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1. Introduction

This report gives some insight into OpenFOAM's structure of linear solvers, i.e. iterative solvers

for linear sets of equations Ax = b. Also matrix preconditioners and smoothers will be presented.

In a tutorial section we will use the icoFoam application solver on the cavity test case. A comparison

between DIC and FDIC preconditioner as well as between PCG/PBiCG and GAMG solvers will be

done. It will be shown how to copy the PBiCG solver and implement it as a myPBiCG solver to

demonstrate how to add new solvers.

The report was prepared for the course CFD with OpenSource software1 at Chalmers University of

Technology. Some of the material and general ideas is collected from the o�cial manuals, the forum

and other course material2. Also the book of Saad, Iterative methods for sparse linear systems3 -

whose 1st edition is free to download - was used and is recommended for further information about

the topic.

1http://www.tfd.chalmers.se/�hani/kurser/OS_CFD_2008/
2Martin van Gijzen, Iterative Methods for Linear Systems of Equations,
http://ta.twi.tudelft.nl/nw/users/gijzen/CURSUS_DTU/HOMEPAGE/PhD_Course.html

3I.T. Distinguished Professor, University of Minnesota, http://www-users.cs.umn.edu/�saad/
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2. Structure in OpenFOAM

First the �le structure of the linear solvers in OpenFOAM shall be presented. The discussed solvers

all operate on the lduMatrix class, which can be found in:

$FOAM_SRC/OpenFOAM/matrices/lduMatrix/

with its subdirectories being

• lduAddressing/

• lduMatrix/

• preconditioners/

• smoothers/

• solvers/

lduMatrix is a matrix class in which the coe�cients are stored as three di�erent arrays. One for the

upper triangle (u), one for the lower triangle (l) and a third array for the diagonal of the matrix

(d). Addressing arrays (in lduAdressing/) must be supplied for the upper and lower triangles.

The fvScalarMatrix ($FOAM_SRC/finiteVolume/fvMatrices/fvScalarMatrix) class for example is

derived from fvMatrix ($FOAM_SRC/finiteVolume/fvMatrices/fvMatrix), which itself is derived

from lduMatrix. Inside of lduMatrix.H/C you can �nd the member functions

• const scalarField & lower () const

• const scalarField & diag () const

• const scalarField & upper () const

which will return the list of coe�cients for the lower, diagonal and upper part of the matrix. Then

for the source terms b (or RHS) fvMatrix implements:

Field<type> & source ()

In general one can specify a lduMatrix with whatever addressing one may wish, but one will have to

build the addressing oneself. Thus, if corner neighbours are needed for some reason, this is no longer

a standard �nite volume method and the FVM machinery cannot be reused. Please note that the

sparse matrix is not dynamic, ie. its sparseness pattern is de�ned at creation and cannot be changed.
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2.1. Preconditioners

A preconditioned iterative solver solves the system

M−1Ax = M−1b

with M being the preconditioner. The chosen preconditioner should make sure that convergence for

the preconditioned system is much faster than for the original one. This lead to M (mostly) being

an easily invertible approximation to A. All operations with M−1 should be computational cheap.

For multiplications with vectors the matrix-matrix multiplication M−1A has not to be calculated

explicitly, but can be substituted by two matrix-vector calculations. The above example was a left

preconditioning, but also central and right precondition exist. In simple terms the preconditioner

leads to a faster propagation of information through the computational mesh.

In the preconditioners/ directory one can �nd

• diagonalPreconditioner/ - Diagonal preconditioner for both symmetric and asymmetric

matrices. This preconditioner actually does not help with faster propagation through the

grid, but it is very easy and can be a good �rst step. Note: The reciprocal of the diagonal

is calculated and stored for reuse because on most systems multiplications are faster than

divisions.

• DICPreconditioner/ - Simpli�ed diagonal-based incomplete Cholesky preconditioner for sym-

metric matrices (symmetric equivalent of DILU). The reciprocal of the preconditioned diagonal

is calculated and stored.

• DILUPreconditioner/ - Simpli�ed diagonal-based incomplete LU preconditioner for asym-

metric matrices. The reciprocal of the preconditioned diagonal is calculated and stored.

• FDICPreconditioner/ - Faster version of the DICPreconditioner diagonal-based incomplete

Cholesky preconditioner for symmetric matrices (symmetric equivalent of DILU) in which the

reciprocal of the preconditioned diagonal and the upper coe�cients divided by the diagonal

are calculated and stored.

• GAMGPreconditioner/ - Geometric agglomerated algebraic multigrid preconditioner (also named

Generalised geometric-algebraic multi-grid in the manual).

• noPreconditioner/ - Null preconditioner for both symmetric and asymmetric matrices.

5



2.2. Linear Solvers

In the solvers/ directory one will �nd the following linear solvers

• BICCG/ - Diagonal incomplete LU preconditioned BiCG solver1

• diagonalSolver/ - diagonal solver for both symmetric and asymmetric problems

• GAMG/ - Geometric agglomerated algebraic multigrid solver (also named Generalised geometric-

algebraic multi-grid in the manual)

• ICC/ - Incomplete Cholesky preconditioned Conjugate Gradients solver2

• PBiCG/ - Preconditioned bi-conjugate gradient solver for asymmetric lduMatrices using a run-

time selectable preconditioner

• PCG/ - Preconditioned conjugate gradient solver for symmetric lduMatrices using a run-time

selectable preconditiioner

• smoothSolver/ - Iterative solver using smoother for symmetric and asymmetric matrices

which uses a run-time selected smoother

2.2.1. Krylov Subspace solvers

The standard solvers PBiCG and PCG are Krylov subspace solvers. Instead of a full description3

only a brief overview close to the Wikipedia entry shall be given:

In linear algebra, the order-r Krylov subspace generated by an n-by-n matrix A, and a vector of

n-dimension b, is the linear subspace spanned by the images of b under the �rst r powers of A

(starting from A0 = I), that is:

Kr(A, b) = span {b, Ab,A2b, . . . , Ar−1b}

Modern iterative methods for solving large systems of linear equations avoid matrix-matrix oper-

ations, but rather multiply vectors by the matrix and work with the resulting vectors. Starting

with a vector b, one computes Ab, then one multiplies that vector by A to �nd A2b and so on. All

algorithms that work this way are referred to as Krylov subspace methods. They are among the

most successful methods currently available in numerical linear algebra. Because the vectors tend

very quickly to become almost linearly dependent, methods relying on Krylov subspace frequently

involve some orthogonalization scheme, such as Lanczos iteration for Hermitian matrices or Arnoldi

iteration for more general matrices.

The best known Krylov subspace methods are the Arnoldi, Lanczos, GMRES (generalized minimum

residual) and BiCGSTAB (stabilized biconjugate gradient) methods.

1This solver is present for backward-compatibility and the PBiCG solver should be used for preference
2This solver is present for backward-compatibility and the PCG solver should be used for preference
3M. Gutknecht, ETH Zurich, "`A Brief Introduction to Krylov Space Methods for Solving Linear Systems"',
http://www.sam.math.ethz.ch/ mhg/pub/biksm.pdf
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2.2.2. A closer look at GAMG

The basic idea behind multi-grid solvers is to use a coarse grid with fast solution times to smoothen

out high frequency errors and to generate a starting solutions for the �ner grid. This can either be

done be a geometric coarsening of the grid (geometric multi-grid), or by applying the same principles

directly to the matrix, regardless of the geometry (algebraic multi-grid). Inside GAMG the mesh is

coarsed in steps and the coarsening or agglomeration algorithm can be faceAreaPair (geometric) or

algebraic pair (see extract from ReleaseNote 1.4.1 below).

Generalised geometric/algebraic multi-grid (GAMG) solver

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

[...]

- The GAMG solver now completely replaces the old AMG solver which is no longer

supported. The GAMG solver can operate in a similar manner to the old AMG

solver by selecting the 'algebraicPair' agglomerator although the

'faceAreaPair' has proved superior in all of our tests.

[...]

The main class for the faceAreaPair agglomeration can be found in

$FOAM_SRC/finiteVolume/fvMatrices/solvers/GAMGSymSolver/ \

GAMGAgglomerations/faceAreaPairGAMGAgglomeration$

In the faceAreaPairGAMGAgglomeration.C we �nd

Foam::faceAreaPairGAMGAgglomeration::faceAreaPairGAMGAgglomeration

[...]

//agglomerate(mesh, sqrt(fvmesh.magSf().internalField()));

agglomerate

(

mesh,

mag

(

cmptMultiply

(

fvmesh.Sf().internalField()

/sqrt(fvmesh.magSf().internalField()),

vector(1, 1.01, 1.02)

//vector::one

)

)

);

}
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The class calls the agglomerate process handing over the mesh and the magnitude of a multiplication

of the face areas with a vector that has not unit components (as the part that was commented out

would have had virtually). The vector was chosen presumably to have dominant agglomeration

directions for meshes with uniform face areas. The choice of the scalar that is passed to the

agglomeration is the main di�erence to the algebraicPair option which passes the mesh and the

magnitude of the matrix' upper coe�cients (for symmetric cases) to the agglomeration process:

$FOAM_SRC/OpenFOAM/matrices/lduMatrix/solvers/GAMG/GAMGAgglomerations \

/algebraicPairGAMGAgglomeration/algebraicPairGAMGAgglomeration.C:

Foam::algebraicPairGAMGAgglomeration::algebraicPairGAMGAgglomeration

(

const lduMatrix& matrix,

const dictionary& controlDict

)

:

pairGAMGAgglomeration(matrix.mesh(), controlDict)

{

agglomerate(matrix.mesh(), mag(matrix.upper()));

}

In lduMatrix/solvers/GAMG/GAMGAgglomerations/pairGAMGAgglomeration the agglomeration of

the cells using the pair algorithm can be found with some comments on the process.

In pairGAMGAgglomeration.C one can see that the scalarField is named faceWeights which - as

seen above - can either be the faceAreas or the matrix coe�cients:

Foam::tmp<Foam::labelField> Foam::pairGAMGAgglomeration::agglomerate

(

label& nCoarseCells,

const lduAddressing& fineMatrixAddressing,

const scalarField& faceWeights

)

The following is an overview of what happens in the loops:

1. Get the �nest-level interfaces from the mesh

2. Start agglomeration from the given faceWeights

a) For each cell calculate faces, afterwards go through the faces and create groups/clusters

• Check faces to �nd ungrouped neighbour with largest face weight

• Check if current cell is face owner or neighbour
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• When a match is found, pick up all the necessary data and generate a new group/-

cluster, else �nd the best neighbouring cluster and add the cell to it

b) Check that all cells are part of clusters, if not create a single-cell "cluster" for each

c) Reverse the map ordering to potentially improve the next level of agglomeration

3. Agglomerate the faceWeights �eld for the next level and continue from (1.) unless the user

speci�ed approximate mesh size at the most coarse level nCoarsestCells or the maximum

number of grid levels maxLevels (hard coded to 50) is reached.

Figure 2.1.: Example of a geometric agglomeration process

In Fig. 2.1 a simple geometric example for this process is shown. Starting with the black grid

consiting of 6 cells, the coarser mesh (blue) is built by joining two cells for each new cell. For the

coarsest level (red) �rst cells 1 and 3 are joined. Cell 2 cannot �nd an ungrouped partner and will

be joined with the neighbouring group. The mergeLevels keyword controls the step size at which

coarsening or re�nement of levels is performed. Assuming we would have used mergeLevels 2 the

blue mesh would have not been stored for calculation. It is often best to coarsen only by one level

at a time, i.e. set mergeLevels 1. In some cases, particularly for simple meshes, the solution can

be safely speeded up by coarsening/re�ning two levels at a time.

The solver is running a V-cycle at which the coarsest level matrix is solved directly (specifying

directSolve_Coarsest true) or using the iterative ICCG/BICCG4 as default. The number of

sweeps used by the selected smoother when solving at di�erent levels of mesh density are speci�ed

4solver will be chosen automatically for symmetric/asymmetric matrices
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by the nPreSweeps, nPostSweeps and nFinestSweeps keywords. The nPreSweeps entry is used

when the V cycle is moving in coarser direction, nPostSweeps is used as the algorithm is re�ning

again. The nFinestSweeps parameter is used when the solution is at its �nest level. The user is

only required to specify an approximate mesh size at the most coarse level in terms of the number

of cells nCoarsestCells. The levels in between will be generated by the solver agglomeration.

The defaults for the GAMG solver are set in GAMGSolver.C and can be overwritten by de�nition

inside fvSolution.

cacheAgglomeration_(false),

nPreSweeps_(0),

nPostSweeps_(2),

nFinestSweeps_(2),

scaleCorrection_(matrix.symmetric()),

directSolveCoarsest_(false),

MGridGen

The UserGuide states that there is an MGridGen5 option that requires an additional entry specifying

the shared object library for MGridGen:

geometricGamgAgglomerationLibs ("libMGridGenGamgAgglomeration.so");

The source codes can be found in

$FOAM_SRC/decompositionAgglomeration/MGridGenGamgAgglomeration.

5MGridGen is a parallel library written entirely in ANSI C that implements (serial) algorithms for ob-
taining a sequence of successive coarse grids that are well-suited for geometric multigrid methods. The
quality of the elements of the coarse grids is optimized using a multilevel framework. See http://www-
users.cs.umn.edu/�moulitsa/software.html
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2.3. Smoothers

Although the preconditioners discussed before can considerably reduce the number of iterations,

they do not normally reduce the mesh dependency of the numbers of iterations. OpenFOAM

supplies the following smoothers to be used with the solvers in the smoothers/ directory:

• DIC/ - Simpli�ed diagonal-based incomplete Cholesky smoother for symmetric matrices.

• DICGaussSeidel/ - Combined DIC/GaussSeidel smoother for symmetric matrices in which

DIC smoothing is followed by GaussSeidel to ensure that any "spikes" created by the DIC

sweeps are smoothed-out.

• DILU/ - Simpli�ed diagonal-based incomplete LU smoother for asymmetric matrices. ILU

smoothers are good smoothers for linear multigrid methods.

• DILUGaussSeidel/ - Combined DILU/GaussSeidel smoother for asymmetric matrices in which

DILU smoothing is followed by GaussSeidel to ensure that any "spikes" created by the DILU

sweeps are smoothed-out.

• GaussSeidel/ - The GaussSeidel method is a technique used to solve a linear system of

equations. The method is an improved version of the Jacobi method. It is de�ned on matrices

with non-zero diagonals, but convergence is only guaranteed if the matrix is either diagonally

dominant, or symmetric and positive de�nite (spd).
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3. Tutorial

In this tutorial we will use the icoFoam application solver on the cavity test case and

• compare DIC with FDIC preconditioner

• compare PCG/PBiCG with GAMG solver

• copy PBiCG and implement as myPBiCG solver

3.1. Cavity case

First one should make sure to have a working version of the cavity test case by copying a fresh

version to the user's run directory.

cp -r $FOAM_TUTORIALS/icoFoam/cavity $FOAM_RUN/cavity

cd $FOAM_RUN/cavity

The system/fvSolution �le should now look like below, which could be called a standard con�gu-

ration.

solvers

{

p PCG

{

preconditioner DIC;

tolerance 1e-06;

relTol 0;

};

U PBiCG

{

preconditioner DILU;

tolerance 1e-05;

relTol 0;

};

}

3.2. Preconditioner Test

In the preconditioner section one could see that there exists a faster version (FDIC) of the DIC

preconditioner in which the reciprocal of the preconditioned diagonal and the upper coe�cients

divided by the diagonal are calculated and stored. We will now try to see how large the speed-up

actually is for our test case. We change the mesh size in constant/polyMesh/blockMeshDict to

150*150.
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blocks

(

hex (0 1 2 3 4 5 6 7) (150 150 1) simpleGrading (1 1 1)

);

Changing the system/controlDict to

endTime 0.04;

deltaT 0.0005;

writeControl timeStep;

writeInterval 20;

Figure 3.1.: Calculation time speed-up for FDIC compared to DIC

generating the new mesh with blockMesh and running the icoFoam application solver.

blockMesh

icoFoam > logDIC
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When icoFoam has completed we change DIC to FDIC in fvSolution �le

preconditioner FDIC;

and run icoFoam again with output to a new log �le

icoFoam > logFDIC

The result - which should be reproducable on most machines - is that the execution time for the

FDIC preconditioner is 3-4% lower. Results for some di�erent mesh sizes are presented in Fig. 3.1.

Adding just one letter to your fvSolution �le may result in a speed-up of about 3%. On the other

hand the FDIC calculation for the con�guration crashed at a grid size of 200*200, while the DIC

still �nished normally (of course one could adjust the time-stepping).
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3.3. Geometric agglomerated algebraic multigrid

We will now compare solving the cavity test case with the PCG/PBiCG and the multigrid solver.

If you have not run the above DIC/FDIC case, �rst run icoFoam on the test case with the above

blockMeshDict, controDict and fvSolution that utilizes Krylov subspace solvers (KSS) .

icoFoam > logKSS &

When icoFoam has �nished we change fvSolution to make use of the multi grid solver implemented

in OpenFOAM:

solvers

{

p GAMG

{

preconditioner FDIC;

mergeLevels 1;

smoother GaussSeidel;

agglomerator faceAreaPair;

nCellsInCoarsestLevel 100;

tolerance 1e-05;

relTol 0;

};

U GAMG

{

preconditioner DILU;

mergeLevels 1;

smoother GaussSeidel;

agglomerator faceAreaPair;

nCellsInCoarsestLevel 100;

tolerance 1e-05;

relTol 0;

};

}

Running icoFoam now the execution time should be around one third of the calculation utilizing

PCG/PBiCG (with same tolerances!).

icoFoam > logGAMG
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3.4. Adding your own solver

In general there are two ways to add a new solver hard-linking or linking through a dynamic library.

The shorter version (hard-linking) will be discussed in the following. We will add the solver directly

to our application solver of choice myIcoFoam.

Make a copy of the PBiCG solver

cp -r $FOAM_SRC/OpenFOAM/matrices/lduMatrix/solvers/PBiCG $FOAM_RUN/myPBiCG

Replace all occurences of PBiCG inside PBiCG.H/.C with myPBiCG and rename these �les to

myPBiCG.H/.C

sed s/PBiCG/myPBiCG/g <PBiCG.C >myPBiCG.C

sed s/PBiCG/myPBiCG/g <PBiCG.H >myPBiCG.H

rm PBiCG.*

It is particularly important that the new solver adds itself to the list of allowed symmetric/asym-

metric solvers in myPBiCG.C, otherwise the application solver will not be able to select it.

namespace Foam

{

defineTypeNameAndDebug(myPBiCG, 0);

lduMatrix::solver::addasymMatrixConstructorToTable<myPBiCG>

addmyPBiCGAsymMatrixConstructorToTable_;

}

Copy the icoFoam solver

cp -r $FOAM_APP/solvers/incompressible/icoFoam \

$FOAM_RUN/myIcoFoam

cd $FOAM_RUN/myIcoFoam

and change your Make/files to

icoFoam.C

$(FOAM_RUN)/myPBiCG/myPBiCG.C

EXE = $(FOAM_USER_APPBIN)/myIcoFoam

compile

wclean

rm -r Make/linux*

wmake
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and myPBiCG will be included automatically.

Now copy and switch into your favourite test case directory

cp -r $FOAM_TUTORIALS/icoFoam/cavity $FOAM_RUN/cavity

cd $FOAM_RUN/cavity

edit your system/fvSolution so your solver for velocity U is now myPBiCG

U myPBiCG

{

preconditioner DILU;

tolerance 1e-05;

relTol 0;

};

and start your calculation after building the mesh

blockMesh

myIcoFoam > log &

Check that the code uses myPBiCG by looking at the log �le.

DILUmyPBiCG: Solving for Ux, [...]

DILUmyPBiCG: Solving for Uy, [...]

FDICPCG: Solving for p, [...]
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A. Comments

A.1. Induced Dimension Reduction Method

The Induced Dimension Reduction (IDR) method is a Krylov subspace method for solving large

sparse nonsymmetric systems of linear equations method and was recently revived as IDR(s)1 by

Sonneveld and van Gijzen2. In Fig. A.1 solutions of an ocean circulation test problem3 are shown.

One can see that the IDR(4) algorithm requires considerably less matrix-vector computations than

BiCG and BiCGSTAB. Unfortunatly implementation of IDR(s) could not be done within the scope

Figure A.1.: Solutions of an ocean circulation test problem

of this work, but it sure is a very interesting method and could contribute to OpenFOAM develop-

ment.

A.2. LIS

If one is interested in di�erent solvers one should have a look at the Lis (Library of Iterative Solvers

for Linear Systems) project4 which is a library written in C and Fortran 90 for solving linear

equations and eigenvalue problems with iterative methods.

1http://ta.twi.tudelft.nl/nw/users/gijzen/IDR.html
2Delft University of Technology
3M. B. van Gijzen, C. B. Vreugdenhil, and H. Oksuzoglu, The Finite Element Discretization for Stream-Function
Problems on Multiply Connected Domains, J. Comp. Phys., 140, 1998, pp. 30-46.

4Scalable Software Infrastructure for Scienti�c Computing http://ssi.is.s.u-tokyo.ac.jp/lis/

18


