Europe PMC

This website requires cookies, and the limited processing of your personal data in order to function. By using the site you are agreeing to this as outlined in our privacy notice and cookie policy.

Abstract 


By the end of the twentieth century, the interest in natural compounds as probable sources of drugs has declined and was replaced by other strategies such as molecular target-based drug discovery. However, in the recent times, natural compounds regained their position as extremely important source drug leads. Indole-containing compounds are under clinical use which includes vinblastine and vincristine (anticancer), atevirdine (anti-HIV), yohimbine (erectile dysfunction), reserpine (antihypertension), ajmalicine (vascular disorders), ajmaline (anti-arrhythmic), vincamine (vasodilator), etc. Monoterpene Indole Alkaloids (MIAs) deserve the curiosity and attention of researchers due to their chemical diversity and biological activities. These compounds were considered as an impending source of drug-lead. In this review 444 compounds, were identified from six genera belonging to the family Apocynaceae, will be discussed. These genera (Alstonia, Rauvolfia, Kopsia, Ervatamia, and Tabernaemontana, and Rhazya) consist of 400 members and represent 20% of Apocynaceae species. Only 30 (7.5%) species were investigated, whereas the rest are promising to be investigated. Eleven bioactivities, including antibacterial, antifungal, anti-inflammatory and immunosuppressant activities, were reported. Whereas cytotoxic effect represents 47% of the reported activities. Convincingly, the genera selected in this review are a wealthy source for future anticancer drug lead.

Free full text 


Logo of moleculesLink to Publisher's site
Molecules. 2021 Jan; 26(2): 488.
Published online 2021 Jan 18. https://doi.org/10.3390/molecules26020488
PMCID: PMC7831967
PMID: 33477682

Chemical Diversity and Bioactivities of Monoterpene Indole Alkaloids (MIAs) from Six Apocynaceae Genera

John C. D’Auria, Academic Editor

Abstract

By the end of the twentieth century, the interest in natural compounds as probable sources of drugs has declined and was replaced by other strategies such as molecular target-based drug discovery. However, in the recent times, natural compounds regained their position as extremely important source drug leads. Indole-containing compounds are under clinical use which includes vinblastine and vincristine (anticancer), atevirdine (anti-HIV), yohimbine (erectile dysfunction), reserpine (antihypertension), ajmalicine (vascular disorders), ajmaline (anti-arrhythmic), vincamine (vasodilator), etc. Monoterpene Indole Alkaloids (MIAs) deserve the curiosity and attention of researchers due to their chemical diversity and biological activities. These compounds were considered as an impending source of drug-lead. In this review 444 compounds, were identified from six genera belonging to the family Apocynaceae, will be discussed. These genera (Alstonia, Rauvolfia, Kopsia, Ervatamia, and Tabernaemontana, and Rhazya) consist of 400 members and represent 20% of Apocynaceae species. Only 30 (7.5%) species were investigated, whereas the rest are promising to be investigated. Eleven bioactivities, including antibacterial, antifungal, anti-inflammatory and immunosuppressant activities, were reported. Whereas cytotoxic effect represents 47% of the reported activities. Convincingly, the genera selected in this review are a wealthy source for future anticancer drug lead.

Keywords: Apocynaceae, monoterpene, alkaloids, cytotoxicity, anti-inflammatory, antimicrobial

1. Introduction

Alkaloids are basic nitrogenous natural metabolites with structural diversity and molecular conformity. They displayed interesting bioactivities and are known to perform an important role in plant protection. The majority of them were discovered from plants and recently recorded Ca 21,000 [1,2]. The alkaloids are generally derived from amino acids that are containing one or more nitrogen atoms. These precursors are playing a rule in their classification. Also, the biosynthetic pathway of alkaloids can be named according the amino acid source [3]. Thus, they can be categorized into several groups based on associated moieties, including piperidine, pyrrolidine, pyrrole, pyridine, quinolone, isoquinoline, indole, quinolizidine, pyrrolizidine, tropane, benzylisoquinoline, purine, β-carboline, indolinics and quinolizidine.

Terpenoids are considered to be interesting natural products that have chemical diversity and different bioactivities. Common terpenoids have been reported from marine sources [4]. Whereas, the plants were listed as an important source of such metabolites. Terpenoids include several subclasses according to the number of carbo-skeleton; monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20), sesterterpenes (C25), triterpenes (C30), and tetraterpenes (C40).

Monoterpene indole alkaloids (MIAs) are metabolites containing a bicyclic structure of a benzene ring fused to a five-membered pyrrole ring. It is a noteworthy that the occurrence of multipart alkaloids is largely restricted to limited number of plant families. (e.g., Apocynaceae, Loganiaceae, and Rubiaceae) [5,6,7,8]. These families are closely taxonomically related. Also, on the chemical aspect, they are recognized to have apparent uniformity in the building blocks of these alkaloids. MIAs have been proposed to be sourced from strictosidine, which originates from the condensation of tryptophan with secologanin (C10 or C9 part), which can be divided into linear six carbon (6 C), one carbon (1 C) and three carbon (3 C) units (Figure 1). The connection between them requires proving. The nine-carbons fragment may be formed by the loss at certain stage of one of the carbons from the 3 C unit, and there are also a few indole bases which appear to have ended up without the 3 C or the 1 C units. Three hypothetical building blocks, Types I, II and III. It is nevertheless a useful way of dividing indole alkaloids into groups based on their sub­ architecture. Since Type I alkaloids are by far the most numerous, they may be the source of Type II and III. It was suggested by LeMen and Tylor that the convention be extended to cover Type II and III alkaloids as illustrated in Figure 1. On these hypothetical bases, the MIAs categorized according to their biogenic pathway in three main groups, corynanthe, aspidosperma and iboga [9].

An external file that holds a picture, illustration, etc.
Object name is molecules-26-00488-g001.jpg

Biogenetic numbering rule as adopted from LeMen and Tylor.

Recently, strictosidine has been considered as the building block of MIAs biosynthesis [10]. MIAs have been proposed to arise from strictosidine, which itself originates from the condensation of tryptophan with secologanin in a 1:1 ratio. Strictosidine has been elaborated to give an impressive array of structural variants. This type of alkaloids possess 18 (or 19) carbon atoms on its skeleton. Additionally, the MIAs could be produced from tryptophan and secologanin in 1:2 or 2:1 ratio. According to this arrangement, three types (classes) of monoterpenes were constructed, including, corynanthe (e.g., ajmalicine), aspidosperma (e.g., tabersonine) and iboga (e.g., catharanthine) [11,12,13].

Apocynaceae contains about 250 genera and 2000 species [14]. Five sub-families are classified under Apocynaceae, including, Apocynoideae, Asclepiadoideae, Periplocoideae, Rauvolfioideae, and Secamonoideae. Apocynaceae species ranged from shrubs to trees. The characteristic features of these plants include colorful flowers and opposite leaves. Traditionally, species of this family have been used for the treatment of fever, malaria, gastrointestinal ailments, diabetes, and pain [15]. Additionally, some species have shown antiplasmodial and anticancer activities [14]. Several Apocynaceae MIAs have been used as anticancer, analgesic, anti-inflammatory and anti-spasmodic agents. For example, vinblastine, vinorelbine, vincristine, and vindesine were utilized as anticancer agents, whereas ajmalicine and ajmaline were used in the treatment of cardiovascular disorders (Figure 2) [2]. Catharanthus roseus and Rauvolfia serpentine are members of Apocynaceae and are known as sources of bioactive indole alkaloids [16]. Reserpine has been used as a tranquillizer, whereas vinblastine and vincristine have been used as anti-leukemic agents [17]. Vincristine and vinblastine were among the earliest anti-tumor agents, and since 1965 have been used as tubulin polymerization inhibitors. They have been used in combination for the treatment of acute lymphoblastic leukemia and also against both Hodgkin’s and non- Hodgkin lymphoma. Additionally, strychnine is potent muscle contracting agent whereas, yohimbine has been used for the treatment of sexual dysfunction and investigated as a remedy for type-2 diabetes in animal and human models.

An external file that holds a picture, illustration, etc.
Object name is molecules-26-00488-g002.jpg

Examples of well-known biologically active terpene indole alkaloids.

There are several publications interested in the terpene indole alkaloids of individual species of the family Apocynaceae. The current review organizes the reported MIAs considering the historical aspect in each selected genus. Moreover, these MIAs were biosynthetically classified according to the tepenoidal fragment, i.e., corynanthe, aspidosperma, or iboga. Also, it focuses on the origin, structural diversity and biological activities exerted by 444 (Table 1) monoterpene indole alkaloids which have been reported from selected six genera of the family Apocynaceae (Alstonia, Kopsia, Ervatamia, Rauvolfia, Tabernaemontana and Rhazya), in the period between 2010 and December 2020. The listed metabolites are categorized under 26 subclasses, ajmaline, akuamiline, akuammidine, akuammicine, apparicine, aspidofractinine, aspidospermatan, eburnane, flabelliformide, kopsine, macroline, macroline oxindole, macroline-akuammiline, methyl chanofruticosinate, nareline, paucidactine, picrinine, pleiocarpamine, sarpagine, scholaricine, secodine, strictosidine, strychnos, vincamine, vincorine and vobasine (Figure 3 and Figure 4).

An external file that holds a picture, illustration, etc.
Object name is molecules-26-00488-g003.jpg

The types of the structures identified monoterpenoid alkaloids from the six genera.

An external file that holds a picture, illustration, etc.
Object name is molecules-26-00488-g004.jpg

Common monoterpenoid indole alkaloidal skeletons of the six genera.

Table 1

Monoterpenoid indole alkaloids from the six species of Apocynaceae.

Comp NoCompound NameClass TypeSource Part CountryActivities
1 (14a,15a)-14,15-Epoxy AspidofractinineAspidofractinine Alstonia mairei Leaves and twigsChinaCytotoxicity
2 Maireine AAspidosperma Alstonia mairei Leaves and twigsChinaCytotoxicity
3 Maireine BAspidosperma Alstonia mairei Leaves and twigsChinaCytotoxicity
4 VenalstonineAspidofractinine Alstonia mairei Leaves and twigsChinaCytotoxicity
5 (−)-MinovincinineAspidosperma Alstonia mairei Leaves and twigsChinaCytotoxicity
6 (−)-11-Methoxymino VincinineAspidosperma Alstonia mairei Leaves and twigsChinaCytotoxicity
7 (−)-EchitovenineAspidosperma Alstonia mairei Leaves and twigsChinaCytotoxicity
8 EchitovenaldineAspidosperma Alstonia mairei Leaves and twigsChinaCytotoxicity
9 EchitovenidineAspidosperma Alstonia mairei Leaves and twigsChinaCytotoxicity
10 11-MethoxyechitovenidineAspidosperma Alstonia mairei Leaves and twigsChinaCytotoxicity
11 EchitovenilineAspidosperma Alstonia mairei Leaves and twigsChinaCytotoxicity
12 11-MethoxyechitovenilineAspidosperma Alstonia mairei Leaves and twigsChinaCytotoxicity
13 EchitoserpidineAspidosperma Alstonia mairei Leaves and twigsChinaCytotoxicity
14 11-MethoxyechitoserpidineAspidosperma Alstonia mairei Leaves and twigsChinaCytotoxicity
15 VindolinineAspidosperma Alstonia mairei Leaves and twigsChinaCytotoxicity
16 LochnericineAspidosperma Alstonia mairei Leaves and twigsChinaCytotoxicity
17 TabersonineAspidosperma Alstonia mairei Leaves and twigsChinaCytotoxicity
18 PerakineAjmaline Alstonia mairei Leaves and twigsChinaCytotoxicity
19 PicrininePicrinine Alstonia mairei Leaves and twigsChinaCytotoxicity
20 Deacetylpicraline 3,4,5-Trimethoxybenzoatepicraline Alstonia mairei Leaves and twigsChinaCytotoxicity
21 Picralinalpicraline Alstonia mairei Leaves and twigsChinaCytotoxicity
22 RhazimolAkummidine Alstonia mairei Leaves and twigsChinaCytotoxicity
23 Alsmaphorazines AScholaricine Alstonia pneumatophore LeavesMalysiaAnti-inflammatory
24 Alsmaphorazine BScholaricine Alstonia pneumatophore LeavesMalysiaAnti-inflammatory
25 Alstrostine AStrictosidine Alstonia rostrata Leaves and twigsChinaCytotoxicity
26 Alstrostine BStrictosidine Alstonia rostrata Leaves and twigsChinaCytotoxicity
27 Alstrostine CAkummicine Alstonia rostrata Leaves and twigsChinaCytotoxicity
28 Alstrostine DAkummicine Alstonia rostrata Leaves and twigsChinaCytotoxicity
29 Alstrostine EAkummicine Alstonia rostrata Leaves and twigsChinaCytotoxicity
30 Alstrostine FCorynanthe Alstonia rostrata Leaves and twigsChinaCytotoxicity
31 11-Hydroxy-6,7-Epoxy-8-Oxo-VincadifformineAspidosperma Alstonia yunnanensis Whole plant ChinaCytotoxicity
32 14-Chloro-15-Hydroxyvinca DifformineAspidosperma Alstonia yunnanensis Whole plant ChinaCytotoxicity
33 Perakine N4-OxideAjmaline Alstonia yunnanensis Whole plant ChinaCytotoxicity
34 Raucaffrinoline N4-OxideAjmaline Alstonia yunnanensis Whole plant ChinaCytotoxicity
35 Vinorine N1,N4-DioxideAjmaline Alstonia yunnanensis Whole plant ChinaCytotoxicity
36 OxovincadifformineAspidosperma Alstonia yunnanensis Whole plant ChinaCytotoxicity
37 Vinorine N4-OxideAjmaline Alstonia yunnanensis Whole plant ChinaCytotoxicity
38 VinorineAjmaline Alstonia yunnanensis Whole plant ChinaCytotoxicity
39 Alsmaphorazine COctahydropyrrolo[2,3-b]pyrrole and 2-azabicyclo[3.3.1]nonane units Alstonia pneumatophore LeavesMalaysiaCytotoxicity
40 Alsmaphorazine DOctahydropyrrolo[2,3-b]pyrrole and 2,8-diazabicyclo[3.3.1]nonane units Alstonia pneumatophore LeavesMalaysiaCytotoxicity
41 Alsmaphorazine EOctahydropyrrolo[2,3-b]pyrrole and 2,8-diazabicyclo[3.3.1]nonane units Alstonia pneumatophore LeavesMalaysiaCytotoxicity
42 Scholarisin Ipicraline Alstonia scholaris LeavesChinaCytotoxicity,
Anti-inflammatory Antifungal
43 Scholarisin IIpicraline Alstonia scholaris LeavesChinaCytotoxicity,
Anti-inflammatory Antifungal
44 Scholarisin IIIpicraline Alstonia scholaris LeavesChinaCytotoxicity,
Anti-inflammatory, Antifungal
45 Scholarisin IVpicraline Alstonia scholaris LeavesChinaCytotoxicity,
Anti-inflammatory, Antifungal
46 Scholarisin Vpicraline Alstonia scholaris LeavesChinaCytotoxicity,
Anti-inflammatory, Antifungal
47 Scholarisin VIpicraline Alstonia scholaris LeavesChinaCytotoxicity,
Anti-inflammatory, Antifungal
48 Scholarisin VIIpicraline Alstonia scholaris LeavesChinaCytotoxicity,
Anti-inflammatory, Antifungal
49 (3R,5S,7R,15R,16R,19E)-Scholarisine Fpicrinine Alstonia scholaris LeavesChinaCytotoxicity,
Anti-inflammatory, Antifungal
50 3-Epi-DihydrocorymineVincorine Alstonia scholaris LeavesChinaCytotoxicity,
Anti-inflammatory, Antifungal
51 (E)-16-Formyl-5α-Methoxystrictaminepicraline Alstonia scholaris LeavesChinaCytotoxicity,
Anti-inflammatory, Antifungal
52 Alstolactine ACorynanthe Alstonia scholaris LeavesChinaAntibacterial
53 Alstolactine BCorynanthe Alstonia scholaris LeavesChinaAntibacterial
54 Alstolactine CCorynanthe Alstonia scholaris LeavesChinaAntibacterial
55 Alistonitrine ACorynanthe Alstonia scholaris LeavesChinaAnti-inflammatory
56 6,7-Epoxy-8-Oxo-VincadifformineAspidosperma Alstonia rupestris Aerial
parts
ChinaCytotoxicity, Antifungal, Antibacterial
57 11-Acetyl-6,7-Epoxy-8-Oxo-VincadifformineAspidosperma Alstonia rupestris Aerial
parts
ChinaCytotoxicity, Antifungal, Antibacterial
58 11-Hydroxy-14-Chloro-15-HydroxyvincadifformineAspidosperma Alstonia rupestris Aerial
parts
ChinaCytotoxicity, Antifungal, Antibacterial
59 Perakine N1,N4-DioxideAjmaline Alstonia rupestris Aerial
parts
ChinaCytotoxicity, Antifungal, Antibacterial
60 11-Hydroxy-6,7-Epoxy-8-OxovincadifformineAspidosperma Alstonia rupestris Aerial
parts
ChinaCytotoxicity, Antifungal, Antibacterial
61 N(4)-Methyl-TalpinineSarpagine Alstonia angustifolia Stem
bark
VietnamAnti-inflammatory, Anti-Leishmanial
62 N(4)-Meth-Yl-N(4),21-SecotalpinineMacroline Alstonia angustifolia Stem
bark
VietnamAnti-inflammatory, Anti-Leishmanial
63 AlstonerinalMacroline Alstonia angustifolia Stem
bark
VietnamAnti-inflammatory, Anti-Leishmanial
64 AlstonerineMacroline Alstonia angustifolia Stem
bark
VietnamAnti-inflammatory, Anti-Leishmanial
65 Macrocarpine BMacroline Alstonia angustifolia Stem
bark
VietnamAnti-inflammatory, Anti-Leishmanial
66 AffinisineSarpagine Alstonia angustifolia Stem
bark
VietnamAnti-inflammatory, Anti-Leishmanial
67 VillalstonineMacroline-Pleiocarpamine Alstonia angustifolia Stem
bark
VietnamAnti-inflammatory, Anti-Leishmanial
68 Villalstonine N(4)-OxideMacroline-Pleiocarpamine Alstonia angustifolia Stem
bark
VietnamAnti-inflammatory, Anti-Leishmanial
69 Villalstonidine DMacroline-Pleiocarpamine Alstonia angustifolia Stem
bark
VietnamAnti-inflammatory, Anti-Leishmanial
70 Villalstonidine EMacroline-Pleiocarpamine Alstonia angustifolia Stem
bark
VietnamAnti-inflammatory, Anti-Leishmanial
71 Normavacurine-21-OnePleiocarpaman Alstonia scholaris LeavesChinaAntibacterial
72 5-Hydroxy-19,20-E-AlschomineCorynanthe Alstonia scholaris LeavesChinaAntibacterial
73 5-Hydroxy-19,20-Z-AlschomineCorynanthe Alstonia scholaris LeavesChinaAntibacterial
74 Alstoniascholarine ACorynanthe Alstonia scholaris LeavesChinaAntibacterial,
Anti- Fungal
75 Alstoniascholarine BCorynanthe Alstonia scholaris LeavesChinaAntibacterial, Anti- Fungal
76 Alstoniascholarine CCorynanthe Alstonia scholaris LeavesChinaAntibacterial,
Anti- Fungal
77 Alstoniascholarine DCorynanthe Alstonia scholaris LeavesChinaAntibacterial,
Anti- Fungal
78 Alstoniascholarine ECorynanthe Alstonia scholaris LeavesChinaAntibacterial,
Anti- Fungal
79 Alstoniascholarine FScholarisine Alstonia scholaris LeavesChinaAntibacterial,
Anti- Fungal
80 Alstoniascholarine GScholarisine Alstonia scholaris LeavesChinaAntibacterial,
Anti- Fungal
81 Alstoniascholarine HScholarisine Alstonia scholaris LeavesChinaAntibacterial,
Anti- Fungal
82 Alstoniascholarine IScholarisine Alstonia scholaris LeavesChinaAntibacterial,
Anti- Fungal
83 Alstoniascholarine JScholarisine Alstonia scholaris LeavesChinaAntibacterial,
Anti- Fungal
84 Alstoniascholarine KScholarisine Alstonia scholaris LeavesChinaAntibacterial,
Anti- Fungal
85 Alstoniascholarine LCorynanthe Alstonia scholaris LeavesChinaCytotoxicity
86 Alstoniascholarine MCorynanthe Alstonia scholaris LeavesChinaCytotoxicity
87 Alstoniascholarine NCorynanthe Alstonia scholaris LeavesChinaCytotoxicity
88 Alstoniascholarine OScholarisine Alstonia scholaris LeavesChinaCytotoxicity
89 Alstoniascholarine PScholarisine Alstonia scholaris LeavesChinaCytotoxicity
90 Alstoniascholarine QScholarisine Alstonia scholaris LeavesChinaCytotoxicity
91 Scholarisine HCorynanthe Alstonia scholaris LeavesChinaAntibacterial
92 Scholarisine INareline Alstonia scholaris LeavesChinaAntibacterial
93 Scholarisine JNareline Alstonia scholaris LeavesChinaAntibacterial
94 Scholarisine KCorynanthe Alstonia scholaris LeavesChinaAntibacterial
95 Scholarisine LCorynanthe Alstonia scholaris LeavesChinaAntibacterial
96 Scholarisine MCorynanthe Alstonia scholaris LeavesChinaAntibacterial
97 Scholarisine NCorynanthe Alstonia scholaris LeavesChinaAntibacterial
98 Melosline ACorynanthe Alstonia scholaris Leaves and twigsChinaCytotoxicity
99 Melosline BSecodine Alstonia scholaris Leaves and twigsChinaCytotoxicity
100 1-[2-[2-(Carboxymethyl) Indole-3-Yl] Ethyl]-3-Ethylpyridinium Hydroxide Inner SaltSecodine Alstonia scholaris Leaves and twigsChinaCytotoxicity
101 Alstiyunnanenine ASarpagine Alstonia Yunnanensis Aerial
parts
ChinaCytotoxicity
102 Alstiyunnanenine BPicraline Alstonia Yunnanensis Aerial
parts
ChinaCytotoxicity
103 Alstiyunnanenine CAkummiline Alstonia Yunnanensis Aerial
parts
ChinaCytotoxicity
104 Alstiyunnanenine DScholaricine Alstonia Yunnanensis Aerial
parts
ChinaCytotoxicity
105 Alstiyunnanenine EScholaricine Alstonia Yunnanensis Aerial
parts
ChinaCytotoxicity
106 Alstomairine AScholaricine Alstonia Mairei Leaves ChinaCytotoxicity
107 Alstomairine BScholaricine Alstonia Mairei Leaves ChinaCytotoxicity
108 Alstomairine CScholaricine Alstonia Mairei Leaves ChinaCytotoxicity
109 Alpneumine AScholaricine Alstonia Mairei Leaves ChinaCytotoxicity
110 Alstrostine GCorynanthe Alstonia rostrata Bark and trunksChinaCytotoxicity
111 Alstrostine HCorynanthe Alstonia rostrata Bark and trunksChinaCytotoxicity
112 Alstrostine IScholarisine Alstonia rostrata Bark and trunksChinaCytotoxicity
113 Alstrostine JSecodine Alstonia rostrata Bark and trunksChinaCytotoxicity
114 Alstrostine KCorynanthe Alstonia rostrata Bark and trunksChinaCytotoxicity
115 Scholarisine TNareline Alstonia scholaris LeavesChinaAntibacterial
116 Scholarisine UNareline Alstonia scholaris LeavesChinaAntibacterial
117 Scholarisine VNareline Alstonia scholaris LeavesChinaAntibacterial
118 Scholarisine WNareline Alstonia scholaris LeavesChinaAntibacterial
119 Scholarisine ANareline Alstonia scholaris LeavesChinaAntibacterial
120 Scholarisine PNareline Alstonia scholaris LeavesChinaAnti-inflammatory
121 Scholarisine QAkuammiline Alstonia scholaris LeavesChinaAnti-inflammatory
122 Scholarisine RCorynanthe Alstonia scholaris LeavesChinaAnti-inflammatory
123 Scholarisine SNareline Alstonia scholaris LeavesChinaAnti-inflammatory
124 (16R)-E-IsositsnikineCorynanthe Alstonia scholaris LeavesChinaAnti-inflammatory
125 NarelineNareline Alstonia scholaris LeavesChinaAnti-inflammatory
126 5-MethoxystrictamineAkuammiline Alstonia scholaris LeavesChinaAnti-inflammatory
127 LeuconolamAspidosperma Alstonia scholaris LeavesChinaAnti-inflammatory
128 EpileuconolamAspidosperma Alstonia scholaris LeavesChinaAnti-inflammatory
129 Nb-DemethylalstogustineScholarisine Alstonia scholaris LeavesChinaAnti-inflammatory
130 19-Epischolaricine Scholarisine Alstonia scholaris LeavesChinaAnti-inflammatory
131 ScholaricineScholarisine Alstonia scholaris LeavesChinaAnti-inflammatory
132 VallesamineCorynanthe Alstonia scholaris LeavesChinaAnti-inflammatory
133 AkuammidineAkuammidine Alstonia scholaris LeavesChinaAnti-inflammatory
134 17-Nor-ExcelsinidineCorynanthe Alstonia scholaris LeavesChinaAnti-inflammatory
135 StrictosamideCorynanthe Alstonia scholaris LeavesChinaAnti-inflammatory
136 Vincamaginine AAjmaline Alstonia penangiana LeavesMalaysiaCytotoxicity
137 Vincamaginine BAjmaline Alstonia penangiana LeavesMalaysiaCytotoxicity
138 Alstonisinine A Macroline Oxindole Alstonia penangiana LeavesMalaysiaCytotoxicity
139 Alstonisinine BMacroline Oxindole Alstonia penangiana LeavesMalaysiaCytotoxicity
140 Alstonisinine CMacroline Oxindole Alstonia penangiana LeavesMalaysiaCytotoxicity
141 Alstonoxine FMacroline Oxindole Alstonia penangiana LeavesMalaysiaCytotoxicity
142 Angustilongine AMacroline-Akuammiline Alstonia penangiana LeavesMalaysiaCytotoxicity
143 Angustilongine BMacroline-Akuammiline Alstonia penangiana LeavesMalaysiaCytotoxicity
144 Angustilongine CMacroline-Akuammiline Alstonia penangiana LeavesMalaysiaCytotoxicity
145 Angustilongine DMacroline-Akuammiline Alstonia penangiana LeavesMalaysiaCytotoxicity
146 Winphyllines A Vincorine Alstonia rostrata TwigsChinaCytotoxicity
147 Winphyllines BScholarisine Alstonia rostrata TwigsChinaCytotoxicity
148 Nb-DemethylechitamineVincorine Alstonia rostrata TwigsChinaCytotoxicity
149 17-O-AcetylnorechitamineVincorine Alstonia rostrata TwigsChinaCytotoxicity
150 12- MethoxyechitamidineScholarisine Alstonia rostrata TwigsChinaCytotoxicity
151 N(4)-DemethylastogustineScholarisine Alstonia rostrata TwigsChinaCytotoxicity
152 17-Formyl-10-Demethoxyvincorine N(4)-OxideVincorine Alstonia scholaris Leaves China_
153 10-Methoxyalstiphyllanine HAjmaline Alstonia scholaris LeavesChina_
154 10-Demethoxyvincorine N(4)-OxideVincorine Alstonia scholaris LeavesChina_
155 AlstoscholactineCorynanthe Alstonia scholaris LeavesMalaysiaVasorelaxation
Cytotoxicity
156 AlstolaxepineCorynanthe Alstonia scholaris LeavesMalaysiaVasorelaxation
Cytotoxicity
157 AlstobrogalineCorynanthe Alstonia scholaris LeavesMalaysiaCytotoxicity
158 Kopsiyunnanines GAspidosperma Kopsia arbora Aerial
parts
China_
159 Kopsiyunnanines HAspidosperma Kopsia arbora Aerial
parts
China_
160 Kopsihainin AAspidosperma Kopsia hainanensis Stems ChinaAntitussive
161 Kopsihainin BAspidofractinine Kopsia hainanensis Stems ChinaAntitussive
162 Kopsihainin CAspidofractinine Kopsia hainanensis StemsChinaAntitussive
163 KopsinineAspidofractinine Kopsia hainanensis StemsChinaAntitussive
164 Methyl DemethoxycarbonylchanofruticosinateMethyl Chanofruticosinate Kopsia hainanensis StemsChinaAntitussive
165 Singaporentine AAspidofractinine Kopsia singapurensis Barks and leavesMalaysia_
166 N(1)-Formylkopsininic AcidAspidofractinine Kopsia singapurensis Barks and leavesMalaysia_
167 N(1)-Formylkopsininic Acid-N(4)-OxideAspidofractinine Kopsia singapurensis Barks and leavesMalaysia_
168 15-HydroxykopsamineAspidofractinine Kopsia singapurensis Barks and leavesMalaysia_
169 14α-Hydroxy-N(4)-MethylcondylocarpineAspidosoermata Kopsia singapurensis Barks and leavesMalaysia_
170 SingaporentinidineCorynanthe Kopsia singapurensis Barks and leavesMalaysia_
171 KopsininateAspidofractinie Kopsia hainanensis Leaves and stemsChinaAntifungal, Antibacterial
172 N1-Decarbomethoxy Chanofruticosinic AcidMethyl Chanofruticosinate Kopsia hainanensis Leaves and stemsChinaAntifungal, Antibacterial
173 Methyl N1- Decarbomethoxy Chanofruticosinate N(4)-OxideMethyl Chanofruticosinate Kopsia hainanensis Leaves and stemsChinaAntifungal, Antibacterial
174 Methyl Chanofruticosinate N(4)-OxideMethyl Chanofruticosinate Kopsia hainanensis Leaves and stemsChinaAntifungal, Antibacterial
175 5,6-SecokopsinineAspidofractinine Kopsia jasminiflora Stem barksThailandCytotoxicity
176 5β-HydroxykopsinineAspidofractinine Kopsia jasminiflora Stem barksThailandCytotoxicity
177 16-Epi-KopsinilamAspidofractinine Kopsia jasminiflora Stem barksThailandCytotoxicity
178 5-Oxokopsinic AcidAspidofractinine Kopsia jasminiflora Stem barksThailandCytotoxicity
179 Na-Demethoxycarbonyl-12-MethoxykopsineKopsine Kopsia jasminiflora Stem barksThailandCytotoxicity
180 14(S)-Hydroxy-19(R)- MethoxytubotaiwineStrychnos Kopsia jasminiflora Stem barksThailandCytotoxicity
181 19-Oxo-(−)-EburnamonineVincamine Kopsia jasminiflora Stem barksThailandCytotoxicity
182 19(S)-Hydroxy-Δ14-VincamoneVincamine Kopsia jasminiflora Stem barksThailandCytotoxicity
183 KopsinilamAspidofractinine Kopsia jasminiflora Stem barksThailandCytotoxicity
184 Kopsinic AcidAspidofractinine Kopsia jasminiflora Stem barksThailandCytotoxicity
185 12-MethoxykopsineKopsine Kopsia jasminiflora Stem barksThailandCytotoxicity
186 KopsanoneKopsine Kopsia jasminiflora Stem barksThailandCytotoxicity
187 19(R)- MethoxytubotaiwineStrychnos Kopsia jasminiflora Stem barksThailandCytotoxicity
188 (−)-EburnamonineVincamine Kopsia jasminiflora Stem barksThailandCytotoxicity
189 19-OH-(−)-EburnamonineVincamine Kopsia jasminiflora Stem barksThailandCytotoxicity, Acetylcholinesterase inhibitor
190 Δ14-VincamoneVincamine Kopsia jasminiflora Stem barksThailandCytotoxicity
191 PhutdongininEburnane Kopsia arborea TwigsThailandAntibacterial, Acetylcholinesterase inhibition
192 Melodinine EAspidosperma Kopsia arborea TwigsThailandAntibacterial, Acetylcholinesterase inhibition
193 KopsilongineAspidofractinine Kopsia arborea TwigsThailandAntibacterial, Acetylcholinesterase inhibition
194 KopsamineAspidofractinine Kopsia arborea TwigsThailandAntibacterial, Acetylcholinesterase inhibition
195 (−)-Methylenedioxy-11,12-KopsinalineAspidofractinine Kopsia arborea TwigsThailandAntibacterial, Acetylcholinesterase inhibition
196 DecarbomethoxykopsilineKopsine Kopsia arborea TwigsThailandAntibacterial, Acetylcholinesterase inhibition
197 VincadifformineAspidosperma Kopsia arborea TwigsThailandAntibacterial, Acetylcholinesterase inhibition
198 ArboridinineCorynanthe Kopsia arborea _MalaysiaRelaxation Effect
199 Kopsiyunnanines J1 and J2Aspidosoermata Kopsia arborea Aerial
parts
China_
200 PaucidirinineAspidofractinine Kopsia pauciflora Stem barkMalaysiaCytotoxicity
201 PaucidirisineAspidofractinine Kopsia pauciflora Stem barkMalaysiaCytotoxicity
202 PaucidactinineAspidosperma Kopsia pauciflora Stem barkMalaysiaCytotoxicity
203 PauciduridineAspidofractinine Kopsia pauciflora Stem barkMalaysiaCytotoxicity
204 Paucidactine DPaucidactine Kopsia pauciflora Stem barkMalaysiaCytotoxicity
205 Paucidactine EPaucidactine Kopsia pauciflora Stem barkMalaysiaCytotoxicity
206 PaucidisineKopsine Kopsia pauciflora Stem barkMalaysiaCytotoxicity
207 (−)-19-OxoisoeburnamineEburnane Kopsia pauciflora Stem barkMalaysiaCytotoxicity
208 (−)-19(R)-HydroxyeburnamenineEburnane Kopsia pauciflora Stem barkMalaysiaCytotoxicity
209 (−)-19(R)-Hydroxy-O-EthylisoeburnamineEburnane Kopsia pauciflora Stem barkMalaysiaCytotoxicity
210 Larutienine BEburnane Kopsia pauciflora Stem barkMalaysiaCytotoxicity
211 Paucidactine APaucidactine Kopsia pauciflora Stem barkMalaysiaCytotoxicity
212 Paucidactine BPaucidactine Kopsia pauciflora Stem barkMalaysiaCytotoxicity
213 Paucidactine CPaucidactine Kopsia pauciflora Stem barkMalaysiaCytotoxicity
214 5, 22-DioxokopsaneKopsine Kopsia pauciflora Stem barkMalaysiaCytotoxicity
215 (+)-EburnamonineEburnane Kopsia pauciflora Stem barkMalaysiaCytotoxicity,
216 EburnamenineEburnane Kopsia pauciflora Stem barkMalaysiaCytotoxicity
217 (−)-EburnamineEburnane Kopsia pauciflora Stem barkMalaysiaCytotoxicity
218 (+)-IsoeburnamineEburnane Kopsia pauciflora Stem barkMalaysiaCytotoxicity
219 (+)-19-OxoeburnamineEburnane Kopsia pauciflora Stem barkMalaysiaCytotoxicity
220 (−)-19(R)-HydroxyisoeburnamineEburnane Kopsia pauciflora Stem barkMalaysiaCytotoxicity
221 (+)-19(R)-HydroxyeburnamineEburnane Kopsia pauciflora Stem barkMalaysiaCytotoxicity
222 Larutienine AEburnane Kopsia pauciflora Stem barkMalaysiaCytotoxicity
223 (−)-NorpleiomutineEburnane- Aspidofractinine Kopsia pauciflora Stem barkMalaysiaCytotoxicity
224 (+)-KopsoffinolEburnane- Aspidofractinine Kopsia pauciflora Stem barkMalaysiaCytotoxicity
225 (−)-DemethylnorpleiomutineEburnane- Aspidofractinine Kopsia pauciflora Stem barkMalaysiaCytotoxicity
226 (+)-KopsoffineVincamine- Aspidofractinine Kopsia pauciflora Stem barkMalaysiaCytotoxicity
227 Kopsiyunnanine MScholarisine- Corynanthe Kopsia arborea Aerial
partss
China_
228 ArborisidinePericine Kopsia arborea Whole plantMalayanCytotoxicity
229 ArbornamineArbornane Kopsia arborea Whole plantMalayanCytotoxicity
230 Kopsinidine CKopsine Kopsia officinalis$ Twigs and leavesChinaImmunosuppressive activity
231 Kopsinidine DKopsine Kopsia officinalis$ Twigs and leavesChinaImmunosuppressive activity
232 Kopsinidine EKopsine Kopsia officinalis$ Twigs and leavesChinaImmunosuppressive activity
233 11,12-Methylenedioxychanofruticosinic AcidMethyl Chanofruticosinate Kopsia officinalis Twigs and leavesChinaImmunosuppressive activity
234 12-Methoxychanofruticosinic AcidMethyl Chanofruticosinate Kopsia officinalis Twigs and leavesChinaImmunosuppressive activity
235 N(4)-MethylkopsininateAspidofractinine Kopsia officinalis Twigs and leavesChinaImmunosuppressive activity
236 Chanofruticosinic AcidMethyl Chanofruticosinate Kopsia officinalis Twigs and leavesChinaImmunosuppressive activity
237 Kopsinine MethochlorideAspidofractinine Kopsia officinalis Twigs and leavesChinaImmunosuppressive activity
238 DemethoxycarbonylkopsinKopsine Kopsia officinalis Twigs and leavesChinaImmunosuppressive activity
239 Methyl ChanofruticosinateMethyl Chanofruticosinate Kopsia officinalis Twigs and leavesChinaImmunosuppressive activity
240 Methyl 11,12-MethylenedioxychanofruticosinateMethyl Chanofruticosinate Kopsia officinalis Twigs and leavesChinaImmunosuppressive activity
241 Methyl 12-MethoxychanofruticosinateMethyl Chanofruticosinate Kopsia officinalis Twigs and leavesChinaImmunosuppressive activity
242 Methyl 11,12-Methylenedioxy-N1-DecarbomethoxychanofruticosinateMethyl Chanofruticosinate Kopsia officinalis Twigs and leavesChinaImmunosuppressive activity
243 Kopsininic AcidAspidofractinine Kopsia officinalis Twigs and leavesChinaImmunosuppressive activity
244 (−)-11,12-MethylenedioxykopsinalineAspidofractinine Kopsia officinalis Twigs and leavesChinaImmunosuppressive activity
245 (−)-N-Methoxycarbonyl-11,12-MethylenedioxykopsinalineAspidofractinine Kopsia officinalis Twigs and leavesChinaImmunosuppressive activity
246 (−)-N-Methoxycarbonyl- 12-MethoxykopsinalineAspidofractinine Kopsia officinalis Twigs and leavesChinaImmunosuppressive activity
247 N-Carbomethoxy-11-Hydroxy-12- MethoxykopsinalineAspidofractinine Kopsia officinalis Twigs and leavesChinaImmunosuppressive activity
248 KopsinolineAspidofractinine Kopsia officinalis Twigs and leavesChinaImmunosuppressive activity
249 (−)-12-MethoxykopsinalineAspidofractinine Kopsia officinalis Twigs and leavesChinaImmunosuppressive activity
250 11,12-Methylenedioxykopsinaline N(4)- OxideAspidofractinine Kopsia officinalis Twigs and leavesChinaImmunosuppressive activity
251 Kopsinine BAspidofractinine Kopsia officinalis Twigs and leavesChinaImmunosuppressive activity
252 RhazinilamAspidosperma Kopsia officinalis Twigs and leavesChinaImmunosuppressive activity
253 Pleiocarpamine MethochlorideCorynanthe Kopsia officinalis Twigs and leavesChinaImmunosuppressive activity
254 Kopsioffine AAspidosperma Kopsia officinalis Leaves and stemsChinaYeast α-glucosidase inhibitory
255 Kopsioffine BAspidosperma Kopsia officinalis Leaves and stemsChinaYeast α-glucosidase inhibitory
256 Kopsioffine CAspidosperma Kopsia officinalis Leaves and stemsChinaYeast α-glucosidase inhibitory
257 Kopsifoline GAspidosperma Kopsia fruticose Aerial
parts
ChinaCytotoxicity, Antifungal, Antibacterial
258 Kopsifoline HAspidosperma Kopsia fruticose Aerial
parts
ChinaCytotoxicity, Antifungal, Antibacterial
259 Kopsifoline IAspidosperma Kopsia fruticose Aerial
parts
ChinaCytotoxicity, Antifungal, Antibacterial
260 Kopsifoline JAspidosperma Kopsia fruticose Aerial
parts
ChinaCytotoxicity, Antifungal, Antibacterial
261 Kopsifoline KAspidosperma Kopsia fruticose Aerial
parts
ChinaCytotoxicity, Antifungal, Antibacterial
262 Kopsifoline AAspidosperma Kopsia fruticose Aerial
parts
ChinaCytotoxicity, Antifungal, Antibacterial
263 Kopsiarborine AAspidofractinine Kopsia arborea Aerial parts ChinaCytotoxicity
264 Kopsiarborine BMethyl Chanofruticosinate Kopsia arborea Aerial
parts
ChinaCytotoxicity
265 Kopsiarborine CAspidosperma Kopsia arborea Aerial parts ChinaCytotoxicity
266 Kopsiaofficine AAspidofractinine Kopsia officinalis Aerial parts ChinaCytotoxicity
267 Kopsiaofficine BPaucidactine Kopsia officinalis Aerial parts ChinaCytotoxicity
268 Kopsiaofficine CAspidofractinine Kopsia officinalis Aerial parts ChinaCytotoxicity
269 Kopsiofficine HEburnane Kopsia officinalis StemsChinaAnti-inflammatory
270 Kopsiofficine IEburnane Kopsia officinalis StemsChinaAnti-inflammatory
271 Kopsiofficine JEburnane Kopsia officinalis StemsChinaAnti-inflammatory
272 Kopsiofficine KEburnane Kopsia officinalis StemsChinaAnti-inflammatory
273 Kopsiofficine LKopsine Kopsia officinalis StemsChinaAnti-inflammatory
274 (+)-O-MethyleburnamineEburnane Kopsia officinalis StemsChinaAnti-inflammatory
275 (−)-O-MethylisoeburnamineEburnane Kopsia officinalis StemsChinaAnti-inflammatory
276 16-IsoeburnamineEburnane Kopsia officinalis StemsChinaAnti-inflammatory
277 20-OxoeburnamenineEburnane Kopsia officinalis StemsChinaAnti-inflammatory
278 Methyl 11, 12-MethylenedioxychanofruticosinateMethyl Chanofruticosinate Kopsia officinalis StemsChinaAnti-inflammatory
279 Methyl N-(Decarbomethoxy)-11,12-(Methylenedioxy) ChanofruticosinateMethyl Chanofruticosinate Kopsia officinalis StemsChinaAnti-inflammatory
280 O-MethylleuconolamAspidosperma Kopsia officinalis StemsChinaAnti-inflammatory
281 Leuconodine DAspidosperma Kopsia officinalis StemsChinaAnti-inflammatory
282 Oxayohimban-16-Carboxylic AcidCorynanthe Kopsia officinalis StemsChinaAnti-inflammatory
283 19, 20-DihydroisositsirikineCorynanthe Kopsia officinalis StemsChinaAnti-inflammatory
284 Rauvomine A Sarpagine Rauvolfia vomitoria Aerial
parts
ChinaAnti-inflammatory
285 Rauvomine BSarpagine Rauvolfia vomitoria Aerial parts ChinaAnti-inflammatory
286 PeraksineSarpagine Rauvolfia vomitoria Aerial parts ChinaAnti-inflammatory
287 Alstoyunine ASarpagine Rauvolfia vomitoria Aerial parts ChinaAnti-inflammatory
288 11-HydroxyburnaminePicraline Rauvolfia yunnanensis Whole plantChinaCytotoxicity Immunosuppressive
289 Rauvoyunnanine A Sarpagine Rauvolfia yunnanensis Whole plantChinaCytotoxicity Immunosuppressive
290 Rauvoyunnanine BCorynanthe Rauvolfia yunnanensis Whole plantChinaCytotoxicity Immunosuppressive
291 LochnerineSarpagine Rauvolfia yunnanensis Whole plantChinaCytotoxicity Immunosuppressive
292 Serpentinic Acid Corynanthe Rauvolfia yunnanensis Whole plantChinaCytotoxicity Immunosuppressive
293 ReserpineCorynanthe Rauvolfia yunnanensis Whole plantChinaCytotoxicity Immunosuppressive
294 (−)-YohimbineCorynanthe Rauvolfia yunnanensis Whole plantChinaCytotoxicity Immunosuppressive
295 AjmalineAjmaline Rauvolfia yunnanensis Whole plantChinaCytotoxicity Immunosuppressive
296 MauiensineAjmaline Rauvolfia yunnanensis Whole plantChinaCytotoxicity Immunosuppressive
297 AjmalicineCorynanthe Rauvolfia yunnanensis Whole plantChinaCytotoxicity Immunosuppressive
298 SitsirikineCorynanthe Rauvolfia yunnanensis Whole plantChinaCytotoxicity Immunosuppressive
299 Strictosidinic AcidStrictosidine Rauvolfia yunnanensis Whole plantChinaCytotoxicity Immunosuppressive
300 Caboxine BCorynanthe Rauvolfia yunnanensis Whole plantChinaCytotoxicity Immunosuppressive
301 Isocaboxine BCorynanthe Rauvolfia yunnanensis Whole plantChinaCytotoxicity Immunosuppressive
302 SpegatrineSarpagine Rauvolfia yunnanensis Whole plantChinaCytotoxicity Immunosuppressive
303 19(S),20(R)-DihydroperaksineSarpagine Rauvolfia yunnanensis Whole plantChinaCytotoxicity Immunosuppressive
304 ErvataineIboga Ervatamia yunnanensis Stems China _$
305 IbogaineIboga Ervatamia yunnanensis Stems China _$
306 CoronaridineIboga Ervatamia yunnanensis StemsChinaAcetylcholinesterase Inhibition
307 HeyneanineIboga Ervatamia yunnanensis StemsChina_
308 Voacangine HydroxyindolenineIboga Ervatamia yunnanensis StemsChina_
309 Coronaridine HydroxyindolenineIboga Ervatamia yunnanensis StemsChina_
310 10-HydroxycoronaridineIboga Ervatamia hainanensis Stems ChinaAcetylcholinesterase inhibition
311 VoacangineIboga Ervatamia hainanensis Stems ChinaAcetylcholinesterase inhibition
312 19(S)-HeyneanineIboga Ervatamia hainanensis Stems ChinaAcetylcholinesterase inhibition
313 19(R)-HeyneanineIboga Ervatamia hainanensis Stems ChinaAcetylcholinesterase inhibition
314 Heyneanine HydroxyindolenineIboga Ervatamia hainanensis Stems ChinaAcetylcholinesterase inhibition
315 VobasineVobasine Ervatamia hainanensis Stems ChinaAcetylcholinesterase inhibition
316 Ervachinine EIboga Ervatamia chinensis Whole plantsChinaCytotoxicity
317 RutaecarpineCorynanthe Ervatamia chinensis Whole plantsChinaCytotoxicity
318 Ervahainine AIboga Ervatamia hainanensis Leaves and twigsChinaCytotoxicity
319 Ervaoffine AIboga Ervatamia officinalis Leaves and twigsChina_
320 Ervaoffine BIboga Ervatamia officinalis Leaves and twigsChina_
321 Ervaoffine CIboga Ervatamia officinalis Leaves and twigsChina_
322 Ervaoffine DIboga Ervatamia officinalis Leaves and twigsChina_
323 (7S)-3-Oxoibogaine HydroxyindolenineIboga Ervatamia officinalis Leaves and twigsChina_
324 Ibogaine- 5,6-DioneIboga Ervatamia officinalis Leaves and twigsChina_
325 19-Epi-5-OxovoacristineIboga Ervatamia officinalis Leaves and twigsChina_
326 Iboluteine Ervatamia officinalis Leaves and twigsChina_
327 (7S)- Ibogaine HydroxyindolenineIboga Ervatamia officinalis Leaves and twigsChina_
328 IbogalineIboga Ervatamia officinalis Leaves and twigsChina_
329 ConopharyngineIboga Ervatamia officinalis Leaves and twigsChina_
330 VoacristineIboga Ervatamia officinalis Leaves and twigsChina_
331 19S -HydroxyibogamineIboga Ervatamia officinalis Leaves and twigsChina_
332 Ibogaine N4-OxideIboga Ervatamia officinalis Leaves and twigsChina_
333 3-Oxo-7r-Coronaridine HydroxyindolenineIboga Ervatamia hainanensis Leaves and twigsChina_
334 3S-Cyano-7S-Coronaridine HydroxyindolenineIboga Ervatamia hainanensis Leaves and twigsChina_
335 3R-Hydroxy-7S-Coronaridine HydroxyindolenineIboga Ervatamia hainanensis Leaves and twigsChina_
336 3S -(24S-Hydroxyethyl)-CoronaridineIboga Ervatamia hainanensis Leaves and twigsChina_
337 3S -(24R-Hydroxyethyl)-CoronaridineIboga Ervatamia hainanensis Leaves and twigsChina_
338 5-Oxo-6S-HydroxycoronaridineIboga Ervatamia hainanensis Leaves and twigsChina_
239 5-Oxo-6S -Methoxy-CoronaridineIboga Ervatamia hainanensis Leaves and twigsChina_
340 7S-coronaridine hydroxyindolenineIboga Ervatamia hainanensis Leaves and twigsChina_
341 3-Oxo-7S-Coronaridine Hydroxyl IndolenineIboga Ervatamia hainanensis Leaves and twigsChina_
342 5-OxocoronaridineIboga Ervatamia hainanensis Leaves and twigsChina_
343 3-OxocoronaridineIboga Ervatamia hainanensis Leaves and twigsChina_
344 Pseudoindoxyl CoronaridineIboga Ervatamia hainanensis Leaves and twigsChina_
345 Ervaoffine EIboga Ervatamia officinalis Leaves and twigsChinaNeuroprotective
346 Ervaoffine fIboga Ervatamia officinalis Leaves and twigsChinaNeuroprotective
347 Ervaoffine GIboga Ervatamia officinalis Leaves and twigsChinaNeuroprotective
348 Lirofoline AIboga Ervatamia officinalis Leaves and twigsChinaNeuroprotective
349 Lirofoline BIboga Ervatamia officinalis Leaves and twigsChinaNeuroprotective
350 6-Oxo-IbogaineIboga Ervatamia officinalis Leaves and twigsChinaNeuroprotective
351 8-Oxo-Ibogaine LactamIboga Ervatamia officinalis Leaves and twigsChinaNeuroprotective
352 Erchinine A Iboga Ervatamia chinensis RootsChinaAntibacterial, Antifungal
353 Erchinine BIboga Ervatamia chinensis RootsChinaAntibacterial, Antifungal
354 Ervapandine AIboga Ervatamia pandacaqui Leaves and twigsChinaCytotoxicity
355 3R-HydroxyibogaineIboga Ervatamia pandacaqui Leaves and twigsChinaCytotoxicity
356 12-Hydroxyakuammicine N4-OxideAkuammicine Ervatamia pandacaqui Leaves and twigsChinaCytotoxicity
357 19-Epi-VoacristineIboga Ervatamia pandacaqui Leaves and twigsChinaCytotoxicity
358 Taberdivarine IIboga Ervatamia pandacaqui Leaves and twigsChinaCytotoxicity
359 12-HydroxyakuamicineAkuammicine Ervatamia pandacaqui Leaves and twigsChinaCytotoxicity
360 Ervadivamine A Vobasine-Iboga-Vobasine Ervatamia divaricate RootsChinaCytotoxicity
361 Ervadivamine BVobasine-Iboga-Vobasine Ervatamia divaricate RootsChinaCytotoxicity
362 19,20-Dihydroervahanine AVobasine-Iboga Ervatamia divaricate RootsChinaCytotoxicity
363 IbogamineIboga Ervatamia divaricate RootsChinaCytotoxicity
364 ErvatamineFlabelliformide Ervatamia yunnanensis StemsChina_
365 20-Epi-ErvatamineFlabelliformide Ervatamia yunnanensis StemsChina_
366 DregamineVobasine Ervatamia yunnanensis StemsChina_
367 TabernaemontanineVobasine Ervatamia yunnanensis StemsChina_
368 ApparicineIboga Ervatamia yunnanensis StemsChina_
369 IsovoacangineApparicine Ervatamia yunnanensis StemsChina_
370 Conodusine AIboga Tabernaemontana corymbosa Stem barkMalaysiaCytotoxicity
371 Conodusine BIboga Tabernaemontana corymbosa Stem barkMalaysiaCytotoxicity
372 Conodusine CIboga Tabernaemontana corymbosa Stem barkMalaysiaCytotoxicity
373 Conodusine DIboga Tabernaemontana corymbosa Stem barkMalaysiaCytotoxicity
374 Conodusine EIboga Tabernaemontana corymbosa Stem barkMalaysiaCytotoxicity
375 Apocidine A Aspidosperma Tabernaemontana corymbosa Stem barkMalaysiaCytotoxicity
376 Apocidine BAspidosperma Tabernaemontana corymbosa Stem barkMalaysiaCytotoxicity
377 Conoduzidine AVincamine Tabernaemontana corymbosa Stem barkMalaysiaCytotoxicity
378 Tabernamidine A Vobasine-Iboga Tabernaemontana corymbosa Stem barkMalaysiaCytotoxicity
379 Tabernamidine BVobasine-Iboga Tabernaemontana corymbosa Stem barkMalaysiaCytotoxicity
380 (+)-CatharanthineIboga Tabernaemontana corymbosa Stem barkMalaysiaCytotoxicity
381 TabernamineVobasine-Iboga Tabernaemontana corymbosa Stem barkMalaysiaCytotoxicity
382 19′(S)-HydroxytabernamineVobasine-Iboga Tabernaemontana corymbosa Stem barkMalaysiaCytotoxicity
383 19′(R)-HydroxytabernamineVobasine-Iboga Tabernaemontana corymbosa Stem barkMalaysiaCytotoxicity
384 16′-DecarbomethoxyvoacamineVobasine-Iboga Tabernaemontana corymbosa Stem barkMalaysiaCytotoxicity
385 IsoakuammilineCorynanthe Tabernaemontana litoralis FruitsUSA_
386 18-HydroxypseudovincadifformineIboga Tabernaemontana litoralis FruitsUSA_
387 3,19-OxidocoronaridineIboga Tabernaemontana litoralis FruitsUSA_
388 StrictosidineStrictosidine Tabernaemontana litoralis FruitsUSA_
389 $Tabervarine A Iboga Tabernaemontana divaricate Leaves and twigsChinaCytotoxicity
390 $Tabervarine BIboga Tabernaemontana divaricate Leaves and twigsChinaCytotoxicity
391 Vobasidine CVobasine Tabernaemontana divaricate Leaves and twigsChinaCytotoxicity
392 Ervadivaricatine BVobasine-Iboga Tabernaemontana divaricate Leaves and twigsChinaCytotoxicity
393 PedunculineAspidosperma- Aspidosperma Tabernaemontana divaricate Leaves and twigsChinaCytotoxicity
394 PolyervineAspidosperma- Aspidosperma Tabernaemontana divaricate Leaves and twigsChinaCytotoxicity
395 FlabellipparicineFlabelliformide-Apparicine Tabernaemontana divaricate Stems ChinaCytotoxicity
396 19,20-DihydrovobparicineVobasine-Apparicine Tabernaemontana divaricate Stems ChinaCytotoxicity
397 10′- Demethoxy-19,20-Dihydrovobatensine DVobasine-Iboga Tabernaemontana divaricate Stems ChinaCytotoxicity
398 3′-(2-Oxopropyl)Ervahanine ASarpagine-Iboga Tabernaemontana divaricate Stems ChinaCytotoxicity
399 Ervahanine ASarpagine-Iboga Tabernaemontana divaricate Stems ChinaCytotoxicity
400 VobparicineVobasine-Apparicine Tabernaemontana divaricate Stems ChinaCytotoxicity
401 19,20-DihydrotabernamineVobasine-Iboga Tabernaemontana divaricate Stems ChinaCytotoxicity
402 19,20-Dihydrotabernamine AVobasine-Iboga Tabernaemontana divaricate Stems ChinaCytotoxicity
403 Taberdivarines EVobasine-Iboga Tabernaemontana divaricate Stems ChinaCytotoxicity
404 TubotaiwineStrychnos Tabernaemontana divaricate Stems ChinaCytotoxicity
405 Hydroxy-3-(2-Oxopropyl) Coronaridine IndolenineIboga Tabernaemontana divaricate Stems ChinaCytotoxicity
406 DeoxytubulosineCorynanthe bisindole Tabernaemontana divaricate Stems ChinaCytotoxicity
407 (3R,7S,14R,19S,20R)-19-HydroxypseudovincadifformineIboga Tabernaemontana bufalina Branches and leavesChinaCytotoxicity
408 17-Demethoxy-Hydroisorhyn ChophyllineCorynanthe Tabernaemontana bufalina Branches and leavesChinaCytotoxicity
409 17-Demethoxy-IsorhynchophyllineCorynanthe Tabernaemontana bufalina Branches and leavesChinaCytotoxicity
410 VoachalotineAkuammidine Tabernaemontana bufalina Branches and leavesChinaCytotoxicity
411 12-Methoxyl-VoaphyllineAspidosperma Tabernaemontana bufalina Branches and leavesChinaCytotoxicity
412 ConophyllineAspidosperma- Aspidosperma Tabernaemontana bufalina Branches and leavesChinaCytotoxicity
413 5,6-Dioxo-11-Methoxy VoacangineIboga Tabernaemontana contorta FruitsCameroonAnti-inflammatory
414 (−)-Apparicin-21-OneApparicine Tabernaemontana contorta FruitsCameroonAnti-inflammatory
415 Tabernabovine ACorynanthe bisindole Tabernaemontana bovina LeavesChinaAnti-inflammatory
416 Tabernabovine BAspidosperma Tabernaemontana bovina LeavesChinaAnti-inflammatory
417 Tabernabovine CIboga Tabernaemontana bovina LeavesChinaAnti-inflammatory
418 Secopleiocarpamine ACorynanthe Rhazya stricta Aerial partsPakistanAntifungal
419 16,17-Epoxyisositsirikine Corynanthe Rhazya stricta Aerial parts PakistanAntifungal
420 2-Ethyl-3[2-(3-Ethyl-1,2,3,6-Tetrahydropyridine)Ethyl]-IndoleSecodine Rhazya stricta Aerial parts PakistanAntifungal
421 2-Ethyl-3[2-(3-Ethylpiperidine)Ethyl]-IndoleSecodine Rhazya stricta Aerial parts PakistanAntifungal
422 TetrahydrosecodineSecodine Rhazya stricta Aerial parts PakistanAntifungal
423 16,17-DihydrosecodineSecodine Rhazya stricta Aerial parts PakistanAntifungal
424 DeacetylakuammilinAkuammiline Rhazya stricta Aerial parts PakistanAntifungal
425 RhazimalAkuammiline Rhazya stricta Aerial parts PakistanAntifungal
426 Strictamine-N-OxideAkuammiline Rhazya stricta Aerial parts PakistanAntifungal
427 RhazinalineAkuammiline Rhazya stricta Aerial parts PakistanAntifungal
428 Rhazinaline Nb-OxideAkuammiline Rhazya stricta Aerial parts PakistanAntifungal
429 AkuammicineAkummicine Rhazya stricta Aerial parts PakistanAntifungal
430 16R-E-IsositsirikineCorynanthe Rhazya stricta Aerial parts PakistanAntifungal
431 DihydrositsirikineCorynanthe Rhazya stricta Aerial parts PakistanAntifungal
432 AntirhineCorynanthe Rhazya stricta Aerial parts PakistanAntifungal
433 Vincadifformine N(4)-OxideAspidosperma Rhazya stricta Aerial parts PakistanAntifungal
434 EburenineAspidosperma Rhazya stricta Aerial parts PakistanAntifungal
435 Winchinine BAspidosperma Rhazya stricta Aerial parts PakistanAntifungal
436 QuebrachamineAspidosperma Rhazya stricta Aerial parts PakistanAntifungal
437 StrictanolAspidosperma Rhazya stricta Aerial parts PakistanAntifungal
438 16-Epi-Stemmadenine-N-OxideCorynanthe Rhazya stricta Leaves Saudi ArabiaCytotoxicity
439 Stemmadenine-N-MethylCorynanthe Rhazya stricta LeavesSaudi ArabiaCytotoxicity
440 20-Epi-AntirhineCorynanthe Rhazya stricta LeavesSaudi ArabiaCytotoxicity
441 IsopicrininePicrinine Rhazya stricta LeavesSaudi ArabiaCytotoxicity
442 Epirhazyaminine Rhazya stricta Aerial partsSaudi ArabiaCytotoxicity
443 20-Epi-sitsirikine Rhazya stricta Aerial partsSaudi ArabiaCytotoxicity
444 Strictamine Rhazya stricta Aerial partsSaudi ArabiaCytotoxicity

Additionally, the future prospective and emphasizing the research gaps and highlighting the roadmap to discover the potent bioactive monoterpenoid alkaloids, which could be a drug lead from the six genera. Also, this review will discuss the reported structural activity relationships.

2. Alstonia

Plants of the genus Alstonia are grown in Africa and Asia. It includes 60 species, which were recognized as rich source of heterocyclic monoterpene indole alkaloids. It has different names according to the geographical sources, including Devil tree, Australian fever bush, dita bark, Australian quinine, fever bark and palimara. Alstonia bark shows potent therapeutic effects including anti-inflammatory, antirheumatic, analgesic, antidiabetic, antimalarial, antipyretic, antihelminthic, antibiotic, antimicrobial, anticancer, antibacterial and antitussive effects [18,19,20].

Three monoterpene indole alkaloids (MIAs) derivatives, (14α,15α)-14,15-epoxyaspidofractinine (1) and maireines A (2) and B (3) have been isolated from the leaves and twigs of A. mairei [21]. Additionally, venalstonine (4) [22], (−)-minovincinine (5) [23], (−)-11-methoxyminovincinine (6) [24], (−)-echitovenine (7) [25], echitovenaldine (8) [26], echitovenidine (9), 11-methoxyechitovenidine (10) [27], echitoveniline (11), 11-methoxyechitoveniline (12) [24], echitoserpidine (13) [28],11-methoxyechitoserpidine (14) [29], (19S)-vindolinine (15) [22], lochnericine (16), tabersonine (17) [30], perakine (18) [31], picrinine (19) [32], F (20) [33], picralinal (21) [34] and rhazimol (22) [35] were isolated from the same species (Figure 5). These compounds were elucidated through the interpretation of different spectroscopic measurements including 1D and 2D NMR and MS. Interesting in compound (1) was the interpretation of the Rotating Frame Overhauser Enhancement Spectroscopy (ROSY) spectrum led to the establishment of the α-orientation of the epoxy moiety. Compounds 122 were evaluated against five human cancer cells, hepatocellular carcinoma (SMMC-7721), breast (SK-BR-3), pancreatic (PANC-1), human myeloid leukemia (HL-60), and lung (A-549) with IC50 values > 40 μM [21].

The majority of reported alkaloids from A. scholaris, were of the picrinine type whereas, those isolated from A. yunnanensis were either picrinine or aspidospermine types.

Alsmaphorazines A (23) and B (24) (Figure 6) were identified from the leaves of malaysian A. pneumatophore. The chemical structures were determined on the basis of 2D NMR and MS spectral analysis. These compounds had an unprecedented skeleton containing an 1,2-oxazine (six-member ring) and an isoxazolidine (five-member ring) [36]. The absolute configuration of alsmaphorazine B was determined using CD spectral analysis. The absolute configuration of alsmaphorazine B (24) was studied by comparing its experimental CD spectrum with the calculated CD spectrum, with the CD calculations performed by Turbomole 6.1using the Time-Dependent Density Functional Theory (TD-DFT-B3LYP/TZVPP) level of theory on RI-DFTBP386LYP/TZVPP optimized geometries. Compound 23 inhibited the production of nitric oxide (NO) in an LPS-stimulated J774.1 cell with an IC50 value = 49.2 μM, without affecting the cell viability, whereas compound 24 showed no inhibitory effect at 50.0 μM. Compound 23 was more potent as an anti-inflammatory agent due to the presence of a hydroxyl group at C-12 [36].

Alstrostines A (25) and B (26) were determined as derived from the condensation of tryptophan and secologanin in a ratio of 1:2. They were isolated from Alstonia rostrata [37]. The structures were established by measuring 1H, 13C, HSQC, HMBC, 1H-1H COSY and ROESY. Compounds, 25 and 26, exhibited a weak cytotoxicity against five human cancer cells, hepatocellular carcinoma (SMMC-7721), breast (MCF-7), colon (SW480), myeloid leukemia (HL-60) and lung (A-549), with IC50 values > 40 μM [37].

Alstrostines C-F (2730) (Figure 6) were isolated from the leaves and twigs of Chinese A. rostrata [38]. Compounds 2730 showed a characteristic UV absorption at 326, 275 and 214 nm, which indicated the presence of an indole alkaloid with a β-anilineacrylate system. The chemical structure elucidation was confirmed by 1D and 2D NMR. Compounds 2730 showed weak cytotoxicity against five human cancer cells, breast (SK-BR-3), human myeloid leukemia (HL-60), pancreatic (PANC-1), hepatocellular carcinoma (SMMC-7721) and lung (A-549) cells, with IC50 values > 40 μM [38].

Five MIAs, 11-hydroxy-6,7-epoxy-8-oxo-vincadifformine (31), 14-chloro-15-hydroxyvinca difformine (32), perakine N4-oxide (33), raucaffrinoline N4-oxide (34), and vinorine N1,N4-dioxide (35) (Figure 7) have been reported from A. yunnanensis. Additionally, three compounds, 11-methoxy-6,7-epoxy-8-oxovincadifformine (36), vinorine N4-oxide (37) and vinorine (38) have also been found from the same plant [39]. The chemical structures were established based on 1D and 2D (1H-1H-COSY, HMQC, HMBC, and ROESY) NMR spectroscopy. Compounds 33, 34, and 37 showed cytotoxicity against astrocytoma and glioma cells (CCF-STTG1, CHG-5, SHG-44 and U251) with IC50 values ranging from 9.2 to 17.4 μM. Adriamycin was used as positive control and showed cytotoxicity with an IC50 value ranging from 21.8 to 33.7 μM. These compounds exhibited a cytotoxic effect against breast cancer (MCF-7) and human skin cancer (SK-MEL-2) with IC50 values ranging from 28.1 to 35.5 μM. Adriamycin was used as positive control and exhibited a cytotoxic effect with IC50 values ranging from 14.1 to 37.6 μM [39]. Alkaloids 35 and 38 displayed no cytotoxic activities or selective inhibition of COX-2 comparable to those of 33, 34 and 37 although they possess the same monoterpene indole skeleton. The observations indicated that a N4-oxide functionality was essential for cytotoxic and anti-inflammatory properties, while a N1-oxide maybe weaken the cytotoxic activities for this type of alkaloids. The observations indicated that the presence of oxide in N4 was essential for cytotoxic and anti-inflammatory activities, while the presence of the oxide on N1-oxide led to decreasing the cytotoxicity.

Alsmaphorazines (C) (39), (D), (40), and (E) (41) (Figure 8) were elucidated from A. pneumatophore [40]. The planar structure of 39 was elucidated by 2D NMR and MS. This alkaloid possesses a novel ring skeleton containing an octahydropyrrolo[2,3-b]pyrrole unit. The absolute configuration of (39) was determined by the modified Mosher’s method and also confirmed by measuring the CD spectrum, which fully agreed with the CD calculations. Compounds 3941 showed no cytotoxicity and also weak anti-melanogenesis activity against HL-60 and B16F10 cells with IC50 values >100 μM [40].

New scholarisins I-VII (4248), and (3R,5S,7R,15R,16R,19E)-scholarisine F (49) [41], along with three known indoles: 3-epi-dihydrocorymine (50), and (E)-16-formyl-5α-methoxystrictamine (51) were identified from the leaves of Alstonia rupestris (Figure 8) [42]. Compounds 42, 47, and 51 showed significant cytotoxicity against cancer cells, A-549, BGC-823, HepG2, HL-60, MCF-7, SMMC-7721, and SW480 with IC50 values < 30 μM. These compounds exhibited selective inhibition effect of COX-2 with IC50 values ranging between 92.0 and 96.4 μM, while compounds 43, 44, and 4850 displayed a weak cytotoxicity towards the tested tumor cells with IC50 values > 40 μM. Furthermore, alkaloids 45 and 46 showed a weak cytotoxicity with IC50 values > 80 μM. Doxorubicin was used as a positive control and showed with IC50 value < 35 µM. These activities of 45 and 46, indicated that the bond connection between C-5 and N-4 was essential for the cytotoxicity [41]. Compounds 42, 43, 44 and 49 showed antifungal activity against Gibberella pulicaris (KZN 4207) and Colletotrichum nicotianae (SACC-1922) with MIC values of 0.64 and 0.69 mM; 1.37 and 1.44 mM; 1.80 and 1.91 mM and 1.55 and 1.71 mM, respectively. Nystatin was implemented as a positive control and showed MIC values of 0.007 and 0.006 mM. These bioactivities may be due to the presence of a formyl group at C-16 in the alkaloids subclasses picrinine in 42, vincorine in 47, and akuammiline in 51, respectively and also may play a role in anti-inflammatory activity [41].

Alstolactines A (52), B (53), and C (54) (Figure 9) were isolated from the leaves of chines A. scholaris [43]. The structures were identified by extensive spectroscopic data analyses and X-ray diffraction analyses. The absolute stereochemistry was deduced from crystal X-ray diffraction. These compounds are biosynthetically originated from picrinine, which is the main metabolite in A. scholaris. Compounds 5254 exhibited no effects against four bacterial strains: Klebsiella pneumonia, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus [43].

Moreover, Alistonitrine A (55) (Figure 9) had an unprecedented caged carbon skeleton with a unique 6/5/6/5/5/6 ring system and also contained three nitrogen atoms. It was isolated from the same species [12]. Its structure and absolute configuration were established by extensive spectroscopic analyses and electron circular dichroism calculations. Compound 55 exhibited no activity as an anti-inflammatory in both NF-κB and HIF-α models [12].

The MIAs, 6,7-epoxy-8-oxo-vincadifformine (56), 11-acetyl-6,7-epoxy-8-oxo-vincadifformine (57), 11-hydroxy-14-chloro-15-hydroxyvincadifformine (58) and perakine N1,N4-dioxide (59) were identified from the aerial parts of A. rupestris. Additionally, 11-hydroxy-6,7-epoxy-8-oxovincadifformine (60) and 35 were isolated from the same species [44].

Compounds 56, 57 and 60 exhibited potent cytotoxic effects against head and neck squamous cancer (SCL-1, Detroit-562, UMSCC-1, CAL-27, TCA-83, HepG2 and SCC-PKU) cells, with IC50 values < 20 μM. Doxorubicin was implemented as a positive control and showed cytotoxicity, with IC50 values ≤ 35.4 µM. Compound 56 exhibited potent effect, with IC50 values ≤ 13.7 μM. This may be due to the absence of any substitution at the phenolic ring. This can be explained by the fact that the attachment of electron-donating groups (OH and OAc) led to a reduction in the cytotoxicity [44]. Compounds 56, 57, and 60 displayed significant antifungal activities against Alternaria alternata and Phytophthora capsici, with MIC values = 0.66 & 0.99 mM, 0.87 & 1.10 mM and 1.53 & 1.64 mM, respectively. Nystatin was implemented as positive control and showed effect with MIC values 0.007 and 0.061 mM. Compounds 56, 57, and 60 displayed moderate activity against Staphylococcus aureus, with MIC values of 15.72, 16.33 and 14.91 mM. Meanwhile, compounds 59 and 35 exhibited potent effects against Staphylococcus aureus, with MIC values of 0.49 and 0.83 mM. Rifampicin was used as a positive control and showed an effect at MIC valued = 0.003 mM for bacteria. Additionally, compound 59 showed higher antibacterial effects toward S. aureus than compound 35. The present of a formyl group at the C-20 position might increase the activities for ajmaline indole alkaloids [44].

The bioassay-guided fractionation of the stem bark of Vietnamese Alstonia angustifolia using the HT-29 human colon cancer cells, led to the reporting of six MIAs, N(4)-methyl-talpinine (61) [45], N(4)-meth-yl-N(4),21-secotalpinine (62) [46], alstonerinal (63) [47], alstonerine (64) [48], macrocarpine B (65) [46], affinisine (66) [49], from the stem bark of A. angustifolia. Additionally, villalstonine (67), villalstonine N(4)-oxide (68) [50], villalstonidine D (69) and villalstonidine E (70) [51] (Figure 10) were identified from the same plant.

Compounds 61 and 66 are sarpagine-type and compounds 6265 are macroline-derived alkaloids whereas macroline-pleiocarpamine bisindole alkaloids are present in compounds 6770.

Compound 61 showed significant inhibitory activity toward NF-κB (p65), with an ED50 value = 1.2 μM. Rocaglamide was employed as a positive control, with ED50 value = 0.9 μM. Compounds 6164, 66 and 6870 showed anti-leishmanial activity toward the promastigotes of Leishmania Mexicana, with IC50 values < 183.5 μM. Compound 62 exhibited a potent effect, with IC50 value = 57.8 μM. Amphotericin B was employed as a positive control and exhibited potent effect against L. mexicana promastigote, with an IC50 value = 0.09 μM. The dimeric compounds 6870, which contain quaternary ammonium cation at N(4), exhibited potent effect than compound 67. Additionally, compound 67 has not function group at N(4) [45]. Also, the presence of formyl and acetyl groups in 6264. These moieties may enhance the effects of compounds belonging to macroline indole alkaloids compared with 65.

Normavacurine-21-one (71), 5-hydroxy-19, 20-E-alschomine (72), and 5-hydroxy-19, 20-Z-alschomine (73) (Figure 11), were isolated from the leaves of Alstonia scholaris cultivated in Kunming, China [52]. Compound 71 exhibited a significant antimicrobial effect against Enterococcus faecalis ATCC 10541, with an MIC = 0.78 μg/mL, whereas compound 73 showed a significant effect against Pseudomonas aeruginosa ATCC 27853, with an MIC value = 0.781 μg/mL. Cefotaxime was used as a positive control, with an MIC = 0.19 μg/mL [52]. Alstoniascholarines A-Q (7490), were identified from the leaves of A. scholaris collected from Yunnan [53,54]. Compounds 79 and 83 showed a potent antibacterial activity against Pseudomonas aeruginosa ATCC 27853, with MIC value = 3.13 mg/mL. Gentamycin was applied as a Positive control and showed an inhibitory effect, with an MIC value = 0.78 mg/mL. Additionally, compounds 77, 80, and 83 exhibited moderate antifungal activities toward Epidermophyton floccosum CBS 566.94, with MIC value s= 31.25 mg/mL. Griseofulvin was applied as a positive control and showed an inhibitory effect, with an MIC value = 7.81 mg/mL [53]. Compounds 8590 showed no cytotoxicity against five tumor cell: MCF-7, A-549, HL-60, SW-480, and SMMC-7721[54].

Scholarisines H-O (9197) (Figure 12) were isolated from the leaves of the Chinese A. scholaris [55]. The chemical structures were elucidated on the basis of comprehensive spectroscopic data and X-ray diffraction. Compounds 9197 showed weak antibacterial activities against five strains: Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 25922, Escherichia coli ATCC 11775, Providencia smartii ATCC 29916, and Enterococcus faecalis ATCC 10541), with MIC values = 100 μg/mL. Gentamycin was used as a positive control, with an MIC value < 2.00 μg/mL [55].

A further study on the leaves and twigs of A. scholaris [56] led to identification of melosline A (98), B (99) and 1-[2-[2-(carboxymethyl) indole-3-yl] ethyl]-3-ethylpyridinium hydroxide inner salt (100) (Figure 13) [57]. Melosline A (98) was an unprecedented indole alkaloid, with a 6/5/6/6 tetracyclic ring skeleton. The structures were established by spectroscopic analyses. The absolute configuration of 98 was confirmed by the comparison of experimental data with the calculated electronic circular dichroism (ECD). Compound 98 showed a moderate cytotoxic activity against breast cancer (MCF-7), with an IC50 value = 39.78 μM. Cisplation was employed as a positive control [56].

Alstiyunnanenines A-E (101105) (Figure 13) and alstoniascholarine I (82) (Figure 11), were isolated from A. yunnanensis [54,58]. Compounds 104, 105, and 82 displayed potent cytotoxicity against human gastric carcinoma (BGC-823 cells), human hepatocellular, (HepG2 cells), human myeloid leukemia (HL-60), human breast cancer (MCF-7), and osteosarcoma (SOSP-9607, MG-63, Saos-2, M663), with IC50 values ranging between 3.2 and 5.8 μM. Adriamycin was used as a positive control and exhibited cytotoxicity, with an IC50 value < 0.04 μM [58]. Three monoterpenoid indoles, alstomairines A-C (106108) [59], together with alpneumine A (109) [60] were identified from the leaves of the chines A. mairei. Compounds 107 and 108 showed potent cytotoxic effects against osteosarcoma cells (U2-OS, Mg-63, Saos-2, and SOSP-9607) with IC50 values ranging from 9.2 to 13.0 μM, whereas compounds 106 and 109 had IC50 values < 15.0 μM. The presence of the methyl group on N-4 indicate increasing the cytotoxicity in that scholaricine-type (Figure 4) than the presence of N(4)-oxide moiety. Doxorubicin was used as Positive control and showed cytotoxicity, with an IC50 value < 0.03 μM [59].

Alstrostine G-K (110114) (Figure 14), were identified from the Chinese A. rostrata [61]. Compounds 110114 showed no cytotoxicity against HeLa, SGC-7901 gastric cancer, and A-549 lung cancer at 20 µM [61].

Six nareline-type indoles including three cage-like skeletons, scholarisines T-V (115117) [62] (Figure 15), and three previously identified analogues scholarisine W (118), scholarisine A (119), and scholarisine I (92) [55], were isolated from the leaves of the Chinese A. scholaris [56]. Compounds 115117 displayed anti-bacterial effects against Escherichia coli ATCC 8739, with an MIC value = 0.78 μg/mL. Additionally, compound (116) inhibited the growth of Bacillus subtilis ATCC 6633 bacterium with an MIC value = 3.12 μg/mL and was referenced with cefotaxime as a positive control. The absence of the ethyl group at C-20 position indicated an increase in the anti-bacterial activities as in 116, compared with compounds (115 and 117) [63]. Cefotaxime was used as a positive control and exhibited an inhibitory effect, with an MIC value of 0.39 μg/mL. There were scholarisines P-S (120123), (16R)-E-isositsnikine (124) [64], nareline (125) [65], 5-methoxystrictamine (126), leuconolam (127), epileuconolam (128) [66], and Nb-demethylalstogustine (129) [67]. Also, 19-epischolaricine (130), scholaricine (131), vallesamine (132) [68], akuammidine (133) [69], 17-nor-excelsinidine (134) [70], strictosamide (135) [71,72] and compounds 19 and 21, were isolated from the same species. Compounds 123, 19, 21, 130 and 133 exhibited significant NF-κB inhibitory activity with IC50 < 25 μM. Furthermore, compounds 19, 126 and 130 inhibited TNFα-induced NF-κB activation in the same dose. Three nareline-type MIAs, compounds (120, 123 and 125) were identified from A. scholaris [73].

Two ajmaline type MIAs, vincamaginine A (136), and vincamaginine B (137); four macroline oxindole- alstonisinines A (138) and B (139), alstonisinine C (140), and alstonoxine F (141); four bisindole compounds of macroline-akuammiline type; angustilongine A–D (142145) (Figure 16) were reported from Malaysian Alstonia penangiana [73]. The structures of these alkaloids were determined by the interpretation of spectroscopic data and compounds 141142, were confirmed by X-ray diffraction analysis. Compounds 142 and 143 showed growth inhibitory activity against human prostate carcinoma (LNCaP and PC-3), human breast adenocarcinoma (MDA-MB-231 and MCF7), human colorectal carcinoma (HCT 116 and HT-29) and human lung carcinoma (A549). Furthermore, the potent effects of 142 and 143 against HT-29 cells were evaluated, with IC50 values = 0.7 ± 0.1 μM and 0.3 ± 0.0 μM, respectively (Cisplatin, IC50 >10 μM). Compound 143 exhibited an effect against vincristine-resistant KB cells, with an IC50 value of 0.7 ± 0.3 μM (Vincristine 0.3 ± 0.1 μM) [73].

Winphyllines A (146), B (147) [74], Nb-demethylechitamine (148) [75], 17-O-acetylnorechitamine (149) (Figure 17) [76], 12-methoxyechitamidine (150) [67], and N(4)-demethylastogustine (151) [77] were isolated from the collected twigs of the Chinese A. rostrata. Compounds 146151 exhibited cytotoxicity against cancer cells (HL-60, SMMC-7721, A-549, MCF-7, and SW480), with IC50 values = 40 μM [74]. A vincorine-type, 17-formyl-10-demethoxyvincorine N(4)-oxide (152), an ajmaline-type 10-methoxyalstiphyllanine H (153), and 10-demethoxyvincorine N(4)-oxide (154) were obtained from the leaves of A. scholaris [78]. The phytochemical investigation of A. scholaris led to the publication of alstoscholactine (155) and alstolaxepine (156) [79]. A further investigation on the leaves of Malaysian A. scholaris led to the reporting of alstobrogaline (157) [80]. Compounds 155 and 156 exhibited no cytotoxic effects, whereas 156 induced marked vasorelaxation in reported rat aortic rings precontracted with phenylephrine, with EC50 = 6.58 ± 3.66 μM and Emax = 93.9 ± 4.3% (cf. verapamil, EC50 = 0.55 ±0.19 μM and Emax = 106.4 ± 3.4%) [74]. Compound 157 showed weak cytotoxic activity against breast cancer cells MDA-MB-231 and MCF7, with IC50 values = 25.3 and 24.1 μM, respectively [80].

The scaffold of the reported monoterpene indole compounds from A. scholaris is affected by the geographical environment. Indian, Pakistanian and Thai. A. scholaris are rich with picrinine-type indole compounds, whereas, those identified from Indonesia and the Philippine, are rich in angustilobine-type [81]. Genus Alstonia was addressed as a source of angustilongines A (142) and B (143). These compounds showed more potent anticancer activities than those recognized from A. penangiana, although all of them belong to macroline- and akuammiline-type bisindole alkaloids.

A review entitled "Alstonia scholaris and Alstonia macrophylla: A comparative review on traditional uses, phytochemistry and pharmacology" was published in 2014 and mentioned the compounds obtained from A. scholaris from 1976 to 2009, and from A. macrophylla from 1987 to 2013 [82]. A review published in 2018 entitled "The alstoscholarisine compounds: isolation, structure determination, biogenesis, biological evaluation and synthesis" studied the alstoscholarisine compounds obtained from A. scholaris [83]. Furthermore, a review published in 2016 called "An overview phytochemistry and chromatographic analysis of Alstonia scholaris used as a traditional medicine" discussed A. scholaris compounds which were reported between 1965 and 2009 [84].

The identified metabolites from Alstonia were categorized under two main classes: corynanthe and aspidosprma. Corynanthe contains eight subclasses: ajmaline-type (18, and 3335), picrinine-type (1921 and 4244), akummiline-type (22), vincorine-type (47, 50 and 148149), sarpagine-type (61, 66 and 101), macroline-type (6265), scholaricine-type (104109) and macroline oxindole-type (138141). Meanwhile,, aspidosprmia contains six subclasses: aspidosprma-type (31 and 32) vincamine-type (8284 and 8890), aspidofractinine-type (1 and 4), bisindole alkaloids macroline-pleiocarpamine-type (6770), and macroline- akuammiline-type (142145). Ajmaline derivatives with formyl group and/or a quaternary ammonium cation N(4) showed an interesting bioactivity.

3. Kopsia

Kopsia (Family Apocynaceae) contained 30 species with a distribution in China, India, Southeast Asia, and Australia. Sixteen species were grown in Malaysia [85], and five species were grown in Thailand [86]. These plants are considered as rich sources of indole-containing compounds. Traditionally, some of the species have been used for the treatment of tonsillitis, dropsy and rheumatoid arthritis. Several species have been reported to have antitumor, antimanic, antitussive and antileishmanial effects [87,88,89]. A review published in 2017 was interested in reporting indole alkaloids from genus kopsia plants regarding reversing multidrug resistance in vincristine-resistant KB cells for example, kopsirensine B, arboloscine A [90], grandilodines A and C, and lapidilectine B [91,92].

Kopsiyunnanines G (158) and kopsiyunnanines H (159) (Figure 18) with an aspidosperma-containing skeleton were isolated from the aerial part of the Chinese Kopsia arborea [93]. Kopsihainins A (160), B (161), and C (162) were isolated as new compounds from K. hainanensis [89], along with the known compounds, kopsinine (163) [87] and methyl demethoxycarbonylchanofruticosinate (164) [94] were isolated from the stems of Chinese K. hainanensis. Compounds 163 and 164 showed significant antitussive activity, these compounds are within the aspidofractinine-type and methyl chanofruticosinate-type indoles, respectively. Compounds 163 and 164 inhibited coughing by 88% and 76%, respectively [83]. Compound 163 was more active, with an ID50 value = 0.11 mmoL/kg, whereas compound 164 exhibited an effect, with an ID50 value = 0.45 mmol/kg, (Codeine, ID50 = 0.1 mmol/kg) [90]. The link from C-2 to C-20 in compound 163 and the attachment of the methoxy carbonyl group at C-16 position promote the antitussive activity.

Four alkaloids of aspidofractinine-type, singaporentine A (165), N(1)-formylkopsininic acid (166), N(1)-formylkopsininic acid-N(4)-oxide (167), and 15-hydroxykopsamine (168), along with an aspidospermatan-type, 14α-hydroxy-N(4)-methylcondylocarpine (169), and singaporentinidine (170) (Figure 18) were identified from the barks and leaves of Malaysian K. singapurensis [95].

From the leaves and stems of the Chinese medicinal plant K. hainanensis, four compounds, kopsininate (171), N1-decarbomethoxy chanofruticosinic acid (172), methyl N1- decarbomethoxy chanofruticosinate N(4)-oxide (173) and methyl chanofruticosinate N(4)-oxide (174) (Figure 19) were reported [96]. Compound 172 was the most effective against Erwinia carotovora bacterium, with an MIC of 7.8 mg/mL. Furthermore, compound 172 showed antifungal activities against four plant pathogenic fungi: Penicillium italicum, Fusarium oxysporum f. sp. Niveum, Rhizoctonia solani and Fusarium oxysporum. Cubense had an EC50 = from 15.2 to 43.8 μg/mL dose values. Compound 172 showed a potent effect towards F. oxysporum f. sp. Cubense, with an EC50 = 15.2 mg/mL. A comparison of this result with the positive control Midlothian, with an EC50 = 57.0 mg/mL showed compound 172 to be more active. The presence of carboxylic group attached to the C-2 position in 172 is important for antifungal activity, particularly, in methyl chanofruticosinate-type indoles [96].

Three aspidofractinie-type compounds, 5,6-secokopsinine (175), 5β-hydroxykopsinine (176), 16-epi-kopsinilam (177) [97], two kopsine-type metabolites, 5-oxokopsinic acid (178), and Na-demethoxycarbonyl-12-methoxykopsine (179) [97], a strychnos-type, 14(S)-hydroxy-19(R)- methoxytubotaiwine (180), and vincamine-type, and strychnos type 19-oxo-(−)-eburnamonine (181), 19(S)-hydroxy-Δ14-vincamone (182) [97], along with ten known compounds, 163 [87], kopsinilam (183) [98], kopsinic acid (184), 12-methoxykopsine (185) [99], kopsanone 186), 19(R)- methoxytubotaiwine (187) [88], (−)-eburnamonine (188), 19-OH-(−)-eburnamonine (189), and Δ14-vincamone (190) [97] were yielded from the stem bark of the Thai Kopsia jasminiflora (Figure 19). Compounds 163, 183, and 184 belong to aspidofractinie-type, 185 and 186 belong to Kopsine-type, 187 belongs to strycno-type, 188190 belonging to the vincamine- type MIAs.

The vincamine-type compound 182 showed a potent inhibitory activity against HT29, HCT116, and A549 cancer cells, with IC50 values = 0.36, 0.40, and 0.51 μM, respectively. Meanwhile, compounds 188 and 189 showed moderate activities with IC50 values ranging from 2.00 to 2.61 μM (Docetaxel, IC50 < 0.0005 μM). These results indicated the structural features that are necessary for the presence of a vincamine-type carbonyl group at the C-16 position, forming an amide function group, and a methylene group or hydroxyl methine at C-19 position in 182, 188, and 189 [97]. The presence of a double bond in the piperidine ring between C-15 and C-16 may be responsible for increasing the activity of compound 182.

A study on the content of twigs of K. arborea grown in Thailand revealed the isolation of a new MIA, phutdonginin (191) [100], an eburnane-type compound, together with eight known compounds, among them, 164 [87], 189 [88] melodinine E (192) [101], kopsilongine (193), kopsamine (194) [94], (−)-methylenedioxy-11,12-kopsinaline (195) [87], decarbomethoxykopsiline (196) [102], and vincadifformine (197) [103]. Only 194 and 196 displayed AChE inhibition activity with MIR values 12.5 and 6.25 μg, respectively, compared with reference drug galanthamine MIR = 0.004 μg. In addition, compounds 194 and 198 also displayed the weak acetylcholinesterase (AChE) inhibition of 23.3% and 45.7% in a microplate test at 1 mM. Compounds 191 and 189 showed moderate inhibition of bacterium toward Escherichia coli TISTR 780 with MIC = 32 μg/mL, with vancomycin and gentamycin references drugs with MIC values 0.125–0.25 μg/mL [100].

Malaysian Kopsia arborea was investigated and arboridinine (198) [85] was reported (Figure 20). The further investigation of the aerial parts of K. arborea led to the isolation of kopsiyunnanines J1 and J2 (199a and 199b) [104]. Compound 198 exhibited a moderate relaxation effect that was dependent on the contraction of phenylephrine-induced in the rat aortic rings, with an EC50 of 4.98 μM, and an Emax 60.6 ± 7.8% with the reference control isoprenaline with an EC50 value = 0.08 μM, and an Emax 79.7 ± 4.2% [85].

Seven aspidofractinine -type alkaloids, paucidirinine (200), paucidirisine (201), paucidactinine (202), pauciduridine (203), paucidactine D (204), paucidactine E (205), and paucidisine (206), along with Additionally, four eburnane skeleton, (−)-19-oxoisoeburnamine (207), (−)-19(R)-hydroxyeburnamenine (208), (−)-19(R)-hydroxy-O-ethylisoeburnamine (209), and larutienine B (210) were isolated from Kopsia pauciflora [91]. Moreover, twelve compounds, paucidactine A (211), paucidactine B (212) [105], paucidactine C (213) [88], 5, 22-dioxokopsane (214) [98], (+)-eburnamonine (215) [94], (+)-eburnamenine (216) [106], (−)-eburnamine (217), (+)-isoeburnamine (218) [94], (+)-19-oxoeburnamine (219) [105], (−)-19(R)-hydroxyisoeburnamine (220), (+)-19(R)-hydroxyeburnamine (221) [87], and larutienine A (222) [90] were published. Furthermore, three bisindole compounds have been identified, (−)-norpleiomutine (223), (+)-kopsoffinol (224) [107], and (−)-demethylnorpleiomutine (225) [87] and (+)-kopsoffine (226) (Figure 20) [107], were identified from the same species. A bisindole alkaloid were isolated by Kitajima at et from Yunnan Kopsia arborea, named Kopsiyunnanine M (227) [108].

Compounds 223 and 224 exhibited growth inhibitory activity against MCF-7, PC-3, A549, and HCT-116, with IC50 values ranging between 11.5 and 25.1 μM (Cisplatin, IC50 value in the range of 5.0–14.3 μM). The obliteration of the biological activity in 225 may be due to the presence of a carboxylic group in C-16, instead of a methoxycarbonyl group in 223 [91]. Arborisidine (228) and arbornamine (229) were isolated from a Malaysian K. arborea. Compound 228 represented a unique skeleton [109]. Compounds 228 and 229 exhibited no activities against KB, PC-3, HCT116, A549 and HT-29 cells [109].

Six new Kopsinidine C-E (230232), 11,12-methylenedioxychanofruticosinic acid (233), 12-methoxychanofruticosinic acid (234), and N(4)-methylkopsininate (235), in addition to chanofruticosinic acid (236) as new natural compound [110], along with compounds 163, 164, 178, 183, 179, and 215 (Figure 21) were isolated from K. officinalis. Additionally, Kopsinine methochloride (237), demethoxycarbonylkopsin (238) [111], methyl chanofruticosinate (239), methyl 11,12-methylenedioxychanofruticosinate (240) [94], methyl 12-methoxychanofruticosinate (241), methyl 11,12-methylenedioxy-N1-decarbomethoxychanofruticosinate (242) [112], kopsininic acid (243), and (−)-11,12-methylenedioxykopsinaline (244) [98] were identified from the same species. Furthermore, (−)-N-methoxycarbonyl-11,12-methylenedioxykopsinaline (245) [98], (−)-N-methoxycarbonyl- 12-methoxykopsinaline (246), N-carbomethoxy-11-hydroxy-12- methoxykopsinaline (247) [113], kopsinoline (248) [114], (−)-12-methoxykopsinaline (249) [98], 11,12-methylenedioxykopsinaline N(4)- oxide (250) [87], kopsinine B (251) [115], rhazinilam (252) [66], and pleiocarpamine methochloride (253) [116] were all isolated from the twigs and leaves of chines K. officinalis. Compound 252 displayed a significantly inhibition effect of the human T cell proliferation, which was activated by using anti-CD3/anti-CD28 antibodies, with an IC50 = 1.0 μM, showing stimulation, with an IC50 = 1.1 μM [110]. Compound 252 was indicated to have the highest cytotoxic effect due to the presence of a hydroxyl group in C-14 and C-15 position [110].

Kopsioffines A-C (254256) [117] (Figure 22) were isolated from the leaves and stems of K. officinalis. These compounds possess a relatively novel ten-membered lactam ring [117]. Additionally, five MIAs, Kopsifolines G-K (257261) were identified from the same plant [118]. Moreover, kopsifoline A (262) was isolated from the aerial parts of an unidentified Kopsia sp. [119]. Compounds 259261 exhibited cytotoxic effects against dermatoma (HS-1, A431, SCL-1, HS-4), gastric carcinoma (BGC-823), breast cancer (MCF-7), and colon cancer (SW480), with IC50 values in a range between 11.8 and 13.8; between 10.3 and 12.5; between 7.3 and 9.5 μM, respectively (Adriamycin, IC50 < 34 nM). Compound 261 showed a potent cytotoxic effect that may be due to the presence of two hydroxyl groups in the C-14 and C-15 positions, instead of one hydroxyl group at C-15 position in compounds 259 and 260. Compounds 257, 258 and 262 exhibited a weak cytotoxic effect with IC50 values > 20 μM. This may be due to the absence of a hydroxyl group in that position [118]. Compounds 254256 exhibited weak inhibitory effects on yeast α-glucosidase in vitro with IC50 values > 50 μM [118]. Compounds 259260 exhibited interesting antifungal and antimicrobial activities toward five pathogen bacteria Escherichia coli, Pseudomonas aeruginosa, Enterobacter cloacae, Shigella dysenteriae and Klebsiella pneumoniae), and also exhibited an antibacterial effect on the oral pathogens Streptococcus viridans and Streptococcus mutans. Netilmicin was used as a reference drug, with MIC values < 0.18 mm. 5-Flucytocine was used as a positive control with MIC values < 0.09 mM. Alkaloid 261 displayed the highest antimicrobial activity toward the tested pathogens, with an MIC value of 0.15–1.14 mM, while compounds 259 and 260 showed significant activities, with MIC values of 0.77–3.09 and 0.72–1.37 mM. Compounds 257, 258 and 262 were inactive. The present of a hydroxyl group at the piperidine ring enhanced the anticancer and antimicrobial activity in this subtype of indoles [118]. The investigation of the aerial parts of K. arborea led to the isolation of three compounds: kopsiarborines A-C (263265) [120]. Meanwhile, the study of the aerial parts of K. officinalis led to the reporting of three MIAs, kopsiaofficines A–C (266268) (Figure 22) [121]. Compounds 263 and 264 showed significant cytotoxic activities against H446, H292, A549, H460, ATCC, and 95-D, with IC50 values < 20 μM, (Doxorubicin, IC50 value = 0.06 μM). Compound 264 exhibited a potent activity with IC50 values < 9.5 μM, and compound 265 was inactive [120]. Compound 268 exhibited a potent cytotoxicity against H446, A549, ATCC, 95-D, H460, H292, SPCA-1, and lung cancer cells, with IC50 values < 10 mM, while compound 266 showed some cytotoxic activity with IC50 value < 20 μM (Doxorubicin, IC50 = 13.7–33.7 nM) [121].

Kopsiofficines H–L (269273) [122] (Figure 23), together with fourteen compounds, 164, 208, 239, 241, (+)-O-methyleburnamine (274) [93], (−)-O-methylisoeburnamine (275) [123], 16-isoeburnamine (276) [124], 20-oxoeburnamenine (277) [125], methyl 11, 12-methylenedioxychanofruticosinate (278) [99], methyl N-(decarbomethoxy)-11, 12-(methylenedioxy) chanofruticosinate (279) [126], O-methylleuconolamm (280) [127], leuconodine D (281) [128], oxayohimban-16-carboxylic acid (282) [129], and 19, 20-dihydroisositsirikine (283) [130] (Figure 23), were identified from the stems of K. officinalis plant [122]. Compounds 164, 241, 270, 271, 274, 275, 279, and 281 exhibited significant anti-inflammatory activity towards IL-1β, PGE2 and TNF-α at 5 μg/mL. Deametasona was used as a positive control at 10 μg/mL [122].

Table 1 methyl chanofruticosinate-type (164, 173175), aspidosoermatan-type (169, 199), kopsine-type (179, 185186), strychnos-type (180, 187), vincamine-type (181, 188, 189), paucidactine-type (204, 205) and eburnane-type (207210), all these subtypes belongs to the main class aspidospirma, and very few compounds belong to the main class of corynanthe-type indoles (Figure 4). Vincamine and methyl chanofruticosinate derivatives showed interesting biological activity.

4. Rauvolfia

Rauvolfia (family Apocynaceae) contains 60 species. It contains trees or shrubs that are distributed in Africa, America, and Asia [131]. Rauvolfia serpentine is one of the most important medicinal plant that has been considered as a drug lead for a long time [132]. Rauvolfia has been used traditionally for the treatment of several diseases, such as high blood pressure (hypertensive), fever (malaria), arrhythmia, cancer, oxidative stress, microbial problems, intestinal spleen ailments, and various mental disorders [133]. Therapeutically, it is a source of monoterpenoid indoles, including ajmaline (antiarrhythmic), ajmalicine, yohimbine, reserpine (antihypertensive), and serpentine [133].

A review entitled "Rauvolfia serpentina L. Benth. ex Kurz. phytochemical, pharmacological and therapeutic aspects" was published in 2013 and evaluated various bioactive compounds as ajmaline, ajmalicine, deserpidine, reserpine, reserpiline, serpentine, rescinnamine and yohimbine [132]. A review entitled "Chemical and Biological Perspectives of Monoterpene Indole Compounds from Rauwolfia species" mentioned the compounds obtained until 2016 [134]. Another review described the structures and pharmacological potentials of the plant species Rauvolfia tetraphylla L. (Apocynaceae) [135].

Two normonoterpenoid indole compounds were isolated from the aerial parts of Rauvolfia vomitoria, rauvomines A (284) and B (285) [136] along with two known compounds peraksine (286) (Figure 24) [137] and alstoyunine A (287) [42]. Compound 285 displayed significant anti-inflammatory effects against murine macrophages (RAW 264.7), with an IC50 value = 39.6 μM, whereas, compounds 284, 286 and 287 displayed moderate anti-inflammatory effects with IC50 values = 55.5, 65.2, and 75.3 μM, respectively, (Celecoxib, IC50 = 34.3 μM) [136]. Compound 285 showed a potent activity which maybe double the number of connections linking C-20 to C-16 in sarpagine-type indoles, compared with compound 284 [63].

Three compounds, 11-hydroxyburnamine (288) and rauvoyunnanines A and B (289290) were identified from Chinese R. yunnanensis [138]. Additionally, fourteen compounds 135 [139], lochnerine (291) [140], serpentinic acid (292) [141], reserpine (293) [142], (−)-yohimbine (294) [143], ajmaline (295) [143], mauiensine (296) [144], ajmalicine (297) [145], sitsirikine (298) [146], strictosidinic acid (299) [147], caboxine B (300) [148], isocaboxine B (301) [148], spegatrine (302) [149], and 19(S),20(R)-dihydroperaksine (303) [150] (Figure 24) were isolated also from chines R. yunnanensis. Compound 293 displayed a weak cytotoxicity against HT-29 and SW480, with IC50 values = 35.2 and 45.3 μM, respectively. Auranofin was used as a positive control and showed cytotoxicity with IC50 values = 2.5 and 3.9 μM, respectively. Compounds 294 and 299 displayed immunosuppressive activities on human T cell proliferation, with IC50 values = 5.9 and 5.0 μM, respectively. All compounds except 294 and 299 showed weak activities with IC50 values > 50 μM [138]. The metabolites were identified from genus Rauvolfia and were categorized under the corynanthe-type. The compounds were also classified under three subclasses including: sarpagine-type 284285, picraline-type 288 and ajmaline-type 295296 and 298 [138].

5. Ervatamia

The genus Ervatamia contains 120 species. It is distributed in Asia and Australian. Of which, fifteen species and five varieties are grown in south China. Ervatamia is a rich source of iboga-type MIAs, which is characterized by structural novelty and biological diversity including neuroprotective, anti-tumor, and anti-addiction activities [151,152,153].

Six Iboga-type compounds: ervataine (304) [151], ibogaine (305) [154], coronaridine (306) [49], heyneanine (307) [155], voacangine hydroxyindolenine (308) [156,157] and coronaridine hydroxyindolenine (309) [158,159] (Figure 25), were obtained from the Chinese Ervatamia yunnanensis [151].

Compound 306 exhibited significant protective effects toward MPP+ (1-methyl-4-phenylpyridinium) and induced damage in primary cortical neurons with an IC50 = 12.5 μM. Parkinson’s disease (PD) is caused by MPP+ a toxic agent that interferes with the function of mitochondria, thus causing neuronal damage and death. Brain-derived neurotrophic factor (BDNF) was used as a positive control and showed an inhibitory effect, with an IC50 value = 200 ng/mL [49].

Eight compounds, coronaridine (306) [49], coronaridine hydroxyindolenine (309) [158,159], 10-hydroxycoronaridine (310) [160], voacangine (311) [153], 19(S)-heyneanine (312) [160], 19(R)-heyneanine (313) [161], heyneanine hydroxyindolenine (314) [162], and vobasine (315) [163], were identified from the stems of E. hainanensis. Compounds 306, 309315 displayed acetylcholinesterase inhibitory activities. Compounds 306 and 311 displayed a potent cholinesterase inhibitory effect, with IC50 values = 8.6 and 4.4 μM, respectively. Galantamine was used as a reference drug, with an IC50 = 3.2 μM, that is used for Alzheimer’s disease [164]. Compound 310 possessed a hydroxyl group at the phenyl moiety, which was replaced by proton in compound 306. This led to a decrease in the inhibitory activity of AChE in 306 compared to 310. The methoxy group at the phenyl moiety in 311, led to an improvement in the activity. This indicated that the electron-donor substituents attached at the phenyl group were important for the improvement of AChE inhibition [164].

Ervachinine E (316) [165] and rutaecarpine (317) [166] were isolated from E. chinensis [165]. It displayed moderate antitumor activities against HL-60, SMMC-7721, A-549, and SW480 cancer cells, with values of IC50 ranging between 6.59 and 14.70 μM. (Cisplatin, IC50 values between 1.00 and 26.75 μM) [165].

The compound Ervahainine A (318), an oxindole derivative that is cyano-substituted, was identified from the twigs and leaves of E. hainanensis [167]. Compound 318 showed growth inhibitory activities toward HepG2 and HepG2/ADM cells with IC50 values of 12.47 ± 0.24 and 17.68 ± 0.31 μM [167].

Seven new iboga-type derivatives: ervaoffines A–D (319322), (7S)-3-oxoibogaine hydroxyindolenine (323), ibogaine-5,6-dione (324), and 19-epi-5-oxovoacristine (325), along with ten compounds, 305, 307, 311, iboluteine (326) [168], (7S)- ibogaine hydroxyindolenine (327) [157], ibogaline (328) [169], conopharyngine (329) [170], voacristine (330) [171], 19S-hydroxyibogamine (331) [172], and ibogaine N4-oxide (332) [173,174] (Figure 26), were isolated from the twigs and leaves of E. officinalis.

Seven compounds, 3-oxo-7R-coronaridine hydroxyindolenine (333), 3S-cyano-7S-coronaridine hydroxyindolenine (334), 3R-hydroxy-7S-coronaridine hydroxyindolenine (335), 3S-(24S-hydroxyethyl)-coronaridine (336), 3S-(24R-hydroxyethyl)-coronaridine (337), 5-oxo-6S-hydroxycoronaridine (338) and 5-oxo-6S-methoxy-coronaridine (339) [175], along with six others, 306, 7S-coronaridine hydroxyindolenine (340) [176], 3-oxo-7S-coronaridine hydroxylindolenine (341) [177], 5-oxocoronaridine (342) [177], 3-oxocoronaridine (343) [178] and pseudoindoxyl coronaridine (344) [177], (Figure 27) from identified from twigs and leaves of E. hainanensis [175].

Another study on the twigs and leaves of E. officinalis led to the reporting of three MIAs, ervaoffines E–G (345347) [179], and six compounds 306, 342, lirofoline A (348), lirofoline B (349) [172], 6-oxo-ibogaine (350) [180], and 8-oxo-ibogaine lactam (351) [179,180,181]. Compound 347 showed a significant neuroprotective effect towards damage induced by oxygen-glucose deprivation (OGD) of the cortical neurons cultured of ischemic stroke in vitro, with an IC50 = 100 μM, Neuroserpin was used as a reference drug, with an IC50 = 20 ng/mL [179]. Two compounds were obtained from the roots of E. chinensis, erchinines A and B (352,353) [63]. Both compounds 352 and 353 displayed a potent significant antibacterial activity toward Bacillus subtilis which was better than that of the antibacterial drugs fibraurtine with an MIC = 25 μM and berberine with an MIC = 12.5 μM that are derived from plant. Additionally, compound 352 displayed an equal antifungal effect against (Trichophyton rubrum) to the reference drug griseofulvin, with an MIC = 6.25 μM.

Ervapandine A (354) [182], 3R-hydroxyibogaine (355) [182], and 12-hydroxyakuammicine N4-oxide (356) [182], along with four known ones, 313, 305, 19-epi-voacristine (357) [183], taberdivarine I (358) [184] and 12-hydroxyakuamicine (359) [185], (Figure 28) were identified from the leaves and twigs of Chinese E. pandacaqui [182].

Liu et al. (2018) [186] studied the roots of E. divaricate and identified two unprecedented trimeric MIAs, Ervadivamines A (360) and B (361), together with the dimeric compound, 19,20-dihydroervahanine A (362), (Figure 29) and two monomeric ones, ibogaine (305) and Ibogamine (363) [187]. Compound 359 displayed a moderate cytotoxic effect against MCF-7, with an IC50 value = 33.61 μM [182]. Compound 360 showed a significant positive cytotoxicity against MCF-7, A-549, HT-29 and HepG2/ADM and showed potent effect against HepG2/ADM, with an IC50 value = 12.55 ± 0.54 μM (Adriamycin, IC50 = 45.70 ± 2.15 μM) [186].

Two pair of MIAs epimers composed of, ervatamine (364), [188] 20-epi-ervatamine (365), [188] dregamine (366), and [188] tabernaemontanine (367) [188] and two compounds, apparicine (368) [189] and isovoacangine (369) [190], were isolated from E. yunnanensis [191].

The Ervatamia genus is known to produce iboga-type indole derivatives, which contain two subclasses, flabelliformide-type (364, 365) and apparicine-type (368) (Figure 28), with compounds belongonging to the main class corynathe. The iboga-type showed an interesting bioactivity in the nervous system.

6. Tabernaemontana

The Genus Tabernaemontana (subfamily Rauvolfioideae) contains 110 species, which are distributed throughout tropical and subtropical regions. Thirty species are grown in Brazil, whereas, 44 species were grown in America and the rest in different places around the world. Traditionally, the plants of this genus have been used for the treatment of hypertension, sore throat, and abdominal pain [6,192]. A review article entitled “Brazilian Tabernaemontana genus: indole compounds and phytochemical activities” activities was published in 2016 [6]. It concerned in the monomeric and dimeric MIAs reported from the genus. A review article entitled: A review on tabernaemontana spp.: Multipotential medicinal plant, shows the MIAs reported from this genus until 2015 [6].

Conodusine A-E (370374), apocidine A (375) and B (376), conoduzidine A (377), tabernamidine A (378) and B (379) (Figure 29) were isolated from the Malaysian stem-bark of Tabernaemontana corymbose malaysian [193]. Additionally, thirty-two compounds were also identified from the same plant, including 307, 314, 338, (+)-catharanthine (380), tabernamine (381) [194], 19′(S)-hydroxytabernamine (382) [195], and 19′(R)-hydroxytabernamine (383) [195]. 16′-decarbomethoxyvoacamine (384) [180] (Figure 29). The chemical structures were determined based on analysis of the NMR and MS spectral data. However, compounds 370, 372, 374, 375 and 377 were confirmed by X-ray diffraction analyses. 371 and 371 belong to iboga alkaloids and tabernamidine B is an iboga-containing bisindole. Tabernamidine B (379) is notable for the presence of an α-substituted acetyl group at C-20 of the iboga carbon skeleton. The absolute configuration of (+)-conodusine E was based on an analysis of the ECD data in correlation with (−)-heyneanine and X-ray analysis. Compounds 381384 exhibited growth inhibitory effects against drug-sensitive KB/S, with an IC50 value < 4.7 μM and vincristine-resistant (KB/VJ300) cells with an IC50 value < 4.2 μM. For that type of human oral cancer cell lines, vincristine was used as a reference drug with an IC50 value < 1.8 nM [193].

Two compounds, isoakuammiline (385) and 18-hydroxypseudovincadifformine (386) [196], have been reported from the American fruits of T. litoralis. Additionally, five compounds 3,19-oxidocoronaridine (387) [196], strictosidine (388) [196], 306, heyneanine 307, and tabersonine (17), have been identified from the same species [196]. Strictosidine is the major alkaloid in fruit arils, however in the capsule strictosidine it was converted to mainly iboga and pseudoaspidosperma alkaloids. However, in seeds, strictosidine was converted to both iboga and aspidosperma alkaloids, but the only major iboga alkaloid, coronaridine, was not substituted, whereas in fruit capsule coronaridine was oxidized to form heyneanine and 3,19-oxidocoronaridine.

Tabervarines A (389) and B (390) [197], 311, 369, vobasidine C (391) [198], 311, 368, ervadivaricatine B (392) [187], pedunculine (393) [199], tabernaemontanine (367) [198] and polyervine (394) [200] were published from the twigs and leaves of the Chinese T. divaricate (Figure 30). Compounds 388 and 389 exhibited a weak cytotoxic effect against cancer MCF-7, SMMC-7721, HL-60, A-549, and SW480 cells at a value > 40 μM [197].

Four new bisindole compounds, flabellipparicine (395), 19,20-dihydrovobparicine (396), 10′- demethoxy-19,20-dihydrovobatensine D (397) and 3′-(2-oxopropyl)ervahanine A (398) [201], together with ten known compounds, 381, 368, ervahanine A (399) [202], vobparicine (400) [203], 19,20-dihydrotabernamine (401) [204], 19,20-dihydrotabernamine A (402) [205], taberdivarine E (403) [184], tubotaiwine (404) [206], hydroxy-3-(2-oxopropyl)coronaridineindolenine (405) [204], and deoxytubulosine (406) [201] (Figure 31) were identified from the stems of T. divaricate. Compounds 368, 395403 and 406 exhibited cytotoxic activities against MCF-7 and A-549 with IC50 values < 8.1 μM. Compound 406 exhibited the highest effects against MCF-7 and A-549 with IC50 values of 0.1 and 0.2 nM, respectively. 7-ethyl-10-hydroxycamptothecin (SN38) was employed as a positive control and showed cytotoxic effect, with an IC50 value < 2 nM [201]. The presence of β-carboline benzoquinolizidine nucleus played an important role in increasing the cytotoxicity in 406, whereas, compounds (368 and 395403) possessed two NH indolic group [201].

(3R,7S,14R,19S,20R)-19-hydroxypseudovincadifformine (407) [207], 17-demethoxy-hydroisorhyn chophylline (408) [208], 17-demethoxy-isorhynchophylline (409) [208], voachalotine (410) [171], 12-methoxyl-voaphylline (411) [209], and conophylline (412) [209] (Figure 32) were isolated from the branches and leaves of Chinese T. bufalina. Compound 412 showed potent cytotoxic activities against B16 and MDA-MB-231 cells with IC50 values of 0.13 and 8.9 μM, respectively. Gambogic acid was used as a positive control with IC50 values 22.1 and 13.5 μM, respectively [207].

Two compounds, 5,6-dioxo-11-methoxy voacangine (413), and (−)-apparicin-21-one (414), and heyneanine (307), were identified from the fruits of cameroonean T. contorta [210] lipopolysaccharides (LPS)-stimulated RAW 264.7 macrophage cells. BAY 11-7082 was used as positive control with 10 μM [210]. Tabernabovines A–C (415417) were isolated from T. bovina [211]. Compound 415 displayed potent inhibitory activity of NO production in LPS-stimulated RAW 264.7 macrophages with IC50 value 44.1 value μM. l-NMMA was used as a positive control and showed an inhibitory effect with IC50 value = 48.6 μM [211].

Previous studies have proven that various bisindole compounds have more effect than monomeric indole compounds, including the dimeric indoles such as (euburnane–aspidospermatan, euburnane–ibogan, akuammidine–ibogan, aspidospermatan– aspidospermatan and vobasine–strychnan) type compounds. Interestingly, dimeric indoles showed more cytotoxicity than the monomeric units.

The Tabernaemontana genus produced iboga type indoles, which contained four subclasses, such as vincamine-type, apparicine-type and akuammidine, these compounds which belongs to the main class aspidosperma and corynanthe, respectively.

7. Rhazya

Rhazya comprises two species, Rhazya stricta (R. stricta) and Rhazya orientalis (R. stricta) [212]. R. orientalis grown in western Thrace and northeastern Turkey [213] whereas, R. stricta is grown in South Asia (Afghanistan, Pakistan and India) and on the Arabian Peninsula (Saudi Arabian, Qatar, UEA, Iraq) and Iran. Rhazya is a rich source of indole-containing compounds. Traditionally, it is has been used to cure various diseases, such as fever, rheumatism, inflammation, skin infections, sore throat, diabetes, and stomach disorders. For example, strictanol, sewarine, tetrahydrosecamine vallesiachotamine and tetrahydrosecaminediol exhibit anticancer properties [213,214,215,216,217,218]. A recent study on the aerial parts of R. stricta by Ahmad et al. [215], several MIAs were isolated including, three new, secopleiocarpamine A (418), 16,17-Epoxyisositsirikine (419), and 2-Ethyl-3[2-(3-ethyl-1,2,3,6-tetrahydropyridine)ethyl]-indole (420) [215] (Figure 33), five previously reported compounds from other Apocynaceae genera (126, 127, 133, 298 and 404), and a number of previously isolated MIAs from the same species: 2-ethyl-3[2-(3-ethylpiperidine)ethyl]-indole (421), tetrahydrosecodine (422), 16,17-dihydrosecodine (423) [216], deacetylakuammilin (424) [217], rhazimal (425), strictamine-N-oxide (426) [218], rhazinaline (427) [212], rhazinaline Nb-oxide (428) [219], akuammicine (429) [220], 16R-E-isositsirikine (430) [221], dihydrositsirikine (431) [222], antirhine (432) [129], vincadifformine N(4)-oxide (433) [223], eburenine (434) [93], winchinine B (435), quebrachamine (436) [224] and strictanol (437) (Figure 33) [215,225] were isolated from R. stricta. Furthermore, 16-epi-stemmadenine-N-oxide (438) (Figure 33), stemmadenine-N-methyl (439), and 20-epi-antirhine (440) were reported from R. stricta [226]. Additionally, isopicrinine (441) was isolated from the leaves of R. stricta, collected from Bahra, Saudi Arabia [227]. Abdul-Hameed et al. (2021) [228] identified two new indole alkaloids named, epirhazyaminine (442) and 20-epi-sitsirikine (443), together with five known compounds, 430, 432, 434, 437 and strictamine (444) were obtained from the aerial parts of R. stricta, collected from AL-Madinah city, Saudi Arabia [228]. Compounds 418, 422, 428, 432, 434, and 436 exhibited moderate growth inhibitory activities toward Candida strains (C. guilliermondii, C. albicans, C. krusei, C. lusitaniae and C. glabrata) with MIC values ranging from 3.125 to 50 μg/mL. (Amphotericin B, MIC value < 1 μg/mL) [213]. Compound 438 displayed a cytotoxic effect against HCT-116, PC-3, and HepG2, with IC50 values = 2.20, 2.25, and1.9 μM, respectively, (Cisplatin, IC50 values ≤ 0.90 μM). Furthermore, compound 439 significantly hindered of the cancer cells to migration and preventing the wound healing at 24 and 48 h (from 81 and 77% to 68 and 46%, respectively). It also inhibited proliferation and prevented cell migration of all cancer cell was evaluated, with an IC50 = 70 μM [223]. Compound 441 displayed a potent cytotoxic effect towards MCF-7, with an IC50 value = 240 μM [224]. Compounds 430, 432, 434, 437, and 442444 displayed weak activities against three cancer cell lines (HCT-116, PC-3, and HepG2), with IC50 in the range of 45.0 ± 0.012 and 85.0 ± 0.068 μM against HCT-116, IC50 in the range 39.0 ± 0.012 and 87.0 ± 0.068 μM against PC-3, and IC50 in the range 72.0 ± 0.164 and 87.0 ± 0.032 μM against HepG-2μM) against HepG-2 [225]. The Rhazya genus contains many MIAs subclasses, such as secodine-type (420424), akuammiline-type (426), akummicine-type (428) and picrinine-type (441), (Figure 3), with compounds belonging to the main classes aspidosperma and corynanthe.

8. Biosynthesis of Monoterpenoid Indole Alkaloids

Monoterpenoidal indoles are obtained from the reaction of tryptamine with secologanin terpenoid. Condensation of tryptamine with Secologanin produces strictosidine by the Mannich-link reaction. The deglycosylation of strictosidine converts it to a hemiacetal. Opening the hemiacetal led to forming an aldehyde group, which then reacts with the (N-4) secondary amine of strictosidine to form 4,21-dehydrocorynanthenine. Allylic isomerization moves the double bond of vinyl to a conjugation with iminium nitrogen that generates dehydrogeissoschizine, which is then cyclized to form cathenamine. The reduction of cathenamine in the presence of NADPH forms ajmalicine (corynanthe-type) [229].

The formation of Preakuammicine occurs from dehydrogeissoschizine. Preakuammicine intermediate (strychnos-type) is the common precursor of the strychnos, aspidosperma and iboga indole alkaloids. Preakuammicine reduced to form stemmadenine, then rearranged to form the acrylic ester dehydrosecodine, which is a common intermediate for iboga and aspidosperma skeletons. Tabersonine (aspidosperma type) and catharanthine (iboga type) are formed the Diels-Alder reaction (Scheme 1) [229].

Polyneuridine aldehyde (sarpagan type) is an intermediate compound of the ajmaline pathway. The possibility of a mechanism where the sarpagan bridge enzyme converts an isomer of 4,21-dehydrogeissoschizine to polyneuridine aldehyde is shown (Scheme 2). Polyneuridine aldehyde methyl ester is hydrolyzed by polyneuridine aldehyde esterase, generating an acid which decarboxylates, to yield epi-vellosamine. Epi-vellosamine transforms to the ajmaline alkaloid vinorine. The hydroxylation of vinorine to vomilene is caused by the vinorine hydroxylase enzyme. After formation of vomilene, two step reduction occurs. First, the indolenine bond is reduced by an NADPH enzyme to yield 1,2-dihydrovomilenene. The second step, reducing the 1,2-dihydrovomilenene to acetylnorajmaline by a 1,2-dihydrovomilenene reductase enzyme. The acetyl linkage of acetylnorajmaline is hydrolyzed by acetylesterase to yield norajmaline. Finally, the production of ajmaline by N-methyl transferase of a methyl group at the indole nitrogen of norajmaline occurs (Scheme 2) [229,230].

It is noteworthy to mention that, sarpagine, ajmaline, and macroline alkaloids are biosynthetically similar or all derived from the same origin. Whereas, sarpagine can be converted into macroline by means of Michael addition [231], on the other hand macroline can be converted into sarpagine by through a retro-Michael reaction [231,232,233]. Similarly, some sarpagine-containing alkaloids can be converted into ajmalines under strong acidic conditions, which refers to the great similarity between them [233].

9. Conclusions and Future Prospectives

Natural products have an unprecedented molecular conformity with a diversity of functionalities. These characteristics enable them to produce biological effects, which validates the initial step for a drug lead. In recent years, the majority of new drugs reported have been natural or originated from natural sources. Alkaloids are an important source of drugs. It is noteworthy that, many alkaloids displaying fascinating molecular structures with diverse physiological and pharmacological effects have been isolated from plant families. The Apocynaceae family has been noted as a unique producer of biologically active natural metabolites such as vincristine, vinblastine, reserpine and yohimbine. This review is interested in discussing the metabolites produced from six genera belong to the family Apocynaceae. These six genera contain 400 species, which represent 20% of the Apocynaceae family. Only 30 species, which represent 7.5% of the total species of the six genera were studied. Chemical investigation of these genera led to the reporting of 444 MIAs, in the period between 2010 until December 2020, which were discussed in this review.

Figure 34 illustrates the number of compounds isolated from the six species; there are 157 (35.4%), 126 (28.4%), 66 (14.9%), 48 (10.8%), 27 (6.1%), and 20 (4.4 %), from Alstonia, Kopsia, Ervatamia, Tabernaemontana, Rhazya and Rauvolfia, respectively. We believe that the six genera are interesting candidate for further investigation. This record coincided with the data illustrated in Figure 35. For example, Alstonia scholaris is a species that belongs to the genus Alstonia that has produced the highest number of MIAs (71 compounds) and represents 45.2 % of the MITs identified from the same genus between 2010 and 2020. The second and third most interesting species are Kopsia officinalis and Kopsia pauciflora which produced 45 and 27 compounds, respectively. These two species represent 35.7% and 21.4% of the total compounds produced from the genus Kopsia. The fourth most interesting species belong to the genus Alstonia (Alstonia mairei), which produced 26 compounds and represents 16.5 % of the MITs identified from the genus Alstonia.

An external file that holds a picture, illustration, etc.
Object name is molecules-26-00488-g034.jpg

Number of compounds isolated from the six genera.

An external file that holds a picture, illustration, etc.
Object name is molecules-26-00488-g035.jpg

Percentage of reported compounds from the species.

It is interesting that the majority of compounds were isolated from twigs and leaves as illustrated in Figure 36. Additionally, the majority of the examined species belonging to the selected six genera were Chinese species and led to the identification of 360 compounds.

An external file that holds a picture, illustration, etc.
Object name is molecules-26-00488-g036.jpg

Number of compounds identified from different organs.

Figure 37 presents the biological activities of the compounds. The prominent activity was cytotoxicity followed by anti-inflammatory and antimicrobial activities. Thus, these compounds could be a source of anticancer drugs.

An external file that holds a picture, illustration, etc.
Object name is molecules-26-00488-g037.jpg

Number of compounds versus biological activities.

The family of terpene indole alkaloids has been discovered for over a century. There are numbers of total syntheses studies of these intricate scaffolds have been achieved. Additionally, several reviews and book chapters, as well as the references therein, are interested in the synthetic efforts have been reported.

An external file that holds a picture, illustration, etc.
Object name is molecules-26-00488-sch001.jpg

Biosynthesis of corynanthe, aspidosperma and iboga indoles.

An external file that holds a picture, illustration, etc.
Object name is molecules-26-00488-sch002.jpg

Biosynthesis of ajmaline indole alkaloids. (SB) Sarpagan bridge enzyme; polyneuridine aldehyde reductase (PNAE), vinorine synthase (VS), vinorine hydroxylase (VH), vomilenine reductase (VR), dihydrovomilenine reductase (DHVR) 17-O-acetyl-ajmalanesterase (AAE), norajmaline-N-methyltransferase (NMT).

Acknowledgments

The authors acknowledge with thanks Deanship of Scientific Research at Princess Nourah bint Abdulrahman University, for funding through the Fast-track Research Funding Program.

Author Contributions

Conceptualization, W.M.A., A.A.-L. and Z.H.A.-H.; resources, A.E.M., M.O.A. and N.O.B.; data curation, Z.H.A.-H., W.M.A. and A.A.-L.; writing—original draft prepa-ration, Z.H.A.-H., W.M.A. and A.A.-L.; writing—review and editing, Z.H.A.-H., W.M.A. and A.A.-L.; supervision, T.R.S.; funding acquisition, A.E.M. and M.O.A. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the Deanship of Scientific Research at Princess Nourah Bint Abdulrahman University through the Fast-track Research Funding Program.

Conflicts of Interest

The authors declare no conflict of interest.

Footnotes

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations

A431Dermatoma cancer
A-549Lung cancer
AChEAcetylcholinesterase
B16F10Melanogenesis activity
BEN-MEN-1Meningioma
BGC-823Human gastric carcinoma
CAL-27Head and neck squamous cell carcinomas
CCF-STTG1Astrocytoma
CHG-5Glioma
CIConfidence intervals
Detroit-562Head and neck squamous cell carcinomas
ED50Median effective dose
F.sp.Forma specialis, abbreviated f. sp., is an informal taxonomic grouping allowed by the International Code of Nomenclature for algae, fungi, and plants
HCT 116Human colorectal carcinoma
HeLaHuman Gastric cancer
Hep-2Head and neck squamous cell carcinomas
HepG2Human hepatocellular
HIF-αHypoxia-inducible factor
HL-60Human myeloid leukemia
HS-1Dermatona cancer
HS-4Dermatona cancer
HT-29Human colorectal carcinoma
IC50Half maximal inhibitory concentration
ID50Median infective dose
IL-1βInterleukin 1 beta
LNCaPHuman prostate carcinoma
M663Osteosarcoma cells
MCF-7Human breast cancer
MDA-MB-231Human breast adenocarcinoma
MG-63Osteosarcoma cells
MIAsTerpenoid indole compounds
MIAsMonoterpenoid indole compounds
MICMinimum inhibitory concentration
NF-kBNuclear factor k-light-chain-enhancer of activated B cells
NONitric oxide
PANC-1Pancreatic cancer
PC-3Human prostate carcinoma
PGE2Prostaglandin E2
SAOS-2Osteosarcoma cell lines
SCC-PKUHead and neck squamous cell carcinomas
SCL-1Head and neck squamous cell carcinomas
SGC-7901Gastric cancer
SHG-44Human glioma cancer
SK-BR-3Human breast cancer
SK-MEL-2Human skin cancer
SMMC-7721Hepatocellular carcinoma
SOSP-9607Human Osteosarcoma cell lines
SW480Human Colon cancer
TCA-83Head and neck squamous cell carcinomas
TNF-αTumor necrosis factor-α
U251Human glioma cancer
U2-OSOsteosarcoma cell lines
UMSCC-1Head and neck squamous cell carcinomas

References

1. Dey A., Mukherjee A., Chaudhury M. Alkaloids from Apocynaceae: Origin, pharmacotherapeutic properties, and structure-activity studies. Stud. Nat. Prod. Chem. 2017;52:373–488. [Google Scholar]
2. Mondal A., Gandhi A., Fimognari C., Atanasov A.G., Bishayee A. Alkaloids for cancer prevention and therapy: Current progress and future perspectives. Eur. J. Pharmacol. 2019;858:172472. 10.1016/j.ejphar.2019.172472. [Abstract] [CrossRef] [Google Scholar]
3. Rosales P.F., Bordin G.S., Gower A.E., Moura S. Indole alkaloids: 2012 until now, highlighting the new chemical structures and biological activities. Fitoterapia. 2020;143:104558. 10.1016/j.fitote.2020.104558. [Abstract] [CrossRef] [Google Scholar]
4. Marcos I.S., Moro R.F., Costales I., Basabe P., David D. Sesquiterpenyl Indoles. Nat. Prod. Rep. 2013;30:1509–1526. 10.1039/c3np70067d. [Abstract] [CrossRef] [Google Scholar]
5. De Luca V., Salim V., Thamm A., Masada S.A., Yu F. Making iridoids/secoiridoids and monoterpenoid indole alkaloids: Progress on pathway elucidation. Curr. Opin. Plant. Biol. 2014;19:35–42. 10.1016/j.pbi.2014.03.006. [Abstract] [CrossRef] [Google Scholar]
6. Marinho F.F., Simões A.O., Barcellos T., Moura S. Brazilian Tabernaemontana genus: Indole alkaloids and phytochemical activities. Fitoterapia. 2016;114:127–137. 10.1016/j.fitote.2016.09.002. [Abstract] [CrossRef] [Google Scholar]
7. Wang C.H., Wang G.C., Wang Y., Zhang X.Q., Huang X.J., Zhang D.M., Chen M.F., Ye W.C. Cytotoxic dimeric indole alkaloids from Catharanthus roseus. Fitoterapia. 2012;83:765–769. 10.1016/j.fitote.2012.03.007. [Abstract] [CrossRef] [Google Scholar]
8. Hanafy M.S., Matter M.A., Asker M.S., Rady M.R. Production of indole alkaloids in hairy root cultures of Catharanthus roseus L. and their antimicrobial activity. South. African J. Bot. 2016;105:9–18. 10.1016/j.sajb.2016.01.004. [CrossRef] [Google Scholar]
9. Le Men J., Taylor W.I. A uniform numbering system for indole alkaloids. Experientia. 1965;21:508–510. 10.1007/BF02138961. [Abstract] [CrossRef] [Google Scholar]
10. Facchini P.J. Regulation of alkaloid biosynthesis in plants. In the alkaloids. Chem. Biol. 2006;63:1–44. [Abstract] [Google Scholar]
11. El-Sayed M., Verpoorte R. Catharanthus terpenoid indole alkaloids: Biosynthesis and regulation. Phytochem. Rev. 2007;6:277–305. 10.1007/s11101-006-9047-8. [CrossRef] [Google Scholar]
12. Zhu G.Y., Yao X.J., Liu L., Bai L.P., Jiang Z.H. Alistonitrine A, a caged monoterpene indole alkaloid from Alstonia scholaris. Org. Lett. 2014;16:1080–1083. 10.1021/ol403625g. [Abstract] [CrossRef] [Google Scholar]
13. Zhu X., Zeng X., Sun C., Chen S. Biosynthetic pathway of terpenoid indole alkaloids in Catharanthus roseus. Front. Med. 2014;8:285–293. 10.1007/s11684-014-0350-2. [Abstract] [CrossRef] [Google Scholar]
14. Wong S.K., Lim Y.Y., Ling S.K., Wei E., Chan C. Caffeoylquinic acids in leaves of selected Apocynaceae species: Their isolation and content. Pharmacognosy Res. 2014;6:67–72. [Europe PMC free article] [Abstract] [Google Scholar]
15. Endress M.E., Bruyns P.V. A revised classification of the Apocynaceae sl. Botanical Rev. 2000;66:1–56. 10.1007/BF02857781. [CrossRef] [Google Scholar]
16. Góngora-Castillo E., Childs K.L., Fedewa G., Hamilton J.P., Liscombe D.K., Magallanes-Lundback M., Mandadi K.K., Nims E., Runguphan W., Vaillancourt B., et al. Development of transcriptomic resources for interrogating the biosynthesis of monoterpene indole alkaloids in medicinal plant species. PLoS ONE. 2012;7:e52506. 10.1371/journal.pone.0052506. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
17. Kaushik N.K., Kaushik N., Attri P., Kumar N., Kim C.H., Verma A.K., Choi E.H. Biomedical importance of indoles. Molecules. 2013;18:6620–6662. 10.3390/molecules18066620. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
18. Cai X., Du Z., Luo X. Unique monoterpenoid indole alkaloids from Alstonia scholaris. Org. Lett. 2007;9:1817–1820. 10.1021/ol0705301. [Abstract] [CrossRef] [Google Scholar]
19. Hirasawa Y., Arai H., Zaima K., Oktarina R., Rahman A., Ekasari W., Widyawaruyanti A., Indrayanto G., Zaini N.C., Morita H. Alstiphyllanines A-D, indole alkaloids from Alstonia macrophylla. J. Nat. Prod. 2009;72:304–307. 10.1021/np8007107. [Abstract] [CrossRef] [Google Scholar]
20. Adotey J.P.K., Adukpo G.E., Opoku B.Y., Armah F.A. A Review of the ethnobotany and pharmacological importance of Alstonia boonei De Wild (Apocynaceae) ISRN Pharmacol. 2012;2012:1–9. 10.5402/2012/587160. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
21. Cai X., Zeng C., Feng T., Li Y., Luo X. Monoterpenoid indole alkaloids from Alstonia mairei. Helv. Chim. Acta. 2010;93:2037–2044. 10.1002/hlca.201000040. [CrossRef] [Google Scholar]
22. Ahond A., Janot M.-M., Langlois N., Lukacs G., Potier P., Rasoanaivo P., Sangare´ M., Neuss N., Plat M., Le Men J., et al. Carbon-13 nuclear magnetic resonance spectroscopy of naturally occurring substances. XXIII. structure of vindolinine. Am. Chem. Soc. 1974;96:633–634. 10.1021/ja00809a078. [CrossRef] [Google Scholar]
23. Dçpke W., Meisel H., Grndemann E. Stereochemie des 16-methoxyminovincinins. Tetrahedron Lett. 1971;12:1287–1290. [Google Scholar]
24. Majumder P.L., Basu A. Absolute-configuration at C-19 of 19-hydroxy acyloxy-(+)-vincadifformine type of alkaloids. Indian J. Chem. Sect. B- Org. Chem. Incl. Med. Chem. 1985;24:649–650. [Google Scholar]
25. Majumbar P.L., Joardar S., Chanda T.K., Dinda B.N., Banerjee M., Ray A.B., Chatteriee A. Structures and absolute sterochemistry of (-)-echitoveniline, (-)-11-methoxyechitoveniline and (-)-11-methoxyechitovenedine - new indole alkaloids of Alstonia venenata R.Br. Tetrahedron. 1979;35:1151–1157. [Google Scholar]
26. Majumder P.L., Chanda T.K., Dinda B.N. Structure of echitovenaldine: A new alkaloid of the leaves of Alstonia veneneta R. Br. Chem. Ind. L. 1973;21:1032–1033. [Google Scholar]
27. Das B., Biemann K., Chatterjee A., Ray A.B., Majumder P. The alkaloids of the fruits of Alstonia Venenata R. Br. echitovenidine and (+)-minovincinine. Tetrahedron Lett. 1966;22:2483–2486. 10.1016/S0040-4039(00)75680-2. [CrossRef] [Google Scholar]
28. Majumder P.L., Dinda B.N. Echitoserpidine: A new alkaloid of the fruits of Alstonia venenata. Phytochemistry. 1974;13:645–648. 10.1016/S0031-9422(00)91368-2. [CrossRef] [Google Scholar]
29. Majumder P.L., Joardar S., Dinda B.N., Bandyopadhyay D., Basu A. Structure and absolute stereochemistry of 19-epi-(+)-echitoveniline: A new Indole alkaloid of the leaves of Alstonia venenata r. Br. Tetrahedron. 1981;37:1243–1248. 10.1016/S0040-4020(01)92058-7. [CrossRef] [Google Scholar]
30. Moza B.K., Trojanek J., Bose A.K., Das K.G., Funke P. The structure of lochnericine and lochnerinine. Tetrahedron Lett. 1964;5:2561–2566. [Google Scholar]
31. Ulshafer P.R., Bartlett M.F., Dorfman L., Gillen M.A., Schlittler E., Wenker E. Isolation and structure of perakine. Tetrahedron Lett. 1961;2:363–367. 10.1016/S0040-4039(01)91640-5. [CrossRef] [Google Scholar]
32. Abe F., Chen R.F., Yamauchi T., Marubayashi N., Ueda I. Alschomine and isoalschomine, new alkaloids from the leaves of Alstonia scholaris. Chem. Pharm. Bull. 1989;37:887–890. 10.1248/cpb.37.887. [CrossRef] [Google Scholar]
33. Chen W., Yan Y.P., Wang Y.J., Liang X.T. Isolation and identification of three new alkaloids from roots of Alstonia yunnanensis. Acta Pharm. Sin. (Yaoxuexuebao) 1985;20:906–912. [Abstract] [Google Scholar]
34. Evans D.A., Joule J.A., Smith G.F. The alkaloids of Rhazya orientalis. Phytochemistry. 1968;7:1429–1431. 10.1016/S0031-9422(00)85654-X. [CrossRef] [Google Scholar]
35. Ahmad Y., Fatima K., Le Quesne P.W., Atta-ur-Rahman Further alkaloidal constituents of the leaves of Rhazya stricta. Phyrochemistry. 1983;22:1017–1019. 10.1016/0031-9422(83)85045-6. [CrossRef] [Google Scholar]
36. Koyama K., Hirasawa Y., Nugroho A.E., Hosoya T., Hoe T.C., Chan K., Morita H. Alsmaphorazines A and B, indole alkaloids from Alstonia pneumatophora. Org. Lett. 2010;12:4188–4191. 10.1021/ol101825f. [Abstract] [CrossRef] [Google Scholar]
37. Cai X., Bao M., Zhang Y., Zeng C., Liu Y., Luo X. A new type of monoterpenoid indole alkaloid precursor from Alstonia rostrata. Org. Lett. 2011;13:3568–3571. 10.1021/ol200996a. [Abstract] [CrossRef] [Google Scholar]
38. Bao M., Zeng C., Qu Y., Kong L., Liu Y., Cai X., Luo X. Monoterpenoid indole alkaloids from Alstonia rostrata. Nat. Prod. Bioprospect. 2012;2:121–125. 10.1007/s13659-012-0019-y. [CrossRef] [Google Scholar]
39. Cao P., Liang Y., Gao X., Li X., Song Z., Liang G. Monoterpenoid indole alkaloids from Alstonia yunnanensis and their cytotoxic and anti-inflammatory activities. Molecules. 2012;17:13631–13641. 10.3390/molecules171113631. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
40. Koyama K., Hirasawa Y., Nugroho A.E., Kaneda T., Hoe T.C., Chan K.-L., Morita H. Alsmaphorazines C-E, indole alkaloids from Alstonia pneumatophora. Teonhedron. 2012;68:1502–1506. 10.1016/j.tet.2011.12.014. [CrossRef] [Google Scholar]
41. Wang W., Cheng M.H., Wang X.H. Monoterpenoid indole alkaloids from Alstonia rupestris with cytotoxic, anti-inflammatory and antifungal activities. Molecules. 2013;18:7309–7322. 10.3390/molecules18067309. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
42. Feng T., Cai X.H., Zhao P.J., Du Z.Z., Li W.Q., Luo X.D. Monoterpenoid indole alkaloids from the bark of Alstonia scholaris. Planta Med. 2009;75:1537–1541. [Abstract] [Google Scholar]
43. Yang X., Qin X., Zhao Y., Lunga P.K., Li X., Jiang S., Cheng G., Liu Y., Luo X. Alstolactines A – C, novel monoterpenoid indole alkaloids from Alstonia scholaris. Tetrahedron Lett. 2014;55:4593–4596. 10.1016/j.tetlet.2014.06.048. [CrossRef] [Google Scholar]
44. Zhang L., Hua Z., Song Y., Feng C. Monoterpenoid indole alkaloids from Alstonia rupestris with cytotoxic, antibacterial and antifungal activities. Fitoterapia. 2014;97:142–147. 10.1016/j.fitote.2014.05.018. [Abstract] [CrossRef] [Google Scholar]
45. Pan L., Terrazas C., Acuña U.M., Ninh T.N., Chai H., Carcache De Blanco E.J., Soejarto D.D., Satoskar A.R., Kinghorn A.D. Bioactive indole alkaloids isolated from Alstonia angustifolia. Phytochem. Lett. 2015;10 10.1016/j.phytol.2014.06.010. liv–lix. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
46. Kam T.S., Choo Y.M., Komiyama K. Unusual spirocyclic macroline alkaloids, nitrogenous derivatives, and a cytotoxic bisindole from Alstonia. Tetrahedron. 2004;60:3957–3966. 10.1016/j.tet.2004.03.031. [CrossRef] [Google Scholar]
47. Kam T.S., Iek I.H., Choo Y.M. Alkaloids from the stem-bark of Alstonia macrophylla. Phytochemistry. 1999;51:839–844. 10.1016/S0031-9422(99)00044-8. [CrossRef] [Google Scholar]
48. Bi Y., Zhang L.H., Hamaker L.K., Cook J.M. Enantiospecific synthesis of (-)-alstonerine and (+)-macroline as well as a partial synthesis of (+)-villalstonine. J. Am. Chem. Soc. 1994;116:9027–9041. 10.1021/ja00099a021. [CrossRef] [Google Scholar]
49. Zocoler M.A., De Oliveira A.J.B., Sarragiotto M.H., Grzesiuk V.L., Vidotti G.J. Qualitative Determination of indole alkaloids of Tabernaemontana fuchsiaefolia (Apocynaceae) J. Braz. Chem. Soc. 2005;16:1372–1377. 10.1590/S0103-50532005000800011. [CrossRef] [Google Scholar]
50. Ghedira K., Zeches-Hanrot M., Richard B., Massiot G., Le Men-Olivier L., Sevenet T., Goh S.H. Alkaloids of Alstonia angustifolia. Phytochemistry. 1988;27:3955–3962. 10.1016/0031-9422(88)83053-X. [CrossRef] [Google Scholar]
51. Tan S.J., Lim K.H., Subramaniam G., Kam T.S. Macroline-sarpagine and macroline-pleiocarpamine bisindole alkaloids from Alstonia angustifolia. Phytochemistry. 2013;85:194–202. 10.1016/j.phytochem.2012.08.016. [Abstract] [CrossRef] [Google Scholar]
52. Liu L., Chen Y., Qin X., Wang B., Jin Q., Liu Y., Luo X. Antibacterial monoterpenoid indole alkaloids from Alstonia scholaris cultivated in temperate zone. Fitoterapia. 2015;105:160–164. 10.1016/j.fitote.2015.06.019. [Abstract] [CrossRef] [Google Scholar]
53. Qin X., Zhao Y., Lunga P., Yang X., Song C., Cheng G., Liu L., Chen Y., Liu Y.-P., Luo X. Indole alkaloids with antibacterial activity from aqueous fraction of Alstonia scholaris. Tetrahedron. 2015;71:4372–4378. 10.1016/j.tet.2015.04.046. [CrossRef] [Google Scholar]
54. Qin X.J., Zhao Y.L., Song C.W., Wang B., Chen Y.Y., Liu L., Li Q., Li D., Liu Y.P., Luo X.D. Monoterpenoid indole alkaloids from inadequately dried leaves of Alstonia scholaris. Nat. Products Bioprospect. 2015;5:185–193. 10.1007/s13659-015-0066-2. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
55. Yang X.W., Luo X.D., Lunga P.K., Zhao Y.L., Qin X.J., Chen Y.Y., Liu L., Li X.N., Liu Y.P. Scholarisines H-O, novel indole alkaloid derivatives from long-term stored Alstonia scholaris. Tetrahedron. 2015;71:3694–3698. 10.1016/j.tet.2014.09.052. [CrossRef] [Google Scholar]
56. Kuok C., Zhang J., Fan C., Zhang Q., Fan R., Zhang D., Zhang X., Ye W. Meloslines A and B, Two novel indole alkaloids from Alstonia scholaris. Tetrahedron Lett. 2017;58:2740–2742. 10.1016/j.tetlet.2017.05.094. [CrossRef] [Google Scholar]
57. Edwards P.N., Smith G.F. 287. Akuamma alkaloids. Part I V.The decomposition of akuammicine in methanol. J. Chem. Soc. 1961;152:1458–1462. 10.1039/jr9610001458. [CrossRef] [Google Scholar]
58. Li C., Chen S., Sun C., Zhang L., Shi X., Wu S. Cytotoxic monoterpenoid indole alkaloids from Alstonia yunnanensis Diels. Fitoterapia. 2017;117:79–83. 10.1016/j.fitote.2016.12.011. [Abstract] [CrossRef] [Google Scholar]
59. Yan T., Han D., Hu J., Huang X., Wang H. Monoterpenoid indole alkaloids from Alstonia mairei and their cytotoxicity. J. Asian Nat. Prod. Res. 2017;6020:1–7. 10.1080/10286020.2017.1313242. [Abstract] [CrossRef] [Google Scholar]
60. Koyama K., Hirasawa Y., Zaima K., Hoe T.C., Chan K.L., Morita H. Alstilobanines A-E, new indole alkaloids from Alstonia angustiloba. Bioorganic Med. Chem. 2008;16:6483–6488. 10.1016/j.bmc.2008.05.033. [Abstract] [CrossRef] [Google Scholar]
61. Zhong X.H., Bao M.F., Zeng C.X., Zhang B.J., Wu J., Zhang Y., Cai X.H. Polycyclic monoterpenoid indole alkaloids from Alstonia rostrata and their reticulate derivation. Phytochem. Lett. 2017;20:77–83. 10.1016/j.phytol.2017.04.008. [CrossRef] [Google Scholar]
62. Cai X.H., Tan Q.G., Liu Y.P., Feng T., Du Z.Z., Li W.Q., Luo X.D. A cage-monoterpene indole alkaloid from Alstonia scholaris. Org. Lett. 2008;10:577–580. 10.1021/ol702682h. [Abstract] [CrossRef] [Google Scholar]
63. Yu H.F., Qin X.J., Ding C.F., Wei X., Yang J., Luo J.R., Liu L., Khan A., Zhang L.C., Xia C.F., et al. Nepenthe-like indole alkaloids with antimicrobial activity from Ervatamia chinensis. Org. Lett. 2018;20:4116–4120. 10.1021/acs.orglett.8b01675. [Abstract] [CrossRef] [Google Scholar]
64. Lounasmaa M., Jokela R., Hanhinen P., Miettcnen J., Salo J. The rhazimanine-bhimberine enigma. J. Nat. Prod. 1995;58:131–133. 10.1021/np50115a020. [CrossRef] [Google Scholar]
65. Morita Y., Hesse M., Schmid H., Banerji A., Banerji J., Chatterjee A., Oberhänsli W.E. Alstonia scholaris: Struktur des indolalkaloides Narelin. Helv. Chim. Acta. 1977;60:1419–1434. 10.1002/hlca.19770600434. [Abstract] [CrossRef] [Google Scholar]
66. Goh S.H., Ali A.R.M., Wong W.H. Alkaloids of Leuconotis griffithii and L. eugenifolia (Apocynaceae) Tetrahedron. 1989;45:7899–7920. 10.1016/S0040-4020(01)85802-6. [CrossRef] [Google Scholar]
67. Hu W.L., Zhu J.P., Hesse M. Indole alkaloids from Aistonia angustjfolia. Planta Med. 1989;55:463–466. 10.1055/s-2006-962065. [Abstract] [CrossRef] [Google Scholar]
68. Yamauchi T., Abe F., fu Chen R., Nonaka G.I., Santisuk T., Padolina W.G. Alkaloids from the leaves of Alstonia scholaris in Taiwan, Thailand, Indonesia and the Philippines. Phytochemistry. 1990;29:3547–3552. 10.1016/0031-9422(90)85273-I. [CrossRef] [Google Scholar]
69. Lounasmaa M., Jokela R., Tolvanen A., Kan S.K. A 400 MHz 1H-NMR study of seven sarpagine-type alkaloids. Planta Med. 1985;6:519–521. 10.1055/s-2007-969581. [Abstract] [CrossRef] [Google Scholar]
70. Zhang L., Zhang C.J., Zhang D.B., Wen J., Zhao X.W., Li Y., Gao K. An Unusual indole alkaloid with anti-adenovirus and anti-HSV activities from Alstonia scholaris. Tetrahedron Lett. 2014;55:1815–1817. [Google Scholar]
71. Morita H., Ichihara Y., Takeya K., Watanabe K., Itokawa H., Motidome M. A New indole alkaloid glycoside from the leaves of Palicourea marcgravii. Planta Med. 1989;55:288–289. 10.1055/s-2006-962007. [Abstract] [CrossRef] [Google Scholar]
72. Yang J., Fu J., Liu X., Jiang Z., Zhu G. Monoterpenoid indole alkaloids from the leaves of Alstonia scholaris and their NF- κ B inhibitory activity. Fitoterapia. 2018;124:73–79. 10.1016/j.fitote.2017.10.018. [Abstract] [CrossRef] [Google Scholar]
73. Yeap J.S.Y., Navanesan S., Sim K.S., Yong K.T., Gurusamy S., Lim S.H., Low Y.Y., Kam T.S. Ajmaline, oxindole, and cytotoxic macroline-akuammiline bisindole alkaloids from Alstonia penangiana. J. Nat. Prod. 2018;81:1266–1277. 10.1021/acs.jnatprod.8b00170. [Abstract] [CrossRef] [Google Scholar]
74. Yuan Y.X., Guo F., He H.P., Zhang Y., Hao X.J. Two new monoterpenoid indole alkaloids from Alstonia rostrata. Nat. Prod. Res. 2018;32:844–848. 10.1080/14786419.2017.1360886. [Abstract] [CrossRef] [Google Scholar]
75. Ming C.W., Ling Z.P., Ruecker G. Nb-demethylechitamine N-oxide from roots of Winchia calophylla. Planta Med. 1988;54:480–481. 10.1055/s-2006-962521. [Abstract] [CrossRef] [Google Scholar]
76. Keawpradub N., Takayama H., Aimi N., Sakai S.I. Indole alkaloids from Alstonia glaucescens. Phytochemistry. 1994;37:1745–1749. 10.1016/S0031-9422(00)89603-X. [CrossRef] [Google Scholar]
77. Gan L.-S., Yang S.-P., Wu Y., Jian D., Yue J.-M. Terpenoid indole alkaloids from Winchia calophylla. J. Nat. Prod. 2006;69:18–22. 10.1021/np0502701. [Abstract] [CrossRef] [Google Scholar]
78. Hu J., Mao X., Shi X., Jin N., Shi J. Monoterpenoid indole alkaloids from the leaves of Alstonia scholaris. Chem. Nat. Compd. 2018;54:934–937. 10.1007/s10600-018-2516-7. [CrossRef] [Google Scholar]
79. Krishnan P., Lee F.K., Chong K.W., Mai C.W., Muhamad A., Lim S.H., Low Y.Y., Ting K.N., Lim K.H. Alstoscholactine and alstolaxepine, monoterpenoid indole alkaloids with γ-lactone-bridged cycloheptane and oxepane moieties from Alstonia scholaris. Org. Lett. 2018;20:8014–8018. 10.1021/acs.orglett.8b03592. [Abstract] [CrossRef] [Google Scholar]
80. Krishnan P., Mai C., Yong K., Low Y., Lim K. Alstobrogaline, an Unusual pentacyclic monoterpenoid indole alkaloid with aldimine and aldimine- N -oxide moieties from Alstonia scholaris. Tetrahedron Lett. 2019;60:789–791. 10.1016/j.tetlet.2019.02.018. [CrossRef] [Google Scholar]
81. Macabeo A.P.G., Krohn K., Gehle D., Read R.W., Brophy J.J., Cordell G.A., Franzblau S.G., Aguinaldo A.M. Indole alkaloids from the leaves of Philippine Alstonia scholaris. Phytochemistry. 2005;66:1158–1162. 10.1016/j.phytochem.2005.02.018. [Abstract] [CrossRef] [Google Scholar]
82. Khyade M.S., Kasote D.M., Vaikos N.P. Alstonia scholaris (L.) R. Br. and Alstonia macrophylla Wall. Ex G. Don: A comparative review on traditional uses, phytochemistry and pharmacology. J. Ethnopharmacol. 2014;153:1–18. 10.1016/j.jep.2014.01.025. [Abstract] [CrossRef] [Google Scholar]
83. Mason J.D., Weinreb S.M. The Alkaloids. Volume 81. Elsevier Inc.; Amsterdam, The Netherlands: 2019. The Alstoscholarisine alkaloids: Isolation , structure determination , biogenesis , biological evaluation , and synthesis; pp. 115–150. [Abstract] [Google Scholar]
84. Maurya A., Verma S.C., Meena R.A.J., Srivastava A., Shankar M.B., Sharma R.K. Phytochemistry and chromatographic analysis of Alstonia scholaris (L.) R.Br. used as a traditional medicine: A review. World J. Pharm. Res. 2016;5:1503–1519. [Google Scholar]
85. Wong S.P., Gan C.Y., Lim K.H., Ting K.N., Low Y.Y., Kam T.S. Arboridinine, a pentacyclic indole alkaloid with a new cage carbon-nitrogen skeleton derived from a pericine precursor. Org. Lett. 2015;17:3628–3631. 10.1021/acs.orglett.5b01757. [Abstract] [CrossRef] [Google Scholar]
86. Cheenprachaa S., Raksata A., Ritthiwigromb T.A., Laphookhieoc S. Monoterpene indole alkaloids from the twigs of Kopsia arborea. Nat. Prod. Commun. 2014;9:1441–1443. 10.1177/1934578X1400901010. [Abstract] [CrossRef] [Google Scholar]
87. Kam T.S., Sim K.M., Koyano T., Komiyama K. Leishmanicidal alkaloids from Kopsia griffithii. Phytochemistry. 1999;50:75–79. 10.1016/S0031-9422(98)00492-0. [CrossRef] [Google Scholar]
88. Lim K.H., Hiraku O., Komiyama K., Koyano T., Hayashi M., Kam T.S. Biologically active indole alkaloids from Kopsia arborea. J. Nat. Prod. 2007;70:1302–1307. 10.1021/np0702234. [Abstract] [CrossRef] [Google Scholar]
89. Tan M.J., Yin C., Tang C.P., Ke C.Q., Lin G., Ye Y. Antitussive indole alkaloids from Kopsia hainanensis. Planta Med. 2011;77:939–944. 10.1055/s-0030-1250631. [Abstract] [CrossRef] [Google Scholar]
90. Gan C., Yoganathan K., Sim K., Low Y., Lim S., Kam T. Corynanthean, eburnan, secoleuconoxine, and pauciflorine alkaloids from Kopsia pauciflora. Phytochemistry. 2014;108:234–242. 10.1016/j.phytochem.2014.09.014. [Abstract] [CrossRef] [Google Scholar]
91. Yap W.S., Gan C.Y., Sim K.S., Lim S.H., Low Y.Y., Kam T.S. Aspidofractinine and eburnane alkaloids from a north Borneo Kopsia. ring-contracted, additional ring-fused, and paucidactine-type aspidofractinine alkaloids from K. pauciflora. J. Nat. Prod. 2015;79:230–239. 10.1021/acs.jnatprod.5b00992. [Abstract] [CrossRef] [Google Scholar]
92. Yap W.S., Gan C.Y., Low Y.Y., Choo Y.M., Etoh T., Hayashi M., Komiyama K., Kam T.S. Grandilodines A - C, biologically active indole alkaloids from Kopsia grandifolia. J. Nat. Prod. 2011;74:1309–1312. 10.1021/np200008g. [Abstract] [CrossRef] [Google Scholar]
93. Wu Y., Kitajima M., Kogure N., Wang Y., Zhang R., Takayama H. Two New Aspidosperma Indole Alkaloids from Yunnan Kopsia Arborea. Chem. Pharm. Bull. 2010;58:961–963. [Abstract] [Google Scholar]
94. Kam T., Tan P., Hoong P.Y., Cheng-Hock C. Methyl Chanofruticosinates from leaves of Kopsia arborea. Phytochemistry. 1993;32:489–491. [Google Scholar]
95. Ahmad K., Hirasawa Y., Nugroho A.E., Hadi A.H.A., Takeya K., Thomas N.F., Awang K., Morita H., Ping T.S., Nafiah M.A. New indole alkaloids from Kopsia singapurensis (RIDL.) Open Conf. Proc. J. 2013;4:75–82. 10.2174/2210289201304020075. [CrossRef] [Google Scholar]
96. Chen J., Yang M., Zeng J., Gao K. New broad-spectrum antibacterial and antifungal alkaloids from Kopsia hainanensis. Phytochem. Lett. 2014;7:156–160. 10.1016/j.phytol.2013.11.016. [CrossRef] [Google Scholar]
97. Kitajima M., Anbe M., Kogure N., Wongseripipatana S., Takayama H. Indole alkaloids from Kopsia jasminiflora. Tetrahedron. 2014;70:9099–9106. 10.1016/j.tet.2014.10.002. [CrossRef] [Google Scholar]
98. Feng X., Kan C., Potier P., Kan S., Lounasmaa M. Monomeric indole alkaloids from Kopsia officinalis. Planta Med. 1983;48:280–282. 10.1055/s-2007-969934. [Abstract] [CrossRef] [Google Scholar]
99. Lim K.H., Low Y.Y., Tan G.H., Kam T.S., Lim T.-M. Kopsine and danuphylline alkaloids from Kopsia. biomimetic partial synthesis of danuphylline B. Helv. Chim. Acta. 2008;91:1559–1566. 10.1002/hlca.200890169. [CrossRef] [Google Scholar]
100. Trigo-Mouriño P., Sifuentes R., Navarro-Vázquez A., Gayathri C., Maruenda H., Gil R.R. Determination of the absolute configuration of 19-OH-(-)-eburnamonine using a combination of residual dipolar couplings, DFT chemical shift predictions, and chiroptics. Nat. Prod. Commun. 2012;7:735–738. 10.1177/1934578X1200700611. [Abstract] [CrossRef] [Google Scholar]
101. Feng T., Cai X.H., Liu Y.P., Li Y., Wang Y.Y., Luo X.D. Melodinines A-G, Monoterpenoid indole alkaloids from Melodinus henryi. J. Nat. Prod. 2010;73:22–26. 10.1021/np900595v. [Abstract] [CrossRef] [Google Scholar]
102. Kam T.S., Subramaniam G., Chen W. Alkaloids from Kopsia dasyrachis. Phytochemistry. 1999;51:159–169. 10.1016/S0031-9422(98)00721-3. [CrossRef] [Google Scholar]
103. Smith G.F., Wahid M.A. 760. The Isolation of (±) - and (+)-vincadifformine and of ( +)- 1,2-dehydroaspidospermidine from Rhazya stricta. J. Chem. Soc. 1963:4002–4004. 10.1039/JR9630004002. [CrossRef] [Google Scholar]
104. Kitajima M., Koyama T., Wu Y., Kogure N., Zhang R., Takayam H. Kopsiyunnanines J1 and J2, new strychnos-type Homo-monoterpenoid indole alkaloids from Kopsia arborea. Nat. Prod. Commun. 2015;10:49–51. 10.1177/1934578X1501000114. [Abstract] [CrossRef] [Google Scholar]
105. Kam T.-S., Arasu L., Yoganathan K. Alkaloids from Koposia pauciflora. Phytochemistry. 1996;43:1385–1387. 10.1016/S0031-9422(96)00496-7. [CrossRef] [Google Scholar]
106. Atta-ur-Rahman, Zaman K., Perveen S., Muzaffar A., Choudhary M.I., Pervin A. Alkaloids from Rhazya Stricta. Phytochemistry. 1991;30:1285–1293. 10.1016/S0031-9422(00)95218-X. [CrossRef] [Google Scholar]
107. Kan-Fan C., Sevenet T., Husson H.P. Kopsia pauciflora, I. structure et configuration absolue de nouveaux alcaloïdes indoliques dimeres de type aspidospermane-eburnane de La serie pleiomutine-kopsoffine. J. Nat. Prod. 1985;48:124–127. 10.1021/np50037a024. [CrossRef] [Google Scholar]
108. Kitajima M., Nakazawa M., Wu Y., Kogure N., Zhang R.P., Takayama H. Kopsiyunnanines L and M, strychnos-related monoterpenoid indole alkaloids from Yunnan Kopsia arborea. Tetrahedron. 2016;72:6692–6696. 10.1016/j.tet.2016.08.082. [CrossRef] [Google Scholar]
109. Wong S., Chong K., Lim K., Lim S., Low Y., Kam T. Arborisidine and arbornamine, two monoterpenoid indole alkaloids with new polycyclic carbon − nitrogen skeletons derived from a common pericine precursor. Org. Lett. 2016;18:1618–1621. 10.1021/acs.orglett.6b00478. [Abstract] [CrossRef] [Google Scholar]
110. Zeng T., Wu X., Yang S., Lai W., Shi S., Zou Q., Liu Y., Li L. Monoterpenoid indole alkaloids from Kopsia officinalis and the immunosuppressive activity of rhazinilam. Nat. Prod. 2017;80:864–871. 10.1021/acs.jnatprod.6b00697. [Abstract] [CrossRef] [Google Scholar]
111. Klyne W., Swan R.J., Gorman A.A., Guggisberg A., Schmid H. Optische rotationsdispersion von indolinalkaloiden mit ketogruppen. Helv. Chim. Acta. 1968;51:1168–1184. 10.1002/hlca.19680510522. [Abstract] [CrossRef] [Google Scholar]
112. Husain K., Jantan I., Kamaruddin N., Said I.M., Aimi N., Takayama H. Methyl chanofruticosinates from leaves of Kopsia flavida Blume. Phytochemistry. 2001;57:603–606. 10.1016/S0031-9422(01)00119-4. [Abstract] [CrossRef] [Google Scholar]
113. Zheng J., Zhou Y., Huang Z. The Isolation and Characterization of indole alkaloids from the fruits of Kopsia officinalis. Acta Chim. Sin. English Ed. 1989;7:168–175. 10.1002/cjoc.19890070211. [CrossRef] [Google Scholar]
114. Thomas D.W., Achenbach H., Biemann K. Revised structures of the pleiocarpa alkaloids pleiocarpoline (pleiocarpine Nb-oxide), pleiocarpolinine (pleiocarpinine Nb-oxide), and kopsinoline (kopsinine Nb-oxide) J. Am. Chem. Soc. 1966;88:3423–3426. 10.1021/ja00966a043. [CrossRef] [Google Scholar]
115. Kitajima M., Ohara S., Kogure N. New Indole alkaloids from Melodinus henryi. heterocycles. Int. J. Rev. Commun. Heterocycl. Chem. 2012;85:1949–1959. [Google Scholar]
116. Burnell R.H., Chapelle A., Khalil M.F. Quaternary bases from Hunteria eburnea pichon. Can. J. Chem. 1974;52:2327–2330. 10.1139/v74-335. [CrossRef] [Google Scholar]
117. Wang Z., Shi X., Mu Y., Fang L., Chen Y., Lin Y. Three novel indole alkaloids from Kopsia officinalis. Fitoterapia. 2017;119:8–11. 10.1016/j.fitote.2017.01.017. [Abstract] [CrossRef] [Google Scholar]
118. Long S., Li C., Hu J., Zhao Q., Chen D. Indole alkaloids from the aerial parts of Kopsia fruticosa and their cytotoxic, antimicrobial and antifungal activities. Fitoterapia. 2018;129:145–149. 10.1016/j.fitote.2018.06.017. [Abstract] [CrossRef] [Google Scholar]
119. Kam T.S., Choo Y.M. Kopsifolines A–F: A new structural class of monoterpenoid indole alkaloids from Kopsia. Helv. Chem. Acta. 2004;87:991–998. 10.1002/hlca.200490092. [CrossRef] [Google Scholar]
120. Chen X.D., Hu J., Li J., Chi F. Cytotoxic monoterpenoid indole alkaloids from the aerial part of Kopsia arborea. J. Asian Nat. Prod. Res. 2019;22:1024–1030. 10.1080/10286020.2019.1680646. [Abstract] [CrossRef] [Google Scholar]
121. Liu T., Hu J., Li J., Chen M. Cytotoxic monoterpenoid indole alkaloids from the aerial parts of Kopsia officinalis. J. Asian Nat. Prod. Res. 2020;22:724–731. 10.1080/10286020.2019.1621851. [Abstract] [CrossRef] [Google Scholar]
122. Xie T., Zhao Y., He J., Zhao L., Wei X., Liu Y., Luo X. Monoterpenoid indole alkaloids from the stems of Kopsia officinalis. Fitoterapia. 2020:104547. 10.1016/j.fitote.2020.104547. [Abstract] [CrossRef] [Google Scholar]
123. Bao M.F., Zeng C.X., Liu Y.P., Zhang B.J., Ni L., Luo X.D., Cai X.H. Indole alkaloids from Hunteria zeylanica. J. Nat. Prod. 2017;80:790–797. 10.1021/acs.jnatprod.5b01035. [Abstract] [CrossRef] [Google Scholar]
124. Zhou H., He H.P., Kong N.C., Wang Y.H., Liu X.D., Hao X.J. Three new indole alkaloids from the leaves of Kopsia officinalis. Helv. Chim. Acta. 2006;89:515–519. 10.1002/hlca.200690053. [CrossRef] [Google Scholar]
125. Huang Y.Z., Huang L., Zhu J., Li C., Wu G. Alkaloids of Kopsia officinalis. Acta Chim. Sin. 1984;42:82–83. [Google Scholar]
126. Yang C.Q., Ma Y.F., Chen Y.G. Indole alkaloids from the twigs of Kopsia officinalis. Chem. Nat. Compd. 2017;53:595–597. 10.1007/s10600-017-2062-8. [CrossRef] [Google Scholar]
127. Gan C.Y., Low Y.Y., Thomas N.F., Kam T.S. Rhazinilam-Leuconolam-Leuconoxine alkaloids from Leuconotis griffithii. J. Nat. Prod. 2013;76:957–964. 10.1021/np400214y. [Abstract] [CrossRef] [Google Scholar]
128. Cai X.H., Jiang H., Li Y., Cheng G.G., Liu Y.P., Feng T., Luo X.D. Cytotoxic indole alkaloids from Melodinus fusiformis and M. morsei. Chin. J. Nat. Med. 2011;9:259–263. 10.1016/S1875-5364(11)60061-7. [CrossRef] [Google Scholar]
129. Jiang H., Li Y.B., Li Y., Li L., Ma S.G., Qu J., Yu S.S. Analgesic corynanthe-type alkaloids from Strychnos angustiflora. Tetrahedron. 2016;72:1276–1284. 10.1016/j.tet.2015.11.011. [CrossRef] [Google Scholar]
130. Robert G.M.T., Ahond A., Poupat C., Potier P., Jacquemin H., Kan S.K. Aspidosperma de Guyane: Alcaloïdes des Graines de Aspidosperma oblongum. J. Nat. Prod. 1983;46:259–263. 10.1021/np50029a019. [CrossRef] [Google Scholar]
131. Gao Y., Yu A., Li G., Hai P., Li Y., Liu J., Wang F. Hexacyclic monoterpenoid indole alkaloids from Rauvolfia verticillata. Fitoterapia. 2015;107:44–48. 10.1016/j.fitote.2015.10.004. [Abstract] [CrossRef] [Google Scholar]
132. Kumaria R., Rathib B., Ranic A., Bhatnagar S. Rauvolfia serpentina L. Benth. ex Kurz.: Phytochemical, Pharmacological and Therapeutic Aspects. Int. J. Pharm. Sci. Rev. Res. 2013;23:348–355. [Google Scholar]
133. Kumar S., Singh A., Bajpai V., Srivastava M., Singh B.P., Ojha S., Kumar B. Simultaneous Determination of Bioactive Monoterpene Indole Alkaloids in Ethanolic Extract of Seven Rauvolfia Species using UHPLC with Hybrid Triple Quadrupole Linear Ion Trap Mass Spectrometry. Phytochem. Anal. 2016:296–303. 10.1002/pca.2631. [Abstract] [CrossRef] [Google Scholar]
134. Boğa M., Bingül M., Özkan E.E., Şahin H. Chemical and Biological Perspectives of Monoterpene Indole Alkaloids from Rauwolfia species. Studies Nat. Prod. Chem. 2019;61:251–299. [Google Scholar]
135. Mahalakshmi S.N., Achala H.G., Ramyashree K.R., Kekuda T.R. Rauvolfia tetraphylla L. (Apocynaceae) - A Comprehensive Review on Its Ethnobotanical Uses, Phytochemistry and Pharmacological Activities. Int. J. Pharm. Biol. Sci. 2019;9:664–682. [Google Scholar]
136. Zeng J., Zhang D., Zhou P., Zhang Q., Zhao L., Chen J., Gao K. Rauvomines A and B, Two Monoterpenoid Indole Alkaloids from Rauvolfia vomitoria. Org. Lett. 2017;19:3998–4001. 10.1021/acs.orglett.7b01723. [Abstract] [CrossRef] [Google Scholar]
137. Arthur H.R., Johns S.R., Lamberton J.A., Loo S.N. Alkaloids of Rauwolfia verticillata (Lour.) Bail. of Hong Kong. Identification of vellosimine and peraksine, and demonstration from N.M.R. data that peraksine is a mixture of two epimers. Aust. J. Chem. 1968;21:1399–1401. 10.1071/CH9681399. [CrossRef] [Google Scholar]
138. Li L.M., Shi S.D., Liu Y., Zou Q. Bioactivity-Guided Isolation and Identification of New and Immunosuppressive Monoterpenoid Indole Alkaloids from Rauvolfia yunnanensis Tsiang. Molecules. 2019;24:4574. 10.3390/molecules24244574. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
139. Zhang Z., ElSohly H.N., Jacob M.R., Pasco D.S., Walker L.A.A., Clark A.M. New Indole Alkaloids from the Bark of Nauclea orientalis. J. Nat. Prod. 2001;64:1001–1005. 10.1021/np010042g. [Abstract] [CrossRef] [Google Scholar]
140. Abaul J., Philogéne E., Bourgeois P., Mérault G., Poupat C., Ahond A., Potier P. Alcaloïdes Indoliques De Rauvolfia Biauriculata. J. Nat. Prod. 1986;49:829–832. 10.1021/np50047a011. [CrossRef] [Google Scholar]
141. Schlittler E.A., Schwarz H. Uber das Alkaloid Serpentin aus Rauwolfia serpentina Benth. Helv. Chim. Acta. 1950;33:1463–1477. 10.1002/hlca.19500330609. [CrossRef] [Google Scholar]
142. Geng C.A., Liu X.K. Indole alkaloids from the leaves of Rauvolfia yunnanensis. Chem. J. Chin. U. 2010;31:731–735. [Abstract] [Google Scholar]
143. Staerk D., Lemmich E., Christensen J., Kharazmi A., Olsen C.E., Jaroszewski J.W. Leishmanicidal, antiplasmodial and cytotoxic activity of indole alkaloids from Corynanthe pachyceras. Planta Med. 2000;66:531–536. 10.1055/s-2000-8661. [Abstract] [CrossRef] [Google Scholar]
144. Christiane K., Pierre P., Kan S.K., Jokela R., Lounasma M. Indole alkaloids from Rauvolfia media. Phytochemistry. 1986;25:1783–1784. [Google Scholar]
145. Wenkert E., Chang C.J., Chawla H.P.S., Cochran D.W., Hagaman E.W., King J.C., Orito K. General Methods of Synthesis of Indole Alkaloids. 14. Short Routes of Construction of Yohimboid and Ajmalicinoid Alkaloid Systems and Their 13C Nuclear Magnetic Resonance Spectral Analysis. J. Am. Chem. Soc. 1976;98:3645–3655. 10.1021/ja00428a044. [CrossRef] [Google Scholar]
146. Nunes D.S., Koike L., Taveira J.J., Reis F.A.M. Indole alkaloids from Aspidosperma pruinosum. Phytochemistry. 1992;31:2507–2511. [Google Scholar]
147. Arbain D., Putra D.P., Sargent M.V. The alkaloids of Ophiorrhiza filistipula. Aust. J. Chem. 1993;46:977–985. 10.1071/CH9930977. [CrossRef] [Google Scholar]
148. Reina M., Ruiz-Mesia W., Ruiz-Mesia L., Martínez-Díaz R., González-Coloma A. Indole alkaloids from Aspidosperma rigidum and A. schultesii and their antiparasitic effects. Zeitschrift fur Naturforsch. Sect. C J. Biosci. 2011;66:225–234. [Abstract] [Google Scholar]
149. Lin M., Yang B.Q., Yu D.Q. Studies on the quaternary alkaloids of Rauvolfia verticillata (lour.) Baill var. Hainanensis Tsiang. Acta Pharm. Sin. 1986;21:114–118. [Abstract] [Google Scholar]
150. Sheludko Y., Gerasimenko I., Kolshorn H., Stöckigt J. New alkaloids of the sarpagine group from Rauvolfia serpentina hairy root culture. J. Nat. Prod. 2002;65:1006–1010. 10.1021/np0200919. [Abstract] [CrossRef] [Google Scholar]
151. Jin Y.S., Du J.L., Chen H.S., Jin L., Liang S. A new indole alkaloid from Ervatamia yunnanensis. Fitoterapia. 2010;81:63–65. 10.1016/j.fitote.2009.07.008. [Abstract] [CrossRef] [Google Scholar]
152. Yu D.Q., Yang J.S. Chemical Analytical Manual (the Second Edition), the Seventh Fascicle: NMR Spectra Analysis. Chemical Industry Press; Beijing, China: 2001. pp. 818–836. [Google Scholar]
153. Okuyama E., Gao L.H., Yamazaki M. Analgesic Components from Bornean Medicinal Plants, Tabernaemontana pauciflora BLUME and Tabernaemontana pandacaqui POIR. Chem. Pharm. Bull. 1992;40:2075. 10.1248/cpb.40.2075. [Abstract] [CrossRef] [Google Scholar]
154. Bartlett M.F., Dickel D.F., Taylor W.I. The Alkaloids of Tabernanthe iboga. Part 1V. The Structures of Ibogamine, Ibogaine, Tabernanthine and Voacangine. J. Am. Chem. Soc. 1954;80:126–136. [Google Scholar]
155. Govindachari T.R., Joshi B.S., Saksena A.K., Sathe S.S., Viswanathan N. The structure of heyneanine. Tetrahedron Lett. 1965;43:3873–3878. 10.1016/S0040-4039(01)89140-1. [Abstract] [CrossRef] [Google Scholar]
156. Thomas D.W., Biemann K. The hydroxyindolenine derivative of voacangine, a new indole alkaloid from Voacanga africana. Tetrahedron. 1968;24:4223–4231. 10.1016/0040-4020(68)88184-0. [Abstract] [CrossRef] [Google Scholar]
157. Madinaveitia A., De La Fuente G., González A. The Absolute Configuration at C(7) of Voacangine Hydroxyindolenine. Helv. Chim. Acta. 1998;81:1645–1653. 10.1002/(SICI)1522-2675(19980909)81:9<1645::AID-HLCA1645>3.0.CO;2-P. [CrossRef] [Google Scholar]
158. Das B.C., Fellion E., Plat M. Alkaloids on Conopharyngia durissima seeds. Isolation of coronaridine, tabersonine, and coronaridine hydroxyindolenine. Comptes Rendus des Seances de l’Academie des Sciences, Serie D: Sciences Naturelles. 1967;264:1765–1767. [Google Scholar]
159. Rastogi K., Kapil R.S., Popli S.P. New alkaloids from Tabernaemontana divaricata. Phytochemistry. 1980;19:1209–1212. 10.1016/0031-9422(80)83085-8. [CrossRef] [Google Scholar]
160. Gunasekera S.P., Cordell G., Farnsworth N.R. Anticancer indole alkaloids of Ervatamia heyneana. Phytochemistry. 1980;19:1213–1218. 10.1016/0031-9422(80)83086-X. [CrossRef] [Google Scholar]
161. Matos F.J.A., Fo R.B., Gottlieb O.R., Welbaneide F., Machado L., Iracema M., Madruga L.M. 20-Epiheyneanine, an iboga alkaloid from Peschiera affinis. Phytochemistry. 1976;15:551–553. 10.1016/S0031-9422(00)88971-2. [CrossRef] [Google Scholar]
162. Sharma P., Cordell G.A. Heyneanine hydroxyindolenine, a new indole alkaloid from Ervatamia. J. Nat. Prod. 1988;51:528–531. 10.1021/np50057a012. [Abstract] [CrossRef] [Google Scholar]
163. Liang S., Chen H.S., Jin Y.S., Jin L., Lu J., Du J.L. Study on chemical constituents in rhigome of Ervatamia hainanensis. J. Chin. Mater. Med. 2007;32:1296–1299. [Abstract] [Google Scholar]
164. Zhan Z.J., Yu Q., Wang Z.L., Shan W.G. Indole alkaloids from Ervatamia hainanensis with potent acetylcholinesterase inhibition activities. Bioorganic Med. Chem. Lett. 2010;20:6185–6187. 10.1016/j.bmcl.2010.08.123. [Abstract] [CrossRef] [Google Scholar]
165. Guo L.l., Zhang Y., HE H.P., Li Y., Yu J.P., Hao X.J. A new monoterpenoid indole alkaloid from Ervatamia chinensis. Chin. J. Nat. Med. 2012;10:226–229. 10.3724/SP.J.1009.2012.00226. [CrossRef] [Google Scholar]
166. Guoying Z., Hongping H., Bingui W., Xin H., Xiaojiang H. A new indoloquinazoline alkaloid from the fruit of Evodia rutaecarpa. Acta Bot. Yunnan. 2003;25:103–106. [Google Scholar]
167. Liu Z.W., Yang T.T., Wang W.J., Li G.Q., Tang B.Q., Zhang Q.W., Fan C.L., Zhang D.M., Zhang X.Q., Ye W.C. Ervahainine A, a new cyano-substituted oxindole alkaloid from Ervatamia hainanensis. Tetrahedron Lett. 2013;54:6498–6500. 10.1016/j.tetlet.2013.09.080. [CrossRef] [Google Scholar]
168. Clivio P., Richard B., Deverre J.R., Sevenet T., Zeches M., Le Men-Oliver L. Alkaloids from leaves and root bark of Ervatamia hirta. Phytochemistry. 1991;30:3785–3792. 10.1016/0031-9422(91)80111-D. [CrossRef] [Google Scholar]
169. Van Beek T.A., Verpoorte R., Svendsen A.B., Fokkens R.J. Antimicrobially Active Alkaloids from Tabernaemontana chippii. J. Nat. Prod. 1985;48:400–423. 10.1021/np50039a008. [Abstract] [CrossRef] [Google Scholar]
170. Thomas J., Starmer A. The isolation and identification of the major alkaloid present in Tabernaemontana pachysiphon stapf var cumminsi (stapf) H. Huber. J. Pharm. Pharmac. 1963;15:487. 10.1111/j.2042-7158.1963.tb12820.x. [Abstract] [CrossRef] [Google Scholar]
171. Pereira P.S., França S.D.C., Oliveira P.V.A.D., Breves C.M.D.S., Pereira S.I.V., Sampaio S.V., Nomizo A., Dias D.A. Chemical Constituents from Tabernaemontana catharinensis Root Bark: A Brief NMR Review of Indole Alkaloids and in vitro Cytotoxicity. Quim. Nova. 2008;31:20–24. 10.1590/S0100-40422008000100004. [CrossRef] [Google Scholar]
172. Kam T., Sim K. Five New Iboga Alkaloids from Tabernaemontana corymbosa. J. Nat. Prod. 2002;65:669–672. 10.1021/np0105432. [Abstract] [CrossRef] [Google Scholar]
173. Low Y.Y., Lim K.H., Choo Y.M., Pang H.S., Etoh T., Hayashi M., Komiyama K., Kam T.S. Structure, biological activity, and a biomimetic partial synthesis of the lirofolines, novel pentacylic indole alkaloids from Tabernaemontana. Tetrahedron Lett. 2010;51:269–272. 10.1016/j.tetlet.2009.10.122. [CrossRef] [Google Scholar]
174. Tang B.Q., Wang W.J., Huang X.J., Li G.Q., Wang L., Jiang R.W., Yang T.T., Shi L., Zhang X.Q., Ye W.C. Iboga-type alkaloids from Ervatamia officinalis. J. Nat. Prod. 2014;77:1839–1846. 10.1021/np500240b. [Abstract] [CrossRef] [Google Scholar]
175. Liu Z.W., Huang X.J., Xiao H.L., Liu G., Zhang J., Shi L., Jiang R.W., Zhang X.Q., Ye W.C. New iboga-type alkaloids from Ervatamia hainanensis. RSC Adv. 2016;6:30277–30284. 10.1039/C6RA00185H. [CrossRef] [Google Scholar]
176. Azoug M., Loukaci A.L.I., Richard B., Nuzillard J., Moreti C., Zèches-Hanrot M., Le Men-Olivier L. Alkaloids from stem bark and leaves of Peschiera buchtieni. Phytochemisty. 1995;39:1223–1228. 10.1016/0031-9422(95)00050-H. [CrossRef] [Google Scholar]
177. Rastogi K., Kapil R.S.A., Popli S.P. Oxidation of Coronaridine. Heterocycles. 1983;20:2001–2009. [Google Scholar]
178. De Souza J.J., Mathias L., Braz-Filho R., Vieira I.J.C. Two new indole alkaloids from Tabernaemontana hystrix Steud. (Apocynaceae) Helv. Chim. Acta. 2010;93:422–429. 10.1002/hlca.200900208. [CrossRef] [Google Scholar]
179. Liu Z.W., Tang B.Q., Zhang Q.H., Wang W.J., Huang X.J., Zhang J., Shi L., Zhang X.Q., Ye W.C. Ervaoffines E-G, three iboga-type alkaloids featuring ring C cleavage and rearrangement from Ervatamia officinalis. RSC Adv. 2017;7:21883–21889. 10.1039/C7RA03411C. [CrossRef] [Google Scholar]
180. Lim K.H., Raja V.J., Bradshaw T.D., Lim S.H., Low Y.Y., Kam T.S. Ibogan, tacaman, and cytotoxic bisindole alkaloids from Tabernaemontana. Cononusine, an iboga alkaloid with unusual incorporation of a pyrrolidone moiety. J. Nat. Prod. 2015;78:1129–1138. 10.1021/acs.jnatprod.5b00117. [Abstract] [CrossRef] [Google Scholar]
181. Bartlett M.F., Dickel D.F., Maxfield R.C., Paszek L.E., Smith A.F. The Alkaloids of Tabcrnanthe iboga. Part VIII. J. Am. Chem. Soc. 1959;81:1932–1935. 10.1021/ja01517a037. [CrossRef] [Google Scholar]
182. Zhang J., Ao Y.L., Yao N., Bai W.X., Fan C.L., Ye W.C., Zhang X.Q. Three new monoterpenoid indole alkaloids from Ervatamia pandacaqui. Chem. Biodivers. 2018;15:1800268. 10.1002/cbdv.201800268. [Abstract] [CrossRef] [Google Scholar]
183. Chaturvedula V.S.P., Sprague S., Schilling J.K., Kingston D.G.I. New Cytotoxic Indole Alkaloids from Tabernaemontana calcarea from the Madagascar Rainforest. J. Nat. Prod. 2003;66:528–531. 10.1021/np020548e. [Abstract] [CrossRef] [Google Scholar]
184. Zhang B., Teng X., Bao M., Zhong X., Ni L., Cai X. Cytotoxic indole alkaloids from Tabernaemontana officinalis. Phytochemistry. 2015;120:46–52. 10.1016/j.phytochem.2014.12.025. [Abstract] [CrossRef] [Google Scholar]
185. Tan S., Low Y., Choo Y., Abdullah Z., Etoh T., Hayashi M., Komiyama K., Kam T. Strychnan and Secoangustilobine A Type Alkaloids from Alstonia spatulata. Revision of the C-20 Configuration of Scholaricine. J. Nat. Prod. 2010;73:1891–1897. [Abstract] [Google Scholar]
186. Liu Z.W., Zhang J., Li S.T., Liu M.Q., Huang X.J., Ao Y.L., Fan C.L., Zhang D.M., Zhang Q.W., Ye W.C., et al. Ervadivamines A and B, Two Unusual Trimeric Monoterpenoid Indole Alkaloids from Ervatamia divaricata. J. Org. Chem. 2018;83:10613–10618. 10.1021/acs.joc.8b01371. [Abstract] [CrossRef] [Google Scholar]
187. Zhang H., Wang X.N., Lin L.P., Ding J., Yue J.M.J. Indole Alkaloids from Three Species of the Ervatamia Genus: E. officinalis, E.divaricata, and E. divaricata Gouyahua. J. Nat. Prod. 2007;70:54–59. 10.1021/np060344o. [Abstract] [CrossRef] [Google Scholar]
188. Knox J.R., Slobbe J. Indole alkaloids from Ervatamia orientalis. II. The constitution of the ervatamine group. Aust. J. Chem. 1975;28:1825–1841. 10.1071/CH9751825. [CrossRef] [Google Scholar]
189. Joule J.A., Monteiro H., Durham L.J., Gilbert B., Djerassi C. Alkaloid studies. 48. The structure of apparicine, a novel aspidosperma alkaloid. Chem. Soc. (Resumed) 1965:4773–4780. 10.1039/jr9650004773. [Abstract] [CrossRef] [Google Scholar]
190. Watts F., Collera O., Sandoval A. Alkaloids from Stemmadenia species. I. Alkaloids of S. donnellsmithii and S. galleottiana. Tetrahedron. 1958;2:173–182. [Google Scholar]
191. Zhou J., Du S.Y., Dong H.J., Fang L., Feng J.H. Preparative separation of monoterpenoid indole alkaloid epimers from ervatamia yunnanensis tsiang by ph-zone-refining counter-current chromatography combined with preparative high-performance liquid chromatography. Molecules. 2019;24:1316. 10.3390/molecules24071316. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
192. Athipornchai A. A review on tabernaemontana spp.: Multipotential medicinal plant. Asian J. Pharm. Clin. Res. 2018;11:45–53. 10.22159/ajpcr.2018.v11i5.11478. [CrossRef] [Google Scholar]
193. Nge C.E., Chong K.W., Thomas N.F., Lim S.H., Low Y.Y., Kam T.S. Ibogan, Aspidosperman, Vincamine, and Bisindole Alkaloids from a Malayan Tabernaemontana corymbosa: Iboga Alkaloids with C-20α Substitution. J. Nat. Prod. 2016;79:1388–1399. 10.1021/acs.jnatprod.6b00129. [Abstract] [CrossRef] [Google Scholar]
194. Kingston D.G., Gerhart B.B., Ionescu F., Mangino M.M., Sami S.M. Plant Anticancer Agents V: New Bisindole Alkaloids from Tabernaemontana johnstonii Stem Bark. Pharm. Sci. 1978;67:249–251. 10.1002/jps.2600670232. [Abstract] [CrossRef] [Google Scholar]
195. Kam T.S., Sim K.M. New Tabernamine Derivatives from Tabernaemontana. Heterocycles. 2002;57:2137–2143. 10.3987/COM-02-9573. [CrossRef] [Google Scholar]
196. Qu Y., Simonescu R., De Luca V. Monoterpene Indole Alkaloids from the Fruit of Tabernaemontana litoralis and Differential Alkaloid Composition in Various Fruit Components. J. Nat. Prod. 2016;79:3143–3147. 10.1021/acs.jnatprod.6b00405. [Abstract] [CrossRef] [Google Scholar]
197. Yuwen H., Yuan Y., Hao X., He H., Zhang Y. Two new monoterpenoid indole alkaloids from Tabernaemontana divaricata. Nat. Prod. Res. 2019;33:2139–2144. 10.1080/14786419.2018.1488707. [Abstract] [CrossRef] [Google Scholar]
198. Sim D.S.Y., Chong K.W., Nge C.E., Low Y.Y., Sim K.S., Kam T.S. Cytotoxic Vobasine, Tacaman, and Corynanthe-Tryptamine Bisindole Alkaloids from Tabernaemontana and Structure Revision of Tronoharine. J. Nat. Prod. 2014;77:2504–2512. 10.1021/np500589u. [Abstract] [CrossRef] [Google Scholar]
199. Zèches-Hanrot M., Nuzillard J.M., Richard B., Schaller H., Hadi H.A., Sévenet T., Le Men-Olivier L. Alkaloids from leaves and stem bark of Ervatamia peduncularis. Phytochemistry. 1995;40:587–591. 10.1016/0031-9422(95)00152-W. [CrossRef] [Google Scholar]
200. Clivio P., Guillaume D., Vercauteren J., Richard B., Nuzillard J.M., Zèches-Hanrot M., Le Men-Olivier L. Two bis-indole alkaloids from leaves of Ervatamia polyneura. Phytochemistry. 1995;40:953–959. 10.1016/0031-9422(95)00392-K. [CrossRef] [Google Scholar]
201. Cai Y., Sarotti A.M., Zhou T., Huang R., Qiu G., Tian C., Cao S., Mándi A., Kurtán T., Yang S., et al. Flabellipparicine, a Flabelliformide-Apparicine-Type Bisindole Alkaloid from Tabernaemontana divaricata. Nat. Prod. 2018;81:1976–1983. 10.1021/acs.jnatprod.8b00191. [Abstract] [CrossRef] [Google Scholar]
202. Feng X.Z., Kan C., Husson H.P., Potier P., Kan S.K., Lounasmaa M. Nouveaux alcaloïdes indoliques dimeres de type voacamine extraits d’Ervatamia hainanensis. J. Nat. Prod. 1981;44:670–675. 10.1021/np50018a008. [CrossRef] [Google Scholar]
203. Van Beek T.A., Verpoorte R., Svendsen A.B. Isolation and synthesis of vobparicine, a novel type dimeric indole alkaloid. Tetrahedron Lett. 1984;25:2057–2060. 10.1016/S0040-4039(01)90112-1. [CrossRef] [Google Scholar]
204. Ingkaninan K., Changwijit K., Suwanborirux K. Vobasinyl-iboga bisindole alkaloids, potent acetylcholinesterase inhibitors from Tabernaemontana divaricata root. J. Pharm. Pharmacol. 2006;58:847–852. 10.1211/jpp.58.6.0015. [Abstract] [CrossRef] [Google Scholar]
205. Henriques A.T., Melo A.A., Moreno P.R.H., Ene L.L., Henriques J.A.P., Schapoval E.E.S. Ervatamia coronaria: Chemical constituents and some pharmacological activities. J. Ethnopharmacol. 1996;50:19–25. 10.1016/0378-8741(95)01328-8. [Abstract] [CrossRef] [Google Scholar]
206. Yamauchi T., Abe F., Padolina W.G., Dayrit F.M. Alkaloids from leaves and bark of Alstonia scholaris in the Philippines. Phytochemistry. 1990;29:3321–3325. 10.1016/0031-9422(90)80208-X. [CrossRef] [Google Scholar]
207. Xu J., Qu W., Cao W.Y., Wang Y., Zheng K.J., Luo S.Z., Wu M.-Y., Liu W.-Y., Feng F., Zhang J. Chemical Constituents from Tabernaemontana bufalina Lour. Chem. Biodivers. 2019;16:1800491. 10.1002/cbdv.201800491. [Abstract] [CrossRef] [Google Scholar]
208. Yu Y., Gao J.M., Liu J.K. Two New Oxindole Alkaloids from Ervatamia yunnanensis. Chin. Chem. Lett. 1999;10:575–578. [Google Scholar]
209. Perera P., Samuelsson G., van Beek T.A., Verpoorte R. Tertiary Indole Alkaloids from Fruits of Tabernaemontana dichotoma. Planta Med. 1984;50:148–150. 10.1055/s-2007-969691. [Abstract] [CrossRef] [Google Scholar]
210. Melacheu G.L.F., Njoya E.M., Jouda J.B., Kweka B.N.W., Mbazoa C.D., Wang F., Wandji J. Two new indole alkaloids from Tabernaemontana contorta Stapf. Phytochem. Lett. 2019;30:116–119. 10.1016/j.phytol.2019.01.028. [CrossRef] [Google Scholar]
211. Yu Y., Bao M.F., Wu J., Chen J., Yang Y.R., Schinnerl J., Cai X.H. Tabernabovines A-C: Three Monoterpenoid Indole Alkaloids from the Leaves of Tabernaemontana bovina. Org. Lett. 2019;21:5938–5942. 10.1021/acs.orglett.9b02060. [Abstract] [CrossRef] [Google Scholar]
212. Chatterjee A., Banerji A., Majumder P., Majumder R. Alkaloids of Rhazya stricta Decaisne Studies on Rhazinaline and Geissoschizine. Bull. Chem. Soc. Jpn. 1976;49:2000–2004. 10.1246/bcsj.49.2000. [CrossRef] [Google Scholar]
213. Mukhopadhyay S., Handy G.A., Funayama S., Cordell G.A. Anticancer indole alkaloids of Rhazya stricta. J. Nat. Prod. 1981;44:696–700. 10.1021/np50018a014. [Abstract] [CrossRef] [Google Scholar]
214. Baeshen M.N., Khan R. Therapeutic Potential of the Folkloric Medicinal Plant Rhazya stricta. Biol. Syst. 2015;5:1–5. 10.4172/2329-6577.1000151. [CrossRef] [Google Scholar]
215. Ahmed A., Li W., Chen F., Zhang J., Tang Y., Chen L., Tang G. Monoterpene indole alkaloids from Rhazya stricta. Fitoterapia. 2018;128:1–6. 10.1016/j.fitote.2018.04.018. [Abstract] [CrossRef] [Google Scholar]
216. Gelling A., Jeffery J.C., Poveycand C., Went M.J., Chemistry I., Its B.B.S. The Isolation of Monomeric Secodine-type Alkaloids from Rhazya Species. Chem. Sci. 1991;346:349–351. [Google Scholar]
217. Kan C., Deverre J.R., Sevenet T., Quirion J.C., Husson H.P. Indole Alkaloids from Kopsia Deverrei. Nat. Prod. Lett. 1995;7:275–281. 10.1080/10575639508043222. [CrossRef] [Google Scholar]
218. Khanum S. Strictamine-N-oxide from Rhazya stricta. Phytochemistry. 1984;23:709–710. [Google Scholar]
219. Abe F., Yamauchi T. Indole alkaloids from leaves and stems of Leuconotis eugenifolius. Phytochemistry. 1993;35:169–171. 10.1016/S0031-9422(00)90527-2. [CrossRef] [Google Scholar]
220. Proksa B., Uhrín D., Grossmann E., Votický Z. New Quaternary Alkaloids from Vinca minor. Planta Med. 1989;55:188–190. 10.1055/s-2006-961921. [Abstract] [CrossRef] [Google Scholar]
221. Lounasmaa M., Hanhinen P. Conformational study of geissoschizine isomers and their model compounds. Heterocycles. 1999;51:649–670. 10.3987/REV-98-512. [CrossRef] [Google Scholar]
222. Kutney J.P., Brown R.T. The structural elucidation of sitsirikine, dihydrositsirikine and isositsirikine: Three new alkaloids from vinca rosea linn. Tetrahedron. 1966;22:321–336. 10.1016/0040-4020(66)80133-3. [Abstract] [CrossRef] [Google Scholar]
223. Danieli B., Lesma G., Palmisano G., Riva R., Tollari S. Absolute Configuration of (-)-Vincatine, the Unique 2,16-Seco Aspidosperma Alkaloid. J. Org. Chem. 1984:547–551. 10.1021/jo00177a033. [CrossRef] [Google Scholar]
224. Jewers K., Pusey D.F.G., Sharma S.R., Ahmad Y. 13C-NMR Spectral Analysis of Rhazine, Quebrachamine and Rhazinilam. Planta Med. 1980;38:359–362. 10.1055/s-2008-1074890. [CrossRef] [Google Scholar]
225. Atta-ur-Rahman, Habib-ur-Rehman, Ahmad Y., Fatima K., Badar Y. Studies on the Alkaloids of Rhazya stricta. Planta Med. 1987;53:256–259. 10.1055/s-2006-962696. [Abstract] [CrossRef] [Google Scholar]
226. Abdul-Hameed Z.H., Alarif W.M., Omer A., El Omri A., Ayyad S.-E.N., Badria F.A., Neamatallah T., Bawakid N.O. Selective Anti-proliferative Activity of Indole Alkaloids from Rhazya stricta Decne Leaves. Lett. Org. Chem. 2019;16:941–947. 10.2174/1570178616666190101095417. [CrossRef] [Google Scholar]
227. Hajrah N.H., Abdul W.M., Abdul-hameed Z.H., Alarif W.M., Al-abbas N.S.A., Ayyad S.E.N., Omer A.M.S., Mutawakil M.Z., Hall N., Obaid A.Y., et al. Gene Expression Profiling to Delineate the Anticancer Potential of a New Alkaloid Isopicrinine From Rhazya stricta. Integr. Cancer Ther. 2020;19:1–13. 10.1177/1534735420920711. [Europe PMC free article] [Abstract] [CrossRef] [Google Scholar]
228. Abdul-Hameed Z.H., Alarif W.M., Sobhi T.R., Abdel-Lateff A., Ayyad S.E.N., Badria F.A., Saber J. New cytotoxic indole-type alkaloids obtained from Rhazya stricta leaves. South. Afr. J. Botany. 2021;137:298–302. 10.1016/j.sajb.2020.10.020. [CrossRef] [Google Scholar]
229. Dewick P.M. Medicinal Natural Products; a Biosynthetic Approach. 3rd ed. John Wiley & Sons; Hoboken, NJ, USA: 2009. [Google Scholar]
230. O’Connor S.E., Maresh J.J. Chemistry and biology of monoterpene indole alkaloid biosynthesis. Nat. Prod. Rep. 2006;23:532–547. 10.1039/b512615k. [Abstract] [CrossRef] [Google Scholar]
231. Bi Y., Hamaker L.K., Cook J.M. The Synthesis of Macroline Related Alkaloids. Stud. Nat. Pro. Chem. 1993;13:383–432. [Google Scholar]
232. Esmond R.W., LeQuesne P.W. Biomimitic synthesis of macroline. J. Am. Chem. Soc. 1980;102:7116–7117. 10.1021/ja00543a045. [CrossRef] [Google Scholar]
233. Namjoshi O.A., Cook J.M. Sarpagine and related-alkaloids. Alkaloids Chem. Biol. 2016;76:63–169. [Europe PMC free article] [Abstract] [Google Scholar]

Articles from Molecules are provided here courtesy of Multidisciplinary Digital Publishing Institute (MDPI)

Citations & impact 


Impact metrics

Jump to Citations

Citations of article over time

Smart citations by scite.ai
Smart citations by scite.ai include citation statements extracted from the full text of the citing article. The number of the statements may be higher than the number of citations provided by EuropePMC if one paper cites another multiple times or lower if scite has not yet processed some of the citing articles.
Explore citation contexts and check if this article has been supported or disputed.
https://scite.ai/reports/10.3390/molecules26020488

Supporting
Mentioning
Contrasting
0
50
0

Article citations


Go to all (18) article citations

Similar Articles 


To arrive at the top five similar articles we use a word-weighted algorithm to compare words from the Title and Abstract of each citation.


Funding 


Funders who supported this work.

Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program. (1)