WO2014011266A2 - Apparatus for optical see-through head mounted display with mutual occlusion and opaqueness control capability - Google Patents

Apparatus for optical see-through head mounted display with mutual occlusion and opaqueness control capability Download PDF

Info

Publication number
WO2014011266A2
WO2014011266A2 PCT/US2013/035486 US2013035486W WO2014011266A2 WO 2014011266 A2 WO2014011266 A2 WO 2014011266A2 US 2013035486 W US2013035486 W US 2013035486W WO 2014011266 A2 WO2014011266 A2 WO 2014011266A2
Authority
WO
WIPO (PCT)
Prior art keywords
see
path
eyepiece
view
light
Prior art date
Application number
PCT/US2013/035486
Other languages
French (fr)
Other versions
WO2014011266A3 (en
Inventor
Chunyu Gao
Yuxiang LIN
Hong Hua
Original Assignee
Augmented Vision Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP20206176.8A priority Critical patent/EP3796071B1/en
Priority to KR1020187009715A priority patent/KR102124350B1/en
Priority to KR1020207034778A priority patent/KR102345444B1/en
Priority to CN201380029550.XA priority patent/CN104937475B/en
Priority to IL308962A priority patent/IL308962A/en
Priority to KR1020187009706A priority patent/KR102129330B1/en
Priority to IL300033A priority patent/IL300033B1/en
Priority to NZ700898A priority patent/NZ700898A/en
Priority to KR1020147031031A priority patent/KR102188748B1/en
Priority to JP2015504750A priority patent/JP6126682B2/en
Priority to EP13817261.4A priority patent/EP2834699B1/en
Priority to CA2874576A priority patent/CA2874576C/en
Priority to KR1020187009709A priority patent/KR102099156B1/en
Priority to BR112014024945-8A priority patent/BR112014024945A2/en
Application filed by Augmented Vision Inc. filed Critical Augmented Vision Inc.
Priority to EP24154095.4A priority patent/EP4339690A2/en
Priority to AU2013289157A priority patent/AU2013289157B2/en
Publication of WO2014011266A2 publication Critical patent/WO2014011266A2/en
Publication of WO2014011266A3 publication Critical patent/WO2014011266A3/en
Priority to AU2017201669A priority patent/AU2017201669B2/en
Priority to IL261165A priority patent/IL261165B/en
Priority to IL275662A priority patent/IL275662B/en
Priority to IL284204A priority patent/IL284204B/en
Priority to IL292007A priority patent/IL292007B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B25/00Eyepieces; Magnifying glasses
    • G02B25/001Eyepieces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1066Beam splitting or combining systems for enhancing image performance, like resolution, pixel numbers, dual magnifications or dynamic range, by tiling, slicing or overlapping fields of view
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/144Beam splitting or combining systems operating by reflection only using partially transparent surfaces without spectral selectivity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/04Prisms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B37/00Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe
    • G03B37/02Panoramic or wide-screen photography; Photographing extended surfaces, e.g. for surveying; Photographing internal surfaces, e.g. of pipe with scanning movement of lens or cameras
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/45Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from two or more image sensors being of different type or operating in different modes, e.g. with a CMOS sensor for moving images in combination with a charge-coupled device [CCD] for still images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/698Control of cameras or camera modules for achieving an enlarged field of view, e.g. panoramic image capture
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0118Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0145Head-up displays characterised by optical features creating an intermediate image
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0149Head-up displays characterised by mechanical features
    • G02B2027/015Head-up displays characterised by mechanical features involving arrangement aiming to get less bulky devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • G06T19/006Mixed reality

Definitions

  • the present invention relates generally to Head Mounted Displays, and more particularly, but not exclusively, to optical see-through head-mounted displays with opaqueness control and mutual occlusion capability in which real objects may be occluded by computer-rendered virtual objects situated in front or vice versa.
  • ST-HMD See-through Head- Mounted Displays
  • optical and video J. Rolland and H. Fuchs, "Optical versus video see-through head mounted displays," In Fundamentals of Wearable Computers and Augmented Reality, pp.113-157, 2001.
  • the major drawbacks of the video see-through approach include: degradation of the image quality of the see-through view; image lag due to processing of the incoming video stream; potentially loss of the see-through view due to hardware/software malfunction.
  • the optical see-through HMD (OST-HMD) provides a direct view of the real world through a beamsplitter and thus has minimal affects to the view of the real world. It is highly preferred in demanding applications where a user's awareness to the live environment is paramount.
  • FIG. 1 shows a comparison illustration of the augmented view seen through a typical OST-HMD (Fig. la) and the augmented view seen through an occlusion capable OST-HMD (OCOST-HMD) system (Fig. lb).
  • a virtual car model is superimposed on a solid platform which represents a real object. Without proper occlusion management as shown in Fig.
  • An OCOST-HMD system typically comprises of two key sub-systems.
  • the first is an eyepiece optics that allows a user to see a magnified image displayed on a microdisplay; and the second is a relay optics that collects and modulates the light from an external scene in the real world, which enables the opaqueness and occlusion control on the external scene when presenting to the viewers.
  • the key challenges of creating truly portable and lightweight OCOST- HMD system lies in addressing three cornerstone issues: (1) an optical scheme that allows the integration of the two subsystems without adding significant weight and volume to the system.
  • This invention concerns an optical see-through head mounted display (OST-HMD) device with opaqueness control and mutual occlusion capability.
  • the display system typically comprises of a virtual view path for viewing a displayed virtual image and a see-through path for viewing an external scene in the real world.
  • the virtual view path includes a miniature image display unit for supplying virtual image content and an eyepiece through which a user views a magnified virtual image.
  • the see-through path comprises of an objective optics to directly capture the light from the external scene and form at least one intermediate image, a spatial light modular (SLM) placed at or near an intermediate image plane in the see-through path to control and modulate the opaqueness of the see-through view, and an eyepiece optics through which the modulated see-through view is seen by the viewer.
  • the objective optics and eyepiece together act as a relay optics for passing the light from the real world to viewer's eye.
  • the see-through path is folded into two layers through several reflective surfaces, a front layer accepting the incoming light from an external scene and a back layer coupling the light captured by the front layer into a viewer's eye.
  • the see-through path is merged with the virtual image path by a beamsplitter so that the same the eyepiece is shared by both paths for viewing displayed virtual content and the modulated see-through image.
  • the microdisplay and the SLM are optically conjugate to each other through the beamsplitter, which makes the pixel level occlusion manipulation possible.
  • the eyepiece, the objective optics, or both may be rotationally symmetric lenses or non-rotationally symmetric freeform optics.
  • the present invention may utilize freeform optical technology in eyepiece optics, objective optics or both to achieve a compact and lightweight OCOST-HMD design.
  • the reflective surfaces for folding the optical paths may be planar mirrors, spherical, aspherical, or freeform surfaces with optical power.
  • some of the reflective surfaces may utilize freeform optical technology.
  • Some of the reflective surfaces may also be strategically designed to be an integral part of the eyepiece or objective optics where the reflective surfaces not only facilitate the folding of the optical path for achieving compact display design but also contribute optical power and correct optical aberrations.
  • the present invention may use a one-reflection or multi-reflection freeform prism as an eyepiece or objective optics where the prism is a single optical element comprises of refractive surfaces and one or more than one reflective surfaces for folding the optical path and correcting aberrations.
  • the objective optics in the see- through path forms at least one accessible intermediate image, near which an SLM is placed to provide opaqueness control and see-through modulation.
  • either a reflection-type SLM or a transmission-type SLM may be used for modulating the see-through view for occlusion control.
  • a longer back focal distance for the objective optics is required for a reflection-type SLM than a transmission-type SLM.
  • a reflection-type SLM may have the advantage of higher light efficiency than a transmission-type SLM.
  • the see-through path may form an odd or even number of intermediate images.
  • an optical method is provided to invert and/or revert the see-through view in the see- through path.
  • examples of the possible methods include, but not limited to, inserting an additional reflection or reflections, utilizing a roof mirror surface, or inserting an erection prism or lens.
  • no image erection element is needed if there is no parity change in the see-through view.
  • multiple-reflection freeform prism structure (typical more than 2) may be utilized as eyepiece or objective optics, or both, which allow folding the see-through optical path inside the objective and/or eyepiece prism multiple times and form intermediate image(s) inside the prisms which eliminates the necessity of using an erection roof reflective surface.
  • the potential advantage of eliminating the erection prism is that the approach may lead to a more compact design.
  • Figure 1 schematically illustrates AR views seen through an optical see-through HMD: without occlusion capability (Fig. la) and with occlusion capability (Fig.lb).
  • Figure 2 schematically illustrates an exemplary optical layout in accordance with the present invention shown as a monocular optical module.
  • Figure 3 schematically illustrates a preferred embodiment in accordance with the present invention based on freeform optical technology.
  • the embodiment comprises of a one-reflection eyepiece prism, a one-reflection objective prism, a reflection-type SLM and a roof reflective surface.
  • Figure 4 schematically illustrates another preferred embodiment in accordance with the present invention based on freeform optical technology.
  • the embodiment comprises of a two- reflection eyepiece prism, a four-reflection objective prism, and a reflection-type SLM.
  • Figure 5 schematically illustrates another preferred embodiment in accordance with the present invention based on freeform optical technology.
  • the embodiment comprises of a two- reflection eyepiece prism, a one-reflection objective prism, a transmission-type SLM and a roof reflective surface.
  • Figure 6 schematically illustrates another preferred embodiment in accordance with the present invention based on freeform optical technology.
  • the embodiment comprises of a two- reflection eyepiece prism, a three-reflection objective prism and a transmission-type SLM.
  • Figure 7 schematically illustrates another preferred embodiment in accordance with the present invention based on freeform optical technology.
  • the embodiment comprises of a two- reflection eyepiece prism, a two-reflection objective prism, a reflection-type SLM and a relay lens.
  • Figure 8 schematically illustrates an exemplary design of an OCOST-HMD system in accordance with the present invention based on an exemplary layout in Fig. 3.
  • Figure 9 illustrates the field map plot of the polychromatic modulation transfer functions (MTF) of the virtual display path of the design in Fig. 8 at cutoff frequency 401ps/mm (line pairs per millimeter) evaluated using 3mm pupil diameter.
  • MTF polychromatic modulation transfer functions
  • Figure 10 schematically illustrate an exemplary design of an OCOST-HMD system in accordance with the present invention based on an exemplary layout in Fig. 3 with the eyepiece and objective optics having identical freeform structure.
  • Figure 11 illustrates the field map plot of the polychromatic modulation transfer functions (MTF) of the virtual display path of the design in Fig. 10 at cutoff frequency 401ps/mm (line pairs per millimeter) evaluated using 3mm pupil diameter.
  • MTF polychromatic modulation transfer functions
  • Figure 12 depicts a block diagram of an example of an image processing pipeline in accordance with the present invention.
  • Figure 13 shows Table 1: Optical surface prescription of surface 1 of the eyepiece prism [0025]
  • Figure 14 shows Table 2: Optical surface prescription of surface 2 of the eyepiece prism [0026]
  • Figure 15 shows Table 3: Optical surface prescription of surface 3 of the eyepiece prism [0027]
  • Figure 16 shows Table 4: Position and orientation parameters of the eyepiece prism
  • Figure 17 shows Table 5: Optical surface prescription of surface 4 of the objective prism
  • Figure 18 shows Table 6: Optical surface prescription of surface 5 of the objective prism
  • Figure 19 shows Table 7: Optical surface prescription of surface 6 of the objective prism
  • Figure 20 shows Table 8: Position and orientation parameters of the objective prism
  • Figure 21 shows Table 9: Surface parameters for DOE plates 882 and 884
  • Figure 22 shows Table 10: Optical surface prescription of surface 1 of the freeform prism
  • Figure 23 shows Table 11: Optical surface prescription of surface 2 of the freeform prism
  • Figure 24 shows Table 12: Optical surface prescription of surface 3 of the freeform prism
  • Figure 25 shows Table 13: Position and orientation parameters of the freeform prism as the eyepiece
  • An occlusion capable optical see-through head-mounted display (OCOST-HMD) system typically comprises of a virtual view path for viewing a displayed virtual image and a see- through path for viewing an external scene in the real world.
  • the virtual image observed through the virtual view path is referred to as the virtual view and the external scene observed through the see-though path is referred to as the see-through view.
  • the virtual view path includes a microdisplay unit for supplying virtual image content and an eyepiece through which a user views a magnified virtual image.
  • the see-through path comprises of an objective optics to capture the light from the external scene and form at least one intermediate image, a spatial light modular (SLM) placed at or near an intermediate image plane in the see-through path to control and modulate the opaqueness of the see-through view, and an eyepiece through which the modulated see-through view is seen by the viewer.
  • the objective optics and eyepiece together act as a relay optics for passing the light from the real world to viewer's eye.
  • the intermediate image in the see-through path is referred to as a see-through image
  • an intermediate image modulated by the SLM is referred to as a modulated see-through image.
  • An OCOST-HMD produces a combined view of the virtual and see-through views, in which the virtual view occludes portions of the see-through view.
  • the present invention comprises a compact optical see-through head-mounted display 200, capable of combining a see-through path 207 with a virtual view path 205 such that the opaqueness of the see-through path can be modulated and the virtual view occludes parts of the see-through view and vice versa
  • the display comprising: a. a microdisplay 250 for generating an image to be viewed by a user, the microdisplay having a virtual view path 205 associated therewith; b. a spatial light modulator 240 for modifying the light from an external scene in the real world to block portions of the see-through view that are to be occluded, the spatial light modulator having a see-through path 207 associated therewith;
  • an objective optics 220 configured to receive the incoming light from the external scene and to focus the light upon the spatial light modulator 240 ;
  • a beamsplitter 230 configured to merge a virtual image from a microdisplay 250 and a modulated see-through image of an external scene passing from a spatial light modulator, producing a combined image;
  • an eyepiece 210 configured to magnify the combined image
  • an exit pupil 202 configured to face the eyepiece, where the user observes a combined view of the virtual and see-through views in which the virtual view occludes portions of the see-through view; g. a plurality of reflective surfaces configured to fold the virtual view path 205 and see-through paths 207 into two layers.
  • At least three reflective surfaces are used to fold the virtual and see-through paths into two layers.
  • the first reflective surface (M1) is located upon the front layer of the display oriented to reflect light from the external scene.
  • the objective optics 220 is located upon the front layer of the display.
  • the second reflective surface (M2) is located upon the front layer of the display oriented to reflect light into the spatial light modulator.
  • the spatial light modulator 240 is located at or near an intermediate image plane of the see-through path 207, in optical communication with the objective optics 220 and the eyepiece 210 through the beam splitter 230 along the see-through path 207.
  • the microdisplay 250 is located at the focal plane of the eyepiece 210, in optical communication with the eyepiece 210 through the beamsplitter 230 along the virtual view path 205.
  • the beam splitter 230 is oriented such that the see-through path 207 is merged with virtual view path 205 and the light from both the see- through path and the virtual view path is directed to the eyepiece 210.
  • the eyepiece 210 is located upon the back layer of the display.
  • the third reflective surface (M3) is located upon the back layer of the display oriented to reflect light from the eyepiece into the exit pupil 202.
  • the objective optics 220 receives light of the external scene, and focuses the light of the external scene and forms a see-through image upon the spatial light modulator 240.
  • the spatial light modulator 240 modifies the see-through image to remove portions of the image that are to be occluded.
  • the microdisplay 250 projects a virtual image to the beam splitter 230.
  • the spatial light modulator 240 transmits the modified see-through image to the beam splitter 230, where the beam splitter 230 merges the two images producing a combined image in which the virtual image occludes portions of the see-through image.
  • the beam splitter 230 then projects the combined image to the eyepiece 210, whereupon the eyepiece projects the image to the exit pupil 202.
  • the present invention comprises of an optical see-through head- mounted display 200, capable of combining an external scene in the real world with a virtual view, where the opaqueness of the external scene is modulated and the digitally generated virtual view occludes parts of the external scene and vice versa.
  • the invention comprises, a microdisplay 250 which transmits a virtual image, a spatial light modulator 240 for modifying the light from an external scene, an objective optics 220, which captures an external scene, a beamsplitter 230 configured to merge the digitally generated virtual image from the microdisplay 250 with the modified external scene from the spatial light modulator, an eyepiece 210 magnifying the virtual image and the modified external scene and an exit pupil 202 where the user observes a combined view of the virtual image and the modified external scene.
  • At least three reflective surfaces are used to fold the virtual view path 205 and the see-through path 207 into two layers.
  • the objective optics 220 is located on the front layer of the display, while the eyepiece 210 is located on the back layer of the display.
  • a series of mirrors may be used to guide light along the optical paths through the spatial light modulator, beam splitter and eyepiece.
  • the spatial light modulator 240 is located at or near an intermediate image plane in the see-through path.
  • the microdisplay 250 faces the beam splitter 230, so that light from the microdisplay is transmitted into the beam splitter 230.
  • the beam splitter 230 combines light from the microdisplay and the spatial light modulator and is oriented such that the direction of light transmission from the beam splitter is facing the eyepiece 210.
  • the eyepiece 210 is located so that the light from the beam splitter passed through the eyepiece and is transmitted into the exit pupil.
  • the objective optics 220 receives an image of the external scene, and reflects or refracts the image to the spatial light modulator 240.
  • the spatial light modulator 240 modifies the light from the external scene to remove portions of the image that are to be occluded, and transmits or reflects the light into the beam splitter.
  • the microdisplay 250 transmits a virtual image to the beam splitter 230, and the beam splitter 230 merges the two images producing a combined image in which the virtual image 205 occludes portions of the image of the external scene.
  • the beam splitter 230 projects the combined image to the eyepiece 210, which passes the image to the exit pupil 208. Thus the user observes the combined image, in which the virtual image appears to occlude portions of the external scene.
  • FIG. 2 illustrates a schematic layout 200 in accordance with the present invention for achieving a compact OCOST-HMD system.
  • the virtual view path 205 (illustrated in dash lines) represents the light propagation path of the virtual view and comprises of a microdisplay 250 for supplying display content and eyepiece 210 through which a user views a magnified image of the displayed content;
  • the see-through path 207 (illustrated in solid lines) represents the light propagation path of the see-through view and comprises of both objective optics 220 and eyepiece 210 acting as a relay optics for passing the light from an external scene in the real world to viewer's eye.
  • the see-through path 207 is folded into two layers in front of the viewer's eye through several reflective surfaces M1 ⁇ M3.
  • the reflective surface M1 directs the incoming light from the external scene toward objective optics 220; and after passing through objective optics 220, the light is folded toward the back layer 217 through the reflective surface M2.
  • the objective optics 220 in the see-through path 207 forms at least one accessible intermediate image.
  • a spatial light modulator (SLM) 240 is placed at or near the location of the accessible intermediate image, which is typically at the back focal plane of the objective optics, to provide opaqueness control and see-through modulation of the see-through view.
  • a SLM is a light control device which can modulates the intensity of the light beam that passes through or is reflected by it.
  • a SLM can be either a reflection-type SLM, e.g., a liquid crystal on silicon (LCoS) display panel or a digital mirror device (DMD), or a transmission-type SLM, e.g., a liquid crystal display (LCD) panel.
  • Both types of the SLM may be used for modulating the see-through view for occlusion control in the see-through path 207.
  • Fig. 2(a) illustrates an exemplary configuration of using a reflection-type SLM while Figure 2(b) illustrates the use of a transmission-type SLM.
  • the SLM 240 can be placed at the position of SLM2 with a refection-type SLM in Figure 2(a), or at the position of SLM1 with a transmission-type SLM in Figure 2(b).
  • the beamsplitter 230 folds the see-through path 207 and merges it with the virtual view path 205 so that the same the eyepiece 210 is shared for viewing the displayed virtual content and the modulated see-through view.
  • the reflective surface M3 directs the virtual view path 205 and see- through path 207 to exit pupil 202, where the viewer's eye observes a mixed virtual and real view.
  • the reflective surfaces M1 ⁇ M3 could be either a standing alone element (e.g. mirror) or could be strategically designed to be an integral part of the eyepiece 210 or objective optics 220.
  • the microdisplay 250 and SLM 240 are both located at the focal plane of the objective optics 220 and are optically conjugate to each other through the beamsplitter 230, which makes the pixel level opaqueness control on the see-through view possible.
  • the unit assembling the SLM 240, microdisplay 250, and beamsplitter 230 is included in the back layer as shown in the exemplary figures, it may be incorporated into the front layer when the back focal distance of the eyepiece is larger than that of the objective optics such that it is preferred to place the combiner unit closer to the objective optics.
  • the approach described above enables us to achieve a compact OCOST-HMD solution and minimal view axis shift.
  • the optical layout 200 has applicability to many types of HMD optics, including, without limitation, rotationally symmetric optics and non-rotationally symmetric freeform optics.
  • the reflective surfaces M1 ⁇ M3 for folding the optical paths may be planar mirrors, spherical, aspherical, or freeform surfaces with optical power. Some of the reflective surfaces may utilize freeform optical technology. Some of the reflective surfaces may also be strategically designed to be an integral part of the eyepiece 210 or objective optics 220 where the reflective surfaces not only facilitate the folding of the optical paths for achieving compact display design but also contribute optical power and correct optical aberrations.
  • the present invention demonstrated the use of a one- reflection freeform prism as an eyepiece and objective optics where the prism is a single optical element comprises of two refractive surfaces and one reflective surface for folding the optical path and correcting aberrations.
  • multi-reflection freeform prisms are demonstrated.
  • the see-through path 207 may form additional intermediate images 260 by the objective optics 220, or eyepiece 210, or both.
  • multiple-reflection freeform prism structure typically more than 2 may be utilized as eyepiece or objective optics, or both, which allow folding the see-through path inside the objective and or eyepiece prism multiple times and form intermediate image(s) inside the prism.
  • the see-through path 207 may yield a total odd or even number of intermediate images.
  • the potential advantage of creating more than one intermediate image is the benefit of extended optical path length, long back focal distance, and the elimination of real-view erection element.
  • a see-through view erection method may be needed to invert and/or revert the see-through view of the see-through path to maintain the parity of the coordinate system of the see-through view and prevent a viewer from seeing an inverted or reverted see-through view.
  • the see-through view erection method specifically, the present invention considers two different image erection strategies.
  • the form of eyepiece 210 and objective optics 220 will be designed such that an even number of intermediate images is created in the see-through path 207.
  • one of the reflective surfaces M1 through M3 may be replaced by a roof mirror surface for the see-through view erection.
  • the preferred embodiments with the view erection using a roof reflection will be discussed below in connection with Figs. 3 and S.
  • the preferred embodiments with the view erection using an intermediate image will be discussed below in connection with Figs. 4, 6 and 7.
  • the present invention may utilize freeform optical technology in eyepiece, objective optics or both to achieve a compact and lightweight OCOST- HMD.
  • Fig. 3 shows a block diagram 300 of an exemplary approach to a compact OCOST-HMD design in accordance with the present invention based on freeform optical technology.
  • the eyepiece 310 in the back layer 317 is a one-reflection freeform prism comprising three optical freeform surfaces: refractive surface S1, reflective surface S2 and refractive surface S3.
  • the light ray emitted from microdisplay 350 enters the eyepiece 310 through the refractive surface S3, then is reflected by the reflective surface S2 and exits eyepiece 310 through the refractive surface S1 and reaches exit pupil 302, where the viewer's eye is aligned to see a magnified virtual image of microdisplay 350.
  • the objective optics 320 in the front layer 315 is also a one-reflection freeform prism comprising of three optical freeform surfaces: refractive surface S4, reflective surface S5 and refractive surface S6.
  • the objective optics 320 works together with eyepiece 310 act as a relay optics for the see-through view.
  • the incoming light from an external scene reflected by mirror 325 enters the objective optics 320 through the refractive surface S4, then is reflected by the reflective surface S5 and exits the objective optics 320 through refractive surface S6 and forms an intermediate image at its focal plane on SLM 340 for light modulation.
  • the beamsplitter 330 merges the modulated light in the see-through path 307 with the light in the virtual view path 305 and folds toward the eyepiece 310 for viewing.
  • the beamsplitter 330 may be a wire-grid type beamsplitter, a polarized cube beamsplitter or other similar type beamsplitters.
  • the SLM 340 is a reflection-type SLM and is located at the SLM2 position of the schematic layout 200 and is optically conjugated to the microdisplay 350 through the beamsplitter 330.
  • the reflective surface M2 of the schematic layout 200 is strategically designed to be an integrated part of the objective prism 320 as freeform reflective surface S5; the reflective surface M3 of the schematic layout 200 is strategically designed to be an integrated part of the eyepiece prism 310 as freeform reflective surface S2; the reflective surface M1 of schematic layout 200 is designed as a roof type mirror 325 for view erection given that the total number of reflections in see-through path 307 is 5 (an odd number).
  • the eyepiece 310 and the objective optics 320 may have an identical freeform prism structure.
  • the advantage of using an identical structure for the eyepiece and the objective optics is that the optical design strategy of one prism can be readily applied to the other, which helps simplify the optical design.
  • the symmetric structure of the eyepiece and objective optics also helps correcting odd order aberrations, such as coma, distortion, and lateral color.
  • Fig. 4 shows a block diagram 400 of another exemplary approach to a compact OCOST- HMD design in accordance with the present invention based on freeform optical technology.
  • the eyepiece 410 is a two-reflection prism and the objective optics 420 is a four-reflection prism.
  • an intermediate image 460 is formed inside the objective optics 420 to erect the see-through view which eliminates the necessity of using an erection roof reflective surface.
  • the potential advantage of eliminating the erection prism is that this system structure may lead to a more compact design by folding the optical path inside the objective prism multiple times.
  • the eyepiece 410 in the back layer 417 comprises of four optical freeform surfaces: refractive surface S1, reflective surface S2, reflective surface S1' and refractive surface S3.
  • refractive surface S1 and the reflective surface S1' may be the same physical surfaces and possess the same set of surface prescriptions.
  • the objective optics 420 in the front layer 415 comprises of six optical freeform surfaces: refractive surface S4, reflective surfaces S5, S4', S5', and S6 and refractive surface S7.
  • refractive surface S4 In the see-through path 407, the objective optics 420 works together with the eyepiece 410 act as a relay optics for the see-through view.
  • the incoming light from an external scene in the real world enters the objective optics 420 through the refractive surface S4, then is consecutively reflected by the reflective surfaces S5, S4', S5' and S6, and exits the objective optics 420 through the refractive surface S7 and forms an intermediate image at its focal plane on SLM 440 for light modulation.
  • the refractive surface S4 and reflective surface S4' may be the same physical surfaces and possess the same set of surface prescriptions.
  • the reflective surface S5 and the reflective surface S5' may be the same physical surfaces and possess the same set of surface prescriptions.
  • the beamsplitter 430 merges the modulated light in the see-through path 407 with the light in the virtual view path 405 and folds toward the eyepiece 410 for viewing.
  • the beamsplitter 430 may be a wire-grid type beamsplitter, a polarized cube beamsplitter or other similar type beamsplitters.
  • the SLM 440 is a reflection- type SLM and is located at the SLM2 position of the schematic layout 200 and is optically conjugated to the microdisplay 450 through beamsplitter 430.
  • the reflective surface M2 of the schematic layout 200 is strategically designed as an integrated part of the objective optics 420 as the reflective surface S6; the reflective surface M3 of the schematic layout 200 is strategically designed as an integrated part of the eyepiece 410 as the reflective surface S2; the reflective surface M1 of schematic layout 200 is designed as an integrated part of the objective optics 420 as the reflective surface S5.
  • An intermediate image 460 is formed inside of the objective optics 410 for the real- view erection. Given that the total number of reflections in the see-through path 407 is 8 (an even number), no roof mirror is required on any reflective surfaces.
  • FIG. 5 shows a block diagram 500 of another exemplary approach to a compact OCOST- HMD design in accordance with the present invention based on freeform optical technology.
  • This approach facilitates the usage of a transmission-type SLM.
  • the eyepiece 510 is a two- reflection prism and the objective optics 520 is a one-reflection prism.
  • a roof mirror 527 is placed at the top of objective prism 520 to invert the see-through view and to fold the see- through path 507 toward the back layer 517.
  • the eyepiece 510 in the back layer 517 comprises of four optical freeform surfaces: refractive surface S1, reflective surface S2, reflective surface S1' and refractive surface S3.
  • the light ray emitted from the microdisplay 550 enters the eyepiece 510 through the refractive surface S3, then is consecutively reflected by reflective surfaces S1' and S2, and exits the eyepiece 510 through the refractive surface S1 and reaches exit pupil 502, where the viewer's eye is aligned to see a magnified virtual image of the microdisplay 550.
  • the refractive surface S1 and reflective surface S1' may the same physical surfaces and possess the same set of surface prescriptions.
  • the objective optics 520 in the front layer 515 comprises of three optical freeform surfaces: refractive surface S4, reflective surface S5 and refractive surface S6.
  • the objective optics 520 works together with the eyepiece 510 act as a relay optics for the see- through view.
  • the incoming light from an external scene in the real word enters the objective optics 520 through the refractive surface S4, then is reflected by the reflective surface S5 and exits the objective optics 520 through the refractive surface S6 and is folded by the mirror 527 toward the back layer 517 and forms an intermediate image at its focal plane on SLM 540 for light modulation.
  • the beamsplitter 530 merges the modulated light in the see-through path 507 with the light in the virtual view path 505 and folds the merged light toward the eyepiece 510 for viewing.
  • the beamsplitter 530 may be a wire-grid type beamsplitter, a polarized cube beamsplitter or other similar type beamsplitters.
  • the SLM 540 is a transmission- type SLM and is located at the SLM1 position of the schematic layout 200 and is optically conjugated to the micro-display 550 through the beamsplitter 530.
  • the reflective surface M1 of the schematic layout 200 is strategically designed as an integrated part of objective optics 520 as the reflective surface S5; the reflective surface M3 of the schematic layout 200 is strategically designed as an integrated part of the eyepiece 510 as the reflective surface S2; the reflective surface M2 of the schematic layout 200 is designed as a roof type mirror 527 for view erection given that the total number of reflections in the see-through path 507 is 5 (an odd number).
  • Fig. 6 shows a block diagram 600 of another exemplary approach to a compact OCOST- HMD design in accordance with the present invention based on freeform optical technology. This approach also facilitates the usage of a transmission type SLM.
  • the eyepiece 610 is a two-reflection freeform prism and the objective optics 620 is a three-reflection freeform prism. Inside the objective optics 620, an intermediate image 660 is formed to erect the see-through view.
  • the eyepiece 610 in the back layer 617 comprises of four optical freeform surfaces: refractive surface S1, reflective surface S2, reflective surface S1' and refractive surface S3.
  • the light ray emitted from the microdisplay 650 enters the eyepiece 610 through the refractive surface S3, then is consecutively reflected by reflective surfaces S1' and S2, and exits the eyepiece 610 through the refractive surface S1 and reaches exit pupil 602, where the viewer's eye is aligned to see a magnified virtual image of the microdisplay 650.
  • the refractive surface S1 and the reflective surface S1 ' may the same physical surfaces and possess the same set of surface prescriptions.
  • the objective optics 620 in the front layer 615 comprises of five optical freeform surfaces: refractive surface S4, reflective surfaces S5, S4' and S6 and refractive surface S7.
  • the objective optics 620 works together with the eyepiece 610 acting as relay optics for the see-through view.
  • the incoming light from an external scene in the real world enters the objective optics 620 through the refractive surface S4, consecutively reflected by the reflective surfaces S5, S4' and S6, and exits the objective optics 620 through the refractive surface S7 and forms an intermediate image at its focal plane on SLM 640 for light modulation.
  • the refractive surface S4 and the reflective surface S4' may be the same physical surfaces and possess the same set of surface prescriptions.
  • the beamsplitter 630 merges the modulated light in the see-through path 607 with the light in the virtual view path 605 and folds toward the eyepiece 610 for viewing.
  • the beamsplitter 630 may be a wire-grid type beamsplitter, a polarized cube beamsplitter or other similar type beamsplitters.
  • the SLM 640 is a transmission-type SLM and is located at the SLM1 position of the schematic layout 200 and is optically conjugated to the micro-display 650 through the beamsplitter 630.
  • the reflective surface M1 of the schematic layout 200 is strategically designed as an integrated part of the objective optics 620 as the reflective surface S5; the reflective surface M2 of the schematic layout 200 is strategically designed as an integrated part of the objective optics 620 as the reflective surface S6; the reflective surface M3 of the schematic layout 200 is strategically designed as an integrated part of the eyepiece 610 as the reflective surface S2.
  • An intermediate image 660 is formed inside of the objective optics 610 for real-view erection. Given that the total number of reflections in the see-through path 607 is 6 (an even number), no roof mirror is required on any reflective surface.
  • Fig. 7 shows a block diagram 700 of another exemplary approach to a compact OCOST- HMD design in accordance with the present invention based on freeform optical technology.
  • both the eyepiece and the objective optics are two-reflection freeform prisms and have nearly identical structure.
  • the advantage of using an identical structure for the eyepiece and objective is that the optical design strategy of one prism can be readily applied to the other, which helps simplify the optical design.
  • the symmetric structure of the eyepiece and objective prisms may also help correcting odd order aberrations, such as coma, distortion, and lateral color.
  • the eyepiece 710 in the back layer 717 comprises of four optical freeform surfaces: refractive surface S1, reflective surface S2, reflective surface S1' and refractive surface S3.
  • refractive surface S1 and the reflective surface S1' may the same physical surfaces and possess the same set of surface prescriptions.
  • the objective optics 720 in the front layer 715 comprises of four optical freeform surfaces: refractive surface S4, reflective surfaces S5, S4' and refractive surface S6.
  • the objective optics 720 works together with the eyepiece 710 acting as a relay optics for the see-through view.
  • the incoming light from an external scene in the real world enters the objective optics 720 through the refractive surface S4, consecutively reflected by the reflective surfaces S5, S4', and exits the objective optics 720 through the refractive surface S6 and forms an intermediate image 760 at its focal plane.
  • the beamsplitter 780 folds the see-through path 707 away from the back layer 715 toward the mirror 790 positioned at the focal plane of the objective optics 720.
  • the see-through path 707 is reflected by the mirror 790 back toward the back layer 715.
  • a relay lens 770 is used to create an image of the intermediate image 760 at the SLM2 position of the schematic layout 200 for view modulation.
  • the beamsplitter 730 merges the modulated light in the see-through path 707 with the light in the virtual view path 705 and folds toward the eyepiece 710 for viewing.
  • the SLM 740 is a reflection-type SLM and is optically conjugated to the microdisplay 750 through beamsplitter 730. Due to the fact that the intermediate image 760 is optically conjugated to the SLM 740, the positions of the SLM 740 and the mirror 790 are interchangeable.
  • the reflective surface M1 of the schematic layout 200 is strategically designed as an integrated part of the objective optics 720 as the reflective surface S5; the reflective surface M3 of the schematic layout 200 is strategically designed as an integrated part of the eyepiece 710 as the reflective surface S2; the reflective surface M2 of the schematic layout 200 is positioned at the focal plane of the objective optics 710 as the mirror 790 and folds the see-through path 707 toward the virtual view path 705; The intermediate image 760 is formed at the focal plane of the objective optics 720 for real-view erection. Given that the total number of reflections in the see-through path 707 is 8 (an even number), no roof mirror is required on any reflective surface.
  • FIG. 8 schematically illustrated an exemplary design 800 based on the exemplary approach depicted in Fig. 3.
  • the design achieved a diagonal FOV of 40 degrees, which is 31.7 degrees in the horizontal direction (X-axis direction) and 25.6 degrees in the vertical direction (Y -axis direction), an exit pupil diameter (EPD) of 8mm (non-vignetted), and an eye clearance of 18mm.
  • the design is based on a 0.8" microdisplay with a 5:4 aspect ratio and a 1280x1024 pixel resolution.
  • the microdisplay has an effective area of 15.36mm and 12.29mm and a pixel size of 12um.
  • the design used a SLM of the same size and resolution as the microdisplay.
  • a polarized cube beamsplitter is used to combine the virtual view path and the see-through path.
  • DOE plates 882 and 884 are used to correct chromatic aberrations.
  • the system is measured as 43mm(X) x 23mm (Y) x 44.5mm (Z).
  • the viewpoint shifts between the entrance pupil 886 and exit pupil 802 are 0.6 mm in Y direction and 67 mm in Z direction, respectively.
  • An exemplary optical prescription of the eyepiece 810 is listed in the Tables 1-4. All the three optical surfaces in the eyepiece 810 are anamorphic aspheric surface (AAS).
  • AAS anamorphic aspheric surface
  • z is the sag of the free-form surface measured along the z-axis of a local x, y, z coordinate system
  • c x and Cy are the vertex curvature in x and y axes, respectively
  • K x and y are the conic constant in x and y axes, respectively
  • AR, BR, CR and DR are the rotationally symmetric portion of the 4th, 6th, 8th, and 10th order deformation from the conic
  • AP, BP, CP, and DP are the non-rotationally symmetric components of the 4th, 6th, 8th, and 10th order deformation from the conic.
  • Table 1 Optical surface prescription of surface 1 of the eyepiece prism, See FIG. 13.
  • Table 2 Optical surface prescription of surface 2 of the eyepiece prism, See FIG. 14
  • Table 3 Optical surface prescription of surface 3 of the eyepiece prism, See FIG. 15
  • Table 4 Position and orientation parameters of the eyepiece prism, See FIG. 16
  • An exemplary optical prescription of the objective optics 820 is listed in the Tables 5-8. All the three optical surfaces in the objective optics 820 are anamorphic aspheric surface (AAS).
  • AAS anamorphic aspheric surface
  • Table 5 Optical surface prescription of surface 4 of the objective prism, See FIG. 17.
  • Table 6 Optical surface prescription of surface 5 of the objective prism, See FIG. 18.
  • Table 7 Optical surface prescription of surface 6 of the objective prism, See FIG. 19.
  • Table 8 Position and orientation parameters of the objective prism, See FIG. 20.
  • FIG. 21 An exemplary optical prescription of the DOE plate 882 and 884 is listed in the Tables 9.
  • Table 9 Surface parameters for DOE plates 882 and 884, See FIG. 21.
  • Figure 9 shows the field map of polychromatic modulation transfer functions (MTF) of the virtual display path at cutoff frequency 401ps/mm (line pairs per millimeter) evaluated using 3mm pupil diameter. The 401ps/mm cutoff frequency was determined from the pixel size of the microdisplay. The plot shows that our design has very good performance for majority fields except two upper display corners whose MTF values at cutoff frequency are little less than 15%. Across the entire FOV the distortion of the virtual display path is less than 2.9%, while the distortion of the see-through path is less than 0.5%. The total estimated weight for the optics alone is 33 grams per eye.
  • MTF polychromatic modulation transfer functions
  • Figure 10 schematically illustrated an exemplary design 1000 based on the exemplary approach depicted in Fig. 3.
  • the design achieved a diagonal FOV of 40 degrees with 35.2 degrees horizontally (X-direction) and 20.2 degrees vertically (Y-direction), an exit pupil diameter (EPD) of 8mm (non-vignetted), and an eye clearance of 18mm.
  • the design is based on a 0.7" microdisplay with a 16:9 aspect ratio and a 1280x720 pixel resolution.
  • the design used a SLM of the same size and resolution as the microdisplay.
  • a wire-grid plate beamsplitter is used to combine the virtual view path and the see-through path.
  • the same freeform prism is used as the eyepiece and the objective optics.
  • An exemplary optical prescription of the freeform prism is listed in the Tables 10-15.
  • Two surfaces in the prism are anamorphic aspheric surface (AAS) and one is aspheric surface (ASP).
  • AAS anamorphic aspheric surface
  • ASP aspheric surface
  • the sag of an ASP surface is defined by
  • z is the sag of the surface measured along the z-axis of a local x, y, z coordinate system
  • c is the vertex curvature
  • k is the conic constant
  • a through J are the 4th, 6th, 8th, 10th, 12th, 14th, 16th, 18th, and 20th order deformation coefficients, respectively.
  • Table 10 Optical surface prescription of surface 1 of the freeform prism, See FIG. 22
  • Table 11 Optical surface prescription of surface 2 of the freeform prism, See FIG. 23.
  • Table 12 Optical surface prescription of surface 3 of the freeform prism, See FIG. 24.
  • Table 13 Position and orientation parameters of the freeform prism as the eyepiece, See FIG. 25.
  • Figures 11 shows the field map of polychromatic modulation transfer functions (MTF) of the virtual display path at cutoff frequency 401ps/mm (line pairs per millimeter) evaluated using 3mm pupil diameter. The plot shows that our design has very good performance for majority fields.
  • MTF polychromatic modulation transfer functions
  • Figure 12 depicts a block diagram of an example of an image processing pipeline necessary for the present invention. Firstly, the depth map of the external scene is extracted using proper depth sensing means. Then, the virtual object is compared with the depth map to determine the regions where the occlusion occurs. A mask generation algorithm creates a binary mask image according to the pre-determined occlusion regions. The mask image is then displayed on spatial light modulator to block the light from the occluded region in the intermediate image of the external scene. A virtual image of the virtual object is rendered and displayed on the micro-display. The viewer observes a combined image of the virtual image and the modulated see-through image of the external scene through the display device of the present invention.
  • the present invention features a folded image path that permits the invention to be compressed into a compact form, more easily wearable as a head-mounted display.
  • the optical path is linearly arranged using rotationally symmetric lenses.
  • the prior art occlusion-type displays have a long telescope-like shape, which is unwieldy for wearing on the head.
  • the present invention folds the image path using reflective surfaces into two layers to that the spatial light modulator, microdisplay and beamsplitter, are mounted to the top of the head, rather than linearly in front of the eye.
  • the prior art relies on only a reflection type spatial light modulator, while the present invention may use either a reflection or transmission type spatial light modulator. Moreover, the prior art requires a polarized beamsplitter to modulate the external image, while the present invention does not necessitate polarization.
  • the eyepiece and the objective optics are not necessarily coUinear, as in the case in the prior art.
  • the objective optics is also not necessarily tele-centric.
  • the view of the world is a mirror reflection of the see-through view.
  • the present invention the folded image path allows a roof mirror to be inserted to maintain parity between the view of the user and the external scene. This makes the present invention more functional from the user's perspective.
  • the present invention makes use of freeform optical technology, which allows the system to be made even more compact.
  • the freeform optical surfaces can be designed to reflect light internally multiple times, so that mirrors may not be needed to fold the light path.
  • the reflective surfaces for folding the optical paths may be planar mirrors, spherical, aspherical, or freeform surfaces with optical power.
  • a significant aspect of the present invention lies in that some of the reflective surfaces utilize freeform optical technology, which helps to boost the optical performance and compactness.
  • some of the reflective surfaces are strategically designed to be an integral part of the eyepiece or objective optics where the reflective surfaces not only facilitate the folding of the optical path for achieving compact display design but also contribute optical power and correct optical aberrations.
  • the reflective surfaces M1 ⁇ M3 were shown as generic mirrors separate from the eyepiece and objective optics.
  • two of the mirrors are freeform surfaces incorporated into the freeform eyepiece and objective prisms as S2 and S5.
  • 4 reflective freeform surfaces were incorporated into the freeform objective prism and 2 were incorporated into the freeform eyepiece prisms.
  • 1 freeform surface was in the objective prism
  • 2 freeform surfaces were in the eyepiece, in addition to a roof prism.
  • 3 freeform surfaces are in the objective and 2 freeform surfaces in the eyepiece.
  • 2 reflective freeform mirrors are in the objective
  • 2 freeform mirrors are in the eyepiece, in addition to a mirror 790 and a beamsplitter 780.
  • Our invention ensures that the see-through view seen through the system is correctly erected (neither inverted nor reverted).
  • Two different optical methods were utilized in our embodiments for achieving this, depending on the number of intermediate images formed in the see-through path and the number of reflections in vol ved in the see-through path.
  • an optical method is provided to invert and/or revert the see-through view in the see-through path.
  • examples of the possible methods include, but not limited to, inserting an additional reflection or reflections, utilizing a roof mirror surface, or inserting an erector lens.
  • multiple-reflection freeform prism structure (typical more than 2) may be utilized as eyepiece or objective optics, or both, which allow folding the see-through optical path inside the objective and/or eyepiece prism multiple times and form intermediate imagers) inside the prism to erect the see-through view which eliminates the necessity of using an erection roof reflective surface.

Abstract

The present invention comprises a compact optical see-through head-mounted display-capable of combining a see-through image path with a virtual image path such that the opaqueness of the see-through image path can be modulated and the virtual image occludes parts of the see-through image and vice versa.

Description

APPARATUS FOR OPTICAL SEE-THROUGH HEAD MOUNTED DISPLAY WITH MUTUAL OCCLUSION AND OPAQUENESS CONTROL
CAPABILITY
Chunyu Gao
Yuxiang Lin
Hong Hua
Related Applications
[0001] This application claims priority to U.S. Provisional Application No. 61/620,574, filed on April 5, 2012 and U.S. Provisional Application No. 61/620,581, filed on April 5, 2012, the disclosures of which are incorporated herein by reference in its entirety.
Government License Rights
[0002] This invention was partially made with government support under SBIR contract No. W91CRB-12-C-0002 awarded by the U.S. ARMY. The government has certain rights in the invention.
Field of the Invention
[0003] The present invention relates generally to Head Mounted Displays, and more particularly, but not exclusively, to optical see-through head-mounted displays with opaqueness control and mutual occlusion capability in which real objects may be occluded by computer-rendered virtual objects situated in front or vice versa.
Background of the Invention
[0004] Over the past decades, Augmented Reality (AR) technology has been applied in many application fields, such as medical and military training, engineering design and prototyping, tele-manipulation and tele-presence, and personal entertainment systems. See-through Head- Mounted Displays (ST-HMD) are one of the enabling technologies of an augmented reality system for merging virtual views with a physical scene. There are two types of ST-HMDs: optical and video (J. Rolland and H. Fuchs, "Optical versus video see-through head mounted displays," In Fundamentals of Wearable Computers and Augmented Reality, pp.113-157, 2001.). The major drawbacks of the video see-through approach include: degradation of the image quality of the see-through view; image lag due to processing of the incoming video stream; potentially loss of the see-through view due to hardware/software malfunction. In contrast, the optical see-through HMD (OST-HMD) provides a direct view of the real world through a beamsplitter and thus has minimal affects to the view of the real world. It is highly preferred in demanding applications where a user's awareness to the live environment is paramount.
[0005] Developing optical see-through HMDs, however, confronts complicated technical challenges. One of the critical issues lies in that the virtual views in an OST-HMD appear "ghost-like" and are floating in the real world due to the lack of the occlusion capability. Fig. 1 shows a comparison illustration of the augmented view seen through a typical OST-HMD (Fig. la) and the augmented view seen through an occlusion capable OST-HMD (OCOST-HMD) system (Fig. lb). In the figure, a virtual car model is superimposed on a solid platform which represents a real object. Without proper occlusion management as shown in Fig. la, in a typical AR view, the car is mixed with the platform and it is difficult to distinguish the depth relationship of the car and the platform. On the contrary, with proper occlusion management as shown in Fig. lb, the car blocks a portion of the platform and it can be clearly identified that the car seats on the top of the platform. Adding occlusion capability to the AR display enables realistically merging virtual objects into the real environment. Such occlusion-enabled capability may generate transformative impacts on AR display technology and is very appealing for many augmented-reality based applications.
[0006] An OCOST-HMD system typically comprises of two key sub-systems. The first is an eyepiece optics that allows a user to see a magnified image displayed on a microdisplay; and the second is a relay optics that collects and modulates the light from an external scene in the real world, which enables the opaqueness and occlusion control on the external scene when presenting to the viewers. The key challenges of creating truly portable and lightweight OCOST- HMD system lies in addressing three cornerstone issues: (1) an optical scheme that allows the integration of the two subsystems without adding significant weight and volume to the system. (2) a proper optical method that maintains the parity of the coordinate system of the external scene; (3) an optical design method that enables the design of these optical subsystems with an elegant form factor, which has been a persisting dream for HMD developers. Several occlusion- capable optical ST-HMD concepts have been developed (US Patent, 7,639,208 Bl, Kiyokawa, K., Kurata, Y., and Ohno, H., "An Optical See-through Display for Mutual Occlusion with a Real-time Stereo Vision System," Elsevier Computer & Graphics, Special Issue on "Mixed Realities - Beyond Conventions," Vol.25, No.5, pp.2765-779, 2001. K. Kiyokawa, M. Billinghurst, B. Campbell, E. Woods, "An Occlusion-Capable Optical See-through Head Mount Display for Supporting Co-located Collaboration." ISMAR 2003, pp. 133-141). For example, Kiyokawa et. al. developed ELMO series occlusion displays using conventional lenses, prisms and mirrors. Not only because of the number of elements being used, but also more importantly due to the rotationally symmetric nature of the optical systems, the existing occlusion-capable OST-HMDs have a helmet-like, bulky form factor. They have been used exclusively in laboratory environments due to the heavy weight and cumbersome design. The cumbersome, helmet-like form factor prevents the acceptance of the technology for many demanding and emerging applications.
Summary of the Invention
[0007] This invention concerns an optical see-through head mounted display (OST-HMD) device with opaqueness control and mutual occlusion capability. The display system typically comprises of a virtual view path for viewing a displayed virtual image and a see-through path for viewing an external scene in the real world. In the present invention, the virtual view path includes a miniature image display unit for supplying virtual image content and an eyepiece through which a user views a magnified virtual image. The see-through path comprises of an objective optics to directly capture the light from the external scene and form at least one intermediate image, a spatial light modular (SLM) placed at or near an intermediate image plane in the see-through path to control and modulate the opaqueness of the see-through view, and an eyepiece optics through which the modulated see-through view is seen by the viewer. In the see- through path, the objective optics and eyepiece together act as a relay optics for passing the light from the real world to viewer's eye. To achieve a compact form factor and reduce the viewpoint offset, the see-through path is folded into two layers through several reflective surfaces, a front layer accepting the incoming light from an external scene and a back layer coupling the light captured by the front layer into a viewer's eye. The see-through path is merged with the virtual image path by a beamsplitter so that the same the eyepiece is shared by both paths for viewing displayed virtual content and the modulated see-through image. The microdisplay and the SLM are optically conjugate to each other through the beamsplitter, which makes the pixel level occlusion manipulation possible. In the present invention, the eyepiece, the objective optics, or both may be rotationally symmetric lenses or non-rotationally symmetric freeform optics. In one of its significant aspects, the present invention may utilize freeform optical technology in eyepiece optics, objective optics or both to achieve a compact and lightweight OCOST-HMD design.
[0008] The reflective surfaces for folding the optical paths may be planar mirrors, spherical, aspherical, or freeform surfaces with optical power. In another significant aspect of the present invention, some of the reflective surfaces may utilize freeform optical technology. Some of the reflective surfaces may also be strategically designed to be an integral part of the eyepiece or objective optics where the reflective surfaces not only facilitate the folding of the optical path for achieving compact display design but also contribute optical power and correct optical aberrations. In an exemplary configuration, the present invention may use a one-reflection or multi-reflection freeform prism as an eyepiece or objective optics where the prism is a single optical element comprises of refractive surfaces and one or more than one reflective surfaces for folding the optical path and correcting aberrations.
[0009] In another significant aspect of the present invention, the objective optics in the see- through path forms at least one accessible intermediate image, near which an SLM is placed to provide opaqueness control and see-through modulation. In the present invention, either a reflection-type SLM or a transmission-type SLM may be used for modulating the see-through view for occlusion control. A longer back focal distance for the objective optics is required for a reflection-type SLM than a transmission-type SLM. A reflection-type SLM may have the advantage of higher light efficiency than a transmission-type SLM.
[0010] In another significant aspect of the present invention, the see-through path may form an odd or even number of intermediate images. In the case of an odd number of intermediate images, an optical method is provided to invert and/or revert the see-through view in the see- through path. For example, depending on the number of reflections involved in the see-through path, examples of the possible methods include, but not limited to, inserting an additional reflection or reflections, utilizing a roof mirror surface, or inserting an erection prism or lens. In the case of an even number of intermediate images, no image erection element is needed if there is no parity change in the see-through view. For instance, multiple-reflection freeform prism structure (typical more than 2) may be utilized as eyepiece or objective optics, or both, which allow folding the see-through optical path inside the objective and/or eyepiece prism multiple times and form intermediate image(s) inside the prisms which eliminates the necessity of using an erection roof reflective surface. The potential advantage of eliminating the erection prism is that the approach may lead to a more compact design.
Brief Description of the Drawings
[0011] The foregoing summary and the following detailed description of exemplary
embodiments of the present invention may be further understood when read in conjunction with the appended drawings, in which:
[0012] Figure 1 schematically illustrates AR views seen through an optical see-through HMD: without occlusion capability (Fig. la) and with occlusion capability (Fig.lb).
[0013] Figure 2 schematically illustrates an exemplary optical layout in accordance with the present invention shown as a monocular optical module.
[0014] Figure 3 schematically illustrates a preferred embodiment in accordance with the present invention based on freeform optical technology. The embodiment comprises of a one-reflection eyepiece prism, a one-reflection objective prism, a reflection-type SLM and a roof reflective surface.
[0015] Figure 4 schematically illustrates another preferred embodiment in accordance with the present invention based on freeform optical technology. The embodiment comprises of a two- reflection eyepiece prism, a four-reflection objective prism, and a reflection-type SLM.
[0016] Figure 5 schematically illustrates another preferred embodiment in accordance with the present invention based on freeform optical technology. The embodiment comprises of a two- reflection eyepiece prism, a one-reflection objective prism, a transmission-type SLM and a roof reflective surface. [0017] Figure 6 schematically illustrates another preferred embodiment in accordance with the present invention based on freeform optical technology. The embodiment comprises of a two- reflection eyepiece prism, a three-reflection objective prism and a transmission-type SLM.
[0018] Figure 7 schematically illustrates another preferred embodiment in accordance with the present invention based on freeform optical technology. The embodiment comprises of a two- reflection eyepiece prism, a two-reflection objective prism, a reflection-type SLM and a relay lens.
[0019] Figure 8 schematically illustrates an exemplary design of an OCOST-HMD system in accordance with the present invention based on an exemplary layout in Fig. 3.
[0020] Figure 9 illustrates the field map plot of the polychromatic modulation transfer functions (MTF) of the virtual display path of the design in Fig. 8 at cutoff frequency 401ps/mm (line pairs per millimeter) evaluated using 3mm pupil diameter.
[0021] Figure 10 schematically illustrate an exemplary design of an OCOST-HMD system in accordance with the present invention based on an exemplary layout in Fig. 3 with the eyepiece and objective optics having identical freeform structure.
[0022] Figure 11 illustrates the field map plot of the polychromatic modulation transfer functions (MTF) of the virtual display path of the design in Fig. 10 at cutoff frequency 401ps/mm (line pairs per millimeter) evaluated using 3mm pupil diameter.
[0023] Figure 12 depicts a block diagram of an example of an image processing pipeline in accordance with the present invention.
[0024] Figure 13 shows Table 1: Optical surface prescription of surface 1 of the eyepiece prism [0025] Figure 14 shows Table 2: Optical surface prescription of surface 2 of the eyepiece prism [0026] Figure 15 shows Table 3: Optical surface prescription of surface 3 of the eyepiece prism [0027] Figure 16 shows Table 4: Position and orientation parameters of the eyepiece prism
[0028] Figure 17 shows Table 5: Optical surface prescription of surface 4 of the objective prism
[0029] Figure 18 shows Table 6: Optical surface prescription of surface 5 of the objective prism
[0030] Figure 19 shows Table 7: Optical surface prescription of surface 6 of the objective prism
[0031] Figure 20 shows Table 8: Position and orientation parameters of the objective prism
[0032] Figure 21 shows Table 9: Surface parameters for DOE plates 882 and 884
[0033] Figure 22 shows Table 10: Optical surface prescription of surface 1 of the freeform prism
[0034] Figure 23 shows Table 11: Optical surface prescription of surface 2 of the freeform prism
[0035] Figure 24 shows Table 12: Optical surface prescription of surface 3 of the freeform prism
[0036] Figure 25 shows Table 13: Position and orientation parameters of the freeform prism as the eyepiece
Detailed Description of the Invention
[0037] The embodiments according to the present invention will be fully described with respect to the attached drawings. The descriptions are set forth in order to provide an understanding of the invention. However, it will be apparent that the invention can be practiced without these details. Furthermore, the present invention may be implemented in various forms. However, the embodiments of the present invention described below shall not be constructed as limited to the embodiments set forth herein. Rather, these embodiments, drawings and examples are illustrative and are meant to avoid obscuring the invention.
[0038] An occlusion capable optical see-through head-mounted display (OCOST-HMD) system typically comprises of a virtual view path for viewing a displayed virtual image and a see- through path for viewing an external scene in the real world. Hereafter the virtual image observed through the virtual view path is referred to as the virtual view and the external scene observed through the see-though path is referred to as the see-through view. In some embodiments of the present invention, the virtual view path includes a microdisplay unit for supplying virtual image content and an eyepiece through which a user views a magnified virtual image. The see-through path comprises of an objective optics to capture the light from the external scene and form at least one intermediate image, a spatial light modular (SLM) placed at or near an intermediate image plane in the see-through path to control and modulate the opaqueness of the see-through view, and an eyepiece through which the modulated see-through view is seen by the viewer. In the see-through path, the objective optics and eyepiece together act as a relay optics for passing the light from the real world to viewer's eye. The intermediate image in the see-through path is referred to as a see-through image, and an intermediate image modulated by the SLM is referred to as a modulated see-through image. An OCOST-HMD produces a combined view of the virtual and see-through views, in which the virtual view occludes portions of the see-through view.
[0039] A some embodiment, the present invention comprises a compact optical see-through head-mounted display 200, capable of combining a see-through path 207 with a virtual view path 205 such that the opaqueness of the see-through path can be modulated and the virtual view occludes parts of the see-through view and vice versa, the display comprising: a. a microdisplay 250 for generating an image to be viewed by a user, the microdisplay having a virtual view path 205 associated therewith; b. a spatial light modulator 240 for modifying the light from an external scene in the real world to block portions of the see-through view that are to be occluded, the spatial light modulator having a see-through path 207 associated therewith;
c. an objective optics 220 configured to receive the incoming light from the external scene and to focus the light upon the spatial light modulator 240 ; d. a beamsplitter 230 configured to merge a virtual image from a microdisplay 250 and a modulated see-through image of an external scene passing from a spatial light modulator, producing a combined image;
e. an eyepiece 210 configured to magnify the combined image;
f. an exit pupil 202 configured to face the eyepiece, where the user observes a combined view of the virtual and see-through views in which the virtual view occludes portions of the see-through view; g. a plurality of reflective surfaces configured to fold the virtual view path 205 and see-through paths 207 into two layers.
[0040] In some embodiments, at least three reflective surfaces are used to fold the virtual and see-through paths into two layers. The first reflective surface (M1) is located upon the front layer of the display oriented to reflect light from the external scene. The objective optics 220 is located upon the front layer of the display. The second reflective surface (M2) is located upon the front layer of the display oriented to reflect light into the spatial light modulator. The spatial light modulator 240 is located at or near an intermediate image plane of the see-through path 207, in optical communication with the objective optics 220 and the eyepiece 210 through the beam splitter 230 along the see-through path 207. The microdisplay 250 is located at the focal plane of the eyepiece 210, in optical communication with the eyepiece 210 through the beamsplitter 230 along the virtual view path 205. The beam splitter 230 is oriented such that the see-through path 207 is merged with virtual view path 205 and the light from both the see- through path and the virtual view path is directed to the eyepiece 210. The eyepiece 210 is located upon the back layer of the display. The third reflective surface (M3) is located upon the back layer of the display oriented to reflect light from the eyepiece into the exit pupil 202.
[0041] In some embodiments, the objective optics 220 receives light of the external scene, and focuses the light of the external scene and forms a see-through image upon the spatial light modulator 240. The spatial light modulator 240 modifies the see-through image to remove portions of the image that are to be occluded. The microdisplay 250 projects a virtual image to the beam splitter 230. The spatial light modulator 240 transmits the modified see-through image to the beam splitter 230, where the beam splitter 230 merges the two images producing a combined image in which the virtual image occludes portions of the see-through image. The beam splitter 230 then projects the combined image to the eyepiece 210, whereupon the eyepiece projects the image to the exit pupil 202.
[0042] In some embodiments, the present invention comprises of an optical see-through head- mounted display 200, capable of combining an external scene in the real world with a virtual view, where the opaqueness of the external scene is modulated and the digitally generated virtual view occludes parts of the external scene and vice versa. The invention comprises, a microdisplay 250 which transmits a virtual image, a spatial light modulator 240 for modifying the light from an external scene, an objective optics 220, which captures an external scene, a beamsplitter 230 configured to merge the digitally generated virtual image from the microdisplay 250 with the modified external scene from the spatial light modulator, an eyepiece 210 magnifying the virtual image and the modified external scene and an exit pupil 202 where the user observes a combined view of the virtual image and the modified external scene.
[0043] In some embodiments, at least three reflective surfaces are used to fold the virtual view path 205 and the see-through path 207 into two layers. The objective optics 220 is located on the front layer of the display, while the eyepiece 210 is located on the back layer of the display. A series of mirrors may be used to guide light along the optical paths through the spatial light modulator, beam splitter and eyepiece. The spatial light modulator 240 is located at or near an intermediate image plane in the see-through path. The microdisplay 250 faces the beam splitter 230, so that light from the microdisplay is transmitted into the beam splitter 230. The beam splitter 230 combines light from the microdisplay and the spatial light modulator and is oriented such that the direction of light transmission from the beam splitter is facing the eyepiece 210. The eyepiece 210 is located so that the light from the beam splitter passed through the eyepiece and is transmitted into the exit pupil.
[0044] In some embodiments, the objective optics 220 receives an image of the external scene, and reflects or refracts the image to the spatial light modulator 240. The spatial light modulator 240 modifies the light from the external scene to remove portions of the image that are to be occluded, and transmits or reflects the light into the beam splitter. The microdisplay 250 transmits a virtual image to the beam splitter 230, and the beam splitter 230 merges the two images producing a combined image in which the virtual image 205 occludes portions of the image of the external scene. The beam splitter 230 projects the combined image to the eyepiece 210, which passes the image to the exit pupil 208. Thus the user observes the combined image, in which the virtual image appears to occlude portions of the external scene.
[0045] Figure 2 illustrates a schematic layout 200 in accordance with the present invention for achieving a compact OCOST-HMD system. In this exemplary layout 200, the virtual view path 205 (illustrated in dash lines) represents the light propagation path of the virtual view and comprises of a microdisplay 250 for supplying display content and eyepiece 210 through which a user views a magnified image of the displayed content; the see-through path 207 (illustrated in solid lines) represents the light propagation path of the see-through view and comprises of both objective optics 220 and eyepiece 210 acting as a relay optics for passing the light from an external scene in the real world to viewer's eye. To achieve a compact form factor and reduce the viewpoint offset, the see-through path 207 is folded into two layers in front of the viewer's eye through several reflective surfaces M1~M3. The front layer 215, accepting the incoming light from an external scene, contains mainly the objective optics 220 and necessary reflective surfaces M1 and M2. The back layer 217, coupling the light captured by the front layer into a viewer's eye, mainly contains the eyepiece 210 and other necessary optical components such as additional folding mirror M3. In the front layer 215, the reflective surface M1 directs the incoming light from the external scene toward objective optics 220; and after passing through objective optics 220, the light is folded toward the back layer 217 through the reflective surface M2. The objective optics 220 in the see-through path 207 forms at least one accessible intermediate image. A spatial light modulator (SLM) 240 is placed at or near the location of the accessible intermediate image, which is typically at the back focal plane of the objective optics, to provide opaqueness control and see-through modulation of the see-through view. In the present invention, a SLM is a light control device which can modulates the intensity of the light beam that passes through or is reflected by it. A SLM can be either a reflection-type SLM, e.g., a liquid crystal on silicon (LCoS) display panel or a digital mirror device (DMD), or a transmission-type SLM, e.g., a liquid crystal display (LCD) panel. Both types of the SLM may be used for modulating the see-through view for occlusion control in the see-through path 207. Fig. 2(a) illustrates an exemplary configuration of using a reflection-type SLM while Figure 2(b) illustrates the use of a transmission-type SLM. Depending on the focal plane position of objective optics 220, the SLM 240 can be placed at the position of SLM2 with a refection-type SLM in Figure 2(a), or at the position of SLM1 with a transmission-type SLM in Figure 2(b). The beamsplitter 230 folds the see-through path 207 and merges it with the virtual view path 205 so that the same the eyepiece 210 is shared for viewing the displayed virtual content and the modulated see-through view. The reflective surface M3 directs the virtual view path 205 and see- through path 207 to exit pupil 202, where the viewer's eye observes a mixed virtual and real view. The reflective surfaces M1~M3 could be either a standing alone element (e.g. mirror) or could be strategically designed to be an integral part of the eyepiece 210 or objective optics 220. The microdisplay 250 and SLM 240 are both located at the focal plane of the objective optics 220 and are optically conjugate to each other through the beamsplitter 230, which makes the pixel level opaqueness control on the see-through view possible. Though the unit assembling the SLM 240, microdisplay 250, and beamsplitter 230 is included in the back layer as shown in the exemplary figures, it may be incorporated into the front layer when the back focal distance of the eyepiece is larger than that of the objective optics such that it is preferred to place the combiner unit closer to the objective optics. The approach described above enables us to achieve a compact OCOST-HMD solution and minimal view axis shift.
[0046] As one of its benefits, the optical layout 200 has applicability to many types of HMD optics, including, without limitation, rotationally symmetric optics and non-rotationally symmetric freeform optics. The reflective surfaces M1~M3 for folding the optical paths may be planar mirrors, spherical, aspherical, or freeform surfaces with optical power. Some of the reflective surfaces may utilize freeform optical technology. Some of the reflective surfaces may also be strategically designed to be an integral part of the eyepiece 210 or objective optics 220 where the reflective surfaces not only facilitate the folding of the optical paths for achieving compact display design but also contribute optical power and correct optical aberrations. In an exemplary configuration shown in Figure 3, the present invention demonstrated the use of a one- reflection freeform prism as an eyepiece and objective optics where the prism is a single optical element comprises of two refractive surfaces and one reflective surface for folding the optical path and correcting aberrations. In other examples of configurations, multi-reflection freeform prisms are demonstrated.
[0047] In another significant aspect of the present invention, besides the intermediate image accessible to the SLM 240, the see-through path 207 may form additional intermediate images 260 by the objective optics 220, or eyepiece 210, or both. For instance, multiple-reflection freeform prism structure (typically more than 2) may be utilized as eyepiece or objective optics, or both, which allow folding the see-through path inside the objective and or eyepiece prism multiple times and form intermediate image(s) inside the prism. As a result, the see-through path 207 may yield a total odd or even number of intermediate images. The potential advantage of creating more than one intermediate image is the benefit of extended optical path length, long back focal distance, and the elimination of real-view erection element.
[0048] Depending on the total number of intermediate images being created and the total number of reflective surfaces being used in the see-through path 207, a see-through view erection method may be needed to invert and/or revert the see-through view of the see-through path to maintain the parity of the coordinate system of the see-through view and prevent a viewer from seeing an inverted or reverted see-through view. As to the see-through view erection method specifically, the present invention considers two different image erection strategies. When a total even number of reflections is involved in the see-through path 207, which induces no change to the parity of the coordinate system of the see-through view, the form of eyepiece 210 and objective optics 220 will be designed such that an even number of intermediate images is created in the see-through path 207. When an odd number of reflections exist along with an odd number of intermediate images in the see-through path 207, which induces parity change, one of the reflective surfaces M1 through M3 may be replaced by a roof mirror surface for the see-through view erection. The preferred embodiments with the view erection using a roof reflection will be discussed below in connection with Figs. 3 and S. The preferred embodiments with the view erection using an intermediate image will be discussed below in connection with Figs. 4, 6 and 7.
[0049] In one of its significant aspects, the present invention may utilize freeform optical technology in eyepiece, objective optics or both to achieve a compact and lightweight OCOST- HMD. Fig. 3 shows a block diagram 300 of an exemplary approach to a compact OCOST-HMD design in accordance with the present invention based on freeform optical technology. The eyepiece 310 in the back layer 317 is a one-reflection freeform prism comprising three optical freeform surfaces: refractive surface S1, reflective surface S2 and refractive surface S3. In virtual view path 305, the light ray emitted from microdisplay 350, enters the eyepiece 310 through the refractive surface S3, then is reflected by the reflective surface S2 and exits eyepiece 310 through the refractive surface S1 and reaches exit pupil 302, where the viewer's eye is aligned to see a magnified virtual image of microdisplay 350. The objective optics 320 in the front layer 315 is also a one-reflection freeform prism comprising of three optical freeform surfaces: refractive surface S4, reflective surface S5 and refractive surface S6. In the see-through path 307, the objective optics 320 works together with eyepiece 310 act as a relay optics for the see-through view. The incoming light from an external scene reflected by mirror 325, enters the objective optics 320 through the refractive surface S4, then is reflected by the reflective surface S5 and exits the objective optics 320 through refractive surface S6 and forms an intermediate image at its focal plane on SLM 340 for light modulation. The beamsplitter 330 merges the modulated light in the see-through path 307 with the light in the virtual view path 305 and folds toward the eyepiece 310 for viewing. The beamsplitter 330 may be a wire-grid type beamsplitter, a polarized cube beamsplitter or other similar type beamsplitters. In this approach, the SLM 340 is a reflection-type SLM and is located at the SLM2 position of the schematic layout 200 and is optically conjugated to the microdisplay 350 through the beamsplitter 330.
[0050] In this exemplary layout 300, the reflective surface M2 of the schematic layout 200 is strategically designed to be an integrated part of the objective prism 320 as freeform reflective surface S5; the reflective surface M3 of the schematic layout 200 is strategically designed to be an integrated part of the eyepiece prism 310 as freeform reflective surface S2; the reflective surface M1 of schematic layout 200 is designed as a roof type mirror 325 for view erection given that the total number of reflections in see-through path 307 is 5 (an odd number).
[0051] In this exemplary layout 300, the eyepiece 310 and the objective optics 320 may have an identical freeform prism structure. The advantage of using an identical structure for the eyepiece and the objective optics is that the optical design strategy of one prism can be readily applied to the other, which helps simplify the optical design. The symmetric structure of the eyepiece and objective optics also helps correcting odd order aberrations, such as coma, distortion, and lateral color.
[0052] Fig. 4 shows a block diagram 400 of another exemplary approach to a compact OCOST- HMD design in accordance with the present invention based on freeform optical technology. In one exemplary implementation, the eyepiece 410 is a two-reflection prism and the objective optics 420 is a four-reflection prism. Inside the objective optics 420, an intermediate image 460 is formed to erect the see-through view which eliminates the necessity of using an erection roof reflective surface. The potential advantage of eliminating the erection prism is that this system structure may lead to a more compact design by folding the optical path inside the objective prism multiple times. The eyepiece 410 in the back layer 417 comprises of four optical freeform surfaces: refractive surface S1, reflective surface S2, reflective surface S1' and refractive surface S3. In the virtual view path 405, the light ray emitted from the microdisplay 450, enters eyepiece 410 through the refractive surface S3, then is consecutively reflected by the reflective surfaces S1' and S2, and exits the eyepiece 410 through the refractive surface S1 and reaches the exit pupil 402, where the viewer's eye is aligned to see a magnified virtual image of microdisplay 450. The refractive surface S1 and the reflective surface S1' may be the same physical surfaces and possess the same set of surface prescriptions. The objective optics 420 in the front layer 415 comprises of six optical freeform surfaces: refractive surface S4, reflective surfaces S5, S4', S5', and S6 and refractive surface S7. In the see-through path 407, the objective optics 420 works together with the eyepiece 410 act as a relay optics for the see-through view. The incoming light from an external scene in the real world enters the objective optics 420 through the refractive surface S4, then is consecutively reflected by the reflective surfaces S5, S4', S5' and S6, and exits the objective optics 420 through the refractive surface S7 and forms an intermediate image at its focal plane on SLM 440 for light modulation. The refractive surface S4 and reflective surface S4' may be the same physical surfaces and possess the same set of surface prescriptions. The reflective surface S5 and the reflective surface S5' may be the same physical surfaces and possess the same set of surface prescriptions. The beamsplitter 430 merges the modulated light in the see-through path 407 with the light in the virtual view path 405 and folds toward the eyepiece 410 for viewing. The beamsplitter 430 may be a wire-grid type beamsplitter, a polarized cube beamsplitter or other similar type beamsplitters. In this approach, the SLM 440 is a reflection- type SLM and is located at the SLM2 position of the schematic layout 200 and is optically conjugated to the microdisplay 450 through beamsplitter 430.
[0053] In this exemplary layout 400, the reflective surface M2 of the schematic layout 200 is strategically designed as an integrated part of the objective optics 420 as the reflective surface S6; the reflective surface M3 of the schematic layout 200 is strategically designed as an integrated part of the eyepiece 410 as the reflective surface S2; the reflective surface M1 of schematic layout 200 is designed as an integrated part of the objective optics 420 as the reflective surface S5. An intermediate image 460 is formed inside of the objective optics 410 for the real- view erection. Given that the total number of reflections in the see-through path 407 is 8 (an even number), no roof mirror is required on any reflective surfaces. [0054] Fig. 5 shows a block diagram 500 of another exemplary approach to a compact OCOST- HMD design in accordance with the present invention based on freeform optical technology. This approach facilitates the usage of a transmission-type SLM. The eyepiece 510 is a two- reflection prism and the objective optics 520 is a one-reflection prism. A roof mirror 527 is placed at the top of objective prism 520 to invert the see-through view and to fold the see- through path 507 toward the back layer 517. The eyepiece 510 in the back layer 517 comprises of four optical freeform surfaces: refractive surface S1, reflective surface S2, reflective surface S1' and refractive surface S3. In the virtual view path 505, the light ray emitted from the microdisplay 550, enters the eyepiece 510 through the refractive surface S3, then is consecutively reflected by reflective surfaces S1' and S2, and exits the eyepiece 510 through the refractive surface S1 and reaches exit pupil 502, where the viewer's eye is aligned to see a magnified virtual image of the microdisplay 550. The refractive surface S1 and reflective surface S1' may the same physical surfaces and possess the same set of surface prescriptions. The objective optics 520 in the front layer 515 comprises of three optical freeform surfaces: refractive surface S4, reflective surface S5 and refractive surface S6. In the see-through path 507, the objective optics 520 works together with the eyepiece 510 act as a relay optics for the see- through view. The incoming light from an external scene in the real word enters the objective optics 520 through the refractive surface S4, then is reflected by the reflective surface S5 and exits the objective optics 520 through the refractive surface S6 and is folded by the mirror 527 toward the back layer 517 and forms an intermediate image at its focal plane on SLM 540 for light modulation. The beamsplitter 530 merges the modulated light in the see-through path 507 with the light in the virtual view path 505 and folds the merged light toward the eyepiece 510 for viewing. The beamsplitter 530 may be a wire-grid type beamsplitter, a polarized cube beamsplitter or other similar type beamsplitters. In this approach, the SLM 540 is a transmission- type SLM and is located at the SLM1 position of the schematic layout 200 and is optically conjugated to the micro-display 550 through the beamsplitter 530.
[0055] In this exemplary layout 500, the reflective surface M1 of the schematic layout 200 is strategically designed as an integrated part of objective optics 520 as the reflective surface S5; the reflective surface M3 of the schematic layout 200 is strategically designed as an integrated part of the eyepiece 510 as the reflective surface S2; the reflective surface M2 of the schematic layout 200 is designed as a roof type mirror 527 for view erection given that the total number of reflections in the see-through path 507 is 5 (an odd number).
[0056] Fig. 6 shows a block diagram 600 of another exemplary approach to a compact OCOST- HMD design in accordance with the present invention based on freeform optical technology. This approach also facilitates the usage of a transmission type SLM. In one exemplary implementation, the eyepiece 610 is a two-reflection freeform prism and the objective optics 620 is a three-reflection freeform prism. Inside the objective optics 620, an intermediate image 660 is formed to erect the see-through view. The eyepiece 610 in the back layer 617 comprises of four optical freeform surfaces: refractive surface S1, reflective surface S2, reflective surface S1' and refractive surface S3. In the virtual view path 605, the light ray emitted from the microdisplay 650, enters the eyepiece 610 through the refractive surface S3, then is consecutively reflected by reflective surfaces S1' and S2, and exits the eyepiece 610 through the refractive surface S1 and reaches exit pupil 602, where the viewer's eye is aligned to see a magnified virtual image of the microdisplay 650. The refractive surface S1 and the reflective surface S1 ' may the same physical surfaces and possess the same set of surface prescriptions. The objective optics 620 in the front layer 615 comprises of five optical freeform surfaces: refractive surface S4, reflective surfaces S5, S4' and S6 and refractive surface S7. In the see-through path 607, the objective optics 620 works together with the eyepiece 610 acting as relay optics for the see-through view. The incoming light from an external scene in the real world enters the objective optics 620 through the refractive surface S4, consecutively reflected by the reflective surfaces S5, S4' and S6, and exits the objective optics 620 through the refractive surface S7 and forms an intermediate image at its focal plane on SLM 640 for light modulation. The refractive surface S4 and the reflective surface S4' may be the same physical surfaces and possess the same set of surface prescriptions. The beamsplitter 630 merges the modulated light in the see-through path 607 with the light in the virtual view path 605 and folds toward the eyepiece 610 for viewing. The beamsplitter 630 may be a wire-grid type beamsplitter, a polarized cube beamsplitter or other similar type beamsplitters. In this approach, the SLM 640 is a transmission-type SLM and is located at the SLM1 position of the schematic layout 200 and is optically conjugated to the micro-display 650 through the beamsplitter 630. [0057] In this exemplary layout 600, the reflective surface M1 of the schematic layout 200 is strategically designed as an integrated part of the objective optics 620 as the reflective surface S5; the reflective surface M2 of the schematic layout 200 is strategically designed as an integrated part of the objective optics 620 as the reflective surface S6; the reflective surface M3 of the schematic layout 200 is strategically designed as an integrated part of the eyepiece 610 as the reflective surface S2. An intermediate image 660 is formed inside of the objective optics 610 for real-view erection. Given that the total number of reflections in the see-through path 607 is 6 (an even number), no roof mirror is required on any reflective surface.
[0058] Fig. 7 shows a block diagram 700 of another exemplary approach to a compact OCOST- HMD design in accordance with the present invention based on freeform optical technology. In one exemplary implementation, both the eyepiece and the objective optics are two-reflection freeform prisms and have nearly identical structure. The advantage of using an identical structure for the eyepiece and objective is that the optical design strategy of one prism can be readily applied to the other, which helps simplify the optical design. The symmetric structure of the eyepiece and objective prisms may also help correcting odd order aberrations, such as coma, distortion, and lateral color. The eyepiece 710 in the back layer 717 comprises of four optical freeform surfaces: refractive surface S1, reflective surface S2, reflective surface S1' and refractive surface S3. In the virtual view path 705, the light ray emitted from the microdisplay 750, enters the eyepiece 710 through the refractive surface S3, then is consecutively reflected by the reflective surfaces S1' and S2, and exits the eyepiece 710 through the refractive surface S1 and reaches exit pupil 702, where the viewer's eye is aligned to see a magnified virtual image of the microdisplay 750. The refractive surface S1 and the reflective surface S1' may the same physical surfaces and possess the same set of surface prescriptions. The objective optics 720 in the front layer 715 comprises of four optical freeform surfaces: refractive surface S4, reflective surfaces S5, S4' and refractive surface S6. In the see-through path 707, the objective optics 720 works together with the eyepiece 710 acting as a relay optics for the see-through view. The incoming light from an external scene in the real world enters the objective optics 720 through the refractive surface S4, consecutively reflected by the reflective surfaces S5, S4', and exits the objective optics 720 through the refractive surface S6 and forms an intermediate image 760 at its focal plane. The beamsplitter 780 folds the see-through path 707 away from the back layer 715 toward the mirror 790 positioned at the focal plane of the objective optics 720. The see-through path 707 is reflected by the mirror 790 back toward the back layer 715. A relay lens 770 is used to create an image of the intermediate image 760 at the SLM2 position of the schematic layout 200 for view modulation. The beamsplitter 730 merges the modulated light in the see-through path 707 with the light in the virtual view path 705 and folds toward the eyepiece 710 for viewing. In this approach, the SLM 740 is a reflection-type SLM and is optically conjugated to the microdisplay 750 through beamsplitter 730. Due to the fact that the intermediate image 760 is optically conjugated to the SLM 740, the positions of the SLM 740 and the mirror 790 are interchangeable.
[0059] In this exemplary layout 700, the reflective surface M1 of the schematic layout 200 is strategically designed as an integrated part of the objective optics 720 as the reflective surface S5; the reflective surface M3 of the schematic layout 200 is strategically designed as an integrated part of the eyepiece 710 as the reflective surface S2; the reflective surface M2 of the schematic layout 200 is positioned at the focal plane of the objective optics 710 as the mirror 790 and folds the see-through path 707 toward the virtual view path 705; The intermediate image 760 is formed at the focal plane of the objective optics 720 for real-view erection. Given that the total number of reflections in the see-through path 707 is 8 (an even number), no roof mirror is required on any reflective surface.
[0060] Figure 8 schematically illustrated an exemplary design 800 based on the exemplary approach depicted in Fig. 3. The design achieved a diagonal FOV of 40 degrees, which is 31.7 degrees in the horizontal direction (X-axis direction) and 25.6 degrees in the vertical direction (Y -axis direction), an exit pupil diameter (EPD) of 8mm (non-vignetted), and an eye clearance of 18mm. The design is based on a 0.8" microdisplay with a 5:4 aspect ratio and a 1280x1024 pixel resolution. The microdisplay has an effective area of 15.36mm and 12.29mm and a pixel size of 12um. The design used a SLM of the same size and resolution as the microdisplay. A polarized cube beamsplitter is used to combine the virtual view path and the see-through path. DOE plates 882 and 884 are used to correct chromatic aberrations. The system is measured as 43mm(X) x 23mm (Y) x 44.5mm (Z). The viewpoint shifts between the entrance pupil 886 and exit pupil 802 are 0.6 mm in Y direction and 67 mm in Z direction, respectively. [0061] An exemplary optical prescription of the eyepiece 810 is listed in the Tables 1-4. All the three optical surfaces in the eyepiece 810 are anamorphic aspheric surface (AAS). The sag of an AAS surface is defined by
Figure imgf000022_0001
where z is the sag of the free-form surface measured along the z-axis of a local x, y, z coordinate system, cx and Cy are the vertex curvature in x and y axes, respectively, Kx and y are the conic constant in x and y axes, respectively, AR, BR, CR and DR are the rotationally symmetric portion of the 4th, 6th, 8th, and 10th order deformation from the conic, AP, BP, CP, and DP are the non-rotationally symmetric components of the 4th, 6th, 8th, and 10th order deformation from the conic.
Table 1: Optical surface prescription of surface 1 of the eyepiece prism, See FIG. 13. Table 2: Optical surface prescription of surface 2 of the eyepiece prism, See FIG. 14 Table 3: Optical surface prescription of surface 3 of the eyepiece prism, See FIG. 15 Table 4: Position and orientation parameters of the eyepiece prism, See FIG. 16
[0062] An exemplary optical prescription of the objective optics 820 is listed in the Tables 5-8. All the three optical surfaces in the objective optics 820 are anamorphic aspheric surface (AAS).
Table 5: Optical surface prescription of surface 4 of the objective prism, See FIG. 17.
Table 6: Optical surface prescription of surface 5 of the objective prism, See FIG. 18.
Table 7: Optical surface prescription of surface 6 of the objective prism, See FIG. 19.
Table 8: Position and orientation parameters of the objective prism, See FIG. 20.
[0063] An exemplary optical prescription of the DOE plate 882 and 884 is listed in the Tables 9. Table 9: Surface parameters for DOE plates 882 and 884, See FIG. 21. [0064] Figure 9 shows the field map of polychromatic modulation transfer functions (MTF) of the virtual display path at cutoff frequency 401ps/mm (line pairs per millimeter) evaluated using 3mm pupil diameter. The 401ps/mm cutoff frequency was determined from the pixel size of the microdisplay. The plot shows that our design has very good performance for majority fields except two upper display corners whose MTF values at cutoff frequency are little less than 15%. Across the entire FOV the distortion of the virtual display path is less than 2.9%, while the distortion of the see-through path is less than 0.5%. The total estimated weight for the optics alone is 33 grams per eye.
[0065] Figure 10 schematically illustrated an exemplary design 1000 based on the exemplary approach depicted in Fig. 3. The design achieved a diagonal FOV of 40 degrees with 35.2 degrees horizontally (X-direction) and 20.2 degrees vertically (Y-direction), an exit pupil diameter (EPD) of 8mm (non-vignetted), and an eye clearance of 18mm. The design is based on a 0.7" microdisplay with a 16:9 aspect ratio and a 1280x720 pixel resolution. The design used a SLM of the same size and resolution as the microdisplay. A wire-grid plate beamsplitter is used to combine the virtual view path and the see-through path. The same freeform prism is used as the eyepiece and the objective optics.
[0066] An exemplary optical prescription of the freeform prism is listed in the Tables 10-15. Two surfaces in the prism are anamorphic aspheric surface (AAS) and one is aspheric surface (ASP). The sag of an ASP surface is defined by
Figure imgf000023_0001
where z is the sag of the surface measured along the z-axis of a local x, y, z coordinate system, c is the vertex curvature, k is the conic constant, A through J are the 4th, 6th, 8th, 10th, 12th, 14th, 16th, 18th, and 20th order deformation coefficients, respectively.
[0067]
Table 10: Optical surface prescription of surface 1 of the freeform prism, See FIG. 22 Table 11: Optical surface prescription of surface 2 of the freeform prism, See FIG. 23.
Table 12: Optical surface prescription of surface 3 of the freeform prism, See FIG. 24.
Table 13: Position and orientation parameters of the freeform prism as the eyepiece, See FIG. 25.
[0068] Figures 11 shows the field map of polychromatic modulation transfer functions (MTF) of the virtual display path at cutoff frequency 401ps/mm (line pairs per millimeter) evaluated using 3mm pupil diameter. The plot shows that our design has very good performance for majority fields.
[0069] Figure 12 depicts a block diagram of an example of an image processing pipeline necessary for the present invention. Firstly, the depth map of the external scene is extracted using proper depth sensing means. Then, the virtual object is compared with the depth map to determine the regions where the occlusion occurs. A mask generation algorithm creates a binary mask image according to the pre-determined occlusion regions. The mask image is then displayed on spatial light modulator to block the light from the occluded region in the intermediate image of the external scene. A virtual image of the virtual object is rendered and displayed on the micro-display. The viewer observes a combined image of the virtual image and the modulated see-through image of the external scene through the display device of the present invention.
[0070] Compared to the prior art, the present invention features a folded image path that permits the invention to be compressed into a compact form, more easily wearable as a head-mounted display. In the prior art (US Patent, 7,639,208 Bl), the optical path is linearly arranged using rotationally symmetric lenses. As a result the prior art occlusion-type displays have a long telescope-like shape, which is unwieldy for wearing on the head. The present invention folds the image path using reflective surfaces into two layers to that the spatial light modulator, microdisplay and beamsplitter, are mounted to the top of the head, rather than linearly in front of the eye.
[0071] The prior art relies on only a reflection type spatial light modulator, while the present invention may use either a reflection or transmission type spatial light modulator. Moreover, the prior art requires a polarized beamsplitter to modulate the external image, while the present invention does not necessitate polarization.
[0072] Since the present invention is arrange in layers, the eyepiece and the objective optics are not necessarily coUinear, as in the case in the prior art. The objective optics is also not necessarily tele-centric.
[0073] In the prior art, due to the optics of the system the view of the world is a mirror reflection of the see-through view. The present invention the folded image path allows a roof mirror to be inserted to maintain parity between the view of the user and the external scene. This makes the present invention more functional from the user's perspective.
[0074] Compared to the prior art, the present invention makes use of freeform optical technology, which allows the system to be made even more compact. The freeform optical surfaces can be designed to reflect light internally multiple times, so that mirrors may not be needed to fold the light path.
[0075] In the present invention, the reflective surfaces for folding the optical paths may be planar mirrors, spherical, aspherical, or freeform surfaces with optical power. A significant aspect of the present invention lies in that some of the reflective surfaces utilize freeform optical technology, which helps to boost the optical performance and compactness. In the present invention, some of the reflective surfaces are strategically designed to be an integral part of the eyepiece or objective optics where the reflective surfaces not only facilitate the folding of the optical path for achieving compact display design but also contribute optical power and correct optical aberrations. For example, in Figure 2, the reflective surfaces M1~M3 were shown as generic mirrors separate from the eyepiece and objective optics. In Figure 3, two of the mirrors (M2 and M3) are freeform surfaces incorporated into the freeform eyepiece and objective prisms as S2 and S5. In Figure 4, 4 reflective freeform surfaces were incorporated into the freeform objective prism and 2 were incorporated into the freeform eyepiece prisms. In figure 5, 1 freeform surface was in the objective prism, 2 freeform surfaces were in the eyepiece, in addition to a roof prism. In Figure 6, 3 freeform surfaces are in the objective and 2 freeform surfaces in the eyepiece. In Figure 7, 2 reflective freeform mirrors are in the objective, 2 freeform mirrors are in the eyepiece, in addition to a mirror 790 and a beamsplitter 780. [0076] Our invention ensures that the see-through view seen through the system is correctly erected (neither inverted nor reverted). Two different optical methods were utilized in our embodiments for achieving this, depending on the number of intermediate images formed in the see-through path and the number of reflections in vol ved in the see-through path. In the case of an odd number of intermediate images, an optical method is provided to invert and/or revert the see-through view in the see-through path. For example, depending on the number of reflections involved in the see-through path, examples of the possible methods include, but not limited to, inserting an additional reflection or reflections, utilizing a roof mirror surface, or inserting an erector lens. In the case of an even number of intermediate images, no image erection element is needed if no parity change is needed. For instance, multiple-reflection freeform prism structure (typical more than 2) may be utilized as eyepiece or objective optics, or both, which allow folding the see-through optical path inside the objective and/or eyepiece prism multiple times and form intermediate imagers) inside the prism to erect the see-through view which eliminates the necessity of using an erection roof reflective surface.
[0077] In Figure 3, only 1 intermediate image is created in the see-through path. This structure utilized a roof prism for 325 to properly create an erected see-through view.
[0078] In Figure 4, a 4-reflection freeform prism was utilized as an objective optics, which created 2 intermediate images (one for SLM 440, and one 460 inside the prism). Additionally, there were total 8 reflections involved in the see-through path, which leads to no parity change. Therefore, an erected view is created. It is worth mention that the structure of the objective and eyepiece may be exchanged for the same results.
[0079] In Figure 5, 1 intermediate image is created in the see-through path for the SLM. This design utilized a roof prism 527 to erect the see-through view.
[0080] In Figure 6, a 3-reflection freeform prism was utilized as an objective optics, which created 2 intermediate images (one for SLM 640, and one 660 inside the prism). Additionally, there were total 6 reflections involved in the see-through path, which leads to no parity change. Therefore, an erected view is created. It is worth mention that the structure of the objective and eyepiece may be exchanged for the same results. [0081] In Figure 7, the objective optics 720 utilized only 2 reflections, the combination of the beamsplitter 780 and the mirror 790 facilitated the creation of 2 intermediate images in the see- through path (one for the SLM 740 and an additional one 760). Additionally, total 8 reflections were involved in the see-through path. Therefore, en erected see-through view was created.
[0082] It is very important for a see-through head mounted display to maintain the parity of the external scene which provides the users a realistic experience as their usual views without a HMD.
[0083] Although there has been shown and described the preferred embodiment of the present invention, it will be readily apparent to those skilled in the art that modifications may be made thereto which do not exceed the scope of the appended claims. Reference numbers recited in the claims are exemplary and for ease of review by the patent office only, and are not limiting in any way. In some embodiments, the figures presented in this patent application are drawn to scale, including the angles, ratios of dimensions, etc. In some embodiments, the figures are
representative only and the claims are not limited by the dimensions of the figures.
[0084] The reference numbers recited in the below claims are solely for ease of examination of this patent application, and are exemplary, and are not intended in any way to limit the scope of the claims to the particular features having the corresponding reference numbers in the drawings.

Claims

WHAT IS CLAIMED:
1. A compact optical see-through head-mounted display (200), capable of combining a see- through path (207) with a virtual view path (205) such that the opaqueness of the see- through path can be modulated and the virtual view occludes parts of the see-through view and vice versa, the display comprising: a. a microdisplay (250) for generating an image to be viewed by a user, the microdisplay having a virtual view path (205) associated therewith; b. a spatial light modulator (240) for modifying the light from an external scene in the real world to block portions of the see-through view that are to be occluded, the spatial light modulator having a see-through path (207) associated therewith; c. an objective optics (220) configured to receive the incoming light from the external scene and to focus the light upon the spatial light modulator (240) ;
d. a beamsplitter (230) configured to merge a virtual image from a microdisplay (250) and a modulated see-through image of an external scene passing from a spatial light modulator, producing a combined image;
e. an eyepiece (210) configured to magnify the combined image;
f. an exit pupil (202) configured to face the eyepiece, the exit pupil whereupon the user observes a combined view of the virtual and see-through views in which the virtual view occludes portions of the see-through view;
g. a plurality of reflective surfaces configured to fold the virtual view path (205) and see-through path (207) into two layers; wherein the first reflective surface (M1) is disposed upon the front layer of the display oriented to reflect light from the external scene, wherein the objective optics (220) is disposed upon the front layer of the display, wherein the second reflective surface (M2) is disposed upon the front layer of the display oriented to reflect light into the spatial light modulator, where the spatial light modulator (240) is disposed at or near an intermediate image plane of the see-through path (207), in optical communication with the objective optics (220) and the eyepiece (210) through the beamsplitter (230) along the see-through path (207), where the microdisplay (250) is disposed at the focal plane of the eyepiece (210) along the virtual view path (205), in optical communication with the eyepiece (210) through the beamsplitter (230), where the beam splitter (230) is disposed such that the see-through path (207) is merged with the virtual view path (205) and the light from both the see-through path and the virtual view path is directed to the eyepiece (210), wherein the eyepiece (210) is disposed upon the back layer of the display, wherein the third reflective surface (M3) is disposed upon the back layer of the display oriented to reflect light from the eyepiece into the exit pupil (202); whereupon the objective optics (220) receives light of the external scene, whereupon the objective optics (220) focus the light of the external scene and forms a see-through image upon the spatial light modulator (240), whereupon the spatial light modulator (240) modifies the see-through image to remove portions of the image that are to be occluded, whereupon the microdisplay (250) projects a virtual image to the beam splitter (230), whereupon the spatial light modulator (240) transmits the modulated see-through image to the beam splitter (230), whereupon the beam splitter (230) merges the two images producing a combined image in which the virtual image occludes portions of the see- through image, whereupon the beam splitter (230) projects the combined image to the eyepiece (210), whereupon the eyepiece projects the combined image to the exit pupil (202), whereupon the user observes the combined image, in which the virtual image occludes portions of the external scene.
2. The display of claim 1 , where the spatial light modulator is a transmission type spatial light modulator, where the spatial light modulator is disposed in front of the beam splitter, whereupon the light from the objective optics passes through the spatial light modulator before reaching the beam splitter, wherein the opaqueness of the spatial light modulator is controlled to block light from portions of the external scene.
3. The display of claim 1, where the spatial light modulator is a reflection type spatial light modulator, where the spatial light modulator is disposed behind the beam splitter, whereupon light from the objective optics passes through the beam splitter and is reflected back from the spatial light modulator to the beam splitter, wherein the reflectivity of the spatial light modulator is controlled to reflect only light from parts of the external scene not to be occluded.
4. The display of claim 1, where an intermediate image is formed at one or more points in the see-through path, where the spatial light modulator is disposed at or near one of the intermediate image planes.
5. The display of claim 1, where one or more of the reflective surfaces (M1~M3) are standalone surfaces with optical power to fold the optical paths and focus the light.
6. The display of claim 1, where one or more of the reflective surfaces (M1~M3) are
freeform surfaces.
7. The display of claim 1 , where the first and/or second reflective surfaces in the front layer are contained within the objective optics.
8. The display of claim 1, where the reflective surface (M3) in the back layer is contained within the eyepiece.
9. The display of claim 1, where the objective optics is a freeform prism formed by a
plurality of reflective and refractive surfaces to image the external scene into the spatial light modulator.
10. The display of claim 1, where the eyepiece is a freeform prism formed by a plurality of reflective and refractive surfaces to magnify the virtual image and the modulated see- through image.
11. The display of claim 9, where the first and/or the second reflective surface (M1, M2) in the front layer is contained within the objective optics.
12. The display of claim 10, where the third reflective surface (M3) in the back layer is contained within the eyepiece.
13. The display of claim 1, where an even number of intermediate images are formed along the see-through path to invert the see-through view so as to maintain parity between the external scene and the see-through view presented to the viewer.
14. The display of claim 1, where one of the reflective surfaces is replaced by a roof mirror in order to revert the see-through view so as to maintain parity between the external scene and the see-through view presented to the viewer.
15. The display of claim 1, where both the eyepiece and the objective optics have identical optical structure.
16. The display of claim 15, where both the eyepiece and the objective optics are freeform prisms of identical shape.
17. The display of claim 1 where the beamsplitter is disposed upon the front layer.
18. The display of claim 1, where one or more diffractive optical element (DOE) plates are placed in the optical path to correct chromatic aberrations.
19. The display of claim 1, or 3, or any of 6~12, or 14, where the objective optics is a one- reflection prism comprising three optical surfaces: refractive surface S4, reflective surface S5 and refractive surface S6, where the eyepiece is a one-reflection prism comprising three optical surfaces: refractive surface S1, reflective surface S2 and refractive surface S3, where the second reflective surface (M2) is contained within the objective optics and the third reflective surface (M3) is contained within the eyepiece, where a roof mirror replaces the first reflective surface ( M1) to invert the see-through view, and a reflection-type spatial light modulator is used to modulate the light from the external scene.
20. The display of claim 19, whereupon the incoming light from external scene reflected by the mirror (325), enters the objective optics (320) through the refractive surface S4, then is reflected by the reflective surface S5 and exits the objective optics (320) through the refractive surface S6 and forms an intermediate image at its focal plane on the spatial light modulator (340), whereupon the spatial light modulator (340) modulates the light in the see-through path to block the light to be occluded, whereupon the spatial light modulator reflects the modulated light into the beam splitter (330), whereupon the light from the microdisplay (350) enters the beam splitter (330), whereupon the beamsplitter (330) merges the modulated light in the see-through path (307) with the light in the virtual view path (305) and folds toward the eyepiece (310) for viewing, whereupon the light from the beamsplitter (330) enters the eyepiece (310) through the refractive surface S3, then is reflected by the reflective surface S2 and exits the eyepiece (310) through the refractive surface S1 and reaches the exit pupil (302), where the viewer's eye is aligned to see a combined view of a virtual view and a modulated see-through view.
21. The display of claim 1, or 3, or any of 6~13, where the objective optics is a four- reflection freeform prism comprising six optical surfaces: refractive surface S4, reflective surfaces S5, S4', S5', and S6 and refractive surface S7, where the eyepiece is a two- reflection prism comprising four optical surfaces: refractive surface S1, reflective surface S2, reflective surface S1 ' and refractive surface S3, where the first reflective surface (M1) and the second reflective surfaces (M2) are contained within the objective optics and the third reflective surface (M3) is contained within the eyepiece, where the objective optics forms an intermediate image (460) inside the objective optics, where an even number of intermediate images are formed along the see-through path to invert the see-through view, where a reflection-type spatial light modulator is used to modulate the light from the external scene.
22. The display of claim 21, whereupon the incoming light from an external scene enters objective optics (420) through the refractive surface S4, then is consecutively reflected by the reflective surfaces S5, S4', S5' and S6, and exits the objective optics (420) through the refractive surface S7, whereupon the incoming light forms an intermediate image at its focal plane on the spatial light modulator (440), whereupon the spatial light modulator modulates the light in the see-through path to block the light to be occluded, whereupon the spatial light modulator reflects the modulated light into the beam splitter (430), whereupon the light from the microdisplay (450) enters the beam splitter (430), whereupon the beamsplitter (430) merges the modulated light in the see-through path (407) with the light in the virtual view path (405) and folds toward the eyepiece (410) for viewing, whereupon the light from the beam splitter enters the eyepiece (410) through the refractive surface S3, then is consecutively reflected by the reflective surfaces S1' and S2, and exits the eyepiece (410) through the refractive surface S1 and reaches the exit pupil (402), where the viewer's eye is aligned to see a combined view of a virtual view and a modulated see-through view.
23. The display of claim 21, where the refractive surface S4 and reflective surface S4' are the same physical surfaces and possess the same set of surface prescriptions.
24. The display of claim 1 or 3 or any of 6~12, orl4, where the objective optics is a one- reflection prism comprising three optical surfaces: refractive surface S4, reflective surface S5 and refractive surface S6, where the eyepiece is a two-reflection prism comprising four optical surfaces: refractive surface S1, reflective surface S2, reflective surface S1' and refractive surface S3, where the first reflective surface (M1) is contained within the objective optics and the third reflective surface (M3) is contained within the eyepiece, where a roof mirror (527) replaces the second reflective surface (M2) to invert the see-through view, where a transmission-type spatial light modulator is used to modulate the light from the external scene.
25. The display of claim 24, whereupon incoming light from an external scene enters the objective optics (520) through the refractive surface S4, then is reflected by the reflective surface S5 and exits the objective optics (520) through the refractive surface S6 and is folded by the mirror (527) toward the back layer (517) and forms an intermediate image at its focal plane on the spatial light modulator (540), whereupon the spatial light modulator (540) modulates the light in the see-through path to block the light to be occluded, whereupon the spatial light modulator transmits the modulated light into the beam splitter (530), whereupon the light from the microdisplay (550) enters the beam splitter (530), whereupon the beamsplitter (530) merges the modulated light in the see- through path (507) with the light in the virtual view path (505) and folds toward the eyepiece (510) for viewing, whereupon the light from the beam splitter enters the eyepiece (510) through the refractive surface S3, then is consecutively reflected by reflective surfaces S1' and S2, and exits the eyepiece (510) through the refractive surface S1 and reaches exit pupil 502, where the viewer's eye is aligned to see a combined view of a virtual view and a modulated see-through view.
26. The system of claim 24, where surface S1 and reflective surface S1' are the same physical surfaces and possess the same set of surface prescriptions.
27. The display of claim 1 or 2 of any of 6~13, where the objective optics is a three-reflection prism comprising five optical freeform surfaces: refractive surface S4, reflective surface S5, S4' and S6 and refractive surface S7, where the eyepiece is a two-reflection prism comprising four optical surfaces: refractive surface S1, reflective surface S2, reflective surface S1' and refractive surface S3, where the first reflective surface (M1) and the second reflective surface (M2) are contained within the objective optics and the third reflective surface (M3) is contained within the eyepiece, where the objective optics forms an intermediate image (660) inside the objective optics, where an even number of intermediate images are formed along the see-through path to invert the see-through view, where a transmission-type spatial light modulator is used to modulate the light from the external scene.
28. The display of claim 27, whereupon the incoming light from an external scene enters objective optics (620) through the refractive surface S4, is consecutively reflected by reflective surfaces S5, S4' and S6, and exits the objective optics (620) through the refractive surface S7 , whereupon the incoming light forms an intermediate image at its focal plane on the spatial light modulator (640), whereupon the spatial light modulator modulates the light in the see-through path to block the light to be occluded, whereupon the spatial light modulator transmits the modulated light into the beam splitter (630), whereupon the light from the microdisplay (650) enters the beam splitter (630), whereupon the beamsplitter (630) merges the modulated light in the see-through path (607) with the light in the virtual view path (605) and folds toward the eyepiece (610) for viewing, whereupon the light from the beam splitter enters the eyepiece (610) through the refractive surface S3, then is consecutively reflected by the reflective surfaces S1' and S2, and exits the eyepiece (610) through the refractive surface S1 and reaches the exit pupil (602), where the viewer's eye is aligned to see a combined view of a virtual view and a modulated see-through view.
29. There system of claim 27, where the refractive surface S1 and the reflective surface S1' may the same physical surfaces and possess the same set of surface prescriptions.
30. There system of claim 27, where the refractive surface S4 and the reflective surface S4' are the same physical surfaces and possess the same set of surface prescriptions.
31. The display of claim 1 or 3 or any of 6~13, where the objective optics is a two-reflection prism comprising four optical freeform surfaces: refractive surface S4, reflective surface S5, reflective surface S4' and refractive surface S6, where the eyepiece is a two- reflection prism comprising four optical surfaces: refractive surface S1, reflective surface S2, reflective surface S1' and refractive surface S3, where the first reflective surface (M1) is contained within the objective optics and the third reflective surface (M3) is contained within the eyepiece, where the second reflective surface (M1) as the mirror (790) along with a first beamsplitter (780) and a relay lens (770) is configured to fold the see-through path and create a secondary intermediate image, where an even number of intermediate images are formed along the see-through path to invert the see-through view, where a reflection-type spatial light modulator is used to modulate the light from the external scene.
32. The display of claim 31, whereupon the incoming light from an external scene enters the objective optics (720) through refractive surface S4, consecutively reflected by the reflective surfaces S5, S4', and exits the objective optics (720) through the refractive surface S6, whereupon the incoming light is reflected by the first beamsplitter (780) onto the mirror (790), where it forms an intermediate image, whereupon the mirror (790) reflects the light from the front layer onto the relay lens (770), whereupon the relay lens (770) forms another intermediate image upon the spatial light modulator (740), whereupon the spatial light modulator modulates the light in the see-through path to block the light to be occluded, whereupon the spatial light modulator reflects the modulated light into the second beam splitter (730), whereupon the light from the microdisplay (750) enters the second beam splitter (730), whereupon the second beam splitter (730) merges the modulated light in the see-through path (707) with the light in the virtual view path (705) and folds toward the eyepiece (710) for viewing, whereupon the light from the beam splitter enters the eyepiece (710) through refractive surface S3, then is consecutively reflected by the reflective surfaces S1' and S2, and exits the eyepiece (710) through the refractive surface S1 and reaches exit pupil (702), where the viewer's eye is aligned to see a combined view of a virtual view and a modulated see- through view.
33. The display of claim 31, where the positions of the mirror (790) and the spatial light modulator (740) are interchangeable.
34. The display according to any one of the claims 19~32, where one or more of the optical surfaces of the objective optics is an aspherical surface with or without rotational symmetry.
35. The display according to any one of the claims 19~32, where one or more of the optical surfaces of the eyepiece prism is an aspherical surface with or without rotational symmetry.
36. The display of claim 1, where the beamsplitter (130) is in form of a cube or a plate and could be a non-polarized beamsplitter or a polarized beamsplitter.
37. The display according to any one of the preceding claims, where said compact optical see-through head mounted display is one of a monocular and a binocular.
38. A compact optical see-through head-mounted display (300), capable of combining a see- through path (307) with a virtual view path (305) such that the opaqueness of the see- through path can be modulated and the virtual view occludes parts of the see-through view and vice versa, the display comprising: a. a microdisplay (3S0) for generating an image to be viewed by a user, the microdisplay having a virtual view path (305) associated therewith;
b. a reflection-type spatial light modulator (340) for modifying the light from an external scene in the real world to block portions of the see-through view that are to be occluded , the spatial light modulator having a see-through path (307) associated therewith;
c. an objective optics (320), facing an external scene, configured to receive the incoming light from the external scene and to focus the light upon the spatial light modulator (340) , where the objective optics is a one-reflection freeform prism comprising three optical freeform surfaces: refractive surface S4, reflective surface S5 and ref active surface S6;
d. a beamsplitter (330) configured to merge a digitally generated virtual image from a microdisplay (350) and a modulated see-through image of an external scene passing from a spatial light modulator, producing a combined image;
e. an eyepiece (310) configured to magnify the combined image, where the eyepiece is a one-reflection freeform prism comprising three optical freeform surfaces: refractive surface S1, reflective surface S2 and refractive surface S3;
f. an exit pupil (302) configured to face the eyepiece, the exit pupil whereupon the user observes the combined view of the virtual and see-through views in which the virtual view occludes portions of the see-through view;
g. a roof mirror (325) configured to reflect light from the external scene into the objective optics, where the roof mirror adds an additional reflection to revert the see-through view so as to maintain the parity between the external scene and the see-through view presented to the viewer; wherein the mirror (325) is disposed upon the front layer (315) of the display, wherein the objective optics (320) is disposed upon the front layer (315) of the display, where the spatial light modulator (340) is disposed on the back layer (317) of the display, at or near an intermediate image plane of the see-through path, facing a side of the beam splitter (330), where the microdisplay (350) is disposed on the back layer (317) of the display, facing a different side of the beam splitter (330), where the beam splitter (330) is disposed such that the see-through path (307) is merged with the virtual view path (305) and the light from the merged path is directed to the eyepiece (310), wherein the eyepiece (210) is disposed upon the back layer (317) of the display, whereupon the incoming light from an external scene reflected by the mirror (325), enters the objective optics (320) through the refractive surface S4, then is reflected by the reflective surface S5 and exits objective prism (320) through the refractive surface S6 and forms an intermediate image at its focal plane on the spatial light modulator (340), whereupon the spatial light modulator (340) modulates the light in the see-through path to occlude portions of the see-through view, whereupon the spatial light modulator reflects the modulated light into the beam splitter (330), whereupon the light from the microdisplay (350) enters the beam splitter (330), whereupon the beamsplitter (330) merges the modulated light in the see-through path (307) with the light in the virtual view path (305) and folds toward the eyepiece (310) for viewing, whereupon the light from the beam splitter enters the eyepiece (310) through the refractive surface S3, then is reflected by the reflective surface S2 and exits the eyepiece (310) through the refractive surface S1 and reaches the exit pupil (302), where the viewer's eye is aligned to see a combined view of a virtual view and a modulated see-through view.
39. A compact optical see-through head-mounted display (400), capable of combining a see- through path (407) with a virtual view path (405) such that the opaqueness of the see- through path can be modulated and the virtual view occludes parts of the see-through view and vice versa, the display comprising: a. a microdisplay (450) for generating an image to be viewed by a user, the microdisplay having a virtual view path (405) associated therewith;
b. a reflection-type spatial light modulator (440) for modifying the light from an external scene to block portions of the see-through view that are to be occluded , the spatial light modulator having a see-through path (407) associated therewith; c. an objective optics (420), facing an external scene, configured to receive the incoming light from the external scene and to focus the light upon the spatial light modulator (440) , where the objective optics (420) is a four-reflection freeform prism, comprising six optical freeform surfaces: refractive surface S4, reflective surfaces S5, S4', S5', and S6 and refractive surface S7, where the objective optics is configured to form an intermediate image inside the objective optics;
d. a beamsplitter (430) configured to merge a digitally generated virtual image from a microdisplay (450) and a modulated see-through image of an external scene passing from a spatial light modulator (440), producing a combined image;
e. an eyepiece (410) configured to magnify the combined image, where the eyepiece (410) is a two-reflection freeform prism, comprising four optical freeform surfaces, refractive surface S1, reflective surface S2, reflective surface S1' and refractive surface S3;
f. an exit pupil (402) configured to face the eyepiece, the exit pupil whereupon the user observes the combined view of the virtual and see-through views in which the virtual view occludes portions of the see-through view; wherein the objective optics (420) is disposed upon the front layer (415) of the display, where the spatial light modulator (440) is disposed on the back layer (417) of the display at or near an intermediate image plane of the see-through path, facing a side of the beam splitter (430), where the microdisplay (450) is disposed on the back layer (415) of the display, facing a different side of the beam splitter (430), where the beam splitter (430) is disposed such that the see-through path (407) is merged with the virtual view path (405) and the light from the merged path is directed to the eyepiece (410), wherein the eyepiece (410) is disposed upon the back layer (417) of the display, whereupon the incoming light from the external scene enters the objective optics (420) through the refractive surface S4, then is consecutively reflected by the reflective surfaces S5, S4', S5' and S6, and exits the objective prism (420) through the refractive surface S7, whereupon the incoming light forms an intermediate image at its focal plane on the spatial light modulator (440), whereupon the spatial light modulator modulates the light in the see-through path to occlude portions of the see-through view, whereupon the spatial light modulator reflects the modulated light into the beam splitter (430), whereupon the light from the microdisplay (450) enters the beam splitter (430), whereupon the beamsplitter (430) merges the modulated light in the see-through path (407) with the light in the virtual view path (405) and folds toward the eyepiece (410) for viewing, whereupon the light from the beam splitter enters the eyepiece (410) through the refractive surface S3, then is consecutively reflected by the reflective surfaces S1' and S2, and exits the eyepiece (410) through the refractive surface S1 and reaches the exit pupil (402), where the viewer's eye is aligned to see a combined view of see a combined view of a virtual view and a modulated see-through view.
40. The system of claim 39, where the refractive surface S4 and the reflective surface S4' are the same physical surfaces and possess the same set of surface prescriptions.
41. A compact optical see-through head-mounted display (500), capable of combining a see- through path (507) with a virtual view path (505) such that the opaqueness of the see- through path can be modulated and the virtual view occludes parts of the see-through view and vice versa, the display comprising: a. a microdisplay (550) for generating an image to be viewed by a user, the microdisplay having a virtual view path (505) associated therewith;
b. a transmission-type spatial light modulator (540) for modifying the light from an external scene to block portions of the see-through view that are to be occluded , the spatial light modulator having a see-through path (507) associated therewith; c. an objective optics (520), facing an external scene, configured to receive the incoming light from the external scene and to focus the light upon the spatial light modulator (540), where the objective optics is a one-reflection freeform prism comprising three optical freeform surfaces: refractive surface S4, reflective surface S5 and refractive surface S6;
d. a beamsplitter (530) configured to merge a digitally generated virtual image from a microdisplay (550) and a modulated see-through image of an external scene passing from a spatial light modulator, producing a combined image; e. an eyepiece (510) configured to magnify the combined image, where the eyepiece is a two-reflection freeform prism comprising three optical freeform surfaces: refractive surface S1, reflective surface S2, reflective surface S1' and refractive surface S3;
f. an exit pupil (502) configured to face the eyepiece, the exit pupil whereupon the user observes the combined view of the virtual and see-through views in which the virtual view occludes portions of the see-through view;
g. a roof mirror (527) configured to reflect light from the objective optics into the spatial light modulator, where the roof mirror adds an additional reflection to the see-through path to revert the see-through view so as to maintain parity between the external scene and the see-through view presented to the viewer; wherein the objective optics (520) is disposed upon a front layer (515) of the display, wherein the mirror (525) is disposed upon a front layer (515) of the display, where the spatial light modulator (540) is disposed on the back layer (517) of the display, at or near an intermediate image plane of the see-through path, between the mirror (527) and the beam splitter (530), where the microdisplay (550) is disposed on the back layer of the display, facing a different side of the beam splitter (530), where the beam splitter (530) is disposed such that the see-through path (507) is merged with the virtual view path (505) and the light from the merged path is directed to the eyepiece (510), wherein the eyepiece (510) is disposed upon the back layer of the display, whereupon incoming light from the external scene enters the objective optics (520) through the refractive surface S4, then is reflected by the reflective surface S5 and exits the objective optics (520) through the refractive surface S6 and is folded by the mirror (527) toward the back layer (517) and forms an intermediate image at its focal plane on the spatial light modulator (540), whereupon the spatial light modulator (540) modulates the light in the see-through path to occlude portions of the see-through view, whereupon the spatial light modulator transmits the modulated light into the beam splitter (530), whereupon the light from the microdisplay (550) enters the beam splitter (530), whereupon the beamsplitter (530) merges the modulated light in the see-through path (507) with the light in the virtual view path (505) and folds toward the eyepiece (310) for viewing, whereupon the light from the beam splitter enters the eyepiece (510) through the refractive surface S3, then is consecutively reflected by the reflective surfaces S1' and S2, and exits the eyepiece (510) through the refractive surface S1 and reaches exit pupil 502, where the viewer's eye is aligned to see a combined view of a virtual view and a modulated see-through view.
42. The system of claim 41, where the refractive surface S1 and the reflective surface S1' are the same physical surfaces and possess the same set of surface prescriptions.
43. A compact optical see-through head-mounted display (600), capable of combining a see- through path (607) with a virtual view path (605) such that the opaqueness of the see- through path can be modulated and the virtual view occludes parts of the see-through view and vice versa, the display comprising: a. a microdisplay (650) for generating an image to be viewed by a user, the microdisplay having a virtual view path (605) associated therewith;
b. a transmission-type spatial light modulator (640) for modifying the light from an external scene to block portions of the see-through view that are to be occluded , the spatial light modulator having a see-through path (607) associated therewith; c. an objective optics (620), facing an external scene, configured to receive the incoming light from the external scene and to focus the light upon the spatial light modulator (640) , where the objective optics (620) is a three-reflection freeform prism, comprising five optical freeform surfaces: refractive surface S4, reflective surface S5, S4' and S6 and refractive surface S7, where the objective optics is configured to form an intermediate image inside the objective optics; d. a beamsplitter (630) configured to merge a digitally generated virtual image from a microdisplay (650) and a modulated see-through image of an external scene passing from a spatial light modulator (640), producing a combined image;
e. an eyepiece (610) configured to magnify the combined image, where the eyepiece (610) is a two-reflection freeform prism, comprising four optical freeform surfaces: refractive surface S1, reflective surface S2, reflective surface S1' and refractive surface S3; f. an exit pupil (602) configured to face the eyepiece, the exit pupil whereupon the user observes the combined view of the virtual and see-through views in which the virtual view occludes portions of the see-through view; wherein the objective optics (620) is disposed upon a front layer (615) of the display, where the spatial light modulator (640) is disposed on the back layer (617) of the display at or near an intermediate image plane of the see-through path, facing a side of the beam splitter (630), where the microdisplay (650) is disposed on the back layer of the display, facing a different side of the beam splitter (630), where the beam splitter (630) is disposed such that the see-through path (607) is merged with the virtual view path (605) and the light from the merged path is directed to the eyepiece (610), wherein the eyepiece (610) is disposed upon the back layer of the display, whereupon the incoming light from the external scene enters the objective optics (620) through the refractive surface S4, is consecutively reflected by the reflective surfaces S5, S4' and S6, and exits the objective optics (620) through the refractive surface S7 , whereupon the incoming light forms an intermediate image at its focal plane on the spatial light modulator (640), whereupon the spatial light modulator modulates the light in the see-through path to occlude portions of the see-through view, whereupon the spatial light modulator transmits the modulated light into the beam splitter (630), whereupon the light from the microdisplay (650) enters the beam splitter (630), whereupon the beamsplitter (630) merges the modulated light in the see-through path (607) with the light in the virtual view path (605) and folds toward the eyepiece (610) for viewing, whereupon the light from the beam splitter enters the eyepiece (610) through the refractive surface S3, then is consecutively reflected by the reflective surfaces S1' and S2, and exits the eyepiece (610) through the refractive surface S1 and reaches the exit pupil (602), where the viewer's eye is aligned to see a combined view of a virtual view and a modulated see-through view.
44. There system of claim 43, where the refractive surface S1 and the reflective surface S1' may the same physical surfaces and possess the same set of surface prescriptions.
45. There system of claim 43, where the refractive surface S4 and the reflective surface S4' are the same physical surfaces and possess the same set of surface prescriptions.
46. A compact optical see-through head-mounted display (700), capable of combining a see- through path (707) with a virtual view path (705) such that the opaqueness of the see- through path can be modulated and the virtual view occludes parts of the see-through view and vice versa, the display comprising: a. a microdisplay (750) for generating an image to be viewed by a user, the microdisplay having a virtual view path (705) associated therewith;
b. a reflection-type spatial light modulator (740) for modifying the light from an external scene to block portions of the see-through view that are to be occluded , the spatial light modulator having a see-through path (707) associated therewith; c. an objective optics (720), facing an external scene, configured to receive the incoming light from the external scene and to focus the light upon the spatial light modulator (740) , where the objective optics (720) is a two-reflection freeform prism, comprising four optical freeform surfaces: refractive surface S4, reflective surface S5, S4' and refractive surface S6;
d. a first beamsplitter (780) configured to reflect the see-through path onto a mirror (790);
e. a relay lens (770) configured to generate another intermediate image upon the spatial light modulator (740)
f. a second beamsplitter (730) configured to merge a virtual image from a microdisplay (750) and a modulated see-through image of an external scene passing from a spatial light modulator (740), producing a combined image;
g. an eyepiece (710) configured to magnify the combined image, where the eyepiece (710) is a two-reflection freeform prism, comprising four optical freeform surfaces: refractive surface S1, reflective surface S2, reflective surface S1' and refractive surface S3;
h. an exit pupil (702) configured to face the eyepiece, the exit pupil whereupon the user observes the combined view of the virtual and see-through views in which the virtual view occludes portions of the see-through view; i. a mirror (790) to fold the see-through path; wherein the objective optics (720) is disposed upon the front layer (715) of the display, where the first beam splitter (780) is disposed upon the front layer of the display, wherein the mirror (790) is disposed upon the front layer of the display at the focal plane of the objective optics (720), facing the spatial light modulator, where the spatial light modulator (740) is disposed on the back layer (717) of the display, facing the second beam splitter (730), where the relay is disposed between the first and the second beamsplitters, where the microdisplay (750) is disposed on the back layer of the display, facing the second beam splitter (730), where the second beam splitter (730) is disposed such that the direction of light transmission from the beam splitter is facing the eyepiece (710), wherein the eyepiece (710) is disposed upon the back layer of the display, whereupon the incoming light from the external scene enters the objective prism (720) through the refractive surface S4, consecutively reflected by the reflective surfaces S5, S4', and exits objective prism (720) through the refractive surface S6, whereupon the incoming light is reflected by the first beamsplitter (780) onto the mirror (790), where it forms an intermediate image, whereupon the mirror reflects the light from the front layer onto the relay lens (770), whereupon the relay lens (770) forms another intermediate image upon the spatial light modulator (740), whereupon the spatial light modulator modulates the light in the see-through path to remove the light to be occluded, whereupon the spatial light modulator reflects the modulated light into the second beam splitter (730), whereupon the light from the microdisplay (750) enters the second beam splitter (730), whereupon the second beam splitter (730) merges the modulated light in the see-through path (707) with the light in the virtual view path (705) and folds toward the eyepiece (710) for viewing, whereupon the light from the beam splitter enters the eyepiece (710) through the refractive surface S3, then is consecutively reflected by the reflective surfaces S1' and S2, and exits the eyepiece (710) through the refractive surface S1 and reaches the exit pupil (702), where the viewer's eye is aligned to see a combined view of a virtual view and a modulated see-through view.
PCT/US2013/035486 2012-04-05 2013-04-05 Apparatus for optical see-through head mounted display with mutual occlusion and opaqueness control capability WO2014011266A2 (en)

Priority Applications (21)

Application Number Priority Date Filing Date Title
AU2013289157A AU2013289157B2 (en) 2012-04-05 2013-04-05 Apparatus for optical see-through head mounted display with mutual occlusion and opaqueness control capability
KR1020207034778A KR102345444B1 (en) 2012-04-05 2013-04-05 Apparatus for optical see-through head mounted dispaly with mutual occlusion and opaqueness control capability
CN201380029550.XA CN104937475B (en) 2012-04-05 2013-04-05 With the equipment for optical perspective head-mounted display mutually blocked with opacity control ability
IL308962A IL308962A (en) 2012-04-05 2013-04-05 Apparatus for optical see-through head mounted display with mutual occlusion and opaqueness control capability
KR1020187009706A KR102129330B1 (en) 2012-04-05 2013-04-05 Apparatus for optical see-through head mounted dispaly with mutual occlusion and opaqueness control capability
IL300033A IL300033B1 (en) 2012-04-05 2013-04-05 Apparatus for optical see-through head mounted display with mutual occlusion and opaqueness control capability
NZ700898A NZ700898A (en) 2012-04-05 2013-04-05 Apparatus for optical see-through head mounted display with mutual occlusion and opaqueness control capability
KR1020147031031A KR102188748B1 (en) 2012-04-05 2013-04-05 Apparatus for optical see-through head mounted dispaly with mutual occlusion and opaqueness control capability
JP2015504750A JP6126682B2 (en) 2012-04-05 2013-04-05 Device for optical see-through head mounted display with mutual shielding and opacity control capability
EP13817261.4A EP2834699B1 (en) 2012-04-05 2013-04-05 Apparatus for optical see-through head mounted display with mutual occlusion and opaqueness control capability
CA2874576A CA2874576C (en) 2012-04-05 2013-04-05 Apparatus for optical see-through head mounted display with mutual occlusion and opaqueness control capability
EP20206176.8A EP3796071B1 (en) 2012-04-05 2013-04-05 Apparatus for optical see-through head mounted display with mutual occlusion and opaqueness control capability
BR112014024945-8A BR112014024945A2 (en) 2012-04-05 2013-04-05 transparent head-mounted optical display device with mutual occlusion and opacity control capability
KR1020187009709A KR102099156B1 (en) 2012-04-05 2013-04-05 Apparatus for optical see-through head mounted dispaly with mutual occlusion and opaqueness control capability
EP24154095.4A EP4339690A2 (en) 2012-04-05 2013-04-05 Apparatus for optical see-through head mounted display with mutual occlusion and opaqueness control capability
KR1020187009715A KR102124350B1 (en) 2012-04-05 2013-04-05 Apparatus for optical see-through head mounted dispaly with mutual occlusion and opaqueness control capability
AU2017201669A AU2017201669B2 (en) 2012-04-05 2017-03-10 Apparatus for optical see-through head mounted display with mutual occlusion and opaqueness control capability
IL261165A IL261165B (en) 2012-04-05 2018-08-15 Apparatus for optical see-through head mounted display with mutual occlusion and opaqueness control capability
IL275662A IL275662B (en) 2012-04-05 2020-06-25 Apparatus for optical see-through head mounted display with mutual occlusion and opaqueness control capability
IL284204A IL284204B (en) 2012-04-05 2021-06-20 Apparatus for optical see-through head mounted display with mutual occlusion and opaqueness control capability
IL292007A IL292007B2 (en) 2012-04-05 2022-04-06 Apparatus for optical see-through head mounted display with mutual occlusion and opaqueness control capability

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201261620574P 2012-04-05 2012-04-05
US201261620581P 2012-04-05 2012-04-05
US61/620,581 2012-04-05
US61/620,574 2012-04-05

Publications (2)

Publication Number Publication Date
WO2014011266A2 true WO2014011266A2 (en) 2014-01-16
WO2014011266A3 WO2014011266A3 (en) 2015-04-16

Family

ID=49301051

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2013/035293 WO2013152205A1 (en) 2012-04-05 2013-04-04 Wide-field of view (fov) imaging devices with active foveation capability
PCT/US2013/035486 WO2014011266A2 (en) 2012-04-05 2013-04-05 Apparatus for optical see-through head mounted display with mutual occlusion and opaqueness control capability

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/US2013/035293 WO2013152205A1 (en) 2012-04-05 2013-04-04 Wide-field of view (fov) imaging devices with active foveation capability

Country Status (12)

Country Link
US (13) US9851563B2 (en)
EP (5) EP2841991B1 (en)
JP (9) JP6176747B2 (en)
KR (11) KR102095330B1 (en)
CN (5) CN104541201B (en)
AU (4) AU2013243380B2 (en)
BR (2) BR112014024941A2 (en)
CA (4) CA2869781C (en)
IL (6) IL308962A (en)
NZ (6) NZ725322A (en)
RU (2) RU2015156050A (en)
WO (2) WO2013152205A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105988763A (en) * 2015-02-15 2016-10-05 联想(北京)有限公司 Information processing method and apparatus
US9858721B2 (en) 2013-01-15 2018-01-02 The University Of North Carolina At Chapel Hill Methods, systems, and computer readable media for generating an augmented scene display
US9922667B2 (en) 2014-04-17 2018-03-20 Microsoft Technology Licensing, Llc Conversation, presence and context detection for hologram suppression
US9983412B1 (en) 2017-02-02 2018-05-29 The University Of North Carolina At Chapel Hill Wide field of view augmented reality see through head mountable display with distance accommodation
US10274731B2 (en) 2013-12-19 2019-04-30 The University Of North Carolina At Chapel Hill Optical see-through near-eye display using point light source backlight
US10529359B2 (en) 2014-04-17 2020-01-07 Microsoft Technology Licensing, Llc Conversation detection

Families Citing this family (456)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0522968D0 (en) 2005-11-11 2005-12-21 Popovich Milan M Holographic illumination device
GB0718706D0 (en) 2007-09-25 2007-11-07 Creative Physics Ltd Method and apparatus for reducing laser speckle
US9158116B1 (en) 2014-04-25 2015-10-13 Osterhout Group, Inc. Temple and ear horn assembly for headworn computer
US9715112B2 (en) 2014-01-21 2017-07-25 Osterhout Group, Inc. Suppression of stray light in head worn computing
US9366867B2 (en) 2014-07-08 2016-06-14 Osterhout Group, Inc. Optical systems for see-through displays
US9965681B2 (en) 2008-12-16 2018-05-08 Osterhout Group, Inc. Eye imaging in head worn computing
US9298007B2 (en) 2014-01-21 2016-03-29 Osterhout Group, Inc. Eye imaging in head worn computing
US20150277120A1 (en) 2014-01-21 2015-10-01 Osterhout Group, Inc. Optical configurations for head worn computing
US20150205111A1 (en) 2014-01-21 2015-07-23 Osterhout Group, Inc. Optical configurations for head worn computing
US9400390B2 (en) 2014-01-24 2016-07-26 Osterhout Group, Inc. Peripheral lighting for head worn computing
US9952664B2 (en) 2014-01-21 2018-04-24 Osterhout Group, Inc. Eye imaging in head worn computing
US9229233B2 (en) 2014-02-11 2016-01-05 Osterhout Group, Inc. Micro Doppler presentations in head worn computing
US11726332B2 (en) 2009-04-27 2023-08-15 Digilens Inc. Diffractive projection apparatus
US9335604B2 (en) 2013-12-11 2016-05-10 Milan Momcilo Popovich Holographic waveguide display
WO2012136970A1 (en) 2011-04-07 2012-10-11 Milan Momcilo Popovich Laser despeckler based on angular diversity
EP2748670B1 (en) 2011-08-24 2015-11-18 Rockwell Collins, Inc. Wearable data display
WO2016020630A2 (en) 2014-08-08 2016-02-11 Milan Momcilo Popovich Waveguide laser illuminator incorporating a despeckler
US10670876B2 (en) 2011-08-24 2020-06-02 Digilens Inc. Waveguide laser illuminator incorporating a despeckler
WO2013102759A2 (en) 2012-01-06 2013-07-11 Milan Momcilo Popovich Contact image sensor using switchable bragg gratings
KR102095330B1 (en) * 2012-04-05 2020-03-31 매직 립, 인코포레이티드 Wide-field of view (fov) imaging devices with active foveation capability
WO2013163347A1 (en) 2012-04-25 2013-10-31 Rockwell Collins, Inc. Holographic wide angle display
WO2013167864A1 (en) 2012-05-11 2013-11-14 Milan Momcilo Popovich Apparatus for eye tracking
US9933684B2 (en) 2012-11-16 2018-04-03 Rockwell Collins, Inc. Transparent waveguide display providing upper and lower fields of view having a specific light output aperture configuration
WO2014188149A1 (en) 2013-05-20 2014-11-27 Milan Momcilo Popovich Holographic waveguide eye tracker
US9625723B2 (en) * 2013-06-25 2017-04-18 Microsoft Technology Licensing, Llc Eye-tracking system using a freeform prism
US10228561B2 (en) * 2013-06-25 2019-03-12 Microsoft Technology Licensing, Llc Eye-tracking system using a freeform prism and gaze-detection light
US9727772B2 (en) 2013-07-31 2017-08-08 Digilens, Inc. Method and apparatus for contact image sensing
US9366868B2 (en) 2014-09-26 2016-06-14 Osterhout Group, Inc. See-through computer display systems
US10649220B2 (en) 2014-06-09 2020-05-12 Mentor Acquisition One, Llc Content presentation in head worn computing
US9746686B2 (en) 2014-05-19 2017-08-29 Osterhout Group, Inc. Content position calibration in head worn computing
US10254856B2 (en) 2014-01-17 2019-04-09 Osterhout Group, Inc. External user interface for head worn computing
US10684687B2 (en) 2014-12-03 2020-06-16 Mentor Acquisition One, Llc See-through computer display systems
US11227294B2 (en) 2014-04-03 2022-01-18 Mentor Acquisition One, Llc Sight information collection in head worn computing
US9448409B2 (en) 2014-11-26 2016-09-20 Osterhout Group, Inc. See-through computer display systems
US9810906B2 (en) 2014-06-17 2017-11-07 Osterhout Group, Inc. External user interface for head worn computing
US20150228119A1 (en) 2014-02-11 2015-08-13 Osterhout Group, Inc. Spatial location presentation in head worn computing
US9594246B2 (en) 2014-01-21 2017-03-14 Osterhout Group, Inc. See-through computer display systems
US9841599B2 (en) 2014-06-05 2017-12-12 Osterhout Group, Inc. Optical configurations for head-worn see-through displays
US11103122B2 (en) 2014-07-15 2021-08-31 Mentor Acquisition One, Llc Content presentation in head worn computing
US9299194B2 (en) 2014-02-14 2016-03-29 Osterhout Group, Inc. Secure sharing in head worn computing
US9575321B2 (en) 2014-06-09 2017-02-21 Osterhout Group, Inc. Content presentation in head worn computing
US20160019715A1 (en) 2014-07-15 2016-01-21 Osterhout Group, Inc. Content presentation in head worn computing
US9939934B2 (en) 2014-01-17 2018-04-10 Osterhout Group, Inc. External user interface for head worn computing
US10191279B2 (en) 2014-03-17 2019-01-29 Osterhout Group, Inc. Eye imaging in head worn computing
US9529195B2 (en) 2014-01-21 2016-12-27 Osterhout Group, Inc. See-through computer display systems
US20150277118A1 (en) 2014-03-28 2015-10-01 Osterhout Group, Inc. Sensor dependent content position in head worn computing
US9671613B2 (en) 2014-09-26 2017-06-06 Osterhout Group, Inc. See-through computer display systems
US9829707B2 (en) 2014-08-12 2017-11-28 Osterhout Group, Inc. Measuring content brightness in head worn computing
US11737666B2 (en) 2014-01-21 2023-08-29 Mentor Acquisition One, Llc Eye imaging in head worn computing
US11487110B2 (en) 2014-01-21 2022-11-01 Mentor Acquisition One, Llc Eye imaging in head worn computing
US9836122B2 (en) 2014-01-21 2017-12-05 Osterhout Group, Inc. Eye glint imaging in see-through computer display systems
US9494800B2 (en) 2014-01-21 2016-11-15 Osterhout Group, Inc. See-through computer display systems
US20150205135A1 (en) 2014-01-21 2015-07-23 Osterhout Group, Inc. See-through computer display systems
US11669163B2 (en) 2014-01-21 2023-06-06 Mentor Acquisition One, Llc Eye glint imaging in see-through computer display systems
US9651784B2 (en) 2014-01-21 2017-05-16 Osterhout Group, Inc. See-through computer display systems
US9766463B2 (en) 2014-01-21 2017-09-19 Osterhout Group, Inc. See-through computer display systems
US9532715B2 (en) 2014-01-21 2017-01-03 Osterhout Group, Inc. Eye imaging in head worn computing
US9740280B2 (en) 2014-01-21 2017-08-22 Osterhout Group, Inc. Eye imaging in head worn computing
US9310610B2 (en) 2014-01-21 2016-04-12 Osterhout Group, Inc. See-through computer display systems
US9523856B2 (en) 2014-01-21 2016-12-20 Osterhout Group, Inc. See-through computer display systems
US11892644B2 (en) 2014-01-21 2024-02-06 Mentor Acquisition One, Llc See-through computer display systems
US9753288B2 (en) 2014-01-21 2017-09-05 Osterhout Group, Inc. See-through computer display systems
US9846308B2 (en) 2014-01-24 2017-12-19 Osterhout Group, Inc. Haptic systems for head-worn computers
US20150241963A1 (en) 2014-02-11 2015-08-27 Osterhout Group, Inc. Eye imaging in head worn computing
US9401540B2 (en) 2014-02-11 2016-07-26 Osterhout Group, Inc. Spatial location presentation in head worn computing
US9852545B2 (en) 2014-02-11 2017-12-26 Osterhout Group, Inc. Spatial location presentation in head worn computing
CN103901615B (en) * 2014-03-14 2016-05-25 北京理工大学 Little recessed imaging optical system
US11138793B2 (en) 2014-03-14 2021-10-05 Magic Leap, Inc. Multi-depth plane display system with reduced switching between depth planes
US10430985B2 (en) 2014-03-14 2019-10-01 Magic Leap, Inc. Augmented reality systems and methods utilizing reflections
US20160187651A1 (en) 2014-03-28 2016-06-30 Osterhout Group, Inc. Safety for a vehicle operator with an hmd
US9672210B2 (en) 2014-04-25 2017-06-06 Osterhout Group, Inc. Language translation with head-worn computing
US9651787B2 (en) 2014-04-25 2017-05-16 Osterhout Group, Inc. Speaker assembly for headworn computer
US10853589B2 (en) 2014-04-25 2020-12-01 Mentor Acquisition One, Llc Language translation with head-worn computing
US9423842B2 (en) 2014-09-18 2016-08-23 Osterhout Group, Inc. Thermal management for head-worn computer
US20150309534A1 (en) 2014-04-25 2015-10-29 Osterhout Group, Inc. Ear horn assembly for headworn computer
US20160137312A1 (en) 2014-05-06 2016-05-19 Osterhout Group, Inc. Unmanned aerial vehicle launch system
CN104007559B (en) * 2014-05-08 2017-05-17 北京理工大学 Foveated imaging system with partial super-resolution scanning function
CN104102018B (en) * 2014-05-08 2016-10-05 北京理工大学 Double small recessed local high resolution imaging system
US10663740B2 (en) 2014-06-09 2020-05-26 Mentor Acquisition One, Llc Content presentation in head worn computing
WO2016020632A1 (en) 2014-08-08 2016-02-11 Milan Momcilo Popovich Method for holographic mastering and replication
WO2016042283A1 (en) 2014-09-19 2016-03-24 Milan Momcilo Popovich Method and apparatus for generating input images for holographic waveguide displays
US10423222B2 (en) 2014-09-26 2019-09-24 Digilens Inc. Holographic waveguide optical tracker
US9459201B2 (en) 2014-09-29 2016-10-04 Zyomed Corp. Systems and methods for noninvasive blood glucose and other analyte detection and measurement using collision computing
CA3168318A1 (en) 2014-09-29 2016-04-07 Magic Leap, Inc. Architectures and methods for outputting different wavelength light out of waveguides
US9684172B2 (en) 2014-12-03 2017-06-20 Osterhout Group, Inc. Head worn computer display systems
USD743963S1 (en) 2014-12-22 2015-11-24 Osterhout Group, Inc. Air mouse
USD751552S1 (en) 2014-12-31 2016-03-15 Osterhout Group, Inc. Computer glasses
USD753114S1 (en) 2015-01-05 2016-04-05 Osterhout Group, Inc. Air mouse
KR102329295B1 (en) * 2015-01-09 2021-11-19 삼성디스플레이 주식회사 Head mounted display device
WO2016113533A2 (en) 2015-01-12 2016-07-21 Milan Momcilo Popovich Holographic waveguide light field displays
CN107873086B (en) 2015-01-12 2020-03-20 迪吉伦斯公司 Environmentally isolated waveguide display
US10105049B2 (en) 2015-01-16 2018-10-23 Massachusetts Institute Of Technology Methods and apparatus for anterior segment ocular imaging
WO2016116733A1 (en) 2015-01-20 2016-07-28 Milan Momcilo Popovich Holographic waveguide lidar
US9632226B2 (en) 2015-02-12 2017-04-25 Digilens Inc. Waveguide grating device
US10878775B2 (en) 2015-02-17 2020-12-29 Mentor Acquisition One, Llc See-through computer display systems
US20160239985A1 (en) 2015-02-17 2016-08-18 Osterhout Group, Inc. See-through computer display systems
US10459145B2 (en) 2015-03-16 2019-10-29 Digilens Inc. Waveguide device incorporating a light pipe
NZ773847A (en) 2015-03-16 2022-07-01 Magic Leap Inc Methods and systems for diagnosing and treating health ailments
GB2536650A (en) 2015-03-24 2016-09-28 Augmedics Ltd Method and system for combining video-based and optic-based augmented reality in a near eye display
JP2016180955A (en) * 2015-03-25 2016-10-13 株式会社ソニー・インタラクティブエンタテインメント Head-mounted display, display control method, and position control method
CN106154640B (en) * 2015-03-31 2020-02-21 联想(北京)有限公司 Display module and electronic device
US10591756B2 (en) 2015-03-31 2020-03-17 Digilens Inc. Method and apparatus for contact image sensing
US10274728B2 (en) 2015-05-18 2019-04-30 Facebook Technologies, Llc Stacked display panels for image enhancement
CN107924085B (en) 2015-06-15 2022-09-02 奇跃公司 Virtual and augmented reality systems and methods
US9977493B2 (en) 2015-06-17 2018-05-22 Microsoft Technology Licensing, Llc Hybrid display system
US10222619B2 (en) 2015-07-12 2019-03-05 Steven Sounyoung Yu Head-worn image display apparatus for stereoscopic microsurgery
US10139966B2 (en) 2015-07-22 2018-11-27 Osterhout Group, Inc. External user interface for head worn computing
CA2995978A1 (en) 2015-08-18 2017-02-23 Magic Leap, Inc. Virtual and augmented reality systems and methods
CN108135469B (en) 2015-08-21 2021-03-09 奇跃公司 Eyelid shape estimation using eye pose measurements
CN108135467A (en) 2015-08-21 2018-06-08 奇跃公司 Eyelid shape is estimated
JP6494751B2 (en) 2015-09-03 2019-04-03 スリーエム イノベイティブ プロパティズ カンパニー Head mounted display
KR102351060B1 (en) 2015-09-16 2022-01-12 매직 립, 인코포레이티드 Mixing Head Pose of Audio Files
CN108351527A (en) 2015-09-23 2018-07-31 奇跃公司 Using the eye imaging of off-axis imaging device
EP3353711A1 (en) 2015-09-23 2018-08-01 Datalogic USA, Inc. Imaging systems and methods for tracking objects
EP3359999A1 (en) 2015-10-05 2018-08-15 Popovich, Milan Momcilo Waveguide display
WO2017066296A1 (en) 2015-10-16 2017-04-20 Magic Leap, Inc. Eye pose identification using eye features
EP3365724B1 (en) 2015-10-20 2021-05-05 Magic Leap, Inc. Selecting virtual objects in a three-dimensional space
WO2017079333A1 (en) 2015-11-04 2017-05-11 Magic Leap, Inc. Light field display metrology
US11231544B2 (en) 2015-11-06 2022-01-25 Magic Leap, Inc. Metasurfaces for redirecting light and methods for fabricating
CN105404005A (en) * 2015-12-10 2016-03-16 合肥虔视光电科技有限公司 Head-mounted display for augmented reality
AU2017206021B2 (en) 2016-01-07 2021-10-21 Magic Leap, Inc. Virtual and augmented reality systems and methods having unequal numbers of component color images distributed across depth planes
AU2017210289B2 (en) 2016-01-19 2021-10-21 Magic Leap, Inc. Augmented reality systems and methods utilizing reflections
EP3405829A4 (en) 2016-01-19 2019-09-18 Magic Leap, Inc. Eye image collection, selection, and combination
EP3405828A1 (en) 2016-01-22 2018-11-28 Corning Incorporated Wide field personal display
NZ744813A (en) 2016-01-29 2019-10-25 Magic Leap Inc Display for three-dimensional image
US10459230B2 (en) 2016-02-02 2019-10-29 Disney Enterprises, Inc. Compact augmented reality / virtual reality display
EP3398007A1 (en) 2016-02-04 2018-11-07 DigiLens, Inc. Holographic waveguide optical tracker
US10850116B2 (en) 2016-12-30 2020-12-01 Mentor Acquisition One, Llc Head-worn therapy device
US10591728B2 (en) 2016-03-02 2020-03-17 Mentor Acquisition One, Llc Optical systems for head-worn computers
KR20180114162A (en) 2016-02-24 2018-10-17 매직 립, 인코포레이티드 Polarizing beam splitter with low light leakage
CA3015077A1 (en) 2016-02-24 2017-08-31 Magic Leap, Inc. Low profile interconnect for light emitter
EP4246039A3 (en) 2016-02-26 2023-11-15 Magic Leap, Inc. Optical system
CN114002844A (en) 2016-02-26 2022-02-01 奇跃公司 Display system having multiple light pipes for multiple light emitters
US10667981B2 (en) 2016-02-29 2020-06-02 Mentor Acquisition One, Llc Reading assistance system for visually impaired
EP3423877B1 (en) 2016-02-29 2022-10-26 Magic Leap, Inc. Virtual and augmented reality systems and methods
KR20180117181A (en) 2016-03-01 2018-10-26 매직 립, 인코포레이티드 A reflective switching device for inputting light of different wavelengths into waveguides
US9880441B1 (en) 2016-09-08 2018-01-30 Osterhout Group, Inc. Electrochromic systems for head-worn computer systems
US9826299B1 (en) 2016-08-22 2017-11-21 Osterhout Group, Inc. Speaker systems for head-worn computer systems
NZ745738A (en) 2016-03-04 2020-01-31 Magic Leap Inc Current drain reduction in ar/vr display systems
CN114399831A (en) 2016-03-07 2022-04-26 奇跃公司 Blue light modulation for biosafety
KR102530558B1 (en) * 2016-03-16 2023-05-09 삼성전자주식회사 See-through type display apparatus
US10867314B2 (en) 2016-03-22 2020-12-15 Magic Leap, Inc. Head mounted display system configured to exchange biometric information
CN105744132B (en) * 2016-03-23 2020-01-03 捷开通讯(深圳)有限公司 Optical lens accessory for panoramic image shooting
JP6895451B2 (en) 2016-03-24 2021-06-30 ディジレンズ インコーポレイテッド Methods and Devices for Providing Polarized Selective Holography Waveguide Devices
AU2017238847A1 (en) 2016-03-25 2018-10-04 Magic Leap, Inc. Virtual and augmented reality systems and methods
US9554738B1 (en) 2016-03-30 2017-01-31 Zyomed Corp. Spectroscopic tomography systems and methods for noninvasive detection and measurement of analytes using collision computing
JP6904973B2 (en) 2016-03-31 2021-07-21 マジック リープ, インコーポレイテッドMagic Leap,Inc. Orientation and interaction with 3D virtual objects using multiple DOF controllers
US10539763B2 (en) * 2016-03-31 2020-01-21 Sony Corporation Optical system, electronic device, camera, method and computer program
US10824253B2 (en) 2016-05-09 2020-11-03 Mentor Acquisition One, Llc User interface systems for head-worn computers
NZ747005A (en) 2016-04-08 2020-04-24 Magic Leap Inc Augmented reality systems and methods with variable focus lens elements
US10684478B2 (en) 2016-05-09 2020-06-16 Mentor Acquisition One, Llc User interface systems for head-worn computers
US9910284B1 (en) 2016-09-08 2018-03-06 Osterhout Group, Inc. Optical systems for head-worn computers
US10466491B2 (en) 2016-06-01 2019-11-05 Mentor Acquisition One, Llc Modular systems for head-worn computers
CN109154717B (en) 2016-04-11 2022-05-13 迪吉伦斯公司 Holographic waveguide device for structured light projection
US10001648B2 (en) 2016-04-14 2018-06-19 Disney Enterprises, Inc. Occlusion-capable augmented reality display using cloaking optics
US9726896B2 (en) 2016-04-21 2017-08-08 Maximilian Ralph Peter von und zu Liechtenstein Virtual monitor display technique for augmented reality environments
NZ747128A (en) 2016-04-21 2020-05-29 Magic Leap Inc Visual aura around field of view
CN109689173B (en) 2016-04-26 2022-03-18 奇跃公司 Electromagnetic tracking using augmented reality systems
KR102603675B1 (en) 2016-05-06 2023-11-16 매직 립, 인코포레이티드 Metasurfaces with asymmetric gratings for redirecting light and methods for fabricating
IL310060A (en) 2016-05-09 2024-03-01 Magic Leap Inc Augmented reality systems and methods for user health analysis
US9922464B2 (en) * 2016-05-10 2018-03-20 Disney Enterprises, Inc. Occluded virtual image display
CN113219579A (en) 2016-05-12 2021-08-06 奇跃公司 Distributed light manipulation on an imaging waveguide
EP3459071B1 (en) 2016-05-20 2022-05-11 Magic Leap, Inc. Contextual awareness of user interface menus
US9959678B2 (en) * 2016-06-03 2018-05-01 Oculus Vr, Llc Face and eye tracking using facial sensors within a head-mounted display
CA3025936A1 (en) 2016-06-03 2017-12-07 Magic Leap, Inc. Augmented reality identity verification
US10430988B2 (en) 2016-06-03 2019-10-01 Facebook Technologies, Llc Facial animation using facial sensors within a head-mounted display
WO2017213753A1 (en) 2016-06-10 2017-12-14 Magic Leap, Inc. Integrating point source for texture projecting bulb
EP4105921A1 (en) 2016-06-20 2022-12-21 Magic Leap, Inc. Augmented reality display system for evaluation and modification of neurological conditions, including visual processing and perception conditions
WO2018004863A1 (en) 2016-06-30 2018-01-04 Magic Leap, Inc. Estimating pose in 3d space
US9996984B2 (en) 2016-07-05 2018-06-12 Disney Enterprises, Inc. Focus control for virtual objects in augmented reality (AR) and virtual reality (VR) displays
US10922393B2 (en) 2016-07-14 2021-02-16 Magic Leap, Inc. Deep neural network for iris identification
CN109661194B (en) 2016-07-14 2022-02-25 奇跃公司 Iris boundary estimation using corneal curvature
JP7182538B2 (en) 2016-07-25 2022-12-02 マジック リープ, インコーポレイテッド Imaging Modification, Display, and Visualization Using Augmented Reality and Virtual Reality Eyewear
EP3488284B1 (en) 2016-07-25 2023-06-28 Magic Leap, Inc. Light field processor system and method
CN116599732A (en) 2016-07-29 2023-08-15 奇跃公司 Secure exchange of encrypted signature records
CN109804334B (en) 2016-08-11 2022-07-15 奇跃公司 System and method for automatic placement of virtual objects in three-dimensional space
CN117198277A (en) 2016-08-12 2023-12-08 奇跃公司 Word stream annotation
IL247360B (en) * 2016-08-18 2021-09-30 Veeride Ltd Augmented reality apparatus and method
EP3800497B1 (en) 2016-08-22 2022-08-03 Magic Leap, Inc. Multi-layer diffractive eyepiece
US10108013B2 (en) 2016-08-22 2018-10-23 Microsoft Technology Licensing, Llc Indirect-view augmented reality display system
CN114253400A (en) 2016-08-22 2022-03-29 奇跃公司 Augmented reality display device with deep learning sensor
US10690936B2 (en) 2016-08-29 2020-06-23 Mentor Acquisition One, Llc Adjustable nose bridge assembly for headworn computer
KR20230130773A (en) 2016-09-13 2023-09-12 매직 립, 인코포레이티드 Sensory eyewear
IL265443B (en) 2016-09-21 2022-07-01 Magic Leap Inc Systems and methods for optical systems with exit pupil expander
IL307292A (en) 2016-09-22 2023-11-01 Magic Leap Inc Augmented reality spectroscopy
US10330935B2 (en) 2016-09-22 2019-06-25 Apple Inc. Predictive, foveated virtual reality system
KR20240011881A (en) 2016-09-26 2024-01-26 매직 립, 인코포레이티드 Calibration of magnetic and optical sensors in a virtual reality or augmented reality display system
KR102491438B1 (en) 2016-09-28 2023-01-25 매직 립, 인코포레이티드 Face model capture by wearable device
RU2016138608A (en) 2016-09-29 2018-03-30 Мэджик Лип, Инк. NEURAL NETWORK FOR SEGMENTING THE EYE IMAGE AND ASSESSING THE QUALITY OF THE IMAGE
US20180096494A1 (en) * 2016-09-30 2018-04-05 Visbit Inc. View-optimized light field image and video streaming
CN110073359B (en) 2016-10-04 2023-04-04 奇跃公司 Efficient data placement for convolutional neural networks
WO2018067357A2 (en) 2016-10-05 2018-04-12 Magic Leap, Inc. Periocular test for mixed reality calibration
USD840395S1 (en) 2016-10-17 2019-02-12 Osterhout Group, Inc. Head-worn computer
EP4333428A2 (en) 2016-10-21 2024-03-06 Magic Leap, Inc. System and method for presenting image content on multiple depth planes by providing multiple intra-pupil parallax views
US10565790B2 (en) 2016-11-11 2020-02-18 Magic Leap, Inc. Periocular and audio synthesis of a full face image
IL285121B2 (en) 2016-11-15 2023-04-01 Magic Leap Inc Deep learning system for cuboid detection
IL294413B1 (en) 2016-11-16 2024-03-01 Magic Leap Inc Thermal management systems for wearable components
US11067860B2 (en) 2016-11-18 2021-07-20 Magic Leap, Inc. Liquid crystal diffractive devices with nano-scale pattern and methods of manufacturing the same
WO2018094093A1 (en) 2016-11-18 2018-05-24 Magic Leap, Inc. Waveguide light multiplexer using crossed gratings
IL303676B1 (en) 2016-11-18 2024-02-01 Magic Leap Inc Spatially variable liquid crystal diffraction gratings
KR102639600B1 (en) 2016-11-18 2024-02-21 매직 립, 인코포레이티드 Multilayer liquid crystal diffractive gratings for redirecting light of wide incident angle ranges
US11513350B2 (en) 2016-12-02 2022-11-29 Digilens Inc. Waveguide device with uniform output illumination
EP4220572A1 (en) 2016-12-05 2023-08-02 Magic Leap, Inc. Virtual user input controls in a mixed reality environment
US10531220B2 (en) 2016-12-05 2020-01-07 Magic Leap, Inc. Distributed audio capturing techniques for virtual reality (VR), augmented reality (AR), and mixed reality (MR) systems
CN109845251B (en) * 2016-12-07 2021-08-31 三星电子株式会社 Electronic device and method for displaying images
CA3045663A1 (en) 2016-12-08 2018-06-14 Magic Leap, Inc. Diffractive devices based on cholesteric liquid crystal
US10664049B2 (en) 2016-12-09 2020-05-26 Nvidia Corporation Systems and methods for gaze tracking
AU2017377915B2 (en) 2016-12-13 2022-12-15 Magic Leap. Inc. Augmented and virtual reality eyewear, systems, and methods for delivering polarized light and determining glucose levels
CN110291565B (en) 2016-12-13 2023-06-30 奇跃公司 Augmented reality display system
KR102550742B1 (en) 2016-12-14 2023-06-30 매직 립, 인코포레이티드 Patterning of liquid crystals using soft-imprint replication of surface alignment patterns
US10088686B2 (en) 2016-12-16 2018-10-02 Microsoft Technology Licensing, Llc MEMS laser scanner having enlarged FOV
US10371896B2 (en) 2016-12-22 2019-08-06 Magic Leap, Inc. Color separation in planar waveguides using dichroic filters
US11036049B2 (en) 2016-12-22 2021-06-15 Magic Leap, Inc. Systems and methods for manipulating light from ambient light sources
US10746999B2 (en) 2016-12-28 2020-08-18 Magic Leap, Inc. Dual depth exit pupil expander
CN106773054A (en) * 2016-12-29 2017-05-31 北京乐动卓越科技有限公司 A kind of device and method for realizing that augmented reality is interactive
AU2017387781B2 (en) 2016-12-29 2022-04-28 Magic Leap, Inc. Automatic control of wearable display device based on external conditions
US10825010B2 (en) * 2016-12-30 2020-11-03 Datalogic Usa, Inc. Self-checkout with three dimensional scanning
USD864959S1 (en) 2017-01-04 2019-10-29 Mentor Acquisition One, Llc Computer glasses
JP7071374B2 (en) 2017-01-05 2022-05-18 マジック リープ, インコーポレイテッド Patterning of high refractive index glass by plasma etching
US10545346B2 (en) 2017-01-05 2020-01-28 Digilens Inc. Wearable heads up displays
AU2018210527B2 (en) 2017-01-23 2022-12-01 Magic Leap, Inc. Eyepiece for virtual, augmented, or mixed reality systems
AU2018212570B2 (en) 2017-01-27 2023-03-16 Magic Leap, Inc. Antireflection coatings for metasurfaces
EP3574348B1 (en) 2017-01-27 2023-02-22 Magic Leap, Inc. Diffraction gratings formed by metasurfaces having differently oriented nanobeams
US11187909B2 (en) 2017-01-31 2021-11-30 Microsoft Technology Licensing, Llc Text rendering by microshifting the display in a head mounted display
US10354140B2 (en) 2017-01-31 2019-07-16 Microsoft Technology Licensing, Llc Video noise reduction for video augmented reality system
US10504397B2 (en) 2017-01-31 2019-12-10 Microsoft Technology Licensing, Llc Curved narrowband illuminant display for head mounted display
US10298840B2 (en) 2017-01-31 2019-05-21 Microsoft Technology Licensing, Llc Foveated camera for video augmented reality and head mounted display
US11287292B2 (en) 2017-02-13 2022-03-29 Lockheed Martin Corporation Sensor system
US11347054B2 (en) 2017-02-16 2022-05-31 Magic Leap, Inc. Systems and methods for augmented reality
JP7158395B2 (en) 2017-02-23 2022-10-21 マジック リープ, インコーポレイテッド Variable focus imaging device based on polarization conversion
AU2018234409B2 (en) 2017-03-14 2022-06-30 Magic Leap, Inc. Waveguides with light absorbing films and processes for forming the same
KR102302725B1 (en) 2017-03-17 2021-09-14 매직 립, 인코포레이티드 Room Layout Estimation Methods and Techniques
KR102579249B1 (en) 2017-03-21 2023-09-15 매직 립, 인코포레이티드 Methods, devices, and systems for illuminating spatial light modulators
IL303471A (en) 2017-03-21 2023-08-01 Magic Leap Inc Eye-imaging apparatus using diffractive optical elements
US10564533B2 (en) 2017-03-21 2020-02-18 Magic Leap, Inc. Low-profile beam splitter
WO2018175653A1 (en) 2017-03-21 2018-09-27 Magic Leap, Inc. Display system with spatial light modulator illumination for divided pupils
CA3056771A1 (en) 2017-03-21 2018-09-27 Magic Leap, Inc. Stacked waveguides having different diffraction gratings for combined field of view
WO2018175344A1 (en) 2017-03-21 2018-09-27 Magic Leap, Inc. Depth sensing techniques for virtual, augmented, and mixed reality systems
CA3057109A1 (en) 2017-03-22 2018-09-27 Magic Leap, Inc. Depth based foveated rendering for display systems
US10891488B2 (en) 2017-03-30 2021-01-12 Hrl Laboratories, Llc System and method for neuromorphic visual activity classification based on foveated detection and contextual filtering
US10417975B2 (en) 2017-04-03 2019-09-17 Microsoft Technology Licensing, Llc Wide field of view scanning display
US10921593B2 (en) 2017-04-06 2021-02-16 Disney Enterprises, Inc. Compact perspectively correct occlusion capable augmented reality displays
US10499021B2 (en) 2017-04-11 2019-12-03 Microsoft Technology Licensing, Llc Foveated MEMS scanning display
WO2018194987A1 (en) 2017-04-18 2018-10-25 Magic Leap, Inc. Waveguides having reflective layers formed by reflective flowable materials
IL270002B2 (en) 2017-04-19 2023-11-01 Magic Leap Inc Multimodal task execution and text editing for a wearable system
CN110832439B (en) 2017-04-27 2023-09-29 奇跃公司 Luminous user input device
AU2018270286A1 (en) 2017-05-19 2019-11-14 Magic Leap, Inc. Keyboards for virtual, augmented, and mixed reality display systems
EP3908026A1 (en) 2017-05-22 2021-11-10 Magic Leap, Inc. Pairing with companion device
IL270856B2 (en) 2017-05-30 2023-12-01 Magic Leap Inc Power supply assembly with fan assembly for electronic device
JP7239493B2 (en) 2017-05-31 2023-03-14 マジック リープ, インコーポレイテッド Eye-tracking calibration technique
CN111052720A (en) 2017-06-12 2020-04-21 奇跃公司 Augmented reality display with multi-element adaptive lens to modify depth plane
US10810773B2 (en) * 2017-06-14 2020-10-20 Dell Products, L.P. Headset display control based upon a user's pupil state
CN107065196B (en) 2017-06-16 2019-03-15 京东方科技集团股份有限公司 A kind of augmented reality display device and augmented reality display methods
KR102314789B1 (en) 2017-06-29 2021-10-20 에스케이텔레콤 주식회사 Apparatus for displaying augmented reality contents
US10338400B2 (en) 2017-07-03 2019-07-02 Holovisions LLC Augmented reality eyewear with VAPE or wear technology
US10859834B2 (en) 2017-07-03 2020-12-08 Holovisions Space-efficient optical structures for wide field-of-view augmented reality (AR) eyewear
US10908680B1 (en) 2017-07-12 2021-02-02 Magic Leap, Inc. Pose estimation using electromagnetic tracking
CN107167921B (en) * 2017-07-18 2020-01-21 京东方科技集团股份有限公司 Display device
US10422995B2 (en) 2017-07-24 2019-09-24 Mentor Acquisition One, Llc See-through computer display systems with stray light management
US11409105B2 (en) 2017-07-24 2022-08-09 Mentor Acquisition One, Llc See-through computer display systems
US10578869B2 (en) 2017-07-24 2020-03-03 Mentor Acquisition One, Llc See-through computer display systems with adjustable zoom cameras
JP7149300B2 (en) 2017-07-26 2022-10-06 マジック リープ, インコーポレイテッド Training Neural Networks Using User Interface Device Representations
WO2019023489A1 (en) 2017-07-28 2019-01-31 Magic Leap, Inc. Fan assembly for displaying an image
US10969584B2 (en) 2017-08-04 2021-04-06 Mentor Acquisition One, Llc Image expansion optic for head-worn computer
US10976551B2 (en) 2017-08-30 2021-04-13 Corning Incorporated Wide field personal display device
US10521661B2 (en) 2017-09-01 2019-12-31 Magic Leap, Inc. Detailed eye shape model for robust biometric applications
US10719951B2 (en) 2017-09-20 2020-07-21 Magic Leap, Inc. Personalized neural network for eye tracking
JP7280250B2 (en) 2017-09-21 2023-05-23 マジック リープ, インコーポレイテッド Augmented reality display with waveguide configured to capture images of the eye and/or environment
KR102650507B1 (en) 2017-09-27 2024-03-21 매직 립, 인코포레이티드 Near-eye 3D display with separate phase and amplitude modulators
US10867368B1 (en) 2017-09-29 2020-12-15 Apple Inc. Foveated image capture for power efficient video see-through
EP3695270A4 (en) 2017-10-11 2021-06-23 Magic Leap, Inc. Augmented reality display comprising eyepiece having a transparent emissive display
WO2019079350A2 (en) 2017-10-16 2019-04-25 Digilens, Inc. Systems and methods for multiplying the image resolution of a pixelated display
US11537895B2 (en) 2017-10-26 2022-12-27 Magic Leap, Inc. Gradient normalization systems and methods for adaptive loss balancing in deep multitask networks
IL301939A (en) 2017-10-26 2023-06-01 Magic Leap Inc Augmented reality display having liquid crystal variable focus element and roll-to-roll method and apparatus for forming the same
AU2018355446A1 (en) 2017-10-26 2020-05-14 Magic Leap, Inc. Broadband adaptive lens assembly for augmented reality display
CA3078895A1 (en) 2017-10-27 2019-05-02 Magic Leap, Inc. Virtual reticle for augmented reality systems
IL274424B1 (en) 2017-11-14 2024-03-01 Magic Leap Inc Meta-learning for multi-task learning for neural networks
EP3724712A4 (en) 2017-12-11 2021-08-04 Magic Leap, Inc. Waveguide illuminator
CA3084169A1 (en) 2017-12-14 2019-06-20 Magic Leap, Inc. Contextual-based rendering of virtual avatars
IL308780A (en) 2017-12-15 2024-01-01 Magic Leap Inc Enhanced pose determination for display device
CN111683584A (en) 2017-12-15 2020-09-18 奇跃公司 Eyepiece for augmented reality display system
US11656466B2 (en) * 2018-01-03 2023-05-23 Sajjad A. Khan Spatio-temporal multiplexed single panel based mutual occlusion capable head mounted display system and method
TWI647485B (en) * 2018-01-03 2019-01-11 國立交通大學 Head-mounted virtual object imaging device
IL300959A (en) 2018-01-04 2023-04-01 Magic Leap Inc Optical elements based on polymeric structures incorporating inorganic materials
CN115356905A (en) 2018-01-08 2022-11-18 迪吉伦斯公司 System and method for holographic grating high throughput recording in waveguide cells
WO2019136476A1 (en) 2018-01-08 2019-07-11 Digilens, Inc. Waveguide architectures and related methods of manufacturing
JP7390297B2 (en) 2018-01-17 2023-12-01 マジック リープ, インコーポレイテッド Eye rotation center determination, depth plane selection, and rendering camera positioning within the display system
AU2019209950A1 (en) 2018-01-17 2020-07-09 Magic Leap, Inc. Display systems and methods for determining registration between a display and a user's eyes
EP3741113B1 (en) 2018-01-19 2022-03-16 PCMS Holdings, Inc. Multi-focal planes with varying positions
WO2019152177A2 (en) * 2018-01-30 2019-08-08 Hrl Laboratories, Llc System and method for neuromorphic visual activity classification based on foveated detection and contextual filtering
US11567627B2 (en) 2018-01-30 2023-01-31 Magic Leap, Inc. Eclipse cursor for virtual content in mixed reality displays
US10540941B2 (en) 2018-01-30 2020-01-21 Magic Leap, Inc. Eclipse cursor for mixed reality displays
US20190250407A1 (en) * 2018-02-15 2019-08-15 Microsoft Technology Licensing, Llc See-through relay for a virtual reality and a mixed environment display device
US10735649B2 (en) 2018-02-22 2020-08-04 Magic Leap, Inc. Virtual and augmented reality systems and methods using display system control information embedded in image data
WO2019168673A1 (en) 2018-02-27 2019-09-06 Magic Leap, Inc. Matching meshes for virtual avatars
AU2019228458A1 (en) 2018-02-28 2020-08-06 Magic Leap, Inc. Head scan alignment using ocular registration
JP7081473B2 (en) * 2018-03-02 2022-06-07 株式会社リコー Imaging optical system, imaging system and imaging device
WO2019173158A1 (en) 2018-03-05 2019-09-12 Magic Leap, Inc. Display system with low-latency pupil tracker
CN110494792B (en) 2018-03-07 2021-07-09 奇跃公司 Visual tracking of peripheral devices
AU2019232746A1 (en) 2018-03-07 2020-08-20 Magic Leap, Inc. Adaptive lens assemblies including polarization-selective lens stacks for augmented reality display
EP3765878A4 (en) 2018-03-12 2022-01-12 Magic Leap, Inc. Very high index eyepiece substrate-based viewing optics assembly architectures
WO2019178409A1 (en) 2018-03-14 2019-09-19 Magic Leap, Inc. Display systems and methods for clipping content to increase viewing comfort
US11430169B2 (en) 2018-03-15 2022-08-30 Magic Leap, Inc. Animating virtual avatar facial movements
JP7381482B2 (en) 2018-03-16 2023-11-15 マジック リープ, インコーポレイテッド Depth-based foveated rendering for display systems
US10775618B2 (en) 2018-03-16 2020-09-15 Magic Leap, Inc. Facial expressions from eye-tracking cameras
WO2019178614A1 (en) 2018-03-16 2019-09-19 Digilens Inc. Holographic waveguides incorporating birefringence control and methods for their fabrication
WO2019183399A1 (en) 2018-03-21 2019-09-26 Magic Leap, Inc. Augmented reality system and method for spectroscopic analysis
WO2019183211A1 (en) 2018-03-23 2019-09-26 Pcms Holdings, Inc. Multifocal plane based method to produce stereoscopic viewpoints in a dibr system (mfp-dibr)
CN112119334A (en) 2018-04-02 2020-12-22 奇跃公司 Waveguide with integrated optical element and method of manufacturing the same
WO2019195193A1 (en) 2018-04-02 2019-10-10 Magic Leap, Inc. Waveguides having integrated spacers, waveguides having edge absorbers, and methods for making the same
WO2019195186A1 (en) 2018-04-02 2019-10-10 Magic Leap, Inc. Hybrid polymer waveguide and methods for making the same
US11276219B2 (en) 2018-04-16 2022-03-15 Magic Leap, Inc. Systems and methods for cross-application authoring, transfer, and evaluation of rigging control systems for virtual characters
US11067805B2 (en) 2018-04-19 2021-07-20 Magic Leap, Inc. Systems and methods for operating a display system based on user perceptibility
WO2019209431A1 (en) 2018-04-23 2019-10-31 Magic Leap, Inc. Avatar facial expression representation in multidimensional space
WO2019212698A1 (en) 2018-05-01 2019-11-07 Magic Leap, Inc. Avatar animation using markov decision process policies
WO2019213220A1 (en) 2018-05-03 2019-11-07 Magic Leap, Inc. Using 3d scans of a physical subject to determine positions and orientations of joints for a virtual character
US11282255B2 (en) 2018-05-21 2022-03-22 Magic Leap, Inc. Generating textured polygon strip hair from strand-based hair for a virtual character
WO2019226691A1 (en) 2018-05-22 2019-11-28 Magic Leap, Inc. Transmodal input fusion for a wearable system
US11210835B2 (en) 2018-05-22 2021-12-28 Magic Leap, Inc. Computer generated hair groom transfer tool
EP3797404A4 (en) 2018-05-22 2022-02-16 Magic Leap, Inc. Skeletal systems for animating virtual avatars
WO2019226865A1 (en) 2018-05-25 2019-11-28 Magic Leap, Inc. Compression of dynamic unstructured point clouds
WO2019236344A1 (en) 2018-06-07 2019-12-12 Magic Leap, Inc. Augmented reality scrollbar
EP3807715A4 (en) 2018-06-15 2022-03-23 Magic Leap, Inc. Wide field-of-view polarization switches with liquid crystal optical elements with pretilt
CN112513969A (en) * 2018-06-18 2021-03-16 奇跃公司 Centralized rendering
WO2019246058A1 (en) 2018-06-18 2019-12-26 Magic Leap, Inc. Systems and methods for temporarily disabling user control interfaces during attachment of an electronic device
US11624909B2 (en) 2018-06-18 2023-04-11 Magic Leap, Inc. Head-mounted display systems with power saving functionality
EP3807710B1 (en) 2018-06-18 2024-01-17 Magic Leap, Inc. Augmented reality display with frame modulation functionality
US11151793B2 (en) 2018-06-26 2021-10-19 Magic Leap, Inc. Waypoint creation in map detection
US11669726B2 (en) 2018-07-02 2023-06-06 Magic Leap, Inc. Methods and systems for interpolation of disparate inputs
US11106033B2 (en) 2018-07-05 2021-08-31 Magic Leap, Inc. Waveguide-based illumination for head mounted display system
EP3818694A1 (en) 2018-07-05 2021-05-12 PCMS Holdings, Inc. Method and system for near-eye focal plane overlays for 3d perception of content on 2d displays
JP2021530790A (en) 2018-07-23 2021-11-11 マジック リープ, インコーポレイテッドMagic Leap, Inc. Deep Predictor Recurrent Neural Network for Head Posture Prediction
WO2020023303A1 (en) 2018-07-23 2020-01-30 Magic Leap, Inc. Coexistence interference avoidance between two different radios operating in the same band
WO2020023404A1 (en) 2018-07-24 2020-01-30 Magic Leap, Inc. Flicker mitigation when toggling eyepiece display illumination in augmented reality systems
USD930614S1 (en) 2018-07-24 2021-09-14 Magic Leap, Inc. Totem controller having an illumination region
USD924204S1 (en) 2018-07-24 2021-07-06 Magic Leap, Inc. Totem controller having an illumination region
JP7418400B2 (en) 2018-07-24 2024-01-19 マジック リープ, インコーポレイテッド Diffractive optical elements and related systems and methods with mitigation of rebounce-induced light loss
CN112689869A (en) 2018-07-24 2021-04-20 奇跃公司 Display system and method for determining registration between a display and an eye of a user
WO2020023672A1 (en) 2018-07-24 2020-01-30 Magic Leap, Inc. Display systems and methods for determining vertical alignment between left and right displays and a user's eyes
USD918176S1 (en) 2018-07-24 2021-05-04 Magic Leap, Inc. Totem controller having an illumination region
US11402801B2 (en) 2018-07-25 2022-08-02 Digilens Inc. Systems and methods for fabricating a multilayer optical structure
JP7459050B2 (en) 2018-07-27 2024-04-01 マジック リープ, インコーポレイテッド Pose space dimension reduction for pose space deformation of virtual characters
JP7443332B2 (en) 2018-08-03 2024-03-05 マジック リープ, インコーポレイテッド Depth plane selection for multi-depth plane display systems with user categorization
US11002971B1 (en) * 2018-08-24 2021-05-11 Apple Inc. Display device with mechanically adjustable optical combiner
US11103763B2 (en) 2018-09-11 2021-08-31 Real Shot Inc. Basketball shooting game using smart glasses
US11141645B2 (en) 2018-09-11 2021-10-12 Real Shot Inc. Athletic ball game using smart glasses
USD934873S1 (en) 2018-09-18 2021-11-02 Magic Leap, Inc. Mobile computing support system having an illumination region
USD955396S1 (en) 2018-09-18 2022-06-21 Magic Leap, Inc. Mobile computing support system having an illumination region
USD934872S1 (en) 2018-09-18 2021-11-02 Magic Leap, Inc. Mobile computing support system having an illumination region
USD950567S1 (en) 2018-09-18 2022-05-03 Magic Leap, Inc. Mobile computing support system having an illumination region
US11733523B2 (en) 2018-09-26 2023-08-22 Magic Leap, Inc. Diffractive optical elements with optical power
US10861240B1 (en) * 2018-09-26 2020-12-08 Facebook Technologies, Llc Virtual pupil camera in head mounted display
EP3871034A4 (en) * 2018-10-26 2022-08-10 Magic Leap, Inc. Ambient electromagnetic distortion correction for electromagnetic tracking
US11893789B2 (en) 2018-11-15 2024-02-06 Magic Leap, Inc. Deep neural network pose estimation system
WO2020106824A1 (en) 2018-11-20 2020-05-28 Magic Leap, Inc. Eyepieces for augmented reality display system
US11766296B2 (en) 2018-11-26 2023-09-26 Augmedics Ltd. Tracking system for image-guided surgery
US10939977B2 (en) 2018-11-26 2021-03-09 Augmedics Ltd. Positioning marker
US11199912B2 (en) 2018-11-30 2021-12-14 Magic Leap, Inc. Multi-modal hand location and orientation for avatar movement
WO2020139754A1 (en) 2018-12-28 2020-07-02 Magic Leap, Inc. Augmented and virtual reality display systems with shared display for left and right eyes
EP3903135A4 (en) 2018-12-28 2022-10-19 Magic Leap, Inc. Virtual and augmented reality display systems with emissive micro-displays
EP3914997A4 (en) 2019-01-25 2022-10-12 Magic Leap, Inc. Eye-tracking using images having different exposure times
JP7268372B2 (en) * 2019-01-31 2023-05-08 株式会社リコー Imaging device
EP3924759A4 (en) 2019-02-15 2022-12-28 Digilens Inc. Methods and apparatuses for providing a holographic waveguide display using integrated gratings
CN113728267A (en) 2019-02-28 2021-11-30 奇跃公司 Display system and method for providing variable adaptation cues using multiple intra-pupil parallax views formed by an array of light emitters
JP2022525165A (en) 2019-03-12 2022-05-11 ディジレンズ インコーポレイテッド Holographic Waveguide Backlights and Related Manufacturing Methods
US11435584B2 (en) * 2019-03-13 2022-09-06 Hong Kong Applied Science And Technology Research Institute Co., Ltd. Large field of view see through head mounted display having magnified curved intermediate image
CN113841006A (en) 2019-03-20 2021-12-24 奇跃公司 System for providing illumination to an eye
US10466489B1 (en) 2019-03-29 2019-11-05 Razmik Ghazaryan Methods and apparatus for a variable-resolution screen
US11284053B2 (en) 2019-03-29 2022-03-22 Razmik Ghazaryan Head-mounted display and projection screen
US10554940B1 (en) 2019-03-29 2020-02-04 Razmik Ghazaryan Method and apparatus for a variable-resolution screen
US11016305B2 (en) 2019-04-15 2021-05-25 Magic Leap, Inc. Sensor fusion for electromagnetic tracking
US11800205B2 (en) * 2019-04-18 2023-10-24 University Of Florida Research Foundation, Incorporated Fast foveation camera and controlling algorithms
CN110913096A (en) * 2019-05-05 2020-03-24 华为技术有限公司 Camera module and electronic equipment
BR112021022190A2 (en) 2019-05-05 2022-01-18 Huawei Tech Co Ltd Compact camera module, terminal device, imaging method, and imaging apparatus
JP7423659B2 (en) 2019-05-20 2024-01-29 マジック リープ, インコーポレイテッド Systems and techniques for estimating eye pose
TWI707193B (en) * 2019-05-22 2020-10-11 財團法人國家實驗研究院 Focal plane assembly of remote sensing satellite and image processing method thereof
US20220221710A1 (en) 2019-05-24 2022-07-14 Magic Leap, Inc. Variable focus assemblies
CN114174463A (en) 2019-05-28 2022-03-11 奇跃公司 Thermal management system for portable electronic devices
USD962981S1 (en) 2019-05-29 2022-09-06 Magic Leap, Inc. Display screen or portion thereof with animated scrollbar graphical user interface
JP2022535460A (en) 2019-06-07 2022-08-08 ディジレンズ インコーポレイテッド Waveguides incorporating transmission and reflection gratings, and associated fabrication methods
US11650423B2 (en) 2019-06-20 2023-05-16 Magic Leap, Inc. Eyepieces for augmented reality display system
US11803628B2 (en) 2019-06-21 2023-10-31 Magic Leap, Inc. Secure authorization via modal window
JP7386267B2 (en) 2019-06-24 2023-11-24 マジック リープ, インコーポレイテッド display system
US11029805B2 (en) 2019-07-10 2021-06-08 Magic Leap, Inc. Real-time preview of connectable objects in a physically-modeled virtual space
CN114424147A (en) 2019-07-16 2022-04-29 奇跃公司 Determining eye rotation center using one or more eye tracking cameras
JP2022540691A (en) 2019-07-19 2022-09-16 マジック リープ, インコーポレイテッド How to process a diffraction grating
WO2021016045A1 (en) 2019-07-19 2021-01-28 Magic Leap, Inc. Display device having diffraction gratings with reduced polarization sensitivity
US11740458B2 (en) 2019-07-26 2023-08-29 Microsoft Technology Licensing, Llc Projection device and projection method for head mounted display based on rotary MEMS fast scanner
EP4004646A4 (en) 2019-07-29 2023-09-06 Digilens Inc. Methods and apparatus for multiplying the image resolution and field-of-view of a pixelated display
US20220276125A1 (en) * 2019-08-07 2022-09-01 Agilent Technologies, Inc. Optical imaging performance test system and method
WO2021041949A1 (en) 2019-08-29 2021-03-04 Digilens Inc. Evacuating bragg gratings and methods of manufacturing
EP4028354A4 (en) 2019-09-11 2023-11-22 Magic Leap, Inc. Display device with diffraction grating having reduced polarization sensitivity
US11885968B2 (en) * 2019-09-13 2024-01-30 Arizona Board Of Regents On Behalf Of The University Of Arizona Pupil matched occlusion-capable optical see-through head-mounted display
US11610290B2 (en) * 2019-09-24 2023-03-21 Rockwell Collins, Inc. Point source detection
US11933949B2 (en) * 2019-09-27 2024-03-19 Apple Inc. Freeform folded optical system
US11176757B2 (en) 2019-10-02 2021-11-16 Magic Leap, Inc. Mission driven virtual character for user interaction
US11276246B2 (en) 2019-10-02 2022-03-15 Magic Leap, Inc. Color space mapping for intuitive surface normal visualization
WO2021070970A1 (en) * 2019-10-12 2021-04-15 国立大学法人奈良先端科学技術大学院大学 See-through display device
WO2021092068A1 (en) 2019-11-08 2021-05-14 Magic Leap, Inc. Metasurfaces with light-redirecting structures including multiple materials and methods for fabricating
US11493989B2 (en) 2019-11-08 2022-11-08 Magic Leap, Inc. Modes of user interaction
USD982593S1 (en) 2019-11-08 2023-04-04 Magic Leap, Inc. Portion of a display screen with animated ray
WO2021101844A1 (en) 2019-11-18 2021-05-27 Magic Leap, Inc. Mapping and localization of a passable world
KR102244445B1 (en) * 2019-11-22 2021-04-26 인하대학교 산학협력단 Apparatus and method for occlusion capable near-eye display for augmented reality using single dmd
EP4062229A4 (en) 2019-11-22 2024-01-03 Magic Leap Inc Method and system for patterning a liquid crystal layer
JP2023502337A (en) 2019-11-26 2023-01-24 マジック リープ, インコーポレイテッド Enhanced Eye Tracking for Augmented or Virtual Reality Display Systems
EP4070150A4 (en) 2019-12-06 2023-12-06 Magic Leap, Inc. Dynamic browser stage
JP2023504368A (en) 2019-12-06 2023-02-03 マジック リープ, インコーポレイテッド Encoding stereo splash screens in still images
USD952673S1 (en) 2019-12-09 2022-05-24 Magic Leap, Inc. Portion of a display screen with transitional graphical user interface for guiding graphics
USD940189S1 (en) 2019-12-09 2022-01-04 Magic Leap, Inc. Portion of a display screen with transitional graphical user interface for guiding graphics
USD941353S1 (en) 2019-12-09 2022-01-18 Magic Leap, Inc. Portion of a display screen with transitional graphical user interface for guiding graphics
USD940749S1 (en) 2019-12-09 2022-01-11 Magic Leap, Inc. Portion of a display screen with transitional graphical user interface for guiding graphics
USD940748S1 (en) 2019-12-09 2022-01-11 Magic Leap, Inc. Portion of a display screen with transitional graphical user interface for guiding graphics
USD941307S1 (en) 2019-12-09 2022-01-18 Magic Leap, Inc. Portion of a display screen with graphical user interface for guiding graphics
US11288876B2 (en) 2019-12-13 2022-03-29 Magic Leap, Inc. Enhanced techniques for volumetric stage mapping based on calibration object
US11382712B2 (en) 2019-12-22 2022-07-12 Augmedics Ltd. Mirroring in image guided surgery
CN111077679A (en) * 2020-01-23 2020-04-28 福州贝园网络科技有限公司 Intelligent glasses display and imaging method thereof
US11340695B2 (en) 2020-01-24 2022-05-24 Magic Leap, Inc. Converting a 2D positional input into a 3D point in space
WO2021150623A1 (en) 2020-01-24 2021-07-29 Magic Leap, Inc. Content movement and interaction using a single controller
WO2021154437A1 (en) 2020-01-27 2021-08-05 Magic Leap, Inc. Gaze timer based augmentation of functionality of a user input device
EP4097684A4 (en) 2020-01-27 2024-02-14 Magic Leap Inc Enhanced state control for anchor-based cross reality applications
USD949200S1 (en) 2020-01-27 2022-04-19 Magic Leap, Inc. Portion of a display screen with a set of avatars
USD948562S1 (en) 2020-01-27 2022-04-12 Magic Leap, Inc. Portion of a display screen with avatar
USD948574S1 (en) 2020-01-27 2022-04-12 Magic Leap, Inc. Portion of a display screen with a set of avatars
USD936704S1 (en) 2020-01-27 2021-11-23 Magic Leap, Inc. Portion of a display screen with avatar
JP2023511107A (en) 2020-01-27 2023-03-16 マジック リープ, インコーポレイテッド neutral avatar
WO2021154558A1 (en) 2020-01-27 2021-08-05 Magic Leap, Inc. Augmented reality map curation
EP4097532A4 (en) 2020-01-31 2024-02-21 Magic Leap Inc Augmented and virtual reality display systems for oculometric assessments
US11709363B1 (en) 2020-02-10 2023-07-25 Avegant Corp. Waveguide illumination of a spatial light modulator
US11276248B2 (en) 2020-02-10 2022-03-15 Magic Leap, Inc. Body-centric content positioning relative to three-dimensional container in a mixed reality environment
US11726349B2 (en) 2020-02-14 2023-08-15 Magic Leap, Inc. Virtual object movement speed curve for virtual and augmented reality display systems
JP2023516596A (en) 2020-02-26 2023-04-20 マジック リープ, インコーポレイテッド procedural electron beam lithography
EP4110574A4 (en) 2020-02-28 2024-03-13 Magic Leap Inc Method of fabricating molds for forming eyepieces with integrated spacers
US11262588B2 (en) 2020-03-10 2022-03-01 Magic Leap, Inc. Spectator view of virtual and physical objects
CN115298597A (en) 2020-03-20 2022-11-04 奇跃公司 System and method for retinal imaging and tracking
WO2021195283A1 (en) 2020-03-25 2021-09-30 Magic Leap, Inc. Optical device with one-way mirror
WO2021202746A1 (en) 2020-04-03 2021-10-07 Magic Leap, Inc. Wearable display systems with nanowire led micro-displays
WO2021202783A1 (en) 2020-04-03 2021-10-07 Magic Leap, Inc. Avatar customization for optimal gaze discrimination
EP4154050A1 (en) 2020-05-22 2023-03-29 Magic Leap, Inc. Augmented and virtual reality display systems with correlated in-coupling and out-coupling optical regions
WO2021247435A1 (en) 2020-06-05 2021-12-09 Magic Leap, Inc. Enhanced eye tracking techniques based on neural network analysis of images
US11389252B2 (en) 2020-06-15 2022-07-19 Augmedics Ltd. Rotating marker for image guided surgery
CN111580280B (en) * 2020-06-16 2022-10-28 京东方科技集团股份有限公司 See-through head mounted display
WO2022032198A1 (en) 2020-08-07 2022-02-10 Magic Leap, Inc. Tunable cylindrical lenses and head-mounted display including the same
WO2022073013A1 (en) 2020-09-29 2022-04-07 Avegant Corp. An architecture to illuminate a display panel
JP2022144057A (en) * 2021-03-18 2022-10-03 株式会社Jvcケンウッド Display device, display method, and program
TWI775392B (en) * 2021-04-20 2022-08-21 宏碁股份有限公司 Augmented reality glasses
US11936975B2 (en) 2021-05-12 2024-03-19 Nio Technology (Anhui) Co., Ltd. Combined computer vision and human vision camera system
KR20240025624A (en) * 2021-06-25 2024-02-27 가부시키가이샤 니콘 Imaging device and light receiving device
US11896445B2 (en) 2021-07-07 2024-02-13 Augmedics Ltd. Iliac pin and adapter
US20230059918A1 (en) * 2021-08-17 2023-02-23 Texas Instruments Incorporated Compact near eye display engine
US20230236420A1 (en) * 2021-08-17 2023-07-27 Texas Instruments Incorporated Compact near eye display engine
WO2023021467A1 (en) * 2021-08-20 2023-02-23 Immervision Inc. Dual field of view optical system
US11417069B1 (en) * 2021-10-05 2022-08-16 Awe Company Limited Object and camera localization system and localization method for mapping of the real world
WO2023133301A1 (en) * 2022-01-07 2023-07-13 Arizona Board Of Regents On Behalf Of The University Of Arizona Occlusion-capable optical viewing device and associated method
US11662591B1 (en) * 2022-07-01 2023-05-30 Brelyon Inc. Display systems and imaging systems with dynamically controllable optical path lengths
CN115220238A (en) * 2022-07-12 2022-10-21 李宪亭 Myopia prevention and control structure and myopia prevention and control equipment
US11776206B1 (en) 2022-12-23 2023-10-03 Awe Company Limited Extended reality system and extended reality method with two-way digital interactive digital twins

Family Cites Families (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3909121A (en) * 1974-06-25 1975-09-30 Mesquita Cardoso Edgar Antonio Panoramic photographic methods
US4026641A (en) * 1975-12-30 1977-05-31 The United States Of America As Represented By The Secretary Of The Army Toric reflector display
JPS54128217A (en) * 1978-03-29 1979-10-04 Olympus Optical Co Ltd Pickup device
JPS57171314A (en) 1981-04-15 1982-10-21 Mitsubishi Electric Corp Optical branching and coupling circuit
KR940010879B1 (en) * 1989-07-28 1994-11-19 캐논 가부시끼가이샤 Image forming apparatus
US5136183A (en) 1990-06-27 1992-08-04 Advanced Micro Devices, Inc. Integrated comparator circuit
US5307203A (en) * 1990-12-06 1994-04-26 Tandem Scanning Corporation Confocal tandem scanning reflected light microscope
US5135183A (en) * 1991-09-23 1992-08-04 Hughes Aircraft Company Dual-image optoelectronic imaging apparatus including birefringent prism arrangement
CA2084111A1 (en) * 1991-12-17 1993-06-18 William E. Nelson Virtual display device and method of use
US5406415A (en) * 1992-09-22 1995-04-11 Kelly; Shawn L. Imaging system for a head-mounted display
US5386313A (en) 1993-03-11 1995-01-31 Szegedi; Nicholas J. Reflective magneto-optic spatial light modulator assembly
JPH0792426A (en) * 1993-09-24 1995-04-07 Sony Corp Visual device
JP3320252B2 (en) * 1995-04-24 2002-09-03 キヤノン株式会社 Reflection type optical system and imaging apparatus using the same
US6347744B1 (en) * 1995-10-10 2002-02-19 Symbol Technologies, Inc. Retroreflective scan module for electro-optical readers
JPH09166759A (en) * 1995-12-18 1997-06-24 Olympus Optical Co Ltd Picture display device
JP3222052B2 (en) * 1996-01-11 2001-10-22 株式会社東芝 Optical scanning device
JPH1068899A (en) * 1996-08-26 1998-03-10 Asahi Optical Co Ltd Cascade scanning optical system
US6204974B1 (en) 1996-10-08 2001-03-20 The Microoptical Corporation Compact image display system for eyeglasses or other head-borne frames
JP3924348B2 (en) * 1996-11-05 2007-06-06 オリンパス株式会社 Image display device
JPH10197796A (en) * 1996-12-27 1998-07-31 Olympus Optical Co Ltd Finder optical system
US6377229B1 (en) * 1998-04-20 2002-04-23 Dimensional Media Associates, Inc. Multi-planar volumetric display system and method of operation using three-dimensional anti-aliasing
US6466185B2 (en) 1998-04-20 2002-10-15 Alan Sullivan Multi-planar volumetric display system and method of operation using psychological vision cues
US6215532B1 (en) 1998-07-27 2001-04-10 Mixed Reality Systems Laboratory Inc. Image observing apparatus for observing outside information superposed with a display image
JP2000105348A (en) * 1998-07-27 2000-04-11 Mr System Kenkyusho:Kk Picture observation device
JP4100531B2 (en) * 1998-08-11 2008-06-11 株式会社東京大学Tlo Information presentation method and apparatus
JP2000171750A (en) * 1998-12-03 2000-06-23 Sony Corp Head-mounted display, display method and provision medium
JP2000227554A (en) * 1999-02-05 2000-08-15 Olympus Optical Co Ltd Image-formation optical system
JP2000330025A (en) * 1999-05-19 2000-11-30 Olympus Optical Co Ltd Image formation optical system using louver
WO2001059507A1 (en) * 2000-02-11 2001-08-16 Emd Ltd. (Eyeglasses Mounted Display Limited) Optical beam-splitter unit and binocular display device containing such a unit
WO2001068540A2 (en) * 2000-03-16 2001-09-20 Lee Scott Friend Imaging apparatus
EP1295163B1 (en) * 2000-06-05 2010-07-07 Lumus Ltd Substrate-guided optical beam expander
US20020000951A1 (en) * 2000-06-26 2002-01-03 Richards Angus Duncan Display device enhancements
DE50015820D1 (en) * 2000-10-07 2010-01-21 Metaio Gmbh INFORMATION SYSTEM
US6457834B1 (en) 2001-01-24 2002-10-01 Scram Technologies, Inc. Optical system for display panel
EP1231780A3 (en) * 2001-02-07 2004-01-14 Sony Corporation Image pickup apparatus
JP2002244074A (en) * 2001-02-15 2002-08-28 Mixed Reality Systems Laboratory Inc Picture display device
FR2826221B1 (en) 2001-05-11 2003-12-05 Immervision Internat Pte Ltd METHOD FOR OBTAINING AND DISPLAYING A VARIABLE RESOLUTION DIGITAL PANORAMIC IMAGE
US7009773B2 (en) 2001-05-23 2006-03-07 Research Foundation Of The University Of Central Florida, Inc. Compact microlenslet arrays imager
WO2003001275A2 (en) * 2001-06-21 2003-01-03 Koninklijke Philips Electronics N.V. Display device
US6593561B2 (en) * 2001-06-22 2003-07-15 Litton Systems, Inc. Method and system for gathering image data using multiple sensors
US7940299B2 (en) * 2001-08-09 2011-05-10 Technest Holdings, Inc. Method and apparatus for an omni-directional video surveillance system
US6473241B1 (en) * 2001-11-27 2002-10-29 The United States Of America As Represented By The Secretary Of The Air Force Wide field-of-view imaging system using a reflective spatial light modulator
US7084904B2 (en) * 2002-09-30 2006-08-01 Microsoft Corporation Foveated wide-angle imaging system and method for capturing and viewing wide-angle images in real time
US7427996B2 (en) * 2002-10-16 2008-09-23 Canon Kabushiki Kaisha Image processing apparatus and image processing method
JP2004170386A (en) * 2002-10-28 2004-06-17 Seiko Epson Corp Device and method for inspection, device and method for liquid droplet ejection, device and electronic apparatus
JP2004153605A (en) 2002-10-31 2004-05-27 Victor Co Of Japan Ltd Image pickup device and system for transmitting pick-up image
GB0228089D0 (en) * 2002-12-02 2003-01-08 Seos Ltd Dynamic range enhancement of image display apparatus
JP4288939B2 (en) * 2002-12-05 2009-07-01 ソニー株式会社 Imaging device
JP4304973B2 (en) * 2002-12-10 2009-07-29 ソニー株式会社 Imaging device
US6870653B2 (en) * 2003-01-31 2005-03-22 Eastman Kodak Company Decoupled alignment axis for fold mirror adjustment
US7542090B1 (en) * 2003-03-21 2009-06-02 Aerodyne Research, Inc. System and method for high-resolution with a small-format focal-plane array using spatial modulation
US20050117015A1 (en) * 2003-06-26 2005-06-02 Microsoft Corp. Foveated panoramic camera system
US7336299B2 (en) * 2003-07-03 2008-02-26 Physical Optics Corporation Panoramic video system with real-time distortion-free imaging
JP2005094417A (en) * 2003-09-18 2005-04-07 Sony Corp Imaging apparatus
BR0318647A (en) * 2003-12-12 2006-11-28 Headplay Inc head mounted method and device for conveying images from a single video screen to the user's two eyes, method and system for channeling a displayed image, and head mounted screen
DE10359691A1 (en) * 2003-12-18 2005-07-14 Carl Zeiss Observation system and procedure
EP1580586B1 (en) * 2004-03-25 2008-06-11 Olympus Corporation Scanning confocal microscope
KR100491271B1 (en) * 2004-04-30 2005-05-25 주식회사 나노포토닉스 Panoramic mirror and imaging system using the same
US20070182812A1 (en) * 2004-05-19 2007-08-09 Ritchey Kurtis J Panoramic image-based virtual reality/telepresence audio-visual system and method
US7639208B1 (en) 2004-05-21 2009-12-29 University Of Central Florida Research Foundation, Inc. Compact optical see-through head-mounted display with occlusion support
CA2576010C (en) * 2004-08-03 2011-07-26 Silverbrook Research Pty Ltd Head mounted display with wave front modulator
US20060055811A1 (en) * 2004-09-14 2006-03-16 Frtiz Bernard S Imaging system having modules with adaptive optical elements
US7532771B2 (en) * 2004-11-12 2009-05-12 Microsoft Corporation Image processing system for digital collage
JP4689266B2 (en) * 2004-12-28 2011-05-25 キヤノン株式会社 Image display device
US7884947B2 (en) 2005-01-20 2011-02-08 Zygo Corporation Interferometry for determining characteristics of an object surface, with spatially coherent illumination
US20070002131A1 (en) * 2005-02-15 2007-01-04 Ritchey Kurtis J Dynamic interactive region-of-interest panoramic/three-dimensional immersive communication system and method
DE102005012763A1 (en) 2005-03-19 2006-09-21 Diehl Bgt Defence Gmbh & Co. Kg Wide-angle lens
US7023628B1 (en) * 2005-04-05 2006-04-04 Alex Ning Compact fisheye objective lens
ES2386724T3 (en) * 2005-12-15 2012-08-28 Saab Ab High head display
DE602005015010D1 (en) * 2005-12-29 2009-07-30 Fiat Ricerche Optical system for image transmission, especially for head-mounted type projection apparatus
CN101021669A (en) * 2006-02-13 2007-08-22 耿忠 Whole-view field imaging and displaying method and system
US20100045773A1 (en) * 2007-11-06 2010-02-25 Ritchey Kurtis J Panoramic adapter system and method with spherical field-of-view coverage
CN100526936C (en) * 2006-03-09 2009-08-12 比亚迪股份有限公司 Optical imaging system for helmet display
JP2007248545A (en) * 2006-03-14 2007-09-27 Konica Minolta Holdings Inc Video display device and video display system
US20080097347A1 (en) 2006-09-22 2008-04-24 Babak Arvanaghi Bendable needle assembly
US8072482B2 (en) 2006-11-09 2011-12-06 Innovative Signal Anlysis Imaging system having a rotatable image-directing device
CN101029968A (en) * 2007-04-06 2007-09-05 北京理工大学 Optical perspective helmet display device of addressing light-ray shielding mechanism
WO2008129539A2 (en) * 2007-04-22 2008-10-30 Lumus Ltd. A collimating optical device and system
US7589901B2 (en) * 2007-07-10 2009-09-15 Microvision, Inc. Substrate-guided relays for use with scanned beam light sources
KR100882011B1 (en) * 2007-07-29 2009-02-04 주식회사 나노포토닉스 Methods of obtaining panoramic images using rotationally symmetric wide-angle lenses and devices thereof
US7973834B2 (en) * 2007-09-24 2011-07-05 Jianwen Yang Electro-optical foveated imaging and tracking system
JP2009122379A (en) * 2007-11-14 2009-06-04 Canon Inc Optical device, control method thereof, imaging device and program
JP5201957B2 (en) 2007-11-21 2013-06-05 キヤノン株式会社 Imaging device
JP5153351B2 (en) * 2008-01-18 2013-02-27 キヤノン株式会社 Zoom lens and optical apparatus having the same
US7952783B2 (en) * 2008-09-22 2011-05-31 Microvision, Inc. Scanning mirror control
BRPI0921770A2 (en) 2008-11-04 2016-01-05 Univ Rice William M image mapping spectrometers
US20110164108A1 (en) * 2009-12-30 2011-07-07 Fivefocal Llc System With Selective Narrow FOV and 360 Degree FOV, And Associated Methods
EP2539759A1 (en) * 2010-02-28 2013-01-02 Osterhout Group, Inc. Local advertising content on an interactive head-mounted eyepiece
US20110213664A1 (en) 2010-02-28 2011-09-01 Osterhout Group, Inc. Local advertising content on an interactive head-mounted eyepiece
US8743199B2 (en) * 2010-03-09 2014-06-03 Physical Optics Corporation Omnidirectional imaging optics with 360°-seamless telescopic resolution
WO2012037290A2 (en) 2010-09-14 2012-03-22 Osterhout Group, Inc. Eyepiece with uniformly illuminated reflective display
US8941559B2 (en) 2010-09-21 2015-01-27 Microsoft Corporation Opacity filter for display device
JP2012252091A (en) 2011-06-01 2012-12-20 Sony Corp Display apparatus
WO2013012578A1 (en) * 2011-07-17 2013-01-24 Ziva Corporation Optical imaging with foveation
AU2011204946C1 (en) * 2011-07-22 2012-07-26 Microsoft Technology Licensing, Llc Automatic text scrolling on a head-mounted display
US9256117B2 (en) * 2011-10-07 2016-02-09 L-3 Communications Cincinnati Electronics Corporation Panoramic imaging systems comprising rotatable mirrors for image stabilization
KR102095330B1 (en) * 2012-04-05 2020-03-31 매직 립, 인코포레이티드 Wide-field of view (fov) imaging devices with active foveation capability
KR20140118770A (en) 2013-03-27 2014-10-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Display device
US9494792B2 (en) 2013-07-30 2016-11-15 Global Oled Technology Llc Local seal for encapsulation of electro-optical element on a flexible substrate
US20160077345A1 (en) 2014-09-17 2016-03-17 Michael Bohan Eliminating Binocular Rivalry in Monocular Displays
EP3163379B1 (en) * 2015-10-28 2019-10-16 Samsung Electronics Co., Ltd. See-through holographic display apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9858721B2 (en) 2013-01-15 2018-01-02 The University Of North Carolina At Chapel Hill Methods, systems, and computer readable media for generating an augmented scene display
US10274731B2 (en) 2013-12-19 2019-04-30 The University Of North Carolina At Chapel Hill Optical see-through near-eye display using point light source backlight
US9922667B2 (en) 2014-04-17 2018-03-20 Microsoft Technology Licensing, Llc Conversation, presence and context detection for hologram suppression
US10529359B2 (en) 2014-04-17 2020-01-07 Microsoft Technology Licensing, Llc Conversation detection
US10679648B2 (en) 2014-04-17 2020-06-09 Microsoft Technology Licensing, Llc Conversation, presence and context detection for hologram suppression
CN105988763A (en) * 2015-02-15 2016-10-05 联想(北京)有限公司 Information processing method and apparatus
CN105988763B (en) * 2015-02-15 2019-10-29 联想(北京)有限公司 A kind of information processing method and device
US9983412B1 (en) 2017-02-02 2018-05-29 The University Of North Carolina At Chapel Hill Wide field of view augmented reality see through head mountable display with distance accommodation

Also Published As

Publication number Publication date
AU2017203227B2 (en) 2018-11-29
IL261165B (en) 2020-07-30
KR102095330B1 (en) 2020-03-31
AU2013243380B2 (en) 2017-04-20
US20140218468A1 (en) 2014-08-07
EP2841991B1 (en) 2020-01-08
IL292007B2 (en) 2023-06-01
JP2022001949A (en) 2022-01-06
KR102022719B1 (en) 2019-11-05
EP2841991A4 (en) 2016-02-10
BR112014024941A2 (en) 2017-09-19
US20210373338A1 (en) 2021-12-02
WO2014011266A3 (en) 2015-04-16
IL300033A (en) 2023-03-01
CN104937475B (en) 2018-01-16
KR20190112218A (en) 2019-10-02
EP3796071A1 (en) 2021-03-24
KR102028732B1 (en) 2019-10-04
WO2013152205A1 (en) 2013-10-10
NZ700887A (en) 2016-11-25
EP4339690A2 (en) 2024-03-20
CA3111134A1 (en) 2013-10-10
RU2015154980A3 (en) 2019-03-26
CN108391033A (en) 2018-08-10
IL284204A (en) 2021-07-29
KR102099156B1 (en) 2020-04-09
CA2869781A1 (en) 2013-10-10
CN107976818B (en) 2020-06-19
JP2019035977A (en) 2019-03-07
NZ700898A (en) 2017-03-31
KR20140141718A (en) 2014-12-10
CA2874576A1 (en) 2014-01-16
NZ725322A (en) 2017-12-22
JP6176747B2 (en) 2017-08-09
JP2023052497A (en) 2023-04-11
KR20150009536A (en) 2015-01-26
NZ724344A (en) 2018-05-25
US20200012109A1 (en) 2020-01-09
CN104541201A (en) 2015-04-22
KR102124350B1 (en) 2020-06-23
KR20180038583A (en) 2018-04-16
IL275662A (en) 2020-08-31
CN104541201B (en) 2018-05-25
EP2834699A2 (en) 2015-02-11
JP2015518178A (en) 2015-06-25
KR102306729B1 (en) 2021-09-28
CA2869781C (en) 2021-04-27
JP2015519595A (en) 2015-07-09
EP2834699A4 (en) 2016-06-29
IL275662B (en) 2021-07-29
JP6944578B2 (en) 2021-10-06
BR112014024945A2 (en) 2020-10-27
US9874752B2 (en) 2018-01-23
US20180284456A1 (en) 2018-10-04
US20190107722A1 (en) 2019-04-11
RU2015154980A (en) 2017-06-28
KR20200138449A (en) 2020-12-09
IL308962A (en) 2024-01-01
IL292007A (en) 2022-06-01
US10162184B2 (en) 2018-12-25
EP2841991A1 (en) 2015-03-04
US9726893B2 (en) 2017-08-08
AU2017203227A1 (en) 2017-06-08
US9851563B2 (en) 2017-12-26
EP3796071B1 (en) 2024-01-31
EP3608717B1 (en) 2023-09-27
AU2017201669A1 (en) 2017-03-30
US20170315361A1 (en) 2017-11-02
JP6126682B2 (en) 2017-05-10
US10048501B2 (en) 2018-08-14
EP3608717A1 (en) 2020-02-12
AU2013243380A1 (en) 2014-10-30
RU2015156050A (en) 2019-01-18
KR20200035184A (en) 2020-04-01
US20230244074A1 (en) 2023-08-03
CN107843988A (en) 2018-03-27
JP6322753B2 (en) 2018-05-09
KR102223290B1 (en) 2021-03-04
IL261165A (en) 2018-10-31
IL284204B (en) 2022-05-01
JP2017161914A (en) 2017-09-14
US10061130B2 (en) 2018-08-28
CN107976818A (en) 2018-05-01
KR20180038584A (en) 2018-04-16
KR20180038582A (en) 2018-04-16
US9547174B2 (en) 2017-01-17
CN108391033B (en) 2020-10-30
AU2013289157A1 (en) 2014-10-30
US20170031163A1 (en) 2017-02-02
US20180157046A1 (en) 2018-06-07
US10175491B2 (en) 2019-01-08
JP2021009398A (en) 2021-01-28
KR102188748B1 (en) 2020-12-08
KR102345444B1 (en) 2021-12-29
EP2834699B1 (en) 2020-12-16
CN104937475A (en) 2015-09-23
KR102129330B1 (en) 2020-07-02
KR20180037336A (en) 2018-04-11
NZ740631A (en) 2018-12-21
US10901221B2 (en) 2021-01-26
KR102404537B1 (en) 2022-05-31
JP2018139421A (en) 2018-09-06
CA3138549A1 (en) 2014-01-16
US10451883B2 (en) 2019-10-22
JP6768046B2 (en) 2020-10-14
US20180299677A1 (en) 2018-10-18
US11656452B2 (en) 2023-05-23
AU2017201669B2 (en) 2019-02-07
AU2013289157B2 (en) 2017-04-06
CA2874576C (en) 2021-12-28
US20190018249A1 (en) 2019-01-17
JP7216165B2 (en) 2023-01-31
US20140177023A1 (en) 2014-06-26
US20180101012A1 (en) 2018-04-12
IL300033B1 (en) 2024-01-01
NZ725339A (en) 2018-04-27
CN107843988B (en) 2021-02-02
KR20210119558A (en) 2021-10-05
JP2017201406A (en) 2017-11-09
KR20210024255A (en) 2021-03-04
JP6434076B2 (en) 2018-12-05

Similar Documents

Publication Publication Date Title
US11656452B2 (en) Apparatus for optical see-through head mounted display with mutual occlusion and opaqueness control capability

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13817261

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2874576

Country of ref document: CA

Ref document number: 2015504750

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2013289157

Country of ref document: AU

Date of ref document: 20130405

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147031031

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2013817261

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2014143986

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112014024945

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112014024945

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20141006