USRE44311E1 - Power tool anti-kickback system with rotational rate sensor - Google Patents

Power tool anti-kickback system with rotational rate sensor Download PDF

Info

Publication number
USRE44311E1
USRE44311E1 US13/423,736 US201213423736A USRE44311E US RE44311 E1 USRE44311 E1 US RE44311E1 US 201213423736 A US201213423736 A US 201213423736A US RE44311 E USRE44311 E US RE44311E
Authority
US
United States
Prior art keywords
power tool
rotary shaft
angular displacement
angular
rotational motion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US13/423,736
Inventor
Qiang Zhang
Uday Deshpande
John Charles Vanko
Jason Leh
Craig Schell
Thomas Jay Bodine
Joao Norona
David Beers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Black and Decker Inc
Original Assignee
Black and Decker Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/254,146 external-priority patent/US7410006B2/en
Application filed by Black and Decker Inc filed Critical Black and Decker Inc
Priority to US13/423,736 priority Critical patent/USRE44311E1/en
Priority to US13/600,927 priority patent/USRE45112E1/en
Priority to US13/600,722 priority patent/USRE44993E1/en
Application granted granted Critical
Publication of USRE44311E1 publication Critical patent/USRE44311E1/en
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • B25F5/001Gearings, speed selectors, clutches or the like specially adapted for rotary tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D59/00Accessories specially designed for sawing machines or sawing devices
    • B23D59/001Measuring or control devices, e.g. for automatic control of work feed pressure on band saw blade
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B21/00Portable power-driven screw or nut setting or loosening tools; Attachments for drilling apparatus serving the same purpose
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25FCOMBINATION OR MULTI-PURPOSE TOOLS NOT OTHERWISE PROVIDED FOR; DETAILS OR COMPONENTS OF PORTABLE POWER-DRIVEN TOOLS NOT PARTICULARLY RELATED TO THE OPERATIONS PERFORMED AND NOT OTHERWISE PROVIDED FOR
    • B25F5/00Details or components of portable power-driven tools not particularly related to the operations performed and not otherwise provided for
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/032Preventing damage to the motor, e.g. setting individual current limits for different drive conditions
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/08Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors
    • H02H7/085Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors against excessive load
    • H02H7/0854Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for dynamo-electric motors against excessive load responsive to rate of change of current, couple or speed, e.g. anti-kickback protection

Definitions

  • the disclosure relates generally to power tools and, more particularly, to a control system having a rotational rate sensor for detecting the onset of a rotational condition in a power tool.
  • Power tools typically employ a motor that imparts torque to a tool through a spindle.
  • the motor spindle is coupled through a series of reducing gears to the chuck, which in turn holds the drill bit or other cutting/abrading tool, such as a hole saw, a grinding wheel or the like.
  • Power screwdrivers as well a large rotary hammers work on a similar principle.
  • the function of the reducing gears or gear train is to reduce the rotational speed of the tool while increasing the rotational torque.
  • Power routers are somewhat different.
  • the cutting tool of the hand-held router is typically direct coupled to the spindle of the motor.
  • the full rotational speed of the motor is used without gear reduction to rotate the router bit at high speed.
  • Reciprocating saw and jigsaws use yet another type of gear train that translates the rotational motion of the motor spindle to reciprocating movement.
  • burrs may stop drill bit rotation, thereby causing a strong reaction torque that is imparted to the tool operator as the motor turns the tool in the operator's grasp (rather than turning the drill bit).
  • a control system for use in a power tool.
  • the control system includes: a rotational rate sensor having a resonating mass and a controller electrically connected to the rotational rate sensor.
  • the rotational rate sensor detects lateral displacement of the resonating mass and generates a signal indicative of the detected lateral displacement, such that lateral displacement is directly proportional to a rotational speed at which the power tool rotates about an axis of the rotary shaft. Based on the generated signal, the controller initiates a protective operation to avoid undesirable rotation of the power tool.
  • control scheme employed by the power tool may initiate different protective operations for different tool conditions.
  • control scheme may initiate a protective operations based on input from two different sensors.
  • control scheme employed by the power tool may initiate protective operations based on the rotational energy experienced by the tool.
  • FIG. 1 is a longitudinal sectional view of an exemplary rotary hammer configured in accordance with the present disclosure
  • FIG. 2 is simplified block diagram of an exemplary control system in accordance with present disclosure
  • FIG. 3 is a flowchart illustrating an exemplary method for determining the onset of a kickback condition according to the present disclosure
  • FIGS. 4A and 4B are flowcharts illustrating an exemplary method for determining a kickback condition based on angular displacement according to the present disclosure
  • FIG. 5 is a flowchart illustrating an exemplary method for determining a kickback condition based input from two different sensors according to the present disclosure
  • FIG. 6 is a block diagram of another exemplary control system in accordance with the present disclosure.
  • FIG. 7 depicts an exemplary look-up table which may be used by the control system
  • FIG. 8 illustrates an exemplary calibration system for a power tool configured with the control system
  • FIG. 9 illustrates an exemplary calibration procedure which may be employed by the control system.
  • FIG. 1 illustrates an exemplary power tool 10 having a rotary shaft.
  • the power tool is a hand held rotary hammer. While the following description is provided with reference to a rotary hammer, it is readily understood that the broader aspects of this disclosure are applicable to other types of power tools having rotary shafts, such as drills, circular saws, angle grinders, screw drivers and polishers.
  • the rotary hammer includes a spindle 12 (i.e., a rotary shaft) drivably coupled to an electric motor 14 .
  • a chuck 16 is coupled at one end of the spindle 12 ; whereas a drive shaft 18 of the electric motor 14 is connected via a transmission 22 to the other end of the spindle 12 .
  • These components are enclosed within a housing 18 .
  • Operation of the tool is controlled through the use an operator actuated switch 24 embedded in the handle of the tool.
  • the switch regulates current flow from a power supply 26 to the motor 14 .
  • the power tool may further include a temperature sensor 27 .
  • the power tool 10 is further configured with a control system 30 for detecting and preventing torque conditions which may cause the operator to lose control of the tool.
  • the control system 30 may include a rotational rate sensor 32 , a current sensor 34 , and a microcontroller 36 embedded in the handle of the power tool 10 .
  • the power tool 10 may rotate in the operator's grasp.
  • the rotational rate sensor 32 is configured to detect rotational motion of the tool about the longitudinal axis of the spindle 12 .
  • the rotational rate sensor 32 in turn communicates a signal indicative of any rotational motion to the controller 36 for further assessment.
  • the sensor may be disposed in a different location and/or configured to detect motion along a different axis.
  • the operating principle of the rotational rate sensor 32 is based on the Coriolis effect.
  • the rotational rate sensor is comprised of a resonating mass.
  • the resonating mass When the power tool is subject to rotational motion about the axis of the spindle, the resonating mass will be laterally displaced in accordance with the Coriolis effect, such that the lateral displacement is directly proportional to the angular rate. It is noteworthy that the resonating motion of the mass and the lateral movement of the mass occur in a plane which is orientated perpendicular to the rotational axis of the rotary shaft. Capacitive sensing elements are then used to detect the lateral displacement and generate an applicable signal indicative of the lateral displacement.
  • An exemplary rotational rate sensor is the ADXRS150 or ADXRS300 gyroscope device commercially available from Analog Devices.
  • Other types of rotational sensors such as angular speed sensors, accelerometers, etc., are also within the scope of this disclosure.
  • the microcontroller 36 assesses the rotational motion of the tool to detect rotational conditions which may cause the operator to lose control of the tool. Upon detecting an unacceptable rotational condition, the microcontroller 36 will initiate a protective operation intended to minimize and/or avoid any undesired rotation of the power tool. For instance, when the angular velocity of the tool exceeds some empirically derived threshold, the microcontroller may cut power to the motor.
  • a few exemplary techniques for assessing the rotational condition of the tool are further described below. It is readily understood that other techniques for assessing the rotational condition of the tool are also within the scope of this disclosure.
  • a power supply circuit 29 is coupled to an AC power line input and supplies DC voltage to operate the microcontroller 36 ′.
  • the trigger switch 24 ′ supplies a trigger signal to the microcontroller 36 ′ which indicates the position or setting of the trigger switch 24 ′ as it is manually operated by the power tool operator.
  • Drive current for operating the motor 14 ′ is controlled by a triac drive circuit 42 .
  • the triac drive circuit 42 is, in turn, controlled by a signal supplied by microcontroller 36 ′.
  • the control system 30 ′ may include a reset circuit 44 which, when activated, causes the microcontroller 36 ′ to be re-initialized.
  • the microcontroller 36 ′ is also supplied with a signal from a current detector circuit 48 .
  • the current detector circuit 48 is coupled to the triac drive circuit 42 and supplies a signal indicative of the conductive state of the triac drive circuit 42 . If for some reason the triac drive circuit 42 does not turn on in response to the control signal from the microcontroller 36 ′, this condition is detected by the current detector circuit 48 .
  • a current sensor 34 ′ is connected in series with the triac drive circuit 42 and the motor 14 ′.
  • the current sensor 34 ′ may be a low resistance, high wattage resistor.
  • the voltage drop across the current sensor 34 ′ is measured as an indication of actual instantaneous motor current.
  • the instantaneous motor current is supplied to an average current measuring circuit 46 which in turn supplies the average current value to the microcontroller 36 ′.
  • the microcontroller 36 ′ may use the average current to evaluate the rotational condition of the tool.
  • the trigger switch 24 ′ supplies a trigger signal that varies in proportion to the switch setting to the microcontroller 36 ′. Based on this trigger signal, the microcontroller 36 ′ generates a control signal which causes the triac drive circuit 42 to conduct, thereby allowing the motor 14 ′ to draw current. Motor torque is substantially proportional to the current drawn by the motor and the current draw is controlled by the control signal sent from the microcontroller to the triac drive circuit 42 . Thus, the microcontroller 36 ′ can control the torque imparted by the motor.
  • Pulse mode is an exemplary protective operation which may be initiated upon detecting a kickback condition.
  • the microcontroller 36 ′ may operate the motor 14 ′ in a pulse mode.
  • the motor current is pulsed at a predetermined frequency with a predetermined on-time.
  • the series of current pulses is designed such that the operator may regain control of a twisting tool.
  • the time between pulses may be set between 0.1 and 1 second.
  • the series of current pulses create torque pulses that may have a peak torque that is greater than the average torque delivered by the spindle 12 .
  • the torque pulses may allow the tool 10 to break through the burrs or workpiece restrictions that are causing the impending kickback condition. Further details regarding this protection operation may be found in U.S. Pat. No. 6,479,958 which is incorporated herein by reference.
  • Another exemplary protective operation is to reduce the torque imparted to the spindle to a non-zero value that enables an operator of the tool to regain control of the tool.
  • the controller can override the trigger signal from the trigger switch or other operator input commands.
  • the controller 36 ′ Upon detecting a triggering rotational condition, the controller 36 ′ sends a control signal to the triac drive circuit 46 ′ which reduces the voltage which in turn reduces the current draw of the motor, thereby reducing the torque imparted to the spindle.
  • the torque could be reduced to 30% of its current operational amount or a predefined fixed torque level.
  • the tool would operate at his reduced level until the operator released the trigger switch and re-engaged it or cycled tool power.
  • Another method would involve resetting torque to its original operation level if the operator regains control of the tool. In this way, the operator has regained control of the tool without terminating or resetting operation of the tool.
  • DC operated motors are often controlled by pulse width modulation, where the duty cycle of the modulation is proportional the speed of the motor and thus the torque imparted by the motor to the spindle.
  • the microcontroller may be configured to control the duty cycle of the motor control signal.
  • the power tool may be configured with a torque transmitting device interposed between the motor and the spindle.
  • the controller may interface with the torque transmitting device to reduce torque.
  • the torque transmitting device may take the form of a magneto-rheologocical fluid clutch which can vary the torque output proportional to the current fed through a magnetic field generating coil. It could also take the form of a friction plate, cone clutch or wrap spring clutch which can have variable levels of slippage based on a preload holding the friction materials together and thus transmitting torque. In this example, the preload could be changed by driving a lead screw supporting the ground end of the spring through a motor, solenoid or other type of electromechanical actuator. Other types of torque transmitting devices are also contemplated by this disclosure.
  • the protective operation is intended to terminate or reset operation of the tool.
  • Exemplary protective operations of this nature include (but are not limited to) disengaging the motor 14 ′ from the spindle 12 , braking the motor 14 ′, braking the spindle 12 , and disconnecting power to the motor 14 ′. Depending on the size and orientation of the tool 10 , one or more of these protective operations may be initiated to prevent undesirable rotation of the tool 10 .
  • FIG. 3 An exemplary method for detecting a rotational condition of the tool is illustrated in FIG. 3 .
  • the operator switch is checked at step 52 to determine if the tool is operating. If the switch is not closed, then power is not being supplied to the motor as indicated at 53 . In this case, there is no need to monitor for kickback conditions. Conversely, if the switch is closed, then power is being supplied to the motor as indicated at 54 .
  • rotational motion of the tool is monitored at 56 based on the signal from the rotational rate sensor.
  • the rotational rate of the tool exceeds some empirically derived threshold (as shown at 57 )
  • this may indicate the onset of kickback condition; otherwise, processing control returns to the beginning of the algorithm.
  • the rotational displacement, rotational acceleration, or some combination thereof as derived from the sensor signal may be used to determine the onset of a kickback condition.
  • the microcontroller Prior to initiating some protective operation, the microcontroller also evaluates the current draw of the motor at 58 . Specifically, the rate of change of the motor current is measured. When the rate of change is positive and exceeds some predetermined threshold, then one or more protective operations are initiated at 60 . If either the rate of change is not positive or the rate of change does not exceeds the threshold, then processing control returns to the beginning of the algorithm. In this case, a sudden change in the current draw is optionally used to confirm the onset of the kickback condition. It is envisioned that inputs from other sensors, such as a temperature sensor, may be used in a similar manner. It is to be understood that only the relevant steps of the control scheme are discussed above, but that other software-implemented instructions may be needed to control and manage the overall operation of the tool.
  • the control scheme employed by the power tool 10 may initiate different protective operations for different tool conditions.
  • the amount of angular displacement experienced by the tool may dictate different protective operations.
  • angular displacement is within a first range (e.g., less than 31°)
  • the operator is presumed to have control of the tool and thus no protective operations are needed.
  • the angular displacement exceeds this first range, it may be presumed that the tool has encountered a kickback condition and therefore some protective operation may be needed.
  • this second range of angular displacement e.g., between 30° to 90°
  • the control scheme may initiate a pulse mode in hope of breaking through the restrictions that are causing the impending kickback condition.
  • the angular displacement exceeds the second range (e.g., greater than 90°)
  • the control scheme such as disconnecting the power to the motor.
  • three or more ranges of displacement may be defined for a given power tool.
  • protective operations may be initiated based on the angular displacement or a combination of parameters, such as angular acceleration, angular velocity, motor current, rate of change of motor current, motor temperature, switch temperature, etc. It is readily understood that the number and size of the ranges may vary for different control schemes and/or different types of tools. It is also envisioned that different protective operations may be initiated based on ranges of other parameters (e.g., ranges of angular velocity). Likewise, one or more protective operations may be associated with different ranges (i.e., tool conditions).
  • angular displacement is monitored in relation to a start point ( ⁇ 0 ).
  • this starting point is initialized to zero. Any subsequent angular displacement of the tool is then measured in relation to this reference.
  • the tool may employ a starting point reset function.
  • the starting point is set. If the operator repositions the tool (e.g., rotate it at a very slow rate), then the starting point is reset. For example, if the tool is rotated at a rate less than 5 degree per second, then the starting position is reset. Angular displacement is then measured from the new starting point.
  • Angular displacement of the tool is then monitored at step 62 .
  • the angular displacement is measured in relation to the reference value ( ⁇ 0 ) and derived from the rate of angular displacement over time or angular velocity ( ⁇ TOOL ) as provided by a rotational rate sensor.
  • ⁇ TOOL angular velocity
  • the rotational rate sensor described above is presently preferred for determining angular displacement of the tool, it is readily understood that this additional aspect of the present invention is not limited to this type of sensor.
  • angular displacement may be derived from a different type of rotational rate sensor, an acceleration sensor or some other manner for detecting rotational displacement of the tool.
  • Angular displacement is assessed at steps 64 and 68 .
  • a first protective operation is initiated at step 66 .
  • power to the motor is disconnected, thereby terminating operation of the tool.
  • a different protective operation such as pulsing the motor current, may be initiated at 70 .
  • an instantaneous measure of angular velocity must also exceed some minimum threshold before a pulse mode is initiated as shown at step 69 . If neither of these criteria are met, no protective actions are taken and operating conditions of tool continue to be monitored by the control scheme.
  • the control scheme continues to monitor tool operating conditions.
  • Hazardous conditions may be monitored as shown at step 72 .
  • motor current may be monitored. If the motor current spikes above some predefined threshold, then power to the motor is disconnected at 73 .
  • angular displacement may also be monitored. If angular displacement exceeds a threshold indicative of lost control, then the power to the motor is also disconnected. It is readily understood that other types of hazardous conditions may be monitored.
  • pulse mode is only maintained for a brief period of time.
  • a timer is initiated at step 71 and pulse mode continues until the timer has expired as shown at 76 .
  • the control scheme may also monitor if the restrictions that caused the kickback condition have been overcome as shown at step 74 . If the restrictions are overcome, then pulse mode is discontinued at step 75 . When the timer expires without overcoming the restrictions, then power to the motor is disconnected as shown at 77 .
  • step 82 the operator switch is checked at step 82 to determine if the tool is operating. If the switch is not closed, then power is not being supplied to the motor as indicated at 83 . In this case, there is no need to monitor for kickback conditions. Conversely, if the switch is closed, then power is being supplied to the motor as indicated at 84 .
  • rotational motion of the tool is monitored at 86 based on the signal from the rotational rate sensor.
  • the rotational rate of the tool exceeds some empirically derived threshold (as shown at 87 )
  • this may indicate the onset of kickback condition; otherwise, processing control returns to the beginning of the algorithm.
  • the rotational displacement, rotational acceleration, or some combination thereof as derived from the sensor signal may be used to determine the onset of a kickback condition.
  • the microcontroller Prior to initiating some protective operation, the microcontroller also evaluates the current draw of the motor at 88 . Specifically, the rate of change of the motor current is measured. When the rate of change is positive and exceeds some predetermined threshold, then one or more protective operations are initiated at 90 . If either the rate of change is not positive or the rate of change does not exceeds the threshold, then processing control returns to the beginning of the algorithm. In this case, a sudden change in the current draw is used to confirm the onset of the kickback condition. While the above description was provided with reference to a rotational rate sensor and a current sensor, it is readily understood that the broader aspects of the present invention encompass making such a determination may be based on input from other types of sensors.
  • Determination of a rotational condition may also be based on other types of criteria.
  • a rotational condition may be assessed based on the rotational energy experienced by the power tool.
  • the rate of angular displacement could be measured by a rotational rate sensor; whereas, the moment of inertia of the tool (I TOOL ) could be preprogrammed into the controller based on the mass properties of the power tool (e.g., mass, rotation inertia and a center of gravity position) and a distance measure between the center of gravity position and the spindle axis.
  • I TOOL moment of inertia of the tool
  • Initiating a protective operation based on E ⁇ — TOOL is desirable because the energy condition is not tool specific and therefore could be applied to a variety of anti-kickback applications.
  • Other criteria for determining a kickback condition are also within the broader aspects of the present invention.
  • FIG. 6 depicts another exemplary control system 100 .
  • the control system is comprised generally of a rotational rate sensor 32 ′′, sensor processing logic 110 , a motor controller 36 ′′, a motor 14 ′′ and a power supply 29 ′′.
  • the rotational sensor 32 ′′ may be a single sensor, such as a gyroscope or accelerometer, or two or more sensors disposed within the tool.
  • Sensor processing logic 110 may be implemented in software or hardware. Likewise, power-up and calibration functions may be performed with hardware, software or combination thereof.
  • sensor output is processed as follows.
  • the sensor output is rotational velocity.
  • the sensor output passes through a low pass filter 111 before going into a null point and gain calibration routine 112 .
  • the purpose of the calibration routine is to remove any offset and compensate for any gains of the rate sensor before determining rotational conditions.
  • the rate signal is then integrated at 113 to get position and derived at 114 to get acceleration. All three of the signals are then input to a comparator 115 which checks whether or not the value has exceeded a defined threshold.
  • a logic block 116 e.g., AND, OR, etc. is configured so that any or all of the thresholds must be met before indicating a trip signal which is sent to the motor controller 36 ′′.
  • tests are shown as comparators on position, rate, or acceleration, it is noted that the tests are not limited to thresholds alone. Combinations of each variable can be used such as if the rate is less than W then position must be greater than X for a trip event to occur. In another example, if rate is greater than Y then position must be greater than Z for a trip to occur.
  • control system may employ a look-up table as shown in FIG. 7 .
  • rotational position is charted against rotational velocity.
  • Look-up tables having other parameters and further dimensions are also contemplated. Additionally, the values in the table may indicate the type of protective operation or point to another table for more processing.
  • FIG. 8 illustrates an exemplary calibration system 120 for a power tool 10 configured with the control system described above.
  • the calibration system 120 is generally comprised of a test fixture 122 , a test module 124 , and a personal computer 126 .
  • the test module is first removed from the power tool and affixed to the test fixture 122 .
  • the rotational rate sensor along with the software routines which implement the control schemes described above are contained within the test module 124 .
  • the test fixture 122 is generally operable to rotate the test module 124 in a manner that may be experienced when module resides in the power tool.
  • the personal computer 126 is configured to control operation of the test fixture 122 in accordance with a calibration routine as well as to interface with the test module 124 during the calibration process. It is also envisioned that in other configurations the entire power tool may affixed to and rotated by the test fixture.
  • a calibration routine is downloaded at 130 from the PC into the test module 124 .
  • the calibration routine cooperatively operates with the software routines of the control system to determine calibration values for the control system.
  • the calibration procedure begins with the test module 124 measuring the output of the rotational rate sensor at 131 while the power tool remains stationary. This measured output serves as an offset or null calibration value (i.e., output value of the sensor when angular velocity is zero) for the rotational rate sensor.
  • the personal computer commands the test fixture 132 to rotate the test module 124 (e.g., clockwise) at predefined angular velocity for a predefined period of time.
  • the test fixture 122 may rotate the test module 124 at 50 degrees per second until 50 degrees of rotation is reached. During this movement, the test module is capturing the angular velocity as reported by the rotational rate sensor. The test module will compare the angular velocity 133 as reported by the rotational rate sensor with the known angular velocity at which the test module was rotated by the test fixture to determine a gain value. The gain value is temporarily stored by the test module for subsequent processing.
  • the personal computer then commands the test fixture 134 to rotate the test module in an opposite direction (e.g., counter-clockwise) at a predefined angular velocity for a predefined period of time.
  • the test module again captures the angular velocity as reported by the rotational rate sensor and compares these captured values 135 with the known angular velocity to determine another gain value.
  • the second gain value is also stored by the test module. Thus, there is a gain value for each direction of tool rotation.
  • the personal computer re-executes the calibration procedure at 136 .
  • the test fixture is commanded to rotate the test module at the predefined angular velocity in one direction and then in the opposite direction.
  • the test module again captures the angular velocity as reported by the rotational rate sensor.
  • the test module adjusts the measured angular velocity using the applicable calibration values and compares the adjusted values to the known angular velocity at which the test module was rotated by the test fixture. If the adjusted values fall within some defined tolerance of the expected values, these calibration values are sent by the test module to the personal computer.
  • These calibration values can then be downloaded into memory of a power tool.
  • the control system of the power tool will use the calibration values to adjust the output reported by the rotational rate sensor. It is readily understood that this type of calibration procedure may be undertaken for each power tool or once for each family of power tools.

Abstract

A control system is provided for use in a power tool. The control system includes: a rotational rate sensor having a resonating mass and a controller electrically connected to the rotational rate sensor. The rotational rate sensor detects lateral displacement of the resonating mass and generates a signal indicative of the detected lateral displacement, such that the lateral displacement is directly proportional to a rotational speed at which the power tool rotates about an axis of the rotary shaft. Based on the generated signal, the controller initiates a protective operation to avoid further undesirable rotation of the power tool. The controller may opt to reduce the torque applied to shaft to a non-zero value that enables the operator to regain control of the tool.

Description

CROSS-REFERENCE TO RELATED APPLICATIONS
This application is a reissue of U.S. Pat. No. 7,681,659 which is a continuation of U.S. patent application Ser. No. 11/519,427 filed on Sep. 12, 2006, now U.S. Pat. No. 7,552,781 which in turn is a continuation-in-part of U.S. patent application No. 11/254,146 filed on Oct. 19, 2005, now U.S. Pat. No. 7,410,006 which claims benefit of U.S. Provisional Application No. 60/620,283, filed on Oct. 20, 2004 and U.S. Provisional Application No. 60/675,692 filed on Apr. 28, 2005, The disclosure . The disclosures of the above applications is are incorporated herein by reference. More than one reissue application has been filed for the reissue of U.S. Pat. No. 7,681,659. The reissue applications are application Ser. No. 13/423,736 (the present application), Ser. Nos. 13/600,722 and 13/600,927, all of which are continuation reissues of U.S. Pat. No. 7,681,659.
FIELD
The disclosure relates generally to power tools and, more particularly, to a control system having a rotational rate sensor for detecting the onset of a rotational condition in a power tool.
BACKGROUND
Power tools typically employ a motor that imparts torque to a tool through a spindle. In the case of an electric drill, the motor spindle is coupled through a series of reducing gears to the chuck, which in turn holds the drill bit or other cutting/abrading tool, such as a hole saw, a grinding wheel or the like. Power screwdrivers as well a large rotary hammers work on a similar principle. In each of these cases, the function of the reducing gears or gear train is to reduce the rotational speed of the tool while increasing the rotational torque.
Power routers are somewhat different. The cutting tool of the hand-held router is typically direct coupled to the spindle of the motor. In this case, the full rotational speed of the motor is used without gear reduction to rotate the router bit at high speed. Reciprocating saw and jigsaws use yet another type of gear train that translates the rotational motion of the motor spindle to reciprocating movement.
Generally speaking, all of these power tools may suddenly encounter an impending kickback condition at which time the output torque rapidly rises because of local changes in workpiece hardness, workpiece binding, tool obstruction from burrs and so forth. For example, when drilling a hole with a power drill, some workpieces will develop burrs on the tool exit side of the workpiece. These burrs can engage the flutes of the drill bit, thereby causing a rapid increase in torque as the drill tries to break free. In some instances, the burrs may stop drill bit rotation, thereby causing a strong reaction torque that is imparted to the tool operator as the motor turns the tool in the operator's grasp (rather than turning the drill bit). This reaction is can be problematic if the operator is standing on a ladder and/or holding the tool over their head. A related phenomenon also occurs with power saws. These conditions are hereinafter generally referred to as kickback conditions, regardless of the particular power tool involved or the specific circumstance which give rise to the condition.
Therefore, it is desirable to provide an improved technique for detecting the onset of such kickback conditions in power tools. The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
SUMMARY
In one aspect of the disclosure, a control system is provided for use in a power tool. The control system includes: a rotational rate sensor having a resonating mass and a controller electrically connected to the rotational rate sensor. The rotational rate sensor detects lateral displacement of the resonating mass and generates a signal indicative of the detected lateral displacement, such that lateral displacement is directly proportional to a rotational speed at which the power tool rotates about an axis of the rotary shaft. Based on the generated signal, the controller initiates a protective operation to avoid undesirable rotation of the power tool.
In another aspect of the disclosure, the control scheme employed by the power tool may initiate different protective operations for different tool conditions.
In different aspect of the disclosure, the control scheme may initiate a protective operations based on input from two different sensors.
In yet another aspect of the disclosure, the control scheme employed by the power tool may initiate protective operations based on the rotational energy experienced by the tool.
For a more complete understanding of the invention, its objects and advantages, reference may be made to the following specification and to the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a longitudinal sectional view of an exemplary rotary hammer configured in accordance with the present disclosure;
FIG. 2 is simplified block diagram of an exemplary control system in accordance with present disclosure;
FIG. 3 is a flowchart illustrating an exemplary method for determining the onset of a kickback condition according to the present disclosure;
FIGS. 4A and 4B are flowcharts illustrating an exemplary method for determining a kickback condition based on angular displacement according to the present disclosure;
FIG. 5 is a flowchart illustrating an exemplary method for determining a kickback condition based input from two different sensors according to the present disclosure;
FIG. 6 is a block diagram of another exemplary control system in accordance with the present disclosure;
FIG. 7 depicts an exemplary look-up table which may be used by the control system;
FIG. 8 illustrates an exemplary calibration system for a power tool configured with the control system; and
FIG. 9 illustrates an exemplary calibration procedure which may be employed by the control system.
The drawing described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
DETAILED DESCRIPTION
FIG. 1 illustrates an exemplary power tool 10 having a rotary shaft. In this example, the power tool is a hand held rotary hammer. While the following description is provided with reference to a rotary hammer, it is readily understood that the broader aspects of this disclosure are applicable to other types of power tools having rotary shafts, such as drills, circular saws, angle grinders, screw drivers and polishers.
In general, the rotary hammer includes a spindle 12 (i.e., a rotary shaft) drivably coupled to an electric motor 14. A chuck 16 is coupled at one end of the spindle 12; whereas a drive shaft 18 of the electric motor 14 is connected via a transmission 22 to the other end of the spindle 12. These components are enclosed within a housing 18. Operation of the tool is controlled through the use an operator actuated switch 24 embedded in the handle of the tool. The switch regulates current flow from a power supply 26 to the motor 14. The power tool may further include a temperature sensor 27. Although a few primary components of the rotary hammer are discussed above, it is readily understood that other components known in the art may be needed to construct an operational rotary hammer.
The power tool 10 is further configured with a control system 30 for detecting and preventing torque conditions which may cause the operator to lose control of the tool. The control system 30 may include a rotational rate sensor 32, a current sensor 34, and a microcontroller 36 embedded in the handle of the power tool 10. Under certain operating conditions, the power tool 10 may rotate in the operator's grasp. In a rotary hammer, the rotational rate sensor 32 is configured to detect rotational motion of the tool about the longitudinal axis of the spindle 12. The rotational rate sensor 32 in turn communicates a signal indicative of any rotational motion to the controller 36 for further assessment. For different power tools, it is envisioned that the sensor may be disposed in a different location and/or configured to detect motion along a different axis.
In a preferred embodiment, the operating principle of the rotational rate sensor 32 is based on the Coriolis effect. Briefly, the rotational rate sensor is comprised of a resonating mass. When the power tool is subject to rotational motion about the axis of the spindle, the resonating mass will be laterally displaced in accordance with the Coriolis effect, such that the lateral displacement is directly proportional to the angular rate. It is noteworthy that the resonating motion of the mass and the lateral movement of the mass occur in a plane which is orientated perpendicular to the rotational axis of the rotary shaft. Capacitive sensing elements are then used to detect the lateral displacement and generate an applicable signal indicative of the lateral displacement. An exemplary rotational rate sensor is the ADXRS150 or ADXRS300 gyroscope device commercially available from Analog Devices. Other types of rotational sensors, such as angular speed sensors, accelerometers, etc., are also within the scope of this disclosure.
The microcontroller 36 assesses the rotational motion of the tool to detect rotational conditions which may cause the operator to lose control of the tool. Upon detecting an unacceptable rotational condition, the microcontroller 36 will initiate a protective operation intended to minimize and/or avoid any undesired rotation of the power tool. For instance, when the angular velocity of the tool exceeds some empirically derived threshold, the microcontroller may cut power to the motor. A few exemplary techniques for assessing the rotational condition of the tool are further described below. It is readily understood that other techniques for assessing the rotational condition of the tool are also within the scope of this disclosure.
Operation of an exemplary control circuit 40 is further described below in relation to FIG. 2. A power supply circuit 29 is coupled to an AC power line input and supplies DC voltage to operate the microcontroller 36′. The trigger switch 24′ supplies a trigger signal to the microcontroller 36′ which indicates the position or setting of the trigger switch 24′ as it is manually operated by the power tool operator. Drive current for operating the motor 14′ is controlled by a triac drive circuit 42. The triac drive circuit 42 is, in turn, controlled by a signal supplied by microcontroller 36′. If desired, the control system 30′ may include a reset circuit 44 which, when activated, causes the microcontroller 36′ to be re-initialized.
The microcontroller 36′ is also supplied with a signal from a current detector circuit 48. The current detector circuit 48 is coupled to the triac drive circuit 42 and supplies a signal indicative of the conductive state of the triac drive circuit 42. If for some reason the triac drive circuit 42 does not turn on in response to the control signal from the microcontroller 36′, this condition is detected by the current detector circuit 48.
A current sensor 34′ is connected in series with the triac drive circuit 42 and the motor 14′. In an exemplary embodiment, the current sensor 34′ may be a low resistance, high wattage resistor. The voltage drop across the current sensor 34′ is measured as an indication of actual instantaneous motor current. The instantaneous motor current is supplied to an average current measuring circuit 46 which in turn supplies the average current value to the microcontroller 36′. The microcontroller 36′ may use the average current to evaluate the rotational condition of the tool.
In operation, the trigger switch 24′ supplies a trigger signal that varies in proportion to the switch setting to the microcontroller 36′. Based on this trigger signal, the microcontroller 36′ generates a control signal which causes the triac drive circuit 42 to conduct, thereby allowing the motor 14′ to draw current. Motor torque is substantially proportional to the current drawn by the motor and the current draw is controlled by the control signal sent from the microcontroller to the triac drive circuit 42. Thus, the microcontroller 36′ can control the torque imparted by the motor.
Pulse mode is an exemplary protective operation which may be initiated upon detecting a kickback condition. Upon detecting the onset of a kickback condition, the microcontroller 36′ may operate the motor 14′ in a pulse mode. During pulse mode, the motor current is pulsed at a predetermined frequency with a predetermined on-time. In one exemplary embodiment, the series of current pulses is designed such that the operator may regain control of a twisting tool. For example, the time between pulses may be set between 0.1 and 1 second. Alternatively, the series of current pulses create torque pulses that may have a peak torque that is greater than the average torque delivered by the spindle 12. In this way, the torque pulses may allow the tool 10 to break through the burrs or workpiece restrictions that are causing the impending kickback condition. Further details regarding this protection operation may be found in U.S. Pat. No. 6,479,958 which is incorporated herein by reference.
Another exemplary protective operation is to reduce the torque imparted to the spindle to a non-zero value that enables an operator of the tool to regain control of the tool. In the context of the control circuit 40 described above, the controller can override the trigger signal from the trigger switch or other operator input commands. Upon detecting a triggering rotational condition, the controller 36′ sends a control signal to the triac drive circuit 46′ which reduces the voltage which in turn reduces the current draw of the motor, thereby reducing the torque imparted to the spindle. For example, the torque could be reduced to 30% of its current operational amount or a predefined fixed torque level. The tool would operate at his reduced level until the operator released the trigger switch and re-engaged it or cycled tool power. Another method would involve resetting torque to its original operation level if the operator regains control of the tool. In this way, the operator has regained control of the tool without terminating or resetting operation of the tool.
Other techniques for reducing the torque imparted to the spindle are also within the scope of this disclosure. For example, DC operated motors are often controlled by pulse width modulation, where the duty cycle of the modulation is proportional the speed of the motor and thus the torque imparted by the motor to the spindle. In this example, the microcontroller may be configured to control the duty cycle of the motor control signal.
Alternatively, the power tool may be configured with a torque transmitting device interposed between the motor and the spindle. In this case, the controller may interface with the torque transmitting device to reduce torque. The torque transmitting device may take the form of a magneto-rheologocical fluid clutch which can vary the torque output proportional to the current fed through a magnetic field generating coil. It could also take the form of a friction plate, cone clutch or wrap spring clutch which can have variable levels of slippage based on a preload holding the friction materials together and thus transmitting torque. In this example, the preload could be changed by driving a lead screw supporting the ground end of the spring through a motor, solenoid or other type of electromechanical actuator. Other types of torque transmitting devices are also contemplated by this disclosure.
In other instances, the protective operation is intended to terminate or reset operation of the tool. Exemplary protective operations of this nature include (but are not limited to) disengaging the motor 14′ from the spindle 12, braking the motor 14′, braking the spindle 12, and disconnecting power to the motor 14′. Depending on the size and orientation of the tool 10, one or more of these protective operations may be initiated to prevent undesirable rotation of the tool 10.
An exemplary method for detecting a rotational condition of the tool is illustrated in FIG. 3. First, the operator switch is checked at step 52 to determine if the tool is operating. If the switch is not closed, then power is not being supplied to the motor as indicated at 53. In this case, there is no need to monitor for kickback conditions. Conversely, if the switch is closed, then power is being supplied to the motor as indicated at 54.
During tool operation, rotational motion of the tool is monitored at 56 based on the signal from the rotational rate sensor. When the rotational rate of the tool exceeds some empirically derived threshold (as shown at 57), this may indicate the onset of kickback condition; otherwise, processing control returns to the beginning of the algorithm. In addition to rotational rate of the tool about its spindle axis, it is envisioned that the rotational displacement, rotational acceleration, or some combination thereof as derived from the sensor signal may be used to determine the onset of a kickback condition.
Prior to initiating some protective operation, the microcontroller also evaluates the current draw of the motor at 58. Specifically, the rate of change of the motor current is measured. When the rate of change is positive and exceeds some predetermined threshold, then one or more protective operations are initiated at 60. If either the rate of change is not positive or the rate of change does not exceeds the threshold, then processing control returns to the beginning of the algorithm. In this case, a sudden change in the current draw is optionally used to confirm the onset of the kickback condition. It is envisioned that inputs from other sensors, such as a temperature sensor, may be used in a similar manner. It is to be understood that only the relevant steps of the control scheme are discussed above, but that other software-implemented instructions may be needed to control and manage the overall operation of the tool.
In another aspect of the present invention, the control scheme employed by the power tool 10 may initiate different protective operations for different tool conditions. For example, the amount of angular displacement experienced by the tool may dictate different protective operations. When angular displacement is within a first range (e.g., less than 31°), the operator is presumed to have control of the tool and thus no protective operations are needed. When the angular displacement exceeds this first range, it may be presumed that the tool has encountered a kickback condition and therefore some protective operation may be needed. In this second range of angular displacement (e.g., between 30° to 90°), the control scheme may initiate a pulse mode in hope of breaking through the restrictions that are causing the impending kickback condition. In contrast, when the angular displacement exceeds the second range (e.g., greater than 90°), it may be presumed that the operator has lost control of the tool. In this instance, a different protective operation may be initiated by the control scheme, such as disconnecting the power to the motor.
Depending on the complexity of the control scheme, three or more ranges of displacement may be defined for a given power tool. Within a range, protective operations may be initiated based on the angular displacement or a combination of parameters, such as angular acceleration, angular velocity, motor current, rate of change of motor current, motor temperature, switch temperature, etc. It is readily understood that the number and size of the ranges may vary for different control schemes and/or different types of tools. It is also envisioned that different protective operations may be initiated based on ranges of other parameters (e.g., ranges of angular velocity). Likewise, one or more protective operations may be associated with different ranges (i.e., tool conditions).
An exemplary method for detecting a rotational condition based on an angular displacement of the power tool is further described below in relation to FIGS. 4A and 4B. During tool operation, angular displacement is monitored in relation to a start point (θ0). In step 61, this starting point is initialized to zero. Any subsequent angular displacement of the tool is then measured in relation to this reference. Alternatively, the tool may employ a starting point reset function. At power-up, the starting point is set. If the operator repositions the tool (e.g., rotate it at a very slow rate), then the starting point is reset. For example, if the tool is rotated at a rate less than 5 degree per second, then the starting position is reset. Angular displacement is then measured from the new starting point.
Angular displacement of the tool is then monitored at step 62. In this exemplary embodiment, the angular displacement is measured in relation to the reference value (θ0) and derived from the rate of angular displacement over time or angular velocity (ωTOOL) as provided by a rotational rate sensor. While the rotational rate sensor described above is presently preferred for determining angular displacement of the tool, it is readily understood that this additional aspect of the present invention is not limited to this type of sensor. On the contrary, angular displacement may be derived from a different type of rotational rate sensor, an acceleration sensor or some other manner for detecting rotational displacement of the tool.
Different protective operations may be initiated based on the amount of angular displacement as noted above. Angular displacement is assessed at steps 64 and 68. When the angular displacement exceeds some upper threshold (θzone2 min), then a first protective operation is initiated at step 66. In this example, power to the motor is disconnected, thereby terminating operation of the tool.
When the angular displacement exceeds some lower threshold (θzone1 min), then a different protective operation, such as pulsing the motor current, may be initiated at 70. In this exemplary embodiment, an instantaneous measure of angular velocity must also exceed some minimum threshold before a pulse mode is initiated as shown at step 69. If neither of these criteria are met, no protective actions are taken and operating conditions of tool continue to be monitored by the control scheme.
During pulse mode, the control scheme continues to monitor tool operating conditions. Hazardous conditions may be monitored as shown at step 72. For instance, to prevent motor burn up, motor current may be monitored. If the motor current spikes above some predefined threshold, then power to the motor is disconnected at 73. To protect the tool operator, angular displacement may also be monitored. If angular displacement exceeds a threshold indicative of lost control, then the power to the motor is also disconnected. It is readily understood that other types of hazardous conditions may be monitored.
In addition, pulse mode is only maintained for a brief period of time. A timer is initiated at step 71 and pulse mode continues until the timer has expired as shown at 76. During this time, the control scheme may also monitor if the restrictions that caused the kickback condition have been overcome as shown at step 74. If the restrictions are overcome, then pulse mode is discontinued at step 75. When the timer expires without overcoming the restrictions, then power to the motor is disconnected as shown at 77.
An exemplary method for detecting a rotational condition based on input from at least two sensors is described below in relation to FIG. 5. First, the operator switch is checked at step 82 to determine if the tool is operating. If the switch is not closed, then power is not being supplied to the motor as indicated at 83. In this case, there is no need to monitor for kickback conditions. Conversely, if the switch is closed, then power is being supplied to the motor as indicated at 84.
During tool operation, rotational motion of the tool is monitored at 86 based on the signal from the rotational rate sensor. When the rotational rate of the tool exceeds some empirically derived threshold (as shown at 87), this may indicate the onset of kickback condition; otherwise, processing control returns to the beginning of the algorithm. In addition to rotational rate of the tool about its spindle axis, it is envisioned that the rotational displacement, rotational acceleration, or some combination thereof as derived from the sensor signal may be used to determine the onset of a kickback condition.
Prior to initiating some protective operation, the microcontroller also evaluates the current draw of the motor at 88. Specifically, the rate of change of the motor current is measured. When the rate of change is positive and exceeds some predetermined threshold, then one or more protective operations are initiated at 90. If either the rate of change is not positive or the rate of change does not exceeds the threshold, then processing control returns to the beginning of the algorithm. In this case, a sudden change in the current draw is used to confirm the onset of the kickback condition. While the above description was provided with reference to a rotational rate sensor and a current sensor, it is readily understood that the broader aspects of the present invention encompass making such a determination may be based on input from other types of sensors.
Determination of a rotational condition may also be based on other types of criteria. For example, a rotational condition may be assessed based on the rotational energy experienced by the power tool. In this example, rotational energy is defined as Eω TOOL=(I)(ωTOOL)2, where I is the moment of inertia and ωTOOL is the angular velocity. For this computation, the rate of angular displacement could be measured by a rotational rate sensor; whereas, the moment of inertia of the tool (ITOOL) could be preprogrammed into the controller based on the mass properties of the power tool (e.g., mass, rotation inertia and a center of gravity position) and a distance measure between the center of gravity position and the spindle axis. Initiating a protective operation based on Eω TOOL is desirable because the energy condition is not tool specific and therefore could be applied to a variety of anti-kickback applications. Other criteria for determining a kickback condition are also within the broader aspects of the present invention.
FIG. 6 depicts another exemplary control system 100. The control system is comprised generally of a rotational rate sensor 32″, sensor processing logic 110, a motor controller 36″, a motor 14″ and a power supply 29″. The rotational sensor 32″ may be a single sensor, such as a gyroscope or accelerometer, or two or more sensors disposed within the tool. Sensor processing logic 110 may be implemented in software or hardware. Likewise, power-up and calibration functions may be performed with hardware, software or combination thereof.
During normal tool operation, sensor output is processed as follows. In this exemplary embodiment, the sensor output is rotational velocity. The sensor output passes through a low pass filter 111 before going into a null point and gain calibration routine 112. The purpose of the calibration routine is to remove any offset and compensate for any gains of the rate sensor before determining rotational conditions. Through either software or hardware means, the rate signal is then integrated at 113 to get position and derived at 114 to get acceleration. All three of the signals are then input to a comparator 115 which checks whether or not the value has exceeded a defined threshold. A logic block 116 (e.g., AND, OR, etc.) is configured so that any or all of the thresholds must be met before indicating a trip signal which is sent to the motor controller 36″. Although the tests are shown as comparators on position, rate, or acceleration, it is noted that the tests are not limited to thresholds alone. Combinations of each variable can be used such as if the rate is less than W then position must be greater than X for a trip event to occur. In another example, if rate is greater than Y then position must be greater than Z for a trip to occur.
In lieu of comparison functions, the control system may employ a look-up table as shown in FIG. 7. In this example, rotational position is charted against rotational velocity. Look-up tables having other parameters and further dimensions are also contemplated. Additionally, the values in the table may indicate the type of protective operation or point to another table for more processing.
FIG. 8 illustrates an exemplary calibration system 120 for a power tool 10 configured with the control system described above. The calibration system 120 is generally comprised of a test fixture 122, a test module 124, and a personal computer 126. To calibrate a power tool, the test module is first removed from the power tool and affixed to the test fixture 122. The rotational rate sensor along with the software routines which implement the control schemes described above are contained within the test module 124. The test fixture 122 is generally operable to rotate the test module 124 in a manner that may be experienced when module resides in the power tool. The personal computer 126 is configured to control operation of the test fixture 122 in accordance with a calibration routine as well as to interface with the test module 124 during the calibration process. It is also envisioned that in other configurations the entire power tool may affixed to and rotated by the test fixture.
An exemplary calibration procedure for a power tool is further described in relation to FIG. 9. First, a calibration routine is downloaded at 130 from the PC into the test module 124. The calibration routine cooperatively operates with the software routines of the control system to determine calibration values for the control system. The calibration procedure begins with the test module 124 measuring the output of the rotational rate sensor at 131 while the power tool remains stationary. This measured output serves as an offset or null calibration value (i.e., output value of the sensor when angular velocity is zero) for the rotational rate sensor. Next, the personal computer commands the test fixture 132 to rotate the test module 124 (e.g., clockwise) at predefined angular velocity for a predefined period of time. For example, the test fixture 122 may rotate the test module 124 at 50 degrees per second until 50 degrees of rotation is reached. During this movement, the test module is capturing the angular velocity as reported by the rotational rate sensor. The test module will compare the angular velocity 133 as reported by the rotational rate sensor with the known angular velocity at which the test module was rotated by the test fixture to determine a gain value. The gain value is temporarily stored by the test module for subsequent processing.
The personal computer then commands the test fixture 134 to rotate the test module in an opposite direction (e.g., counter-clockwise) at a predefined angular velocity for a predefined period of time. The test module again captures the angular velocity as reported by the rotational rate sensor and compares these captured values 135 with the known angular velocity to determine another gain value. The second gain value is also stored by the test module. Thus, there is a gain value for each direction of tool rotation.
To confirm the calibration values, the personal computer re-executes the calibration procedure at 136. In other words, the test fixture is commanded to rotate the test module at the predefined angular velocity in one direction and then in the opposite direction. The test module again captures the angular velocity as reported by the rotational rate sensor. At this point, the test module adjusts the measured angular velocity using the applicable calibration values and compares the adjusted values to the known angular velocity at which the test module was rotated by the test fixture. If the adjusted values fall within some defined tolerance of the expected values, these calibration values are sent by the test module to the personal computer. These calibration values can then be downloaded into memory of a power tool. During operation, the control system of the power tool will use the calibration values to adjust the output reported by the rotational rate sensor. It is readily understood that this type of calibration procedure may be undertaken for each power tool or once for each family of power tools.
The above description is merely exemplary in nature and is not intended to limit the present disclosure, application, or uses.

Claims (23)

What is claimed is:
1. A method for initiating a protective response in a power tool having a rotary shaft, comprising:
monitoring rotational motion of the power tool about a longitudinal axis of the rotary shaft using a rotational motion sensor disposed in the power tool;
computing angular displacement of the power tool about the axis of the rotary shaft using a controller disposed in the power tool and based on input from the rotational motion sensor;
initiating a protective operation by the controller when an operating condition of the power tool exceeds a threshold and the angular displacement of the power tool falls within a range of angular displacements; and
initiating a protective operation by the controller when the operating condition of the power tool is less than the threshold but the angular displacement of the power tool exceeds the range of angular displacements.
2. The method of claim 1 further comprises initiating a protective operation when angular velocity of the power tool about the axis exceeds a velocity threshold and the angular displacement of the power tool falls within the range of angular displacements.
3. The method of claim 1 further comprises initiating a protective operation when angular displacement of the power tool falls within a range of angular displacements and angular acceleration of the power tool about the axis exceeds an acceleration threshold.
4. The method of claim 1 further comprises arranging the rotational motion sensor at a location in the power tool spatially separated from the rotary shaft.
5. The method of claim 1 further comprises employing a rotational motion sensor that measures rotational velocity based on Coriolis acceleration.
6. The method of claim 1 wherein the protective operation when angular displacement of the power tool falls within a range of angular displacements is different than the protective operation when angular displacement of the power tool exceeds the range of angular displacements.
7. The method of claim 1 wherein the protective operation is selected from the group consisting of pulsing a motor of the power tool, braking the rotary shaft, braking the motor, disengaging the motor from the rotary shaft, discontinuing power delivered to the motor and reducing slip torque of a clutch disposed between the motor and the rotary shaft.
8. A method for initiating a protective response in a power tool having a motor drivably coupled to a rotary shaft to impart rotary motion thereto, comprising:
monitoring rotational motion of the power tool about a longitudinal axis of the rotary shaft using a rotational motion sensor disposed in the power tool;
determining angular displacement of the power tool about the axis of the rotary shaft from a baseline using a controller disposed in the power tool and based on input from the rotational motion sensor;
initiating a protective operation in the power tool by the controller when a first operating condition of the power tool exceeds a first operating threshold and angular displacement of the power tool falls within a first range of angular displacements; and
initiating a protective operation in the power tool by the controller when a second operating condition of the power tool exceeds a second operating threshold and angular displacement of the power tool falls within a second range of angular displacements, where the second operating condition is different than the first operating condition and the second range of angular displacements is mutually exclusive of the first range of angular displacements.
9. The method of claim 8 further comprises initiating a protective operation when angular velocity of the power tool about the axis exceeds a velocity threshold and angular displacement of the power tool falls within the first range of angular displacements.
10. The method of claim 9 further comprises initiating a protective operation when angular velocity of the power tool is less than the velocity threshold and angular displacement of the power tool falls within the second range of angular displacements.
11. The method of claim 8 further comprises arranging the rotational motion sensor at a location in the power tool spatially separated from the rotary shaft.
12. The method of claim 8 further comprises employing a rotational motion sensor that measures rotational velocity based on Coriolis acceleration.
13. The method of claim 8 further comprises periodically resetting the baseline when angular velocity of the power tool about the axis is less than a velocity threshold.
14. The method of claim 8 wherein the protective operation is selected from the group consisting of pulsing a motor of the power tool, braking the rotary shaft, braking the motor, disengaging the motor from the rotary shaft, discontinuing power delivered to the motor and reducing slip torque of a clutch disposed between the motor and the rotary shaft.
15. A method for initiating a protective response in a power tool having a rotary shaft, comprising:
monitoring rotational motion of the power tool about a longitudinal axis of the rotary shaft using a rotational motion sensor disposed in the power tool;
computing angular displacement of the power tool about the axis of the rotary shaft from a baseline using a controller disposed in the power tool and based on input from the rotational motion sensor;
periodically resetting the baseline when angular velocity of the power tool about the axis is less than a velocity threshold;
initiating a protective operation by the controller when an operating condition of the power tool exceeds a threshold and the angular displacement of the power tool falls within a range of angular displacements; and
initiating a protective operation by the controller when the operating condition of the power tool is less than the threshold but the angular displacement of the power tool exceeds the range of angular displacements.
16. A method for controlling operation of a power tool having a rotary shaft, comprising:
monitoring rotational motion of the power tool about a longitudinal axis of the rotary shaft using a rotational motion sensor disposed in the power tool, wherein the rotation motion sensor is further defined as an accelerometer;
computing angular displacement of the power tool about the axis of the rotary shaft based on input from the rotational motion sensor and using a controller disposed in the power tool; and
driving the rotary shaft at a given rotational speed, where the given rotational speed is set to a non-zero value based on the angular displacement of the power tool.
17. The method of claim 16 wherein the computing angular displacement further comprises determining the angular displacement of the power tool in relation to a reference position and driving the rotary shaft at the given rotational speed when the angular displacement from the reference position exceeds a displacement threshold.
18. The method of claim 16 wherein the computing angular displacement further comprises determining the angular displacement of the power tool in relation to a reference position and lowering rotational speed of the rotary shaft to a non-zero value when the angular displacement from the reference position exceeds a displacement threshold.
19. The method of claim 16 further comprises arranging the rotational motion sensor at a location in the power tool spatially separated from the rotary shaft.
20. A method for controlling operation of a power tool having a rotary shaft, comprising:
monitoring rotational motion of the power tool about a longitudinal axis of the rotary shaft using a rotational motion sensor disposed in the power tool, wherein the rotation motion sensor is further defined as a gyroscope;
computing angular displacement of the power tool about the axis of the rotary shaft based on input from the rotational motion sensor and using a controller disposed in the power tool; and
driving the rotary shaft at a given rotational speed, where the given rotational speed is set to a non-zero value based on the angular displacement of the power tool.
21. The method of claim 20 wherein the computing angular displacement further comprises determining the angular displacement of the power tool in relation to a reference position and driving the rotary shaft at the given rotational speed when the angular displacement from the reference position exceeds a displacement threshold.
22. The method of claim 20 wherein the computing angular displacement further comprises determining the angular displacement of the power tool in relation to a reference position and lowering rotational speed of the rotary shaft to a non-zero value when the angular displacement from the reference position exceeds a displacement threshold.
23. The method of claim 20 further comprises arranging the rotational motion sensor at a location in the power tool spatially separated from the rotary shaft.
US13/423,736 2004-10-20 2012-03-19 Power tool anti-kickback system with rotational rate sensor Active 2025-11-11 USRE44311E1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/423,736 USRE44311E1 (en) 2004-10-20 2012-03-19 Power tool anti-kickback system with rotational rate sensor
US13/600,927 USRE45112E1 (en) 2004-10-20 2012-08-31 Power tool anti-kickback system with rotational rate sensor
US13/600,722 USRE44993E1 (en) 2004-10-20 2012-08-31 Power tool anti-kickback system with rotational rate sensor

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US62028304P 2004-10-20 2004-10-20
US67569205P 2005-04-28 2005-04-28
US11/254,146 US7410006B2 (en) 2004-10-20 2005-10-19 Power tool anti-kickback system with rotational rate sensor
US11/519,427 US7552781B2 (en) 2004-10-20 2006-09-12 Power tool anti-kickback system with rotational rate sensor
US12/008,823 US7681659B2 (en) 2004-10-20 2008-01-14 Power tool anti-kickback system with rotational rate sensor
US13/423,736 USRE44311E1 (en) 2004-10-20 2012-03-19 Power tool anti-kickback system with rotational rate sensor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US12/008,823 Reissue US7681659B2 (en) 2004-10-20 2008-01-14 Power tool anti-kickback system with rotational rate sensor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/008,823 Continuation US7681659B2 (en) 2004-10-20 2008-01-14 Power tool anti-kickback system with rotational rate sensor

Publications (1)

Publication Number Publication Date
USRE44311E1 true USRE44311E1 (en) 2013-06-25

Family

ID=38846998

Family Applications (5)

Application Number Title Priority Date Filing Date
US11/519,427 Active US7552781B2 (en) 2004-10-20 2006-09-12 Power tool anti-kickback system with rotational rate sensor
US12/008,823 Active 2025-11-11 US7681659B2 (en) 2004-10-20 2008-01-14 Power tool anti-kickback system with rotational rate sensor
US13/423,736 Active 2025-11-11 USRE44311E1 (en) 2004-10-20 2012-03-19 Power tool anti-kickback system with rotational rate sensor
US13/600,927 Active 2025-11-11 USRE45112E1 (en) 2004-10-20 2012-08-31 Power tool anti-kickback system with rotational rate sensor
US13/600,722 Active 2025-11-11 USRE44993E1 (en) 2004-10-20 2012-08-31 Power tool anti-kickback system with rotational rate sensor

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US11/519,427 Active US7552781B2 (en) 2004-10-20 2006-09-12 Power tool anti-kickback system with rotational rate sensor
US12/008,823 Active 2025-11-11 US7681659B2 (en) 2004-10-20 2008-01-14 Power tool anti-kickback system with rotational rate sensor

Family Applications After (2)

Application Number Title Priority Date Filing Date
US13/600,927 Active 2025-11-11 USRE45112E1 (en) 2004-10-20 2012-08-31 Power tool anti-kickback system with rotational rate sensor
US13/600,722 Active 2025-11-11 USRE44993E1 (en) 2004-10-20 2012-08-31 Power tool anti-kickback system with rotational rate sensor

Country Status (4)

Country Link
US (5) US7552781B2 (en)
EP (2) EP1900484B1 (en)
CN (1) CN201152938Y (en)
WO (1) WO2008033310A2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150137721A1 (en) * 2013-11-21 2015-05-21 Makita Corporation Power tool
US10357871B2 (en) 2015-04-28 2019-07-23 Milwaukee Electric Tool Corporation Precision torque screwdriver
US10981267B2 (en) 2017-10-26 2021-04-20 Milwaukee Electric Tool Corporation Kickback control methods for power tools
US11077509B2 (en) 2018-03-16 2021-08-03 Milwaukee Electric Tool Corporation Pipe threader
US11400570B2 (en) 2015-04-28 2022-08-02 Milwaukee Electric Tool Corporation Precision torque screwdriver
US11529725B2 (en) 2017-10-20 2022-12-20 Milwaukee Electric Tool Corporation Power tool including electromagnetic clutch
US11705721B2 (en) 2020-03-10 2023-07-18 Milwaukee Electric Tool Corporation Kickback control methods for a power tool including a force sensor
US11845173B2 (en) 2020-10-16 2023-12-19 Milwaukee Electric Tool Corporation Anti bind-up control for power tools

Families Citing this family (115)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7552781B2 (en) 2004-10-20 2009-06-30 Black & Decker Inc. Power tool anti-kickback system with rotational rate sensor
US8316958B2 (en) * 2006-07-13 2012-11-27 Black & Decker Inc. Control scheme for detecting and preventing torque conditions in a power tool
DE102008000704A1 (en) * 2007-04-24 2008-10-30 Robert Bosch Gmbh Power tool and device switch for a power tool
EP2030710B1 (en) * 2007-08-29 2014-04-23 Positec Power Tools (Suzhou) Co., Ltd. Power tool and control system for a power tool
SE533215C2 (en) * 2008-05-08 2010-07-20 Atlas Copco Tools Ab Method and apparatus for tightening joints
US7787981B2 (en) 2008-05-16 2010-08-31 Xerox Corporation System for reliable collaborative assembly and maintenance of complex systems
JP5350474B2 (en) 2008-06-26 2013-11-27 ウェイン・アンダーソン Medical driver device whose depth is controllable and measurable and method of using the same
FR2935496B1 (en) * 2008-08-29 2014-05-16 Pellenc Sa METHOD FOR STOPPING PORTABLE TOOLS DURING UNEXPECTED BRUSH MOVEMENTS, AND PORTABLE TOOLS BY APPLYING
US10870216B2 (en) * 2008-09-30 2020-12-22 Black & Decker Inc. Table saws having integrated control systems
EP2177322B1 (en) * 2008-10-20 2014-05-07 CEKA Elektrowerkzeuge AG + Co. KG Tool unit for an electrical tool, electrical tool and method for operating same
US8212511B2 (en) * 2008-10-22 2012-07-03 Kelsey-Hayes Company Method and apparatus for limiting torque in an electric drive motor
JP5403328B2 (en) * 2009-02-02 2014-01-29 日立工機株式会社 Electric drilling tool
DE102009001132B4 (en) * 2009-02-25 2022-04-28 Robert Bosch Gmbh power tool
US20110058356A1 (en) 2009-02-25 2011-03-10 Black & Decker Inc. Power tool with light emitting assembly
US8328381B2 (en) 2009-02-25 2012-12-11 Black & Decker Inc. Light for a power tool and method of illuminating a workpiece
US8317350B2 (en) 2009-02-25 2012-11-27 Black & Decker Inc. Power tool with a light for illuminating a workpiece
FR2944465B1 (en) * 2009-04-17 2012-06-08 Renault Georges Ets PORTABLE TOOL INCORPORATING MEANS FOR OBTAINING AT LEAST ONE PARAMETER OF MOVEMENT OF THE TOOL CASING.
JP5462575B2 (en) * 2009-10-05 2014-04-02 株式会社マキタ Electric tool
JP5537122B2 (en) * 2009-11-02 2014-07-02 株式会社マキタ Electric tool
DE102009046789A1 (en) * 2009-11-17 2011-05-19 Robert Bosch Gmbh Hand machine tool device
CN102753782B (en) * 2010-01-07 2015-09-30 布莱克和戴克公司 There is the electric screw driver rotating input control
US9266178B2 (en) 2010-01-07 2016-02-23 Black & Decker Inc. Power tool having rotary input control
US9475180B2 (en) 2010-01-07 2016-10-25 Black & Decker Inc. Power tool having rotary input control
US8418778B2 (en) 2010-01-07 2013-04-16 Black & Decker Inc. Power screwdriver having rotary input control
US20130020102A1 (en) * 2010-02-17 2013-01-24 Gardena Manufacturing Gmbh Power Tools
EP2552649B1 (en) * 2010-03-31 2015-01-21 Alfing Montagetechnik GmbH Assembly device and assembly method
JP5464434B2 (en) * 2010-03-31 2014-04-09 日立工機株式会社 Electric tool
US8894654B2 (en) * 2010-03-31 2014-11-25 Smart Medical Devices, Inc. Depth controllable and measurable medical driver devices and methods of use
DE102010027981A1 (en) * 2010-04-20 2011-10-20 Robert Bosch Gmbh angle
DE102010030825A1 (en) * 2010-07-01 2012-01-05 Hilti Aktiengesellschaft Hand tool
WO2012021752A2 (en) * 2010-08-11 2012-02-16 Blount, Inc. Kickback detection method and apparatus
US9328915B2 (en) 2010-09-30 2016-05-03 Black & Decker Inc. Lighted power tool
US9028088B2 (en) 2010-09-30 2015-05-12 Black & Decker Inc. Lighted power tool
DE102010043361A1 (en) * 2010-11-04 2012-05-10 Robert Bosch Gmbh Electronic shutdown of a power tool on reaching a current limit
US10442065B2 (en) * 2011-05-23 2019-10-15 Illinois Tool Works Inc. Stud miss indicator for fastener driving tool
WO2012167241A1 (en) 2011-06-02 2012-12-06 Black & Decker Inc. Control system for a fastening power tool
US9352456B2 (en) 2011-10-26 2016-05-31 Black & Decker Inc. Power tool with force sensing electronic clutch
FR2985447B1 (en) * 2012-01-05 2014-09-05 Illinois Tool Works ROTARY HAND TOOL WITH ANTI-ROTATION CONTROL MODULE
US9908182B2 (en) 2012-01-30 2018-03-06 Black & Decker Inc. Remote programming of a power tool
EP2631035B1 (en) 2012-02-24 2019-10-16 Black & Decker Inc. Power tool
DE102012205714A1 (en) * 2012-04-05 2013-10-10 Robert Bosch Gmbh Hand tool housing
US9193055B2 (en) 2012-04-13 2015-11-24 Black & Decker Inc. Electronic clutch for power tool
US9242355B2 (en) 2012-04-17 2016-01-26 Black & Decker Inc. Illuminated power tool
JP5852509B2 (en) * 2012-05-29 2016-02-03 株式会社マキタ Electric tool
US9381635B2 (en) 2012-06-05 2016-07-05 Illinois Tool Works Inc. Fastener-driving tool including a fastening result detector
US8919456B2 (en) 2012-06-08 2014-12-30 Black & Decker Inc. Fastener setting algorithm for drill driver
US20130327552A1 (en) * 2012-06-08 2013-12-12 Black & Decker Inc. Power tool having multiple operating modes
DE102012210746A1 (en) * 2012-06-25 2014-01-02 Robert Bosch Gmbh power tool
US20140053419A1 (en) * 2012-08-06 2014-02-27 Black & Decker Inc. Control circuit for reciprocating saws
US20140166323A1 (en) * 2012-09-16 2014-06-19 J. Carl Cooper Kickback Reduction for Power Tools and Machines
US10821591B2 (en) 2012-11-13 2020-11-03 Milwaukee Electric Tool Corporation High-power cordless, hand-held power tool including a brushless direct current motor
JP6024470B2 (en) 2013-01-17 2016-11-16 日立工機株式会社 Electric tool
CN104936746B (en) * 2013-01-24 2017-06-09 日立工机株式会社 Electric tool
DE102013201708B4 (en) * 2013-02-01 2023-12-14 Robert Bosch Gmbh Electric machine tool and method for controlling the electric machine tool
EP2799170A1 (en) * 2013-04-30 2014-11-05 HILTI Aktiengesellschaft Handheld machine tool and control method
US9597784B2 (en) * 2013-08-12 2017-03-21 Ingersoll-Rand Company Impact tools
US9370372B2 (en) * 2013-09-04 2016-06-21 Mcginley Engineered Solutions, Llc Drill bit penetration measurement systems and methods
WO2015070159A1 (en) 2013-11-08 2015-05-14 Mcginley Engineered Solutions, Llc. Surgical saw with sensing technology for determining cut through of bone and depth of the saw blade during surgery
DE102013224759A1 (en) 2013-12-03 2015-06-03 Robert Bosch Gmbh Machine tool device
DE102014211891A1 (en) * 2014-06-20 2015-12-24 Robert Bosch Gmbh Method for operating a power tool
EP2985117A1 (en) * 2014-08-12 2016-02-17 HILTI Aktiengesellschaft Optimised setting procedure for an expansible anchor
WO2016025500A1 (en) 2014-08-12 2016-02-18 Robert Bosch Gmbh System and method for kickback detection in a circular saw
CN105843160A (en) * 2014-09-02 2016-08-10 苏州宝时得电动工具有限公司 Electric tool control method and electric tool
AU2015312037A1 (en) 2014-09-05 2017-03-02 Mcginley Engineered Solutions, Llc Instrument leading edge measurement system and method
CN107000087B (en) * 2014-09-25 2019-12-03 罗伯特·博世有限公司 The system and method for recalcitrating detection are carried out based on the blade speed in power tool
EP3023202A1 (en) 2014-11-20 2016-05-25 HILTI Aktiengesellschaft Security method and handheld machine tool
EP3023203A1 (en) * 2014-11-20 2016-05-25 HILTI Aktiengesellschaft Control method for a hand-held machine tool
CN107206581B (en) * 2015-01-28 2020-11-10 工机控股株式会社 Impact tool
US9833891B2 (en) 2015-02-23 2017-12-05 James Patterson Anti-torqueing dynamic arresting mechanism
WO2016155663A1 (en) * 2015-04-02 2016-10-06 苏州宝时得电动工具有限公司 Power tool and method for controlling working condition thereof
WO2016174971A1 (en) * 2015-04-27 2016-11-03 日立工機株式会社 Power tool
EP3302883B1 (en) * 2015-06-02 2022-03-16 Milwaukee Electric Tool Corporation Multi-speed power tool with electronic clutch
DE102015219564A1 (en) * 2015-10-09 2017-04-13 Robert Bosch Gmbh TOOL ANALYSIS DEVICE AND METHOD FOR ANALYZING A WORKING OF A WORKPIECE WITH A TOOL
US10390869B2 (en) 2015-10-27 2019-08-27 Mcginley Engineered Solutions, Llc Techniques and instruments for placement of orthopedic implants relative to bone features
WO2017075044A1 (en) * 2015-10-27 2017-05-04 Mcginley Engineered Solutions, Llc Unicortical path detection for a surgical depth measurement system
US10321920B2 (en) * 2015-11-06 2019-06-18 Mcginley Engineered Solutions, Llc Measurement system for use with surgical burr instrument
WO2017083989A1 (en) * 2015-11-16 2017-05-26 Ao Technology Ag Surgical power drill including a measuring unit suitable for bone screw length determination
DE102015226084A1 (en) * 2015-12-18 2017-06-22 Robert Bosch Gmbh Hand tool machine with a communication interface
EP3199303A1 (en) 2016-01-29 2017-08-02 HILTI Aktiengesellschaft Handheld machine tool
AU2017213819B2 (en) * 2016-02-03 2019-12-05 Milwaukee Electric Tool Corporation Systems and methods for configuring a reciprocating saw
AU2017217864B2 (en) 2016-02-12 2023-04-27 Smart Medical Devices, Inc. Driving devices and methods for determining material strength in real-time
EP3419791B1 (en) 2016-02-25 2022-04-27 Milwaukee Electric Tool Corporation Power tool including an output position sensor
US10589413B2 (en) 2016-06-20 2020-03-17 Black & Decker Inc. Power tool with anti-kickback control system
KR102437922B1 (en) * 2016-06-30 2022-08-29 아틀라스 콥코 인더스트리얼 테크니크 에이비 Electric pulse tool with controlled reaction force
JP6709129B2 (en) * 2016-08-05 2020-06-10 株式会社マキタ Electric tool
EP3379019B1 (en) 2017-03-24 2019-09-04 Techtronic Outdoor Products Technology Limited Digging apparatus
CA3073178A1 (en) * 2017-08-17 2019-02-21 Stryker Corporation Surgical handpiece for measuring depth of bore holes and related accessories
KR20200043426A (en) * 2017-08-17 2020-04-27 스트리커 코포레이션 Portable surgical instruments and methods for providing tactile feedback to users during kickback
US11896239B2 (en) * 2017-08-17 2024-02-13 Stryker Corporation Surgical handpiece system for depth measurement and related accessories
AU2018321969B2 (en) * 2017-08-25 2022-08-11 Mcginley Engineered Solutions, Llc Sensing of surgical instrument placement relative to anatomic structures
WO2019046302A1 (en) 2017-08-30 2019-03-07 Milwaukee Electric Tool Corporation Power tool having object detection
EP3648663A4 (en) 2017-10-02 2021-06-30 McGinley Engineered Solutions, LLC Surgical instrument with real time navigation assistance
CN109765048A (en) * 2017-11-02 2019-05-17 南京德朔实业有限公司 Electric tool and the detection method of electric tool recoil
GB201800696D0 (en) 2018-01-16 2018-02-28 Depuy Ireland Ultd Co Replaceable battery unit for a surgical power tool
EP3517252B1 (en) * 2018-01-26 2022-12-14 Techtronic Outdoor Products Technology Limited Motion monitoring device for handheld tool
SE543978C2 (en) * 2018-02-21 2021-10-12 Lantern Holdings Llc High-precision abnormal motion detection for power tools
WO2019168658A1 (en) 2018-02-28 2019-09-06 Milwaukee Electric Tool Corporation Eco-indicator for power tool
CN111788053A (en) * 2018-02-28 2020-10-16 米沃奇电动工具公司 Simulated stagnation systems and methods for power tools
US11752604B2 (en) 2018-04-13 2023-09-12 Snap-On Incorporated System and method for measuring torque and angle
CN108897281A (en) * 2018-06-06 2018-11-27 苏州领裕电子科技有限公司 A kind of tool monitoring system and method
JP2020040133A (en) * 2018-09-06 2020-03-19 パナソニックIpマネジメント株式会社 Tool system
US11103980B2 (en) 2018-10-12 2021-08-31 Ingersoll-Rand Industrial U.S., Inc. Assembly tool smart configuration selector by means of orientation detection
JP7210291B2 (en) 2019-01-10 2023-01-23 株式会社マキタ electric driver drill
DE102019121121A1 (en) * 2019-08-05 2021-02-11 Aesculap Ag Medical drive unit of the handheld design with sensor device and kick-back control
US11673240B2 (en) 2019-08-06 2023-06-13 Makita Corporation Driver-drill
US11529180B2 (en) 2019-08-16 2022-12-20 Mcginley Engineered Solutions, Llc Reversible pin driver
CA3157940A1 (en) * 2019-11-18 2021-05-27 Koon For Chung Digging apparatus with safety mechanism
EP3854556B1 (en) * 2020-01-22 2024-03-06 Andreas Stihl AG & Co. KG Handheld processing device and method for operating same
CN113561113B (en) * 2020-04-28 2022-09-20 南京泉峰科技有限公司 Intelligent electric tool and control method thereof
CN115835940A (en) * 2020-07-15 2023-03-21 工机控股株式会社 Working machine and punching method
DE102020212046B4 (en) * 2020-09-24 2023-06-22 BSH Hausgeräte GmbH Control of a pneumatic processing device
CN112757205B (en) * 2021-01-05 2022-11-11 中国第一汽车股份有限公司 Torque gun control method for avoiding beating hands
EP4323153A1 (en) * 2021-04-16 2024-02-21 Black & Decker Inc. Electrostatic clutch for power tool
SE544504C2 (en) * 2021-09-17 2022-06-21 Atlas Copco Ind Technique Ab A power tool and a method of determining torque
EP4289553A1 (en) * 2022-06-07 2023-12-13 Hilti Aktiengesellschaft Electric power tool with rotating tool

Citations (268)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1990035A (en) 1931-07-27 1935-02-05 Bosch Robert Portable electrical tool
US2617971A (en) 1950-12-04 1952-11-11 Crane Packing Co Overload control for motors
US2776653A (en) 1954-06-17 1957-01-08 Wayne H Eaton Pneumatic drill jack
US3083508A (en) 1962-05-09 1963-04-02 Weller Tool Corp Vibratory sanding tool
US3463990A (en) 1966-11-28 1969-08-26 Bernard A Ross Pressure-sensitive electrical control device
US3554302A (en) 1968-07-05 1971-01-12 American Gas Ass Directional control of earth boring apparatus
US3616864A (en) 1969-11-28 1971-11-02 Gardner Denver Co Torque-controlled motor shutoff for power tool
GB1261479A (en) 1969-10-07 1972-01-26 Klaus Haken Gravity compensated acceleration measuring apparatus
US3773117A (en) 1971-03-31 1973-11-20 Wilson T Inc Reversible drive tool
US3847229A (en) 1972-06-16 1974-11-12 Bosch Gmbh Robert Portable impact wrench
US3939920A (en) 1974-09-19 1976-02-24 Standard Pressed Steel Co. Tightening method and system
DE2442260A1 (en) 1974-09-04 1976-03-18 Bosch Gmbh Robert CRAFT MACHINE
US3963364A (en) 1963-01-11 1976-06-15 Lemelson Jerome H Tool control system and method
US4060115A (en) 1976-01-23 1977-11-29 Jesus Bocanegra Marquina Handle for hand tools to be rotated during operation
US4095547A (en) 1975-05-01 1978-06-20 Brown Brothers & Company, Ltd. Acceleration measuring device
US4104778A (en) 1977-01-27 1978-08-08 Ingersoll-Rand Company Method and apparatus for fastener tensioning
US4143467A (en) 1978-05-01 1979-03-13 Sperry Rand Corporation Semi-automatic self-contained magnetic azimuth detector calibration apparatus and method
US4249117A (en) 1979-05-01 1981-02-03 Black And Decker, Inc. Anti-kickback power tool control
US4262528A (en) 1977-12-24 1981-04-21 C. Plath Kg Apparatus for measuring the torque applied to a wrench
US4267914A (en) 1979-04-26 1981-05-19 Black & Decker Inc. Anti-kickback power tool control
US4305471A (en) 1979-04-19 1981-12-15 Rockwell International Corporation Simplified fastening technique using the logarithmic rate method
DE3239847A1 (en) 1981-10-27 1983-05-19 Eaton Corp., 44114 Cleveland, Ohio Speed control for a portable tool
US4418765A (en) 1981-01-16 1983-12-06 Matsushita Electric Industrial Company, Limited Power-driven screwdriver with a torque control
US4426588A (en) 1981-07-17 1984-01-17 Hilti Aktiengesellschaft Weighting circuit for an electrical torque signal in a drilling machine
US4448261A (en) 1980-10-31 1984-05-15 Hilti Aktiengesellschaft Motorized hand tool for drilling
US4487270A (en) 1981-11-24 1984-12-11 Black & Decker Inc. Electric tool, particularly a handtool, with torque control
US4510802A (en) 1983-09-02 1985-04-16 Sundstrand Data Control, Inc. Angular rate sensor utilizing two vibrating accelerometers secured to a parallelogram linkage
USD279254S (en) 1983-05-31 1985-06-18 Fiskars Manufacturing Corporation Hand grip for hand tools
DE3400124A1 (en) 1984-01-04 1985-07-18 Claus 4300 Essen Radebold Magnetic screwdriving and insertion system with manipulation which can be rendered automatic
JPS60252213A (en) 1984-05-28 1985-12-12 Tokyo Keiki Co Ltd Inclined angle measuring instrument
US4573556A (en) 1983-05-20 1986-03-04 Aktiebolaget Electrolux Actuator for the release of an automatic emergency brake of a hand-operated powered tool
US4576270A (en) 1983-02-28 1986-03-18 The Aro Corporation Torque control and fluid shutoff mechanism for a fluid operated tool
US4587468A (en) 1984-01-25 1986-05-06 Kabushiki Kaisha Morita Seisakusho Sudden stop circuit for a brushless micromotor
US4601206A (en) 1983-09-16 1986-07-22 Ferranti Plc Accelerometer system
US4628233A (en) 1984-03-23 1986-12-09 Black & Decker Inc. Microprocessor based motor control
US4638870A (en) 1983-12-21 1987-01-27 Hilti Aktiengesellschaft Motor driven hand-held device containing a displacement mass
US4648282A (en) 1984-05-15 1987-03-10 Cooper Industries Power screwdriver
US4732221A (en) 1987-01-21 1988-03-22 Stewart-Warner Corporation Pneumatic chipping hammer and method of manufacture
US4744248A (en) 1985-07-25 1988-05-17 Litton Systems, Inc. Vibrating accelerometer-multisensor
US4754669A (en) 1985-10-24 1988-07-05 Black & Decker Inc. Motor driven screwdriver with spindle lock
US4759225A (en) 1987-06-01 1988-07-26 Ryeson Corporation Torque tool and torque tool analyzer
WO1988006508A3 (en) 1987-03-05 1988-09-22 Bosch Gmbh Robert Process for interrupting the operation of a hand tool, in particular percussion and/or rotation thereof
US4793226A (en) 1986-03-04 1988-12-27 Willy Kress Manual device for driving screws
US4820962A (en) 1986-10-31 1989-04-11 Hilti Aktiengesellschaft Arrangement for automatic working data set-up for driving implements
US4841773A (en) 1987-05-01 1989-06-27 Litton Systems, Inc. Miniature inertial measurement unit
US4846027A (en) 1988-08-19 1989-07-11 Taiwan Silver Star Industrial Co., Ltd. Screwdriver
US4871033A (en) 1988-01-30 1989-10-03 Hilti Aktiengesellschaft Motor-driven hand tool with braking torque device
US4878404A (en) 1988-09-14 1989-11-07 Liao Hsieh Yuan Electric screwdriver
US4885511A (en) 1986-04-11 1989-12-05 Hilti Aktiengesellschaft Drive control with overload protection for a drill device
EP0199883B1 (en) 1985-03-29 1990-08-08 HILTI Aktiengesellschaft Motor-driven hand tool
US4948164A (en) 1988-01-29 1990-08-14 Nissan Motor Company, Limited Actively controlled suspension system with compensation of delay in phase in control system
US4961035A (en) 1988-02-04 1990-10-02 Hitachi, Ltd. Rotational angle control of screw tightening
USRE33379E (en) 1984-03-23 1990-10-09 Black & Decker Inc. Microprocessor based motor control
US4996877A (en) 1989-02-24 1991-03-05 Litton Systems, Inc. Three axis inertial measurement unit with counterbalanced mechanical oscillator
US5014793A (en) 1989-04-10 1991-05-14 Measurement Specialties, Inc. Variable speed DC motor controller apparatus particularly adapted for control of portable-power tools
DE3938787A1 (en) 1989-11-23 1991-05-29 Gardner Denver Gmbh Electric screwdriver with torque-monitoring and braking circuits - has strain-guage torque meter providing continuous braking signal during rapid deceleration of motor
US5036925A (en) 1988-09-01 1991-08-06 Black & Decker Inc. Rotary hammer with variable hammering stroke
USD326043S (en) 1989-05-19 1992-05-12 Hitachi Koki Company, Limited Electric screw driver
US5149998A (en) 1991-08-23 1992-09-22 Eaton Corporation Eddy current drive dynamic braking system for heat reduction
US5155421A (en) 1989-06-12 1992-10-13 Atlas Copco Tools Ab Power wrench for tightening screw joints
JPH0465677B2 (en) 1986-07-11 1992-10-20 Shin Nihon Kagaku Kogyo Kk
US5156221A (en) 1990-06-22 1992-10-20 Ceka Elektrowerkzeuge Ag & Co. Kg Method of and arrangement for controlling the operation of a hand-held electrical device
US5166882A (en) 1989-03-31 1992-11-24 The United States Of America As Represented By The Secretary Of The Navy System for calibrating a gyro navigator
US5174045A (en) 1991-05-17 1992-12-29 Semitool, Inc. Semiconductor processor with extendible receiver for handling multiple discrete wafers without wafer carriers
US5200661A (en) 1989-12-15 1993-04-06 Shramo Daniel J Slotless, brushless, large air gap electric motor
US5201373A (en) 1991-01-05 1993-04-13 Robert Bosch Gmbh Hand held power tool with safety coupling
US5212862A (en) 1990-10-09 1993-05-25 Allen-Bradley Company, Inc. Torque-angle window control for threaded fasteners
DE4243317A1 (en) 1992-12-21 1993-06-09 Edgar Von Dipl.-Ing. 6602 Dudweiler De Hinueber Angle control method for automatic screwdriver - using inertial angular rate sensor built into rotating shaft of insertion tool, and e.g. Sagnac effect rotation pick=up
US5232328A (en) 1991-03-05 1993-08-03 Semitool, Inc. Robot loadable centrifugal semiconductor processor with extendible rotor
DE4204420A1 (en) 1992-02-14 1993-08-19 Fein C & E Battery-driven hand tool e.g. electric screwdriver - has separate battery pack and state-of-charge indicator plugging into rear of tool housing, forming rechargeable unit
US5241861A (en) 1991-02-08 1993-09-07 Sundstrand Corporation Micromachined rate and acceleration sensor
USD339279S (en) 1992-01-08 1993-09-14 Willi Hahn Gmbh & Co. Kg Handle for a screwdriver
US5247466A (en) 1990-03-29 1993-09-21 Hitachi, Ltd. Angular rate detection apparatus, acceleration detection apparatus and movement control apparatus, of moving body
US5245747A (en) 1989-09-22 1993-09-21 Atlas Copco Tools Ab Device for tightening threaded joints
EP0345655B1 (en) 1988-06-04 1994-03-23 Robert Bosch Gmbh Safety circuit for an electric hand tool
US5311069A (en) 1991-09-06 1994-05-10 Silicon Systems, Inc. Driver circuitry for commutated inductive loads
US5345382A (en) 1992-05-15 1994-09-06 Zexel Corporation Calibration method for a relative heading sensor
US5357179A (en) 1992-06-19 1994-10-18 Pace, Incorporated Handheld low voltage machining tool
US5361022A (en) 1993-03-23 1994-11-01 E. F. Bavis & Associates, Inc. Method and apparatus for electrical dynamic braking
US5365155A (en) 1990-10-22 1994-11-15 Marquardt Gmbh Rotational speed control and use of same to control the rotational speed of an electric hand tool motor
US5383363A (en) 1993-02-10 1995-01-24 Ford Motor Company Inertial measurement unit providing linear and angular outputs using only fixed linear accelerometer sensors
US5401124A (en) 1991-04-12 1995-03-28 Robert Bosch Gmbh Hand-held power tool with jamming-detection sensor
US5418422A (en) 1992-05-06 1995-05-23 U.S. Philips Corporation Combination of display tube and deflection unit comprising line deflection coils of the semi-saddle type with a gun-sided extension
US5440218A (en) 1994-07-13 1995-08-08 General Electric Company Reversible switched reluctance motor operating without a shaft position sensor
JPH07270444A (en) 1994-03-31 1995-10-20 Matsushita Electric Ind Co Ltd Angular speed sensor
US5476014A (en) 1992-12-21 1995-12-19 Mercedes-Benz Ag Process and a device for the rotation-angle-monitored tightening or loosening of screw connections
US5484026A (en) 1993-09-03 1996-01-16 Nikon Corporation Handheld electromotive tool with sensor
US5493909A (en) 1991-01-30 1996-02-27 Mitsubishi Denki Kabushiki Kaisha Method of and an apparatus for detecting control information
JPH08128825A (en) 1994-11-02 1996-05-21 Tamagawa Seiki Co Ltd Method for measuring angle of inclination and tilt angle gage
US5535306A (en) 1993-01-28 1996-07-09 Applied Materials Inc. Self-calibration system for robot mechanisms
US5538089A (en) 1995-06-05 1996-07-23 The Black & Decker Corporation Power tool clutch assembly
US5557990A (en) 1995-07-27 1996-09-24 Shin; Fu-Zong Actuating device for use in powered screwdriver
US5563482A (en) 1993-09-30 1996-10-08 Black & Decker Inc. Power tools
US5584619A (en) 1993-12-28 1996-12-17 Hilti Aktiengesellschaft Method of and arrangement for preventing accidents during operation of a manually-operated machine tool with a rotatable toolbit
US5589644A (en) 1994-12-01 1996-12-31 Snap-On Technologies, Inc. Torque-angle wrench
JPH0938815A (en) 1995-07-31 1997-02-10 Ntn Corp Load detecting spindle unit
DE4334933C2 (en) 1993-10-13 1997-02-20 Fraunhofer Ges Forschung Method and device for forcibly switching off hand-held tools
US5615130A (en) 1994-12-14 1997-03-25 Dallas Semiconductor Corp. Systems and methods to gather, store and transfer information from electro/mechanical tools and instruments
US5619085A (en) 1989-12-15 1997-04-08 Shramo; Daniel J. Slotless, brushless, large air-gap electric motor
USD378727S (en) 1995-07-25 1997-04-08 Ryobi North America Rotary tool
US5635638A (en) 1995-06-06 1997-06-03 Analog Devices, Inc. Coupling for multiple masses in a micromachined device
US5637968A (en) 1993-10-25 1997-06-10 The Stanley Works Power tool with automatic downshift feature
DE19620124C1 (en) 1996-05-18 1997-07-31 Norbert Gerlach Rotation angle measuring device for hand-guided screwdriver about axis of screwing motion
USD387964S (en) 1995-10-02 1997-12-23 Meccano, S.A. Screwdriver
US5701961A (en) 1996-07-05 1997-12-30 Ingersoll-Rand Company Electronic push to start nutrunner
US5704435A (en) 1995-08-17 1998-01-06 Milwaukee Electric Tool Corporation Hand held power tool including inertia switch
GB2306356B (en) 1995-11-02 1998-01-14 Bosch Gmbh Robert Hand machine tool
DE19632363C1 (en) 1996-08-10 1998-01-15 Telefunken Microelectron Method of detecting angular acceleration of motor vehicles
RU2103156C1 (en) 1993-02-08 1998-01-27 Малое предприятие "Мехсборка" Method for assembly of threaded joint
US5714698A (en) 1994-02-03 1998-02-03 Canon Kabushiki Kaisha Gesture input method and apparatus
US5730232A (en) 1996-04-10 1998-03-24 Mixer; John E. Two-speed fastener driver
USD392532S (en) 1996-11-27 1998-03-24 Hsuan-Sen Shiao Driving assembly of a screwdriver
USD392535S (en) 1997-05-15 1998-03-24 Maxtech Manufacturing Inc. Tool handle
US5738177A (en) 1995-07-28 1998-04-14 Black & Decker Inc. Production assembly tool
US5754019A (en) 1995-03-24 1998-05-19 Marquardt Gmbh Method and circuit arrangement for operating an electric motor
DE19651124C1 (en) 1996-12-09 1998-05-28 Siemens Ag Automobile lateral pitching detection arrangement
JPH10156739A (en) 1996-12-03 1998-06-16 Kanyuki Tomidokoro Screw driver of type convertible between power-assisted rotation and high-speed rotation
US5793168A (en) 1996-08-23 1998-08-11 Micro Linear Corporation Active deceleration circuit for a brushless DC motor
US5795988A (en) 1996-07-01 1998-08-18 Alliedsignal Inc. Gyroscope noise reduction and drift compensation
DE19726006A1 (en) 1997-06-19 1998-09-10 Bosch Gmbh Robert Rotation sensor for motor vehicles, etc.
US5806401A (en) 1994-01-04 1998-09-15 Rajala; Edward Satellite sawmill with adjustable saws and automatic sawbolt centering device
US5831402A (en) 1996-03-15 1998-11-03 Yang; Tai-Her Double direction actuating type tool of loose forward and loose backward assisting style
US5879111A (en) 1996-11-11 1999-03-09 Hilti Aktiengesellschaft Hand-held device
US5914882A (en) 1996-10-09 1999-06-22 Hilti Aktiengesellschaft Device for and method of preventing accidents in hand-operated machine tools due to tool jamming
US5954457A (en) 1996-11-11 1999-09-21 Hilti Aktiengesellschaft Hand-held device
US5971091A (en) 1993-02-24 1999-10-26 Deka Products Limited Partnership Transportation vehicles and methods
US5981557A (en) 1995-05-18 1999-11-09 Zeria Pharmaceutical Co., Ltd. Aminothiazole derivative, medicament containing the same, and intermediate for preparation of said compound
US6005489A (en) 1994-08-18 1999-12-21 Atlas Copco Tools Ab Electric power tool with code receiver
EP0773854B1 (en) 1994-08-03 2000-01-26 Robert Bosch Gmbh Power screwdriver and process for tightening screws
US6044918A (en) 1995-09-20 2000-04-04 Hilti Aktiengesellschaft Percussion blow added manually operable drilling tool
US6049460A (en) 1999-07-19 2000-04-11 Eaton Corporation Trigger actuated control having supplemental heat sink
US6055142A (en) 1997-04-23 2000-04-25 Hilti Aktiengesellschaft Manually guided machine tool with a safety device
US6058815A (en) 1995-12-22 2000-05-09 Habermehl; G. Lyle Hand held power tool
US6062939A (en) 1998-08-07 2000-05-16 Mattel, Inc. Toy power tool
DE19900882A1 (en) 1999-01-12 2000-07-13 Bosch Gmbh Robert Hand-held machine tool, especially drill or angle grinder, has locking and blocking elements brought into engagement axially in direction of blocking element rotation axis in uncontrolled state
US6111515A (en) 1998-12-10 2000-08-29 Hilti Aktiengesellschaft Method of and apparatus for preventing accidents during working with hand-held tools with a rotatable working tool
US6129699A (en) 1997-10-31 2000-10-10 Sorenson Development, Inc. Portable persistaltic pump for peritoneal dialysis
US6138629A (en) 1995-08-31 2000-10-31 Isad Electronic Systems Gmbh & Co. Kg System for actively reducing radial vibrations in a rotating shaft, and method of operating the system to achieve this
US6147626A (en) 1998-08-11 2000-11-14 Visteon Technologies, Llc Determination of zero-angular-velocity output level for angular velocity sensor
US6158929A (en) 1998-07-01 2000-12-12 Bae Systems Plc Electronically triggered surface sensor unit
US6161629A (en) 1996-11-19 2000-12-19 Hohmann; Joerg Power wrench
US6209394B1 (en) 1997-10-23 2001-04-03 Stmicroelectronics S.R.L. Integrated angular speed sensor device and production method thereof
US6236177B1 (en) 1998-06-05 2001-05-22 Milwaukee Electric Tool Corporation Braking and control circuit for electric power tools
US20010042630A1 (en) 2000-05-02 2001-11-22 Ferdinand Kristen Rotating electric hand tool implement with safety routine
US20020033267A1 (en) 2000-09-16 2002-03-21 Edwin Schweizer Electrical hand-held power tool with a torque control
US20020053892A1 (en) 2000-08-24 2002-05-09 Roland Schaer Microcontroller for and a method of controlling operation of the safety clutch of a hand-held electric power tool
US20020066632A1 (en) 2000-12-01 2002-06-06 Ferdinand Kristen Safety clutch for electrical hand-held tool
US6408252B1 (en) 1997-08-01 2002-06-18 Dynalog, Inc. Calibration system and displacement measurement device
DE10117121A1 (en) 2001-04-06 2002-10-17 Bosch Gmbh Robert Hand tool
US6479958B1 (en) 1995-01-06 2002-11-12 Black & Decker Inc. Anti-kickback and breakthrough torque control for power tool
US20020170754A1 (en) 1993-02-24 2002-11-21 Heinzmann Richard K. Controlled balancing toy
US20030000651A1 (en) 2001-03-23 2003-01-02 Genser Hans Georg Rotating evaporator with process-dependent rotating speed regulation
US6516896B1 (en) 2001-07-30 2003-02-11 The Stanley Works Torque-applying tool and control therefor
US20030037423A1 (en) 2001-08-24 2003-02-27 Siegel Robert P. Intelligent power tool
US20030042859A1 (en) 2001-08-06 2003-03-06 Gorti Bhanuprasad V. Excitation circuit and control method for flux switching motor
US6567068B2 (en) 1996-08-05 2003-05-20 Sony Corporation Information processing device and method
US6581714B1 (en) 1993-02-24 2003-06-24 Deka Products Limited Partnership Steering control of a personal transporter
US6612034B2 (en) 2000-01-24 2003-09-02 Koninklijke Philips Electronics N.V. Hand-held electrical appliance for personal care or for use as a tool
US20030196824A1 (en) 1999-04-29 2003-10-23 Gass Stephen F. Power tools
US6640733B2 (en) 1999-12-08 2003-11-04 Edward H. Huffmeyer Inclinometer-controlled apparatus for varying the rate of seed population
US20040011632A1 (en) 2000-10-19 2004-01-22 Peter Hellmann Safety switch device for a rotary powered hand tool
USD485737S1 (en) 2003-01-10 2004-01-27 Toolovation, Llc Battery powered screwdriver
WO2004024398A1 (en) 2002-09-13 2004-03-25 Black & Decker Inc Rotary tool
US20040069511A1 (en) 2002-07-03 2004-04-15 David Spielmann Hand-held power tool with a torque cut-off device
US20040104034A1 (en) 2002-08-19 2004-06-03 Claus Osselmann Safety module for a multifunctional handheld tool
USD493888S1 (en) 2003-02-04 2004-08-03 Sherwood Services Ag Electrosurgical pencil with pistol grip
US6779952B2 (en) 2001-09-20 2004-08-24 Weidong Zhang Stepless speed change bench drill
USD494829S1 (en) 2003-05-19 2004-08-24 Jack Lin Handle for screwdriver
US20040182175A1 (en) 2003-03-19 2004-09-23 The Boeing Company Tool and associated methods for controllably applying torque to a fastener
US6796921B1 (en) 2003-05-30 2004-09-28 One World Technologies Limited Three speed rotary power tool
US20040211573A1 (en) 2003-04-24 2004-10-28 Carrier David A. Safety mechanism for a rotary hammer
EP0771619B2 (en) 1995-11-02 2004-11-10 Robert Bosch Gmbh Process for interrupting the operation of a hand tool and hand tool therefore
US20040226124A1 (en) 2003-05-16 2004-11-18 Silva Sandra S. Multi-color faux art palette
US20040226728A1 (en) 2003-03-01 2004-11-18 Hans Boeni Process for controlling an axially hammering and rotating electric hand-held machine tool
US6836614B2 (en) 1993-07-06 2004-12-28 Black & Decker Inc. Electrical power tool having a motor control circuit for providing control over the torque output of the power tool
US20050000998A1 (en) 2003-01-27 2005-01-06 Mario Grazioli Hand-held working tool
US6842991B2 (en) 2002-07-31 2005-01-18 Robert W. Levi Gyro aided magnetic compass
US6871128B2 (en) 2001-04-19 2005-03-22 Kawasaki Jukogyo Kabushiki Kaisha Speed change control method and speed change controller
DE10340710A1 (en) 2003-09-04 2005-03-31 Saltus-Werk Max Forst Gmbh An electronic torque wrench has gyroscopic angle measurement and lighting indication
JP2005144625A (en) 2003-11-18 2005-06-09 Mazda Motor Corp Control device of hand held power tool
US6910540B2 (en) 2001-04-25 2005-06-28 Katsuyuki Totsu Torque control system for electrically driven rotating tools
GB2400811B (en) 2003-04-25 2005-07-06 Bosch Gmbh Robert Drilling appliance with automatic position detection
US6923268B2 (en) 2001-02-28 2005-08-02 Katsuyuki Totsu Electric rotational tool driving switch system
US20050217874A1 (en) 2004-04-02 2005-10-06 Michael Forster Method for operating a power driver
WO2005095061A1 (en) 2004-04-01 2005-10-13 Atlas Copco Tools Ab Method for determining the angular movement of the output shaft of an impulse nut runner at tightening a screw joint
US6965835B2 (en) 2001-09-28 2005-11-15 Spx Corporation Torque angle sensing system and method with angle indication
US6968908B2 (en) 2003-02-05 2005-11-29 Makita Corporation Power tools
USD513160S1 (en) 2004-09-17 2005-12-27 The Faucet-Queens Inc. Cordless drill
US6983506B1 (en) 2001-11-20 2006-01-10 Coffee Brown Universal, interchangeable tool attachment system
USD517634S1 (en) 2004-09-22 2006-03-21 Taylor Made Golf Company, Inc. Golf club wrench
US20060081368A1 (en) 2004-10-19 2006-04-20 Halliburton Energy Services, Inc. Tubing injector for variable diameter tubing
US20060081386A1 (en) 2004-10-20 2006-04-20 Qiang Zhang Power tool anti-kickback system with rotational rate sensor
US20060103733A1 (en) 2004-11-18 2006-05-18 International Business Machines Corporation Changing a function of a device based on tilt of the device for longer than a time period
US7055622B2 (en) 2001-11-20 2006-06-06 Black & Decker Inc. Power tool having a handle and a pivotal tool body
EP1670134A1 (en) 2004-12-09 2006-06-14 Ferm B.V. Apparatus and method for controlling a motor
US7090030B2 (en) 2002-09-03 2006-08-15 Microtorq L.L.C. Tranducerized torque wrench
US7121598B2 (en) 2003-06-05 2006-10-17 Societe De Prospection Et D'inventions Techniques Spit Pole for remote operation of a hand tool
US20060243469A1 (en) 2003-06-11 2006-11-02 Webster Craig D Handwheel-operated device
US7134364B2 (en) 2003-09-29 2006-11-14 Robert Bosch Gmbh Battery-driven screwdriver
US7154406B1 (en) 2000-08-10 2006-12-26 Black & Decker Inc. Power tool level indicator
USD534651S1 (en) 2004-04-01 2007-01-02 Kinamed, Inc. Powered surgical screwdriver
US7182148B1 (en) 2004-08-11 2007-02-27 William Szieff Tool with motion and orientation indicators
US20070068480A1 (en) 2004-01-28 2007-03-29 Juergen Wiker Method for switching off a power tool
US7197961B2 (en) 2003-09-29 2007-04-03 Robert Bosch Gmbh Battery-driven screwdriver with a two-part motor housing and a separate, flanged gear unit
US20070084613A1 (en) 2004-10-20 2007-04-19 Qiang Zhang Power tool anti-kickback system with rotational rate sensor
US20070095634A1 (en) 2003-11-28 2007-05-03 Valeo Thermal Systems Japan Corporation Rotary switch mechanism
US7225884B2 (en) 2004-10-26 2007-06-05 Robert Bosch Gmbh Hand power tool, in particular drilling screwdriver
US7234536B2 (en) 2004-08-04 2007-06-26 C. & E. Fein Gmbh Power screwdriver
US20070144270A1 (en) 2005-11-28 2007-06-28 Crass Matthew M Torque-angle instrument
DE102006016441A1 (en) 2006-04-07 2007-10-11 Robert Bosch Gmbh Electric machine tool operating method, involves driving electric machine tool by electric motor, where connection of battery unit is made to energize motor that is interrupted upon identification of blocking case
GB2420843B (en) 2004-12-03 2007-10-24 Bosch Gmbh Robert Hand machine tool
US20070256914A1 (en) 2004-08-09 2007-11-08 Guenter Lohr Cordless Screwdriver
US20070281274A1 (en) 2006-06-05 2007-12-06 Allan Schraffran Dental wrench and method of use thereof
EP1878541A2 (en) 2006-07-13 2008-01-16 Black & Decker, Inc. Control Scheme for Detecting and Preventing Torque Conditions in a Power Tool
US7331406B2 (en) 2004-06-21 2008-02-19 Duraspin Products Llc Apparatus for controlling a fastener driving tool, with user-adjustable torque limiting control
US7347158B2 (en) 2004-01-22 2008-03-25 Graham Hawkes Safety system for scuba divers operating underwater propulsion devices
USD565380S1 (en) 2006-07-19 2008-04-01 Rinner James A Screwdriver T-handle
US7359816B2 (en) 2005-05-25 2008-04-15 Analog Devices, Inc. Sensor calibration method and apparatus
US7400106B2 (en) 2005-11-04 2008-07-15 Robert Bosch Gmbh Method and apparatus for providing torque limit feedback in a power drill
US20080276760A1 (en) 2005-08-11 2008-11-13 Jong Phil Kim Driver
US7456603B2 (en) 2005-07-19 2008-11-25 Hitachi, Ltd. Phase detection circuit, resolver/digital converter using the circuit, and control system using the converter
US7463952B2 (en) 2004-10-13 2008-12-09 Continental Automotive France Method and device for processing measurement signals from a movement sensor on board a motor vehicle
US7469753B2 (en) 2005-06-01 2008-12-30 Milwaukee Electric Tool Corporation Power tool, drive assembly, and method of operating the same
DE10309414B4 (en) 2003-03-05 2009-01-08 Robert Bosch Gmbh Sensor device and associated method for a hand tool
JP4226869B2 (en) 2002-10-03 2009-02-18 日本圧着端子製造株式会社 Card connector
US20090051306A1 (en) 2007-08-24 2009-02-26 Makita Corporation Electric power tool, control unit and recording medium
WO2009032314A1 (en) 2007-09-07 2009-03-12 Black & Decker Inc. Switchable anti-lock control
US7504791B2 (en) 2004-01-22 2009-03-17 Robert Bosch Gmbh Electric power tool with optimized operating range
US20090078057A1 (en) 2007-09-20 2009-03-26 Asi Datamyte Residual torque analyzer
DE102007048052A1 (en) 2007-10-05 2009-04-09 Daubner & Stommel GbR Bau-Werk-Planung (vertretungsberechtigter Gesellschafter: Matthias Stommel, 27777 Ganderkesee) Motor-driven hand machine tool i.e. motor chain saw, operating method, involves eliminating and/or reducing working movements of cutting tool to safe measure depending on detected machine movements of hand machine tool
US7526398B1 (en) 2005-09-21 2009-04-28 Samsung Electronics Co., Ltd. Method and apparatus for calibrating gyro-sensor
US20090139738A1 (en) 2007-12-04 2009-06-04 Peter Lippek Screwing Tool And Method For Controlling The Tightening Angle Of Screwed Joints
US7546785B2 (en) 2004-08-09 2009-06-16 Robert Bosch Gmbh Battery-operated screwdriver
US7551411B2 (en) 2005-10-12 2009-06-23 Black & Decker Inc. Control and protection methodologies for a motor control module
DE102007062727A1 (en) 2007-12-27 2009-07-02 Robert Bosch Gmbh Device and method for taking a safety measure in a power tool
DE102009007977A1 (en) 2009-02-06 2009-07-23 Konrad, Hilmar, Dipl.-Ing. Angular deviation indicating method for e.g. drilling machine, involves comparing current detected rotation angle value continuously with reference valve, and indicating comparison result as measure of angle deviation
EP1524084B1 (en) 2003-10-14 2009-08-19 Panasonic Electric Works Co., Ltd. Power impact tool
US20090211774A1 (en) 2008-02-25 2009-08-27 Dvells Jr Walter E Attachment for stitching tool
WO2009136840A1 (en) 2008-05-08 2009-11-12 Atlas Copco Tools Ab Method and device for tightening joints
US20090295313A1 (en) 2008-05-30 2009-12-03 Makita Corporation Rechargeable power tool, control unit and recording medium
USD606827S1 (en) 2009-06-18 2009-12-29 3M Innovative Properties Company Small, portable power tool
US7642741B2 (en) 2005-04-27 2010-01-05 Sidman Adam D Handheld platform stabilization system employing distributed rotation sensors
US7650699B2 (en) 2005-07-22 2010-01-26 Kazuhiro Yamamoto Electric drill
US7682035B2 (en) 2005-09-01 2010-03-23 Robert Bosch Gmbh Housing device for hand-held power tool
US7689378B2 (en) 2005-02-15 2010-03-30 Magneto Inertial Sensing Technology, Inc. Motion sensing apparatus, systems and techniques
US7688028B2 (en) 2004-10-18 2010-03-30 Black & Decker Inc. Cordless power system
USD613144S1 (en) 2008-10-08 2010-04-06 Fu-Hui Lin Hand tool
EP1398119B1 (en) 2002-09-11 2010-04-07 Black & Decker Inc. Safety cut-off for power tool with rotating tool bit
USD618527S1 (en) 2010-03-22 2010-06-29 IBT Holdings, Inc T tool handle
US20100188245A1 (en) 2008-10-02 2010-07-29 Certusview Technologies, Llc Locate apparatus having enhanced features for underground facility locate operations, and associated methods and systems
US20100189887A1 (en) 2008-10-02 2010-07-29 Certusview Technologies, Llc Marking apparatus having enhanced features for underground facility marking operations, and associated methods and systems
US7774155B2 (en) 2006-03-10 2010-08-10 Nintendo Co., Ltd. Accelerometer-based controller
DE102009001298A1 (en) 2009-03-03 2010-09-16 Hilti Aktiengesellschaft self-tapping
GB2436959B (en) 2006-04-07 2010-10-06 Bosch Gmbh Robert Electric machine tool and method for operating the latter
US20100256939A1 (en) 2009-04-03 2010-10-07 The Regents Of The University Of Michigan Heading Error Removal System for Tracking Devices
US7832286B2 (en) 2005-04-07 2010-11-16 Kyoto Tool Co., Ltd. Torque wrench
DE10348756B4 (en) 2003-10-21 2011-01-05 Zf Friedrichshafen Ag Rotary hammer or drill with electromagnetic clutch and method for operating the electromagnetic clutch
US7882900B2 (en) 2007-08-29 2011-02-08 Positec Power Tools (Suzhou) Co., Ltd Power tool with signal generator
US7900715B2 (en) 2006-06-19 2011-03-08 Positec Power Tools (Suzhou) Co., Ltd. Variable speed tool and variable speed control method
US7912664B2 (en) 2008-09-11 2011-03-22 Northrop Grumman Guidance And Electronics Company, Inc. Self calibrating gyroscope system
US7942084B2 (en) 2006-12-06 2011-05-17 American Power Tool Company Powered driver and methods for reliable repeated securement of threaded connectors to a correct tightness
US20110153081A1 (en) 2008-04-24 2011-06-23 Nikolai Romanov Robotic Floor Cleaning Apparatus with Shell Connected to the Cleaning Assembly and Suspended over the Drive System
US20110202175A1 (en) 2008-04-24 2011-08-18 Nikolai Romanov Mobile robot for cleaning
US8025106B2 (en) 2006-04-12 2011-09-27 Robert Bosch Gmbh Method for tightening a screw connection and screw driving tool
US20110301900A1 (en) 2010-06-04 2011-12-08 Apple Inc. Gyro zero turn rate offset correction over temperature in a personal mobile device
US20120000682A1 (en) 2010-07-01 2012-01-05 Hilti Aktiengesellschaft Hand-held power tool
US8136382B2 (en) 2007-03-15 2012-03-20 Northrop Grumman Guidance And Electronics Company, Inc. Self-calibration of scale factor for dual resonator class II Coriolis vibratory gyros
US20120090863A1 (en) 2010-01-07 2012-04-19 Daniel Puzio Screwdriving tool having a driving tool with a removable contact trip assembly

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5812420A (en) 1995-09-05 1998-09-22 Nikon Corporation Vibration-preventive apparatus and exposure apparatus
DE19628945A1 (en) * 1995-11-02 1997-05-07 Bosch Gmbh Robert Process for interrupting the driving activity of a hand tool, and hand tool working according to this process
WO2003006213A2 (en) 2001-07-11 2003-01-23 Black & Decker Inc. Power tool safety mechanisms
CN1638914A (en) 2002-03-08 2005-07-13 日本化药株式会社 Laser welded tube fitting structure and gas generator with the tube fitting structure
DE102004003202B4 (en) * 2004-01-22 2022-05-25 Robert Bosch Gmbh Handle with detection device
US7447565B2 (en) * 2004-05-06 2008-11-04 John Cerwin Electronic alignment system

Patent Citations (332)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1990035A (en) 1931-07-27 1935-02-05 Bosch Robert Portable electrical tool
US2617971A (en) 1950-12-04 1952-11-11 Crane Packing Co Overload control for motors
US2776653A (en) 1954-06-17 1957-01-08 Wayne H Eaton Pneumatic drill jack
US3083508A (en) 1962-05-09 1963-04-02 Weller Tool Corp Vibratory sanding tool
US3963364A (en) 1963-01-11 1976-06-15 Lemelson Jerome H Tool control system and method
US3463990A (en) 1966-11-28 1969-08-26 Bernard A Ross Pressure-sensitive electrical control device
US3554302A (en) 1968-07-05 1971-01-12 American Gas Ass Directional control of earth boring apparatus
GB1261479A (en) 1969-10-07 1972-01-26 Klaus Haken Gravity compensated acceleration measuring apparatus
US3616864A (en) 1969-11-28 1971-11-02 Gardner Denver Co Torque-controlled motor shutoff for power tool
US3773117A (en) 1971-03-31 1973-11-20 Wilson T Inc Reversible drive tool
US3847229A (en) 1972-06-16 1974-11-12 Bosch Gmbh Robert Portable impact wrench
DE2442260A1 (en) 1974-09-04 1976-03-18 Bosch Gmbh Robert CRAFT MACHINE
US4066133A (en) 1974-09-04 1978-01-03 Robert Bosch G.M.B.H. Power hand tool
US3939920A (en) 1974-09-19 1976-02-24 Standard Pressed Steel Co. Tightening method and system
US4095547A (en) 1975-05-01 1978-06-20 Brown Brothers & Company, Ltd. Acceleration measuring device
US4060115A (en) 1976-01-23 1977-11-29 Jesus Bocanegra Marquina Handle for hand tools to be rotated during operation
US4104778A (en) 1977-01-27 1978-08-08 Ingersoll-Rand Company Method and apparatus for fastener tensioning
US4262528A (en) 1977-12-24 1981-04-21 C. Plath Kg Apparatus for measuring the torque applied to a wrench
US4143467A (en) 1978-05-01 1979-03-13 Sperry Rand Corporation Semi-automatic self-contained magnetic azimuth detector calibration apparatus and method
US4305471A (en) 1979-04-19 1981-12-15 Rockwell International Corporation Simplified fastening technique using the logarithmic rate method
US4267914A (en) 1979-04-26 1981-05-19 Black & Decker Inc. Anti-kickback power tool control
EP0018603B1 (en) 1979-04-26 1984-04-04 Black & Decker Inc. Anti-kickback power tool control
US4249117A (en) 1979-05-01 1981-02-03 Black And Decker, Inc. Anti-kickback power tool control
US4448261A (en) 1980-10-31 1984-05-15 Hilti Aktiengesellschaft Motorized hand tool for drilling
GB2086277B (en) 1980-10-31 1985-01-09 Hilti Ag Motor-driven hand drill
US4418765A (en) 1981-01-16 1983-12-06 Matsushita Electric Industrial Company, Limited Power-driven screwdriver with a torque control
US4426588A (en) 1981-07-17 1984-01-17 Hilti Aktiengesellschaft Weighting circuit for an electrical torque signal in a drilling machine
DE3239847A1 (en) 1981-10-27 1983-05-19 Eaton Corp., 44114 Cleveland, Ohio Speed control for a portable tool
US4487270A (en) 1981-11-24 1984-12-11 Black & Decker Inc. Electric tool, particularly a handtool, with torque control
US4576270A (en) 1983-02-28 1986-03-18 The Aro Corporation Torque control and fluid shutoff mechanism for a fluid operated tool
US4573556A (en) 1983-05-20 1986-03-04 Aktiebolaget Electrolux Actuator for the release of an automatic emergency brake of a hand-operated powered tool
USD279254S (en) 1983-05-31 1985-06-18 Fiskars Manufacturing Corporation Hand grip for hand tools
US4510802A (en) 1983-09-02 1985-04-16 Sundstrand Data Control, Inc. Angular rate sensor utilizing two vibrating accelerometers secured to a parallelogram linkage
US4601206A (en) 1983-09-16 1986-07-22 Ferranti Plc Accelerometer system
US4638870A (en) 1983-12-21 1987-01-27 Hilti Aktiengesellschaft Motor driven hand-held device containing a displacement mass
DE3400124A1 (en) 1984-01-04 1985-07-18 Claus 4300 Essen Radebold Magnetic screwdriving and insertion system with manipulation which can be rendered automatic
US4587468A (en) 1984-01-25 1986-05-06 Kabushiki Kaisha Morita Seisakusho Sudden stop circuit for a brushless micromotor
US4628233A (en) 1984-03-23 1986-12-09 Black & Decker Inc. Microprocessor based motor control
USRE33379E (en) 1984-03-23 1990-10-09 Black & Decker Inc. Microprocessor based motor control
US4648282A (en) 1984-05-15 1987-03-10 Cooper Industries Power screwdriver
JPS60252213A (en) 1984-05-28 1985-12-12 Tokyo Keiki Co Ltd Inclined angle measuring instrument
EP0199883B1 (en) 1985-03-29 1990-08-08 HILTI Aktiengesellschaft Motor-driven hand tool
US4744248A (en) 1985-07-25 1988-05-17 Litton Systems, Inc. Vibrating accelerometer-multisensor
US4754669A (en) 1985-10-24 1988-07-05 Black & Decker Inc. Motor driven screwdriver with spindle lock
US4793226A (en) 1986-03-04 1988-12-27 Willy Kress Manual device for driving screws
US4885511A (en) 1986-04-11 1989-12-05 Hilti Aktiengesellschaft Drive control with overload protection for a drill device
JPH0465677B2 (en) 1986-07-11 1992-10-20 Shin Nihon Kagaku Kogyo Kk
US4820962A (en) 1986-10-31 1989-04-11 Hilti Aktiengesellschaft Arrangement for automatic working data set-up for driving implements
US4732221A (en) 1987-01-21 1988-03-22 Stewart-Warner Corporation Pneumatic chipping hammer and method of manufacture
WO1988006508A3 (en) 1987-03-05 1988-09-22 Bosch Gmbh Robert Process for interrupting the operation of a hand tool, in particular percussion and/or rotation thereof
EP0303651B2 (en) 1987-03-05 1999-12-01 Robert Bosch Gmbh Process for interrupting the operation of a hand tool, in particular percussion and/or rotation thereof
US4841773A (en) 1987-05-01 1989-06-27 Litton Systems, Inc. Miniature inertial measurement unit
US4759225A (en) 1987-06-01 1988-07-26 Ryeson Corporation Torque tool and torque tool analyzer
US4948164A (en) 1988-01-29 1990-08-14 Nissan Motor Company, Limited Actively controlled suspension system with compensation of delay in phase in control system
US4871033A (en) 1988-01-30 1989-10-03 Hilti Aktiengesellschaft Motor-driven hand tool with braking torque device
US4961035A (en) 1988-02-04 1990-10-02 Hitachi, Ltd. Rotational angle control of screw tightening
EP0345655B1 (en) 1988-06-04 1994-03-23 Robert Bosch Gmbh Safety circuit for an electric hand tool
US4846027A (en) 1988-08-19 1989-07-11 Taiwan Silver Star Industrial Co., Ltd. Screwdriver
US5036925A (en) 1988-09-01 1991-08-06 Black & Decker Inc. Rotary hammer with variable hammering stroke
US4878404A (en) 1988-09-14 1989-11-07 Liao Hsieh Yuan Electric screwdriver
US4996877A (en) 1989-02-24 1991-03-05 Litton Systems, Inc. Three axis inertial measurement unit with counterbalanced mechanical oscillator
US5166882A (en) 1989-03-31 1992-11-24 The United States Of America As Represented By The Secretary Of The Navy System for calibrating a gyro navigator
US5014793A (en) 1989-04-10 1991-05-14 Measurement Specialties, Inc. Variable speed DC motor controller apparatus particularly adapted for control of portable-power tools
USD326043S (en) 1989-05-19 1992-05-12 Hitachi Koki Company, Limited Electric screw driver
US5155421A (en) 1989-06-12 1992-10-13 Atlas Copco Tools Ab Power wrench for tightening screw joints
US5245747A (en) 1989-09-22 1993-09-21 Atlas Copco Tools Ab Device for tightening threaded joints
DE3938787A1 (en) 1989-11-23 1991-05-29 Gardner Denver Gmbh Electric screwdriver with torque-monitoring and braking circuits - has strain-guage torque meter providing continuous braking signal during rapid deceleration of motor
US5619085A (en) 1989-12-15 1997-04-08 Shramo; Daniel J. Slotless, brushless, large air-gap electric motor
US5200661A (en) 1989-12-15 1993-04-06 Shramo Daniel J Slotless, brushless, large air gap electric motor
US5425165A (en) 1989-12-15 1995-06-20 Shramo; Daniel J. Method of making a slotless, brushless, large air-gap electric motor
US5247466A (en) 1990-03-29 1993-09-21 Hitachi, Ltd. Angular rate detection apparatus, acceleration detection apparatus and movement control apparatus, of moving body
US5156221A (en) 1990-06-22 1992-10-20 Ceka Elektrowerkzeuge Ag & Co. Kg Method of and arrangement for controlling the operation of a hand-held electrical device
US5284217A (en) 1990-10-09 1994-02-08 Allen-Bradley Company, Inc. Apparatus for tightening threaded fasteners based upon a predetermined torque-angle specification window
US5212862A (en) 1990-10-09 1993-05-25 Allen-Bradley Company, Inc. Torque-angle window control for threaded fasteners
US5365155A (en) 1990-10-22 1994-11-15 Marquardt Gmbh Rotational speed control and use of same to control the rotational speed of an electric hand tool motor
US5201373A (en) 1991-01-05 1993-04-13 Robert Bosch Gmbh Hand held power tool with safety coupling
US5493909A (en) 1991-01-30 1996-02-27 Mitsubishi Denki Kabushiki Kaisha Method of and an apparatus for detecting control information
US5241861A (en) 1991-02-08 1993-09-07 Sundstrand Corporation Micromachined rate and acceleration sensor
US5232328A (en) 1991-03-05 1993-08-03 Semitool, Inc. Robot loadable centrifugal semiconductor processor with extendible rotor
US5401124A (en) 1991-04-12 1995-03-28 Robert Bosch Gmbh Hand-held power tool with jamming-detection sensor
US5174045A (en) 1991-05-17 1992-12-29 Semitool, Inc. Semiconductor processor with extendible receiver for handling multiple discrete wafers without wafer carriers
US5149998A (en) 1991-08-23 1992-09-22 Eaton Corporation Eddy current drive dynamic braking system for heat reduction
US5311069A (en) 1991-09-06 1994-05-10 Silicon Systems, Inc. Driver circuitry for commutated inductive loads
USD339279S (en) 1992-01-08 1993-09-14 Willi Hahn Gmbh & Co. Kg Handle for a screwdriver
DE4204420A1 (en) 1992-02-14 1993-08-19 Fein C & E Battery-driven hand tool e.g. electric screwdriver - has separate battery pack and state-of-charge indicator plugging into rear of tool housing, forming rechargeable unit
US5418422A (en) 1992-05-06 1995-05-23 U.S. Philips Corporation Combination of display tube and deflection unit comprising line deflection coils of the semi-saddle type with a gun-sided extension
US5345382A (en) 1992-05-15 1994-09-06 Zexel Corporation Calibration method for a relative heading sensor
US5357179A (en) 1992-06-19 1994-10-18 Pace, Incorporated Handheld low voltage machining tool
US5476014A (en) 1992-12-21 1995-12-19 Mercedes-Benz Ag Process and a device for the rotation-angle-monitored tightening or loosening of screw connections
DE4243317A1 (en) 1992-12-21 1993-06-09 Edgar Von Dipl.-Ing. 6602 Dudweiler De Hinueber Angle control method for automatic screwdriver - using inertial angular rate sensor built into rotating shaft of insertion tool, and e.g. Sagnac effect rotation pick=up
US5535306A (en) 1993-01-28 1996-07-09 Applied Materials Inc. Self-calibration system for robot mechanisms
RU2103156C1 (en) 1993-02-08 1998-01-27 Малое предприятие "Мехсборка" Method for assembly of threaded joint
US5383363A (en) 1993-02-10 1995-01-24 Ford Motor Company Inertial measurement unit providing linear and angular outputs using only fixed linear accelerometer sensors
US20020170754A1 (en) 1993-02-24 2002-11-21 Heinzmann Richard K. Controlled balancing toy
US5971091A (en) 1993-02-24 1999-10-26 Deka Products Limited Partnership Transportation vehicles and methods
US6581714B1 (en) 1993-02-24 2003-06-24 Deka Products Limited Partnership Steering control of a personal transporter
US5361022A (en) 1993-03-23 1994-11-01 E. F. Bavis & Associates, Inc. Method and apparatus for electrical dynamic braking
US6836614B2 (en) 1993-07-06 2004-12-28 Black & Decker Inc. Electrical power tool having a motor control circuit for providing control over the torque output of the power tool
US5484026A (en) 1993-09-03 1996-01-16 Nikon Corporation Handheld electromotive tool with sensor
US5563482A (en) 1993-09-30 1996-10-08 Black & Decker Inc. Power tools
DE4334933C2 (en) 1993-10-13 1997-02-20 Fraunhofer Ges Forschung Method and device for forcibly switching off hand-held tools
US5637968A (en) 1993-10-25 1997-06-10 The Stanley Works Power tool with automatic downshift feature
US5584619A (en) 1993-12-28 1996-12-17 Hilti Aktiengesellschaft Method of and arrangement for preventing accidents during operation of a manually-operated machine tool with a rotatable toolbit
EP0666148B1 (en) 1993-12-28 1997-06-18 HILTI Aktiengesellschaft Method and apparatus for handheld machine tools to prevent accidents caused by blocking of the tool
US5806401A (en) 1994-01-04 1998-09-15 Rajala; Edward Satellite sawmill with adjustable saws and automatic sawbolt centering device
US5714698A (en) 1994-02-03 1998-02-03 Canon Kabushiki Kaisha Gesture input method and apparatus
JPH07270444A (en) 1994-03-31 1995-10-20 Matsushita Electric Ind Co Ltd Angular speed sensor
US5440218A (en) 1994-07-13 1995-08-08 General Electric Company Reversible switched reluctance motor operating without a shaft position sensor
EP0773854B1 (en) 1994-08-03 2000-01-26 Robert Bosch Gmbh Power screwdriver and process for tightening screws
US6005489A (en) 1994-08-18 1999-12-21 Atlas Copco Tools Ab Electric power tool with code receiver
JPH08128825A (en) 1994-11-02 1996-05-21 Tamagawa Seiki Co Ltd Method for measuring angle of inclination and tilt angle gage
US5589644A (en) 1994-12-01 1996-12-31 Snap-On Technologies, Inc. Torque-angle wrench
US5615130A (en) 1994-12-14 1997-03-25 Dallas Semiconductor Corp. Systems and methods to gather, store and transfer information from electro/mechanical tools and instruments
US6479958B1 (en) 1995-01-06 2002-11-12 Black & Decker Inc. Anti-kickback and breakthrough torque control for power tool
US5754019A (en) 1995-03-24 1998-05-19 Marquardt Gmbh Method and circuit arrangement for operating an electric motor
US5981557A (en) 1995-05-18 1999-11-09 Zeria Pharmaceutical Co., Ltd. Aminothiazole derivative, medicament containing the same, and intermediate for preparation of said compound
US5538089A (en) 1995-06-05 1996-07-23 The Black & Decker Corporation Power tool clutch assembly
US5635638A (en) 1995-06-06 1997-06-03 Analog Devices, Inc. Coupling for multiple masses in a micromachined device
USD378727S (en) 1995-07-25 1997-04-08 Ryobi North America Rotary tool
US5557990A (en) 1995-07-27 1996-09-24 Shin; Fu-Zong Actuating device for use in powered screwdriver
US5738177A (en) 1995-07-28 1998-04-14 Black & Decker Inc. Production assembly tool
JPH0938815A (en) 1995-07-31 1997-02-10 Ntn Corp Load detecting spindle unit
US5704435A (en) 1995-08-17 1998-01-06 Milwaukee Electric Tool Corporation Hand held power tool including inertia switch
US5984020A (en) 1995-08-17 1999-11-16 Milwaukee Electric Tool Corporation Power toll including inertia responsive element
US6138629A (en) 1995-08-31 2000-10-31 Isad Electronic Systems Gmbh & Co. Kg System for actively reducing radial vibrations in a rotating shaft, and method of operating the system to achieve this
US6044918A (en) 1995-09-20 2000-04-04 Hilti Aktiengesellschaft Percussion blow added manually operable drilling tool
USD387964S (en) 1995-10-02 1997-12-23 Meccano, S.A. Screwdriver
US5996707A (en) 1995-11-02 1999-12-07 Robert Bosch Gmbh Hand power tool
GB2306356B (en) 1995-11-02 1998-01-14 Bosch Gmbh Robert Hand machine tool
DE19540718B4 (en) 1995-11-02 2007-04-05 Robert Bosch Gmbh Hand tool with a triggerable by a detection device blocking device
EP0771619B2 (en) 1995-11-02 2004-11-10 Robert Bosch Gmbh Process for interrupting the operation of a hand tool and hand tool therefore
US6058815A (en) 1995-12-22 2000-05-09 Habermehl; G. Lyle Hand held power tool
US5831402A (en) 1996-03-15 1998-11-03 Yang; Tai-Her Double direction actuating type tool of loose forward and loose backward assisting style
US5730232A (en) 1996-04-10 1998-03-24 Mixer; John E. Two-speed fastener driver
DE19620124C1 (en) 1996-05-18 1997-07-31 Norbert Gerlach Rotation angle measuring device for hand-guided screwdriver about axis of screwing motion
US5795988A (en) 1996-07-01 1998-08-18 Alliedsignal Inc. Gyroscope noise reduction and drift compensation
US5701961A (en) 1996-07-05 1997-12-30 Ingersoll-Rand Company Electronic push to start nutrunner
US6567068B2 (en) 1996-08-05 2003-05-20 Sony Corporation Information processing device and method
DE19632363C1 (en) 1996-08-10 1998-01-15 Telefunken Microelectron Method of detecting angular acceleration of motor vehicles
US5793168A (en) 1996-08-23 1998-08-11 Micro Linear Corporation Active deceleration circuit for a brushless DC motor
US5914882A (en) 1996-10-09 1999-06-22 Hilti Aktiengesellschaft Device for and method of preventing accidents in hand-operated machine tools due to tool jamming
EP0841127B1 (en) 1996-11-11 2003-03-19 HILTI Aktiengesellschaft Motor-driven hand tool with safety device in case of jammed tool
US5879111A (en) 1996-11-11 1999-03-09 Hilti Aktiengesellschaft Hand-held device
US5954457A (en) 1996-11-11 1999-09-21 Hilti Aktiengesellschaft Hand-held device
EP0841126B1 (en) 1996-11-11 2003-03-19 HILTI Aktiengesellschaft Motor-driven hand tool with safety device in case of jammed tool
US6161629A (en) 1996-11-19 2000-12-19 Hohmann; Joerg Power wrench
USD392532S (en) 1996-11-27 1998-03-24 Hsuan-Sen Shiao Driving assembly of a screwdriver
JPH10156739A (en) 1996-12-03 1998-06-16 Kanyuki Tomidokoro Screw driver of type convertible between power-assisted rotation and high-speed rotation
DE19651124C1 (en) 1996-12-09 1998-05-28 Siemens Ag Automobile lateral pitching detection arrangement
US6055142A (en) 1997-04-23 2000-04-25 Hilti Aktiengesellschaft Manually guided machine tool with a safety device
USD392535S (en) 1997-05-15 1998-03-24 Maxtech Manufacturing Inc. Tool handle
DE19726006A1 (en) 1997-06-19 1998-09-10 Bosch Gmbh Robert Rotation sensor for motor vehicles, etc.
US6408252B1 (en) 1997-08-01 2002-06-18 Dynalog, Inc. Calibration system and displacement measurement device
US6209394B1 (en) 1997-10-23 2001-04-03 Stmicroelectronics S.R.L. Integrated angular speed sensor device and production method thereof
US6387725B1 (en) 1997-10-23 2002-05-14 Stmicroelectronics S.R.L. Production method for integrated angular speed sensor device
US6129699A (en) 1997-10-31 2000-10-10 Sorenson Development, Inc. Portable persistaltic pump for peritoneal dialysis
US6236177B1 (en) 1998-06-05 2001-05-22 Milwaukee Electric Tool Corporation Braking and control circuit for electric power tools
US6158929A (en) 1998-07-01 2000-12-12 Bae Systems Plc Electronically triggered surface sensor unit
US6062939A (en) 1998-08-07 2000-05-16 Mattel, Inc. Toy power tool
US6147626A (en) 1998-08-11 2000-11-14 Visteon Technologies, Llc Determination of zero-angular-velocity output level for angular velocity sensor
EP1008422B1 (en) 1998-12-10 2007-02-14 HILTI Aktiengesellschaft Method and device for handheld machine tools to prevent accidents caused by tool blockage
US6111515A (en) 1998-12-10 2000-08-29 Hilti Aktiengesellschaft Method of and apparatus for preventing accidents during working with hand-held tools with a rotatable working tool
GB2347100B (en) 1999-01-12 2001-01-17 Bosch Gmbh Robert Hand-held machine tool
DE19900882A1 (en) 1999-01-12 2000-07-13 Bosch Gmbh Robert Hand-held machine tool, especially drill or angle grinder, has locking and blocking elements brought into engagement axially in direction of blocking element rotation axis in uncontrolled state
US6415875B1 (en) 1999-01-12 2002-07-09 Robert Bosch Gmbh Hand-held power tool
US7121358B2 (en) 1999-04-29 2006-10-17 Gass Stephen F Power tools
US6834730B2 (en) 1999-04-29 2004-12-28 Stephen F. Gass Power tools
US20030196824A1 (en) 1999-04-29 2003-10-23 Gass Stephen F. Power tools
US6049460A (en) 1999-07-19 2000-04-11 Eaton Corporation Trigger actuated control having supplemental heat sink
US6640733B2 (en) 1999-12-08 2003-11-04 Edward H. Huffmeyer Inclinometer-controlled apparatus for varying the rate of seed population
US6612034B2 (en) 2000-01-24 2003-09-02 Koninklijke Philips Electronics N.V. Hand-held electrical appliance for personal care or for use as a tool
EP1151828B1 (en) 2000-05-02 2007-09-12 HILTI Aktiengesellschaft Rotatable electric hand tool with security system
US20010042630A1 (en) 2000-05-02 2001-11-22 Ferdinand Kristen Rotating electric hand tool implement with safety routine
US7011165B2 (en) 2000-05-02 2006-03-14 Hilti Aktiengesellschaft Rotating electric hand tool implement with safety routine
US7154406B1 (en) 2000-08-10 2006-12-26 Black & Decker Inc. Power tool level indicator
US20020053892A1 (en) 2000-08-24 2002-05-09 Roland Schaer Microcontroller for and a method of controlling operation of the safety clutch of a hand-held electric power tool
US20020033267A1 (en) 2000-09-16 2002-03-21 Edwin Schweizer Electrical hand-held power tool with a torque control
EP1188521A3 (en) 2000-09-16 2002-05-15 HILTI Aktiengesellschaft Powered tool with torque control
EP1201373B1 (en) 2000-10-19 2008-09-24 HILTI Aktiengesellschaft Safety circuit for a rotary electric hand tool
US20040011632A1 (en) 2000-10-19 2004-01-22 Peter Hellmann Safety switch device for a rotary powered hand tool
US20020066632A1 (en) 2000-12-01 2002-06-06 Ferdinand Kristen Safety clutch for electrical hand-held tool
US6923268B2 (en) 2001-02-28 2005-08-02 Katsuyuki Totsu Electric rotational tool driving switch system
US20030000651A1 (en) 2001-03-23 2003-01-02 Genser Hans Georg Rotating evaporator with process-dependent rotating speed regulation
US7055620B2 (en) 2001-04-06 2006-06-06 Robert Bosch Gmbh Hand-held machine tool
DE10117121A1 (en) 2001-04-06 2002-10-17 Bosch Gmbh Robert Hand tool
EP1379362B1 (en) 2001-04-06 2011-05-25 Robert Bosch Gmbh Hand-held machine tool
US20030116332A1 (en) 2001-04-06 2003-06-26 Peter Nadig Hand-held machine tool
US6871128B2 (en) 2001-04-19 2005-03-22 Kawasaki Jukogyo Kabushiki Kaisha Speed change control method and speed change controller
US6910540B2 (en) 2001-04-25 2005-06-28 Katsuyuki Totsu Torque control system for electrically driven rotating tools
US6516896B1 (en) 2001-07-30 2003-02-11 The Stanley Works Torque-applying tool and control therefor
US20030042859A1 (en) 2001-08-06 2003-03-06 Gorti Bhanuprasad V. Excitation circuit and control method for flux switching motor
US20030037423A1 (en) 2001-08-24 2003-02-27 Siegel Robert P. Intelligent power tool
US6779952B2 (en) 2001-09-20 2004-08-24 Weidong Zhang Stepless speed change bench drill
US6965835B2 (en) 2001-09-28 2005-11-15 Spx Corporation Torque angle sensing system and method with angle indication
US7055622B2 (en) 2001-11-20 2006-06-06 Black & Decker Inc. Power tool having a handle and a pivotal tool body
US6983506B1 (en) 2001-11-20 2006-01-10 Coffee Brown Universal, interchangeable tool attachment system
US20040069511A1 (en) 2002-07-03 2004-04-15 David Spielmann Hand-held power tool with a torque cut-off device
US6842991B2 (en) 2002-07-31 2005-01-18 Robert W. Levi Gyro aided magnetic compass
US20040104034A1 (en) 2002-08-19 2004-06-03 Claus Osselmann Safety module for a multifunctional handheld tool
US6843140B2 (en) 2002-08-19 2005-01-18 Hilti Aktiengesellschaft Safety module for a multifunctional handheld tool
EP1391271B1 (en) 2002-08-19 2011-01-19 HILTI Aktiengesellschaft Safety device for multi-function handtool
US7090030B2 (en) 2002-09-03 2006-08-15 Microtorq L.L.C. Tranducerized torque wrench
EP1398119B1 (en) 2002-09-11 2010-04-07 Black & Decker Inc. Safety cut-off for power tool with rotating tool bit
US20060124331A1 (en) 2002-09-13 2006-06-15 Michael Stirm Rotary tool
WO2004024398A1 (en) 2002-09-13 2004-03-25 Black & Decker Inc Rotary tool
US7506694B2 (en) 2002-09-13 2009-03-24 Black & Decker Inc. Rotary tool
JP4226869B2 (en) 2002-10-03 2009-02-18 日本圧着端子製造株式会社 Card connector
USD485737S1 (en) 2003-01-10 2004-01-27 Toolovation, Llc Battery powered screwdriver
US20050000998A1 (en) 2003-01-27 2005-01-06 Mario Grazioli Hand-held working tool
US7036703B2 (en) 2003-01-27 2006-05-02 Hilti Aktiengesellschaft Hand-held working tool
USD493888S1 (en) 2003-02-04 2004-08-03 Sherwood Services Ag Electrosurgical pencil with pistol grip
EP1447177B1 (en) 2003-02-05 2011-04-20 Makita Corporation Power tool with a torque limiter using only rotational angle detecting means
US6968908B2 (en) 2003-02-05 2005-11-29 Makita Corporation Power tools
EP1452278B1 (en) 2003-03-01 2011-05-11 HILTI Aktiengesellschaft Control method of a percussion power drill
US20040226728A1 (en) 2003-03-01 2004-11-18 Hans Boeni Process for controlling an axially hammering and rotating electric hand-held machine tool
DE10309414B4 (en) 2003-03-05 2009-01-08 Robert Bosch Gmbh Sensor device and associated method for a hand tool
US20040182175A1 (en) 2003-03-19 2004-09-23 The Boeing Company Tool and associated methods for controllably applying torque to a fastener
EP1470898B1 (en) 2003-04-24 2008-09-17 BLACK & DECKER INC. Control system and method for a power tool
US7730963B2 (en) 2003-04-24 2010-06-08 Black & Decker Inc. Safety mechanism for a rotary hammer
US7487845B2 (en) 2003-04-24 2009-02-10 Black & Decker Inc. Safety mechanism for a rotary hammer
US20100263891A1 (en) 2003-04-24 2010-10-21 Black & Decker Inc. Safety mechanism for a rotary hammer
US20090120657A1 (en) 2003-04-24 2009-05-14 Black & Decker Inc. Safety mechanism for a rotary hammer
US7395871B2 (en) 2003-04-24 2008-07-08 Black & Decker Inc. Method for detecting a bit jam condition using a freely rotatable inertial mass
US20040211573A1 (en) 2003-04-24 2004-10-28 Carrier David A. Safety mechanism for a rotary hammer
GB2400811B (en) 2003-04-25 2005-07-06 Bosch Gmbh Robert Drilling appliance with automatic position detection
DE10318798B4 (en) 2003-04-25 2006-01-26 Robert Bosch Gmbh drill
US20040226124A1 (en) 2003-05-16 2004-11-18 Silva Sandra S. Multi-color faux art palette
USD494829S1 (en) 2003-05-19 2004-08-24 Jack Lin Handle for screwdriver
US6796921B1 (en) 2003-05-30 2004-09-28 One World Technologies Limited Three speed rotary power tool
US7121598B2 (en) 2003-06-05 2006-10-17 Societe De Prospection Et D'inventions Techniques Spit Pole for remote operation of a hand tool
US20060243469A1 (en) 2003-06-11 2006-11-02 Webster Craig D Handwheel-operated device
DE10340710A1 (en) 2003-09-04 2005-03-31 Saltus-Werk Max Forst Gmbh An electronic torque wrench has gyroscopic angle measurement and lighting indication
US7197961B2 (en) 2003-09-29 2007-04-03 Robert Bosch Gmbh Battery-driven screwdriver with a two-part motor housing and a separate, flanged gear unit
US7134364B2 (en) 2003-09-29 2006-11-14 Robert Bosch Gmbh Battery-driven screwdriver
EP1524084B1 (en) 2003-10-14 2009-08-19 Panasonic Electric Works Co., Ltd. Power impact tool
DE10348756B4 (en) 2003-10-21 2011-01-05 Zf Friedrichshafen Ag Rotary hammer or drill with electromagnetic clutch and method for operating the electromagnetic clutch
JP2005144625A (en) 2003-11-18 2005-06-09 Mazda Motor Corp Control device of hand held power tool
US20070095634A1 (en) 2003-11-28 2007-05-03 Valeo Thermal Systems Japan Corporation Rotary switch mechanism
US7504791B2 (en) 2004-01-22 2009-03-17 Robert Bosch Gmbh Electric power tool with optimized operating range
US7347158B2 (en) 2004-01-22 2008-03-25 Graham Hawkes Safety system for scuba divers operating underwater propulsion devices
US20070068480A1 (en) 2004-01-28 2007-03-29 Juergen Wiker Method for switching off a power tool
US7372226B2 (en) 2004-01-28 2008-05-13 Robert Bosch Gmbh Method for switching off a power tool
EP1711308B1 (en) 2004-01-28 2007-09-26 Robert Bosch Gmbh Method for switching off an electric machine tool when blocked, and an electric machine tool
WO2005095061A1 (en) 2004-04-01 2005-10-13 Atlas Copco Tools Ab Method for determining the angular movement of the output shaft of an impulse nut runner at tightening a screw joint
USD534651S1 (en) 2004-04-01 2007-01-02 Kinamed, Inc. Powered surgical screwdriver
US20050217874A1 (en) 2004-04-02 2005-10-06 Michael Forster Method for operating a power driver
US7331406B2 (en) 2004-06-21 2008-02-19 Duraspin Products Llc Apparatus for controlling a fastener driving tool, with user-adjustable torque limiting control
US7234536B2 (en) 2004-08-04 2007-06-26 C. & E. Fein Gmbh Power screwdriver
US7546785B2 (en) 2004-08-09 2009-06-16 Robert Bosch Gmbh Battery-operated screwdriver
US7936148B2 (en) 2004-08-09 2011-05-03 Robert Bosch Gmbh Battery-operated screwdriver and charger shell therefor
US20070256914A1 (en) 2004-08-09 2007-11-08 Guenter Lohr Cordless Screwdriver
US7723953B2 (en) 2004-08-09 2010-05-25 Robert Bosch Gmbh Battery-operated screwdriver and charger shell therefor
US7182148B1 (en) 2004-08-11 2007-02-27 William Szieff Tool with motion and orientation indicators
USD513160S1 (en) 2004-09-17 2005-12-27 The Faucet-Queens Inc. Cordless drill
USD517634S1 (en) 2004-09-22 2006-03-21 Taylor Made Golf Company, Inc. Golf club wrench
US7463952B2 (en) 2004-10-13 2008-12-09 Continental Automotive France Method and device for processing measurement signals from a movement sensor on board a motor vehicle
US7688028B2 (en) 2004-10-18 2010-03-30 Black & Decker Inc. Cordless power system
US20060081368A1 (en) 2004-10-19 2006-04-20 Halliburton Energy Services, Inc. Tubing injector for variable diameter tubing
US7410006B2 (en) 2004-10-20 2008-08-12 Black & Decker Inc. Power tool anti-kickback system with rotational rate sensor
US20060081386A1 (en) 2004-10-20 2006-04-20 Qiang Zhang Power tool anti-kickback system with rotational rate sensor
US7681659B2 (en) 2004-10-20 2010-03-23 Black & Decker Inc. Power tool anti-kickback system with rotational rate sensor
US7552781B2 (en) 2004-10-20 2009-06-30 Black & Decker Inc. Power tool anti-kickback system with rotational rate sensor
WO2006045072B1 (en) 2004-10-20 2007-05-31 Black & Decker Inc Power tool anti-kickback system with rotational rate sensor
US20070084613A1 (en) 2004-10-20 2007-04-19 Qiang Zhang Power tool anti-kickback system with rotational rate sensor
US20080110653A1 (en) 2004-10-20 2008-05-15 Qiang Zhang Power tool anti-kickback system with rotational rate sensor
US7225884B2 (en) 2004-10-26 2007-06-05 Robert Bosch Gmbh Hand power tool, in particular drilling screwdriver
US20060103733A1 (en) 2004-11-18 2006-05-18 International Business Machines Corporation Changing a function of a device based on tilt of the device for longer than a time period
GB2420843B (en) 2004-12-03 2007-10-24 Bosch Gmbh Robert Hand machine tool
EP1670134A1 (en) 2004-12-09 2006-06-14 Ferm B.V. Apparatus and method for controlling a motor
US7689378B2 (en) 2005-02-15 2010-03-30 Magneto Inertial Sensing Technology, Inc. Motion sensing apparatus, systems and techniques
US7832286B2 (en) 2005-04-07 2010-11-16 Kyoto Tool Co., Ltd. Torque wrench
US7642741B2 (en) 2005-04-27 2010-01-05 Sidman Adam D Handheld platform stabilization system employing distributed rotation sensors
US7359816B2 (en) 2005-05-25 2008-04-15 Analog Devices, Inc. Sensor calibration method and apparatus
US7469753B2 (en) 2005-06-01 2008-12-30 Milwaukee Electric Tool Corporation Power tool, drive assembly, and method of operating the same
US7456603B2 (en) 2005-07-19 2008-11-25 Hitachi, Ltd. Phase detection circuit, resolver/digital converter using the circuit, and control system using the converter
US7650699B2 (en) 2005-07-22 2010-01-26 Kazuhiro Yamamoto Electric drill
US20080276760A1 (en) 2005-08-11 2008-11-13 Jong Phil Kim Driver
US7682035B2 (en) 2005-09-01 2010-03-23 Robert Bosch Gmbh Housing device for hand-held power tool
US7526398B1 (en) 2005-09-21 2009-04-28 Samsung Electronics Co., Ltd. Method and apparatus for calibrating gyro-sensor
US7551411B2 (en) 2005-10-12 2009-06-23 Black & Decker Inc. Control and protection methodologies for a motor control module
US7926585B2 (en) 2005-11-04 2011-04-19 Robert Bosch Gmbh Method and apparatus for an articulating drill
US7487844B2 (en) 2005-11-04 2009-02-10 Robert Bosch Gmbh Drill with solid state speed control
US7708085B2 (en) 2005-11-04 2010-05-04 Robert Bosch Gmbh Articulating drill with optical speed control and method of operation
US7861796B2 (en) 2005-11-04 2011-01-04 Robert Bosch Gmbh Method of operating drill with solid state speed control
US7400106B2 (en) 2005-11-04 2008-07-15 Robert Bosch Gmbh Method and apparatus for providing torque limit feedback in a power drill
US7565844B2 (en) 2005-11-28 2009-07-28 Snap-On Incorporated Torque-angle instrument
US20070144270A1 (en) 2005-11-28 2007-06-28 Crass Matthew M Torque-angle instrument
US7774155B2 (en) 2006-03-10 2010-08-10 Nintendo Co., Ltd. Accelerometer-based controller
GB2436959B (en) 2006-04-07 2010-10-06 Bosch Gmbh Robert Electric machine tool and method for operating the latter
DE102006016441A1 (en) 2006-04-07 2007-10-11 Robert Bosch Gmbh Electric machine tool operating method, involves driving electric machine tool by electric motor, where connection of battery unit is made to energize motor that is interrupted upon identification of blocking case
US8025106B2 (en) 2006-04-12 2011-09-27 Robert Bosch Gmbh Method for tightening a screw connection and screw driving tool
US20070281274A1 (en) 2006-06-05 2007-12-06 Allan Schraffran Dental wrench and method of use thereof
US7900715B2 (en) 2006-06-19 2011-03-08 Positec Power Tools (Suzhou) Co., Ltd. Variable speed tool and variable speed control method
US20080011102A1 (en) 2006-07-13 2008-01-17 Schell Craig A Control scheme for detecting and preventing torque conditions in a power tool
EP1878541A2 (en) 2006-07-13 2008-01-16 Black & Decker, Inc. Control Scheme for Detecting and Preventing Torque Conditions in a Power Tool
USD565380S1 (en) 2006-07-19 2008-04-01 Rinner James A Screwdriver T-handle
EP1900484A2 (en) 2006-09-12 2008-03-19 BLACK & DECKER INC. Power tool anti-kickback system with rotational rate sensor
US7942084B2 (en) 2006-12-06 2011-05-17 American Power Tool Company Powered driver and methods for reliable repeated securement of threaded connectors to a correct tightness
US8136382B2 (en) 2007-03-15 2012-03-20 Northrop Grumman Guidance And Electronics Company, Inc. Self-calibration of scale factor for dual resonator class II Coriolis vibratory gyros
US20090051306A1 (en) 2007-08-24 2009-02-26 Makita Corporation Electric power tool, control unit and recording medium
US8179069B2 (en) 2007-08-24 2012-05-15 Makita Corporation Electric power tool, control unit and recording medium
US7882899B2 (en) 2007-08-29 2011-02-08 Positec Power Tools (Suzhou) Co., Ltd Power tool having control system for changing rotational speed of output shaft
US7882900B2 (en) 2007-08-29 2011-02-08 Positec Power Tools (Suzhou) Co., Ltd Power tool with signal generator
WO2009032314A1 (en) 2007-09-07 2009-03-12 Black & Decker Inc. Switchable anti-lock control
US20090065225A1 (en) 2007-09-07 2009-03-12 Black & Decker Inc. Switchable anti-lock control
US20090078057A1 (en) 2007-09-20 2009-03-26 Asi Datamyte Residual torque analyzer
DE102007048052A1 (en) 2007-10-05 2009-04-09 Daubner & Stommel GbR Bau-Werk-Planung (vertretungsberechtigter Gesellschafter: Matthias Stommel, 27777 Ganderkesee) Motor-driven hand machine tool i.e. motor chain saw, operating method, involves eliminating and/or reducing working movements of cutting tool to safe measure depending on detected machine movements of hand machine tool
US20090139738A1 (en) 2007-12-04 2009-06-04 Peter Lippek Screwing Tool And Method For Controlling The Tightening Angle Of Screwed Joints
WO2009083306A1 (en) 2007-12-27 2009-07-09 Robert Bosch Gmbh Device and method for taking a safety precaution in an electrical tool
DE102007062727A1 (en) 2007-12-27 2009-07-02 Robert Bosch Gmbh Device and method for taking a safety measure in a power tool
US20090211774A1 (en) 2008-02-25 2009-08-27 Dvells Jr Walter E Attachment for stitching tool
US20110160903A1 (en) 2008-04-24 2011-06-30 Nikolai Romanov Articulated Joint and Three Points of Contact
US20110153081A1 (en) 2008-04-24 2011-06-23 Nikolai Romanov Robotic Floor Cleaning Apparatus with Shell Connected to the Cleaning Assembly and Suspended over the Drive System
US20110202175A1 (en) 2008-04-24 2011-08-18 Nikolai Romanov Mobile robot for cleaning
US20110079406A1 (en) 2008-05-08 2011-04-07 Atlas Copco Tools Ab Method and device for tightening joints
WO2009136840A1 (en) 2008-05-08 2009-11-12 Atlas Copco Tools Ab Method and device for tightening joints
US20090295313A1 (en) 2008-05-30 2009-12-03 Makita Corporation Rechargeable power tool, control unit and recording medium
US7912664B2 (en) 2008-09-11 2011-03-22 Northrop Grumman Guidance And Electronics Company, Inc. Self calibrating gyroscope system
US20100189887A1 (en) 2008-10-02 2010-07-29 Certusview Technologies, Llc Marking apparatus having enhanced features for underground facility marking operations, and associated methods and systems
US20100245086A1 (en) 2008-10-02 2010-09-30 Certusview Technologies, Llc Marking apparatus configured to detect out-of-tolerance conditions in connection with underground facility marking operations, and associated methods and systems
US20100247754A1 (en) 2008-10-02 2010-09-30 Certusview Technologies, Llc Methods and apparatus for dispensing marking material in connection with underground facility marking operations based on environmental information and/or operational information
US20100188245A1 (en) 2008-10-02 2010-07-29 Certusview Technologies, Llc Locate apparatus having enhanced features for underground facility locate operations, and associated methods and systems
US20100263591A1 (en) 2008-10-02 2010-10-21 Certusview Technologies, Llc Marking apparatus having environmental sensors and operations sensors for underground facility marking operations, and associated methods and systems
USD613144S1 (en) 2008-10-08 2010-04-06 Fu-Hui Lin Hand tool
DE102009007977A1 (en) 2009-02-06 2009-07-23 Konrad, Hilmar, Dipl.-Ing. Angular deviation indicating method for e.g. drilling machine, involves comparing current detected rotation angle value continuously with reference valve, and indicating comparison result as measure of angle deviation
DE102009001298A1 (en) 2009-03-03 2010-09-16 Hilti Aktiengesellschaft self-tapping
US20100256939A1 (en) 2009-04-03 2010-10-07 The Regents Of The University Of Michigan Heading Error Removal System for Tracking Devices
USD606827S1 (en) 2009-06-18 2009-12-29 3M Innovative Properties Company Small, portable power tool
US20120090863A1 (en) 2010-01-07 2012-04-19 Daniel Puzio Screwdriving tool having a driving tool with a removable contact trip assembly
USD618527S1 (en) 2010-03-22 2010-06-29 IBT Holdings, Inc T tool handle
US20110301900A1 (en) 2010-06-04 2011-12-08 Apple Inc. Gyro zero turn rate offset correction over temperature in a personal mobile device
US20120000682A1 (en) 2010-07-01 2012-01-05 Hilti Aktiengesellschaft Hand-held power tool

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Tonshoff, H.K., Developments and Trends in Monitoring and Control of Machining Processes, Annals of the CIRP vol. 37/2/1988 pp. 611-622.

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150137721A1 (en) * 2013-11-21 2015-05-21 Makita Corporation Power tool
US10357871B2 (en) 2015-04-28 2019-07-23 Milwaukee Electric Tool Corporation Precision torque screwdriver
US11400570B2 (en) 2015-04-28 2022-08-02 Milwaukee Electric Tool Corporation Precision torque screwdriver
US11529725B2 (en) 2017-10-20 2022-12-20 Milwaukee Electric Tool Corporation Power tool including electromagnetic clutch
US10981267B2 (en) 2017-10-26 2021-04-20 Milwaukee Electric Tool Corporation Kickback control methods for power tools
US11607790B2 (en) 2017-10-26 2023-03-21 Milwaukee Electric Tool Corporation Kickback control methods for power tools
US11648655B2 (en) 2017-10-26 2023-05-16 Milwaukee Electric Tool Corporation Kickback control methods for power tools
US11077509B2 (en) 2018-03-16 2021-08-03 Milwaukee Electric Tool Corporation Pipe threader
US11705721B2 (en) 2020-03-10 2023-07-18 Milwaukee Electric Tool Corporation Kickback control methods for a power tool including a force sensor
US11845173B2 (en) 2020-10-16 2023-12-19 Milwaukee Electric Tool Corporation Anti bind-up control for power tools

Also Published As

Publication number Publication date
US20080110653A1 (en) 2008-05-15
US20070084613A1 (en) 2007-04-19
WO2008033310A2 (en) 2008-03-20
EP1900484A3 (en) 2014-09-03
USRE45112E1 (en) 2014-09-09
WO2008033310A3 (en) 2009-04-09
EP1900484B1 (en) 2016-04-06
US7681659B2 (en) 2010-03-23
USRE44993E1 (en) 2014-07-08
CN201152938Y (en) 2008-11-19
US7552781B2 (en) 2009-06-30
EP2949432A1 (en) 2015-12-02
EP2949432B1 (en) 2016-12-21
EP1900484A2 (en) 2008-03-19

Similar Documents

Publication Publication Date Title
USRE44311E1 (en) Power tool anti-kickback system with rotational rate sensor
US7410006B2 (en) Power tool anti-kickback system with rotational rate sensor
US11192232B2 (en) Power tool with anti-kickback control system
EP2508305B1 (en) Control scheme for a power tool
JP6709129B2 (en) Electric tool
JP6709580B2 (en) Handheld power tools
CN201159251Y (en) Controller of power tool with slewing axis
US20080021590A1 (en) Adaptive control scheme for detecting and preventing torque conditions in a power tool
WO2011052451A1 (en) Power tool
US20140053419A1 (en) Control circuit for reciprocating saws
US20170348844A1 (en) Control method for a hand-held power tool
EP0808011B1 (en) Anti-kickback and breakthrough torque control for power tool

Legal Events

Date Code Title Description
FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 12TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1553); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 12