US3061977A - Spherically domed structures - Google Patents

Spherically domed structures Download PDF

Info

Publication number
US3061977A
US3061977A US816152A US81615259A US3061977A US 3061977 A US3061977 A US 3061977A US 816152 A US816152 A US 816152A US 81615259 A US81615259 A US 81615259A US 3061977 A US3061977 A US 3061977A
Authority
US
United States
Prior art keywords
panels
frame members
flange
panel
connector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US816152A
Inventor
Clarence J Schmidt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Goodyear Aircraft Corp
Original Assignee
Goodyear Aircraft Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Goodyear Aircraft Corp filed Critical Goodyear Aircraft Corp
Priority to US816152A priority Critical patent/US3061977A/en
Application granted granted Critical
Publication of US3061977A publication Critical patent/US3061977A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/32Arched structures; Vaulted structures; Folded structures
    • E04B1/3211Structures with a vertical rotation axis or the like, e.g. semi-spherical structures
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/32Arched structures; Vaulted structures; Folded structures
    • E04B2001/3235Arched structures; Vaulted structures; Folded structures having a grid frame
    • E04B2001/3241Frame connection details
    • E04B2001/3247Nodes
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/32Arched structures; Vaulted structures; Folded structures
    • E04B2001/3235Arched structures; Vaulted structures; Folded structures having a grid frame
    • E04B2001/3252Covering details
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/32Arched structures; Vaulted structures; Folded structures
    • E04B2001/3294Arched structures; Vaulted structures; Folded structures with a faceted surface

Definitions

  • Another object is to provide such a construction adapta- -ble to Fiberglas or similar material.
  • Still another object is to provide frame members of one angle cross section which could be used throughout the structure.
  • a further object is to provide a joint for connecting the frame members.
  • FIG. 1 is a diagram-matic plan view of a pentagonal dodecahedron with each of the pentagonal faces divided into five equal isosceles triangles and each of the five triangles subdivided into four isosceles triangles, showing the preferred arrangement of panels and frame members.
  • FIG. 2 is a diagram showing in perspective a pentagonal pyramid having a base corresponding to a pentagonal face of the dodecahedron and of such altitude as to have its apex tangent to a spherical surface tangent to the five corners of its base, each face of the pyramid being subdivided into triangles.
  • FIG. 3 is an outer -face view of an isosceles triangle unit assembly for use in constructing a dome-shaped structure in accordance with the invention.
  • FIG. 4 is a detail view of the face of a spherical structure at the conjunction of six panels, showing -a -bath tub connector therefor.
  • FIG. 5 is a sectional view taken on line 5-5 of FIG. 4.
  • FIG. 6 is a cross sectional view taken on line 6 6 of FIG. 4 showing the adjacent panels at their greatest angular departure from a single plane.
  • FIG. 7 is a similar sectional view showing adjacent panels at their least angular departure from a single plane.
  • FIG. 8 is a view similar to FIG. 4 but as seen from the mner face showing a modification of the connector.
  • FIG. l shows pentagonal dodecahedron having twelve equal pentagonal faces six of which appear as outlined by the most heavy lines, the center of the one pentagon being central of the figure and having its corners designated A1, A2, A3, A4 and A5 and having its center at A0.
  • Each pentagonal face has been divided by lighter lines such as A0'- A1, A0-A2, A0 A3, A0 A4 and A0 A5 it into five equal congruous isosceles triangles.
  • Each isosceles triangle such as A0 A1 A2 has been further subdivided by bisecting the perpendicular distance from the apex A0 to a midpoint of its base A1-A2 and drawing a line parallel to the base through the point of bisection, then drawing lines from the midpoint of the base line through intersection of the drawn line with the sides A0 A1, and A0-A2 of the triangle.
  • the result will be a division of each isosceles triangle into two congruous base to base triangles and two remaining triangles which will be mirror images of one another.
  • Such subdivision Will provide an arrangement of triangular panels requiring only three diiferent types to complete the enclosure of dodecahedron form.
  • assembly units having the shape of a triangle A0-A1-A2 may be constructed and assembled to provide a dodecahedr-on or any portion thereof.
  • a pyramid has been constructed having a pentagonal base A1-A2-A3 A4-A5 equal to the face of the dodecahedron.
  • a sphere S is circumscribed about the dodecahedron With its surface intersecting the corners of the pentagon. Now a radius of the sphere passing through the center A0 of the pentagon will intersect the spherical surface at As. Then lines drawn from As to the five corners of the pentagon will define a pyramid having five isosceles triangles for its sides. Should such a pyramid be superimposed on each pentagonal face of the dodecahedron we would have a polyhedron of sixty congruous isosceles triangular faces closely approximating a sphere.
  • panels of suitable sheet material are constructed and arranged to correspond with the arrangements shown in PIGS. 1 and 2 and are reinforced by straight or curved frame elements to provide either a sixty-faced polyhedron or a spherical surface, the frame elements being straight or curved correspondingly.
  • FIG. 3 this shows four panels 1, 2, 3 and 4 of resin bonded glass fiber material arranged to occupy a surface such as A0- A1-A2 of FIG. 1.
  • Each panel is laid over marginal frame elements 5, 6 and 7 of angle cross section and preferably of resin bonded glass fiber.
  • the frame elements have one flange extending radially inward of the panel, such radial flanges of adjacent panels meeting back to back and being secured by bolts 8 passing therethrough.
  • each tub-shaped connector having a substantially flat or spherical closed top located substantially at the surface of the -domed structure and an inwardly directed peripheral flange thereabout integral with the top, and the frame elements abut the inwardly extending peripheral side walls 10 of the connector as shown in FIGS. 4, 5 and 8 and are secured thereto by connecting angles 11 and bolts 12, While the panels extend over the head of the connector.
  • the bolts are accessible from the inner side of the enclosure.
  • the connectors may be formed of resin l ⁇ bonded glass fiber material.
  • each panel-engaging flange of -a frame member is divided longitudinally into two longitudinal facets which are respectively at the greatest and least angles of departure of a panel from a radius of the structure.
  • each flange has two adjacent facets which are slightly inclined to one another to accommodate panels at a range of departures.
  • a resin cement filling 19 is provided at the margin of the panel outside the rivet line and in FIG. 7 a similar filling is provided between the panel and the flange inwardly of the rivet line.
  • a caulking composition is used to fill joints between adjacent frame elements and panels. It is advisable to provide a caulking space of sufficient width to receive this caulking material.
  • the angle frame elements have their radial flanges otfset outwardly of their meeting plane as at 20 radially outward of the bolts 21 to provide an outwardly open channel 22 to receive and anchor the caulking material and the panels are so cut as to be spaced apart for the same purpose.
  • the same construction may be employed but the panels and frame members may be trimmed away where the spherical or near spherical surface is to be terminated.
  • a spherically domed structure comprising a plurality of construction units of the same size and of isosceles triangular Shape, each unit comprising four panels of sheet material each of isosceles triangular shape arranged in edge to edge relation, each panel having frame members of L-shaped cross section secured to margins of its inner surface, said frame members being of uniform cross section and being shorter than the sides of the panels; six tublike connectors securing the ends of the frame members of each construction unit together, each connector extending beyond the confines of the unit with the ends of frame members of adjoining units connected thereto, said frame members radiating from said connectors, each connector having a closed top located substantially fiush With the top of the frame members and an inwardly directed flange thereabout integral with the top, bolts connecting the flange of each connector to ends of said frame members radiating therefrom, the corners of the panels overlying and closing the closed top of each connector, and bolts connecting said construction units to one another with marginal frame members thereof in back to back relation.
  • a spherically domed structure comprising a plurality of construction units of the same size and of isosceles triangular shape, each unit comprising four panels of sheet material each of isosceles triangular shape arranged in edge to edge relation, each panel having frame members of L-shaped cross section secured to margins of its inner surface, said frame members being of uniform cross section and being shorter than the sides of the panels; six tublike connectors securing the ends of the frame members of each construction unit together, said connectors extending in part beyond the confines of the unit and being secured to the frame members of adjacent units, said frame members radiating from said connectors, each connector having a closed top located substantially flush with the top of the frame members and an inwardly directed flange thereabout integral with the top, bolts connecting the flange of each connector to ends of said frame members radiating therefrom, and bolts connecting said construction units to one another with marginal frame members thereof in back to back relation, said frame members each having one flan ge arranged radial of the structure and the other flange
  • a spherically domed structure comprising a plurality of construction units of the same size and of isosceles triangular shape, each unit comprising four panels of sheet material each of isosceles triangular shape arranged in edge to edge relation, each panel having frame members of L-shaped cross section secured to margins of its inner surface, said frame members being of uniform cross section and being shorter than the sides of the panels, tublike connectors securing the ends of the frame members of a construction unit and of adjoining units thereto with the frame members radiating from said connectors, each connector having a closed top located substantially fiush with the top of the frame members and an inwardly directed flange thereabout integral with the top, bolts connecting the flange of each connector to ends of said frame members radiating therefrom, and bolts connecting said construction units to one another with marginal frame members thereof in back to back relation, said frame members each having one flange arranged radial of the structure and the other flange defining a panel-engaging flange with a longitudinally divided face of

Description

Nov. 6, 1962 c. J. scHMIDT v 3,06l,977
SPHERICALLY DOMED STRUCTURES Filed May 27. 1959 4 Sheets-Sheet 2 INVENTOR. CLARENCE J. SCHMIDT BY/w'ffl ATTORNEY Nov. 6, 1962 c. J. scHMlDT SPHERICALLY DOMED STRUCTURES 4 Sheets-Sheet 5 Filed May 27, 1959 Fi-G.-5
INVENTOR. CLARENCE J. SCHMIDT ATToRNEY' Nov. 6, 1962 c. J. scHMIDT SPHERICALLY DOMED STRUCTURES 4 Sheets-Sheet 4 Filed May 27, 1959 INVENTOR. CLAREN CE J. SCHMIDT ATTORNEY United States Patent 3,06l,977 Patented Nov. 6, 1962 Filed May 27, 1959, Ser. No. 816,152 3 Claims. (Cl. 50-52) This invention relates to spherically domed structures and is especially useful in the construction of radomes and other substantially spherical enclosures.
In the construction of radomes and similar substantially spherical structures it has been found desirable to provide building units of as few sizes and shapes as possible so as to simplify the erection operation. It has also been found desirable to provide a construction which could be constructed almost entirely of resin bonded glass fiber material or other non-metallic material.
It is an object of the present invention to provide a frame and panel construction which could be constructed of sheet material and frame pieces of a minimum number of kinds, sizes, and shapes.
Another object is to provide such a construction adapta- -ble to Fiberglas or similar material.
Still another object is to provide frame members of one angle cross section which could be used throughout the structure.
A further object is to provide a joint for connecting the frame members.
These and other objects will appear from the following descnption and the accompanying drawings formng a part hereof.
Of the drawings:
FIG. 1 is a diagram-matic plan view of a pentagonal dodecahedron with each of the pentagonal faces divided into five equal isosceles triangles and each of the five triangles subdivided into four isosceles triangles, showing the preferred arrangement of panels and frame members.
FIG. 2 is a diagram showing in perspective a pentagonal pyramid having a base corresponding to a pentagonal face of the dodecahedron and of such altitude as to have its apex tangent to a spherical surface tangent to the five corners of its base, each face of the pyramid being subdivided into triangles.
FIG. 3 is an outer -face view of an isosceles triangle unit assembly for use in constructing a dome-shaped structure in accordance with the invention. l
FIG. 4 is a detail view of the face of a spherical structure at the conjunction of six panels, showing -a -bath tub connector therefor.
FIG. 5 is a sectional view taken on line 5-5 of FIG. 4.
FIG. 6 is a cross sectional view taken on line 6 6 of FIG. 4 showing the adjacent panels at their greatest angular departure from a single plane.
FIG. 7 is a similar sectional view showing adjacent panels at their least angular departure from a single plane. O FIG. 8 is a view similar to FIG. 4 but as seen from the mner face showing a modification of the connector.
Referring -to the drawings and first to FIG. l thereof, this shows pentagonal dodecahedron having twelve equal pentagonal faces six of which appear as outlined by the most heavy lines, the center of the one pentagon being central of the figure and having its corners designated A1, A2, A3, A4 and A5 and having its center at A0. Each pentagonal face has been divided by lighter lines such as A0'- A1, A0-A2, A0 A3, A0 A4 and A0 A5 it into five equal congruous isosceles triangles. Each isosceles triangle such as A0 A1 A2 has been further subdivided by bisecting the perpendicular distance from the apex A0 to a midpoint of its base A1-A2 and drawing a line parallel to the base through the point of bisection, then drawing lines from the midpoint of the base line through intersection of the drawn line with the sides A0 A1, and A0-A2 of the triangle. The result will be a division of each isosceles triangle into two congruous base to base triangles and two remaining triangles which will be mirror images of one another. Such subdivision Will provide an arrangement of triangular panels requiring only three diiferent types to complete the enclosure of dodecahedron form. By employing supporting frame elements and the three types of panels, assembly units having the shape of a triangle A0-A1-A2 may be constructed and assembled to provide a dodecahedr-on or any portion thereof.
Where more nearly spherical enclosures are required, this may be a-ccomplished as follows: Referring to FIG. 2 a pyramid has been constructed having a pentagonal base A1-A2-A3 A4-A5 equal to the face of the dodecahedron. A sphere S is circumscribed about the dodecahedron With its surface intersecting the corners of the pentagon. Now a radius of the sphere passing through the center A0 of the pentagon will intersect the spherical surface at As. Then lines drawn from As to the five corners of the pentagon will define a pyramid having five isosceles triangles for its sides. Should such a pyramid be superimposed on each pentagonal face of the dodecahedron we would have a polyhedron of sixty congruous isosceles triangular faces closely approximating a sphere.
In similar manner should the completely subdivided dodecahedron of FIG. 1 be circumscribed by a sphere and then projected radially outward onto the spherical surface or exploded thereonto a sphere would result divided into panels of only three types.
According to this invention panels of suitable sheet material are constructed and arranged to correspond with the arrangements shown in PIGS. 1 and 2 and are reinforced by straight or curved frame elements to provide either a sixty-faced polyhedron or a spherical surface, the frame elements being straight or curved correspondingly. Referring to FIG. 3 this shows four panels 1, 2, 3 and 4 of resin bonded glass fiber material arranged to occupy a surface such as A0- A1-A2 of FIG. 1. Each panel is laid over marginal frame elements 5, 6 and 7 of angle cross section and preferably of resin bonded glass fiber. The frame elements have one flange extending radially inward of the panel, such radial flanges of adjacent panels meeting back to back and being secured by bolts 8 passing therethrough. At the conjunction of frame elements tubshaped connectors 9 are provided, each tub-shaped connector having a substantially flat or spherical closed top located substantially at the surface of the -domed structure and an inwardly directed peripheral flange thereabout integral with the top, and the frame elements abut the inwardly extending peripheral side walls 10 of the connector as shown in FIGS. 4, 5 and 8 and are secured thereto by connecting angles 11 and bolts 12, While the panels extend over the head of the connector. The bolts are accessible from the inner side of the enclosure. The connectors may be formed of resin l`bonded glass fiber material.
The marginal frame elements of the panel assemblies such as that of FIG. 3 are secured by bolts in the same manner to marginal flanges of adjacent assemblies. These frame elements are shown in cross section in FIGS. 6 and 7. As there shown, adjacent panels 13 and 14 as also shown in FIG. 6 depart from one another at the greatest angle of departure of a panel from a radius of the structure found in a stmcture such as that of FIGS. 1 and 2 and the horizontal flanges from the rivets outwardly are made to a corresponding angle of 18' with their radial flanges. In other words, each panel-engaging flange of -a frame member is divided longitudinally into two longitudinal facets which are respectively at the greatest and least angles of departure of a panel from a radius of the structure. In FIG. 7 the adjacent panels 17, 18 depart at the least angle found in such a structure, namely 87 28' to a radius of the structure and the facets of the flanges 15, 16 inwardly of the rivets are made to conform to such angle. In other words, each flange has two adjacent facets which are slightly inclined to one another to accommodate panels at a range of departures. In the case shown in FIG. 6 a resin cement filling 19 is provided at the margin of the panel outside the rivet line and in FIG. 7 a similar filling is provided between the panel and the flange inwardly of the rivet line.
After assembly of the structure, a caulking composition is used to fill joints between adjacent frame elements and panels. It is advisable to provide a caulking space of sufficient width to receive this caulking material. For this purpose the angle frame elements have their radial flanges otfset outwardly of their meeting plane as at 20 radially outward of the bolts 21 to provide an outwardly open channel 22 to receive and anchor the caulking material and the panels are so cut as to be spaced apart for the same purpose.
While the panels have been shown as secured in place by rivets 23 in PIGS. 6 and 7, these may be replaced by cement or by other fastening means if desired. After assembly of the panels on the framework, caulking material is placed in the space 22 fiush with the outer surface of the panels. The points of the triangular panels may eX- tend over the tub-like connectors or the corners of the panels may be cut away to clear the connectors which may be made deep enough to have their channel tops fiush with the panels.
Where less than a complete spherical or near spherical structure is required the same construction may be employed but the panels and frame members may be trimmed away where the spherical or near spherical surface is to be terminated.
While certain representative embodiments and details have been shown for the purpose of illustrating the invention, it will be apparent to those skilled in this art that various changes and modifications may be made therein without departin g from the spirit or scope of the invention.
What is claimed is:
1. A spherically domed structure comprising a plurality of construction units of the same size and of isosceles triangular Shape, each unit comprising four panels of sheet material each of isosceles triangular shape arranged in edge to edge relation, each panel having frame members of L-shaped cross section secured to margins of its inner surface, said frame members being of uniform cross section and being shorter than the sides of the panels; six tublike connectors securing the ends of the frame members of each construction unit together, each connector extending beyond the confines of the unit with the ends of frame members of adjoining units connected thereto, said frame members radiating from said connectors, each connector having a closed top located substantially fiush With the top of the frame members and an inwardly directed flange thereabout integral with the top, bolts connecting the flange of each connector to ends of said frame members radiating therefrom, the corners of the panels overlying and closing the closed top of each connector, and bolts connecting said construction units to one another with marginal frame members thereof in back to back relation.
2. A spherically domed structure comprising a plurality of construction units of the same size and of isosceles triangular shape, each unit comprising four panels of sheet material each of isosceles triangular shape arranged in edge to edge relation, each panel having frame members of L-shaped cross section secured to margins of its inner surface, said frame members being of uniform cross section and being shorter than the sides of the panels; six tublike connectors securing the ends of the frame members of each construction unit together, said connectors extending in part beyond the confines of the unit and being secured to the frame members of adjacent units, said frame members radiating from said connectors, each connector having a closed top located substantially flush with the top of the frame members and an inwardly directed flange thereabout integral with the top, bolts connecting the flange of each connector to ends of said frame members radiating therefrom, and bolts connecting said construction units to one another with marginal frame members thereof in back to back relation, said frame members each having one flan ge arranged radial of the structure and the other flange defining a panel-engaging flange with a longitudinally divided face of two facets inclined respectively to the least and the rnost angular departure of the panels from a tangent of the domed structure.
3. A spherically domed structure comprising a plurality of construction units of the same size and of isosceles triangular shape, each unit comprising four panels of sheet material each of isosceles triangular shape arranged in edge to edge relation, each panel having frame members of L-shaped cross section secured to margins of its inner surface, said frame members being of uniform cross section and being shorter than the sides of the panels, tublike connectors securing the ends of the frame members of a construction unit and of adjoining units thereto with the frame members radiating from said connectors, each connector having a closed top located substantially fiush with the top of the frame members and an inwardly directed flange thereabout integral with the top, bolts connecting the flange of each connector to ends of said frame members radiating therefrom, and bolts connecting said construction units to one another with marginal frame members thereof in back to back relation, said frame members each having one flange arranged radial of the structure and the other flange defining a panel-engaging flange with a longitudinally divided face of two facets inclined respectively to the least and most angular departure of the panels from a tangent to the domed structure, and the radial flange being offset away from the meeting plane of the 'members near the outer face of the structure to provide a caulking space.
References Cited in the file of this patent UNITED STATES PATENTS 446,028 Smith Feb. 10, 1891 2,682,235 Fuller June 29, 1954 2,736,072 Woods Feb. 28, 1956 2,792,164 Cauffiel May 14, 1957 2,918,992 Gelsavage Dec. 29, 1959 FOREIGN PATENTS 520,322 Italy Mar. 21, 1955 OTHER REFERENCES Architectural Record, November 1955, p. 235.
Architectural Record, pp. 251, 252, 253, and 254, March 1957.
Popular Mechancs, April 1957, pp. 126 and 127.
US816152A 1959-05-27 1959-05-27 Spherically domed structures Expired - Lifetime US3061977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US816152A US3061977A (en) 1959-05-27 1959-05-27 Spherically domed structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US816152A US3061977A (en) 1959-05-27 1959-05-27 Spherically domed structures

Publications (1)

Publication Number Publication Date
US3061977A true US3061977A (en) 1962-11-06

Family

ID=25219811

Family Applications (1)

Application Number Title Priority Date Filing Date
US816152A Expired - Lifetime US3061977A (en) 1959-05-27 1959-05-27 Spherically domed structures

Country Status (1)

Country Link
US (1) US3061977A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3197927A (en) * 1961-12-19 1965-08-03 Fuller Richard Buckminster Geodesic structures
US3255557A (en) * 1963-03-26 1966-06-14 Union Tank Car Co Building construction
US3255556A (en) * 1963-02-14 1966-06-14 Electronic Space Structures Co Panel and spherical structure
US3292316A (en) * 1960-10-01 1966-12-20 Zeinetz Bertil Olov Self-supporting roof
US3341989A (en) * 1963-05-02 1967-09-19 Emmerich David Georges Construction of stereometric domes
US3844074A (en) * 1973-04-13 1974-10-29 Geometrics Wall construction for spherical structures
US3894367A (en) * 1971-09-07 1975-07-15 Joseph D Yacoboni Dome-shaped structure
US3990195A (en) * 1975-02-18 1976-11-09 Robert Reeves Gunther Hub for geodesic dome framework construction
US4037371A (en) * 1974-08-12 1977-07-26 Lande De Calan Yves Jean Olivi Construction of buildings by assembling prefabricated elements
US6098347A (en) * 1998-01-21 2000-08-08 Jaeger; Leroy L. Metal framed geodesic structure
US20100016975A1 (en) * 2006-09-20 2010-01-21 Depuy Products, Inc. Glenoid Component For Shoulder Arthroplasty
US20100161065A1 (en) * 2008-12-23 2010-06-24 Depuy Products, Inc. Shoulder Prosthesis with Vault-Filling Structure having Bone-Sparing Configuration
FR2958697A1 (en) * 2010-04-08 2011-10-14 Jean Louis Dellinger Assembly for rhombic parts to form modular structure fixed on e.g. frame in shipbuilding, has faces assembled using wings to obtain desired mechanical characteristics or shape for structure so as to ensure heat and acoustic insulations
US8231683B2 (en) 2009-12-08 2012-07-31 Depuy Products, Inc. Shoulder prosthesis assembly having glenoid rim replacement structure
US8465548B2 (en) 2010-11-24 2013-06-18 DePuy Synthes Products, LLC Modular glenoid prosthesis
US8480750B2 (en) 2010-11-24 2013-07-09 DePuy Synthes Products, LLC Modular glenoid prosthesis
US8556980B2 (en) 2004-09-27 2013-10-15 DePuy Synthes Products, LLC Glenoid augment and associated method
US9149362B2 (en) 2004-09-27 2015-10-06 DePuy Synthes Products, Inc. Instrument for preparing an implant support surface and associated method
RU2583968C2 (en) * 2014-06-10 2016-05-10 Евгений Владимирович Левин Spatial cellular dome cover
USD819138S1 (en) * 2016-08-26 2018-05-29 Atomic Design Inc. Geodesic display connector
US10316682B2 (en) 2015-04-29 2019-06-11 Rolls-Royce North American Technologies Inc. Composite keystoned blade track
US20220127845A1 (en) * 2019-05-17 2022-04-28 The Manufacturing Company, Llc Modular wall systems

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US446028A (en) * 1891-02-10 Storage of cotton
US2682235A (en) * 1951-12-12 1954-06-29 Fuller Richard Buckminster Building construction
US2736072A (en) * 1956-02-28 Building units
US2792164A (en) * 1951-08-10 1957-05-14 Cauffiel John Preformed structural units
US2918992A (en) * 1956-03-26 1959-12-29 John Z Gelsavage Building structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US446028A (en) * 1891-02-10 Storage of cotton
US2736072A (en) * 1956-02-28 Building units
US2792164A (en) * 1951-08-10 1957-05-14 Cauffiel John Preformed structural units
US2682235A (en) * 1951-12-12 1954-06-29 Fuller Richard Buckminster Building construction
US2918992A (en) * 1956-03-26 1959-12-29 John Z Gelsavage Building structure

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3292316A (en) * 1960-10-01 1966-12-20 Zeinetz Bertil Olov Self-supporting roof
US3197927A (en) * 1961-12-19 1965-08-03 Fuller Richard Buckminster Geodesic structures
US3255556A (en) * 1963-02-14 1966-06-14 Electronic Space Structures Co Panel and spherical structure
US3255557A (en) * 1963-03-26 1966-06-14 Union Tank Car Co Building construction
US3341989A (en) * 1963-05-02 1967-09-19 Emmerich David Georges Construction of stereometric domes
US3894367A (en) * 1971-09-07 1975-07-15 Joseph D Yacoboni Dome-shaped structure
US3844074A (en) * 1973-04-13 1974-10-29 Geometrics Wall construction for spherical structures
US4037371A (en) * 1974-08-12 1977-07-26 Lande De Calan Yves Jean Olivi Construction of buildings by assembling prefabricated elements
US3990195A (en) * 1975-02-18 1976-11-09 Robert Reeves Gunther Hub for geodesic dome framework construction
US6098347A (en) * 1998-01-21 2000-08-08 Jaeger; Leroy L. Metal framed geodesic structure
US9149362B2 (en) 2004-09-27 2015-10-06 DePuy Synthes Products, Inc. Instrument for preparing an implant support surface and associated method
US8556980B2 (en) 2004-09-27 2013-10-15 DePuy Synthes Products, LLC Glenoid augment and associated method
US10918442B2 (en) 2006-09-20 2021-02-16 DePuy Synthes Products, Inc. Glenoid component for shoulder arthroplasty
US20100016975A1 (en) * 2006-09-20 2010-01-21 Depuy Products, Inc. Glenoid Component For Shoulder Arthroplasty
US10182867B2 (en) 2006-09-20 2019-01-22 DePuy Synthes Products, Inc. Glenoid component for shoulder arthroplasty
US20100161065A1 (en) * 2008-12-23 2010-06-24 Depuy Products, Inc. Shoulder Prosthesis with Vault-Filling Structure having Bone-Sparing Configuration
US8241365B2 (en) 2008-12-23 2012-08-14 Depuy Products, Inc. Shoulder prosthesis with vault-filling structure having bone-sparing configuration
US8231683B2 (en) 2009-12-08 2012-07-31 Depuy Products, Inc. Shoulder prosthesis assembly having glenoid rim replacement structure
FR2958697A1 (en) * 2010-04-08 2011-10-14 Jean Louis Dellinger Assembly for rhombic parts to form modular structure fixed on e.g. frame in shipbuilding, has faces assembled using wings to obtain desired mechanical characteristics or shape for structure so as to ensure heat and acoustic insulations
US8961611B2 (en) 2010-11-24 2015-02-24 DePuy Synthes Products, LLC Modular glenoid prosthesis
US9301848B2 (en) 2010-11-24 2016-04-05 DePuy Synthes Products, Inc. Modular glenoid prosthesis
US8480750B2 (en) 2010-11-24 2013-07-09 DePuy Synthes Products, LLC Modular glenoid prosthesis
US8465548B2 (en) 2010-11-24 2013-06-18 DePuy Synthes Products, LLC Modular glenoid prosthesis
RU2583968C2 (en) * 2014-06-10 2016-05-10 Евгений Владимирович Левин Spatial cellular dome cover
US10316682B2 (en) 2015-04-29 2019-06-11 Rolls-Royce North American Technologies Inc. Composite keystoned blade track
USD819138S1 (en) * 2016-08-26 2018-05-29 Atomic Design Inc. Geodesic display connector
US20220127845A1 (en) * 2019-05-17 2022-04-28 The Manufacturing Company, Llc Modular wall systems

Similar Documents

Publication Publication Date Title
US3061977A (en) Spherically domed structures
US2978074A (en) Spherical building structure with curved beams
US3114176A (en) Wood building construction
US3959937A (en) Modular dome structure
CA2238480C (en) Wall structures for swimming pools
US3026651A (en) Building construction
US3043054A (en) Spherical self-supporting enclosures
US7591114B2 (en) High strength low density multi-purpose panel
US2736072A (en) Building units
US2918992A (en) Building structure
EP0106016B1 (en) A clip for self-locking, collapsible/expandable structures
EP0013285B1 (en) Framed space structure incorporating modular generally y-shaped structural components
US4679361A (en) Polyhedral structures that approximate a sphere
US4729197A (en) Geodesic dome and method of making
US3006670A (en) Frame for supporting domed structures
US10415231B1 (en) Modular geodesic dome construction
US4012872A (en) Geodesic dome-like panels
US3844664A (en) Icosahedron disc
US3953948A (en) Homohedral construction employing icosahedron
US3729876A (en) Structural component and structures comprising the same
US3990195A (en) Hub for geodesic dome framework construction
CA1290127C (en) Buildings for harsh environments
US7389612B1 (en) Geodesic structure
US3468083A (en) Compoundly curved,sectional structure
US4068422A (en) Roofing for domical shell structure