WO2015085956A1 - Processing method and device based on projection image - Google Patents

Processing method and device based on projection image Download PDF

Info

Publication number
WO2015085956A1
WO2015085956A1 PCT/CN2014/093811 CN2014093811W WO2015085956A1 WO 2015085956 A1 WO2015085956 A1 WO 2015085956A1 CN 2014093811 W CN2014093811 W CN 2014093811W WO 2015085956 A1 WO2015085956 A1 WO 2015085956A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
parameter
value
motion compensation
motion
Prior art date
Application number
PCT/CN2014/093811
Other languages
French (fr)
Chinese (zh)
Inventor
许春景
黎伟
刘健庄
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2015085956A1 publication Critical patent/WO2015085956A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3191Testing thereof
    • H04N9/3194Testing thereof including sensor feedback
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3179Video signal processing therefor
    • H04N9/3185Geometric adjustment, e.g. keystone or convergence

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Projection Apparatus (AREA)
  • Transforming Electric Information Into Light Information (AREA)
  • Image Processing (AREA)

Abstract

The present invention is applicable to the field of image processing, and provided are a processing method and device based on a projection image. The method comprises: acquiring a secondary imaging image of a projection image on a projection surface in an imaging device, wherein the projection image is formed by a preset reference image being projected on the projection surface, and reference identification points are preset on the reference image; acquiring secondary image identification points in the secondary imaging image; acquiring a distortion coefficient according to the change of the location parameters of the secondary image identification points in the secondary imaging image based on the location parameters of the reference identification points in the reference image; and modifying an image to be projected according to the distortion coefficient. Thus, the processed projection image is less distorted or not distorted at all so as to improve an image projection device's adaptive capability to the environment.

Description

一种基于投影图像的处理方法及装置Processing method and device based on projection image 技术领域Technical field
本发明实施例涉及图像处理领域,尤其涉及一种基于投影图像的处理方法及装置。Embodiments of the present invention relate to the field of image processing, and in particular, to a processing method and apparatus based on a projected image.
背景技术Background technique
投影显示是当前人们在日常工作和生活中都应用广泛的一种显示方式,它以投影图像的大小可调、投影表面的自由灵活选取、以及投影设备的自由移动性等诸多优点而被大众喜爱。传统的投影显示一般采用吊装式或台置的固定式设置,且有固定的投影表面,随着科技的发展,投影仪越来越小越来越可以自由灵活的移动设置,比如可穿戴投影设备就可以配置在人的身体上,这使得投影环境中不确定性因素增加,投影设备与投影表面之间的角度变化以及投影表面的凹凸不平都会导致投影图像的失真,如何处理这种图像失真尤其重要。现有技术提供了一种投影设备,包括投影机、投影表面和摄像头,投影机在某一媒介上投影出可交互界面,用户通过特定手势对该界面进行交互操作,手势由摄像头采集捕获传给计算设备进行识别,根据识别结果驱动设备完成相应动作,但是,由于事先不知道投影表面的具体位置,投影机和投影表面的角度可能会经常变化,这种复杂的投影环境会导致投影出来的图像产生较大的投影形变,使显示图像失真。Projection display is a display method widely used by people in daily work and life. It is popular with many advantages such as adjustable size of projected image, free and flexible selection of projection surface, and free mobility of projection equipment. . The traditional projection display generally adopts a fixed type of ceiling-mounted or table-mounted, and has a fixed projection surface. With the development of technology, the projector is getting smaller and smaller and more and more flexible and movable, such as a wearable projection device. It can be placed on the human body, which increases the uncertainty in the projection environment. The angle change between the projection device and the projection surface and the unevenness of the projection surface can cause distortion of the projected image. How to deal with such image distortion, especially important. The prior art provides a projection device, including a projector, a projection surface, and a camera. The projector projects an interactive interface on a medium, and the user interacts with the interface through a specific gesture, and the gesture is captured and captured by the camera. The computing device recognizes and drives the device to complete the corresponding action according to the recognition result. However, since the specific position of the projection surface is not known in advance, the angles of the projector and the projection surface may change frequently, and the complicated projection environment may result in the projected image. A large projection distortion is generated to distort the displayed image.
发明内容Summary of the invention
本发明实施例提供一种基于投影图像的处理方法及装置,在投影环境不稳定造成投影图像失真的情况下,对由此造成的图像失真进行校正处理。Embodiments of the present invention provide a processing method and apparatus based on a projected image, which corrects image distortion caused by the projection image when the projection environment is unstable and the projection image is distorted.
第一方面,本发明提供了一种基于投影图像的处理方法,包括如下方法:In a first aspect, the present invention provides a processing method based on a projected image, comprising the following method:
获取投影表面上的投影图像在成像设备中的二次成像图像,所述投影图像为由投影设备将预设的参考图像投射至所述投影表面上所成的图像,所述预设的参考图像中设置有参考标识点,所述参考标识点经投影后在所述投影图像中形成一次像标识点;所述一次像标识点在所述二次成像图像中形成的像点为二次像标识点;Obtaining a secondary image of the projection image on the projection surface in the imaging device, the projection image being an image formed by the projection device projecting the preset reference image onto the projection surface, the preset reference image Providing a reference identification point, wherein the reference identification point is formed to form an image identification point in the projection image; and the image point formed by the primary image identification point in the secondary imaging image is a secondary image identifier point;
获取所述二次成像图像中的二次像标识点;Obtaining a secondary image identification point in the secondary imaging image;
根据所述二次像标识点的位置参数相对于所述参考标识的位置参数的变化来获取失真系数;所述二次像标识点的位置参数为所述二次像标识点在所述二次成像图像中的位置参数,所述参考标识点的位置参数为所述参考标识点在所述参考图像中的位置参数;Obtaining a distortion coefficient according to a change of a position parameter of the secondary image identification point with respect to a position parameter of the reference identifier; a position parameter of the secondary image identification point is the secondary image identification point in the second a position parameter in the image, the position parameter of the reference mark is a position parameter of the reference mark in the reference image;
根据所述失真系数对待投影图像进行失真修正。Distortion correction is performed on the image to be projected according to the distortion coefficient.
结合第一方面,在第一方面的第一种可能的实现方式中,所述预设的参考图像为参考红外网格线,所述参考标识点为所述参考红外网格线中不同方向的网格线的交点;对应地,所述投影设备为红外投影设备,所述成像设备为红外滤镜摄像装置;With reference to the first aspect, in a first possible implementation manner of the first aspect, the preset reference image is a reference infrared grid line, where the reference identifier point is in different directions in the reference infrared grid line Correspondingly, the projection device is an infrared projection device, and the imaging device is an infrared filter camera device;
所述获取投影表面上的投影图像在成像设备中的二次成像图像包括:The acquiring the secondary image of the projection image on the projection surface in the imaging device comprises:
获取投影表面上的投影图像经所述红外滤镜摄像头所形成的二次红外网格线;Obtaining a secondary infrared grid line formed by the infrared filter camera by the projection image on the projection surface;
所述获取所述二次成像图像中的二次像标识点包括:The acquiring the secondary image identification points in the secondary imaging image includes:
获取所述二次红外网格线中不同方向的网格线的交点,所述不同方向的网 格线的交点为所述二次像标识点。Obtaining intersections of grid lines in different directions in the secondary infrared grid lines, the different directions of the network The intersection of the grid lines is the secondary image identification point.
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述根据所述二次像标识点在所述二次成像图像中的位置参数相对于所述参考标识点在所述参考图像中的位置参数的变化来获取失真系数具体包括:通过以下公式获取所述失真系数
Figure PCTCN2014093811-appb-000001
In conjunction with the first aspect, or the first possible implementation of the first aspect, in a second possible implementation of the first aspect, the determining, according to the secondary image identification point, in the secondary image Obtaining the distortion coefficient of the position parameter relative to the change of the position parameter of the reference identification point in the reference image comprises: obtaining the distortion coefficient by using the following formula
Figure PCTCN2014093811-appb-000001
Figure PCTCN2014093811-appb-000002
Figure PCTCN2014093811-appb-000002
Figure PCTCN2014093811-appb-000003
Figure PCTCN2014093811-appb-000003
其中,R为失真系数,所述
Figure PCTCN2014093811-appb-000004
为所述参考图像在仿射变换中形成的矩阵,其中r11,r12,r13,r21,r22,r23为仿射变化中的参数,所述xi和所述yi为所述二次像标识点在所述二次成像图像中的横坐标值和纵坐标值,则所述(xi,yi)为二次像标识点的坐标值;所述xi′和所述yi′为所述参考标识点在所述参考图像中的横坐标值和纵坐标值,则所述(xi′,yi′)为参考标识点的坐标值;所述仿射变换过程为所述参数r11,r12,r21,r22与所述二次像标识点(xi,yi)进行一次线性变换,并接上平移参数r13,r23变换为所述参考标识点(xi′,yi′);公式(2)为由公式(1)变换构成的线性方程组,由所述公式(2)计算得到所述仿射变换失真系数R。
Where R is the distortion coefficient,
Figure PCTCN2014093811-appb-000004
a matrix formed in the affine transformation of the reference image, wherein r 11 , r 12 , r 13 , r 21 , r 22 , r 23 are parameters in an affine change, and the x i and the y i are And the (x i , y i ) is a coordinate value of the secondary image identification point; the x i ′ and the horizontal coordinate value and the ordinate value in the secondary image. The y i ' is an abscissa value and an ordinate value of the reference identification point in the reference image, and the (x i ', y i ') is a coordinate value of a reference identification point; the affine The transformation process performs a linear transformation of the parameters r 11 , r 12 , r 21 , r 22 and the secondary image identification point (x i , y i ), and is coupled with the translation parameter r 13 , r 23 The reference identification point (x i ', y i ') is described; the formula (2) is a linear equation group composed of the transformation of the formula (1), and the affine transformation distortion coefficient R is calculated by the formula (2).
结合第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,所述根据所述失真系数对所述待投影图像进行修正包括:In conjunction with the second possible implementation of the first aspect, in a third possible implementation manner of the first aspect, the modifying the image to be projected according to the distortion coefficient includes:
通过如下公式对待投影图像进行失真修正:The distortion correction is performed on the projected image by the following formula:
Figure PCTCN2014093811-appb-000005
Figure PCTCN2014093811-appb-000005
其中,R为失真系数,所述
Figure PCTCN2014093811-appb-000006
Figure PCTCN2014093811-appb-000007
为将待投影图像根据失真系数R进行修正后的图像像素坐标点
Figure PCTCN2014093811-appb-000008
的横坐标值和纵坐标值,所述xi和yi为待投影图像原始像素坐标点(xi,yi)的横坐标值和纵坐标值。
Where R is the distortion coefficient,
Figure PCTCN2014093811-appb-000006
with
Figure PCTCN2014093811-appb-000007
Image pixel coordinate point for correcting the image to be projected according to the distortion coefficient R
Figure PCTCN2014093811-appb-000008
The abscissa value and the ordinate value, the x i and y i are the abscissa value and the ordinate value of the original pixel coordinate point (x i , y i ) of the image to be projected.
结合第一方面及第一方面的第一种可能的实现方式至第一方面的第三种可能的实现方式中的任意一种方式,在第一方面的第四种可能的实现方式中,在所述根据所述二次像标识点的位置参数基于所述参考标识的位置参数的变化来获取失真系数之后,所述方法还包括:根据所述失真系数对所述参考图像进行修正;In combination with the first aspect and the first possible implementation of the first aspect to any one of the third possible implementations of the first aspect, in a fourth possible implementation of the first aspect, After the obtaining the distortion coefficient based on the change of the position parameter of the secondary image identification point based on the change of the position parameter of the reference image, the method further includes: correcting the reference image according to the distortion coefficient;
具体通过如下公式对参考图像进行失真修正:The distortion correction is performed on the reference image by the following formula:
Figure PCTCN2014093811-appb-000009
Figure PCTCN2014093811-appb-000009
其中,R为失真系数,所述
Figure PCTCN2014093811-appb-000010
Figure PCTCN2014093811-appb-000011
为将所述参考图像根据失真系数R进行修正后的图像像素坐标点
Figure PCTCN2014093811-appb-000012
的横坐标值和纵坐标值,所述xk和yk为所述参考图像的原始像素坐标点(xk,yk)的横坐标值和纵坐标值。
Where R is the distortion coefficient,
Figure PCTCN2014093811-appb-000010
with
Figure PCTCN2014093811-appb-000011
Image pixel coordinate point for correcting the reference image according to the distortion coefficient R
Figure PCTCN2014093811-appb-000012
An abscissa value and an ordinate value, the x k and y k being an abscissa value and an ordinate value of the original pixel coordinate point (x k , y k ) of the reference image.
结合第一方面的第四种可能的实现方式,在第一方面的第五种可能的实现方式中,在所述根据所述失真系数对所述参考图像进行修正之后,所述方法还包括:With the fourth possible implementation of the first aspect, in a fifth possible implementation manner of the first aspect, after the correcting the reference image according to the distortion coefficient, the method further includes:
获取所述投影设备在将所述参考图像投射至所述投影表面上形成投影图像时的运动参数;Obtaining a motion parameter of the projection device when projecting the reference image onto the projection surface to form a projected image;
根据所述运动参数获得运动补偿参数;Obtaining a motion compensation parameter according to the motion parameter;
根据所述运动补偿参数对所述经过失真修正的图像进行反向运动补偿;所述经过失真修正后的图像包括修正的待投影图像,或修正的参考图像。Performing inverse motion compensation on the distortion-corrected image according to the motion compensation parameter; the distortion-corrected image includes a corrected image to be projected, or a corrected reference image.
结合第一方面的第五种可能的实现方式,在第一方面的第六种可能的实现 方式中,所述根据所述运动参数获得运动补偿参数前,进一步包括:In conjunction with the fifth possible implementation of the first aspect, the sixth possible implementation in the first aspect In the mode, before the obtaining the motion compensation parameter according to the motion parameter, the method further includes:
对所述二次成像图像进行运动估计得到初步运动补偿值;Performing motion estimation on the secondary imaging image to obtain a preliminary motion compensation value;
所述根据所述运动参数获得运动补偿参数包括:The obtaining motion compensation parameters according to the motion parameter includes:
结合所述运动参数和所述初步运动补偿值获取运动补偿参数。A motion compensation parameter is acquired in conjunction with the motion parameter and the preliminary motion compensation value.
结合第一方面的第五种可能的实现方式,在第一方面的第七种可能的实现方式中,所述根据所述运动参数获得运动补偿参数包括:In conjunction with the fifth possible implementation of the first aspect, in a seventh possible implementation manner of the first aspect, the obtaining the motion compensation parameter according to the motion parameter includes:
结合所述运动参数对所述二次成像图像进行运动估计得到运动补偿参数。Motion estimation is performed on the secondary imaging image in conjunction with the motion parameter to obtain a motion compensation parameter.
结合第一方面的第六种可能的实现方式,在第一方面的第八种可能的实现方式中,所述结合所述运动参数和初步运动补偿值获取运动补偿参数包括:In conjunction with the sixth possible implementation of the first aspect, in an eighth possible implementation manner of the first aspect, the obtaining the motion compensation parameter by combining the motion parameter and the preliminary motion compensation value includes:
所述运动参数为由加速度传感器直接获取的第一运动补偿值;The motion parameter is a first motion compensation value directly acquired by the acceleration sensor;
对所述二次成像图像进行运动估计得到初步运动补偿值;Performing motion estimation on the secondary imaging image to obtain a preliminary motion compensation value;
将所述第一运动补偿值和所述初步运动补偿值进行加权平均得到运动补偿参数,具体通过如下公式实现:The first motion compensation value and the preliminary motion compensation value are weighted and averaged to obtain a motion compensation parameter, which is specifically implemented by the following formula:
M=α*M1+(1-α)*M2   (5)M=α*M 1 +(1-α)*M 2 (5)
其中,M是运动补偿参数,M1是初步运动补偿值,M2是第一运动补偿值,所述
Figure PCTCN2014093811-appb-000013
所述
Figure PCTCN2014093811-appb-000014
所述
Figure PCTCN2014093811-appb-000015
Figure PCTCN2014093811-appb-000016
所述
Figure PCTCN2014093811-appb-000017
Figure PCTCN2014093811-appb-000018
所述txi和tyi为所述二次成像图像中的二次像标识点横坐标和纵坐标在相邻两帧中的位置差,所述N为每一帧中所述二次像标识点的数量;所述
Figure PCTCN2014093811-appb-000019
Figure PCTCN2014093811-appb-000020
所述
Figure PCTCN2014093811-appb-000021
Figure PCTCN2014093811-appb-000022
所述txj和tyj为所述参考图像中的参考标识点横坐标和纵坐标在相邻两帧中的位置差,所述H为每一帧中所述参考标识点的数量;α为在所述M1和所述M2之间取值比重的经验值,所述α的取值范围为0≤α≤1。
Where M is a motion compensation parameter, M 1 is a preliminary motion compensation value, and M 2 is a first motion compensation value,
Figure PCTCN2014093811-appb-000013
Said
Figure PCTCN2014093811-appb-000014
Said
Figure PCTCN2014093811-appb-000015
for
Figure PCTCN2014093811-appb-000016
Said
Figure PCTCN2014093811-appb-000017
for
Figure PCTCN2014093811-appb-000018
The tx i and ty i are positional differences between the abscissa and the ordinate of the secondary image identification point in the secondary image, and the N is the secondary image identifier in each frame. Number of points;
Figure PCTCN2014093811-appb-000019
for
Figure PCTCN2014093811-appb-000020
Said
Figure PCTCN2014093811-appb-000021
for
Figure PCTCN2014093811-appb-000022
The tx j and ty j are positional differences between the abscissa and the ordinate of the reference mark in the reference image in the adjacent two frames, and the H is the number of the reference mark points in each frame; An empirical value of the specific gravity is taken between the M 1 and the M 2 , and the value of α is in the range of 0 ≤ α ≤ 1.
结合第一方面的第七种可能的实现方式,在第一方面的第九种可能的实现 方式中,所述运动参数为加速度传感器所感测到的所述投影设备在X轴和Y轴方向位移的分量值u和v,所述结合所述运动参数对所述二次成像图像进行运动估计得到运动补偿参数M具体通过如下公式来实现:In conjunction with the seventh possible implementation of the first aspect, the ninth possible implementation in the first aspect In one mode, the motion parameter is a component value u and v of the projection device sensed by the acceleration sensor in the X-axis and Y-axis directions, and the motion parameter is used to estimate the motion of the secondary imaging image. The motion compensation parameter M is obtained by the following formula:
Figure PCTCN2014093811-appb-000023
Figure PCTCN2014093811-appb-000023
Figure PCTCN2014093811-appb-000024
Figure PCTCN2014093811-appb-000024
Figure PCTCN2014093811-appb-000025
Figure PCTCN2014093811-appb-000025
其中txi和tyi为所述二次成像图像中的二次像标识点横坐标和纵坐标在相邻两帧中的位置差,所述N为每一帧二次成像图像中所述二次像标识点的取点数量,其中u和v为所述运动参数,即由加速度传感器所感测到的所述投影设备在的X、Y方向位移的分量值,β为在
Figure PCTCN2014093811-appb-000026
Figure PCTCN2014093811-appb-000027
之间的取值比重的经验值,所述β的取值范围为0≤β≤1。
Where tx i and ty i are the positional differences between the abscissa of the secondary image identification point and the ordinate in the adjacent two frames in the secondary imaging image, and the N is the second in the secondary imaging image of each frame The number of points of the secondary image identification point, where u and v are the motion parameters, that is, the component values of the displacement of the projection device in the X and Y directions sensed by the acceleration sensor, β is
Figure PCTCN2014093811-appb-000026
with
Figure PCTCN2014093811-appb-000027
The empirical value of the ratio between the values, the value of β is 0 ≤ β ≤ 1.
结合第一方面的第五种可能的实现方式至第一方面的第九种可能的实现方式中的任意一种方式,在第一方面的第十种可能的实现方式中,根据所述运动补偿参数对所述经过失真修正的待投影图像进行运动补偿,具体通过如下公式实现:With reference to the fifth possible implementation of the first aspect to any one of the ninth possible implementation manners of the first aspect, in the tenth possible implementation manner of the first aspect, The parameter performs motion compensation on the distortion-corrected image to be projected, which is specifically implemented by the following formula:
Figure PCTCN2014093811-appb-000028
Figure PCTCN2014093811-appb-000028
其中,所述
Figure PCTCN2014093811-appb-000029
Figure PCTCN2014093811-appb-000030
为将待投影图像根据失真系数R进行修正后的图像像素点坐标的横坐标值和纵坐标值,所述
Figure PCTCN2014093811-appb-000031
Figure PCTCN2014093811-appb-000032
为将经过失真修正后的图像像素点进行反向运动补偿后的图像像素点坐标的横坐标值和纵坐标值,其中
Figure PCTCN2014093811-appb-000033
为运动补偿参数M。
Wherein said
Figure PCTCN2014093811-appb-000029
with
Figure PCTCN2014093811-appb-000030
For the abscissa value and the ordinate value of the image pixel point coordinates corrected by the distortion coefficient R of the image to be projected,
Figure PCTCN2014093811-appb-000031
with
Figure PCTCN2014093811-appb-000032
The abscissa value and the ordinate value of the image pixel point coordinates after the inverse motion compensation of the image pixel point after the distortion correction is performed, wherein
Figure PCTCN2014093811-appb-000033
The parameter M is compensated for the motion.
结合第一方面的第五种可能的实现方式至第一方面的第十种可能的实现方式中的任意一种方式,在第一方面的第十一种可能的实现方式中,根据所述运动补偿参数M对所述经过失真修正的参考图像进行运动补偿,具体通过如下公式实现:In conjunction with the fifth possible implementation of the first aspect to any one of the tenth possible implementations of the first aspect, in an eleventh possible implementation of the first aspect, The compensation parameter M performs motion compensation on the distortion-corrected reference image, which is specifically implemented by the following formula:
Figure PCTCN2014093811-appb-000034
Figure PCTCN2014093811-appb-000034
其中,所述
Figure PCTCN2014093811-appb-000035
Figure PCTCN2014093811-appb-000036
为所述参考图像根据失真系数R进行修正后的图像像素点坐标的横坐标值和纵坐标值,所述
Figure PCTCN2014093811-appb-000037
Figure PCTCN2014093811-appb-000038
为将经过失真修正后的图像像素点进行反向运动补偿后的图像像素点坐标的横坐标值和纵坐标值,其中
Figure PCTCN2014093811-appb-000039
为运动补偿参数M。
Wherein said
Figure PCTCN2014093811-appb-000035
with
Figure PCTCN2014093811-appb-000036
An abscissa value and an ordinate value of the image pixel point coordinates corrected according to the distortion coefficient R for the reference image,
Figure PCTCN2014093811-appb-000037
with
Figure PCTCN2014093811-appb-000038
The abscissa value and the ordinate value of the image pixel point coordinates after the inverse motion compensation of the image pixel point after the distortion correction is performed, wherein
Figure PCTCN2014093811-appb-000039
The parameter M is compensated for the motion.
结合第一方面及第一方面的第五种可能的实现方式至第一方面的第十一种可能的实现方式中的任意一种方式,在第一方面的第十二种可能的实现方式中,所述成像设备至少为两个,以构成立体视觉系统;In combination with the first aspect and the fifth possible implementation of the first aspect to any one of the eleventh possible implementations of the first aspect, in a twelfth possible implementation of the first aspect The imaging device is at least two to form a stereo vision system;
所述获取所述二次成像图像中的二次像标识点具体包括:The acquiring the secondary image identification point in the secondary imaging image specifically includes:
通过所述立体视觉系统获取投影图像中的三维参数;并将所述三维参数拟合成一个平面,将所述三维参数垂直映射到所述平面,得到二维坐标点,所述二维坐标点为所述二次像标识点。Obtaining a three-dimensional parameter in the projected image by the stereo vision system; and fitting the three-dimensional parameter into a plane, vertically mapping the three-dimensional parameter to the plane, to obtain a two-dimensional coordinate point, the two-dimensional coordinate point Identify points for the secondary image.
结合第一方面的第十二种可能的实现方式,在第一方面的第十三种可能的实现方式中,在所述根据所述失真系数对待投影图像进行失真修正之后所述方法还包括:根据投影设备到投影表面的距离D调整投影设备的焦距,具体通过如下公式来实现: In conjunction with the twelfth possible implementation of the first aspect, in a thirteenth possible implementation manner of the first aspect, after the performing distortion correction on the image to be projected according to the distortion coefficient, the method further includes: Adjusting the focal length of the projection device according to the distance D from the projection device to the projection surface, specifically by the following formula:
Figure PCTCN2014093811-appb-000040
Figure PCTCN2014093811-appb-000040
其中,所述s0为投影设备液晶片尺寸,所述s1为图像大小的经验参考值,所述
Figure PCTCN2014093811-appb-000041
即取N个二次像标识点的三维坐标值中的z值并对所述z值求平均得到距离D。
Wherein the s 0 is a liquid crystal size of the projection device, and the s 1 is an empirical reference value of the image size,
Figure PCTCN2014093811-appb-000041
That is, the z value in the three-dimensional coordinate values of the N secondary image identification points is taken and the z values are averaged to obtain the distance D.
第二方面,本发明提供了一种基于投影图像的处理装置,所述装置包括:In a second aspect, the present invention provides a processing apparatus based on a projected image, the apparatus comprising:
成像获取单元,用于获取投影表面上的投影图像在成像设备中的二次成像图像,所述投影图像为由投影设备将预设的参考图像投射至所述投影表面上所成的图像,所述预设的参考图像中设置有参考标识点,所述参考标识点经投影后在所述投影图像中形成一次像标识点;所述一次像标识点在所述二次成像图像中形成的像点为二次像标识点;An imaging acquiring unit, configured to acquire a secondary imaging image of the projection image on the projection surface in the imaging device, wherein the projection image is an image formed by the projection device projecting the preset reference image onto the projection surface, a reference identification point is disposed in the preset reference image, and the reference identification point is projected to form an image identification point in the projection image; the image formed by the primary image identification point in the secondary imaging image The point is a secondary image identification point;
像标识点获取单元,用于获取所述二次成像图像中的二次像标识点;a marker point acquiring unit, configured to acquire a secondary image identification point in the secondary imaging image;
失真系数获取单元,用于根据所述二次像标识点的位置参数相对于所述参考标识的位置参数的变化来获取失真系数;所述二次像标识点的位置参数为所述二次像标识点在所述二次成像图像中的位置参数,所述参考标识点的位置参数为所述参考标识点在所述参考图像中的位置参数;a distortion coefficient acquiring unit, configured to acquire a distortion coefficient according to a change of a position parameter of the secondary image identification point with respect to a position parameter of the reference identifier; a position parameter of the secondary image identification point is the secondary image Identifying a position parameter of the point in the secondary imaging image, where the position parameter of the reference identification point is a position parameter of the reference identification point in the reference image;
待投影图像修正单元,用于根据所述失真系数R对待投影图像进行失真修正。The image to be projected correction unit is configured to perform distortion correction on the image to be projected according to the distortion coefficient R.
结合第二方面,在第二方面的第一种可能的实现方式中,所述预设的参考图像为参考红外网格线,所述参考标识点为所述参考红外网格线中不同方向的网格线的交点;With reference to the second aspect, in a first possible implementation manner of the second aspect, the preset reference image is a reference infrared grid line, where the reference identifier point is in different directions in the reference infrared grid line The intersection of grid lines;
所述成像获取单元,用于获取投影表面上的投影图像经所述红外滤镜摄像头所形成的二次红外网格线; The imaging acquiring unit is configured to acquire a secondary infrared grid line formed by the infrared image camera by a projection image on the projection surface;
所述像标识点获取单元,用于获取所述二次红外网格线中不同方向的网格线的交点,所述不同方向的网格线的交点为所述二次像标识点。The image identification point acquiring unit is configured to acquire intersections of grid lines in different directions in the secondary infrared grid lines, and intersection points of the grid lines in the different directions are the secondary image identification points.
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述失真系数获取单元用于通过如下公式计算所述失真系数
Figure PCTCN2014093811-appb-000042
With reference to the second aspect, or the first possible implementation manner of the second aspect, in a second possible implementation manner of the second aspect, the distortion coefficient acquiring unit is configured to calculate the distortion coefficient by using the following formula
Figure PCTCN2014093811-appb-000042
Figure PCTCN2014093811-appb-000043
Figure PCTCN2014093811-appb-000043
Figure PCTCN2014093811-appb-000044
Figure PCTCN2014093811-appb-000044
其中,R为失真系数,所述
Figure PCTCN2014093811-appb-000045
为所述参考图像在仿射变换中形成的矩阵,其中r11,r12,r13,r21,r22,r23为仿射变化中的参数,所述xi和所述yi为所述二次像标识点在所述二次成像图像中的横坐标值和纵坐标值,则所述(xi,yi)为二次像标识点的坐标值;所述x′i和所述y′i为所述参考标识点在所述参考图像中的横坐标值和纵坐标值,则所述(x′i,y′i)为参考标识点的坐标值;所述仿射变换过程为所述参数r11,r12,r21,r22与所述二次像标识点(xi,yi)进行一次线性变换,并接上平移参数r13,r23变换为所述参考标识点(x′i,y′i);公式(2)为由公式(1)变换构成的线性方程组,由所述公式(2)计算得到所述仿射变换失真系数R。
Where R is the distortion coefficient,
Figure PCTCN2014093811-appb-000045
a matrix formed in the affine transformation of the reference image, wherein r 11 , r 12 , r 13 , r 21 , r 22 , r 23 are parameters in an affine change, and the x i and the y i are And the (x i , y i ) is a coordinate value of the secondary image identification point; the x′ i and the coordinate value of the secondary image identification point in the secondary imaging image. The y′ i is an abscissa value and an ordinate value of the reference identification point in the reference image, and the (x′ i , y′ i ) is a coordinate value of a reference identification point; the affine The transformation process performs a linear transformation of the parameters r 11 , r 12 , r 21 , r 22 and the secondary image identification point (x i , y i ), and is coupled with the translation parameter r 13 , r 23 The reference identification point (x' i , y' i ) is described; the formula (2) is a linear equation group formed by the transformation of the formula (1), and the affine transformation distortion coefficient R is calculated by the formula (2).
结合第二方面的第二种可能的实现方式,在第二方面的第三种可能的实现方式中,所述待投影图像修正单元用于通过如下公式对所述待投影图像进行失真修正:In conjunction with the second possible implementation of the second aspect, in a third possible implementation of the second aspect, the image to be projected correction unit is configured to perform distortion correction on the image to be projected by using the following formula:
Figure PCTCN2014093811-appb-000046
Figure PCTCN2014093811-appb-000046
其中,R为失真系数,所述
Figure PCTCN2014093811-appb-000047
Figure PCTCN2014093811-appb-000048
为将待投影图像根据失真系数R进行修正后的图像像素坐标点
Figure PCTCN2014093811-appb-000049
的横坐标值和纵坐标值,所述xi和yi为待投影图像原始像素坐标点(xi,yi)的横坐标值和纵坐标值。
Where R is the distortion coefficient,
Figure PCTCN2014093811-appb-000047
with
Figure PCTCN2014093811-appb-000048
Image pixel coordinate point for correcting the image to be projected according to the distortion coefficient R
Figure PCTCN2014093811-appb-000049
The abscissa value and the ordinate value, the x i and y i are the abscissa value and the ordinate value of the original pixel coordinate point (x i , y i ) of the image to be projected.
结合第二方面及第二方面的第一种可能的实现方式至第二方面的第三种可能的实现方式中的任意一种方式,在第二方面的第四种可能的实现方式中,所述装置还包括:参考图像修正单元,用于根据所述失真系数R对所述参考图像进行修正;所述参考图像修正单元用于通过如下公式对所述参考图像进行失真修正:With reference to the second aspect, and the first possible implementation manner of the second aspect, to any one of the third possible implementation manners of the second aspect, in a fourth possible implementation manner of the second aspect, The apparatus further includes: a reference image correction unit configured to correct the reference image according to the distortion coefficient R; the reference image modification unit is configured to perform distortion correction on the reference image by:
Figure PCTCN2014093811-appb-000050
Figure PCTCN2014093811-appb-000050
其中,R为失真系数,所述
Figure PCTCN2014093811-appb-000051
Figure PCTCN2014093811-appb-000052
为将所述参考图像根据失真系数R进行修正后的图像像素坐标点
Figure PCTCN2014093811-appb-000053
的横坐标值和纵坐标值,所述xk和yk为所述参考图像的原始像素坐标点(xk,yk)的横坐标值和纵坐标值。
Where R is the distortion coefficient,
Figure PCTCN2014093811-appb-000051
with
Figure PCTCN2014093811-appb-000052
Image pixel coordinate point for correcting the reference image according to the distortion coefficient R
Figure PCTCN2014093811-appb-000053
An abscissa value and an ordinate value, the x k and y k being an abscissa value and an ordinate value of the original pixel coordinate point (x k , y k ) of the reference image.
结合第二方面的第四种可能的实现方式,在第二方面的第五种可能的实现方式中,所述装置还包括:In conjunction with the fourth possible implementation of the second aspect, in a fifth possible implementation of the second aspect, the device further includes:
运动参数获取单元,用于获取所述投影设备在将所述参考图像投射至所述投影表面上形成投影图像时的运动参数;a motion parameter acquisition unit, configured to acquire a motion parameter of the projection device when projecting the reference image onto the projection surface to form a projection image;
补偿参数获取单元,用于根据所述运动参数获得运动补偿参数;a compensation parameter obtaining unit, configured to obtain a motion compensation parameter according to the motion parameter;
运动补偿单元,用于根据所述运动补偿参数对所述经过失真修正的图像进行反向运动补偿;所述经过失真修正后的图像包括修正的待投影图像,或修正的参考图像。And a motion compensation unit, configured to perform inverse motion compensation on the distortion-corrected image according to the motion compensation parameter; the distortion-corrected image includes a corrected image to be projected, or a corrected reference image.
结合第二方面的第五种可能的实现方式,在第二方面的第六种可能的实现方式中,所述装置包括: With reference to the fifth possible implementation of the second aspect, in a sixth possible implementation manner of the second aspect, the device includes:
运动补估计单元,用于对所述二次成像图像进行运动估计得到初步运动补偿值;a motion compensation estimating unit, configured to perform motion estimation on the secondary imaging image to obtain a preliminary motion compensation value;
补偿参数获取单元包括第三获取子单元,用于结合运动参数获取单元获取的运动参数和由所述运动补估计单元获取的初步运动补偿值获取运动补偿参数。The compensation parameter acquisition unit includes a third acquisition sub-unit for acquiring the motion compensation parameter in conjunction with the motion parameter acquired by the motion parameter acquisition unit and the preliminary motion compensation value acquired by the motion complement estimation unit.
结合第二方面的第五种可能的实现方式,在第二方面的第七种可能的实现方式中,所述补偿参数获取单元包括:第四获取子单元,用于结合所述运动参数获取单元获取的运动参数对所述二次成像图像进行运动估计得到运动补偿参数。With reference to the fifth possible implementation of the second aspect, in a seventh possible implementation manner of the second aspect, the compensation parameter acquiring unit includes: a fourth acquiring subunit, configured to combine the motion parameter acquiring unit The acquired motion parameters perform motion estimation on the secondary imaging image to obtain motion compensation parameters.
结合第二方面的第六种可能的实现方式,在第二方面的第八种可能的实现方式中,用于根据加速度传感器直接获取第一运动补偿值,将所述第一运动补偿参数作为所述运动参数;With the sixth possible implementation of the second aspect, in an eighth possible implementation manner of the second aspect, the first motion compensation parameter is directly obtained according to the acceleration sensor, and the first motion compensation parameter is used as the Motion parameters
所述运动补估计单元用于对所述二次成像图像进行运动估计得到初步运动补偿值,并将所述运动参数获取单元获取的第一运动补偿值和所述获取得到的初步运动补偿值进行加权平均得到运动补偿参数,具体通过如下公式计算获取所述运动补偿参数:The motion compensation estimating unit is configured to perform motion estimation on the secondary imaging image to obtain a preliminary motion compensation value, and perform a first motion compensation value obtained by the motion parameter acquiring unit and the obtained preliminary motion compensation value. The weighted average obtains the motion compensation parameter, and the motion compensation parameter is obtained by the following formula:
M=α*M1+(1-α)*M2            (5)M=α*M 1 +(1-α)*M 2 (5)
其中,M是运动补偿参数,M1是初步运动补偿值,M2是第一运动补偿值,所述
Figure PCTCN2014093811-appb-000054
所述
Figure PCTCN2014093811-appb-000055
所述
Figure PCTCN2014093811-appb-000056
Figure PCTCN2014093811-appb-000057
所述
Figure PCTCN2014093811-appb-000058
Figure PCTCN2014093811-appb-000059
所述txi和tyi为所述二次成像图像中的二次像标识点横坐标和纵坐标在相邻两帧中的位置差,所述N为每一帧中所述二次像标识点的数量;所述
Figure PCTCN2014093811-appb-000060
Figure PCTCN2014093811-appb-000061
所述
Figure PCTCN2014093811-appb-000062
Figure PCTCN2014093811-appb-000063
所述txj和tyj为所述参考图像中的参考标识点横坐标和纵坐标在相邻两帧中的位置 差,所述H为每一帧中所述参考标识点的数量;α为在所述M1和所述M2之间取值比重的经验值,所述α的取值范围为0≤α≤1。
Where M is a motion compensation parameter, M 1 is a preliminary motion compensation value, and M 2 is a first motion compensation value,
Figure PCTCN2014093811-appb-000054
Said
Figure PCTCN2014093811-appb-000055
Said
Figure PCTCN2014093811-appb-000056
for
Figure PCTCN2014093811-appb-000057
Said
Figure PCTCN2014093811-appb-000058
for
Figure PCTCN2014093811-appb-000059
The tx i and ty i are positional differences between the abscissa and the ordinate of the secondary image identification point in the secondary image, and the N is the secondary image identifier in each frame. Number of points;
Figure PCTCN2014093811-appb-000060
for
Figure PCTCN2014093811-appb-000061
Said
Figure PCTCN2014093811-appb-000062
for
Figure PCTCN2014093811-appb-000063
The tx j and ty j are positional differences between the abscissa and the ordinate of the reference mark in the reference image in the adjacent two frames, and the H is the number of the reference mark points in each frame; An empirical value of the specific gravity is taken between the M 1 and the M 2 , and the value of α is in the range of 0 ≤ α ≤ 1.
结合第二方面的第七种可能的实现方式,在第二方面的第九种可能的实现方式中,所述运动参数获取单元用于获取加速度传感器所感测到的所述投影设备在X轴和Y轴方向位移的分量值u和v,将所述u和v作为运动参数;In conjunction with the seventh possible implementation of the second aspect, in a ninth possible implementation manner of the second aspect, the motion parameter acquiring unit is configured to acquire the projection device sensed by the acceleration sensor on the X axis and Component values u and v of the displacement in the Y-axis direction, taking the u and v as motion parameters;
所述补偿参数获取单元用于结合所述运动参数获取单元所获取的运动参数对所述二次成像图像进行运动估计得到运动补偿参数M,具体通过如下公式计算所述运动补偿参数M:The compensation parameter acquisition unit is configured to perform motion estimation on the secondary imaging image according to the motion parameter acquired by the motion parameter acquisition unit to obtain a motion compensation parameter M, and specifically calculate the motion compensation parameter M by using the following formula:
Figure PCTCN2014093811-appb-000064
Figure PCTCN2014093811-appb-000064
Figure PCTCN2014093811-appb-000065
Figure PCTCN2014093811-appb-000065
Figure PCTCN2014093811-appb-000066
Figure PCTCN2014093811-appb-000066
其中txi和tyi为所述二次成像图像中的二次像标识点横坐标和纵坐标在相邻两帧中的位置差,所述N为每一帧中所述二次像标识点的取点数量,其中u和v为所述运动参数,即由加速度传感器所感测到的所述投影设备在的X、Y方向位移的分量值,β为在
Figure PCTCN2014093811-appb-000067
Figure PCTCN2014093811-appb-000068
之间的取值比重的经验值,所述β的取值范围为0≤β≤1。
Where tx i and ty i are the positional differences between the abscissa and the ordinate of the secondary image identification point in the secondary image in the adjacent two frames, and the N is the secondary image identification point in each frame The number of points taken, where u and v are the motion parameters, that is, the component values of the displacement of the projection device in the X and Y directions sensed by the acceleration sensor, β is
Figure PCTCN2014093811-appb-000067
with
Figure PCTCN2014093811-appb-000068
The empirical value of the ratio between the values, the value of β is 0 ≤ β ≤ 1.
结合第二方面的第五种可能的实现方式至第二方面的第九种可能的实现方式中的任意一种方式,在第二方面的第十种可能的实现方式中,所述运动补偿单元用于通过如下公式对所述经过失真修正的待投影图像进行运动补偿: With reference to the fifth possible implementation of the second aspect to any one of the ninth possible implementation manners of the second aspect, in a tenth possible implementation manner of the second aspect, the motion compensation unit For performing motion compensation on the distortion-corrected image to be projected by the following formula:
Figure PCTCN2014093811-appb-000069
Figure PCTCN2014093811-appb-000069
其中,所述
Figure PCTCN2014093811-appb-000070
Figure PCTCN2014093811-appb-000071
为将待投影图像根据失真系数R进行修正后的图像像素点坐标的横坐标值和纵坐标值,所述
Figure PCTCN2014093811-appb-000072
Figure PCTCN2014093811-appb-000073
为将经过失真修正后的图像像素点进行反向运动补偿后的图像像素点坐标的横坐标值和纵坐标值,其中
Figure PCTCN2014093811-appb-000074
为运动补偿参数M。
Wherein said
Figure PCTCN2014093811-appb-000070
with
Figure PCTCN2014093811-appb-000071
For the abscissa value and the ordinate value of the image pixel point coordinates corrected by the distortion coefficient R of the image to be projected,
Figure PCTCN2014093811-appb-000072
with
Figure PCTCN2014093811-appb-000073
The abscissa value and the ordinate value of the image pixel point coordinates after the inverse motion compensation of the image pixel point after the distortion correction is performed, wherein
Figure PCTCN2014093811-appb-000074
The parameter M is compensated for the motion.
结合第二方面的第五种可能的实现方式至第二方面的第十种可能的实现方式中的任意一种方式,在第二方面的第十一种可能的实现方式中,所述运动补偿单元用于通过如下公式对所述经过失真修正的参考图像进行运动补偿:With reference to the fifth possible implementation of the second aspect to any one of the tenth possible implementation manners of the second aspect, in the eleventh possible implementation manner of the second aspect, the motion compensation The unit is configured to perform motion compensation on the distortion-corrected reference image by the following formula:
Figure PCTCN2014093811-appb-000075
Figure PCTCN2014093811-appb-000075
其中,所述
Figure PCTCN2014093811-appb-000076
Figure PCTCN2014093811-appb-000077
为所述参考图像根据失真系数R进行修正后的图像像素点坐标的横坐标值和纵坐标值,所述
Figure PCTCN2014093811-appb-000078
Figure PCTCN2014093811-appb-000079
为将经过失真修正后的图像像素点进行反向运动补偿后的图像像素点坐标的横坐标值和纵坐标值,其中
Figure PCTCN2014093811-appb-000080
为运动补偿参数M。
Wherein said
Figure PCTCN2014093811-appb-000076
with
Figure PCTCN2014093811-appb-000077
An abscissa value and an ordinate value of the image pixel point coordinates corrected according to the distortion coefficient R for the reference image,
Figure PCTCN2014093811-appb-000078
with
Figure PCTCN2014093811-appb-000079
The abscissa value and the ordinate value of the image pixel point coordinates after the inverse motion compensation of the image pixel point after the distortion correction is performed, wherein
Figure PCTCN2014093811-appb-000080
The parameter M is compensated for the motion.
结合第二方面及第二方面的第五种可能的实现方式至第二方面的第十一种可能的实现方式中的任意一种方式,在第二方面的第十二种可能的实现方式中,所述像标识点获取单元还包括:In combination with the second aspect and the fifth possible implementation of the second aspect to any one of the eleventh possible implementations of the second aspect, in a twelfth possible implementation of the second aspect The image identification point obtaining unit further includes:
立体视觉处理子单元,用于获取投影图像中的三维参数;a stereo vision processing sub-unit for acquiring three-dimensional parameters in the projected image;
第九获取子单元,用于将所述立体视觉处理子单元获取的三维参数拟合成一个平面,将所述三维参数垂直映射到所述平面,得到二维坐标点,所述二维坐标点为所述二次像标识点。a ninth obtaining subunit, configured to fit the three-dimensional parameters acquired by the stereoscopic processing subunit into a plane, and vertically map the three-dimensional parameters to the plane to obtain two-dimensional coordinate points, the two-dimensional coordinate points Identify points for the secondary image.
结合第二方面的第十二种可能的实现方式,在第二方面的第十三种可能的 实现方式中,所述装置还包括:In conjunction with the twelfth possible implementation of the second aspect, the thirteenth possible aspect of the second aspect In an implementation manner, the device further includes:
焦距调节单元,用于根据投影设备到投影表面的距离D调整投影设备的焦距,具体通过如下公式实现:The focal length adjusting unit is configured to adjust the focal length of the projection device according to the distance D from the projection device to the projection surface, which is specifically implemented by the following formula:
Figure PCTCN2014093811-appb-000081
Figure PCTCN2014093811-appb-000081
其中,所述s0为投影设备液晶片尺寸,所述s1为图像大小的经验参考值,所述
Figure PCTCN2014093811-appb-000082
即取N个二次像标识点的三维坐标值中的z值并对所述z值求平均得到距离D。
Wherein the s 0 is a liquid crystal size of the projection device, and the s 1 is an empirical reference value of the image size,
Figure PCTCN2014093811-appb-000082
That is, the z value in the three-dimensional coordinate values of the N secondary image identification points is taken and the z values are averaged to obtain the distance D.
本发明实施例根据二次像标识点在二次成像图像中的位置参数和参考标识点在参考图像中的位置参数得到失真系数,再用该失真系数对待修正的图像进行修正,使经过处理的投影图像的失真变小甚至不失真,从而提高图像投影设备的环境适应能力。In the embodiment of the present invention, the distortion coefficient is obtained according to the position parameter of the secondary image identification point in the secondary imaging image and the position parameter of the reference identification point in the reference image, and then the image to be corrected is corrected by the distortion coefficient, so that the processed image is processed. The distortion of the projected image becomes small or even undistorted, thereby improving the environmental adaptability of the image projection apparatus.
附图说明DRAWINGS
为了更清楚地说明本发明实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions of the embodiments of the present invention, the drawings used in the description of the embodiments will be briefly described below. It is obvious that the drawings in the following description are only some embodiments of the present invention, Those skilled in the art can also obtain other drawings based on these drawings without paying for creative labor.
图1为本发明实施例一提供的一种基于投影图像处理方法的流程图;1 is a flowchart of a method for processing a projection image according to Embodiment 1 of the present invention;
图2为本发明实施例二提供的一种基于投影图像处理方法的流程图;2 is a flowchart of a method for processing a projection image according to Embodiment 2 of the present invention;
图3为本发明实施例二中一种基于投影图像处理方法的实施细节示意图;3 is a schematic diagram of implementation details of a projection image processing method according to Embodiment 2 of the present invention;
图4为本发明实施例二提供的一种基于投影图像处理的方法一种实施方式补充流程图; 4 is a supplementary flowchart of an embodiment of a method based on projection image processing according to Embodiment 2 of the present invention;
图5为本发明实施例二提供的一种基于投影图像处理的方法另一种实施方式补充流程图;5 is a supplementary flowchart of another implementation manner of a method based on projection image processing according to Embodiment 2 of the present invention;
图6为本发明实施例三提供的一种基于投影图像处理装置的结构框图;FIG. 6 is a structural block diagram of a projection image processing apparatus according to Embodiment 3 of the present invention; FIG.
图7为本发明实施例三提供的一种基于投影图像处理装置的结构框图的细节框图。FIG. 7 is a detailed block diagram of a structural block diagram of a projection image processing apparatus according to Embodiment 3 of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention are clearly and completely described in the following with reference to the accompanying drawings in the embodiments of the present invention. It is obvious that the described embodiments are only a part of the embodiments of the present invention, but not all embodiments. All other embodiments obtained by those skilled in the art based on the embodiments of the present invention without creative efforts are within the scope of the present invention.
以下结合具体实施例对本发明的具体实现进行详细描述:The specific implementation of the present invention is described in detail below in conjunction with specific embodiments:
如图1所示,本发明实施例提供了一种投影图像处理方法,其包括如下步骤:As shown in FIG. 1 , an embodiment of the present invention provides a projection image processing method, which includes the following steps:
S101,获取投影表面上的投影图像在成像设备中的二次成像图像,所述投影图像为由投影设备将预设的参考图像投射至所述投影表面上所成的图像,所述预设的参考图像中设置有参考标识点,所述参考标识点经投影后在所述投影图像中形成一次像标识点;所述一次像标识点在所述二次成像图像中形成的像点为二次像标识点。S101. Acquire a secondary imaging image of the projection image on the projection surface in the imaging device, where the projection image is an image formed by the projection device projecting the preset reference image onto the projection surface, the preset image A reference identification point is set in the reference image, and the reference identification point is projected to form an image identification point in the projection image; the image point formed by the primary image identification point in the secondary imaging image is twice Like a logo point.
在本发明实施例中,投影设备将预设的参考图像投射至投影表面形成投影图像,成像设备摄取投影图像形成二次成像图像,计算设备从成像设备中获取二次成像图像,并且计算设备中已经提前存储了预设的参考图像;预设的参考图像中设置有参考标识点,所述参考标识点由投影设备投射在投影表面上形成 一次像标识点;具体的实施过程中,该参考标识点可以按照规则间隔距离选取,也可以不按照规则间隔距离选取,所有标识点呈现出的图案可以是正方形网格状,也可以是菱形网格状,还可以是其它规则或不规则形状,具体可以根据投影设备和投影表面之间的位置关系以及投影表面的平缓程度进行决定;在具体的实施过程中,所述参考标识点为参考标识点的二维坐标值。In an embodiment of the invention, the projection device projects a preset reference image onto the projection surface to form a projection image, the imaging device takes the projection image to form a secondary imaging image, and the computing device acquires the secondary imaging image from the imaging device, and the computing device A preset reference image has been stored in advance; a reference identification point is set in the preset reference image, and the reference identification point is projected on the projection surface by the projection device. In the specific implementation process, the reference marker points may be selected according to the rule interval distance, or may not be selected according to the rule interval distance, and all the logo points may be in a square grid shape or a diamond mesh. The grid shape may also be other regular or irregular shapes, and may be determined according to the positional relationship between the projection device and the projection surface and the degree of gradation of the projection surface; in a specific implementation process, the reference marker point is a reference identifier. The two-dimensional coordinate value of the point.
S102,获取所述二次成像图像中的二次像标识点。S102. Acquire a secondary image identification point in the secondary imaging image.
在本发明实施例中,在获取到二次成像图像后,再从中获取二次成像图像中的二次像标识点,所述二次像标识点为投影图像中的一次像标识点在二次成像图像中形成的像点,在具体的实施过程中,所述获取的二次像标识点为二次像标识点的二维坐标值。In the embodiment of the present invention, after the secondary imaging image is acquired, the secondary image identification point in the secondary imaging image is acquired therefrom, and the secondary image identification point is a secondary image identification point in the projection image. The image point formed in the image is formed. In a specific implementation process, the acquired secondary image identification point is a two-dimensional coordinate value of the secondary image identification point.
S103,根据所述二次像标识点在所述二次成像图像中的位置参数基于所述参考标识点在所述参考图像中的位置参数的变化来获取失真系数R。S103. Acquire a distortion coefficient R according to a position parameter of the secondary image identification point in the secondary imaging image based on a change of a position parameter of the reference identification point in the reference image.
在本发明实施例中,计算设备将已经提前存储的预设的参考图像调取出来,提取其中预设好的参考标识点的二维坐标值,并根据该参考标识点的坐标值得到其在参考图像中的位置参数,根据获取到的二次像标识点的二维坐标值得到其在二次成像图像中的位置参数,将参考标识点在参考图像中的位置参数和二次像标识点在二次成像图像中的位置参数进行比较,从而获取形变系数即失真系数R,此处的形变实际上是一个仿射变换,即R可以表示成一个2×3的矩阵:
Figure PCTCN2014093811-appb-000083
In the embodiment of the present invention, the computing device extracts the preset reference image that has been stored in advance, extracts the two-dimensional coordinate value of the preset reference identification point, and obtains the coordinate value according to the coordinate value of the reference identification point. According to the position parameter in the reference image, the position parameter in the secondary imaging image is obtained according to the obtained two-dimensional coordinate value of the secondary image identification point, and the position parameter and the secondary image identification point of the reference identification point in the reference image are referenced. The positional parameters in the secondary imaged image are compared to obtain the distortion coefficient, ie the distortion coefficient R, where the deformation is actually an affine transformation, ie R can be represented as a 2x3 matrix:
Figure PCTCN2014093811-appb-000083
可选的,在具体的实施过程中,本申请实施例中具体获取R的方式可以通过如下公式取得:Optionally, in a specific implementation process, the manner of specifically obtaining R in the embodiment of the present application may be obtained by using the following formula:
Figure PCTCN2014093811-appb-000084
Figure PCTCN2014093811-appb-000084
Figure PCTCN2014093811-appb-000085
Figure PCTCN2014093811-appb-000085
从二次成像图像中获取的每一个二次像标识点的二维坐标值(x,y)都可以通过仿射变换R变换到预设的参考图像中对应的的参考标识点的二维坐标值(x′,y′),在上述公式(1)和(2)中,r11,r12,r13,r21,r22,r23是6个未知变量,(x′,y′)为参考图像中的参考标识点即已知点,(x,y)为由步骤S101和步骤S102获取的二次成像图像中的二次像标识点,也为已知变量,由此通过步骤S101和步骤S102取三对参考标识点和二次像标识点的对应点便可得到6个方程,联立6个方程便可求解出6个未知变量r11,r12,r13,r21,r22,r23,即得到R值。The two-dimensional coordinate value (x, y) of each secondary image identification point acquired from the secondary imaging image can be transformed by the affine transformation R into the two-dimensional coordinates of the corresponding reference identification point in the preset reference image. The value (x', y'), in the above formulas (1) and (2), r 11 , r 12 , r 13 , r 21 , r 22 , r 23 are 6 unknown variables, (x', y' a reference point in the reference image, that is, a known point, (x, y) is a secondary image identification point in the secondary imaging image acquired by step S101 and step S102, which is also a known variable, thereby passing the steps S101 and step S102 can obtain six equations by taking corresponding points of three pairs of reference mark points and secondary image mark points, and six unknown variables r 11 , r 12 , r 13 , r 21 can be solved by combining six equations. , r 22 , r 23 , that is, the R value is obtained.
S104,根据所述失真系数R对待投影图像进行失真修正。S104: Perform distortion correction on the image to be projected according to the distortion coefficient R.
在本发明的实施例中,将获取的失真系数R作用于待投影的图像上,对待投影图像进行失真修正,在具体的实施过程中,可以在待修正图像中取n个像素点,每个像素点的坐标位置值为(xi,yi),则修正后的图像中对应的像素点为
Figure PCTCN2014093811-appb-000086
In the embodiment of the present invention, the acquired distortion coefficient R is applied to the image to be projected, and the image to be projected is subjected to distortion correction. In a specific implementation process, n pixel points may be taken in the image to be corrected, each The coordinate position value of the pixel is (x i , y i ), and the corresponding pixel in the corrected image is
Figure PCTCN2014093811-appb-000086
可选的,在具体的实施过程中,本申请实施例中的具体修正过程可以由公式(3)表示:即
Figure PCTCN2014093811-appb-000087
其中R为已知变量,(xi,yi)为在已知待投影图像上任意取的已知坐标值,
Figure PCTCN2014093811-appb-000088
为已知坐标值(xi,yi)对应的修正后的像素点的坐标值。
Optionally, in a specific implementation process, the specific modification process in the embodiment of the present application may be represented by formula (3):
Figure PCTCN2014093811-appb-000087
Where R is a known variable and (x i , y i ) is a known coordinate value arbitrarily taken on an image to be projected.
Figure PCTCN2014093811-appb-000088
The coordinate value of the corrected pixel point corresponding to the known coordinate value (x i , y i ).
可选的,在上述实施方式的基础上,本实施例还可以根据所述获取的失真系数R对所述参考图像进行修正,具体通过如下公式对参考图像进行失真修正:Optionally, on the basis of the foregoing embodiment, the reference image may be corrected according to the acquired distortion coefficient R, and the reference image is specifically modified by the following formula:
Figure PCTCN2014093811-appb-000089
Figure PCTCN2014093811-appb-000089
其中,所述
Figure PCTCN2014093811-appb-000090
为将所述参考图像根据失真系数R进行修正后的图像像素坐标,(xk,yk)为所述参考图像的原始像素坐标。
Wherein said
Figure PCTCN2014093811-appb-000090
(x k , y k ) is the original pixel coordinates of the reference image in order to correct the reference image according to the distortion coefficient R.
在本发明实施例中,通过获取二次成像图像,再从二次成像图像中获取二次像标识点,比较二次像标识点在二次成像图像中的位置参数和参考标识点在参考图像中的位置参数得到失真系数R,再将失真系数R作用到待修正的图像中,即对待修正的图像进行预校正使得输出的图像不失真。In the embodiment of the present invention, by acquiring the secondary imaging image, the secondary image identification point is acquired from the secondary imaging image, and the position parameter of the secondary image identification point in the secondary imaging image and the reference identification point are compared in the reference image. The position parameter in the middle obtains the distortion coefficient R, and then the distortion coefficient R is applied to the image to be corrected, that is, the image to be corrected is pre-corrected so that the output image is not distorted.
在本发明的另一个实施例中,预设的参考图像为参考红外网格线,即采用红外网格线作为参考图像使投影设备可以实时不间断的向投影表面投射参考图像并且不干扰可见光的成像,这样就能保证对参考图像和待投影图像的校正也是实时不间断的进行,从而使得人眼识别到的投影图像自始至终都是不失真的图像。In another embodiment of the present invention, the preset reference image is a reference infrared grid line, that is, the infrared grid line is used as the reference image, so that the projection device can project the reference image to the projection surface without interruption in real time and does not interfere with the visible light. The imaging ensures that the correction of the reference image and the image to be projected is also performed in real time without interruption, so that the projected image recognized by the human eye is an undistorted image from beginning to end.
如图2所示,本发明实施例提供了一种图像处理方法的实现流程,其包括如下步骤:As shown in FIG. 2, an embodiment of the present invention provides an implementation process of an image processing method, which includes the following steps:
S201,获取投影表面上的投影图像在红外滤镜摄像装置中的二次成像图像,该二次成像图像为二次红外网格线;所述投影图像为由红外投影设备将预设的参考红外网格线投射至投影表面上所成的投影图像,该投影图像为一次红外网格线;所述预设的参考图像中设置有参考标识点,该参考标识点具体为参考红外网格线中不同方向的网格线的交点;所述参考标识点在所述投影图像中形成一次像标识点;S201. Acquire a secondary imaging image of the projection image on the projection surface in the infrared filter imaging device, where the secondary imaging image is a secondary infrared grid line; the projection image is a preset reference infrared image by the infrared projection device. a projection image formed on the projection surface, the projection image being a primary infrared grid line; wherein the preset reference image is provided with a reference identification point, where the reference identification point is specifically in the reference infrared grid line An intersection of grid lines of different directions; the reference marker point forms an image identification point in the projected image;
具体的,红外投影设备将参考红外网格线投射至投影表面形成投影图像,红外滤镜摄像装置摄取投影图像形成二次红外网格线,计算设备从红外滤镜摄像装置中获取二次红外网格线,并且计算设备中已经提前存储了预设的参考红外网格线;所述参考红外网格线中不同方向的网格线的交点为所述参考标识点, 在具体的实施过程中,该参考红外网格线的形状可以是正方形网格状,也可以是菱形网格状,还可以是其它规则或不规则形状,具体可以根据红外投影设备和投影表面之间的位置关系以及投影表面的平缓程度进行决定;在具体的实施过程中,所述参考标识点为参考标识点的二维坐标值。Specifically, the infrared projection device projects the reference infrared grid line onto the projection surface to form a projection image, and the infrared filter camera captures the projection image to form a secondary infrared grid line, and the computing device acquires the secondary infrared network from the infrared filter camera device. a grid line, and a preset reference infrared grid line has been stored in advance in the computing device; the intersection point of the grid lines in different directions in the reference infrared grid line is the reference identification point, In a specific implementation process, the shape of the reference infrared grid line may be a square grid shape, a diamond grid shape, or other regular or irregular shapes, which may be according to an infrared projection device and a projection surface. The positional relationship and the degree of gradation of the projection surface are determined; in a specific implementation process, the reference marker point is a two-dimensional coordinate value of the reference marker point.
S202,获取所述二次红外网格线中的二次像标识点,所述二次像标识点为所述投影图像中的一次像标识点在所述获取到的二次红外网格线中形成的像点;其中,二次成像图像中的二次红外网格线中不同方向的网格线的交点为二次像标识点;在具体的实施过程中,所述获取的二次像标识点为二次像标识点的二维坐标值。S202. Acquire a secondary image identification point in the secondary infrared grid line, where the secondary image identification point is a primary image identification point in the projected image in the acquired secondary infrared grid line. The formed image point; wherein, the intersection point of the grid lines in different directions in the secondary infrared grid line in the secondary imaging image is a secondary image identification point; in a specific implementation process, the acquired secondary image identifier The point is the two-dimensional coordinate value of the secondary image identification point.
S203,根据所述二次像标识点在所述二次成像图像中的位置参数基于所述参考标识点在所述参考图像中的位置参数的变化来获取失真系数R。S203. Acquire a distortion coefficient R according to a position parameter of the secondary image identification point in the secondary imaging image based on a change of a position parameter of the reference identification point in the reference image.
在本发明实施例中,计算设备将已经提前存储的预设的参考红外网格线调取出来,提取其中预设好的参考标识点的二维坐标值,即参考红外网格线中不同方向的网格线的交点的二维坐标值;并根据该参考标识点的二维坐标值得到其在参考红外网格线中的位置参数,根据获取到的二次像标识点的二维坐标值得到其在二次红外网格线中的位置参数,将参考标识点在参考红外网格线中的位置参数和二次像标识点在二次红外网格线中的位置参数进行比较,从而获取形变系数即失真系数R,此处的形变实际上是一个仿射变换,即R可以表示成一个2×3的矩阵:
Figure PCTCN2014093811-appb-000091
In the embodiment of the present invention, the computing device extracts the preset reference infrared grid line that has been stored in advance, and extracts the two-dimensional coordinate value of the preset reference marker point, that is, refers to different directions in the infrared grid line. The two-dimensional coordinate value of the intersection point of the grid line; and obtaining the position parameter in the reference infrared grid line according to the two-dimensional coordinate value of the reference identification point, according to the obtained two-dimensional coordinate value of the secondary image identification point To the positional parameter in the secondary infrared grid line, the positional parameter of the reference identification point in the reference infrared grid line and the position parameter of the secondary image identification point in the secondary infrared grid line are compared, thereby obtaining The deformation coefficient is the distortion coefficient R. The deformation here is actually an affine transformation, that is, R can be expressed as a 2×3 matrix:
Figure PCTCN2014093811-appb-000091
可选的,在具体的实施过程中,本申请实施例中具体获取R的方式可以通过如下公式取得:Optionally, in a specific implementation process, the manner of specifically obtaining R in the embodiment of the present application may be obtained by using the following formula:
Figure PCTCN2014093811-appb-000092
Figure PCTCN2014093811-appb-000092
Figure PCTCN2014093811-appb-000093
Figure PCTCN2014093811-appb-000093
从二次红外网格线中获取的每一个二次像标识点的二维坐标值(x,y)都可以通过仿射变换R变换到预设的参考红外网格线中对应的的参考标识点的二维坐标值(x′,y′),在上述公式(1)和(2)中,r11,r12,r13,r21,r22,r23是6个未知变量,(x′,y′)为参考红外网格线中的参考标识点即已知点,(x,y)为由步骤S201和步骤S202获取的二次红外网格线中的二次像标识点,也为已知变量,由此通过步骤S201和步骤S202取三对参考标识点和二次像标识点的对应点便可得到6个方程,联立6个方程便可求解出6个未知变量r11,r12,r13,r21,r22,r23,即得到R值。The two-dimensional coordinate value (x, y) of each secondary image identification point acquired from the secondary infrared grid line can be transformed by the affine transformation R to the corresponding reference identifier in the preset reference infrared grid line. The two-dimensional coordinate value of the point (x', y'), in the above formulas (1) and (2), r 11 , r 12 , r 13 , r 21 , r 22 , r 23 are 6 unknown variables, ( x', y') is a reference mark in the reference infrared grid line, that is, a known point, and (x, y) is a secondary image mark point in the secondary infrared grid line acquired by step S201 and step S202. It is also a known variable, and thus six equations can be obtained by taking the corresponding points of the three pairs of reference identification points and secondary image identification points through steps S201 and S202, and six unknown variables can be solved by combining six equations. 11 , r 12 , r 13 , r 21 , r 22 , r 23 , that is, an R value is obtained.
S204,根据所述失真系数R对待投影图像进行修正。S204, correcting the image to be projected according to the distortion coefficient R.
在本发明的实施例中,将获取的失真系数R作用于待投影的图像上,对待投影图像进行失真修正,在具体的实施过程中,可以在待修正图像中取n个像素点,每个像素点的坐标位置值为(xi,yi),则修正后的图像中对应的像素点为
Figure PCTCN2014093811-appb-000094
In the embodiment of the present invention, the acquired distortion coefficient R is applied to the image to be projected, and the image to be projected is subjected to distortion correction. In a specific implementation process, n pixel points may be taken in the image to be corrected, each The coordinate position value of the pixel is (x i , y i ), and the corresponding pixel in the corrected image is
Figure PCTCN2014093811-appb-000094
可选的,在具体的实施过程中,本申请实施例中的具体修正过程可以由公式(7)表示:即
Figure PCTCN2014093811-appb-000095
其中R为已知变量,(xi,yi)为在已知参考红外网格线和已知待投影图像上任意取的已知坐标值,
Figure PCTCN2014093811-appb-000096
为已知坐标值(xi,yi)对应的修正后的像素点的坐标值。
Optionally, in a specific implementation process, the specific modification process in the embodiment of the present application may be represented by formula (7):
Figure PCTCN2014093811-appb-000095
Where R is a known variable and (x i , y i ) is a known coordinate value arbitrarily taken on a known reference infrared grid line and a known image to be projected.
Figure PCTCN2014093811-appb-000096
The coordinate value of the corrected pixel point corresponding to the known coordinate value (x i , y i ).
可选的,在上述实施方式的基础上,本实施例还可以根据所述获取的失真系数R对所述参考图像进行修正,具体通过如下公式对参考图像进行失真修正:Optionally, on the basis of the foregoing embodiment, the reference image may be corrected according to the acquired distortion coefficient R, and the reference image is specifically modified by the following formula:
Figure PCTCN2014093811-appb-000097
Figure PCTCN2014093811-appb-000097
其中,所述
Figure PCTCN2014093811-appb-000098
为将所述参考图像根据失真系数R进行修正后的图像像素坐标,(xk,yk)为所述参考图像的原始像素坐标。
Wherein said
Figure PCTCN2014093811-appb-000098
(x k , y k ) is the original pixel coordinates of the reference image in order to correct the reference image according to the distortion coefficient R.
在本发明实施例中,在获取到二次红外网格线后,再从中获取二次红外网格线中的二次像标识点,在具体的实施过程中,获取的可以是二次像标识点的二维坐标值。In the embodiment of the present invention, after the secondary infrared grid line is acquired, the secondary image identification point in the secondary infrared grid line is obtained therefrom, and in the specific implementation process, the secondary image identifier may be acquired. The two-dimensional coordinate value of the point.
本发明实施例中,采用红外网格线作为预设的参考图像,取红外网格线中不同方向的网格线的交点为参考标识点,使得红外投影设备可以实时不间断的投射出参考图像,同时不干扰可见光的成像,由此可以达到实时不间断的对参考图像和待投影的图像进行修正,因此即使投影环境很复杂的情况下也可以使显示画面不失真的呈现出来。In the embodiment of the present invention, the infrared grid line is used as the preset reference image, and the intersection point of the grid lines in different directions in the infrared grid line is taken as the reference identification point, so that the infrared projection device can continuously project the reference image in real time. At the same time, the imaging of the visible light is not disturbed, so that the reference image and the image to be projected can be corrected in real time without interruption, so that the display image can be presented without distortion even if the projection environment is complicated.
可选的,在以上实施例的基础上,还可以包括:Optionally, based on the foregoing embodiment, the method may further include:
至少有两个成像设备,以构成立体视觉系统;如图3示,在本发明实施例中可以为两个成像设备,构成双目立体视觉系统;所述两台成像设备将捕获到的投影图像形成的二次成像图像传给计算设备,计算设备通过双目立体视觉方法对两台成像设备所传输的二次成像图像进行处理,具体实施过程中,该处理步骤为:提取所述二次成像图像中的二次像标识点的三维参数,将所述三维参数用最小二乘法拟合成一个平面,将所述三维参数垂直映射到所述拟合平面上,得到所述二次像标识点在所述投影表面上的二维坐标点,即本发明实施例中所述的二次像标识点。There are at least two imaging devices to form a stereoscopic vision system; as shown in FIG. 3, in the embodiment of the present invention, two imaging devices may be configured to form a binocular stereo vision system; the two imaging devices will capture the captured image. The formed secondary imaging image is transmitted to the computing device, and the computing device processes the secondary imaging image transmitted by the two imaging devices by the binocular stereo vision method. In a specific implementation process, the processing step is: extracting the secondary imaging The quadratic image in the image identifies a three-dimensional parameter of the point, the three-dimensional parameter is fitted into a plane by least squares method, and the three-dimensional parameter is vertically mapped onto the fitting plane to obtain the secondary image identification point. A two-dimensional coordinate point on the projection surface, that is, a secondary image identification point described in the embodiment of the present invention.
进一步的,所述双目立体视觉系统可以是平行光轴的双目立体视觉系统,在该视觉系统中可以有两个用于摄取投影图像的摄像头,计算设备从摄像头中获取二次成像图像并提取二次成像图像中的二次像标识点的三维参数,即二次像标识点的三维坐标值,具体如下:两个摄像头透镜中心的距离为e,两个摄像 头的焦距均为f,以两摄像头透镜中心连线的中点为原点,摄像头1透镜中心指向摄像头2透镜中心方向为X轴,平行摄像头光轴方向为Z轴,XYZ轴方向符合右手法则,建立坐标系,则在该坐标系中的一点(x,y,z)的坐标值可由下面的公式计算得到:Further, the binocular stereo vision system may be a binocular stereo vision system with parallel optical axes, in which there may be two cameras for taking in a projected image, and the computing device acquires a secondary image from the camera and Extracting the three-dimensional parameters of the secondary image identification point in the secondary imaging image, that is, the three-dimensional coordinate value of the secondary image identification point, as follows: the distance between the centers of the two camera lenses is e, two imaging The focal length of the head is f, the midpoint of the center line of the two camera lenses is taken as the origin, the lens center of the camera 1 is directed to the X-axis of the lens center of the camera 2, the optical axis of the parallel camera is the Z-axis, and the XYZ-axis direction conforms to the right-hand rule. To establish a coordinate system, the coordinates of a point (x, y, z) in the coordinate system can be calculated by the following formula:
Figure PCTCN2014093811-appb-000099
Figure PCTCN2014093811-appb-000099
Figure PCTCN2014093811-appb-000100
Figure PCTCN2014093811-appb-000100
Figure PCTCN2014093811-appb-000101
Figure PCTCN2014093811-appb-000101
其中(x1,y1)和(x2,y2)分别是(x,y,z)在摄像头1和摄像头2成像表面的成像位置,这样,我们可以求得所有二次像标识点在三维空间中的位置,设有N个二次像标识点,三维坐标值分别为{(x1,y1,z1),(x2,y2,z2),…,(xN,yN,zN)}。Where (x 1 , y 1 ) and (x 2 , y 2 ) are the imaging positions of the (x, y, z) on the imaging surface of the camera 1 and the camera 2, respectively, so that we can find all the secondary image identification points in The position in the three-dimensional space is provided with N secondary image identification points, and the three-dimensional coordinate values are {(x 1 , y 1 , z 1 ), (x 2 , y 2 , z 2 ), ..., (x N , respectively). y N , z N )}.
然后,{(x1,y1,z1),(x2,y2,z2),…,(xN,yN,zN)}可以用最小二乘法拟合出一个平面:Then, {(x 1 , y 1 , z 1 ), (x 2 , y 2 , z 2 ), ..., (x N , y N , z N )} can be fitted to a plane by least squares method:
Ax+By+Cz+D=0  (12)Ax+By+Cz+D=0 (12)
其中C≠0,由于平行摄像头光轴方向为Z轴,因此投影表面不能平行于Z轴,记
Figure PCTCN2014093811-appb-000102
Figure PCTCN2014093811-appb-000103
Figure PCTCN2014093811-appb-000104
则公式(6)可写成:
Where C≠0, since the parallel camera optical axis direction is the Z axis, the projection surface cannot be parallel to the Z axis,
Figure PCTCN2014093811-appb-000102
Figure PCTCN2014093811-appb-000103
Figure PCTCN2014093811-appb-000104
Then formula (6) can be written as:
z=a0x+a1y+a2  (13)z=a 0 x+a 1 y+a 2 (13)
其中a0,a1,a2为待求的参数,最小二乘法要求下式值最小:Where a 0 , a 1 , a 2 are the parameters to be sought, and the least squares method requires the following formula to be the smallest:
Figure PCTCN2014093811-appb-000105
Figure PCTCN2014093811-appb-000105
要使S最小,应满足:To minimize S, you should satisfy:
Figure PCTCN2014093811-appb-000106
Figure PCTCN2014093811-appb-000106
即:which is:
Figure PCTCN2014093811-appb-000107
Figure PCTCN2014093811-appb-000107
整理上式可得:Finishing the above formula can be obtained:
Figure PCTCN2014093811-appb-000108
Figure PCTCN2014093811-appb-000108
这样,我们就得到了公式(7)所表达的一个空间平面,然后将{(x1,y1,z1),(x2,y2,z2),…,(xN,yN,zN)}垂直投影到该拟合平面,便可得到这些点在这个平面的二维坐标{(x1′),(y1′),(x2′,y2′),…,(xN′,yN′)},这就是二次成像图像中的二次像标识点坐标值,具体实现过程中上述三维坐标值垂直投射之后得到二维坐标值可以由下列计算过程实现:Thus, we get a space plane expressed by equation (7), and then {(x 1 , y 1 , z 1 ), (x 2 , y 2 , z 2 ),..., (x N , y N , z N )} is vertically projected onto the fitting plane to obtain the two-dimensional coordinates {(x 1' ), (y 1′ ), (x 2′ , y 2′ ),... (x N' , y N' )}, which is the coordinate value of the secondary image identification point in the secondary imaging image. The specific two-dimensional coordinate value obtained after the vertical projection of the above three-dimensional coordinate value can be realized by the following calculation process:
由上述公式已经得出一个已知的拟合平面Ax+By+Cz+D=0,因此可以得到{(x1,y1,z1),(x2,y2,z2),…,(xN,yN,zN)}垂直投影到该平面的三维坐标
Figure PCTCN2014093811-appb-000109
From the above formula, a known fitting plane Ax+By+Cz+D=0 has been obtained, so that {(x 1 , y 1 , z 1 ), (x 2 , y 2 , z 2 ),... , (x N , y N , z N )} three-dimensional coordinates projected perpendicularly to the plane
Figure PCTCN2014093811-appb-000109
Figure PCTCN2014093811-appb-000110
Figure PCTCN2014093811-appb-000110
Figure PCTCN2014093811-appb-000111
Figure PCTCN2014093811-appb-000111
Figure PCTCN2014093811-appb-000112
Figure PCTCN2014093811-appb-000112
其中
Figure PCTCN2014093811-appb-000113
among them
Figure PCTCN2014093811-appb-000113
得到
Figure PCTCN2014093811-appb-000114
后,再将其映射成二维坐标{(x1′,y1′),(x2′,y2′),…,(xN′,yN′)},此处需要确定坐标原点和X轴方向(Y轴经过坐标原点和X轴垂直),可选的,在具体的实施过程中,坐标原点与X轴方向可以如下取得:
get
Figure PCTCN2014093811-appb-000114
Then, map it to a two-dimensional coordinate {(x 1' , y 1′ ), (x 2′ , y 2′ ),..., (x N′ , y N′ )}, where the coordinate origin needs to be determined. And the X-axis direction (the Y-axis is perpendicular to the coordinate origin and the X-axis). Alternatively, in the specific implementation process, the coordinate origin and the X-axis direction can be obtained as follows:
在预设的参考图像中做特定标记,使特定标记点在参考图像中易于被检测到,具体实施过程中,选取参考图像为网格图像的情况,在网格图像中做带“米”字型的特定标记,如图6所示,在投影的网格图像中做特定标记,投影这种带“米”字型标记的网格图像,这两个带“米”字型标记的网格点在图像中很容易被检测到,中间的“米”字型标记点可作为后续计算中坐标系的原点,从该点指向另一个“米”字型标记点的方向作为X轴方向。The specific mark is made in the preset reference image, so that the specific mark point is easily detected in the reference image. In the specific implementation process, the reference image is selected as the grid image, and the word "meter" is made in the grid image. The specific mark of the type, as shown in Fig. 6, makes a specific mark in the projected mesh image, and projects the mesh image with the "meter" mark, the two meshes with the "meter" mark The point is easily detected in the image, and the middle "m" shaped mark can be used as the origin of the coordinate system in the subsequent calculation, and the direction from the point to the other "meter" mark point is taken as the X-axis direction.
设两个“米”字型标记点经过公式
Figure PCTCN2014093811-appb-000115
Figure PCTCN2014093811-appb-000116
Set two "meter" font points through the formula
Figure PCTCN2014093811-appb-000115
Figure PCTCN2014093811-appb-000116
Figure PCTCN2014093811-appb-000117
Figure PCTCN2014093811-appb-000118
Figure PCTCN2014093811-appb-000119
Figure PCTCN2014093811-appb-000120
计算后的三维坐标值为
Figure PCTCN2014093811-appb-000121
Figure PCTCN2014093811-appb-000122
Figure PCTCN2014093811-appb-000123
为原点,以
Figure PCTCN2014093811-appb-000124
指向
Figure PCTCN2014093811-appb-000125
为X轴,Y轴经过坐标原点和X轴垂直,单位长度和原三维坐标系相同,由此建立二维坐标系。将
Figure PCTCN2014093811-appb-000126
映射到该二维坐标系,得到{(x1′,y1′),(x2′,y2′),…,(xN′,yN′)}:
Figure PCTCN2014093811-appb-000117
Figure PCTCN2014093811-appb-000118
Figure PCTCN2014093811-appb-000119
Figure PCTCN2014093811-appb-000120
Calculated 3D coordinate value
Figure PCTCN2014093811-appb-000121
with
Figure PCTCN2014093811-appb-000122
Take
Figure PCTCN2014093811-appb-000123
For the origin, to
Figure PCTCN2014093811-appb-000124
direction
Figure PCTCN2014093811-appb-000125
For the X-axis and the Y-axis, the coordinate origin and the X-axis are perpendicular, and the unit length is the same as the original three-dimensional coordinate system, thereby establishing a two-dimensional coordinate system. will
Figure PCTCN2014093811-appb-000126
Mapping to the two-dimensional coordinate system yields {(x 1' , y 1' ), (x 2' , y 2' ),..., (x N' , y N' )}:
xi′=l1·cosθ,yi=l1·sinθ,其中i=1,2,…,N  (19)x i' = l 1 · cos θ, y i = l 1 · sin θ, where i = 1, 2, ..., N (19)
其中:among them:
Figure PCTCN2014093811-appb-000127
其中l1表示所述拟合平面上的三维坐标点
Figure PCTCN2014093811-appb-000128
到所述建立的二维坐标系的坐标原点
Figure PCTCN2014093811-appb-000129
的距离;
Figure PCTCN2014093811-appb-000127
Where l 1 represents the three-dimensional coordinate point on the fitted plane
Figure PCTCN2014093811-appb-000128
The coordinate origin to the established two-dimensional coordinate system
Figure PCTCN2014093811-appb-000129
the distance;
Figure PCTCN2014093811-appb-000130
所述l2表示所述拟合平面上的三维坐标点
Figure PCTCN2014093811-appb-000131
到所述建立的二维坐标系的坐标原点
Figure PCTCN2014093811-appb-000132
的距离;
Figure PCTCN2014093811-appb-000130
The l 2 represents a three-dimensional coordinate point on the fitting plane
Figure PCTCN2014093811-appb-000131
The coordinate origin to the established two-dimensional coordinate system
Figure PCTCN2014093811-appb-000132
the distance;
Figure PCTCN2014093811-appb-000133
所述l3表示所述拟合平面上的三维坐标点
Figure PCTCN2014093811-appb-000134
到所述建立的二维坐标系的原点之外的另一个米字型点
Figure PCTCN2014093811-appb-000135
的距离;
Figure PCTCN2014093811-appb-000133
The l 3 represents a three-dimensional coordinate point on the fitting plane
Figure PCTCN2014093811-appb-000134
Another m-shaped point outside the origin of the established two-dimensional coordinate system
Figure PCTCN2014093811-appb-000135
the distance;
Figure PCTCN2014093811-appb-000136
所述θ表示以坐标原点
Figure PCTCN2014093811-appb-000137
为顶点,点
Figure PCTCN2014093811-appb-000138
到点
Figure PCTCN2014093811-appb-000139
的直线与点
Figure PCTCN2014093811-appb-000140
到点
Figure PCTCN2014093811-appb-000141
的直线之间的夹角。
Figure PCTCN2014093811-appb-000136
The θ represents the origin of the coordinate
Figure PCTCN2014093811-appb-000137
For the apex, point
Figure PCTCN2014093811-appb-000138
To the point
Figure PCTCN2014093811-appb-000139
Lines and points
Figure PCTCN2014093811-appb-000140
To the point
Figure PCTCN2014093811-appb-000141
The angle between the straight lines.
在本发明实施例中,考虑到投影环境的复杂,投影表面可能为凹凸不平的三维态呈现,此时必须将以三维态呈现的投影表面拟合成二维平面才能取得最终的二次像标识点的二维坐标值,并基于此提取出失真系数R对参考图像和待投影图像进行修正,由此使得即使在复杂的投影环境中投射出的图像也不失真。In the embodiment of the present invention, considering the complexity of the projection environment, the projection surface may be presented in a three-dimensional state of unevenness. In this case, the projection surface presented in the three-dimensional state must be fitted into a two-dimensional plane to obtain the final secondary image identifier. The two-dimensional coordinate value of the point, and based on this, the distortion coefficient R is extracted to correct the reference image and the image to be projected, thereby making the image projected even in a complicated projection environment not distorted.
可选的,在本发明实施例中,至少为两个的成像设备还可以是至少为两个的加装了红外滤镜摄像头的摄像装置。Optionally, in the embodiment of the present invention, at least two imaging devices may also be at least two camera devices equipped with an infrared filter camera.
在本发明上述所有实施例的基础上,可选的,如图4所示,本方案还可以包括如下实施方式,具体步骤如下:On the basis of all the foregoing embodiments of the present invention, optionally, as shown in FIG. 4, the solution may further include the following implementation manners, and the specific steps are as follows:
S301,获取所述投影设备在将所述参考图像投射至所述投影表面上形成投影图像时的运动参数。S301. Acquire a motion parameter when the projection device projects the reference image onto the projection surface to form a projected image.
在具体实施过程中,运动参数可以由加速度传感器取得,该加速度传感器应当与投影设备紧邻且刚性连接,以使得加速传感器能精确捕捉到投影设备的运动从而取得最准确的运动参数。在具体的实施过程中,该运动参数可以是由加速度传感器直接取得的一个运动补偿,也可以是由加速传感器得到的运动方向信息。 In a specific implementation, the motion parameters may be taken by an acceleration sensor that should be in close proximity and rigidly coupled to the projection device such that the acceleration sensor can accurately capture the motion of the projection device to achieve the most accurate motion parameters. In a specific implementation process, the motion parameter may be a motion compensation directly obtained by the acceleration sensor, or may be a motion direction information obtained by the acceleration sensor.
S302,根据所述运动参数获得运动补偿参数,如图5所示具体可以由S302a或S302b方法实现:S302. Obtain a motion compensation parameter according to the motion parameter. As shown in FIG. 5, the method may be implemented by the S302a or S302b method:
S302a,对所述二次成像图像进行运动估计得到初步运动补偿值,结合所述运动参数和初步运动补偿值获取运动补偿参数M;S302a, performing motion estimation on the secondary imaging image to obtain a preliminary motion compensation value, and combining the motion parameter and the preliminary motion compensation value to obtain a motion compensation parameter M;
当所述运动参数为由所述加速度传感器直接获取的第一运动补偿M2时,对二次成像图像进行运动估计:具体为取二次成像图像的相邻两帧,为标准帧和当前帧,在标准帧和当前帧中取对应像素点的坐标值,并求该对应点的坐标位置差,最后对所有坐标位置差求平均得到初步运动补偿值M1,结合运动参数M2和初步运动补偿值M1获取运动补偿参数M。When the motion parameter is the first motion compensation M 2 directly acquired by the acceleration sensor, performing motion estimation on the secondary imaging image: specifically, taking two adjacent frames of the secondary imaging image, which are a standard frame and a current frame. And taking the coordinate value of the corresponding pixel in the standard frame and the current frame, and finding the coordinate position difference of the corresponding point, and finally averaging all the coordinate position differences to obtain the preliminary motion compensation value M 1 , combining the motion parameter M 2 and the preliminary motion The compensation value M 1 acquires the motion compensation parameter M.
可选的,在本发明实施例中,结合运动参数M2和初步运动补偿值M1获取运动补偿参数M的方法可以为:将所述运动参数即M2第一运动补偿值和所述初步运动补偿值M1进行加权平均得到运动补偿参数M,具体通过如下公式实现:Optionally, in the embodiment of the present invention, the method for acquiring the motion compensation parameter M in combination with the motion parameter M 2 and the preliminary motion compensation value M 1 may be: the motion parameter, that is, the M 2 first motion compensation value, and the preliminary The motion compensation value M 1 is weighted and averaged to obtain a motion compensation parameter M, which is specifically implemented by the following formula:
M=α*M1+(1-α)*M2   (21)M=α*M 1 +(1-α)*M 2 (21)
其中,所述
Figure PCTCN2014093811-appb-000142
所述
Figure PCTCN2014093811-appb-000143
所述
Figure PCTCN2014093811-appb-000144
所述
Figure PCTCN2014093811-appb-000145
所述(txi,tyi)为所述二次成像图像中的二次像标识点在相邻两帧中的位置差,所述N为每一帧中所述二次像标识点的取点数量;所述
Figure PCTCN2014093811-appb-000146
所述
Figure PCTCN2014093811-appb-000147
所述(txj,tyj)为所述参考图像中的参考标识点在相邻两帧中的位置差,所述M为每一帧中所述参考标识点的取点数量;α为在所述M1和所述M2之间取值比重的经验值,所述α的取值范围为0≤α≤1。
Wherein said
Figure PCTCN2014093811-appb-000142
Said
Figure PCTCN2014093811-appb-000143
Said
Figure PCTCN2014093811-appb-000144
Said
Figure PCTCN2014093811-appb-000145
The (tx i , ty i ) is a position difference of a secondary image identification point in the adjacent two frames in the secondary imaging image, and the N is a reference point of the secondary image identification point in each frame. Number of points;
Figure PCTCN2014093811-appb-000146
Said
Figure PCTCN2014093811-appb-000147
The (tx j , ty j ) is a position difference of a reference identification point in the reference image in two adjacent frames, where M is a number of points of the reference identification point in each frame; An empirical value of the specific gravity between the M 1 and the M 2 , wherein the value of α ranges from 0 ≤ α ≤ 1.
可选的,本发明实施例还可以为:Optionally, the embodiment of the present invention may also be:
S302b,对所述二次成像图像进行运动估计得到初步运动补偿值,结合所述运动参数和初步运动补偿值获取运动补偿参数M。S302b: Perform motion estimation on the secondary imaging image to obtain a preliminary motion compensation value, and obtain a motion compensation parameter M according to the motion parameter and the preliminary motion compensation value.
当运动参数为由加速度传感器得到的运动方向信息,在具体的实施过程中, 该运动方向信息为加速度传感器所感测到的所述投影设备在的X、Y方向位移的分量值(u,v),结合该运动方向信息对所述二次成像图像进行运动估计得到运动补偿参数M。When the motion parameter is the motion direction information obtained by the acceleration sensor, in a specific implementation process, The motion direction information is a component value (u, v) of the displacement of the projection device sensed by the acceleration sensor in the X and Y directions, and the motion estimation parameter is obtained by performing motion estimation on the second imaging image. M.
可选的,在本发明实施例中,结合该运动方向信息对所述二次成像图像进行运动估计得到运动补偿参数M可以通过如下公式来实现:Optionally, in the embodiment of the present invention, performing motion estimation on the secondary imaging image in combination with the motion direction information to obtain the motion compensation parameter M may be implemented by using the following formula:
取加速度传感器在X、Y方向分量值,设其值为(u,v),则其与X方向的夹角为:Taking the value of the acceleration sensor in the X and Y directions, and setting its value to (u, v), its angle with the X direction is:
Figure PCTCN2014093811-appb-000148
Figure PCTCN2014093811-appb-000148
设二次成像图像中共有N个网格点,即共有N个二次像标识点,每个标识点由相邻两帧的位置差得到的位移为(txi,tyi),i=1,2,…,N,则每个标识点位移与X方向的夹角θi和大小Li分别为:It is assumed that there are N grid points in the secondary imaging image, that is, there are N secondary image identification points, and the displacement of each identification point obtained by the position difference of two adjacent frames is (tx i , ty i ), i=1 , 2, ..., N, then the angle θ i and the size L i of each marker point displacement with the X direction are:
Figure PCTCN2014093811-appb-000149
Figure PCTCN2014093811-appb-000149
Figure PCTCN2014093811-appb-000150
Figure PCTCN2014093811-appb-000150
被加速度传感器修正后的网格点的位移方向为:The displacement direction of the grid point corrected by the acceleration sensor is:
θ′i=α·θi+(1-α)·θuv   (25)θ' i =α·θ i +(1-α)·θ uv (25)
其中α为经验值,比如α=0.5。Where α is an empirical value, such as α = 0.5.
最终的运动补偿M在X、Y方向的分量为:The components of the final motion compensation M in the X and Y directions are:
Figure PCTCN2014093811-appb-000151
Figure PCTCN2014093811-appb-000151
Figure PCTCN2014093811-appb-000152
Figure PCTCN2014093811-appb-000152
即:
Figure PCTCN2014093811-appb-000153
which is:
Figure PCTCN2014093811-appb-000153
Figure PCTCN2014093811-appb-000154
Figure PCTCN2014093811-appb-000154
Figure PCTCN2014093811-appb-000155
Figure PCTCN2014093811-appb-000155
其中(txi,tyi)为所述二次成像图像中的二次像标识点在相邻两帧中的位置差,所述N为每一帧中所述二次像标识点的取点数量,其中(u,v)为运动参数,即由加速度传感器所感测到的所述投影设备在的X、Y方向位移的分量值,α为在
Figure PCTCN2014093811-appb-000156
Figure PCTCN2014093811-appb-000157
之间的取值比重的经验值,所述α的取值范围为0≤α≤1。
Where (tx i , ty i ) is a position difference of the secondary image identification point in the adjacent two frames in the secondary image, and the N is a point of the secondary image identification point in each frame Quantity, where (u, v) is a motion parameter, that is, a component value of the displacement of the projection device in the X and Y directions sensed by the acceleration sensor, α is
Figure PCTCN2014093811-appb-000156
with
Figure PCTCN2014093811-appb-000157
The empirical value of the ratio between the values, the value of the α is 0 ≤ α ≤ 1.
S303,根据所述运动补偿参数M对所述经过失真修正的图像进行反向运动补偿;所述经过失真修正后的图像包括修正的待投影图像,或修正的参考图像。S303. Perform inverse motion compensation on the distortion-corrected image according to the motion compensation parameter M. The distortion-corrected image includes a corrected image to be projected, or a corrected reference image.
可选的,在本发明实施例中,针对经过失真修正的待投影图像进行反向运动补偿可以通过如下公式实现:Optionally, in the embodiment of the present invention, performing inverse motion compensation on the image to be projected that is subjected to distortion correction may be implemented by using the following formula:
Figure PCTCN2014093811-appb-000158
Figure PCTCN2014093811-appb-000158
其中
Figure PCTCN2014093811-appb-000159
为将经过修正的待投影图像的像素坐标进行运动补偿后的图像像素坐标。
among them
Figure PCTCN2014093811-appb-000159
The pixel coordinates of the image after motion compensation for the pixel coordinates of the corrected image to be projected.
可选的,在本发明实施例中,针对经过失真修正的参考图像进行反向运动补偿可以通过如下公式实现:Optionally, in the embodiment of the present invention, performing inverse motion compensation on the distortion-corrected reference image may be implemented by using the following formula:
Figure PCTCN2014093811-appb-000160
Figure PCTCN2014093811-appb-000160
其中,所述
Figure PCTCN2014093811-appb-000161
为将所述参考图像根据失真系数R进行修正后的图像像素点坐标,其中所述
Figure PCTCN2014093811-appb-000162
为将经过失真修正后的图像像素点坐标进行反向运动补偿后的图像像素坐标,其中(tx,ty)为运动补偿参数M。
Wherein said
Figure PCTCN2014093811-appb-000161
Image pixel point coordinates for correcting the reference image according to a distortion coefficient R, wherein
Figure PCTCN2014093811-appb-000162
The image pixel coordinates obtained by inverse motion compensation of the image pixel coordinate coordinates after distortion correction, wherein (tx, ty) is the motion compensation parameter M.
在本发明实施例中,考虑到投影环境的复杂,投影设备可能出现移动或者 晃动的情况,从而使投影画面抖动,本发明实施例通过加速度传感器与运动估计的结合,求得最准确的运动补偿参数M对经过失真校正的修正后的参考图像及待投影图像进行反向运动补偿,从而保证在投影环境复杂的情况下输出的图像没有抖动。In the embodiment of the present invention, considering the complexity of the projection environment, the projection device may move or In the case of shaking, thereby causing the projected picture to be shaken, the embodiment of the present invention obtains the most accurate motion compensation parameter M by the combination of the acceleration sensor and the motion estimation, and performs the inverse motion of the corrected reference image and the image to be projected after the distortion correction. Compensation to ensure that the output image is not shaken in the case of a complex projection environment.
在本发明上述所有实施例的基础上,可选的,本发明实施例还可以包括:Based on all the foregoing embodiments of the present invention, optionally, the embodiment of the present invention may further include:
将经过失真校正的图像或者经过失真校正且经过反向运动补偿后的图像投射到投影表面,包括:根据投影设备到投影表面的距离D调整投影设备的焦距,使投影设备投射到投影表面的图像大小符合最佳视觉接收,具体通过如下公式来实现:Projecting the distortion-corrected image or the distortion-corrected and inverse-motion-compensated image onto the projection surface includes: adjusting the focal length of the projection device according to the distance D from the projection device to the projection surface, and causing the projection device to project an image onto the projection surface The size is in line with the best visual reception, which is achieved by the following formula:
Figure PCTCN2014093811-appb-000163
Figure PCTCN2014093811-appb-000163
其中,所述s0为投影设备液晶片尺寸,所述s1为图像大小的经验参考值,所述
Figure PCTCN2014093811-appb-000164
即取N个二次像标识点的三维坐标值中的z值并对所述z值求平均得到距离D。
Wherein the s 0 is a liquid crystal size of the projection device, and the s 1 is an empirical reference value of the image size,
Figure PCTCN2014093811-appb-000164
That is, the z value in the three-dimensional coordinate values of the N secondary image identification points is taken and the z values are averaged to obtain the distance D.
其中二次像标识点的三维坐标值由立体视觉系统获取,The three-dimensional coordinate value of the secondary image identification point is obtained by the stereo vision system.
在具体的实施过程中,至少有两个成像设备,以构成立体视觉系统;结合流程图3示,在本发明实施例中可以为两个成像设备,构成双目立体视觉系统;所述两台成像设备将捕获到的投影图像形成的二次成像图像传给计算设备,计算设备通过双目立体视觉方法对两台成像设备所传输的二次成像图像进行处理,具体实施过程中,该处理步骤为:提取所述二次成像图像中的二次像标识点的三维参数。In a specific implementation process, at least two imaging devices are configured to form a stereo vision system; in conjunction with the flowchart 3, in the embodiment of the present invention, two imaging devices may be configured to form a binocular stereo vision system; The imaging device transmits the secondary imaging image formed by the captured projection image to the computing device, and the computing device processes the secondary imaging image transmitted by the two imaging devices by the binocular stereo vision method. In the specific implementation process, the processing step And extracting a three-dimensional parameter of the secondary image identification point in the secondary imaging image.
进一步的,所述双目立体视觉系统可以是平行光轴的双目立体视觉系统,在该视觉系统中可以有两个用于摄取投影图像的摄像头,计算设备从摄像头中 获取二次成像图像并提取二次成像图像中的二次像标识点的三维参数,即二次像标识点的三维坐标值,具体如下:两个摄像头透镜中心的距离为e,两个摄像头的焦距均为f,以两摄像头透镜中心连线的中点为原点,摄像头1透镜中心指向摄像头2透镜中心方向为X轴,平行摄像头光轴方向为Z轴,XYZ轴方向符合右手法则,建立坐标系,则在该坐标系中的一点(x,y,z)的坐标值可由下面的公式计算得到:Further, the binocular stereo vision system may be a binocular stereo vision system with parallel optical axes, in which there may be two cameras for capturing projected images, and the computing device is from the camera. Obtaining a secondary imaging image and extracting a three-dimensional parameter of the secondary image identification point in the secondary imaging image, that is, a three-dimensional coordinate value of the secondary image identification point, as follows: the distance between the centers of the two camera lenses is e, and the two cameras are The focal length is f, the midpoint of the center line of the two camera lenses is taken as the origin, the lens center of the camera 1 is directed to the X-axis of the lens center of the camera 2, the optical axis of the parallel camera is the Z-axis, and the XYZ-axis direction conforms to the right-hand rule, and the coordinates are established. For the system, the coordinates of a point (x, y, z) in the coordinate system can be calculated by the following formula:
Figure PCTCN2014093811-appb-000165
Figure PCTCN2014093811-appb-000165
Figure PCTCN2014093811-appb-000166
Figure PCTCN2014093811-appb-000166
Figure PCTCN2014093811-appb-000167
Figure PCTCN2014093811-appb-000167
其中(x1,y1)和(x2,y2)分别是(x,y,z)在所述立体视觉处理子单元302a中的摄像头1和摄像头2成像表面的成像位置。这样,我们可以求得所有二次像标识点在三维空间中的位置,设有N个二次像标识点,坐标分别为{(x1,y1,z1),(x2,y2,z2),…,(xN,yN,zN)}。Wherein (x 1 , y 1 ) and (x 2 , y 2 ) are (x, y, z) imaging positions of the imaging surface of the camera 1 and the camera 2 in the stereoscopic processing sub-unit 302a, respectively. In this way, we can find the position of all the secondary image identification points in three-dimensional space, with N secondary image identification points, the coordinates are {(x 1 , y 1 , z 1 ), (x 2 , y 2 , z 2 ),...,(x N ,y N ,z N )}.
根据这些点的Z坐标可以估算投影表面距离投影机的大致距离:Based on the Z coordinate of these points, the approximate distance of the projection surface from the projector can be estimated:
Figure PCTCN2014093811-appb-000168
Figure PCTCN2014093811-appb-000168
根据距离d自动调整可见光投影机的焦距,使得可见光投影机投影到投影表面的图像大小适合穿戴着观看。下表是根据经验得到的投影距离和投影图像大小的参考值。The focal length of the visible light projector is automatically adjusted according to the distance d, so that the image size projected by the visible light projector onto the projection surface is suitable for wearing and viewing. The following table is a reference value of the projection distance and the projected image size obtained empirically.
表1.投影距离和投影图像大小的参考值Table 1. Reference values for projection distance and projected image size
Figure PCTCN2014093811-appb-000169
Figure PCTCN2014093811-appb-000169
Figure PCTCN2014093811-appb-000170
Figure PCTCN2014093811-appb-000170
得到投影距离d(单位:米)后,由下面的公式可得到投影机需要设定的焦距f(单位:米):After obtaining the projection distance d (unit: m), the focal length f (unit: m) that the projector needs to set can be obtained by the following formula:
Figure PCTCN2014093811-appb-000171
Figure PCTCN2014093811-appb-000171
其中,s0为投影机液晶片尺寸(单位:英寸),s1为根据距离d查询表1得到的投影图像的大小(单位:英寸),f的取值受到硬件的限制,必须位于[fmin,fmax]之间,即实际取值为max(min(f,fmax),fmin)。为了避免因距离的变化导致焦距不停变化,可以规定只有当当前距离和前一次调整焦距时的距离的差的绝对值大于一个给定的阈值(比如0.5米)时,才进行新的焦距计算与设定。Where s 0 is the projector liquid crystal size (unit: inch), s 1 is the size (in inches) of the projected image obtained according to the distance d query table 1, the value of f is limited by hardware, must be located in [f Between min , f max ], that is, the actual value is max(min(f, f max ), f min ). In order to avoid the focal length changing due to the change of the distance, it can be specified that the new focal length calculation is performed only when the absolute value of the difference between the current distance and the previous adjustment of the focal length is greater than a given threshold (for example, 0.5 m). With settings.
在本发明实施例中,在前面的实施例的基础上又通过对二次像标识点在三维空间中的Z坐标值取平均值得到投影表面到成像设备之间的距离d,根据距离d自动调整投影设备的焦距,从而使投影设备投影到投影表面的图像大小达到最佳的观看效果。In the embodiment of the present invention, on the basis of the foregoing embodiment, the distance d between the projection surface and the imaging device is obtained by averaging the Z coordinate values of the secondary image identification points in the three-dimensional space, and automatically according to the distance d. Adjust the focal length of the projection device so that the image size projected by the projection device onto the projection surface is optimally viewed.
实施例二Embodiment 2
本发明实施例提供了一种基于投影图像的处理装置,如图6所示,该装置包括:An embodiment of the present invention provides a processing apparatus based on a projected image. As shown in FIG. 6, the apparatus includes:
成像获取单元301,用于获取投影表面上的投影图像在成像设备中的二次成像图像,所述投影图像为由投影设备将预设的参考图像投射至所述投影表面上所成的图像,所述预设的参考图像中设置有参考标识点,所述参考标识点经投影后在所述投影图像中形成一次像标识点;所述一次像标识点在所述二次成像图像中形成的像点为二次像标识点; An imaging acquiring unit 301, configured to acquire a secondary imaging image of the projection image on the projection surface in the imaging device, where the projection image is an image formed by the projection device projecting the preset reference image onto the projection surface, a reference identification point is disposed in the preset reference image, and the reference identification point is projected to form an image identification point in the projection image; the primary image identification point is formed in the secondary imaging image. The image point is a secondary image identification point;
像标识点获取单元302,用于获取所述二次成像图像中的二次像标识点;The image identification point obtaining unit 302 is configured to acquire a secondary image identification point in the secondary imaging image;
失真系数获取单元303,用于根据所述二次像标识点的位置参数基于所述参考标识的位置参数的变化来获取失真系数;所述二次像标识点的位置参数为所述二次像标识点在所述二次成像图像中的位置参数,所述参考标识点的位置参数为所述参考标识点在所述参考图像中的位置参数;a distortion coefficient acquisition unit 303, configured to acquire a distortion coefficient according to a change of a position parameter of the reference image identifier according to a position parameter of the secondary image identification point; a position parameter of the secondary image identification point is the secondary image Identifying a position parameter of the point in the secondary imaging image, where the position parameter of the reference identification point is a position parameter of the reference identification point in the reference image;
待投影图像修正单元304,用于根据所述失真系数R对待投影图像进行失真修正。The image to be projected correction unit 304 is configured to perform distortion correction on the image to be projected according to the distortion coefficient R.
在本发明实施例中,投影设备将预设的参考图像投射至投影表面形成投影图像,成像设备摄取投影图像形成二次成像图像,成像获取单元301从成像设备中获取二次成像图像,并且成像获取单元301中已经提前存储了预设的参考图像;预设的参考图像中设置有参考标识点,所述参考标识点由投影设备投射在投影表面上形成一次像标识点;具体的实施过程中,该参考标识点可以按照规则间隔距离选取,也可以不按照规则间隔距离选取,所有标识点呈现出的图案可以是正方形网格状,也可以是菱形网格状,还可以是其它规则或不规则形状,具体可以根据投影设备和投影表面之间的位置关系以及投影表面的平缓程度进行决定;在具体的实施过程中,所述参考标识点为参考标识点的二维坐标值。In the embodiment of the present invention, the projection device projects the preset reference image to the projection surface to form a projection image, the imaging device picks up the projection image to form a secondary imaging image, and the imaging acquisition unit 301 acquires the secondary imaging image from the imaging device, and images the image. The preset reference image has been stored in the acquisition unit 301 in advance; the reference identification point is set in the preset reference image, and the reference identification point is projected on the projection surface by the projection device to form an image identification point; The reference identification point may be selected according to a regular interval, or may not be selected according to a regular interval. The pattern represented by all the identification points may be a square grid shape, a diamond grid shape, or other rules or not. The regular shape may be determined according to the positional relationship between the projection device and the projection surface and the gradual degree of the projection surface; in a specific implementation process, the reference identification point is a two-dimensional coordinate value of the reference identification point.
成像获取单元301获取二次成像图像后,像标识点获取单元302再从二次成像图像中获取二次成像图像中的二次像标识点,所述二次像标识点为投影图像中的一次像标识点在二次成像图像中形成的像点,在具体的实施过程中,所述获取的二次像标识点为二次像标识点的二维坐标值。After the imaging acquisition unit 301 acquires the secondary imaging image, the image identification point acquiring unit 302 acquires the secondary image identification point in the secondary imaging image from the secondary imaging image, and the secondary image identification point is once in the projection image. The image point formed by the marker point in the secondary imaging image, in a specific implementation process, the acquired secondary image identification point is a two-dimensional coordinate value of the secondary image identification point.
失真系数获取单元303将已经提前存储的预设的参考图像调取出来,提取其中预设好的参考标识点的二维坐标值,并根据该参考标识点的坐标值得到其在参考图像中的位置参数,根据像标识点获取单元302获取到的二次像标识点 的二维坐标值得到其在二次成像图像中的位置参数,失真系数获取单元303将参考标识点在参考图像中的位置参数和二次像标识点在二次成像图像中的位置参数进行比较,从而获取形变系数即失真系数R。The distortion coefficient acquisition unit 303 extracts the preset reference image that has been stored in advance, extracts the two-dimensional coordinate value of the preset reference identification point, and obtains the reference image in the reference image according to the coordinate value of the reference identification point. The position parameter is obtained according to the secondary image identification point acquired by the image identification point acquiring unit 302. The two-dimensional coordinate value obtains its positional parameter in the secondary imaging image, and the distortion coefficient acquisition unit 303 compares the positional parameter of the reference identification point in the reference image with the positional parameter of the secondary image identification point in the secondary imaging image. , thereby obtaining a distortion coefficient, that is, a distortion coefficient R.
具体的,失真系数获取单元303可以用于通过如下公式计算所述失真系数:Specifically, the distortion coefficient obtaining unit 303 can be configured to calculate the distortion coefficient by the following formula:
Figure PCTCN2014093811-appb-000172
Figure PCTCN2014093811-appb-000172
Figure PCTCN2014093811-appb-000173
Figure PCTCN2014093811-appb-000173
Figure PCTCN2014093811-appb-000174
Figure PCTCN2014093811-appb-000174
其中,R为失真系数,所述
Figure PCTCN2014093811-appb-000175
为所述参考图像在仿射变换中形成的矩阵,其中r11,r12,r13,r21,r22,r23为仿射变化中的参数,所述xi和所述yi为所述二次像标识点在所述二次成像图像中的横坐标值和纵坐标值,则所述(xi,yi)为二次像标识点的坐标值;所述x′i和所述y′i为所述参考标识点在所述参考图像中的横坐标值和纵坐标值,则所述(x′i,y′i)为参考标识点的坐标值;所述仿射变换过程为所述参数r11,r12,r21,r22与所述二次像标识点(xi,yi)进行一次线性变换,并接上平移参数r13,r23变换为所述参考标识点(x′i,y′i);公式(2)为由公式(1)变换构成的线性方程组,由所述公式(2)计算得到所述仿射变换失真系数R。
Where R is the distortion coefficient,
Figure PCTCN2014093811-appb-000175
a matrix formed in the affine transformation of the reference image, wherein r 11 , r 12 , r 13 , r 21 , r 22 , r 23 are parameters in an affine change, and the x i and the y i are And the (x i , y i ) is a coordinate value of the secondary image identification point; the x′ i and the coordinate value of the secondary image identification point in the secondary imaging image. The y′ i is an abscissa value and an ordinate value of the reference identification point in the reference image, and the (x′ i , y′ i ) is a coordinate value of a reference identification point; the affine The transformation process performs a linear transformation of the parameters r 11 , r 12 , r 21 , r 22 and the secondary image identification point (x i , y i ), and is coupled with the translation parameter r 13 , r 23 The reference identification point (x' i , y' i ) is described; the formula (2) is a linear equation group formed by the transformation of the formula (1), and the affine transformation distortion coefficient R is calculated by the formula (2).
相应地,待投影图像修正单元304可以用于通过如下公式对所述待投影图像进行失真修正:Correspondingly, the image to be projected correction unit 304 can be used to perform distortion correction on the image to be projected by the following formula:
Figure PCTCN2014093811-appb-000176
Figure PCTCN2014093811-appb-000176
其中,R为失真系数,所述
Figure PCTCN2014093811-appb-000177
Figure PCTCN2014093811-appb-000178
为将待投影图像根据失真系数R进行修正后的图像像素坐标点
Figure PCTCN2014093811-appb-000179
的横坐标值和纵坐标值,所述xi和yi为待投影图像 原始像素坐标点(xi,yi)的横坐标值和纵坐标值。
Where R is the distortion coefficient,
Figure PCTCN2014093811-appb-000177
with
Figure PCTCN2014093811-appb-000178
Image pixel coordinate point for correcting the image to be projected according to the distortion coefficient R
Figure PCTCN2014093811-appb-000179
The abscissa value and the ordinate value, the x i and y i are the abscissa value and the ordinate value of the original pixel coordinate point (x i , y i ) of the image to be projected.
在上述实施例中装置的基础上,还可以包括参考图像修正单元305,用于根据所述失真系数R对所述参考图像进行修正;所述参考图像修正单元用于通过如下公式对所述参考图像进行失真修正:On the basis of the apparatus in the above embodiment, a reference image correcting unit 305 may be further included for correcting the reference image according to the distortion coefficient R; the reference image correcting unit is configured to refer to the reference by the following formula Image distortion correction:
Figure PCTCN2014093811-appb-000180
Figure PCTCN2014093811-appb-000180
其中,R为失真系数,所述
Figure PCTCN2014093811-appb-000181
Figure PCTCN2014093811-appb-000182
为将所述参考图像根据失真系数R进行修正后的图像像素坐标点
Figure PCTCN2014093811-appb-000183
的横坐标值和纵坐标值,所述xk和yk为所述参考图像的原始像素坐标点(xk,yk)的横坐标值和纵坐标值。
Where R is the distortion coefficient,
Figure PCTCN2014093811-appb-000181
with
Figure PCTCN2014093811-appb-000182
Image pixel coordinate point for correcting the reference image according to the distortion coefficient R
Figure PCTCN2014093811-appb-000183
An abscissa value and an ordinate value, the x k and y k being an abscissa value and an ordinate value of the original pixel coordinate point (x k , y k ) of the reference image.
作为一种可选的实施方式,所述成像获取单元301用于获取投影表面上的投影图像在所述红外滤镜摄像头中的二次红外网格线;As an optional implementation manner, the imaging acquiring unit 301 is configured to acquire a secondary infrared grid line of a projection image on the projection surface in the infrared filter camera;
所述像标识点获取单元302用于获取所述二次红外网格线中不同方向的网格线的交点,所述不同方向的网格线的交点为所述二次像标识点。The image identification point acquisition unit 302 is configured to acquire intersections of grid lines in different directions in the secondary infrared grid lines, and intersection points of the grid lines in the different directions are the secondary image identification points.
因为在具体的应用中,由于待投影图像修正单元304和参考图像修正单元可能会对待修正图像进行实时不间断的修正,本发明实施例装置中预设的参考图像为参考红外网格线,预设的参考标识点为所述参考红外网格线中不同方向的网格线的交点,即采用红外网格线作为参考图像使投影设备可以实时不间断的向投影表面投射参考图像并且不干扰可见光的成像,这样就能保证对参考图像和待投影图像的校正也是实时不间断的进行,从而使得人眼识别到的投影图像自始至终都是不失真的图像。The specific reference image in the device of the embodiment of the present invention is a reference infrared grid line, in the specific application, because the image to be projected correction unit 304 and the reference image correction unit may perform real-time uninterrupted correction on the image to be corrected. The reference identification point is an intersection of the grid lines in different directions in the reference infrared grid line, that is, the infrared grid line is used as the reference image, so that the projection device can project the reference image to the projection surface in real time without disturbing the visible light. The imaging ensures that the correction of the reference image and the image to be projected is also performed in real time, so that the projected image recognized by the human eye is an undistorted image from beginning to end.
由于在现实场景中,投影平面有可能凹凸不平,此时像标识点获取单元302获取的二次像标识点可能会不准确,因此,如图7所示,所述像标识点获取单元302还可以进一步包括:立体视觉处理子单元302a,用于获取投影图像中的 三维参数。The image recognition point acquisition unit 302 may also be inaccurate. The method may further include: a stereo vision processing sub-unit 302a for acquiring in the projected image Three-dimensional parameters.
所述像标识点获取子单元302b,用于将所述立体视觉处理子单元302a获取的三维参数拟合成一个平面,将所述三维参数垂直映射到所述平面,得到二维坐标点,所述二维坐标点为所述二次像标识点。The image identification point acquisition sub-unit 302b is configured to fit the three-dimensional parameters acquired by the stereoscopic vision processing sub-unit 302a into a plane, and vertically map the three-dimensional parameters to the plane to obtain a two-dimensional coordinate point. The two-dimensional coordinate point is the secondary image identification point.
在该立体视觉处理子单元302a中至少有两个成像设备;结合图3示,在本发明实施例中可以为两个成像设备,即构成双目立体视觉系统;成像获取单元301将捕获到的投影图像形成的二次成像图像传给像标识点获取单元302,立体视觉处理子单元302a通过双目立体视觉方法对两台成像设备所传输的二次成像图像进行处理,具体实施过程中,该处理步骤为:提取所述二次成像图像中的二次像标识点的三维参数,将所述三维参数用最小二乘法拟合成一个平面,将所述三维参数垂直映射到所述拟合平面上,得到所述二次像标识点在所述投影表面上的二维坐标点,即本发明实施例中所述的二次像标识点。There are at least two imaging devices in the stereoscopic processing sub-unit 302a; in conjunction with FIG. 3, in the embodiment of the present invention, there may be two imaging devices, that is, a binocular stereo vision system; the imaging acquisition unit 301 will capture the captured The secondary imaging image formed by the projection image is transmitted to the image identification point acquisition unit 302, and the stereoscopic vision processing sub-unit 302a processes the secondary imaging image transmitted by the two imaging devices by the binocular stereo vision method. The processing step is: extracting a three-dimensional parameter of the secondary image identification point in the secondary imaging image, fitting the three-dimensional parameter into a plane by least squares, and vertically mapping the three-dimensional parameter to the fitting plane The two-dimensional coordinate point of the secondary image identification point on the projection surface, that is, the secondary image identification point described in the embodiment of the present invention is obtained.
进一步的,所述双目立体视觉系统可以是平行光轴的双目立体视觉系统,在该视觉系统中可以有两个用于摄取投影图像的摄像头,计算设备从摄像头中获取二次成像图像并提取二次成像图像中的二次像标识点的三维参数,即二次像标识点的三维坐标值,具体如下:两个摄像头透镜中心的距离为e,两个摄像头的焦距均为f,以两摄像头透镜中心连线的中点为原点,摄像头1透镜中心指向摄像头2透镜中心方向为X轴,平行摄像头光轴方向为Z轴,XYZ轴方向符合右手法则,建立坐标系,则在该坐标系中的一点(x,y,z)的坐标值可由下面的公式计算得到:Further, the binocular stereo vision system may be a binocular stereo vision system with parallel optical axes, in which there may be two cameras for taking in a projected image, and the computing device acquires a secondary image from the camera and Extracting the three-dimensional parameter of the secondary image identification point in the secondary imaging image, that is, the three-dimensional coordinate value of the secondary image identification point, as follows: the distance between the centers of the two camera lenses is e, and the focal lengths of the two cameras are f, The midpoint of the center line of the two camera lenses is the origin. The center of the lens of the camera 1 is directed to the X axis of the lens center of the camera 2, the optical axis of the parallel camera is the Z axis, and the XYZ axis direction conforms to the right hand rule. The coordinate system is established at the coordinate. The coordinates of a point (x, y, z) in the system can be calculated by the following formula:
Figure PCTCN2014093811-appb-000184
Figure PCTCN2014093811-appb-000184
Figure PCTCN2014093811-appb-000185
Figure PCTCN2014093811-appb-000185
Figure PCTCN2014093811-appb-000186
Figure PCTCN2014093811-appb-000186
其中(x1,y1)和(x2,y2)分别是(x,y,z)在摄像头1和摄像头2成像表面的成像位置,这样,我们可以求得所有二次像标识点在三维空间中的位置,设有N个二次像标识点,三维坐标值分别为{(x1,y1,z1),(x2,y2,z2),…,(xN,yN,zN)}。Where (x 1 , y 1 ) and (x 2 , y 2 ) are the imaging positions of the (x, y, z) on the imaging surface of the camera 1 and the camera 2, respectively, so that we can find all the secondary image identification points in The position in the three-dimensional space is provided with N secondary image identification points, and the three-dimensional coordinate values are {(x 1 , y 1 , z 1 ), (x 2 , y 2 , z 2 ), ..., (x N , respectively). y N , z N )}.
然后,{(x1,y1,z1),(x2,y2,z2),…,(xN,yN,zN)}可以用最小二乘法拟合出一个平面:Then, {(x 1 , y 1 , z 1 ), (x 2 , y 2 , z 2 ), ..., (x N , y N , z N )} can be fitted to a plane by least squares method:
Ax+By+Cz+D=0  (8)Ax+By+Cz+D=0 (8)
其中C≠0,由于平行摄像头光轴方向为Z轴,因此投影表面不能平行于Z轴,记
Figure PCTCN2014093811-appb-000187
Figure PCTCN2014093811-appb-000188
Figure PCTCN2014093811-appb-000189
则公式(8)可写成:
Where C≠0, since the parallel camera optical axis direction is the Z axis, the projection surface cannot be parallel to the Z axis,
Figure PCTCN2014093811-appb-000187
Figure PCTCN2014093811-appb-000188
Figure PCTCN2014093811-appb-000189
Then formula (8) can be written as:
z=a0x+a1y+a2  (9)z=a 0 x+a 1 y+a 2 (9)
其中a0,a1,a2为待求的参数,最小二乘法要求下式值最小:Where a 0 , a 1 , a 2 are the parameters to be sought, and the least squares method requires the following formula to be the smallest:
Figure PCTCN2014093811-appb-000190
Figure PCTCN2014093811-appb-000190
要使S最小,应满足:To minimize S, you should satisfy:
Figure PCTCN2014093811-appb-000191
Figure PCTCN2014093811-appb-000191
即:which is:
Figure PCTCN2014093811-appb-000192
Figure PCTCN2014093811-appb-000192
整理上式可得: Finishing the above formula can be obtained:
Figure PCTCN2014093811-appb-000193
Figure PCTCN2014093811-appb-000193
这样,我们就得到了公式(9)所表达的一个空间平面,然后将{(x1,y1,z1),(x2,y2,z2),…,(xN,yN,zN)}垂直投影到该拟合平面,便可得到这些点在这个平面的二维坐标{(x1′,y1′),(x2′,y2′),…,(xN′,yN′)},这就是二次成像图像中的二次像标识点坐标值,具体实现过程中上述三维坐标值垂直投射之后得到二维坐标值可以由下列计算过程实现:Thus, we get a spatial plane expressed by equation (9), and then {(x 1 , y 1 , z 1 ), (x 2 , y 2 , z 2 ),..., (x N , y N , z N )} is vertically projected onto the fitting plane, and the two-dimensional coordinates of these points in this plane {(x 1' , y 1' ), (x 2' , y 2' ),..., (x N' , y N' )}, which is the coordinate value of the secondary image identification point in the secondary imaging image. The specific two-dimensional coordinate value obtained after the above-mentioned three-dimensional coordinate value is vertically projected can be realized by the following calculation process:
由上述公式已经得出一个已知的拟合平面Ax+By+Cz+D=0,因此可以得到{(x1,y1,z1),(x2,y2,z2),…,(xN,yN,zN)}垂直投影到该平面的三维坐标
Figure PCTCN2014093811-appb-000194
From the above formula, a known fitting plane Ax+By+Cz+D=0 has been obtained, so that {(x 1 , y 1 , z 1 ), (x 2 , y 2 , z 2 ),... , (x N , y N , z N )} three-dimensional coordinates projected perpendicularly to the plane
Figure PCTCN2014093811-appb-000194
Figure PCTCN2014093811-appb-000195
Figure PCTCN2014093811-appb-000195
Figure PCTCN2014093811-appb-000196
Figure PCTCN2014093811-appb-000196
Figure PCTCN2014093811-appb-000197
Figure PCTCN2014093811-appb-000197
其中
Figure PCTCN2014093811-appb-000198
among them
Figure PCTCN2014093811-appb-000198
得到
Figure PCTCN2014093811-appb-000199
后,再将其映射成二维坐标
get
Figure PCTCN2014093811-appb-000199
After that, map it to two-dimensional coordinates.
{(x1′,y1′),(x2′,y2′),…,(xN′,yN′)},此处需要确定坐标原点和X轴方向(Y轴经过坐标原点和X轴垂直),可选的,在具体的实施过程中,坐标原点与X轴方向可以如下取得:{(x 1' , y 1′ ), (x 2′ , y 2′ ),...,(x N′ , y N′ )}, where the coordinate origin and the X-axis direction need to be determined (the Y-axis passes through the coordinate origin) It is perpendicular to the X axis. Alternatively, during the specific implementation process, the coordinate origin and the X axis direction can be obtained as follows:
在预设的参考图像中做特定标记,使特定标记点在参考图像中易于被检测 到,具体实施过程中,选取参考图像为网格图像的情况,在网格图像中做带“米”字型的特定标记,如图6所示,在投影的网格图像中做特定标记,投影这种带“米”字型标记的网格图像,这两个带“米”字型标记的网格点在图像中很容易被检测到,中间的“米”字型标记点可作为后续计算中坐标系的原点,从该点指向另一个“米”字型标记点的方向作为X轴方向。Make specific marks in the preset reference image so that specific points are easily detected in the reference image In the specific implementation process, the reference image is selected as a grid image, and a specific mark with a "meter" shape is made in the grid image, as shown in FIG. 6, a specific mark is made in the projected grid image. Projecting such a grid image with the "meter" type mark, the two grid points with the "meter" type mark are easily detected in the image, and the middle "meter" type mark can be used as a follow-up Calculate the origin of the coordinate system from which the direction of the other "meter" shaped mark points is taken as the X-axis direction.
设两个“米”字型标记点经过公式
Figure PCTCN2014093811-appb-000200
Figure PCTCN2014093811-appb-000201
Set two "meter" font points through the formula
Figure PCTCN2014093811-appb-000200
Figure PCTCN2014093811-appb-000201
Figure PCTCN2014093811-appb-000202
Figure PCTCN2014093811-appb-000203
Figure PCTCN2014093811-appb-000204
Figure PCTCN2014093811-appb-000205
计算后的三维坐标值为
Figure PCTCN2014093811-appb-000206
Figure PCTCN2014093811-appb-000207
Figure PCTCN2014093811-appb-000208
为原点,以
Figure PCTCN2014093811-appb-000209
指向
Figure PCTCN2014093811-appb-000210
为X轴,Y轴经过坐标原点和X轴垂直,单位长度和原三维坐标系相同,由此建立二维坐标系。将
Figure PCTCN2014093811-appb-000211
映射到该二维坐标系,得到{(x1′,y1′),(x2′,y2′),…,(xN′,yN′)}:
Figure PCTCN2014093811-appb-000202
Figure PCTCN2014093811-appb-000203
Figure PCTCN2014093811-appb-000204
Figure PCTCN2014093811-appb-000205
Calculated 3D coordinate value
Figure PCTCN2014093811-appb-000206
with
Figure PCTCN2014093811-appb-000207
Take
Figure PCTCN2014093811-appb-000208
For the origin, to
Figure PCTCN2014093811-appb-000209
direction
Figure PCTCN2014093811-appb-000210
For the X-axis and the Y-axis, the coordinate origin and the X-axis are perpendicular, and the unit length is the same as the original three-dimensional coordinate system, thereby establishing a two-dimensional coordinate system. will
Figure PCTCN2014093811-appb-000211
Mapping to the two-dimensional coordinate system yields {(x 1' , y 1' ), (x 2' , y 2' ),..., (x N' , y N' )}:
xi′=l1·cosθ,yi′=l1·sinθ,其中i=1,2,…,N    (15)x i' = l 1 · cos θ, y i' = l 1 · sin θ, where i = 1, 2, ..., N (15)
其中:among them:
Figure PCTCN2014093811-appb-000212
其中l1表示所述拟合平面上的三维坐标点
Figure PCTCN2014093811-appb-000213
到所述建立的二维坐标系的坐标原点
Figure PCTCN2014093811-appb-000214
的距离;
Figure PCTCN2014093811-appb-000212
Where l 1 represents the three-dimensional coordinate point on the fitted plane
Figure PCTCN2014093811-appb-000213
The coordinate origin to the established two-dimensional coordinate system
Figure PCTCN2014093811-appb-000214
the distance;
Figure PCTCN2014093811-appb-000215
所述l2表示所述拟合平面上的三维坐标点
Figure PCTCN2014093811-appb-000216
到所述建立的二维坐标系的坐标原点
Figure PCTCN2014093811-appb-000217
的距离;
Figure PCTCN2014093811-appb-000215
The l 2 represents a three-dimensional coordinate point on the fitting plane
Figure PCTCN2014093811-appb-000216
The coordinate origin to the established two-dimensional coordinate system
Figure PCTCN2014093811-appb-000217
the distance;
Figure PCTCN2014093811-appb-000218
所述l3表示所述拟合平面上的三维坐标点
Figure PCTCN2014093811-appb-000219
到所述建立的二维坐标系的原点之外的另一个米字型点
Figure PCTCN2014093811-appb-000220
的距离;
Figure PCTCN2014093811-appb-000218
The l 3 represents a three-dimensional coordinate point on the fitting plane
Figure PCTCN2014093811-appb-000219
Another m-shaped point outside the origin of the established two-dimensional coordinate system
Figure PCTCN2014093811-appb-000220
the distance;
Figure PCTCN2014093811-appb-000221
所述θ表示以坐标原点
Figure PCTCN2014093811-appb-000222
为顶点,点
Figure PCTCN2014093811-appb-000223
到点
Figure PCTCN2014093811-appb-000224
的直线与点
Figure PCTCN2014093811-appb-000225
到点
Figure PCTCN2014093811-appb-000226
的直线之间的夹角。
Figure PCTCN2014093811-appb-000221
The θ represents the origin of the coordinate
Figure PCTCN2014093811-appb-000222
For the apex, point
Figure PCTCN2014093811-appb-000223
To the point
Figure PCTCN2014093811-appb-000224
Lines and points
Figure PCTCN2014093811-appb-000225
To the point
Figure PCTCN2014093811-appb-000226
The angle between the straight lines.
在该实施方式中,考虑到投影环境的复杂,投影表面可能为凹凸不平的三维态呈现,此时必须将以三维态呈现的投影表面拟合成二维平面才能取得最终的二次像标识点的二维坐标值,并基于此提取出失真系数R对参考图像和待投影图像进行修正,由此使得即使在复杂的投影环境中投射出的图像也不失真。In this embodiment, considering the complexity of the projection environment, the projection surface may be presented in a three-dimensional state of unevenness. In this case, the projection surface presented in the three-dimensional state must be fitted into a two-dimensional plane to obtain the final secondary image identification point. The two-dimensional coordinate values, and based on this, extract the distortion coefficient R to correct the reference image and the image to be projected, thereby making the image projected even in a complicated projection environment not distorted.
上述所有实施例对投影图像的失真进行了失真修正,使得经过失真修正的图像投影出来不再失真,但是现实的应用中,由于可穿戴设备的逐渐流行,可穿戴投影设备也应运而生,当可穿戴投影设备工作时,很可能会随着人体的移动而使得投影出来的图像发生抖动,或者人体轻微的抖动也会对可穿戴投影仪的投影效果带来不好的影响,所以,在上述实施例的基础上,考虑到图像的去抖动,本发明实施例还可以包括如下装置:All the above embodiments have distortion correction of the distortion of the projected image, so that the image after distortion correction is no longer distorted, but in practical applications, wearable projection devices have emerged due to the popularity of wearable devices. When the wearable projection device is working, it is likely that the projected image will be shaken as the human body moves, or the slight jitter of the human body may adversely affect the projection effect of the wearable projector. On the basis of the embodiment, in consideration of de-jittering of an image, the embodiment of the present invention may further include the following devices:
运动参数获取单元306,用于获取所述投影设备在将所述参考图像投射至所述投影表面上形成投影图像时的运动参数;a motion parameter acquiring unit 306, configured to acquire a motion parameter when the projection device projects the reference image onto the projection surface to form a projected image;
补偿参数获取单元307,用于根据所述运动参数获得运动补偿参数;a compensation parameter obtaining unit 307, configured to obtain a motion compensation parameter according to the motion parameter;
运动补偿单元308,用于根据所述运动补偿参数对所述经过失真修正的图像进行反向运动补偿;所述经过失真修正后的图像包括修正的待投影图像,或修正的参考图像。The motion compensation unit 308 is configured to perform inverse motion compensation on the distortion-corrected image according to the motion compensation parameter; the distortion-corrected image includes a modified image to be projected, or a corrected reference image.
其中运动参数获取单元306可以进一步用于根据加速度传感器直接获取第一运动补偿值,将所述第一运动补偿参数作为所述运动参数;运动参数获取单元306还可以用于获取加速度传感器所感测到的所述投影设备在X轴和Y轴方向位移的分量值u和v,将所述u和v作为运动参数。The motion parameter obtaining unit 306 may be further configured to directly acquire the first motion compensation value according to the acceleration sensor, and use the first motion compensation parameter as the motion parameter; the motion parameter acquiring unit 306 may further be configured to acquire the sensed sensor. The component values u and v of the projection device being displaced in the X-axis and Y-axis directions use the u and v as motion parameters.
本发明实施例还可以包括运动补估计单元,用于对所述二次成像图像进行 运动估计得到初步运动补偿值;作为一种可选的实施方式,补偿参数获取单元307可以用于结合运动参数获取单元306获取的运动参数即第一运动补偿参数和由所述运动补估计单元获取的初步运动补偿值获取运动补偿参数。Embodiments of the present invention may further include a motion compensation estimating unit configured to perform the secondary imaging image The motion estimation obtains a preliminary motion compensation value; as an optional implementation manner, the compensation parameter acquisition unit 307 can be used to combine the motion parameters acquired by the motion parameter acquisition unit 306, that is, the first motion compensation parameter, and obtain the motion compensation unit by the motion compensation unit. The initial motion compensation value obtains the motion compensation parameter.
具体的,所述运动补估计单元可以用于对所述二次成像图像进行运动估计得到初步运动补偿值;Specifically, the motion compensation estimation unit may be configured to perform motion estimation on the secondary imaging image to obtain a preliminary motion compensation value;
运动参数获取单元306可以用于将第一运动补偿值和所述运动补估计单元获取的初步运动补偿值进行加权平均得到运动补偿参数,具体通过如下公式计算获取所述运动补偿参数:The motion parameter obtaining unit 306 may be configured to perform weighted averaging of the first motion compensation value and the preliminary motion compensation value obtained by the motion complement estimation unit to obtain a motion compensation parameter, where the motion compensation parameter is specifically calculated by using the following formula:
M=α*M1+(1-α)*M2   (17)M=α*M 1 +(1-α)*M 2 (17)
其中,M是运动补偿参数,M1是初步运动补偿值,M2是第一运动补偿值,所述
Figure PCTCN2014093811-appb-000227
所述
Figure PCTCN2014093811-appb-000228
所述
Figure PCTCN2014093811-appb-000229
Figure PCTCN2014093811-appb-000230
所述
Figure PCTCN2014093811-appb-000231
Figure PCTCN2014093811-appb-000232
所述txi和tyi为所述二次成像图像中的二次像标识点横坐标和纵坐标在相邻两帧中的位置差,所述N为每一帧中所述二次像标识点的数量;所述
Figure PCTCN2014093811-appb-000233
Figure PCTCN2014093811-appb-000234
所述
Figure PCTCN2014093811-appb-000235
Figure PCTCN2014093811-appb-000236
所述txj和tyj为所述参考图像中的参考标识点横坐标和纵坐标在相邻两帧中的位置差,所述H为每一帧中所述参考标识点的数量;α为在所述M1和所述M2之间取值比重的经验值,所述α的取值范围为0≤α≤1。
Where M is a motion compensation parameter, M 1 is a preliminary motion compensation value, and M 2 is a first motion compensation value,
Figure PCTCN2014093811-appb-000227
Said
Figure PCTCN2014093811-appb-000228
Said
Figure PCTCN2014093811-appb-000229
for
Figure PCTCN2014093811-appb-000230
Said
Figure PCTCN2014093811-appb-000231
for
Figure PCTCN2014093811-appb-000232
The tx i and ty i are positional differences between the abscissa and the ordinate of the secondary image identification point in the secondary image, and the N is the secondary image identifier in each frame. Number of points;
Figure PCTCN2014093811-appb-000233
for
Figure PCTCN2014093811-appb-000234
Said
Figure PCTCN2014093811-appb-000235
for
Figure PCTCN2014093811-appb-000236
The tx j and ty j are positional differences between the abscissa and the ordinate of the reference mark in the reference image in the adjacent two frames, and the H is the number of the reference mark points in each frame; An empirical value of the specific gravity is taken between the M 1 and the M 2 , and the value of α is in the range of 0 ≤ α ≤ 1.
作为另一种可选的实施方式,补偿参数获取单元307可以进一步用于结合所述运动参数获取单元306获取的运动参数u和v对所述二次成像图像进行运动估计得到运动补偿参数。As another optional implementation manner, the compensation parameter obtaining unit 307 may be further configured to perform motion estimation on the secondary imaging image according to the motion parameters u and v acquired by the motion parameter acquiring unit 306 to obtain a motion compensation parameter.
具体的,补偿参数获取单元307可以进一步用于结合所述运动参数获取单元306所获取的运动参数对所述二次成像图像进行运动估计得到运动补偿参数M,具体通过如下公式计算所述运动补偿参数M: Specifically, the compensation parameter obtaining unit 307 may be further configured to perform motion estimation on the secondary imaging image by using the motion parameter acquired by the motion parameter acquiring unit 306 to obtain a motion compensation parameter M, where the motion compensation is calculated by using the following formula. Parameter M:
Figure PCTCN2014093811-appb-000237
Figure PCTCN2014093811-appb-000237
Figure PCTCN2014093811-appb-000238
Figure PCTCN2014093811-appb-000238
Figure PCTCN2014093811-appb-000239
Figure PCTCN2014093811-appb-000239
其中txi和tyi为所述二次成像图像中的二次像标识点横坐标和纵坐标在相邻两帧中的位置差,所述N为每一帧中所述二次像标识点的取点数量,其中u和v为所述运动参数,即由加速度传感器所感测到的所述投影设备在的X、Y方向位移的分量值,β为在
Figure PCTCN2014093811-appb-000240
Figure PCTCN2014093811-appb-000241
之间的取值比重的经验值,所述β的取值范围为0≤β≤1。
Where tx i and ty i are the positional differences between the abscissa and the ordinate of the secondary image identification point in the secondary image in the adjacent two frames, and the N is the secondary image identification point in each frame The number of points taken, where u and v are the motion parameters, that is, the component values of the displacement of the projection device in the X and Y directions sensed by the acceleration sensor, β is
Figure PCTCN2014093811-appb-000240
with
Figure PCTCN2014093811-appb-000241
The empirical value of the ratio between the values, the value of β is 0 ≤ β ≤ 1.
在上述任意一种实施方式之后,所述装置中的运动补偿单元308可以包括第一运动补偿子单元,用于通过如下公式对所述经过失真修正的待投影图像进行运动补偿:After any of the above embodiments, the motion compensation unit 308 in the apparatus may include a first motion compensation sub-unit for performing motion compensation on the distortion-corrected image to be projected by the following formula:
Figure PCTCN2014093811-appb-000242
Figure PCTCN2014093811-appb-000242
其中,所述
Figure PCTCN2014093811-appb-000243
Figure PCTCN2014093811-appb-000244
为将待投影图像根据失真系数R进行修正后的图像像素点坐标的横坐标值和纵坐标值,所述
Figure PCTCN2014093811-appb-000245
Figure PCTCN2014093811-appb-000246
为将经过失真修正后的图像像素点进行反向运动补偿后的图像像素点坐标的横坐标值和纵坐标值,其中
Figure PCTCN2014093811-appb-000247
为运动补偿参数M。
Wherein said
Figure PCTCN2014093811-appb-000243
with
Figure PCTCN2014093811-appb-000244
For the abscissa value and the ordinate value of the image pixel point coordinates corrected by the distortion coefficient R of the image to be projected,
Figure PCTCN2014093811-appb-000245
with
Figure PCTCN2014093811-appb-000246
The abscissa value and the ordinate value of the image pixel point coordinates after the inverse motion compensation of the image pixel point after the distortion correction is performed, wherein
Figure PCTCN2014093811-appb-000247
The parameter M is compensated for the motion.
可选的,所述装置中的运动补偿单元308还可以包括第一运动补偿子单元,用于通过如下公式对所述经过失真修正的参考图像进行运动补偿: Optionally, the motion compensation unit 308 in the apparatus may further include a first motion compensation subunit, configured to perform motion compensation on the distortion corrected reference image by using the following formula:
Figure PCTCN2014093811-appb-000248
Figure PCTCN2014093811-appb-000248
其中,所述
Figure PCTCN2014093811-appb-000249
Figure PCTCN2014093811-appb-000250
为所述参考图像根据失真系数R进行修正后的图像像素点坐标的横坐标值和纵坐标值,所述
Figure PCTCN2014093811-appb-000251
Figure PCTCN2014093811-appb-000252
为将经过失真修正后的图像像素点进行反向运动补偿后的图像像素点坐标的横坐标值和纵坐标值,其中
Figure PCTCN2014093811-appb-000253
为运动补偿参数M。
Wherein said
Figure PCTCN2014093811-appb-000249
with
Figure PCTCN2014093811-appb-000250
An abscissa value and an ordinate value of the image pixel point coordinates corrected according to the distortion coefficient R for the reference image,
Figure PCTCN2014093811-appb-000251
with
Figure PCTCN2014093811-appb-000252
The abscissa value and the ordinate value of the image pixel point coordinates after the inverse motion compensation of the image pixel point after the distortion correction is performed, wherein
Figure PCTCN2014093811-appb-000253
The parameter M is compensated for the motion.
在本发明实施例中,考虑到投影环境的复杂,投影设备可能出现移动或者晃动的情况,从而使投影画面抖动,本发明实施例通过加速度传感器与运动估计的结合,求得最准确的运动补偿参数M对经过失真校正的修正后的参考图像及待投影图像进行反向运动补偿,从而保证在投影环境复杂的情况下输出的图像没有抖动。In the embodiment of the present invention, considering the complexity of the projection environment, the projection device may be moved or shaken, thereby causing the projection picture to be shaken. In the embodiment of the present invention, the most accurate motion compensation is obtained by combining the acceleration sensor and the motion estimation. The parameter M performs inverse motion compensation on the corrected reference image and the image to be projected corrected by the distortion, thereby ensuring that the output image is not shaken in the case where the projection environment is complicated.
在上述实施例的基础上,经过失真校正处理和去抖动处理之后投射出来的投影图像是没有失真且没有抖动的图像,适合人眼观看,但是如果投影设备与投影平面发生垂直移动的情况下,仍然以可穿戴投影设备为例,当人体携带可穿戴投影设备向着投影平面垂直移动的情况下,图像虽然没有失真和抖动,但当人体离的投影平面近的时候投影图像对于人眼来说会过大,而当人体离的投影平面远的时候投影图像对于人眼来说又会过大,因此,在上述失真修正和去抖动的实施例的基础上,像标识点获取单元302还可以获取投影设备到投影表面的距离D;本发明实施例装置还可以包括:焦距调节单元309,用于根据像标识点获取单元获取的投影设备到投影表面的距离D调整投影设备的焦距,具体通过如下公式实现:On the basis of the above embodiments, the projected image projected after the distortion correction processing and the de-shake processing is an image without distortion and no jitter, which is suitable for human eyes to view, but if the projection device moves vertically with the projection plane, Still taking a wearable projection device as an example, when the human body carries the wearable projection device vertically moving toward the projection plane, the image is not distorted and shaken, but when the human body is close to the projection plane, the projected image is for the human eye. Too large, and when the projection plane of the human body is far away, the projected image is too large for the human eye. Therefore, on the basis of the above-described embodiment of distortion correction and debounce, the image identification point acquisition unit 302 can also acquire The distance D of the projection device to the projection surface; the device of the embodiment of the present invention may further include: a focus adjustment unit 309, configured to adjust the focal length of the projection device according to the distance D of the projection device acquired by the image identification point acquisition unit to the projection surface, specifically by the following Formula implementation:
Figure PCTCN2014093811-appb-000254
Figure PCTCN2014093811-appb-000254
其中,所述s0为投影设备液晶片尺寸,所述s1为图像大小的经验参考值,所述
Figure PCTCN2014093811-appb-000255
即取N个二次像标识点的三维坐标值中的z值并对所述z值求平均得到距离D。其中二次像标识点的三维坐标值中的Z值由立体视觉处理子单元302a获取。
Wherein the s 0 is a liquid crystal size of the projection device, and the s 1 is an empirical reference value of the image size,
Figure PCTCN2014093811-appb-000255
That is, the z value in the three-dimensional coordinate values of the N secondary image identification points is taken and the z values are averaged to obtain the distance D. The Z value in the three-dimensional coordinate value of the secondary image identification point is acquired by the stereoscopic vision processing sub-unit 302a.
具体的,在本发明实施例中,该立体视觉处理子单元302a可以为两个成像设备,构成双目立体视觉系统;所述两台成像设备将捕获到的投影图像形成的二次成像图像传给计算设备,计算设备通过双目立体视觉方法对两台成像设备所传输的二次成像图像进行处理,具体实施过程中,该处理步骤为:提取所述二次成像图像中的二次像标识点的三维参数。Specifically, in the embodiment of the present invention, the stereo vision processing sub-unit 302a may be two imaging devices to form a binocular stereo vision system; the two imaging devices transmit the secondary imaging images formed by the captured projection images. For the computing device, the computing device processes the secondary imaging image transmitted by the two imaging devices by the binocular stereo vision method. In a specific implementation process, the processing step is: extracting the secondary image identifier in the secondary imaging image The three-dimensional parameters of the point.
进一步的,所述双目立体视觉系统可以是平行光轴的双目立体视觉系统,在该视觉系统中可以有两个用于摄取投影图像的摄像头,计算设备从摄像头中获取二次成像图像并提取二次成像图像中的二次像标识点的三维参数,即二次像标识点的三维坐标值,具体如下:两个摄像头透镜中心的距离为e,两个摄像头的焦距均为f,以两摄像头透镜中心连线的中点为原点,摄像头1透镜中心指向摄像头2透镜中心方向为X轴,平行摄像头光轴方向为Z轴,XYZ轴方向符合右手法则,建立坐标系,则在该坐标系中的一点(x,y,z)的坐标值可由下面的公式计算得到:Further, the binocular stereo vision system may be a binocular stereo vision system with parallel optical axes, in which there may be two cameras for taking in a projected image, and the computing device acquires a secondary image from the camera and Extracting the three-dimensional parameter of the secondary image identification point in the secondary imaging image, that is, the three-dimensional coordinate value of the secondary image identification point, as follows: the distance between the centers of the two camera lenses is e, and the focal lengths of the two cameras are f, The midpoint of the center line of the two camera lenses is the origin. The center of the lens of the camera 1 is directed to the X axis of the lens center of the camera 2, the optical axis of the parallel camera is the Z axis, and the XYZ axis direction conforms to the right hand rule. The coordinate system is established at the coordinate. The coordinates of a point (x, y, z) in the system can be calculated by the following formula:
Figure PCTCN2014093811-appb-000256
Figure PCTCN2014093811-appb-000256
Figure PCTCN2014093811-appb-000257
Figure PCTCN2014093811-appb-000257
Figure PCTCN2014093811-appb-000258
Figure PCTCN2014093811-appb-000258
其中(x1,y1)和(x2,y2)分别是(x,y,z)在立体视觉处理系统中的摄像头1和摄像头2成像表面的成像位置。这样,我们可以求得所有二次像标识点在三维空间中的位置,设有N个二次像标识点,坐标分别为{(x1,y1,z1),(x2,y2,z2),…,(xN,yN,zN)}。Wherein (x 1 , y 1 ) and (x 2 , y 2 ) are (x, y, z) imaging positions of the imaging surface of the camera 1 and the camera 2 , respectively, in the stereoscopic vision processing system. In this way, we can find the position of all the secondary image identification points in three-dimensional space, with N secondary image identification points, the coordinates are {(x 1 , y 1 , z 1 ), (x 2 , y 2 , z 2 ),...,(x N ,y N ,z N )}.
根据这些点的Z坐标可以估算投影表面距离投影机的大致距离:Based on the Z coordinate of these points, the approximate distance of the projection surface from the projector can be estimated:
Figure PCTCN2014093811-appb-000259
Figure PCTCN2014093811-appb-000259
根据距离d自动调整可见光投影机的焦距,使得可见光投影机投影到投影表面的图像大小适合穿戴着观看。下表是根据经验得到的投影距离和投影图像大小的参考值。The focal length of the visible light projector is automatically adjusted according to the distance d, so that the image size projected by the visible light projector onto the projection surface is suitable for wearing and viewing. The following table is a reference value of the projection distance and the projected image size obtained empirically.
表1.投影距离和投影图像大小的参考值Table 1. Reference values for projection distance and projected image size
Figure PCTCN2014093811-appb-000260
Figure PCTCN2014093811-appb-000260
得到投影距离d(单位:米)后,由下面的公式可得到投影机需要设定的焦距f(单位:米):After obtaining the projection distance d (unit: m), the focal length f (unit: m) that the projector needs to set can be obtained by the following formula:
Figure PCTCN2014093811-appb-000261
Figure PCTCN2014093811-appb-000261
其中,s0为投影机液晶片尺寸(单位:英寸),s1为根据距离d查询表1得到的投影图像的大小(单位:英寸),f的取值受到硬件的限制,必须位于[fmin,fmax]之间,即实际取值为max(min(f,fmax),fmin)。为了避免因距离的变化导致焦距不停变化,可以规定只有当当前距离和前一次调整焦距时的距离的差的绝对值大于一个给定的阈值(比如0.5米)时,才进行新的焦距计算与设定。 Where s 0 is the projector liquid crystal size (unit: inch), s 1 is the size (in inches) of the projected image obtained according to the distance d query table 1, the value of f is limited by hardware, must be located in [f Between min , f max ], that is, the actual value is max(min(f, f max ), f min ). In order to avoid the focal length changing due to the change of the distance, it can be specified that the new focal length calculation is performed only when the absolute value of the difference between the current distance and the previous adjustment of the focal length is greater than a given threshold (for example, 0.5 m). With settings.
在本发明实施例中,在前面的实施例的基础上又通过对二次像标识点在三维空间中的Z坐标值取平均值得到投影表面到成像设备之间的距离d,根据距离d自动调整投影设备的焦距,使得投影图像的大小根据人体相对投影平面垂直运动的时候也会相应的缩放,使缩放后的投影图像大小适合人眼观看,从而增强用户体验。 In the embodiment of the present invention, on the basis of the foregoing embodiment, the distance d between the projection surface and the imaging device is obtained by averaging the Z coordinate values of the secondary image identification points in the three-dimensional space, and automatically according to the distance d. Adjusting the focal length of the projection device, so that the size of the projected image is correspondingly scaled according to the vertical movement of the human body relative to the projection plane, so that the scaled projected image size is suitable for human eyes to watch, thereby enhancing the user experience.

Claims (28)

  1. 一种基于投影图像的处理方法,其特征在于,包括如下方法:A processing method based on a projected image, comprising the following method:
    获取投影表面上的投影图像在成像设备中的二次成像图像,所述投影图像为由投影设备将预设的参考图像投射至所述投影表面上所成的图像,所述预设的参考图像中设置有参考标识点,所述参考标识点经投影后在所述投影图像中形成一次像标识点;所述一次像标识点在所述二次成像图像中形成的像点为二次像标识点;Obtaining a secondary image of the projection image on the projection surface in the imaging device, the projection image being an image formed by the projection device projecting the preset reference image onto the projection surface, the preset reference image Providing a reference identification point, wherein the reference identification point is formed to form an image identification point in the projection image; and the image point formed by the primary image identification point in the secondary imaging image is a secondary image identifier point;
    获取所述二次成像图像中的二次像标识点;Obtaining a secondary image identification point in the secondary imaging image;
    根据所述二次像标识点的位置参数相对于所述参考标识的位置参数的变化来获取失真系数;所述二次像标识点的位置参数为所述二次像标识点在所述二次成像图像中的位置参数,所述参考标识点的位置参数为所述参考标识点在所述参考图像中的位置参数;Obtaining a distortion coefficient according to a change of a position parameter of the secondary image identification point with respect to a position parameter of the reference identifier; a position parameter of the secondary image identification point is the secondary image identification point in the second a position parameter in the image, the position parameter of the reference mark is a position parameter of the reference mark in the reference image;
    根据所述失真系数对待投影图像进行失真修正。Distortion correction is performed on the image to be projected according to the distortion coefficient.
  2. 根据权利要求1所述的方法,其特征在于,所述预设的参考图像为参考红外网格线,所述参考标识点为所述参考红外网格线中不同方向的网格线的交点;对应地,所述投影设备为红外投影设备,所述成像设备为红外滤镜摄像装置;The method according to claim 1, wherein the preset reference image is a reference infrared grid line, and the reference marker point is an intersection of grid lines in different directions in the reference infrared grid line; Correspondingly, the projection device is an infrared projection device, and the imaging device is an infrared filter camera device;
    所述获取投影表面上的投影图像在成像设备中的二次成像图像包括:The acquiring the secondary image of the projection image on the projection surface in the imaging device comprises:
    获取投影表面上的投影图像经所述红外滤镜摄像头所形成的二次红外网格线;Obtaining a secondary infrared grid line formed by the infrared filter camera by the projection image on the projection surface;
    所述获取所述二次成像图像中的二次像标识点包括:The acquiring the secondary image identification points in the secondary imaging image includes:
    获取所述二次红外网格线中不同方向的网格线的交点,所述不同方向的网 格线的交点为所述二次像标识点。Obtaining intersections of grid lines in different directions in the secondary infrared grid lines, the different directions of the network The intersection of the grid lines is the secondary image identification point.
  3. 根据权利要求1或2所述的方法,其特征在于,所述根据所述二次像标识点在所述二次成像图像中的位置参数相对于所述参考标识点在所述参考图像中的位置参数的变化来获取失真系数具体包括:通过以下公式获取所述失真系数
    Figure PCTCN2014093811-appb-100001
    The method according to claim 1 or 2, wherein said positional parameter in said secondary imaged image according to said secondary image identification point is in said reference image relative to said reference identification point Obtaining the distortion coefficient by the change of the position parameter specifically includes: obtaining the distortion coefficient by using the following formula
    Figure PCTCN2014093811-appb-100001
    Figure PCTCN2014093811-appb-100002
    Figure PCTCN2014093811-appb-100002
    Figure PCTCN2014093811-appb-100003
    Figure PCTCN2014093811-appb-100003
    其中,R为失真系数,所述
    Figure PCTCN2014093811-appb-100004
    为所述参考图像在仿射变换中形成的矩阵,其中r11,r12,r13,r21,r22,r23为仿射变化中的参数,所述xi和所述yi为所述二次像标识点在所述二次成像图像中的横坐标值和纵坐标值,则所述(xi,yi)为二次像标识点的坐标值;所述xi′和所述yi′为所述参考标识点在所述参考图像中的横坐标值和纵坐标值,则所述(xi′,yi′)为参考标识点的坐标值;所述仿射变换过程为所述参数r11,r12,r21,r22与所述二次像标识点(xi,yi)进行一次线性变换,并接上平移参数r13,r23变换为所述参考标识点(xi′,yi′);公式(2)为由公式(1)变换构成的线性方程组,由所述公式(2)计算得到所述仿射变换参数r11,r12,r13,r21,r22,r23的值从而得到所述仿射变换失真系数R。
    Where R is the distortion coefficient,
    Figure PCTCN2014093811-appb-100004
    a matrix formed in the affine transformation of the reference image, wherein r 11 , r 12 , r 13 , r 21 , r 22 , r 23 are parameters in an affine change, and the x i and the y i are And the (x i , y i ) is a coordinate value of the secondary image identification point; the x i ′ and the horizontal coordinate value and the ordinate value in the secondary image. The y i ' is an abscissa value and an ordinate value of the reference identification point in the reference image, and the (x i ', y i ') is a coordinate value of a reference identification point; the affine The transformation process performs a linear transformation of the parameters r 11 , r 12 , r 21 , r 22 and the secondary image identification point (x i , y i ), and is coupled with the translation parameter r 13 , r 23 Reference point (x i ', y i '); formula (2) is a system of linear equations formed by the transformation of equation (1), and the affine transformation parameter r 11 , r is calculated by the formula (2) 12 , r 13 , r 21 , r 22 , r 23 values to obtain the affine transformation distortion coefficient R.
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述失真系数对所述待投影图像进行修正包括:The method according to claim 3, wherein the correcting the image to be projected according to the distortion coefficient comprises:
    通过如下公式对待投影图像进行失真修正: The distortion correction is performed on the projected image by the following formula:
    Figure PCTCN2014093811-appb-100005
    Figure PCTCN2014093811-appb-100005
    其中,R为失真系数,所述
    Figure PCTCN2014093811-appb-100006
    Figure PCTCN2014093811-appb-100007
    为将待投影图像根据失真系数R进行修正后的图像像素坐标点
    Figure PCTCN2014093811-appb-100008
    的横坐标值和纵坐标值,所述xi和yi为待投影图像原始像素坐标点(xi,yi)的横坐标值和纵坐标值。
    Where R is the distortion coefficient,
    Figure PCTCN2014093811-appb-100006
    with
    Figure PCTCN2014093811-appb-100007
    Image pixel coordinate point for correcting the image to be projected according to the distortion coefficient R
    Figure PCTCN2014093811-appb-100008
    The abscissa value and the ordinate value, the x i and y i are the abscissa value and the ordinate value of the original pixel coordinate point (x i , y i ) of the image to be projected.
  5. 根据权利要求1至4中任一所述的方法,其特征在于,在所述根据所述二次像标识点的位置参数基于所述参考标识的位置参数的变化来获取失真系数之后,所述方法还包括:根据所述失真系数对所述参考图像进行修正;The method according to any one of claims 1 to 4, wherein after the distortion coefficient is obtained based on a change in a position parameter of the secondary image identification point based on a position parameter of the reference identification, The method further includes: correcting the reference image according to the distortion coefficient;
    具体通过如下公式对参考图像进行失真修正:The distortion correction is performed on the reference image by the following formula:
    Figure PCTCN2014093811-appb-100009
    Figure PCTCN2014093811-appb-100009
    其中,R为失真系数,所述
    Figure PCTCN2014093811-appb-100010
    Figure PCTCN2014093811-appb-100011
    为将所述参考图像根据失真系数R进行修正后的图像像素坐标点
    Figure PCTCN2014093811-appb-100012
    的横坐标值和纵坐标值,所述xk和yk为所述参考图像的原始像素坐标点(xk,yk)的横坐标值和纵坐标值。
    Where R is the distortion coefficient,
    Figure PCTCN2014093811-appb-100010
    with
    Figure PCTCN2014093811-appb-100011
    Image pixel coordinate point for correcting the reference image according to the distortion coefficient R
    Figure PCTCN2014093811-appb-100012
    An abscissa value and an ordinate value, the x k and y k being an abscissa value and an ordinate value of the original pixel coordinate point (x k , y k ) of the reference image.
  6. 根据权利要求5所述的方法,其特征在于,在所述根据所述失真系数对所述参考图像进行修正之后,所述方法还包括:The method according to claim 5, wherein after the correcting the reference image according to the distortion coefficient, the method further comprises:
    获取所述投影设备在将所述参考图像投射至所述投影表面上形成投影图像时的运动参数;Obtaining a motion parameter of the projection device when projecting the reference image onto the projection surface to form a projected image;
    根据所述运动参数获得运动补偿参数;Obtaining a motion compensation parameter according to the motion parameter;
    根据所述运动补偿参数对所述经过失真修正的图像进行反向运动补偿;所述经过失真修正后的图像包括修正的待投影图像,或修正的参考图像。Performing inverse motion compensation on the distortion-corrected image according to the motion compensation parameter; the distortion-corrected image includes a corrected image to be projected, or a corrected reference image.
  7. 如权利要求6所述的方法,其特征在于,所述根据所述运动参数获得运动补偿参数前,进一步包括: The method according to claim 6, wherein before the obtaining the motion compensation parameter according to the motion parameter, the method further comprises:
    对所述二次成像图像进行运动估计得到初步运动补偿值;Performing motion estimation on the secondary imaging image to obtain a preliminary motion compensation value;
    所述根据所述运动参数获得运动补偿参数包括:The obtaining motion compensation parameters according to the motion parameter includes:
    结合所述运动参数和所述初步运动补偿值获取运动补偿参数。A motion compensation parameter is acquired in conjunction with the motion parameter and the preliminary motion compensation value.
  8. 如权利要求6所述的方法,其特征在于,所述根据所述运动参数获得运动补偿参数包括:The method of claim 6 wherein said obtaining motion compensation parameters based on said motion parameters comprises:
    结合所述运动参数对所述二次成像图像进行运动估计得到运动补偿参数。Motion estimation is performed on the secondary imaging image in conjunction with the motion parameter to obtain a motion compensation parameter.
  9. 根据权利要求7所述的方法,其特征在于,所述结合所述运动参数和初步运动补偿值获取运动补偿参数包括:The method according to claim 7, wherein the obtaining the motion compensation parameter in combination with the motion parameter and the preliminary motion compensation value comprises:
    所述运动参数为由加速度传感器直接获取的第一运动补偿值;The motion parameter is a first motion compensation value directly acquired by the acceleration sensor;
    对所述二次成像图像进行运动估计得到初步运动补偿值;Performing motion estimation on the secondary imaging image to obtain a preliminary motion compensation value;
    将所述第一运动补偿值和所述初步运动补偿值进行加权平均得到运动补偿参数,具体通过如下公式实现:The first motion compensation value and the preliminary motion compensation value are weighted and averaged to obtain a motion compensation parameter, which is specifically implemented by the following formula:
    M=α*M1+(1-α)*M2              (5)M=α*M 1 +(1-α)*M 2 (5)
    其中,M是运动补偿参数,M1是初步运动补偿值,M2是第一运动补偿值,所述
    Figure PCTCN2014093811-appb-100013
    所述
    Figure PCTCN2014093811-appb-100014
    所述
    Figure PCTCN2014093811-appb-100015
    Figure PCTCN2014093811-appb-100016
    所述
    Figure PCTCN2014093811-appb-100017
    Figure PCTCN2014093811-appb-100018
    所述txi和tyi为所述二次成像图像中的二次像标识点横坐标和纵坐标在相邻两帧中的位置差,所述N为每一帧中所述二次像标识点的数量;所述
    Figure PCTCN2014093811-appb-100019
    Figure PCTCN2014093811-appb-100020
    所述
    Figure PCTCN2014093811-appb-100021
    Figure PCTCN2014093811-appb-100022
    所述txj和tyj为所述参考图像中的参考标识点横坐标和纵坐标在相邻两帧中的位置差,所述H为每一帧中所述参考标识点的数量;α为在所述M1和所述M2之间取值比重的经验值,所述α的取值范围为0≤α≤1。
    Where M is a motion compensation parameter, M 1 is a preliminary motion compensation value, and M 2 is a first motion compensation value,
    Figure PCTCN2014093811-appb-100013
    Said
    Figure PCTCN2014093811-appb-100014
    Said
    Figure PCTCN2014093811-appb-100015
    for
    Figure PCTCN2014093811-appb-100016
    Said
    Figure PCTCN2014093811-appb-100017
    for
    Figure PCTCN2014093811-appb-100018
    The tx i and ty i are positional differences between the abscissa and the ordinate of the secondary image identification point in the secondary image, and the N is the secondary image identifier in each frame. Number of points;
    Figure PCTCN2014093811-appb-100019
    for
    Figure PCTCN2014093811-appb-100020
    Said
    Figure PCTCN2014093811-appb-100021
    for
    Figure PCTCN2014093811-appb-100022
    The tx j and ty j are positional differences between the abscissa and the ordinate of the reference mark in the reference image in the adjacent two frames, and the H is the number of the reference mark points in each frame; An empirical value of the specific gravity is taken between the M 1 and the M 2 , and the value of α is in the range of 0 ≤ α ≤ 1.
  10. 根据权利要求8所述的方法,其特征在于,所述运动参数为加速度传感器所感测到的所述投影设备在X轴和Y轴方向位移的分量值u和v,所述结合 所述运动参数对所述二次成像图像进行运动估计得到运动补偿参数M具体通过如下公式来实现:The method according to claim 8, wherein the motion parameter is a component value u and v of the displacement of the projection device sensed by the acceleration sensor in the X-axis and Y-axis directions, the combination The motion parameter performs motion estimation on the secondary imaging image to obtain a motion compensation parameter M, which is specifically implemented by the following formula:
    Figure PCTCN2014093811-appb-100023
    Figure PCTCN2014093811-appb-100023
    Figure PCTCN2014093811-appb-100024
    Figure PCTCN2014093811-appb-100024
    Figure PCTCN2014093811-appb-100025
    Figure PCTCN2014093811-appb-100025
    其中txi和tyi为所述二次成像图像中的二次像标识点横坐标和纵坐标在相邻两帧中的位置差,所述N为每一帧二次成像图像中所述二次像标识点的取点数量,其中u和v为所述运动参数,即由加速度传感器所感测到的所述投影设备在的X、Y方向位移的分量值,β为在
    Figure PCTCN2014093811-appb-100026
    Figure PCTCN2014093811-appb-100027
    之间的取值比重的经验值,所述β的取值范围为0≤β≤1。
    Where tx i and ty i are the positional differences between the abscissa of the secondary image identification point and the ordinate in the adjacent two frames in the secondary imaging image, and the N is the second in the secondary imaging image of each frame The number of points of the secondary image identification point, where u and v are the motion parameters, that is, the component values of the displacement of the projection device in the X and Y directions sensed by the acceleration sensor, β is
    Figure PCTCN2014093811-appb-100026
    with
    Figure PCTCN2014093811-appb-100027
    The empirical value of the ratio between the values, the value of β is 0 ≤ β ≤ 1.
  11. 根据权利要求6至10中任一所述的方法,其特征在于,根据所述运动补偿参数对所述经过失真修正的待投影图像进行运动补偿,具体通过如下公式实现:The method according to any one of claims 6 to 10, wherein the motion-compensated image to be projected is subjected to motion compensation according to the motion compensation parameter, which is specifically implemented by the following formula:
    Figure PCTCN2014093811-appb-100028
    Figure PCTCN2014093811-appb-100028
    其中,所述
    Figure PCTCN2014093811-appb-100029
    Figure PCTCN2014093811-appb-100030
    为将待投影图像根据失真系数R进行修正后的图像像素点坐标的横坐标值和纵坐标值,所述
    Figure PCTCN2014093811-appb-100031
    Figure PCTCN2014093811-appb-100032
    为将经过失真修正后的图像像素点进行反向运动补偿后的图像像素点坐标的横坐标值和纵坐标值,其中
    Figure PCTCN2014093811-appb-100033
    为运动补偿参数M。
    Wherein said
    Figure PCTCN2014093811-appb-100029
    with
    Figure PCTCN2014093811-appb-100030
    For the abscissa value and the ordinate value of the image pixel point coordinates corrected by the distortion coefficient R of the image to be projected,
    Figure PCTCN2014093811-appb-100031
    with
    Figure PCTCN2014093811-appb-100032
    The abscissa value and the ordinate value of the image pixel point coordinates after the inverse motion compensation of the image pixel point after the distortion correction is performed, wherein
    Figure PCTCN2014093811-appb-100033
    The parameter M is compensated for the motion.
  12. 根据权利要求6至11中任一所述的方法,其特征在于,根据所述运动补偿参数M对所述经过失真修正的参考图像进行运动补偿,具体通过如下公式 实现:The method according to any one of claims 6 to 11, wherein the distortion-corrected reference image is motion-compensated according to the motion compensation parameter M, specifically by the following formula achieve:
    Figure PCTCN2014093811-appb-100034
    Figure PCTCN2014093811-appb-100034
    其中,所述
    Figure PCTCN2014093811-appb-100035
    Figure PCTCN2014093811-appb-100036
    为所述参考图像根据失真系数R进行修正后的图像像素点坐标的横坐标值和纵坐标值,所述
    Figure PCTCN2014093811-appb-100037
    Figure PCTCN2014093811-appb-100038
    为将经过失真修正后的图像像素点进行反向运动补偿后的图像像素点坐标的横坐标值和纵坐标值,其中
    Figure PCTCN2014093811-appb-100039
    为运动补偿参数M。
    Wherein said
    Figure PCTCN2014093811-appb-100035
    with
    Figure PCTCN2014093811-appb-100036
    An abscissa value and an ordinate value of the image pixel point coordinates corrected according to the distortion coefficient R for the reference image,
    Figure PCTCN2014093811-appb-100037
    with
    Figure PCTCN2014093811-appb-100038
    The abscissa value and the ordinate value of the image pixel point coordinates after the inverse motion compensation of the image pixel point after the distortion correction is performed, wherein
    Figure PCTCN2014093811-appb-100039
    The parameter M is compensated for the motion.
  13. 根据权利要求1至12中任一所述的方法,其特征在于,所述成像设备至少为两个,以构成立体视觉系统;The method according to any one of claims 1 to 12, wherein the imaging device is at least two to constitute a stereoscopic vision system;
    所述获取所述二次成像图像中的二次像标识点具体包括:The acquiring the secondary image identification point in the secondary imaging image specifically includes:
    通过所述立体视觉系统获取投影图像中的三维参数;并将所述三维参数拟合成一个平面,将所述三维参数垂直映射到所述平面,得到二维坐标点,所述二维坐标点为所述二次像标识点。Obtaining a three-dimensional parameter in the projected image by the stereo vision system; and fitting the three-dimensional parameter into a plane, vertically mapping the three-dimensional parameter to the plane, to obtain a two-dimensional coordinate point, the two-dimensional coordinate point Identify points for the secondary image.
  14. 根据权利要求13所述的方法,其特征在于,在所述根据所述失真系数对待投影图像进行失真修正之后所述方法还包括:根据投影设备到投影表面的距离D调整投影设备的焦距,具体通过如下公式来实现:The method according to claim 13, wherein after the performing distortion correction on the image to be projected according to the distortion coefficient, the method further comprises: adjusting a focal length of the projection device according to a distance D from the projection device to the projection surface, specifically It is implemented by the following formula:
    Figure PCTCN2014093811-appb-100040
    Figure PCTCN2014093811-appb-100040
    其中,所述s0为投影设备液晶片尺寸,所述s1为图像大小的经验参考值,所述
    Figure PCTCN2014093811-appb-100041
    即取N个二次像标识点的三维坐标值中的z值并对所述z值求平均得到距离D。
    Wherein the s 0 is a liquid crystal size of the projection device, and the s 1 is an empirical reference value of the image size,
    Figure PCTCN2014093811-appb-100041
    That is, the z value in the three-dimensional coordinate values of the N secondary image identification points is taken and the z values are averaged to obtain the distance D.
  15. 一种基于投影图像的处理装置,其特征在于,所述装置包括:A processing device based on a projected image, characterized in that the device comprises:
    成像获取单元,用于获取投影表面上的投影图像在成像设备中的二次成像 图像,所述投影图像为由投影设备将预设的参考图像投射至所述投影表面上所成的图像,所述预设的参考图像中设置有参考标识点,所述参考标识点经投影后在所述投影图像中形成一次像标识点;所述一次像标识点在所述二次成像图像中形成的像点为二次像标识点;An imaging acquisition unit for acquiring a secondary image of a projection image on a projection surface in an imaging device An image obtained by projecting a preset reference image onto the projection surface by a projection device, wherein the preset reference image is provided with a reference identification point, and the reference identification point is projected Forming an image identification point in the projection image; the image point formed by the primary image identification point in the secondary imaging image is a secondary image identification point;
    像标识点获取单元,用于获取所述二次成像图像中的二次像标识点;a marker point acquiring unit, configured to acquire a secondary image identification point in the secondary imaging image;
    失真系数获取单元,用于根据所述二次像标识点的位置参数相对于所述参考标识的位置参数的变化来获取失真系数;所述二次像标识点的位置参数为所述二次像标识点在所述二次成像图像中的位置参数,所述参考标识点的位置参数为所述参考标识点在所述参考图像中的位置参数;a distortion coefficient acquiring unit, configured to acquire a distortion coefficient according to a change of a position parameter of the secondary image identification point with respect to a position parameter of the reference identifier; a position parameter of the secondary image identification point is the secondary image Identifying a position parameter of the point in the secondary imaging image, where the position parameter of the reference identification point is a position parameter of the reference identification point in the reference image;
    待投影图像修正单元,用于根据所述失真系数R对待投影图像进行失真修正。The image to be projected correction unit is configured to perform distortion correction on the image to be projected according to the distortion coefficient R.
  16. 根据权利要求15所述的装置,其特征在于,所述预设的参考图像为参考红外网格线,所述参考标识点为所述参考红外网格线中不同方向的网格线的交点;The device according to claim 15, wherein the preset reference image is a reference infrared grid line, and the reference marker point is an intersection of grid lines in different directions in the reference infrared grid line;
    所述成像获取单元,用于获取投影表面上的投影图像经所述红外滤镜摄像头所形成的二次红外网格线;The imaging acquiring unit is configured to acquire a secondary infrared grid line formed by the infrared image camera by a projection image on the projection surface;
    所述像标识点获取单元,用于获取所述二次红外网格线中不同方向的网格线的交点,所述不同方向的网格线的交点为所述二次像标识点。The image identification point acquiring unit is configured to acquire intersections of grid lines in different directions in the secondary infrared grid lines, and intersection points of the grid lines in the different directions are the secondary image identification points.
  17. 根据权利要求15或16所述的装置,其特征在于,所述失真系数获取单元,用于通过如下公式计算所述失真系数
    Figure PCTCN2014093811-appb-100042
    The apparatus according to claim 15 or 16, wherein said distortion coefficient acquisition unit is configured to calculate said distortion coefficient by the following formula
    Figure PCTCN2014093811-appb-100042
    Figure PCTCN2014093811-appb-100043
    Figure PCTCN2014093811-appb-100043
    Figure PCTCN2014093811-appb-100044
    Figure PCTCN2014093811-appb-100044
    其中,R为失真系数,所述
    Figure PCTCN2014093811-appb-100045
    为所述参考图像在仿射变换中形成的矩阵,其中r11,r12,r13,r21,r22,r23为仿射变化中的参数,所述xi和所述yi为所述二次像标识点在所述二次成像图像中的横坐标值和纵坐标值,则所述(xi,yi)为二次像标识点的坐标值;所述xi′和所述yi′为所述参考标识点在所述参考图像中的横坐标值和纵坐标值,则所述(xi′,yi′)为参考标识点的坐标值;所述仿射变换过程为所述参数r11,r12,r21,r22与所述二次像标识点(xi,yi)进行一次线性变换,并接上平移参数r13,r23变换为所述参考标识点(xi′,yi′);公式(2)为由公式(1)变换构成的线性方程组,由所述公式(2)计算得到所述仿射变换失真系数R。
    Where R is the distortion coefficient,
    Figure PCTCN2014093811-appb-100045
    a matrix formed in the affine transformation of the reference image, wherein r 11 , r 12 , r 13 , r 21 , r 22 , r 23 are parameters in an affine change, and the x i and the y i are And the (x i , y i ) is a coordinate value of the secondary image identification point; the x i ′ and the horizontal coordinate value and the ordinate value in the secondary image. The y i ' is an abscissa value and an ordinate value of the reference identification point in the reference image, and the (x i ', y i ') is a coordinate value of a reference identification point; the affine The transformation process performs a linear transformation of the parameters r 11 , r 12 , r 21 , r 22 and the secondary image identification point (x i , y i ), and is coupled with the translation parameter r 13 , r 23 The reference identification point (x i ', y i ') is described; the formula (2) is a linear equation group composed of the transformation of the formula (1), and the affine transformation distortion coefficient R is calculated by the formula (2).
  18. 根据权利要求17所述的装置,其特征在于,所述待投影图像修正单元,用于通过如下公式对所述待投影图像进行失真修正:The apparatus according to claim 17, wherein the image to be projected correction unit is configured to perform distortion correction on the image to be projected by the following formula:
    Figure PCTCN2014093811-appb-100046
    Figure PCTCN2014093811-appb-100046
    其中,R为失真系数,所述
    Figure PCTCN2014093811-appb-100047
    Figure PCTCN2014093811-appb-100048
    为将待投影图像根据失真系数R进行修正后的图像像素坐标点
    Figure PCTCN2014093811-appb-100049
    的横坐标值和纵坐标值,所述xi和yi为待投影图像原始像素坐标点(xi,yi)的横坐标值和纵坐标值。
    Where R is the distortion coefficient,
    Figure PCTCN2014093811-appb-100047
    with
    Figure PCTCN2014093811-appb-100048
    Image pixel coordinate point for correcting the image to be projected according to the distortion coefficient R
    Figure PCTCN2014093811-appb-100049
    The abscissa value and the ordinate value, the x i and y i are the abscissa value and the ordinate value of the original pixel coordinate point (x i , y i ) of the image to be projected.
  19. 根据权利要求15至18中任一所述的装置,其特征在于,所述装置还包括:参考图像修正单元,用于根据所述失真系数R对所述参考图像进行修正;所述参考图像修正单元用于通过如下公式对所述参考图像进行失真修正:The apparatus according to any one of claims 15 to 18, further comprising: a reference image correction unit configured to correct the reference image according to the distortion coefficient R; the reference image correction The unit is configured to perform distortion correction on the reference image by the following formula:
    Figure PCTCN2014093811-appb-100050
    Figure PCTCN2014093811-appb-100050
    其中,R为失真系数,所述
    Figure PCTCN2014093811-appb-100051
    Figure PCTCN2014093811-appb-100052
    为将所述参考图像根据失真系数R进行 修正后的图像像素坐标点
    Figure PCTCN2014093811-appb-100053
    的横坐标值和纵坐标值,所述xk和yk为所述参考图像的原始像素坐标点(xk,yk)的横坐标值和纵坐标值。
    Where R is the distortion coefficient,
    Figure PCTCN2014093811-appb-100051
    with
    Figure PCTCN2014093811-appb-100052
    Image pixel coordinate point for correcting the reference image according to the distortion coefficient R
    Figure PCTCN2014093811-appb-100053
    An abscissa value and an ordinate value, the x k and y k being an abscissa value and an ordinate value of the original pixel coordinate point (x k , y k ) of the reference image.
  20. 根据权利要求19所述的装置,其特征在于,所述装置还包括:The device of claim 19, wherein the device further comprises:
    运动参数获取单元,用于获取所述投影设备在将所述参考图像投射至所述投影表面上形成投影图像时的运动参数;a motion parameter acquisition unit, configured to acquire a motion parameter of the projection device when projecting the reference image onto the projection surface to form a projection image;
    补偿参数获取单元,用于根据所述运动参数获得运动补偿参数;a compensation parameter obtaining unit, configured to obtain a motion compensation parameter according to the motion parameter;
    运动补偿单元,用于根据所述运动补偿参数对所述经过失真修正的图像进行反向运动补偿;所述经过失真修正后的图像包括修正的待投影图像,或修正的参考图像。And a motion compensation unit, configured to perform inverse motion compensation on the distortion-corrected image according to the motion compensation parameter; the distortion-corrected image includes a corrected image to be projected, or a corrected reference image.
  21. 根据权利要求20所述的装置,其特征在于,所述装置包括:The device of claim 20 wherein said device comprises:
    运动补估计单元,用于对所述二次成像图像进行运动估计得到初步运动补偿值;a motion compensation estimating unit, configured to perform motion estimation on the secondary imaging image to obtain a preliminary motion compensation value;
    所述补偿参数获取单元,用于结合运动参数获取单元获取的运动参数和由所述运动补估计单元获取的初步运动补偿值获取运动补偿参数。The compensation parameter acquisition unit is configured to acquire a motion compensation parameter according to the motion parameter acquired by the motion parameter acquisition unit and the preliminary motion compensation value acquired by the motion complement estimation unit.
  22. 根据权利要求20所述的装置,其特征在于,所述补偿参数获取单元,用于结合所述运动参数获取单元获取的运动参数对所述二次成像图像进行运动估计得到运动补偿参数。The apparatus according to claim 20, wherein the compensation parameter acquisition unit is configured to perform motion estimation on the secondary imaging image in combination with the motion parameter acquired by the motion parameter acquisition unit to obtain a motion compensation parameter.
  23. 根据权利要求21所述的装置,其特征在于,所述运动参数获取单元,用于根据加速度传感器直接获取第一运动补偿值,将所述第一运动补偿参数作为所述运动参数;The device according to claim 21, wherein the motion parameter acquiring unit is configured to directly acquire a first motion compensation value according to the acceleration sensor, and use the first motion compensation parameter as the motion parameter;
    所述运动补估计单元用于对所述二次成像图像进行运动估计得到初步运动补偿值,并将所述运动参数获取单元获取的第一运动补偿值和所述获取得到的初步运动补偿值进行加权平均得到运动补偿参数,具体通过如下公式计算获取 所述运动补偿参数:The motion compensation estimating unit is configured to perform motion estimation on the secondary imaging image to obtain a preliminary motion compensation value, and perform a first motion compensation value obtained by the motion parameter acquiring unit and the obtained preliminary motion compensation value. The weighted average obtains the motion compensation parameter, which is calculated and obtained by the following formula. The motion compensation parameter:
    M=α*M1+(1-α)*M2             (5)M=α*M 1 +(1-α)*M 2 (5)
    其中,M是运动补偿参数,M1是初步运动补偿值,M2是第一运动补偿值,所述
    Figure PCTCN2014093811-appb-100054
    所述
    Figure PCTCN2014093811-appb-100055
    所述
    Figure PCTCN2014093811-appb-100056
    Figure PCTCN2014093811-appb-100057
    所述
    Figure PCTCN2014093811-appb-100058
    Figure PCTCN2014093811-appb-100059
    所述txi和tyi为所述二次成像图像中的二次像标识点横坐标和纵坐标在相邻两帧中的位置差,所述N为每一帧中所述二次像标识点的数量;所述
    Figure PCTCN2014093811-appb-100060
    Figure PCTCN2014093811-appb-100061
    所述
    Figure PCTCN2014093811-appb-100062
    Figure PCTCN2014093811-appb-100063
    所述txj和tyj为所述参考图像中的参考标识点横坐标和纵坐标在相邻两帧中的位置差,所述H为每一帧中所述参考标识点的数量;α为在所述M1和所述M2之间取值比重的经验值,所述α的取值范围为0≤α≤1。
    Where M is a motion compensation parameter, M 1 is a preliminary motion compensation value, and M 2 is a first motion compensation value,
    Figure PCTCN2014093811-appb-100054
    Said
    Figure PCTCN2014093811-appb-100055
    Said
    Figure PCTCN2014093811-appb-100056
    for
    Figure PCTCN2014093811-appb-100057
    Said
    Figure PCTCN2014093811-appb-100058
    for
    Figure PCTCN2014093811-appb-100059
    The tx i and ty i are positional differences between the abscissa and the ordinate of the secondary image identification point in the secondary image, and the N is the secondary image identifier in each frame. Number of points;
    Figure PCTCN2014093811-appb-100060
    for
    Figure PCTCN2014093811-appb-100061
    Said
    Figure PCTCN2014093811-appb-100062
    for
    Figure PCTCN2014093811-appb-100063
    The tx j and ty j are positional differences between the abscissa and the ordinate of the reference mark in the reference image in the adjacent two frames, and the H is the number of the reference mark points in each frame; An empirical value of the specific gravity is taken between the M 1 and the M 2 , and the value of α is in the range of 0 ≤ α ≤ 1.
  24. 根据权利要求22所述的装置,其特征在于,所述运动参数获取单元,用于获取加速度传感器所感测到的所述投影设备在X轴和Y轴方向位移的分量值u和v,将所述u和v作为运动参数;The apparatus according to claim 22, wherein the motion parameter acquisition unit is configured to acquire component values u and v of the displacement of the projection device sensed by the acceleration sensor in the X-axis and the Y-axis direction, Said u and v as motion parameters;
    所述补偿参数获取单元,具体用于结合所述运动参数获取单元所获取的运动参数对所述二次成像图像进行运动估计得到运动补偿参数M,具体通过如下公式计算所述运动补偿参数M:The compensation parameter acquiring unit is specifically configured to perform motion estimation on the secondary imaging image in combination with the motion parameter acquired by the motion parameter acquiring unit to obtain a motion compensation parameter M, and specifically calculate the motion compensation parameter M by using the following formula:
    Figure PCTCN2014093811-appb-100064
    Figure PCTCN2014093811-appb-100064
    Figure PCTCN2014093811-appb-100065
    Figure PCTCN2014093811-appb-100065
    Figure PCTCN2014093811-appb-100066
    Figure PCTCN2014093811-appb-100066
    其中txi和tyi为所述二次成像图像中的二次像标识点横坐标和纵坐标在相邻两帧中的位置差,所述N为每一帧二次成像图像中所述二次像标识点的取点数 量,其中u和v为所述运动参数,即由加速度传感器所感测到的所述投影设备在的X、Y方向位移的分量值,β为在
    Figure PCTCN2014093811-appb-100067
    Figure PCTCN2014093811-appb-100068
    之间的取值比重的经验值,所述β的取值范围为0≤β≤1。
    Where tx i and ty i are the positional differences between the abscissa of the secondary image identification point and the ordinate in the adjacent two frames in the secondary imaging image, and the N is the second in the secondary imaging image of each frame The number of points of the secondary image identification point, where u and v are the motion parameters, that is, the component values of the displacement of the projection device in the X and Y directions sensed by the acceleration sensor, β is
    Figure PCTCN2014093811-appb-100067
    with
    Figure PCTCN2014093811-appb-100068
    The empirical value of the ratio between the values, the value of β is 0 ≤ β ≤ 1.
  25. 根据权利要求20至24中任一所述的装置,其特征在于,所述运动补偿单元包括,具体用于通过如下公式对所述经过失真修正的待投影图像进行运动补偿:The apparatus according to any one of claims 20 to 24, wherein the motion compensation unit comprises: specifically for performing motion compensation on the distortion-corrected image to be projected by the following formula:
    Figure PCTCN2014093811-appb-100069
    Figure PCTCN2014093811-appb-100069
    其中,所述
    Figure PCTCN2014093811-appb-100070
    Figure PCTCN2014093811-appb-100071
    为将待投影图像根据失真系数R进行修正后的图像像素点坐标的横坐标值和纵坐标值,所述
    Figure PCTCN2014093811-appb-100072
    Figure PCTCN2014093811-appb-100073
    为将经过失真修正后的图像像素点进行反向运动补偿后的图像像素点坐标的横坐标值和纵坐标值,其中
    Figure PCTCN2014093811-appb-100074
    为运动补偿参数M。
    Wherein said
    Figure PCTCN2014093811-appb-100070
    with
    Figure PCTCN2014093811-appb-100071
    For the abscissa value and the ordinate value of the image pixel point coordinates corrected by the distortion coefficient R of the image to be projected,
    Figure PCTCN2014093811-appb-100072
    with
    Figure PCTCN2014093811-appb-100073
    The abscissa value and the ordinate value of the image pixel point coordinates after the inverse motion compensation of the image pixel point after the distortion correction is performed, wherein
    Figure PCTCN2014093811-appb-100074
    The parameter M is compensated for the motion.
  26. 根据权利要求20至25中任一所述的装置,其特征在于,所述运动补偿单元,还用于通过如下公式对所述经过失真修正的参考图像进行运动补偿:The apparatus according to any one of claims 20 to 25, wherein the motion compensation unit is further configured to perform motion compensation on the distortion-corrected reference image by the following formula:
    Figure PCTCN2014093811-appb-100075
    Figure PCTCN2014093811-appb-100075
    其中,所述
    Figure PCTCN2014093811-appb-100076
    Figure PCTCN2014093811-appb-100077
    为所述参考图像根据失真系数R进行修正后的图像像素点坐标的横坐标值和纵坐标值,所述
    Figure PCTCN2014093811-appb-100078
    Figure PCTCN2014093811-appb-100079
    为将经过失真修正后的图像像素点进行反向运动补偿后的图像像素点坐标的横坐标值和纵坐标值,其中
    Figure PCTCN2014093811-appb-100080
    为运动补偿参数M。
    Wherein said
    Figure PCTCN2014093811-appb-100076
    with
    Figure PCTCN2014093811-appb-100077
    An abscissa value and an ordinate value of the image pixel point coordinates corrected according to the distortion coefficient R for the reference image,
    Figure PCTCN2014093811-appb-100078
    with
    Figure PCTCN2014093811-appb-100079
    The abscissa value and the ordinate value of the image pixel point coordinates after the inverse motion compensation of the image pixel point after the distortion correction is performed, wherein
    Figure PCTCN2014093811-appb-100080
    The parameter M is compensated for the motion.
  27. 根据权利要求15至26中任一所述的装置,其特征在于,所述像标识 点获取单元还包括:Apparatus according to any one of claims 15 to 26, wherein said image identification The point acquisition unit also includes:
    立体视觉处理子单元,用于获取投影图像中的三维参数;a stereo vision processing sub-unit for acquiring three-dimensional parameters in the projected image;
    像标识点获取子单元,用于将所述立体视觉处理子单元获取的三维参数拟合成一个平面,将所述三维参数垂直映射到所述平面,得到二维坐标点,所述二维坐标点为所述二次像标识点。a marker point acquisition subunit, configured to fit the three-dimensional parameters acquired by the stereo vision processing subunit into a plane, and vertically map the three-dimensional parameters to the plane to obtain two-dimensional coordinate points, the two-dimensional coordinates The point is the secondary image identification point.
  28. 根据权利要求27所述的装置,其特征在于,所述装置还包括:The device of claim 27, wherein the device further comprises:
    焦距调节单元,用于根据投影设备到投影表面的距离D调整投影设备的焦距,具体通过如下公式实现:The focal length adjusting unit is configured to adjust the focal length of the projection device according to the distance D from the projection device to the projection surface, which is specifically implemented by the following formula:
    Figure PCTCN2014093811-appb-100081
    Figure PCTCN2014093811-appb-100081
    Figure PCTCN2014093811-appb-100082
    平均得到距离D。
    Figure PCTCN2014093811-appb-100082
    The distance D is averaged.
PCT/CN2014/093811 2013-12-13 2014-12-15 Processing method and device based on projection image WO2015085956A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310687010.2A CN103686107B (en) 2013-12-13 2013-12-13 Processing method and device based on projected image
CN201310687010.2 2013-12-13

Publications (1)

Publication Number Publication Date
WO2015085956A1 true WO2015085956A1 (en) 2015-06-18

Family

ID=50322220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093811 WO2015085956A1 (en) 2013-12-13 2014-12-15 Processing method and device based on projection image

Country Status (2)

Country Link
CN (1) CN103686107B (en)
WO (1) WO2015085956A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112637575A (en) * 2020-12-14 2021-04-09 四川长虹电器股份有限公司 Automatic image correction system and method for ultra-short-focus laser projector
CN117351077A (en) * 2023-09-14 2024-01-05 广东凯普科技智造有限公司 Visual correction method for dynamic prediction of sample application instrument

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103686107B (en) * 2013-12-13 2017-01-25 华为技术有限公司 Processing method and device based on projected image
CN105376640B (en) * 2014-08-06 2019-12-03 腾讯科技(北京)有限公司 Filter processing method, device and electronic equipment
US10325361B2 (en) * 2016-06-01 2019-06-18 Kla-Tencor Corporation System, method and computer program product for automatically generating a wafer image to design coordinate mapping
CN107465901B (en) * 2016-06-03 2019-07-30 上海顺久电子科技有限公司 A kind of projection correction's method, apparatus and laser television
CN106251309A (en) * 2016-08-04 2016-12-21 北京尚水信息技术股份有限公司 For eliminating the processing method of camera shake
CN106331631B (en) * 2016-08-30 2019-10-25 山东惠工电气股份有限公司 A kind of two-path video coincidence method
CN107277380B (en) * 2017-08-16 2020-10-30 成都极米科技股份有限公司 Zooming method and device
CN108509025A (en) * 2018-01-26 2018-09-07 吉林大学 A kind of crane intelligent Lift-on/Lift-off System based on limb action identification
CN108769636B (en) * 2018-03-30 2022-07-01 京东方科技集团股份有限公司 Projection method and device and electronic equipment
CN110871735B (en) * 2018-08-31 2023-04-18 比亚迪股份有限公司 Vehicle-mounted sensor and vehicle with same
CN112004072B (en) * 2020-07-31 2022-05-03 海尔优家智能科技(北京)有限公司 Projection image detection method and device
CN114157845B (en) * 2020-09-08 2023-09-26 青岛海信激光显示股份有限公司 projection system
CN112135111A (en) * 2020-09-22 2020-12-25 鲁迅美术学院艺术工程总公司 Projection picture correction method
CN111866481B (en) * 2020-09-22 2020-12-08 歌尔股份有限公司 Method for detecting contamination of projection device, detection device and readable storage medium
CN114697623B (en) * 2020-12-29 2023-08-15 极米科技股份有限公司 Projection plane selection and projection image correction method, device, projector and medium
CN114615478B (en) * 2022-02-28 2023-12-01 青岛信芯微电子科技股份有限公司 Projection screen correction method, projection screen correction system, projection apparatus, and storage medium

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040085256A1 (en) * 2002-10-30 2004-05-06 The University Of Chicago Methods and measurement engine for aligning multi-projector display systems
CN1577050A (en) * 2003-07-11 2005-02-09 精工爱普生株式会社 Image processing system, projector,and image processing method
US20060291014A1 (en) * 2005-06-28 2006-12-28 Fuji Xerox Co., Ltd. Information processing system, information processing apparatus, and information processing method
CN101815188A (en) * 2009-11-30 2010-08-25 四川川大智胜软件股份有限公司 Irregular smooth curve surface display wall multi-projector image frame correction method
US20130222776A1 (en) * 2012-02-23 2013-08-29 Masaaki Ishikawa Image projector, method of image projection, and computer-readable storage medium storing program for causing computer to execute image projection
WO2013179294A1 (en) * 2012-06-02 2013-12-05 Maradin Technologies Ltd. System and method for correcting optical distortions when projecting 2d images onto 2d surfaces
CN103686107A (en) * 2013-12-13 2014-03-26 华为技术有限公司 Processing method and device based on projected image

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100414083B1 (en) * 1999-12-18 2004-01-07 엘지전자 주식회사 Method for compensating image distortion and image displaying apparatus using the same
US7184054B2 (en) * 2003-01-21 2007-02-27 Hewlett-Packard Development Company, L.P. Correction of a projected image based on a reflected image
US7835592B2 (en) * 2006-10-17 2010-11-16 Seiko Epson Corporation Calibration technique for heads up display system
JP2011130327A (en) * 2009-12-21 2011-06-30 Sony Corp Image processing apparatus, method and program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040085256A1 (en) * 2002-10-30 2004-05-06 The University Of Chicago Methods and measurement engine for aligning multi-projector display systems
CN1577050A (en) * 2003-07-11 2005-02-09 精工爱普生株式会社 Image processing system, projector,and image processing method
US20060291014A1 (en) * 2005-06-28 2006-12-28 Fuji Xerox Co., Ltd. Information processing system, information processing apparatus, and information processing method
CN101815188A (en) * 2009-11-30 2010-08-25 四川川大智胜软件股份有限公司 Irregular smooth curve surface display wall multi-projector image frame correction method
US20130222776A1 (en) * 2012-02-23 2013-08-29 Masaaki Ishikawa Image projector, method of image projection, and computer-readable storage medium storing program for causing computer to execute image projection
WO2013179294A1 (en) * 2012-06-02 2013-12-05 Maradin Technologies Ltd. System and method for correcting optical distortions when projecting 2d images onto 2d surfaces
CN103686107A (en) * 2013-12-13 2014-03-26 华为技术有限公司 Processing method and device based on projected image

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112637575A (en) * 2020-12-14 2021-04-09 四川长虹电器股份有限公司 Automatic image correction system and method for ultra-short-focus laser projector
CN117351077A (en) * 2023-09-14 2024-01-05 广东凯普科技智造有限公司 Visual correction method for dynamic prediction of sample application instrument

Also Published As

Publication number Publication date
CN103686107B (en) 2017-01-25
CN103686107A (en) 2014-03-26

Similar Documents

Publication Publication Date Title
WO2015085956A1 (en) Processing method and device based on projection image
TWI791728B (en) Augmented reality display with active alignment
US9716870B2 (en) Image processor, image processing method, and image projector
CN106791784B (en) A kind of the augmented reality display methods and device of actual situation coincidence
KR101669780B1 (en) Method and device for controlling projection of wearable apparatus, and wearable apparatus
CN107396075B (en) Method and device for generating projection image correction information
WO2016115873A1 (en) Binocular ar head-mounted display device and information display method therefor
CN105989577B (en) Image correction method and device
WO2017054589A1 (en) Multi-depth image fusion method and apparatus
WO2016062076A1 (en) Camera-based positioning method, device, and positioning system
WO2016115872A1 (en) Binocular ar head-mounted display device and information display method thereof
WO2018068719A1 (en) Image stitching method and apparatus
TWI486631B (en) Head mounted display and control method thereof
CN105787884A (en) Image processing method and electronic device
CN109445112A (en) A kind of AR glasses and the augmented reality method based on AR glasses
CN103207664A (en) Image processing method and equipment
CN104992417B (en) Face video sight modification method and system based on Kinect
JP2019047911A (en) Goggle type display device, visual line detection method and visual line detection system
WO2015085692A1 (en) Open head-mounted display device and display method thereof
WO2017133160A1 (en) Smart eyeglass perspective method and system
WO2018032841A1 (en) Method, device and system for drawing three-dimensional image
WO2017187694A1 (en) Region of interest image generating device
WO2022040983A1 (en) Real-time registration method based on projection marking of cad model and machine vision
CN103324022A (en) 3D camera module and handheld device
KR20150077081A (en) Method and System for Vehicle Stereo Camera Calibration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14869233

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14869233

Country of ref document: EP

Kind code of ref document: A1