WO2007104811A1 - Electrooptical reflector device and corresponding actuation methods - Google Patents

Electrooptical reflector device and corresponding actuation methods Download PDF

Info

Publication number
WO2007104811A1
WO2007104811A1 PCT/ES2007/000121 ES2007000121W WO2007104811A1 WO 2007104811 A1 WO2007104811 A1 WO 2007104811A1 ES 2007000121 W ES2007000121 W ES 2007000121W WO 2007104811 A1 WO2007104811 A1 WO 2007104811A1
Authority
WO
WIPO (PCT)
Prior art keywords
zone
conductive element
condenser
plates
voltage
Prior art date
Application number
PCT/ES2007/000121
Other languages
Spanish (es)
French (fr)
Inventor
Josep MONTANYÀ SILVESTRE
Juan José VALLE FRAGA
Original Assignee
Baolab Microsystems S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from ES200600607A external-priority patent/ES2281294B1/en
Priority claimed from ES200600625A external-priority patent/ES2288110B1/en
Priority claimed from ES200600647A external-priority patent/ES2288111B1/en
Application filed by Baolab Microsystems S.L. filed Critical Baolab Microsystems S.L.
Publication of WO2007104811A1 publication Critical patent/WO2007104811A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0841Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting element being moved or deformed by electrostatic means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/085Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting means being moved or deformed by electromagnetic means

Definitions

  • the invention relates to a miniaturized electro-optical device, specifically to a miniaturized digital reflector electro-optical device.
  • These devices belong to the family of devices usually called MEMS (micro electro-mechanical systems - microelectromechanical systems), in particular of the devices called Digital Micromirror Devices (digital micro mirror devices, DMD®).
  • MEMS micro electro-mechanical systems - microelectromechanical systems
  • DMD® Digital Micromirror Devices
  • the invention also relates to a method of actuating one of said miniaturized electro-optical devices and to miniaturized electro-optical devices suitable for carrying out the new procedure.
  • the invention also relates to a miniaturized reflector electro-optical assembly for the processing of a light signal.
  • Miniaturized reflective electro-optical assemblies include MEMS and / or DMD® components.
  • the light signal can be monochromatic, in which case it will be defined as having a certain wavelength, or polychrome, in which case it will have a plurality of wavelengths, one of which will be referred to in The present description and claims. That is, when the electro-optical assembly processes a polychrome light signal, its performance will have the function of affecting one of the wavelengths present in the polychrome light. In some cases, as will be described later, the electro-optical assembly can affect several specific wavelengths within the spectrum of the polychrome light that forms the light signal.
  • the object of the invention is also a process for processing a light signal comprising a predetermined wavelength by means of an electro-optical assembly according to the invention.
  • the invention also relates to a method of actuating an electro-optical assembly according to the invention.
  • Miniaturized digital reflector electro-optical devices are known, such as those described in the document "A MEMS-Based Projection Display” by Peter F. Van KESSEL 1 et al, Proceedings of the IEEE, VoI. 86, No. 8, August 1998. These devices comprise a reflective surface capable of adopting two positions in space that form a non-zero angle. In this way, an incident beam on the reflecting surface can be deflected in one direction or another depending on the position of the reflecting surface.
  • the reflective surface is mounted on a layer of material that is cantilevered and which, when subjected to electrostatic fields, is capable of bending in one direction or another.
  • the miniaturized reflector electro-optical assemblies that process an incident light signal on them are also known.
  • a family of these electro-optical assemblies is formed by devices that are capable of reflecting the incident light signal when they are in a first state and that are capable of causing destructive interference in said light signal, canceling it, when they are in a second state.
  • the devices have the reflective surface mounted on a cantilever so that, by means of the application of suitable electrostatic fields, the reflective surface can be moved towards a certain position, overcoming the elastic force of the material that forms the cantilever. By canceling the electrostatic fields, the reflective surface returns to its original position thanks to the elastic force of the cantilever material.
  • GLV® Gramting Light Valve
  • Silicon Light Machines Silicon Light Machines and described, for example, in the document Lied "The Grating Light Valve: Revolutionizing Display Technology", DM Bloom, available on the Internet portal www.siliconliqht.com.
  • GEMS Gram Electromechanical System
  • Kodak Research and Development available on the Internet portal www.kodak.com/US/en/corp/researchDevelopment/technoloqyFeatures/qems.html.
  • miniaturized digital electro-optical devices that include:
  • this conductive element presenting a first surface facing the first zone and a second surface facing the second zone, where the conductive element is mechanically independent of both zones and being able to make a movement to through the intermediate space, from a first end, where the conductive element is in contact with the first zone, to a second end, where the conductive element is in contact with the second zone, and vice versa, depending on voltages present in the first, second and third condenser plates,
  • a reflective surface suitable for reflecting an incident beam of light, integral with the conductive element.
  • miniaturized digital electro-optical devices comprising:
  • a conductive element disposed in the intermediate space, where the conductive element is mechanically independent of both zones and being able to make a displacement through the intermediate space, from a first ex- section, where the conductive element is close to the first zone, to a second end, where the conductive element is close to the second zone, and vice versa, depending on voltages present in the first, second and third condenser plates,
  • a reflective surface suitable for reflecting an incident beam of light, integral with the conductive element.
  • the object of the invention is to overcome these drawbacks.
  • This purpose is achieved by a miniaturized reflecting electro-optical device of the type indicated at the beginning characterized in that:
  • a - when the conductive element is at the first end, that is, in contact with the first zone, it has at least three first support points not aligned on the first surface that are in contact with three corresponding first support points on the first zone, and when the conductive element is at the second end, that is, in contact with the second zone, it has at least three second support points not aligned on the second surface that are in contact with three corresponding second support points in the second area, and
  • the distance between at least one of the second support points of the second surface to its corresponding support point of the second zone is different from the distance of the remaining second points of support of the second surface to its corresponding support points of the second area, so that the reflecting surface changes orientation in the space when the conductive element makes the displacement between the first end and the second end.
  • the device according to the invention allows the reflective surface to be positioned with two orientations in space that form a certain angle without the need to elastically deform any material.
  • the conductive element is not in electrical contact with its surroundings during its movement. This allows to reduce the activation voltages and the power consumption, allows to reduce the size of each of the two devices (with the consequent improvement of resolution) and the problems derived from the residual mechanical stresses in the cantilever material are avoided. .
  • the conductive element in whatever form it has, will always move from a first end to a second end and vice versa. In order to define more precisely the two positions called first and second extremes, the following considerations have been taken into account.
  • the driver When the element con- ductor is at the first end, will be in contact with certain points of the first zone that limit the intermediate space and, therefore, that limit the displacement that the conductive element can make.
  • the driver At a minimum, the driver will be in contact with the first zone at three non-aligned points (which define a plane) although in practice it may be in contact at more points and, in addition, these points will not be points in the geometric sense but rather they will be more or less large surfaces.
  • the contact points will be the junction points between the first surface of the conductive element and the first zone.
  • these contact points define first support points on the first surface of the conductive element and first support points in the first zone.
  • first support points of the first surface and the first support points of the first zone will be separated from each other defining a distance between each pair of support points.
  • some second support points can be defined on the second surface of the conductive element and some second support points on the second zone.
  • the present embodiment of the invention is characterized in that when the conductive element is found at the first end, the distance between at least one pair of second support points is different from the others.
  • the conductive element comprises a first projection arranged on one of the first and second surfaces, where the first projection comprises one of the first or second support points of the first or second surfaces.
  • these devices usually have a substantially laminar structure, that is, obtained by means of the deposition of superimposed layers and substantially parallel to each other.
  • the desired effect is already obtained.
  • the reflective surface is parallel to the general structure of layers of the device when it is at one of the two ends and that it forms a certain angle with the general structure of layers of the device when it is in the opposite end.
  • the conductive element comprises a first projection arranged on the first surface, where the first projection comprises one of the first support points of the first surface, and a second projection disposed on the second surface, where the second projection comprises one of the second support points of the second surface.
  • the reflective surface forms a certain angle with the general structure of layers of the device when it is at one of the two ends and forms another determined angle with the general structure of layers and device when it is at the opposite end.
  • At least one of the first zone and second zone comprises a projection that, in turn, comprises one of the first or second support points of the first or second surfaces.
  • one of the distances indicated above is different from the others based on adding projections in the conductive element but it can also be achieved based on adding projections in the first zone and / or in The second zone. This has the advantage that the conductive element can have a symmetrical mass distribution.
  • projections should be interpreted broadly.
  • an area of the device that has an asymmetric geometry should be understood as having projections in the sense of the invention, if this asymmetric geometry causes any of the distances indicated above to be different from the others.
  • a subject of the invention is also an actuation method of an electro-optical device of the type indicated above characterized in that it comprises a step of connecting at least one of the capacitor plates at a first voltage and at least one of the condenser plates at a second voltage, where the second voltage is greater than the first voltage, where each and every one of the capacitor plates are subjected to a certain voltage so that none of them is in a high impedance state, so that the projection along the central axis of the capacitor plates subjected to the first voltage has central asymmetry with respect to the projection according to the central axis of the capacitor plates subjected to the second voltage.
  • This solution also has the advantage that it allows combining the possibility of changing the orientation in the space of the reflecting surface, as previously mentioned, with the possibility that the reflecting surface performs a pure translation, based on acting on the conductive element in a conventional manner, as described in PCT application WO 2004/046807, on p. 5 line 29 - p. 6 line 8.
  • a subject of the invention is also a method of actuating a miniaturized reflecting electro-optical device, where the device is the same as described above, but additionally has a plurality of condenser plates distributed with rotation symmetry along the central axis in the first zone and a plurality of condenser plates distributed with rotation symmetry along the central axis in the second zone, characterized in that it comprises a connection stage of at least one of the capacitor plates at a first voltage and at least one of the other plates of capacitor at a second voltage, where the second voltage is greater than the first voltage, so that the projection along the central axis of the capacitor plates subjected to the first voltage has central asymmetry with respect to the projection along the central axis of the plates capacitor subjected to the second voltage.
  • this arrangement of the condenser plates allows the reflecting surface to be oriented in many directions, rotating it along different axes perpendicular to the central axis.
  • it should be understood that it has three (the first, second and third condenser plate) or more plates. With three plates, distributed in triangle, six positions could be obtained in the space differentiated from the reflecting surface, corresponding to the rotation according to three different axes. Increasing the number of plates increases the number of axes of rotation.
  • the conductive element when the conductive element is close to one of the first zone or second zone, the conductive element is in contact with an external circuit and the conductive element is connected to a voltage through said external circuit.
  • the conductive element will usually be in contact with stops that limit its movement at both ends. These stops may simply be mechanical stops, but they may be part of an external circuit so that the conductive element can be connected at a given voltage through said stops. In this way, the conductive element will be subject to a certain voltage (while the contact with the external circuit lasts), which can be used to increase the electrostatic force applied to the conductive element. In this way it is possible to facilitate the disengagement of the conductive element from the stops, overcoming the coupling forces that can be generated between the conductive element and the stops or other contact surfaces.
  • a subject of the invention is also a miniaturized reflecting electro-optical device of the type indicated above, characterized in that it comprises control means suitable for carrying out a method according to the invention.
  • a subject of the invention is also a miniaturized reflector electro-optical device of the type indicated above characterized in that it has four condenser plates not aligned in the first zone and four condenser plates not aligned in the second zone, and because it comprises suitable control means to perform a procedure according to the invention.
  • the condenser plates are distributed in a square shape and the control means are suitable for applying the first voltage and the second voltage on condenser plates such that their projections along the central axis They are adjacent.
  • a subject of the invention is also a miniaturized reflecting electro-optical device of the type indicated above characterized in that it comprises a plurality of condenser plates distributed with rotational symmetry along the central axis in the first zone and a plurality of condenser plates distributed with symmetry of rotation according to the central axis in the second zone, and because it comprises control means suitable for carrying out a process according to the invention.
  • a subject of the invention is also a miniaturized reflector electro-optical assembly of the type indicated at the beginning characterized in that it comprises: [a] a miniaturized digital reflector electro-optical device which, in turn, comprises:
  • a conductive element disposed in the intermediate space, where the conductive element is mechanically independent of the first zone and second zone and is capable of moving through the intermediate space, from a first end, where the conductive element is in contact with The first zone, to a second end, where the conductive element is in contact with the second zone and vice versa, depending on voltages present in the first, second and third condenser plates,
  • a light source capable of emitting the light signal, where the light source is oriented such that the light signal strikes the reflecting surface, defining an optical path, whether the conductive element is at the first end or if it's at the second end,
  • the conductive element is not in electrical contact with its surroundings during its movement. This allows the above-mentioned problems to be solved since the conductive element can be displaced by small activation voltages, it can be manufactured with smaller sizes, which improves the resolution, the power consumption is also reduced, and there are no problems with mechanical stresses. residuals since it is not necessary a cantilever that must be deformed.
  • the assembly has a second fixed reflective surface separated from the reflecting surface, according to the optical path, a value equal to a quarter of the wavelength, or an odd multiple of the fourth part of the wavelength, when the element Driver is at one of the first end and second end.
  • this fixed reflective surface will be the one that reflects the non-offset light signal.
  • the reflective surface integral to the conductive element is at one of the ends, the light signal reflected in it will be in phase agreement with the signal reflected in the fixed reflective surface, and the electro-optical assembly will reflect in its entirety the incident light signal .
  • the reflective surface integral to the conductive element when the reflective surface integral to the conductive element is at the opposite end, the light signal reflected therein will be offset half wavelength with respect to the signal reflected in the fixed reflective surface, which will cause the cancellation of both so that the The electro-optical assembly will not reflect (seen as a whole) the incident light signal.
  • the fixed reflective surface is in the electro-optical device itself, although it is also possible that the electro-optical assembly has the fixed reflective surface arranged in a place independent of the electro-optical device, for example adjacent to it.
  • the geometry of the conductive element can be diverse.
  • the conductive element has a main body that is a flat sheet from which a support arm extends at the end of which the reflecting surface is arranged.
  • the two functions are "separated": the main body is responsible for the displacement being carried out and can be housed inside the electro-optical device, while the reflective surface may be outside the electro-optical device and may have an optimized geometry to perform the reflection function.
  • the support arm joins them mechanically and "crosses" the electro-optical device through an opening provided therein.
  • the support arm can have any geometry appropriate to its function. In this sense it can be formed by a single column, by a plurality of columns, or by any other suitable geometry.
  • the conductive element has a main body that is a flat sheet on which the reflective surface extends, where the reflective surface is oriented towards one of the first zone and second zone, which has an opening which allows the passage of the light signal.
  • the geometry of the conductive element is simplified and the moving masses are reduced.
  • an opening in the electro-optical device large enough to allow the passage of a significant part of the light signal must be provided.
  • a given electro-optical device will be able to affect a light signal of a certain wavelength.
  • the light signal is polychrome
  • an advantageous embodiment of the invention is obtained when the electro-optical assembly has three groups of electro-optical devices, where the electro-optical devices of each group are suitable for processing a light signal that comprises the same determined wavelength, and where each group is suitable for the processing of a light signal that comprises a determined wavelength different from that of the other groups.
  • three groups each could be used to affect the red, blue, and green light, respectively.
  • the electro-optical assembly additionally comprises a semi-transparent layer disposed at a distance of half the wavelength (or a multiple of wave halves), measured according to the direction of the path optical.
  • the semi-transparent layer performs a function equivalent to the fixed reflective surface: the semi-transparent layer will always reflect part of the light signal without offsetting it, while the part of the light signal that passes through the semi-transparent layer will affect the reflective surface integral with the element conductor and will be in phase or offset half wavelength with respect to the signal reflected in the semi-transparent layer depending on the position of the conductive element.
  • the semi-transparent layer does not have to be located in the vicinity of the device, but, on the contrary, it can be placed, for example, on the external surface of the chip (provided that the distance meets the condition of being a multiple of half of the wavelength).
  • the electro-optical assembly comprises a miniaturized digital reflector electro-optical device which, in turn, comprises:
  • a conductive element disposed in the intermediate space, where the conductive element is mechanically independent of the first zone and second zone and is capable of moving through the intermediate space, from a first end, where the conductive element is in contact with The first zone, to a second end, where the conductive element is in contact with the second zone and vice versa, depending on voltages present in the first, second and third condenser plates,
  • the distance traveled by the reflecting surface is equal to the fourth part of the wavelength, or an odd multiple of the fourth part of the wavelength, when the conductive element passes from the first end to the second end or vice versa.
  • a subject of the invention is also a process for the processing of a light signal comprising a given wavelength, by means of a miniaturized reflector electro-optical assembly comprising a miniaturized digital reflector electro-optical device comprising:
  • a conductive element disposed in the intermediate space, where the conductive element is mechanically independent of the first zone and second zone and is capable of moving through the intermediate space, from a first end, where the conductive element is in contact with The first zone, to a second end, where the conductive element is in contact with the second zone and vice versa, depending on voltages present in the first, second and third condenser plates,
  • the light signal is affected on the reflecting surface whether the conductive element is at the first end or if it is at the second end, and because the optical path traveled by said light signal is modified, at a value equal to half of the wavelength, or an odd multiple of half of the wavelength, passing the conductive element from the first end to the second end or vice versa, due to the displacement made by the reflective surface.
  • Fig. 1 a simplified scheme of an electro-optical device according to the state of the art.
  • Fig. 2 a simplified scheme of an electro-optical reflecting device according to the invention.
  • FIG. 3 an exploded perspective view of an electro-optical reflecting device according to the invention.
  • Fig. 4 a perspective view of the electro-optical reflecting device of Fig. 3,
  • Figs. 5 and 6 a front view of the reflecting electro-optical device of Fig. 3 showing two different orientations
  • FIGs. 9 and 10 two simplified schemes showing the equivalence between projections arranged in the conductive element or arranged in the first and / or second zone
  • Fig. 11 a simplified scheme of another embodiment of an electro-optical reflecting device according to the invention.
  • Fig. 12 a simplified scheme of an electro-optical device according to the state of the art.
  • Fig. 13 a simplified scheme of an electro-optical reflecting device according to the invention.
  • Figs. 16 and 17 a front view of the reflecting electro-optical device of Fig. 14 showing two different orientations
  • Figs. 2OA and 2OB a scheme of an actuation procedure using six condenser plates.
  • Figs. 21 A and 21 B a scheme of an actuation procedure using six condenser plates and an intermediate voltage.
  • Figs. 22A and 22B a scheme of an actuation procedure using eight condenser plates.
  • Figs. 23A and 23B a scheme of an actuation procedure using eight condenser plates and an intermediate voltage.
  • Figs. 24A 1 24B, 24C, 25A, 25B and 25C a scheme of an actuation procedure using 4 + 4 condenser plates not aligned.
  • Figs. 26A, 26B and 26C a scheme of an actuation procedure using 4 + 4 non-aligned condenser plates and an intermediate voltage.
  • Figs. 27A, 27B and 27C a scheme of an alternative procedure of operation using 4 + 4 non-aligned condenser plates.
  • Fig. 28 a scheme of two possible orientations using 4 + 4 non-aligned condenser plates.
  • Fig. 29 a scheme of multiple possible orientations using a plurality of non-aligned condenser plates.
  • Figs. 3OA and 3OB a scheme of an actuation procedure using the plurality of plates of Fig. 29.
  • Figs. 31 and 32 two simplified schemes of conductive elements with projections
  • Figs. 33 and 34 two simplified schemes showing the equivalence between projections arranged in the conductive element or arranged in the first and / or second zone,
  • Fig. 35 a simplified scheme of another embodiment of an electro-optical reflecting device according to the invention.
  • Fig. 38 an exploded perspective view of an electro-optical reflecting device according to the invention.
  • Figs. 39A and 39B a simplified scheme of an electro-optical assembly according to the invention with the conductive element arranged at the first end and the second end, respectively.
  • Fig. 39C a simplified scheme of an electro-optical assembly according to the invention with a semi-transparent layer.
  • Figs. 40 and 41 a front view of the reflecting electro-optical device of Fig. 38 showing two different orientations
  • Figs. 42A and 42B a scheme of an actuation procedure using four condenser plates.
  • Figs. 45A and 45B a scheme of an actuation procedure using six condenser plates and an intermediate voltage.
  • Figs. 46A and 46B a scheme of an actuation procedure using eight condenser plates.
  • Figs. 47 A and 47B a scheme of an actuation procedure using eight capacitor plates and an intermediate voltage.
  • Figs. 48A, 48B, 48C, 49A, 49B and 49C a scheme of an actuation procedure using 4 + 4 condenser plates not aligned.
  • Figs. 5OA, 5OB and 5OC a scheme of an actuation procedure using 4 + 4 non-aligned condenser plates and an intermediate voltage.
  • Figs. 51 A, 51 B and 51 C a scheme of an alternative procedure of operation using 4 + 4 condenser plates not aligned.
  • Fig. 52 a scheme of two possible orientations using 4 + 4 non-aligned condenser plates.
  • Fig. 53 a scheme of multiple possible orientations using a plurality of non-aligned condenser plates.
  • Figs. 54A and 54B a scheme of an actuation procedure using the plurality of plates of Fig. 43.
  • FIG. 1 shows a simplified scheme of an electro-optical device, as described in PCT application WO 2004/046807.
  • the electro-optical device has a first zone 9 facing a second zone 11 (to the left and right of the drawing, respectively) with a first capacitor plate 1 arranged in the first zone 9, a second capacitor plate 2 and a third plate of capacitor 3 in the second zone 11, facing said first capacitor plate 1 and where each of said second and third capacitor plates 2, 3 are smaller or equal than the first capacitor plate 1 but both together are larger than Ia first condenser plate 1.
  • Enter both zones 9, 11 there is an intermediate space 5 along which a conductive element 7 can be moved.
  • a DC control circuit governs the condenser plates.
  • the conductive element 7 is mechanically independent of the first zone 9 and the second zone 11, that is, it is mechanically independent of the entire fixed structure of the device. In other words, the conductive element 7 is a loose part suitable for freely moving through the intermediate space 5.
  • the conductive element 7 has no physical connection with its surroundings.
  • stops 13 that limit the movement of the conductive element 7 and which define a first end and a second end.
  • FIG. 4 a reflecting electro-optical device according to the invention is shown. In particular, these views do not present projections (which will be defined below) for further simplification.
  • the minimum amount of condenser plates necessary to be able to make a movement in two directions is three, with the geometric requirements indicated above.
  • the devices have more condenser plates as well as a plurality of stops.
  • the conductive element 7 does not come into contact with the condenser plates 15, although in some cases it may be permissible to come into contact with any of them, as described in PCT application WO 2004/046807, in P. 23 line 12-28.
  • the conductive element 7 has a main body 17 that is substantially a flat sheet and that supports a table-shaped structure with a central leg (or support structure).
  • the table of the table has a reflecting surface 19 on which the light beam will affect, and the central leg extends through a hole arranged between the condenser plates 15 of the upper part of the device.
  • the conductive element 7 will have a main body 17 which, as mentioned above, will be substantially a laminar element and the reflective surface 19 will be parallel to the main body 17 of the conductive element 7, since these geometries are those obtained from a more easily using the usual MEMS manufacturing procedures.
  • Figure 11 shows another alternative, in which it is achieved that the reflecting surface 19 adopts two different orientations thanks to the fact that the upper area of the device is asymmetric.
  • the conductive element 7 has again been shown without the table structure with the reflective surface 19 to simplify the drawing.
  • the specific geometry of the conductive element 7 shown in Figures 2 to 4, with the table structure that includes the reflecting surface 19, is a concrete example of an embodiment.
  • the conductive element 7 and the reflective surface 19 can have other geometries, in particular the reflective surface 19 can be included directly in the main body 17 of the conductive element 7.
  • these devices have three-dimensional geometries and that, therefore, the arrangement of the projections 21 (and, in general, of the contact points) can be a more or less complex three-dimensional arrangement.
  • the examples shown in the figures are simply examples with simplified geometries.
  • FIG 12 shows a simplified scheme of an electro-optical device, as described in PCT application WO 2004/046807.
  • the electro-optical device has a first zone 109 facing a second zone 111 (to the left and to the right of the drawing, respectively) with a first capacitor plate 101 arranged in the first zone 109, a second capacitor plate 102 and a third plate of capacitor 103 in the second zone 111, facing said first capacitor plate 101 and where each of said second and third capacitor plates 102, 103 are smaller or equal than the first capacitor plate 101 but both together are larger that the first condenser plate 101.
  • a DC control circuit governs the condenser plates.
  • the conductive element 107 is mechanically independent of the first zone 109 and the second zone 111, that is, it is mechanically independent of the entire fixed structure of the device. In other words, the conductive element 107 is a loose part suitable for freely moving through the intermediate space 105. The conductive element 107 has no physical connection with its surroundings.
  • Figures 13 to 15 show a reflecting electro-optical device according to the invention.
  • the minimum amount of condenser plates needed to be able to make a movement in two directions is three.
  • the devices have more condenser plates as well as a plurality of stops.
  • the conductive element 107 does not come into contact with the condenser plates 115, although in some cases it may be permissible to come into contact with any of them, as described in PCT application WO 2004/046807, in P. 23 line 12-28.
  • the conductive element 107 has a main body 117 that is substantially a flat sheet and that supports a table-shaped structure with a central leg (or support structure).
  • the table of the table has a reflective surface 119 on which the light beam will affect, and the central leg extends through a hole disposed between the condenser plates 115 of the upper part of the device.
  • the conductive element 107 will have a main body 117 which, as mentioned above, will be substantially a laminar element and the reflective surface 119 will be parallel to the main body 117 of the conductive element 107, since these geometries are those obtained in a simpler way through the usual MEMS manufacturing procedures.
  • the capacitor plate 115 When the capacitor plate 115 shows continuous horizontal lines, it represents that it is connected to an intermediate voltage between the two previous ones (preferably V 0 12). In any case, it must be taken into account that it is possible to reverse the polarity of the capacitor plates 115, obtaining the same result. Additionally, in figures 18A, 18B, 19A, 19B, 20A 1 2OB, 21 A, 21 B, 22A, 22B, 23A and 23B, the conductive element 107 and the profile condenser plates 115 are shown. It can be assumed that the condenser plates 115 are, in these cases, substantially square.
  • FIGs 19A and 19B A simplified case of the previous case is seen in Figures 19A and 19B.
  • the two upper capacitor plates 115 are always at the same voltage. Therefore, they can be physically joined so that they form a single condenser plate 1 15.
  • At least one additional capacitor plate 115 is connected at an intermediate voltage between the first voltage and the second voltage. This allows to make the device more stable against external influences. In fact, if the device has four or more capacitor plates 115 in each zone, it may be interesting to connect some of the plates 115 to a second intermediate voltage, different from the previous one. In this way, the force moment applied to the conductive element 107 can be adjusted more precisely.
  • the device has three condenser plates 115 aligned in the first zone 109 and three condenser plates 115 aligned in the second zone 111, and the central condenser plate 115 of each of the zones is connected Same voltage
  • This alternative is reflected in figures 2OA and 2OB.
  • one of the side condenser plates 115 of each of the zones is connected to an intermediate voltage, as shown in Figures 21 A and 21 B.
  • the device has four condenser plates 115 aligned in the first zone 109 and four condenser plates 115 aligned in the second zone 111, and three condenser plates 115 of the first zone 109 and three plates are connected of capacitor 115 of the second zone 111 at the same voltage, as shown in Figures 22A and 22B.
  • the device has four condenser plates 115 not aligned in the first zone 109 and four condenser plates 115 not aligned in the second zone 111, and three condenser plates 115 of the Ia are connected First zone 109 and three capacitor plates 115 of the second zone 111 at the same voltage, as shown in Figures 24A, 24B, 24C, 25A, 25B and 25C.
  • Figure 24A shows a plan view of the condenser plates 115 of the lower zone (for example, the first zone 109)
  • Figure 24B shows a plan view of the condenser plates 115 of the upper zone (which, following the same example, would be the second zone 111)
  • Figure 24C a profile view is shown, with a slight perspective so that the four condenser plates 115 of each zone are appreciated.
  • Figures 24A and 24B are equivalent to the aforementioned projections along the central axis on a plane perpendicular to the central axis.
  • Figure 28 is shown as, by means of a device having four condenser plates 115 not aligned and arranged squarely in each of the zones, two pairs of orientations of the conductive element 107 can be achieved as the conductive element is rotated 107 according to one of the two axes indicated in the figure.
  • Figures 24A, 24B, 24C, 25A, 25B, 25C and / or 26A 1 26B, 26C, as represented or rotated 90 ° would be used.
  • the procedure shown in Figures 27A, 27B, 27C could also be used, in which case we would have 45 ° inclined axes of rotation with respect to those shown in Figure 28.
  • the actuation procedure is preferably characterized in that at least one additional condenser plate 115 is connected. at an intermediate voltage between the first voltage and the second voltage.
  • each and every one of the plates 115 is subjected to a certain voltage so that none of them is in a high impedance state.
  • the devices according to the invention have a plurality of capacitor plates 115. In certain cases not all of them participate in the control of the conductive element 107.
  • the present invention specifies that only those condenser plates 115 that participate in the control of the conductive element 107 at any given time must be connected to a certain voltage (that is, they must not be in a high impedance state), however, there is no requirement as regards those capacitor plates 1 15 that, at a given time, do not participate in the control of the conductive element 107.
  • the second condenser plate 102 is less than or equal to the first condenser plate 101
  • the third condenser plate 103 is smaller than or equal to the first condenser plate 101, and where said second and third condenser plates 102, 103 are, together, larger than the first condenser plate 101,
  • the conductive element has a first surface facing the first zone 109 and a second surface facing the second zone 111, the conductive element 107 being able to move through the intermediate space 105, from a first end, where the element conductor 107 is in contact with the first zone 109, to a second end, where the conductor element 107 is in contact with the second zone 111, and vice versa, in function of voltages present in the first, second and third capacitor plates 101, 102, 103,
  • the distance between at least one of the second support points of the second surface to its corresponding support point of the second zone 111 is different from the distance of the remaining seconds support points of the second surface to their corresponding support points of the second zone 111, so that the reflective surface 119 changes orientation in the space when the conductive element 107 makes said displacement between the first end and the second end.
  • the device according to the invention allows the reflective surface to be positioned with two orientations in space that form a certain angle without the need to elastically deform any material. This allows to reduce the activation voltages and the power consumption, it allows to reduce the size of each of the two devices (with the consequent improvement of resolution) and the problems derived from the residual mechanical tensions in the cantilever material are avoided.
  • the conductive element in whatever form it has, will always move from a first end to a second end and vice versa. In order to define more precisely the two positions called first and second extremes, the following considerations have been taken into account.
  • the conductive element When the conductive element is at the first end, it will be in contact with certain points of the first zone that limit the intermediate space and, therefore, limit the displacement that the conductive element can make.
  • the driver At a minimum, the driver will be in contact with the first zone at three non-aligned points (which define a plane) although in practice it may be in contact at more points and, in addition, these points will not be points in the geometric sense but rather they will be more or less large surfaces.
  • the contact points will be the junction points between the first surface of the conductive element and the first zone.
  • these contact points define first support points on the first surface of the conductive element and first support points on the first zone.
  • first support points of the first surface and the first support points of the first zone will be separated from each other defining a distance between each pair of support points.
  • some second support points can be defined on the second surface of the conductive element and some second support points on the second zone.
  • the present embodiment of the invention is characterized in that when the conductive element is found at the first end, the distance between at least one pair of second support points is different from the others.
  • the present invention also aims at combining this possible solution (and the variants thereof described below) with the alternatives indicated above.
  • the conductive element comprises a first projection disposed on one of the first and second surfaces, where the first projection comprises one of the first or second support points of the first or second surfaces.
  • these devices usually have a substantially laminar structure, that is, obtained by the deposition of superimposed layers and substantially parallel to each other.
  • the desired effect is already obtained.
  • the reflective surface is parallel to the general structure of layers of the device when it is at one of the two ends and that it forms a certain angle with the general structure of layers of the device when it is in the opposite end.
  • the conductive element comprises a first projection arranged on the first surface, where the first projection comprises one of the first support points of the first surface, and a second projection disposed on the second surface, where the second projection comprises one of the second support points of the second surface.
  • the reflective surface forms a certain angle with the general structure of layers of the device when it is at one of the two ends and that forms another angle determined with the general structure of layers and device when it is at the opposite end.
  • At least one of the first zone and second zone comprises a projection that, in turn, comprises one of the first or second support points of the first or second surfaces.
  • one of the distances indicated above is different from the others by adding projections in the conductive element but it can also be achieved by adding projections in the first zone and / or in the second zone. This has the advantage that the conductive element can have a symmetrical mass distribution.
  • projections should be interpreted broadly.
  • an area of the device that has an asymmetric geometry should be understood as having projections in the sense of the invention, if this asymmetric geometry causes any of the distances indicated above to be different from the others
  • the reflective surface 119 would be parallel to the base of the device when the conductive element 107 is in its lower position (seen according to the figures) and the reflective surface 119 would form a non-zero angle with the base of the device when the conductive element 107 is in its upper position (assuming that the stops 113 arranged in the upper area were coplanar according to a horizontal plane). If the conductive element 107 has two pro projections 121, one on each of its upper and lower surfaces, then the reflective surface 119 would form a non-zero angle with the base of the device whether it is at the upper end or at the lower end.
  • the specific geometry of the conductive element 107 shown in Figures 13 to 15, with the table structure that includes the reflecting surface 119, is a concrete example of an embodiment.
  • the conductive element 107 and the reflective surface 119 may have other geometries, in particular the reflective surface 119 may be included directly in the main body 117 of the conductive element 107.
  • these devices have three-dimensional geometries and that, therefore, the arrangement of the projections 121 (and, in general, of the contact points) can be a more or less complex three-dimensional arrangement.
  • the examples shown in the figures are simply examples with simplified geometries.
  • FIG 36 shows a simplified scheme of an electro-optical device, as described in PCT application WO 2004/046807.
  • the electro-optical device has a first zone 209 facing a second zone 211 (on the left and to the right of the drawing, respectively) with a first condenser plate 201 disposed in the first zone 209, a second condenser plate 202 and a third condenser plate 203 in the second zone 211, facing said first condenser plate 201 and wherein each of said second and third condenser plates 202, 203 are smaller or equal than the first condenser plate 201 but both together are larger than the first capacitor plate 201.
  • the conductive element 207 is mechanically independent of the first zone 209 and the second zone 211, that is, it is mechanically independent of the entire fixed structure of the device. In other words, the conductive element 207 is a loose part suitable for freely moving through the intermediate space 205.
  • the conductive element 207 has no physical connection with its surroundings.
  • stops 213 that limit the movement of the conductive element 207 and which define a first end and a second end.
  • FIG. 37 a reflecting electro-optical device according to the invention is shown.
  • the existence of eight condenser plates 215 can be observed (reference 215 has been used to designate any condenser plate, regardless of whether it is the first, the second, the third or any other additional condenser plate) and of stops 213 (specifically Figure 37 has been drawn without stops).
  • the minimum amount of condenser plates needed to be able to make a movement in two directions is three.
  • the devices have more condenser plates as well as a plurality of stops.
  • the conductive element 207 does not come into contact with the condenser plates 215, although in some cases it may be permissible for contact any of them, as described in PCT application WO 2004/046807, on p. 23 line 12-28.
  • an electro-optical device is shown in which the reflective surface 219 extends directly over the main body 217 of the conductive element 207.
  • the electro-optical assembly can comprise the light source or not.
  • the light source has not been represented, but it should be understood that the light signal can come both from a light source belonging to the electro-optical assembly, from a light source outside the electro-optical assembly or, in general, it can be light from The ambient light.
  • the electro-optical device of Figures 39A and 39B has a second fixed reflecting surface 221, disposed in the upper part thereof.
  • the light signal is reflected without experiencing any offset (this light signal has been indicated with a continuous line). Additionally, the light signal passes through an opening 223 disposed at the upper end of the device and is reflected on the reflective surface 219 integral with the conductive element 207 (indicated by a broken line).
  • the optical path of the light signal reflected on the reflective surface 219 integral with the conductive element 207 is half a longer wavelength whereby a cancellation of the light signal will take place.
  • the conductive element 207 moves to the upper end ( Figure 39B) the light signal no longer suffers destructive interference and, therefore, is fully reflected.
  • Figure 39C shows the case in which the electro-optical assembly also has a semi-transparent layer 225.
  • the semi-transparent layer 225 reflects a part of the incident light signal (indicated by a continuous line). ) and let another part pass through (indicated with a dashed line).
  • the reflecting surface 219, integral with the main body 217 of the conductive element 207, is at a distance from the semi-transparent layer 225 equal to a quarter of the wavelength of the light signal (or an odd multiple of quarter wavelengths) when The conductive element 207 is at one end, and is at a distance equal to half the wavelength (or a multiple of the wavelength) when the conductive element 207 is at the other end.
  • an electro-optical assembly it is possible to act appropriately on the conductive element so that it carries out a displacement that is not a pure translation, which allows the reflecting surface to change orientation.
  • This purpose is achieved by means of an actuation procedure of an electro-optical device of the type indicated above characterized in that it comprises a connection stage of at least one of the capacitor plates at a first voltage and at least one of the capacitor plates a a second voltage, where the second voltage is greater than the first voltage, where each and every one of the capacitor plates are subjected to a certain voltage so that none of them is in a high impedance state, so that the projection according to the central axis of the capacitor plates subjected to the first voltage, it has central asymmetry with respect to the projection according to the central axis of the capacitor plates subjected to the second voltage.
  • both alternatives can be combined so that the electro-optical assembly can work either by generating a destructive interference that cancels the light signal or by diverting the incident signal by changing the orientation of the reflecting surface.
  • a subject of the invention is also a method of actuating a miniaturized reflecting electro-optical device, where the device is the same as described above, but additionally has a plurality of condenser plates distributed with rotation symmetry along the central axis in the first zone and a plurality of condenser plates distributed with rotation symmetry along the central axis in the second zone, characterized in that it comprises a connection stage of at least one of the capacitor plates at a first voltage and at least one of the other plates of capacitor at a second voltage, where the second voltage is greater than the first voltage, so that the projection along the central axis of the capacitor plates subjected to the first voltage has central asymmetry with respect to the projection along the central axis of the plates capacitor subjected to the second voltage.
  • this arrangement of the condenser plates allows the reflecting surface to be oriented in many directions, rotating it along different axes perpendicular to the central axis.
  • the conductive element is close to one of the first zone or second zone, the conductive element is in contact with an external circuit and the conductive element is connected to a voltage through said external circuit.
  • the conductive element will usually be in contact with stops that limit its movement at both ends. These stops may simply be mechanical stops, but they may be part of an external circuit so that the conductive element can be connected at a given voltage through said stops. In this way, the conductive element will be subject to a certain voltage (while the contact with the external circuit lasts), which can be used to increase the electrostatic force applied to the conductive element. In this way it is possible to facilitate the disengagement of the conductive element from the stops, overcoming the coupling forces that can be generated between the conductive element and the stops or other contact surfaces.
  • a subject of the invention is also a miniaturized reflecting electro-optical device of the type indicated above, characterized in that it comprises control means suitable for carrying out a method according to the invention.
  • FIGs 43A and 43B A simplified case of the previous case is seen in Figures 43A and 43B.
  • the two upper capacitor plates 215 are always at the same voltage. Therefore, they can be physically joined so that they form a single condenser plate 215.
  • the device has the essential minimum of condenser plates 215: three plates.
  • At least one additional capacitor plate 215 is connected at an intermediate voltage between the first voltage and the second voltage. This allows to make the device more stable against external influences. In fact, in the case that the device has four or more capacitor plates 215 in each zone, it may be interesting to connect some of the plates 215 to a second intermediate voltage, different from the previous one. In this way, the force moment applied to the conductive element 207 can be adjusted more precisely.
  • the device has three condenser plates 215 aligned in the first zone 209 and three condenser plates 215 aligned in the second zone 211, and the central condenser plate 215 is connected from each of the zones at the same voltage.
  • This alternative is reflected in Figures 44A and 44B.
  • one of the lateral condenser plates 215 of each of the zones is connected to an intermediate voltage, as shown in Figures 45A and 45B.
  • the device has four condenser plates 215 aligned in the first zone 209 and four condenser plates 215 aligned in the second zone 211, and three condenser plates 215 of the first zone 209 and three plates are connected of capacitor 215 of the second zone 211 at the same voltage, as shown in Figures 46A and 46B.
  • Another advantageous embodiment of the invention is obtained when the device has four condenser plates 215 not aligned in the first zone 209 and four condenser plates 215 not aligned in the second zone 211, and three condenser plates 215 of the Ia are connected First zone 209 and three capacitor plates 215 of the second zone 211 at the same voltage, as shown in Figures 48A, 48B, 48C, 49A, 49B and 49C.
  • Figure 48A shows a plan view of the condenser plates 215 of the lower zone (for example, the first zone 209)
  • Figure 48B shows a plan view of the condenser plates 215 of the upper zone (which, following the same example, would be the second zone 211)
  • Figure 48C a profile view is shown, with a slight perspective so that the four condenser plates 215 of each zone are appreciated.
  • Figures 48A and 48B are equivalent to the aforementioned projections along the central axis on a plane perpendicular to the central axis.
  • the fact that the device is really three-dimensional is used and that the condenser plates 215 do not have to be aligned, but can be distributed along a two-dimensional surface (usually along a plane) . Also in this case it is advantageous to connect two condenser plates 215 of the first zone 209 and two condenser plates 215 of the second zone 211 at an intermediate voltage, as shown in Figures 5OA, 5OB and 5OC.
  • Figure 52 is shown as, by means of a device having four condenser plates 215 not aligned and arranged squarely in each of the zones, two pairs of orientations of the conductive element 207 can be achieved as the conductive element is rotated 207 according to one of the two axes indicated in the figure.
  • Figures 48A, 48B, 48C, 49A, 49B, 49C and / or 5OA, 5OB, 5OC, as represented or rotated 90 ° would be used.
  • the procedure shown in Figures 51 A, 51 B, 51 C could also be used, in which case we would have 45 ° inclined axes of rotation with respect to those shown in Figure 52.
  • the actuation procedure is preferably characterized in that at least one additional condenser plate 215 is connected. at an intermediate voltage between the first voltage and the second voltage.
  • each and every one of the plates 215 is subjected to a certain voltage so that none of them is in a high impedance state.
  • the devices according to the invention have a plurality of condenser plates 215. In certain cases not all of them participate in the control of the conductive element 207.
  • the present invention specifies that only those condenser plates 215 that participate in the control of the conductive element 207 at any given time they must be connected to a certain voltage (that is, they must not be in a high impedance state), however there is no requirement as regards those capacitor plates 215 that, at a given time, they do not participate in the control of the conductive element 207.

Abstract

MEMS electrooptical digital reflector device that comprises a conductor element (7), which is a separate part mechanically independent from its environment and moves through an intermediate space (5) of the device as a function of voltages present on capacitor plates (1, 2, 3), and a reflective surface (19), which reflects an incident light beam and is integral with the conductor element (7). The conductor element (7) moves in the intermediate space (5) until its rests on rest points arranged such as to force the conductor element (7) to change orientation. Method for actuating the above MEMS device, which comprises the application of voltages to the plates such that the conductor element changes orientation. The conductor element can also move in the intermediate space over such a distance that it generates interference as a function of the position of the conductor element.

Description

DISPOSITIVO ELECTROÓPTICO REFLECTOR Y PROCEDIMIENTOS DE ACTUACIÓN CORRESPONDIENTES ELECTROOPTIC REFLECTOR DEVICE AND CORRESPONDING ACTION PROCEDURES
DESCRIPCIÓNDESCRIPTION
Campo de Ia invenciónField of the invention
La invención se refiere a un dispositivo electroóptico miniaturizado, específicamente a un dispositivo electroóptico reflector digital miniaturizado. Estos dispositivos pertenecen a Ia familia de los dispositivos usualmente denominados MEMS (micro electro-mechanical systems - sistemas microelectromecánicos), en particular de los dispositivos denominados Digital Micromirror Devices (dispositivos de microes- pejo digitales, DMD®).The invention relates to a miniaturized electro-optical device, specifically to a miniaturized digital reflector electro-optical device. These devices belong to the family of devices usually called MEMS (micro electro-mechanical systems - microelectromechanical systems), in particular of the devices called Digital Micromirror Devices (digital micro mirror devices, DMD®).
La invención se refiere también a un procedimiento de actuación de uno de dichos dispositivos electroópticos miniaturizados y a dispositivos electroópticos miniaturi- zados aptos para efectuar el nuevo procedimiento.The invention also relates to a method of actuating one of said miniaturized electro-optical devices and to miniaturized electro-optical devices suitable for carrying out the new procedure.
La invención se refiere asimismo a un conjunto electroóptico reflector miniaturizado para el procesado de una señal luminosa. Los conjuntos electroópticos reflectores miniaturizados incluyen componentes MEMS y/o DMD®. En general Ia señal luminosa puede ser monocromática, en cuyo caso estará definida por tener una determinada longitud de onda, o polícroma, en cuyo caso tendrá una pluralidad de lon- gitudes de onda, una de las cuales será a Ia que se haga referencia en Ia presente descripción y reivindicaciones. Es decir cuando el conjunto electroóptico procese una señal luminosa polícroma, su actuación tendrá por función afectar a una de las longitudes de onda presentes en Ia luz polícroma. En algunos casos, como se describirá más adelante, el conjunto electroóptico puede afectar a varias longitudes de onda específicas comprendidas dentro del espectro de Ia luz polícroma que conforma Ia señal luminosa. La invención tiene asimismo por objeto un procedimiento para el procesado de una señal luminosa que comprende una longitud de onda predeterminada mediante un conjunto electroóptico de acuerdo con Ia invención.The invention also relates to a miniaturized reflector electro-optical assembly for the processing of a light signal. Miniaturized reflective electro-optical assemblies include MEMS and / or DMD® components. In general, the light signal can be monochromatic, in which case it will be defined as having a certain wavelength, or polychrome, in which case it will have a plurality of wavelengths, one of which will be referred to in The present description and claims. That is, when the electro-optical assembly processes a polychrome light signal, its performance will have the function of affecting one of the wavelengths present in the polychrome light. In some cases, as will be described later, the electro-optical assembly can affect several specific wavelengths within the spectrum of the polychrome light that forms the light signal. The object of the invention is also a process for processing a light signal comprising a predetermined wavelength by means of an electro-optical assembly according to the invention.
La invención se refiere también a un procedimiento de actuación de un conjunto electroóptico de acuerdo con Ia invención.The invention also relates to a method of actuating an electro-optical assembly according to the invention.
Estado de Ia técnicaState of the art
Son conocidos los dispositivos electroópticos reflectores digitales miniaturizados como, por ejemplo, los descritos en el documento "A MEMS-Based Projection Dis- play", de Peter F. Van KESSEL1 et al, Proceedings of the IEEE, VoI. 86, No. 8, Agosto 1998. Estos dispositivos comprenden una superficie reflectora capaz de adoptar dos posiciones en el espacio que forman un ángulo no nulo. De esta mane- ra, un rayo incidente sobre Ia superficie reflectora puede ser desviado en una dirección u otra en función de Ia posición de Ia superficie reflectora. La superficie reflectora está montada sobre una capa de material que está en voladizo y que, al ser sometida a unos campos electroestáticos, es capaz de doblarse en una u otra dirección.Miniaturized digital reflector electro-optical devices are known, such as those described in the document "A MEMS-Based Projection Display" by Peter F. Van KESSEL 1 et al, Proceedings of the IEEE, VoI. 86, No. 8, August 1998. These devices comprise a reflective surface capable of adopting two positions in space that form a non-zero angle. In this way, an incident beam on the reflecting surface can be deflected in one direction or another depending on the position of the reflecting surface. The reflective surface is mounted on a layer of material that is cantilevered and which, when subjected to electrostatic fields, is capable of bending in one direction or another.
Son conocidos también los conjuntos electroópticos reflectores miniaturiados que procesan una señal luminosa incidente sobre los mismos. Una familia de estos conjuntos electroópticos está formada por unos dispositivos que son aptos para reflejar Ia señal luminosa incidente cuando están en un primer estado y que son aptos para provocar una interferencia destructiva en dicha señal luminosa, cancelándola, cuando están en un segundo estado. Para ello los dispositivos tienen Ia superficie reflectora montada en voladizo de manera que, mediante Ia aplicación de unos campos electroestáticos adecuados, se puede desplazar Ia superficie reflectora hacia una posición determinada, venciendo Ia fuerza elástica del material que conforma el voladizo. Al anular los campos electroestáticos, Ia superficie reflectora vuelve a su posición original gracias a Ia fuerza elástica del material en voladizo. Un ejemplo de estos conjuntos electroópticos es el dispositivo GLV® (Grating Light Valve) desarrollado por Silicon Light Machines y descrito, por ejemplo, en el docu- mentó "The Grating Light Valve: Revolutionizing Display Technology", D. M. Bloom, consultable en el portal de Internet www.siliconliqht.com. Otro ejemplo es el dispositivo GEMS (Grating Electromechanical System) desarrollado por Kodak Research and Development, consultable en el portal de Internet www.kodak.com/US/en/corp/researchDevelopment/technoloqyFeatures/qems.html.The miniaturized reflector electro-optical assemblies that process an incident light signal on them are also known. A family of these electro-optical assemblies is formed by devices that are capable of reflecting the incident light signal when they are in a first state and that are capable of causing destructive interference in said light signal, canceling it, when they are in a second state. For this, the devices have the reflective surface mounted on a cantilever so that, by means of the application of suitable electrostatic fields, the reflective surface can be moved towards a certain position, overcoming the elastic force of the material that forms the cantilever. By canceling the electrostatic fields, the reflective surface returns to its original position thanks to the elastic force of the cantilever material. An example of these electro-optical assemblies is the GLV® (Grating Light Valve) device developed by Silicon Light Machines and described, for example, in the document Lied "The Grating Light Valve: Revolutionizing Display Technology", DM Bloom, available on the Internet portal www.siliconliqht.com. Another example is the GEMS (Grating Electromechanical System) device developed by Kodak Research and Development, available on the Internet portal www.kodak.com/US/en/corp/researchDevelopment/technoloqyFeatures/qems.html.
Sin embargo estos dispositivos tienen una serie de inconvenientes, como es Ia necesidad de una tensión de activación elevada (usualmente superior a los 50 V). Otros inconvenientes son, por ejemplo:However, these devices have a series of drawbacks, such as the need for a high activation voltage (usually greater than 50 V). Other drawbacks are, for example:
- unos tamaños relativamente grandes (por ejemplo, de 16 x 16 mieras),- relatively large sizes (for example, 16 x 16 microns),
- un consumo elevado de potencia,- high power consumption,
- una resolución limitada (como consecuencia del tamaño relativamente grande),- a limited resolution (as a consequence of the relatively large size),
- problemas de tensiones mecánicas residuales en el material que forma el voladizo, Io que puede provocar que Ia orientación real adquirida por la superficie receptora no coincida con Ia orientación deseada.- problems of residual mechanical stresses in the material that forms the overhang, which may cause the actual orientation acquired by the receiving surface does not match the desired orientation.
Por otro lado son conocidos los dispositivos electroópticos digitales miniaturizados que comprenden:On the other hand, miniaturized digital electro-optical devices that include:
- una primera zona enfrentada a una segunda zona,- a first zone facing a second zone,
- una primera placa de condensador dispuesta en Ia primera zona,- a first condenser plate arranged in the first zone,
- una segunda placa de condensador dispuesta en Ia segunda zona y enfrentada a Ia primera placa de condensador, donde Ia segunda placa de condensador es me- ñor o igual que Ia primera placa de condensador,- a second condenser plate arranged in the second zone and facing the first condenser plate, where the second condenser plate is less than or equal to the first condenser plate,
- una tercera placa de condensador dispuesta en Ia segunda zona, donde Ia tercera placa de condensador es menor o igual que Ia primera placa de condensador, y - A -- a third condenser plate arranged in the second zone, where the third condenser plate is less than or equal to the first condenser plate, and - TO -
donde las segunda y tercera placas de condensador son, juntas, mayores que Ia primera placa de condensador,where the second and third condenser plates are, together, larger than the first condenser plate,
- un espacio intermedio dispuesto entre Ia primera zona y Ia segunda zona,- an intermediate space arranged between the first zone and the second zone,
- un elemento conductor dispuesto en el espacio intermedio, este elemento conductor presentando una primera superficie encarada hacia Ia primera zona y una segunda superficie encarada hacia Ia segunda zona, donde el elemento conductor es mecánicamente independiente de ambas zonas y siendo apto para efectuar un desplazamiento a través del espacio intermedio, desde un primer extremo, donde el elemento conductor está en contacto con Ia primera zona, hasta un segundo extremo, donde el elemento conductor está en contacto con Ia segunda zona, y viceversa, en función de unos voltajes presentes en las primera, segunda y tercera placas de condensador,- a conductive element disposed in the intermediate space, this conductive element presenting a first surface facing the first zone and a second surface facing the second zone, where the conductive element is mechanically independent of both zones and being able to make a movement to through the intermediate space, from a first end, where the conductive element is in contact with the first zone, to a second end, where the conductive element is in contact with the second zone, and vice versa, depending on voltages present in the first, second and third condenser plates,
- una superficie reflectora, apta para reflejar un haz de luz incidente, solidaria al elemento conductor.- a reflective surface, suitable for reflecting an incident beam of light, integral with the conductive element.
También son conocidos los dispositivos electroópticos digitales miniaturizados que comprenden:Also known are miniaturized digital electro-optical devices comprising:
- una primera zona enfrentada a una segunda zona,- a first zone facing a second zone,
- una primera placa de condensador dispuesta en Ia primera zona,- a first condenser plate arranged in the first zone,
- una segunda placa de condensador y una tercera placa de condensador dispuestas en la segunda zona y enfrentadas a Ia primera placa de condensador,- a second condenser plate and a third condenser plate arranged in the second zone and facing the first condenser plate,
- un espacio intermedio dispuesto entre Ia primera zona y Ia segunda zona,- an intermediate space arranged between the first zone and the second zone,
- un elemento conductor dispuesto en el espacio intermedio, donde el elemento conductor es mecánicamente independiente de ambas zonas y siendo apto para efectuar un desplazamiento a través del espacio intermedio, desde un primer ex- tremo, donde el elemento conductor está próximo a Ia primera zona, hasta un segundo extremo, donde el elemento conductor está próximo a Ia segunda zona, y viceversa, en función de unos voltajes presentes en las primera, segunda y tercera placas de condensador,- a conductive element disposed in the intermediate space, where the conductive element is mechanically independent of both zones and being able to make a displacement through the intermediate space, from a first ex- section, where the conductive element is close to the first zone, to a second end, where the conductive element is close to the second zone, and vice versa, depending on voltages present in the first, second and third condenser plates,
- una superficie reflectora, apta para reflejar un haz de luz incidente, solidaria al elemento conductor.- a reflective surface, suitable for reflecting an incident beam of light, integral with the conductive element.
Efectivamente, estos dispositivos están descritos en Ia solicitud PCT WO 2004/046807, del mismo solicitante, publicada el 3 de Junio de 2004. En particular en pág. 19 lín. 7 - pág. 22 lín. 24, pág. 23 lín. 12 - 28, y pág. 24 lín. 21 - 31 se describen diversas geometrías de este tipo de dispositivos y en pág. 4 lín. 6 - pág. 5 lín. 13, pág. 5 lín. 29 - pág. 6 lín. 8, pág. 6 lín. 28 - pág. 8 lín. 7, y pág. 18 lín. 4 - pág. 19 lín. 2 se describe su modo de funcionamiento.Indeed, these devices are described in PCT application WO 2004/046807, of the same applicant, published on June 3, 2004. In particular on p. 19 line 7 - p. 22 line 24, p. 23 line 12-28, and p. 24 line 21 - 31 various geometries of this type of device are described and on p. 4 line 6 - p. 5 line 13, p. 5 line 29 - p. 6 line 8, p. 6 line 28 - p. 8 line 7, and p. 18 line 4 - p. 19 line 2 describes its mode of operation.
Sin embargo, en Ia solicitud PCT WO 2004/046807 únicamente se describe Ia posibilidad de que estos dispositivos interrumpan o desvíen un haz de luz mediante un movimiento de traslación, y el haz de luz es de dimensiones pequeñas respecto del dispositivo. La orientación espacial del elemento conductor al pasar del primer ex- tremo al segundo extremo no varía. Tampoco tiene lugar ningún fenómeno de cancelación o interferencia en el haz de luz reflejado.However, in the PCT application WO 2004/046807 only the possibility of these devices interrupting or deflecting a light beam by a translational movement is described, and the light beam is of small dimensions with respect to the device. The spatial orientation of the conductive element as it passes from the first end to the second end does not vary. Nor does any phenomenon of cancellation or interference in the reflected beam of light occur.
Sumario de Ia invenciónSummary of the invention
La invención tiene por objeto superar estos inconvenientes. Esta finalidad se consigue mediante un dispositivo electroóptico reflector miniaturizado del tipo indicado al principio caracterizado porque:The object of the invention is to overcome these drawbacks. This purpose is achieved by a miniaturized reflecting electro-optical device of the type indicated at the beginning characterized in that:
a - cuando el elemento conductor está en el primer extremo, o sea, en contacto con Ia primera zona, tiene por Io menos tres primeros puntos de apoyo no alineados en Ia primera superficie que están en contacto con tres primeros puntos de apoyo correspondientes en Ia primera zona, y cuando el elemento conductor está en el segundo extremo, o sea, en contacto con Ia segunda zona, tiene por Io menos tres segundos puntos de apoyo no alineados en Ia segunda superficie que están en contacto con tres segundos puntos de apoyo correspondientes en Ia segunda zona, ya - when the conductive element is at the first end, that is, in contact with the first zone, it has at least three first support points not aligned on the first surface that are in contact with three corresponding first support points on the first zone, and when the conductive element is at the second end, that is, in contact with the second zone, it has at least three second support points not aligned on the second surface that are in contact with three corresponding second support points in the second area, and
b - cuando el elemento conductor está en el primer extremo, Ia distancia entre por Io menos uno de los segundos puntos de apoyo de Ia segunda superficie a su correspondiente punto de apoyo de Ia segunda zona es diferente a Ia distancia de los restantes segundos puntos de apoyo de Ia segunda superficie a sus correspondientes puntos de apoyo de Ia segunda zona, de manera que Ia superficie reflectóra cambia de orientación en el espacio cuando el elemento conductor efectúa el desplazamiento entre el primer extremo y el segundo extremo.b - when the conductive element is at the first end, the distance between at least one of the second support points of the second surface to its corresponding support point of the second zone is different from the distance of the remaining second points of support of the second surface to its corresponding support points of the second area, so that the reflecting surface changes orientation in the space when the conductive element makes the displacement between the first end and the second end.
Efectivamente el dispositivo de acuerdo con Ia invención permite posicionar Ia superficie reflectora con dos orientaciones en el espacio que forman un cierto ángulo sin necesidad de deformar elásticamente ningún material. Además, el elemento conductor no está en contacto eléctrico con su entorno durante su desplazamiento. Ello permite reducir los voltajes de activación y los consumos de potencia, permite reducir el tamaño de cada uno de los dos dispositivos (con Ia consiguiente mejora de resolución) y se evitan los problemas derivados de las tensiones mecánicas re- siduales en el material en voladizo.Indeed, the device according to the invention allows the reflective surface to be positioned with two orientations in space that form a certain angle without the need to elastically deform any material. In addition, the conductive element is not in electrical contact with its surroundings during its movement. This allows to reduce the activation voltages and the power consumption, allows to reduce the size of each of the two devices (with the consequent improvement of resolution) and the problems derived from the residual mechanical stresses in the cantilever material are avoided. .
Usualmente los dispositivos MEMS tienen una estructura laminar acusada, inherente a su procedimiento de fabricación. En este sentido el elemento conductor suele ser una lámina plana y las placas de condensador y demás elementos del entorno suelen ser también unas superficies planas y paralelas al elemento conductor. Sin embargo no es necesario que esto sea así. Por ello en los apartados a y b anteriores se han detallado, de una forma general, Io que son los requisitos básicos necesarios para Ia presente forma de realización de Ia invención:Usually MEMS devices have a pronounced laminar structure, inherent to their manufacturing process. In this sense the conductive element is usually a flat sheet and the condenser plates and other elements of the environment are usually also flat surfaces parallel to the conductive element. However, it is not necessary that this be so. For this reason, sections a and b above have detailed, in a general way, what are the basic requirements necessary for the present embodiment of the invention:
- El elemento conductor, tenga Ia forma que tenga, se desplazará siempre desde un primer extremo hasta un segundo extremo y viceversa. Para definir con mayor exactitud las dos posiciones denominadas como primer extremo y segundo extremo se han tenido en cuenta las siguientes consideraciones. Cuando el elemento con- ductor esté en el primer extremo, estará en contacto con unos determinados puntos de Ia primera zona que limitan el espacio intermedio y, por Io tanto, que limitan el desplazamiento que puede realizar el elemento conductor. Como mínimo, el conductor estará en contacto con Ia primera zona en tres puntos no alineados (que definen un plano) si bien en Ia práctica podrá estar en contacto en más puntos y, además, estos puntos no serán puntos en el sentido geométrico sino que serán superficies más o menos grandes. Los puntos de contacto serán los puntos de unión entre Ia primera superficie del elemento conductor y Ia primera zona. Por Io tanto, estos puntos de contacto definen unos primeros puntos de apoyo en Ia pri- mera superficie del elemento conductor y unos primeros puntos de apoyo en Ia primera zona. Cuando el elemento conductor se desplace hacia el segundo extremo, los primeros puntos de apoyo de Ia primera superficie y los primeros puntos de apoyo de Ia primer zona se separarán entre ellos definiendo una distancia entre cada pareja de puntos de apoyo. De una forma análoga se pueden definir unos segundos puntos de apoyo en Ia segunda superficie del elemento conductor y unos segundos puntos de apoyo en Ia segunda zona.- The conductive element, in whatever form it has, will always move from a first end to a second end and vice versa. In order to define more precisely the two positions called first and second extremes, the following considerations have been taken into account. When the element con- ductor is at the first end, will be in contact with certain points of the first zone that limit the intermediate space and, therefore, that limit the displacement that the conductive element can make. At a minimum, the driver will be in contact with the first zone at three non-aligned points (which define a plane) although in practice it may be in contact at more points and, in addition, these points will not be points in the geometric sense but rather they will be more or less large surfaces. The contact points will be the junction points between the first surface of the conductive element and the first zone. Therefore, these contact points define first support points on the first surface of the conductive element and first support points in the first zone. When the conductive element moves towards the second end, the first support points of the first surface and the first support points of the first zone will be separated from each other defining a distance between each pair of support points. In a similar way, some second support points can be defined on the second surface of the conductive element and some second support points on the second zone.
- Si, al encontrarse el elemento conductor en el primer extremo (es decir con los primeros puntos de apoyo de Ia primera superficie y los de Ia primera zona en contacto entre si), las distancias entre cada pareja de segundos puntos de apoyo son iguales entre sí, ello quiere decir que cuando el elemento conductor se desplace del primer extremo al segundo extremo realizará una traslación pura y, por tanto, ello tiene como consecuencia que cuando el elemento conductor esté en el segundo extremo las distancias entre cada pareja de primeros puntos de apoyo son tam- bien iguales entre sí. En este caso el desplazamiento del elemento conductor será siempre una traslación pura y no se producirá un cambio de orientación en Ia superficie reflectora. Por ello, Ia presente forma de realización de Ia invención se caracteriza porque al encontrarse el elemento conductor en el primer extremo, Ia distancia entre por Io menos una pareja de segundos puntos de apoyo es diferente a las demás. Ello trae como consecuencia que para que las parejas de segundos puntos de apoyo estén en contacto entre sí es necesario que el elemento conductor realice un movimiento de rotación (que puede ser rotación pura o una combinación de rotación más traslación). Esta rotación es Ia que permite cambiar Ia orientación de Ia superficie reflectora.- Yes, when the conductive element is at the first end (that is, with the first support points of the first surface and those of the first area in contact with each other), the distances between each pair of second support points are equal between yes, this means that when the conductive element moves from the first end to the second end it will perform a pure translation and, therefore, this has the consequence that when the conductive element is at the second end the distances between each pair of first points of Support are also equal to each other. In this case, the displacement of the conductive element will always be a pure translation and there will be no change of orientation in the reflecting surface. Therefore, the present embodiment of the invention is characterized in that when the conductive element is found at the first end, the distance between at least one pair of second support points is different from the others. This results in the fact that in order for the pairs of second support points to be in contact with each other, it is necessary for the conductive element to perform a rotation movement (which can be pure rotation or a combination rotation plus translation). This rotation is what allows to change the orientation of the reflective surface.
Preferentemente el elemento conductor comprende una primera proyección dis- puesta en una de las primera y segunda superficies, donde Ia primera proyección comprende uno de los primeros o segundos puntos de apoyo de las primera o segunda superficies. Efectivamente, como ya se ha dicho anteriormente usualmente estos dispositivos tienen una estructura substancialmente laminar, es decir, obtenida mediante Ia deposición de capas superpuestas y substancialmente paralelas entre sí. En este caso, añadiendo una primera proyección en una de las superficies del elemento conductor se obtiene ya el efecto deseado. En este caso se puede conseguir que, por ejemplo, Ia superficie reflectora sea paralela a Ia estructura general de capas del dispositivo cuando esté en uno de los dos extremos y que forme un determinado ángulo con Ia estructura general de capas del dispositivo cuando esté en el extremo opuesto.Preferably, the conductive element comprises a first projection arranged on one of the first and second surfaces, where the first projection comprises one of the first or second support points of the first or second surfaces. Indeed, as previously mentioned, these devices usually have a substantially laminar structure, that is, obtained by means of the deposition of superimposed layers and substantially parallel to each other. In this case, by adding a first projection on one of the surfaces of the conductive element, the desired effect is already obtained. In this case it can be achieved that, for example, the reflective surface is parallel to the general structure of layers of the device when it is at one of the two ends and that it forms a certain angle with the general structure of layers of the device when it is in the opposite end.
Alternativamente, el elemento conductor comprende una primera proyección dispuesta en Ia primera superficie, donde Ia primera proyección comprende uno de los primeros puntos de apoyo de Ia primera superficie, y una segunda proyección dis- puesta en Ia segunda superficie, donde Ia segunda proyección comprende uno de los segundos puntos de apoyo de Ia segunda superficie. En este caso se puede conseguir que, por ejemplo, Ia superficie reflectora forme un determinado ángulo con Ia estructura general de capas del dispositivo cuando está en uno de los dos extremos y que forme otro ángulo determinado con Ia estructura general de capas y dispositivo cuando esté en el extremo opuesto.Alternatively, the conductive element comprises a first projection arranged on the first surface, where the first projection comprises one of the first support points of the first surface, and a second projection disposed on the second surface, where the second projection comprises one of the second support points of the second surface. In this case it can be achieved that, for example, the reflective surface forms a certain angle with the general structure of layers of the device when it is at one of the two ends and forms another determined angle with the general structure of layers and device when it is at the opposite end.
Asimismo es posible que por Io menos una de las primera zona y segunda zona comprendan una proyección que, a su vez, comprenda uno de los primeros o segundos puntos de apoyo de las primera o segunda superficies. Efectivamente se puede conseguir que una de las distancias anteriormente indicadas sea diferente de las demás a base de añadir proyecciones en el elemento conductor pero también se puede conseguir a base de añadir proyecciones en Ia primera zona y/o en Ia segunda zona. Ello tiene Ia ventaja de que el elemento conductor puede tener una distribución de masas simétrica.It is also possible that at least one of the first zone and second zone comprises a projection that, in turn, comprises one of the first or second support points of the first or second surfaces. Indeed, it is possible to achieve that one of the distances indicated above is different from the others based on adding projections in the conductive element but it can also be achieved based on adding projections in the first zone and / or in The second zone. This has the advantage that the conductive element can have a symmetrical mass distribution.
Asimismo debe tenerse en cuenta que las proyecciones deben interpretarse de una forma amplia. Así, una zona del dispositivo que tenga una geometría asimétrica debe entenderse como que tiene unas proyecciones en el sentido de Ia invención, si esta geometría asimétrica provoca que alguna de las distancias anteriormente indicadas sea diferente de las demás.It should also be borne in mind that projections should be interpreted broadly. Thus, an area of the device that has an asymmetric geometry should be understood as having projections in the sense of the invention, if this asymmetric geometry causes any of the distances indicated above to be different from the others.
La invención tiene también por objeto un procedimiento de actuación de un dispositivo electroóptico del tipo indicado anteriormente caracterizado porque comprende una etapa de conexión de por Io menos una de las placas de condensador a un primer voltaje y de por Io menos otra de las placas de condensador a un segundo voltaje, donde el segundo voltaje es mayor que el primer voltaje, donde todas y cada una de las placas de condensador están sometidas a un voltaje determinado de manera que ninguna de ellas queda en un estado de alta impedancia, de manera que Ia proyección según el eje central de las placas de condensador sometidas al primer voltaje tiene asimetría central respecto de Ia proyección según el eje central de las placas de condensador sometidas al segundo voltaje.A subject of the invention is also an actuation method of an electro-optical device of the type indicated above characterized in that it comprises a step of connecting at least one of the capacitor plates at a first voltage and at least one of the condenser plates at a second voltage, where the second voltage is greater than the first voltage, where each and every one of the capacitor plates are subjected to a certain voltage so that none of them is in a high impedance state, so that the projection along the central axis of the capacitor plates subjected to the first voltage has central asymmetry with respect to the projection according to the central axis of the capacitor plates subjected to the second voltage.
Efectivamente este procedimiento permite crear un momento de fuerzas sobre el elemento conductor que Io hace girar según un eje perpendicular al eje central. Por Io tanto el elemento conductor no efectúa una traslación pura al desplazarse a través del espacio intermedio sino que realiza un movimiento combinado de traslación más rotación o incluso una rotación pura. Como consecuencia de ello Ia superficie reflectora, que es solidaria con el elemento conductor, cambia de orientación en el espacio. De esta manera se puede conseguir un funcionamiento equivalente al descrito en el documento "A MEMS-Based Projection Display", citado anteriormente, pero sin los inconvenientes que presenta el dispositivo descrito en dicho docu- mentó. Además, el elemento conductor no está en contacto eléctrico con su entorno durante su desplazamiento. Esta solución tiene además Ia ventaja de que permite combinar Ia posibilidad de cambiar Ia orientación en el espacio de Ia superficie reflectora, tal como se ha comentado anteriormente, con Ia posibilidad de que Ia superficie reflectora realice una traslación pura, a base de actuar sobre el elemento conductor de una forma con- vencional, tal como se describe en Ia solicitud PCT WO 2004/046807, en pág. 5 lín. 29 - pág. 6 lín. 8.Indeed, this procedure allows to create a moment of forces on the conductive element that rotates it along an axis perpendicular to the central axis. Therefore, the conductive element does not carry out a pure translation by moving through the intermediate space but instead performs a combined movement of translation plus rotation or even pure rotation. As a result, the reflective surface, which is integral with the conductive element, changes its orientation in space. In this way, an operation equivalent to that described in the document "A MEMS-Based Projection Display" mentioned above can be achieved, but without the inconveniences presented by the device described in said document. In addition, the conductive element is not in electrical contact with its surroundings during its movement. This solution also has the advantage that it allows combining the possibility of changing the orientation in the space of the reflecting surface, as previously mentioned, with the possibility that the reflecting surface performs a pure translation, based on acting on the conductive element in a conventional manner, as described in PCT application WO 2004/046807, on p. 5 line 29 - p. 6 line 8.
La invención tiene asimismo por objeto un procedimiento de actuación de un dispositivo electroóptico reflector miniaturizado, donde el dispositivo es igual al descrito anteriormente, pero adicionalmente tiene una pluralidad de placas de condensador distribuidas con simetría de rotación según el eje central en Ia primera zona y una pluralidad de placas de condensador distribuidas con simetría de rotación según el eje central en Ia segunda zona, caracterizado porque comprende una etapa de conexión de por Io menos una de las placas de condensador a un primer voltaje y de por Io menos otra de las placas de condensador a un segundo voltaje, donde el segundo voltaje es mayor que el primer voltaje, de manera que Ia proyección según el eje central de las placas de condensador sometidas al primer voltaje tiene asimetría central respecto de Ia proyección según el eje central de las placas de condensador sometidas al segundo voltaje. Efectivamente esta disposición de las pla- cas de condensador permite orientar Ia superficie reflectora en muchas direcciones, haciéndola girar según diversos ejes perpendiculares al eje central. Al indicar que tiene una pluralidad de placas de condensador se debe entender que tiene tres (Ia primera, segunda y tercera placa de condensador) o más placas. Con tres placas, distribuidas en triángulo, se podrían obtener seis posiciones en el espacio diferen- ciadas de Ia superficie reflectora, correspondientes al giro según tres ejes diferentes. Al aumentar el n° de placas se aumenta Ia cantidad de ejes de giro.A subject of the invention is also a method of actuating a miniaturized reflecting electro-optical device, where the device is the same as described above, but additionally has a plurality of condenser plates distributed with rotation symmetry along the central axis in the first zone and a plurality of condenser plates distributed with rotation symmetry along the central axis in the second zone, characterized in that it comprises a connection stage of at least one of the capacitor plates at a first voltage and at least one of the other plates of capacitor at a second voltage, where the second voltage is greater than the first voltage, so that the projection along the central axis of the capacitor plates subjected to the first voltage has central asymmetry with respect to the projection along the central axis of the plates capacitor subjected to the second voltage. Indeed, this arrangement of the condenser plates allows the reflecting surface to be oriented in many directions, rotating it along different axes perpendicular to the central axis. When indicating that it has a plurality of condenser plates, it should be understood that it has three (the first, second and third condenser plate) or more plates. With three plates, distributed in triangle, six positions could be obtained in the space differentiated from the reflecting surface, corresponding to the rotation according to three different axes. Increasing the number of plates increases the number of axes of rotation.
Ventajosamente cuando el elemento conductor está próximo a una de las primera zona o segunda zona, el elemento conductor está en contacto con un circuito ex- temo y se conecta el elemento conductor a una tensión a través de dicho circuito externo. Efectivamente, el elemento conductor estará usualmente en contacto con unos topes que limitan su movimiento por ambos extremos. Estos topes pueden ser simplemente unos topes mecánicos, pero pueden ser parte de un circuito externo de manera que se puede conectar el elemento conductor a una tensión determinada a través de dichos topes. De esta manera el elemento conductor estará sometido a una tensión determinada (mientras dure el contacto con el circuito extemo) Io que puede servir para incrementar Ia fuerza electrostática aplicada al elemento conductor. De esta manera se puede facilitar el desenganche del elemento conductor de los topes, venciendo las fuerzas de enganche que pueden generarse entre el elemento conductor y los topes u otras superficies de contacto.Advantageously when the conductive element is close to one of the first zone or second zone, the conductive element is in contact with an external circuit and the conductive element is connected to a voltage through said external circuit. Indeed, the conductive element will usually be in contact with stops that limit its movement at both ends. These stops may simply be mechanical stops, but they may be part of an external circuit so that the conductive element can be connected at a given voltage through said stops. In this way, the conductive element will be subject to a certain voltage (while the contact with the external circuit lasts), which can be used to increase the electrostatic force applied to the conductive element. In this way it is possible to facilitate the disengagement of the conductive element from the stops, overcoming the coupling forces that can be generated between the conductive element and the stops or other contact surfaces.
La invención tiene también por objeto un dispositivo electroóptico reflector miniatu- rizado del tipo indicado anteriormente caracterizado porque comprende unos medios de control aptos para realizar un procedimiento de acuerdo con Ia invención.A subject of the invention is also a miniaturized reflecting electro-optical device of the type indicated above, characterized in that it comprises control means suitable for carrying out a method according to the invention.
La invención tiene asimismo por objeto un dispositivo electroóptico reflector minia- turizado del tipo indicado anteriormente caracterizado porque tiene cuatro placas de condensador no alineadas en Ia primera zona y cuatro placas de condensador no alineadas en Ia segunda zona, y porque comprende unos medios de control aptos para realizar un procedimiento de acuerdo con Ia invención. Preferentemente tanto en Ia primera zona como en Ia segunda zona las placas de condensador están distribuidas en forma de cuadrado y los medios de control son aptos para aplicar el primer voltaje y el segundo voltaje sobre unas placas de condensador tales que sus proyecciones según el eje central son adyacentes.A subject of the invention is also a miniaturized reflector electro-optical device of the type indicated above characterized in that it has four condenser plates not aligned in the first zone and four condenser plates not aligned in the second zone, and because it comprises suitable control means to perform a procedure according to the invention. Preferably, in both the first zone and the second zone, the condenser plates are distributed in a square shape and the control means are suitable for applying the first voltage and the second voltage on condenser plates such that their projections along the central axis They are adjacent.
La invención tiene igualmente por objeto un dispositivo electroóptico reflector mi- niaturizado del tipo indicado anteriormente caracterizado porque comprende una pluralidad de placas de condensador distribuidas con simetría de rotación según el eje central en Ia primera zona y una pluralidad de placas de condensador distribuidas con simetría de rotación según el eje central en Ia segunda zona, y porque comprende unos medios de control aptos para realizar un procedimiento de acuerdo con Ia invención.A subject of the invention is also a miniaturized reflecting electro-optical device of the type indicated above characterized in that it comprises a plurality of condenser plates distributed with rotational symmetry along the central axis in the first zone and a plurality of condenser plates distributed with symmetry of rotation according to the central axis in the second zone, and because it comprises control means suitable for carrying out a process according to the invention.
La invención también tiene por objeto un conjunto electroóptico reflector miniaturi- zado del tipo indicado al principio caracterizado porque comprende: [a] un dispositivo electroóptico reflector digital miniaturizado que, a su vez, comprende:A subject of the invention is also a miniaturized reflector electro-optical assembly of the type indicated at the beginning characterized in that it comprises: [a] a miniaturized digital reflector electro-optical device which, in turn, comprises:
- una primera zona enfrentada a una segunda zona, - una primera placa de condensador dispuesta en dicha Ia zona,- a first zone facing a second zone, - a first condenser plate disposed in said zone,
- una segunda placa de condensador dispuesta en Ia segunda zona y enfrentada a Ia primera placa de condensador, donde Ia segunda placa de condensador es menor o igual que Ia primera placa de condensador,- a second condenser plate arranged in the second zone and facing the first condenser plate, where the second condenser plate is less than or equal to the first condenser plate,
- una tercera placa de condensador dispuesta en Ia segunda zona, donde Ia tercera placa de condensador es menor o igual que Ia primera placa de condensador, y donde las segunda y tercera placas de condensador son, juntas, mayores que Ia primera placa de condensador,- a third condenser plate arranged in the second zone, where the third condenser plate is less than or equal to the first condenser plate, and where the second and third condenser plates are, together, larger than the first condenser plate,
- un espacio intermedio dispuesto entre Ia primera zona y Ia segunda zona,- an intermediate space arranged between the first zone and the second zone,
- un elemento conductor dispuesto en el espacio intermedio, donde el elemento conductor es mecánicamente independiente de las primera zona y segunda zona y es apto para efectuar un desplazamiento a través del espacio intermedio, desde un primer extremo, donde el elemento conductor está en contacto con Ia primera zona, hasta un segundo extremo, donde el elemento conductor está en contacto con Ia segunda zona y viceversa, en función de unos voltajes presentes en las primera, segunda y tercera placas de condensador,- a conductive element disposed in the intermediate space, where the conductive element is mechanically independent of the first zone and second zone and is capable of moving through the intermediate space, from a first end, where the conductive element is in contact with The first zone, to a second end, where the conductive element is in contact with the second zone and vice versa, depending on voltages present in the first, second and third condenser plates,
- una superficie reflectora, apta para reflejar un haz de luz incidente, solidaria al elemento conductor, y- a reflective surface, suitable for reflecting an incident beam of light, integral with the conductive element, and
[b] una fuente de luz apta para emitir Ia señal luminosa, donde Ia fuente de luz está orientada de tal manera que Ia señal luminosa incide sobre Ia superficie reflectora, definiendo un camino óptico, tanto si el elemento conductor está en el primer extremo como si está en el segundo extremo,[b] a light source capable of emitting the light signal, where the light source is oriented such that the light signal strikes the reflecting surface, defining an optical path, whether the conductive element is at the first end or if it's at the second end,
y porque la diferencia entre los caminos ópticos recorridos por Ia señal luminosa cuando el elemento conductor pasa del primer extremo al segundo extremo o viceversa, es igual a Ia mitad de Ia longitud de onda, o un múltiplo impar de Ia mitad de Ia longitud de onda, donde Ia diferencia es debida al desplazamiento realizado por Ia superficie reflectora. Efectivamente, de esta manera se puede provocar un desfase de Ia señal luminosa reflejada igual a media longitud de onda (o un múltiplo impar de medias longitudes de onda). Combinando adecuadamente esta señal luminosa desfasada con res- pecto de otra señal luminosa que no haya experimentado este desfase, se puede conseguir una interferencia destructiva, o cancelación, de Ia señal luminosa. Para ello se desplaza un elemento conductor que es una pieza suelta y que, por Io tanto, puede ser desplazada sin tener que vencer fuerzas mecánicas elásticas como es en el caso de los conjuntos electroópticos del estado de Ia técnica. Además, el elemento conductor no está en contacto eléctrico con su entorno durante su desplazamiento. Ello permite resolver los problemas anteriormente indicados ya que el elemento conductor puede ser desplazado mediante tensiones de activación pequeñas, puede fabricarse con tamaños menores Io que mejora Ia resolución, el consumo de potencia se ve asimismo reducido, y no existen problemas de tensio- nes mecánicas residuales ya que no es necesario un voladizo que deba ser deformado.and because the difference between the optical paths traveled by the light signal when the conductive element passes from the first end to the second end or vice versa, is equal to half of the wavelength, or an odd multiple of half of the wavelength , where the difference is due to the displacement made by the reflecting surface. Indeed, in this way, a shift of the reflected light signal equal to half a wavelength (or an odd multiple of half wavelengths) can be caused. By properly combining this outdated light signal with respect to another light signal that has not experienced this offset, destructive interference, or cancellation, of the light signal can be achieved. For this, a conductive element is displaced which is a loose piece and, therefore, can be displaced without having to overcome elastic mechanical forces, as is the case with electro-optical assemblies of the state of the art. In addition, the conductive element is not in electrical contact with its surroundings during its movement. This allows the above-mentioned problems to be solved since the conductive element can be displaced by small activation voltages, it can be manufactured with smaller sizes, which improves the resolution, the power consumption is also reduced, and there are no problems with mechanical stresses. residuals since it is not necessary a cantilever that must be deformed.
Preferentemente el conjunto tiene una segunda superficie reflectora fija separada de Ia superficie reflectora, según el camino óptico, un valor igual a Ia cuarta parte de Ia longitud de onda, o un múltiplo impar de Ia cuarta parte de Ia longitud de onda, cuando el elemento conductor está en uno de los primer extremo y segundo extremo. Efectivamente esta superficie reflectora fija será Ia que refleje Ia señal luminosa no desfasada. Entonces, cuando Ia superficie reflectora solidaria al elemento conductor esté en uno de los extremos, Ia señal luminosa reflejada en ella estará en concordancia de fase con Ia señal reflejada en Ia superficie reflectora fija, y el conjunto electroóptico reflejará en su totalidad Ia señal luminosa incidente. Sin embargo cuando Ia superficie reflectora solidaria al elemento conductor esté en el extremo opuesto, Ia señal luminosa reflejada en ella estará desfasada media longitud de onda respecto de Ia señal reflejada en Ia superficie reflectora fija, Io cual provocará Ia cancelación de ambas de manera que el conjunto electroóptico no reflejará (visto en su conjunto) Ia señal luminosa incidente. Preferentemente Ia superficie reflectora fija está en el propio dispositivo electroóptico, si bien también es posible que el conjunto electroóptico tenga Ia superficie reflectora fija dispuesta en un lugar independiente del dispositivo electroóptico, por ejemplo adyacente al mismo.Preferably the assembly has a second fixed reflective surface separated from the reflecting surface, according to the optical path, a value equal to a quarter of the wavelength, or an odd multiple of the fourth part of the wavelength, when the element Driver is at one of the first end and second end. Indeed, this fixed reflective surface will be the one that reflects the non-offset light signal. Then, when the reflective surface integral to the conductive element is at one of the ends, the light signal reflected in it will be in phase agreement with the signal reflected in the fixed reflective surface, and the electro-optical assembly will reflect in its entirety the incident light signal . However, when the reflective surface integral to the conductive element is at the opposite end, the light signal reflected therein will be offset half wavelength with respect to the signal reflected in the fixed reflective surface, which will cause the cancellation of both so that the The electro-optical assembly will not reflect (seen as a whole) the incident light signal. Preferably the fixed reflective surface is in the electro-optical device itself, although it is also possible that the electro-optical assembly has the fixed reflective surface arranged in a place independent of the electro-optical device, for example adjacent to it.
La geometría del elemento conductor puede ser diversa. Así, por ejemplo, una so- lución ventajosa se obtiene cuando el elemento conductor tiene un cuerpo principal que es una lámina plana a partir de Ia cual se extiende un brazo de soporte en cuyo extremo se dispone Ia superficie reflectora. De esta manera se "separan" las dos funciones: el cuerpo principal es responsable de que se realice el desplazamiento y puede estar alojado en el interior del dispositivo electroóptico, mientras que Ia su- perficie reflectora puede estar en el exterior del dispositivo electroóptico y puede tener una geometría optimizada para realizar Ia función de reflexión. El brazo de soporte los une mecánicamente y "atraviesa" el dispositivo electroóptico a través de una abertura prevista en el mismo. El brazo de soporte puede tener cualquier geometría adecuada a su función. En este sentido puede estar formado por una única columna, por una pluralidad de columnas, o por cualquier otra geometría adecuada.The geometry of the conductive element can be diverse. Thus, for example, an advantageous solution is obtained when the conductive element has a main body that is a flat sheet from which a support arm extends at the end of which the reflecting surface is arranged. In this way the two functions are "separated": the main body is responsible for the displacement being carried out and can be housed inside the electro-optical device, while the reflective surface may be outside the electro-optical device and may have an optimized geometry to perform the reflection function. The support arm joins them mechanically and "crosses" the electro-optical device through an opening provided therein. The support arm can have any geometry appropriate to its function. In this sense it can be formed by a single column, by a plurality of columns, or by any other suitable geometry.
Alternativamente, otra solución ventajosa se tiene cuando el elemento conductor tiene un cuerpo principal que es una lámina plana sobre Ia que se extiende Ia superficie reflectora, donde Ia superficie reflectora está orientada hacia una de las primera zona y segunda zona, Ia cual presenta una abertura que permite el paso de Ia señal luminosa. En este caso se simplifica Ia geometría del elemento conductor y se reducen las masas en movimiento. A cambio se ha de prever una abertura en el dispositivo electroóptico lo suficientemente grande como para permitir el paso de una parte significativa de Ia señal luminosa.Alternatively, another advantageous solution is when the conductive element has a main body that is a flat sheet on which the reflective surface extends, where the reflective surface is oriented towards one of the first zone and second zone, which has an opening which allows the passage of the light signal. In this case, the geometry of the conductive element is simplified and the moving masses are reduced. In return, an opening in the electro-optical device large enough to allow the passage of a significant part of the light signal must be provided.
En general, un dispositivo electroóptico determinado será capaz de afectar a una señal luminosa de una longitud de onda determinada. En el caso de que Ia señal luminosa sea polícroma puede ser interesante tener un conjunto electroóptico capaz de afectar a más de una longitud de onda determinada. En este sentido, una forma ventajosa de realización de Ia invención se obtiene cuando el conjunto electroóptico tiene tres grupos de dispositivos electroópticos, donde los dispositivos electroópticos de cada grupo son aptos para el procesado de una señal luminosa que comprende una misma longitud de onda determinada, y donde cada grupo es apto para el procesado de una señal luminosa que comprende una longitud de onda determinada diferente de Ia de los otros grupos. Por ejemplo se podrían tener - tres grupos cada uno apto para afectar a Ia luz roja, azul, y verde, respectivamente. Distribuyendo los dispositivos electroópticos de manera que estén agrupados por triadas (tres dispositivos, uno para cada color) se podría procesar señales polícromas y, por ejemplo, formar imágenes en color.In general, a given electro-optical device will be able to affect a light signal of a certain wavelength. In the case that the light signal is polychrome, it may be interesting to have an electro-optical assembly capable of affecting more than a given wavelength. In this sense, an advantageous embodiment of the invention is obtained when the electro-optical assembly has three groups of electro-optical devices, where the electro-optical devices of each group are suitable for processing a light signal that comprises the same determined wavelength, and where each group is suitable for the processing of a light signal that comprises a determined wavelength different from that of the other groups. For example, three groups each could be used to affect the red, blue, and green light, respectively. By distributing the electro-optical devices so that they are grouped by triads (three devices, one for each color) one could process polychrome signals and, for example, form color images.
Otra forma ventajosa de realización de Ia invención se obtiene cuando el conjunto electroóptico comprende, adicionalmente, una capa semitransparente dispuesta a una distancia de Ia mitad de Ia longitud de onda (o de un múltiplo de mitades de onda), medida según Ia dirección del camino óptico. En este caso Ia capa semitransparente hace una función equivalente a Ia superficie reflectora fija: Ia capa semitransparente reflejará siempre parte de Ia señal luminosa sin desfasarla, mientras que Ia parte de señal luminosa que atraviesa Ia capa semitransparente incidirá sobre Ia superficie reflectora solidaria con el elemento conductor y estará en fase o desfasada media longitud de onda respecto de Ia señal reflejada en Ia capa semitransparente en función de Ia posición del elemento conductor. En general, Ia capa semitransparente no tiene por que estar ubicada en las cercanías del dispositivo, sino que, por el contrario, puede ponerse, por ejemplo, en Ia superficie externa del chip (siempre que Ia distancia cumpla con Ia condición de ser un múltiplo de Ia mitad de Ia longitud de onda).Another advantageous embodiment of the invention is obtained when the electro-optical assembly additionally comprises a semi-transparent layer disposed at a distance of half the wavelength (or a multiple of wave halves), measured according to the direction of the path optical. In this case, the semi-transparent layer performs a function equivalent to the fixed reflective surface: the semi-transparent layer will always reflect part of the light signal without offsetting it, while the part of the light signal that passes through the semi-transparent layer will affect the reflective surface integral with the element conductor and will be in phase or offset half wavelength with respect to the signal reflected in the semi-transparent layer depending on the position of the conductive element. In general, the semi-transparent layer does not have to be located in the vicinity of the device, but, on the contrary, it can be placed, for example, on the external surface of the chip (provided that the distance meets the condition of being a multiple of half of the wavelength).
Las alternativas descritas hasta el momento presuponen Ia existencia de una fuente luminosa dispuesta en una posición relativa determinada respecto del dispo- sitivo electroóptico. De esta forma se define un camino óptico determinado y se puede diseñar adecuadamente Ia geometría del conjunto electroóptico par que tenga lugar el citado desfase de Ia señal reflejada. Sin embargo otra forma preferente de Ia invención se obtiene cuando el conjunto electroóptico comprende un dispositivo electroóptico reflector digital miniaturizado que, a su vez, comprende:The alternatives described so far presuppose the existence of a light source arranged in a certain relative position with respect to the electro-optical device. In this way, a specific optical path is defined and the geometry of the electro-optic assembly can be adequately designed for the said offset of the reflected signal to take place. However, another preferred form of the invention is obtained when the electro-optical assembly comprises a miniaturized digital reflector electro-optical device which, in turn, comprises:
- una primera zona enfrentada a una segunda zona,- a first zone facing a second zone,
- una primera placa de condensador dispuesta en Ia primera zona, - una segunda placa de condensador dispuesta en Ia segunda zona y enfrentada a Ia primera placa de condensador, donde Ia segunda placa de condensador es menor o igual que Ia primera placa de condensador,- a first condenser plate arranged in the first zone, - a second condenser plate arranged in the second zone and facing the first condenser plate, where the second condenser plate is less than or equal to the first condenser plate,
- una tercera placa de condensador dispuesta en Ia segunda zona, donde Ia tercera placa de condensador es menor o igual que Ia primera placa de condensador, y donde las segunda y tercera placas de condensador son, juntas, mayores que Ia primera placa de condensador,- a third condenser plate arranged in the second zone, where the third condenser plate is less than or equal to the first condenser plate, and where the second and third condenser plates are, together, larger than the first condenser plate,
- un espacio intermedio dispuesto entre Ia primera zona y Ia segunda zona,- an intermediate space arranged between the first zone and the second zone,
- un elemento conductor dispuesto en el espacio intermedio, donde el elemento conductor es mecánicamente independiente de las primera zona y segunda zona y es apto para efectuar un desplazamiento a través del espacio intermedio, desde un primer extremo, donde el elemento conductor está en contacto con Ia primera zona, hasta un segundo extremo, donde el elemento conductor está en contacto con Ia segunda zona y viceversa, en función de unos voltajes presentes en las primera, segunda y tercera placas de condensador,- a conductive element disposed in the intermediate space, where the conductive element is mechanically independent of the first zone and second zone and is capable of moving through the intermediate space, from a first end, where the conductive element is in contact with The first zone, to a second end, where the conductive element is in contact with the second zone and vice versa, depending on voltages present in the first, second and third condenser plates,
- una superficie reflectora, apta para reflejar un haz de luz incidente, solidaria al elemento conductor,- a reflective surface, suitable for reflecting an incident beam of light, integral with the conductive element,
donde Ia distancia recorrida por Ia superficie reflectora es igual a Ia cuarta parte de Ia longitud de onda, o un múltiplo impar de Ia cuarta parte de Ia longitud de onda, cuando el elemento conductor pasa del primer extremo al segundo extremo o viceversa.where the distance traveled by the reflecting surface is equal to the fourth part of the wavelength, or an odd multiple of the fourth part of the wavelength, when the conductive element passes from the first end to the second end or vice versa.
Efectivamente, en este último caso se tiene un conjunto electroóptico adecuado para trabajar con una señal luminosa que incide perpendicularmente (o casi per- pendicularmente) a Ia superficie reflectora. Este es un caso bastante habitual, por ejemplo cuando se trata de conjuntos electroópticos reflectores "pasivos", es decir que reflejan Ia luz ambiente del entorno. Un ejemplo sería el caso de un usuario enfrentado a una pantalla formada por estos conjuntos electroópticos e iluminada por Ia luz ambiente. Lógicamente este caso concreto del conjunto electroóptico puede combinarse con todas las alternativas y variantes indicadas anteriormente. De hecho, este caso es un caso particular del anterior, en el que Ia fuente de luz está en una posición perpendicular o casi perpendicular a Ia superficie reflectora. Sin embargo, este caso particular permite diseñar un conjunto electroóptico que no tiene por qué comprender una fuente de luz en una posición predeterminada, ya que se parte de Ia premisa que Ia fuente de luz, ajena al conjunto, ya tendrá dicha posición relativa.In fact, in the latter case there is an electro-optical assembly suitable for working with a light signal that affects the reflecting surface perpendicularly (or almost perpendicularly). This is a fairly common case, for example when it comes to "passive" reflective electro-optic assemblies, that is, they reflect the ambient light of the environment. An example would be the case of a user facing a screen formed by these electro-optical assemblies and illuminated by the ambient light. Logically, this specific case of the electro-optical assembly can be combined with all the alternatives and variants indicated above. In fact, this case is a particular case of the previous one, in which the light source is in a position perpendicular or almost perpendicular to the reflecting surface. However, this particular case allows to design an electro-optical assembly that does not have to comprise a light source in a predetermined position, since it is based on the premise that the light source, outside the assembly, will already have said relative position.
La invención tiene también por objeto un procedimiento para el procesado de una señal luminosa que comprende una longitud de onda determinada, mediante un conjunto electroóptico reflector miniaturizado que comprende un dispositivo electroóptico reflector digital miniaturizado que comprende:A subject of the invention is also a process for the processing of a light signal comprising a given wavelength, by means of a miniaturized reflector electro-optical assembly comprising a miniaturized digital reflector electro-optical device comprising:
- una primera zona enfrentada a una segunda zona,- a first zone facing a second zone,
- una primera placa de condensador dispuesta en Ia primera zona,- a first condenser plate arranged in the first zone,
- una segunda placa de condensador dispuesta en Ia segunda zona y enfrentada a Ia primera placa de condensador, donde Ia segunda placa de condensador es me- ñor o igual que Ia primera placa de condensador,- a second condenser plate arranged in the second zone and facing the first condenser plate, where the second condenser plate is less than or equal to the first condenser plate,
- una tercera placa de condensador dispuesta en Ia segunda zona, donde Ia tercera placa de condensador es menor o igual que Ia primera placa de condensador, y donde las segunda y tercera placas de condensador son, juntas, mayores que Ia primera placa de condensador, - un espacio intermedio dispuesto entre Ia primera zona y Ia segunda zona,- a third condenser plate arranged in the second zone, where the third condenser plate is less than or equal to the first condenser plate, and where the second and third condenser plates are, together, larger than the first condenser plate, - an intermediate space arranged between the first zone and the second zone,
- un elemento conductor dispuesto en el espacio intermedio, donde el elemento conductor es mecánicamente independiente de las primera zona y segunda zona y es apto para efectuar un desplazamiento a través del espacio intermedio, desde un primer extremo, donde el elemento conductor está en contacto con Ia primera zona, hasta un segundo extremo, donde el elemento conductor está en contacto con Ia segunda zona y viceversa, en función de unos voltajes presentes en las primera, segunda y tercera placas de condensador,- a conductive element disposed in the intermediate space, where the conductive element is mechanically independent of the first zone and second zone and is capable of moving through the intermediate space, from a first end, where the conductive element is in contact with The first zone, to a second end, where the conductive element is in contact with the second zone and vice versa, depending on voltages present in the first, second and third condenser plates,
- una superficie reflectora, apta para reflejar un haz de luz incidente, solidaria al elemento conductor,- a reflective surface, suitable for reflecting an incident beam of light, integral with the conductive element,
caracterizado porque se hace incidir Ia señal luminosa sobre Ia superficie reflectora tanto si el elemento conductor está en el primer extremo como si está en el segundo extremo, y porque se modifica el camino óptico recorrido por dicha señal luminosa, en un valor igual a Ia mitad de Ia longitud de onda, o un múltiplo impar de Ia mitad de Ia longitud de onda, pasando el elemento conductor del primer extremo al segundo extremo o viceversa, debido al desplazamiento realizado por Ia superficie reflectora.characterized in that the light signal is affected on the reflecting surface whether the conductive element is at the first end or if it is at the second end, and because the optical path traveled by said light signal is modified, at a value equal to half of the wavelength, or an odd multiple of half of the wavelength, passing the conductive element from the first end to the second end or vice versa, due to the displacement made by the reflective surface.
Breve descripción de los dibujosBrief description of the drawings
Otras ventajas y características de Ia invención se aprecian a partir de Ia siguiente descripción, en Ia que, sin ningún carácter limitativo, se relatan unos modos preferentes de realización de Ia invención, haciendo mención de los dibujos que se acompañan. Las figuras muestran:Other advantages and characteristics of the invention can be seen from the following description, in which, without any limitation, preferred embodiments of the invention are mentioned, mentioning the accompanying drawings. The figures show:
Fig. 1 , un esquema simplificado de un dispositivo electroóptico de acuerdo con el estado de Ia técnica.Fig. 1, a simplified scheme of an electro-optical device according to the state of the art.
Fig. 2, un esquema simplificado de un dispositivo electroóptico reflector de acuerdo con Ia invención.Fig. 2, a simplified scheme of an electro-optical reflecting device according to the invention.
Fig. 3, una vista en perspectiva, explosionada de un dispositivo electroóptico reflector de acuerdo con Ia invención.Fig. 3, an exploded perspective view of an electro-optical reflecting device according to the invention.
Fig. 4, una vista en perspectiva del dispositivo electroóptico reflector de Ia Fig. 3,Fig. 4, a perspective view of the electro-optical reflecting device of Fig. 3,
Figs. 5 y 6, una vista frontal del dispositivo electroóptico reflector de Ia Fig. 3 mostrando dos orientaciones diferentes,Figs. 5 and 6, a front view of the reflecting electro-optical device of Fig. 3 showing two different orientations,
Figs. 7 y 8, dos esquemas simplificados de unos elementos conductores con proyecciones,Figs. 7 and 8, two simplified schemes of conductive elements with projections,
Figs. 9 y 10, dos esquemas simplificados mostrando Ia equivalencia entre unas proyecciones dispuestas en el elemento conductor o dispuestas en Ia primera y/o segunda zona, Fig. 11 , un esquema simplificado de otra forma de realización de un dispositivo electroóptico reflector de acuerdo con Ia invención.Figs. 9 and 10, two simplified schemes showing the equivalence between projections arranged in the conductive element or arranged in the first and / or second zone, Fig. 11, a simplified scheme of another embodiment of an electro-optical reflecting device according to the invention.
Fig. 12, un esquema simplificado de un dispositivo electroóptico de acuerdo con el estado de Ia técnica.Fig. 12, a simplified scheme of an electro-optical device according to the state of the art.
Fig. 13, un esquema simplificado de un dispositivo electroóptico reflector de acuerdo con Ia invención.Fig. 13, a simplified scheme of an electro-optical reflecting device according to the invention.
Fig. 14, una vista en perspectiva, explosionada de un dispositivo electroóptico reflector de acuerdo con Ia invención.Fig. 14, an exploded perspective view of an electro-optical reflecting device according to the invention.
Fig. 15, una vista en perspectiva del dispositivo electroóptico reflector de Ia Fig. 14,Fig. 15, a perspective view of the electro-optical reflecting device of Fig. 14,
Figs. 16 y 17, una vista frontal del dispositivo electroóptico reflector de Ia Fig. 14 mostrando dos orientaciones diferentes,Figs. 16 and 17, a front view of the reflecting electro-optical device of Fig. 14 showing two different orientations,
Figs. 18A y 18B, un esquema de un procedimiento de actuación empleando cuatro placas de condensador.Figs. 18A and 18B, a scheme of an actuation procedure using four condenser plates.
Figs. 19A y 19B, un esquema de un procedimiento de actuación empleando tres placas de condensador.Figs. 19A and 19B, a scheme of an actuation procedure using three condenser plates.
Figs. 2OA y 2OB, un esquema de un procedimiento de actuación empleando seis placas de condensador.Figs. 2OA and 2OB, a scheme of an actuation procedure using six condenser plates.
Figs. 21 A y 21 B, un esquema de un procedimiento de actuación empleando seis placas de condensador y una tensión intermedia.Figs. 21 A and 21 B, a scheme of an actuation procedure using six condenser plates and an intermediate voltage.
Figs. 22A y 22B, un esquema de un procedimiento de actuación empleando ocho placas de condensador. Figs. 23A y 23B, un esquema de un procedimiento de actuación empleando ocho placas de condensador y una tensión intermedia.Figs. 22A and 22B, a scheme of an actuation procedure using eight condenser plates. Figs. 23A and 23B, a scheme of an actuation procedure using eight condenser plates and an intermediate voltage.
Figs. 24A1 24B, 24C, 25A, 25B y 25C un esquema de un procedimiento de actua- ción empleando 4 + 4 placas de condensador no alineadas.Figs. 24A 1 24B, 24C, 25A, 25B and 25C a scheme of an actuation procedure using 4 + 4 condenser plates not aligned.
Figs. 26A, 26B y 26C, un esquema de un procedimiento de actuación empleando 4 + 4 placas de condensador no alineadas y una tensión intermedia.Figs. 26A, 26B and 26C, a scheme of an actuation procedure using 4 + 4 non-aligned condenser plates and an intermediate voltage.
Figs. 27A, 27B y 27C, un esquema de un procedimiento alternativo de actuación empleando 4 + 4 placas de condensador no alineadas.Figs. 27A, 27B and 27C, a scheme of an alternative procedure of operation using 4 + 4 non-aligned condenser plates.
Fig. 28, un esquema de dos posibles orientaciones empleando 4 + 4 placas de condensador no alineadas.Fig. 28, a scheme of two possible orientations using 4 + 4 non-aligned condenser plates.
Fig. 29, un esquema de múltiples posibles orientaciones empleando una pluralidad de placas de condensador no alineadas.Fig. 29, a scheme of multiple possible orientations using a plurality of non-aligned condenser plates.
Figs. 3OA y 3OB, un esquema de un procedimiento de actuación empleando Ia plu- ralidad de placas de Ia Fig.29.Figs. 3OA and 3OB, a scheme of an actuation procedure using the plurality of plates of Fig. 29.
Figs. 31 y 32, dos esquemas simplificados de unos elementos conductores con proyecciones,Figs. 31 and 32, two simplified schemes of conductive elements with projections,
Figs. 33 y 34, dos esquemas simplificados mostrando Ia equivalencia entre unas proyecciones dispuestas en el elemento conductor o dispuestas en Ia primera y/o segunda zona,Figs. 33 and 34, two simplified schemes showing the equivalence between projections arranged in the conductive element or arranged in the first and / or second zone,
Fig. 35, un esquema simplificado de otra forma de realización de un dispositivo electroóptico reflector de acuerdo con Ia invención.Fig. 35, a simplified scheme of another embodiment of an electro-optical reflecting device according to the invention.
Fig. 36, un esquema simplificado de un dispositivo electroóptico de acuerdo con el estado de Ia técnica. Fig. 37, un esquema simplificado de un dispositivo electroóptico reflector de acuerdo con Ia invención.Fig. 36, a simplified scheme of an electro-optical device according to the state of the art. Fig. 37, a simplified scheme of an electro-optical reflecting device according to the invention.
Fig. 38, una vista en perspectiva, explosionada de un dispositivo electroóptico reflector de acuerdo con Ia invención.Fig. 38, an exploded perspective view of an electro-optical reflecting device according to the invention.
Fig. 39, una vista en perspectiva del dispositivo electroóptico reflector de Ia Fig. 38,Fig. 39, a perspective view of the reflecting electro-optical device of Fig. 38,
Figs. 39A y 39B, un esquema simplificado de un conjunto electroóptico de acuerdo con Ia invención con el elemento conductor dispuesto en el primer extremo y en el segundo extremo, respectivamente.Figs. 39A and 39B, a simplified scheme of an electro-optical assembly according to the invention with the conductive element arranged at the first end and the second end, respectively.
Fig. 39C, un esquema simplificado de un conjunto electroóptico de acuerdo con Ia invención con una capa semitransparente.Fig. 39C, a simplified scheme of an electro-optical assembly according to the invention with a semi-transparent layer.
Figs. 40 y 41 , una vista frontal del dispositivo electroóptico reflector de Ia Fig. 38 mostrando dos orientaciones diferentes,Figs. 40 and 41, a front view of the reflecting electro-optical device of Fig. 38 showing two different orientations,
Figs. 42A y 42B, un esquema de un procedimiento de actuación empleando cuatro placas de condensador.Figs. 42A and 42B, a scheme of an actuation procedure using four condenser plates.
Figs. 43A y 43B, un esquema de un procedimiento de actuación empleando tres placas de condensador.Figs. 43A and 43B, a scheme of an actuation procedure using three condenser plates.
Figs. 44A y 44B, un esquema de un procedimiento de actuación empleando seis placas de condensador.Figs. 44A and 44B, a scheme of an actuation procedure using six condenser plates.
Figs. 45A y 45B, un esquema de un procedimiento de actuación empleando seis placas de condensador y una tensión intermedia.Figs. 45A and 45B, a scheme of an actuation procedure using six condenser plates and an intermediate voltage.
Figs. 46A y 46B, un esquema de un procedimiento de actuación empleando ocho placas de condensador. Figs. 47 A y 47B, un esquema de un procedimiento de actuación empleando ocho placas de condensador y una tensión intermedia.Figs. 46A and 46B, a scheme of an actuation procedure using eight condenser plates. Figs. 47 A and 47B, a scheme of an actuation procedure using eight capacitor plates and an intermediate voltage.
Figs. 48A, 48B, 48C, 49A, 49B y 49C un esquema de un procedimiento de actuación empleando 4 + 4 placas de condensador no alineadas.Figs. 48A, 48B, 48C, 49A, 49B and 49C a scheme of an actuation procedure using 4 + 4 condenser plates not aligned.
Figs. 5OA, 5OB y 5OC, un esquema de un procedimiento de actuación empleando 4 + 4 placas de condensador no alineadas y una tensión intermedia.Figs. 5OA, 5OB and 5OC, a scheme of an actuation procedure using 4 + 4 non-aligned condenser plates and an intermediate voltage.
Figs. 51 A, 51 B y 51 C, un esquema de un procedimiento alternativo de actuación empleando 4 + 4 placas de condensador no alineadas.Figs. 51 A, 51 B and 51 C, a scheme of an alternative procedure of operation using 4 + 4 condenser plates not aligned.
Fig. 52, un esquema de dos posibles orientaciones empleando 4 + 4 placas de condensador no alineadas.Fig. 52, a scheme of two possible orientations using 4 + 4 non-aligned condenser plates.
Fig. 53, un esquema de múltiples posibles orientaciones empleando una pluralidad de placas de condensador no alineadas.Fig. 53, a scheme of multiple possible orientations using a plurality of non-aligned condenser plates.
Figs. 54A y 54B, un esquema de un procedimiento de actuación empleando Ia pluralidad de placas de Ia Fig.43.Figs. 54A and 54B, a scheme of an actuation procedure using the plurality of plates of Fig. 43.
Descripción detallada de unas formas de realización de Ia invenciónDetailed description of some embodiments of the invention
En Ia figura 1 se muestra un esquema simplificado de un dispositivo electroóptico, tal como se describe en Ia solicitud PCT WO 2004/046807. El dispositivo electroóptico tiene una primera zona 9 enfrentada a una segunda zona 11 (a Ia izquierda y a Ia derecha del dibujo, respectivamente) con una primera placa de condensador 1 dispuesta en Ia primera zona 9, una segunda placa de condensador 2 y una tercera placa de condensador 3 en Ia segunda zona 11 , enfrentadas a dicha primera placa de condensador 1 y donde cada una de dichas segunda y tercera placas de condensador 2, 3 son menores o iguales que Ia primera placa de condensador 1 pero ambas conjuntamente son mayores que Ia primera placa de condensador 1. Entre ambas zonas 9, 11 hay un espacio intermedio 5 a Io largo del cual se puede mover un elemento conductor 7. Un circuito de control CC gobierna las placas de condensador. Tal como ya se especifica en Ia solicitud PCT WO 2004/046807, en pág. 4 lín. 6 - 21 y pág. 16 lín. 7 - 11 , el elemento conductor 7 es mecánicamente inde- pendiente de Ia primera zona 9 y de Ia segunda zona 11 , es decir, es mecánicamente independiente de toda Ia estructura fija del dispositivo. Dicho de otro modo, el elemento conductor 7 es una pieza suelta apta para moverse libremente por el espacio intermedio 5. El elemento conductor 7 no tiene ninguna unión física con su entorno.Figure 1 shows a simplified scheme of an electro-optical device, as described in PCT application WO 2004/046807. The electro-optical device has a first zone 9 facing a second zone 11 (to the left and right of the drawing, respectively) with a first capacitor plate 1 arranged in the first zone 9, a second capacitor plate 2 and a third plate of capacitor 3 in the second zone 11, facing said first capacitor plate 1 and where each of said second and third capacitor plates 2, 3 are smaller or equal than the first capacitor plate 1 but both together are larger than Ia first condenser plate 1. Enter both zones 9, 11 there is an intermediate space 5 along which a conductive element 7 can be moved. A DC control circuit governs the condenser plates. As already specified in PCT application WO 2004/046807, on p. 4 line 6 - 21 and p. 16 line 7-11, the conductive element 7 is mechanically independent of the first zone 9 and the second zone 11, that is, it is mechanically independent of the entire fixed structure of the device. In other words, the conductive element 7 is a loose part suitable for freely moving through the intermediate space 5. The conductive element 7 has no physical connection with its surroundings.
En Ia primera zona 9 y en Ia segunda zona 11 hay unos topes 13 que limitan el movimiento del elemento conductor 7 y que definen un primer extremo y un segundo extremo.In the first zone 9 and in the second zone 11 there are stops 13 that limit the movement of the conductive element 7 and which define a first end and a second end.
En las figuras 2 a 4 se muestra un dispositivo electroóptico reflector de acuerdo con Ia invención. En particular estas vistas no presentan proyecciones (que se definirán más adelante) para mayor simplificación de las mismas. En general se puede observar Ia existencia de ocho placas de condensador 15 (se ha empleado Ia referencia 15 para designar cualquier placa de condensador, con independencia de que sea Ia primera, Ia segunda, Ia tercera o cualquier otra placa de condensador adicional) y de unos topes 13 (concretamente Ia figura 2 se ha dibujado sin topes). Como ya se describe en Ia solicitud PCT WO 2004/046807, en pág. 6 lín. 28 - pág. 7 lín. 5 y pág. 18 lín. 4 - 18, Ia cantidad mínima necesaria de placas de condensador para poder realizar un movimiento en dos direcciones es de tres, con los requi- sitos geométricos indicados anteriormente. Sin embargo, usualmente, los dispositivos tienen más placas de condensador así como una pluralidad de topes.In figures 2 to 4, a reflecting electro-optical device according to the invention is shown. In particular, these views do not present projections (which will be defined below) for further simplification. In general, it is possible to observe the existence of eight condenser plates 15 (reference 15 has been used to designate any condenser plate, regardless of whether it is the first, the second, the third or any other additional condenser plate) and of some stops 13 (specifically Figure 2 has been drawn without stops). As already described in PCT application WO 2004/046807, on p. 6 line 28 - p. 7 line 5 and p. 18 line 4-18, the minimum amount of condenser plates necessary to be able to make a movement in two directions is three, with the geometric requirements indicated above. However, usually, the devices have more condenser plates as well as a plurality of stops.
Usualmente es ventajoso que el elemento conductor 7 no entre en contacto con las placas de condensador 15, si bien en algunos casos puede ser admisible que entre en contacto con alguna de ellas, tal como se describe en Ia solicitud PCT WO 2004/046807, en pág. 23 lín. 12 - 28. El elemento conductor 7 tiene un cuerpo principal 17 que es substancialmente una lámina plana y que soporta una estructura en forma de mesa con una pata (o estructura de soporte) central. La tabla de Ia mesa tiene una superficie reflectora 19 sobre Ia que incidirá el haz de luz, y Ia pata central se extiende a través de un orifi- ció dispuesto entre las placas de condensador 15 de Ia parte superior del dispositivo. Usualmente el elemento conductor 7 tendrá un cuerpo principal 17 que, como se ha dicho anteriormente, será substancialmente un elemento laminar y Ia superficie reflectora 19 será paralela al cuerpo principal 17 del elemento conductor 7, ya que estas geometrías son las que se obtienen de una forma más sencilla mediante los procedimientos habituales de fabricación de MEMS.It is usually advantageous that the conductive element 7 does not come into contact with the condenser plates 15, although in some cases it may be permissible to come into contact with any of them, as described in PCT application WO 2004/046807, in P. 23 line 12-28. The conductive element 7 has a main body 17 that is substantially a flat sheet and that supports a table-shaped structure with a central leg (or support structure). The table of the table has a reflecting surface 19 on which the light beam will affect, and the central leg extends through a hole arranged between the condenser plates 15 of the upper part of the device. Usually the conductive element 7 will have a main body 17 which, as mentioned above, will be substantially a laminar element and the reflective surface 19 will be parallel to the main body 17 of the conductive element 7, since these geometries are those obtained from a more easily using the usual MEMS manufacturing procedures.
En las figuras 5 y 6 se muestra como Ia superficie reflectora 19 puede orientarse en dos posiciones diferentes.In figures 5 and 6 it is shown how the reflecting surface 19 can be oriented in two different positions.
Una forma de conseguir estas diferentes orientaciones es, tal como ya se ha dicho anteriormente, a base de añadir unas proyecciones 21 en el elemento conductor 7. Ello se ha mostrado esquemáticamente en las figuras 7 y 8, en las que se muestra únicamente el cuerpo principal 17 de un elemento conductor 7, por ejemplo de un elemento conductor 7 como el de las figuras 2 a 4. En el caso que el elemento conductor 7 tenga únicamente una proyección 21 , por ejemplo en su superficie superior, entonces Ia superficie reflectora 19 sería paralela a Ia base del dispositivo cuando el elemento conductor 7 está en su posición inferior (visto de acuerdo a las figuras) y Ia superficie reflectora 19 formaría un ángulo no nulo con Ia base del dispositivo cuando el elemento conductor 7 está en su posición superior (suponiendo que los topes 13 dispuestos en Ia zona superior fuesen coplanarios según un plano horizontal). Si el elemento conductor 7 tiene dos proyecciones 21 , una en cada una de sus superficies superior e inferior, entonces Ia superficie reflectora 19 formaría un ángulo no nulo con Ia base del dispositivo tanto si está en el extremo superior como si está en el extremo inferior.One way to achieve these different orientations is, as already mentioned above, by adding projections 21 in the conductive element 7. This has been shown schematically in Figures 7 and 8, in which only the body is shown main 17 of a conductive element 7, for example of a conductive element 7 such as that of Figures 2 to 4. In the case that the conductive element 7 has only a projection 21, for example on its upper surface, then the reflecting surface 19 it would be parallel to the base of the device when the conductive element 7 is in its lower position (seen according to the figures) and the reflective surface 19 would form a non-zero angle with the base of the device when the conductive element 7 is in its upper position (assuming that the stops 13 arranged in the upper area were coplanar according to a horizontal plane). If the conductive element 7 has two projections 21, one on each of its upper and lower surfaces, then the reflecting surface 19 would form a non-zero angle with the base of the device whether it is at the upper end or if it is at the lower end .
En Ia figura 9 se observa que se puede conseguir un resultado similar al de Ia figura 8 con una disposición diferente de las proyecciones 21 , mientras que en Ia figura 10 se observa que se puede conseguir un resultado similar al de Ia figura 9 a base de incluir las proyecciones 21 en Ia primera zona 9 y en Ia segunda zona 11 del dispositivo en vez de incluirlas en el elemento conductor 7 móvil. Lógicamente es posible tener una combinación de ambas alternativas.In Figure 9 it is observed that a result similar to that of Figure 8 can be achieved with a different arrangement of the projections 21, while in Figure 10 it is observed that a result similar to that of Figure 9 can be achieved based to include the projections 21 in the first zone 9 and in the second zone 11 of the device instead of including them in the moving conductor element 7. Logically it is possible to have a combination of both alternatives.
Finalmente en Ia figura 11 se muestra otra alternativa, en Ia que se consigue que Ia superficie reflectora 19 adopte dos orientaciones diferentes gracias a que Ia zona superior del dispositivo es asimétrica. En Ia figura 11 se ha mostrado nuevamente el elemento conductor 7 sin Ia estructura de mesa con Ia superficie reflectora 19 para simplificar el dibujo.Finally, Figure 11 shows another alternative, in which it is achieved that the reflecting surface 19 adopts two different orientations thanks to the fact that the upper area of the device is asymmetric. In Figure 11 the conductive element 7 has again been shown without the table structure with the reflective surface 19 to simplify the drawing.
En general, debe tenerse en cuenta que Ia geometría específica del elemento conductor 7 mostrado en las figuras 2 a 4, con Ia estructura de mesa que incluye Ia superficie reflectora 19, es un ejemplo concreto de forma de realización. En general, el elemento conductor 7 y Ia superficie reflectora 19 pueden tener otras geo- metrías, en particular Ia superficie reflectora 19 puede estar incluida directamente en el cuerpo principal 17 del elemento conductor 7.In general, it should be taken into account that the specific geometry of the conductive element 7 shown in Figures 2 to 4, with the table structure that includes the reflecting surface 19, is a concrete example of an embodiment. In general, the conductive element 7 and the reflective surface 19 can have other geometries, in particular the reflective surface 19 can be included directly in the main body 17 of the conductive element 7.
Asimismo en general, debe tenerse en cuenta que estos dispositivos tienen geometrías tridimensionales y que, por Io tanto, Ia disposición de las proyecciones 21 (y, en general, de los puntos de contacto) puede ser una disposición tridimensional más o menos compleja. Los ejemplos mostrados en las figuras son simplemente unos ejemplos con geometrías simplificadas.Also in general, it should be taken into account that these devices have three-dimensional geometries and that, therefore, the arrangement of the projections 21 (and, in general, of the contact points) can be a more or less complex three-dimensional arrangement. The examples shown in the figures are simply examples with simplified geometries.
En Ia figura 12 se muestra un esquema simplificado de un dispositivo electroóptico, tal como se describe en Ia solicitud PCT WO 2004/046807. El dispositivo electroóptico tiene una primera zona 109 enfrentada a una segunda zona 111 (a Ia izquierda y a Ia derecha del dibujo, respectivamente) con una primera placa de condensador 101 dispuesta en Ia primera zona 109, una segunda placa de condensador 102 y una tercera placa de condensador 103 en Ia segunda zona 111, enfrentadas a di- cha primera placa de condensador 101 y donde cada una de dichas segunda y tercera placas de condensador 102, 103 son menores o iguales que Ia primera placa de condensador 101 pero ambas conjuntamente son mayores que Ia primera placa de condensador 101. Entre ambas zonas 109, 111 hay un espacio intermedio 105 a Io largo del cual se puede mover un elemento conductor 107. Un circuito de control CC gobierna las placas de condensador. Tal como ya se especifica en Ia solicitud PCT WO 2004/046807, en pág. 4 lín. 6 - 21 y pág. 16 lín. 7 - 11 , el elemento conductor 107 es mecánicamente independiente de Ia primera zona 109 y de Ia segun- da zona 111 , es decir, es mecánicamente independiente de toda Ia estructura fija del dispositivo. Dicho de otro modo, el elemento conductor 107 es una pieza suelta apta para moverse libremente por el espacio intermedio 105. El elemento conductor 107 no tiene ninguna unión física con su entorno.Figure 12 shows a simplified scheme of an electro-optical device, as described in PCT application WO 2004/046807. The electro-optical device has a first zone 109 facing a second zone 111 (to the left and to the right of the drawing, respectively) with a first capacitor plate 101 arranged in the first zone 109, a second capacitor plate 102 and a third plate of capacitor 103 in the second zone 111, facing said first capacitor plate 101 and where each of said second and third capacitor plates 102, 103 are smaller or equal than the first capacitor plate 101 but both together are larger that the first condenser plate 101. Between the two zones 109, 111 there is an intermediate space 105 a The length of which a conductive element 107 can be moved. A DC control circuit governs the condenser plates. As already specified in PCT application WO 2004/046807, on p. 4 line 6 - 21 and p. 16 line 7-11, the conductive element 107 is mechanically independent of the first zone 109 and the second zone 111, that is, it is mechanically independent of the entire fixed structure of the device. In other words, the conductive element 107 is a loose part suitable for freely moving through the intermediate space 105. The conductive element 107 has no physical connection with its surroundings.
En Ia primera zona 109 y en Ia segunda zona 11 1 hay unos topes 113 que limitan el movimiento del elemento conductor 107 y que definen un primer extremo y un segundo extremo.In the first zone 109 and in the second zone 11 1 there are stops 113 that limit the movement of the conductive element 107 and which define a first end and a second end.
En las figuras 13 a 15 se muestra un dispositivo electroóptico reflector de acuerdo con Ia invención. En general se puede observar Ia existencia de ocho placas de condensador 115 (se ha empleado Ia referencia 1 15 para designar cualquier placa de condensador, con independencia de que sea Ia primera, Ia segunda, Ia tercera o cualquier otra placa de condensador adicional) y de unos topes 113 (concretamente Ia figura 13 se ha dibujado sin topes). Como ya se describe en Ia solicitud PCT WO 2004/046807, en pág. 6 lín. 28 - pág. 7 lín. 5 y pág. 18 lín. 4 - 18, Ia cantidad mínima necesaria de placas de condensador para poder realizar un movimiento en dos direcciones es de tres. Sin embargo, usualmente, los dispositivos tienen más placas de condensador así como una pluralidad de topes.Figures 13 to 15 show a reflecting electro-optical device according to the invention. In general, it is possible to observe the existence of eight condenser plates 115 (reference 1 15 has been used to designate any condenser plate, regardless of whether it is the first, the second, the third or any other additional condenser plate) and of stops 113 (specifically Figure 13 has been drawn without stops). As already described in PCT application WO 2004/046807, on p. 6 line 28 - p. 7 line 5 and p. 18 line 4-18, the minimum amount of condenser plates needed to be able to make a movement in two directions is three. However, usually, the devices have more condenser plates as well as a plurality of stops.
Usualmente es ventajoso que el elemento conductor 107 no entre en contacto con las placas de condensador 115, si bien en algunos casos puede ser admisible que entre en contacto con alguna de ellas, tal como se describe en Ia solicitud PCT WO 2004/046807, en pág. 23 lín. 12 - 28.It is usually advantageous that the conductive element 107 does not come into contact with the condenser plates 115, although in some cases it may be permissible to come into contact with any of them, as described in PCT application WO 2004/046807, in P. 23 line 12-28.
El elemento conductor 107 tiene un cuerpo principal 117 que es substancialmente una lámina plana y que soporta una estructura en forma de mesa con una pata (o estructura de soporte) central. La tabla de Ia mesa tiene una superficie reflectora 119 sobre Ia que incidirá el haz de luz, y Ia pata central se extiende a través de un orificio dispuesto entre las placas de condensador 115 de Ia parte superior del dispositivo. Usualmente el elemento conductor 107 tendrá un cuerpo principal 117 que, como se ha dicho anteriormente, será substancialmente un elemento laminar y Ia superficie reflectora 119 será paralela al cuerpo principal 117 del elemento con- ductor 107, ya que estas geometrías son las que se obtienen de una forma más sencilla mediante los procedimientos habituales de fabricación de MEMS.The conductive element 107 has a main body 117 that is substantially a flat sheet and that supports a table-shaped structure with a central leg (or support structure). The table of the table has a reflective surface 119 on which the light beam will affect, and the central leg extends through a hole disposed between the condenser plates 115 of the upper part of the device. Usually the conductive element 107 will have a main body 117 which, as mentioned above, will be substantially a laminar element and the reflective surface 119 will be parallel to the main body 117 of the conductive element 107, since these geometries are those obtained in a simpler way through the usual MEMS manufacturing procedures.
En las figuras 16 y 17 se muestra como Ia superficie reflectora 119 puede orientarse en dos posiciones diferentes.In figures 16 and 17 it is shown how the reflective surface 119 can be oriented in two different positions.
En las figuras 18A y 18B se muestra esquemáticamente el concepto básico del procedimiento de actuación de acuerdo con Ia invención. Tanto en estas figuras como en las restantes figuras que describen el procedimiento se muestra únicamente las placas de condensador 115 y el cuerpo principal 117 del elemento con- ductor 107. En las figuras se ha mostrado, adicionalmente, el voltaje aplicado a las placas de condensador 115. Cuando Ia placa de condensador muestra unas líneas horizontales en trazos discontinuos representa que está conectada a un voltaje "bajo" (preferentemente 0 V). Cuando Ia placa de condensador 115 muestra unas líneas horizontales continuas y unas líneas verticales (formando un enladrillado) representa que está conectada a un voltaje "alto" (V0, que preferentemente será Ia tensión de alimentación del circuito, pero en general cualquier voltaje superior al voltaje "bajo"). Cuando Ia placa de condensador 115 muestra unas líneas horizontales continuas representa que está conectada a un voltaje intermedio entre los dos anteriores (preferentemente V012). En cualquier caso debe tenerse en cuenta que es posible invertir la polaridad de las placas de condensador 115 obteniéndose el mismo resultado. Adicionalmente, en las figuras 18A, 18B, 19A, 19B, 20A1 2OB, 21 A, 21 B, 22A, 22B, 23A y 23B, se muestra el elemento conductor 107 y las placas de condensador 115 de perfil. Se puede suponer que las placas de condensador 115 son, en estos casos, substancialmente cuadradas. Concretamente en las figu- ras 18A y 18B se observa como Ia placa de condensador 115 conectada a un voltaje alto es asimétrica respecto del eje central (que sería una recta vertical que pasaría por el medio de Ia figura). Por Io tanto se crea un par de fuerzas que hace girar al elemento conductor 107 tal como se ha representado esquemáticamente en las figuras. Como se verá a continuación, en los demás ejemplos tiene lugar el mismo fenómeno.In figures 18A and 18B the basic concept of the actuation procedure according to the invention is schematically shown. Both these figures and the remaining figures describing the procedure show only the condenser plates 115 and the main body 117 of the conductive element 107. The figures additionally show the voltage applied to the condenser plates 115. When the condenser plate shows horizontal lines in dashed lines, it represents that it is connected to a "low" voltage (preferably 0 V). When the capacitor plate 115 shows continuous horizontal lines and vertical lines (forming a grid) it represents that it is connected to a "high" voltage (V 0 , which will preferably be the circuit supply voltage, but in general any higher voltage at the "low" voltage). When the capacitor plate 115 shows continuous horizontal lines, it represents that it is connected to an intermediate voltage between the two previous ones (preferably V 0 12). In any case, it must be taken into account that it is possible to reverse the polarity of the capacitor plates 115, obtaining the same result. Additionally, in figures 18A, 18B, 19A, 19B, 20A 1 2OB, 21 A, 21 B, 22A, 22B, 23A and 23B, the conductive element 107 and the profile condenser plates 115 are shown. It can be assumed that the condenser plates 115 are, in these cases, substantially square. Specifically in figures 18A and 18B, it is observed how the capacitor plate 115 connected to a high voltage is asymmetric with respect to the central axis (which would be a vertical line that would pass through the middle of the figure). Therefore a pair of forces is created which rotates the conductive element 107 as schematically represented in the figures. As will be seen below, the same phenomenon occurs in the other examples.
En las figuras 19A y 19B se ve un caso simplificado del caso anterior. Como puede verse en las figuras 18A y 18B las dos placas de condensador 115 superiores están siempre al mismo voltaje. Por Io tanto se pueden unir físicamente de manera que formen una única placa de condensador 1 15. Es el caso mostrado en las figuras 19A y 19B, en el que el dispositivo tiene el mínimo imprescindible de placas de condensador 115: tres placas.A simplified case of the previous case is seen in Figures 19A and 19B. As can be seen in Figures 18A and 18B, the two upper capacitor plates 115 are always at the same voltage. Therefore, they can be physically joined so that they form a single condenser plate 1 15. This is the case shown in Figures 19A and 19B, in which the device has the essential minimum of condenser plates 115: three plates.
En general, preferentemente se conecta por Io menos una placa de condensador 115 adicional a un voltaje intermedio entre el primer voltaje y el segundo voltaje. Ello permite hacer que el dispositivo sea más estable frente a influencias externas. De hecho, en el caso de que el dispositivo tenga cuatro o más placas de conden- sador 115 en cada zona, puede ser interesante conectar alguna de las placas 115 a un segundo voltaje intermedio, diferente del anterior. De esta manera se puede ajustar con más precisión el momento de fuerzas aplicado al elemento conductor 107.In general, preferably at least one additional capacitor plate 115 is connected at an intermediate voltage between the first voltage and the second voltage. This allows to make the device more stable against external influences. In fact, if the device has four or more capacitor plates 115 in each zone, it may be interesting to connect some of the plates 115 to a second intermediate voltage, different from the previous one. In this way, the force moment applied to the conductive element 107 can be adjusted more precisely.
En una forma ventajosa de realización, el dispositivo tiene tres placas de condensador 115 alineadas en Ia primera zona 109 y tres placas de condensador 115 alineadas en Ia segunda zona 111 , y se conecta Ia placa de condensador 115 central de cada una de las zonas a un mismo voltaje. Esta alternativa está reflejada en las figuras 2OA y 2OB. En este caso es particularmente ventajoso que se conecte una de las placas de condensador 115 laterales de cada una de las zonas a un voltaje intermedio, tal como se muestra en las figuras 21 A y 21 B.In an advantageous embodiment, the device has three condenser plates 115 aligned in the first zone 109 and three condenser plates 115 aligned in the second zone 111, and the central condenser plate 115 of each of the zones is connected Same voltage This alternative is reflected in figures 2OA and 2OB. In this case it is particularly advantageous that one of the side condenser plates 115 of each of the zones is connected to an intermediate voltage, as shown in Figures 21 A and 21 B.
En otra forma preferente de realización, el dispositivo tiene cuatro placas de condensador 115 alineadas en Ia primera zona 109 y cuatro placas de condensador 115 alineadas en Ia segunda zona 111 , y se conectan tres placas de condensador 115 de Ia primera zona 109 y tres placas de condensador 115 de Ia segunda zona 111 a un mismo voltaje, tal como se muestra en las figuras 22A y 22B. En este caso vuelve a ser ventajoso que se conecten dos placas de condensador 115 de Ia primera zona 109 y dos placas de condensador 115 de Ia segunda zona 111 a un voltaje intermedio a fin de hacer el conjunto más estable frente a influencias externas, tal como se muestra en las figuras 23A y 23B.In another preferred embodiment, the device has four condenser plates 115 aligned in the first zone 109 and four condenser plates 115 aligned in the second zone 111, and three condenser plates 115 of the first zone 109 and three plates are connected of capacitor 115 of the second zone 111 at the same voltage, as shown in Figures 22A and 22B. In this case it is again advantageous to connect two capacitor plates 115 of Ia First zone 109 and two capacitor plates 115 of the second zone 111 at an intermediate voltage in order to make the assembly more stable against external influences, as shown in Figures 23A and 23B.
Otra forma ventajosa de realización de Ia invención se obtiene cuando el dispositivo tiene cuatro placas de condensador 115 no alineadas en Ia primera zona 109 y cuatro placas de condensador 115 no alineadas en Ia segunda zona 111 , y se conectan tres placas de condensador 115 de Ia primera zona 109 y tres placas de condensador 115 de Ia segunda zona 111 a un mismo voltaje, tal como se muestra en las figuras 24A, 24B, 24C, 25A, 25B y 25C. En Ia figura 24A se muestra una vista en planta de las placas de condensador 115 de Ia zona inferior (por ejemplo, Ia primera zona 109), en Ia figura 24B se muestra una vista en planta de las placas de condensador 115 de Ia zona superior (que, siguiendo el mismo ejemplo, sería Ia segunda zona 111) y en Ia figura 24C se muestra una vista de perfil, con una ligera perspectiva para que se aprecien las cuatro placas de condensador 115 de cada zona. De hecho, las figuras 24A y 24B son equivalentes a las citadas proyecciones según el eje central sobre un plano perpendicular al eje central. En este caso se emplea el hecho de que el dispositivo, realmente, es tridimensional y que las placas de condensador 115 no tienen porqué estar alineadas, sino que pueden estar dis- tribuidas a Io largo de una superficie bidimensional (usualmente a Io largo de un plano). También en este caso es ventajoso que se conecten dos placas de condensador 115 de Ia primera zona 109 y dos placas de condensador 115 de Ia segunda zona 111 a un voltaje intermedio, tal como se muestra en las figuras 26A, 26B y 26C. Existen otras alternativas de actuación, como puede ser Ia mostrada en las figuras 27A, 27B y 27C, en las que las placas de condensador 115 conectadas a Ia tensión alta y a Ia tensión baja no están adyacentes, pero es ventajoso que, cuando las placas de condensador 115 están distribuidas en forma de cuadrado tanto en Ia primera zona 109 como en Ia segunda zona 111 , las placas de condensador 115 conectadas a Ia tensión alta y a Ia tensión baja estén adyacentes (o, dicho de una forma más correcta, que sus respectivas proyecciones según el eje central sobre un plano perpendicular al eje central sean adyacentes). La figura 28 se muestra como, mediante un dispositivo que tiene cuatro placas de condensador 115 no alineadas y dispuestas en forma de cuadrado en cada una de las zonas, se pueden conseguir dos pares de orientaciones del elemento conductor 107 según se haga girar al elemento conductor 107 según uno de los dos ejes indi- cados en Ia figura. Para ello se emplearía uno de los procedimientos mostrados en las figuras 24A, 24B, 24C, 25A, 25B, 25C y/o 26A1 26B, 26C, tal como están representadas o bien giradas 90°. Sin embargo también se podría emplear el procedimiento mostrado en las figuras 27A, 27B, 27C, en cuyo caso tendríamos unos ejes de giro inclinados 45° respecto de los mostrados en Ia figura 28.Another advantageous embodiment of the invention is obtained when the device has four condenser plates 115 not aligned in the first zone 109 and four condenser plates 115 not aligned in the second zone 111, and three condenser plates 115 of the Ia are connected First zone 109 and three capacitor plates 115 of the second zone 111 at the same voltage, as shown in Figures 24A, 24B, 24C, 25A, 25B and 25C. Figure 24A shows a plan view of the condenser plates 115 of the lower zone (for example, the first zone 109), Figure 24B shows a plan view of the condenser plates 115 of the upper zone (which, following the same example, would be the second zone 111) and in Figure 24C a profile view is shown, with a slight perspective so that the four condenser plates 115 of each zone are appreciated. In fact, Figures 24A and 24B are equivalent to the aforementioned projections along the central axis on a plane perpendicular to the central axis. In this case, the fact that the device is actually three-dimensional is used and that the condenser plates 115 do not have to be aligned, but can be distributed along a two-dimensional surface (usually along a flat). Also in this case it is advantageous that two capacitor plates 115 of the first zone 109 and two capacitor plates 115 of the second zone 111 are connected to an intermediate voltage, as shown in Figures 26A, 26B and 26C. There are other actuation alternatives, such as that shown in Figures 27A, 27B and 27C, in which the capacitor plates 115 connected to the high and low voltage are not adjacent, but it is advantageous that, when the plates of capacitor 115 are distributed in the form of a square both in the first zone 109 and in the second zone 111, the condenser plates 115 connected to the high voltage and the low voltage are adjacent (or, in a more correct way, than their respective projections along the central axis on a plane perpendicular to the central axis are adjacent). Figure 28 is shown as, by means of a device having four condenser plates 115 not aligned and arranged squarely in each of the zones, two pairs of orientations of the conductive element 107 can be achieved as the conductive element is rotated 107 according to one of the two axes indicated in the figure. For this, one of the procedures shown in Figures 24A, 24B, 24C, 25A, 25B, 25C and / or 26A 1 26B, 26C, as represented or rotated 90 °, would be used. However, the procedure shown in Figures 27A, 27B, 27C could also be used, in which case we would have 45 ° inclined axes of rotation with respect to those shown in Figure 28.
En el caso de disponer de un dispositivo que tiene una pluralidad de placas de condensador 115 distribuidas con simetría de rotación según el eje central en ambas zonas, entonces el procedimiento de actuación se caracteriza preferentemente porque se conecta por Io menos una placa de condensador 115 adicional a un vol- taje intermedio entre el primer voltaje y el segundo voltaje. Preferentemente todas y cada una de las placas 115 está sometida a un voltaje determinado de manera que ninguna de ellas queda en un estado de alta impedancia.In the case of having a device having a plurality of condenser plates 115 distributed with rotation symmetry along the central axis in both zones, then the actuation procedure is preferably characterized in that at least one additional condenser plate 115 is connected. at an intermediate voltage between the first voltage and the second voltage. Preferably, each and every one of the plates 115 is subjected to a certain voltage so that none of them is in a high impedance state.
El hecho de conseguir que ninguna de las placas de condensador 115 quede en un estado de alta impedancia es una solución ventajosa que es aplicable para cualquiera de las diferentes alternativas de Ia presente invención. Efectivamente, en general es posible controlar el desplazamiento del elemento conductor 107 de diversas maneras, combinando placas de condensador 115 conectadas a un voltaje bajo, placas de condensador 115 conectadas a un voltaje alto y, en determinados casos, placas de condensador 115 dejadas en un estado de alta impedancia. Sin embargo, se ha observado que, en Ia práctica, conseguir un estado de alta impedancia realmente eficaz no es sencillo. De hecho se ha observado que para poder garantizar que una placa de condensador 115 esté en un estado de alta impedancia realmente eficaz es necesario el empleo de por Io menos un relé adicional. Este relé adicional consume espacio por Io que es, a priori, indeseable. Por Io tanto es ventajoso emplear aquellas formas de control del elemento conductor 107 que no requieran de Ia presencia de una placa de condensador 115 en estado de alta im- pedancia. Sin embargo, en general, los dispositivos de acuerdo con Ia invención tienen una pluralidad de placas de condensador 115. En determinados casos no todas ellas participan en el control del elemento conductor 107. La presente invención especifica que solamente aquéllas placas de condensador 115 que participan en el control del elemento conductor 107 en un momento dado deben estar conec- tadas a un voltaje determinado (es decir no deben estar en un estado de alta impe- dancia), sin embargo no hay ninguna exigencia por Io que respecta a aquéllas placas de condensador 1 15 que, en un momento dado, no participan en el control del elemento conductor 107. Por otro lado, se debe tener en cuenta que el problema derivado del hecho de tener una placa de condensador 1 15 en estado de alta im- pedancia es que, con períodos de tiempo largos, puede alcanzar algún voltaje determinado por condiciones del entorno a priori desconocidas. Para evitar este inconveniente puede resultar recomendable garantizar que ninguna de las placas de condensador 115 presentes en el dispositivo estén en ningún momento en un estado de alta impedancia.The fact that none of the capacitor plates 115 remain in a high impedance state is an advantageous solution that is applicable for any of the different alternatives of the present invention. Indeed, it is generally possible to control the displacement of the conductive element 107 in various ways, by combining capacitor plates 115 connected at a low voltage, capacitor plates 115 connected at a high voltage and, in certain cases, capacitor plates 115 left in a high impedance state. However, it has been observed that, in practice, achieving a really effective high impedance state is not easy. In fact, it has been observed that in order to guarantee that a capacitor plate 115 is in a really effective high impedance state, it is necessary to use at least one additional relay. This additional relay consumes space for what is, a priori, undesirable. Therefore, it is advantageous to use those control forms of the conductive element 107 that do not require the presence of a capacitor plate 115 in a high impedance state. However, in general, the devices according to the invention they have a plurality of capacitor plates 115. In certain cases not all of them participate in the control of the conductive element 107. The present invention specifies that only those condenser plates 115 that participate in the control of the conductive element 107 at any given time must be connected to a certain voltage (that is, they must not be in a high impedance state), however, there is no requirement as regards those capacitor plates 1 15 that, at a given time, do not participate in the control of the conductive element 107. On the other hand, it should be borne in mind that the problem derived from having a capacitor plate 1 15 in a high impedance state is that, with long periods of time, some voltage can reach determined by a priori unknown environmental conditions. To avoid this inconvenience it may be advisable to ensure that none of the capacitor plates 115 present in the device are at any time in a high impedance state.
Otra forma de conseguir orientar en dos posiciones diferentes en el espacio Ia superficie reflectora es mediante un dispositivo electroóptico reflector miniaturizado según tal como el descrito anteriormente en el queAnother way of achieving orientation in two different positions in space is the reflective surface by means of a miniaturized reflecting electro-optical device according to the one described above in which
- Ia segunda placa de condensador 102 es menor o igual que Ia primera placa de condensador 101 ,- the second condenser plate 102 is less than or equal to the first condenser plate 101,
- Ia tercera placa de condensador 103 es menor o igual que Ia primera placa de condensador 101 , y donde dichas segunda y tercera placas de condensador 102, 103 son, juntas, mayores que Ia primera placa de condensador 101 ,- the third condenser plate 103 is smaller than or equal to the first condenser plate 101, and where said second and third condenser plates 102, 103 are, together, larger than the first condenser plate 101,
- el elemento conductor presenta una primera superficie encarada hacia Ia primera zona 109 y una segunda superficie encarada hacia Ia segunda zona 111 , el elemento conductor 107 siendo apto para efectuar un desplazamiento a través del espacio intermedio 105, desde un primer extremo, donde el elemento conductor 107 está en contacto con Ia primera zona 109, hasta un segundo extremo, donde el elemento conductor 107 está en contacto con Ia segunda zona 111 , y viceversa, en función de unos voltajes presentes en las primera, segunda y tercera placas de condensador 101 , 102, 103,- the conductive element has a first surface facing the first zone 109 and a second surface facing the second zone 111, the conductive element 107 being able to move through the intermediate space 105, from a first end, where the element conductor 107 is in contact with the first zone 109, to a second end, where the conductor element 107 is in contact with the second zone 111, and vice versa, in function of voltages present in the first, second and third capacitor plates 101, 102, 103,
y dondeand where
a - cuando el elemento conductor 107 está en el primer extremo tiene por Io menos tres primeros puntos de apoyo no alineados en Ia primera superficie que están en contacto con tres primeros puntos de apoyo correspondientes en Ia primera zona 109, y cuando el elemento conductor 107 está en el segundo extremo tiene por Io menos tres segundos puntos de apoyo no alineados en Ia segunda superficie que están en contacto con tres segundos puntos de apoyo correspondientes en Ia segunda zona 111 , ya - when the conductive element 107 is at the first end it has at least three first support points not aligned on the first surface that are in contact with three corresponding first support points in the first zone 109, and when the conductive element 107 it is at the second end has at least three second support points not aligned on the second surface that are in contact with three corresponding second support points in the second zone 111, and
b - cuando el elemento conductor 107 está en el primer extremo, Ia distancia entre por Io menos uno de los segundos puntos de apoyo de Ia segunda superficie a su correspondiente punto de apoyo de Ia segunda zona 111 es diferente a Ia distancia de los restantes segundos puntos de apoyo de Ia segunda superficie a sus correspondientes puntos de apoyo de Ia segunda zona 111 , de manera que Ia superficie reflectora 119 cambia de orientación en el espacio cuando el elemento conductor 107 efectúa dicho desplazamiento entre el primer extremo y el segundo extremo.b - when the conductive element 107 is at the first end, the distance between at least one of the second support points of the second surface to its corresponding support point of the second zone 111 is different from the distance of the remaining seconds support points of the second surface to their corresponding support points of the second zone 111, so that the reflective surface 119 changes orientation in the space when the conductive element 107 makes said displacement between the first end and the second end.
Efectivamente el dispositivo de acuerdo con Ia invención permite posicionar Ia superficie reflectora con dos orientaciones en el espacio que forman un cierto ángulo sin necesidad de deformar elásticamente ningún material. Ello permite reducir los voltajes de activación y los consumos de potencia, permite reducir el tamaño de cada uno de los dos dispositivos (con Ia consiguiente mejora de resolución) y se evitan los problemas derivados de las tensiones mecánicas residuales en el material en voladizo.Indeed, the device according to the invention allows the reflective surface to be positioned with two orientations in space that form a certain angle without the need to elastically deform any material. This allows to reduce the activation voltages and the power consumption, it allows to reduce the size of each of the two devices (with the consequent improvement of resolution) and the problems derived from the residual mechanical tensions in the cantilever material are avoided.
Usualmente los dispositivos MEMS tienen una estructura laminar acusada, inherente a su procedimiento de fabricación. En este sentido el elemento conductor suele ser una lámina plana y las placas de condensador y demás elementos del entorno suelen ser también unas superficies planas y paralelas al elemento con- ductor. Sin embargo no es necesario que esto sea así. Por ello en los apartados a y b anteriores se han detallado, de una forma general, Io que son los requisitos básicos necesarios para Ia presente forma de realización de Ia invención:Usually MEMS devices have a pronounced laminar structure, inherent to their manufacturing process. In this sense the conductive element is usually a flat sheet and the condenser plates and other elements of the environment are usually also flat surfaces parallel to the element ductor However, it is not necessary that this be so. Therefore, in sections a and b above, in a general way, what are the basic requirements necessary for the present embodiment of the invention have been detailed:
- El elemento conductor, tenga Ia forma que tenga, se desplazará siempre desde un primer extremo hasta un segundo extremo y viceversa. Para definir con mayor exactitud las dos posiciones denominadas como primer extremo y segundo extremo se han tenido en cuenta las siguientes consideraciones. Cuando el elemento conductor esté en el primer extremo, estará en contacto con unos determinados puntos de Ia primera zona que limitan el espacio intermedio y, por Io tanto, que limitan el desplazamiento que puede realizar el elemento conductor. Como mínimo, el conductor estará en contacto con Ia primera zona en tres puntos no alineados (que definen un plano) si bien en Ia práctica podrá estar en contacto en más puntos y, además, estos puntos no serán puntos en el sentido geométrico sino que serán superficies más o menos grandes. Los puntos de contacto serán los puntos de unión entre Ia primera superficie del elemento conductor y Ia primera zona. Por Io tanto, estos puntos de contacto definen unos primeros puntos de apoyo en Ia primera superficie del elemento conductor y unos primeros puntos de apoyo en Ia primera zona. Cuando el elemento conductor se desplace hacia el segundo extre- mo, los primeros puntos de apoyo de Ia primera superficie y los primeros puntos de apoyo de Ia primera zona se separarán entre ellos definiendo una distancia entre cada pareja de puntos de apoyo. De una forma análoga se pueden definir unos segundos puntos de apoyo en Ia segunda superficie del elemento conductor y unos segundos puntos de apoyo en Ia segunda zona.- The conductive element, in whatever form it has, will always move from a first end to a second end and vice versa. In order to define more precisely the two positions called first and second extremes, the following considerations have been taken into account. When the conductive element is at the first end, it will be in contact with certain points of the first zone that limit the intermediate space and, therefore, limit the displacement that the conductive element can make. At a minimum, the driver will be in contact with the first zone at three non-aligned points (which define a plane) although in practice it may be in contact at more points and, in addition, these points will not be points in the geometric sense but rather they will be more or less large surfaces. The contact points will be the junction points between the first surface of the conductive element and the first zone. Therefore, these contact points define first support points on the first surface of the conductive element and first support points on the first zone. When the conductive element moves towards the second end, the first support points of the first surface and the first support points of the first zone will be separated from each other defining a distance between each pair of support points. In a similar way, some second support points can be defined on the second surface of the conductive element and some second support points on the second zone.
- Si, al encontrarse el elemento conductor en el primer extremo (es decir con los primeros puntos de apoyo de Ia primera superficie y los de Ia primera zona en contacto entre si), las distancias entre cada pareja de segundos puntos de apoyo son iguales entre sí, ello quiere decir que cuando el elemento conductor se despla- ce del primer extremo al segundo extremo realizará una traslación pura y, por tanto, ello tiene como consecuencia que cuando el elemento conductor esté en el segundo extremo las distancias entre cada pareja de primeros puntos de apoyo son también iguales entre sí. En este caso el desplazamiento del elemento conductor será siempre una traslación pura y no se producirá un cambio de orientación en Ia superficie reflectora. Por ello, Ia presente forma de realización de Ia invención se caracteriza porque al encontrarse el elemento conductor en el primer extremo, Ia distancia entre por Io menos una pareja de segundos puntos de apoyo es diferente a las demás. Ello trae como consecuencia que para que las parejas de segundos puntos de apoyo estén en contacto entre sí es necesario que el elemento conductor realice un movimiento de rotación (que puede ser rotación pura o una combinación de rotación más traslación). Esta rotación es Ia que permite cambiar Ia orientación de Ia superficie reflectora.- Yes, when the conductive element is at the first end (that is, with the first support points of the first surface and those of the first area in contact with each other), the distances between each pair of second support points are equal between yes, this means that when the conductive element moves from the first end to the second end it will carry out a pure translation and, therefore, this has the consequence that when the conductive element is at the second end the distances between each pair of first Support points are also equal to each other. In this case the displacement of the conductive element will be always a pure translation and there will be no change of orientation in the reflective surface. Therefore, the present embodiment of the invention is characterized in that when the conductive element is found at the first end, the distance between at least one pair of second support points is different from the others. This results in the fact that for the pairs of second support points to be in contact with each other, it is necessary for the conductive element to perform a rotation movement (which can be pure rotation or a combination of rotation plus translation). This rotation is what allows to change the orientation of the reflective surface.
La presente invención tiene también por objeto Ia combinación de esta posible solución (y las variantes del mismo que se describen a continuación) con las alternativas anteriormente indicadas.The present invention also aims at combining this possible solution (and the variants thereof described below) with the alternatives indicated above.
Preferentemente el elemento conductor comprende una primera proyección dispuesta en una de las primera y segunda superficies, donde Ia primera proyección comprende uno de los primeros o segundos puntos de apoyo de las primera o segunda superficies. Efectivamente, como ya se ha dicho anteriormente usualmente estos dispositivos tienen una estructura substancialmente laminar, es decir, obteni- da mediante Ia deposición de capas superpuestas y substancialmente paralelas entre sí. En este caso, añadiendo una primera proyección en una de las superficies del elemento conductor se obtiene ya el efecto deseado. En este caso se puede conseguir que, por ejemplo, Ia superficie reflectora sea paralela a Ia estructura general de capas del dispositivo cuando esté en uno de los dos extremos y que forme un determinado ángulo con Ia estructura general de capas del dispositivo cuando esté en el extremo opuesto.Preferably the conductive element comprises a first projection disposed on one of the first and second surfaces, where the first projection comprises one of the first or second support points of the first or second surfaces. Indeed, as previously stated, these devices usually have a substantially laminar structure, that is, obtained by the deposition of superimposed layers and substantially parallel to each other. In this case, by adding a first projection on one of the surfaces of the conductive element, the desired effect is already obtained. In this case it can be achieved that, for example, the reflective surface is parallel to the general structure of layers of the device when it is at one of the two ends and that it forms a certain angle with the general structure of layers of the device when it is in the opposite end.
Alternativamente, el elemento conductor comprende una primera proyección dispuesta en Ia primera superficie, donde Ia primera proyección comprende uno de los primeros puntos de apoyo de Ia primera superficie, y una segunda proyección dispuesta en la segunda superficie, donde Ia segunda proyección comprende uno de los segundos puntos de apoyo de Ia segunda superficie. En este caso se puede conseguir que, por ejemplo, Ia superficie reflectora forme un determinado ángulo con Ia estructura general de capas del dispositivo cuando está en uno de los dos extremos y que forme otro ángulo determinado con Ia estructura general de capas y dispositivo cuando esté en el extremo opuesto.Alternatively, the conductive element comprises a first projection arranged on the first surface, where the first projection comprises one of the first support points of the first surface, and a second projection disposed on the second surface, where the second projection comprises one of the second support points of the second surface. In this case it can be achieved that, for example, the reflective surface forms a certain angle with the general structure of layers of the device when it is at one of the two ends and that forms another angle determined with the general structure of layers and device when it is at the opposite end.
Asimismo es posible que por Io menos una de las primera zona y segunda zona comprendan una proyección que, a su vez, comprenda uno de los primeros o segundos puntos de apoyo de las primera o segunda superficies. Efectivamente se puede conseguir que una de las distancias anteriormente indicadas sea diferente de las demás a base de añadir proyecciones en el elemento conductor pero tam- bien se puede conseguir a base de añadir proyecciones en Ia primera zona y/o en Ia segunda zona. Ello tiene Ia ventaja de que el elemento conductor puede tener una distribución de masas simétrica.It is also possible that at least one of the first zone and second zone comprises a projection that, in turn, comprises one of the first or second support points of the first or second surfaces. Indeed, it is possible to achieve that one of the distances indicated above is different from the others by adding projections in the conductive element but it can also be achieved by adding projections in the first zone and / or in the second zone. This has the advantage that the conductive element can have a symmetrical mass distribution.
Asimismo debe tenerse en cuenta que las proyecciones deben interpretarse de una forma amplia. Así, una zona del dispositivo que tenga una geometría asimétrica debe entenderse como que tiene unas proyecciones en el sentido de Ia invención, si esta geometría asimétrica provoca que alguna de las distancias anteriormente indicadas sea diferente de las demásIt should also be borne in mind that projections should be interpreted broadly. Thus, an area of the device that has an asymmetric geometry should be understood as having projections in the sense of the invention, if this asymmetric geometry causes any of the distances indicated above to be different from the others
En las figuras 31 a 35 se muestran unos ejemplos de estas alternativas.Examples of these alternatives are shown in Figures 31 to 35.
Una forma de conseguir estas diferentes orientaciones es, tal como ya se ha dicho anteriormente, a base de añadir unas proyecciones 121 en el elemento conductor 107. Ello se ha mostrado esquemáticamente en las figuras 31 y 32, en las que se muestra únicamente el cuerpo principal 117 de un elemento conductor 107, por ejemplo de un elemento conductor 107 como el de las figuras 13 a 15. En el caso que el elemento conductor 107 tenga únicamente una proyección 121 , por ejemplo en su superficie superior, entonces Ia superficie reflectora 119 sería paralela a Ia base del dispositivo cuando el elemento conductor 107 está en su posición inferior (visto de acuerdo a las figuras) y Ia superficie reflectora 119 formaría un ángulo no nulo con Ia base del dispositivo cuando el elemento conductor 107 está en su posición superior (suponiendo que los topes 113 dispuestos en Ia zona superior fuesen coplanarios según un plano horizontal). Si el elemento conductor 107 tiene dos pro- yecciones 121 , una en cada una de sus superficies superior e inferior, entonces Ia superficie reflectora 119 formaría un ángulo no nulo con Ia base del dispositivo tanto si está en el extremo superior como si está en el extremo inferior.One way to achieve these different orientations is, as already stated above, by adding projections 121 in the conductive element 107. This has been shown schematically in Figures 31 and 32, in which only the body is shown main 117 of a conductive element 107, for example of a conductive element 107 such as that of Figures 13 to 15. In the case that the conductive element 107 has only a projection 121, for example on its upper surface, then the reflective surface 119 would be parallel to the base of the device when the conductive element 107 is in its lower position (seen according to the figures) and the reflective surface 119 would form a non-zero angle with the base of the device when the conductive element 107 is in its upper position (assuming that the stops 113 arranged in the upper area were coplanar according to a horizontal plane). If the conductive element 107 has two pro projections 121, one on each of its upper and lower surfaces, then the reflective surface 119 would form a non-zero angle with the base of the device whether it is at the upper end or at the lower end.
En Ia figura 33 se observa que se puede conseguir un resultado similar al de Ia figura 32 con una disposición diferente de las proyecciones 121 , mientras que en Ia figura 34 se observa que se puede conseguir un resultado similar al de Ia figura 33 a base de incluir las proyecciones 121 en Ia primera zona 109 y en Ia segunda zona 111 del dispositivo en vez de incluirlas en el elemento conductor 107 móvil. Lógi- camente es posible tener una combinación de ambas alternativas.In Figure 33 it is observed that a result similar to that of Figure 32 can be achieved with a different arrangement of the projections 121, while in Figure 34 it is observed that a result similar to that of Figure 33 can be achieved based on include projections 121 in the first zone 109 and in the second zone 111 of the device instead of including them in the mobile conductor element 107. Logically it is possible to have a combination of both alternatives.
Finalmente en Ia figura 35 se muestra otra alternativa, en Ia que se consigue que Ia superficie reflectora 119 adopte dos orientaciones diferentes gracias a que Ia zona superior del dispositivo es asimétrica. En Ia figura 35 se ha mostrado nuevamente el elemento conductor 107 sin Ia estructura de mesa con Ia superficie reflectora 119 para simplificar el dibujo.Finally in Figure 35 another alternative is shown, in which it is achieved that the reflective surface 119 adopts two different orientations thanks to the fact that the upper area of the device is asymmetric. In Figure 35, the conductive element 107 has again been shown without the table structure with the reflective surface 119 to simplify the drawing.
En general, debe tenerse en cuenta que Ia geometría específica del elemento conductor 107 mostrado en las figuras 13 a 15, con la estructura de mesa que incluye Ia superficie reflectora 119, es un ejemplo concreto de forma de realización. En general, el elemento conductor 107 y Ia superficie reflectora 119 pueden tener otras geometrías, en particular Ia superficie reflectora 119 puede estar incluida directamente en el cuerpo principal 117 del elemento conductor 107.In general, it should be taken into account that the specific geometry of the conductive element 107 shown in Figures 13 to 15, with the table structure that includes the reflecting surface 119, is a concrete example of an embodiment. In general, the conductive element 107 and the reflective surface 119 may have other geometries, in particular the reflective surface 119 may be included directly in the main body 117 of the conductive element 107.
Asimismo en general, debe tenerse en cuenta que estos dispositivos tienen geometrías tridimensionales y que, por Io tanto, Ia disposición de las proyecciones 121 (y, en general, de los puntos de contacto) puede ser una disposición tridimensional más o menos compleja. Los ejemplos mostrados en las figuras son simplemente unos ejemplos con geometrías simplificadas.Also in general, it should be taken into account that these devices have three-dimensional geometries and that, therefore, the arrangement of the projections 121 (and, in general, of the contact points) can be a more or less complex three-dimensional arrangement. The examples shown in the figures are simply examples with simplified geometries.
En Ia figura 36 se muestra un esquema simplificado de un dispositivo electroóptico, tal como se describe en Ia solicitud PCT WO 2004/046807. El dispositivo electroóptico tiene una primera zona 209 enfrentada a una segunda zona 211 (a Ia izquierda y a la derecha del dibujo, respectivamente) con una primera placa de condensador 201 dispuesta en Ia primera zona 209, una segunda placa de condensador 202 y una tercera placa de condensador 203 en Ia segunda zona 211 , enfrentadas a dicha primera placa de condensador 201 y donde cada una de dichas segunda y ter- cera placas de condensador 202, 203 son menores o iguales que Ia primera placa de condensador 201 pero ambas conjuntamente son mayores que Ia primera placa de condensador 201. Entre ambas zonas 209, 211 hay un espacio intermedio 205 a Io largo del cual se puede mover un elemento conductor 207. Un circuito de control CC gobierna las placas de condensador. Tal como ya se especifica en Ia solicitud PCT WO 2004/046807, en pág. 4 lín. 6 - 21 y pág. 16 lín. 7 - 11 , el elemento conductor 207 es mecánicamente independiente de Ia primera zona 209 y de Ia segunda zona 211 , es decir, es mecánicamente independiente de toda Ia estructura fija del dispositivo. Dicho de otro modo, el elemento conductor 207 es una pieza suelta apta para moverse libremente por el espacio intermedio 205. El elemento conductor 207 no tiene ninguna unión física con su entorno.Figure 36 shows a simplified scheme of an electro-optical device, as described in PCT application WO 2004/046807. The electro-optical device has a first zone 209 facing a second zone 211 (on the left and to the right of the drawing, respectively) with a first condenser plate 201 disposed in the first zone 209, a second condenser plate 202 and a third condenser plate 203 in the second zone 211, facing said first condenser plate 201 and wherein each of said second and third condenser plates 202, 203 are smaller or equal than the first condenser plate 201 but both together are larger than the first capacitor plate 201. Between the two zones 209, 211 there is an intermediate space 205 along which a conductive element 207 can be moved. A DC control circuit governs the condenser plates. As already specified in PCT application WO 2004/046807, on p. 4 line 6 - 21 and p. 16 line 7-11, the conductive element 207 is mechanically independent of the first zone 209 and the second zone 211, that is, it is mechanically independent of the entire fixed structure of the device. In other words, the conductive element 207 is a loose part suitable for freely moving through the intermediate space 205. The conductive element 207 has no physical connection with its surroundings.
En Ia primera zona 209 y en Ia segunda zona 211 hay unos topes 213 que limitan el movimiento del elemento conductor 207 y que definen un primer extremo y un segundo extremo.In the first zone 209 and in the second zone 211 there are stops 213 that limit the movement of the conductive element 207 and which define a first end and a second end.
En las figuras 37 a 39 se muestra un dispositivo electroóptico reflector de acuerdo con Ia invención. En general se puede observar Ia existencia de ocho placas de condensador 215 (se ha empleado Ia referencia 215 para designar cualquier placa de condensador, con independencia de que sea Ia primera, Ia segunda, Ia tercera o cualquier otra placa de condensador adicional) y de unos topes 213 (concretamente Ia figura 37 se ha dibujado sin topes). Como ya se describe en Ia solicitud PCT WO 2004/046807, en pág. 6 lín. 28 - pág. 7 lín. 5 y pág. 18 lín. 4 - 18, Ia cantidad mínima necesaria de placas de condensador para poder realizar un movimiento en dos direcciones es de tres. Sin embargo, usualmente, los dispositivos tienen más placas de condensador así como una pluralidad de topes.In figures 37 to 39, a reflecting electro-optical device according to the invention is shown. In general, the existence of eight condenser plates 215 can be observed (reference 215 has been used to designate any condenser plate, regardless of whether it is the first, the second, the third or any other additional condenser plate) and of stops 213 (specifically Figure 37 has been drawn without stops). As already described in PCT application WO 2004/046807, on p. 6 line 28 - p. 7 line 5 and p. 18 line 4-18, the minimum amount of condenser plates needed to be able to make a movement in two directions is three. However, usually, the devices have more condenser plates as well as a plurality of stops.
Usualmente es ventajoso que el elemento conductor 207 no entre en contacto con las placas de condensador 215, si bien en algunos casos puede ser admisible que entre en contacto con alguna de ellas, tal como se describe en Ia solicitud PCT WO 2004/046807, en pág. 23 lín. 12 - 28.It is usually advantageous that the conductive element 207 does not come into contact with the condenser plates 215, although in some cases it may be permissible for contact any of them, as described in PCT application WO 2004/046807, on p. 23 line 12-28.
El elemento conductor 207 tiene un cuerpo principal 217 que es substancialmente una lámina plana y que soporta una estructura en forma de mesa con una pata (o estructura de soporte) central. La tabla de Ia mesa tiene una superficie reflectora 219 sobre Ia que incidirá el haz de luz, y Ia pata central se extiende a través de un orificio dispuesto entre las placas de condensador 215 de Ia parte superior del dispositivo. Usualmente el elemento conductor 207 tendrá un cuerpo principal 217 que, como se ha dicho anteriormente, será substancialmente un elemento laminar y Ia superficie reflectora 219 será paralela al cuerpo principal 217 del elemento conductor 207, ya que estas geometrías son las que se obtienen de una forma más sencilla mediante los procedimientos habituales de fabricación de MEMS.The conductive element 207 has a main body 217 that is substantially a flat sheet and that supports a table-shaped structure with a central leg (or support structure). The table of the table has a reflective surface 219 on which the light beam will impact, and the central leg extends through a hole arranged between the condenser plates 215 of the upper part of the device. Usually the conductive element 207 will have a main body 217 which, as said above, will be substantially a laminar element and the reflective surface 219 will be parallel to the main body 217 of the conductive element 207, since these geometries are those obtained from a more easily using the usual MEMS manufacturing procedures.
En las figuras 39A y 39B se muestra un dispositivo electroóptico en el que Ia superficie reflectora 219 se extiende directamente sobre el cuerpo principal 217 del elemento conductor 207. Como ya se ha dicho anteriormente esto solución es una alternativa a Ia solución mostrada, por ejemplo, en Ia figuras 37 a 39. Asimismo como ya se ha dicho anteriormente, el conjunto electroóptico puede comprender Ia fuente de luz o no. En las presentes figuras no se ha representado Ia fuente de luz, pero debe entenderse que Ia señal luminosa puede proceder tanto de una fuente luminosa perteneciente al conjunto electroóptico, de una fuente luminosa ajena al conjunto electroóptico o, en general, puede ser luz procedente de Ia luz ambiente. El dispositivo electroóptico de las figuras 39A y 39B tiene una segunda superficie reflectora 221 fija, dispuesta en Ia parte superior del mismo. Sobre esta segunda superficie reflectora 221 se refleja Ia señal luminosa sin experimentar ningún desfase (esta señal luminosa se ha indicado con un trazo continuo). Adicionalmente, Ia señal luminosa pasa por una abertura 223 dispuesta en el extremo superior del dispositivo y se refleja en Ia superficie reflectora 219 solidaria con el elemento con- ductor 207 (indicada con un trazo discontinuo). En el caso de Ia figura 39A el camino óptico de Ia señal luminosa reflejada sobre Ia superficie reflectora 219 solidaria con el elemento conductor 207 es media longitud de onda más largo por Io que tendrá lugar una cancelación de Ia señal luminosa. Cuando el elemento conductor 207 se traslada al extremo superior (figura 39B) Ia señal luminosa ya no sufre una interferencia destructiva y, por Io tanto, se refleja íntegramente.In figures 39A and 39B an electro-optical device is shown in which the reflective surface 219 extends directly over the main body 217 of the conductive element 207. As already stated above this solution is an alternative to the solution shown, for example, in figures 37 to 39. Likewise as already mentioned above, the electro-optical assembly can comprise the light source or not. In the present figures, the light source has not been represented, but it should be understood that the light signal can come both from a light source belonging to the electro-optical assembly, from a light source outside the electro-optical assembly or, in general, it can be light from The ambient light. The electro-optical device of Figures 39A and 39B has a second fixed reflecting surface 221, disposed in the upper part thereof. On this second reflecting surface 221 the light signal is reflected without experiencing any offset (this light signal has been indicated with a continuous line). Additionally, the light signal passes through an opening 223 disposed at the upper end of the device and is reflected on the reflective surface 219 integral with the conductive element 207 (indicated by a broken line). In the case of Figure 39A, the optical path of the light signal reflected on the reflective surface 219 integral with the conductive element 207 is half a longer wavelength whereby a cancellation of the light signal will take place. When the conductive element 207 moves to the upper end (Figure 39B) the light signal no longer suffers destructive interference and, therefore, is fully reflected.
En Ia figura 39C se muestra el caso en el que el conjunto electroóptico tiene, ade- más, una capa semitransparente 225. Como ya se ha dicho anteriormente, Ia capa semitransparente 225 refleja una parte de Ia señal luminosa incidente (indicada con un trazo continuo) y deja pasar otra parte (indicada con un trazo discontinuo). La superficie reflectora 219, solidaria al cuerpo principal 217 del elemento conductor 207, está a una distancia de Ia capa semitransparente 225 igual a un cuarto de Ia longitud de onda de Ia señal luminosa (o un múltiplo impar de cuartos de longitud de onda) cuando el elemento conductor 207 está en uno de los extremos, y está a un distancia igual a Ia mitad de Ia longitud de onda (o un múltiplo de Ia longitud de onda) cuando el elemento conductor 207 está en el otro extremo.Figure 39C shows the case in which the electro-optical assembly also has a semi-transparent layer 225. As already mentioned above, the semi-transparent layer 225 reflects a part of the incident light signal (indicated by a continuous line). ) and let another part pass through (indicated with a dashed line). The reflecting surface 219, integral with the main body 217 of the conductive element 207, is at a distance from the semi-transparent layer 225 equal to a quarter of the wavelength of the light signal (or an odd multiple of quarter wavelengths) when The conductive element 207 is at one end, and is at a distance equal to half the wavelength (or a multiple of the wavelength) when the conductive element 207 is at the other end.
Existen otras posibles alternativas para obtener un conjunto electroóptico de acuerdo con Ia invención. Efectivamente, es posible actuar adecuadamente sobre el elemento conductor de manera que éste realice un desplazamiento que no es una traslación pura, Io que permite cambiar de orientación Ia superficie reflectora. Esta finalidad se consigue mediante un procedimiento de actuación de un dispositivo electroóptico del tipo indicado anteriormente caracterizado porque comprende una etapa de conexión de por Io menos una de las placas de condensador a un primer voltaje y de por Io menos otra de las placas de condensador a un segundo voltaje, donde el segundo voltaje es mayor que el primer voltaje, donde todas y cada una de las placas de condensador están sometidas a un voltaje determinado de manera que ninguna de ellas queda en un estado de alta impedancia, de manera que Ia proyección según el eje central de las placas de condensador sometidas al primer voltaje tiene asimetría central respecto de Ia proyección según el eje central de las placas de condensador sometidas al segundo voltaje.There are other possible alternatives to obtain an electro-optical assembly according to the invention. Indeed, it is possible to act appropriately on the conductive element so that it carries out a displacement that is not a pure translation, which allows the reflecting surface to change orientation. This purpose is achieved by means of an actuation procedure of an electro-optical device of the type indicated above characterized in that it comprises a connection stage of at least one of the capacitor plates at a first voltage and at least one of the capacitor plates a a second voltage, where the second voltage is greater than the first voltage, where each and every one of the capacitor plates are subjected to a certain voltage so that none of them is in a high impedance state, so that the projection according to the central axis of the capacitor plates subjected to the first voltage, it has central asymmetry with respect to the projection according to the central axis of the capacitor plates subjected to the second voltage.
Efectivamente este procedimiento permite crear un momento de fuerzas sobre el elemento conductor que Io hace girar según un eje perpendicular al eje central. Por Io tanto el elemento conductor no efectúa una traslación pura al desplazarse a través del espacio intermedio sino que realiza un movimiento combinado de traslación más rotación o incluso una rotación pura. Como consecuencia de ello Ia superficie reflectora, que es solidaria con el elemento conductor, cambia de orientación en el espacio. De esta manera se puede conseguir un funcionamiento equivalente al descrito en el documento "A MEMS-Based Projection Display", citado anteriormen- te, pero sin los inconvenientes que presenta el dispositivo descrito en dicho documento.Indeed, this procedure allows creating a moment of forces on the conductive element that rotates it along an axis perpendicular to the central axis. Therefore, the conductive element does not carry out a pure translation when moving through the intermediate space but instead performs a combined movement of translation more rotation or even a pure rotation. As a result, the reflective surface, which is integral with the conductive element, changes its orientation in space. In this way, an operation equivalent to that described in the document "A MEMS-Based Projection Display" mentioned above can be achieved, but without the inconveniences presented by the device described in said document.
Ventajosamente, se puede combinar ambas alternativas de manera que el conjunto electroóptico pueda trabajar o bien generando una interferencia destructiva que cancela Ia señal luminosa o bien desviando Ia señal incidente mediante el cambio de orientación de Ia superficie reflectora.Advantageously, both alternatives can be combined so that the electro-optical assembly can work either by generating a destructive interference that cancels the light signal or by diverting the incident signal by changing the orientation of the reflecting surface.
La invención tiene asimismo por objeto un procedimiento de actuación de un dispositivo electroóptico reflector miniaturizado, donde el dispositivo es igual al descrito anteriormente, pero adicionalmente tiene una pluralidad de placas de condensador distribuidas con simetría de rotación según el eje central en Ia primera zona y una pluralidad de placas de condensador distribuidas con simetría de rotación según el eje central en Ia segunda zona, caracterizado porque comprende una etapa de conexión de por Io menos una de las placas de condensador a un primer voltaje y de por Io menos otra de las placas de condensador a un segundo voltaje, donde el segundo voltaje es mayor que el primer voltaje, de manera que Ia proyección según el eje central de las placas de condensador sometidas al primer voltaje tiene asimetría central respecto de Ia proyección según el eje central de las placas de condensador sometidas al segundo voltaje. Efectivamente esta disposición de las pla- cas de condensador permite orientar Ia superficie reflectora en muchas direcciones, haciéndola girar según diversos ejes perpendiculares al eje central. Al indicar que tiene una pluralidad de placas de condensador se debe entender que tiene tres (Ia primera, segunda y tercera placa de condensador) o más placas. Con tres placas, distribuidas en triángulo, se podrían obtener seis posiciones en el espacio diferen- ciadas de Ia superficie reflectora, correspondientes al giro según tres ejes diferentes. Al aumentar el n° de placas se aumenta Ia cantidad de ejes de giro. Ventajosamente cuando el elemento conductor está próximo a una de las primera zona o segunda zona, el elemento conductor está en contacto con un circuito externo y se conecta el elemento conductor a una tensión a través de dicho circuito externo. Efectivamente, el elemento conductor estará usualmente en contacto con unos topes que limitan su movimiento por ambos extremos. Estos topes pueden ser simplemente unos topes mecánicos, pero pueden ser parte de un circuito externo de manera que se puede conectar el elemento conductor a una tensión determinada a través de dichos topes. De esta manera el elemento conductor estará sometido a una tensión determinada (mientras dure el contacto con el circuito externo) Io que puede servir para incrementar Ia fuerza electrostática aplicada al elemento conductor. De esta manera se puede facilitar el desenganche del elemento conductor de los topes, venciendo las fuerzas de enganche que pueden generarse entre el elemento conductor y los topes u otras superficies de contacto.A subject of the invention is also a method of actuating a miniaturized reflecting electro-optical device, where the device is the same as described above, but additionally has a plurality of condenser plates distributed with rotation symmetry along the central axis in the first zone and a plurality of condenser plates distributed with rotation symmetry along the central axis in the second zone, characterized in that it comprises a connection stage of at least one of the capacitor plates at a first voltage and at least one of the other plates of capacitor at a second voltage, where the second voltage is greater than the first voltage, so that the projection along the central axis of the capacitor plates subjected to the first voltage has central asymmetry with respect to the projection along the central axis of the plates capacitor subjected to the second voltage. Indeed, this arrangement of the condenser plates allows the reflecting surface to be oriented in many directions, rotating it along different axes perpendicular to the central axis. When indicating that it has a plurality of condenser plates, it should be understood that it has three (the first, second and third condenser plate) or more plates. With three plates, distributed in triangle, six positions could be obtained in the space differentiated from the reflecting surface, corresponding to the rotation according to three different axes. Increasing the number of plates increases the number of axes of rotation. Advantageously when the conductive element is close to one of the first zone or second zone, the conductive element is in contact with an external circuit and the conductive element is connected to a voltage through said external circuit. Indeed, the conductive element will usually be in contact with stops that limit its movement at both ends. These stops may simply be mechanical stops, but they may be part of an external circuit so that the conductive element can be connected at a given voltage through said stops. In this way, the conductive element will be subject to a certain voltage (while the contact with the external circuit lasts), which can be used to increase the electrostatic force applied to the conductive element. In this way it is possible to facilitate the disengagement of the conductive element from the stops, overcoming the coupling forces that can be generated between the conductive element and the stops or other contact surfaces.
La invención tiene también por objeto un dispositivo electroóptico reflector miniatu- rizado del tipo indicado anteriormente caracterizado porque comprende unos medios de control aptos para realizar un procedimiento de acuerdo con Ia invención.A subject of the invention is also a miniaturized reflecting electro-optical device of the type indicated above, characterized in that it comprises control means suitable for carrying out a method according to the invention.
En las figuras 40 y 41 se muestra como Ia superficie reflectora 219 puede orientar- se en dos posiciones diferentes.In figures 40 and 41 it is shown how the reflecting surface 219 can be oriented in two different positions.
En las figuras 42A y 42B se muestra esquemáticamente el concepto básico del procedimiento de actuación de acuerdo con Ia invención. Tanto en estas figuras como en las restantes figuras que describen el procedimiento se muestra única- mente las placas de condensador 215 y el cuerpo principal 217 del elemento conductor 207. En las figuras se ha mostrado, adicionalmente, el voltaje aplicado a las placas de condensador 215. Cuando Ia placa de condensador muestra unas líneas horizontales en trazos discontinuos representa que está conectada a un voltaje "bajo" (preferentemente 0 V). Cuando Ia placa de condensador 215 muestra unas líneas horizontales continuas y unas líneas verticales (formando un enladrillado) representa que está conectada a un voltaje "alto" (V0, que preferentemente será Ia tensión de alimentación del circuito, pero en general cualquier voltaje superior al voltaje "bajo"). Cuando Ia placa de condensador 215 muestra unas líneas horizon- tales continuas representa que está conectada a un voltaje intermedio entre los dos anteriores (preferentemente V012). En cualquier caso debe tenerse en cuenta que es posible invertir Ia polaridad de las placas de condensador 215 obteniéndose el mismo resultado. Adicionalmente, en las figuras 42A, 42B, 43A, 43B, 44A, 44B, 45A, 45B, 46A, 46B, 47A y 47B, se muestra el elemento conductor 207 y las placas de condensador 215 de perfil. Se puede suponer que las placas de condensador 215 son, en estos casos, substancialmente cuadradas. Concretamente en las figuras 42A y 42B se observa como Ia placa de condensador 215 conectada a un voltaje alto es asimétrica respecto del eje central (que sería una recta vertical que pasaría por el medio de Ia figura). Por Io tanto se crea un par de fuerzas que hace girar al elemento conductor 207 tal como se ha representado esquemáticamente en las figuras. Como se verá a continuación, en los demás ejemplos tiene lugar el mismo fenómeno.In figures 42A and 42B the basic concept of the actuation procedure according to the invention is schematically shown. Both these figures and the remaining figures describing the procedure only show the condenser plates 215 and the main body 217 of the conductive element 207. In the figures, the voltage applied to the capacitor plates has been shown additionally 215. When the condenser plate shows horizontal lines in broken lines, it represents that it is connected to a "low" voltage (preferably 0 V). When the capacitor plate 215 shows continuous horizontal lines and vertical lines (forming a grid) it represents that it is connected to a "high" voltage (V 0 , which will preferably be the circuit supply voltage, but in general any higher voltage at the "low" voltage). When the condenser plate 215 shows horizontal lines such continuous represents that it is connected to an intermediate voltage between the previous two (preferably V 0 12). In any case, it should be taken into account that it is possible to reverse the polarity of the condenser plates 215 obtaining the same result. Additionally, in Figures 42A, 42B, 43A, 43B, 44A, 44B, 45A, 45B, 46A, 46B, 47A and 47B, the conductive element 207 and the profile condenser plates 215 are shown. It can be assumed that condenser plates 215 are, in these cases, substantially square. Specifically in Figures 42A and 42B, it can be seen how the capacitor plate 215 connected to a high voltage is asymmetric with respect to the central axis (which would be a vertical line that would pass through the middle of the figure). Therefore, a pair of forces is created that rotates the conductive element 207 as schematically represented in the figures. As will be seen below, the same phenomenon occurs in the other examples.
En las figuras 43A y 43B se ve un caso simplificado del caso anterior. Como puede verse en las figuras 42A y 42B las dos placas de condensador 215 superiores están siempre al mismo voltaje. Por Io tanto se pueden unir físicamente de manera que formen una única placa de condensador 215. Es el caso mostrado en las figuras 43A y 43B, en el que el dispositivo tiene el mínimo imprescindible de placas de condensador 215: tres placas.A simplified case of the previous case is seen in Figures 43A and 43B. As can be seen in Figures 42A and 42B, the two upper capacitor plates 215 are always at the same voltage. Therefore, they can be physically joined so that they form a single condenser plate 215. This is the case shown in Figures 43A and 43B, in which the device has the essential minimum of condenser plates 215: three plates.
En general, preferentemente se conecta por Io menos una placa de condensador 215 adicional a un voltaje intermedio entre el primer voltaje y el segundo voltaje. Ello permite hacer que el dispositivo sea más estable frente a influencias externas. De hecho, en el caso de que el dispositivo tenga cuatro o más placas de condensador 215 en cada zona, puede ser interesante conectar alguna de las placas 215 a un segundo voltaje intermedio, diferente del anterior. De esta manera se puede ajustar con más precisión el momento de fuerzas aplicado al elemento conductor 207.In general, preferably at least one additional capacitor plate 215 is connected at an intermediate voltage between the first voltage and the second voltage. This allows to make the device more stable against external influences. In fact, in the case that the device has four or more capacitor plates 215 in each zone, it may be interesting to connect some of the plates 215 to a second intermediate voltage, different from the previous one. In this way, the force moment applied to the conductive element 207 can be adjusted more precisely.
En una forma ventajosa de realización, el dispositivo tiene tres placas de condensador 215 alineadas en Ia primera zona 209 y tres placas de condensador 215 alineadas en Ia segunda zona 211 , y se conecta Ia placa de condensador 215 central de cada una de las zonas a un mismo voltaje. Esta alternativa está reflejada en las figuras 44A y 44B. En este caso es particularmente ventajoso que se conecte una de las placas de condensador 215 laterales de cada una de las zonas a un voltaje intermedio, tal como se muestra en las figuras 45A y 45B.In an advantageous embodiment, the device has three condenser plates 215 aligned in the first zone 209 and three condenser plates 215 aligned in the second zone 211, and the central condenser plate 215 is connected from each of the zones at the same voltage. This alternative is reflected in Figures 44A and 44B. In this case it is particularly advantageous that one of the lateral condenser plates 215 of each of the zones is connected to an intermediate voltage, as shown in Figures 45A and 45B.
En otra forma preferente de realización, el dispositivo tiene cuatro placas de condensador 215 alineadas en Ia primera zona 209 y cuatro placas de condensador 215 alineadas en Ia segunda zona 211 , y se conectan tres placas de condensador 215 de Ia primera zona 209 y tres placas de condensador 215 de Ia segunda zona 211 a un mismo voltaje, tal como se muestra en las figuras 46A y 46B. En este caso vuelve a ser ventajoso que se conecten dos placas de condensador 215 de Ia primera zona 209 y dos placas de condensador 215 de Ia segunda zona 211 a un voltaje intermedio a fin de hacer el conjunto más estable frente a influencias externas, tal como se muestra en las figuras 47A y 47B.In another preferred embodiment, the device has four condenser plates 215 aligned in the first zone 209 and four condenser plates 215 aligned in the second zone 211, and three condenser plates 215 of the first zone 209 and three plates are connected of capacitor 215 of the second zone 211 at the same voltage, as shown in Figures 46A and 46B. In this case it is again advantageous to connect two capacitor plates 215 of the first zone 209 and two capacitor plates 215 of the second zone 211 at an intermediate voltage in order to make the assembly more stable against external influences, such as It is shown in Figures 47A and 47B.
Otra forma ventajosa de realización de Ia invención se obtiene cuando el dispositivo tiene cuatro placas de condensador 215 no alineadas en Ia primera zona 209 y cuatro placas de condensador 215 no alineadas en Ia segunda zona 211 , y se conectan tres placas de condensador 215 de Ia primera zona 209 y tres placas de condensador 215 de Ia segunda zona 211 a un mismo voltaje, tal como se muestra en las figuras 48A, 48B, 48C, 49A, 49B y 49C. En Ia figura 48A se muestra una vista en planta de las placas de condensador 215 de Ia zona inferior (por ejemplo, Ia primera zona 209), en Ia figura 48B se muestra una vista en planta de las placas de condensador 215 de Ia zona superior (que, siguiendo el mismo ejemplo, sería Ia segunda zona 211) y en Ia figura 48C se muestra una vista de perfil, con una ligera perspectiva para que se aprecien las cuatro placas de condensador 215 de cada zona. De hecho, las figuras 48A y 48B son equivalentes a las citadas proyecciones según el eje central sobre un plano perpendicular al eje central. En este caso se emplea el hecho de que el dispositivo, realmente, es tridimensional y que las placas de condensador 215 no tienen porqué estar alineadas, sino que pueden estar distribuidas a Io largo de una superficie bidimensional (usualmente a Io largo de un plano). También en este caso es ventajoso que se conecten dos placas de condensador 215 de Ia primera zona 209 y dos placas de condensador 215 de Ia segunda zona 211 a un voltaje intermedio, tal como se muestra en las figuras 5OA, 5OB y 5OC. Existen otras alternativas de actuación, como puede ser Ia mostrada en las figuras 51A1 51 B y 51 C, en las que las placas de condensador 215 conectadas a Ia tensión alta y a Ia tensión baja no están adyacentes, pero es ventajoso que, cuando las placas de condensador 215 están distribuidas en forma de cuadrado tanto en Ia primera zona 209 como en Ia segunda zona 211 , las placas de condensador 215 conectadas a Ia tensión alta y a Ia tensión baja estén adyacentes (o, dicho de una forma más correcta, que sus respectivas proyecciones según el eje central sobre un plano perpendicular al eje central sean adyacentes).Another advantageous embodiment of the invention is obtained when the device has four condenser plates 215 not aligned in the first zone 209 and four condenser plates 215 not aligned in the second zone 211, and three condenser plates 215 of the Ia are connected First zone 209 and three capacitor plates 215 of the second zone 211 at the same voltage, as shown in Figures 48A, 48B, 48C, 49A, 49B and 49C. Figure 48A shows a plan view of the condenser plates 215 of the lower zone (for example, the first zone 209), Figure 48B shows a plan view of the condenser plates 215 of the upper zone (which, following the same example, would be the second zone 211) and in Figure 48C a profile view is shown, with a slight perspective so that the four condenser plates 215 of each zone are appreciated. In fact, Figures 48A and 48B are equivalent to the aforementioned projections along the central axis on a plane perpendicular to the central axis. In this case, the fact that the device is really three-dimensional is used and that the condenser plates 215 do not have to be aligned, but can be distributed along a two-dimensional surface (usually along a plane) . Also in this case it is advantageous to connect two condenser plates 215 of the first zone 209 and two condenser plates 215 of the second zone 211 at an intermediate voltage, as shown in Figures 5OA, 5OB and 5OC. There are other actuation alternatives, such as that shown in Figures 51A 1 51 B and 51 C, in which the condenser plates 215 connected to the high and low voltage are not adjacent, but it is advantageous that, when condenser plates 215 are distributed in the form of a square both in the first zone 209 and in the second zone 211, the condenser plates 215 connected to the high and low voltage are adjacent (or, in a more correct way, that their respective projections along the central axis on a plane perpendicular to the central axis are adjacent).
La figura 52 se muestra como, mediante un dispositivo que tiene cuatro placas de condensador 215 no alineadas y dispuestas en forma de cuadrado en cada una de las zonas, se pueden conseguir dos pares de orientaciones del elemento conductor 207 según se haga girar al elemento conductor 207 según uno de los dos ejes indi- cados en Ia figura. Para ello se emplearía uno de los procedimientos mostrados en las figuras 48A, 48B, 48C, 49A, 49B, 49C y/o 5OA, 5OB, 5OC, tal como están representadas o bien giradas 90°. Sin embargo también se podría emplear el procedimiento mostrado en las figuras 51 A, 51 B, 51 C, en cuyo caso tendríamos unos ejes de giro inclinados 45° respecto de los mostrados en Ia figura 52.Figure 52 is shown as, by means of a device having four condenser plates 215 not aligned and arranged squarely in each of the zones, two pairs of orientations of the conductive element 207 can be achieved as the conductive element is rotated 207 according to one of the two axes indicated in the figure. For this, one of the procedures shown in Figures 48A, 48B, 48C, 49A, 49B, 49C and / or 5OA, 5OB, 5OC, as represented or rotated 90 °, would be used. However, the procedure shown in Figures 51 A, 51 B, 51 C could also be used, in which case we would have 45 ° inclined axes of rotation with respect to those shown in Figure 52.
En el caso de disponer de un dispositivo que tiene una pluralidad de placas de condensador 215 distribuidas con simetría de rotación según el eje central en ambas zonas, entonces el procedimiento de actuación se caracteriza preferentemente porque se conecta por Io menos una placa de condensador 215 adicional a un vol- taje intermedio entre el primer voltaje y el segundo voltaje. Preferentemente todas y cada una de las placas 215 está sometida a un voltaje determinado de manera que ninguna de ellas queda en un estado de alta impedancia.In the case of having a device having a plurality of condenser plates 215 distributed with rotation symmetry along the central axis in both zones, then the actuation procedure is preferably characterized in that at least one additional condenser plate 215 is connected. at an intermediate voltage between the first voltage and the second voltage. Preferably, each and every one of the plates 215 is subjected to a certain voltage so that none of them is in a high impedance state.
El hecho de conseguir que ninguna de las placas de condensador 215 quede en un estado de alta impedancia es una solución ventajosa que es aplicable para cualquiera de las diferentes alternativas de Ia presente invención. Efectivamente, en general es posible controlar el desplazamiento del elemento conductor 207 de diversas maneras, combinando placas de condensador 215 conectadas a un voltaje bajo, placas de condensador 215 conectadas a un voltaje alto y, en determinados casos, placas de condensador 215 dejadas en un estado de alta impedancia. Sin embargo, se ha observado que, en Ia práctica, conseguir un estado de alta impedancia realmente eficaz no es sencillo. De hecho se ha observado que para poder garantizar que una placa de condensador 215 esté en un estado de alta impedancia realmente eficaz es necesario el empleo de por Io menos un relé adicional. Este relé adicional consume espacio por Io que es, a priori, indeseable. Por Io tanto es ventajoso emplear aquellas formas de control del elemento conductor 207 que no requieran de Ia presencia de una placa de condensador 215 en estado de alta im- pedancia. Sin embargo, en general, los dispositivos de acuerdo con Ia invención tienen una pluralidad de placas de condensador 215. En determinados casos no todas ellas participan en el control del elemento conductor 207. La presente invención especifica que solamente aquéllas placas de condensador 215 que participan en el control del elemento conductor 207 en un momento dado deben estar conec- tadas a un voltaje determinado (es decir no deben estar en un estado de alta impedancia), sin embargo no hay ninguna exigencia por Io que respecta a aquéllas placas de condensador 215 que, en un momento dado, no participan en el control del elemento conductor 207. Por otro lado, se debe tener en cuenta que el problema derivado del hecho de tener una placa de condensador 215 en estado de alta im- pedancia es que, con períodos de tiempo largos, puede alcanzar algún voltaje determinado por condiciones del entorno a priori desconocidas. Para evitar este inconveniente puede resultar recomendable garantizar que ninguna de las placas de condensador 215 presentes en el dispositivo estén en ningún momento en un estado de alta impedancia. The fact that none of the capacitor plates 215 remain in a high impedance state is an advantageous solution that is applicable for any of the different alternatives of the present invention. Indeed, in general it is possible to control the displacement of the conductive element 207 in various ways, by combining capacitor plates 215 connected to a voltage low, capacitor plates 215 connected to a high voltage and, in certain cases, capacitor plates 215 left in a high impedance state. However, it has been observed that, in practice, achieving a really effective high impedance state is not easy. In fact, it has been observed that in order to ensure that a capacitor board 215 is in a really effective high impedance state, it is necessary to use at least one additional relay. This additional relay consumes space for what is, a priori, undesirable. Therefore, it is advantageous to use those forms of control of the conductive element 207 that do not require the presence of a capacitor plate 215 in a high impedance state. However, in general, the devices according to the invention have a plurality of condenser plates 215. In certain cases not all of them participate in the control of the conductive element 207. The present invention specifies that only those condenser plates 215 that participate in the control of the conductive element 207 at any given time they must be connected to a certain voltage (that is, they must not be in a high impedance state), however there is no requirement as regards those capacitor plates 215 that, at a given time, they do not participate in the control of the conductive element 207. On the other hand, it should be taken into account that the problem derived from having a capacitor plate 215 in a high impedance state is that, with Long periods of time may reach some voltage determined by a priori unknown environmental conditions. To avoid this inconvenience it may be advisable to ensure that none of the capacitor plates 215 present in the device are at any time in a high impedance state.

Claims

REIVIND1CACIQNES REIVIND1CACIQNES
1.- Dispositivo electroóptico reflector digital miniaturizado que comprende:1.- Miniaturized digital reflector electro-optical device comprising:
- una primera zona (9) enfrentada a una segunda zona (11 ),- a first zone (9) facing a second zone (11),
- una primera placa de condensador (1) dispuesta en dicha primera zona (9),- a first condenser plate (1) arranged in said first zone (9),
- una segunda placa de condensador (2) dispuesta en dicha segunda zona (11) y enfrentada a dicha primera placa de condensador (1), donde dicha segunda placa de condensador (2) es menor o igual que dicha primera placa de condensador (1 ),- a second condenser plate (2) disposed in said second zone (11) and facing said first condenser plate (1), wherein said second condenser plate (2) is less than or equal to said first condenser plate (1 ),
- una tercera placa de condensador (3) dispuesta en dicha segunda zona (11 ), donde dicha tercera placa de condensador (3) es menor o igual que dicha primera placa de condensador (1), y donde dichas segunda y tercera placas de condensador (2, 3) son, juntas, mayores que dicha primera placa de condensador (1 ),- a third condenser plate (3) disposed in said second zone (11), wherein said third condenser plate (3) is less than or equal to said first condenser plate (1), and where said second and third condenser plates (2, 3) are, together, larger than said first condenser plate (1),
- un espacio intermedio (5) dispuesto entre dicha primera zona (9) y dicha segunda zona (11 ),- an intermediate space (5) disposed between said first zone (9) and said second zone (11),
- un elemento conductor (7) dispuesto en dicho espacio intermedio (5), dicho elemento conductor presentando una primera superficie encarada hacia dicha primera zona (9) y una segunda superficie encarada hacia dicha segunda zona (11 ), dicho elemento conductor (7) siendo mecánicamente independiente de dichas primera zona (9) y segunda zona (11 ) y siendo apto para efectuar un desplazamiento a través de dicho espacio intermedio (5), desde un primer extremo, donde dicho elemento conductor (7) está en contacto con dicha primera zona (9), hasta un segun- do extremo, donde dicho elemento conductor (7) está en contacto con dicha segunda zona (11 ), y viceversa, en función de unos voltajes presentes en dichas primera, segunda y tercera placas de condensador (1 , 2, 3), - una superficie reflectora (19), apta para reflejar un haz de luz incidente, solidaria a dicho elemento conductor (7)- a conductive element (7) disposed in said intermediate space (5), said conductive element having a first surface facing said first zone (9) and a second surface facing said second zone (11), said conductive element (7) being mechanically independent of said first zone (9) and second zone (11) and being able to make a displacement through said intermediate space (5), from a first end, where said conductive element (7) is in contact with said first zone (9), to a second end, where said conductive element (7) is in contact with said second zone (11), and vice versa, depending on voltages present in said first, second and third condenser plates (1, 2, 3), - a reflective surface (19), suitable to reflect an incident beam of light, integral with said conductive element (7)
caracterizado porquecharacterized because
- cuando dicho elemento conductor (7) está en dicho primer extremo tiene por Io menos tres primeros puntos de apoyo no alineados en dicha primera superficie que están en contacto con tres primeros puntos de apoyo correspondientes en Ia primera zona (9), y cuando dicho elemento conductor (7) está en dicho segundo extremo tiene por Io menos tres segundos puntos de apoyo no alineados en Ia segunda superficie que están en contacto con tres segundos puntos de apoyo correspondientes en Ia segunda zona (11 ), y- when said conductive element (7) is at said first end it has at least three first support points not aligned on said first surface that are in contact with three corresponding first support points in the first zone (9), and when said conductive element (7) is at said second end has at least three second support points not aligned on the second surface that are in contact with three corresponding second support points in the second zone (11), and
- cuando dicho elemento conductor (7) está en dicho primer extremo, Ia distancia entre por Io menos uno de dichos segundos puntos de apoyo de dicha segunda superficie a su correspondiente punto de apoyo de dicha segunda zona (11 ) es diferente a Ia distancia de los restantes segundos puntos de apoyo de dicha segunda superficie a sus correspondientes puntos de apoyo de dicha segunda zona (11 ), de manera que dicha superficie reflectora (19) cambia de orientación en el espacio cuando dicho elemento conductor (7) efectúa dicho desplazamiento entre dicho primer extremo y dicho segundo extremo.- when said conductive element (7) is at said first end, the distance between at least one of said second support points of said second surface to its corresponding support point of said second zone (11) is different from the distance of the remaining second support points of said second surface to their corresponding support points of said second area (11), so that said reflecting surface (19) changes orientation in space when said conductive element (7) makes said displacement between said first end and said second end.
2.- Dispositivo según Ia reivindicación 1 , caracterizado porque dicho elemento conductor (7) comprende una primera proyección (21 ) dispuesta en una de dichas pri- mera y segunda superficies, donde dicha primera proyección (21) comprende uno de dichos primeros o segundos puntos de apoyo de dichas primera o segunda superficies.2. Device according to claim 1, characterized in that said conductive element (7) comprises a first projection (21) arranged on one of said first and second surfaces, wherein said first projection (21) comprises one of said first or second support points of said first or second surfaces.
3.- Dispositivo según Ia reivindicación 1 , caracterizado porque dicho elemento con- ductor (7) comprende una primera proyección (21) dispuesta en dicha primera superficie, donde dicha primera proyección (21 ) comprende uno de dichos primeros puntos de apoyo de dicha primera superficie, y una segunda proyección (21 ) dis- puesta en dicha segunda superficie, donde dicha segunda proyección (21) comprende uno de dichos segundos puntos de apoyo de dicha segunda superficie.3. Device according to claim 1, characterized in that said conductive element (7) comprises a first projection (21) disposed on said first surface, wherein said first projection (21) comprises one of said first support points of said first surface, and a second projection (21) placed on said second surface, wherein said second projection (21) comprises one of said second support points of said second surface.
4.- Dispositivo según cualquiera de las reivindicaciones 1 a 3, caracterizado porque por Io menos una de dichas primera zona (9) y segunda zona (11) comprende una proyección (21 ) que comprende uno de dichos primeros o segundos puntos de apoyo de dichas primera o segunda superficie.Device according to any one of claims 1 to 3, characterized in that at least one of said first zone (9) and second zone (11) comprises a projection (21) comprising one of said first or second support points of said first or second surface.
5.- Procedimiento de actuación de un dispositivo electroóptico reflector miniaturiza- do, dicho dispositivo comprendiendo:5.- Procedure for actuating a miniaturized reflector electro-optical device, said device comprising:
- una primera zona (109) enfrentada a una segunda zona (111),- a first zone (109) facing a second zone (111),
- una primera placa de condensador (101 ) dispuesta en dicha primera zona (109),- a first condenser plate (101) arranged in said first zone (109),
- una segunda placa de condensador (102) y una tercera placa de condensador (103) dispuestas en dicha segunda zona (111 ) y enfrentadas a dicha primera placa de condensador (101 ),- a second condenser plate (102) and a third condenser plate (103) arranged in said second zone (111) and facing said first condenser plate (101),
- un espacio intermedio (105) dispuesto entre dicha primera zona (109) y dicha segunda zona (111 ),- an intermediate space (105) disposed between said first zone (109) and said second zone (111),
- un elemento conductor (107) dispuesto en dicho espacio intermedio (105), dicho elemento conductor (107) siendo mecánicamente independiente de dichas primera zona (109) y segunda zona (111 ) y siendo apto para efectuar un desplazamiento a través de dicho espacio intermedio (105), desde un primer extremo, donde dicho elemento conductor está próximo a dicha primera zona (109), hasta un segundo extremo, donde dicho elemento conductor está próximo a dicha segunda zona (111 ), y viceversa, en función de unos voltajes presentes en dichas primera, se- gunda y tercera placas de condensador (101 , 102, 103),- a conductive element (107) disposed in said intermediate space (105), said conductive element (107) being mechanically independent of said first zone (109) and second zone (111) and being able to make a movement through said space intermediate (105), from a first end, where said conductive element is close to said first zone (109), to a second end, where said conductive element is close to said second zone (111), and vice versa, depending on some voltages present in said first, second and third capacitor plates (101, 102, 103),
- una superficie reflectora, apta para reflejar un haz de luz incidente, solidaria a dicho elemento conductor - un eje central que se extiende desde dicha primera zona (109) hasta dicha segunda zona (111) y pasa por el centro de masas de dicho elemento conductor, donde dichas primera, segunda y tercera placa de condensador (101 , 102, 103) son aptas para ser proyectadas según dicho eje central sobre un plano perpendicular a dicho eje central- a reflective surface, capable of reflecting an incident beam of light, integral with said conductive element - a central axis that extends from said first zone (109) to said second zone (111) and passes through the center of mass of said conductive element, wherein said first, second and third condenser plate (101, 102, 103) they are apt to be projected along said central axis on a plane perpendicular to said central axis
caracterizado porquecharacterized because
- comprende una etapa de conexión de por Io menos una de dichas placas de condensador (115) a un primer voltaje y de por Io menos otra de dichas placas de condensador (115) a un segundo voltaje, donde dicho segundo voltaje es mayor que dicho primer voltaje, donde todas y cada una de dichas placas de condensador (115) están sometidas a un voltaje determinado de manera que ninguna de ellas queda en un estado de alta impedancia,- comprises a step of connecting at least one of said capacitor plates (115) at a first voltage and at least one of said capacitor plates (115) at a second voltage, wherein said second voltage is greater than said first voltage, where each and every one of said capacitor plates (115) are subjected to a certain voltage so that none of them is in a high impedance state,
de manera que dicha proyección según dicho eje central de las placas de condensador (115) sometidas a dicho primer voltaje tiene asimetría central respecto de dicha proyección según dicho eje central de las placas de condensador (115) so- metidas a dicho segundo voltaje.so that said projection along said central axis of the capacitor plates (115) subjected to said first voltage has central asymmetry with respect to said projection according to said central axis of the capacitor plates (115) subjected to said second voltage.
6.- Procedimiento según Ia reivindicación 5, caracterizado porque se conecta por Io menos una placa de condensador (115) adicional a un voltaje intermedio entre dicho primer voltaje y dicho segundo voltaje.6. Method according to claim 5, characterized in that at least one additional capacitor plate (115) is connected to an intermediate voltage between said first voltage and said second voltage.
7.- Procedimiento según Ia reivindicación 5, donde dicho dispositivo tiene tres placas de condensador (115) alineadas en dicha primera zona (109) y tres placas de condensador (115) alineadas en dicha segunda zona (11 1 ), caracterizado porque se conecta Ia placa de condensador (115) central de cada una de dichas zonas a un mismo voltaje. 7. Method according to claim 5, wherein said device has three condenser plates (115) aligned in said first zone (109) and three condenser plates (115) aligned in said second zone (11 1), characterized in that it is connected The central condenser plate (115) of each of said zones at the same voltage.
8.- Procedimiento según Ia reivindicación 7, caracterizado porque se conecta una de las placas de condensador (115) laterales de cada una de dichas zonas a dicho voltaje intermedio.8. Method according to claim 7, characterized in that one of the lateral condenser plates (115) of each of said zones is connected to said intermediate voltage.
9.- Procedimiento según Ia reivindicación 5, donde dicho dispositivo tiene cuatro placas de condensador (115) alineadas en dicha primera zona (109) y cuatro placas de condensador (115) alineadas en dicha segunda zona (111), caracterizado porque se conectan tres placas de condensador (115) de dicha primera zona (109) y tres placas de condensador (115) de dicha segunda zona (111) a un mismo vol- taje.9. Method according to claim 5, wherein said device has four condenser plates (115) aligned in said first zone (109) and four condenser plates (115) aligned in said second zone (111), characterized in that three are connected condenser plates (115) of said first zone (109) and three condenser plates (115) of said second zone (111) at the same voltage.
10.- Procedimiento según Ia reivindicación 5, donde dicho dispositivo tiene cuatro placas de condensador (115) alineadas en dicha primera zona (109) y cuatro placas de condensador (115) alineadas en dicha segunda zona (111 ), caracterizado porque se conectan dos placas de condensador (115) de dicha primera zona (109) y dos placas de condensador (115) de dicha segunda zona (111) a dicho voltaje intermedio.10. Method according to claim 5, wherein said device has four condenser plates (115) aligned in said first zone (109) and four condenser plates (115) aligned in said second zone (111), characterized in that two are connected capacitor plates (115) of said first zone (109) and two capacitor plates (115) of said second zone (111) at said intermediate voltage.
11.- Procedimiento según Ia reivindicación 5, donde dicho dispositivo tiene cuatro placas de condensador (115) no alineadas en dicha primera zona (109) y cuatro placas de condensador (115) no alineadas en dicha segunda zona (111 ), caracterizado porque se conectan tres placas de condensador (115) de dicha primera zona (109) y tres placas de condensador (115) de dicha segunda zona (111 ) a un mismo voltaje.11. Method according to claim 5, wherein said device has four condenser plates (115) not aligned in said first zone (109) and four condenser plates (115) not aligned in said second zone (111), characterized in that three capacitor plates (115) of said first zone (109) and three capacitor plates (115) of said second zone (111) are connected to the same voltage.
12.- Procedimiento según Ia reivindicación 5, donde dicho dispositivo tiene cuatro placas de condensador (115) no alineadas en dicha primera zona (109) y cuatro placas de condensador (115) no alineadas en dicha segunda zona (111 ), caracterizado porque se conectan dos placas de condensador (115) de dicha primera zona (109) y dos placas de condensador (115) de dicha segunda zona (111 ) a dicho voltaje intermedio. 12. Method according to claim 5, wherein said device has four condenser plates (115) not aligned in said first zone (109) and four condenser plates (115) not aligned in said second zone (111), characterized in that connect two capacitor plates (115) of said first zone (109) and two capacitor plates (115) of said second zone (111) to said intermediate voltage.
13.- Procedimiento según una de las reivindicaciones 11 ó 12, donde tanto en dicha primera zona como en dicha segunda zona (111 ) dichas placas de condensador (115) están distribuidas en forma de cuadrado tanto en dicha primera zona como en dicha segunda zona (111), caracterizado porque dicho primer voltaje y dicho segundo voltaje son aplicados sobre unas placas de condensador (115) tales que sus proyecciones según dicho eje central son adyacentes.13. Method according to one of claims 11 or 12, wherein in said first zone as well as in said second zone (111) said condenser plates (115) are distributed in square form both in said first zone and in said second zone (111), characterized in that said first voltage and said second voltage are applied on capacitor plates (115) such that their projections along said central axis are adjacent.
14.- Procedimiento de actuación de un dispositivo electroóptico reflector miniaturi- zado, dicho dispositivo comprendiendo:14.- Procedure for actuating a miniaturized reflector electro-optical device, said device comprising:
- una primera zona (109) enfrentada a una segunda zona (111),- a first zone (109) facing a second zone (111),
- una primera placa de condensador (101) dispuesta en dicha primera zona (109),- a first condenser plate (101) arranged in said first zone (109),
- una segunda placa de condensador (102) y una tercera placa de condensador (103) dispuestas en dicha segunda zona (111 ) y enfrentadas a dicha primera placa de condensador (101),- a second condenser plate (102) and a third condenser plate (103) arranged in said second zone (111) and facing said first condenser plate (101),
- un espacio intermedio (105) dispuesto entre dicha primera zona (109) y dicha se- gunda zona (111 ),- an intermediate space (105) disposed between said first zone (109) and said second zone (111),
- un elemento conductor (107) dispuesto en dicho espacio intermedio (105), dicho elemento conductor (107) siendo mecánicamente independiente de dichas primera zona (109) y segunda zona (111 ) y siendo apto para efectuar un desplazamiento a través de dicho espacio intermedio (105), desde un primer extremo, donde dicho elemento conductor (107) está próximo a dicha primera zona (109), hasta un segundo extremo, donde dicho elemento conductor (107) está próximo a dicha segunda zona (111 ), y viceversa, en función de unos voltajes presentes en dichas primera, segunda y tercera placas de condensador (101 , 102, 103),- a conductive element (107) disposed in said intermediate space (105), said conductive element (107) being mechanically independent of said first zone (109) and second zone (111) and being able to make a movement through said space intermediate (105), from a first end, where said conductive element (107) is close to said first zone (109), to a second end, where said conductive element (107) is close to said second zone (111), and vice versa, depending on voltages present in said first, second and third capacitor plates (101, 102, 103),
- una superficie reflectora, apta para reflejar un haz de luz incidente, solidaria a dicho elemento conductor (107) - un eje central que se extiende desde dicha primera zona (109) hasta dicha segunda zona (111) y pasa por el centro de masas de dicho elemento conductor (107), donde dichas primera, segunda y tercera placa de condensador (101 , 102, 103) son aptas para ser proyectadas según dicho eje central sobre un plano per- pendicular a dicho eje central,- a reflective surface, suitable to reflect an incident beam of light, integral with said conductive element (107) - a central axis extending from said first zone (109) to said second zone (111) and passing through the center of mass of said conductive element (107), wherein said first, second and third condenser plate (101, 102 , 103) are suitable for being projected along said central axis on a plane perpendicular to said central axis,
donde dicho dispositivo tiene una pluralidad de placas de condensador (115) distribuidas con simetría de rotación según dicho eje central en dicha primera zona (109) y una pluralidad de placas de condensador (115) distribuidas con simetría de rotación según dicho eje central en dicha segunda zona (111),wherein said device has a plurality of condenser plates (115) distributed with rotation symmetry along said central axis in said first zone (109) and a plurality of condenser plates (115) distributed with rotation symmetry along said central axis in said second zone (111),
caracterizado porque comprende una etapa de conexión de por Io menos una de dichas placas de condensador (115) a un primer voltaje y de por Io menos otra de dichas placas de condensador (115) a un segundo voltaje, donde dicho segundo voltaje es mayor que dicho primer voltaje, de manera que dicha proyección según dicho eje central de las placas de condensador (115) sometidas a dicho primer voltaje tiene asimetría central respecto de dicha proyección según dicho eje central de las placas de condensador (115) sometidas a dicho segundo voltaje.characterized in that it comprises a step of connecting at least one of said capacitor plates (115) at a first voltage and at least one of said capacitor plates (115) at a second voltage, wherein said second voltage is greater than said first voltage, so that said projection along said central axis of the capacitor plates (115) subjected to said first voltage has central asymmetry with respect to said projection according to said central axis of the capacitor plates (115) subjected to said second voltage .
15.- Procedimiento según Ia reivindicación 14, caracterizado porque se conecta por Io menos una placa de condensador (115) adicional a un voltaje intermedio entre dicho primer voltaje y dicho segundo voltaje.15. Method according to claim 14, characterized in that at least one additional capacitor plate (115) is connected to an intermediate voltage between said first voltage and said second voltage.
16.- Procedimiento según una de las reivindicaciones 14 ó 15, caracterizado porque todas y cada una de dichas placas está sometida a un voltaje determinado de manera que ninguna de ellas queda en un estado de alta impedancia.16. Method according to one of claims 14 or 15, characterized in that each and every one of said plates is subjected to a determined voltage so that none of them remain in a high impedance state.
17.- Procedimiento de actuación según cualquiera de las reivindicaciones 1 a 16, caracterizado porque cuando dicho elemento conductor (107) está próximo a una de dichas primera zona (109) o segunda zona (111 ), dicho elemento conductor está en contacto con un circuito extemo y porque se conecta dicho elemento conductor (107) a una tensión a través de dicho circuito externo. 17. Actuation method according to any of claims 1 to 16, characterized in that when said conductive element (107) is close to one of said first zone (109) or second zone (111), said conductive element is in contact with a external circuit and because said conductive element (107) is connected to a voltage through said external circuit.
18.- Dispositivo electroóptico reflector miniaturizado que comprende18.- Miniaturized reflector electro-optical device comprising
- una primera zona (109) enfrentada a una segunda zona (111 ),- a first zone (109) facing a second zone (111),
- una primera placa de condensador (101) dispuesta en dicha primera zona (109),- a first condenser plate (101) arranged in said first zone (109),
- una segunda placa de condensador (102) y una tercera placa de condensador (103) dispuestas en dicha segunda zona (111) y enfrentadas a dicha primera placa de condensador (101),- a second condenser plate (102) and a third condenser plate (103) arranged in said second zone (111) and facing said first condenser plate (101),
- un espacio intermedio (105) dispuesto entre dicha primera zona (109) y dicha segunda zona (111),- an intermediate space (105) disposed between said first zone (109) and said second zone (111),
- un elemento conductor (107) dispuesto en dicho espacio intermedio (105), dicho elemento conductor (107) siendo mecánicamente independiente de dichas primera zona (109) y segunda zona (111 ) y siendo apto para efectuar un desplazamiento a través de dicho espacio intermedio (105), desde un primer extremo, donde dicho elemento conductor (107) está próximo a dicha primera zona (109), hasta un segundo extremo, donde dicho elemento conductor (107) está próximo a dicha se- gunda zona (111), y viceversa, en función de unos voltajes presentes en dichas primera, segunda y tercera placas de condensador (101 , 102, 103),- a conductive element (107) disposed in said intermediate space (105), said conductive element (107) being mechanically independent of said first zone (109) and second zone (111) and being able to make a movement through said space intermediate (105), from a first end, where said conductive element (107) is close to said first zone (109), to a second end, where said conductive element (107) is close to said second zone (111) , and vice versa, depending on voltages present in said first, second and third capacitor plates (101, 102, 103),
- una superficie reflectora, apta para reflejar un haz de luz incidente, solidaria a dicho elemento conductor (107)- a reflective surface, suitable to reflect an incident beam of light, integral with said conductive element (107)
- un eje central que se extiende desde dicha primera zona (109) hasta dicha segunda zona (111) y pasa por el centro de masas de dicho elemento conductor (107), donde dichas primera, segunda y tercera placa de condensador (101 , 102, 103) son aptas para ser proyectadas según dicho eje central sobre un plano per- pendicular a dicho eje central- a central axis extending from said first zone (109) to said second zone (111) and passing through the center of mass of said conductive element (107), wherein said first, second and third condenser plate (101, 102 , 103) are suitable for being projected along said central axis on a plane perpendicular to said central axis
caracterizado porque comprende unos medios de control aptos para realizar un procedimiento según cualquiera de las reivindicaciones 5 a 10 ó 17.characterized because It comprises control means suitable for carrying out a method according to any of claims 5 to 10 or 17.
19.- Dispositivo electroóptico reflector miniaturizado que comprende19.- Miniaturized reflector electro-optical device comprising
- una primera zona (109) enfrentada a una segunda zona (111),- a first zone (109) facing a second zone (111),
- una primera placa de condensador (101) dispuesta en dicha primera zona (109),- a first condenser plate (101) arranged in said first zone (109),
- una segunda placa de condensador (102) y una tercera placa de condensador (103) dispuestas en dicha segunda zona (111) y enfrentadas a dicha primera placa de condensador (101),- a second condenser plate (102) and a third condenser plate (103) arranged in said second zone (111) and facing said first condenser plate (101),
- un espacio intermedio (105) dispuesto entre dicha primera zona (109) y dicha se- gunda zona (111),- an intermediate space (105) disposed between said first zone (109) and said second zone (111),
- un elemento conductor (107) dispuesto en dicho espacio intermedio (105), dicho elemento conductor (107) siendo mecánicamente independiente de dichas primera zona (109) y segunda zona (111 ) y siendo apto para efectuar un desplazamiento a través de dicho espacio intermedio (105), desde un primer extremo, donde dicho elemento conductor (107) está próximo a dicha primera zona (109), hasta un segundo extremo, donde dicho elemento conductor (107) está próximo a dicha segunda zona (111), y viceversa, en función de unos voltajes presentes en dichas primera, segunda y tercera placas de condensador (101 , 102, 103),- a conductive element (107) disposed in said intermediate space (105), said conductive element (107) being mechanically independent of said first zone (109) and second zone (111) and being able to make a movement through said space intermediate (105), from a first end, where said conductive element (107) is close to said first zone (109), to a second end, where said conductive element (107) is close to said second zone (111), and vice versa, depending on voltages present in said first, second and third capacitor plates (101, 102, 103),
- una superficie reflectora, apta para reflejar un haz de luz incidente, solidaria a dicho elemento conductor (107)- a reflective surface, suitable to reflect an incident beam of light, integral with said conductive element (107)
- un eje central que se extiende desde dicha primera zona (109) hasta dicha se- gunda zona (111) y pasa por el centro de masas de dicho elemento conductor- a central axis that extends from said first zone (109) to said second zone (111) and passes through the center of mass of said conductive element
(107), donde dichas primera, segunda y tercera placa de condensador (101, 102, 103) son aptas para ser proyectadas según dicho eje central sobre un plano perpendicular a dicho eje central caracterizado porque tiene cuatro placas de condensador (115) no alineadas en dicha primera zona (109) y cuatro placas de condensador (115) no alineadas en dicha segunda zona (111), y porque(107), wherein said first, second and third condenser plate (101, 102, 103) are apt to be projected along said central axis on a plane perpendicular to said central axis characterized in that it has four condenser plates (115) not aligned in said first zone (109) and four condenser plates (115) not aligned in said second zone (111), and because
comprende unos medios de control aptos para realizar un procedimiento según una de las reivindicaciones 11 , 12 ó 17.It comprises control means suitable for carrying out a method according to one of claims 11, 12 or 17.
20.- Dispositivo según Ia reivindicación 18, caracterizado porque tanto en dicha primera zona como en dicha segunda zona (111 ) dichas placas de condensador (115) están distribuidas en forma de cuadrado, y porque dichos medios de control son aptos para aplicar dicho primer voltaje y dicho segundo voltaje sobre unas placas de condensador (115) tales que sus proyecciones según dicho eje central son adyacentes.20. Device according to claim 18, characterized in that both in said first zone and in said second zone (111) said condenser plates (115) are distributed in the form of a square, and because said control means are suitable for applying said first voltage and said second voltage on capacitor plates (115) such that their projections along said central axis are adjacent.
21.- Dispositivo electroóptico reflector miniaturizado que comprende21.- Miniaturized reflector electro-optical device comprising
- una primera zona (109) enfrentada a una segunda zona (111),- a first zone (109) facing a second zone (111),
- una primera placa de condensador (101) dispuesta en dicha primera zona (109),- a first condenser plate (101) arranged in said first zone (109),
- una segunda placa de condensador (102) y una tercera placa de condensador (103) dispuestas en dicha segunda zona (111) y enfrentadas a dicha primera placa de condensador (101),- a second condenser plate (102) and a third condenser plate (103) arranged in said second zone (111) and facing said first condenser plate (101),
- un espacio intermedio (105) dispuesto entre dicha primera zona (109) y dicha segunda zona (111),- an intermediate space (105) disposed between said first zone (109) and said second zone (111),
- un elemento conductor (107) dispuesto en dicho espacio intermedio (105), dicho elemento conductor (107) siendo mecánicamente independiente de dichas primera zona (109) y segunda zona (111) y siendo apto para efectuar un desplazamiento a través de dicho espacio intermedio (105), desde un primer extremo, donde dicho elemento conductor (107) está próximo a dicha primera zona (109), hasta un se- gundo extremo, donde dicho elemento conductor (107) está próximo a dicha segunda zona (111 ), y viceversa, en función de unos voltajes presentes en dichas primera, segunda y tercera placas de condensador (101 , 102, 103),- a conductive element (107) disposed in said intermediate space (105), said conductive element (107) being mechanically independent of said first zone (109) and second zone (111) and being able to make a movement through said space intermediate (105), from a first end, where said conductive element (107) is close to said first zone (109), to a second extreme end, where said conductive element (107) is close to said second zone (111), and vice versa, depending on voltages present in said first, second and third capacitor plates (101, 102, 103),
- una superficie reflectora, apta para reflejar un haz de luz incidente, solidaria a dicho elemento conductor (107)- a reflective surface, suitable to reflect an incident beam of light, integral with said conductive element (107)
- un eje central que se extiende desde dicha primera zona (109) hasta dicha segunda zona (111 ) y pasa por el centro de masas de dicho elemento conductor (107), donde dichas primera, segunda y tercera placa de condensador (101 , 102, 103) son aptas para ser proyectadas según dicho eje central sobre un plano perpendicular a dicho eje central- a central axis extending from said first zone (109) to said second zone (111) and passing through the center of mass of said conductive element (107), wherein said first, second and third condenser plate (101, 102 , 103) are suitable for being projected along said central axis on a plane perpendicular to said central axis
caracterizado porque comprende una pluralidad de placas de condensador (115) distribuidas con simetría de rotación según dicho eje central en dicha primera zona (109) y una pluralidad de placas de condensador (115) distribuidas con simetría de rotación según dicho eje central en dicha segunda zona (111 ),characterized in that it comprises a plurality of condenser plates (115) distributed with rotation symmetry along said central axis in said first zone (109) and a plurality of condenser plates (115) distributed with rotation symmetry along said central axis in said second axis zone (111),
y porque comprende unos medios de control aptos para realizar un procedimiento según cualquiera de las reivindicaciones 14 a 17.and because it comprises control means suitable for performing a method according to any of claims 14 to 17.
22.- Dispositivo electroóptico reflector miniaturizado según cualquiera de las reivindicaciones 18 a 21 , caracterizado porque22. Miniaturized reflector electro-optical device according to any of claims 18 to 21, characterized in that
- dicha segunda placa de condensador (102) es menor o igual que dicha primera placa de condensador (101 ),- said second condenser plate (102) is less than or equal to said first condenser plate (101),
- dicha tercera placa de condensador (103) es menor o igual que dicha primera placa de condensador (101), y donde dichas segunda y tercera placas de conden- sador (102, 103) son, juntas, mayores que dicha primera placa de condensador (101 ), - dicho elemento conductor (107) presenta una primera superficie encarada hacia dicha primera zona (109) y una segunda superficie encarada hacia dicha segunda zona (111 ), dicho elemento conductor (107) siendo apto para efectuar un desplazamiento a través de dicho espacio intermedio (105), desde un primer extremo, donde dicho elemento conductor (107) está en contacto con dicha primera zona (109), hasta un segundo extremo, donde dicho elemento conductor (107) está en contacto con dicha segunda zona (111 ), y viceversa, en función de unos voltajes presentes en dichas primera, segunda y tercera placas de condensador (101 , 102, 103),- said third condenser plate (103) is less than or equal to said first condenser plate (101), and wherein said second and third condenser plates (102, 103) are, together, larger than said first condenser plate (101), - said conductive element (107) has a first surface facing said first zone (109) and a second surface facing said second zone (111), said conductive element (107) being able to make a displacement through said intermediate space (105), from a first end, where said conductive element (107) is in contact with said first zone (109), to a second end, where said conductive element (107) is in contact with said second zone (111), and vice versa, depending on voltages present in said first, second and third capacitor plates (101, 102, 103),
y porqueand because
- cuando dicho elemento conductor (107) está en dicho primer extremo tiene por Io menos tres primeros puntos de apoyo no alineados en dicha primera superficie que están en contacto con tres primeros puntos de apoyo correspondientes en Ia primera zona (109), y cuando dicho elemento conductor (107) está en dicho segundo extremo tiene por Io menos tres segundos puntos de apoyo no alineados en Ia segunda superficie que están en contacto con tres segundos puntos de apoyo correspondientes en Ia segunda zona (111), y- when said conductive element (107) is at said first end it has at least three first support points not aligned on said first surface that are in contact with three corresponding first support points in the first zone (109), and when said conductive element (107) is at said second end has at least three second support points not aligned on the second surface that are in contact with three corresponding second support points in the second zone (111), and
- cuando dicho elemento conductor (107) está en dicho primer extremo, Ia distancia entre por Io menos uno de dichos segundos puntos de apoyo de dicha segunda superficie a su correspondiente punto de apoyo de dicha segunda zona (111 ) es diferente a Ia distancia de los restantes segundos puntos de apoyo de dicha se- gunda superficie a sus correspondientes puntos de apoyo de dicha segunda zona (111 ), de manera que dicha superficie reflectora (119) cambia de orientación en el espacio cuando dicho elemento conductor (107) efectúa dicho desplazamiento entre dicho primer extremo y dicho segundo extremo.- when said conductive element (107) is at said first end, the distance between at least one of said second support points of said second surface to its corresponding support point of said second zone (111) is different from the distance of the remaining second support points of said second surface to their corresponding support points of said second zone (111), so that said reflecting surface (119) changes orientation in space when said conductive element (107) makes said displacement between said first end and said second end.
23.- Dispositivo según Ia reivindicación 22, caracterizado porque dicho elemento conductor (107) comprende una primera proyección (121 ) dispuesta en una de dichas primera y segunda superficies, donde dicha primera proyección (121 ) com- prende uno de dichos primeros o segundos puntos de apoyo de dichas primera o segunda superficies.23. Device according to claim 22, characterized in that said conductive element (107) comprises a first projection (121) arranged on one of said first and second surfaces, wherein said first projection (121) comprises turn on one of said first or second support points of said first or second surfaces.
24.- Dispositivo según Ia reivindicación 23, caracterizado porque dicho elemento conductor (107) comprende una primera proyección (121 ) dispuesta en dicha primera superficie, donde dicha primera proyección (121) comprende uno de dichos primeros puntos de apoyo de dicha primera superficie, y una segunda proyección (121 ) dispuesta en dicha segunda superficie, donde dicha segunda proyección (121 ) comprende uno de dichos segundos puntos de apoyo de dicha segunda su- perficie.24. Device according to claim 23, characterized in that said conductive element (107) comprises a first projection (121) arranged on said first surface, wherein said first projection (121) comprises one of said first support points of said first surface, and a second projection (121) disposed on said second surface, wherein said second projection (121) comprises one of said second support points of said second surface.
25.- Dispositivo según cualquiera de las reivindicaciones 22 a 24, caracterizado porque por Io menos una de dichas primera zona (109) y segunda zona (1 11 ) comprende una proyección (121 ) que comprende uno de dichos primeros o segundos puntos de apoyo de dichas primera o segunda superficie.25. Device according to any of claims 22 to 24, characterized in that at least one of said first zone (109) and second zone (11) comprises a projection (121) comprising one of said first or second support points of said first or second surface.
26.- Conjunto electroóptico reflector miniaturizado para el procesado de una señal luminosa que comprende una longitud de onda determinada, caracterizado porque comprende:26.- Miniaturized reflector electro-optical assembly for the processing of a light signal comprising a certain wavelength, characterized in that it comprises:
[a] un dispositivo electroóptico reflector digital miniaturizado que, a su vez, comprende:[a] a miniaturized digital reflector electro-optical device which, in turn, comprises:
- una primera zona (209) enfrentada a una segunda zona (211 ),- a first zone (209) facing a second zone (211),
- una primera placa de condensador (201 ) dispuesta en dicha primera zona (209), - una segunda placa de condensador (202) dispuesta en dicha segunda zona (211) y enfrentada a dicha primera placa de condensador (201 ), donde dicha segunda placa de condensador (202) es menor o igual que dicha primera placa de condensador (201),- a first condenser plate (201) disposed in said first zone (209), - a second condenser plate (202) disposed in said second zone (211) and facing said first condenser plate (201), wherein said second condenser plate (202) is less than or equal to said first condenser plate (201),
- una tercera placa de condensador (203) dispuesta en dicha segunda zona (211 ), donde dicha tercera placa de condensador (203) es menor o igual que dicha primera placa de condensador, y donde dichas segunda y tercera placas de condensador (202, 203) son, juntas, mayores que dicha primera placa de condensador (201), - un espacio intermedio (205) dispuesto entre dicha primera zona (209) y dicha segunda zona (211),- a third condenser plate (203) disposed in said second zone (211), wherein said third condenser plate (203) is less than or equal to said first condenser plate, and where said second and third condenser plates (202, 203) are, together, larger than said first condenser plate (201), - an intermediate space (205) disposed between said first zone (209) and said second zone (211),
- un elemento conductor (207) dispuesto en dicho espacio intermedio (205), dicho elemento conductor (207) siendo mecánicamente independiente de dichas primera zona (209) y segunda zona (211 ) y siendo apto para efectuar un desplazamiento a través de dicho espacio intermedio (205), desde un primer extremo, donde dicho elemento conductor (207) está en contacto con dicha primera zona (209), hasta un segundo extremo, donde dicho elemento conductor (207) está en contacto con dicha segunda zona (211 ) y viceversa, en función de unos voltajes presentes en di- chas primera, segunda y tercera placas de condensador (201 , 202, 203),- a conductive element (207) disposed in said intermediate space (205), said conductive element (207) being mechanically independent of said first zone (209) and second zone (211) and being able to make a displacement through said space intermediate (205), from a first end, where said conductive element (207) is in contact with said first zone (209), to a second end, where said conductive element (207) is in contact with said second zone (211) and vice versa, depending on voltages present in said first, second and third capacitor plates (201, 202, 203),
- una superficie reflectora (219), apta para reflejar un haz de luz incidente, solidaria a dicho elemento conductor (207), y- a reflective surface (219), suitable for reflecting an incident beam of light, integral with said conductive element (207), and
[b] una fuente de luz apta para emitir dicha señal luminosa, donde dicha fuente de luz está orientada de tal manera que dicha señal luminosa incide sobre dicha superficie reflectora (219), definiendo un camino óptico, tanto si dicho elemento conductor (207) está en dicho primer extremo como si está en dicho segundo extremo,[b] a light source capable of emitting said light signal, where said light source is oriented such that said light signal strikes said reflector surface (219), defining an optical path, whether said conductive element (207) is at said first end as if it is at said second end,
y porque Ia diferencia entre los caminos ópticos recorridos por dicha señal luminosa cuando dicho elemento conductor (207) pasa de dicho primer extremo a dicho segundo extremo o viceversa, es igual a Ia mitad de dicha longitud de onda, o un múltiplo impar de dicha mitad de dicha longitud de onda, donde dicha diferencia es debida al desplazamiento realizado por dicha superficie reflectora (219).and because the difference between the optical paths traveled by said light signal when said conductive element (207) passes from said first end to said second end or vice versa, is equal to half of said wavelength, or an odd multiple of said half of said wavelength, where said difference is due to the displacement made by said reflecting surface (219).
27.- Conjunto según Ia reivindicación 26, caracterizado porque tiene una segunda superficie reflectora (221 ) fija separada de dicha superficie reflectora (219), según dicho camino óptico, un valor igual a Ia cuarta parte de dicha longitud de onda, o un múltiplo impar de dicha cuarta parte de dicha longitud de onda, cuando dicho elemento conductor (207) está en uno de dichos primer extremo y segundo extremo.27.- Assembly according to claim 26, characterized in that it has a second fixed reflecting surface (221) separated from said reflecting surface (219), according to said optical path, a value equal to the fourth part of said wavelength, or a multiple odd of said fourth part of said wavelength, when said conductive element (207) is at one of said first end and second end.
28.- Conjunto según Ia reivindicación 26, caracterizado porque dicho elemento conductor (207) tiene un cuerpo principal (217) que es una lámina plana a partir de Ia cual se extiende un brazo de soporte en cuyo extremo se dispone dicha superficie reflectora (219).28.- Assembly according to claim 26, characterized in that said conductive element (207) has a main body (217) which is a flat sheet from Ia which extends a support arm at the end of which said reflecting surface (219) is arranged.
29.- Conjunto según una de las reivindicaciones 26 ó 27, caracterizado porque di- cho elemento conductor (207) tiene un cuerpo principal (217) que es una lámina plana sobre Ia que se extiende dicha superficie reflectora (219), donde dicha superficie reflectora (219) está orientada hacia una de dichas primera zona (209) y segunda zona (211), Ia cual presenta una abertura (223) que permite el paso de dicha señal luminosa.29.- Assembly according to one of claims 26 or 27, characterized in that said conductive element (207) has a main body (217) which is a flat sheet on which said reflective surface (219) extends, wherein said surface reflector (219) is oriented towards one of said first zone (209) and second zone (211), which has an opening (223) that allows the passage of said light signal.
30.- Conjunto según cualquiera de las reivindicaciones 26 a 29, caracterizado porque tiene tres grupos de dichos dispositivos electroópticos, donde los dispositivos electroópticos de cada grupo son aptos para el procesado de una señal luminosa que comprende una misma longitud de onda determinada, y donde cada grupo es apto para el procesado de una señal luminosa que comprende una longitud de onda determinada diferente de Ia de los otros grupos.30.- Assembly according to any of claims 26 to 29, characterized in that it has three groups of said electro-optical devices, wherein the electro-optical devices of each group are suitable for processing a light signal comprising the same determined wavelength, and where Each group is suitable for processing a light signal that comprises a determined wavelength different from that of the other groups.
31.- Conjunto según Ia reivindicación 29, caracterizado porque comprende, adicio- nalmente, una capa semitransparente (225) dispuesta a una distancia de Ia mitad de dicha longitud de onda, medida según Ia dirección de dicho camino óptico.31.- Assembly according to claim 29, characterized in that it additionally comprises a semi-transparent layer (225) disposed at a distance of half of said wavelength, measured according to the direction of said optical path.
32.- Conjunto electroóptico reflector miniaturizado para el procesado de una señal luminosa que comprende una longitud de onda determinada, caracterizado porque comprende un dispositivo electroóptico reflector digital miniaturizado que, a su vez, comprende:32.- Miniaturized reflector electro-optical assembly for the processing of a light signal comprising a certain wavelength, characterized in that it comprises a miniaturized digital reflector electro-optical device which, in turn, comprises:
- una primera zona (209) enfrentada a una segunda zona (211 ),- a first zone (209) facing a second zone (211),
- una primera placa de condensador (201 ) dispuesta en dicha primera zona (209),- a first condenser plate (201) arranged in said first zone (209),
- una segunda placa de condensador (202) dispuesta en dicha segunda zona (211) y enfrentada a dicha primera placa de condensador (201 ), donde dicha segunda placa de condensador (202) es menor o igual que dicha primera placa de condensador (201 ),- a second condenser plate (202) disposed in said second zone (211) and facing said first condenser plate (201), wherein said second condenser plate (202) is less than or equal to said first condenser plate (201 ),
- una tercera placa de condensador (203) dispuesta en dicha segunda zona (211), donde dicha tercera placa de condensador (203) es menor o igual que dicha prime- ra placa de condensador (201 ), y donde dichas segunda y tercera placas de condensador (202, 203) son, juntas, mayores que dicha primera placa de condensador (201 ),- a third condenser plate (203) disposed in said second zone (211), wherein said third condenser plate (203) is less than or equal to said first ra condenser plate (201), and wherein said second and third condenser plates (202, 203) are, together, larger than said first condenser plate (201),
- un espacio intermedio (205) dispuesto entre dicha primera zona (209) y dicha se- gunda zona (211 ),- an intermediate space (205) disposed between said first zone (209) and said second zone (211),
- un elemento conductor (207) dispuesto en dicho espacio intermedio (205), dicho elemento conductor (207) siendo mecánicamente independiente de dichas primera zona (209) y segunda zona (211) y siendo apto para efectuar un desplazamiento a través de dicho espacio intermedio (205), desde un primer extremo, donde dicho elemento conductor (207) está en contacto con dicha primera zona (209), hasta un segundo extremo, donde dicho elemento conductor (207) está en contacto con dicha segunda zona (211 ) y viceversa, en función de unos voltajes presentes en dichas primera, segunda y tercera placas de condensador (201 , 202, 203),- a conductive element (207) disposed in said intermediate space (205), said conductive element (207) being mechanically independent of said first zone (209) and second zone (211) and being able to make a displacement through said space intermediate (205), from a first end, where said conductive element (207) is in contact with said first zone (209), to a second end, where said conductive element (207) is in contact with said second zone (211) and vice versa, depending on voltages present in said first, second and third capacitor plates (201, 202, 203),
- una superficie reflectora (219), apta para reflejar un haz de luz incidente, solidaria a dicho elemento conductor (207),- a reflective surface (219), suitable for reflecting an incident beam of light, integral with said conductive element (207),
donde Ia distancia recorrida por dicha superficie reflectora (219) es igual a Ia cuarta parte de dicha longitud de onda, o un múltiplo impar de dicha cuarta parte de dicha longitud de onda, cuando dicho elemento conductor (207) pasa de dicho primer extremo a dicho segundo extremo o viceversa.wherein the distance traveled by said reflecting surface (219) is equal to the fourth part of said wavelength, or an odd multiple of said fourth part of said wavelength, when said conductive element (207) passes from said first end to said second end or vice versa.
33.- Procedimiento para el procesado de una señal luminosa que comprende una longitud de onda determinada, mediante un conjunto electroóptico reflector miniatu- rizado que comprende un dispositivo electroóptico reflector digital miniaturizado que comprende:33.- Procedure for processing a light signal comprising a certain wavelength, by means of a miniaturized reflector electro-optical assembly comprising a miniaturized digital reflector electro-optical device comprising:
- una primera zona (209) enfrentada a una segunda zona (211 ),- a first zone (209) facing a second zone (211),
- una primera placa de condensador (201 ) dispuesta en dicha primera zona (209),- a first condenser plate (201) arranged in said first zone (209),
- una segunda placa de condensador (202) dispuesta en dicha segunda zona (211) y enfrentada a dicha primera placa de condensador (201 ), donde dicha segunda placa de condensador (202) es menor o igual que dicha primera placa de condensador (201),- a second condenser plate (202) disposed in said second zone (211) and facing said first condenser plate (201), wherein said second condenser plate (202) is less than or equal to said first condenser plate (201 ),
- una tercera placa de condensador (203) dispuesta en dicha segunda zona (211 ), donde dicha tercera placa de condensador (203) es menor o igual que dicha prime- ra placa de condensador (201 ), y donde dichas segunda y tercera placas de condensador (202, 203) son, juntas, mayores que dicha primera placa de condensador (201 ),- a third condenser plate (203) disposed in said second zone (211), wherein said third condenser plate (203) is less than or equal to said first ra condenser plate (201), and wherein said second and third condenser plates (202, 203) are, together, larger than said first condenser plate (201),
- un espacio intermedio (205) dispuesto entre dicha primera zona (209) y dicha se- gunda zona (211 ),- an intermediate space (205) disposed between said first zone (209) and said second zone (211),
- un elemento conductor (207) dispuesto en dicho espacio intermedio (205), dicho elemento conductor (207) siendo mecánicamente independiente de dichas primera zona (209) y segunda zona (211 ) y siendo apto para efectuar un desplazamiento a través de dicho espacio intermedio (205), desde un primer extremo, donde dicho elemento conductor (207) está en contacto con dicha primera zona (209), hasta un segundo extremo, donde dicho elemento conductor (207) está en contacto con dicha segunda zona (211) y viceversa, en función de unos voltajes presentes en dichas primera, segunda y tercera placas de condensador (201 , 202, 203),- a conductive element (207) disposed in said intermediate space (205), said conductive element (207) being mechanically independent of said first zone (209) and second zone (211) and being able to make a displacement through said space intermediate (205), from a first end, where said conductive element (207) is in contact with said first zone (209), to a second end, where said conductive element (207) is in contact with said second zone (211) and vice versa, depending on voltages present in said first, second and third capacitor plates (201, 202, 203),
- una superficie reflectora (219), apta para reflejar un haz de luz incidente, solidaria a dicho elemento conductor (207),- a reflective surface (219), suitable for reflecting an incident beam of light, integral with said conductive element (207),
caracterizado porque se hace incidir dicha señal luminosa sobre dicha superficie reflectora (219) tanto si dicho elemento conductor (207) está en dicho primer extremo como si está en dicho segundo extremo,characterized in that said light signal is affected on said reflecting surface (219) whether said conductive element (207) is at said first end or if it is at said second end,
y porque se modifica el camino óptico recorrido por dicha señal luminosa, en un valor igual a la mitad de dicha longitud de onda, o un múltiplo impar de dicha mitad de dicha longitud de onda, pasando dicho elemento conductor (207) de dicho primer extremo a dicho segundo extremo o viceversa, debido al desplazamiento reali- zado por dicha superficie reflectora (219).and because the optical path traveled by said light signal is modified, at a value equal to half of said wavelength, or an odd multiple of said half of said wavelength, said conductive element (207) passing from said first end to said second end or vice versa, due to the displacement made by said reflecting surface (219).
34.- Procedimiento de actuación de un conjunto electroóptico según cualquiera de las reivindicaciones 26 a 32, donde dicho dispositivo comprende un eje central que se extiende desde dicha primera zona (209) hasta dicha segunda zona (211 ) y pa- sa por el centro de masas de dicho elemento conductor (207), donde dichas primera, segunda y tercera placa de condensador (201, 202, 203) son aptas para ser proyectadas según dicho eje central sobre un plano perpendicular a dicho eje central caracterizado porque comprende una etapa de conexión de por Io menos una de dichas placas de condensador (215) a un primer voltaje y de por Io menos otra de dichas placas de condensador (215) a un segundo voltaje, donde dicho segundo voltaje es mayor que dicho primer voltaje, donde todas y cada una de dichas placas de condensador (215) están sometidas a un voltaje determinado de manera que ninguna de ellas queda en un estado de alta impedancia, de manera que dicha proyección según dicho eje central de las placas de condensador (215) sometidas a dicho primer voltaje tiene asimetría central respecto de dicha proyección según dicho eje central de las placas de condensador (215) sometidas a dicho segundo voltaje.34.- Procedure for actuating an electro-optical assembly according to any of claims 26 to 32, wherein said device comprises a central axis extending from said first zone (209) to said second zone (211) and passes through the center of masses of said conductive element (207), wherein said first, second and third condenser plate (201, 202, 203) are apt to be projected along said central axis on a plane perpendicular to said central axis characterized in that it comprises a stage of connection of at least one of said capacitor plates (215) at a first voltage and at least one of said capacitor plates (215) at a second voltage, wherein said second voltage is greater than said first voltage, where each and every one of said plates of capacitor (215) are subjected to a certain voltage so that none of them is in a high impedance state, so that said projection along said central axis of the capacitor plates (215) subjected to said first voltage has central asymmetry with respect to said projection along said central axis of the condenser plates (215) subjected to said second voltage.
35.- Procedimiento según Ia reivindicación 34, caracterizado porque se conecta por Io menos una placa de condensador (215) adicional a un voltaje intermedio entre dicho primer voltaje y dicho segundo voltaje.35. Method according to claim 34, characterized in that at least one additional capacitor plate (215) is connected to an intermediate voltage between said first voltage and said second voltage.
36.- Procedimiento según Ia reivindicación 34, donde dicho dispositivo tiene tres placas de condensador (215) alineadas en dicha primera zona (209) y tres placas de condensador (215) alineadas en dicha segunda zona (211 ), caracterizado porque se conecta Ia placa de condensador (215) central de cada una de dichas zonas a un mismo voltaje.36.- Method according to claim 34, wherein said device has three condenser plates (215) aligned in said first zone (209) and three condenser plates (215) aligned in said second zone (211), characterized in that the Ia central condenser plate (215) of each of said zones at the same voltage.
37.- Procedimiento según Ia reivindicación 36, caracterizado porque se conecta una de las placas de condensador (215) laterales de cada una de dichas zonas a dicho voltaje intermedio.37.- Method according to claim 36, characterized in that one of the lateral condenser plates (215) of each of said zones is connected to said intermediate voltage.
38.- Procedimiento según Ia reivindicación 34, donde dicho dispositivo tiene cuatro placas de condensador (215) alineadas en dicha primera zona (209) y cuatro placas de condensador (215) alineadas en dicha segunda zona (211 ), caracterizado porque se conectan tres placas de condensador (215) de dicha primera zona (209) y tres placas de condensador (215) de dicha segunda zona (211) a un mismo vol- taje.38.- Method according to claim 34, wherein said device has four condenser plates (215) aligned in said first zone (209) and four condenser plates (215) aligned in said second zone (211), characterized in that three are connected condenser plates (215) of said first zone (209) and three condenser plates (215) of said second zone (211) at the same voltage.
39.- Procedimiento según Ia reivindicación 34, donde dicho dispositivo tiene cuatro placas de condensador (215) alineadas en dicha primera zona (209) y cuatro pía- cas de condensador (215) alineadas en dicha segunda zona (211), caracterizado porque se conectan dos placas de condensador (215) de dicha primera zona (209) y dos placas de condensador (215) de dicha segunda zona (211 ) a dicho voltaje intermedio.39.- Method according to claim 34, wherein said device has four condenser plates (215) aligned in said first zone (209) and four pia- condenser cas (215) aligned in said second zone (211), characterized in that two condenser plates (215) of said first zone (209) and two condenser plates (215) of said second zone (211) are connected to said intermediate voltage
40.- Procedimiento según Ia reivindicación 34, donde dicho dispositivo tiene cuatro placas de condensador (215) no alineadas en dicha primera zona (209) y cuatro placas de condensador (215) no alineadas en dicha segunda zona (211), caracterizado porque se conectan tres placas de condensador (215) de dicha primera zona (209) y tres placas de condensador (215) de dicha segunda zona (211) a un mismo voltaje.40.- Method according to claim 34, wherein said device has four condenser plates (215) not aligned in said first zone (209) and four condenser plates (215) not aligned in said second zone (211), characterized in that three capacitor plates (215) of said first zone (209) and three capacitor plates (215) of said second zone (211) are connected to the same voltage.
41.- Procedimiento según Ia reivindicación 34, donde dicho dispositivo tiene cuatro placas de condensador (215) no alineadas en dicha primera zona (209) y cuatro placas de condensador (215) no alineadas en dicha segunda zona (211), caracterizado porque se conectan dos placas de condensador (215) de dicha primera zona (209) y dos placas de condensador (215) de dicha segunda zona (211 ) a dicho voltaje intermedio.41.- Method according to claim 34, wherein said device has four condenser plates (215) not aligned in said first zone (209) and four condenser plates (215) not aligned in said second zone (211), characterized in that connect two capacitor plates (215) of said first zone (209) and two capacitor plates (215) of said second zone (211) to said intermediate voltage.
42.- Procedimiento según una de las reivindicaciones 40 ó 41 , donde tanto en dicha primer zona como en dicha segunda zona (211 ) dichas placas de condensador (215) están distribuidas en forma de cuadrado tanto en dicha primer zona como en dicha segunda zona (211 ), caracterizado porque dicho primer voltaje y dicho segundo voltaje son aplicados sobre unas placas de condensador (215) tales que sus proyecciones según dicho eje central son adyacentes.42. The method according to one of claims 40 or 41, wherein in said first zone and in said second zone (211) said condenser plates (215) are distributed in the form of a square both in said first zone and in said second zone (211), characterized in that said first voltage and said second voltage are applied on capacitor plates (215) such that their projections along said central axis are adjacent.
43.- Procedimiento de actuación de un conjunto electroóptico según cualquiera de las reivindicaciones 26 a 32, donde dicho dispositivo comprende un eje central que se extiende desde dicha primera zona (209) hasta dicha segunda zona (211) y pa- sa por el centro de masas de dicho elemento conductor (207), donde dichas primera, segunda y tercera placa de condensador (201 , 202, 203) son aptas para ser proyectadas según dicho eje central sobre un plano perpendicular a dicho eje central, donde dicho dispositivo tiene una pluralidad de placas de condensador (215) distribuidas con simetría de rotación según dicho eje central en dicha primera zona (209) y una pluralidad de placas de condensador (215) distribuidas con simetría de rotación según dicho eje central en dicha segunda zona (211 ), caracterizado porque comprende una etapa de conexión de por Io menos una de dichas placas de condensador (215) a- un primer voltaje y de por Io menos otra de dichas placas de condensador (215) a un segundo voltaje, donde dicho segundo voltaje es mayor que dicho primer voltaje, de manera que dicha proyección según dicho eje central de las placas de condensador (215) sometidas a dicho primer voltaje tiene asimetría central respecto de dicha proyección según dicho eje central de las placas de condensador (215) sometidas a dicho segundo voltaje.43.- Procedure for actuating an electro-optical assembly according to any of claims 26 to 32, wherein said device comprises a central axis extending from said first zone (209) to said second zone (211) and passes through the center of masses of said conductive element (207), wherein said first, second and third condenser plate (201, 202, 203) are apt to be projected along said central axis on a plane perpendicular to said central axis, where said device has a plurality of condenser plates (215) distributed with rotation symmetry along said central axis in said first zone (209) and a plurality of condenser plates (215) distributed with rotation symmetry along said central axis in said second zone (211), characterized in that it comprises a connection stage of at least one of said capacitor plates (215) at- a first voltage and at least one of said capacitor plates (215) at a second voltage, wherein said second voltage is greater than said first voltage, so that said projection along said central axis of the capacitor plates (215) subjected to said first voltage has central asymmetry with respect to said projection according to said central axis of the capacitor plates (215) subjected to said second voltage.
44.- Procedimiento según Ia reivindicación 43, caracterizado porque se conecta por Io menos una placa de condensador (215) adicional a un voltaje intermedio entre dicho primer voltaje y dicho segundo voltaje.44.- Method according to claim 43, characterized in that at least one additional capacitor plate (215) is connected to an intermediate voltage between said first voltage and said second voltage.
45.- Procedimiento según una de las reivindicaciones 43 ó 44, caracterizado porque todas y cada una de dichas placas está sometida a un voltaje determinado de manera que ninguna de ellas queda en un estado de alta impedancia.45. Method according to one of claims 43 or 44, characterized in that each and every one of said plates is subjected to a determined voltage so that none of them is in a high impedance state.
46.- Procedimiento de actuación según cualquiera de las reivindicaciones 34 a 45, caracterizado porque cuando dicho elemento conductor (207) está próximo a una de dichas primera zona (209) o segunda zona (211 ), dicho elemento conductor está en contacto con un circuito externo y porque se conecta dicho elemento conductor (207) a una tensión a través de dicho circuito externo. 46.- Actuation method according to any of claims 34 to 45, characterized in that when said conductive element (207) is close to one of said first zone (209) or second zone (211), said conductive element is in contact with a external circuit and because said conductive element (207) is connected to a voltage through said external circuit.
PCT/ES2007/000121 2006-03-10 2007-03-08 Electrooptical reflector device and corresponding actuation methods WO2007104811A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
ESP200600607 2006-03-10
ES200600607A ES2281294B1 (en) 2006-03-10 2006-03-10 MINIATURIZED DIGITAL REFLECTOR ELECTROOPTIC DEVICE.
ESP200600625 2006-03-13
ES200600625A ES2288110B1 (en) 2006-03-13 2006-03-13 PROCEDURE FOR THE PERFORMANCE OF A MINIATURIZED ELECTROOPTIC REFLECTOR DEVICE AND CORRESPONDING DEVICE.
ES200600647A ES2288111B1 (en) 2006-03-14 2006-03-14 MINIATURIZED ELECTROOPTIC REFLECTOR ASSEMBLY FOR THE PROCESSING OF A LIGHT SIGNAL AND CORRESPONDING PROCEDURE.
ESP200600647 2006-03-14

Publications (1)

Publication Number Publication Date
WO2007104811A1 true WO2007104811A1 (en) 2007-09-20

Family

ID=38509081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2007/000121 WO2007104811A1 (en) 2006-03-10 2007-03-08 Electrooptical reflector device and corresponding actuation methods

Country Status (1)

Country Link
WO (1) WO2007104811A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108388060A (en) * 2018-03-13 2018-08-10 京东方科技集团股份有限公司 Light-emitting display substrate, display panel, control method of display panel and display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020079432A1 (en) * 2000-08-07 2002-06-27 Lee Benjamin L. Two-dimensional blazed MEMS grating
US20020109903A1 (en) * 2000-12-21 2002-08-15 Toshiyuki Kaeriyama Micro-electromechanical system
US20040233506A1 (en) * 2003-05-20 2004-11-25 Hewlett Gregory J. Damped control of a micromechanical device
EP1564584A1 (en) * 2002-11-19 2005-08-17 Baolab Microsystems S.L. Miniature electro-optic device and corresponding uses thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020079432A1 (en) * 2000-08-07 2002-06-27 Lee Benjamin L. Two-dimensional blazed MEMS grating
US20020109903A1 (en) * 2000-12-21 2002-08-15 Toshiyuki Kaeriyama Micro-electromechanical system
EP1564584A1 (en) * 2002-11-19 2005-08-17 Baolab Microsystems S.L. Miniature electro-optic device and corresponding uses thereof
US20040233506A1 (en) * 2003-05-20 2004-11-25 Hewlett Gregory J. Damped control of a micromechanical device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108388060A (en) * 2018-03-13 2018-08-10 京东方科技集团股份有限公司 Light-emitting display substrate, display panel, control method of display panel and display device
CN108388060B (en) * 2018-03-13 2022-05-13 京东方科技集团股份有限公司 Light-emitting display substrate, display panel, control method of display panel and display device

Similar Documents

Publication Publication Date Title
CN103064182B (en) Image forming apparatus
US6906848B2 (en) Micromirror systems with concealed multi-piece hinge structures
KR101183915B1 (en) Moving structure and light scanning mirror using the same
JP6349851B2 (en) Optical device and image display apparatus
US6980349B1 (en) Micromirrors with novel mirror plates
US20060227405A1 (en) Microelectromechanical device with reset electrode
JP2005173411A (en) Light deflector
CN102401997B (en) The manufacture method of photoscanner, photoscanner and image processing system
CN106249400A (en) Optics and image display device
US20070171501A1 (en) Micromirror and micromirror device
US20130033732A1 (en) Rotating MEMS Scanner
KR20060124079A (en) Mems scanning micromirror and dual-axis electromagnetic mems scanning micromirror device
JP6507550B2 (en) Optical device, image display device and projector
WO2007104811A1 (en) Electrooptical reflector device and corresponding actuation methods
JP2016014725A (en) Optical device and image display apparatus
JP2001075042A (en) Optical deflector
ES2288111B1 (en) MINIATURIZED ELECTROOPTIC REFLECTOR ASSEMBLY FOR THE PROCESSING OF A LIGHT SIGNAL AND CORRESPONDING PROCEDURE.
US20050286112A1 (en) Micromirror having offset addressing electrode
ES2288110B1 (en) PROCEDURE FOR THE PERFORMANCE OF A MINIATURIZED ELECTROOPTIC REFLECTOR DEVICE AND CORRESPONDING DEVICE.
KR100400232B1 (en) A micromirror actuator and manufactural method thereof
JP2013138601A (en) Planar type electromagnetic actuator
ES2281294A1 (en) Micro-electromechanical system electro-optical digital reflector device has conductor element that moves in intermediate space, until it rests on rest points arranged, so as to force conductor element to change orientation
WO2018179041A1 (en) Light deflector
US20220107479A1 (en) Optical unit
US11789254B2 (en) Vertically-shifting electrostatic actuator and optical scanner employing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07730362

Country of ref document: EP

Kind code of ref document: A1