
                     Chapter 3. Booting Operating Systems 
 

Abstract: Chapter 3 provides a complete coverage on operating systems booting. It 

explains the booting principle and the booting sequence of various kinds of bootable 

devices. These include booting from floppy disk, hard disk, CDROM and USB 

drives. Instead of writing a customized booter to boot up only MTX, it shows how to 

develop booter programs to boot up real operating systems, such as Linux, from a 

variety of bootable devices. In particular, it shows how to boot up generic Linux 

bzImage kernels with initial ramdisk support. It is shown that the hard disk and 

CDROM booters developed in this book are comparable to GRUB and isolinux in 

performance. In addition, it demonstrates the booter programs by sample systems. 

 

3.1. Booting 
 

   Booting, which is short for bootstrap, refers to the process of loading an operating 

system image into computer memory and starting up the operating system. As such, it is 

the first step to run an operating system. Despite its importance and widespread interests 

among computer users, the subject of booting is rarely discussed in operating system 

books. Information on booting are usually scattered and, in most cases, incomplete. A 

systematic treatment of the booting process has been lacking. The purpose of this chapter 

is to try to fill this void. In this chapter, we shall discuss the booting principle and show 

how to write booter programs to boot up real operating systems. As one might expect, the 

booting process is highly machine dependent. To be more specific, we shall only consider 

the booting process of Intel x86 based PCs. Every PC has a BIOS (Basic Input Output 

System) program stored in ROM (Read Only Memory). After power on or following a 

reset, the PC’s CPU starts to execute BIOS. First, BIOS performs POST (Power-on Self 

Test) to check the system hardware for proper operation. Then it searches for a device to 

boot. Bootable devices are maintained in a programmable CMOS memory. The usual 

booting order is floppy disk, CDROM, hard disk, etc. The booting order can be changed 

through BIOS. If BIOS finds a bootable device, it tries to boot from that device. 

Otherwise, it displays a "no bootable device found" message and waits for user 

intervention. 
 

3.1.1. Bootable Devices 
 

   A bootable device is a storage device supported by BIOS for booting. Currently, 

bootable devices include floppy disk, hard disk, CD/DVD disc and USB drive. As storage 

technology evolves, new bootable devices will undoubtedly be added to the list, but the 

principle of booting should remain the same. A bootable device contains a booter and a 

bootable system image. During booting, BIOS loads the first 512 bytes of the booter to 

the memory location (segment, offset)=(0x0000, 0x7C00)=0x07C00, and jumps to there 

to execute the booter. After that, it is entirely up to the booter to do the rest. The reason 

why BIOS always loads the booter to 0x07C00 is historical. In the early days, a PC is 

only guaranteed to have 64KB of RAM memory. The memory below 0x07C00 is 

reserved for interrupt vectors, BIOS and BASIC, etc. The first OS usable memory begins 



at 0x08000. So the booter is loaded to 0x07C00, which is 1KB below 0x08000. When 

execution starts, the actions of a booter are typically as follows. 

 

     . Load the rest of the booter into memory and execute the complete booter.  

     . Find and load the operating system image into memory. 

     . Send CPU to execute the startup code of the OS kernel, which starts up the OS. 

 

Details of these steps will be explained later when we develop booter programs. In the 

following, we first describe the booting process of various bootable devices. 
 

3.2. Booting From Various Devices 

 
3.2.1. Floppy Disk Booting 
 

As a storage device, floppy disk (FD) has almost become obsolete. Currently, most 

PCs, especially laptop computers, no longer support floppy drives. Despite this, it is still 

worth discussing FD booting for several reasons. First, booting requires writing a booter 

to the beginning part of a device, such as sector 0 of a hard disk, which is known as the 

Master Boot Record (MBR). However, writing to a hard disk is very risky. A careless 

mistake may render the hard disk non-bootable, or even worse, destroy the disk's partition 

table with disastrous consequences. In contrast, writing to a floppy disk involves almost 

no risk at all. It provides a simple and safe tool for learning the booting process and 

testing new booter programs. This is especially beneficial to beginners. Second, floppy 

drives are still supported in almost all PC emulators, such as QEMU, VMware and 

VirtualBox, etc. These PC emulators provide a virtual machine environment for 

developing and testing system software. Virtual machines are more convenient to use 

since booting a virtual machine does not need to turn off/on a real computer and the 

booting process is also faster. Third, for various reasons a computer may become non-

bootable. Often the problem is not due to hardware failure but corrupted or missing 

system files. In these situations it is very useful to have an alternative way to boot up the 

machine to repair or rescue the system. Depending on the disk contents, FD booting can 

be classified into several cases, as shown in Figure 3.1. In the following, we shall 

describe the setup and booting sequence of each case.  

 

        
     

                       Figure 3.1. Bootable FDs by Contents 

 

 (1). FD contains a booter followed by a bootable OS image: In this case, a FD is 

dedicated to booting. It contains a booter in sector 0, followed by a bootable OS image in 

consecutive sectors, as shown in Figure 3.2.  



               
                              Figure 3.2 . A simple Bootable FD layout 
 

The size of the OS image, e.g. number of sectors, is either in the beginning part of the OS 

image or patched in the booter itself, so that the booter can determine how many sectors 

of the OS image to load. The loading address is also known, usually by default. In this 

case the booter's task is very simple. All it needs to do is to load the OS image sectors to 

the specified address and then send the CPU to execute the loaded OS image. Such a 

booter can be very small and fit easily in the MBR sector. Examples of this kind of setup 

include MTX, MINIX and bootable FD of small Linux zImage kernel. 

  

(2). FD with a bootable image and a RAM disk Image: Although it is very easy to boot 

up an OS kernel from a FD, to make the OS kernel runnable is another matter. In order to 

run, most OS kernels require a root file system, which is a basic file system containing 

enough special files, commands and shared libraries, etc. that are needed by the OS 

kernel. Without a root file system, an OS kernel simply cannot run. There are many ways 

to make a root file system available. The simplest way is to assume that a root file system 

already exists on a separate device. During booting the OS kernel can be instructed to 

mount the appropriate device as the root file system. As an example, early distributions of 

Linux used a pair of boot-root floppy disks. The boot disk is used to boot up the Linux 

kernel, which is compiled with RAM disk support. The root disk is a compressed RAM 

disk image of a root file system. When the Linux kernel starts up, it prompts and waits 

for a root disk to be inserted. When the root disk is ready, the kernel loads the root disk 

contents to a ram disk area in memory, un-compresses the RAM disk image and mounts 

the ram disk as the root file system. The same boot-root disk pair was used later as a 

Linux rescue system. 

 

   If the OS and RAM disk images are small, it is possible to put both images on the same 

floppy disk, resulting in a single-FD system. Figure 3.3 shows the layout of such a disk. It 

contains a booter and a Linux zImage followed by a compressed RAM disk image. The 

Linux kernel's ramdisk parameter can be set in such a way that when the Linux kernel 

starts, it does not prompt for a separate root disk but loads the RAM disk image directly 

from the boot disk. 

 

            
                        Figure 3.3. Bootable FD with RAM disk Image 

 

Instead of a RAM disk image, a FD may contain a complete file system in front, followed 

by an OS image in the latter part of the disk. Figure 3.4 shows the layout of a single-FD 

real mode MTX system. 

 



        

                        Figure 3.4. FD with EXT2 file system and MTX kernel 

 

The real mode MTX image size is at most 128 KB. We can format a FD as an EXT2 file 

system with 1024-128=896 blocks, populate it with files needed by the MTX kernel and 

place the MTX kernel in the last 128 blocks of the disk. Block 0, which is not used by the 

file system, contains a MTX booter. During booting, the booter loads the MTX kernel 

from the last 128 disk blocks and transfers control to the MTX kernel. When the MTX 

kernel starts, it mounts the FD as the root file system. For small Linux zImage kernels, a 

single-FD Linux system is also possible. 

 

(3). FD is a file system with bootable image files: In this case, the FD is a complete file 

system containing a bootable OS image as a regular file. To simplify booting, the OS 

image can be placed directly under the root directory, allowing the booter to find it easily. 

It may also be placed anywhere in the file system, e.g. in a /boot directory. In that case, 

the booter size would be larger since it must traverse the file system to find the OS image. 

During booting, the booter first finds the OS image file. Then it loads the image's disk 

blocks into memory and sends the CPU to execute the loaded OS image. When the OS 

kernel starts, it mounts the FD as the root file system and runs on the same FD. This kind 

of setup is very common. A well-known example is DOS, which can boot up and run 

from the same FD. Here, we describe two specific systems based on MTX and Linux. 

 

A FD based MTX system is an EXT2 file system. It contains all the files needed by the 

MTX kernel. Bootable MTX kernels are files in the /boot directory. Block0 of the disk 

contains a MTX booter. During booting, the booter prompts for a MTX kernel to boot. 

The default is mtx but it can be any file name in the /boot directory. With a bootable file 

name, the booter finds the image file and loads its disk blocks to the segment 0x1000. 

When loading completes, it transfers control to the kernel image. When the MTX kernel 

starts up, it mounts the FD as the root file system and runs on the same FD. Similarly, we 

can create a single-FD Linux system as follows. 

 

      . Format a FD as EXT2 file system (mke2fs on /dev/fd0). 

      . Mount the FD and create directories (bin,boot,dev,etc,lib,sbin,usr). 

      . Populate the file system with files needed by the Linux kernel. 

      . Place a Linux zImage with rootdev=(2,0) in the /boot directory. 

      . Install a linux booter to block0 of the FD. 

 

After booting up, the Linux kernel can mount the FD as the root file system and run on 

the same FD. Although the principle is simple, the challenge is how to make a complete 

Linux file system small enough to fit in a single FD. This is why earlier Linux had to use 

a separate root disk. The situation changed when a small Linux file system, called the 

BusyBox [BusyBox], became available. A small BusyBox is only about 400 KB, yet it 

supports all the basic commands of Unix, including a sh and a text editor that emulates 

both vi and emacs, an incredible feat indeed. As an example, Figure 3.13 shows the 



screen of booting up and running a single-FD Linux system. In addition to supporting 

small stand-alone Linux systems, BusyBox has become the core of almost all Linux 

distribution packages for installing the Linux system. 

 

(4). FD with a booter for HD booting: This is a FD based booter for booting from hard 

disk partitions. During booting, the booter is loaded from a FD. Once execution starts, all 

the actions are for booting system images from hard disk partitions. Since the hard disk is 

accessed in read-only mode, this avoids any chances of corrupting the hard disk. In 

addition, it also provides an alternative way to boot up a PC when the normal booter 

becomes inoperative.  

 

3.2.2. Hard Disk Booting 
 

The discussion here is based on IDE hard disks but the same principle also applies to 

SCSI and SATA hard disks.  

 

(1). Hard Disk Partitions: A hard disk is usually divided into several partitions. Each 

partition can be formatted as a unique file system and contain a different operating 

system. The partitions are defined by a partition table in the first (MBR) sector of the disk. 

In the MBR the partition table begins at the byte offset 0x1BE (446). It has four16-byte 

entries for four primary partitions. If needed, one of the partitions can be EXTEND type. 

The disk space of an EXTEND partition can be further divided into more partitions. Each 

partition is assigned a unique number for identification. Details of the partition table will 

be shown later. For the time being, it suffices to say that from the partition table, we can 

find the start sector and size of each partition. Similar to the MBR, the first sector of each 

partition is also a (local) MBR, which may contain a booter for booting an OS image in 

that partition. Figure 3.5 shows the layout of a hard disk with partitions. 

 

   

                                          Figure 3.5. Hard Disk Partitions 
 

(2). Hard Disk Booting Sequence: When booting from a hard disk BIOS loads the MBR 

booter to the memory location (0x0000, 0x7C00) and executes it as usual. What happens 

next depends on the role of the MBR booter. In the simplest case, the MBR booter may 

ask for a partition to boot. Then it loads the local MBR of the partition to (0x0000, 

0x7C00) and executes the local MBR booter. It is then up to the local MBR booter to 

finish the booting task. Such a MBR booter is commonly known as a chain-boot-loader. 

It might as well be called a pass-the-buck booter since all it does is to usher in the next 

booter and says "you do it". Such a chain boot-loader can be very small and fit entirely in 

the MBR. On the other hand, a more sophisticated HD booter should perform some of the 

booting tasks by itself. For example, the Linux boot loader LILO can be installed in the 

MBR for booting Linux as well as DOS and Windows. Similarly, GRUB [GNU GRUB 

Project] and the hd-booter developed in this book can also be installed in the MBR to 



boot up different operating systems. In general, a MBR booter cannot perform the entire 

booting task by itself due to its small size and limited capability. Instead, the MBR booter 

is only the beginning part of a multi-stage booter. In a multi-stage booter, BIOS loads 

stage1 and executes it first. Then stage1 loads and executes stage2, which loads and 

executes stage3, etc. Naturally, each succeeding stage can be much larger and more 

capable than the preceding stage. The number of stages is entirely up to the designer's 

choice. For example, GRUB version 1 and earlier had a stage1 booter in MBR, a stage1.5 

and also a stage2 booter. In the latest GRUB_2, stage1.5 is eliminated, leaving only two 

stages. In the hd-booter of this book, the MBR booter is also part of the second stage 

booter. So strictly speaking it has only one stage. 
 

3.2.3 CD/DVD_ROM Booting 
 

   Initially, CDROMs are used mainly for data storage, with proprietary booting methods 

provided by different computer vendors. CDROM booting standard was added in 1995. It 

is known as the El-Torito bootable CD specification [Stevens and Merkin, 1995]. Legend 

has it that the name was derived from a Mexican restaurant in California where the two 

engineers met and drafted the protocol.  

 

(1). The El-Torito CDROM boot protocol: The El-Torito protocol supports three different 

ways to set up a CDROM for booting, as shown in Figure 3.6. 

             
                                  Figure 3.6. CD/DVD Boot Options 

 

(2). Emulation Booting: In emulation booting, the boot image must be either a floppy 

disk image or a (single-partition) hard disk image. During booting, BIOS loads the first 

512 bytes of a booter from the boot image to (0x0000, 0x07C0) and execute the booter as 

usual. In addition, BIOS also emulates the CD/DVD drive as either a FD or HD. If the 

booting image size is 1.44 or 2.88 MB, it emulates the CD/DVD as the first floppy drive. 

Otherwise, it emulates the CD/DVD as the first hard drive. Once boot up, the boot image 

on the CD/DVD can be accessed as the emulated drive through BIOS. The environment 

is identical to that of booting up from the emulated drive. For example, if the emulated 

boot image is a FD, after booting up the bootable FD image can be accessed as A: drive, 

while the original A: drive is demoted to B: drive. Similarly, if the boot image is a hard 

disk image, after booting up the image becomes C: drive and the original C: drive 

becomes D: drives, etc. Although the boot image is accessible, it is important to note that 

nothing else on the CD/DVD disc is visible at this moment. This implies that, even if the 

CD/DVD contains a file system, the files are totally invisible after booting up, which may 

be somewhat surprising. Naturally, they will become accessible if the booted up kernel 

has a CD/DVD driver to read the CD/DVD contents. 

 



(3). No-emulation Booting: In no-emulation booting, the boot image can be any (real-

mode) binary executable code. For real-mode OS images, a separate booter is not 

necessary because the entire OS image can be booted into memory directly. For other OS 

images with complex loading requirements, e.g. Linux, a separate OS booter is needed. 

During booting, the booter itself can be loaded directly, but there is a problem. When the 

booter tries to load the OS image, it needs a device number of the CD/DVD drive to 

make BIOS calls. The question is: which device number? The reader may think it would 

be the usual device number of the CD/DVD drive, e.g. 0x81 for the first IDE slave or 

0x82 for the second IDE master, etc. But it may be none of the above. The El-Torito 

protocol only states that BIOS shall emulate the CD/DVD drive by an arbitrary device 

number. Different BIOS may come up with different drive numbers. Fortunately, when 

BIOS invokes a booter, it also passes the emulated drive number in the CPU’s DL 

register. The booter must catch the drive number and use it to make BIOS calls. Similar 

to emulation booting, while it is easy to boot up an OS image from CD/DVD, to access 

the contents on the CD/DVD is another matter. In order to access the contents, a booted 

up OS must have drivers to interpret the iso9660 file system on the CD/DVD. 

 

3.2.4. USB Drive Booting 
 

    As a storage device, USB drives are similar to hard disks. Like a hard disk, a USB 

drive can be divided into partitions. In order to be bootable, some BIOS even require a 

USB drive to have an active partition. During booting, BIOS emulates the USB drive as 

the usual C: drive (0x80). The environment is the same as that of booting from the first 

hard disk. Therefore, USB booting is identical to hard disk booting. 

 

    As an example, it is very easy to install Linux to a USB partition, e.g. partition 2 of a 

USB drive, and then install LILO or GRUB to the USB's MBR for booting Linux from 

the USB partition. The procedure is exactly the same as that of installing Linux to a hard 

disk partition. If the PC's BIOS supports USB booting, Linux kernel will boot up from 

the USB partition. However, after boot up, the Linux kernel will fail to run because it can 

not mount the USB partition as root device, even if all the USB drivers are compiled into 

the Linux kernel. This is because, when the Linux kernel starts, it only activates drivers 

for IDE and SCSI devices but not for USB drives. It is certainly possible to modify 

Linux's startup code to support USB drives, but doing so is still a per-device solution. 

Instead, Linux uses a general approach to deal with this problem by using an initial RAM 

disk image. 

 

3.2.5. Boot Linux with Initial Ramdisk Image 

 

    Booting Linux kernel with an initial RAM disk image has become a standard way to 

boot up a Linux system. The advantage of using an initrd image is that it allows a single 

generic Linux kernel to be used on many different Linux configurations. An initrd is a 

RAM disk image which serves as a temporary root file system when the Linux kernel 

first starts up. While running on the RAM disk, the Linux kernel executes a sh script, 

initrc, which directs the kernel to load the driver modules of the real root device, such as 

a USB drive. When the real root device is activated and ready, the kernel discards the 



RAM disk and mounts the real root device as the root file system. Details of how to set 

up and load initrd image will be shown later. 

 

3.2.6. Network Booting 
 

Network booting has been in use for a long time. The basic requirement is to establish 

a network connection to a server machine in a network, such as a server running the 

BOOTP protocol in a TCP/IP [Comer, 1995] network. Once the connection is made, 

booting code or the entire kernel code can be downloaded from the server to the local 

machine. After that, the booting sequence is basically the same as before. Networking is 

outside the scope of this book. Therefore, we shall not discuss network booting. 

 

3.3 Develop Booter Programs 
 

    In this section, we shall show how to write booter programs to boot up real operating 

systems. Although this book is primarily about MTX, we shall also discuss Linux booting, 

for a number of reasons. First, Linux is a popular OS, which has a very large user base, 

especially among Computer Science students. A Linux distribution usually comes with a 

default booter, which is either LILO or GRUB. After installing Linux, it would boot up 

nicely. To most users the booting process remains somewhat a mystery. Many students 

often wish to know more about the booting process. Second, Linux is a very powerful 

real OS, which runs on PCs with a wide range of hardware configurations. As a result, 

the booting process of Linux is also fairly complex and demanding. Our purpose is to 

show that, if we can write a booter to boot up Linux, we should be able to write a booter 

to boot up any operating system. In order to show that the booters actually work, we shall 

demonstrate them by sample systems. All the booter programs developed in this chapter 

are in the MTX.src/BOOTERS directory on the MTX install CD. A detailed listing of the 

booter programs is at the end of this chapter.  

 

3.3.1 Requirements of Booter Programs 

 

   Before developing booter programs, we first point out the unique requirements of 

booter programs.  

 

(1). A booter needs assembly code because it must manipulate CPU registers and make 

BIOS calls. Many booters are written entirely in assembly code, which makes them hard 

to understand. In contrast, we shall use assembly code only if absolutely necessary. 

Otherwise, we shall implement all the actual work in the high-level language C.  

 

(2). When a PC starts, it is in the 16-bit real mode, in which the CPU can only execute 

16-bit code and access the lowest 1 MB memory. To create a booter, we must use a 

compiler-linker that generates 16-bit code. For example, we can not use GCC because the 

GCC compiler generates 32 or 64-bit code, which can not be used during booting. The 

software chosen is the BCC package under Linux, which generates 16-bit code.  

 



(3). By default, the binary executable generated by BCC uses a single-segment memory 

model, in which the code, data and stack segments are all the same. Such a program can 

be loaded to, and executed from, any available segment in memory. A segment is a 

memory area that begins at a 16-byte boundary. During execution, the CPU's CS, DS and 

SS registers must all point to the same segment of the program.   

 

(4). Booters differs from ordinary programs in many aspects. Perhaps the most notable 

difference is their size. A booter's size (code plus static data) is extremely limited, e.g. 

512 or 1024 bytes, in order to fit in one or two disk sectors. Multi-stage booters can be 

larger but it is always desirable to keep the booter size small. The second difference is 

that, when running an ordinary program an operating system will load the entire program 

into memory and set up the program's execution environment before execution starts. An 

ordinary program does not have to worry about these things. In contrast, when a booter 

starts, it only has the first 512 bytes loaded at 0x07C00. If the booter is larger than 512 

bytes, which is usually the case, it must load the missing parts in by itself. If the booter's 

initial memory area is needed by the OS, it must be moved to a different location in order 

not to be clobbered by the incoming OS image. In addition, a booter must manage its own 

execution environment, e.g. set up CPU segment registers and establish a stack.  

 

(5). A booter cannot use the standard library I/O functions, such as gets() and printf(), etc. 

These functions depend on operating system support, but there is no operating system yet 

during booting. The only available support is BIOS. If needed, a booter must implement 

its own I/O functions by calling only BIOS. 

 

(6). When developing an ordinary program we may use a variety of tools, such as gdb, 

for debugging. In contrast, there is almost no tool to debug a booter. If something goes 

wrong, the machine simply stops with little or no clue as to where and why the error 

occurred. This makes writing booter programs somewhat harder. Despite these, it is not 

difficult to write booter programs if we follow good programming practice. 
 

3.3.2. Online and Offline Booters 
 

    There are two kinds of booters; online and offline. In an offline booter, the booter is 

told which OS image (file) to boot. While running under an operating system, an offline 

booter first finds the OS image and builds a small database for the booter to use. The 

simplest database may contain the disk blocks or ranges of disk blocks of the OS image. 

During booting, an offline booter simply uses the pre-built database to load the OS image. 

For example, the Linux boot-loader, LILO, is an offline booter. It uses a lilo.conf file to 

build a map file in the /boot directory, and then installs the LILO booter to the MBR or 

the local MBR of a hard disk partition. During booting, it uses the map file in the /boot 

directory to load the Linux image. The disadvantage of offline booters is that the user 

must install the booter again whenever the OS image is moved or changed. In contrast, an 

online booter, e.g. GRUB, can find and load an OS image file directly. Since online 

booters are more general and flexible, we shall only consider online booters. 

 

3.3.3. Boot MTX from FD sectors. 

 



We begin with a simple booter for booting MTX from a FD disk. The FD disk layout is 

shown in Figure 3.7. 

 

      
                                       Figure 3.7. MTX Boot Disk layout 
 

It contains a booter in Sector 0, followed by a MTX kernel image in consecutive sectors. 

In the MTX kernel image, which uses the separate I&D memory model, the first three (2-

byte) words are reserved. Word 0 is a jump instruction, word 1 is the code section size in 

16-byte clicks and word 2 is the data section size in bytes. During booting, the booter 

may extract these values to determine the number of sectors of the MTX kernel to load. 

The loading segment address is 0x1000. The booter consists of two files, a bs.s file in 

BCC assembly and a bc.c file in C. Under Linux, use BCC to generate a binary 

executable without header and dump it to the beginning of a floppy disk, as in 

 
    as86 -o bs.o  bs.s      # assemble bs.s into bs.o 

    bcc  -c -ansi bc.c      # compile  bc.c into bc.o 

    # link bs.o and bc.o into a binary executable without header 

    ld86 -d -o booter bs.o bc.o /usr/lib/bcc/libc.a  

    # dump booter to sector 0 of a FD 

    dd if=booter of=/dev/fd0 bs=512 count=1 conv=notrunc 

 

where the special file name, /dev/fd0, is the first floppy drive. If the target is not a real 

device but an image file, simply replace /dev/fd0 with the image file name. In that case, 

the parameter conv=notrunc is necessary in order to prevent dd from truncating the image 

file. Instead of entering individual commands, the building process can be automated by 

using a Makefile or a sh script. For simple compile-link tasks, a sh script is adequate and 

actually more convenient. For example, we may re-write the above commands as a sh 

script file, mk, which takes a filename as parameter. 

 
    # usage: mk filename 

    as86 -o bs.o bs.s    # bs.s file does not change 

    bcc  -c -ansi $1.c                 

    ld86 -d -o $1 bs.o $1.o /usr/lib/bcc/libc.a  

    dd if=$1 of=IMAGE bs=512 count=1 conv=notrunc 

 

In the following, we shall assume and use such a sh script. First, we show the booter's 

assembly code. 

 
!========================= bs.s file ============================= 

.globl  _main,_prints,_NSEC                       ! IMPORT from C 

.globl  _getc,_putc,_readfd,_setes,_inces, _error ! EXPORT to C 

        BOOTSEG  =  0x9800  ! booter segment 

        OSSEG    =  0x1000  ! MTX kernel segment 

        SSP      =  32*1024 ! booter stack size=32KB 

        BSECTORS =  2       ! number of sectors to load initially  

! Boot SECTOR loaded at (0000:7C00). reload booter to segment 0x9800 

start: 



        mov  ax, #BOOTSEG   ! set ES to 0x9800 

        mov  es, ax 

! call BIOS INT13 to load BSECTORS to (segment,offset)=(0x9800,0) 

        xor  dx, dx         ! dh=head=0, dl=drive=0 

        xor  cx, cx         ! ch=cyl=0,  cl=sector=0 

        incb cl             ! sector=1 (BIOS counts sector from 1) 

        xor  bx, bx         ! (ES,BX)= real address = (0x9800,0) 

        movb ah, #2         ! ah=READ 

        movb al, #BSECTORS  ! al=number of sectors to load  

        int  0x13           ! call BIOS disk I/O function   

! far jump to (0x9800, next) to continue execution there 

        jmpi next, BOOTSEG  ! CS=BOOTSEG, IP=next 

next: 

        mov  ax, cs         ! Set CPU segment registers to 0x9800 

        mov  ds, ax         ! we know ES=CS=0x9800. Let DS=CS   

        mov  ss, ax         ! let SS = CS 

        mov  sp, #SSP       ! SP = SS + 32 KB 

        call _main          ! call main() in C 

        jmpi 0, OSSEG       ! jump to execute OS kernel at (OSSEG,0) 

!===================== I/O functions =========================== 

_getc: ! char getc(): return an input char 

        xorb ah, ah         ! clear ah 

        int  0x16           ! call BIOS to get a char in AX 

        ret  

_putc: ! putc(char c): print a char 

        push bp 

        mov  bp, sp 

        movb al, 4[bp]      ! aL = char 

        movb ah, #14        ! aH = 14 

        int  0x10           ! call BIOS to display the char 

        pop  bp 

        ret 

_readfd: ! readfd(cyl,head,sector): load _NSEC sectors to (ES,0) 

        push bp 

        mov  bp, sp         ! bp = stack frame pointer 

        movb dl, #0x00      ! drive=0 = FD0 

        movb dh, 6[bp]      ! head 

        movb cl, 8[bp]      ! sector 

        incb cl             ! inc sector by 1 to suit BIOS 

        movb ch, 4[bp]      ! cyl 

        xor  bx, bx         ! BX=0 

        movb ah, #0x02      ! READ  

        movb al, _NSEC      ! read _NSEC sectors to (ES,BX) 

        int  0x13           ! call BIOS to read disk sectors 

        jb   _error         ! error if CarryBit is set                     

        pop  bp                 

        ret 

_setes:                     ! setes(segment): set ES to a segment         

        push bp 

        mov  bp, sp 

        mov  ax, 4[bp]         

        mov  es, ax 

        pop  bp 

        ret 

_inces: ! inces(): increment ES by _NSEC sectors (in 16-byte clicks) 

        mov  bx, _NSEC      ! get _NSEC in BX 

        shl  bx, #5         ! multiply by 2**5 = 32 



        mov  ax, es         ! current ES 

        add  ax, bx         ! add (_NSEC*0x20) 

        mov  es, ax         ! update ES 

        ret 

_error:                     ! error() and reboot 

        push #msg 

        call _prints 

        int  0x19           ! reboot 

msg:    .asciz  "Error" 

 

    In the assembly code, start: is the entry point of the booter program. During booting, 

BIOS loads sector 0 of the boot disk to (0x0000, 0x7C00) and jumps to there to execute 

the booter. We assume that the booter must be relocated to a different memory area. 

Instead of moving the booter, the code calls BIOS INT13 to load the first 2 sectors of the 

boot disk to the segment 0x9800. The FD drive hardware can load a complete track of 18 

sectors at a time. The reason of loading 2 (or more) sectors will become clear shortly. 

After loading the booter to the new segment, it does a far jump, jmpi next, 0x9800, which 

sets CPU's (CS, IP) = (0x9800, next), causing the CPU to continue execution from the 

offset next in the segment 0x9800. The choice of 0x9800 is based on a simple principle: 

the booter should be relocated to a high memory area with enough space to run, leaving 

as much space as possible in the low memory area for loading the OS image. The 

segment 0x9800 is 32 KB below the ROM area, which begins at the segment 0xA000. 

This gives the booter a 32 KB address space, which is big enough for a fairly powerful 

booter. When execution continues, both ES and CS already point to 0x9800. The 

assembly code sets DS and SS to 0x9800 also in order to conform to the one-segment 

memory model of the program. Then it sets the stack pointer to 32 KB above SS. Figure 

3.8 shows the run-time memory image of the booter.  

      

                                    Figure 3.8. Run-time image of booter 

 

It is noted that, in some PCs, the RAM area above 0x9F000 may be reserved by BIOS for 

special usage. On these machines the stack pointer can be set to a lower address, e.g. 16 

KB from SS, as long as the booter still has enough bss and stack space to run. With a 

stack, the program can start to make calls. It calls main() in C, which implements the 

actual work of the booter. When main() returns, it sends the CPU to execute the loaded 

MTX image at (0x1000, 0). 

 

The remaining assembly code contains functions for I/O and loading disk sectors. The 

functions getc() and putc(c) are simple; getc() returns an input char from the keyboard 

and putc(c) displays a char to the screen. The functions readfd(), setes() and inces() 

deserve more explanations. In order to load an OS image, a booter must be able to load 

disk sectors into memory. BIOS supports disk I/O functions via INT13, which takes 

parameters in CPU registers: 
 



     DH=head(0-1),  DL=drive(0 for FD drive 0),  

     CH=cyl (0-79), CL=sector (1-18) 

         AH=2(READ),    AL=number of sectors to read 

         Memory address: (segment, offset)=(ES, BX) 

         return status : carry bit=0 means no error, 1 means error. 

 

The function readfd(cyl, head, sector) calls BIOS INT13 to load NSEC sectors into 

memory, where NSEC is a global imported from C code. The zero-counted parameters, 

(cyl, head, sector), are computed in C code. Since BIOS counts sectors from 1, the sector 

value is incremented by 1 to suit BIOS. When loading disk sectors BIOS uses (ES,BX) as 

the real memory address. Since BX=0, the loading address is (ES,0). Thus, ES must be 

set, by the setes(segment) function, to a desired loading segment before calling readfd(). 

The function code loads the parameters into CPU registers and issues INT 0x13. After 

loading NSEC sectors, it uses inces() to increment ES by NSEC sectors (in 16-byte clicks) 

to load the next NSEC sectors, etc. The error() function is used to trap any error during 

booting. It prints an error message, followed by reboot. The use of NSEC as an global 

rather than as a parameter to readfd() serves two purposes. First, it illustrates the cross 

reference of globals between assembly and C code. Second, if a value does not change 

often, it should not be passed as a parameter because doing so would increase the code 

size. Since the booter size is limited to 512 bytes, saving even a few bytes could make a 

difference between success and failure. Next, we show the booter's C code. 
 

/****************** MTX booter's bc.c file *********************** 

 FD contains this booter in Sector 0, MTX kernel begins in Sector 1 

 In the MTX kernel: word#1=tsize in clicks, word#2=dsize in bytes 

******************************************************************/ 

int tsize, dsize, ksectors, i, NSEC = 1; 

 

int prints(char *s){  while(*s) putc(*s++); } 

 

int getsector(u16 sector) 

{  readfd(sector/36, ((sector)%36)/18, (((sector)%36)%18)); } 

 

main() 

{ 

  prints("booting MTX\n\r"); 

  tsize = *(int *)(512+2);         

  dsize = *(int *)(512+4); 

  ksectors = ((tsize << 4) + dsize + 511)/512; 

  setes(0x1000); 

  for (i=1; i<=ksectors+1; i++){ 

      getsector(i); inces(); putc('.'); 

  } 

  prints("\n\rready to go?"); getc(); 

} 

 

Explanations of C Code:  Disk sectors are numbered linearly as 0,1,2, . ..., but BIOS 

INT13 only accepts disk parameters in (cyl, head, sector) or CHS format. When calling 

BIOS INT13 we must convert the starting sector number into CHS format. Figure 3.9 

shows the relationship between linear and CHS addressing of FD sectors. 

 



   

                           Figure 3.9. Linear Sector and CHS addressing 

 

Using the Mailman's algorithm, we can convert a linear sector number into CHS format 

as     cyl=sec/36;  head=(sec%36)/18;  sector=(sec%36)%18;  

Then write a getsector() function in C, which calls readfd() for loading disk sectors. 

int getsector(int sec){ readfd(sec/36, (sec%36)/18, (sec%36)%18) }    

In the C code, the prints() function is used to print message strings. It is based on putc() 

in assembly. As specified, on the boot disk the MTX kernel image begins from sector 1, 

in which word 1 is the tsize of the MTX kernel (in 16-byte clicks) and word 2 is the dsize 

in bytes. Before the booter enters main(), sectors 0 and 1 are already loaded at 0x9800. 

While in main(), the program's data segment is 0x9800. Thus, words 1 and 2 of sector 1 

are now at the (offset) addresses 512+2 and 512+4, respectively. The C code extracts 

these values to compute the number of sectors of the MTX kernel to load. It sets ES to 

the segment 0x1000 and loads the MTX sectors in a loop. The loading scheme resembles 

that of a "sliding window". Each iteration calls getsector(i) to load NSEC sectors from 

sector i to the memory segment pointed by ES. After loading NSEC sectors to the current 

segment, it increments ES by NSEC sectors to load the next NSEC sectors, etc. Since 

NSEC=1, this amounts to loading the OS image by individual sectors. Faster loading 

schemes will be discussed later is Section 3.3.5. Figure 3.10 shows the booting screen of 

the MTX.sector booter, in which each dot represents loading a disk sector. 

 

        
                          Figure 3.10. Booting Screen of MTX.sector Booter 
 

 

3.3.4. Boot Linux zImage From FD Sectors 
 

   Bootable Limux images are generated as follows. Under Linux, 

     . cd to linux source code tree directory (cd /usr/src/linux) 

     . create a .config file, which guides make (make .config) 

     . run make zImage to generate a small Linux image named zImage 

Make zImage generates a small bootable Linux image, in which the compressed kernel 

size is less than 512 KB. In order to generate a small Linux zImage, we must select a 

minimal set of options and compile most of the device drivers as modules. Otherwise, the 

kernel image size may exceed 512 KB, which is too big to be loaded into real-mode 

memory between 0x10000 and 0x90000. In that case, we must use make bzImage to 

generate a big Linux image, which requires a different loading scheme during booting. 

We shall discuss how to boot big Linux bzImages later. Regardless of size, a bootable 

Linux image is composed of three contiguous parts, as shown in Figure 3.11. 



        
                                       Figure 3.11. Bootable Linux Image  

 

where BOOT is a booter for booting Linux from floppy disk and SETUP is for setting up 

the startup environment of the Linux kernel. For small zImages, the number of SETUP 

sectors, n, varies from 4 to 10. In addition, the BOOT sector also contains the following 

boot parameters.       
          --------   -------------------------------------- 

          byte 497    number of SETUP sectors 

          byte 498    root dev flags: nonzero=READONLY 

          word 500    Linux kernel size in (16-byte) clicks 

          word 504    ram disk information 

          word 506    video mode 

          word 508    root device=(major, minor) numbers 

          ------------------------------------------------- 

Most of the boot parameters can be changed by the rdev utility program. The reader may 

consult Linux man page of rdev for more information. A zImage is intended to be a 

bootable FD disk of Linux. Since kernel version 2.6, Linux no longer supports FD 

booting. The discussion here applies only to small Linux zImages of kernel version 2.4 or 

earlier. During booting, BIOS loads the boot sector, BOOT, into memory and executes it. 

BOOT first relocates itself to the segment 0x9000 and jumps to there to continue 

execution. Then it loads SETUP to the segment 0x9020, which is 512 bytes above BOOT. 

Then it loads the Linux kernel to the segment 0x1000. When loading completes, it jumps 

to 0x90200 to run SETUP, which starts up the Linux kernel. The loading requirements of 

a Linux zImage are: 
                 BOOT+SETUP   : 0x90000 

                 Linux Kernel : 0x10000 

Our Linux zImage booter essentially duplicates exactly what the BOOT sector does. A 

Linux zImage boot disk can be created as follows. First, use dd to dump a Linux zImage 

to a FD beginning in sector 1, as in 

            dd if=zImage2.4 of=/dev/fd0 bs=512 seek=1 conv=notrunc 

Then install a Linux booter to sector 0. The resulting disk layout is shown in Figure 3.12. 

 

       

                                       Figure 3.12. Linux Boot Disk layout 

 

The MTX booter can be adapted to booting Linux from a zImage boot disk. In the 

assembly code, we only need to change OSSEG to 0x9020. When main() returns, it 

jumps to (0x9020, 0)  to execute SETUP. The C code is almost the same as that of the 

MTX booter. We only show the modified main() function. 
 

/***********  C code for Linux zImage booter **************/ 



int setup, ksectors, i;                       

main() 

{  

  prints("boot linux\n\r"); 

  setup = *(char *)(512+497);           // number of SETUP sectors    

  ksectors = *(int *)(512+500) >> 5;    // number of kernel sectors 

  setes(0x9000);                        // load BOOT+SETUP to 0x9000 

  for (i=1; i<=setup+ksectors+2; i++){  // 2 sectors before SETUP 

    getsector(i);                       // load sector i 

    i <= setup ? putc('*') : putc('.'); // show a * or . 

    inces();                            // inc ES by NSEC sector   

    if (i==setup+1)                     // load kernel to ES=0x1000 

       setes(0x1000); 

  } 

  prints("\n\rrady to go?"); getc(); 

} 

 

The booting screen of the Linux zImage booter is similar to Figure 3.10, only with many 

more dots. In the Linux kernel image, the root device (a word at byte offset 508) is set to 

0x0200, which is for the first FD drive. When Linux boots up, it will try to mount (2,0) as 

the root file system. Since the boot FD is not a file system, the mount will fail and the 

Linux kernel will display an error message, Kernel panic: VFS: Unable to mount root fs 

02:00, and stop. To make the Linux kernel runnable, we may change the root device 

setting to a device containing a Linux file system. For example, assume that we have 

Linux installed in partition 2 of a hard disk. If we change the root device of zImage to 

(3,2), Linux would boot up and run successfully. Another way to provide a root file 

system is to use a RAM disk image. As an example, in the BOOTERS directory in the 

MTX install CD, OneFDlinux.img is a single-FD Linux image. It contains a Linux booter 

and a Linux zImage in front, followed by a compressed ramdisk image beginning in 

block 550. The Linux kernel is compiled with ramdisk support. The ramdisk parameter is 

set to 16384 + 550 (bit14=1 plus ramdisk begin block), which tells the Linux kernel not 

to prompt for a separate ramdisk but load it from block 550 of the boot disk. Figure 3.13 

shows the screen of running the single-FD Linux on a ramdisk. 

 

     
                          Figure 3.13. Single-FD Linux running on Ramdisk 

 



3.3.5. Fast FD Loading Schemes 
 

   The above FD booters load OS images one sector at a time. For small OS images, such 

as the MTX kernel, this works fine. For large OS images like Linux, it would be too slow 

to be acceptable. A faster loading scheme is more desirable. When boot a Linux zImage, 

logically and ideally only two loading operations are needed, as in 

              setes(0x9000);  nsec = setup+1;   getsector(1); 

              setes(0x1000);  nsec = ksectors;  getsector(setup+2); 

Unfortunately, things are not so simple due to hardware limitations. The first problem is 

that FD drives cannot read across track or cylinder. All floppy drives support reading a 

full track of 18 sectors at a time. Some BIOS allows reading a complete FD cylinder of 2 

tracks. The discussion here assumes 1.44 MB FD drives that support reading cylinders. 

When loading from FD the sectors must not cross any cylinder boundary. For example, 

from the sector number 34 (count from 0), read 1 or 2 sectors is OK but attempting to 

read more than 2 sectors would result in an error. This is because sectors 34 and 35 are in 

cylinder 0 but sector 36 is in cylinder 1; going from sector 35 to 36 crosses a cylinder 

boundary, which is not allowed by the drive hardware. This means that each read 

operation can load at most a full cylinder of 36 sectors. Then, there is the infamous cross 

64KB boundary problem, which says that when loading FD sectors the real memory 

address cannot cross any 64KB boundary. For example, from the real address 0x0FE00, 

if we try to load 2 sectors, the second sector would be loaded to the real address 0xFE000 

+ 0x200 = 0x10000, which crosses the 64KB boundary at 0x10000. The cause of the 

problem is due to the DMA controller, which uses 18-bit address. When the low 16 bits 

of an address reaches 64K, for some reason the DMA controller does not increment the 

high order 2 bits of the address, causing the low 16-bit address to wrap around. In this 

case, loading may still occur but only to the same segment again. In the above example, 

instead of the intended address 0x10000, the second sector would be loaded to 0x00000. 

This would destroy the interrupt vectors, which effectively kills BIOS. Therefore, a FD 

booter must avoid both problems when loading an OS image. A simple way to avoid 

these problems is to load sectors one by one as we have done so far. Clearly, loading one 

sector at a time will never cross any cylinder. If the loading segment starts from a sector 

boundary, i.e. a segment address divisible by 0x20, it also will not cross any 64KB 

boundary. Similarly, if the OS image starts from a block boundary on disk and the 

loading segment also starts from a block boundary in memory, then loading 1KB blocks 

would also work. In order not to cross both cylinder and 64KB boundaries, the best we 

can do is loading 4 sectors at a time. The reader is encouraged to prove this. Can we do 

better? The answer is yes, as evidenced by many published boot-loaders, most of which 

try to load by tracks. Here we present a fast loading scheme, called the "cross-country" 

algorithm, which loads by cylinders. The algorithm resembles a cross country runner 

negotiating an obstacle course. When there is open space, the runner takes full strides 

(load cylinders) to run fast. When there is an obstacle ahead, the runner slows down by 

taking smaller strides (load partial cylinder) until the obstacle is cleared. Then the runner 

resumes fast running by taking full strides, etc. The following C code shows a Linux 

zImage booter that implements the cross country algorithm. In order to keep the booter 

size within 512 bytes, updating ES is done inside getsector() and the prints() function is 

also eliminated. The resulting booter size is only 484 bytes. 

  



/***************** Cross Country Algorithm ************************* 

Load cylinders. If a cylinder is about to cross 64KB, compute NSEC = 

max sectors without crossing 64KB. Load NSEC sectors, load remaining 

CYL-NSEC sectors. Then load cylinders again, etc.  

*******************************************************************/ 

#define TRK 18 

#define CYL 36 

int setup, ksectors, ES; 

int csector = 1;  // current loading sector 

int NSEC = 35;  // initial number of sectors to load >= BOOT+SETUP 

int getsector(u16 sector) 

{ 

    readfd( sector/CYL,((sector)%CYL)/TRK,(((sector)%CYL)%TRK)); 

    csector += NSEC; inces(); 

} 

main() 

{  

  setes(0x9000); 

  getsector(1);            // load Linux's [boot+SETUP] to 0x9000 

  // current sector = SETUP's sector count (at offset 512+497) + 2  

  setup    = *(u8 *)(512+497) + 2; 

  ksectors = (*(u16 *)(512+500)) >> 5; 

  NSEC = CYL - setup;      // sectors remain in cylinder 0 

  setes(0x1000);           // Linux kernel is loaded to segment 0x1000 

  getsector(setup);        // load the remaining sectors of cylinder 0 

  csector = CYL;           // we are now at begining of cyl#1 

  while (csector < ksectors+setup){ // try to load cylinders 

     ES = getes();         // current ES value 

     if (((ES + CYL*0x20) & 0xF000) == (ES & 0xF000)){//same segment 

        NSEC = CYL;        // load a full cylinder  

        getsector(csector); putc('C'); // show loaded a cylinder 

        continue; 

     } 

     // this cylinder will cross 64KB, compute MAX sectors to load 

     NSEC = 1; 

     while( ((ES + NSEC*0x20) & 0xF000) == (ES & 0xF000) ){ 

        NSEC++; putc(‘s’); // number of sectors can still load 

     }                     // without crossing 64KB boundary   

     getsector(csector);   // load partial cylinder 

     NSEC = CYL - NSEC;    // load remaining sectors of cylinder  

     putc(‘|’);            // show cross 64KB 

     getsector(csector);   // load remainder of cylinder  

     putc(‘p’);             

  } 

} 

 

Figure 3.14 shows the booting screen of the linux.cylinder booter. In the figure, each C is 

loading a cylinder, each sequence of s is loading the sectors of a partial cylinder, each | is 

crossing a 64KB boundary and each p is loading the remaining sectors of a cylinder. 

 

      
                             Figure 3.14. Booting Linux by Loading Cylinders 



Instead of loading cylinders, the reader may modify the above program to load tracks. 

Similarly, the reader may modify the above booters to load disk blocks.  

 

3.3.6. Boot MTX Image from File System. 
 

    Our second booter is to boot MTX from a file system. A MTX system disk is an EXT2 

file system containing files needed by the MTX kernel. Bootable MTX kernel images are 

files in the /boot directory. Block 0 of the disk contains the booter. The loading segment 

address is 0x1000. After booting up, the MTX kernel mounts the same boot disk as the 

root file system. 

 

    When booting an OS image from an EXT2 file system, the problem is essentially how 

to find the image file's inode. The reader may consult Section 2.8.2 of Chapter 2 for the 

algorithm. Here we only briefly review the steps. Assume that the file name is /boot/mtx. 

First, read in the 0th group descriptor to find the start block of the inodes table. Then read 

in the root inode, which is number 2 inode in the inode table. From the root inode's data 

blocks, search for the first component of the file name, boot. Once the entry boot is found, 

we know its inode number. Use Mailman's algorithm to convert the inode number to the 

disk block containing the inode and its offset in that block. Read in the inode of boot and 

repeat the search for the component mtx. If the search steps succeed, we should have the 

image file's inode in memory. It contains the size and disk blocks of the image file. Then 

we can load the image by loading its disk blocks. 

 

When such a booter starts, it must be able to access the file system on the boot disk, 

which means loading disk blocks into the booter program’s memory area. In order to do 

this, we add a parameter, buf, to the assembly function, readfd(char *buf), where buf is 

the address of a 1KB memory area in the booter segment. It is passed to BIOS in BX as 

the offset of the loading address in the ES segment. Corresponding to this, we also 

modify getsector() in C to take a block number and buf as parameters. When the booter 

starts, ES points to the segment of the booter. In the booter's C code, if buf is global, it is 

relative to DS. If buf is local, it is relative to SS. Therefore, no matter how we define buf, 

the loading address is always in the booter segment. When loading the blocks of an OS 

image we can set ES to successive segments and use (ES, 0) as the loading address. The 

booter's assembly code is almost the same as before. We only show the booter's C code. 

The booter size is 1008 bytes, which can fit in the 1KB boot block of a FD.     
 

/******************************************************* 

*       Image file booter's bc.c code                  * 

*******************************************************/ 

#include "ext2.h"  // contain EXT2 structure types 

#define BLK 1024 

typedef unsigned char  u8; 

typedef unsigned short u16; 

typedef unsigned long  u32; 

typedef struct ext2_group_desc  GD; 

typedef struct ext2_inode       INODE; 

typedef struct ext2_dir_entry_2 DIR; 

u16 NSEC = 2; 

char buf1[BLK], buf2[BLK];     // 2 I/O buffers of 1KB each 



int prints(char *s){ //same as before } 

int gets(char *s){   // to keep code simple, no length checking 

    while ((*s=getc()) != '\r')  

          putc(*s++); 

    *s = 0; 

} 

int getblk(u16 blk, char *buf) 

{   readfd(blk/18, ((2*blk)%36)/18, ((2*blk)%36)%18, buf); } 

 

u16 search(INODE *ip, char *name) 

{  

  int i;   char c;  DIR *dp;  

  for (i=0; i<12; i++){ // assume a DIR has at most 12 direct blocks 

      if ( (u16)ip->i_block[i] ){ 

         getblk((u16)ip->i_block[i], buf2); 

         dp = (DIR *)buf2; 

         while ((char *)dp < &buf2[BLK]){ 

            c = dp->name[dp->name_len];  // save last byte 

            dp->name[dp->name_len] = 0;  // make name into a string    

            prints(dp->name); putc(' '); // show dp->name string 

            if ( strcmp(dp->name, name) == 0 ){ 

                prints("\n\r");  

                return((u16)dp->inode); 

            } 

            dp->name[dp->name_len] = c;  // restore last byte 

            dp = (char *)dp + dp->rec_len; 

    } 

       } 

  } 

  error();  // to error() if can’t find file name 

} 

 

main()  // booter’s main function, called from assembly code 

{  

  char  *cp, *name[2], filename[64]; 

  u16   i, ino, blk, iblk; 

  u32   *up; 

  GD    *gp; 

  INODE *ip; 

  DIR   *dp; 

  name[0] = "boot"; name[1] = filename; 

  prints("bootname: ");   

  gets(filename); 

  if (filename[0]==0) name[1]="mtx"; 

  getblk(2, buf1);    // read blk#2 to get group descriptor 0  

  gp = (GD *)buf1; 

  iblk = (u16)gp->bg_inode_table;   // inodes begin block 

  getblk(iblk, buf1);               // read first inode block 

  ip = (INODE *)buf1 + 1;           // ip->root inode #2 

  for (i=0; i<2; i++){              // serach for system name 

      ino = search(ip, name[i]) - 1; 

      if (ino < 0) error();         // if search() returned 0 

      getblk(iblk+(ino/8), buf1);   // read inode block of ino 

      ip = (INODE *)buf1 + (ino % 8); 

  } 

  if ((u16)ip->i_block[12]) // read indirect block into buf2, if any  

     getblk((u16)ip->i_block[12], buf2); 



  setes(0x1000);            // set ES to loading segment 

  for (i=0; i<12; i++){     // load direct blocks  

      getblk((u16)ip->i_block[i], 0); 

      inces(); putc('*');   // show a * for each direct block loaded 

  } 

  if ((u16)ip->i_block[12]){ //load indirect blocks, if any 

      up = (u32 *)buf2;       

      while(*up++){ 

         getblk((u16)*up, 0);  

         inces(); putc('.'); // show a . for each ind block loaded 

       } 

} 

prints(“ready to go?”); getc(); 

}   

 

The booter’s C code is fairly simple and straightforward. However, it is still worth 

pointing out the following programming techniques, which help reduce the booter size. 

First, if a booter needs string data, it is better to define them as string constants, e.g. 

name[0]="boot", name[1]="mtx", etc. String constants are allocated in the program's data 

area at compile-time. Only their addresses are used in the generated code. Second, on a 

FD the number of blocks is less than 1440. However, the block numbers in an inode are 

u32 long values. If we pass the block number as u32 in getblk() calls, the compiled (16-

bit) code would have to push the long blk value as 16-bit items twice, which increase the 

code size. For this reason, the parameter blk in getblk() is declared as u16 but when 

calling getblk(), the long blk values are typecast to u16. The typecasting not only reduces 

the code size but also ensures getblk() to get the right parameters off the stack. Third, in 

the search() function, we need to compare a name string with the entry names in an EXT2 

directory. Each entry name has name_len chars without an ending null byte, so it is not a 

string. In this case, strncmp() would not work since !strncmp("abcde","abcd", 4) is true. 

In order to compare the names, we need to extract the entry name's chars to make a string 

first, which require extra code. Instead, we simply replace the byte at name_len with a 0, 

which changes the entry name into a string for comparison. If name_len is a multiple of 4, 

the byte at name_len is actually the inode number of the next directory entry, which must 

be preserved. So we first save the byte and then restore it later. Finally, before changing 

ES to load the OS image, we read in the image's indirect blocks first while ES still points 

at the program's segment. When loading indirect blocks we simply dereference the 

indirect block numbers in the buffer area as *(u32 *). Without these techniques, it would 

be very difficult to write such a booter in C in 1024 bytes. Figure 3.15 shows the screen 

of booting MTX from a file system. In the figure, each asterisk is loading a direct block 

and each dot is loading an indirect block of the image file. 

 

       
      

                              Figure 3.15. Booting MTX from File System 

 



3.3.7. Boot Linux zImage from File System 
 

   The MTX booter can be adapted to booting small Linux kernels from an EXT2 file 

system. When booting a Linux zImage there is a slight problem. The contents of an 

image file are stored in (1KB) disk blocks. During booting, we prefer to load the image 

by blocks. As pointed out earlier, starting from segment 0x1000, loading 1KB blocks will 

not cross any cylinder or 64KB boundary. In a Linux zImage, the kernel image follows 

BOOT+SETUP immediately. If the number of BOOT+SETUP sectors is odd, the kernel 

image does not begin at a block boundary, which makes loading by blocks difficult. For 

instance, if we load the block that contains the last sector of SETUP and the first sector of 

kernel to 0x1000-0x20, it would cross 64KB boundary. If we load the first kernel sector 

to 0x1000, followed by loading blocks, we must monitor the blocks and split up any 

block that crosses a 64KB boundary. It would be very hard to write such a booter in 1KB. 

There are two possible ways to deal with this problem. The simplest way is to assume 

that the number of SETUP sectors is odd, so that BOOT+SETUP=even. If the number of 

SETUP sectors is even, e.g. 10, we can always pad a dummy sector between SETUP and 

the kernel image to make the latter begin at a block boundary. Another way is to load the 

block that contains the last SETUP sector and the first kernel sector to 0x1000, followed 

by loading blocks. When loading completes, if the number of SETUP sectors is even, we 

simply move the loaded image downward (address-wise) by one sector. The Linux 

zImage booter uses the second technique. The booter's C code is shown below. The 

move(segment) function is in assembly, which is trivial and therefore not shown. The 

booter size is 1024 bytes, which is still within the 1KB limit. 
 

/***************** C code of Linux bzImage booter ***************/ 

u16 iblock, NSEC = 2; 

char b1[1024],b2[1024],b3[1024]; // b2[ ] and b3[ ] are adjacent 

main() 

{ 

  char   *cp, *name[2]; 

  u16    i,ino, setup, blk, nblk; 

  u32    *up; 

  INODE  *ip; 

  GD     *gp; 

  name[0] = "boot"; name[1] = “linux”; // hard coded /boot/linux so far 

  getblk(2, b1); 

  gp=(GD *)b1; // get group0 descriptor to find inode table start block 

  // read inode start block to get root inode 

  iblock = (u16)gp->bg_inode_table; 

  getblk(iblock, b1); 

  ip = (INODE *)b1 + 1;   // ip points at root inode 

  // serach for image file name  

  for (i=0; i<2; i++){     

      ino = search(ip, name[i]) - 1; 

      if (ino < 0) error();    // if search() failed      

      getblk(iblock + (ino / 8),  b1);     

      ip = (INODE *)b1 + (ino % 8); 

  } 

  // get setup_sectors from linux BOOTsector[497] 

  getblk((u16)ip->i_block[0], b2); 

  setup = b2[497]; 

  nblk = (1 + setup)/2;  // number of [bootsector+SETUP] blocks 



  // read in indirect & double indirect blocks before changing ES 

  getblk((u16)ip->i_block[12], b2); // get indirect block into b2[ ] 

  getblk((u16)ip->i_block[13], b3); // get db indirect block into b3[ ] 

  up =(u32 *)b3;   

  getblk((u16)*up, b3)        // get first double indirect into b3[ ] 

  setes(0x9000);              // loading segment of BOOT+SETUP 

  for (i=0; i<12; i++){       // nblk of these are bootblock+SETUP 

     if (i==nblk){ 

       if ((setup & 1)==0)  // if setp=even => need 1/2 block more 

          getblk((u16)ip->i_block[i], 0); 

          setes(0x1000);    //  set ES for kernel image at 0x1000 

       } 

       getblk((u16)ip->i_block[i], 0); // setup=even:1/2 SETUP 

       inces();      

     } 

     //load indirect and double indirect blocks in b2[]b3[] 

     up = (u32 *)b2;                 // access b2[ ]b3[ ] as u32's 

     while(*up++){ 

        getblk((u16)*up, 0);         // load block to (ES,0)  

        inces(); putc('.');     

     } 

     // finally, if setup is even, move kernel image DOWN one sector 

     if ((setup & 1)==0) 

        for (i=1; i<9; i++) 

            move(i*0x1000); // move one 64 KB segment at a time 

}  

 

Figure 3.16 shows the screen of booting Linux from a file system, in which each dot 

represents loading a 1KB disk block of the Linux kernel image.  

     
                             Figure 3.16. Booting Linux from File System 
 

When the Linux kernel boots up, it must mount a root file system in order to run. In the 

busyboxlinux directory, the sh script mkvfd creates a virtual FD containing a Linux root 

file system based on BusyBox. After booting up, the Linux kernel mounts the FD as the 

root file system and runs on the same FD. The screen of running such a single-FD Linux 

is similar to Figure 13.13, except that it does not load any ramdisk image during booting. 

 

3.4. Hard Disk Booter 
 

In this section, we shall develop an online booter for booting MTX and big Linux 

images (bzImages) from hard disk partitions. The HD booter consists of 5 files; a bs.s in 

assembly, a bc.c in C, which includes io.c, bootMtx.c for booting MTX and bootLinux.c 

for booting Linux. During booting, it displays the hard disk partitions and prompts for a 



partition number to boot. If the partition type is MTX (90) or Linux (83), it allows the 

user to enter a filename to boot. If the user enters only the return key, it boots /boot/mtx 

or /boot/vmlinuz by default. When booting Linux it also supports an initial RAM disk 

image. For non-MTX/Linux partitions, it acts as a chain-booter to boot other operating 

systems, such as Windows. Since booting MTX is much simpler, we shall only discuss 

the Linux part of the HD booter. 

 

    The HD booter consists of five logical parts. Each part is essentially an independent 

programming task, which can be solved separately. For example, we may write a C 

program to display the partitions of a hard disk, and test it under Linux first. Similarly, 

we may write a program, which finds the inode of a file in an EXT2 file system and print 

its disk blocks. When the programs are tested to be working, we adapt them to the 16-bit 

environment as parts of the booter. The following describes the logical components of the 

HD booter. 
 

3.4.1. I/O and Memory Access Functions 

 

A HD booter is no longer limited to 512 or 1024 bytes. With a larger code size, we 

shall implement a set of I/O functions to provide better user interface during booting. 

Specifically, we shall implement a gets() function, which allows the user to input 

bootable image filename and boot parameters, and a printf() function for formatted 

printing. First, we show the gets() function. 
 
 #define MAXLEN 128 

 char *gets(char s[ ]) // caller must provide REAL memory s[MAXLEN] 

 { 

     char c, *t = s; int len=0; 

     while( (c=getc()) != ’\r’ && len < MAXLEN-1){ 

          *t++ = c; putc(c); len++; 

     } 

     *t = 0; return s; 

 } 

               

For outputs, we first implement a printu() function, which prints unsigned short integers.   
 

   char *ctable = "0123456789ABCDEF"; 

   u16 BASE = 10; // for decimal numbers   

   int rpu(u16 x) 

   {   char c; 

       if (x){  

          c = ctable[x % BASE];  

          rpu(x / BASE); 

          putc(c); 

       } 

   } 

   int printu(u16 x) 

   {   

      (x==0)? putc('0') : rpu(x);   

      putc(' '); 

   }  

 



The function rpu(x) recursively generates the digits of x % 10 in ASCII and prints them 

on the return path. For example, if x=123, the digits are generated in the order of  '3', 2', 

'1', which are printed as '1', '2', '3' as they should. With printu(), writing a printd() to print 

signed short integers becomes trivial. By setting BASE to 16, we can print in hex. By 

changing the parameter type to u32, we can print long values, e.g. LBA disk sector and 

inode numbers. Assume that we have prints(), printd(), printu(), printx(), printl() and 

printX(), where printl() and printX() print 32-bit values in decimal and hex, respectively. 

Then write a printf(char *fmt,...) for formatted printing, where fmt is a format string 

containing conversion symbols %c, %s, %u, %d, %x, %l, %X. 
 
int printf(char *fmt, ...) // some C compiler requires the three dots 

{ 

    char *cp = fmt;             // cp points to the fmt string 

    u16  *ip = (u16 *)&fmt + 1; // ip points to first item 

    u32  *up;             // for accessing long parameters on stack 

    while (*cp){                // scan the format string 

       if (*cp != '%'){         // spit out ordinary chars 

           putc(*cp); 

           if (*cp=='\n')       // for each ‘\n’ 

              putc('\r');       // print a ‘\r’ 

           cp++; continue; 

       } 

       cp++;                    // print item by %FORMAT symbol                   

       switch(*cp){ 

          case 'c' :   putc(*ip);  break; 

          case 's' : prints(*ip);  break; 

          case 'u' : printu(*ip);  break; 

          case 'd' : printd(*ip);  break; 

          case 'x' : printx(*ip);  break; 

          case 'l' : printl(*(u32 *)ip++);  break;  

          case 'X' : printX(*(u32 *)ip++);  break;  

      } 

      cp++; ip++;              // advance pointers 

    } 

} 

 

The simple printf() function does not support field width or precision but it is adequate 

for the print task during booting. It would greatly improve the readability of the booter 

code. The same printf() function will also be used later in the MTX kernel. When booting 

a big Linux bzImage, the booter must get the number of SETUP sectors to determine how 

to load the various pieces of the image. After loading the image, it must set the boot 

parameters in the loaded BOOT and SETUP sectors for the Linux kernel to use. To do 

these, we implement the get_byte()/ put_byte() functions in C, which are similar to the 

traditional peek()/poke() functions. 
 

  u8 get_byte(u16 segment, u16 offset) 

  { 

     u8 byte; 

     u16 ds = getds();    // getds() in assembly returns DS value  

     setds(segment);      // set DS to segment  

     byte = *(u8 *)offset; 

     setds(ds);           // setds() in assembly restores DS 

     return byte 



  } 

  void put_byte(u8 byte, u16 segment, u16 offset) 

  {  

     u16 ds = getds();    // save DS 

     setds(segment);      // set DS to segment 

     *(u8 *)offset = byte; 

     setds(ds);           // restore DS 

} 

 

Similarly, we can implement get_word()/put_word() for reading/writing 2-byte words. 

These functions allow the booter to access memory outside of its own segment. 

 

3.4.2. Read Hard Disk LBA Sectors 
  

Unlike floppy disks, which use CHS addressing, large hard disks use Linear Block 

Addressing (LBA), in which disk sectors are accessed linearly by 32 or 48 bits sector 

numbers. To read hard disk sectors in LBA, we may use the extended BIOS INT13-42 

(INT 0x13, AH=0x42) function. The parameters to INT13-42 are specified in a Disk 

Address Packet (DAP) structure. 
 

    struct dap{         // DAP structure for INT13-42 

       u8   len;        // dap length=0x10 (16 bytes) 

       u8   zero;       // must be 0   

       u16  nsector;    // actually u8; sectors to read=1 to 127 

       u16  addr;       // memory address = (segment, addr) 

       u16  segment;    // segment value  

       u32  sectorLo;   // low  4 bytes of LBA sector# 

       u32  sectorHi;   // high 4 bytes of LBA sector# 

}; 

 

To call INT13-42, we define a global dap structure and initialize it once, as in 
 

    struct dap dap, *dp=&dap; // dap and dp are globals in C 

    dp->len = 0x10;           // dap length = 0x10  

    dp->zero = 0;             // this field must be 0 

    dp->sectorHi = 0;   // assume 32-bit LBA, high 4-byte always 0 

    // other fields will be set when the dap is used in actual calls 

 

Within the C code, we may set dap's segment, then call getSector() to load one disk 

sector into the memory location (segment, offset), as in 

 
    int getSector(u32 sector, u16 offset) 

    {  

        dp->nsector = 1; 

        dp->addr    = offset; 

        dp->sectorLo= sector; 

        diskr(); 

    } 

 

where diskr() is in assembly, which uses the global dap to call BIOS int13-42. 
 

!-------------------- assembly code ------------------------------ 

       .globl _diskr,_dap ! _dap is a global dap struct in C 



_diskr:  

        mov  dx, #0x0080   ! device=first hard drive 

        mov  ax, #0x4200   ! aH=0x42 

        mov  si, #_dap     ! (ES,SI) points to _dap 

        int  0x13          ! call BIOS INT13-42 to read sectors 

        jb   _error  ! to error() if CarryBit is set (read failed) 

        ret 

 

Similarly, the function 
 

    int getblk(u32 blk, u16 offset, u16 nblk) 

    {  

        dp->nsectors = nblk*SECTORS_PER_BLOCK; // max value=127 

        dp->addr     = offset; 

        dp->sectorLo = blk*SECTORS_PER_BLOCK;   

        diskr(); 

    } 

 

loads nblk contiguous disk blocks into memory, beginning from (segment, offset),  where 

nblk <= 15 because dp->nsectors <= 127.  
 

3.4.3. Boot Linux bzImage with Initial Ramdisk Image 
 

When booting a Linux bzImage, the image's BOOT+SETUP are loaded to 0x9000 as 

before but the Linux kernel is loaded to the physical address 0x100000 (1MB) in high 

memory. If a RAM disk image is specified, it is also loaded to high memory. Since the 

PC is in 16-bit real mode during booting, it cannot access memory above 1MB directly. 

Although we may switch the PC to protected mode, access high memory and then switch 

back to real-mode afterwards, doing these requires a lot of work. A better way is to use 

BIOS INT15-87, which is designed to copy memory between real and protected modes. 

Parameters of INT15-87 are specified in a Global Descriptor Table (GDT). 
 
   struct GDT 

   { 

     u32 zeros[4];      // 16 bytes 0's for BIOS to use 

     // src address 

     u16 src_seg_limit; // 0xFFFF = 64KB 

     u32 src_addr;      // low 3 bytes of src addr, high_byte=0x93 

     u16 src_hiword;    // 0x93 and high byte of 32-bit src addr  

     // dest address 

     u16 dest_seg_limit;// 0xFFFF = 64KB 

     u32 dest_addr;     // low 3 bytes of dest addr, high byte=0x93 

     u16 dest_hiword;   // 0x93 and high byte of 32-bit dest addr 

     // BIOS CS DS 

     u32 bzeros[4]; 

   }; 

 

The GDT specifies a src address and a dest address; both are 32-bit physical addresses. 

However, the bytes that form these addresses are not adjacent, which makes them hard to 

access. Although both src_addr and dest_addr are defined as u32, only the low 3 bytes 

are part of the address, the high byte is the access rights 0x93. Similarly, both src_hiword 

and dest_hiword are defined as u16 but only the high byte is the 4th address byte; the low 



byte is again the access rights 0x93. As an example, if we want to copy from the real 

address 0x00010000 (64KB) to 0x01000000 (16MB), a GDT can be initialized as follows. 
 

   init_gdt(struct GDT *p) 

   {  int i; 

      for (i=0; i<4; i++) 

          p->zeros[i] = p->bzeros[i] = 0; 

      p->src_seg_limit = p->dest_seg_limit = 0xFFFF; // 64KB segments 

      p->src_addr    = 0x93010000;        // bytes 0x00 00 01 93 

      p->dest_addr   = 0x93000000;        // bytes 0x00 00 00 93 

      p->src_hiword  = 0x0093;            // bytes 0x93 00   

      p->dest_hiword = 0x0193;            // bytes 0x93 01 

   } 

 

The following code segment copies 4096 bytes from 0x00010000 (64KB) in real mode 

memory to 0x01000000 (16MB) in high memory. 
 

C code: 

         struct GDT gdt;     // define a gdt struct 

         init_gdt(&dgt);     // initialize gdt as shown above 

         cp2himem();         // assembly code that does the copying 

 

Assembly code: 

     .globl _cp2himem,_gdt   ! _gdt is a global GDT from C  

_cp2himem: 

          mov cx,#2048       ! CX=number of 2-byte words to copy 

          mov si,#_gdt       ! (ES,SI) point to GDT struct 

          mov ax,#0x8700     ! aH=0x87     

          int 0x15           ! call BIOS INT15-87 

          jc  _error 

          ret 

 

Based on these, we can load the blocks of an image file to high memory as follows. 

    (1). load a disk block (4KB or 8 sectors) to segment 0x1000; 

    (2). cp2himem();  

    (3). gdt.vm_addr += 4096; 

    (4). repeat (1)-(3) for next block, etc. 

This can be used as the basic loading scheme of a booter. For fast loading, the hd-booter 

tries to load up to 15 contiguous blocks at a time. It is observed that most PCs actually 

support loading 16 contiguous blocks at a time. On these machines, the images can be 

loaded in 64KB chunks. 

 

3.4.4. Hard Disk Partitions 
 

    The partition table of a hard disk is in the MBR sector at the byte offset 446 (0x1BE). 

The table has 4 entries, each defined by a 16-byte partition structure, which is 
 

    stuct partition { 

          u8  drive;        // 0x80 - active  

          u8  head;         // starting head 

          u8  sector;       // starting sector 

          u8  cylinder;     // starting cylinder 

          u8  sys_type;     // partition type 



          u8  end_head;     // end head 

          u8  end_sector;   // end sector 

          u8  end_cylinder; // end cylinder 

         u32  start_sector; // starting sector counting from 0 

         u32  nr_sectors;   // number of sectors in partition 

}; 

 

If a partition is EXTEND type (5), it can be divided into more partitions. Assume that 

partition P4 is EXTEND type and it is divided into extend partitions P5, P6, P7. The 

extend partitions form a link list, as shown in Figure 3.17. 

 

 

 

                                Figure 3.17.  Link List of Extended Partitions 

    

The first sector of each extend partition is a local MBR. Each local MBR has a partition 

table, which contains only two entries. The first entry defines the start sector number and 

size of the extend partition. The second entry points to the next local MBR. All the local 

MBR's sector numbers are relative to P4's start sector. As usual, the link list ends with a 0 

in the last local MBR. In a partition table, the CHS values are valid only for disks smaller 

than 8GB. For disks larger than 8GB but fewer than 4G sectors, only the last 2 entries, 

start_sector and nr_sectors, are meaningful. Therefore, the booter should only display the 

type, start sector and size of the partitions.   
 

3.4.5. Find and Load Linux Kernel and initrd Image Files 

 

The steps used to find a Linux bzImage or RAM disk image are essentially the same as 

before. The main differences stem from the need to traverse large EXT2/EXT3 file 

systems on hard disks.  

 

(1). In a hard disk partition, the superblock of an EXT2/EXT3 file system is at the byte 

offset 1024. A booter must read the superblock to get the values of s_first_data_block, 

s_log_block_size, s_inodes_per_group and s_inode_size, where s_log_block_size 

determines the block size, which in turn determines the values of group_desc_per_block, 

inodes_per_block, etc. These values are needed when traversing the file system. 

 

(2). A large EXT2/EXT3 file system may have many groups. Group descriptors begin at 

the block (1+s_first_data_block), which is usually 1. Given a group number, we must 

find its group descriptor and use it to find the group's inodes start block. 

 

(3). The central problem is how to convert an inode number to an inode. The following 

code segment illustrates the algorithm, which amounts to applying Mailman's algorithm 

twice. 
 

/********** Algorithm: Convert inode number to inode *********/            



(a). Compute group# and offset# in that group  

     group   = (ino-1) / inodes_per_group; 

     inumber = (ino-1) % inodes_per_group; 

 

(b). Find the group's group descriptor 

     gdblk = group / desc_per_block;  // which block this GD is in 

     gdisp = group % desc_per_block;  // which GD in that block 

      

(c). Compute inode's block# and offset in that group  

     blk=inumber / inodes_per_block;  // blk# r.e.to group inode_table 

     disp=inumber % inodes_per_block; // inode offset in that block 

   

(d). Read group descriptor to get group's inode table start block# 

     getblk(1+first_data_block+gdblk, buf, 1); // GD begin block 

     gp = (GD *)buf + gdisp;    // it's this group desc. 

     blk += gp->bg_inode_table; // blk is r.e. to group's inode_table  

     getblk(blk, buf, 1);       // read the disk block containing inode 

     INODE *ip=(INODE *)buf+(disp*iratio); //iratio=2 if inode_size=256  

 

When the algorithm ends, INODE *ip should point to the file's inode in memory. 

 

(4). Load Linux Kernel and Ramdisk Image to High Memory: With getblk() and 

cp2himem(), loading kernel image to 1MB in high memory is straightforward. The only 

complication is when the kernel image does not begin at a block boundary. For example, 

if the number of SETUP sectors is 12, then 5 sectors of the kernel are in block1, which 

must be loaded to 0x100000 first before we can load the remaining kernel by blocks. In 

contrast, if the number of SETUP sectors is 23, then BOOT and SETUP are in the first 3 

blocks and kernel begins at block #3. In this case, we can load the entire kernel by blocks 

without having to deal with fractions of a block at the beginning. Although the hd-booter 

handles these cases properly, it is certainly a pain. It would be much better if the Linux 

kernel of every bzImage begins at a block boundary. This can be done quite easily by 

modifying a few lines in the Linux tools program when it assembles the various pieces 

into a bzImage file. Why Linux people don’t do that is beyond me. 

 

Next, we consider loading RAM disk images. An excellent overview on Linux initial 

RAM disk (initrd) is in [Jones, 2006]. Slackware [Slackware Linux] also has an initrd 

HOWTO file. An initrd is a small file system, which is used by the Linux kernel as a 

temporary root file system when the kernel starts up. The initrd contains a minimal set of 

directories and executables, such as sh, the ismod tool and the needed driver modules. 

While running on initrd, the Linux kernel typically executes a sh script, initrc, to install 

the needed driver modules and activate the real root device. When the real root device is 

ready, the Linux kernel abandons the initrd and mounts the real root file system to 

complete a 2-stage boot up process. The reason of using an initrd is as follows. During 

booting, Linux's startup code only activates a few standard devices, such as FD and 

IDE/SCSI HD, as possible root devices. Other device drivers are either installed later as 

modules or not activated at all. This is true even if all the device drivers are built into the 

Linux kernel. Although it is possible to activate the needed root device by altering the 

kernel's startup code, the question is, with so many different Linux system configurations, 

which device to activate? An obvious answer is to activate them all. Such a Linux kernel 

would be humongous in size and rather slow to boot up. For example, in some Linux 



distribution packages the kernel images are larger than 4MB. An initrd image can be 

tailor-built with instructions to install only the needed driver modules. This allows a 

single generic Linux kernel to be used in all kinds of Linux system configurations. In 

theory, a generic Linux kernel only needs the RAM disk driver to start. All other drivers 

may be installed as modules from the initrd. There are many tools to create an initrd 

image. A good example is the mkinitrd command in Linux. It creates an initrd.gz file and 

also an initrd-tree directory containing the initrd file system. If needed, the initrd-tree can 

be modified to generate a new initrd image. Older initrd.gz images are compressed EXT2 

file systems, which can be uncompressed and mounted as a loop file system. Newer initrd 

images are cpio archive files, which can be manipulated by the cpio utility program. 

Assume that initrd.img is a RAM disk image file. First, rename it as initrd.gz and run gunzip 

to uncompress it. Then run            

            mkdir temp;  cd temp;  # use a temp DIR    

            cpio -id  <  ../initrd       # extract initrd contents 

to extract the contents. After examining and modifying files in initrd-tree, run 

                find . | cpio -o -H newc | gzip > ../initrd.gz 

to create a new initrd.gz file.  

 

    Loading initrd image is similar to loading kernel image, only simpler. There is no 

specific requirement on the loading address of initrd, except for a maximum high address 

limit of 0xFE000000. (The reader may consult Chapter 15 on SMP for reasons). Other 

than this restriction, any reasonable loading address seems to work fine. The hd-booter 

loads the Linux kernel to 1MB and initrd to 32MB. After loading completes, the booter 

must write the loading address and size of the initrd image to SETUP at the byte offsets 

24 and 28, respectively. Then it jumps to execute SETUP at 0x9020. Early SETUP code 

does not care about the segment register settings. In kernel 2.6, SETUP requires 

DS=0x9000 in order to access BOOT as the beginning of its data segment.  
 

3.4.6. Linux and MTX Hard Disk Booter 

 

   A complete listing of the hd-booter code is in BOOTERS/HD/MBR.ext4/. The booter 

can boot both MTX and Linux with initial RAM disk support. It can also boot Windows 

by chain-booting. For the sake of brevity, we only show the booting Linux part here. 
 
!----------------  hd-booter's bs.s file ------------------------- 

         BOOSEG = 0x9800 

         SSP    = 32*1024       ! 32KB bss + stack; may be adjusted 

        .globl _main,_prints,_dap,_dp,_bsector,_vm_gdt   ! IMPORT  

        .globl _diskr,_getc,_putc,_getds,_setds,         ! EXPORT 

        .globl _cp2himem,_jmp_setup 

! MBR loaded at 0x07C0. Load entire booter to 0x9800 

start:  mov  ax, #BOOTSEG 

        mov  es, ax 

        xor  bx, bx          ! clear BX = 0 

        mov  dx, #0x0080     ! head 0, HD 

        xor  cx, cx 

        incb cl              ! cyl 0, sector 1 

        incb cl 

        mov  ax, #0x0220     ! READ 32 sectors, booter size up to 16KB 

        int  0x13 



! far jump to (0x9800, next) to continue execution there 

        jmpi next, BOOSEG    ! CS=BOOTSEG, IP=next 

next: 

        mov  ax, cs          ! set CPU segment registers 

        mov  ds, ax          ! we know ES,CS=0x9800. Let DS=CS   

        mov  ss, ax 

        mov  es, ax          ! CS=DS=SS=ES=0x9800 

        mov  sp, #SSP        ! 32 KB stack 

        call _main           ! call main() in C 

        test ax, ax          ! check return value from main() 

        je   error           ! main() return 0 if error 

        jmpi 0x7C00,0x0000   ! otherwise, as a chain booter  

_diskr:  

        mov dx, #0x0080      ! drive=0x80 for HD 

        mov ax, #0x4200 

        mov si, #_dap 

        int 0x13             ! call BIOS INT13-42 read the block  

        jb  error            ! to error if CarryBit is on 

        ret 

error: 

        mov  bx, #bad 

        push bx 

        call _prints 

        int  0x19            ! reboot 

bad:   .asciz  "\n\rError!\n\r" 

_jmp_setup: 

        mov  ax, 0x9000      ! for SETUP in 2.6 kernel:  

        mov  ds, ax          ! DS must point at 0x9000 

        jmpi 0,  0x9020      ! jmpi to execute SETUP at 0x9020 

 

_getc:  ! same as before 

_putc:  ! same as before            

_getds: ! return DS value 

_setds: ! set DS to a segment 

!----------------------- cp2himem() ------------------------------  

! for each batch of k<=16 blocks, load to RM=0x10000 (at most 64KB) 

! then call cp2himem() to copy it to      VM=0x100000 + k*4096 

!----------------------------------------------------------------- 

_cp2himem:  

        push bp 

        mov  bp, sp 

        mov  cx, 4[bp]       ! words to copy (32*1024 or less) 

        mov  si, #_vm_gdt 

        mov  ax, #0x8700 

        int  0x15 

        jc   error 

        pop  bp 

        ret 

/************ Algorithm of hd-booter's bc.c file **************/ 

#define BOOTSEG 0x9800 

#include "bio.c"          // I/O functions such as printf() 

#include "bootLinux.c"    // C code of Linux booter 

int main() 

{ 

  (1). initialize dap for INT13-42 calls; 

  (2). read MBR sector;  

  (3). print partition table; 



  (4). prompt for a partition to boot; 

  (5). if (partition type == LINUX) 

           bootLinux(partition);   // no return 

  (6). load partition's local MBR to 0x07C0;  

       chain-boot from partition's local MBR;      

} 

/************ Algorithm of bootLinux.c file ****************/ 

boot-Linux-bzImage Algorithm: 

{  

 (1). read superblock to get blockSize,inodeSize,inodes_per_group 

 (2). read Group Descriptor 0 to get inode start block 

 (3). read in the root INODE and let INODE *ip point at root INODE 

 (4). prompt for a Linux kernel image filename to boot 

 (5). tokenize image filename and search for image's INODE 

 (6). handle symbolic-link filenames 

 (7). load BOOT+SETUP of Linux bzImage to 0x9000; 

 (8). set video mode word at 506 in BOOT to 773 (for small font). 

 (9). set root dev word at 508 in BOOT to (0x03, pno) (/dev/hdapno) 

(10). set bootflags word at offset 16 in SETUP to 0x2001 

(11). compute number of kernel sectors in last block of SETUP 

(12). load kernel sectors to 0x1000, then cp2himem() to 1MB 

(13). load kernel blocks to high memory, each time load 64KB 

(14). load initrd image to 32 MB in high memory 

(15). write initrd address and size to offsets (24,28) in SETUP 

(16). jmp_setup() to execute SETUP code at 0x9020 

}   

 

   In the above algorithm, step (8) is optional. Step (9) sets the root device, which is 

needed only if no initrd image is loaded. With an initrd image, the root device is 

determined by the initrd image. Step (10) is mandatory, which tells SETUP that the 

kernel image is loaded by an "up-to-date" boot loader. Otherwise, the SETUP code would 

consider the loaded kernel image invalid and refuse to start up the Linux kernel. 
 

3.4.7. Boot EXT4 Partitions 
 

At the time of this writing, many Linux distributions are switching to EXT4 [Cao et al., 

2007] as the default file system. It is fairly easy to modify the booter to boot MTX and 

Linux from EXT4 partitions. Here, we briefly describe the EXT4 file system and the 

needed modifications to the HD booter. 

 

(1). In EXT4, the i_block[15] array of an inode contains a header and 4 extents structures,  

each 12 bytes long, as shown below. 

 
     |<------ u32 i_block[15] area -------->| 

     |header|extent1|extent2|extent3|extent4| 

     struct ext3_extent_header { 

            u16  eh_magic;      // 0xF30A 

            u16  eh_entries;    // number of valid entries 

            u16  eh_max;        // capacity of store in entries 

            u16  eh_depth;      // has tree real underlaying blocks? 

            u32  eh_generation; // generation of the tree 

     }; 

 



     struct ext3_extent { 

            u32  ee_block;      // first logical block extent covers 

            u16  ee_len;        // number of blocks covered by extent 

            u16  ee_start_hi;   // high 16 bits of physical block 

            u32  ee_start;      // low  32 bits of physical block 

     }; 

 

The root directory does not use extents, so i_block[0] is still the first data block. 

  

(2). The GD and INODE types are the same as they are in EXT2, but the INODE size is 

256 bytes. The SUPER block's magic number is also the same as in EXT2, but we may 

test s_feature_incompat (> 0x240) to determine whether it's an EXT4 file system.  

(3). Blocks in each extent are contiguous. There is no need to scan for contiguous blocks 

when loading an image; just load a sequence of blocks directly. For HDs, the block size is 

4KB. The maximum number of blocks per loading is still limited to 16 or less. Shown 

below are the search() and load() functions for EXT4 file system. Integrating them into 

the HD booter is left as an exercise. 
 

/******* serach for name in an EXT4 DIR INODE ********/ 

u32 search(INODE *ip, char *name) 

{ 

   u16  i; u32  ino; 

   struct ext3_extent_header *hdp; 

   struct ext3_extent *ep; 

   char buf[BLK]; 

   hdp = (struct ext3_extent_header *)&(ip->i_block[0]); 

   ep  = (struct ext3_extent *)&(ip->i_block[3]); 

   for (i=0; i<4; i++){ 

        if (hdp->eh_entries == 0){ 

           getblk((u32)ip->i_block[0], buf, 1); 

           i = 4; // no other extents 

        } 

        else{ 

           ep = (struct ext3_extent *)&(ip->i_block[3]); 

           getblk((u32)ep->ee_start, buf, 1); 

        } 

        if (ino = find(buf, name))   // find name string in buf[ ]      

            return ino; 

   } 

   return 0; 

} 

/******** load blocks of an INODE with EXT4 extent *********/   

int loadExt4(INODE *ip, u16 startblk) 

{ 

  int i,j,k,remain; u32 *up; 

  struct ext3_extent_header *hdp; 

  struct ext3_extent *ep; 

  int ext; 

  u32 fblk, beginblk; 

  hdp = (struct ext3_extent_header *)ip->i_block; 

  ep  = (struct ext3_extent *)ip->i_block + 1; 

  ext = 1; 

  while(1){ 

     if (ep->ee_len==0)  



        break; 

     beginblk = 0; 

     if (ext==1)  // if first extent: begin from startblk 

        beginblk = startblk; 

     k = 16;     // load 16 contisuous blocks at a time 

     fblk = ep->ee_start + beginblk;   

     remain = ep->ee_len - beginblk; 

     while(remain >= k){ 

        getblk((u32)(fblk), 0, k); 

        cp_vm(k, '.'); 

        fblk += k; 

        remain -= k; 

     } 

     if (remain){ 

        getblk((u32)(fblk), 0, remain); 

        cp_vm(remain, '.'); 

     } 

     ext++; ep++;   // next extent 

  } 

} 

 

Figure 3.18 shows the screen of the hd-booter when booting a generic Linux kernel with 

initial RAM disk image, initrd.gz, from an EXT4 partition. 

 

      
 

            Figure 3.18. Booting Linux bzImage with initrd from EXT4 Partition  

 

3.4.8. Install HD Booter 

 

   Now that we have a hard disk booter, the next problem is where to install it? Obviously, 

the beginning part of the booter must be installed in the HD's MBR since that's where the 



booting process begins. The question is where to install the remaining parts of the booter? 

The location chosen must not interfere with the hard disk's normal contents. At the same 

time it must be easy for the stage1 booter to find. The question has an interesting answer. 

By convention, each HD partition begins at a (logical) track boundary. Since the MBR is 

already in track 0, partition 1 actually begins from track 1. A track usually has 63 sectors. 

We can certainly put a fairly big and powerful booter in the unused space of track 0. 

Unfortunately, once the good news gets around, it seems that everybody tries to use that 

hidden space for some special usage. For example, GRUB installs its stage2 booters there, 

so does our hd-booter. Naturally, as a Chinese proverb says, "A single mountain cannot 

accommodate two tigers", only one tiger can live there at a time. The hd-booter can be 

installed to a HD as follows. 
      (1) dd if=hd-booter of=/dev/hda bs=16 count=27 

      (2) dd if=hd-booter of=/dev/hda bs=512 seek=1 

Assume that the booter size is less than 31KB (the hd-booter size is about 10KB). Step (1) 

dumps the first 432 bytes of the booter to the MBR without disturbing the partition table, 

which begins at byte 444. Step (2) dumps the entire booter to sectors 1 and beyond. 

During booting, BIOS loads the MBR to 0x07C00 and executes the beginning part of the 

hd-booter. The hd-booter reloads the entire booter, beginning from sector 1, to 0x98000 

and continues execution in the new segment. The actual number of sectors to load can be 

adjusted to suit the booter size, but loading a few extra sectors causes no harm. 

 

    Although installing the hd-booter is simple, a word of caution is in order. Murphy's 

law says anything that can go wrong will go wrong. Writing to a hard disk's MBR is very 

risky. A simple careless mistake may destroy the partition table and/or corrupt the HD 

contents, rendering the HD either non-bootable or useless. It is therefore advised not to 

install the booter to a HD unless you are absolutely sure of what you are doing. Before 

attempting to install the booter, it's a good idea to write down the HD's partition table on 

a piece of paper in case you have to restore it. A safer way to test the HD booter is to 

install it to a floppy disk. For FD drives that support loading cylinders, we only need to 

modify one line in the above assembly code: change mov dx, #0x0080 to mov dx, 

#0x0000, so that the booter will be re-loaded from a FD when it begins to run. Once the 

booter starts running, it actually boots from the HD. Since the HD is accessed in read-

only mode, the scheme should be safe. Instead of a real HD, the reader may use a virtual 

HD. Similarly, the HD booter may also be installed to a USB drive. In that case, no 

changes are needed. 

 

3.5. CD/DVD-ROM Booter 
 

    A bootable CD/DVD is created in two steps. First, create an iso9660 file system 

[Standard ECMA-119, 1987] containing a CD/DVD booter. Then write the iso image to a 

CD/DVD by a CD/DVD burning tool. The resulting CD/DVD is bootable. If desired, the 

iso file can also be used directly as a virtual CD. In this section, we shall show how to 

develop booter programs for CD/DVD booting. 

 

3.5.1. Emulation CDROM Booting 

 



     From a programming point of view, emulation booting is trivial. There is not much 

one needs to (or can) do other than preparing a bootable disk image. The following shows 

how to do emulation booting. 

 

3.5.1.1. Emulation-FD Booting 

 

    Assume that fdimage is a bootable floppy disk image (size = 1.44MB). Under Linux, 

use the sh command 

            mkisofs -o /tmp/fcd.iso -v -d -R -J -N  -b fdimage -c boot.catalog ./ 

to create a /tmp/fcd.iso file from the current directory. The reader may consult Linux man 

page of mkisofs for the meaning of the various flags. The iso file is a bootable CD image. 

It can be written to a real CD/DVD disc by using a suitable CD/DVD burning tool, such 

as Nero or K3b under Linux. It can also be used as a virtual CD on most virtual machines. 

Then boot from either a real or a virtual CD/DVD. After booting up, the environment is 

exactly the same as that of booting from a floppy disk.  

 

Example 1: BOOTERS/CD/emuFD demonstrates emulation-FD booting. It contains a 

MTX system, MTXimage, based on MTX5.1 of Chapter 5. When creating a bootable CD 

image, it is used as the emulation-boot image. Upon booting up from the CD, MTX runs 

as if it had been booted up from a FD. As pointed out before, the MTX kernel can only 

access the MTXimage on the CD as if it were a FD drive, but it cannot access anything 

else on the CD.  

 

3.5.1.2. Emulation-HD Booting 

 

    Similarly, assume that hdimage is a single-partition hard disk image with a HD booter 

installed in the MBR. Under Linux, use the sh command 

    mkisofs -o /tmp/hcd.iso -v -d -R -J -N  -b hdimage -hard-disk-booting -c boot.catalog . 

to create a bootable CD image and burn the hcd.iso file to a CD/DVD disc. After booting 

up, the environment is exactly the same as that of booting from the first hard disk.  

 

Example 2: BOOTER/CD/emuHD demonstrates emulation-HD booting. In the emuHD 

directory, hdimage is single-partition hard disk image. It contains a MTX system in 

partition 1 and a MTX booter (hd-booter of Section 3.4.5) in MBR. In the example, the 

hdimage is used as the hard-disk-boot image to create a bootable CDROM image. When 

booting from the CDROM, the sequence of actions is identical to that of booting MTX 

from a HD partition. When the MTX kernel runs, the environment is the same as that of 

running from the C: drive. All I/O operations to the emulated hard disk use INT13-42 

calls to BIOS. Again, the MTX kernel can only access the hdimage but nothing else on 

the CDROM. 

 

3.5.2. No-emulation CDROM Booting 
 

    In no-emulation booting, if the loading requirements are simple, e.g. just load the OS 

image to a segment in real-mode memory, then there is no need for a separate booter 

because the entire OS image can be loaded by BIOS during booting.  
 



3.5.2.1. No-emulation Booting of MTX 

 

 Example 3: BOOTERS/CD/MTXCD demonstrates no-emulation booting of MTX. It 

contains a MTX system, which is again based on MTX5.1. However, the MTX kernel is 

modified to include an iso loader and a simple iso file system traversing program. The 

MTX kernel is used as the no-emulation booting image. During booting, the entire MTX 

kernel is loaded to the segment 0x1000 and runs from there. When the MTX starts to run, 

it must create a process with a user mode image from a /bin/u1 file, which means it must 

be able to read the CDROM contents. Loading the user mode image file is done by the 

isoloader. The program cd.c supports basic iso9660 file system operations, such as ls, cd, 

pwd and cat. These allow a process to navigate the file system tree on the CDROM. The 

example is intended to show that a booted up OS kernel can access the CDROM contents 

if it has drivers to interpret the iso file system on the CDROM. 
 

3.5.2.2. No-emulation Linux Booter 

 

    In no-emulation CDROM booting, a separate booter is needed only if the loading 

requirements of an OS image are non-trivial, such as that of Linux. In the following, we 

shall develop an iso-booter for booting Linux bzImage with initial RAM disk support 

from CDROM. To do this, we need some background information about the iso9660 file 

system, which are summarized below. 

 

For data storage, CDROM uses 2048-byte sectors, which are addressed in LBA just 

like HD sectors. The data format in an iso9660 file system represents what may be called 

a masterpiece of legislative compromise. It supports both the old 8.3 filenames of DOS 

and, with Rock Ridge extension, it also supports Unix-style filenames and attributes. To 

accommodate machines using different byte orders, all multi-byte values are stored twice 

in both little-endian and big-endian formats. To support international encoding, chars in 

Joliet extension are stored in 16-bit Unicode. An iso9660 CDROM contains a sequence 

of Volume Descriptors (VDs), which begin at sector 16. Each VD has a type identifier, 

where 0=BOOT, 1=Primary, 2=Supplementary and 255=End of the VD table. Unix-style 

files are under the supplementary VD, which contains, among other thing, the following 

fields. 
     u8  type              = VD's type 

     u32 type_l_path_table = start sector of Little_endian path_table 

     u32 path_table_size   = path_table size in bytes. 

     root_directory_record = root DIR iso_directory_record 

 

The steps of traversing a Unix-style file system on a CDROM are as follows. 

 

1. From sector 16, read in and step through the Volume Descriptors to search  for the 

Supplementary VD (SVD), which has type=2. 

 

2. SVD.root_directory_record is an iso_directory_record (DIR) of 34 bytes. 
 

   struct iso_directory_record { 

      unsigned char length;          

      unsigned char ext_attr_length;  



      char extent[8];    

      char size[8];    

      char date[7];   

      unsigned char flags; 

      char file_unit_size; 

      char interleave;  

      char volume_sequence_number[4];  

      unsigned char name_len;         

      char name[0];   

   };  

 

3. Multi-byte values are in stored in both little-endian and big-endian format. For 

example, DIR.extent = char extent[8] =  [4-byte-little-endian, 4-byte-big-endian].  To get 

a DIR's extent (start sector), we may use u32 extent = *(u32 *)DIR.extent, which extracts 

only the first 4 little-endian bytes. Similarly for DIR.size, etc.  

 

4. In an iso file system, FILE and DIR records are identical. Therefore, entries in a 

directory record are also directory records. The following algorithm shows how to search 

for a name string in a DIR record. 
 

/** Algorithm of search for fname string in DIR **/ 

DIR *search(DIR, fname)  

  {  sector = DIR.extent (begin sector# of DIR record); 

     while(DIR.size){ 

       read sector into a char buf[2048]; 

       char *cp = buf; DIR *dp = buf; // both point at buf beginning 

       while(cp < buf+2048){ 

          each record has a length, a name_len and a name in 16-bit  

          Unicode. Convert name to ascii, then compare with fname; 

          if (found) we actually have fname's RECORD;  

             return DIR record (pointer); 

          else advance cp by record length, pull dp to next record; 

       } // until buf[ ] end 

       DIR.size -= 2048; sector++; 

     } // until DIR.size=0 

  } 

 

5. To search for the DIR record of a pathname, e.g. /a/b/c/d, tokenize the pathname into 

component name strings. Start from the root DIR, search for each component name in the 

current DIR. The steps are are similar to that of finding the inode of a pathname in an 

EXT2/EXT3 file system. 

 

6. If we allow .. in a pathname, we must be able to get the parent of the current DIR.  

Similar to a Unix directory, the second entry in an iso9660 directory contains the extent 

of the parent directory. For each .. entry we may either return the parent DIR's extent or a 

DIR pointer to the second record. Alternatively, we may also search the path table to find 

the parent DIR's extent. This method is left as an exercise. 

 

    With this background information, we are ready to show the details of an iso-booter. 

First, the iso.h file contains the types of volume descriptor, directory record and path 

table. All entries are defined as char arrays. For ease of reference, arrays of size 1 are 



redefined simply as char. The primary and supplementary volume descriptors differ in 

only in 2 fields, flags and escape, which are unspecified in the former but specified in the 

latter. Since these fields are irrelevant during booting, we only use the supplementary 

volume descriptor. Both iso_directory_record and iso_path_table are open-ended 

structures, in which the name field may vary, depending on the name_len. When stepping 

through these records we must advance by the actual record length. Similarly, when 

copying a directory record we must use memcpy(p1,p2, p2->length) to ensure that the 

entire record is copied.  

 

In the iso-booter, BOOTSEG is set to 0x07C0, rather than 0x9800. This is because 

many older PCs, e.g. some Dell and IBM Thinkpad laptops, seem to ignore the -boot-

load-seg option and always load the boot image to the segment 0x07C0. For maximum 

compatibility, the iso-booter is loaded to the segment 0x07C0 and runs from there 

without relocation. This works out fine for Linux, which does not use the memory area 

between 0x07C0 and 0x1000. The iso-booter's bs.s file is the same as that of the hd-

booter, with only a minor difference in the beginning part. When the iso-booter starts, it 

is already completely loaded in and it does not need to relocate. However, it must use the 

boot drive number passed in by BIOS, as shown below. 
 

!------------------  iso-booter's bs.s file ------------------------- 

! In no-emulation booting, many PCs always load booted image to 0x07C0. 

! Only some PCs honor the -boot-load-seg=SEGMENT option. So use 0x07C0 

!-------------------------------------------------------------------- 

         BOOTSEG  = 0x07C0 

         SSP      = 32*1024 

!       .globls : SAME as in hd-booter 

        .globl    _drive     ! boot drive# in C code, passed in DL 

        jmpi start,BOOTSEG   ! upon entry, set CS to BOOTSEG=0x07C0 

start:      

        mov   ax,cs          ! set other CPU segment registers 

        mov   ds,ax          ! we know ES,CS=0x07C0. Let DS=CS   

        mov   ss,ax          ! SS = CS ===> all point to 0x07C0 

        mov   es,ax 

        mov   sp,#SSP        ! SP = 32KB 

        mov  _drive,dx       ! save drive# from BIOS to _drive in C 

        call _main           ! call main() in C 

! Remaining .s code: SAME AS in hd-booter but use the boot drive# 

 

The iso-booter's C code and algorithms are also similar to the hd-booter. For the sake of 

brevity, we only show the parts that are unique to the iso-booter. A complete listing of the 

iso-booter code is in BOOTERS/CD/isobooter/ directory. 
 
/*****************iso-booter's bc.c file **********************/ 

#define BOOTSEG 0x07C0 

#include "iso.h"       // iso9660 file types 

#include "bio.c"       // contains I/O functions 

main() 

{ 

   (1). initialize dap and vm_gdt for BIOS calls 

   (2). find supplement Volume Descriptor to get root_dir_record 

   (3). get linux bzImage filename to boot or use default=/vmlinuz; 

   (4). load(filename); 



   (5). loadrd("initrd.gz");  

   (6). jmp_setup(); 

  }  

} 

/************* iso-booter's bootLinux.c file ***********************/ 

u32 bsector;         // getnsector() base sector   

u32 zsector, zsize;  // bzImage's begin sector# & size 

struct vmgdt {       // same as in hd-booter } 

init_vm_gdt(){       // same as in hd-booter } 

// get nsectors from bsector+rsector to dp-segment 

u16 getnsector(u16 rsector, u16 nsector); 

{ 

  dp->nsector = nsector; 

  dp->addr = (u16)0;       // load to dp->segment:0 

  dp->s1 = (u32)(bsector + (u32)rsector); // rsector = offset 

  readcd();                // same as diskr() but use boot drive# 

} 

// loadimage() : load 32 CD-sectors to high memory  

int loadimage(u16 imageStart, u32 imageSize) 

{ 

  u16 i, nsectors; 

  nsectors = imageSize/2048 + 1; 

  i = imageStart; 

  // load 32 CD sectors at a time to 0x1000; then cp2himem(); 

  while(i < nsectors){ 

     getnsector(i, 32); 

     cp2himem(32*1024); 

     gdtp->vm_addr += (u32)0x10000; 

     putc('.'); 

     i += 32; 

  } 

} 

// dirname() : convert DIR name in Unicode-2 to ascii in temp[ ] 

char temp[256]; 

char *dirname(struct iso_directory_record *dirp) 

{ int i; 

  for (i=0; i<dirp->name_len; i+=2){ 

      temp[i/2] = dirp->name[i+1]; 

  } 

  temp[dirp->name_len/2] = 0; 

  return temp; 

} 

// search DIR record for name; return pointer to name's record  

struct iso_directory_record *search(struct iso_directory_record *dirp, 

char *name) 

{ 

   char *cp, dname[256]; 

   int  i, loop, count; 

   u32  extent, size; 

   struct iso_directory_record *ddp, *parent; 

   printf("search for %s\n", name); 

   extent = *(u32 *)dirp->extent;  

   size   = *(long*)dirp->size;  

   loop = 0; 

   while(size){ 

      count = 0; 

      getSector(extent, rbuf); 



      cp = rbuf; 

      ddp = (struct iso_directory_record *)rbuf; 

      if (strcmp(name,"..")==0){  // for .., return 2nd record pointer 

          cp += ddp->length; 

          ddp = (struct iso_directory_record *)cp; 

          return ddp; 

      } 

      while (cp < rbuf + SECSIZE){ 

         if (ddp->length==0) 

            break; 

         strcpy(dname, dirname(ddp)); // assume supplementary VD only 

         if (loop==0){  // . and .. only in the first sector 

            if (count==0) strcpy(dname, "."); 

            if (count==1) strcpy(dname, ".."); 

         } 

         printf("%s  ", dname);  

         if (strcasecmp(dname, name)==0){ // ignore case 

             printf(" ==> found %s : ", name); 

             return ddp; 

         } 

         count++; 

         cp += ddp->length; 

         ddp = (struct iso_directory_record *)cp; 

      } 

      size -= SECSIZE; 

      extent++; 

      loop++; 

   } 

   return 0; 

}    

// getfile() : return pointer to filename's iso_record  

struct iso_directory_record *getfile(char *filename) 

{  int i; 

   struct iso_directory_record *dirp; 

   tokenize(filename);      // same as in hd-booter;  

   dirp = root; 

   for (i=0; i<nnames; i++){ 

      dirp = search(dirp, name[i]); 

      if (dirp == 0){ 

        printf("no such name %s\n", name[i]); 

        return 0; 

      } 

      // check DIR type 

      if (i < nnames-1){    // check DIR type but ignore symlinks 

         if ((dirp->flags & 0x02) == 0){ 

             printf("%s is not a DIR\n", name[i]); 

             return 0; 

         } 

      } 

   } 

   return dirp; 

} 

 

int load_rd(char *rdname) // load_rd() : load initrd.gz image  

{ 

    u32 rdstart,rdsize;              // initrd's start sector & size 

    // (1). set vm_addr to initrd's loading address at 32MB 



    dirp = getfile(rdname); 

    rdstart = *(u32 *)dirp->extent;  // start sector of zImage on CD  

    rdsize  = *(long  *)dirp->size;  //  size in bytes 

    // (2). load initrd image 

    dp->segment = 0x1000; 

    bsector = rdstart; 

    loadimage((u16)0,(u32)rdsize); 

    // (3). write initrd loading address and size to SETUP 

} 

 

int load(char *filename)   // load() : load Linux bzImage  

{  

   struct iso_directory_record *dirp; 

   dirp = getfile(filename); 

   // dirp now points at bzImage's RECORD  

   zsector = *(u32 *)dirp->extent;  // start sector of bzImage on CD  

   zsize   = *(long  *)dirp->size;  // size in bytes 

   /******* SAME AS in hd-booter except CD-sector size=2KB ****** 

   get number of 512-byte setup sectors in filename's BOOT sector 

   load BOOT+SETUP to 0x9000 

   set boot parameters in loaded BOOT+SETUP 

   load kernel fraction sectors in SETUP to 1MB in high memory 

   *************************************************************/ 

   // continue to load kernel 2KB CD-sectors to high memory 

   dp->segment = 0x1000; 

   loadimage((u16)setupBlks, (u32)zsize); 

   load_rd("/initrd.gz");     // assume initrd.gz filename 

   jmp_setup(); 

} 

 

Under Linux, run mk to generate a boot image file iso-booter as before. Next, run 

 
  mkisofs -o /tmp/iso-booter.iso -v -d -R -J -N -no-emul-boot \ 

          -boot-load-size 20 \  # (512-byte) sectors to load 

          -b iso-booter \       # boot image file 

          -c boot.catalog ./    # from files in current directory 

 

to generate an iso image, which can be burned to a CD disc or used as a virtual CD.  

 

3.5.3. Comparison with isolinux CDROM Booter 
 

     isolinux [Sylinux project] is a CD/DVD Linux boot-loader. It is used in almost all 

CD/DVD based Linux distributions. As an example, the bootable CD/DVD of Slackware 

Linux 13.1 distribution contains  

 

              |-- isolinux/   : isolinux.bin, isolinux.cfg, initrd.img 

         /-- |-- kernels/     : huge.s/bzImage: bootable Linux bzImage file 

              |-- slackware/ : Linux distribution packages 

 

where isolinux.bin is the (no-emulation) booter of the CD/DVD. During booting, 

isolinux.bin consults isolinux.cfg to decide which Linux kernel to load. Bootable Linux 

kernels are in the kernels/ directory. The user may choose a kernel that closely matches 

the target system hardware or use the default kernel. With a kernel file name, isolinux.bin 



loads the kernel and the initial ramdisk image, initrd.img, which is compressed root file 

system based on BusyBox. Then it executes SETUP. When the Linux kernel starts, it 

mounts initrd.img as the root device. 

 

Example 4. Replace isolinux booter with iso-booter: The iso-booter can be used to 

replace the isolinux booter in a Linux distribution. As a specific example, 

BOOTERS/CD/slackCD/ is a copy of the Slackware 13.1 boot CD but without the 

installing packages of Linux. It uses the iso-booter of this book to generate a bootable iso 

image. During booting, enter /kernels/bzImage as the kernel and /isolinux/initrd.img as 

the initial ramdisk image. Slackware’s install environment should start up.  

 

Example 5. Boot generic Linux bzImage with initrd.gz: In the BOOTERS/CD/linuxCD/ 

directory, vmlinuz is a generic Linux kernel, which must be booted with an initial 

ramdisk image. The initrd.gz file is generated by the mkinitrd command using files in the 

/boot/initrd-tree/ directory. The iso-booter can boot up a generic Linux kernel and load 

the initrd.gz for the Linux kernel to start. Figure 4.19 shows the booting screen of the iso-

booter. It loads the Linux kernel to 1MB and initrd.gz to 16MB. 

 

                     
         

                                 Figure 3.19. CDOM iso-booter Screen  

 

Example 6. Linux LiveCD: We can boot up a Linux kernel from a CD and let it run on 

the CD directly. First, create a CD containing a base Linux system. Install the iso-booter 

on the CD to boot up a generic Linux kernel with an initrd image. While running on the 

ramdisk, load the isofs driver module. Then mount the CD and switch root file system to 



the CD. Linux would run on the booting CD directly (albeit in read-only mode). This is 

the basis of what's commonly known as a Linux LiveCD. For more information, the 

reader may consult the numerous LiveCD sites on the Internet.  

 

Example 7. MTX Install CD: The iso-booter is the booter of MTXinstallCD.iso. It boots 

up a generic Linux kernel (version 2.6) and loads an initial RAM disk image, initrd.gz. 

When Linux boots up, it runs on the RAM disk image, which is used to install MTX from 

the CDROM.  

 

3.6. USB Drive Booter 
 

    USB drives are storage devices connected to the USB bus. From a user point of view, 

USB drives are similar to hard disks. A USB drive can be divided into partitions. Each 

partition can be formatted as a unique file system and installed with a different operating 

system. To make a USB drive bootable, we install a booter to the USB drive's MBR and 

configure BIOS to boot from the USB drive. On some PCs, e.g. HP and Compaq, the 

USB drive must have a bootable partition marked as active. During booting, BIOS 

emulates the booting USB drive as C: drive. The booting actions are exactly the same as 

that of booting from a hard disk. The booted up environment is also the same as if booted 

up from the first hard disk. Any booter that works for hard disk should also work for USB 

drives. Therefore, USB booting is identical to hard disk booting. However, depending on 

the booted up OS, there may be a difference. Usually, an OS that boots up from a hard 

disk can run directly on the hard disk. This may not be true if the OS is booted up from a 

USB drive. In the following, we use two specific examples to illustrate the difference. 

 

3.6.1. MTX on USB Drive 

 

MTX.bios is a MTX system which can be installed and run on either a floppy disk or a 

hard disk partition. In MTX.bios, all I/O operations are based on BIOS. When running on 

a FD, it uses BIOS INT13 to read-write floppy disk in CHS format. When running on a 

HD, it uses INT13-42 to read-write hard disk sectors in LBA. The following example 

shows how to install and run MTX.bios on a USB drive. 

 

Example 7.  /BOOTERS/USB/usbmtx demonstrates running MTX on a USB drive, 

denoted by /dev/sda. If the PC’s HD is a SATA drive, change the USB drive to /dev/sdb. 

First, run the sh script, install.usb.sh, to install MTX to a USB drive partition. 

 
     mke2fs /dev/sda3 -b 1024 8192  # assume USB drive partition 3 

     mount /dev/sda3 /mnt 

     mount –o loop MTX.bios /tmp    # mount MTX.bios   

     cp -av /tmp/* /mnt    

     umount /mnt; umount /tmp 

 

Next, install hd-booter to the USB drive by 
     dd if=hd-booter of=/dev/sda bs=16 count=27 

     dd if=hd-booter of=/dev/sda bs=16 seek=1  

Then boot from the USB drive under QEMU, as in  



          qemu –hda  /dev/sda  

When the MTX kernel starts, it can access the USB drive through BIOS INT13-42 on 

drive number 0x80. Since the environment is exactly the same as if running on a hard 

disk, MTX will run on the USB drive. 

 

3.6.2. Linux on USB Drive 
 

    The last booting example is to create a so called "Linux Live USB". A live USB refers 

to a USB drive containing a complete operating system, which can boot up and run on the 

USB drive directly. Due to its portability and convenience, Linux live USB has received 

much attention and generated a great deal of interests among Linux users in recent years. 

The numerous "Linux live USB" sites and postings on the Internet attest to its popularity. 

When it first started in the late 90's the storage capacity of USB drives was relatively 

small. The major effort of earlier work was to create "small" Linux systems that can fit 

into USB drives. As the storage capacity of USB drives increases, this is no longer a 

restriction. At the time of this writing, 32 to 64 GB USB drives are very common and 

affordable. It is now possible to install a full featured Linux system on a USB drive still 

with plenty free space for applications and data. Most Linux live USB installations seem 

to require a special setup environment, such as Linux running on a live CD. This example 

is intended to show that it is fairly easy to create a Linux live USB from a standard Linux 

distribution package. To be more specific, we shall again use Slackware Linux 13.1, 

which is based on Linux kernel version 2.6.33.4, as an example. The Slackware Linux 

distribution package consists of several CDs or a single DVD disc. The steps to create a 

Linux live USB are as follows. 

 

(1). Install Slackware 13.1 to a USB drive partition. Slackware 13.1 uses /dev/sda as the 

primary hard disk. The USB drive should be named /dev/sdb. Install Linux to a USB 

partition, e.g. /dev/sdb1, by following the installation procedures. Since our hd-booter can 

boot from both EXT3 and EXT4 partitions, the reader may choose either EXT3 or EXT4 

file system. 

 

(2). After installing Linux, the reader may install LILO as the Linux booter. However, 

when the Linux kernel boots up, it will fail to run because it cannot mount the USB 

partition (8,17) as root device. As in CDROM booting, the missing link is again an initial 

RAM disk image. The Linux kernel must run on a ramdisk first in order for it to install 

the needed USB drivers and activate the USB drive. So the problem is how to create such 

an initrd.gz file. 

 

(3). While still in the installation environment, the USB partition is mounted on /mnt, 

which already has all the Linux commands and driver modules. Enter the following 

commands or run the commands as a sh script. 
 
   cd /mnt;   chroot /mnt                    # change root to /mnt 

   # create initrd-tree with USB drivers  

   mkinitrd -c -k 2.6.33.4 -f ext4 -r /dev/sdb1 –m crc16: \  

            jbd2:mbcache:ext4:usb-storage:ehci-hcd:uhci-hcd:ohci-hcd    

   echo 10 > /boot/initrd-tree/wait-for-root # write to wait-for-root  

   mkinitrd                                  # generate initrd.gz again 



   # if install lilo as booter 

   echo "initrd = /boot/initrd.gz" >> /etc/lilo.conf # append lilo.conf 

   lilo                                      # install lilo again 

   # install hd-booter to USB drive 

   # dd if=hd-booter of=/dev/sda bs=16 count=27 

   # dd if=hd-booter of=/dev/sda bs=512 seek=1 

 

    The above commands create a /boot/initrd.gz with USB driver modules in /boot of the 

USB partition. In the directory /boot/initrd-tree/ created by mkinitrd, the default value of 

wait-for-root is 1 second, which is too short for USB drives. If the value is too small, 

initrc may be unable to mount the USB drive, leaving the Linux kernel stuck on the initial 

ramdisk. Change it to a larger value, e.g. 10, to let the initrc process wait for 10 seconds 

before trying to mount the USB partition. After booting up Linux, the reader may try 

different delay values to suit the USB drive. Instead of LILO, the reader may also install 

the hd-booter to the USB drive. Mount a CDROM or another USB drive containing the 

above sh script and the hd-booter. Run the above sh script and install the hd-booter by 

un-commenting the last two lines. Then boot from the USB drive. Linux should come up 

and run on the USB drive. 
 

3.7. Listing of Booter Programs 
 

All the booters developed in this chapter have been tested on both real PCs and many 

versions of virtual machines. The booter programs are in the BOOTERS directory on the 

MTX install CD. Figure 3.20 shows a complete list of the booter programs. 

  

 

                                        Figure 3.20.  List of Booter Programs 

 

 

                                         Problems 
1. FD booting: 

(1). Assume that a one-segment program is running in the segment 0x1000.  

     What must be the CPU's segment registers? 

(2). When calling BIOS to load FD sectors into memory, how to specify the memory 

address?  

(3). In getblk(u16 blk, char buf[ ]), the CHS parameters are computed as 
    (C,H,S)=((2*blk)/36, ((2*blk)%36)/18, ((2*blk)%36)%18); 



The conversion formula can be simplified, e.g. C = blk/18, etc. Try to simplify the CHS 

expression. Write a C program to verify that your simplified expressions are correct, i.e. 

they generates the same (C,H,S) values as the original algorithm. 

 

2. Assume: The loading segment of MTX is 0x1000. During booting, BIOS loads the first 

512 bytes of a 1KB MTX booter to the segment 0x07C0. The booter should run right 

where it is first loaded, i.e. in the segment 0x07C0 without relocation. 

   (1). What must the booter do first? 

   (2). How to set the CPU's segment registers? 

   (3). What's the maximum run-time image size of the booter? 

 

3. On the MTX install CD, OneFDlinux.img is an EXT2 file system containing a 

bootable Linux zImage in the /boot directory.  

(1). Using it as a virtual FD, verify that Linux can boot up and run on the same FD.  

(2). Replace the booter in Block 0 with a suitable Linux booter developed in this chapter. 

 

4. Prove that when loading FD sectors into memory, we can load at most 4 consecutive 

sectors without crossing either cylinder or 64KB boundaries.  

 

5. Modify the FD booter that uses the cross-country algorithm to load by tracks.  

 

6. Ramdisk Programming: Assume: A MTX boot FD contains  
        |booter|MTX kernel image|ramdiskImage| 

 where ramdiskImage in the last 128 blocks is a root file system for the MTX kernel.  

When the MTX kernel starts, it loads the ramdiskImage to the segment 0x8000. Then the 

MTX kernel uses the memory area between 0x8000 to 0xA000 as a ramdisk and runs on 

the ramdisk.  Wrtie C code for the functions  

                getblk(u16 blk, char buf[1024]) / putblk(u16 blk, char buf[1024]) 

which read/write a 1KB block from/to the ramdisk. HINT: use get_word()/put_word(). 

 

7. Under Linux, write a C program to print all the partitions of a hard disk. 

  

8. Write a C program, showblock, which prints all the disk block numbers of a file in an 

EXT4 file system. The program should run as follows. 

           showblock   DEVICE    PATHNAME 

   e.g.  showblock   /dev/sda2    /a/b/c/d       # /dev/sda2 for SATA hard disk partition 2 

 

9. Assume that /boot/osimage is a bootable OS image. Write a C program, which finds 

the disk blocks of the OS image and store them in a /osimage.blocks file. Then write a 

booter, which simply loads the disk blocks in the /osimage.blocks file. Such a booter may 

be called an offline booter. The Linux boot-loader, LILO, uses this scheme. Discuss the 

advantages and disadvantages of off-line booters. 

    

10. When booting a Linux bzImage, if the Linux kernel does not begin at a block 

boundary, loading the Linux kernel is rather complex. Given a Linux bzImage, devise a 

scheme which makes the Linux kernel always begin at a block boundary. 

 



12. Modify the hd-booter to accept input parameters. For example, when the booter starts, 

the user may enter an input line  

        kernel=/boot/newvmlinuz initrd=/boot/initrd.gz root=/dev/sda7 

where each parameter is of the form KEYWORD=value. 

 

13. Modify the hd-booter to allow symbolic-link filenames for initrd.gz in the hd-booter. 

 

14. The iso-booter does not handle symbolic-link filenames. Modify the C code to allow 

symbolic links. 

 

15. Use the path table of an iso9660 file system to find the parent directory record. 

 

16. USB booting: In some USB drives, a track may have less than 20 sectors. The hd-

booter size is just over 10KB. How to install the hd-booter to such USB drives? 

Use the hd-booter and a Linux distribution package, e.g. Slackware 14.0, to create a 

Linux Live USB.  

 

17. The ultimate version of MTX supports SMP in 32-bit protected mode, which is 

developed in Chapter 15 of this book. The bootable image of a SMP_MTX is a file 

consisting of the following pieces: 
   Sector  0    1     2      3  | 4  ......  

         --------------------------------------------------- 

         |BOOT|SETUP|  APentry  | MTX kernel               |  

         --------------------------------------------------- 

where APentry is the startup code of non-boot processors in a SMP system. During 

booting, the booter loads BOOT+SETUP to 0x90000, APentry to 0x91000, and the MTX 

kernel to 0x10000. After loading completes, it sends the CPU to execute SETUP at 

0x90200. Modify the MTX booter for booting SMP_MTX images. 

   

18. Write a loader for loading a.out files into memory for execution. When loading an 

a.out file, it is more convenient to load the file by blocks. Assume that a one-segment 

a.out file (with header) is loaded at the segment address 0x2000, and it should run in that 

segment. 

(1). How to set up the CPU's segment registers?   

(2). Show how to eliminate the 32-byte header after loading a.out to a segment. 
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