US20110015733A1 - Folding Designs for Intraocular Lenses - Google Patents

Folding Designs for Intraocular Lenses Download PDF

Info

Publication number
US20110015733A1
US20110015733A1 US12/836,154 US83615410A US2011015733A1 US 20110015733 A1 US20110015733 A1 US 20110015733A1 US 83615410 A US83615410 A US 83615410A US 2011015733 A1 US2011015733 A1 US 2011015733A1
Authority
US
United States
Prior art keywords
intraocular lens
iol
folded
less
folding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/836,154
Inventor
Urban Schnell
Jean-Noël Fehr
Alain Saurer
Amitava Gupta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Elenza Inc
Original Assignee
Ocular Optics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ocular Optics Inc filed Critical Ocular Optics Inc
Priority to US12/836,154 priority Critical patent/US20110015733A1/en
Assigned to OCULAR OPTICS, INC. reassignment OCULAR OPTICS, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SAURER, ALAIN, GUPTA, AMITAVA, FEHR, JEAN-NOEL, SCHNELL, URBAN
Publication of US20110015733A1 publication Critical patent/US20110015733A1/en
Assigned to Elenza, Inc. reassignment Elenza, Inc. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: OCULAR OPTICS, INC.
Assigned to Foley & Lardner LLP reassignment Foley & Lardner LLP SECURITY AGREEMENT Assignors: Elenza, Inc.
Assigned to Foley & Lardner LLP, HELBLING TECHNIK BERN AG reassignment Foley & Lardner LLP SECURITY AGREEMENT Assignors: Elenza, Inc.
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2/1613Intraocular lenses having special lens configurations, e.g. multipart lenses; having particular optical properties, e.g. pseudo-accommodative lenses, lenses having aberration corrections, diffractive lenses, lenses for variably absorbing electromagnetic radiation, lenses having variable focus
    • A61F2/1616Pseudo-accommodative, e.g. multifocal or enabling monovision
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • A61F2002/1681Intraocular lenses having supporting structure for lens, e.g. haptics
    • A61F2002/16905Having means on lens to reduce overall dimension of lens for insertion into small incision
    • A61F2002/169051Segmented zones
    • A61F2002/169053Segments fold

Definitions

  • the natural lens of the eye becomes damaged or aged, for example, by cataract, the natural lens can be removed and replaced by an artificial intraocular lens (IOL).
  • IOL intraocular lens
  • the IOL is designed for monofocal distance vision, but some IOLs, such as multifocal or accommodating IOLs, may be designed to provide near vision as well.
  • IOLs that are surgically implantable through a small incision.
  • IOLs that can provide near, intermediate, and distance vision.
  • Folding designs for intraocular lenses are provided. Methods of implanting a folded intraocular lens, then unfolding the intraocular lens in vivo are also provided.
  • FIG. 1 depicts exemplary intraocular lenses, including both articulated, foldable (A, B, and C) and rollable designs (D). These designs include exemplary placement of the electronic components for the operation of the electro-active aperature.
  • FIG. 2 depicts an assembly view of an electronics package supporting the operation of the electro-active aperture including the batteries, the ASICs, and the antenna to support remote charging of the batteries.
  • the electronic components can be packed onto a wafer and hermetically sealed in a thin wafer.
  • FIG. 3 depicts exemplary intraocular lens designs including articulated wings.
  • A. shows hinged wings that may be used with the central full hinge design
  • B. shows letterbox wings that may be used with the letterbox folding design.
  • Both embodiments include a rigid, electro-active component.
  • the electronic components are shown at the haptic-optic junction away from the light path. In these designs, the optical sections are darkened to avoid light transmission through them while the electro-active aperture is on.
  • FIG. 4 depicts exemplary foldable designs for the IOL optic comprising an electro-active cell, which is mostly rigid.
  • the transmissive central aperture is shown in black. The white portions (along the fold lines) are less transmissive or opaque.
  • FIG. 5 depicts simulated optical results for distance vision through exemplary IOL designs.
  • FIG. 6 depicts simulated optical results for near vision through exemplary IOL designs.
  • FIG. 7 depicts the Modulation Transfer Function (MTF) of the exemplary IOLs for the letter box, the central partial hinge, and the double hinge configurations. It also shows the effect on MTF at object distances of infinity (far distance) and 500 mm (intermediate distance) when the electro-active aperture is closed or open.
  • MTF Modulation Transfer Function
  • FIG. 8 depicts the MTF of an electro-active IOL with the electro-active aperture opened and closed as a function of object distance from infinity (90 m) to 500 mm.
  • the plot shows that substantial improvement in MTF is seen for object distances in the range of 800 mm (0.8 M) to 5000 mm (5 M) when the aperture is ON, i.e., closed.
  • FIG. 9 depicts modeled folding stresses for glass at a 70° angle.
  • A. shows a separation of 0.5 mm and a cell thickness of 100 ⁇ m resulting in 90 MPa peak stress.
  • B. shows a separation of 0.5 mm and a cell thickness of 200 ⁇ m resulting in 27 MPa peak stress.
  • C. shows a separation of 1 mm and a cell thickness of 100 ⁇ m resulting in 63 MPa peak stress.
  • the intraocular lenses (IOLs) described herein feature articulation and/or folding patterns that improve implantation and/or performance.
  • the foldable IOLs provided herein optionally include an electro-active (EA) component, e.g., an electro-active cell, that can modify the optical power of the lens to adjust to a wide variety of visual demands including near, intermediate, and distance viewing.
  • EA electro-active
  • the electro-active component is more rigid compared to the flexible IOL body material.
  • the folding design of the IOL advantageously allows for the narrowing of the IOL profile for insertion, while minimizing or eliminating fold lines across the more rigid EA component.
  • the IOL may feature a flexible electronic component.
  • the electro-active component may be fabricated out of a flexible plastic material that may be rolled in order to present a smaller profile during insertion into the eye.
  • a flexible electro-active component may be incorporated into a rollable design, as shown in FIG. 1D . Rollable designs advantageously minimize or eliminate folding lines.
  • the IOL may include various electronic components including, but not limited to, batteries such as rechargeable batteries, a circuit such application specific integrated circuits (ASICs), antennas, and sensors.
  • the electronic components are used to operate the electro-active component.
  • the electronic components can be grouped together or they may be spaced apart. In one embodiment, the electronic components a grouped together to form an integrated wafer.
  • the electronics can be hermetically sealed in a thin wafer.
  • FIG. 2 shows one embodiment of the electronic wafer that also includes the electro-active cell.
  • FIG. 1A shows one embodiment of a spaced apart configuration.
  • the electronic components are embedded at or near the distal edges of the haptic, while the electro-active cell remains at the center of the optic.
  • an electrical connection should be provided between the electronic components and the electro-active cell.
  • the electronic components are not typically transmissive, they may be nearly anywhere on the IOL except for on the transmissive central aperture.
  • the electronic components are placed on the haptic.
  • the electro-active aperture meanwhile may reside at the center of the optic, thus placing the electronic components away from the path of rays from objects to the retina.
  • FIG. 1A shows electronic components placed on the edges of the haptics.
  • the electronic components are placed at or near the haptic-optic junction.
  • they may be embedded in the hydrophobic acrylic material with at least one fold line placed such that the components that are substantially rigid do not have to be folded for the device to be implantable through a relatively smaller incision.
  • FIG. 1C and FIG. 3A and 3B the electronic components are shown at the haptic-optic junction. Placement of the electronic components at the haptic-optic junction may be used with the folding designs depicted in FIG. 4 .
  • FIGS. 1 , 3 , and 4 show a class of designs named “wings” since it comprises a central rigid section surrounded on both sides by flexible sections that may be folded around the central rigid component. The haptics are then folded back to lie over the folded wings.
  • an intraocular lens comprises a body comprising one or more fold lines such that the body that can assume a folded configuration and an unfolded configuration, and an electroactive component contained in or on the body, wherein at least one dimension of the folded configuration is less than about 5 mm.
  • the electro active component is contained on or embedded within the IOL body. In one embodiment, it is embedded within the body.
  • the electroactive component may be constructed using materials and methods known in the art, such as in US 2006/0091528 and US 2008/0208335.
  • the IOL may also include one or more of a battery, circuit, and sensor contained on or in the body.
  • the body of the IOL is constructed of a material sufficiently flexible as to allow folding to at least some degree (about 1° to about 180°, at least about 45°, or about 90° to about 180°).
  • Exemplary materials include, but are not limited to, silicone and acrylic materials.
  • the IOL body may also include a transmissive central aperture.
  • the central aperture has a transmittance of, e.g., greater than 60%, greater than 75%, greater than 90%, greater than 95%, or greater than 99%.
  • the diameter of the central aperture is, for example, about 0.1 to about 2 mm, about 0.5 to about 1.5 mm, or about 1 mm.
  • the IOL described herein include one or more folding lines.
  • the folding lines create a folding pattern, which may be symmetrical or asymmetrical across the IOL body.
  • the unfolded configuration is also called the “in use” configuration because that is the configuration that will be assumed in vivo when in use by the wearer.
  • the folded configuration is also called the “implantable” configuration because the folds reduce the dimensions of the IOL for implantation through a small surgical incision.
  • the IOL could be implanted in the unfolded configuration, but it would require a larger incision.
  • the IOL is folded along some, but not all of the folding lines, or when the IOL is folded along one or more folding lines, but not to the degree most desirable for the implantable configuration, the IOL is said to be in a “partially folded” configuration.
  • the folded configuration may include folding of 180° or folding of less than 180° across one or more folding lines. Because the greater the degree of folding, the greater the internal stresses placed upon the IOL components, some embodiments are folded to less than 180°, even in the implantable configuration. In some embodiment, the IOL is folded about 1° to about 180°, about 45° to about 180°, about 70° to about 90°, about 90° to about 135°, or about 90° to about 180°. In one embodiment, the degree of folding is any degree that results in a peak stress of less than about 70 MPa, less than about 65 MPa, less than about 60 MPa, less than about 50 MPa, less than about 40 MPa, less than about 30 MPa, or less than about 25 MPa. These peak stress levels can be assessed at the surface of the IOL, within the IOL body, and/or between cells.
  • the fold line can have a width (hinge size) of about 0.1 mm to about 1 mm, about 0.25 to about 0.75 mm, about 0.3 mm to about 0.8 mm, about 0.5 mm to about 0.6, or about 0.5 mm. This measurement assesses the portion of the IOL that is under fold stress as opposed to the remainder of the IOL that remains substantially planar even in the folded configuration.
  • the thickness of the IOL body is about 0.1 to about 2 mm, about 0.5 to about 1.5 mm, or about 1 mm.
  • the thickness of the electroactive component is about 50 ⁇ m to about 500 ⁇ m, about 100 ⁇ m to about 300 ⁇ m, about 150 ⁇ m to about 250 ⁇ m, or about 200 ⁇ m or less.
  • the fold lines can transmit or absorb light.
  • the fold line can have a transmittance of greater than 99%, greater than 95%, greater than 90%, about 70% to about 90%, about 50% to about 75%, about 30% to about 50%, less than about 20%, less than about 10%, or less than about 5%.
  • the fold lines are designed to transmit light, they are designed to minimize distortion of light rays transmitted by them when the IOL is in position inside the capsular sac.
  • a fold line has a transmittance of at least 90%.
  • the fold lines are rendered less transmissive or opaque to avoid introducing distorted rays on the retina.
  • a fold line has a transmittance of less than 20%.
  • the folding pattern include two parallel fold lines.
  • the distance between each folding line to the closest outer edge of the IOL body is the same, such that the fold lines divide the generally circular IOL into two equal segments and a center portion.
  • Exemplary folding patterns of this type include the letterbox pattern shown in FIG. 4A and the double hinge pattern shown in FIG. 4B .
  • the distance between each folding line to the closest outer edge of the IOL body is also the same as the distance between the folding lines, such that the segments and the center portion all have the same width.
  • the IOL includes a letterbox folding pattern, where the IOL is folded along two parallel folding lines to greater than 90°, greater than 135°, or about 180°. In one embodiment the IOL is folded along the folding lines to about 180°, such that the IOL is folded like a tri-fold letter for insertion into an envelope.
  • the letterbox design allows the placement of all electronic components required to drive the electro-active aperture at the haptic-optic junction out of the path of light rays being focused by the IOL. It also allows the substantially rigid electronics package including the electro-active aperture to remain unfolded while folding the IOL to a size that is capable of being implanted through an incision smaller than 5 mm.
  • the IOL includes a double hinge folding pattern, where the IOL is folded along two parallel folding lines to about 30° to about 90°, about 45° to about 90°, or about 90° or less. In one embodiment, the IOL is folded along the folding lines to about 90°.
  • At least one fold line that traverses the central aperture In one embodiment, at least one fold line that traverses the central aperture. Exemplary folding patterns of this type include the central full hinge shown in FIG. 4D and the offset single hinge shown in FIG. 4E . In one embodiment, at least one folding line bisects the IOL body, i.e., the folding line traverses the center point of the IOL. Exemplary folding patterns of this type include the central partial hinge shown in FIG. 4C and the central full hinge shown in FIG. 4D . Folding lines that traverse the central aperture may or may not require the folding of the central aperture. In some embodiments, the folding line extends fully across the IOL body through the central aperture. In other embodiments, the folding line may be discontinuous as in the central partial hinge pattern of FIG. 4C .
  • the central aperture remain substantially planar in both the folded and unfolded IOL configuration. This can be accomplished by, e.g., 1) a folding pattern in which the folding line(s) do not traverse the central aperture, or 2) a folding pattern including a discontinuous folding line that traverses the central aperture.
  • the folding patterns described herein permit the IOL to be implanted through a surgical incision that is less than about 5 mm. Because the IOL body is generally about 6 mm in diameter (or about 12 mm including haptics), the folding permits a smaller incision that would be required to insert the IOL in the “in use” configuration. Accordingly, in one embodiment, the folded configuration includes a dimension that is less than about 5 mm, less than about 4 mm, less than about 3.5 mm, less than about 3 mm, less than about 2.5 mm, or less than about 2 mm. In one embodiment, the folded configuration includes a dimension that is 3.5 mm or less. In another embodiment, the folded configuration includes a dimension that is about 3.2 to about 3.5 mm. These size parameters for the folded IOL directly relate to the surgical incision size for the methods of implanting an IOL, discussed in further detail below.
  • the IOL may also include haptics to secure the IOL in place in vivo. Arrangement and design of haptics is well known in the art.
  • the IOL includes articulated haptics.
  • the haptics (typically two) may extend concentrically to the circumference of the generally circular IOL body.
  • the IOL further includes wings that space the haptics away from the outer edge of the IOL body. The wings may be flexibly connected to the IOL body such that they may hinge and/or pivot relative to the IOL body. See FIG. 3 .
  • a method of implanting an intraocular lens includes the steps of: providing a foldable intraocular lens as described herein above; providing the intraocular lens in a folded configuration; inserting the folded intraocular lens into the eye; and unfolding the intraocular lens into its unfolded configuration.
  • inserting the folded IOL into the eye includes inserting the folded IOL through a surgical incision that is less than about 5 mm, less than about 4 mm, less than about 3.5 mm, less than about 3 mm, less than about 2.5 mm, or less than about 2 mm.
  • the surgical incision is 3.5 mm or less. In another embodiment, the surgical incision is about 3.2 to about 3.5 mm.
  • Unfolding the IOL can include actively unfolding the IOL or passively permitting the IOL to assume its unfolded state (depending on the resiliency of the IOL material).
  • the foldable IOLs provided herein can provide exceptional vision performance despite the folding disruption.
  • the following measures of vision performance are achieved after folding and unfolding of the IOL.
  • the IOL achieves a modulation transfer function (MTF) of at least about 5%, at least about 10%, at least about 15%, at least about 20%, or at least about 25%. See FIG. 7 .
  • MTF modulation transfer function
  • the IOL achieves this MTF for distance, intermediate, and/or near vision focal tasks.
  • the IOL achieves this MTF for near vision.
  • the IOL achieves this MTF for intermediate vision.
  • the IOL achieves this MTF for distance vision.
  • the IOL achieves this MTF for all of near, intermediate, and distance vision.
  • Optical performance was assessed by analyzing image quality of exemplary folded IOL designs modeled using Liou Brennan eye model in ZEMAX® software. The results are shown in FIGS. 5-6 .
  • distance vision was substantially maintained with the exemplary folded IOLs.
  • Near vision is improved by adding the EA cell, when the cell is turned ON. The extent of improvement depends on the mechanical design of the IOL, and is found to be the best for the letterbox design.
  • the Modulation Transfer Function (MTF) of several exemplary IOLs were simulated and compared to a control system with no fold lines.
  • the MTF was simulated for an object at 500 mm while the electroactive component was set to focus at infinity.
  • the exemplary IOLs demonstrate a significant improvement in near vision.
  • the MTF was simulated while varying the object distance from infinity (90 m) to 500 mm to assess vision at intermediate distances.
  • the MTF for 100 line pairs/mm (as used for ISO 11979-2), 40 Ip/mm, and 27.5 Ip/mm can be seen to improve as the liquid crystal transmission is varied from 60% (clear) to 6% (opaque). See FIG. 8 .
  • the glass preferably exhibits a peak stress of less than 70 MPa.
  • glass stress may be reduced by increasing the separation (compare models A and C) and/or by increasing cell thickness (compare models A and B).

Abstract

Folding patterns for intraocular lenses are provided.

Description

    CROSS-REFERENCES TO RELATED APPLICATIONS
  • This application claims the benefit of U.S. Provisional Patent Applications 61/225,323 filed Jul. 14, 2009 and 61/250,159 filed Oct. 9, 2009.
  • BACKGROUND OF THE INVENTION
  • When the natural lens of the eye becomes damaged or aged, for example, by cataract, the natural lens can be removed and replaced by an artificial intraocular lens (IOL). In many cases, the IOL is designed for monofocal distance vision, but some IOLs, such as multifocal or accommodating IOLs, may be designed to provide near vision as well.
  • There remains a need to provide IOLs that are surgically implantable through a small incision. There also remains a need to provide IOLs that can provide near, intermediate, and distance vision.
  • BRIEF SUMMARY OF THE INVENTION
  • Folding designs for intraocular lenses are provided. Methods of implanting a folded intraocular lens, then unfolding the intraocular lens in vivo are also provided.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 depicts exemplary intraocular lenses, including both articulated, foldable (A, B, and C) and rollable designs (D). These designs include exemplary placement of the electronic components for the operation of the electro-active aperature.
  • FIG. 2 depicts an assembly view of an electronics package supporting the operation of the electro-active aperture including the batteries, the ASICs, and the antenna to support remote charging of the batteries. The electronic components can be packed onto a wafer and hermetically sealed in a thin wafer.
  • FIG. 3 depicts exemplary intraocular lens designs including articulated wings. A. shows hinged wings that may be used with the central full hinge design, while B. shows letterbox wings that may be used with the letterbox folding design. Both embodiments include a rigid, electro-active component. In both embodiments, the electronic components are shown at the haptic-optic junction away from the light path. In these designs, the optical sections are darkened to avoid light transmission through them while the electro-active aperture is on.
  • FIG. 4 depicts exemplary foldable designs for the IOL optic comprising an electro-active cell, which is mostly rigid. A. Letterbox. B. Double hinge C. Central partial hinge D. Central full hinge E. Offset single hinge. In FIG. 4, the transmissive central aperture is shown in black. The white portions (along the fold lines) are less transmissive or opaque.
  • FIG. 5 depicts simulated optical results for distance vision through exemplary IOL designs.
  • FIG. 6 depicts simulated optical results for near vision through exemplary IOL designs.
  • FIG. 7 depicts the Modulation Transfer Function (MTF) of the exemplary IOLs for the letter box, the central partial hinge, and the double hinge configurations. It also shows the effect on MTF at object distances of infinity (far distance) and 500 mm (intermediate distance) when the electro-active aperture is closed or open.
  • FIG. 8 depicts the MTF of an electro-active IOL with the electro-active aperture opened and closed as a function of object distance from infinity (90 m) to 500 mm. MTF of a retinal image with and without the aperture as a function of object distance. The plot shows that substantial improvement in MTF is seen for object distances in the range of 800 mm (0.8 M) to 5000 mm (5 M) when the aperture is ON, i.e., closed.
  • FIG. 9 depicts modeled folding stresses for glass at a 70° angle. A. shows a separation of 0.5 mm and a cell thickness of 100 μm resulting in 90 MPa peak stress. B. shows a separation of 0.5 mm and a cell thickness of 200 μm resulting in 27 MPa peak stress. C. shows a separation of 1 mm and a cell thickness of 100 μm resulting in 63 MPa peak stress.
  • DETAILED DESCRIPTION OF THE INVENTION
  • The intraocular lenses (IOLs) described herein feature articulation and/or folding patterns that improve implantation and/or performance. The foldable IOLs provided herein optionally include an electro-active (EA) component, e.g., an electro-active cell, that can modify the optical power of the lens to adjust to a wide variety of visual demands including near, intermediate, and distance viewing.
  • In some embodiments, the electro-active component is more rigid compared to the flexible IOL body material. In one embodiment, the folding design of the IOL advantageously allows for the narrowing of the IOL profile for insertion, while minimizing or eliminating fold lines across the more rigid EA component.
  • In another embodiment, the IOL may feature a flexible electronic component. The electro-active component may be fabricated out of a flexible plastic material that may be rolled in order to present a smaller profile during insertion into the eye. A flexible electro-active component may be incorporated into a rollable design, as shown in FIG. 1D. Rollable designs advantageously minimize or eliminate folding lines.
  • Electronics
  • The IOL may include various electronic components including, but not limited to, batteries such as rechargeable batteries, a circuit such application specific integrated circuits (ASICs), antennas, and sensors. The electronic components are used to operate the electro-active component.
  • The electronic components can be grouped together or they may be spaced apart. In one embodiment, the electronic components a grouped together to form an integrated wafer. The electronics can be hermetically sealed in a thin wafer. FIG. 2 shows one embodiment of the electronic wafer that also includes the electro-active cell.
  • FIG. 1A shows one embodiment of a spaced apart configuration. In this embodiment, the electronic components are embedded at or near the distal edges of the haptic, while the electro-active cell remains at the center of the optic. In this configuration, an electrical connection should be provided between the electronic components and the electro-active cell.
  • Since the electronic components are not typically transmissive, they may be nearly anywhere on the IOL except for on the transmissive central aperture. In one embodiment, the electronic components are placed on the haptic. The electro-active aperture meanwhile may reside at the center of the optic, thus placing the electronic components away from the path of rays from objects to the retina. For example, FIG. 1A shows electronic components placed on the edges of the haptics.
  • In another embodiment, the electronic components are placed at or near the haptic-optic junction. For example, they may be embedded in the hydrophobic acrylic material with at least one fold line placed such that the components that are substantially rigid do not have to be folded for the device to be implantable through a relatively smaller incision. In FIG. 1C and FIG. 3A and 3B, the electronic components are shown at the haptic-optic junction. Placement of the electronic components at the haptic-optic junction may be used with the folding designs depicted in FIG. 4.
  • Folding Designs
  • By including strategically placed fold lines, the IOL including the EA component can be folded so that it may be inserted through a small surgical incision. Designs that incorporate such fold lines are shown in FIGS. 1, 3, and 4. FIG. 3 shows a class of designs named “wings” since it comprises a central rigid section surrounded on both sides by flexible sections that may be folded around the central rigid component. The haptics are then folded back to lie over the folded wings.
  • In one embodiment, an intraocular lens comprises a body comprising one or more fold lines such that the body that can assume a folded configuration and an unfolded configuration, and an electroactive component contained in or on the body, wherein at least one dimension of the folded configuration is less than about 5 mm.
  • The electro active component is contained on or embedded within the IOL body. In one embodiment, it is embedded within the body. The electroactive component may be constructed using materials and methods known in the art, such as in US 2006/0091528 and US 2008/0208335. The IOL may also include one or more of a battery, circuit, and sensor contained on or in the body.
  • The body of the IOL is constructed of a material sufficiently flexible as to allow folding to at least some degree (about 1° to about 180°, at least about 45°, or about 90° to about 180°). Exemplary materials include, but are not limited to, silicone and acrylic materials.
  • The IOL body may also include a transmissive central aperture. The central aperture has a transmittance of, e.g., greater than 60%, greater than 75%, greater than 90%, greater than 95%, or greater than 99%. The diameter of the central aperture is, for example, about 0.1 to about 2 mm, about 0.5 to about 1.5 mm, or about 1 mm.
  • The IOL described herein include one or more folding lines. The folding lines create a folding pattern, which may be symmetrical or asymmetrical across the IOL body. When the IOL is essentially planar (the folding lines are positioned at less than 10°, preferably at about 0°), the IOL is in the unfolded configuration. The unfolded configuration is also called the “in use” configuration because that is the configuration that will be assumed in vivo when in use by the wearer. When the IOL is folded along all the lines of the folding pattern, the IOL is in the folded configuration. The folded configuration is also called the “implantable” configuration because the folds reduce the dimensions of the IOL for implantation through a small surgical incision. (The IOL could be implanted in the unfolded configuration, but it would require a larger incision.) When the IOL is folded along some, but not all of the folding lines, or when the IOL is folded along one or more folding lines, but not to the degree most desirable for the implantable configuration, the IOL is said to be in a “partially folded” configuration.
  • The folded configuration may include folding of 180° or folding of less than 180° across one or more folding lines. Because the greater the degree of folding, the greater the internal stresses placed upon the IOL components, some embodiments are folded to less than 180°, even in the implantable configuration. In some embodiment, the IOL is folded about 1° to about 180°, about 45° to about 180°, about 70° to about 90°, about 90° to about 135°, or about 90° to about 180°. In one embodiment, the degree of folding is any degree that results in a peak stress of less than about 70 MPa, less than about 65 MPa, less than about 60 MPa, less than about 50 MPa, less than about 40 MPa, less than about 30 MPa, or less than about 25 MPa. These peak stress levels can be assessed at the surface of the IOL, within the IOL body, and/or between cells.
  • In one embodiment, the fold line can have a width (hinge size) of about 0.1 mm to about 1 mm, about 0.25 to about 0.75 mm, about 0.3 mm to about 0.8 mm, about 0.5 mm to about 0.6, or about 0.5 mm. This measurement assesses the portion of the IOL that is under fold stress as opposed to the remainder of the IOL that remains substantially planar even in the folded configuration.
  • In one embodiment, the thickness of the IOL body is about 0.1 to about 2 mm, about 0.5 to about 1.5 mm, or about 1 mm.
  • In another embodiment, the thickness of the electroactive component is about 50 μm to about 500 μm, about 100 μm to about 300 μm, about 150 μm to about 250 μm, or about 200 μm or less.
  • The fold lines can transmit or absorb light. For example, the fold line can have a transmittance of greater than 99%, greater than 95%, greater than 90%, about 70% to about 90%, about 50% to about 75%, about 30% to about 50%, less than about 20%, less than about 10%, or less than about 5%. When the fold lines are designed to transmit light, they are designed to minimize distortion of light rays transmitted by them when the IOL is in position inside the capsular sac. Thus, in one embodiment, a fold line has a transmittance of at least 90%. When distortion of light rays transmitted through the fold lines cannot be avoided, the fold lines are rendered less transmissive or opaque to avoid introducing distorted rays on the retina. Thus, in another embodiment, a fold line has a transmittance of less than 20%.
  • In one embodiment, the folding pattern include two parallel fold lines. In one embodiment, the distance between each folding line to the closest outer edge of the IOL body is the same, such that the fold lines divide the generally circular IOL into two equal segments and a center portion. Exemplary folding patterns of this type include the letterbox pattern shown in FIG. 4A and the double hinge pattern shown in FIG. 4B. In another embodiment, the distance between each folding line to the closest outer edge of the IOL body is also the same as the distance between the folding lines, such that the segments and the center portion all have the same width.
  • In a preferred embodiment, the IOL includes a letterbox folding pattern, where the IOL is folded along two parallel folding lines to greater than 90°, greater than 135°, or about 180°. In one embodiment the IOL is folded along the folding lines to about 180°, such that the IOL is folded like a tri-fold letter for insertion into an envelope. The letterbox design allows the placement of all electronic components required to drive the electro-active aperture at the haptic-optic junction out of the path of light rays being focused by the IOL. It also allows the substantially rigid electronics package including the electro-active aperture to remain unfolded while folding the IOL to a size that is capable of being implanted through an incision smaller than 5 mm.
  • In another embodiment, the IOL includes a double hinge folding pattern, where the IOL is folded along two parallel folding lines to about 30° to about 90°, about 45° to about 90°, or about 90° or less. In one embodiment, the IOL is folded along the folding lines to about 90°.
  • In one embodiment, at least one fold line that traverses the central aperture. Exemplary folding patterns of this type include the central full hinge shown in FIG. 4D and the offset single hinge shown in FIG. 4E. In one embodiment, at least one folding line bisects the IOL body, i.e., the folding line traverses the center point of the IOL. Exemplary folding patterns of this type include the central partial hinge shown in FIG. 4C and the central full hinge shown in FIG. 4D. Folding lines that traverse the central aperture may or may not require the folding of the central aperture. In some embodiments, the folding line extends fully across the IOL body through the central aperture. In other embodiments, the folding line may be discontinuous as in the central partial hinge pattern of FIG. 4C.
  • In one embodiment, the central aperture remain substantially planar in both the folded and unfolded IOL configuration. This can be accomplished by, e.g., 1) a folding pattern in which the folding line(s) do not traverse the central aperture, or 2) a folding pattern including a discontinuous folding line that traverses the central aperture.
  • In general, the folding patterns described herein permit the IOL to be implanted through a surgical incision that is less than about 5 mm. Because the IOL body is generally about 6 mm in diameter (or about 12 mm including haptics), the folding permits a smaller incision that would be required to insert the IOL in the “in use” configuration. Accordingly, in one embodiment, the folded configuration includes a dimension that is less than about 5 mm, less than about 4 mm, less than about 3.5 mm, less than about 3 mm, less than about 2.5 mm, or less than about 2 mm. In one embodiment, the folded configuration includes a dimension that is 3.5 mm or less. In another embodiment, the folded configuration includes a dimension that is about 3.2 to about 3.5 mm. These size parameters for the folded IOL directly relate to the surgical incision size for the methods of implanting an IOL, discussed in further detail below.
  • The IOL may also include haptics to secure the IOL in place in vivo. Arrangement and design of haptics is well known in the art. In some embodiments herein, the IOL includes articulated haptics. The haptics (typically two) may extend concentrically to the circumference of the generally circular IOL body. In one embodiment, the IOL further includes wings that space the haptics away from the outer edge of the IOL body. The wings may be flexibly connected to the IOL body such that they may hinge and/or pivot relative to the IOL body. See FIG. 3.
  • Methods of Implanting Foldable IOLs
  • In another embodiment, a method of implanting an intraocular lens includes the steps of: providing a foldable intraocular lens as described herein above; providing the intraocular lens in a folded configuration; inserting the folded intraocular lens into the eye; and unfolding the intraocular lens into its unfolded configuration.
  • In one embodiment, inserting the folded IOL into the eye includes inserting the folded IOL through a surgical incision that is less than about 5 mm, less than about 4 mm, less than about 3.5 mm, less than about 3 mm, less than about 2.5 mm, or less than about 2 mm. In one embodiment, the surgical incision is 3.5 mm or less. In another embodiment, the surgical incision is about 3.2 to about 3.5 mm.
  • Unfolding the IOL can include actively unfolding the IOL or passively permitting the IOL to assume its unfolded state (depending on the resiliency of the IOL material).
  • Analysis of Image Quality
  • The foldable IOLs provided herein can provide exceptional vision performance despite the folding disruption. The following measures of vision performance are achieved after folding and unfolding of the IOL.
  • In one embodiment, the IOL achieves a modulation transfer function (MTF) of at least about 5%, at least about 10%, at least about 15%, at least about 20%, or at least about 25%. See FIG. 7. In one embodiment, the IOL achieves this MTF for distance, intermediate, and/or near vision focal tasks. In one embodiment, the IOL achieves this MTF for near vision. In another embodiment, the IOL achieves this MTF for intermediate vision. In another embodiment, the IOL achieves this MTF for distance vision. In yet another embodiment, the IOL achieves this MTF for all of near, intermediate, and distance vision.
  • EXAMPLES Example 1 Optical Modeling
  • Optical performance was assessed by analyzing image quality of exemplary folded IOL designs modeled using Liou Brennan eye model in ZEMAX® software. The results are shown in FIGS. 5-6.
  • As shown in FIG. 5, distance vision was substantially maintained with the exemplary folded IOLs. Near vision is improved by adding the EA cell, when the cell is turned ON. The extent of improvement depends on the mechanical design of the IOL, and is found to be the best for the letterbox design.
  • Example 2 Modulation Transfer Function
  • The Modulation Transfer Function (MTF) of several exemplary IOLs (central partial hinge, double hinge, and letterbox) were simulated and compared to a control system with no fold lines. The MTF was simulated for an object at 500 mm while the electroactive component was set to focus at infinity.
  • As shown in FIG. 7, the exemplary IOLs demonstrate a significant improvement in near vision.
  • Next, the MTF was simulated while varying the object distance from infinity (90 m) to 500 mm to assess vision at intermediate distances. The MTF for 100 line pairs/mm (as used for ISO 11979-2), 40 Ip/mm, and 27.5 Ip/mm can be seen to improve as the liquid crystal transmission is varied from 60% (clear) to 6% (opaque). See FIG. 8.
  • Example 3 Stress Tests
  • To create foldable IOLs, the glass components must be able to withstand a certain amount of folding stress. Glass stress tests were modeled. The variable parameters and the resulting peak stresses are shown in FIG. 9 and provided below:
  • Separation Cell thickness Peak Stress
    Model (mm) (μm) (MPa)
    A 0.5 100 90
    B 0.5 200 27
    C 1 100 63
  • For a 1 mm thick lens, the glass preferably exhibits a peak stress of less than 70 MPa. As demonstrated by these modeled stress tests, glass stress may be reduced by increasing the separation (compare models A and C) and/or by increasing cell thickness (compare models A and B).

Claims (16)

1. An intraocular lens comprising:
a body comprising one or more fold lines such that the body that can assume a folded configuration and an unfolded configuration, and
an electroactive component contained in or on the body,
wherein at least one dimension of the folded configuration is less than about 5 mm.
2. The intraocular lens of claim 1, comprising two parallel fold lines.
3. The intraocular lens of claim 1, comprising a fold line that traverses the central aperture.
4. The intraocular lens of claim 1, comprising a fold line that bisects the body.
5. The intraocular lens of claim 1, wherein the central aperture remains substantially planar in both the folded and unfolded configurations of the intraocular lens body.
6. The intraocular lens of claim 1, wherein at least one dimension of the folded configuration is less than about 4 mm.
7. The intraocular lens of claim 6, wherein at least one dimension of the folded configuration is less than about 3.5 mm.
8. The intraocular lens of claim 7, wherein at least one dimension of the folded configuration is less than about 3 mm.
9. The intraocular lens of claim 1, wherein the intraocular lens, having been folded and unfolded, achieves a modulation transfer function of at least about 5%.
10. The intraocular lens of claim 1, wherein the intraocular lens further comprises articulated haptics.
11. The intraocular lens of claim 10, further comprising wings flexibly connected to the body, wherein the haptics extend concentrically around the perimeter of the body from the wings.
12. The intraocular lens of claim 11, wherein the wings can hinge and/or pivot relative to the body.
13. The intraocular lens of claim 1, wherein the intraocular lens further includes one or more electronic components selected from the group consisting of a battery, a circuit, an antenna, and a sensor.
14. The intraocular lens of claim 13, wherein one or more electronic components is positioned on a haptic.
15. The intraocular lens of claim 13, wherein one or more electronic components is positioned on a haptic-optic junction.
16. A method of implanting an intraocular lens comprising:
providing an intraocular lens as in claim 1;
folding the intraocular lens into the folded configuration;
inserting the folded intraocular lens into the eye;
unfolding the intraocular lens into its unfolded configuration.
US12/836,154 2009-07-14 2010-07-14 Folding Designs for Intraocular Lenses Abandoned US20110015733A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/836,154 US20110015733A1 (en) 2009-07-14 2010-07-14 Folding Designs for Intraocular Lenses

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US22532309P 2009-07-14 2009-07-14
US25015909P 2009-10-09 2009-10-09
US12/836,154 US20110015733A1 (en) 2009-07-14 2010-07-14 Folding Designs for Intraocular Lenses

Publications (1)

Publication Number Publication Date
US20110015733A1 true US20110015733A1 (en) 2011-01-20

Family

ID=43449756

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/836,154 Abandoned US20110015733A1 (en) 2009-07-14 2010-07-14 Folding Designs for Intraocular Lenses

Country Status (14)

Country Link
US (1) US20110015733A1 (en)
EP (1) EP2453841A4 (en)
JP (1) JP2012533355A (en)
KR (1) KR20120047254A (en)
CN (1) CN102596100A (en)
AU (1) AU2010273459A1 (en)
CA (1) CA2768145A1 (en)
IL (1) IL217426A0 (en)
IN (1) IN2012DN00468A (en)
MX (1) MX2012000657A (en)
RU (1) RU2012102316A (en)
SG (1) SG177630A1 (en)
WO (1) WO2011008846A1 (en)
ZA (1) ZA201200417B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170135809A1 (en) * 2015-11-18 2017-05-18 Verily Life Sciences Llc Intraocular lens system with folding features
US20170189169A1 (en) * 2015-12-30 2017-07-06 Verily Life Sciences Llc Intraocular device with articulated housing structures
WO2017210316A1 (en) * 2016-05-31 2017-12-07 Qura, Inc. Implantable intraocular pressure sensors and methods of use
US10052195B2 (en) 2010-11-15 2018-08-21 Elenza, Inc. Adaptive intraocular lens
CN111467078A (en) * 2020-05-08 2020-07-31 泰州金云医疗器械有限公司 Foldable veterinary intraocular lens

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10182939B2 (en) * 2015-09-16 2019-01-22 Novartis Ag Hydraulic injector and methods for intra-ocular lens insertion

Citations (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US638304A (en) * 1899-04-10 1899-12-05 Edward B Weston Register.
US4300818A (en) * 1978-03-13 1981-11-17 Schachar Ronald A Multifocal ophthalmic lens
US4309603A (en) * 1979-10-17 1982-01-05 Honeywell Inc. Auto focus system
US4373218A (en) * 1980-11-17 1983-02-15 Schachar Ronald A Variable power intraocular lens and method of implanting into the posterior chamber
US4466703A (en) * 1981-03-24 1984-08-21 Canon Kabushiki Kaisha Variable-focal-length lens using an electrooptic effect
US4601545A (en) * 1984-05-16 1986-07-22 Kern Seymour P Variable power lens system
US4657546A (en) * 1983-07-08 1987-04-14 Shearing Steven P Intraocular lens
US4787903A (en) * 1985-07-24 1988-11-29 Grendahl Dennis T Intraocular lens
US5066301A (en) * 1990-10-09 1991-11-19 Wiley Robert G Variable focus lens
US5171319A (en) * 1992-02-10 1992-12-15 Keates Richard H Foldable intraocular lens system
US5203788A (en) * 1991-03-14 1993-04-20 Wiley Robert G Micromotor actuated adjustable focus lens
US5425734A (en) * 1993-07-02 1995-06-20 Iovision, Inc. Intraocular lens injector
US5653751A (en) * 1994-12-07 1997-08-05 Samiy; Nassrollah Systems and methods for projecting an image onto a retina
US5712721A (en) * 1993-04-07 1998-01-27 Technology Partnership, Plc Switchable lens
US6017121A (en) * 1995-12-29 2000-01-25 Essilor International Compagnie Generale D'optique Multifocal artificial ocular lens with a transparency varying with illumination
US6200342B1 (en) * 1999-05-11 2001-03-13 Marie-Jose B. Tassignon Intraocular lens with accommodative properties
US6282449B1 (en) * 1998-10-21 2001-08-28 William Kamerling Method and device for causing the eye to focus on a near object
US6368349B1 (en) * 2000-11-21 2002-04-09 Massachusetts Institute Of Technology Inflatable neural prosthesis
WO2003007851A1 (en) * 2001-07-20 2003-01-30 Massachusetts Eye & Ear Infirmary Vision prosthesis
US6619799B1 (en) * 1999-07-02 2003-09-16 E-Vision, Llc Optical lens system with electro-active lens having alterably different focal lengths
US6706066B1 (en) * 1999-09-02 2004-03-16 Medennium, Inc. Floating phakic refractive lens design for preserving eye dynamics
US20040106992A1 (en) * 2002-11-08 2004-06-03 Lang Alan J. Multi-zonal monofocal intraocular lens for correcting optical aberrations
US6790232B1 (en) * 1999-04-30 2004-09-14 Advanced Medical Optics, Inc. Multifocal phakic intraocular lens
US6796942B1 (en) * 1999-09-24 2004-09-28 Acritec Gesellschaft Fur Ophthalmologische Produkte Mbh Device for measuring physical quantities, especially for measuring pressure in the eye
US20040230299A1 (en) * 2003-05-12 2004-11-18 Simpson Michael J. Aspheric lenses
US20060091528A1 (en) * 2004-11-04 2006-05-04 Advanced Semiconductor Engineering, Inc. High heat dissipation flip chip package structure
US20060095128A1 (en) * 2004-11-02 2006-05-04 Blum Ronald D Electro-active intraocular lenses
US20060136055A1 (en) * 2002-07-02 2006-06-22 Francois Michel Pseudoaccommodative equipment implanted for presbyopia correction
US20060183986A1 (en) * 2005-02-11 2006-08-17 Rice Mark J Intraocular lens measurement of blood glucose
US20070142909A1 (en) * 2005-10-27 2007-06-21 Minu Llc External lens adapted to change refractive properties
US7261736B1 (en) * 2004-07-21 2007-08-28 Massachusetts Eye & Ear Infirmary Vision prosthesis with artificial muscle actuator
US7303582B2 (en) * 2003-03-21 2007-12-04 Advanced Medical Optics, Inc. Foldable angle-fixated intraocular lens
US20080208335A1 (en) * 2007-01-22 2008-08-28 Blum Ronald D Flexible electro-active lens
US7435259B2 (en) * 1995-10-06 2008-10-14 Medevec Licensing, B.V. Intraocular lenses with fixated haptics
US20090000628A1 (en) * 2005-06-30 2009-01-01 Visx, Incorporated Presbyopia correction through negative high-order spherical aberration
US20090033863A1 (en) * 2007-02-23 2009-02-05 Blum Ronald D Ophthalmic dynamic aperture
US20090299216A1 (en) * 2008-06-02 2009-12-03 Po-Jui Chen System, apparatus and method for biomedical wireless pressure sensing
US7677725B2 (en) * 2004-04-05 2010-03-16 Amo Groningen B.V. Ophthalmic lenses capable of reducing chromatic aberration
US7926940B2 (en) * 2007-02-23 2011-04-19 Pixeloptics, Inc. Advanced electro-active optic device
US7964833B2 (en) * 2007-08-02 2011-06-21 Elenza, Inc. Multi-focal intraocular lens system and methods

Patent Citations (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US638304A (en) * 1899-04-10 1899-12-05 Edward B Weston Register.
US4300818A (en) * 1978-03-13 1981-11-17 Schachar Ronald A Multifocal ophthalmic lens
US4309603A (en) * 1979-10-17 1982-01-05 Honeywell Inc. Auto focus system
US4373218A (en) * 1980-11-17 1983-02-15 Schachar Ronald A Variable power intraocular lens and method of implanting into the posterior chamber
US4466703A (en) * 1981-03-24 1984-08-21 Canon Kabushiki Kaisha Variable-focal-length lens using an electrooptic effect
US4657546A (en) * 1983-07-08 1987-04-14 Shearing Steven P Intraocular lens
US4601545A (en) * 1984-05-16 1986-07-22 Kern Seymour P Variable power lens system
US4787903A (en) * 1985-07-24 1988-11-29 Grendahl Dennis T Intraocular lens
US5066301A (en) * 1990-10-09 1991-11-19 Wiley Robert G Variable focus lens
US5203788A (en) * 1991-03-14 1993-04-20 Wiley Robert G Micromotor actuated adjustable focus lens
US5171319A (en) * 1992-02-10 1992-12-15 Keates Richard H Foldable intraocular lens system
US5712721A (en) * 1993-04-07 1998-01-27 Technology Partnership, Plc Switchable lens
US5425734A (en) * 1993-07-02 1995-06-20 Iovision, Inc. Intraocular lens injector
US5653751A (en) * 1994-12-07 1997-08-05 Samiy; Nassrollah Systems and methods for projecting an image onto a retina
US7435259B2 (en) * 1995-10-06 2008-10-14 Medevec Licensing, B.V. Intraocular lenses with fixated haptics
US6017121A (en) * 1995-12-29 2000-01-25 Essilor International Compagnie Generale D'optique Multifocal artificial ocular lens with a transparency varying with illumination
US6282449B1 (en) * 1998-10-21 2001-08-28 William Kamerling Method and device for causing the eye to focus on a near object
US6790232B1 (en) * 1999-04-30 2004-09-14 Advanced Medical Optics, Inc. Multifocal phakic intraocular lens
US6200342B1 (en) * 1999-05-11 2001-03-13 Marie-Jose B. Tassignon Intraocular lens with accommodative properties
US6619799B1 (en) * 1999-07-02 2003-09-16 E-Vision, Llc Optical lens system with electro-active lens having alterably different focal lengths
US6706066B1 (en) * 1999-09-02 2004-03-16 Medennium, Inc. Floating phakic refractive lens design for preserving eye dynamics
US6796942B1 (en) * 1999-09-24 2004-09-28 Acritec Gesellschaft Fur Ophthalmologische Produkte Mbh Device for measuring physical quantities, especially for measuring pressure in the eye
US6368349B1 (en) * 2000-11-21 2002-04-09 Massachusetts Institute Of Technology Inflatable neural prosthesis
US20060206205A1 (en) * 2001-07-20 2006-09-14 Massachusetts Eye & Ear Infirmary, A Massachusetts Corporation Vision prosthesis
US7041133B1 (en) * 2001-07-20 2006-05-09 Massachusetts Eye & Ear Infirmary Vision prosthesis
WO2003007851A1 (en) * 2001-07-20 2003-01-30 Massachusetts Eye & Ear Infirmary Vision prosthesis
US20060136055A1 (en) * 2002-07-02 2006-06-22 Francois Michel Pseudoaccommodative equipment implanted for presbyopia correction
US20040106992A1 (en) * 2002-11-08 2004-06-03 Lang Alan J. Multi-zonal monofocal intraocular lens for correcting optical aberrations
US7303582B2 (en) * 2003-03-21 2007-12-04 Advanced Medical Optics, Inc. Foldable angle-fixated intraocular lens
US20040230299A1 (en) * 2003-05-12 2004-11-18 Simpson Michael J. Aspheric lenses
US7677725B2 (en) * 2004-04-05 2010-03-16 Amo Groningen B.V. Ophthalmic lenses capable of reducing chromatic aberration
US7261736B1 (en) * 2004-07-21 2007-08-28 Massachusetts Eye & Ear Infirmary Vision prosthesis with artificial muscle actuator
US20060095128A1 (en) * 2004-11-02 2006-05-04 Blum Ronald D Electro-active intraocular lenses
US20060091528A1 (en) * 2004-11-04 2006-05-04 Advanced Semiconductor Engineering, Inc. High heat dissipation flip chip package structure
US20060183986A1 (en) * 2005-02-11 2006-08-17 Rice Mark J Intraocular lens measurement of blood glucose
US20090000628A1 (en) * 2005-06-30 2009-01-01 Visx, Incorporated Presbyopia correction through negative high-order spherical aberration
US20070142909A1 (en) * 2005-10-27 2007-06-21 Minu Llc External lens adapted to change refractive properties
US20080208335A1 (en) * 2007-01-22 2008-08-28 Blum Ronald D Flexible electro-active lens
US20090033863A1 (en) * 2007-02-23 2009-02-05 Blum Ronald D Ophthalmic dynamic aperture
US7926940B2 (en) * 2007-02-23 2011-04-19 Pixeloptics, Inc. Advanced electro-active optic device
US7964833B2 (en) * 2007-08-02 2011-06-21 Elenza, Inc. Multi-focal intraocular lens system and methods
US20090299216A1 (en) * 2008-06-02 2009-12-03 Po-Jui Chen System, apparatus and method for biomedical wireless pressure sensing

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10052195B2 (en) 2010-11-15 2018-08-21 Elenza, Inc. Adaptive intraocular lens
AU2016355060B2 (en) * 2015-11-18 2018-10-18 Twenty Twenty Therapeutics Llc Intraocular lens system with folding features
WO2017087104A1 (en) * 2015-11-18 2017-05-26 Verily Life Sciences Llc Intraocular lens system with folding features
US10485656B2 (en) * 2015-11-18 2019-11-26 Verily Life Sciences Llc Intraocular lens system with folding features
US20170135809A1 (en) * 2015-11-18 2017-05-18 Verily Life Sciences Llc Intraocular lens system with folding features
US9956073B2 (en) * 2015-11-18 2018-05-01 Verily Life Sciences Llc Intraocular lens system with folding features
US20180206980A1 (en) * 2015-11-18 2018-07-26 Verily Life Sciences Llc Intraocular lens system with folding features
CN108348330A (en) * 2015-11-18 2018-07-31 威里利生命科学有限责任公司 Intraocular lens system with fold characteristics
US10245140B2 (en) * 2015-12-30 2019-04-02 Verily Life Sciences Llc Intraocular device with articulated housing structures
US20170189169A1 (en) * 2015-12-30 2017-07-06 Verily Life Sciences Llc Intraocular device with articulated housing structures
WO2017210316A1 (en) * 2016-05-31 2017-12-07 Qura, Inc. Implantable intraocular pressure sensors and methods of use
US11497399B2 (en) 2016-05-31 2022-11-15 Qura, Inc. Implantable intraocular pressure sensors and methods of use
CN111467078A (en) * 2020-05-08 2020-07-31 泰州金云医疗器械有限公司 Foldable veterinary intraocular lens

Also Published As

Publication number Publication date
SG177630A1 (en) 2012-03-29
WO2011008846A1 (en) 2011-01-20
EP2453841A4 (en) 2014-03-19
IL217426A0 (en) 2012-02-29
CN102596100A (en) 2012-07-18
CA2768145A1 (en) 2011-01-20
ZA201200417B (en) 2012-09-26
MX2012000657A (en) 2012-03-29
IN2012DN00468A (en) 2015-06-05
AU2010273459A1 (en) 2012-02-09
KR20120047254A (en) 2012-05-11
EP2453841A1 (en) 2012-05-23
JP2012533355A (en) 2012-12-27
RU2012102316A (en) 2013-08-20

Similar Documents

Publication Publication Date Title
US20110015733A1 (en) Folding Designs for Intraocular Lenses
US10327886B2 (en) Accomodative intraocular lens
US20140257478A1 (en) Accommodating fluidic intraocular lens with flexible interior membrane
US6152958A (en) Foldable thin intraocular membrane
US20050187623A1 (en) Bag-in-the-lens intraocular lens with removable optic
US20070270947A1 (en) Method and system for modifying an intraocular telescope
US20130110234A1 (en) Dual optic accommodating iol with low refractive index gap material
US20110071628A1 (en) Accommodative intraocular lens
US20060206206A1 (en) Intraocular telescope
KR20080011371A (en) Bifocal intraocular telescope for low vision correction
US20140257479A1 (en) Refocusable intraocular lens with flexible aspherical surface
CA3059469A1 (en) Accommodating intraocular lens devices, systems, and methods using an opaque frame
US20200054444A1 (en) Intraocular lens system with folding features
WO2006054130A1 (en) Thin iol
US10441411B2 (en) Accommodative intraocular lens
WO2007001538A2 (en) Intraocular telescope
US11103343B2 (en) Intraocular lenses having open-loop haptic structures
US20210121286A1 (en) Intraocular lenses having closed-loop ring haptic structures
US11471271B2 (en) Intraocular lens having an asymmetric hinged closed-loop haptic structure
US20090292356A1 (en) Reduced profile intraocular lens
US20210307896A1 (en) Intraocular lens having closed-loop haptic structures
US20230240834A1 (en) Pinhole Intraocular Onlay
US20170348091A1 (en) Dual region accommodating intraocular lens devices, systems, and methods

Legal Events

Date Code Title Description
AS Assignment

Owner name: OCULAR OPTICS, INC., VIRGINIA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SCHNELL, URBAN;FEHR, JEAN-NOEL;SAURER, ALAIN;AND OTHERS;SIGNING DATES FROM 20100713 TO 20100816;REEL/FRAME:024978/0310

AS Assignment

Owner name: ELENZA, INC., VIRGINIA

Free format text: CHANGE OF NAME;ASSIGNOR:OCULAR OPTICS, INC.;REEL/FRAME:027301/0535

Effective date: 20101230

AS Assignment

Owner name: HELBLING TECHNIK BERN AG, SWITZERLAND

Free format text: SECURITY AGREEMENT;ASSIGNOR:ELENZA, INC.;REEL/FRAME:031750/0774

Effective date: 20130904

Owner name: FOLEY & LARDNER LLP, DISTRICT OF COLUMBIA

Free format text: SECURITY AGREEMENT;ASSIGNOR:ELENZA, INC.;REEL/FRAME:031750/0774

Effective date: 20130904

Owner name: FOLEY & LARDNER LLP, DISTRICT OF COLUMBIA

Free format text: SECURITY AGREEMENT;ASSIGNOR:ELENZA, INC.;REEL/FRAME:031750/0683

Effective date: 20130904

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION