of low stature with a high density of individuals, having an open lowermost layer and a thick litter layer. A high density of epiphytes, mainly ferns, orchids, mosses and liverworts is a characteristic feature. The canopy reaches up to 6 to 14 m in height with some emergent trees of up to 16 m, among them are: Ilex guaramacalensis, Miconia jahnii, Myrsine dependens and Symplocos tamana, which are also the

eschweizerbartxxx ingenta

Fig. 8. High Andean forest of the association Ge i ssa n t h o a n d i n i – M i c o n i e t u m j a h n i i . Plot 37: 2890 m. Páramo El Pumar. Cm: Cybianthus marginatus; Cha: Chusquea angustifolia; Da: Disterigma alaternoides; Dg: Drimys granadensis; Ga: Geissanthus andinus; Ig: Ilex guaramacalensis; Md: Myrsine dependens; Mj: Miconia jahnii; Mt: Miconia tinifolia; Vc: Vaccinium corymbodendron.

phyto_39_1.indb 132

01.04.2009 11:57:24


The forest vegetation of Ramal de Guaramacal in the Venezuelan Andes

133

shrubs like Psychotria dunstervillorum are common in the understory. Trailing herbs like Hydrocotyle venezuelensis and Drymaria ovata; the terrestrial orchid Cranichis antioquensis growing on the litter, and the tall erect Cyrtochilum megalophium with inflorescences of up to 2 m in length; small crawling herbs like Sibthorpia repens and species of Pilea and Rhynchospora guaramacalensis and Carex jamesonii are additionally common occurrences.

most abundant in the canopy together with Cybianthus marginatus, Geissanthus andinus, Weinmannia lechleriana and Oreopanax discolor, among others. In these forests lianas and vines are very common, such as: Fuchsia membranacea, Pentacalia theaefolia, Thibaudia floribunda, Disterigma alaternoides, Mikania stuebelii, Themistoclesia dependens and Pentacalia vicelliptica. Striking are the vascular epiphytes: Guzmania squarrosa, Odontoglossum schillerianum, Raccinaea tetrantha, and several fern species of Polypodium and Asplenium. The bamboo Chusquea angustifolia can be found inside the forest, forming dense clumps with multiple culms that can reach up to 8 m in height and 3 cm in diameter. The presence of the shrub Macrocarpaea bracteata, rosettes of Bromeliaceae (Cuello 2816) and low

Syntaxonomy: The association of Geissantho and ini–M icon ietu m jahn ii is based on four plots (three of 0.1 ha and one of 0.04 ha) with 53 species with dbh ≥ 2.5 cm. These low forests are distinguished by the presence of Miconia jahni, Geissanthus andinus and Weinmannia lechleriana as diagnostic can-

eschweizerbartxxx ingenta

Photo 4. Aspect of the forest stand of the association G e i ssa n t h o a n d i n i – M i c o n i e t u m j a h n i i subcommunity of Freziera serrata at 2750 m on the North slope.

phyto_39_1.indb 133

01.04.2009 11:57:24


134

N. L. Cuello A & A. M. Cleef

eschweizerbartxxx ingenta

Photo 5. Interior of plot 37 of the Andean forest of the G e i ssa n t h o a n d i n i – M i c o n i e t u m j a h n i i at 2890 m in Páramo El Pumar.

opy species. In this association, a subcommunity of Freziera serrata is distinguished. Ecology and distribution: The humid dwarf forests of Geissanthus andinus and Miconia jahnii cover considerable spatial extent in the zone of the Páramo El Pumar to the center-west summit of Ramal de Guaramacal, at 2800–2950 m.

G e is sa ntho a ndi ni – M i c on ie tu m ja hni i 5.1. Subcommunity of Freziera serrata Physiognomy and composition: The community of Freziera serrata concerns a dense forest, which displays a higher canopy than the forests of the association G e issa n tho a n di n i – Mi c o ni e t um jahn ii,

phyto_39_1.indb 134

reaching 6 to 14 m with some emergent trees up to 18 m. Besides of the listed ones for the association, the most common canopy species are: Freziera serrata, Hedyosmum translucidum, Weinmannia auriculata, W. karsteniana, and Podocarpus oleifolius var. macrostachyus. Under the canopy are dense colonies of the high bamboo Rhipidocladum geminatum and small trees like Cybianthus laurifolius, Miconia mesmeana subsp. longipetiolata, Baccharis brachylaenoides, Cestrum darcyanum, Oreopanax discolor, the tree fern Cyathea fulva, and the shrub Macrocarpaea bracteata. Also observed are the vine Passiflora truxillensis and the epiphytic fern Terpsichore xanthotrichia. In the underbrush dense dwarf bamboo colonies of Neurolepis glomerata and individuals of Rhynchospora guaramacalensis are present.

01.04.2009 11:57:24


The forest vegetation of Ramal de Guaramacal in the Venezuelan Andes

135

Fig. 9. High Andean dwarf forest of the association of L i b a n o t h a m n e t u m g ri f f i n i i . Plot 38: 2810, North slope. Cm: Cybianthus marginatus; Lg: Libanothamnus griffinii; Mt: Miconia tinifolia; Pc: Pentacalia cachacoensis; Pj: Palicourea jahnii; Wa: Weinmannia auriculata; Wk: Weinmannia karsteniana. eschweizerbartxxx ingenta

Photo 6. Exterior aspect of a high Andean dwarf forest of the Li b a n o t h a m n e t u m g ri f f i n i i at the upper forest line (~2800–2900 m) on North slope of Ramal de Guaramacal.

phyto_39_1.indb 135

01.04.2009 11:57:24


136

N. L. Cuello A & A. M. Cleef

Syntaxonomy: The Andean forest of the Freziera serrata community could be considered as a subassociation of the G e i ssa n tho a n di n i – M icon ietu m ja h n i i. This community is recognized from a single 0.1-ha plot with 40 woody species of dbh ≥ 2.5 cm. The diagnostic canopy species are: Freziera serrata, Hedyosmum translucidum, Weinmannia auriculata and W. lechleriana. Ecology and Distribution: The subcommunity of Freziera serrata is found at 2750 m in an area of very steep slopes and difficult access on the North slope of Ramal de Guaramacal. This forest stand is bounded on one side by the road leading to the antennas at the summit, and by a clearing made for maintenance below the electricity cables that lead to the antennas (Photo 4).

6. Libano th amn etum griffin ii assoc. nov. Typus: Cuello Plot No. 38. Table 3, Fig. 9, Photo 6, 7. High Andean dwarf forest of Libanothamnus griffinii Physiognomy and composition: This community is represented by very dense dwarf forests with a conspicuous broad-leaved white-grayish canopy conformed by thin-stemmed small trees of 3 to 5 m high, and dominated by a great density of the espeletinioid species Libanothamnus griffinii. Other species are scarce and include: Clethra fagifolia, Cybianthus marginatus, Miconia jahnii, M. tinifolia, Monnina sp., Monochaetum discolor, Palicourea jahnii, Weinmannia auriculata, W. karsteniana and W. lechleriana. The high cover of liverworts is noticeable, mainly comprising species of Plagiochila (Cuello 3040, 3043),

eschweizerbartxxx ingenta

Photo 7. Interior of plot 38 of the high Andean dwarf forest of the Li b a n o t h a m n e t u m g ri f f i n i i at 2810 m on the North slope.

phyto_39_1.indb 136

01.04.2009 11:57:25


The forest vegetation of Ramal de Guaramacal in the Venezuelan Andes

137

small coarse fragments (1 cm diameter) from 70 cm depth, and clay-sandy textures, with gray colors in the upper layer, turning light to dark brown and dark reddish with depth. On the wind exposed southern slopes, Libanothamnus griffinii treelets grow shorter with altitude forming a more open canopy. Here they occur on relatively shallow ground, with rock fragments from 45 cm depth; with clay to clay-sandy textures and gray colors turning from spotted orange to dark brown with depth. Libanothamnus griffinii can also form shrub páramo communities with other páramo species as described for the Páramo vegetation of Guaramacal in Cuello & Cleef (in press).

further species of Riccardia and of filmy ferns of Trichomanes sp. (Cuello 2938), and Lellingeria myosuroides over tree trunks. The understory is open and species poor. There are dispersed colonies of the terrestrial fern Culcita coniifolia, individuals of the slender Eriosorus flexuosus and the tree fern Blechnum schomburgkii. The orchid Brachionidium tuberculatum, the clubmoss Huperzia sp. (Cuello 2822), and the stoloniferous Psychotria dunstervillorum, as well as dense cushions of bryophytes like Plagiochila sp. (Cuello 3042) and Sphagnum meridense grow on top of a thick litter layer. Towards the forest edges of the upper forest line the terrestrial orchid Cyrtochilum ramosissimum, ground rosettes of species of Puya and Greigia and the endemic sedge Rhynchospora guaramacalensis can be found. Syntaxonomy: This association is based on four plots with 27 species with dbh ≥ 2.5 cm, Libanothamnus griffinii being the character species.

7. Gaultherio anastomosantis– Hesperomeletum ob tu sifoliae assoc. nov. Typus: Cuello Plot No. 34. Table 3, Fig. 10, Photo 8, 9. High Andean dwarf forests of Gaultheria anastomosans and Hesperomeles obtusifolia

Ecology and distribution: The Libanothamnus griffinii dwarf forests are present over large extensions along the upper forest line. They grow over convex slopes with inclinations of between 20–30 degrees. On the North slope, they are observed to extend continuously from lower elevations (2800 m) with a taller stature and closer canopy cover than on the South slope, where their presence appears to start at around 3000 m. On the northern slopes, the Libanothamnus griffinii forests are observed to grow in wind protected areas, on relatively deep soils with presence of

Physiognomy and composition: The dwarf forests of the Gaultheria anastomosans – Hesperomeles obtusifolia association are very low in stature, very dense in the number of individual treelets and exhibit an almost closed cover allowing little light penetration. The canopy reaches between 4 and 6 m in height with some emerging individuals reaching 8–10 m, such as: Miconia tinifolia and Weinmannia lechleriana and the stem rosettes of Ruilopezia paltonioides. The most abundant species of the canopy are (in order of abundance) Cybianthus marginatus, Hesperomeles obtusifolia, Vaccinium corymbodendron, Myrsine

eschweizerbartxxx ingenta

Fig. 10. High Andean dwarf forest of the association of G a u l t h e ri o a n a st o m o sa n t i s– H e sp e ro m e l e t u m o b t u si f o lia e . Plot 34: 3050 m. Bs: Blechnum schomburgkii; Cha: Chusquea angustifolia; Cm: Cybianthus marginatus; Dv: Diplostephium obtusum; Ga: Gaultheria anastomosans; Gsp: Greigia sp.; Ho: Hesperomeles obtusifolia; Md: Myrsine dependens; Mt: Miconia tinifolia; Psp. Puya sp.; St: Symplocos tamana.

phyto_39_1.indb 137

01.04.2009 11:57:25


138

N. L. Cuello A & A. M. Cleef

Photo 8. Aspect of the humid high Andean dwarf forests on the South slope of Ramal de Guaramacal. Southeast of ‘Las Antenas’ area, 2900–3000 m.

eschweizerbartxxx ingenta

Photo 9. Interior of plot 34 of the high Andean dwarf forest of the G a u l t h e ri o a n a st o m o sa n t i s– He sp e ro m e l e t u m o b t u s if o liae at 3050 m.

dependens, Gaultheria anastomosans, Diplostephium obtusum, Miconia tinifolia and Pentacalia cachacoensis. Less abundant are, Ilex guaramacalensis, Monnina sp., Oreopanax discolor, Pentacalia greenmanniana and Symplocos tamana. Vines and lianas are very common, especially those of the Ericaceae family. The most abundant include: Disterigma alaternoides, Psammisia hookeriana, Themistoclesia dependens and Thibaudia floribunda. Epiphytic ferns are also very

phyto_39_1.indb 138

abundant; Grammitis sp. and Melpomene flabelliformis grow among a dense cover of bryophytes. Most prominent are Campylopus trichophorus, Herbertus acanthelius, and species of Lepidozia and Plagiochila. The open understory, with a conspicuous thick litter layer, is poor in species. Only in more open sites are colonies of the tree fern Blechnum schomburgkii and Bromeliaceae (Cuello 2816). Further may be

01.04.2009 11:57:25


The forest vegetation of Ramal de Guaramacal in the Venezuelan Andes

noted: dispersed individuals of the terrestrial orchid Gomphichis costaricense, patches of stoloniferous dwarf shrub Psychotria dunstervillorum growing in the litter layer, and bamboo clumps of Chusquea angustifolia and Neurolepis glomerata. A diversity of bryophytes growing on the base of trunks and over tree roots, are distinguished, such as Bryum grandifolium, Campylopus pilifer, C. nivalis, Dicranum frigidum, Herbertus juniperinus, Leptodontium longicaule, Plagiochila cf. aerea, Plagiochila sp., Scapania portoricensis, Sphagnum meridense and Tetraplodon mnioides, among others. Syntaxonomy: The G a u l the ri o a na s tomosant i s – H e s p e ro m e l e tu m o btu si fol i a e association, is based on three plots with 31 species with dbh ≥ 2.5 cm. The diagnostic species of this association are Diplostephium obtusum, Gaultheria anastomosans and Hesperomeles obtusifolia. Cybianthus marginatus besides of being diagnostic for the alliance is also diagnostic for the association. Ecology and distribution: The dwarf forests of the Gaultherio anastomosantis–Hesperomeletum o b t u s if o l ia e association are situated in the summit areas of Ramal de Guaramacal, between 2950 and 3050 m. They form patches, or islands, of forest among the paramo vegetation, especially over, wind protected concave areas on the North slope. On South facing slopes these forests are observed growing on larger extensions of continuous forest on steep surfaces with slopes up to 22 degrees. They are found on shallow soils with the presence of rock fragments from 15 cm depth and bed rock at 45 cm, with clayeyloamy textures, dark gray in color turning to more clear with orange spots at greater depths, and pH 3.6 to 3.9 in the upper soil layers rising to 4.1 to 4.9 at increased depth. Together with the dwarf forest of L i ban o th amn e t u m g r i ffi n i i these forests constitute the upper forest line on Ramal de Guaramacal.

Discussion Forest phytosociological classification and methodology limitations. The phytosociological classification of the montane forests of Ramal de Guaramacal has resulted in three new alliances and seven associations. Subassociations are described for four associations. Variants are still to be confirmed; only one variant was described. Classes and orders cannot yet be defined on the basis of the present number of relevés and the information available in Table 3, and, due to the lack of data from montane forests in the region and elsewhere in Venezuela and adjacent Colombia. It is to be expected that subandean forests (LMRF), and Andean – high Andean forests (UMRF-SARF) respectively, as ecologically very different ecosystems, will belong to

phyto_39_1.indb 139

eschweizerbartxxx ingenta

139

separate orders and classes of equatorial montane rain forests. A major forest group of Meliosma tachirensis– Alchornea grandiflora was recognized, which could be considered as equivalent to order. However, the species in common in that group could also belong to a supra-class unit (Table 3), which covers the widespread formation of equatorial montane forests of the Andes. This is the main reason we do not propose a proper syntaxon for the order level. A surprise was the F arameo k illip ii–P ru n ion moritzianae, which includes forest associations of both LMRF and UMRF (see below). This is the first time that LMRF in the lower part and UMRF in the upper part were included into one phytosociological alliance. Thus far, as experienced in the seven studied altitudinal transects of ECOANDES programme in Colombia, the alliances only accounted for either LMRF plots or UMRF-SARF plots. There may be two reasons: (1) the steep slopes of Guaramacal with bamboo paramo on top (3120 m) result in a type of ‘compressed forest zonation’. In a short altitudinal interval under almost permanent high environmental humidity with only slight temperature change sharp vegetation limits/borders may become obscured. We think this is the most likely explanation. (2) The other possibility is that the alliance is an artifact due to a lack of phytosociological resolution; more relevés in this altitudinal interval could provide more information for the forest classification and altitudinal zonation. The forest vegetation has been described on the basis of a relatively low number of relevés. Only outside the Guaramacal sector are they not homogeneously distributed over the altitudinal gradient. Although most plots were 1000 m2 (significantly larger as those of mostly 500 m2 in the ECOANDES transects in Colombia), some of the forest plots between 2800–3000 m were of 100 to 400 m2. The experience of the second author in the UMRF-SARF plots in Colombia and North Ecuador suggests this corresponds rather to the minimum area. In tropical montane rain forests species diversity decreases with altitude. The 0.1 ha plots of this study most probably do not represent the minimum area for LMRF, but are apparently sufficiently representative for the UMRF sampling (see also Westhoff & Van der Maarel 1973). In the SARF dwarf forests, we used smaller plot size also according to the conditions of the forest cover of predominantely very steep terrain. The ECOANDES forest plot size of 500 m2 (0.05 ha) was established for practical reasons. Because most of the sites were very remote and difficult to reach, the plot size of 500 m2 corresponded more to the effort and time required to sample a plot of this size in one day by 2–3 researchers, representing a more practical approach (Cleef et al. 1984). The methodology adopted includes only the census of woody species with diameter ≥ 2.5 cm. Thus, forest communities are defined based mainly on diagnostic tree species from understory and canopy, respectively, rather than on other growth forms.

01.04.2009 11:57:25


140

N. L. Cuello A & A. M. Cleef

In our opinion however, the resulting forest classification is clearly visible for the montane forests of Ramal de Guaramacal. It is the first attempt for phytosociological classificaction of montane rain forests of the Venezuelan Andes based on a quantitative data set for an entire mountain range. Altitudinal zonation The altitudinal zonation of the montane forests of Ramal de Guaramacal is depicted in Fig. 11. TWINSPAN classification for montane forest plots of Ramal de Guaramacal arranged forest types in Table 3 according to the altitudinal gradient. Based on physiognomy and floristic composition, these forest types can easily be grouped into zones corresponding to LMRF, UMRF and SARF classes of Grubb (1977), or to subandean, Andean and high Andean forests, respectively, according to Cuatrecasas (1934, 1958); also having been applied by Cleef et al. (1984, 2003) and Rangel-Ch. et al. (2003, 2005, 2008) for the ECOANDES transect studies. Elsewhere in the Colombian Andes, Rangel-Ch. & Franco-R. (1985),

Rangel-Ch. & Lozano (1989) and Rangel-Ch. (1994) have published details on montane forest transects. For Ecuador, reference is made to forest transect studies by e.g. Bussmann (2002), Lauer et al. (2001) and Moscol & Cleef (in press). The first division of the TWINSPAN classification of Guaramacal montane forests separates the less diverse Andean and dwarf high Andean forest (UMRF-SARF) communities above 2750 m from the species-rich subandean-andean (LMRF and UMRF) communities present up to 2600 m. The second division separates the lower from the upper subandean (LM) forests and includes, in the second group, a forest type belonging more to Andean (UMRF) forest. LMRF of Ramal de Guaramacal can be found from 1350 m on the South slope and from 1650 m on the North slope in some parts of the mountain range. However, most LMRF extends from 1800 to about 2300 m. The limit of 1800 m is determined by the Park boundaries, below that, disturbed areas occupy the LMRF zone, especially on the North slope. UMRF is present from 2300 to ~2800 m on the North slope of Guaramacal sector; on top of small ranges on South or North-West slopes UMRF is also present near

eschweizerbartxxx ingenta

Fig. 11. Semi-schematic profile of Ramal de Guaramacal, Andes,Venezuela. The altitudinal zonation of montane forests and bamboo paramo along the North and South slopes is depicted with the respective plots numbers. Vertical exaggeration 5.0 x.

phyto_39_1.indb 140

01.04.2009 11:57:25


The forest vegetation of Ramal de Guaramacal in the Venezuelan Andes

2100 m. SARF in Ramal de Guaramacal is present at the same altitude as paramo vegetation, from 2800 to 3050 m. Most probably exposition vs. protection to strong trade wind, low temperature and extremes and availability of substrate to support a dwarf forest may be responsible (see forthcoming paper Cuello et al. in prep.). Forest zonation is variable between the North and South slope of Guaramacal. Fig. 11 shows that on the windward South slope, forest zones of UMRF tend to reach lower elevations than on the opposite and drier North slope. In the first instance, temperature is probably most accountable for this phenomenon. Almost permanent humidity prevents higher temperatures and causes slightly lower values for the medium annual temperature. Also the frequent landslides on the steeper and wetter slopes at mid-high elevation may play a role. LMRF forests also display a lower position as longer gradient and more forest extensions are present below 1800 m. This asymmetric configuration of forest zones on equatorial mountains has also been reported elsewhere (e.g. Kappelle et al. 1995, Cleef 1981). In general, there are dry and a humid to wet slopes opposing each other. Furthermore, it is noticeable that there is a low altitudinal upper limit of the forest (Upper Forest Line or UFL) exists in Ramal de Guaramacal, apparently caused by the “top effect” (Grubb 1971) with UMRF (including SARF) found at lower altitude (Grubb 1977). Previously, this phenomenon was also known as the ‘telescope’ effect of mountain mass elevation (Van Steenis 1961, 1972) and, when looked at from a different angle, the ‘Massenerhebung’ effect (Schröter 1926). In the Mérida Andes, the upper forest line is situated at an average elevation of around 3400 m (Monasterio 1980a, Schneider

eschweizerbartxxx ingenta

141

2001), a vertical difference of some 350 m compared to Guaramacal UFL. With a lapse rate of 0.6 °C per 100 m altitudinal interval would indicate a mean annual temperature of about 2 °C colder in the summit zone of Guaramacal range. The first temperature records of the Davis Pro 2 climate station installed near the summit of Guaramacal (3100 m) by the first author since December 2006, registered a diurnal temperature variation from 4–6 °C to 14–16 °C; the lowest temperatures recorded being between 1.3–4 °C; the highest between 16–18 °C, with a mean temperature of 8.6 °C between January and June 2007. In a forthcoming study (Cuello et al, in prep.) after the completion of a year climate measurements, we hope to provide more detail on the low UFL phenomenon. Also, differences in humidity from the drier North and the wetter South slope affect the altitudinal position of vegetation zones between slopes (Fig. 11). Another effect of the low altitudinal position of the UFL is the compression of the montane forest zones; they are situated in shorter vertical distances (Fig. 11). The sequence of forest zones along the steep South slope is shortest in distance. WSW of Bogotá, the UFL has been located at 1900– 2000 m during the coldest phase of the Last Glacial Maximum (Hooghiemstra & Van der Hammen 1993). It is most probable that during the same cold period of the Last Glacial, conditions in the Venezuelan study area were almost similar, likely resulting in a much more compressed altitudinal montane forest zone relative to that of today. Paleoecological studies of lake sediments, e.g. the promising peat land at c. 2000 m near the Park Rangers house of the Guaramacal National Park, may provide more clues.

Table 4. Most species-rich families by forest zones. LMRF (1300~2300 m) Family

phyto_39_1.indb 141

UMRF ~2350 ~2900 m # spp.

Family

SARF (2800 – 3060 m) # spp.

Family

# spp.

Rubiaceae

29

Lauraceae

19

Asteraceae

11

Lauraceae

24

Melastomataceae

13

Ericaceae

7

Melastomataceae

22

Myrtaceae

13

Myrsinaceae

5

Myrtaceae

17

Asteraceae

11

Melastomataceae

5

Euphorbiaceae

10

Rubiaceae

9

Cunoniaceae

4

Piperaceae

8

Ericaceae

8

Araliaceae

2

Myrsinaceae

7

Myrsinaceae

7

Polygalaceae

2

Cyatheaceae

7

Cyatheaceae

6

Rosaceae

2

Meliaceae

6

Euphorbiaceae

6

Arecaceae

6

Cunoniaceae

6

Moraceae

6

Aquifoliaceae

5

Sapindaceae

6

Solanaceae

6

67 families

266

51 families

169

20 families

50

01.04.2009 11:57:25


142

N. L. Cuello A & A. M. Cleef

Forest composition and diversity Montane forests of Ramal de Guaramacal show a floristic composition and diversity that change along altitude. Family composition shows the same trend as observed in other Andean forests (Gentry 1992, 1995, Rangel-Ch. 1991). In Lower Montane Rain Forests of Guaramacal, Rubiaceae, Lauraceae and Melastomataceae are the most speciose of woody families. In Upper Montane Rain Forests, the Lauraceae family is still the most diverse, followed by Melastomataceae and Myrtaceae, while in Subalpine rain forests the Asteraceae and Ericaceae are the most species rich families (Table 4). Species diversity and composition also change along the altitudinal gradient with some variations caused by slope exposure and sectors. Species richness generally decreases with elevation; however, local increase in species richness per 0.1 ha plot was observed between 2300–2400 m on the North slope of Guaramacal in the LMRF – UMRF limit zone (Table 2). This diversity trend and its relation to increasing humidity with elevation from the dry interandean Boconó valley to the top of the mountain has been previously discussed (Cuello 1996, 2002). However, the mid slope diversity peak for bryophytes and lichens reported by Wolf (1993) may not be ruled out. Here we also confirm, as Schneider (2001) reported for the first time from a montane forest transect near Mérida, a mid slope diversity bulge for vascular species at the transition from LMRF to UMRF. Lower limit of LMRF is represented by the Sim ir o e r yth rox yl i – Q u a ra ri be e tu m magn ific a e , which, on the North slope, shows a distinct set of species as in the b un c h osi e tosu m armeniacae subassociation, while on the South slope the vicariant forest type is represented by that of the typicum subassociation. Characteristic is the LMR forest of the Croizatio b r e v ip e t i o l a ta e – We tti n i e tu m p r aemo rsae, which is present on both slopes of Guaramacal with the same altitudinal range. However, a LMR forest variant of Protium tovarense is obviously characteristic for the South slope and the LMR forest of the subassociation h e d yo sm e tosu m c u a trecazan u m is present at the uppermost limit of LMRF zone on the North slope. The composition of the forest variant of Protium tovarense is also indicative of the high atmospheric humidity occurring on the South slope. The presence of some large-leaved species of Hedyosmum, of Weinmannia and several species of Cyathea are some examples. UMR forest is represented by the Sch efflero f e r r u g i n ea e – Cyb i a n the tum l a u ri f olii and the subcommunity with Freziera serrata of the Geiss a n t h o a n di n i – Mi c o ni e tum j a hnii. On the South slope the lower limit of UMRF is observed at 2100 m, being represented by the m i co n ieto su m s u a v e o l e nti s of the S c he ffl e ro fe rru gin eae– C y b ia n t he tum l a u ri fol i i ; on the North slope at 2350 m by the typical subassociation, which is also

eschweizerbartxxx ingenta

phyto_39_1.indb 142

found at 2250 m on the North-West slope. The forest of the typical subassociation on the North slope presents a mixed composition with a set of species from both LM and UMRF converging in these forests. Rain forest of the subcommunity of Freziera serrata of the Geissanth o –M ico n ietu m at 2750 m, represents the upper limit of the UMRF on the North slope in Guaramacal sector. UMR forest association of Geissanth o –M ico n ietu m can reach altitudes of up to 2890 m, as observed in Páramo El Pumar at the center-west summit of Ramal de Guaramacal. Distinctive forest composition is also noticeable in the SARF zone (2800–3050 m) of UMRF, where two low species diverse dwarf forest associations, one of Libanothamnus griffinii and the other of Gaultheria anastomosans and Hesperomeles obtusifolia with high density of Cybianthus marginatus combined with bamboo paramo vegetation to characterize the upper forest line. SARF, in our opinion, belongs as a subzone to the domain of UMRF, as not only ecology but also floristics and soil characteristics are shared as have been shown by the ECOANDES studies (Van der Hammen et al. 1983–2008). Forest structure The structure of the montane forests of Ramal de Guaramacal becomes more compressed towards higher elevations. With an increase of altitude, an increase in stem density and a decrease in stem diameter and canopy height is also observed (Table 2 a,b, Fig. 12). LMRF are dense and of medium height, with canopies up to 25 m tall, while UMRF canopies can reach up to 18 m, and those of SARF are only 6–8 (10) m tall. Basal area was slightly increased on the North than on the South slopes and shows different patterns against altitude between slopes. On the South slope basal area decreases with altitude, while on the North slope still high values have been documented between 2300–2400 m (Fig. 12). This lower basal area is probably due to the effect of disturbance by landslides on the steeper South slope. Diversity and density of growth forms also varies with elevation among vegetation zones (Table 5). More diversity and density of palms, lianas and climbers is clearly observed in LMRF. Although diversity and the density of lianas decrease with altitude, an important, and substantial, percentage of the total species richness of SARF forest is represented by liana species (16.3 %). There might be a relationship with the obviously increased forest dynamics as a consequence of steep slopes and consequently land slides. Hemiepiphytic trees as Clusia are present in both LMR and UMR forests, but with a greater density in UMRF. Density of tree ferns decreases with elevation, yet more diversity of tree ferns is observed in UMRF, but the tree ferns are definitely more conspicuous in LMRF.

01.04.2009 11:57:25


The forest vegetation of Ramal de Guaramacal in the Venezuelan Andes

143

eschweizerbartxxx ingenta

Fig. 12. Distribution of basal area (a) and number of woody individuals (b) per 0.1-ha plots of montane forest for the North and South slope of Ramal de Guaramacal, Andes, Venezuela.

phyto_39_1.indb 143

01.04.2009 11:57:26


144

N. L. Cuello A & A. M. Cleef

Table 5. Number of species and individuals of different growth forms in altitudinal zones of montane forests of Ramal de Guaramacal. Growth forms

LMRF Spp. #

Total trees≥ 2.5 cm Trees ≥10 cm

UMRF Indiv.

(%)

215 (77.9)

#

Spp. (%)

5615 (72.0)

#

SARF Indiv.

(%)

145 (77.5)

#

Spp. (%)

3876 (81.8)

#

Indiv. (%)

37 (75.5)

#

(%)

2128 (92.2)

168*

78.1*

1430

25.5*

94

64.8*

833

21.5*

27

73.0*

316

14.8*

Tree ferns

7

(2.5)

325

(4.2)

8

(4.3)

216

(4.6)

2

(4.1)

63

(2.7)

Hemiepiphytic trees (Clusia)

3

(1.1)

113

(1.4)

3

(1.6)

339

(7.2)

-

-

-

-

Large herbs (incl. ferns and cyclant.)

4

(1.4)

149

(1.9)

2

(1.1)

33

(0.7)

-

-

-

-

Bamboos

1

(0.4)

1

(0.0)

3

(1.6)

136

(2.9)

1

(2.0)

7

(0.3)

3

(1.1)

39

(0.5)

2

(1.1)

4

(0.1)

-

-

-

-

37 (13.4)

223

(2.9)

19 (10.2)

88

(1.9)

8 (16.3)

67

(2.9)

-

-

-

Climbers Lianas Palms

6

(2.2)

Shrubs

**

**

**

-

-

-

Stem rosette Total

276

Total area of samples (ha)

2.2

1338 (17.1)

7803

4

(2.1)

44

(0.9)

-

**

1

(0.5)

3

(0.1)

**

**

**

**

-

-

-

-

-

1

(2.0)

44

(1.9)

187

4739

1.13

49

2309

0.36

*percentage of the total trees≥2.5 cm; ** shrubs present in LM and SARF were <2.5 cm diameter.

Comparison with other montane forests in the Venezuelan Andes Few studies on composition and diversity of montane forests in the Venezuelan Andes are available for comparison with the montane forests of Ramal de Guaramacal. No recent studies, with the exception of the few and local studies of Vareschi (1953), address the phytosociological classification and description of vegetation communities in the Venezuelan Andes. Only general descriptions of UMRFSARF of the Mérida Andes s.l. have been delivered by Monasterio (1980b) and Veillon (1955). Berg & Suchi (2000) also reported a forest of Podocarpus oleifolius up to 3100–3200 m altitude, as well a dwarf forest (SARF) community of Libanothamnus cf. lucidus, Ugni myricoides and Cybianthus marginathus in Páramo La Aguada in Sierra Nevada National Park, Mérida state. Bono (1996) delivered species lists of montane forests of Táchira state, mostly structured according to vegetation layers. The UMRF association of Schefflero ferrugineo – C y b ia n th e tu m l a u ri fol i i in Guaramacal displays floristic and physiognomical affinities with UMRF in Mérida state, as those forest characterized by the presence of Podocarpus oleifolius var. macrostachyus described for Mérida state in La Mucuy around 3000 m (Vareschi 1953), Sierra Nevada National Park between 3000–3200 m (Berg & Suchi 2001) and Valle San Javier at 2950–3000 m (Schneider 2001). Clear floristic affinity is found with the forests of La Montaña (‘teleférico’ or cable car) Sierra Nevada National Park at 2550–2650 m (Kelly et al. 1994), where at least 16 (41 %) of the 39 tree species reported in La Montaña are present in the

eschweizerbartxxx ingenta

phyto_39_1.indb 144

Sch efflero ferrugin eae–Cy b ian th etum laurifolii of Guaramacal, among them some diagnostic ones such as Brunellia integrifolia, Hedyosmum crenatum, Myrsine coriacea, Schefflera ferruginea and Weinmannia glabra. The forest subcommunity of Freziera serrata of the Geissan th o an d ini–M icon ietu m jahnii at 2750 m in Guaramacal Sector displays some floristic affinity with a succesional forest stand at 2600 – 2700 m in Valle San Javier, Mérida described by Schneider (2001). This forest community in Guaramacal must have been affected by disturbance due to the proximity to the road, man made clear cuts and steep slopes, and evidenced by the presence of some species (such as Brunellia integrifolia, Clethra fagifolia and Freziera serrata) which are also common (but not restricted) in secondary Andean forests of Sierra Nevada de Mérida (Vareschi 1953). Dwarf forest of Libanothamnus griffinii could be comparable in physiognomy and some companion species (of Hypericum, Vaccinium, Weinmannia) with the dwarf forest dominated by Libanothamnus neriifolius described for the Cordillera de Mérida and the Cordillera de la Costa (Vareschi 1953, 1955, Monasterio 1980b), as well with those of Libanothamnus glossophyllus from the Sierra Nevada de Santa Marta, Colombia (Cleef & Rangel 1984) and the Cordillera de Perijá (Rangel & Arellano 2007). In Venezuela, Libanothamnus neriifolius dwarf forests are present in the lower limit (2700–3200 m) of dry paramos of the Sierra Nevada de Mérida and paramos of the Lara-Trujillo state border (Cendé, Tuñame, Los Nepes) on sedimentary rocks of lutites and sandstones (Monasterio & Reyes 1980, Monasterio 1980b). However, the Libanothamnus

01.04.2009 11:57:27


The forest vegetation of Ramal de Guaramacal in the Venezuelan Andes

neriifolius/glossophyllus dwarf forests of the Sierra Nevada de Santa Marta, Colombia, are present on wind protected steep slopes between 3700–3900 m in comparable ecological conditions as Polylepis forest in the Eastern Colombian Cordillera and the Sierra Nevada de Mérida (Cleef & Rangel 1984). The Libanothamnus griffinii dwarf forests of Guaramacal are present on similar bed rock and altitudinal range as Libanothamnus neriifolius dwarf forests; under much wetter conditions however. Libanothamnus griffinii, originally described as endemic from Guaramacal, has also been reported for Lara state (Briceño & Morillo 2002). In total there are 11 species of Libanothamnus reported, most of them for Venezuela (Luteyn 1999); few of them however, constitute dwarf forests. Human influence and conservation Ramal de Guaramacal is surrounded by at least 12 small villages and towns (Fig. 1). There has been a long history of agricultural activity in the region, now occupying premontane and part of lower montane forest zone mainly for coffee plantation, slash and burn cultivation and extensive cattle ranging, among other land uses (Barbera 1999). However, the high ridges and steep slopes of Guaramacal have kept most of the montane forest areas with minimum disturbance. Only few paths crossing the range North-South existed in the past, providing commercial connections between towns located South of Ramal de Guaramacal and the city of Boconó and surroundings on the North side. These paths were soon abandoned during the 1960’s after the road for the installation of the antennas complex near the summit (3080 m) of Ramal de Guaramacal continuing to the village of Guaramacal (c. 1300 m) on the South slope of the massif, was constructed. Ramal de Guaramacal has been, and continues to be, protected as a National Park since 1988, keeping most human activities and impacts outside the park borders. Fires are known to have occurred in the past, especially in paramo areas close to the anntenas, as well as in an area known as Cerro El Diablo on the West side of the Ramal where some cattle were kept ranging in an extensive way. Timber extraction is known to be selective, occurring at very low intensity and generally takes place in close proximity to the park limits. Currently, Ramal de Guaramacal and its montane ecosystems is one of the best conserved national parks in Venezuela. We can only hope this situation will continue into the future. Resumen. Las comunidades de bosques montanos del Ramal de Guaramacal, Andes, Venezuela, fueron estudiadas a lo largo de un gradiente altitudinal y entre diferentes vertientes. Se analizaron 35 parcelas de 0.1-ha ubicadas, con intervalos variables de 30 m a 150 m, entre 1350 m y 2890 m de altitud, y nueve parcelas de tamaño variable (50 m2 hasta 400 m2) ubicadas en-

phyto_39_1.indb 145

eschweizerbartxxx ingenta

145

tre 2800–3050 m. Del total de 45 parcelas, se registró un total de 388 morfoespecies con DAP ≥2.5 cm correspondientes a 189 géneros y 78 familias de plantas vasculares. La clasificación fitosociológica mediante TWINSPAN basado en la composición florística y abundancia relativa de las especies, reveló siete comunidades de bosque, agrupadas en tres alianzas y un grupo bosques montanos equivalente a orden. Se distinguen y se describen, según la metodología Zürich-Montpellier, tres comunidades de bosque subandino (LMRF), y cuatro comunidades de bosque andino/alto-andino (UMRF-SARF). La allianza G e o n o m o u n d a t a e – Po so q u e ri o n c o ri a c e a e incluye dos comunidades de bosque subandino (S i m i ro e r y t h r o x y l i – Q u a ra ri b e e t u m m a g n i f i c a e y C o n c h o c a r p o la r e n si s– C o u ssa re e t u m m o ri t z i a n a e ); la alianza F a r a m e o k i l l i p i i – P ru n i o n m o ri t z i a n a e incluye una comunidad de bosque subandino(C ro i z a t i o b re v i p e t i o l a t a e – We t t in i e t u m p ra e m o rsa e ) y una de bosque andino(S c h e f f le r o f e rru g i n e a e – C y b i a n t h e t u m l a u ri f o l i i ) y la alianza R u il o p e z i o p a l t o n i o i d e s– C y b i a n t h i o n m a rg i n a t ii incluye una comunidad de bosque andino (G e i ssa n t h o a n d in i– M ic o n i e t u m j a h n i i ) y dos comunidades de bosque alto-andino (G a u l t h e ri o a n a st o m o sa n t i s– H e sp e ro m e l e t u m o b t u si f o l i a e y el L i b a n o t h a m n e t u m g ri f f i n i i ). Se discuten la zonificación altitudinal, diversidad y composición florística y estructura del bosque con respecto a la altitud y se compara, cuando posible, con otros bosques de montaña. En el bosque subandino, las familias de plantas leñosas más diversas en especies son Rubiaceae, Lauraceae y Melastomataceae. En el bosque andino, Lauraceae es la familia más diversa, seguido de Melastomataceae y Myrtaceae, mientras que en el bosque alto-andino las familias con mayor nriqueza de especies son Asteraceae y Ericaceae. La estructura de los bosques montanos del Ramal de Guaramacal se comprime hacia las partes más altas. Los bosques subandinos son densos y de altura media, con un dosel hasta 25 m de alto, mientras que en el bosque andino el dosel puede alcanzar hasta 18 m y en el bosque alto-andino el dosel alcanza solo 6–8 (10) m de alto. El área basal se encontró ligeramente mayor en la vertiente Norte que en la Sur y presenta patrones diferentes respecto a la altitud en cada vertiente. En los bosques subandinos se observa claramente mayor diversidad y densidad de palmas, lianas y trepadoras, pero en el bosque alto-andino la riqueza de especies de lianas es también importante. La zonificación altitudinal del bosque varia entre las vertientes Norte y Sur de Guaramacal, observandose que la zona de bosque andino o montano alto tiende a alcanzar altitudes menores en la vertiente sur más húmeda que en la vertiente Norte más seca. El límite superior del bosque en el Ramal de Guaramacal es bajo, aparentemente causado por el efecto de cumbre. Acknowledgements. UNELLEZ (SEI-23195107, SEI23105102); CONICIT (S1–97001662) and FONACIT (PEM2001002165) have supported fieldwork and equipment for this study. INPARQUES and MARN are thanked for the corresponding permits, as well as the Superintendente of Guaramacal National Park TSU Amilcar Bencomo. Many helpers assisted in fieldwork including students, park rangers, villagers, colleagues, brothers and friends. Special thanks to Wilfredo Albarran, Karina Bastidas, Ramón Caracas, Oscar León, Luis A. Linarez, Pedro Tovar, Maximo Valladares and Luis Zambrano† for their solidarity and recurrent field assistant. Angelina Licata (UNELLEZ) made profile vegetation illustrations. Ross

01.04.2009 11:57:27


146

N. L. Cuello A & A. M. Cleef

D. Morrison (University of Leicester, UK) kindly corrected and improved our English text. The UNELLEZ and Alberta Mennega Fund (Utrecht University) are acknowledged for the financial contribution to the stay of the first author at IBED, University of Amsterdam, to work in the final elaboration of this publication.

References Ataroff, M. (2001): Venezuela. – In: Kappelle, M. & Brown A. (eds.): Los bosques nublados del neotrópico, pp. 397–442. – INBIO, Costa Rica. Ataroff, M. & Sarmiento, L. (2004): Las unidades ecológicas de los Andes de Venezuela. – In: La Marca, E. & Soriano, P. (eds.): Reptiles de Los Andes de Venezuela, pp. 9–26. – Fundación Polar, Codepre-ULA, Fundacite-Mérida, Biogeos, Mérida. Axelius, B. & D’ Arcy, W. (1993): A new species of Deprea (Solanaceae) from Venezuela. – Novon 3: 11–13. Aymard, G., Dorr, L. & Cuello, N. (1999): Rudgea tayloriae (Rubiaceae), An unusual new species from the Eastern slopes of the Venezuela Andes. – Novon 9: 315–317. Badillo, V. (1994): Fleischmannia guaramacalana Badillo sp. nov. (Compositae-Eupatorieae). – Ernstia 3(3–4):139–141. Barbera, O. (1999): El Uso de la Tierra en los Alrededores del Parque Nacional Guaramacal. – In: Cuello, N. (ed.) Parque Nacional Guaramacal, pp. 123–128. – Unellez- Fundación Polar. Caracas, Venezuela. Bendix, J., Homeier, J., Cueva Ortiz, E., Emck, P., Breckle, S.W., Richter, M. & Beck, E. (2006): Seasonality of weather and tree phenology in tropical evergreen mountain rain forest. – Int. J. Biometeorol 50 (6): 370–384. Berg, A. & Suchi, S. (2000): Vegetación de los Páramos La Aguada, La Fría y Espejo en los Andes Venezolanos. – Plántula 3(1): 47–64. Bono, G. (1996): Flora y vegetación del estado Táchira. – Monogr. Reg. di Scien. Nat. 20. Torino, Italia. 951 pp. Braun-Blanquet, J. (1979): Plant sociology, the study of plant communities. – Transl. by G. D. Fueller & H. S. Conard. Mc. Graw-Hill, New York. 438 pp. Briceño, B. & Morillo, G. (2002): Catálogo abreviado de las plantas con flores de los páramos de Venezuela. Parte I. Dicotiledóneas (Magnoliopsida). – Acta Bot. Venez. 25(1): 1–46. Brun, R. (1979): Methods and results of biomass determination in a cloud forest ecosystem in the Venezuelan Andes. – Plant Res. and Dev. 9: 61–70. Bussmann, R. W. (2002): Estudio fitosociológico de la vegetación en la Reserva Biológica San Francisco (ECSF) ZamoraChinchipe. – Herbario Loja 8:1–106. Universidad Nacional de Loja. Departamento de Botánica y Ecología. Loja, Ecuador. Carnevali, G. & Ramírez, I. (1998): Notes on the orchid flora of the Cruz Carrillo National Park (Guaramacal), Venezuela. – Harvard Papers in Botany 3: 239–252. Cavelier, J. & Goldstein, G. (1989): Mist and fog interception in elfin cloud forests in Colombia and Venezuela. – J. Trop. Ecol. 5: 309–322. Cavelier, J., Solis, D. & Jaramillo, M. A. (1996): Fog interception in montane forests across the central Cordillera of Panama. – J. Trop. Ecol. 12: 357–369. Churchill, S., Balslev, H. Forero, E. & Luteyn, J. (eds.). (1995): Biodiversity and Conservation of Neotropical Montane Forests, Proceedings of the Neotropical Montane Forest

eschweizerbartxxx ingenta

phyto_39_1.indb 146

Biodiversity and Conservation Symposium. – The New York Botanical Garden, New York. Cleef, A. M. (1981): The vegetation of the paramos of the Colombian Cordillera Oriental. – Diss. Bot. 61. 321 pp. – J. Cramer, Vaduz. Cleef, A. M., Rangel-Ch., J. O. & Salamanca, S. (1983): Reconocimiento de la vegetación de la parte alta del transecto Parque Los Nevados. – In: Van der Hammen, Perez-P., A. & Pinto, P. (eds.): La Cordillera Central colombiana. Transecto Parque Los Nevados. Estudios de Ecosistemas tropandinos 1: 150–173. – J. Cramer, Berlin, Stuttgart. Cleef, A. M. & Rangel-Ch., J. O. (1984): La vegetación del páramo noroeste de la Sierra Nevada de Santa Marta. – In: Van der Hammen, T. & Ruiz, P. M. (eds.): La Sierra Nevada de Santa Marta (Colombia). Transecto Buritica–La Cumbre. Estudios de ecosistemas tropandinos 2: 203–266. – J. Cramer, Berlin, Stuttgart. Cleef, A. M., Rangel-Ch., J. O., Van der Hammen, T. y Jaramillo, R. (1984): La vegetación de las selvas del transecto Buritica. – In: Van der Hammen, T. & Ruiz, P. M. (eds.): La Sierra Nevada de Santa Marta (Colombia). Transecto Buritica–La Cumbre. Estudios de ecosistemas tropandinos 2: 267–406. – J. Cramer, Berlin, Stuttgart. Cleef, A. M., Rangel-Ch., J. O. & Salamanca, S. (2003): The Andean rain forests of the Parque Los Nevados Transect. – In: Van der Hammen, T. & dos Santos, A.G. (eds.): Studies on Tropical Andean Ecosystems/Estudios de Ecosistemas Tropandinos 5: 79–143.- Cramer, Berlin-Stuttgart. Cuatrecasas, J. (1934): Observaciones geobotánicas en Colombia. – Trab. Mus. Nac. Cienc. Nat. Madrid, Sér. Bot. 27:1– 144. – (1958): Aspectos de la vegetación natural de Colombia. – Rev. Acad. Colomb. Ci. Exact. 10: 221–268. Cuello, N. (1996): Floristic diversity and structure of montane cloud forests of Cruz Carrillo National Park in the Venezuelan Andes. – [Master Thesis]. University of Missouri-St. Louis. U.S.A. – (ed.) (1999a): Parque Nacional Guaramacal. – Unellez – Fundación Polar, Caracas, Venezuela. 245 pp. – (1999b): Observaciones sobre la Vegetación del Parque Nacional Guaramacal. – In: Cuello, N. (ed.): Parque Nacional Guaramacal, pp. 109–128. – Unellez- Fundación Polar. Caracas, Venezuela. – (2000): Caracterización de los bosques montanos del Parque Nacional Cruz Carrillo en los Andes de Venezuela. – Memorias del IV Congreso Latinoamericano de Ecología: Ecología y Desarrollo Sostenible: Reto de America Latina para el Tercer Milenio. pp.127–130. Arequipa, Perú. – (2002): Altitudinal Changes in Forest Diversity and Composition in the Ramal de Guaramacal in the Venezuelan Andes. – Ecotropicos 15(2): 160–176. Cuello, N. & Aymard, G. (2008): Ilex guaramacalensis, a new species (Aquifoliaceae) from the Ramal de Guaramacal in the Venezuelan Andes. – Novon 18(3): 319–324. Cuello, N. & Barbera, O. (1999): Aspectos climáticos del Parque Nacional Guaramacal. – In: Cuello, N. (ed.): Parque Nacional Guaramacal, pp. 47–49. – Unellez- Fundación Polar. Caracas, Venezuela. Cuello, N. & Cleef, A. M. (in press): The paramo vegetation of Ramal de Guaramacal, Trujillo state, Venezuela. I. Zonal vegetation. Phytocoenologia Cuello, N. & Cleef, A. M. (submitted): The paramo vegetation of Ramal de Guaramacal, Trujillo state, Venezuela. II. Zonal vegetation. Phytocoenologia. Cuello, N. & Cleef, A. M. & Boxel, J. van (in prep.): Upper forest line characteristics and dynamics: an analysis of the

01.04.2009 11:57:27


The forest vegetation of Ramal de Guaramacal in the Venezuelan Andes

Ramal de Guaramacal case, Venezuelan Andes. Arctic and Alpine Research. Dorr, L. (1999): Exploración Botánica en el Parque Nacional Guaramacal. – In: Cuello, N. (ed.): Parque Nacional Guaramacal, pp. 63–65. – Unellez- Fundación Polar. Caracas, Venezuela. Dorr, L., Stergios, B., Smith, A. & Cuello, N. (2000): Catalogue of the Vascular Plants of Guaramacal National Park, Portuguesa and Trujillo States, Venezuela. – Contr. US Nat. Herb. 40: 1–155. Dunsterville G. C. K. & Garay, L. (1965): Venezuelan Orchids Illustrated. – Vol. 3. André Deutsch, Ltd., London. 348 pp. Ewel, J. J., Madriz, A. & Tosi Jr., J.A. (1976): Zonas de vida de Venezuela: Memoria explicativa sobre el Mapa ecológico. – FONAIAP. Ministerio de Agricultura y Cría. República de Venezuela. Caracas. 2da. Edición. 270 pp. Gentry, A. (1982): Neotropical floristic diversity; phytogeographical connections between Central and South America, Pleistocene climatic fluctuations, or an accident of the Andean orogeny? – Ann. Miss. Bot. Gard. 75: 1–34. – (1992): Diversity and floristic composition of Andean forests of Peru and adjacent countries: Implications for their conservation. – In: Young, K. & Valencia, N. (eds.): Mem. Mus. Hist. Nat. 21: 11–29. – (1995): Patterns of diversity and floristic composition in Neotropical Montane Forests. – In: Churchill, S., Baslev, H., Forero, E. & Luteyn, J. (eds.): Biodiversity and Conservation of Neotropical Montane Forests. – Proceedings of the Neotropical Montane Forest Biodiversity and Conservation Symposium, pp. 103–126. The New York Botanical Garden, New York. Grubb, P. J. & Whitmore, T. C. (1966): A comparison of montane and lowland rain forest in Ecuador II. The climate and its effects on the distribution and physiognomy of the forests. – J. Ecol. 54: 303–333. Grubb, P. J. (1971): Interpretation of the ‘Massenerhebung’ effect on tropical mountains. – Nature 229: 44–45. – (1977): Control of forest growth and distribution on wet tropical mountains; with special reference to mineral nutrition. – Ann. Rev. Ecol. Syst. 8: 83–107. Hemp, A. (2006): Continuum or zonation? Altitudinal gradients in the forest vegetation of Mt. Kilimanjaro. – Plant Ecology 184(1): 27–42. Henderson, A., Churchill, S. P. & Luteyn, J. L. (1991): Neotropical plant diversity. – Nature 351: 21–22. Hill, M. O. (1979): Twinspan, a Fortran program for arranging multivariate data in an ordered two way table by classification of the individuals and the attributes. – Cornell University, Department of Ecology and Systematics, Ithaca, NewYork. Hooghiemstra, H. & Van der Hammen, T. (1993): Late Quaternary vegetation history and paleoecology of Laguna Pedro Palo (subandean forest belt, Eastern Cordillera, Colombia). – Rev. Palaeobot. Palyn. 77: 235–262. Holder, C. D. (2006): The hydrological significance of cloud forests in the Sierra de las Minas Biosphere Reserve, Guatemala. – Geoforum 37: 82–93. Howorth, R.T. & Pendry, C. A. (2006): Post-cultivation secondary succession in a Venezuelan lower montane rain forest. – Biodiv. Cons. 15: 693–715. Huber, O. (1986): Las selvas nubladas de Rancho Grande. Observaciones sobre su fisionomía, estructura y fenología. – In: Huber, O. (ed.) La selva nublada de Rancho Grande Parque Nacional “Henri Pittier”, el ambiente físico, vegetal y anatomía vegetal, pp. 131–170. – Fondo Editorial Acta Científica Venezolana, Seguros Anauco, C.A., Caracas.

phyto_39_1.indb 147

eschweizerbartxxx ingenta

147

Huber, O. & Alarcon, C. (1988): Mapa de vegetación de Venezuela. 1: 2000000. – Ministerio del Ambiente y de los Recursos Nat. Renovables. Caracas. Instituto de Ciencias Ambientales y Ecológicas, Centro de Investigación de la Vivienda, Departamento de Medicina Preventiva y Social & Universidad de Los Andes. (2004): Plan de acción para la conservación del Páramo de Gavidia, Mérida, Venezuela. – 39 pp. ICAE (2005): 35 Años de estudios ecológicos: Páramo, agroecología, sabanas, ecofisiología, selvas nubladas. – Universidad de los Andes, Mérida-Venezuela. CD-Rom. Kappelle, M., Van Uffelen, J. G. & Cleef, A. M. (1995): Altitudinal zonation of montane Quercus forests along two transects in the Chirripó National Park, Costa Rica. – Vegetatio 119:119–153. Kappelle, M. & Brown, A. (eds.). (2001): Bosques Nublados del Neotropico. – INBIO, Costa Rica. 704 pp. Kelly, D. L., Tanner, E. V., Nic Lughadha, E. M. & Kapos, V. (1994): Floristics and biogeography of a rain forest in the Venezuelan Andes. – J. Biogeogr. 21: 421–440. Kelly, D. L., O’Donovan, G., Feehan, J., Murphy, S., Drangeid S. O. & Marcano-Berti, L. (2004): The epiphyte communities of a montane rain forest in the Andes of Venezuela: patterns in the distribution of the flora. – J. Trop. Ecol. 20:643–666. Kitayama, K. (1992): An altitudinal transect study of the vegetation on Mount Kinabalu, Borneo. – Vegetatio 102: 149–171. Lamprecht, H. (1954): Estudios silviculturales en los bosques del valle de la Mucuy, cerca de Mérida. – Facultad de Ciencias Forestales, Universidad de los Andes, Mérida. Lauer, W., Rafiqpoor, M. D. & Theisen, I. (2001): Physiographie, Vegetation und Syntaxonomie der Flora des Páramo de Papallacta (Ostkordillere Ecuador). – Erdwiss. Forsch. 39. 142 pp. Stuttgart. Lieberman, D., Lieberman, M., Peralta, R. & Hartshorn, G. S. (1996): Tropical forest structure and composition on a largescale altitudinal gradient in Costa Rica. – J. Ecol. 84: 137– 152. Luteyn, J. L. & Churchill, S. P. (2000): Vegetation of the Tropical Andes. – In: Lentz D. (ed.): Imperfect balance: landscape transformations in the Pre-Columbian Americas, pp. 281– 310. – Columbia University Press, New York. Marvez, P. & Schargel, R. (1999): Características y génesis de los suelos del Parque Nacional Guaramacal. – In: Cuello, N. (ed.): Parque Nacional Guaramacal, pp. 35–44. – UnellezFundación Polar. Caracas, Venezuela. McCune, B. & Mefford, M. J. (1999): PC-ORD. Multivariate Analysis of Ecological Data. Version 4.10. – MjM Software, Gleneden Beach, OR, U.S.A. Meier, W. (2004): Flora y vegetación del Parque Nacional El Ávila (Venezuela, Cordillera de la Costa), con especial énfasis en los bosques nublados. – Freiburg, Germany. Spanish version of Meier, W. 1998. “Flora und Vegetation des ÁvilaNationalparks (Venezuela/Küstenkordillere) unter besonderer Berücksichtigung der Nebelwaldstufe”. Diss. Bot. 296. 485 pp. – J. Cramer in der Gebr. Borntraeger Verlagsbuchhandlung – Berlin – Stuttgart. Ministerio de Minas e Hidrocarburos. (s/f): Mapa Geológico de la Región de Calderas, estados Trujillo, Barinas y Portuguesa. Escala 1:50.000. – Dirección de Geología, Caracas, Venezuela. – (1970): Léxico Estratigráfico de Venezuela. – Bol. Gol. Public. Esp. 1: 1–728. – Dirección de Geología. Caracas, Venezuela. Monasterio, M. (ed.) (1980a): Estudios ecológicos en los páramos andinos. – Ediciones de la Universidad de los Andes, Mérida, Venezuela. 312 pp.

01.04.2009 11:57:27


148

N. L. Cuello A & A. M. Cleef

– (1980b): Las formaciones vegetales de los páramos de Venezuela. – In: Monasterio, M. (ed.): Estudios ecológicos en los páramos andinos, pp. 93–158. – Ediciones de la Universidad de los Andes, Mérida, Venezuela. Monasterio, M. & Reyes, S. (1980): Diversidad ambiental y variación de la vegetación en los páramos de los Andes Venezolanos. – In: Monasterio, M. (ed.): Estudios ecológicos en los páramos andinos, pp. 47–91. – Ediciones de la Universidad de los Andes, Mérida, Venezuela. Morillo, G. (1988): Nuevas especies de Asclepiadaceae para Venezuela. – Ernstia 34: 12–30. Moscol Olivera, M. C. & Cleef, A. M. (in press): Vegetation composition and altitudinal distribution of Andean rain forests in El Carchi Province, northern Ecuador. – Phytocoenologia. Nakashizucha, T., Yusop, Z. & Nik, A. R. (1992): Latitudinal zonation of forest communities in Selangor, Peninsular Malasia. – J. Trop. Forest Sc. 4: 233–244. Niño, M., Dorr, L. & Stauffer, F. W. (2005): Una nueva especie de Aiphanes (Arecaceae) de la Cordillera de Mérida, Venezuela. – Sida 21: 1529–1606. Ortega, F., G. Aymard & Stergios, B. (1987): Aproximación al conocimiento de la flora de las Montañas de Guaramacal, Edo. Trujillo, Venezuela. – Biollania 5: 1–60. Rangel-Ch., J. O. & Lozano, G. (1989): The forest vegetation of the Valle de la Plata. – In: Herrera, L. F., Drennan, R. D. & Uribe, C. A. (eds.): Prehispanic chiefdoms in the Valle de la Plata 1: 95–119. – University of Pittsburgh. Memoirs in Latin American Archaeology 2. Rangel-Ch., J. O. (1991): Vegetación y ambiente en tres gradientes montañosos en Colombia.- Thesis, Universiteit van Amsterdam. 349 pp. – (1994): La vegetación del Parque Regional Natural Ucumari. – In: Rangel-Ch., J.O. (ed.): Ucumarí. Un caso típico de la diversidad biótica andina, pp. 59–81. – Carder – Universidad Nacional de Colombia, Pereira. Rangel-Ch., J. O. & Arellano, H. (2007): Vegetación. – In: Rangel-Ch., J. O. (ed): Colombia Diversidad Biologica V. La alta montaña de la Serranía de Perijá, Departamento del Cesar, pp. 173–192. – Universidad Nacional de Colombia, Bogotá. Rangel-Ch., O.J. & Franco-R., P. 1985. Observaciones fitoecológicas en varias regiones de vida de la cordillera Central de Colombia. – Caldasia 14(67): 211–249. Rangel-Ch., J.O., Cleef, A.M. & Salamanca, S. (2003): The equatorial interandean and subandean forests of the Parque Los Nevados Transect. Cordillera Central, Colombia. – In: van der Hammen, T. & dos Santos, A.G. (eds.): Studies on Tropical Andean Ecosystems/Estudios de Ecosistemas Tropandinos 5: 143–204. – Cramer, Berlin-Stuttgart. Rangel-Ch., J. O., Cleef, A. M., Salamanca, S. & Ariza-N., C. (2005): La vegetación de los bosques y selvas del Tatamá (The forest vegetation of the Tatamá area). – In: Van der Hammen, T. Rangel-Ch., J. O. & Cleef, A.M. (eds.): La Cordillera occidental Colombiana – Transecto de Tatamá. – Studies on Tropical Andean Ecosystems 6: 459–643.- Cramer, BerlinStuttgart. Reaud-Thomas, G. (1989): Vegetatión et utilizatión du sol dans la Région Guanare-Masparro, Andes Vénézueliennes. Venezuela. – Environnement et Changements 63(2): 137–201. – CEGET, CNRS, Bordeaux. Richter, M. (2003): Using epiphytes and soil temperatures for eco-climatic interpretations in Southern Ecuador. – Erdkunde 57: 161–181. Richter, M. & Moreira-Muñoz, A. (2005): Heterogeneidad climática y diversidad vegetacional en el sur de Ecuador: un método de fitoindicación. – In: Weigend, Rodríguez &

eschweizerbartxxx ingenta

phyto_39_1.indb 148

Arana (comps.): Bosques relictos del NO de Perú y SO de Ecuador. – Rev. Per. Biol. 12(2): 217–238. Rivero, R. & Ortega, F. (1989): Notas fitogeográficas y adiciones a la Pteridoflora de las montañas de Guaramacal, estado Trujillo, Venezuela. – BioLlania 6: 133–142. Rundel, P. W. (1994): Tropical alpine climates.- In: Rundel, P. W., Smith, A. P. & Meinzer, F. C. (eds.): Tropical Alpine Environments: Plant form and function, pp. 21–44. – Cambridge University Press. Sarmiento, G. (1986): Ecological features of climate in high tropical mountains. – In: Vuilleumier, F. & Monasterio, M. (eds.): High Altitude Tropical Biogeography, pp. 11–45. – Oxford University Press. Sarmiento, G., Monasterio, M., Azocar, A., Castellano, E. & Silva, J. (1971): Vegetación natural. Estudio integral de la Cuenca de los Ríos Chama y Capazón. – Sub-proyecto No. III. Facultad de Ciencias, Universidad de los Andes, Mérida. Schneider, J. V. (2001): Diversity, structure and biogeography of a succesional and mature upper montane forest of the Venezuelan Andes. – Andere Verlag, Frankfurt am Main. Ph.D. Thesis. Schneider, J. V., Gaviria, J. & Zizka, G. (2000): Inventario florístico de un bosque altimontano húmedo en el Valle de San Javier, Edo. Mérida, Venezuela. – Plántula, 3(2):65–81. Schröter, C. (1926): Das Pflanzenleben der Alpen. – Ed. 2:32. Zürich. 1288 pp. Schubert, C. (1980): Late-Cenozoic pull-apart basins, Boconó fault zone, Venezuelan Andes. – J. Struct. Geol. 2(4):463– 468. Smith, R. (1985): La vegetación de las cuencas de los Ríos Guasare, Socuy y Cachiri, estado Zulia. – Bol. Soc. Ven. Cienc. Nat. 143(40): 295–325. Stancik, D. (2004): Festuca dinirica and F. guaramacalana (Poaceae, Loliinae), two new species from the Venezuelan Andes. – Novon 14 (3): 341–344. Stergios, B. (1999): La flora espermatófita de las Montañas de Guaramacal. – In: Cuello, N. (ed.): Parque Nacional Guaramacal, pp. 73–91.- Unellez- Fundación Polar. Caracas, Venezuela. Stergios, B. & Dorr, L. (2003): Bomarea amilcariana (Amarylidaceae). – Acta Bot. Ven. 26: 31–40. Steyermark, J. A., & Huber, O. (1978): Flora del Avila. – Vollmer Foundation & MARNR, Caracas. 971 pp. Taylor, C. (2002): Rubiacearum Americanarum Magna Hama Pars 10. New species and a new subspecies of Faramea (Coussareae) from Central and South America. – Novon 12 (4): 563–570. Troll, C. (1959): Die tropischen Gebirge. – Bonner Geogr. Abh, 25. Bonn. 113 pp. – (1968): Geo-ecology of the mountainous regions of the tropical Americas. – Coll. Geogr. 9. Bonn. 224 pp. – (1973): The upper timberlines in different climatic zones. – Arct. Alp. Res. 5(3, 2): 3–18. Urriola, P. (1999): Una interpretación de la geología y geomorfología de Guaramacal. – In: Cuello, N. (ed.): Parque Nacional Guaramacal, pp. 21–34. – Unellez- Fundación Polar. Caracas, Venezuela. Van der Hammen, T. (1974): The Pleistocene changes of vegetation and climate in tropical South America. – J. Biogeogr. 1: 3–26. – (1995): Global change, Biodiversity, and Conservation of Neotropical Montane forests. – In: Churchill, S., Balslev, H., Forero, E. & Luteyn, J. (eds.): Biodiversity and Conservation of Neotropical Montane Forests, pp. 603–607. – The New York Botanical Garden, New York.

01.04.2009 11:57:27


The forest vegetation of Ramal de Guaramacal in the Venezuelan Andes

Van der Hammen, Perez-P., A. & Pinto, P. (eds.). (1983): La Cordillera Central colombiana. Transecto Parque Los Nevados. – Estudios de Ecosistemas tropandinos 1: 150–173. – J. Cramer, Berlin, Stuttgart. Van der Hammen, T. & Cleef, A. M. (1986): Development of the high Andean páramo flora and vegetation. – In: Vuilleumier, F. & Monasterio, M. (eds.): High altitude tropical biogeography, pp. 153–201. – Oxford University Press. Oxford. Van der Hammen, T. & Hooghiemstra, H. (2001): Historia y paleoecología de los bosques montanos andinos neotropicales. – In: Kappelle, M. & Brown, A. (eds.): Bosques nublados del neotrópico, pp. 63–84. – INBIO, Costa Rica. Van der Hammen, T. & Ruiz, P. M. (eds.) (1984): La Sierra Nevada de Santa Marta (Colombia). Transecto Buritica–La Cumbre. – Estudios de ecosistemas tropandinos 2. 603 pp. – J. Cramer, Berlin, Stuttgart. Van Steenis, C.G.G.J. (1961): An attempt towards an explanation of the effect of mountain mass elevation. – Proc. Kon. Ned. Akad. Wet. 64: 435–442. – (1972): The mountain flora of Java. – Leiden 90 pp., 57 colour plates. Vareschi, V. (1953): Sobre las superficies de asimilación de sociedades vegetales de cordilleras tropicales y extratropicales. – Bol. Soc. Venez. Ci. Nat. 14(79): 121–173. – (1955): Monografías geobotánicas de Venezuela. I. Rasgos geobotánicos sobre el Pico de Naiguatá. – Acta Cient. Venez. 6(5/6): 180–201. Vásquez, J. A. & Givnish, T. (1998): Altitudinal gradients in tropical forest composition, structure, and diversity in the Sierra de Manatlán. – J. Ecol. 86: 999–1020.

149

Veillon, J. P. (1965): Variación altitudinal de la masa forestal de los bosques primarios en la vertiente nor-occidental de la cordillera de los Andes, Venezuela. – Turrialba 15: 216–224. – (1985): El crecimiento de algunos bosques naturales de Venezuela en relación con los parámetros del medio ambiente. – Rev. Forestal Venez. 29: 5–119. Westhoff, V. & Van der Maarel, E. (1973): The Braun-Blanquet approach. – In: Whittaker, R.H. (ed.): Handbook of vegetation science 5: 617–726. – Junk, The Hague. Wolf, J.H.D. 1993. Ecology of epiphyte communities in montane rain forests, Colombia. – PhD Thesis. Universiteit van Amsterdam. 238 pp. Yánez, P. (1998): Caracterización florística en un sector de cambio Páramo – Selva Nublada en el Parque Nacional Sierra Nevada, Venezuela. – Rev. Forest. Venez. 42(1): 51–62.

Addresses of the authors: Nidia L. Cuello A., Universidad Nacional Experimental de los Llanos Ezequiel Zamora (UNELLEZ-Guanare) Programa de Ciencias del Agro y del Mar, Herbario Universitario (PORT), Mesa de Cavacas, Estado Portuguesa 3323, Venezuela, e-mail: N.L.CuelloAlvarado@uva.nl; ncuello@cantv.net Antoine M. Cleef, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Science Park 904, 1098 HX Amsterdam, The Netherlands, e-mail: cleef@uva.nl

Appendix 1. Checklist and vouchers of vascular species recorded from plots surveys in the montane forest of Ramal de Guaramacal. Species are alphabetically ordered by class, family and genus. Asterisks (*) indicates annotated/collected for forest description, but not documented in the plot surveys. Collectors NC: N. Cuello et al., AL: A. Licata et al. eschweizerbartxxx ingenta

Appendix 1 LYCOPODIOPSIDA: LYCOPODIACEAE: Huperzia sp. * NC 2822; H. sp. * NC 2268; H. mollicoma (Spring) Holub. * NC 1471; Lycopodium contiguum Kl. * NC 2696; L. jussiaei Desv. ex Peir * NC 1075; SELAGINELLACEAE: Selaginella difussa (C. Presl) Spring * NC 1452; S. producta Baker. * NC 1472; S. substipitata Spring * NC 1298. FILICOPSIDA: ASPLENIACEAE: Asplenium sp. * NC 2814; A. alatum Alvaro Cogollo * NC 2150; A. auriculatum Sw. * AL 220, 235, 260; A. cirrhatum Rich. ex Willd * NC 2385; A. cristatum Lam. * NC 1860, 1862; A. cuspidatum Lam. * AL 221; A. flabellulatum Kunze * AL 222; A. harpeodes Kunze * AL 228, 251; A. raddianum Gaudich. * NC 1247, 1523; A. radicans L. * NC 1631, 2014; A. uniseriale Raddi * NC 1719. BLECHNACEAE: Blechnum ensiforme (Liebm.) C. Chr. * NC 1305; B. schomburgkii (Klotzsch) C. Chr. CYATHEACEAE: Alsophila angelii Tryon NC 2432; A. erinacea (Karst.) Conant. NC 1765, 2209, 2224, 2302; Cyathea aff. straminea H. Karst NC 2394; C. caracasana (Klotzsch) Domin NC 1101, 1226, 1276, 1857, 1875, 1938, 2391, 2473, 2482, 2483; C. fulva (Mart. & Gal.) Fée NC 1032, 1701, 1887, 2011, 2041, 2096, 2365, 2396, 2461, 2582,2286,2295, 2301; C. kalbreyeri (Baker) Domin NC 1512, 1763, 2206, 2603, 2624; C. pauciflora (Kuhn) Lellinger NC 1157, 1971, 2353, 2392, 2633; C. pungens (Willd.) Domin NC 1324; Sphaeropteris sp. NC 1051. DENNSTAEDTIACEAE: Dennstaedtia sp. * NC 1473. DICKSONIACEAE: Dicksonia sellowiana Hook. NC 1873, 1921, 2429. DRYOPTERIDACEAE: Arachniodes denticulata (Sw) Ching * NC 1246, 1477, 1628; Didymochlaena truncatula J. Smith * NC 2151; Diplazium celtidifolium Kunze NC 2154; D. hians Kunze ex Klotzsch. NC 1841, 2136; Elaphoglossum cuspidatum (Will.) Moore * AL 266; E. eximium (Mett.) H. Christ * AL 245; Polystichum muricatum (L.) Fée * NC 2181; P. platyphyllum (Will.) C. Presl * NC 1863. GRAMMITIDACEAE: Melpomene flabelliformis (Poir.) A.R. Sm. & R.C. Moran * NC 2877; M. xiphopteroides (Liebm.) A.R. Sm. & R.C. Moran * AL 270; Micropolypodium truncicola (Klotzsch) A.R. Sm. * AL 275; Terpsichore asplenifolia (L.) A. R. Sm. * NC 1499, 2427; T. subtilis (Kunze ex Klozsch) A. R. Smith, vel aff * AL 271; T. taxifolia (L.) A. R. Sm. * NC 1302; T. xanthotrichia (Klotzsch) A. R. Smith * AL 244. HYMENOPHYLLACEAE: Hymenophyllum fucoides (Sw.) Sw. * NC 1317; H. microcarpum Desv. * NC 1492; H. myriocapum Hook. * NC 1465; H. polyanthos (Sw.) Sw. * AL 248; H. trichomanoides Bosch * NC 1489, 1491; Trichomanes capillaceum L. * NC 1490; T. radicans Sw. * NC 2152. MARATTIACEAE: Danaea moritziana C. Presl. * NC 1533. POLYPODIACEAE :Campyloneurum ophiocaulon (Klotzsch) Fée * NC 2153; C. serpentinum (H. Christ) Ching. * NC 1846; Microgramma percussa (Cav.) de la Sota * NC 1630; Pecluma divaricata (E. Fourn.) Mickel & Beitel * NC 2089; Polypodium sp.* NC 2809; P. buchtienii H. Christ. & Rosenst. * AL 287; P. fraxinifolium Jacq. * NC 1248. PTERIDACEAE: Eriosorus flexuosus (Kunth) Copel. * NC 2824. THELYPTERIDACE-

phyto_39_1.indb 149

01.04.2009 11:57:28


150

N. L. Cuello A & A. M. Cleef

AE: Thelypteris concinna (Will.) Ching * AL 337; T. dentata (Forssk.) E.P. St. John * AL 338. VITTARIACEAE Polytaenium lineatum (Sw.) J. Sm. * NC 1203; Vittaria graminifolia Kaulf. * AL 274. PINOPSIDA: PODOCARPACEAE: Podocarpus oleifolius D. Don ex Lambert var. macrostachyus (Parl.) J. Bunchholz & N. E. Gray NC 1126, 2410, 2647. MAGNOLIOPSIDA: ACANTHACEAE: Aphelandra macrophylla Leonard NC 1736, 2535, 2557; Mendoncia tovarensis (Klotzsch & Karsten ex Nees) Leonard NC 1800; Ruellia tuberosa L. * NC 2499; R. tubiflora Kunth var. tetrastichantha (Lindau) Leon NC 1038. ACTINIDIACEAE: Saurauia tomentosa (Kunth) Spreng. NC 1190; S. yasicae Loes NC 1026, 1143. ANACARDIACEAE: Tapirira guianensis Aubl. NC 1546, 1854, 2281. ANNONACEAE: Rollinia mucosa (Jacq.) Baill. NC 1814, 2558; Trigynaea duckei (R.E. Fr.) R.E. Fr. NC 1526, 2512. AQUIFOLIACEAE: Ilex guaramacalensis Cuello & Aymard, sp. nov. NC 2853; I. laurina Kunth NC 1147, 1338, 1920, 1961, 2599, 2693; I. myricoides Kunth NC 1140; I. sp.1 NC 1189; I. sp.2 NC 1333, 2462, 2470; I. truxillensis Turcz. subsp. bullatissima Cuatrec. NC 1120, 2412, 2471. ARALIACEAE: Dendropanax arboreus (L.) Dcne. & Planch. NC 1503, 1787, 2297; Oreopanax discolor (Kunth) Decne. & Planch. NC 1257, 2448; O. sp. NC 2768, 2826; Schefflera ferruginea (Willd. ex Roem. & Schult.) Harms NC 1083, 1328, 1966, 2393. ASTERACEAE: Ageratina neriifolia (B.L. Rob.) R.M. King & H. Rob. NC 2079; A. theifolia (Benth.) R. M. King & H. Rob. NC 2881; Baccharis brachylaenoides DC. NC 2869; Critoniopsis paradoxa (Sch. Bip.) V.M. Badillo NC 1110, 1253, 1291, 1318, 1935, 2625 Diplostephium obtusum S.F. Blake NC 2678; Fleischmannia pratensis (Klatt) R.M. King & H. Rob. * NC 1548; Libanothamnus griffinii (Ruiz-Teran & Lop. Fig.) Cuatr. NC 2704; Mikania banisteriae DC. NC 1004, 2010, 2379; M. bogotensis Benth. * NC 1355; M. houstonians (L.) B.L. Rob. NC 2232; M. nigropunctulata Hieron NC 2068; M. sp.1 NC 2082; M. stuebelii Hieron NC 2075, 2316, 2363, 2852; Paragynoxys cuatrecasasii Ruiz-Teran & Lopez Figueiras NC 1217; P. venezuelae (V.M. Badillo) Cuatrec. NC 1238; Pentacalia cachacoensis (Cuatrec.) Cuatrec. NC 1242; P. greenmanniana (Hieron.) Cuatr. NC 2879; P. theifolia (Benth.) Cuatrec. NC 2838; P. vicelliptica (Cuatrec.) Cuatrec. NC 2085; Ruilopezia paltonioides (Standl.) Cuatrec. NC 2616. BEGONIACEAE: Begonia sp.* NC 2182; B. trispathulata (A. DC.) Warb. in Engler & Prantl * NC 2553; B. vareschii Irmscher * NC 1464. BIGNONIACEAE: Schlegelia spruceana K. Schum. NC 1816; Tabebuia guayacan (Seem.) Hemsl. NC 1609, 1790. BOMBACACEAE: Matisia sp. NC 2508; Quararibea magnifica Pittier NC 2133, 2225, 2505. BORAGINACEAE: Cordia cylindrostachya (Ruiz & Pav.) Roem. & Schult. * AL 283. BRASSICACEAE: Cardamine fulcrata Greene * AL 272. BRUNELLIACEAE: Brunellia acutangula Humb. & Bonpl. NC 1241; B. cf. integrifolia Szyszyll. NC 1105, 1864, 1936, 2104, 2600. BURSERACEAE: Protium tovarense Pittier NC 1283, 1558, 1778, 2257. CAESALPINIACEAE: Senna pendula (Humb. & Bonpl. ex Willd.) H. Irwin & Barneby * AL 333. CAMPANULACEAE Centropogon cornutus (L.) Druce * AL 309; C. elmanus Wimm. * NC 1420; C. solanifolius Benth. * NC 1479. CAPRIFOLIACEAE: Viburnum tinoides L.f. var. venezuelensis (Killip & A. C. Smith) Steyerm. NC 1258, 1919. CARICACEAE: Vasconcella microcarpa (Jacq.) A. DC. NC 1201, 2526. CARYOPHYLLACEAE: Drymaria cordata (L.) Willd. ex Roem. & Schult. * NC 1457; D. ovata willd. ex Roem & Schult * NC 1439; Stellaria ovata Willd. * NC 2810; Stellaria sp. * NC 2763. CELASTRACEAE: Celastrus liebmanii Standl. NC 1011, 2241, 2357; Maytenus sp. A NC 1293, 1582, 1659, 2626; Perrottetia quinduensis Kunth NC 2030, 1003, 1068. CHLORANTHACEAE: Hedyosmum cf. gentryii D‘Arcy & Liesner NC 1518, 1593, 1813, 1870, 2008, 2283, 2380, 2604; H. crenatum Occhioni NC 1115, 1933, 1949, 2101, 2254; H. cuatrecazanum Occhioni NC 989, 1025, 2047; H. goudotianum Solms-Laubach * NC 1441; H. racemosum (Ruiz & Pav.) G. Don NC s/n; H. sp. A NC 1232, 1323, 2450, 2629; H. translucidum Cuatrec. NC 1223, 1326, 2799. CLETHRACEAE: Clethra fagifolia Kunth var. fagifolia NC 1059, 1148, 1330, 1931, 1959, 2356. CLUSIACEAE Clusia alata Triana & Planch. NC 1215, 1219, 1356, 1578, 1883, 1942, 1967, 2001, 2051, 2445, 2617, 2250, 2453; C. sp. 1 NC 2270, 2360; C. sp. A? (C. multiflora group) NC 1676, 1748, 1970; C. trochiformis Vesque NC 1017, 1113, 1255, 1288, 1357, 1674, 1934, 1968, 2120, 2219, 2467, 2251, 2408, 2510; Hypericum paramitanum N. Robson NC 2831; H. thesiifolium Kunth * AL 319; Vismia baccifera (L.) Triana & Planch subsp. dealbata (Kunth) Ewan NC 1274. CUCURBITACEAE: Elateriopsis oerstedii (Cogn.) Pittier NC 2514. CUNONIACEAE: Weinmannia aff. balbisiana Kunth NC 1648, 1877, 2106, 2451, 2638, W. auriculata D. Don NC 2849; W. fagaroides Kunth NC 2252, 2850; W. glabra L.f. NC 1116, 1929, 1964, 2109, 2398; W. karsteniana Szyszyll. NC 2848; W. lechleriana Engl. NC 1351; W. sorbifolia Kunth NC 1195, 2586. DICHAPETALACEAE: Dichapetalum pedunculatum (DC.) Baill. NC 2263. ELAEOCARPACEAE: Sloanea brevispina F. Sm. NC 2265; S. guianensis Aubl. NC 919, 1541, 1775, 1995, 2170, 2231, 2271; S. laurifolia (Benth.) Benth. NC 937; S. rufa Planch. ex Benth. NC 1070, 1513, 2003, 2140, 2276, 2287. EREMOLEPIDACEAE: Antidaphne viscoidea Poepp. & Endl. * NC 1014. ERICACEAE: Diogenesia tetrandra (A. C. Jm.) Sleumer NC 2118, 2589; Disterigma alaternoides (Kunth) Nied. NC 2861; D. sp. NC 2437; Indet. Eric-1 NC 2417; Gaultheria anastomosans (L.f.) Kunth NC 2680; G. erecta Vent. 2827; G. myrsinoides Kunth [Pernettya prostrata (Cav.) DC. NC 2706]; Macleania rupestris (Kunth) A.C. Sm. NC 1575; Psammisia hookeriana Klotzsch. NC 1125, 1637, 1896, 2063, 2334, 2338, 2498; P. penduliflora Klotzsch * NC 1717; Themistoclesia dependens (Benth.) A. C. Smith NC 1974; Thibaudia floribunda Kunth. NC 2693; Vaccinium corymbodendron Dunal NC 2687. ESCALLONIACEAE: cf. Escallonia hispida (Vell.) Sleumer NC 2431. EUPHORBIACEAE: Acalypha macrostachya Jacq. NC 1177; Alchornea glandulosa Poepp. & Endl. NC 1855, 2536; A. grandiflora Muell. Arg. NC 927, 1186, 1273, 1565, 1584, 1667, 1806, 2129, 2326, 2354, 2415; Croizatia brevipetiolata (Secco) Dorr NC 1703; Hyeronima cf. oblonga (Tul.) Mull. Arg. NC 953, 1309, 1655, 1999, 2035, 2073, 2291, 2628; H. moritziana (M. Arg.) Pax & Hoffmann NC 948, 1081, 1292, 1339, 1773, 1988, 2036, 2601; H. scabrida (Tul.) Mull. Arg. NC 1231, 1352, 2447, 2618; Mabea occidentalis Benth. NC 1519; Phyllanthus niruri L. * AL 325; Sapium stylare Mull. Arg. NC 2029; Tetrorchidium rubrivenium Poepp. NC 1196, 1812, 2022. FABACEAE: Desmodium intortum (Mill.) Urb. * AL 300; D. molliculum (Kunth) DC. * NC 1400, 1438; Dussia coriacea (Sw.) Roem. & Schult. NC 1607, 1977, 2053, 2138; Machaerium cf. floribundum Benth. NC 1807, 2277. FLACOURTIACEAE: Casearia tachirensis Sleumer NC 2032, 2165, 207. GENTIANIACEAE: Macrocarpea bracteata Ewan NC 2806; Symbolanthus vasculosus (Griseb.) Gilg. NC 1329, 1649, 1891, 2122, 2474. GESNERIACEAE: Alloplectus aff. chrysantha Planch. & Linden * NC 1424; Besleria pendula Hanst. NC 942, 1930; Columnea sanguinea (Pers.) Hanst. * AL 307; Drymonia crassa C. V. Morton * NC 2492; D. crassa C.V. Morton NC 2048; Heppiella viscida (Lindl. & Paxt.) Fritzsch * NC 1622, 1724; Kohleria hirsuta (Kunth) Regel * NC 1716. HIPPOCRATEACEAE: Salacia aff. cordata (Miers.) Mennega NC 1786, 2259. HYDRANGEACEAE: Hydrangea aff. peruviana Moricard NC 1180; H. cf. preslii Briq. NC 2238, 2525; H. sp.1 NC 2211. ICACINACEAE: Calatola venezuelana Piteschweizerbartxxx ingenta

phyto_39_1.indb 150

01.04.2009 11:57:28


The forest vegetation of Ramal de Guaramacal in the Venezuelan Andes

151

tier NC 1005, 2135, 2221, 2282, 2564; Citronella costaricensis (Donn. Sm.) R.A. Howard NC 1165, 1914, 2033. LAMIACEAE: Hyptis vilis Kunth & Bouché * AL 331. LAURACEAE: Aiouea dubia (Kunth) Mez NC 926, 1916, 1998, 2092, 2208, 2444, 2640; Aniba cf. cinnamomiflora C. K. Allen NC 1514, 1596, 1780, 1902, 1992, 2262; Beilschmiedia tovarensis (Meissn.) Sa. Nishida NC 1313, 1587, 1888, 1987, 2023, 2245, 2266; Endlicheria sp. NC 2285, 2330; Nectandra aff. membranacea (Sw.) Griseb. NC 1835, 2532; N. aff. purpurea (Ruiz & Pav.) Mez NC 1536, 2520; N. sp. NC 1838; Ocotea aff. puberula (Rich.) Nees NC 922, 1991; O. aff. tarapotana (Meissn.) Mez NC 1799; O. auriculata Lasser NC 1178; O. calophylla Mez NC 2460; O. cernua (Nees) Mez, vel aff. NC 1828, 2162; O. cf. hexanthera Kopp. NC 2369, 2397; O. floribunda (Sw.) Mez NC 1010, 1037, 1539, 2099, 2351; O. jelski Mez NC 1137, 1962; O. karsteniana Mez NC 1123, 1197, 1307, 1707, 1912, 1996, 2121, 2414; O. leucoxylon (Sw.) de Lanessen, s.l. NC 1664, 1893, 2110, 2366, 2438; O. macropoda (Kunth) Mez NC 1084, 1791, 1880, 1960, 2115, 2318, 2475; O. rubrinervis Mez NC 1563, 2000; O. sericea Kunth NC 2076, 2479; O. sp. s/n; O. sp. A NC 1044, 1295, 1660, 1867, 2290; O. sp. C NC 2518, 2569, 2574; O. terciopelo C. K. Allen NC 2086; O. vaginans (Meissn.) Mez NC 1045, 1290, 1989, 2037, 2641; Persea aff. mutisii Kunth NC 1928, 1954, 1975, 2449, 2464; P. ferruginea Kunth. NC 2480; P. meridensis Kopp. NC 943, 1985, 1897, 1885; P. peruviana Nees NC 976, 1569, 1817, 2142, 2223, 2575; P. sp.1 NC 1953, 1963, 2472; P. sp.2 NC 2434; P. sp.3 NC 1770; Pleurothyrium costanense van der Werff NC 1188, 2128. LECYTHIDACEAE: Eschweilera perumbonata Pittier NC 1521, 1646, 2260, 2278; E. sp. nov NC 1832. LORANTHACEAE: Aetanthus nodosus (Desr.) Engl. * NC 1066, 1345, 2401; Dendrophtora sp. * NC 2795; Gaiadendron punctatum (R. & P.) G. Don NC 1121, 2084, 2847; Struthanthus dichotrianthus Eichl. * AL 320. LYTHRACEAE: Cuphea denticulata Kunth * NC 1401. MAGNOLIACEAE: Talauma sp. NC 1745. MALPIGHIACEAE: Bunchosia armeniaca (Cav.) DC. NC 1181, 2126; Byrsonima karstenii W. R. Anderson NC 1131; B. sp. NC 2439, 2481, 2642; Mascagnia sp. A NC 1552. MARCGRAVIACEAE: Marcgravia brownei (Tr. & Pl.) Krug & Urb. NC 2176, 2578. MELASTOMATACEAE: Anaectocalyx bracteosa (Naud.) Triana NC 1112, 1254, 1285, 1685, 1907, 1941, 2078, 2341, 2477; Blakea schlimii (Naud.) Triana NC 944, 1277, 1571; Chaetolepis lindeniana (Naudin) Triana NC 2691; Henriettella cf. verrucosa Triana NC 1769; H. sp. NC 2303; H. tovarensis Cogn. NC 1550; Meriania grandidens Triana NC 2002, 2046, 2648; M. macrophylla (Benth.) Triana NC 1997, 2141; Miconia aeruginosa Naud. * NC 1549; M. amilcariana Almeda & Dorr NC 999, 1185, 1327; M. cf. dolichopoda Naud. NC 1174, 1836, 2025, 2098, 2299, 2442, 2534; M. donaeana Naud. NC 2577; M. elvirae Wurdack NC 1362; M. cf. minutiflora (Bonpl.) DC. NC 960, 1598, 1662, 2045, 2594; M. jahnii Pittier NC 2828; M. lonchophylla Naud. NC 1043, 1555, 1577, 1771, 1886, 207, 2215, 2300, 2346; M. lucida Naud. NC 932, 941, 1657, 1900, 1978, 2333, 2342; M. mesmeana Gleason subsp. longipetiolata Wurdack NC 1948; M. sp. C (hibrido) NC 1028; M. sp.B NC 2644; M. spinulosa Naudin * NC 1460; M. suaveolens Wurdack NC 1222; M. theaezans (Bonpl.) Cogn., s.l. NC 1151, 1237, 1271, 1349, 1540, 2637; M. tinifolia Naud. NC 1106, 1325, 1336, 2062, 2436, 2631; M. tovarensis Cogn. NC 1278, 1231, 2621; M. tuberculata (Naud.) Triana * AL 315; M. ulmarioides Naud. NC 1119, 1225, 1320, 1939, 2097, 2390; Monochaetum discolor H. Karst. NC 2710; Mouriri barinensis (Morley) Morley NC 1504, 1830, 2205; Ossaea micrantha (Sw.) Macfad. NC 2168. MELIACEAE: Guarea kunthiana A. Juss. NC 1171, 1525, 1810, 2210,2555, 2568; Ruagea glabra Triana & Planch. NC 928; R. pubescens H. Karst. NC 1270, 1642, 1801, 1881, 2361, 2523; Trichilia hirta L. NC 2517; T. pallida Sw. NC 1545; T. septentrionalis C. DC. NC 1909, 2043, 2164, 2213. MIMOSACEAE: Inga aff. densiflora Benth. NC 1595, 2226, 2605; Inga edulis Mart. NC 1179, 2524; Zygia bisingula L. Rico NC 1737. MORACEAE: Cecropia sararensis Cuatrec. NC 1746; C. sp. NC 2311; C. telenitida Cuatrec. NC 1826; Ficus nymphaefolia P. Miller NC 1793, 2538; F. sp. NC 1843; F. tonduzii Standl. NC 1198, 2145, 2570; F. tovarensis Pittier NC 2294; Morus insignis Bureau NC 2527; Pseudolmedia rigida (Planch. & Karst.) Cuatrec. subsp. rigida NC 1537, 2273.MYRICACEAE: Myrica pubescens Willd. * AL 314; MYRSINACEAE Cybianthus cuspidatus Miq. NC 1652, 1895; Cybianthus iteoides (Benth.) Agost. NC 1141, 2403; C. laurifolius (Mez) Agost. NC 1153, 1926, 2409; C. marginatus (Benth.) Pipoly NC 2679; C. stapfii (Mez) Agostini NC 2832; Geissanthus fragans Mez NC 1199, 2620; Myrsine dependens (Ruiz & Pav.) Spreng NC 2792; M. coriacea (Sw.) R. Br. ex Roem & Schult. NC 1107, 2117; Parathesis venezuelana Mez NC 1744, 2173, 2506; Stylogyne longifolia (Mart. ex Miq.) Mez NC 2530, 2559; S. sp. A NC 2236, 2645; Geissanthus andinus Mez NC 2863. MYRTACEAE: Calyptranthes cf. meridensis Steyerm. NC 1104, 1951, 1965, 2343, 2359, 2646; Calyptranthes sp. NC 2446; Eugenia albida Humb. & Bonpl. NC 1951, 1980; E. cf. oerstediana O. Berg. NC 1560, 1739, 1788,2264, 2264, 2298, 2584; E. cf. patens Poir. NC 1337, 1766, 1792, 1798,1815; E. cf. tamaensis Steyerm. NC 951, 954,1021, 1142, 1133, 1127,1874, 2114, 2220, 2348, 2340, 2345, 2406,2430; E. grandiflora O. Berg. NC 1535, 1625, 1591, 1603; E. moritziana H. Karst. NC 1173, 2519; E. sp. 1 NC 1567, 1617, 2292, 2350, 2350; E. sp. 2 NC 1889, 1905, 2222; E. sp. 3 NC 2161, 2166, 2218; E. triquetra Berg NC 2804; Myrcia acuminata (Kunth) DC. NC 1616, 1670, 1673, 1680, 2595, 2608, 2650; M. aff. guianensis (Aubl.) DC. NC 1130, 1144, 1280, 2413; M. cf. sanisidrensis Steyerm. NC 1272, 1649, 1709, 1876, 2202, 2368, 24692, 2399, 2404, 2443; M. sp.1 NC 1866, 1899, 1903, 2615; Myrcianthes sp. NC 1023; Myrtaceae sp 2 p14 NC 1510, 1774, 1840, 2513, 265; Myrtaceae-indet. ‘hojita chiquita’ NC 2854. NYCTAGINACAE: Neea sp. NC 1851; OLACACEAE: Heisteria acuminata (Humb. & Bonpl.) Engler NC 2511. OLEACEAE: Chionanthus sp. NC 2230. ONAGRACEAE: Fuchsia nigricans Linden * NC 1493; Ludwigia peruviana (L.) H. Hara * AL 316. ORCHIDACEAE: Anathallis sclerophylla (Lindl.) Pridgeen & M. W. Chase * NC 2306. PICRAMNIACEAE: Picramnia sp. A NC 1802, 1839, 2314; Picramnia sp. C NC 2137, 228, 2515, 2579. PIPERACEAE: Peperomia * NC 1391; Peperomia acuminata Ruiz & Pav. * NC 2204; P. ouabianae C. DC. * NC 1202; P. peltoidea H. B. K. * NC 2489; P. portuguesensis Steyerm. * NC 2187; P. rotundata Kunth * NC 1861; P. tetraphylla (G. Frost.) Hook. & Arn. * NC 1467; Piper aduncum L. var. cordulatum (C. DC.) Yunck. NC 1183; P. aequale Vahl * NC 1450; P. dilatatum L. C. Rich. * AL 334; P. hispidum Sw. NC 2567; P. longispicum C. DC. var. glabratum (Yunck.) Steyerm. NC 1538, 2174; P. phytolaccifolium Opiz NC 1735; P. sp. NC 2019; P. sp. Liana NC 2144, 2214; P. veraguense C. DC. NC 2242. PLANTAGINACEAE: Plantago australis Lam * NC 1402. POLYGALECEAE: Bredemeyera sp. NC 2267; Monnina meridensis Planch. & Lindl. ex Wedd. NC 1221; M. smithii Chodat * AL 282; M. sp. NC 2825. POLYGONACEAE: Coccoloba cf. llewelynii R.A. Howard NC 1906, 2344, 2623; Coccoloba sp. NC 2516. PROTEACAE: Panopsis sp. NC 2616; Panopsis suaveolens (H. Karst.) Pittier NC 1911, 2081; Roupala barnettiae Dorr NC 2637. RANUNCULACEAE Clematis guadeloupae Pers * NC 1757. RHAMNACEAE: Rhamnus sphaerosperma Sw. var. polymorpha (Reiss.) M.C. Johnst NC 2441, 2395. ROSACEAE: Hesperomeles obtusifolia (Pers.) Lindl. NC 2685; Hesperomeles sp. NC 3080; Prunus moritziana Koehne NC 1245,1314, 1650, 1915, eschweizerbartxxx ingenta

phyto_39_1.indb 151

01.04.2009 11:57:28


152

N. L. Cuello A & A. M. Cleef

1990, 2031, 2100, 2352, 2485, 2597, 2619, 2639. RUBIACEAE: Arachnothrix reflexa (Benth.) Planchon * AL 301; Borreria laevis (Lam.) Griseb. * AL 332; Coffea arabica L. NC 1561; Coussarea moritziana (Benth.) Standl. NC 935, 1574, 1767, 1986; Dioicodendron dioicum (K. Schum. & Krause) Steyerm. NC 1135, 2095, 2418; Elaeagia karstenii Standl. NC 1590, 2362; E. myriantha (Standl.) Hammel & C. M. Taylor NC 1192; E. ruiz-teranii Steyerm. NC 921, 991, 1644, 1918, 2009, 2237; Faramea guaramacalensis Taylor NC 1297, 1623, 1699, 2364, 2607, 2635; F. killipii Standl. NC 938, 1030; Guettarda crispiflora Vahl subsp. discolor (Rusby) Steyerm. NC 1007, 2055, 2216; Hillia parasitica Jacq. * NC 1389; Hippotis albiflora H. Karst. NC 1733, 2554; Hoffmannia pauciflora Standl. NC 2167; Ladenbergia cf. buntingii Steyerm. NC 1842; Manettia moritziana (Schum.) Wernham * NC 2491; Notopleura patria (Standl. & Steyerm.) C.M. Taylor * NC 1462; N. steyermarkiana C.M. Taylor * NC 1094; Palicourea angustifolia Kunth NC 1239, 2240, 2602; P. apicata Kunth NC 1894, 2339, 2609; P. demissa Standl. NC 994, 1109, 1184, 2049; P. jahnii Standl. NC 2830; P. petiolaris Kunth * NC 2549; P. puberulenta Steyerm. NC 917; Posoqueria coriacea M. Mart. & Galeotti subsp. formosa NC 1187, 1559, 1740, 2132; Psychotria amita Stand. NC 2217; P. aubletiana Steyerm. * NC 1095; P. dunstervilleorum Steyerm. * NC 2807; P. fortuita Standl. NC 1172, 2160, 2235; P. lindenii Standley * NC 1448; NC 1554; P. longirostris (Rusby) Standl. NC 1200, 1794; P. macrophylla Ruiz & Pav. * NC 1483; P. molliramis (Schum. & Kr.) Steyerm. * NC 1403; P. trichotoma Mart. & Gal. NC 1849, 2560; Randia cf. dioica H. Karst. NC 1782; Rudgea nebulicola Steyerm. NC 1794, 2177, 2556; R. tayloriae Aymard, Dorr & Cuello NC 1331, 2332, 2347, 2358, 2630; Simira erythroxylon (Willd.) Brem. var. meridensis Steyerm. NC 1176, 1833, 2507; S. lezamae Steyerm. NC 1979, 2312; Tammsia anomala Karst. NC 2533; Tocoyena costanensis Steyerm. subsp. andina Steyerm. NC 1777,1827. RUTACEAE: Conchocarpus larensis (Tamayo & Croizat) Kallunki & Pirani NC 1451; Zanthoxylum acuminatum (Sw.) Sw subsp. juniperinum (Poepp.) Reynel NC 1230; Z. melanostictum Schltdl. & Cham. NC 1687, 2411. SABIACEAE: Meliosma meridensis Lasser NC 1086; Meliosma pittierana Steyerm. NC 1562, 1804, 2052; M. tachirensis Steyerm. & Gentry NC 1080, 1250, 2243, 2591; M. venezuelensis Steyerm. NC 1354, 2112. SAPINDACEAE: Allophylus cf. glabratus (Kunth) Radlk NC 2018; Billia columbiana Planch. & Lindl. ex Triana & Planch. NC 1583, 2172; Cupania cf. scrobiculata Rich. NC 1829; Matayba camptoneura Radlk. NC 1544, 2566, 2593; Paullinia capreolata (Aubl.) Radlk. NC 1856; P. cf. latifolia Benth. ex Radlk NC 1823, 2563. SAPOTACEAE: cf. Elaeoluma nuda (Baehni) Aubr. NC 1087, 1671; Chrysophyllum cf. cainito L. NC 939, 950, 1542, 2258, 2337; C. sp. NC 2239; Pouteria baehniana Monachino NC 1501, 2146. SCROPHULARIACEAE: Sibthorpia repens (Mutis ex L.) Kuntze * NC 2801. SMILACACEAE: Smilax kunthii Killip & C. V. Morton NC 2071. SOLANACEAE: Browallia americana L. * NC 1434; Cestrum bigibbosum Pittier NC 2163, 2233; C. buxifolium Kunth NC 2457; C. darcyanum Benitez & N.W. Sawyer NC 1053, 2056; Cuatresia riparia (Kunth.) Hunz NC 2149, 2158, 2529, 2562; Deprea paneroi Benitez & Martinez * NC 1218; Lycianthes radiata (Sendtn.) Bitter * NC 1212; Markea sp. NC 2057; Solanum acerifolium Dunal * AL 330; S. aturense Humb. & Bonpl. ex Dunal NC 2034; S. confine Dunal NC 995, 1024,1411; S. nudum Dunal NC 2130, 2249, 2234; S. pentaphyllum Bitter * NC 2496; S. torvun Sw. * AL 322. STAPHYLEACEAE: Huertea glandulosa Ruiz & Pav. NC 1194, 1837; Turpinia occidentalis (Sw.) G. Don. NC 2024, 2246. SYMPLOCACEAE: Symplocos bogotensis Brand. NC 1129, 2059; Symplocos tamana Steyerm. NC 1957. THEACEAE: Freziera serrata A. L. Weitzman, ined. NC 2459; Gordonia fruticosa (Schrader) H. Keng NC 1191, 1576; Ternstroemia acrodantha Kobuski & Steyerm. NC 1154; T. sp. A NC 1917; T. sp.B NC 1973. THYMELAEACEAE: Daphnopsis sp.* NC 1714; Schoenobiblus suffruticosa Barringer & Nevling, vel aff. * NC 1484. URTICACEAE: Pilea A * NC 1470; Pilea B * NC 1399; P. C * NC 1408; P. rhombea (L.f.) Liebm. * NC 1436; Urera caracasana (Jacq.) Griseb. NC 1175, 2531. VERBENACEAE: Aegiphila floribunda Moritz & Moldenke NC 1170, 1853, 2576; Aegiphila moldenkeana Lopez-Pal. NC 1243; A. ternifolia (Kunth) Moldenke NC 1214, 2028; Citharexylum venezuelense Mol. NC 2539; Petrea pubescens Turcz. NC 1502; Verbenaceae indet. NC 1532. VITACEAE: Cissus trianae Planch NC 1872. WINTERACEAE: Drimys granadensis L.f. NC 1118, 1947, 2484. LILIOPSIDA: Araceae: Anthurium bernardii Croat. * AL 688; Anthurium eminens Schott NC 2580; A. gehrigeri Croat. * NC 1469, 1606; A. ginesii Croat NC 2465; A. humboldtianum Kunth NC 2435; A. nymphaeifolium K. Koch & Bouche NC 1890; A. scandens (Aubl.) Engl. * NC 1469, 2307; A. smargdianum Bunting NC 2159; Philodendron fraternum Schott * AL 238. ARECACEAE: Aiphanes stergiosii Niño, Dorr & Stauffer NC 1868, 2592; Chamaedorea pinnatifrons (Jacq.) Oersted * AL 288; Geonoma jussieuana Mart. NC 1651, 1901, 2105; G. orbigniana Mart. NC 1950, 2244; G. undata Klotzsch NC 1613, 1731, 2193, 2509; Prestoea acuminata (Willd.) H.E. Moore var. acuminata NC 1282, 2428; Wettinia praemorsa (Willd.) Wess. Boer NC 1275. BROMELIACEAE: Greigia albo-rosea (Griseb) Mez NC 2080; Pitcairnia brevicalycina Mez. * NC 1359; Racinaea sp.* NC 2425. COMMELINACEAE: Tradescantia zanonia (L.) Sw. * AL 292. CYCLANTHACEAE: Asplundia vagans Harling NC 1803; Sphaeradenia laucheana (Mast.) Harling NC 1509, 1898, 2192, 2416, 2561. CYPERACEAE: Carex jamesonii Boot, s.l. * NC 2819; Rhynchospora immensa Kük. * NC 1159; R. tuerckheimii * NC 1160;Uncinia hamata * NC 2845. DIOSCOREACEAE: Dioscorea lisae Dorr & Stergios * NC 2433. HELICONIACEAE: E Heliconia hirsuta L. F. * NC 1747, 2548; H. meridensis Klotzsch * NC 1481. ORCHIDACEAE: Brachionidium tuberculatum Lindl. * NC 2823; Cirtochilum megalophium (Lind.) Känzl. * NC 2794; Corymborkis flava (Sw.) Kuntze * NC 2155; Dichaea camaridioides Schlechter * NC 1466; Elleanthus flavescens (Lindl.) Rchb.f. * NC 1430; Epidendrum cereiflorum Garay & Dunst. * AL 689; E. unguiculatum (C. Schweinf.) Garay & Dunst. * NC 2185; Gomphichis costaricensis (Schltr). Ames, F. T. Hubbard & C. Schweinf. * NC 2754; Jacquiniella teretifolia (Sw.) Britton & P. Wilson * NC 1732; Malaxis licatae Carnevali & Ramirez * AL 218; M. nidiae Carnevali & Ramirez * NC 2372; Maxillaria nigrescens Lindl. * NC 2184; Odontoglossum crocidipterum (Rchb. f.) * AL 230; O. schillerianum Rchb.f. * NC 2817; Ornithidium ruberrimum Reichb. F. * NC 2322; Pachyphyllum sp. * NC 2760; Platystele pisifera (Lindl.) Luer. * NC 2374; Pleurothallis biserrula Rchb.f. * NC 2279; P. bivalvis Lindl. * NC 1413; P. calamifolia Luer y R. Escobar R. * NC 2327; P. semiscabra Lindl. * NC 2308, 2328; Scaphyglottis summersii L.O. Williams * NC 2269; Scelochilus ottonis Kl. * AL 231; Sobralia sp.* NC 2310; Stelis chamaestelis (Rchb.f.) Garay & Dunst. * NC 1604; S. oblonga Willd. * AL 329; S. vulcanii Rchb.f. * AL 327; Trichocentrum pulchrum Poepp. & Endl. * NC 1528. POACEAE: Arthrostylidium venezuelae (Steud.) McClure * NC 2426; 2426; Chusquea angustifolia (Soderstr. & C.E. Calderon) L. G. Clark NC 2757, 2884; Ch. purdieana Munro NC 1240; Ichnanthus nemorosus (Sw.) Doll * NC 2503; Muhlenbergia diversiglumis Trin. * NC 2551; Rhipidocladum geminatum (McClure) McClure 2466. INDETS. bejuco NC 2178; Indet. Liana NC s/n. eschweizerbartxxx ingenta

phyto_39_1.indb 152

01.04.2009 11:57:28


The forest vegetation of Ramal de Guaramacal in the Venezuelan Andes

153

Appendix 2. Location of montane forest plots in Ramal de Guaramacal, Andes, Venezuela. (*) Indicates plots selected for vegetation profiles. (1) Indicates areas outside Guaramacal National Park borders.

Appendix 2 No. Altitude Plot size Slope Plot m m2 1* 1960 1000 N 2* 2100 1000 N 3 2300 1000 N 4* 2400 1000 N 5* 1850 1000 N 6* 2470 1000 S 7 1950 1000 S 8 2300 1000 S 9 2100 1000 S 10* 1600 1000 S

Park Sector

Date of survey Geograp. Pos. UTM Zone 19 East North May. 1995 365900 1022968 Jun 1995 366824 1022883 Jun 1995 367166 1022341 Jun 1995 367452 1022406 Jun. 1995 365980 1022056 Dec 1995 371908 1019855 Jan 1996 372280 1018020 Dec 1995 371741 1019544 Dec 1995 372345 1018661 Mar 1999 381199 1031364

Guaramacal Guaramacal Guaramacal Guaramacal Guaramacal Guaramacal Guaramacal Guaramacal Guaramacal Agua Fría (El Alto)

11

1800

1000

S

Agua Fría (El Alto)

Mar 1999

381241

1031827

12

1950

1000

S

Agua Fría (El Alto)

May 1999

381390

1032534

13

1550

1000

S

Agua Fría (La Divisoria)

Dec. 1999

380077

1027005

14

1830

1000

N

Agua Fría (El Mogote1)

Dec. 1999

382173

1033526

Jan 2000

379322

1027005

eschweizerbartxxx ingenta

phyto_39_1.indb 153

15

1880

1000

S

Agua Fría (La Divisoria)

16 17 18 19 20 21*

2580 2480 2170 2070 2350 1880

1000 1000 1000 1000 1000 1000

N Guaramacal N Guaramacal N Guaramacal N Guaramacal N Guaramacal NO Guaramacal (El Santuario)

Mar 2000 Feb 2000 Mar 2000 Feb. 2000 Mar 2000 Nov. 2001

368580 368011 367020 366542 367166 359185

1022299 1022672 1022769 1022989 1022341 1012298

22

2100

1000

NO Guaramacal (El Santuario)

Mar 2002

359318

1013285

23

2250

1000

NO Guaramacal (El Santuario)

Aug 2002

359120

1013013

24 25

2580 1900

1000 1000

S N

Guaramacal Agua Fría (Laguna Negra)

Jan 2002 Apr 2002

371718 371016

1022127 1028548

26

2100

1000

N

Agua Fría (Laguna Negra)

Apr. 2002

371722

1028117

27

2260

1000

N

Agua Fría (Laguna Negra)

Jun. 2002

371703

1027261

28

1330

1000

S

Agua Fría (Río Frío1)

Nov 2002

378834

1025276

01.04.2009 11:57:28


154

N. L. Cuello A & A. M. Cleef

No. Altitude Plot size Slope Plot m m2 29 1450 1000 S

Park Sector

Date of survey Geograp. Pos. UTM Zone 19 East North Dec. 2002 378380 1024991

Agua Fría (Río Frío1)

30

1875

1000

S

Agua Fría (La Peña)

Jan 2003

376567

1023983

31

1770

1000

S

Agua Fría (La Peña)

Jan 2003

376797

1023835

32

2125

1000

S

Agua Fría (La Peña)

Feb. 2003

375862

1024743

33

2474

300

N

Agua Fría (Laguna Negra)

Apr. 2003

371661

1026420

34*

3050

200

N

Guaramacal

May. 2004

369585

1020286

35

2890

1000

N

Pumar

Feb. 2005

368063

1018997

36

2870

400

N

Pumar

Mar. 2005

368111

1018943

37*

2870

1000

N

Pumar

Mar. 2005

368024

1018958

38*

2810

200

N

Guaramacal

Apr. 2005

369881

1021648

39

2750

1000

N

Guaramacal

Apr. 2005

369545

1021382

40

2950

200

S

Guaramacal

Apr. 2005

370212

1020519

eschweizerbartxxx ingenta

phyto_39_1.indb 154

41

2950

400

S

Guaramacal

May. 2005

370209

1020530

PL3

2830

100

N

Guaramcal

Dec. 2004

369784

1021281

43

3060

50

S

Guaramacal

Dec, 2006

369951

1020437

44

3050

100

N

Guaramacal

Jan. 2007

369474

1020570

01.04.2009 11:57:28


The forest vegetation of Ramal de Guaramacal in the Venezuelan Andes

155

Appendix 3. Morphological and chemical characteristics of some soil profiles representative from Ramal de Guaramacal (from Marvez & Schargel 1999). ls: loamy sand, sl: sandy loam, l: loam, scl: sandy clay loam, cl: clay loam; c: clay

Appendix 3

1-H4 1-H2

4-H2

5-H1

2-H2

3-H1

7.5YR5/1 7.5YR5/2

37-48

7.5YR5/1

48-56

7.5YR4/1

15 2.450

5

7

56-70 > 70 0-15 1.950 15-30 > 30 0-10 10-20 20-50 50-70 2.100 70-100 100-115

5YR2.5/2 7.5YR4/2 10YR4/6 5YR3/3 5YR4/6 7.5YR4/6

10YR4/6 10YR3/3 7.5YR4/4 10YR4/2 7.5YR5/3 7.5YR6/4 7.5YR5/6 10YR6/4 7.5YR6/2

MARNR48

115-150 7.5YR6/4

phyto_39_1.indb 155

60 1.820

0-10 -25 -45 -73 -102 -125 -150

10YR2/2 10YR3/2 7.5YR5/8 7.5YR5/8 7.5YR5/8 7.5YR5/8 7.5YR5/8

6,2 3,8 1,2(*) Rock 32,5 5,6 65,8 Limestone boulders 0,5-1m sl 10 5,5 5,3 16,9 l 3,5 6,7 8,2 Fractured rock sl 20 7,5 4,0 1,6 sl 30 6,2 4,4 0,9 sl 50 3,0 4,4 1,1 Fractured rock ls 6,5 3,8 1,1 sl 1,4 4,1 1,1 7.5YR l 2,0 4,2 1,3 4/4-5/8 7.5YR l 3,2 4,3 0,8 4/4-5/8 10YR4/3 scl 4,2 4,5 1,3 Fractured rock sl 5 5,5 3,5 1,2 scl 15 3,5 3,7 0,8 Fractured rock l 6,2 4,7 3,6 l 4,4 4,5 2,0 2.5YR6/4 cl 3,0 4,4 1,3 7.5YR6/2 cl 1,0 4,4 1,0 7.5YR6/2 scl 0,4 4,3 0,9 7.5YR6/8 sl 0,4 4,5 1,1 7.5YR7/1 sl 0,4 4,5 1,2 2.5YR4/6 sl 2 15,6 4,2 10YR5/4 cl 2 9,6 4,1 c 2 4,0 4,1 c 5 1,6 3,8 c 10 1,2 4,1 c 15 0,5 4,2 c 25 0,3 4,0 eschweizerbartxxx ingenta

Exchangeable Aluminum me/100gr

Sum Bases me/100gr

ls

pH

-

Orgánic matter (%)

Texture

7.5YR3/1

0-14 > 14 0-10 30 1.850 > 10 0-18 40 1.850 18-60 > 60 0-20 20-40 20 2.300 40-100 > 100 0-25 25-37

<5 1.950

% of Coarse fragments

Color * * (Mottling)

Depth of layer (cm)

Elevation (m)

Color ** (moist)

2-H1

Slope (%)

Profile

North Slope

0,3 1,4 0,8 0,4 1,0 0,6 1,0 2,0 0,8 2,3 3,2 0,3 1,0 1,6 2,1 1,6 1,7 1,0 -

01.04.2009 11:57:28


156

N. L. Cuello A & A. M. Cleef

MARNR 54 *

8-H1

40-50

> 50 0-20 20-35 40 2.450 35-90 > 90 0-15 15-27 15 2.300 27-50 50-80 80-110 0-9 9-26 26-45 45-62 62-81 45 1.670 81-94 94-97 97-99 99-111 111-191 191-195

4,6

2,0

0,3

4,2 4,1 4,1

2,5 1,3 0,9

0,7 0,5 0,4

4,8 4,8 4,8

1,1 1,2 1,2

0,4 0,6 0,6

3,8 4,1 4,2 4,6 4,5 4,0 3,8 3,8 4,2 4,6 4,5 4,3 4,7 4,6 -

1,0 1,4 0,9 1,0 1,0 0,4 0,2 0,2 0,1 t t t t t -

0,9 1,0 1,1 1,8 0,6 0,4 0,8 0,6 0,3 0,2 1,0 1,1

6,8 2,9 1,8

4,9 4,8 4,8

1,3 0,9 1,2

0,2 1,3 1,0

5,6 1,7 1,4

4,6 4,5 4,7

0,5 0,2 0,2

1,9 2,5 1,8

Orgรกnic matter (%)

Texture

% of Coarse fragments

Color * * (Mottling)

ls

Exchangeable Aluminum me/100gr

7-H2

35 2.100

-

Sum Bases me/100gr

9-H1

7.5YR4/1

pH

10-H1 45 1.950

0-10 > 10 0-10 10-20 20-40 > 40 0-18 18-40

Color ** (moist)

10-H2 45 1.950

Depth of layer (cm)

Elevation (m)

Slope (%)

Profile

South Slope

2,2 Rock 7.5YR4/1 ls 10 4,2 5YR4/1 ls 40 3,9 5YR5/1 ls 50 2,8 Fractured rock 10YR4/1 l 9,6 10YR5/1 7.5 YR5/6 l 3,4 5YR6/27.5 YR5/6 l 2,2 7/1 Fractured rock 5YR4/2 sl 50 4,7 7.5YR6/6 sl 60 4,4 7.5YR6/8 sl 60 3,4 Fractured rock 5YR4/2 l 20 6,9 7.5YR6/8 5YR5/2 l 25 4,8 7.5YR6/8 7.5YR6/1 l 30 1,8 7.5YR6/8 scl 50 1,0 7.5YR6/6 scl 30 0,9 10YR2/2 scl 2 4,6 10YR4/2 sl 20 2,9 10YR4/1 ls 20 2,4 10YR7/1 ls 40 0,5 10YR7/1 ls 20 0,1 10YR7/1 ls 20 0,1 10YR5/2 sl 20 0,4 Plรกcico 10YR6/4 10YR7/1 sl 20 0,1 10YR7/1 sl 20 0 Placic eschweizerbartxxx ingenta

4,5 4,0 4,2

0,8 1,2 -

Pรกramo

MARNR 57 *

6-H2 >60 3.100

30 2.830

0-23 23-38 38-60

7.5YR4/1 7.5YR4/4 7.5YR5/1 5YR5/6 5YR5/2

sl l l

> 60 0-15 15-28 28-56

10YR4/1 5YR7/1 5YR5/8 7.5YR6/6 10YR7/3

sl l scl

>56

Rock -

Rock. Placic horizon at 40 cm

* Soils with placic horizons ** Munsell color chart

phyto_39_1.indb 156

01.04.2009 11:57:28


Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.