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Abstract.— Many questions in evolutionary biology are best addressed by comparing traits in different species. Often such
studies involve mapping characters on phylogenetic trees. Mapping characters on trees allows the nature, number, and timing
of the transformations to be identified. The parsimony method is the only method available for mapping morphological
characters on phylogenies. Although the parsimony method often makes reasonable reconstructions of the history of a
character, it has a number of limitations. These limitations include the inability to consider more than a single change along a
branch on a tree and the uncoupling of evolutionary time from amount of character change. We extended a method described
by Nielsen (2002, Syst. Biol. 51:729–739) to the mapping of morphological characters under continuous-time Markov models
and demonstrate here the utility of the method for mapping characters on trees and for identifying character correlation.
[Bayesian estimation; character correlation; character mapping; Markov chain Monte Carlo.]

The footprint of natural selection on organisms can of-
ten be detected using phylogenetic methods. Correlation
in either molecular or morphological characters is taken
as evidence of natural selection acting on those charac-
ters (Harvey and Pagel, 1991). The correlation might be
between a character and the environment, with the re-
peated evolution of the character in a particular environ-
ment indicating that the trait confers an advantage, or the
correlation may be between one character and another.
In ribosomal RNA sequences, for example, correlated
changes occur in nucleotides paired in the stem struc-
tures; natural selection is acting to maintain Watson–
Crick pairing of nucleotides in the functionally impor-
tant stem structures. In either case—correlation between
different characters or the repeated evolution of a charac-
ter in a particular environment—phylogenetic methods
provide the best framework for the analysis of correlation
because they allow the effects of a common phylogenetic
history that simultaneously acts on all of the characters
to be partitioned from the evolutionary processes gener-
ating the character patterns (Felsenstein, 1985).

Despite the importance of phylogenetic analysis of
character change in evolutionary biology, detection of
correlation in characters is fraught with difficulties. One
dilemma involves how characters should be mapped
onto a phylogenetic tree. Many methods for detecting
correlations rely on mapping character changes on a
phylogenetic tree using the parsimony method (Ridley,
1983; Maddison, 1990). The parsimony method provides
the minimum number of transformations required to
explain the evolution of the character on the tree and
therefore necessarily underestimates the total number
of changes. Furthermore, some methods treat the par-
simony mapping of a character as an observation in fur-
ther statistical analyses (Ridley, 1983; Maddison, 1990).
Although the parsimony method is expected to provide
a reasonable mapping of a character when the rates of
evolution are low, the fundamental problem with the
method is that it does not account for the uncertainty in
the process of character change. In effect, the parsimony
method wagers all on the mapping requiring the fewest
changes, when in reality many other perhaps slightly

less parsimonious mappings may be nearly as good or
better.

This problem with the parsimony method has long
been realized (see Harvey and Pagel, 1991), and a num-
ber of methods have been proposed that avoid mapping
characters on trees using parsimony. One approach that
avoids some of the pitfalls of the parsimony method is
to model character change as a continuous-time Markov
chain; when modeling character change as a stochastic
process, all possible character histories are considered,
with each weighted by its probability of occurrence un-
der the model. Typically, specific character mappings are
no longer considered; parameters of the Markov process
are examined instead. For example, different character
transformations can have different rates, and hypothe-
ses of biased character change can then be tested (see
Pagel, 1999a). Similarly, the evolution of two characters
can be modeled simultaneously, and a parameter that is
related to the correlation of the characters can be esti-
mated (Pagel, 1994).

A related method for dealing with the uncertainty of a
character’s history assigns probabilities to specific ances-
tral states on a tree (Schluter, 1995; Schluter et al., 1997;
Mooers and Schluter, 1999; Pagel, 1999b). Often, meth-
ods for estimating the ancestral states on a tree are used
with the parsimony criterion to map characters on a tree
(Pagel, 1999a). Specifically, these methods implicitly use
the parsimony criterion to assign a history along the in-
dividual branches of a tree. If, for example, the charac-
ter states at either end of a branch are estimated with a
high degree of certainty, then the parsimony reconstruc-
tion of the character on that branch might be accepted.
Conversely, if the ancestral states at either end of the
branch are uncertain, then any assignment of the his-
tory along that branch is also considered uncertain. The
problem with this method is that it does not account for
the residual uncertainty in the character’s history along
that branch; e.g., nonparsimonious histories might also
be reasonable, especially if the branch is very long.

Uncertainty in the phylogenetic history of the species
being examined is another factor that must be ac-
counted for in comparative studies. Accommodating
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phylogenetic uncertainty is important for at least two
reasons: (1) the conclusions of a study might change de-
pending upon the tree used to map the characters, and
(2) it is not appropriate to consider the tree fixed in a sta-
tistical analysis of character evolution because the tree
is not known with certainty; the danger is that the re-
searcher will have too much confidence in the results,
even if correct, because only a single tree was examined.
A common approach to account for phylogenetic uncer-
tainty is to examine the evolution of a character on a
number of reasonable trees, under the assumption that
the set of trees examined reflects uncertainty in the tree.
Another approach involves examining the evolution of
the character on a set of trees generated under a stochas-
tic process, such as the birth–death process (Losos, 1994;
Martins, 1996) or examining the evolution of a charac-
ter on all trees with the results from each tree weighted
by the probability of the tree being correct (Losos and
Miles, 1994; Pagel, 1994; Huelsenbeck et al., 2000). The
advantage of the last approach is that different trees
contribute differentially to the final results of the com-
parative analysis; trees that better explain the data con-
tribute more to the final results of the comparative anal-
ysis than do trees that poorly explain the data. Algo-
rithms exist for approximating the probabilities of trees
(Larget and Simon, 1999; see Huelsenbeck et al., 2000,
2001).

To date, it has been difficult to combine methods for
accounting for uncertainty in the phylogenetic tree (and
other parameters of the statistical model) with mappings
of a character’s history. The problem of explicitly map-
ping characters on a tree can be avoided by constructing
a stochastic model of character evolution and then ex-
amining the parameters of this model. However, map-
ping character histories on phylogenies has a number of
advantages if the traditional problems associated with
determining a character’s history can be overcome. For
example, the number of changes, the specific places on
the tree where the changes occurred, and the timing of
the character transformations can all be discerned by ex-
amining the history of a character.

Here, we apply a method described by Nielsen (2002)
for stochastically mapping characters on a tree to the
problem of determining a morphological character’s his-
tory. We account for uncertainty in model parameters by
adopting a Bayesian perspective; results are averaged
over all parameter values and weighted by the probabil-
ity of the parameters. This approach accommodates un-
certainty in the phylogenetic history of the group when
mapping characters. The method for mapping character
histories does not rely on the parsimony method. Rather,
character change is assumed to follow a continuous-time
Markov process, just as with other approaches for ex-
amining morphological character change. However, this
method allows specific character histories that are con-
sistent with the observations to be sampled according
to their probability under the model. We also suggest
an intuitive measure of the degree to which two charac-
ters covary and suggest a test of independence based on
Bayesian posterior predictive P values.

METHODS

Sampling Character Histories

A common assumption of many phylogenetic meth-
ods and the approach described here is that character
change follows a continuous-time Markov chain. At the
heart of a continuous-time Markov chain is a matrix, Q,
specifying the rates of change from one character state to
another. The rate matrix provides all of the information
necessary to describe the process. For example, consider
the following matrix describing the substitution process
among three character states, 0, 1, and 2:

Q = {qi j } =
−(a + b) a b

d −(c + d) c
e f −(e + f )

 .
The rows and columns of this matrix are in the order 0, 1,
2. The off-diagonal elements of the matrix give the rate of
change from state i (the row) to state j (the column). For
example, d is the rate of change from state 1 to state 0, and
b is the rate of change from state 0 to state 2. The diagonal
elements give the rate of change away from state i ; these
numbers are negative because they are rates away from
a state.

The rate matrix carries the information for a complete
description of the substitution process. When the pro-
cess is in state i , an exponentially distributed amount of
time with parameter −qii passes until the next charac-
ter state transformation occurs. When the next character
state change occurs, we change to state j with probabil-
ity −(qi j/qii ). For example, if the process is currently in
state 1, then the second row of the matrix Q specifies the
rates of change for the next event of substitution. The
elements of only the second row of the rate matrix are

Q = {qi j } =
( · · ·

d −(c + d) c
· · ·

)
,

and an exponentially distributed amount of time with
parameter c + d passes until the next character state
change occurs. The rate matrix then specifies the relative
probabilities of the different changes. With probability
d/(c + d) the change is from 1 to 0, and with probability
c/(c + d) the change is from 1 to 2. If the next substitu-
tion is from 1 to 2, then the process starts over again. The
third row of the rate matrix is now the relevant one:

Q = {qi j } =
 · · ·
· · ·
e f −(e + f )

 ,

and an exponentially distributed amount of time with
parameter e + f passes until the next character change
occurs. The change is to state 0 with probability e/(e + f )
and to state 1 with probability f/(e + f ), and so on.
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The rate matrix also contains the information neces-
sary to calculate the transition probabilities and station-
ary distribution of the process. The transition probabil-
ities are the probability of the process ending in state j
after time v conditional on having started in state i . The
transition probabilities are critical to calculating the like-
lihood function for maximum likelihood and Bayesian
analyses of phylogeny and can be calculated by ex-
ponentiating the product of the rate matrix and time:
P(v) = {pi j (v)} = esQv . The stationary probability distri-
bution of the process is obtained by considering the
probabilities that the process ends in state j after a long
(infinite) period of time. When the Markov chain is at
stationarity, the process has “forgotten” its starting state;
the probability of finding the process in state j is inde-
pendent of its starting state. The stationary probability
of state i is denoted πi .

Modeling character change as a continuous-time
Markov process has a number of advantages. First, the
number of character state changes increases with time or
substitution rate, in contrast to the parsimony method,
which allows at most one character state transformation
along a single branch of a phylogeny. To illustrate this be-
havior, consider the simplest possible phylogeny: a tree
of two species where two different character states have
been observed in the two species. Moreover, consider a
simple continuous-time Markov chain that describes the
evolution of the character. This Markov chain has only
two states, with rate matrix

Q = {qi j } =
(−π1 π1

π0 −π0

)
µ,

where π0 and π1 are the stationary frequencies of states
0 and 1, respectively, and µ = 1/(2π0π1) is a scaling pa-
rameter that ensures divergence is measured in terms of
expected number of transformations per character (in-
stead of in units of time). This scaling is done because di-
vergence depends only upon the product of rate (Q) and
time (t). Unless the measures of one are independent,
the other cannot be determined, so time on the tree is
conveniently measured as divergence in characters. For
this matrix, the stationary frequencies have been built
into the rate matrix, as is a common practice for many
phylogenetic models.

In our example, we make the further restriction that
π0 = π1 = 1/2. The rate matrix is then

Q = {qi j } =
(−1 1

1 −1

)
,

and the number of character transformations over a
branch of length v is a Poisson-distributed random vari-
able with parameter v. (The number of character trans-
formations follows a Poisson distribution only when the
diagonals of the rate matrix are equal; for models of DNA
sequence substitution, this is true for the Jukes–Cantor
[1969] and Kimura [1980] models.) Figure 1 shows some

FIGURE 1. Patterns of character change on a tree of two species
when the observed character states differ and there are two possible
character states. In this situation, the observations at the tips of the tree
can only be explained with an odd number of changes.

possible character histories that could describe the pat-
tern of observations at the tip of the two-species tree.
Here, there can only be 1, 3, 5, etc., changes; the model al-
lows only two states, 0 or 1, which forces an odd number
of changes to explain the different states observed. If the
character states observed in the two species had been the
same, then 0, 2, 4, 6, etc., character changes would have
been necessary.

The probability of observing the data at the tips of the
tree, x (state 0 in the left species and state 1 in the right
species) conditional on the length of the two branches
(v; the total tree length is 2v) can be calculated in two
equivalent ways. The first way takes advantage of the
transition probabilities pi j (v),

f (x | v) = π0 p00(v)p01(v)+ π1 p10(v)p11(v),

and the probability of observing the data is averaged
over the two possible states at the root of the tree. The
other way takes advantage of the fact that, for this specific
case, the number of character changes follows a Poisson
distribution:

f (x | v) =
∞∑

i=0

(2v)i e−2v

i !
× z

(for this example, z = 1/2 when i is odd, and 0 otherwise).
The probability of observing the data is f (x | v = 0.1) =
0.082419988, f (x | v = 0.5) = 0.216166179, and f (x | v =
1.0) = 0.24542109 when the branch lengths are 0.1, 0.5,
and 1.0 expected character changes in length, respec-
tively. Table 1 shows the probability of observing the
data conditional on there having been i total changes.
When the branch length is small, the most-parsimonious
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TABLE 1. The probabilities of i changes for a tree of two species. The observed character states, x, are different for the two species, and there
are only two possible states for the character. In this case, there must be an odd number of changes. The length of the branch leading to each
species is v expected changes. The total tree length then is 2× v. Rates of change are the same for each character transformation. The probability
of observing the data at the tips of the tree conditioned on the branch length is f (x | v = 0.1) = 0.082419988, f (x | v = 0.5) = 0.216166179, and
f (x | v = 1.0) = 0.24542109; these numbers are obtained by integrating over all possible character histories.

i f (x | v = 0.1, i) f (x | v = 0.5, i) f (x | v = 1.0, i)

0 0.0 (0.00%) 0.0 (0.00%) 0.0 (0.00%)
1 0.081873075 (99.34%) 0.18393972 (85.09%) 0.135335283 (55.14%)
2 0.0 (0.00%) 0.0 (0.00%) 0.0 (0.00%)
3 0.000545820 (0.66%) 0.03065662 (14.18%) 0.090223522 (36.76%)
4 0.0 (0.00%) 0.0 (0.00%) 0.0 (0.00%)
5 0.000001092 (0.00%) 0.00153283 (0.71%) 0.018044704 (7.35%)
6 0.0 (0.00%) 0.0 (0.00%) 0.0 (0.00%)
7 <10−8 (0.00%) 0.00003649 (0.02%) 0.001718543 (0.70%)

reconstruction accounts for most of the total probabil-
ity; when v = 0.1, 99.34% of the probability is on the
most-parsimonious reconstruction. However, when the
branch length is long, then the most-parsimonious re-
construction is less probable. The most-parsimonious
reconstruction accounts for only 85.09% and 55.14% of
the probability when the branch lengths are 0.5 and 1.0,
respectively.

Ideally, one would like to randomly sample charac-
ter histories that are consistent with the observations at
the tips of a phylogenetic tree. Moreover, one would like
to do this for any continuous-time Markov process de-
scribing the evolution of the character on the tree (i.e., one
would not want to be limited to considering only Poisson
process models). Nielsen (2002) described a method for
sampling character histories consistent with the observa-
tions at the tips of the tree. The method takes advantage
of the description of the process as exponential waiting
times between events of character change. The method
works as follows. First, calculate the probabilities of the
ancestral states at each interior node on the phylogenetic
tree (Felsenstein, 1981). Using these probabilities, ran-
domly sample a combination of states for the ancestral
nodes on the tree. The states at either end of each branch
of the phylogeny are now fixed. The state at one end of
a branch is denoted i and the state at the other end is de-
noted j . Next, visit a branch on the phylogeny and sim-
ulate a realization of the substitution process that is con-
sistent with the states i and j . Specifically, starting with
state i at one end of the branch, simulate an exponen-
tially distributed random variable with parameter −qii .
When an event of character change occurs, the change is
to state k with probability −(qik/qii ). Generate exponen-
tial random variables until the next event of character
change exceeds the length of the branch, v (specifically,
the scaled branch length). If the state at the end of the pro-
cess is j , then a single realization of the Markov process
has been successfully generated for the branch. Other-
wise, the process is repeated until a realization consistent
with the beginning and ending states is made. Generat-
ing exponentially distributed random variables is easy.
Specifically, a uniformly distributed random variable, U,
on the interval (0, 1) can be converted to an exponentially
distributed random variable, T , using the transforma-
tion T = −1/λ ln(1−U), where λ is the rate parameter

of the exponential distribution. Nielsen (2002) pointed
out that computational efficiency can be improved when
the states at either end of the branch are not the same by
conditioning on there having been at least a single char-
acter change. Finally, repeat the process for all branches
on the tree. This procedure appears to be efficient when
the Markov chain does not have many character states.

Figure 2 shows 50 realizations of character histories for
the simple two-taxon tree. The rates of change differ for
the character mappings. For the 25 mappings to the left
of the vertical line in Figure 2, the tree length is 1.0. For
the 25 mappings to the right of the vertical line, the tree
length is 2.0. In many instances, the character mapping
is not the most-parsimonious one; in 4 of the 25 low-rate
cases and in 11 of the 25 high-rate cases, the character
history involves more than a single character change.

Priors on Tree Length and Transition Bias

Here, we restrict attention to two models of character
change, one appropriate for two-state and the other for
three-state characters. The matrix of instantaneous rates
for the two-state model is

Q = {qi j } =
(−π1 π1

π0 −π0

)
µ,

where µ = 1/(2π0π1), and the instantaneous rate matrix
for the three- state model is

Q = {qi j } =

−1 1/2 1/2
1/2 −1 1/2
1/2 1/2 −1

 .
Lewis (2001) suggested the use of such models for anal-
ysis of morphological characters; our three-state model
is identical to the M3 model of Lewis (2001). The transi-
tion probability matrices for these two models, obtained
by exponentiating the product of the rate matrix and the
branch length, are as follows:

P(v) = {pi j (v)} =
(
π0 + π1e−µv π1 − π1e−µv

π0 − π0e−µv π1 + π0e−µv

)
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FIGURE 2. Fifty random realizations of character histories consistent with the observations at the tips of the tree when there are two character
states with equal rates of change from ¥→ and ¤→¥. The tree length for the 25 realizations to the left of the line is one substitution, and the tree
length for the 25 realizations to the right of the line is two substitutions.

for the two-state model, where µ = 1/(2π0π1), and

P(v) = {pi j (v)} =


1
3 + 1

3 e−
3
2 v 1

3 − 1
3 e−

3
2 v 1

3 − 1
3 e−

3
2 v

1
3 − 1

3 e−
3
2 v 1

3 + 1
3 e−

3
2 v 1

3 − 1
3 e−

3
2 v

1
3 − 1

3 e−
3
2 v 1

3 − 1
3 e−

3
2 v 1

3 + 1
3 e−

3
2 v


for the three-state model. The two-state model allows
the rate of change to differ between the two states.
Ultimately, we are interested only in mappings of char-
acters consistent with the character states observed at
the tips of the tree, i.e., the probability distribution of
character histories, h, conditional on the observations, x.
This probability distribution is called the posterior prob-
ability distribution of character histories and can be ap-
proximated using the simulation scheme presented by
Nielsen (2002). However, to simulate character histories,
many other parameters must be fixed; these parame-
ters include the topology of the phylogenetic tree (τ ),
the branch lengths of the tree (v), and parameters of the
continuous-time Markov chain (here, there are the bias
parameters π0 and π1 for two-state models). Ideally, we
would accommodate uncertainty in all of the parameters.

Our general approach was to approximate the poste-
rior probability of the parameters of the model using the
Markov chain Monte Carlo method (MCMC; Metropolis
et al., 1953; Hastings, 1970; Mau 1996; Rannala and Yang,
1996; Mau and Newton, 1997; Yang and Rannala, 1997;
Larget and Simon, 1999; Mau et al., 1999). We then sim-
ulated character histories on the trees sampled using
the MCMC algorithm. We used MrBayes (version 3.0;
Huelsenbeck and Ronquist, 2001) to sample trees using
the MCMC procedure from the available DNA sequence

information. For all of the DNA sequence data sets ana-
lyzed in this study, we assumed the so-called HKY85+04
model of DNA substitution (Hasegawa et al., 1984, 1985).
This model allows transitions to occur at a different rate
than transversions, different stationary frequencies for
the nucleotides, and rate variation across sites. We mod-
eled rate variation across sites by assuming that the rate
at a site is a random variable drawn from a gamma distri-
bution with shape and scale parameters equal toα (Yang,
1993). Specifically, we used the discrete approximation of
the gamma distribution described by Yang (1994), break-
ing the gamma distribution into four categories. The out-
put of the program MrBayes is a file of trees that were
sampled by the chain with branch lengths in terms of ex-
pected number of nucleotide substitutions per site. We
discarded a fraction of the early trees sampled by the
MCMC algorithm as the burn-in of the chain. The frac-
tion of the time a tree is represented in the file is a valid
approximation of the posterior probability of the tree.

The branch lengths of the trees sampled by the MCMC
algorithm are relevant to the alignment of DNA se-
quences but not to the morphological characters we are
interested in. We rescaled the branch lengths of the trees
sampled by the MCMC procedure such that the total
tree length was 1.0. The branch length proportions from
the DNA sequence were maintained. The question of the
appropriate rate for the morphological characters was
then addressed. We adopted the approach advocated by
Schultz and Churchill (1999) in which prior probability
distributions are placed on the overall rate of change for
the morphological characters and on the bias parameter
(π0 or π1 for the two-state model). Specifically, we placed
a gamma prior on the rate of substitution and a beta prior
on the bias parameter. We explored the consequences of
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assuming different gamma priors on the mapping of the
characters.

Each stochastic mapping of a character, then, is pre-
ceeded by sampling a specific tree length and a specific
bias parameter. The tree length had a gamma prior in
all of our analyses. The gamma distribution has two pa-
rameters, the shape (α) and the scale (β). The mean of the
gamma distribution isα/β and the variance isα/β2. In the
following analyses, we tried different values for the mean
prior tree length and the SD of tree length. For example,
in at least one analysis we set the mean prior tree length
(T) to 10 and the SD to 1. We can obtain such a prior
on tree length by setting α = 100 and β = 10 (E[T] =
100/10 = 10 and SD[T] =

√
100/102 = 1). We then calcu-

lated the posterior probability distribution of tree length
using Bayes’s theorem to combine the gamma prior on
tree length with the character observations. Hence, even
though the prior mean of the tree length is E(T) = α/β,
the posterior mean may be smaller or larger. For example,
if the prior mean is set to a large number but the char-
acter of interest is invariable, then the posterior mean is
likely to be much smaller than the prior mean. The only
computational consideration is that it is very difficult
to calculate the posterior probability distribution of tree
length using a continuous gamma prior. We simplified
the problem by breaking the gamma distribution into 50
rate categories, thereby creating a discrete distribution
(Yang, 1994). Instead of picking from a continuous dis-
tribution, which is very difficult to do, we end up picking
from 1 of 50 rate categories. The mean rate for a category
was used to represent the tree length.

Once the tree length was sampled, we chose a bias
parameter from the (continuous) beta prior. Like the
gamma distribution, the beta distribution also has two
parameters. Unfortunately, these parameters also are
usually denoted α and β. The mean of the beta distri-
bution is α/(α + β), and the variance is αβ/(α + β)2(α +
β + 1). In all analyses, we used a “flat” beta distribution,
which has α = β = 1. We calculated the posterior prob-
ability distribution of the bias parameter on transition
rates by breaking the continuous beta distribution into
11 categories.

We accommodated uncertainty in parameters of the
evolutionary model using the method advocated by
Huelsenbeck et al. (2000). Specifically, for each tree and
set of branch lengths sampled by the MCMC algorithm,
we selected a rate category and, if appropriate, a bias
category from the posterior probability distribution for
the character. We then sampled ancestral character states
and mapped the character using the simulation method
described in the previous section. This process was re-
peated for all of the trees sampled. We can summarize
the results by examining the posterior probability dis-
tribution of the number of character transformations or
the expected value for the number of transformations.
Our estimates are not conditioned on any single tree be-
ing correct because the MCMC procedure assures that
trees are sampled according to their posterior proba-
bility. Moreover, many different character histories are

generated, one for each tree sampled using MCMC, so
our inferences do not rely on a single mapping of char-
acters, such as the most parsimonious character history.

Testing for Correlation

One question that naturally arises when considering
the history of more than one character is whether the
characters are correlated. This has been an area of ac-
tive research in statistical phylogenetics, and many ap-
proaches have been suggested for discrete (Pagel, 1994)
and continuous (Felsenstein, 1985) characters. Here, we
concentrate on correlation of discrete characters. Specif-
ically, we examine how often combinations of character
states in two characters are associated.

The following description illustrates the basis for our
test. Imagine that we have generated a realization of the
history for two characters. The states for character 1 are
denoted A, B, C , etc., and the states for character 2 are de-
noted a , b, c, etc. After following the procedure described
by Nielsen (2002) and outlined here, a realization of the
history for both characters is obtained. For any single re-
alization, the probability of finding the character in state
i is simply the fraction of the time that the character was
in state i over the phylogeny. Similarly, with a single real-
ization of the history for both characters, the probability
of finding state i of character 1 associated with state j of
character 2 can be calculated. The results for the realiza-
tions of the history for two characters, each of which has
three states, might be summarized as in Table 2. This ta-
ble has a simple interpretation. For this specific stochastic
realization of the history for both characters, state A was
associated with state a 10% of the time, state A was asso-
ciated with state b 17% of the time, state A was associated
with state c 9% of the time, state B was associated with
state a 8% of the time, and so on. Moreover, character
1 was in state A 36% of the time, in state B 39% of the
time, and in state C 25% of the time. The numbers along
the margins of this table, i.e., the marginal probability of
finding characters 1 or 2 in the various states, can be used
to make predictions about the frequency of association
for the two characters. Specifically, given the marginal
probabilities of finding character 1 in state i (p1[i]) and
character 2 in state j (p2[ j]) and assuming independence
of the characters, the probability of finding i associated
with j is simply p1(i)× p2( j). Following our example
of a single realization of two characters, each with three
states, the expected frequencies with which the states are
associated are given in Table 3.

TABLE 2. The realization of the history for two characters, each
with three states. Totals represent the marginal probabilities of finding
characters 1 and 2 in the various sates.

Character 1

Character 2 A B C Total

a 0.10 0.08 0.07 0.25
b 0.17 0.09 0.04 0.30
c 0.09 0.22 0.14 0.45
Total 0.36 0.39 0.25
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TABLE 3. Expected frequency of association for three states of two
characters. Totals represent the marginal probabilities of finding char-
acters 1 and 2 in the various states.

Character 1

Character 2 A B C Total

a 0.09 0.10 0.06 0.25
b 0.11 0.12 0.07 0.30
c 0.16 0.18 0.11 0.45
Total 0.36 0.39 0.25

Figure 3 shows five realizations of stochastic mappings
for two characters, both of which have two states: black
and white. The states appear to be correlated; the black
state for character 1 always is found in association with
the black state in character 2, and the white states are
also perfectly associated. This appearance is confirmed
by examining summaries of the character histories for
each of the five realizations.

The match between the observed association of charac-
ters states and the association expected if the characters
were independent can be summarized in a number of
ways. One would think that the covariance between the
characters would be adequate; unfortunately, the label-
ing for the characters states is completely arbitrary, and
the covariance has little meaning for this situation. Here,
we use a number of summary statistics. First, we exam-
ine the difference between the observed and expected
values for each combination of states in characters 1
and 2:

di j (τ, v, h1, h2) = a (o)
i j − a (e)

i j ,

where a (o)
i j is the observed coincidence of states i and j

and a (e)
i j is the expected coincidence of states i and

j . The value for di j is negative if states i and j are found
together less frequently than would be expected under
independence and positive if they are found together
more frequently than expected. The statistic di j depends
upon the tree, branch lengths, and character mappings
for characters 1 and 2 (h1 and h2). Second, we use an
overall measure of the disagreement between the ob-
served and expected associations of the states for the two
characters:

D(τ, v, h1, h2) =
n∑

i=1

m∑
j=1

∣∣di j (τ, v, h1, h2)
∣∣ ,

where n is the number of states for character 1 and m is
the number of states for character 2.

We treat the statistics di j and D as random variables;
they can differ from one realization of character map-
pings to another on a given tree and also can differ among
trees. We use the expected values of these test statistics,
calculated by summing over all trees and over multiple
realizations of character histories:

E(di j | X)

=
∑
τ

∫
v,h1,h2

di j (τ, v, h1, h2) f (τ, v, h1, h2 | X) dv dh1 dh2.

and

E(D | X)

=
∑
τ

∫
v,h1,h2

D(τ, v, h1, h2) f (τ, v, h1, h2 | X) dv dh1 dh2.

We approximate E(di j | X) and E(D | X) by using the
trees and branch lengths sampled using the MCMC pro-
cedure. Specifically, for each sampled tree, we generate
one mapping for characters 1 and 2, evaluating di j and
D. The average di j and D for all trees is an approxima-
tion of E(di j | X) and E(D | X). We use these approxima-
tions as test statistics and calculate the posterior predic-
tive P value for each test statistic.

The posterior predictive P value is calculated as fol-
lows. For each tree sampled in the original MCMC pro-
cedure, we simulate a large number of character histories
under the assumption that the two characters are inde-
pendent. The histories simulated in this manner may
not match the realized pattern of character states ob-
served at the tips of the tree. For the kth tree, we calculate
Ek(di j | X∗) and Ek(D | X∗) by averaging over many ran-
dom realizations of character histories for the two char-
acters. The posterior predictive P value is calculated over
all trees:

P = Pr [E(D | X∗) ≥ E(D | X)]

= 1
N

N∑
k=1

I [Ek(D | X∗) ≥ E(D | X)],

where (N is the number of sampled trees and I (·) is 1 if
Ek(D | X∗) ≥ E(D | X) and 0 otherwise. Thus, the poste-
rior predictive P value is the probability of a value for the
test statistic as extreme as was observed under a model
in which the characters evolve independent.

Figure 4 illustrates the simulation method we used to
approximate posterior predictive P values. The observed
value for the test statistic is averaged over all of the trees
sampled using the MCMC procedure. The predictive dis-
tribution is obtained by simulating two characters with
independent histories for each tree (and associated pa-
rameter values) sampled by the chain. We then calcu-
late the predicted value for each simulated data set ex-
actly as we calculated the test statistic for the observed
data. The only deviation in the procedure outlined in
Figure 4 (which is the ideal way to calculate the predic-
tive distribution) is that we did not go through a sec-
ond round of MCMC because it was unnecessary in this
study.

Data

We examined the utility of the methods described
here with three data sets. The first data set includes
34 species of aphids of the tribe Cerataphidini (Stern,
1998). Ten of the aphid species form horned soldiers,
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FIGURE 3. Five realizations of the histories for two characters. The characters (white and black) are mapped onto a tree with all of the branches
being equal in length. A gamma prior with expectation E(T) = 1 and an SD = 1 was assumed. The two characters appear to covary: The white
state from one character is frequently associated with the white character from the other character, and the black state from one character is
frequently associated with the black state from the other character. U= upper tree character; L= lower tree character. The observed matrix gives
the fraction of the time state i from one character was associated with state j from the other. The expected matrix gives the fraction of the time
the states should be associated if they were independent.
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FIGURE 4. An example of how posterior predictive P values are calculated for a test statistic, T . The observed value for the test statistic is
calculated by averaging over the posterior probability distribution of parameters. We use MCMC to draw parameter values from the posterior
probability distribution. The predictive distribution is calculated by simulating new data using parameter values from the posterior probability
distribution of parameters. Each simulated data set is treated exactly as was the original data. The predictive P value is the proportion of the
test statistics from the simulated data that exceed the observed value.

who are used for nest defense. Stern (1998) estimated
the phylogeny of the aphid tribe using mitochondrial
cytochrome oxidases I and II (COI and COII) sequences.
The phylogeny suggested a single origin and repeated
loss of horned soldiers in the tribe Cerataphidini. The
second data set includes 12 sea stars of the family As-
terinidae (Hart et al., 1997). Hart et al. (1997) examined
the phylogeny of the seastars using the mitochondrial

cytochrome oxidase I gene and five mitochondrial tRNA
genes (alanine, leucine, asparagine, glutamine, and pro-
line). Hart et al. (1997) examined a number of life-history
traits, but we concentrated on whether the larvae are
feeding or nonfeeding (see Cunningham, 1999). We also
examined the evolution of flower morphology and self-
incompatibility in the family Pontederiaceae (Kohn et al.,
1996; Graham et al., 1998). The phylogeny estimates for
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the Pontederiaceae were based on DNA sequences from
the chloroplast rbcL and ndhF genes.

RESULTS

Bayesian Analysis

We used MrBayes (version 3.0; Huelsenbeck and
Ronquist, 2001) to approximate the posterior probabil-
ities of trees for the aphid, seastar, and Pontederiaceae
data using the MCMC procedure. Posterior probabilities
were calculated under the HKY85 + 04 model of DNA
substitution. A single chain was run for 1,000,000 cycles
for each data set, and the states of the chain were sampled
every 100th cycle, for a total of 10,000 sampled trees and
substitution model parameter values. We also calculated
the maximum likelihood value for each data set under
the HKY85 + 04 model using PAUP* (Swofford, 2002),

FIGURE 5. The log likelihood of the states visited by the Markov
chain for the aphid COI and COII sequences. The likelihood is propor-
tional to the probability of observing the alignment of sequences (X )
conditional on the tree (τ ), branch lengths (v), transition/transversion
rate ratio (κ), base frequencies (π), and gamma shape parameter (α).
(a) Log likelihoods for all states visited by the chain, including the early
states visited by the chain before apparent stationarity was reached.
(b) Log likelihoods of states visited when the chain was near station-
arity. The dashed line indicates the maximum likelihood under the
HKY85 + 04 model.

which allowed us to evaluate how close the chain came to
the maximum likelihood values. Figure 5 shows plots of
the log likelihood over the course of the MCMC analysis
for the aphid data. The log likelihood was initially very
small because the chain was initiated with a random tree.
However, it rapidly increased as more reasonable param-
eter values were sampled, eventually reaching a plateau
near the maximum likelihood value (indicated by the
dashed line). Figure 6 shows the Bayesian majority rule
consensus tree for the aphid data. The majority rule con-
sensus tree is based on the last 8,000 trees sampled by the
Markov chain; the first 2,000 trees sampled by the chain
were discarded as the burn-in (that portion of the chain
sampled before apparent stationarity was reached). The
numbers at the interior branches of the tree of Figure 6
indicate the posterior probability of the clade. Figure 7
shows the majority rule consensus tree of Figure 6 drawn
as a phylogram. The lengths for each branch were aver-
aged over all trees that had the branch. Figures 8, 9, and
10 show plots of the log likelihood through time, a major-
ity rule consensus tree, and a majority rule phylogram,
respectively, for the seastars. Similarly, Figures 11, 12,
and 13 show plots of the log likelihood through time, a
majority rule consensus tree, and a majority rule phylo-
gram, respectively, for the Pontederiaceae. The trees for
the seastars and Pontederiaceae were based on the last
8,000 trees sampled by the chain.

The Bayesian analysis integrates over uncertainty in
the substitution model parameters. Table 4 shows the
mean and 95% credible interval for the tree length,
transition/transversion rate ratio, base frequencies, and
gamma shape parameter. Bayesian analysis requires the
specification of a prior on the parameters of the model.
Here, we considered all trees equally probable a priori
and placed a uniform(0,10) prior on branch lengths of
the tree. Moreover, the transition/transversion rate ratio
had a uniform(0,50) prior, the gamma shape parameter
had a uniform(0,50) prior, and the base frequencies had
a flat dirichlet(1,1,1,1) prior. As indicated in the figures
and in Table 4, these relatively flat priors were strongly
modified by the data; most of the posterior probability
density was focused on a relatively small number of trees
and on a narrow range of substitution model parameters.

Analysis of Character History

Figure 14 shows mappings of the horned-soldier caste
character on six arbitrarily chosen trees. The horned-
soldier caste is indicated by bold lines on the trees. Only
half of the six character mappings matched the numbers
of gains and losses that would be produced using the
parsimony method. Table 5 shows the posterior proba-
bilities for different numbers of gains and losses for two
different priors on the tree length. We considered two
priors: a low-rate prior with a mean tree length of 1 and
a high-rate prior with an average tree length of 10 charac-
ter transformations. The maximum posterior probability
estimate of the number of gains and losses is one gain
and two losses. This holds true for the low- and high-
rate priors. However, the 95% credible set of character
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FIGURE 6. The majority rule consensus tree of the 8,000 post-burn-in trees sampled by the Markov chain for the aphid data. The numbers at
the interior branches indicate the posterior probability of the clade. The distribution of aphid species with horned soldiers (solid squares) and
without horned soldiers (open squares) are shown along the tips of the tree.
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FIGURE 7. A phylogram of the majority rule consensus tree of the 8,000 post-burn-in trees sampled by the Markov chain for the aphid data.
The lengths of the branches are proportional to the mean of the posterior probability density for each branch. The bar indicates 0.05 expected
substitutions per site.
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FIGURE 8. The log likelihood of the states visited by the Markov
chain for the seastar mitochondrial sequences. The likelihood is propor-
tional to the probability of observing the alignment of sequences (X )
conditional on the tree (τ ), branch lengths (v), transition/transversion
rate ratio (κ), base frequencies (π ), and gamma shape parameter (α).
(a) Log likelihoods for all states visited by the chain, including the early
states visited by the chain before apparent stationarity was reached.
(b) Log likelihoods of states visited when the chain was near station-
arity. The dashed line indicates the maximum likelihood under the
HKY85 + 04 model.

mappings is larger for the high-rate prior (see Table 5).
The 95% credible set of reconstructions was obtained by
ordering the number of gains/losses from the highest
posterior probability to the lowest posterior probability.

TABLE 4. Parameter estimatesa for the three data sets under the HKY85 + 04 model: V = the tree length; κ = the transition/transversion
rate ratio; πA = the frequency of nucleotide A; πC = the frequency of nucleotide C; πG = the frequency of nucleotide G; πT = the frequency of
nucleotide T; α = the gamma shape parameter.

Parameter Pontederiaceae Aphids Seastars

V 0.31 (0.27, 0.35) 5.06 (4.11, 6.18) 5.02 (3.96, 6.10)
κ 5.59 (4.50, 6.94) 14.69 (11.19, 19.33) 10.28 (8.43, 12.34)
πA 0.291 (0.272, 0.311) 0.411 (0.384, 0.437) 0.356 (0.339, 0.372)
πC 0.175 (0.159, 0.191) 0.107 (0.098, 0.118) 0.262 (0.249, 0.274)
πG 0.211 (0.195, 0.228) 0.017 (0.014, 0.021) 0.099 (0.091, 0.106)
πT 0.323 (0.304, 0.344) 0.464 (0.441, 0.487) 0.283 (0.270, 0.296)
α 0.047 (0.002, 0.111) 0.206 (0.183, 0.231) 0.174 (0.159, 0.189)

aMean (95% credible interval).

Character mappings were included in the credible set,
starting from the highest posterior probability mapping,
until the cumulative probability was 0.95.

Prior probability densities were placed on the two pa-
rameters of the stochastic model of character change for
the aphid data. The first prior was a gamma prior on
the tree length. The other prior was a flat beta (1,1) dis-
tribution on the rate of loss of the horned-soldier caste.
In the course of mapping a character, both a gamma rate
category and a beta category were chosen from the poste-
rior probability distribution of rates and transformation
bias, respectively. Figure 15 shows the prior and poste-
rior probability distribution of choosing a rate and bias
category. For the low-rate prior on tree length, the poste-
rior probability was centered on a few of the highest rate
categories, whereas for the high-rate prior, the posterior
probability was more evenly spread among the 50 tree-
length categories. Thus, there is some information in the
morphological data about the rate of character transfor-
mation. We only considered an uninformative prior for
the bias in rate of gain/loss. The posterior probability
distribution for the bias parameter did not change if a
low- or high-rate prior was placed on tree length. As ex-
pected, the posterior probability distribution for the bias
parameter is consistent with a higher rate of loss than of
gain of the horned-soldier caste.

For the seastars, the reconstructions with the highest
posterior probability had four gains and no losses of the
larval feeding trait (Table 6). These reconstructions were
the same regardless of whether a low-rate or a high-rate
prior were placed on tree length, but the 95% credible set
was larger for the high-rate tree-length prior. Although
the reconstructions with the highest posterior probability
were highly skewed toward gains, the posterior proba-
bility was more evenly spread over reconstructions that
had a large number of gains and those that had a large
number of losses. Part of the reason for this can be seen in
the six character mappings shown in Figure 16. A large
fraction of the time, the ancestor of the group was re-
constructed as having larval feeding, in which case there
were more losses of the character than gains. Most of the
time, however, non-feeding larval was reconstructed as
being the ancestor, which forced more gains of the trait
than losses.

The more even reconstruction of gains and losses re-
sulted in a symmetrical posterior probability distribu-
tion for the bias parameter (Fig. 17). The probability
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FIGURE 9. The majority rule consensus tree of the 8,000 post-burn-in trees sampled by the Markov chain for the seastar data. The numbers
at the interior branches indicate the posterior probability of the clade. The distribution of seastar species with larval feeding (solid squares) and
without larval feeding (open squares) are shown along the tips of the tree.
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FIGURE 10. A phylogram of the majority rule consensus tree of the 8,000 post-burn-in trees sampled by the Markov chain for the seastar
data. The lengths of the branches are proportional to the mean of the posterior probability density for each branch. The bar indicates 0.1 expected
substitutions per site.
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TABLE 5. The probability distribution for the number of gains and losses for the aphid data. The maximum posterior probability estimates of
the number of gains and losses are underlined. The 95% credible set of reconstructions is indicated by the bold numbers. Results for the low-rate
prior on the tree length: E(T) = 1, SD(T) = 5. Results for the high-rate prior on the tree length: E(T) = 10, SD(T) = 10.

No. losses
No.
gains 0 1 2 3 4 5 6 7 8 9 10

Low-rate prior
0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000
1 0.000 0.050 0.292 0.071 0.035 0.004 0.003 0.001 0.001 0.001 0.000
2 0.003 0.013 0.019 0.112 0.042 0.030 0.005 0.004 0.001 0.001 0.001
3 0.003 0.002 0.003 0.008 0.054 0.029 0.022 0.006 0.002 0.001 0.001
4 0.003 0.000 0.001 0.001 0.002 0.028 0.017 0.012 0.003 0.002 0.001
5 0.001 0.001 0.000 0.000 0.001 0.002 0.018 0.010 0.009 0.001 0.002
6 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.009 0.007 0.004 0.001
7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.003 0.003 0.002
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.002
9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
High-rate prior

0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000
1 0.000 0.036 0.213 0.057 0.036 0.003 0.004 0.002 0.001 0.000 0.000
2 0.002 0.010 0.019 0.110 0.040 0.035 0.006 0.005 0.003 0.001 0.000
3 0.002 0.002 0.005 0.010 0.058 0.026 0.023 0.005 0.003 0.002 0.001
4 0.001 0.001 0.001 0.002 0.006 0.034 0.020 0.016 0.003 0.003 0.001
5 0.000 0.001 0.001 0.001 0.001 0.003 0.020 0.014 0.012 0.003 0.003
6 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.013 0.008 0.008 0.002
7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.006 0.006
8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.004 0.005
9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.004

10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

TABLE 6. The probability distribution for the number of gains and losses for the seastar data. The maximum posterior probability estimates of
the number of gains and losses are underlined. The 95% credible set of reconstructions is indicated by the bold numbers. Results for the low-rate
prior on the tree length: E(T) = 1, SD(T) = 5; 5% of the posterior probability lies outside of the table. Results for the high-rate prior on the tree
length: E(T) = 10, SD(T) = 10; 4% of the posterior probability lies outside of the table.

No. losses
No.
gains 0 1 2 3 4 5 6 7 8 9 10 11 12

Low-rate prior
0 0.000 0.000 0.000 0.010 0.037 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.000 0.000 0.000 0.005 0.008 0.037 0.005 0.000 0.000 0.000 0.000 0.000 0.000
2 0.000 0.045 0.007 0.003 0.004 0.006 0.022 0.005 0.000 0.000 0.000 0.000 0.000
3 0.000 0.002 0.025 0.005 0.003 0.004 0.007 0.014 0.002 0.000 0.000 0.000 0.000
4 0.202 0.027 0.005 0.012 0.006 0.003 0.003 0.005 0.008 0.001 0.000 0.000 0.000
5 0.038 0.099 0.024 0.004 0.008 0.004 0.003 0.002 0.003 0.004 0.001 0.000 0.000
6 0.002 0.022 0.050 0.013 0.004 0.005 0.003 0.003 0.001 0.001 0.001 0.000 0.000
7 0.000 0.001 0.011 0.028 0.008 0.003 0.003 0.001 0.000 0.000 0.001 0.001 0.000
8 0.000 0.000 0.001 0.008 0.012 0.004 0.001 0.002 0.000 0.000 0.000 0.001 0.000
9 0.000 0.000 0.000 0.000 0.003 0.006 0.002 0.002 0.001 0.000 0.000 0.000 0.000

10 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.001 0.000 0.001 0.001 0.000 0.001
11 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.000 0.000 0.000 0.000 0.000
12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.000

High-rate prior
0 0.000 0.000 0.000 0.006 0.028 0.004 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1 0.000 0.000 0.000 0.003 0.009 0.033 0.006 0.001 0.000 0.000 0.000 0.000 0.000
2 0.000 0.026 0.006 0.002 0.005 0.009 0.025 0.004 0.001 0.000 0.000 0.000 0.000
3 0.000 0.000 0.019 0.006 0.004 0.004 0.008 0.015 0.003 0.001 0.000 0.000 0.000
4 0.150 0.024 0.005 0.013 0.007 0.004 0.005 0.007 0.008 0.002 0.000 0.000 0.000
5 0.029 0.095 0.023 0.006 0.008 0.004 0.004 0.004 0.004 0.007 0.002 0.000 0.000
6 0.001 0.023 0.055 0.015 0.005 0.005 0.005 0.003 0.003 0.003 0.004 0.002 0.000
7 0.000 0.001 0.016 0.033 0.011 0.005 0.003 0.003 0.003 0.002 0.003 0.002 0.001
8 0.000 0.000 0.000 0.008 0.017 0.007 0.004 0.002 0.002 0.002 0.002 0.002 0.002
9 0.000 0.000 0.000 0.001 0.006 0.011 0.005 0.003 0.002 0.002 0.001 0.002 0.001

10 0.000 0.000 0.000 0.000 0.000 0.004 0.006 0.002 0.002 0.001 0.001 0.001 0.001
11 0.000 0.000 0.000 0.000 0.000 0.000 0.002 0.003 0.003 0.001 0.001 0.001 0.001
12 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.002 0.002 0.001 0.000 0.001
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TABLE 7. The values for the test statistics for the coincidence of floral morphologies with self-incompatibility. The results of the analysis were
largely robust to a range of priors for the tree lengths for character 1 (T1) and character 2 (T2).

Rate Prior Statistica

E(T1) SD(T1) E(T2) SD(T2) D d¥• d¥◦ d • d¥◦ d¤• d¤◦
1 1 1 1 0.219 0.054 −0.054 −0.031 0.031 −0.022 0.022

10 1 10 1 0.242 0.058 −0.058 −0.040 0.040 −0.018 0.018
10 50 10 50 0.205 0.048 −0.048 −0.033 0.033 −0.014 0.014
15 15 5 5 0.218 0.052 −0.052 −0.034 0.034 −0.017 0.017
15 5 5 5 0.225 0.054 −0.054 −0.036 0.036 −0.018 0.018
15 5 5 2 0.225 0.054 −0.054 −0.035 0.035 −0.019 0.019
20 10 20 10 0.225 0.053 −0.053 −0.038 0.038 −0.014 0.014
20 10 10 5 0.227 0.054 −0.054 −0.036 0.036 −0.017 0.017
30 20 30 20 0.212 0.049 −0.049 −0.033 0.033 −0.015 0.015
30 30 30 30 0.207 0.049 −0.049 −0.034 0.034 −0.014 0.014
50 50 50 50 0.195 0.046 −0.046 −0.031 0.031 −0.014 0.014

a¥= tristylous; = enantiostylous; ¤=monomorphic; •= self-incompatible; ◦= self-compatible.

FIGURE 11. The log likelihood of the states visited by the Markov
chain for the Pontederiaceae rbcL and ndhF sequences. The likelihood
is proportional to the probability of observing the alignment of se-
quences (X) conditional on the tree (τ ), branch lengths (v), transi-
tion/transversion rate ratio (κ), base frequencies (π ), and gamma shape
parameter (α). (a) Log likelihoods for all states visited by the chain, in-
cluding the early states visited by the chain before apparent stationarity
was reached. (b) Log likelihoods of states visited when the chain was
near stationarity. The dashed line indicates the maximum likelihood
under the HKY85 + 04 model.

distribution of the bias parameter was rather insensitive
to the rate prior placed on tree length. The low-rate prior
did not seem appropriate for the data because most of
the posterior probability mass was placed on high-rate
categories (Fig. 17).

Character Correlation

We analyzed the coincidence of the states for two
characters, flower morphology and self-incompatibility,
for the Pontederiaceae data (Kohn et al., 1996). The
tree length for each character was assumed to follow a
gamma prior distribution. We examined the robustness
of the results to a number of different gamma prior dis-
tributions for both characters (Tables 7, 8). The results
on covariation in the characters are largely robust to the
range of priors examined in this study.

We first examined the test statistic D, our overall mea-
sure of the disagreement between the observed and ex-
pected associations of the states for the two characters.
Table 7 shows the values of D for the 11 priors examined
in this study; D ranged from 0.195 to 0.242. The posterior
predictive P values for D also varied, from 0.832 to 0.952
(Table 8; Fig. 18). However, the D test statistic accounts
for association in all of the pairwise comparisons of states
and may mask strong associations between individual
characters. Examination of the test statistics di j provides
information on the nature of the covariation. Specifically,
tristylous flowers and self-incompatibility coincide more
frequently than expected by chance. The posterior pre-
dictive distributions for all of the test statistics examined
here are shown in Figure 18.

DISCUSSION

The parsimony method has been the only method
available for mapping characters onto a phylogenetic
tree. Here, we present an application of Nielsen’s (2002)
method for mapping characters under continuous-time
Markov models that is fundamentally different from the
parsimony method in that it does not share the fun-
damental flaws of the parsimony method for mapping
characters. For example, under continuous-time Markov
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FIGURE 12. The majority rule consensus tree of the 8,000 post-burn-in trees sampled by the Markov chain for the Pontederiaceae data. The
numbers at the interior branches indicate the posterior probability of the clade. The distribution of character states for floral morphology (squares)
and self-incompatibility (circles) are shown along the tips of the tree.
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FIGURE 13. A phylogram of the majority rule consensus tree of the 8,000 post-burn-in trees sampled by the Markov chain for the Pontederiaceae
data. The lengths of the branches are proportional to the mean of the posterior probability density for each branch. The bar indicates 0.005 expected
substitutions per site.

models, more than a single change is allowed on a branch
and the probability of a change on a branch increases with
its length. For the data sets analyzed in this study, the
most-parsimonious reconstructions (i.e., those involv-
ing the fewest number of changes) accounted for a rela-
tively small fraction of the total probability distribution
for number of changes (Fig. 19). This makes intuitive
sense: there is always the chance that histories other than

the most-parsimonious one produced the distribution of
character states in the taxa. Changes in excess of the par-
simonious reconstructions should not be considered ad
hoc as has been argued by Farris (1983); as shown here,
such changes are quite probable under simple yet rea-
sonable models of evolution.

This application of continuous-time Markov models to
morphological characters is not novel; the procedure has
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FIGURE 15. The posterior probability of being in a rate or bias cat-
egory for the low- and high-rate priors on the aphid data. The gamma
and beta categories were broken into 50 and 11 categories, respectively,
with equal weight on each category. The prior probability distribu-
tion, indicated by the dashed line, is flat across categories. The pa-
rameters of the beta distribution resulted in a flat (uniform) prior on
the bias parameter, π0. (a) Results for the low-rate prior on the tree
length: E(T) = 1, SD(T) = 5. (b) Results for the high-rate prior on the
tree length: E(T) = 10, SD(T) = 10.

been widely applied in other contexts. Stochastic mod-
els have been used to estimate ancestral states (Schluter,
1995; Schluter et al., 1997; Cunningham, 1999; Mooers
and Schluter, 1999; Pagel, 1999b; Schultz and Churchill,
1999) and to establish correlation in characters (Pagel,
1994, 1999a). More recently, Lewis (2001) argued that
phylogeny should be estimated using stochastic models

TABLE 8. The posterior predictive P values for the coincidence of floral morphologies with self-incompatibility. The results of the analysis
were largely robust to a range of priors for the tree lengths for character 1 (T1) and character 2 (T2).

Rate prior Pa

E(T1) SD(T1) E(T2) SD(T2) D d¥• d¥◦ d • d¥◦ d¤• d¤◦
1 1 1 1 0.922 0.972 0.027 0.043 0.956 0.050 0.949

10 1 10 1 0.853 0.966 0.033 0.066 0.933 0.145 0.854
10 50 10 50 0.922 0.987 0.012 0.014 0.985 0.087 0.912
15 15 5 5 0.847 0.970 0.029 0.068 0.931 0.123 0.876
15 5 5 5 0.832 0.969 0.030 0.071 0.928 0.133 0.866
15 5 5 2 0.810 0.952 0.047 0.072 0.927 0.162 0.837
20 10 20 10 0.903 0.985 0.014 0.028 0.971 0.150 0.849
20 10 10 5 0.854 0.976 0.023 0.061 0.938 0.124 0.875
30 20 30 20 0.948 0.992 0.007 0.017 0.982 0.068 0.931
30 30 30 30 0.932 0.989 0.010 0.022 0.977 0.095 0.904
50 50 50 50 0.952 0.993 0.006 0.016 0.983 0.059 0.940

a¥= tristylous; = enantiostylous; ¤=monomorphic; •= self-incompatible; ◦= self-compatible.

of morphological character change. Lewis’s ideas have
been implemented in computer software, and phylogeny
can now be estimated using morphological characters
in a Bayesian framework (Huelsenbeck and Ronquist,
2001). The method described here simply permits a more
detailed study of character history for morphological
characters.

We account for uncertainty in the phylogeny and other
phylogenetic parameters by averaging over all possible
values for the parameters, weighting each by its prob-
ability of being correct (Huelsenbeck et al., 2000). In a
Bayesian analysis, the joint posterior probability distri-
bution of all the parameters of the model is calculated.
The estimate of any single parameter is based on its
marginal posterior probability, which is calculated by in-
tegrating over the uncertainty in all of the other model
parameters. When mapping characters on a tree, there
are numerous sources of uncertainty, and a Bayesian ap-
proach seems natural: the tree, branch lengths, substitu-
tion model parameters, and character mappings all have
some degree of associated uncertainty. We calculated the
joint posterior probability distribution of all the parame-
ters and could then look at the marginal posterior prob-
ability distribution of specific parameters or summary
statistics.

There are numerous ways to summarize the results of
a Bayesian analysis, and we have explored only a few of
these. For example, a program such as MacClade (Maddi-
son and Maddison, 1992) could allow different stochastic
character mappings to be generated and explored. The
degree of homoplasy also can be summarized using the
method presented here. Chang and Kim (1996) suggested
a new measure of homoplasy appropriate for stochastic
models of character evolution. Their homoplasy mea-
sure was “the conditional probability that, given two
randomly chosen taxa share the same state, they are not
[identical by descent]” (Chang and Kim, 1996:194). The
states for two taxa are not identical by descent if there
are any transformations in the character along the path
from the most recent common ancestor of the two taxa
to the taxa themselves. The method proposed by Chang
and Kim (1996) was limited because it was applied only
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TABLE 9. The probability that the states for each pair of species are not identical by descent for the Pontederiaceae flower character of Kohn
et al. (1996). Only the probabilities of pairs of species that are coded the same for the character are shown. Self-comparisons, which are not
relevant, are indicated by a dash. The prior for tree length had a mean of E(T) = 1 and an SD of 1. The homoplasy measure, H, of Chang and
Kim (1996) is 0.78.

Species

Speciesa 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 — 0.93 0.77 0.90 0.90 0.90 0.90 0.90
2 — 0.68 0.95 0.99 0.67 0.71 0.71
3 — 0.90 0.90 0.90 0.90 0.90
4 — 0.71 0.71 0.71 0.71 0.71
5 — 0.92 0.67 0.93 0.66
6 — 0.94 0.73 0.14 0.76 0.14 0.94 0.94
7 — 0.94 0.94 0.95 0.94 0.79 0.92
8 — 0.90 0.99 0.68 0.35 0.36
9 — 0.99 0.95 0.90 0.90

10 — 1.00 0.99 0.99
11 — 0.14 0.76 0.14 0.94 0.94
12 — 0.67 0.92 0.66
13 — 0.22 0.72 0.94 0.94
14 — 0.22 0.95 0.95
15 — 0.67 0.89
16 — 0.72 0.72
17 —
18 — 0.31
19 —
20 — 0.94 0.94
21 — 0.79
22 —
23 — 0.66
24 —

a1 = Eichhornia azurea; 2 = Eichhornia heterosperma; 3 = Eichhornia paniculata; 4 = Eichhornia crassipes; 5 = Pontederia sagittata; 6 = Heteranthera oblongifolia;
7 = Monochoria vaginalis; 8 = Eichhornia meyeri; 9 = Hydrothrix gardneri; 10 = Heteranthera dubia; 11 = Heteranthera zosterifolia; 12 = Pontederia rotundifolia; 13 =
Heteranthera rotundifolia; 14=Heteranthera seubertiana; 15= Pontederia cordata var. cordata; 16= Eichhornia diversifolia; 17=Monochoria cyanea; 18= Eichhornia paradoxa;
19= Eichhornia sp.; 20=Heteranthera limosa; 21=Monochoria hastata; 22=Monochoria korsakovii; 23= Pontederia cordata var. ovalis; 24= Pontederia cordata var. lancifolia.

to a simple two-state model. With the method proposed
here, one can calculate the homoplasy measure by exam-
ining the history of character states for pairs of taxa, ask-
ing for each whether the states are identical by descent.
This process could be implemented on trees sampled
using the MCMC procedure, allowing the homoplasy
measure to incorporate uncertainty in the tree. We used
this approach for the Pontederiaceae flower morphology
and self-incompatibility characters of Kohn et al. (1996).
Tables 9 and 10 show the probabilities that pairs of
species with the same character state are not identical
by descent for the two characters. The homoplasy mea-
sure of Chang and Kim (1996) is H = 0.78 and H = 0.13
for the flower morphology and self-incompatibility char-
acters, respectively, indicating that flower morphology is
much more homoplastic than is self-incompatibility.

For many questions, explicitly mapping characters
onto a phylogenetic tree under a continuous-time
Markov model seems to obviate the need to examine an-
cestral states on phylogenies. Interest in ancestral states
on phylogenies seems to be driven mostly by the de-
sire to have a better idea of the history of a character
(Cunningham, 1999). Rarely are the ancestral states of
direct interest, except in a few studies (e.g., when recreat-
ing ancestral proteins for study in a laboratory; Malcolm
et al., 1990; Stackhouse et al., 1990; Adey et al., 1994;
Jermann et al., 1995; Chang and Donogue, 2000). Usu-
ally, the evolutionary biologist wants a picture of the his-
tory of the character on the tree. This history includes the
number of changes, the type of transformation, and the
timing of the transformation. Mapping characters on a

FIGURE 17. The posterior probability of being in a rate or bias cate-
gory for the low- and high-rate priors on the seastar data. The gamma
and beta categories were broken into 50 and 11 categories, respectively,
with equal weight on each category. The prior probability distribu-
tion, indicated by the dashed line, is flat across categories. The pa-
rameters of the beta distribution resulted in a flat (uniform) prior on
the bias parameter, π0. (a) Results for the low-rate prior on the tree
length: E(T) = 1, SD(T) = 5. (b) Results for the high-rate prior on the
tree length: E(T) = 10, SD(T) = 10.
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2003 HUELSENBECK ET AL.—MAPPING CHARACTERS 155

FIGURE 18. The posterior predictive probability distributions for analysis of covariation in the Kohn et al. (1996) Pontederiaceae data. In
reference to Figure 12, the states are 00 = ¥•; 01 = ¥◦; 10 = ¥•; 11 = ¥◦; 20 = ¤•; and 21 = ¤◦. The arrows indicate the observed value for the
test statistics.
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TABLE 10. The probability that the states for each pair of species are not identical by descent for the Pontederiaceae self-incompatibility
character of Kohn et al. (1996). Only the probabilities of pairs of species that are coded the same for the character are shown. Self-comparisons,
which are not relevant, are indicated by a dash. The prior for tree length had an mean of E(T) = 1 and an SD of 1. The homoplasy measure, H,
of Chang and Kim (1996) is 0.13.

Species

Speciesa 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

1 — 0.93 0.77 0.90 0.90 0.90 0.90 0.90
2 — 0.68 0.95 0.99 0.67 0.71 0.71
3 — 0.90 0.90 0.90 0.90 0.90
4 — 0.71 0.71 0.71 0.71 0.71
5 — 0.92 0.67 0.93 0.66
6 — 0.94 0.73 0.14 0.76 0.14 0.94 0.94
7 — 0.94 0.94 0.95 0.94 0.79 0.92
8 — 0.90 0.99 0.68 0.35 0.36
9 — 0.99 0.95 0.90 0.90

10 — 1.00 0.99 0.99
11 — 0.14 0.76 0.14 0.94 0.94
12 — 0.67 0.92 0.66
13 — 0.22 0.72 0.94 0.94
14 — 0.22 0.95 0.95
15 — 0.67 0.89
16 — 0.72 0.72
17 —
18 — 0.31
19 —
20 — 0.94 0.94
21 — 0.79
22 —
23 — 0.66
24 —

a1 = Eichhornia azurea; 2 = Eichhornia heterosperma; 3 = Eichhornia paniculata; 4 = Eichhornia crassipes; 5 = Pontederia sagittata; 6 = Heteranthera oblongifolia; 7 =
Monochoria vaginalis; 8= Eichhornia meyeri; 9=Hydrothrix gardneri; 10=Heteranthera dubia; 11=Heteranthera zosterifolia; 12= Pontederia rotundifolia; 13=Heteranthera
rotundifolia; 14 = Heteranthera seubertiana; 15 = Pontederia cordata var. cordata; 16 = Eichhornia diversifolia; 17 = Monochoria cyanea; 18 = Eichhornia paradoxa; 19 =
Eichhornia sp.; 20 = Heteranthera limosa; 21 =Monochoria hastata; 22 =Monochoria korsakovii; 23 = Pontederia cordata var. ovalis; 24 = Pontederia cordata var. lancifolia.

FIGURE 19. The probability distribution for the tree length un-
der the parsimony method and the stochastic method for the seastar
(a) and aphid (b) data.

tree is a direct way to visualize this history. Of course,
no single realization of a character history is likely to
be correct, so it makes sense to examine a large number
of character histories, each drawn from the probability
distribution of character mappings, and then try to sum-
marize features that are common among the histories.

We parameterized the model of character change in
a very specific way. Nucleotide sequences were used to
determine the probability distribution of trees and the
probability distribution of branch-length proportions.
However, other parameterizations are also possible. All
branch lengths could have been considered equal in
length. We also assumed a model of character change
in which each state can transform directly into any other.
However, one could also force the characters to change in
an ordered manner or allow rates to switch on or off over
the history of the tree (Tuffley and Steel, 1998; Galtier,
2001).

We suggest a very simple method for determining the
degree to which two characters covary, testing any co-
variation using posterior predictive P values. We only
examined one test statistic summarizing the disagree-
ment between the observed and expected coincidence
of character states. Other possibilities for test statistics
include the χ2 statistic or measures of linkage disequi-
librium. We also considered a permutation procedure for
testing the observed covariation in characters. However,
we did not present those results here because the results
for the analysis of the Pontederiaceae were the same
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when a permutation procedure was used and because
the simulation procedure we used guaranteed that the
characters were independent of one another, which was
more in keeping with the spirit of calculating posterior
predictive P values.
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