WO2012131124A1 - Method for the geometric design of spatial meshes using nurbs surfaces - Google Patents

Method for the geometric design of spatial meshes using nurbs surfaces Download PDF

Info

Publication number
WO2012131124A1
WO2012131124A1 PCT/ES2012/000083 ES2012000083W WO2012131124A1 WO 2012131124 A1 WO2012131124 A1 WO 2012131124A1 ES 2012000083 W ES2012000083 W ES 2012000083W WO 2012131124 A1 WO2012131124 A1 WO 2012131124A1
Authority
WO
WIPO (PCT)
Prior art keywords
points
control
point
plane
coordinates
Prior art date
Application number
PCT/ES2012/000083
Other languages
Spanish (es)
French (fr)
Inventor
César Antonio OTERO GONZALES
Cristina Manchado Del Val
Rubén ARIAS FERNANDEZ
Original Assignee
Universidad De Cantabria
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Cantabria filed Critical Universidad De Cantabria
Publication of WO2012131124A1 publication Critical patent/WO2012131124A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/32Arched structures; Vaulted structures; Folded structures
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/19Three-dimensional framework structures
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B7/00Roofs; Roof construction with regard to insulation
    • E04B7/08Vaulted roofs
    • E04B7/10Shell structures, e.g. of hyperbolic-parabolic shape; Grid-like formations acting as shell structures; Folded structures
    • E04B7/105Grid-like structures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/30Polynomial surface description
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/32Arched structures; Vaulted structures; Folded structures
    • E04B2001/3223Theorical polygonal geometry therefor

Definitions

  • the present invention belongs to the field of civil engineering and architecture, and more specifically to the design of space structure meshes.
  • a spatial mesh is defined as a spatial structure composed of bars, which are responsible for stability and therefore bear the loads of the structure.
  • Figure 1 shows an example of a spatial mesh, seen from various perspectives.
  • NURBS surface in English, Non Uniform Rational B-splines
  • a NURBS surface is defined as a type of surface defined mathematically by the division of two complete polynomials into two independent variables u and v. These polynomials can be written in the Berstein base, so that the components of a NURBS in that base are formed by their control points and their respective weights.
  • NURBS surfaces have a great application in computer, industrial, aeronautical and other design, due to the multitude of forms and complexity to which these surfaces can be adapted. These fields of knowledge need the most exactly possible materialization of the surface, unlike what happens in architectural structures, where a discrete approach is obtained, normally due to problems of scale and construction costs. Although not only the construction field needs discrete structures, based on continuous surfaces.
  • geometric design of a spatial mesh tries to define the position and length of each and every one of the bars that make up a structure. These bars are idealized as straight segments so that, in later stages of a project, they can be structurally designed, manufactured and finally put into work. Therefore, geometric design is an essential step in obtaining a real structure.
  • César Otero and others in CR-Tangent Meshes describe a method for geometrically designing a spatial structure from a plane. Specifically, the method allows the design for elliptical quadric surfaces.
  • the article Weighted radial displacement A geometric look at Bézier conics and quadrics.
  • Computer Aided Geometric Design Vol. 17, 2000, pp 267-289 relates the quadrics as NURBS surfaces of order 2 with a plane, by means of an artifice described by the authors, Javier Sánchez-Reyes and Marco Paluszny, within the field of geometric design computer assisted Its objective is to obtain a procedure to identify patches on quadrics.
  • the present invention tries to solve the aforementioned drawbacks related to the design of structures, by means of a method that simplifies the three-dimensional problem of a spatial mesh, to a framework defined in a plane.
  • the method offers a solution for NURBS surfaces of order n, that is, of any order. In comparison with NURBS surfaces of order 2, those of order n allow greater freedom of design.
  • a method is provided to obtain a design of the geometry of a spatial mesh formed by a plurality of linear entities.
  • the method comprises the steps of: -Choose three points on a plane that defines a triangle;
  • n is a natural number greater than or equal to 1; - calculate a set of control points in said triangle that depend on n and the three points chosen;
  • the step of calculating a set of control points in the triangle is given by the expression:
  • the point outside the plane can be finite, that is, defined by its coordinates.
  • that point can be at infinity, that is, defined by one direction.
  • the step of transforming the set of control points C into a plurality of points ⁇ ⁇ ⁇ that define a control polyhedron is given by the expression:
  • the step of obtaining a NURBS surface from said control polyhedron is given by the expression:
  • the step of transforming the plurality of sides into a plurality of linear entities constituting the spatial mesh object of the geometric design is carried out as follows: for each side:
  • n> 2 is chosen. And in an even more particular embodiment, n> 3 is chosen. Also, the invention provides a meshed structure obtained from the above method.
  • the invention provides a computer program comprising computer program code means adapted to perform the steps of the method described above, when the program is executed on a computer, a digital signal processor, a programmable field gate arrangement, a specific application integrated circuit, a microprocessor, a microcontroller, and any other form of programmable hardware.
  • Figure 1 shows an example of a spatial mesh, seen from various perspectives.
  • Figure 2 shows a reference plane defined by three points C 00 C 02 C 20 and how that plane can be transformed into another one defined by three other points P 00 P 02 P 20 from a point O outside the original plane.
  • Figure 4 shows a plane containing a structure composed of a set of vertices connected by sides.
  • Figure 5 shows two different spatial meshes, obtained with the method of the present invention.
  • Figure 7 shows the generality of the method (order of complexity n). Specifically, the use of the method for surfaces of order 2, 3, and 4 is represented.
  • the spatial mesh is formed by a set of linear entities ⁇ .
  • the linear entities can be bars.
  • the linear entities can be: columns, beams, cables or other structural element defined by their length, or any other entity that can form a spatial mesh. To do this, the following steps are followed:
  • the point (O) outside the plane can be both finite, that is, defined by its coordinates, and be at infinity, that is, defined by an address. In the example in Figure 2, point (O) is finite.
  • control points C and in the triangle defined by the three points C 00 C 0n C n0 is calculated.
  • the control points depend on n and on the three points chosen Co 0 C 0n C n0 .
  • Control points are chosen according to the following expression: where n is the order of complexity previously chosen and the indices ij are positive integers:
  • weights ⁇ ,, (real values) are chosen for each control point C ⁇ j .
  • the weights ⁇ 3 ⁇ 4 are freely chosen, that is, the designer is free to assign the value he wants.
  • weights worth every one in case the point (O) is infinite, weights worth every one.
  • the next step is to transform the set of control points C ⁇ j into a set of points Py that define a control polyhedron. This transformation is given by the expression:
  • Figure 2 illustrates the transformation of the control points C 00 Coi C 02 C ⁇ or C1 1C20 into a set of points P 00 P 0 and Po 2 P i or Pn P20 for the example mentioned above.
  • the NURBS equation of order n can be obtained from the control polyhedron (surface to which the spatial mesh to be constructed is to be adapted), which is given by the expression where
  • the next step to achieve the spatial mesh is, within the plane defined by the points C 00 C 0n C fatigueo, define a fabric as a set L of sides 1.
  • This fabric represents the sides that, once spatially projected, will represent the linear entities that form the spatial mesh.
  • This fabric can be as exhaustive as desired, that is, you can define as many sides 1 as the designer wants. It is also possible that some areas of the plane defined by points C 00 With C n o, are very densely populated from this network of sides, while other areas of that plane are empty or less densely populated from sides.
  • Figure 4 shows the framework (set L) of sides and one of those sides is highlighted 1.
  • the vertices of side 1 have been designated A B.
  • This framework in the plane defined by the points C 0 or C 0n C n0 can also be described as a generic triangulation on said plane, which may affect the entire plane or only a region thereof. That is, from any point of said plane, a plurality of triangles is constructed. It can also contain "islands", areas without triangles. That is, it is not necessary that the triangulation on the plane be thorough and complete.
  • the points that determine the framework or triangularization are chosen by the designer as desired (randomly, according to a certain criteria, etc.), depending on the mesh you want to obtain.
  • the plane contains a structure composed of a set of vertices connected by sides. The set of sides we will call L and an element of it, any side, we will call 1. Each side 1 is formed by two points A and B which are its extreme points (vertices).
  • the linear entity ⁇ formed by points A 'B' is the transform of side 1.
  • the invention allows to design any meshed structure obtained from the method described above.
  • Figure 7 shows the generality (n) of the method. This figure represents the use of the method, for surfaces of order 2, 3, and 4. Obviously, this is generalizable to anyone.

Abstract

A method for obtaining a design with the geometry of a spatial mesh formed by a plurality L of linear entities 1', characterized in that it comprises the steps of: choosing three points (C00 C0n Cn0) in a plane that defines a triangle; choosing a point (O) outside said plane; choosing an order of complexity n, in which n is a natural number greater than or equal to 1; calculating a set of control points C¡j in said triangle, which depend on n and on the three points chosen (C00 C0n Cn0); choosing weights λ¡j, in which each one of these weights is connected with a control point C¡j; transforming the set of control points C¡j into a plurality of points P¡j that define a control polyhedron; obtaining a NURBS surface from said control polyhedron; within the plane defined by said points (C00 C0n Cn0), defining an interlattice with a plurality L of sides 1; transforming said plurality L of sides 1 into a plurality of linear entities 1' constituting said spatial mesh. Meshed structure. Computer program.

Description

MÉTODO DE DISEÑO GEOMÉTRICO DE MALLAS  MECHAS GEOMETRIC DESIGN METHOD
ESPACIALES MEDIANTE SUPERFICIES NURBS  SPACES THROUGH NURBS SURFACES
CAMPO DE LA INVENCION FIELD OF THE INVENTION
La presente invención pertenece al campo de la arquitectura e ingeniería civil, y más concretamente al diseño de mallas de estructuras espaciales. The present invention belongs to the field of civil engineering and architecture, and more specifically to the design of space structure meshes.
ANTECEDENTES DE LA INVENCIÓN BACKGROUND OF THE INVENTION
En el contexto de la arquitectura y la ingeniería civil, una malla espacial se define como una estructura espacial compuesta por barras, las cuales son las responsables de la estabilidad y por lo tanto soportan las cargas de la estructura. La figura 1 muestra un ejemplo de una malla espacial, vista desde varias perspectivas. In the context of architecture and civil engineering, a spatial mesh is defined as a spatial structure composed of bars, which are responsible for stability and therefore bear the loads of the structure. Figure 1 shows an example of a spatial mesh, seen from various perspectives.
Así mismo, en el contexto de la computación gráfica, una superficie NURBS (del inglés, Non Uniform Rational B-splines) se define como un tipo de superficie definida matemáticamente por la división de dos polinomios completos en dos variables independientes u y v. Dichos polinomios pueden estar escritos en la base de Berstein, de modo que las componentes de una NURBS en esa base las forman sus puntos de control y sus respectivos pesos. Likewise, in the context of graphic computing, a NURBS surface (in English, Non Uniform Rational B-splines) is defined as a type of surface defined mathematically by the division of two complete polynomials into two independent variables u and v. These polynomials can be written in the Berstein base, so that the components of a NURBS in that base are formed by their control points and their respective weights.
Las superficies NURBS tienen una gran aplicación en el diseño por computador, industrial, aeronáutico y otros, debido a la multitud de formas y complejidad a las que pueden adaptar dichas superficies. Dichos campos de conocimiento necesitan de la materialización lo más exactamente posible de la superficie, a diferencia de lo que sucede en estructuras arquitectónicas, donde se obtiene una aproximación discreta, debido normalmente a problemas de escala y de costes de construcción. Aunque no sólo el campo de la construcción necesita de estructuras discretas, basadas en superficies continuas. NURBS surfaces have a great application in computer, industrial, aeronautical and other design, due to the multitude of forms and complexity to which these surfaces can be adapted. These fields of knowledge need the most exactly possible materialization of the surface, unlike what happens in architectural structures, where a discrete approach is obtained, normally due to problems of scale and construction costs. Although not only the construction field needs discrete structures, based on continuous surfaces.
El diseño geométrico de una malla espacial trata de definir la posición y longitud de todas y cada una de las barras que componen una estructura. Dichas barras quedan idealizadas como segmentos de recta para que, en posteriores etapas de un proyecto, puedan ser diseñadas estructuralmente, fabricadas y finalmente puestas en obra. Por tanto, el diseño geométrico es un paso esencial en la obtención de una estructura real. The geometric design of a spatial mesh tries to define the position and length of each and every one of the bars that make up a structure. These bars are idealized as straight segments so that, in later stages of a project, they can be structurally designed, manufactured and finally put into work. Therefore, geometric design is an essential step in obtaining a real structure.
Existen varios procedimientos para diseñar diferentes tipos de mallas espaciales a diferentes tipos de superficies, basados en propiedades geométricas de las superficies a las que se adaptan, y son todos ellos procedimientos requeridos por diseñadores a la hora de concretar técnicamente un proyecto. En ningún caso se obtiene la superficie matemática, a la que se adapta la malla, sino una aproximación discreta de la misma. There are several procedures to design different types of spatial meshes to different types of surfaces, based on geometric properties of the surfaces to which they adapt, and they are all procedures required by designers when technically specifying a project. In no case the mathematical surface is obtained, to which the mesh adapts, but a discrete approximation of it.
Un ejemplo de este tipo de estructuras se define en la patente estadounidense US 2682235. En este documento se define una malla espacial que se adapta a una esfera, mediante una subdivisión de la misma según arcos máximos. An example of this type of structures is defined in US patent US 2682235. In this document a spatial mesh is defined that adapts to a sphere, by means of a subdivision thereof according to maximum arcs.
Otro trabajo singular fue el realizado por Joseph D. Clinton (NASA CONTRACTOR REPORT, CR-1734, Advanced Structural Geometry Studies, Part I - Polyhedral Subdivisión Concepts for Structural Applications) que realiza una subdivisión diferente para definir otra malla espacial sobre una esfera. Another unique work was that carried out by Joseph D. Clinton (NASA CONTRACTOR REPORT, CR-1734, Advanced Structural Geometry Studies, Part I - Polyhedral Subdivision Concepts for Structural Applications) that performs a different subdivision to define another spatial mesh on a sphere.
Por otra parte, César Otero y otros en CR-Tangent Meshes (Journal of the International Association for Shell and Spatial Structures: IASS, Vol. 41 (2000) n. 132) describen un método para diseñar geométricamente una estructura espacial desde un plano. En concreto, el método permite el diseño para superficies cuádricas elípticas. On the other hand, César Otero and others in CR-Tangent Meshes (Journal of the International Association for Shell and Spatial Structures: IASS, Vol. 41 (2000) n. 132) describe a method for geometrically designing a spatial structure from a plane. Specifically, the method allows the design for elliptical quadric surfaces.
El principal problema derivado del intento de construir una malla espacial, es que se necesita definir los elementos básicos de tipo barra: posición, ángulo, longitud, etc. Dicha definición necesita de un estudio geométrico tridimensional complicado, para realizar mallas adaptadas a superficies complejas. Por otra parte, la aplicación de métodos ya conocidos, que puedan ofrecer una solución, limitan el diseño de las mallas a ciertos tipos de superficie estudiados. The main problem derived from the attempt to build a spatial mesh is that it is necessary to define the basic elements of the bar type: position, angle, length, etc. This definition requires a complicated three-dimensional geometric study, to make meshes adapted to complex surfaces. On the other hand, the application of methods already known, which can offer a solution, limits the design of the meshes to certain types of surface studied.
El intentar seleccionar formas de superficie nuevas, y más complejas, hace que la dificultad geométrica crezca, así que esto puede ser una seria razón para que el diseñador no opte por el diseño que desea, sino por la solución conocida. Trying to select new, and more complex, surface shapes makes the geometric difficulty grow, so this can be a serious reason for the designer not to opt for the design he wants, but for the known solution.
Por otra parte, el artículo Weighted radial displacement: A geometric look at Bézier conics and quadrics. Computer Aided Geometric Design Vol.17, 2000, pp 267-289, relaciona las cuádricas como superficies NURBS de orden 2 con un plano, mediante un artificio que describen los autores, Javier Sánchez-Reyes y Marco Paluszny, dentro del campo del diseño geométrico asistido por computador. Su objetivo es obtener un procedimiento para identificar parches sobre cuádricas. On the other hand, the article Weighted radial displacement: A geometric look at Bézier conics and quadrics. Computer Aided Geometric Design Vol. 17, 2000, pp 267-289, relates the quadrics as NURBS surfaces of order 2 with a plane, by means of an artifice described by the authors, Javier Sánchez-Reyes and Marco Paluszny, within the field of geometric design computer assisted Its objective is to obtain a procedure to identify patches on quadrics.
Sin embargo, actualmente el diseñador de una malla espacial lo hace de forma manual. No se conoce ninguna herramienta que permita diseñar a medida mallas espaciales. However, currently the designer of a space mesh does it manually. There is no known tool that allows custom design of space meshes.
RESUMEN DE LA INVENCIÓN SUMMARY OF THE INVENTION
La presente invención trata de resolver los inconvenientes mencionados anteriormente relativos al diseño de estructuras, mediante un método que permite simplificar el problema tridimensional de una malla espacial, a un entramado definido en un plano. El método ofrece solución para superficies NURBS de orden n, es decir, de cualquier orden. En comparación con superficies NURBS de orden 2, las de orden n permiten mayor libertad de diseño. The present invention tries to solve the aforementioned drawbacks related to the design of structures, by means of a method that simplifies the three-dimensional problem of a spatial mesh, to a framework defined in a plane. The method offers a solution for NURBS surfaces of order n, that is, of any order. In comparison with NURBS surfaces of order 2, those of order n allow greater freedom of design.
Concretamente, en un primer aspecto de la presente invención, se proporciona un método para obtener un diseño de la geometría de una malla espacial formada por una pluralidad de entidades lineales. El método comprende las etapas de: -elegir tres puntos en un plano que define un triángulo; Specifically, in a first aspect of the present invention, a method is provided to obtain a design of the geometry of a spatial mesh formed by a plurality of linear entities. The method comprises the steps of: -Choose three points on a plane that defines a triangle;
-elegir un punto ajeno a ese plano; -Choose a point outside that plane;
-elegir un orden de complejidad n, donde n es un número natural mayor o igual que 1 ; -calcular un conjunto de puntos de control en dicho triángulo que dependen de n y de los tres puntos elegidos;  -Choose an order of complexity n, where n is a natural number greater than or equal to 1; - calculate a set of control points in said triangle that depend on n and the three points chosen;
-elegir unos pesos, cada uno de los cuales se relaciona con un punto de control;  -Choose some weights, each of which is related to a control point;
-transformar el conjunto de puntos de control en una pluralidad de puntos que definen un poliedro de control; -transform the set of control points into a plurality of points that define a control polyhedron;
-obtener una superficie NURBS a partir de ese poliedro de control;  - obtain a NURBS surface from that control polyhedron;
-dentro del plano definido por los tres puntos elegidos en la primera etapa, definir un entramado como una pluralidad de lados;  - within the plane defined by the three points chosen in the first stage, define a fabric as a plurality of sides;
-transformar esa pluralidad de lados en una pluralidad de entidades lineales constitutivas de la malla espacial objeto del diseño.  -transform that plurality of sides into a plurality of linear entities constituting the spatial mesh object of the design.
Preferentemente, la etapa de calcular un conjunto de puntos de control en el triángulo viene dado por la expresión: Preferably, the step of calculating a set of control points in the triangle is given by the expression:
Figure imgf000006_0001
Figure imgf000006_0001
En una posible realización, el punto ajeno al plano puede ser finito, es decir, definido por sus coordenadas. Alternativamente, ese punto puede estar en el infinito, es decir, definido por una dirección.  In a possible embodiment, the point outside the plane can be finite, that is, defined by its coordinates. Alternatively, that point can be at infinity, that is, defined by one direction.
Si ese punto es finito, los pesos se eligen libremente, mientras que si el punto es infinito, los pesos valen todos 1. If that point is finite, the weights are freely chosen, while if the point is infinite, the weights are worth all 1.
Preferentemente, la etapa de transformar el conjunto de puntos de control C en una pluralidad de puntos Ρυ· que definen un poliedro de control, viene dada por la expresión:Preferably, the step of transforming the set of control points C into a plurality of points Ρ υ · that define a control polyhedron is given by the expression:
L  L
si el punto O es finito if point O is finite
Figure imgf000006_0002
Figure imgf000006_0002
Figure imgf000007_0002
Figure imgf000007_0002
Preferentemente, la etapa de obtener una superficie NURBS a partir de dicho poliedro de control, viene dada por la expresión: Preferably, the step of obtaining a NURBS surface from said control polyhedron is given by the expression:
Figure imgf000007_0001
Figure imgf000007_0001
donde (u,v) son las coordenadas baricéntricas del triángulo definido por los puntos del plano inicial, C00 C0n Cno. where (u, v) are the baricecentric coordinates of the triangle defined by the points of the initial plane, C 00 C 0n C n o.
La etapa de transformar la pluralidad de lados en una pluralidad de entidades lineales constitutivas de la malla espacial objeto del diseño geométrico, se realiza de la siguiente forma: para cada lado: The step of transforming the plurality of sides into a plurality of linear entities constituting the spatial mesh object of the geometric design is carried out as follows: for each side:
-obtener las coordenadas (u v) de su primer extremo;  - get the coordinates (u v) of its first end;
-a partir de dichas coordenadas (u v), calcular el punto Ny (u,v); -from these coordinates (u v), calculate the point Ny (u, v);
-obtener las coordenadas (u v) de su segundo extremo; - get the coordinates (u v) of its second end;
-a partir de dichas coordenadas (u v), calcular el punto N¡j (u,v);-from said coordinates (uv), calculate the point Nf j (u, v);
-siendo la entidad lineal formada por los puntos obtenidos, el transformado del lado. -being the linear entity formed by the points obtained, the transformation of the side.
En una realización particular, se elige n > 2. Y en una realización todavía más particular, se elige n > 3. Asimismo, la invención proporciona una estructura mallada obtenida a partir del método anterior. In a particular embodiment, n> 2 is chosen. And in an even more particular embodiment, n> 3 is chosen. Also, the invention provides a meshed structure obtained from the above method.
Por último, la invención proporciona un programa informático que comprende medios de código de programa informático adaptados para realizar las etapas del método descrito anteriormente, cuando el programa se ejecuta en un ordenador, un procesador de señal digital, una disposición de puertas de campo programable, un circuito integrado de aplicación específica, un microprocesador, un microcontrolador, y cualquier otra forma de hardware programable. Finally, the invention provides a computer program comprising computer program code means adapted to perform the steps of the method described above, when the program is executed on a computer, a digital signal processor, a programmable field gate arrangement, a specific application integrated circuit, a microprocessor, a microcontroller, and any other form of programmable hardware.
Las ventajas de la invención se harán evidentes en la descripción siguiente. The advantages of the invention will become apparent in the following description.
BREVE DESCRIPCIÓN DE LAS FIGURAS BRIEF DESCRIPTION OF THE FIGURES
Con objeto de ayudar a una mejor comprensión de las características de la invención, de acuerdo con un ejemplo preferente de realización práctica del mismo, y para complementar esta descripción, se acompaña como parte integrante de la misma, un juego de dibujos, cuyo carácter es ilustrativo y no limitativo. En estos dibujos: In order to help a better understanding of the characteristics of the invention, in accordance with a preferred example of practical realization thereof, and to complement this description, a set of drawings is attached as an integral part thereof, whose character is Illustrative and not limiting. In these drawings:
La figura 1 muestra un ejemplo de una malla espacial, vista desde varias perspectivas. Figure 1 shows an example of a spatial mesh, seen from various perspectives.
La figura 2 muestra un plano de referencia definido por tres puntos C00 C02 C20 y cómo ese plano puede transformarse en otro definido por otros tres puntos P00 P02 P20 desde un punto O fuera del plano original. Figure 2 shows a reference plane defined by three points C 00 C 02 C 20 and how that plane can be transformed into another one defined by three other points P 00 P 02 P 20 from a point O outside the original plane.
La figura 3 muestra un ejemplo de puntos de control obtenidos, para el caso de n= , dado un plano de referencia definido por tres puntos A B C. Figure 3 shows an example of control points obtained, in the case of n =, given a reference plane defined by three points A B C.
La figura 4 muestra un plano que contiene una estructura compuesta por un conjunto de vértices conectados mediante lados. La figura 5 muestra dos mallas espaciales diferentes, obtenidas con el método de la presente invención. Figure 4 shows a plane containing a structure composed of a set of vertices connected by sides. Figure 5 shows two different spatial meshes, obtained with the method of the present invention.
La figura 6 es un ejemplo de malla espacial adaptada a una NURBS de orden n=5. Figure 6 is an example of a space mesh adapted to a NURBS of order n = 5.
La figura 7 pone de manifiesto la generalidad del método (orden de complejidad n). En concreto, se representa el uso del método para superficies de orden 2, 3, y 4. Figure 7 shows the generality of the method (order of complexity n). Specifically, the use of the method for surfaces of order 2, 3, and 4 is represented.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
En este texto, el término "comprende" y sus variantes no deben entenderse en un sentido excluyente, es decir, estos términos no pretenden excluir otras características técnicas, aditivos, componentes o pasos. In this text, the term "comprises" and its variants should not be understood in an exclusive sense, that is, these terms are not intended to exclude other technical characteristics, additives, components or steps.
Además, los términos "aproximadamente", "sustancialmente", "alrededor de", "unos", etc. deben entenderse como indicando valores próximos a los que dichos términos acompañen, ya que por errores de cálculo o de medida, resulte imposible conseguir esos valores con total exactitud. In addition, the terms "approximately", "substantially", "around", "ones", etc. they should be understood as indicating values close to which these terms accompany, since due to calculation or measurement errors, it is impossible to achieve those values with total accuracy.
Las siguientes realizaciones preferidas se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. Además, la presente invención cubre todas las posibles combinaciones de realizaciones particulares y preferidas aquí indicadas. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. The following preferred embodiments are provided by way of illustration, and are not intended to be limiting of the present invention. In addition, the present invention covers all possible combinations of particular and preferred embodiments indicated herein. For those skilled in the art, other objects, advantages and features of the invention will be derived partly from the description and partly from the practice of the invention.
A continuación se detalla: en primer lugar, cómo definir una NURBS de cualquier orden n, siendo n cualquier número natural; y en segundo lugar, cómo obtener el diseño de la geometría de una malla espacial que se ajuste a la misma. La malla espacial está formada por un conjunto de entidades lineales Γ. En una realización particular, las entidades lineales pueden ser barras. Alternativamente, las entidades lineales pueden ser: columnas, vigas, cables u otro elemento estructural definido por su longitud, o cualquier otra entidad que pueda formar una malla espacial. Para ello se siguen los siguientes pasos: The following is detailed: first, how to define a NURBS of any order n, where n is any natural number; and secondly, how to obtain the design of the geometry of a spatial mesh that fits it. The spatial mesh is formed by a set of linear entities Γ. In a particular embodiment, the linear entities can be bars. Alternatively, the linear entities can be: columns, beams, cables or other structural element defined by their length, or any other entity that can form a spatial mesh. To do this, the following steps are followed:
En primer lugar, se eligen tres puntos C00 C0n Cn0 en un plano que define un triángulo. La figura 2 muestra un plano de referencia definido por tres puntos C00 C02 C20. A continuación se elige un punto ajeno a ese plano. La figura 2 muestra un punto O ajeno al plano definido por el triángulo. Los tres puntos coplanarios y el punto ajeno al plano se ilustran también en la figura 4. Como el método permite definir una superficie NURBS de cualquier orden, es preciso elegir el orden de complejidad n, es decir, el orden de la NURBS requerida. Este orden n puede ser cualquier número natural incluido n=l, aunque el método presenta sus mayores ventajas en diseños con grado de complejidad alto, al menos n>l. En el ejemplo de la figura 2 se ha elegido n=2. First, three points C 00 C 0n C n0 are chosen in a plane that defines a triangle. Figure 2 shows a reference plane defined by three points C 00 C 02 C 20 . Next, a point outside that plane is chosen. Figure 2 shows a point O outside the plane defined by the triangle. The three coplanar points and the non-plane point are also illustrated in Figure 4. Since the method allows to define a NURBS surface of any order, it is necessary to choose the order of complexity n, that is, the order of the required NURBS. This order n can be any natural number including n = l, although the method has its greatest advantages in designs with a high degree of complexity, at least n> l. In the example in figure 2, n = 2 has been chosen.
El punto (O) ajeno al plano puede ser tanto finito, es decir, definido por sus coordenadas, como estar en el infinito, es decir, definido por una dirección. En el ejemplo de la figura 2, el punto (O) es finito. The point (O) outside the plane can be both finite, that is, defined by its coordinates, and be at infinity, that is, defined by an address. In the example in Figure 2, point (O) is finite.
A continuación se indica cómo ese plano definido por los tres puntos Coo C0n Cn0 puede transformarse en otro definido por otros tres puntos, desde el punto O fuera del plano original. The following shows how that plane defined by the three Coo C 0n C n0 points can be transformed into another plane defined by another three points, from the point O outside the original plane.
Para ello, se calcula un conjunto de puntos de control Cy en el triángulo definido por los tres puntos C00 C0n Cn0. Los puntos de control dependen de n y de los tres puntos elegidos Co0 C0n Cn0. Los puntos de control se eligen de acuerdo con la siguiente expresión:
Figure imgf000010_0001
donde n es el orden de complejidad elegido previamente y los índices i j son números enteros positivos:
For this, a set of control points C and in the triangle defined by the three points C 00 C 0n C n0 is calculated. The control points depend on n and on the three points chosen Co 0 C 0n C n0 . Control points are chosen according to the following expression:
Figure imgf000010_0001
where n is the order of complexity previously chosen and the indices ij are positive integers:
Figure imgf000011_0002
Figure imgf000011_0002
La figura 2 muestra los puntos Coo Coi C02 Cío CnC20 obtenidos para n=2. La figura 3 muestra otro ejemplo de puntos de control obtenidos, para el caso de n=4, dado un plano de referencia definido por tres puntos A B C. Figure 2 shows the Coo Coi C 02 C í or CnC 20 points obtained for n = 2. Figure 3 shows another example of control points obtained, in the case of n = 4, given a reference plane defined by three points AB C.
A continuación, se eligen unos pesos λ,, (valores reales) para cada punto de control C¡j. En el caso de que el punto ajeno al plano (O) sea finito, los pesos λ¾ se eligen libremente, es decir, el diseñador tiene libertad para asignarles el valor que quiera. Por el contrario, en el caso de que el punto (O) sea infinito, los pesos ¡ valen todos 1. Next, weights λ ,, (real values) are chosen for each control point C¡ j . In the event that the point outside the plane (O) is finite, the weights λ¾ are freely chosen, that is, the designer is free to assign the value he wants. On the contrary, in case the point (O) is infinite, weights worth every one.
El siguiente paso es el de transformar el conjunto de puntos de control C¡j en un conjunto de puntos Py que definen un poliedro de control. Esta transformación viene dada por la expresión: The next step is to transform the set of control points C¡ j into a set of points Py that define a control polyhedron. This transformation is given by the expression:
Figure imgf000011_0001
Figure imgf000011_0001
La figura 2 ilustra la transformación de los puntos de control C00 Coi C02 Cío C1 1C20 en un conjunto de puntos P00 P0i Po2 Pío Pn P20 para el ejemplo mencionado anteriormente. Figure 2 illustrates the transformation of the control points C 00 Coi C 02 C í or C1 1C20 into a set of points P 00 P 0 and Po 2 P i or Pn P20 for the example mentioned above.
Definidos estos puntos de control y estos pesos, a partir del poliedro de control se puede obtener la ecuación de NURBS de orden n (superficie a la que se va a adaptar la malla espacial que se desea construir), que viene dada por la expresión donde
Figure imgf000012_0001
Once these control points and these weights have been defined, the NURBS equation of order n can be obtained from the control polyhedron (surface to which the spatial mesh to be constructed is to be adapted), which is given by the expression where
Figure imgf000012_0001
y donde (u,v) son las coordenadas baricéntricas del triángulo definido por los puntosand where (u, v) are the baricecentric coordinates of the triangle defined by the points
C00 C0n CnO. C 00 C 0n CnO.
El siguiente paso para conseguir la malla espacial es, dentro del plano definido por los puntos C00 C0n C„o, definir un entramado como un conjunto L de lados 1. Este entramado representa los lados que, una vez proyectados espacialmente, representarán las entidades lineales que formen la malla espacial. Este entramado puede tan exhaustivo como se desee, es decir, se pueden definir tantos lados 1 como quiera el diseñador. También es posible que unas zonas del plano definido por los puntos C00 Con Cno, estén muy densamente poblados de este entramado de lados, mientras que otras zonas de ese plano estén vacíos o menos densamente poblados de lados. The next step to achieve the spatial mesh is, within the plane defined by the points C 00 C 0n C „o, define a fabric as a set L of sides 1. This fabric represents the sides that, once spatially projected, will represent the linear entities that form the spatial mesh. This fabric can be as exhaustive as desired, that is, you can define as many sides 1 as the designer wants. It is also possible that some areas of the plane defined by points C 00 With C n o, are very densely populated from this network of sides, while other areas of that plane are empty or less densely populated from sides.
La figura 4 muestra el entramado (conjunto L) de lados y se destaca uno de esos lados 1. Los vértices del lado 1 se han denominado A B. Figure 4 shows the framework (set L) of sides and one of those sides is highlighted 1. The vertices of side 1 have been designated A B.
Este entramado en el plano definido por los puntos C0o C0n Cn0 puede describirse también como una triangulanzación genérica sobre dicho plano, pudiendo afectar a la totalidad del plano o tan sólo a una región del mismo. Es decir, a partir de cualquier punto de dicho plano, se construye una pluralidad de triángulos. Además puede contener "islas", zonas sin triángulos. Es decir, no es necesario que la triangulación sobre el plano sea exhaustiva y completa. Los puntos que determinan el entramado o triangularización los elige el diseñador como quiera (de forma aleatoria, de acuerdo con un determinado criterio, etc.), en función de la malla que quiera obtener. De esta forma, el plano contiene una estructura compuesta por un conjunto de vértices conectados mediante lados. Al conjunto de lados le llamaremos L y a un elemento de él, un lado cualquiera, le llamaremos 1. Cada lado 1 está formado por dos puntos A y B que son sus puntos extremos (vértices). This framework in the plane defined by the points C 0 or C 0n C n0 can also be described as a generic triangulation on said plane, which may affect the entire plane or only a region thereof. That is, from any point of said plane, a plurality of triangles is constructed. It can also contain "islands", areas without triangles. That is, it is not necessary that the triangulation on the plane be thorough and complete. The points that determine the framework or triangularization are chosen by the designer as desired (randomly, according to a certain criteria, etc.), depending on the mesh you want to obtain. Thus, The plane contains a structure composed of a set of vertices connected by sides. The set of sides we will call L and an element of it, any side, we will call 1. Each side 1 is formed by two points A and B which are its extreme points (vertices).
Por último, se transforma el conjunto L de lados 1 en una pluralidad de entidades lineales Γ constitutivas de la malla espacial. Esto también se ilustra en la figura 4, en la que se destaca la transformación del lado 1 en la entidad lineal Γ, cuyos vértices se han llamado A' B'. Esta transformación se realiza de la siguiente forma: Finally, the set L of sides 1 is transformed into a plurality of linear entities Γ constituting the spatial mesh. This is also illustrated in Figure 4, which highlights the transformation of side 1 into the linear entity Γ, whose vertices have been called A 'B'. This transformation is performed as follows:
Para cada lado 1 del conjunto L de lados que forman el entramado en el plano Coo Con For each side 1 of the set L of sides that form the framework in the Coo Co n plane
Cn0: C n0 :
-obtener las coordenadas (u v) de su primer extremo (A);  - obtain the coordinates (u v) of its first end (A);
-a partir de esas coordenadas (u v) del primer extremo, calcular el punto Njj (u,v) denominado A', que es el punto transformado del vértice A en la superficie NURBS obtenida previamente; -from these coordinates (uv) of the first end, calculate the point Nj j (u, v) called A ', which is the transformed point of vertex A on the NURBS surface previously obtained;
-obtener las coordenadas (u v) de su segundo extremo (B);  - obtain the coordinates (u v) of its second end (B);
-a partir de esas coordenadas (u v) del segundo extremo, calcular el punto Nij (u,v) denominado B', que es el punto transformado del vértice B en la superficie NURBS obtenida previamente; -from these coordinates (uv) of the second end, calculate the point Ni j (u, v) called B ', which is the transformed point of vertex B on the NURBS surface previously obtained;
La entidad lineal Γ formada por los puntos A' B' es el transformado del lado 1. The linear entity Γ formed by points A 'B' is the transform of side 1.
Dicho con otras palabras, en esta etapa se establece una relación entre la triangularización del plano indicada antes y una malla espacial que se adapta a una superficie NURBS de orden n. In other words, at this stage a relationship is established between the triangularization of the plane indicated above and a spatial mesh that adapts to a NURBS surface of order n.
Este proceso es iterativo, es decir, se repite para cada lado 1 del entramado definido con anterioridad, y termina al recorrer todos los lados requeridos. Tantos lados 1 hayamos definido, tantas barras Γ se obtienen en la estructura de malla. Como se ha indicado anteriormente, el método permite definir una superficie NURBS de cualquier orden, incluido n=l, aunque el método presenta sus mayores ventajas en diseños con grado de complejidad alto, al menos n>l . Por esta razón, el método presenta sus mayores ventajas para y más particularmente, para n >3.This process is iterative, that is, it is repeated for each side 1 of the previously defined framework, and ends when it travels through all the required sides. So many sides 1 we have defined, so many bars Γ are obtained in the mesh structure. As indicated above, the method allows to define a NURBS surface of any order, including n = 1, although the method has its greatest advantages in designs with a high degree of complexity, at least n> 1. For this reason, the method has its greatest advantages for and more particularly, for n> 3.
Figure imgf000014_0003
Figure imgf000014_0003
Finalmente, la invención permite diseñar cualquier estructura mallada obtenida a partir del método descrito anteriormente. Finally, the invention allows to design any meshed structure obtained from the method described above.
A continuación se muestran varios ejemplos que ilustran el resultado final (estructura mallada formada por entidades lineales). Below are several examples that illustrate the final result (meshed structure formed by linear entities).
En la figura 5 se representan dos mallas espaciales diferentes. En las ventanas "f ' y "g" de la figura 5 las dos mallas se ven en perspectiva. Ambas son NURBS de orden 3 (n=3). En la ventana "a" se representan dos posibles triangularizaciones del plano, que establece el método descrito anteriormente. La de la izquierda corresponde con la malla de la ventana "f '. La triangularización de la derecha corresponde a la malla de la ventana "g". La ventana "b" nos advierte de esta correspondencia. En la ventana "c" podemos ver ambas mallas en una vista en planta -vertical- y apreciar su diferencia. Sin embargo, en la ventana "d", que nos muestra una vista lateral, podemos apreciar que ambas mallas también tienen similitudes. La ventana "e" muestra otra vista lateral diferente. En ella se muestra que las mallas, en realidad, se están adaptando a la misma superficie NURBS de referencia, que define el método de la invención. Se aprecia su coincidencia. In figure 5 two different spatial meshes are represented. In the windows "f 'and" g "in figure 5 the two meshes are seen in perspective. Both are NURBS of order 3 (n = 3). In window" a "two possible triangularizations of the plane are represented, which establishes the method described above, the one on the left corresponds to the window mesh "f '. The triangularization on the right corresponds to the window mesh "g". Window "b" warns us of this correspondence. In the "c" window we can see both meshes in a plan view -vertical- and appreciate their difference. However, in the "d" window, which shows a side view, we can see that both meshes also have similarities. The "e" window shows a different side view. It shows that the meshes are actually adapting to the same reference NURBS surface, which defines the method of the invention. Its coincidence is appreciated.
Para este caso se utilizaron los siguientes datos: For this case the following data were used:
Coordenadas C00 C03 C30 O
Figure imgf000014_0001
Coordinates C 00 C 03 C 30 O
Figure imgf000014_0001
Pesos
Figure imgf000014_0002
Figure imgf000015_0001
Pesos
Figure imgf000014_0002
Figure imgf000015_0001
La figura 6 es un ejemplo de malla espacial adaptada a una NURBS de orden 5 (n=5): La ventana "a" muestra su vista en planta. Las ventanas "b" y "c" son vistas laterales, y la ventana "d" una vista general. Figure 6 is an example of a space mesh adapted to a NURBS of order 5 (n = 5): Window "a" shows its plan view. Windows "b" and "c" are side views, and window "d" is a general view.
Para este caso se utilizaron los siguientes datos: For this case the following data were used:
Coordenadas Coo C05 C5o O
Figure imgf000015_0003
Coordinates Coo C 05 C 5 or O
Figure imgf000015_0003
Pesos  Pesos
Figure imgf000015_0002
Figure imgf000015_0002
Como puede observarse, una de las grandes ventajas del método de la invención es que se controla la forma matemática de la estructura. As can be seen, one of the great advantages of the method of the invention is that the mathematical form of the structure is controlled.
La figura 7 pone de manifiesto la generalidad (n) del método. En esta figura se representa el uso del método, para superficies de orden 2, 3, y 4. Obviamente, esto es generalizable a n cualquiera. Figure 7 shows the generality (n) of the method. This figure represents the use of the method, for surfaces of order 2, 3, and 4. Obviously, this is generalizable to anyone.

Claims

REIVINDICACIONES
1. Un método para obtener un diseño de la geometría de una malla espacial formada por una pluralidad L de entidades lineales Γ, caracterizado por que comprende las etapas de: 1. A method for obtaining a design of the geometry of a spatial mesh formed by a plurality L of linear entities Γ, characterized in that it comprises the steps of:
-elegir tres puntos (Co0 C0n Cn0) en un plano que define un triángulo; -Choose three points (Co 0 C 0n C n0 ) in a plane that defines a triangle;
-elegir un punto (O) ajeno a ese plano; -Choose a point (O) outside that plane;
-elegir un orden de complejidad n, donde n es un número natural mayor o igual que 1 ; -calcular un conjunto de puntos de control Qj en dicho triángulo que dependen de n y de los tres puntos elegidos (C0o C0n Cn0) -Choose an order of complexity n, where n is a natural number greater than or equal to 1; - calculate a set of control points Q j in said triangle that depend on n and on the three points chosen (C 0 or C 0n C n0 )
-elegir unos pesos λ¾, donde cada uno de estos pesos se relaciona con un punto de control Cy-; -Choose λ¾ weights, where each of these weights is related to a control point C and -;
-transformar el conjunto de puntos de control Qj en una pluralidad de puntos Py que definen un poliedro de control; -transforming the set of control points Q j into a plurality of points Py defining a control polyhedron;
-obtener una superficie NURBS a partir de dicho poliedro de control;  - obtaining a NURBS surface from said control polyhedron;
-dentro del plano definido por dichos puntos (Coo C0n Cn0), definir un entramado como una pluralidad L de lados 1; - within the plane defined by said points (Coo C 0n C n0 ), define a fabric as a plurality L of sides 1;
-transformar dicha pluralidad L de lados 1 en una pluralidad de entidades lineales Γ constitutivas de dicha malla espacial.  - transforming said plurality L of sides 1 into a plurality of linear entities Γ constituting said spatial mesh.
2. El método según la reivindicación 1, donde dicha etapa de calcular un conjunto de puntos de control C¡j en dicho triángulo viene dado por la expresión: 2. The method according to claim 1, wherein said step of calculating a set of control points C j in said triangle is given by the expression:
Figure imgf000016_0001
Figure imgf000016_0001
3. El método según cualquiera de las reivindicaciones 1 ó 2, donde dicho punto (O) ajeno al plano puede ser finito, es decir, definido por sus coordenadas, o puede estar en el infinito, es decir, definido por una dirección. 3. The method according to any of claims 1 or 2, wherein said point (O) outside the plane can be finite, that is, defined by its coordinates, or it can be at infinity, that is, defined by an address.
4. El método según la reivindicación 3, donde si dicho punto (O) es finito, los pesos λ
Figure imgf000017_0003
se eligen libremente, mientras que si dicho punto (O) es infinito, los pesos valen
Figure imgf000017_0004
todos 1.
4. The method according to claim 3, wherein if said point (O) is finite, the weights λ
Figure imgf000017_0003
they are freely chosen, while if said point (O) is infinite, the weights are worth
Figure imgf000017_0004
all 1.
5. El método según la reivindicación 4, donde la etapa de transformar el conjunto de puntos de control Cy en una pluralidad de puntos P¡j que definen un poliedro de control, viene dada por la expresión: 5. The method according to claim 4, wherein the step of transforming the set of points of Cy control a plurality of points Pj j defining a polyhedron control is given by the expression:
Figure imgf000017_0002
Figure imgf000017_0002
6. El método según la reivindicación 5, donde dicha etapa de obtener una superficie NURBS a partir de dicho poliedro de control, viene dada por la expresión: 6. The method according to claim 5, wherein said step of obtaining a NURBS surface from said control polyhedron is given by the expression:
Figure imgf000017_0001
donde (u,v) son las coordenadas baricéntricas del triángulo definido por los puntos
Figure imgf000017_0005
Figure imgf000017_0001
where (u, v) are the baricecentric coordinates of the triangle defined by the points
Figure imgf000017_0005
7. El método según la reivindicación 6, donde dicha etapa de transformar dicha pluralidad L de lados 1 en una pluralidad de entidades lineales constitutivas de dicha malla espacial, se realiza de la siguiente forma: 7. The method according to claim 6, wherein said step of transforming said plurality L of sides 1 into a plurality of linear entities constituting said spatial mesh, is performed as follows:
-para cada lado 1:  -for each side 1:
-obtener las coordenadas (u v) de su primer extremo (A); -a partir de dichas coordenadas (u v), calcular el punto Ny (u,v) denominado A'; - obtain the coordinates (uv) of its first end (A); -from these coordinates (uv), calculate the point Ny (u, v) called A ';
-obtener las coordenadas (u v) de su segundo extremo (B);  - obtain the coordinates (u v) of its second end (B);
-a partir de dichas coordenadas (u v), calcular el punto Ny (u,v) denominado B';  -from these coordinates (u v), calculate the point Ny (u, v) called B ';
-siendo la entidad lineal Γ formada por los puntos A' B', el transformado del lado 1;  -being the linear entity Γ formed by points A 'B', the transformation of side 1;
8. El método según cualquiera de las reivindicaciones anteriores, donde n >2. 8. The method according to any of the preceding claims, wherein n> 2.
9. Estructura mallada obtenida a partir del método según cualquiera de las reivindicaciones anteriores. 9. Mesh structure obtained from the method according to any of the preceding claims.
10. Un programa informático que comprende medios de código de programa informático adaptados para realizar las etapas del método según cualquiera de las reivindicaciones de la 1 a la 8, cuando dicho programa se ejecuta en un ordenador, un procesador de señal digital, una disposición de puertas de campo programable, un circuito integrado de aplicación específica, un microprocesador, un microcontrolador, y cualquier otra forma de hardware programable. 10. A computer program comprising computer program code means adapted to perform the steps of the method according to any one of claims 1 to 8, when said program is run on a computer, a digital signal processor, an arrangement of Programmable field doors, a specific application integrated circuit, a microprocessor, a microcontroller, and any other form of programmable hardware.
PCT/ES2012/000083 2011-03-28 2012-03-28 Method for the geometric design of spatial meshes using nurbs surfaces WO2012131124A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201100375A ES2363546B2 (en) 2011-03-28 2011-03-28 "METHOD OF GEOMETRIC DESIGN OF SPACES, BELONGING TO THE FIELD OF ARCHITECTURE AND CIVIL ENGINEERING, BY NURBS SURFACES".
ESP201100375 2011-03-28

Publications (1)

Publication Number Publication Date
WO2012131124A1 true WO2012131124A1 (en) 2012-10-04

Family

ID=44303469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2012/000083 WO2012131124A1 (en) 2011-03-28 2012-03-28 Method for the geometric design of spatial meshes using nurbs surfaces

Country Status (2)

Country Link
ES (1) ES2363546B2 (en)
WO (1) WO2012131124A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2682235A (en) * 1951-12-12 1954-06-29 Fuller Richard Buckminster Building construction
US20090164175A1 (en) * 2007-12-21 2009-06-25 Airbus Espana, S.L.. Method and system to optimize surface design
EP2169615A2 (en) * 2008-09-30 2010-03-31 Intel Corporation Rendering trimmed nurbs on programmable graphics architectures

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2682235A (en) * 1951-12-12 1954-06-29 Fuller Richard Buckminster Building construction
US20090164175A1 (en) * 2007-12-21 2009-06-25 Airbus Espana, S.L.. Method and system to optimize surface design
EP2169615A2 (en) * 2008-09-30 2010-03-31 Intel Corporation Rendering trimmed nurbs on programmable graphics architectures

Also Published As

Publication number Publication date
ES2363546A1 (en) 2011-08-08
ES2363546B2 (en) 2012-02-22

Similar Documents

Publication Publication Date Title
Roovers et al. Deployable scissor grids consisting of translational units
Sugihara et al. A solid modelling system free from topological inconsistency
Marsh Applied geometry for computer graphics and CAD
Cen et al. An unsymmetric 4‐node, 8‐DOF plane membrane element perfectly breaking through MacNeal's theorem
Mesnil et al. Isogonal moulding surfaces: a family of shapes for high node congruence in free-form structures
US20070242067A1 (en) SmartForm
Mitschke et al. Geometry: The leading parameter for the Poisson’s ratio of bending-dominated cellular solids
Rian et al. Fractal-based generative design of structural trusses using iterated function system
Rambau et al. Projections of polytopes and the generalized Baues conjecture
Koester et al. Conforming window functions for meshfree methods
JP4185698B2 (en) Mesh generation method
Carroll et al. A survey of the differential geometry of discrete curves
Mizzi et al. Novel chiral honeycombs based on octahedral and dodecahedral Euclidean polygonal tessellations
Tellier et al. Caravel meshes: A new geometrical strategy to rationalize curved envelopes
ES2363546B2 (en) "METHOD OF GEOMETRIC DESIGN OF SPACES, BELONGING TO THE FIELD OF ARCHITECTURE AND CIVIL ENGINEERING, BY NURBS SURFACES".
Nawratil Multi-stable design of triangulated origami structures on cones of revolution
Demaine et al. Zero-area reciprocal diagram of origami
EP2921977A1 (en) Method for generating a kit of elements for composing or constructing diverse gap-less 3D structures and such kit of elements
Fuchs The Geometric Language of Roman Theater Design, Part 1
Shtogrin Bending of a piecewise developable surface
KR20210049468A (en) Method for dividing a spherical surface into a grid of equal area
Roovers et al. The design of a foldable triangulated scissor grid for single-curvature surfaces
Dobre THE USE OF AXONOMETRIC AND PERSPECTIVE PROJECTIONS FOR THE REPRESENTATION OF STAIRS IN ARCHITECTURAL CONSTRUCTIONS
Agustin et al. On the modeling of the object surface reliefs of marble handicrafts using quartic curves and circles
CN115256948B (en) Personalized customization 3D printing Luban lock generation method and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12764044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12764044

Country of ref document: EP

Kind code of ref document: A1