EP0958978B1 - Procédé de contrôle de lacet pour véhicule - Google Patents

Procédé de contrôle de lacet pour véhicule Download PDF

Info

Publication number
EP0958978B1
EP0958978B1 EP99105863A EP99105863A EP0958978B1 EP 0958978 B1 EP0958978 B1 EP 0958978B1 EP 99105863 A EP99105863 A EP 99105863A EP 99105863 A EP99105863 A EP 99105863A EP 0958978 B1 EP0958978 B1 EP 0958978B1
Authority
EP
European Patent Office
Prior art keywords
vehicle
yaw rate
yaw
estimated
control method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99105863A
Other languages
German (de)
English (en)
Other versions
EP0958978A3 (fr
EP0958978A2 (fr
Inventor
Youssef Ahmed Ghoneim
David M. Sidlosky
William C. Lin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motors Liquidation Co
Original Assignee
Motors Liquidation Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motors Liquidation Co filed Critical Motors Liquidation Co
Publication of EP0958978A2 publication Critical patent/EP0958978A2/fr
Publication of EP0958978A3 publication Critical patent/EP0958978A3/fr
Application granted granted Critical
Publication of EP0958978B1 publication Critical patent/EP0958978B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2250/00Monitoring, detecting, estimating vehicle conditions
    • B60T2250/03Vehicle yaw rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/30ESP control system
    • B60T2270/313ESP control system with less than three sensors (yaw rate, steering angle, lateral acceleration)

Definitions

  • This invention relates to vehicle yaw control method.
  • Chassis control technology has achieved noteworthy progress, thanks to advancements in sensing and computing technologies as well as advances in estimation and control theory. This has permitted the design of various control systems using active means to achieve a more maneuverable vehicle.
  • One such enhancement is the control and adjustment of the tire forces through the braking force distribution control strategy, using a steering wheel angle sensor, a lateral accelerometer, and a yaw rate sensor to devise a yaw rate feedback control. Because the price of these different sensors, especially the yaw rate sensor, is still high, this technology is limited to a small number of vehicles.
  • the vehicle yaw rate can be computed as a function of the measured speeds of the un-driven wheels as discloses by DE 19628486, the estimate fails to faithfully track the actual vehicle yaw during braking or when the vehicle exhibits an oversteer condition.
  • a yaw control that does not require a yaw sensor, but that can reliably control yaw even during conditions that degrade the validity of the estimated or computed yaw.
  • An advantage provided by the present invention is an improved vehicle yaw control that does not require a yaw sensor, wherein the validity of an estimate of vehicle yaw is determined and used to select an appropriate control methodology.
  • the vehicle yaw is estimated based on the measured speeds of the un-driven wheels of the vehicle, and various other conditions are utilized to determine if the estimated yaw rate is valid for control purposes.
  • a closed-loop yaw rate feedback control strategy is employed, whereas in conditions under which it is determined that the estimated yaw rate is not valid, a different control strategy, such as an open-loop feed-forward control of vehicle yaw, is employed.
  • the validity of the estimated yaw rate is judged based on a logical analysis of the measured wheel speed information, braking information, and steering wheel angle.
  • the measured speeds of the un-driven wheels are used to compute an average un-driven wheel speed and an average un-driven wheel acceleration.
  • the operator steering angle and the vehicle velocity may be used to determine a desired yaw rate, which is compared to the yaw estimate to find a yaw rate error. Based on these variables, the control reliably determines whether the estimated yaw rate is valid, and selects an appropriate control methodology in accordance with the determination.
  • Figure 1 depicts a mechanization of an example active brake control according to this invention on a vehicle 10.
  • the vehicle 10 includes a brake system having a micro-processor based controller 68 for controlling the brakes 20, 22, 24, 26 of the respective wheels 12, 14, 16, 18.
  • the controller 68 receives various inputs, including wheel speed signals on lines 36, 38, 40, 42 from respective wheel speed sensors 28, 30, 32, 34; a brake pedal travel signal on line 83 from pedal travel sensor 82; a steering wheel angle signal on line 62 from angle sensor 61; and a master cylinder pressure signal on line 96 from the pressure sensor 94.
  • the sensors 28, 30, 32, 34, 61, 82, 85, 94 may be implemented with conventional devices in a manner known to those skilled in the art.
  • the controller 68 modifies the normal braking of one or more wheel 12, 14, 16, 18 via the respective actuators 52, 54, 56, 58 in order to restore a desired overall operation of the vehicle.
  • the controller 68 commands one or more of the respective actuator(s) 52, 54, 56, 58 to modulate the brake force developed at the wheel(s) experiencing the condition.
  • the controller 68 commands one or more of the respective actuator(s) 52, 54, 56, 58 to develop brake force at the slipping wheel(s).
  • the controller 68 commands one or more of the respective actuator(s) 52, 54, 56, 58 to selectively increase or decrease the brake forces generated at the various wheels 12, 14, 16, 18 to produce a commanded yaw; the control may be carried in a two-channel system in which only the front brakes 20, 22 are controlled, or a four-channel system in which all four brakes 20, 22, 24, 26 are controlled. Exemplary actuators are shown and described in detail in the U.S. Patent No. 5,366,291, assigned to the assignee of the present invention.
  • FIG. 2 A main flow diagram for carrying out a control according to an example of this invention is depicted in Figure 2.
  • the block 100 designates a series of initialization instructions executed at the initiation of vehicle operation for appropriately setting the initial condition or state of the various terms and flags referred to below.
  • the block 104 is executed to determine the status of the YAW VALID FLAG.
  • the status of the YAW VALID FLAG indicates whether the estimated yaw value is considered to be valid, and the status of the flag is periodically determined by the interrupt service routine of Figure 3, described below.
  • Block 106 determines a desired yaw value for the vehicle based on various inputs including the vehicle speed and the measured steering wheel angle.
  • Block 108 determines the yaw error based on the deviation of the yaw estimate from the desired yaw rate.
  • Block 110 determines a yaw rate command based on the yaw rate error and suitable gain factors, and block 112 decides if active brake control is warranted based on predefined entry and exit conditions.
  • the blocks 118-120 are executed to determine an open-loop or feed-forward yaw command based on various inputs including the vehicle speed and the measured steering wheel angle.
  • Block 120 decides if active brake control is warranted based on predefined entry and exit conditions, which may differ from the entry and exit conditions designated at block 112.
  • block 114 carries out an algorithm for distributing braking forces between the left and right vehicle wheels, and block 116 applies corresponding brake control signals to the brake actuators 152-158.
  • braking is only applied to the driven wheels of the vehicle so as to not corrupt the yaw estimate.
  • Various brake distribution strategies may be utilized, exemplary strategies being disclosed in the U.S. patent applications Serial No. 08/654,982 and Serial No. 08/732,582, both of which are assigned to the assignee of the present invention.
  • Figure 3 is a flow diagram for an interrupt service routine which is executed in response to a periodic interrupt request to determine the status of the YAW VALID FLAG.
  • Block 132 designates input signal processing such as filtering of the wheel speed signals to reject noise or unwanted information.
  • the yaw rate is then estimated as a function of the left and right un-driven wheel speeds ⁇ 1 and ⁇ r and the track t of the vehicle, as indicated at block 134.
  • the vehicle has a front-wheel drive powertrain, and the un-driven wheels are the left and right rear wheels 16 and 18.
  • Block 136 determines the simple arithmetic average ⁇ avg of speeds of the un-driven wheels, and block 138 estimates the average acceleration a avg of the un-driven wheels.
  • Blocks 140-152 are then executed to determine the status of a number of flags which indicate the presence or absence of various predefined operating conditions relevant to the validity of the yaw rate determined at block 134.
  • Block 140 concerns the status of a Brake Disturbance flag (BK-DIST FLAG), described in detail below in reference to the flow diagram of Figure 4.
  • Block 142 concerns the status of a Straight Line flag (ST-LINE FLAG), described in detail below in reference to the flow diagram of Figure 5.
  • Block 146 concerns the status of a Yaw Error flag (YAW-ERR FLAG), described in detail below in reference to the flow diagram of Figure 6.
  • Block 148 concerns the status of An Onset of Non-linear Operation flag (INSTAB FLAG), described in detail below in reference to the flow diagram of Figure 7.
  • Block 150 concerns the status of a Brake Disturbance History flag (BK-DIST HIS FLAG), described in detail below in reference to the flow diagram of Figure 8.
  • Block 152 concerns the status of a Spin Detection flag (SPIN FLAG), described in detail below in reference to the flow diagram of Figure 9.
  • block 154 concerns the status of the Yaw Rate Valid flag (YAW-VALID FLAG) referred to at block 104 of the main flow diagram of Figure 2, and is detailed below in reference to the flow diagram of Figure 10.
  • Block 166-168 are executed to decrement the Brake Disturbance Timer at each interrupt until the timer value has been decremented to zero.
  • the BK-DIST FLAG is set at the initiation of braking, and reset a predefined time after the brakes have been released.
  • the Straight Line flag (ST-LINE FLAG) is intended to indicate whether the vehicle 10 is heading straight; that is, not turning. This flag is used in determining the status of the SPIN flag (SPIN FLAG) described below in reference to the flow diagram of Figure 9. If the steering wheel angle (SWA) in either direction is less than a reference angle (SWA th1 ) and the estimated yaw rate ⁇ e in either direction is less than a reference rate ⁇ th 1 , as determined by blocks 180 and 182 of Figure 5, the block 184 is executed to increment a timer or counter referred to herein as the Straight Line Timer (ST-LINE TMR). Otherwise, block 186 is executed to reset the Straight Line Timer to zero.
  • the ST-LINE FLAG is maintained in a reset (0) condition until straight line driving conditions (steering wheel angle and yaw) have been established for a predefined period of time.
  • YAW-ERR TMR Yaw Error Timer
  • blocks 206-208 increment the Yaw Error Timer at each interrupt until the value or count reaches a predefined time designated as YETIME.
  • the YAW-ERR FLAG is maintained in a reset (0) condition until a linear operating condition (based on yaw error) has been established for a predefined period of time. This flag is used in determining the status of the Brake Disturbance History and Spin flags described below in reference to the flow diagrams of Figures 8 and 9, respectively.
  • the Onset of Non-linear Operation flag (INSTAB FLAG) is intended to indicate the presence of a condition in which the vehicle 10 has a tendency to enter non-linear operation, based on the average acceleration a avg of the un-driven wheels.
  • ACCEL TMR Acceleration Timer
  • blocks 226-228 increment the Acceleration Timer at each interrupt until the value or count reaches a predefined time designated as ACTIME.
  • the INSTAB FLAG is maintained in a reset (0) condition until the average acceleration of the un-driven wheels exceeds a threshold for a predefined period of time.
  • the Brake Disturbance History flag (BK-DIST HIS FLAG) is intended to indicate the presence of braking that would corrupt the yaw rate estimate of expression (2), above.
  • the BK-DIST HIS FLAG is set as soon as the brakes are applied, and reset after the brakes have been released for a predefined period of time, and the average un-driven wheel speed is greater than a reference, and the average acceleration and yaw error are indicative of linear operation of the vehicle.
  • the Spin flag (SPIN FLAG) is intended to indicate the occurrence of a vehicle spin-out.
  • the SPIN FLAG is set if the average speed and acceleration values are indicative of a spin-out condition, and reset if the average speed and acceleration values and the states of the Yaw Error and Straight Line flags indicate linear operation.
  • an advantage provided by an example of this invention is a low-cost vehicle yaw control that does not require a yaw sensor.
  • An estimate of yaw based on the speeds of the un-driven wheels of the vehicle is utilized for closed-loop control of yaw so long as a logical analysis of other parameters including the un-driven wheel speeds, estimated yaw error, braking and steering wheel angle indicates that the yaw estimate is valid.
  • an alternate control that does not require yaw feedback (such as the disclosed open-loop feed-forward control) is utilized for control of yaw.

Claims (10)

  1. Procédé de commande de lacet d'un véhicule en utilisant un freinage différentiel des roues du véhicule pour imposer un couple de lacet désiré au véhicule, le véhicule comprenant une paire de roues non motrices, le procédé comprenant les étapes consistant à :
    mesurer les vitesses des roues non motrices du véhicule (28, 30, 32, 34) ;
    estimer un taux de lacet du véhicule basé sur une différence entre les vitesses mesurées (134) ;
    analyser des paramètres connus du véhicule qui incluent les vitesses mesurées des roues, une erreur de lacet basée sur la déviation du taux de lacet estimé par rapport à un taux de lacet désiré, l'angle de direction du véhicule, caractérisé en ce qu'on analyse additionnellement la présence d'un freinage de la part du conducteur pour déterminer quand le taux de lacet estimé est valide et quand le taux de lacet estimé est invalide (104) ;
    freiner de manière différentielle les roues du véhicule pour imposer un couple de lacet basé sur la déviation du taux de lacet estimé par rapport au taux de lacet désiré quand le taux de lacet estimé est déterminé comme étant valide (108, 110, 112, 114, 116) ; et
    freiner de manière différentielle les roues du véhicule pour imposer un couple de lacet basé sur le taux de lacet désiré sans égard au taux de lacet estimé quand le taux de lacet estimé est déterminé comme étant invalide (118, 120, 114, 116).
  2. Procédé de commande de lacet d'un véhicule selon la revendication 1, dans lequel le taux de lacet désiré est déterminé en se basant sur l'angle de direction du véhicule, la vitesse du véhicule, et une sous-direction désirée du véhicule (106).
  3. Procédé de commande de lacet d'un véhicule selon la revendication 1, dans lequel l'étape d'analyse des paramètres connus du véhicule pour déterminer quand le taux de lacet estimé est valide et quand le taux de lacet estimé est invalide inclut l'étape consistant à :
    déterminer que le taux de lacet estimé est invalide en réponse à une indication de la présence d'un freinage de la part du conducteur (140).
  4. Procédé de commande de lacet d'un véhicule selon la revendication 3, dans lequel l'indication de la présence d'un freinage de la part du conducteur est maintenue pendant une période temporelle prédéfinie après que le freinage de la part du conducteur a disparu (160, 166, 168, 170).
  5. Procédé de commande de lacet d'un véhicule selon la revendication 1, dans lequel l'étape d'analyse des paramètres connus du véhicule pour déterminer quand le taux de lacet estimé est valide et quand le taux de lacet estimé est invalide inclut l'étape consistant à :
    déterminer que le taux de lacet estimé est invalide en réponse à une indication que le véhicule est dans une condition de "tête-à-queue" (152).
  6. Procédé de commande de lacet selon la revendication 5, incluant les étapes consistant à :
    calculer une moyenne des vitesses mesurées des roues (136),
    calculer une accélération moyenne des roues non motrices en se basant sur la moyenne calculée des vitesses mesurées des roues (138) ;
    générer l'indication que le véhicule est dans une condition de tête-à-queue quand la moyenne calculée des vitesses mesurées des roues est inférieure à un seuil de vitesse prédéfini et l'accélération moyenne calculée est supérieure à un seuil d'accélération prédéfini (250, 252, 254).
  7. Procédé de commande de lacet d'un véhicule selon la revendication 6, dans lequel, après avoir généré une indication que le véhicule est dans une condition de tête-à-queue, celle-ci est maintenue bien que la moyenne calculée des vitesses mesurées des roues soit supérieure au seuil de vitesse prédéfinie et que l'accélération moyenne calculée soit inférieure au seuil d'accélération prédéfini si l'angle de direction ou l'erreur de lacet ne tombent pas dans des seuils prédéfinis pendant une période temporelle prédéfinie (256, 258).
  8. Procédé de commande de lacet d'un véhicule selon la revendication 1, dans lequel l'étape d'analyse de paramètres connus du véhicule pour déterminer quand le taux de lacet estimé est valide et quand le taux de lacet estimé est invalide inclut l'étape consistant à :
    déterminer que le taux de lacet estimé est invalide en réponse à une indication que le véhicule a tendance à entrer dans un fonctionnement non linéaire (148).
  9. Procédé de commande de lacet d'un véhicule selon la revendication 8, incluant les étapes consistant à :
    calculer une moyenne des vitesses mesurées des roues (136),
    calculer une accélération moyenne des roues non motrices en se basant sur la moyenne calculée des vitesses mesurées des roues (138) ;
    générer l'indication que le véhicule a tendance à entrer dans un fonctionnement non linéaire quand l'accélération moyenne calculée est supérieure à un seuil d'accélération prédéfini pendant au moins une période temporelle prédéfinie (220, 226, 228, 230).
  10. Procédé de commande de lacet d'un véhicule selon la revendication 9, dans lequel l'indication que le véhicule a tendance à entrer dans un fonctionnement non linéaire est terminée quand l'accélération moyenne calculée tombe au-dessous du seuil d'accélération prédéfini (220, 222, 224.
EP99105863A 1998-05-18 1999-03-23 Procédé de contrôle de lacet pour véhicule Expired - Lifetime EP0958978B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US80372 1987-07-31
US09/080,372 US6205391B1 (en) 1998-05-18 1998-05-18 Vehicle yaw control based on yaw rate estimate

Publications (3)

Publication Number Publication Date
EP0958978A2 EP0958978A2 (fr) 1999-11-24
EP0958978A3 EP0958978A3 (fr) 2003-03-12
EP0958978B1 true EP0958978B1 (fr) 2007-03-14

Family

ID=22156966

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99105863A Expired - Lifetime EP0958978B1 (fr) 1998-05-18 1999-03-23 Procédé de contrôle de lacet pour véhicule

Country Status (3)

Country Link
US (1) US6205391B1 (fr)
EP (1) EP0958978B1 (fr)
DE (1) DE69935471T2 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7690447B2 (en) 1999-08-31 2010-04-06 Deka Products Limited Partnership Dynamic balancing vehicle with a seat
US7690452B2 (en) 2002-06-11 2010-04-06 Deka Products Limited Partnership Vehicle control by pitch modulation
US7757794B2 (en) 2002-06-11 2010-07-20 Segway, Inc. Vehicle control by pitch modulation
US8170780B2 (en) 2008-11-06 2012-05-01 Segway, Inc. Apparatus and method for control of a vehicle
US8322477B2 (en) 1993-02-24 2012-12-04 Deka Products Limited Partnership Motion control of a transporter

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6779621B2 (en) 1993-02-24 2004-08-24 Deka Products Limited Partnership Riderless stabilization of a balancing transporter
US6827163B2 (en) 1994-05-27 2004-12-07 Deka Products Limited Partnership Non-linear control of a balancing vehicle
US7740099B2 (en) 1999-06-04 2010-06-22 Segway Inc. Enhanced control of a transporter
US7275607B2 (en) 1999-06-04 2007-10-02 Deka Products Limited Partnership Control of a personal transporter based on user position
WO2001019653A1 (fr) * 1999-09-10 2001-03-22 Continental Teves Ag & Co. Ohg Procede de regulation du couple de lacet
JP3656502B2 (ja) * 2000-02-28 2005-06-08 豊田工機株式会社 4輪駆動車のトルク配分装置
FR2812842B1 (fr) * 2000-08-10 2003-02-07 Michelin & Cie Repartition dynamique de l'effort d'antiroulis entre les essieux d'un vehicule
US6538411B1 (en) 2000-10-13 2003-03-25 Deka Products Limited Partnership Deceleration control of a personal transporter
EP1324911B1 (fr) * 2000-10-13 2011-09-21 Deka Products Limited Partnership Commande pour moyen de transport personnel
US6866107B2 (en) 2000-10-13 2005-03-15 Deka Products Limited Partnership Method and device for battery load sharing
US6553293B1 (en) 2002-01-03 2003-04-22 Delphi Technologies, Inc. Rear steering control for vehicles with front and rear steering
DE10226683A1 (de) * 2002-06-15 2003-12-24 Bosch Gmbh Robert Fahrstabilitätsmanagement durch einen Fahrzeugreglerverbund
US7210544B2 (en) 2002-07-12 2007-05-01 Deka Products Limited Partnership Control of a transporter based on attitude
US6813552B2 (en) 2002-11-18 2004-11-02 General Motors Corporation Method and apparatus for vehicle stability enhancement system
US6865468B2 (en) 2002-11-26 2005-03-08 General Motors Corporation Method and apparatus for vehicle stability enhancement system
US6819998B2 (en) * 2002-11-26 2004-11-16 General Motors Corporation Method and apparatus for vehicle stability enhancement system
US6968261B2 (en) * 2003-01-03 2005-11-22 General Motors Corporation Method and apparatus for vehicle stability enhancement system
US6879898B2 (en) * 2003-01-03 2005-04-12 General Motors Corporation Method and apparatus for vehicle integrated chassis control system
US20040201272A1 (en) * 2003-04-08 2004-10-14 Delphi Technologies Inc. ABS yaw control with yaw rate sensor
US6885931B2 (en) * 2003-04-24 2005-04-26 Visteon Global Technologies, Inc. Control algorithm for a yaw stability management system
US7689392B2 (en) * 2003-12-09 2010-03-30 Ford Motor Company Method and apparatus for controlling a vehicle computer model
US7698034B2 (en) * 2004-01-06 2010-04-13 Gm Global Technology Operations, Inc. Integrating active front steering and vehicle stability brake control
DE102004015114B4 (de) * 2004-03-27 2014-08-28 Robert Bosch Gmbh Brems-Steuersystem für Kraftfahrzeuge
JP4197033B2 (ja) * 2004-08-10 2008-12-17 株式会社村田製作所 レーダ
FR2899189B1 (fr) * 2006-03-31 2008-12-05 Peugeot Citroen Automobiles Sa Dispositif de stabilisation de vehicule
EP2004469B1 (fr) * 2006-04-06 2012-02-15 Continental Teves AG & Co. oHG Procede de determination de situations de conduites instables
US20080140264A1 (en) * 2006-12-08 2008-06-12 O'dea Kevin A Method for providing stability control for a vehicle
JP5143103B2 (ja) * 2009-09-30 2013-02-13 日立オートモティブシステムズ株式会社 車両の運動制御装置
JP6022946B2 (ja) 2010-02-26 2016-11-09 セグウェイ・インコーポレイテッド 車両を制御するための装置及び方法
US20130332030A1 (en) * 2011-03-02 2013-12-12 Continental Teves Ag & Co. Ohg Intelligent vehicle sensor device
US9463804B2 (en) * 2014-11-11 2016-10-11 Ford Global Tehnologies, LLC Vehicle cornering modes
US10252724B2 (en) 2015-09-24 2019-04-09 P&N Phc, Llc Portable two-wheeled self-balancing personal transport vehicle
US10926756B2 (en) 2016-02-23 2021-02-23 Deka Products Limited Partnership Mobility device
US10908045B2 (en) 2016-02-23 2021-02-02 Deka Products Limited Partnership Mobility device
US11399995B2 (en) 2016-02-23 2022-08-02 Deka Products Limited Partnership Mobility device
CA3015608A1 (fr) 2016-02-23 2017-08-31 Deka Products Limited Partnership Systeme de commande de dispositif de mobilite
US10802495B2 (en) 2016-04-14 2020-10-13 Deka Products Limited Partnership User control device for a transporter
US10442427B2 (en) * 2017-01-23 2019-10-15 GM Global Technology Operations LLC Vehicle dynamics actuator control systems and methods
JP6743736B2 (ja) * 2017-03-23 2020-08-19 トヨタ自動車株式会社 車両のブレーキ装置
US10300897B2 (en) 2017-05-15 2019-05-28 Goodrich Corporation Brake load balance and runway centering techniques
USD846452S1 (en) 2017-05-20 2019-04-23 Deka Products Limited Partnership Display housing
JP6940818B2 (ja) * 2018-03-09 2021-09-29 トヨタ自動車株式会社 車両のヨーモーメント制御装置
EP3803736A1 (fr) 2018-06-07 2021-04-14 DEKA Products Limited Partnership Système et procédé d'exécution de service public distribué
US10928195B2 (en) * 2018-08-09 2021-02-23 Ford Global Technologies, Llc Wheel diagnostic
CN113682282A (zh) * 2021-09-10 2021-11-23 中国第一汽车股份有限公司 一种车辆稳定性控制方法、系统、车辆和存储介质

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3861868D1 (de) 1987-02-03 1991-04-11 Toyoda Chuo Kenkyusho Kk Steuervorrichtung fuer das lenken der raeder eines fahrzeugs.
GB2242949B (en) 1990-03-22 1994-02-09 Nissan Motor Braking force control apparatus
US5063514A (en) 1990-06-19 1991-11-05 General Motors Corporation Abs yaw control
JP2623927B2 (ja) 1990-07-05 1997-06-25 日産自動車株式会社 車両の旋回挙動制御装置
DE4026626A1 (de) 1990-08-23 1992-02-27 Bosch Gmbh Robert Verfahren zur regelung der fahrzeugdynamik
JP2917652B2 (ja) 1991-06-10 1999-07-12 株式会社デンソー サスペンション制御装置
DE4121954A1 (de) 1991-07-03 1993-01-07 Bosch Gmbh Robert Verfahren zur gewinnung der giergeschwindigkeit und/oder quergeschwindigkeit
DE4123235C2 (de) 1991-07-13 1997-04-03 Daimler Benz Ag Verfahren zur Verhinderung von Instabilitäten des Fahrverhaltens eines Fahrzeuges
US5283874A (en) 1991-10-21 1994-02-01 Intel Corporation Cross coupling mechanisms for simultaneously completing consecutive pipeline instructions even if they begin to process at the same microprocessor of the issue fee
DE4200061C2 (de) 1992-01-03 2001-09-13 Bosch Gmbh Robert Verfahren zur Bestimmung der Fahrzeugquergeschwindigkeit und/oder des Schwimmwinkels
DE4200997C2 (de) 1992-01-16 1994-02-03 Steyr Daimler Puch Ag Verfahren zur Ermittlung der fahrdynamischen Sicherheitsreserve von Kraftfahrzeugen
JP2936162B2 (ja) 1992-02-14 1999-08-23 本田技研工業株式会社 車両の操安制御装置
DE4223385C2 (de) 1992-07-16 2001-02-22 Bosch Gmbh Robert Verfahren zum Erkennen der Rückwärtsfahrt eines Kraftfahrzeugs
DE4226749C2 (de) 1992-08-13 1996-02-08 Daimler Benz Ag Verfahren zur Bestimmung das Fahrverhalten charakterisierender Größen
DE4229504B4 (de) 1992-09-04 2007-11-29 Robert Bosch Gmbh Verfahren zur Regelung der Fahrzeugstabilität
DE4243717A1 (de) 1992-12-23 1994-06-30 Bosch Gmbh Robert Verfahren zur Regelung der Fahrzeugstabilität
DE4305155C2 (de) 1993-02-19 2002-05-23 Bosch Gmbh Robert Vorrichtung zur Regelung der Fahrdynamik
DE4311077A1 (de) 1993-04-03 1994-10-06 Bosch Gmbh Robert Antiblockierregelsystem
DE4314827A1 (de) 1993-05-05 1994-11-10 Porsche Ag Verfahren zur Bestimmung der Gierwinkelgeschwindigkeit eines Fahrzeuges
US5366281A (en) 1994-02-14 1994-11-22 General Motors Corporation Method of initializing a brake actuator
DE19537791C2 (de) * 1994-10-19 2002-10-31 Volkswagen Ag Verfahren und Vorrichtung zur Ermittlung der Fahrgeschwindigkeit eines Kraftfahrzeuges
US5915800A (en) * 1995-06-19 1999-06-29 Fuji Jukogyo Kabushiki Kaisha System for controlling braking of an automotive vehicle
JP3464732B2 (ja) * 1995-07-14 2003-11-10 本田技研工業株式会社 車両のブレーキ制御装置
DE19602994A1 (de) * 1996-01-27 1997-07-31 Teves Gmbh Alfred Verfahren zur Bestimmung von Größen, die das Fahrverhalten eines Fahrzeugs beschreiben
US5948027A (en) * 1996-09-06 1999-09-07 Ford Global Technologies, Inc. Method for enhancing vehicle stability
US5941919A (en) * 1996-10-16 1999-08-24 General Motors Corporation Chassis control system
JPH10129439A (ja) * 1996-10-25 1998-05-19 Aisin Seiki Co Ltd 車両の運動制御装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8322477B2 (en) 1993-02-24 2012-12-04 Deka Products Limited Partnership Motion control of a transporter
US7690447B2 (en) 1999-08-31 2010-04-06 Deka Products Limited Partnership Dynamic balancing vehicle with a seat
US7690452B2 (en) 2002-06-11 2010-04-06 Deka Products Limited Partnership Vehicle control by pitch modulation
US7757794B2 (en) 2002-06-11 2010-07-20 Segway, Inc. Vehicle control by pitch modulation
US7900725B2 (en) 2002-06-11 2011-03-08 Segway Inc. Vehicle control by pitch modulation
US8170780B2 (en) 2008-11-06 2012-05-01 Segway, Inc. Apparatus and method for control of a vehicle
US8467941B2 (en) 2008-11-06 2013-06-18 Segway, Inc. Apparatus and method for control of a vehicle

Also Published As

Publication number Publication date
EP0958978A3 (fr) 2003-03-12
US6205391B1 (en) 2001-03-20
DE69935471T2 (de) 2008-01-10
EP0958978A2 (fr) 1999-11-24
DE69935471D1 (de) 2007-04-26

Similar Documents

Publication Publication Date Title
EP0958978B1 (fr) Procédé de contrôle de lacet pour véhicule
EP1396372B1 (fr) Dispositif et méthode de contrôle de puissance en virage
US7292924B2 (en) Vehicle stability control enhancement using tire force characteristics
US6625527B1 (en) Sensor system with monitoring device
EP0729870B1 (fr) Procédé de commande du mouvement de lacet d'un véhicule à roues
US6012010A (en) Process for improving the regulating behavior of an anti-lock systems
US6697726B2 (en) Rolling control apparatus and method of vehicle
US5696681A (en) Brake steer vehicle dynamics control intervention
EP0462635B1 (fr) Procédé et appareil de commande de pression de freinage
US5388896A (en) Method for braking motor vehicle wheels while reducing a yawing moment of an antilock braking system
EP0982206B1 (fr) Méthode pour estimer la vitesse de lacet d'un véhicule
EP0980804B1 (fr) Méthode de commande de la vitesse de lacet
US7317982B2 (en) Estimating device and vehicle motion control device using the same
US20060158031A1 (en) Method and system for controlling the driving stability of a vehicle and use of said system
EP1486391B1 (fr) Procédé et dispositif de commande pour véhicule automobile
US20020198646A1 (en) Vehicle chassis control with coordinated brake and steering control on split coefficient surface
US5829847A (en) Vehicle motion control system
US6923514B1 (en) Electronic brake control system
JP3284086B2 (ja) ヨーレートセンサおよび横方向加速度センサの異常検出装置
EP0416480B1 (fr) Commande de direction des roues arrière pour véhicule
US20150314759A1 (en) Vehicle movement dynamics control method
JP3748334B2 (ja) 車両の姿勢制御装置
JP3039071B2 (ja) 車両旋回限界判定装置
JP3703635B2 (ja) 車両の挙動制御装置
JPH0569845A (ja) 車両旋回限界判定装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20030528

AKX Designation fees paid

Designated state(s): DE FR GB

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69935471

Country of ref document: DE

Date of ref document: 20070426

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071002

26N No opposition filed

Effective date: 20071217

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20070614

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070402

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080311

Year of fee payment: 10