UNIVERSITI TEKNOLOGI MARA

PRISMATOMERIS GLABRA: ERGOGENIC EFFECTS AND SEXUAL FUNCTION IN MICE

RAZALI BIN MOHAMED SALLEH

Thesis submitted in fulfillment of the requirements for the degree of **Doctor of Philosophy**

Faculty of Pharmacy

April 2016

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student		:	Muhammad Idris Bin Ibrahim
Student I.D. No.		:	2005222773
Programme		:	Doctor of Phylosophy – PH990
Faculty		:	Pharmacy
Thesis Title		:	Prismatomeris glabra: ergogenic effects and sexual
			function in mice
Signature of Studen	ıt		:
Date :		Ap	ril 2016

ABSTRACT

A decoction of the roots of *Prismatomeris glabra* (PG), family Rubiaceae, has been traditionally used by rural people for wellness, improvement of stamina and for aphrodisiac effects. However there were no scientific data to support the folkloric use of this plant. This research was thus conducted to determine whether aqueous extract of P. glabra roots possess antioxidant capacity, produce ergogenic effects and improve sexual function. Toxicity studies were performed to estimate safety for human consumption. PG extract was prepared by boiling powdered roots for 10 minutes before drying in spray dryer. Toxicity studies in mice were conducted for acute, subacute and subchronic effects. OECD guidelines were used for 14-day observation following acute dose given to male and female mice intraperitoneally. In all experiments, age-matched control mice were given normal saline. Gross necropsy, hematology and biochemistry analyses were conducted following killing. Toxicity studies in vitro were conducted using selected cell lines. Antioxidant capacity was determined in vitro and in vivo using established methods. Ergogenic effects were studied in weight-bearing mice performing forced swim test (FST) to exhaustion following treatment with 500 mg/kg/d p.o. PG. Mice were killed immediately after the final FST for blood biomarker assays. Castrated/non-castrated mice were used to determine the effect of PG (500 mg/kg/d p.o.) on testosterone levels. Males were introduced to sexually receptive female for mounts and intromissions activities assessment. In vitro, cultured Leydig cells (CRL1714) were treated with PG for testosterone production. Results show PG to be safe. Mice were able to tolerate PG to a maximum single dose of 3 g/kg, p.o., 500 mg/kg/d, p.o., daily for 14 days, and at 100 mg/kg/d, p.o., daily for 3 months, respectively, without showing signs of toxicity or abnormal biochemical markers and hematology. PG also showed no genotoxic and cytotoxic effects. Results also show PG is a potent antioxidant when phenolic content, lipid- and water-soluble antioxidant capacities of PG were 6.82±0.71%, 36.61±1.39 $\mu g/mg$ of ascorbic acid equivalent and $8.28 \pm 1.23 \mu g/mg$ of trolox equivalent, respectively. PG scavenged DPPH radicals, reduced ferric ions and inhibited tert-BOOHinduced lipid peroxidation with values of $239.31\pm70.48 \ \mu g/ml$ (EC₅₀), 0.298 ± 0.026 μ mol Fe²⁺/mg and 188.7 \pm 15.3 (IC₅₀), respectively. PG also did not affect malondialdehyde levels of major organs and plasma. In ergogenic studies, mice treated with PG showed greater exercise performance than control (p=0.000) or L-arginine (p=0.001) groups. Post-exercise blood glucose levels of PG-treated mice was greater than those of control exercised (p=0.011) but similar to control non-exercised and L-arginine groups. PG did not influence blood lactate and serum corticosterone following exercise. Testosterone and corticosterone were also not influenced by administration of PG. Mice treated with PG showed greater frequency of mounting than control in 1st (p=0.021) and 2nd (p=0.032) sexual meeting. PG-treated mice also showed greater intromission duration (p=0.01) and frequency (p=0.02) than control in 3rd meeting. PG also had no effect on luteinizing hormone. In conclusion, based on toxicity data, PG root aqueous extract is generally safe for consumption. PG roots may not be an important source of antioxidants although it apparently has sufficient antioxidant capacity to enhance wellness. Findings of this study provide evidence to confirm the traditional use of PG roots to increase stamina; improve physical performance and as aphrodisiac.

TABLE OF CONTENTS

Page

CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGMENT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	xiii
LIST OF FIGURES	xvii
CHAPTER ONE: INTRODUCTION	1
1.1 Research Background	1
1.2 Problem Statement	4
1.3 Research Question	4
1.4 Null Hypotheses	4
1.5 General Objective	5
1.6 Specific Objectives	5
CHAPTER TWO: LITERATURE REVIEW	6
2.1 Toxicity	6
2.1.1 Acute Oral Toxicity Study	7
2.1.2 Repeated Dose Oral Toxicity Study	11
2.1.3 Test Animals	13
2.1.4 Assessment of Toxicity	15
2.1.5 Genotoxicity	17
2.1.6 Cytotoxicity	18
2.2 Antioxidant	19

	2.2.1 Classification, Types and Sources of Antioxidant	19
	2.2.2 Roles and Action Mechanism of Antioxidant	21
	2.2.3 Free Radicals and Their Effects	21
	2.2.4 How Antioxidants Work	25
	2.2.5 Antioxidants and Wellness	28
	2.2.6 Antioxidant Plants	29
	2.2.7 Measurement of Antioxidant Capacity of Plants	31
	2.2.8 The Use of Spray-Drying Process to Yield Plant Extract	32
2.3	Ergogenic Effects	34
	2.3.1 Plants and Ergogenic Effects	34
	2.3.2 Measurement of Exercise Performance and Parameters	37
2.4	Sexual Function	40
	2.4.1 Assessment of Sexual Function	40
	2.4.2 Sexual Function Studies	42
	2.4.3 Plants and Herbs for Aphrodisiac Use	47
	2.5 Prismatomeris glabra	47
СН	APTER THREE: OVERVIEW OF STUDIES & TOXICITY	50
ME	CTHODOLOGY	50
3.1	Preparation of Aqueous Extract of Roots of P.glabra	50
3.2	Toxicity Study	54
	3.2.1 Animal Subjects	54
	3.2.2 Acute Oral Toxicity Study – Phase 1	56
	3.2.3 Acute Oral Toxicity Study – Phase 2	56
	3.2.4 Biochemistry Analysis	57
	3.2.5 Determination of Organ Lipid Peroxidation by Malondialdehyde-	58
	Thiobarbituric Acid Reactive Substances (MDA-TBARS) Assay	
	3.2.6 Organ Protein Analysis	59
	3.2.7 Seven-Day Sub-Acute Toxicity Study	61
	3.2.8 Fourteen-Day Toxicity Study	62
	3.2.9 Comet Assay	63