
 Chapter 3. Booting Operating Systems

Abstract: Chapter 3 provides a complete coverage on operating systems booting. It

explains the booting principle and the booting sequence of various kinds of bootable

devices. These include booting from floppy disk, hard disk, CDROM and USB

drives. Instead of writing a customized booter to boot up only MTX, it shows how to

develop booter programs to boot up real operating systems, such as Linux, from a

variety of bootable devices. In particular, it shows how to boot up generic Linux

bzImage kernels with initial ramdisk support. It is shown that the hard disk and

CDROM booters developed in this book are comparable to GRUB and isolinux in

performance. In addition, it demonstrates the booter programs by sample systems.

3.1. Booting

 Booting, which is short for bootstrap, refers to the process of loading an operating

system image into computer memory and starting up the operating system. As such, it is

the first step to run an operating system. Despite its importance and widespread interests

among computer users, the subject of booting is rarely discussed in operating system

books. Information on booting are usually scattered and, in most cases, incomplete. A

systematic treatment of the booting process has been lacking. The purpose of this chapter

is to try to fill this void. In this chapter, we shall discuss the booting principle and show

how to write booter programs to boot up real operating systems. As one might expect, the

booting process is highly machine dependent. To be more specific, we shall only consider

the booting process of Intel x86 based PCs. Every PC has a BIOS (Basic Input Output

System) program stored in ROM (Read Only Memory). After power on or following a

reset, the PC’s CPU starts to execute BIOS. First, BIOS performs POST (Power-on Self

Test) to check the system hardware for proper operation. Then it searches for a device to

boot. Bootable devices are maintained in a programmable CMOS memory. The usual

booting order is floppy disk, CDROM, hard disk, etc. The booting order can be changed

through BIOS. If BIOS finds a bootable device, it tries to boot from that device.

Otherwise, it displays a "no bootable device found" message and waits for user

intervention.

3.1.1. Bootable Devices

 A bootable device is a storage device supported by BIOS for booting. Currently,

bootable devices include floppy disk, hard disk, CD/DVD disc and USB drive. As storage

technology evolves, new bootable devices will undoubtedly be added to the list, but the

principle of booting should remain the same. A bootable device contains a booter and a

bootable system image. During booting, BIOS loads the first 512 bytes of the booter to

the memory location (segment, offset)=(0x0000, 0x7C00)=0x07C00, and jumps to there

to execute the booter. After that, it is entirely up to the booter to do the rest. The reason

why BIOS always loads the booter to 0x07C00 is historical. In the early days, a PC is

only guaranteed to have 64KB of RAM memory. The memory below 0x07C00 is

reserved for interrupt vectors, BIOS and BASIC, etc. The first OS usable memory begins

at 0x08000. So the booter is loaded to 0x07C00, which is 1KB below 0x08000. When

execution starts, the actions of a booter are typically as follows.

 . Load the rest of the booter into memory and execute the complete booter.

 . Find and load the operating system image into memory.

 . Send CPU to execute the startup code of the OS kernel, which starts up the OS.

Details of these steps will be explained later when we develop booter programs. In the

following, we first describe the booting process of various bootable devices.

3.2. Booting From Various Devices

3.2.1. Floppy Disk Booting

As a storage device, floppy disk (FD) has almost become obsolete. Currently, most

PCs, especially laptop computers, no longer support floppy drives. Despite this, it is still

worth discussing FD booting for several reasons. First, booting requires writing a booter

to the beginning part of a device, such as sector 0 of a hard disk, which is known as the

Master Boot Record (MBR). However, writing to a hard disk is very risky. A careless

mistake may render the hard disk non-bootable, or even worse, destroy the disk's partition

table with disastrous consequences. In contrast, writing to a floppy disk involves almost

no risk at all. It provides a simple and safe tool for learning the booting process and

testing new booter programs. This is especially beneficial to beginners. Second, floppy

drives are still supported in almost all PC emulators, such as QEMU, VMware and

VirtualBox, etc. These PC emulators provide a virtual machine environment for

developing and testing system software. Virtual machines are more convenient to use

since booting a virtual machine does not need to turn off/on a real computer and the

booting process is also faster. Third, for various reasons a computer may become non-

bootable. Often the problem is not due to hardware failure but corrupted or missing

system files. In these situations it is very useful to have an alternative way to boot up the

machine to repair or rescue the system. Depending on the disk contents, FD booting can

be classified into several cases, as shown in Figure 3.1. In the following, we shall

describe the setup and booting sequence of each case.

 Figure 3.1. Bootable FDs by Contents

 (1). FD contains a booter followed by a bootable OS image: In this case, a FD is

dedicated to booting. It contains a booter in sector 0, followed by a bootable OS image in

consecutive sectors, as shown in Figure 3.2.

 Figure 3.2 . A simple Bootable FD layout

The size of the OS image, e.g. number of sectors, is either in the beginning part of the OS

image or patched in the booter itself, so that the booter can determine how many sectors

of the OS image to load. The loading address is also known, usually by default. In this

case the booter's task is very simple. All it needs to do is to load the OS image sectors to

the specified address and then send the CPU to execute the loaded OS image. Such a

booter can be very small and fit easily in the MBR sector. Examples of this kind of setup

include MTX, MINIX and bootable FD of small Linux zImage kernel.

(2). FD with a bootable image and a RAM disk Image: Although it is very easy to boot

up an OS kernel from a FD, to make the OS kernel runnable is another matter. In order to

run, most OS kernels require a root file system, which is a basic file system containing

enough special files, commands and shared libraries, etc. that are needed by the OS

kernel. Without a root file system, an OS kernel simply cannot run. There are many ways

to make a root file system available. The simplest way is to assume that a root file system

already exists on a separate device. During booting the OS kernel can be instructed to

mount the appropriate device as the root file system. As an example, early distributions of

Linux used a pair of boot-root floppy disks. The boot disk is used to boot up the Linux

kernel, which is compiled with RAM disk support. The root disk is a compressed RAM

disk image of a root file system. When the Linux kernel starts up, it prompts and waits

for a root disk to be inserted. When the root disk is ready, the kernel loads the root disk

contents to a ram disk area in memory, un-compresses the RAM disk image and mounts

the ram disk as the root file system. The same boot-root disk pair was used later as a

Linux rescue system.

 If the OS and RAM disk images are small, it is possible to put both images on the same

floppy disk, resulting in a single-FD system. Figure 3.3 shows the layout of such a disk. It

contains a booter and a Linux zImage followed by a compressed RAM disk image. The

Linux kernel's ramdisk parameter can be set in such a way that when the Linux kernel

starts, it does not prompt for a separate root disk but loads the RAM disk image directly

from the boot disk.

 Figure 3.3. Bootable FD with RAM disk Image

Instead of a RAM disk image, a FD may contain a complete file system in front, followed

by an OS image in the latter part of the disk. Figure 3.4 shows the layout of a single-FD

real mode MTX system.

 Figure 3.4. FD with EXT2 file system and MTX kernel

The real mode MTX image size is at most 128 KB. We can format a FD as an EXT2 file

system with 1024-128=896 blocks, populate it with files needed by the MTX kernel and

place the MTX kernel in the last 128 blocks of the disk. Block 0, which is not used by the

file system, contains a MTX booter. During booting, the booter loads the MTX kernel

from the last 128 disk blocks and transfers control to the MTX kernel. When the MTX

kernel starts, it mounts the FD as the root file system. For small Linux zImage kernels, a

single-FD Linux system is also possible.

(3). FD is a file system with bootable image files: In this case, the FD is a complete file

system containing a bootable OS image as a regular file. To simplify booting, the OS

image can be placed directly under the root directory, allowing the booter to find it easily.

It may also be placed anywhere in the file system, e.g. in a /boot directory. In that case,

the booter size would be larger since it must traverse the file system to find the OS image.

During booting, the booter first finds the OS image file. Then it loads the image's disk

blocks into memory and sends the CPU to execute the loaded OS image. When the OS

kernel starts, it mounts the FD as the root file system and runs on the same FD. This kind

of setup is very common. A well-known example is DOS, which can boot up and run

from the same FD. Here, we describe two specific systems based on MTX and Linux.

A FD based MTX system is an EXT2 file system. It contains all the files needed by the

MTX kernel. Bootable MTX kernels are files in the /boot directory. Block0 of the disk

contains a MTX booter. During booting, the booter prompts for a MTX kernel to boot.

The default is mtx but it can be any file name in the /boot directory. With a bootable file

name, the booter finds the image file and loads its disk blocks to the segment 0x1000.

When loading completes, it transfers control to the kernel image. When the MTX kernel

starts up, it mounts the FD as the root file system and runs on the same FD. Similarly, we

can create a single-FD Linux system as follows.

 . Format a FD as EXT2 file system (mke2fs on /dev/fd0).

 . Mount the FD and create directories (bin,boot,dev,etc,lib,sbin,usr).

 . Populate the file system with files needed by the Linux kernel.

 . Place a Linux zImage with rootdev=(2,0) in the /boot directory.

 . Install a linux booter to block0 of the FD.

After booting up, the Linux kernel can mount the FD as the root file system and run on

the same FD. Although the principle is simple, the challenge is how to make a complete

Linux file system small enough to fit in a single FD. This is why earlier Linux had to use

a separate root disk. The situation changed when a small Linux file system, called the

BusyBox [BusyBox], became available. A small BusyBox is only about 400 KB, yet it

supports all the basic commands of Unix, including a sh and a text editor that emulates

both vi and emacs, an incredible feat indeed. As an example, Figure 3.13 shows the

screen of booting up and running a single-FD Linux system. In addition to supporting

small stand-alone Linux systems, BusyBox has become the core of almost all Linux

distribution packages for installing the Linux system.

(4). FD with a booter for HD booting: This is a FD based booter for booting from hard

disk partitions. During booting, the booter is loaded from a FD. Once execution starts, all

the actions are for booting system images from hard disk partitions. Since the hard disk is

accessed in read-only mode, this avoids any chances of corrupting the hard disk. In

addition, it also provides an alternative way to boot up a PC when the normal booter

becomes inoperative.

3.2.2. Hard Disk Booting

The discussion here is based on IDE hard disks but the same principle also applies to

SCSI and SATA hard disks.

(1). Hard Disk Partitions: A hard disk is usually divided into several partitions. Each

partition can be formatted as a unique file system and contain a different operating

system. The partitions are defined by a partition table in the first (MBR) sector of the disk.

In the MBR the partition table begins at the byte offset 0x1BE (446). It has four16-byte

entries for four primary partitions. If needed, one of the partitions can be EXTEND type.

The disk space of an EXTEND partition can be further divided into more partitions. Each

partition is assigned a unique number for identification. Details of the partition table will

be shown later. For the time being, it suffices to say that from the partition table, we can

find the start sector and size of each partition. Similar to the MBR, the first sector of each

partition is also a (local) MBR, which may contain a booter for booting an OS image in

that partition. Figure 3.5 shows the layout of a hard disk with partitions.

 Figure 3.5. Hard Disk Partitions

(2). Hard Disk Booting Sequence: When booting from a hard disk BIOS loads the MBR

booter to the memory location (0x0000, 0x7C00) and executes it as usual. What happens

next depends on the role of the MBR booter. In the simplest case, the MBR booter may

ask for a partition to boot. Then it loads the local MBR of the partition to (0x0000,

0x7C00) and executes the local MBR booter. It is then up to the local MBR booter to

finish the booting task. Such a MBR booter is commonly known as a chain-boot-loader.

It might as well be called a pass-the-buck booter since all it does is to usher in the next

booter and says "you do it". Such a chain boot-loader can be very small and fit entirely in

the MBR. On the other hand, a more sophisticated HD booter should perform some of the

booting tasks by itself. For example, the Linux boot loader LILO can be installed in the

MBR for booting Linux as well as DOS and Windows. Similarly, GRUB [GNU GRUB

Project] and the hd-booter developed in this book can also be installed in the MBR to

boot up different operating systems. In general, a MBR booter cannot perform the entire

booting task by itself due to its small size and limited capability. Instead, the MBR booter

is only the beginning part of a multi-stage booter. In a multi-stage booter, BIOS loads

stage1 and executes it first. Then stage1 loads and executes stage2, which loads and

executes stage3, etc. Naturally, each succeeding stage can be much larger and more

capable than the preceding stage. The number of stages is entirely up to the designer's

choice. For example, GRUB version 1 and earlier had a stage1 booter in MBR, a stage1.5

and also a stage2 booter. In the latest GRUB_2, stage1.5 is eliminated, leaving only two

stages. In the hd-booter of this book, the MBR booter is also part of the second stage

booter. So strictly speaking it has only one stage.

3.2.3 CD/DVD_ROM Booting

 Initially, CDROMs are used mainly for data storage, with proprietary booting methods

provided by different computer vendors. CDROM booting standard was added in 1995. It

is known as the El-Torito bootable CD specification [Stevens and Merkin, 1995]. Legend

has it that the name was derived from a Mexican restaurant in California where the two

engineers met and drafted the protocol.

(1). The El-Torito CDROM boot protocol: The El-Torito protocol supports three different

ways to set up a CDROM for booting, as shown in Figure 3.6.

 Figure 3.6. CD/DVD Boot Options

(2). Emulation Booting: In emulation booting, the boot image must be either a floppy

disk image or a (single-partition) hard disk image. During booting, BIOS loads the first

512 bytes of a booter from the boot image to (0x0000, 0x07C0) and execute the booter as

usual. In addition, BIOS also emulates the CD/DVD drive as either a FD or HD. If the

booting image size is 1.44 or 2.88 MB, it emulates the CD/DVD as the first floppy drive.

Otherwise, it emulates the CD/DVD as the first hard drive. Once boot up, the boot image

on the CD/DVD can be accessed as the emulated drive through BIOS. The environment

is identical to that of booting up from the emulated drive. For example, if the emulated

boot image is a FD, after booting up the bootable FD image can be accessed as A: drive,

while the original A: drive is demoted to B: drive. Similarly, if the boot image is a hard

disk image, after booting up the image becomes C: drive and the original C: drive

becomes D: drives, etc. Although the boot image is accessible, it is important to note that

nothing else on the CD/DVD disc is visible at this moment. This implies that, even if the

CD/DVD contains a file system, the files are totally invisible after booting up, which may

be somewhat surprising. Naturally, they will become accessible if the booted up kernel

has a CD/DVD driver to read the CD/DVD contents.

(3). No-emulation Booting: In no-emulation booting, the boot image can be any (real-

mode) binary executable code. For real-mode OS images, a separate booter is not

necessary because the entire OS image can be booted into memory directly. For other OS

images with complex loading requirements, e.g. Linux, a separate OS booter is needed.

During booting, the booter itself can be loaded directly, but there is a problem. When the

booter tries to load the OS image, it needs a device number of the CD/DVD drive to

make BIOS calls. The question is: which device number? The reader may think it would

be the usual device number of the CD/DVD drive, e.g. 0x81 for the first IDE slave or

0x82 for the second IDE master, etc. But it may be none of the above. The El-Torito

protocol only states that BIOS shall emulate the CD/DVD drive by an arbitrary device

number. Different BIOS may come up with different drive numbers. Fortunately, when

BIOS invokes a booter, it also passes the emulated drive number in the CPU’s DL

register. The booter must catch the drive number and use it to make BIOS calls. Similar

to emulation booting, while it is easy to boot up an OS image from CD/DVD, to access

the contents on the CD/DVD is another matter. In order to access the contents, a booted

up OS must have drivers to interpret the iso9660 file system on the CD/DVD.

3.2.4. USB Drive Booting

 As a storage device, USB drives are similar to hard disks. Like a hard disk, a USB

drive can be divided into partitions. In order to be bootable, some BIOS even require a

USB drive to have an active partition. During booting, BIOS emulates the USB drive as

the usual C: drive (0x80). The environment is the same as that of booting from the first

hard disk. Therefore, USB booting is identical to hard disk booting.

 As an example, it is very easy to install Linux to a USB partition, e.g. partition 2 of a

USB drive, and then install LILO or GRUB to the USB's MBR for booting Linux from

the USB partition. The procedure is exactly the same as that of installing Linux to a hard

disk partition. If the PC's BIOS supports USB booting, Linux kernel will boot up from

the USB partition. However, after boot up, the Linux kernel will fail to run because it can

not mount the USB partition as root device, even if all the USB drivers are compiled into

the Linux kernel. This is because, when the Linux kernel starts, it only activates drivers

for IDE and SCSI devices but not for USB drives. It is certainly possible to modify

Linux's startup code to support USB drives, but doing so is still a per-device solution.

Instead, Linux uses a general approach to deal with this problem by using an initial RAM

disk image.

3.2.5. Boot Linux with Initial Ramdisk Image

 Booting Linux kernel with an initial RAM disk image has become a standard way to

boot up a Linux system. The advantage of using an initrd image is that it allows a single

generic Linux kernel to be used on many different Linux configurations. An initrd is a

RAM disk image which serves as a temporary root file system when the Linux kernel

first starts up. While running on the RAM disk, the Linux kernel executes a sh script,

initrc, which directs the kernel to load the driver modules of the real root device, such as

a USB drive. When the real root device is activated and ready, the kernel discards the

RAM disk and mounts the real root device as the root file system. Details of how to set

up and load initrd image will be shown later.

3.2.6. Network Booting

Network booting has been in use for a long time. The basic requirement is to establish

a network connection to a server machine in a network, such as a server running the

BOOTP protocol in a TCP/IP [Comer, 1995] network. Once the connection is made,

booting code or the entire kernel code can be downloaded from the server to the local

machine. After that, the booting sequence is basically the same as before. Networking is

outside the scope of this book. Therefore, we shall not discuss network booting.

3.3 Develop Booter Programs

 In this section, we shall show how to write booter programs to boot up real operating

systems. Although this book is primarily about MTX, we shall also discuss Linux booting,

for a number of reasons. First, Linux is a popular OS, which has a very large user base,

especially among Computer Science students. A Linux distribution usually comes with a

default booter, which is either LILO or GRUB. After installing Linux, it would boot up

nicely. To most users the booting process remains somewhat a mystery. Many students

often wish to know more about the booting process. Second, Linux is a very powerful

real OS, which runs on PCs with a wide range of hardware configurations. As a result,

the booting process of Linux is also fairly complex and demanding. Our purpose is to

show that, if we can write a booter to boot up Linux, we should be able to write a booter

to boot up any operating system. In order to show that the booters actually work, we shall

demonstrate them by sample systems. All the booter programs developed in this chapter

are in the MTX.src/BOOTERS directory on the MTX install CD. A detailed listing of the

booter programs is at the end of this chapter.

3.3.1 Requirements of Booter Programs

 Before developing booter programs, we first point out the unique requirements of

booter programs.

(1). A booter needs assembly code because it must manipulate CPU registers and make

BIOS calls. Many booters are written entirely in assembly code, which makes them hard

to understand. In contrast, we shall use assembly code only if absolutely necessary.

Otherwise, we shall implement all the actual work in the high-level language C.

(2). When a PC starts, it is in the 16-bit real mode, in which the CPU can only execute

16-bit code and access the lowest 1 MB memory. To create a booter, we must use a

compiler-linker that generates 16-bit code. For example, we can not use GCC because the

GCC compiler generates 32 or 64-bit code, which can not be used during booting. The

software chosen is the BCC package under Linux, which generates 16-bit code.

(3). By default, the binary executable generated by BCC uses a single-segment memory

model, in which the code, data and stack segments are all the same. Such a program can

be loaded to, and executed from, any available segment in memory. A segment is a

memory area that begins at a 16-byte boundary. During execution, the CPU's CS, DS and

SS registers must all point to the same segment of the program.

(4). Booters differs from ordinary programs in many aspects. Perhaps the most notable

difference is their size. A booter's size (code plus static data) is extremely limited, e.g.

512 or 1024 bytes, in order to fit in one or two disk sectors. Multi-stage booters can be

larger but it is always desirable to keep the booter size small. The second difference is

that, when running an ordinary program an operating system will load the entire program

into memory and set up the program's execution environment before execution starts. An

ordinary program does not have to worry about these things. In contrast, when a booter

starts, it only has the first 512 bytes loaded at 0x07C00. If the booter is larger than 512

bytes, which is usually the case, it must load the missing parts in by itself. If the booter's

initial memory area is needed by the OS, it must be moved to a different location in order

not to be clobbered by the incoming OS image. In addition, a booter must manage its own

execution environment, e.g. set up CPU segment registers and establish a stack.

(5). A booter cannot use the standard library I/O functions, such as gets() and printf(), etc.

These functions depend on operating system support, but there is no operating system yet

during booting. The only available support is BIOS. If needed, a booter must implement

its own I/O functions by calling only BIOS.

(6). When developing an ordinary program we may use a variety of tools, such as gdb,

for debugging. In contrast, there is almost no tool to debug a booter. If something goes

wrong, the machine simply stops with little or no clue as to where and why the error

occurred. This makes writing booter programs somewhat harder. Despite these, it is not

difficult to write booter programs if we follow good programming practice.

3.3.2. Online and Offline Booters

 There are two kinds of booters; online and offline. In an offline booter, the booter is

told which OS image (file) to boot. While running under an operating system, an offline

booter first finds the OS image and builds a small database for the booter to use. The

simplest database may contain the disk blocks or ranges of disk blocks of the OS image.

During booting, an offline booter simply uses the pre-built database to load the OS image.

For example, the Linux boot-loader, LILO, is an offline booter. It uses a lilo.conf file to

build a map file in the /boot directory, and then installs the LILO booter to the MBR or

the local MBR of a hard disk partition. During booting, it uses the map file in the /boot

directory to load the Linux image. The disadvantage of offline booters is that the user

must install the booter again whenever the OS image is moved or changed. In contrast, an

online booter, e.g. GRUB, can find and load an OS image file directly. Since online

booters are more general and flexible, we shall only consider online booters.

3.3.3. Boot MTX from FD sectors.

We begin with a simple booter for booting MTX from a FD disk. The FD disk layout is

shown in Figure 3.7.

 Figure 3.7. MTX Boot Disk layout

It contains a booter in Sector 0, followed by a MTX kernel image in consecutive sectors.

In the MTX kernel image, which uses the separate I&D memory model, the first three (2-

byte) words are reserved. Word 0 is a jump instruction, word 1 is the code section size in

16-byte clicks and word 2 is the data section size in bytes. During booting, the booter

may extract these values to determine the number of sectors of the MTX kernel to load.

The loading segment address is 0x1000. The booter consists of two files, a bs.s file in

BCC assembly and a bc.c file in C. Under Linux, use BCC to generate a binary

executable without header and dump it to the beginning of a floppy disk, as in

 as86 -o bs.o bs.s # assemble bs.s into bs.o

 bcc -c -ansi bc.c # compile bc.c into bc.o

 # link bs.o and bc.o into a binary executable without header

 ld86 -d -o booter bs.o bc.o /usr/lib/bcc/libc.a

 # dump booter to sector 0 of a FD

 dd if=booter of=/dev/fd0 bs=512 count=1 conv=notrunc

where the special file name, /dev/fd0, is the first floppy drive. If the target is not a real

device but an image file, simply replace /dev/fd0 with the image file name. In that case,

the parameter conv=notrunc is necessary in order to prevent dd from truncating the image

file. Instead of entering individual commands, the building process can be automated by

using a Makefile or a sh script. For simple compile-link tasks, a sh script is adequate and

actually more convenient. For example, we may re-write the above commands as a sh

script file, mk, which takes a filename as parameter.

 # usage: mk filename

 as86 -o bs.o bs.s # bs.s file does not change

 bcc -c -ansi $1.c

 ld86 -d -o $1 bs.o $1.o /usr/lib/bcc/libc.a

 dd if=$1 of=IMAGE bs=512 count=1 conv=notrunc

In the following, we shall assume and use such a sh script. First, we show the booter's

assembly code.

!========================= bs.s file =============================

.globl _main,_prints,_NSEC ! IMPORT from C

.globl _getc,_putc,_readfd,_setes,_inces, _error ! EXPORT to C

 BOOTSEG = 0x9800 ! booter segment

 OSSEG = 0x1000 ! MTX kernel segment

 SSP = 32*1024 ! booter stack size=32KB

 BSECTORS = 2 ! number of sectors to load initially

! Boot SECTOR loaded at (0000:7C00). reload booter to segment 0x9800

start:

 mov ax, #BOOTSEG ! set ES to 0x9800

 mov es, ax

! call BIOS INT13 to load BSECTORS to (segment,offset)=(0x9800,0)

 xor dx, dx ! dh=head=0, dl=drive=0

 xor cx, cx ! ch=cyl=0, cl=sector=0

 incb cl ! sector=1 (BIOS counts sector from 1)

 xor bx, bx ! (ES,BX)= real address = (0x9800,0)

 movb ah, #2 ! ah=READ

 movb al, #BSECTORS ! al=number of sectors to load

 int 0x13 ! call BIOS disk I/O function

! far jump to (0x9800, next) to continue execution there

 jmpi next, BOOTSEG ! CS=BOOTSEG, IP=next

next:

 mov ax, cs ! Set CPU segment registers to 0x9800

 mov ds, ax ! we know ES=CS=0x9800. Let DS=CS

 mov ss, ax ! let SS = CS

 mov sp, #SSP ! SP = SS + 32 KB

 call _main ! call main() in C

 jmpi 0, OSSEG ! jump to execute OS kernel at (OSSEG,0)

!===================== I/O functions ===========================

_getc: ! char getc(): return an input char

 xorb ah, ah ! clear ah

 int 0x16 ! call BIOS to get a char in AX

 ret

_putc: ! putc(char c): print a char

 push bp

 mov bp, sp

 movb al, 4[bp] ! aL = char

 movb ah, #14 ! aH = 14

 int 0x10 ! call BIOS to display the char

 pop bp

 ret

_readfd: ! readfd(cyl,head,sector): load _NSEC sectors to (ES,0)

 push bp

 mov bp, sp ! bp = stack frame pointer

 movb dl, #0x00 ! drive=0 = FD0

 movb dh, 6[bp] ! head

 movb cl, 8[bp] ! sector

 incb cl ! inc sector by 1 to suit BIOS

 movb ch, 4[bp] ! cyl

 xor bx, bx ! BX=0

 movb ah, #0x02 ! READ

 movb al, _NSEC ! read _NSEC sectors to (ES,BX)

 int 0x13 ! call BIOS to read disk sectors

 jb _error ! error if CarryBit is set

 pop bp

 ret

_setes: ! setes(segment): set ES to a segment

 push bp

 mov bp, sp

 mov ax, 4[bp]

 mov es, ax

 pop bp

 ret

_inces: ! inces(): increment ES by _NSEC sectors (in 16-byte clicks)

 mov bx, _NSEC ! get _NSEC in BX

 shl bx, #5 ! multiply by 2**5 = 32

 mov ax, es ! current ES

 add ax, bx ! add (_NSEC*0x20)

 mov es, ax ! update ES

 ret

_error: ! error() and reboot

 push #msg

 call _prints

 int 0x19 ! reboot

msg: .asciz "Error"

 In the assembly code, start: is the entry point of the booter program. During booting,

BIOS loads sector 0 of the boot disk to (0x0000, 0x7C00) and jumps to there to execute

the booter. We assume that the booter must be relocated to a different memory area.

Instead of moving the booter, the code calls BIOS INT13 to load the first 2 sectors of the

boot disk to the segment 0x9800. The FD drive hardware can load a complete track of 18

sectors at a time. The reason of loading 2 (or more) sectors will become clear shortly.

After loading the booter to the new segment, it does a far jump, jmpi next, 0x9800, which

sets CPU's (CS, IP) = (0x9800, next), causing the CPU to continue execution from the

offset next in the segment 0x9800. The choice of 0x9800 is based on a simple principle:

the booter should be relocated to a high memory area with enough space to run, leaving

as much space as possible in the low memory area for loading the OS image. The

segment 0x9800 is 32 KB below the ROM area, which begins at the segment 0xA000.

This gives the booter a 32 KB address space, which is big enough for a fairly powerful

booter. When execution continues, both ES and CS already point to 0x9800. The

assembly code sets DS and SS to 0x9800 also in order to conform to the one-segment

memory model of the program. Then it sets the stack pointer to 32 KB above SS. Figure

3.8 shows the run-time memory image of the booter.

 Figure 3.8. Run-time image of booter

It is noted that, in some PCs, the RAM area above 0x9F000 may be reserved by BIOS for

special usage. On these machines the stack pointer can be set to a lower address, e.g. 16

KB from SS, as long as the booter still has enough bss and stack space to run. With a

stack, the program can start to make calls. It calls main() in C, which implements the

actual work of the booter. When main() returns, it sends the CPU to execute the loaded

MTX image at (0x1000, 0).

The remaining assembly code contains functions for I/O and loading disk sectors. The

functions getc() and putc(c) are simple; getc() returns an input char from the keyboard

and putc(c) displays a char to the screen. The functions readfd(), setes() and inces()

deserve more explanations. In order to load an OS image, a booter must be able to load

disk sectors into memory. BIOS supports disk I/O functions via INT13, which takes

parameters in CPU registers:

 DH=head(0-1), DL=drive(0 for FD drive 0),

 CH=cyl (0-79), CL=sector (1-18)

 AH=2(READ), AL=number of sectors to read

 Memory address: (segment, offset)=(ES, BX)

 return status : carry bit=0 means no error, 1 means error.

The function readfd(cyl, head, sector) calls BIOS INT13 to load NSEC sectors into

memory, where NSEC is a global imported from C code. The zero-counted parameters,

(cyl, head, sector), are computed in C code. Since BIOS counts sectors from 1, the sector

value is incremented by 1 to suit BIOS. When loading disk sectors BIOS uses (ES,BX) as

the real memory address. Since BX=0, the loading address is (ES,0). Thus, ES must be

set, by the setes(segment) function, to a desired loading segment before calling readfd().

The function code loads the parameters into CPU registers and issues INT 0x13. After

loading NSEC sectors, it uses inces() to increment ES by NSEC sectors (in 16-byte clicks)

to load the next NSEC sectors, etc. The error() function is used to trap any error during

booting. It prints an error message, followed by reboot. The use of NSEC as an global

rather than as a parameter to readfd() serves two purposes. First, it illustrates the cross

reference of globals between assembly and C code. Second, if a value does not change

often, it should not be passed as a parameter because doing so would increase the code

size. Since the booter size is limited to 512 bytes, saving even a few bytes could make a

difference between success and failure. Next, we show the booter's C code.

/****************** MTX booter's bc.c file ***********************

 FD contains this booter in Sector 0, MTX kernel begins in Sector 1

 In the MTX kernel: word#1=tsize in clicks, word#2=dsize in bytes

**/

int tsize, dsize, ksectors, i, NSEC = 1;

int prints(char *s){ while(*s) putc(*s++); }

int getsector(u16 sector)

{ readfd(sector/36, ((sector)%36)/18, (((sector)%36)%18)); }

main()

{

 prints("booting MTX\n\r");

 tsize = *(int *)(512+2);

 dsize = *(int *)(512+4);

 ksectors = ((tsize << 4) + dsize + 511)/512;

 setes(0x1000);

 for (i=1; i<=ksectors+1; i++){

 getsector(i); inces(); putc('.');

 }

 prints("\n\rready to go?"); getc();

}

Explanations of C Code: Disk sectors are numbered linearly as 0,1,2,, but BIOS

INT13 only accepts disk parameters in (cyl, head, sector) or CHS format. When calling

BIOS INT13 we must convert the starting sector number into CHS format. Figure 3.9

shows the relationship between linear and CHS addressing of FD sectors.

 Figure 3.9. Linear Sector and CHS addressing

Using the Mailman's algorithm, we can convert a linear sector number into CHS format

as cyl=sec/36; head=(sec%36)/18; sector=(sec%36)%18;

Then write a getsector() function in C, which calls readfd() for loading disk sectors.

int getsector(int sec){ readfd(sec/36, (sec%36)/18, (sec%36)%18) }

In the C code, the prints() function is used to print message strings. It is based on putc()

in assembly. As specified, on the boot disk the MTX kernel image begins from sector 1,

in which word 1 is the tsize of the MTX kernel (in 16-byte clicks) and word 2 is the dsize

in bytes. Before the booter enters main(), sectors 0 and 1 are already loaded at 0x9800.

While in main(), the program's data segment is 0x9800. Thus, words 1 and 2 of sector 1

are now at the (offset) addresses 512+2 and 512+4, respectively. The C code extracts

these values to compute the number of sectors of the MTX kernel to load. It sets ES to

the segment 0x1000 and loads the MTX sectors in a loop. The loading scheme resembles

that of a "sliding window". Each iteration calls getsector(i) to load NSEC sectors from

sector i to the memory segment pointed by ES. After loading NSEC sectors to the current

segment, it increments ES by NSEC sectors to load the next NSEC sectors, etc. Since

NSEC=1, this amounts to loading the OS image by individual sectors. Faster loading

schemes will be discussed later is Section 3.3.5. Figure 3.10 shows the booting screen of

the MTX.sector booter, in which each dot represents loading a disk sector.

 Figure 3.10. Booting Screen of MTX.sector Booter

3.3.4. Boot Linux zImage From FD Sectors

 Bootable Limux images are generated as follows. Under Linux,

 . cd to linux source code tree directory (cd /usr/src/linux)

 . create a .config file, which guides make (make .config)

 . run make zImage to generate a small Linux image named zImage

Make zImage generates a small bootable Linux image, in which the compressed kernel

size is less than 512 KB. In order to generate a small Linux zImage, we must select a

minimal set of options and compile most of the device drivers as modules. Otherwise, the

kernel image size may exceed 512 KB, which is too big to be loaded into real-mode

memory between 0x10000 and 0x90000. In that case, we must use make bzImage to

generate a big Linux image, which requires a different loading scheme during booting.

We shall discuss how to boot big Linux bzImages later. Regardless of size, a bootable

Linux image is composed of three contiguous parts, as shown in Figure 3.11.

 Figure 3.11. Bootable Linux Image

where BOOT is a booter for booting Linux from floppy disk and SETUP is for setting up

the startup environment of the Linux kernel. For small zImages, the number of SETUP

sectors, n, varies from 4 to 10. In addition, the BOOT sector also contains the following

boot parameters.
 -------- --------------------------------------

 byte 497 number of SETUP sectors

 byte 498 root dev flags: nonzero=READONLY

 word 500 Linux kernel size in (16-byte) clicks

 word 504 ram disk information

 word 506 video mode

 word 508 root device=(major, minor) numbers

Most of the boot parameters can be changed by the rdev utility program. The reader may

consult Linux man page of rdev for more information. A zImage is intended to be a

bootable FD disk of Linux. Since kernel version 2.6, Linux no longer supports FD

booting. The discussion here applies only to small Linux zImages of kernel version 2.4 or

earlier. During booting, BIOS loads the boot sector, BOOT, into memory and executes it.

BOOT first relocates itself to the segment 0x9000 and jumps to there to continue

execution. Then it loads SETUP to the segment 0x9020, which is 512 bytes above BOOT.

Then it loads the Linux kernel to the segment 0x1000. When loading completes, it jumps

to 0x90200 to run SETUP, which starts up the Linux kernel. The loading requirements of

a Linux zImage are:
 BOOT+SETUP : 0x90000

 Linux Kernel : 0x10000

Our Linux zImage booter essentially duplicates exactly what the BOOT sector does. A

Linux zImage boot disk can be created as follows. First, use dd to dump a Linux zImage

to a FD beginning in sector 1, as in

 dd if=zImage2.4 of=/dev/fd0 bs=512 seek=1 conv=notrunc

Then install a Linux booter to sector 0. The resulting disk layout is shown in Figure 3.12.

 Figure 3.12. Linux Boot Disk layout

The MTX booter can be adapted to booting Linux from a zImage boot disk. In the

assembly code, we only need to change OSSEG to 0x9020. When main() returns, it

jumps to (0x9020, 0) to execute SETUP. The C code is almost the same as that of the

MTX booter. We only show the modified main() function.

/*********** C code for Linux zImage booter **************/

int setup, ksectors, i;

main()

{

 prints("boot linux\n\r");

 setup = *(char *)(512+497); // number of SETUP sectors

 ksectors = *(int *)(512+500) >> 5; // number of kernel sectors

 setes(0x9000); // load BOOT+SETUP to 0x9000

 for (i=1; i<=setup+ksectors+2; i++){ // 2 sectors before SETUP

 getsector(i); // load sector i

 i <= setup ? putc('*') : putc('.'); // show a * or .

 inces(); // inc ES by NSEC sector

 if (i==setup+1) // load kernel to ES=0x1000

 setes(0x1000);

 }

 prints("\n\rrady to go?"); getc();

}

The booting screen of the Linux zImage booter is similar to Figure 3.10, only with many

more dots. In the Linux kernel image, the root device (a word at byte offset 508) is set to

0x0200, which is for the first FD drive. When Linux boots up, it will try to mount (2,0) as

the root file system. Since the boot FD is not a file system, the mount will fail and the

Linux kernel will display an error message, Kernel panic: VFS: Unable to mount root fs

02:00, and stop. To make the Linux kernel runnable, we may change the root device

setting to a device containing a Linux file system. For example, assume that we have

Linux installed in partition 2 of a hard disk. If we change the root device of zImage to

(3,2), Linux would boot up and run successfully. Another way to provide a root file

system is to use a RAM disk image. As an example, in the BOOTERS directory in the

MTX install CD, OneFDlinux.img is a single-FD Linux image. It contains a Linux booter

and a Linux zImage in front, followed by a compressed ramdisk image beginning in

block 550. The Linux kernel is compiled with ramdisk support. The ramdisk parameter is

set to 16384 + 550 (bit14=1 plus ramdisk begin block), which tells the Linux kernel not

to prompt for a separate ramdisk but load it from block 550 of the boot disk. Figure 3.13

shows the screen of running the single-FD Linux on a ramdisk.

 Figure 3.13. Single-FD Linux running on Ramdisk

3.3.5. Fast FD Loading Schemes

 The above FD booters load OS images one sector at a time. For small OS images, such

as the MTX kernel, this works fine. For large OS images like Linux, it would be too slow

to be acceptable. A faster loading scheme is more desirable. When boot a Linux zImage,

logically and ideally only two loading operations are needed, as in

 setes(0x9000); nsec = setup+1; getsector(1);

 setes(0x1000); nsec = ksectors; getsector(setup+2);

Unfortunately, things are not so simple due to hardware limitations. The first problem is

that FD drives cannot read across track or cylinder. All floppy drives support reading a

full track of 18 sectors at a time. Some BIOS allows reading a complete FD cylinder of 2

tracks. The discussion here assumes 1.44 MB FD drives that support reading cylinders.

When loading from FD the sectors must not cross any cylinder boundary. For example,

from the sector number 34 (count from 0), read 1 or 2 sectors is OK but attempting to

read more than 2 sectors would result in an error. This is because sectors 34 and 35 are in

cylinder 0 but sector 36 is in cylinder 1; going from sector 35 to 36 crosses a cylinder

boundary, which is not allowed by the drive hardware. This means that each read

operation can load at most a full cylinder of 36 sectors. Then, there is the infamous cross

64KB boundary problem, which says that when loading FD sectors the real memory

address cannot cross any 64KB boundary. For example, from the real address 0x0FE00,

if we try to load 2 sectors, the second sector would be loaded to the real address 0xFE000

+ 0x200 = 0x10000, which crosses the 64KB boundary at 0x10000. The cause of the

problem is due to the DMA controller, which uses 18-bit address. When the low 16 bits

of an address reaches 64K, for some reason the DMA controller does not increment the

high order 2 bits of the address, causing the low 16-bit address to wrap around. In this

case, loading may still occur but only to the same segment again. In the above example,

instead of the intended address 0x10000, the second sector would be loaded to 0x00000.

This would destroy the interrupt vectors, which effectively kills BIOS. Therefore, a FD

booter must avoid both problems when loading an OS image. A simple way to avoid

these problems is to load sectors one by one as we have done so far. Clearly, loading one

sector at a time will never cross any cylinder. If the loading segment starts from a sector

boundary, i.e. a segment address divisible by 0x20, it also will not cross any 64KB

boundary. Similarly, if the OS image starts from a block boundary on disk and the

loading segment also starts from a block boundary in memory, then loading 1KB blocks

would also work. In order not to cross both cylinder and 64KB boundaries, the best we

can do is loading 4 sectors at a time. The reader is encouraged to prove this. Can we do

better? The answer is yes, as evidenced by many published boot-loaders, most of which

try to load by tracks. Here we present a fast loading scheme, called the "cross-country"

algorithm, which loads by cylinders. The algorithm resembles a cross country runner

negotiating an obstacle course. When there is open space, the runner takes full strides

(load cylinders) to run fast. When there is an obstacle ahead, the runner slows down by

taking smaller strides (load partial cylinder) until the obstacle is cleared. Then the runner

resumes fast running by taking full strides, etc. The following C code shows a Linux

zImage booter that implements the cross country algorithm. In order to keep the booter

size within 512 bytes, updating ES is done inside getsector() and the prints() function is

also eliminated. The resulting booter size is only 484 bytes.

/***************** Cross Country Algorithm *************************

Load cylinders. If a cylinder is about to cross 64KB, compute NSEC =

max sectors without crossing 64KB. Load NSEC sectors, load remaining

CYL-NSEC sectors. Then load cylinders again, etc.

***/

#define TRK 18

#define CYL 36

int setup, ksectors, ES;

int csector = 1; // current loading sector

int NSEC = 35; // initial number of sectors to load >= BOOT+SETUP

int getsector(u16 sector)

{

 readfd(sector/CYL,((sector)%CYL)/TRK,(((sector)%CYL)%TRK));

 csector += NSEC; inces();

}

main()

{

 setes(0x9000);

 getsector(1); // load Linux's [boot+SETUP] to 0x9000

 // current sector = SETUP's sector count (at offset 512+497) + 2

 setup = *(u8 *)(512+497) + 2;

 ksectors = (*(u16 *)(512+500)) >> 5;

 NSEC = CYL - setup; // sectors remain in cylinder 0

 setes(0x1000); // Linux kernel is loaded to segment 0x1000

 getsector(setup); // load the remaining sectors of cylinder 0

 csector = CYL; // we are now at begining of cyl#1

 while (csector < ksectors+setup){ // try to load cylinders

 ES = getes(); // current ES value

 if (((ES + CYL*0x20) & 0xF000) == (ES & 0xF000)){//same segment

 NSEC = CYL; // load a full cylinder

 getsector(csector); putc('C'); // show loaded a cylinder

 continue;

 }

 // this cylinder will cross 64KB, compute MAX sectors to load

 NSEC = 1;

 while(((ES + NSEC*0x20) & 0xF000) == (ES & 0xF000)){

 NSEC++; putc(‘s’); // number of sectors can still load

 } // without crossing 64KB boundary

 getsector(csector); // load partial cylinder

 NSEC = CYL - NSEC; // load remaining sectors of cylinder

 putc(‘|’); // show cross 64KB

 getsector(csector); // load remainder of cylinder

 putc(‘p’);

 }

}

Figure 3.14 shows the booting screen of the linux.cylinder booter. In the figure, each C is

loading a cylinder, each sequence of s is loading the sectors of a partial cylinder, each | is

crossing a 64KB boundary and each p is loading the remaining sectors of a cylinder.

 Figure 3.14. Booting Linux by Loading Cylinders

Instead of loading cylinders, the reader may modify the above program to load tracks.

Similarly, the reader may modify the above booters to load disk blocks.

3.3.6. Boot MTX Image from File System.

 Our second booter is to boot MTX from a file system. A MTX system disk is an EXT2

file system containing files needed by the MTX kernel. Bootable MTX kernel images are

files in the /boot directory. Block 0 of the disk contains the booter. The loading segment

address is 0x1000. After booting up, the MTX kernel mounts the same boot disk as the

root file system.

 When booting an OS image from an EXT2 file system, the problem is essentially how

to find the image file's inode. The reader may consult Section 2.8.2 of Chapter 2 for the

algorithm. Here we only briefly review the steps. Assume that the file name is /boot/mtx.

First, read in the 0th group descriptor to find the start block of the inodes table. Then read

in the root inode, which is number 2 inode in the inode table. From the root inode's data

blocks, search for the first component of the file name, boot. Once the entry boot is found,

we know its inode number. Use Mailman's algorithm to convert the inode number to the

disk block containing the inode and its offset in that block. Read in the inode of boot and

repeat the search for the component mtx. If the search steps succeed, we should have the

image file's inode in memory. It contains the size and disk blocks of the image file. Then

we can load the image by loading its disk blocks.

When such a booter starts, it must be able to access the file system on the boot disk,

which means loading disk blocks into the booter program’s memory area. In order to do

this, we add a parameter, buf, to the assembly function, readfd(char *buf), where buf is

the address of a 1KB memory area in the booter segment. It is passed to BIOS in BX as

the offset of the loading address in the ES segment. Corresponding to this, we also

modify getsector() in C to take a block number and buf as parameters. When the booter

starts, ES points to the segment of the booter. In the booter's C code, if buf is global, it is

relative to DS. If buf is local, it is relative to SS. Therefore, no matter how we define buf,

the loading address is always in the booter segment. When loading the blocks of an OS

image we can set ES to successive segments and use (ES, 0) as the loading address. The

booter's assembly code is almost the same as before. We only show the booter's C code.

The booter size is 1008 bytes, which can fit in the 1KB boot block of a FD.

/***

* Image file booter's bc.c code *

***/

#include "ext2.h" // contain EXT2 structure types

#define BLK 1024

typedef unsigned char u8;

typedef unsigned short u16;

typedef unsigned long u32;

typedef struct ext2_group_desc GD;

typedef struct ext2_inode INODE;

typedef struct ext2_dir_entry_2 DIR;

u16 NSEC = 2;

char buf1[BLK], buf2[BLK]; // 2 I/O buffers of 1KB each

int prints(char *s){ //same as before }

int gets(char *s){ // to keep code simple, no length checking

 while ((*s=getc()) != '\r')

 putc(*s++);

 *s = 0;

}

int getblk(u16 blk, char *buf)

{ readfd(blk/18, ((2*blk)%36)/18, ((2*blk)%36)%18, buf); }

u16 search(INODE *ip, char *name)

{

 int i; char c; DIR *dp;

 for (i=0; i<12; i++){ // assume a DIR has at most 12 direct blocks

 if ((u16)ip->i_block[i]){

 getblk((u16)ip->i_block[i], buf2);

 dp = (DIR *)buf2;

 while ((char *)dp < &buf2[BLK]){

 c = dp->name[dp->name_len]; // save last byte

 dp->name[dp->name_len] = 0; // make name into a string

 prints(dp->name); putc(' '); // show dp->name string

 if (strcmp(dp->name, name) == 0){

 prints("\n\r");

 return((u16)dp->inode);

 }

 dp->name[dp->name_len] = c; // restore last byte

 dp = (char *)dp + dp->rec_len;

 }

 }

 }

 error(); // to error() if can’t find file name

}

main() // booter’s main function, called from assembly code

{

 char *cp, *name[2], filename[64];

 u16 i, ino, blk, iblk;

 u32 *up;

 GD *gp;

 INODE *ip;

 DIR *dp;

 name[0] = "boot"; name[1] = filename;

 prints("bootname: ");

 gets(filename);

 if (filename[0]==0) name[1]="mtx";

 getblk(2, buf1); // read blk#2 to get group descriptor 0

 gp = (GD *)buf1;

 iblk = (u16)gp->bg_inode_table; // inodes begin block

 getblk(iblk, buf1); // read first inode block

 ip = (INODE *)buf1 + 1; // ip->root inode #2

 for (i=0; i<2; i++){ // serach for system name

 ino = search(ip, name[i]) - 1;

 if (ino < 0) error(); // if search() returned 0

 getblk(iblk+(ino/8), buf1); // read inode block of ino

 ip = (INODE *)buf1 + (ino % 8);

 }

 if ((u16)ip->i_block[12]) // read indirect block into buf2, if any

 getblk((u16)ip->i_block[12], buf2);

 setes(0x1000); // set ES to loading segment

 for (i=0; i<12; i++){ // load direct blocks

 getblk((u16)ip->i_block[i], 0);

 inces(); putc('*'); // show a * for each direct block loaded

 }

 if ((u16)ip->i_block[12]){ //load indirect blocks, if any

 up = (u32 *)buf2;

 while(*up++){

 getblk((u16)*up, 0);

 inces(); putc('.'); // show a . for each ind block loaded

 }

}

prints(“ready to go?”); getc();

}

The booter’s C code is fairly simple and straightforward. However, it is still worth

pointing out the following programming techniques, which help reduce the booter size.

First, if a booter needs string data, it is better to define them as string constants, e.g.

name[0]="boot", name[1]="mtx", etc. String constants are allocated in the program's data

area at compile-time. Only their addresses are used in the generated code. Second, on a

FD the number of blocks is less than 1440. However, the block numbers in an inode are

u32 long values. If we pass the block number as u32 in getblk() calls, the compiled (16-

bit) code would have to push the long blk value as 16-bit items twice, which increase the

code size. For this reason, the parameter blk in getblk() is declared as u16 but when

calling getblk(), the long blk values are typecast to u16. The typecasting not only reduces

the code size but also ensures getblk() to get the right parameters off the stack. Third, in

the search() function, we need to compare a name string with the entry names in an EXT2

directory. Each entry name has name_len chars without an ending null byte, so it is not a

string. In this case, strncmp() would not work since !strncmp("abcde","abcd", 4) is true.

In order to compare the names, we need to extract the entry name's chars to make a string

first, which require extra code. Instead, we simply replace the byte at name_len with a 0,

which changes the entry name into a string for comparison. If name_len is a multiple of 4,

the byte at name_len is actually the inode number of the next directory entry, which must

be preserved. So we first save the byte and then restore it later. Finally, before changing

ES to load the OS image, we read in the image's indirect blocks first while ES still points

at the program's segment. When loading indirect blocks we simply dereference the

indirect block numbers in the buffer area as *(u32 *). Without these techniques, it would

be very difficult to write such a booter in C in 1024 bytes. Figure 3.15 shows the screen

of booting MTX from a file system. In the figure, each asterisk is loading a direct block

and each dot is loading an indirect block of the image file.

 Figure 3.15. Booting MTX from File System

3.3.7. Boot Linux zImage from File System

 The MTX booter can be adapted to booting small Linux kernels from an EXT2 file

system. When booting a Linux zImage there is a slight problem. The contents of an

image file are stored in (1KB) disk blocks. During booting, we prefer to load the image

by blocks. As pointed out earlier, starting from segment 0x1000, loading 1KB blocks will

not cross any cylinder or 64KB boundary. In a Linux zImage, the kernel image follows

BOOT+SETUP immediately. If the number of BOOT+SETUP sectors is odd, the kernel

image does not begin at a block boundary, which makes loading by blocks difficult. For

instance, if we load the block that contains the last sector of SETUP and the first sector of

kernel to 0x1000-0x20, it would cross 64KB boundary. If we load the first kernel sector

to 0x1000, followed by loading blocks, we must monitor the blocks and split up any

block that crosses a 64KB boundary. It would be very hard to write such a booter in 1KB.

There are two possible ways to deal with this problem. The simplest way is to assume

that the number of SETUP sectors is odd, so that BOOT+SETUP=even. If the number of

SETUP sectors is even, e.g. 10, we can always pad a dummy sector between SETUP and

the kernel image to make the latter begin at a block boundary. Another way is to load the

block that contains the last SETUP sector and the first kernel sector to 0x1000, followed

by loading blocks. When loading completes, if the number of SETUP sectors is even, we

simply move the loaded image downward (address-wise) by one sector. The Linux

zImage booter uses the second technique. The booter's C code is shown below. The

move(segment) function is in assembly, which is trivial and therefore not shown. The

booter size is 1024 bytes, which is still within the 1KB limit.

/***************** C code of Linux bzImage booter ***************/

u16 iblock, NSEC = 2;

char b1[1024],b2[1024],b3[1024]; // b2[] and b3[] are adjacent

main()

{

 char *cp, *name[2];

 u16 i,ino, setup, blk, nblk;

 u32 *up;

 INODE *ip;

 GD *gp;

 name[0] = "boot"; name[1] = “linux”; // hard coded /boot/linux so far

 getblk(2, b1);

 gp=(GD *)b1; // get group0 descriptor to find inode table start block

 // read inode start block to get root inode

 iblock = (u16)gp->bg_inode_table;

 getblk(iblock, b1);

 ip = (INODE *)b1 + 1; // ip points at root inode

 // serach for image file name

 for (i=0; i<2; i++){

 ino = search(ip, name[i]) - 1;

 if (ino < 0) error(); // if search() failed

 getblk(iblock + (ino / 8), b1);

 ip = (INODE *)b1 + (ino % 8);

 }

 // get setup_sectors from linux BOOTsector[497]

 getblk((u16)ip->i_block[0], b2);

 setup = b2[497];

 nblk = (1 + setup)/2; // number of [bootsector+SETUP] blocks

 // read in indirect & double indirect blocks before changing ES

 getblk((u16)ip->i_block[12], b2); // get indirect block into b2[]

 getblk((u16)ip->i_block[13], b3); // get db indirect block into b3[]

 up =(u32 *)b3;

 getblk((u16)*up, b3) // get first double indirect into b3[]

 setes(0x9000); // loading segment of BOOT+SETUP

 for (i=0; i<12; i++){ // nblk of these are bootblock+SETUP

 if (i==nblk){

 if ((setup & 1)==0) // if setp=even => need 1/2 block more

 getblk((u16)ip->i_block[i], 0);

 setes(0x1000); // set ES for kernel image at 0x1000

 }

 getblk((u16)ip->i_block[i], 0); // setup=even:1/2 SETUP

 inces();

 }

 //load indirect and double indirect blocks in b2[]b3[]

 up = (u32 *)b2; // access b2[]b3[] as u32's

 while(*up++){

 getblk((u16)*up, 0); // load block to (ES,0)

 inces(); putc('.');

 }

 // finally, if setup is even, move kernel image DOWN one sector

 if ((setup & 1)==0)

 for (i=1; i<9; i++)

 move(i*0x1000); // move one 64 KB segment at a time

}

Figure 3.16 shows the screen of booting Linux from a file system, in which each dot

represents loading a 1KB disk block of the Linux kernel image.

 Figure 3.16. Booting Linux from File System

When the Linux kernel boots up, it must mount a root file system in order to run. In the

busyboxlinux directory, the sh script mkvfd creates a virtual FD containing a Linux root

file system based on BusyBox. After booting up, the Linux kernel mounts the FD as the

root file system and runs on the same FD. The screen of running such a single-FD Linux

is similar to Figure 13.13, except that it does not load any ramdisk image during booting.

3.4. Hard Disk Booter

In this section, we shall develop an online booter for booting MTX and big Linux

images (bzImages) from hard disk partitions. The HD booter consists of 5 files; a bs.s in

assembly, a bc.c in C, which includes io.c, bootMtx.c for booting MTX and bootLinux.c

for booting Linux. During booting, it displays the hard disk partitions and prompts for a

partition number to boot. If the partition type is MTX (90) or Linux (83), it allows the

user to enter a filename to boot. If the user enters only the return key, it boots /boot/mtx

or /boot/vmlinuz by default. When booting Linux it also supports an initial RAM disk

image. For non-MTX/Linux partitions, it acts as a chain-booter to boot other operating

systems, such as Windows. Since booting MTX is much simpler, we shall only discuss

the Linux part of the HD booter.

 The HD booter consists of five logical parts. Each part is essentially an independent

programming task, which can be solved separately. For example, we may write a C

program to display the partitions of a hard disk, and test it under Linux first. Similarly,

we may write a program, which finds the inode of a file in an EXT2 file system and print

its disk blocks. When the programs are tested to be working, we adapt them to the 16-bit

environment as parts of the booter. The following describes the logical components of the

HD booter.

3.4.1. I/O and Memory Access Functions

A HD booter is no longer limited to 512 or 1024 bytes. With a larger code size, we

shall implement a set of I/O functions to provide better user interface during booting.

Specifically, we shall implement a gets() function, which allows the user to input

bootable image filename and boot parameters, and a printf() function for formatted

printing. First, we show the gets() function.

 #define MAXLEN 128

 char *gets(char s[]) // caller must provide REAL memory s[MAXLEN]

 {

 char c, *t = s; int len=0;

 while((c=getc()) != ’\r’ && len < MAXLEN-1){

 *t++ = c; putc(c); len++;

 }

 *t = 0; return s;

 }

For outputs, we first implement a printu() function, which prints unsigned short integers.

 char *ctable = "0123456789ABCDEF";

 u16 BASE = 10; // for decimal numbers

 int rpu(u16 x)

 { char c;

 if (x){

 c = ctable[x % BASE];

 rpu(x / BASE);

 putc(c);

 }

 }

 int printu(u16 x)

 {

 (x==0)? putc('0') : rpu(x);

 putc(' ');

 }

The function rpu(x) recursively generates the digits of x % 10 in ASCII and prints them

on the return path. For example, if x=123, the digits are generated in the order of '3', 2',

'1', which are printed as '1', '2', '3' as they should. With printu(), writing a printd() to print

signed short integers becomes trivial. By setting BASE to 16, we can print in hex. By

changing the parameter type to u32, we can print long values, e.g. LBA disk sector and

inode numbers. Assume that we have prints(), printd(), printu(), printx(), printl() and

printX(), where printl() and printX() print 32-bit values in decimal and hex, respectively.

Then write a printf(char *fmt,...) for formatted printing, where fmt is a format string

containing conversion symbols %c, %s, %u, %d, %x, %l, %X.

int printf(char *fmt, ...) // some C compiler requires the three dots

{

 char *cp = fmt; // cp points to the fmt string

 u16 *ip = (u16 *)&fmt + 1; // ip points to first item

 u32 *up; // for accessing long parameters on stack

 while (*cp){ // scan the format string

 if (*cp != '%'){ // spit out ordinary chars

 putc(*cp);

 if (*cp=='\n') // for each ‘\n’

 putc('\r'); // print a ‘\r’

 cp++; continue;

 }

 cp++; // print item by %FORMAT symbol

 switch(*cp){

 case 'c' : putc(*ip); break;

 case 's' : prints(*ip); break;

 case 'u' : printu(*ip); break;

 case 'd' : printd(*ip); break;

 case 'x' : printx(*ip); break;

 case 'l' : printl(*(u32 *)ip++); break;

 case 'X' : printX(*(u32 *)ip++); break;

 }

 cp++; ip++; // advance pointers

 }

}

The simple printf() function does not support field width or precision but it is adequate

for the print task during booting. It would greatly improve the readability of the booter

code. The same printf() function will also be used later in the MTX kernel. When booting

a big Linux bzImage, the booter must get the number of SETUP sectors to determine how

to load the various pieces of the image. After loading the image, it must set the boot

parameters in the loaded BOOT and SETUP sectors for the Linux kernel to use. To do

these, we implement the get_byte()/ put_byte() functions in C, which are similar to the

traditional peek()/poke() functions.

 u8 get_byte(u16 segment, u16 offset)

 {

 u8 byte;

 u16 ds = getds(); // getds() in assembly returns DS value

 setds(segment); // set DS to segment

 byte = *(u8 *)offset;

 setds(ds); // setds() in assembly restores DS

 return byte

 }

 void put_byte(u8 byte, u16 segment, u16 offset)

 {

 u16 ds = getds(); // save DS

 setds(segment); // set DS to segment

 *(u8 *)offset = byte;

 setds(ds); // restore DS

}

Similarly, we can implement get_word()/put_word() for reading/writing 2-byte words.

These functions allow the booter to access memory outside of its own segment.

3.4.2. Read Hard Disk LBA Sectors

Unlike floppy disks, which use CHS addressing, large hard disks use Linear Block

Addressing (LBA), in which disk sectors are accessed linearly by 32 or 48 bits sector

numbers. To read hard disk sectors in LBA, we may use the extended BIOS INT13-42

(INT 0x13, AH=0x42) function. The parameters to INT13-42 are specified in a Disk

Address Packet (DAP) structure.

 struct dap{ // DAP structure for INT13-42

 u8 len; // dap length=0x10 (16 bytes)

 u8 zero; // must be 0

 u16 nsector; // actually u8; sectors to read=1 to 127

 u16 addr; // memory address = (segment, addr)

 u16 segment; // segment value

 u32 sectorLo; // low 4 bytes of LBA sector#

 u32 sectorHi; // high 4 bytes of LBA sector#

};

To call INT13-42, we define a global dap structure and initialize it once, as in

 struct dap dap, *dp=&dap; // dap and dp are globals in C

 dp->len = 0x10; // dap length = 0x10

 dp->zero = 0; // this field must be 0

 dp->sectorHi = 0; // assume 32-bit LBA, high 4-byte always 0

 // other fields will be set when the dap is used in actual calls

Within the C code, we may set dap's segment, then call getSector() to load one disk

sector into the memory location (segment, offset), as in

 int getSector(u32 sector, u16 offset)

 {

 dp->nsector = 1;

 dp->addr = offset;

 dp->sectorLo= sector;

 diskr();

 }

where diskr() is in assembly, which uses the global dap to call BIOS int13-42.

!-------------------- assembly code ------------------------------

 .globl _diskr,_dap ! _dap is a global dap struct in C

_diskr:

 mov dx, #0x0080 ! device=first hard drive

 mov ax, #0x4200 ! aH=0x42

 mov si, #_dap ! (ES,SI) points to _dap

 int 0x13 ! call BIOS INT13-42 to read sectors

 jb _error ! to error() if CarryBit is set (read failed)

 ret

Similarly, the function

 int getblk(u32 blk, u16 offset, u16 nblk)

 {

 dp->nsectors = nblk*SECTORS_PER_BLOCK; // max value=127

 dp->addr = offset;

 dp->sectorLo = blk*SECTORS_PER_BLOCK;

 diskr();

 }

loads nblk contiguous disk blocks into memory, beginning from (segment, offset), where

nblk <= 15 because dp->nsectors <= 127.

3.4.3. Boot Linux bzImage with Initial Ramdisk Image

When booting a Linux bzImage, the image's BOOT+SETUP are loaded to 0x9000 as

before but the Linux kernel is loaded to the physical address 0x100000 (1MB) in high

memory. If a RAM disk image is specified, it is also loaded to high memory. Since the

PC is in 16-bit real mode during booting, it cannot access memory above 1MB directly.

Although we may switch the PC to protected mode, access high memory and then switch

back to real-mode afterwards, doing these requires a lot of work. A better way is to use

BIOS INT15-87, which is designed to copy memory between real and protected modes.

Parameters of INT15-87 are specified in a Global Descriptor Table (GDT).

 struct GDT

 {

 u32 zeros[4]; // 16 bytes 0's for BIOS to use

 // src address

 u16 src_seg_limit; // 0xFFFF = 64KB

 u32 src_addr; // low 3 bytes of src addr, high_byte=0x93

 u16 src_hiword; // 0x93 and high byte of 32-bit src addr

 // dest address

 u16 dest_seg_limit;// 0xFFFF = 64KB

 u32 dest_addr; // low 3 bytes of dest addr, high byte=0x93

 u16 dest_hiword; // 0x93 and high byte of 32-bit dest addr

 // BIOS CS DS

 u32 bzeros[4];

 };

The GDT specifies a src address and a dest address; both are 32-bit physical addresses.

However, the bytes that form these addresses are not adjacent, which makes them hard to

access. Although both src_addr and dest_addr are defined as u32, only the low 3 bytes

are part of the address, the high byte is the access rights 0x93. Similarly, both src_hiword

and dest_hiword are defined as u16 but only the high byte is the 4th address byte; the low

byte is again the access rights 0x93. As an example, if we want to copy from the real

address 0x00010000 (64KB) to 0x01000000 (16MB), a GDT can be initialized as follows.

 init_gdt(struct GDT *p)

 { int i;

 for (i=0; i<4; i++)

 p->zeros[i] = p->bzeros[i] = 0;

 p->src_seg_limit = p->dest_seg_limit = 0xFFFF; // 64KB segments

 p->src_addr = 0x93010000; // bytes 0x00 00 01 93

 p->dest_addr = 0x93000000; // bytes 0x00 00 00 93

 p->src_hiword = 0x0093; // bytes 0x93 00

 p->dest_hiword = 0x0193; // bytes 0x93 01

 }

The following code segment copies 4096 bytes from 0x00010000 (64KB) in real mode

memory to 0x01000000 (16MB) in high memory.

C code:

 struct GDT gdt; // define a gdt struct

 init_gdt(&dgt); // initialize gdt as shown above

 cp2himem(); // assembly code that does the copying

Assembly code:

 .globl _cp2himem,_gdt ! _gdt is a global GDT from C

_cp2himem:

 mov cx,#2048 ! CX=number of 2-byte words to copy

 mov si,#_gdt ! (ES,SI) point to GDT struct

 mov ax,#0x8700 ! aH=0x87

 int 0x15 ! call BIOS INT15-87

 jc _error

 ret

Based on these, we can load the blocks of an image file to high memory as follows.

 (1). load a disk block (4KB or 8 sectors) to segment 0x1000;

 (2). cp2himem();

 (3). gdt.vm_addr += 4096;

 (4). repeat (1)-(3) for next block, etc.

This can be used as the basic loading scheme of a booter. For fast loading, the hd-booter

tries to load up to 15 contiguous blocks at a time. It is observed that most PCs actually

support loading 16 contiguous blocks at a time. On these machines, the images can be

loaded in 64KB chunks.

3.4.4. Hard Disk Partitions

 The partition table of a hard disk is in the MBR sector at the byte offset 446 (0x1BE).

The table has 4 entries, each defined by a 16-byte partition structure, which is

 stuct partition {

 u8 drive; // 0x80 - active

 u8 head; // starting head

 u8 sector; // starting sector

 u8 cylinder; // starting cylinder

 u8 sys_type; // partition type

 u8 end_head; // end head

 u8 end_sector; // end sector

 u8 end_cylinder; // end cylinder

 u32 start_sector; // starting sector counting from 0

 u32 nr_sectors; // number of sectors in partition

};

If a partition is EXTEND type (5), it can be divided into more partitions. Assume that

partition P4 is EXTEND type and it is divided into extend partitions P5, P6, P7. The

extend partitions form a link list, as shown in Figure 3.17.

 Figure 3.17. Link List of Extended Partitions

The first sector of each extend partition is a local MBR. Each local MBR has a partition

table, which contains only two entries. The first entry defines the start sector number and

size of the extend partition. The second entry points to the next local MBR. All the local

MBR's sector numbers are relative to P4's start sector. As usual, the link list ends with a 0

in the last local MBR. In a partition table, the CHS values are valid only for disks smaller

than 8GB. For disks larger than 8GB but fewer than 4G sectors, only the last 2 entries,

start_sector and nr_sectors, are meaningful. Therefore, the booter should only display the

type, start sector and size of the partitions.

3.4.5. Find and Load Linux Kernel and initrd Image Files

The steps used to find a Linux bzImage or RAM disk image are essentially the same as

before. The main differences stem from the need to traverse large EXT2/EXT3 file

systems on hard disks.

(1). In a hard disk partition, the superblock of an EXT2/EXT3 file system is at the byte

offset 1024. A booter must read the superblock to get the values of s_first_data_block,

s_log_block_size, s_inodes_per_group and s_inode_size, where s_log_block_size

determines the block size, which in turn determines the values of group_desc_per_block,

inodes_per_block, etc. These values are needed when traversing the file system.

(2). A large EXT2/EXT3 file system may have many groups. Group descriptors begin at

the block (1+s_first_data_block), which is usually 1. Given a group number, we must

find its group descriptor and use it to find the group's inodes start block.

(3). The central problem is how to convert an inode number to an inode. The following

code segment illustrates the algorithm, which amounts to applying Mailman's algorithm

twice.

/********** Algorithm: Convert inode number to inode *********/

(a). Compute group# and offset# in that group

 group = (ino-1) / inodes_per_group;

 inumber = (ino-1) % inodes_per_group;

(b). Find the group's group descriptor

 gdblk = group / desc_per_block; // which block this GD is in

 gdisp = group % desc_per_block; // which GD in that block

(c). Compute inode's block# and offset in that group

 blk=inumber / inodes_per_block; // blk# r.e.to group inode_table

 disp=inumber % inodes_per_block; // inode offset in that block

(d). Read group descriptor to get group's inode table start block#

 getblk(1+first_data_block+gdblk, buf, 1); // GD begin block

 gp = (GD *)buf + gdisp; // it's this group desc.

 blk += gp->bg_inode_table; // blk is r.e. to group's inode_table

 getblk(blk, buf, 1); // read the disk block containing inode

 INODE *ip=(INODE *)buf+(disp*iratio); //iratio=2 if inode_size=256

When the algorithm ends, INODE *ip should point to the file's inode in memory.

(4). Load Linux Kernel and Ramdisk Image to High Memory: With getblk() and

cp2himem(), loading kernel image to 1MB in high memory is straightforward. The only

complication is when the kernel image does not begin at a block boundary. For example,

if the number of SETUP sectors is 12, then 5 sectors of the kernel are in block1, which

must be loaded to 0x100000 first before we can load the remaining kernel by blocks. In

contrast, if the number of SETUP sectors is 23, then BOOT and SETUP are in the first 3

blocks and kernel begins at block #3. In this case, we can load the entire kernel by blocks

without having to deal with fractions of a block at the beginning. Although the hd-booter

handles these cases properly, it is certainly a pain. It would be much better if the Linux

kernel of every bzImage begins at a block boundary. This can be done quite easily by

modifying a few lines in the Linux tools program when it assembles the various pieces

into a bzImage file. Why Linux people don’t do that is beyond me.

Next, we consider loading RAM disk images. An excellent overview on Linux initial

RAM disk (initrd) is in [Jones, 2006]. Slackware [Slackware Linux] also has an initrd

HOWTO file. An initrd is a small file system, which is used by the Linux kernel as a

temporary root file system when the kernel starts up. The initrd contains a minimal set of

directories and executables, such as sh, the ismod tool and the needed driver modules.

While running on initrd, the Linux kernel typically executes a sh script, initrc, to install

the needed driver modules and activate the real root device. When the real root device is

ready, the Linux kernel abandons the initrd and mounts the real root file system to

complete a 2-stage boot up process. The reason of using an initrd is as follows. During

booting, Linux's startup code only activates a few standard devices, such as FD and

IDE/SCSI HD, as possible root devices. Other device drivers are either installed later as

modules or not activated at all. This is true even if all the device drivers are built into the

Linux kernel. Although it is possible to activate the needed root device by altering the

kernel's startup code, the question is, with so many different Linux system configurations,

which device to activate? An obvious answer is to activate them all. Such a Linux kernel

would be humongous in size and rather slow to boot up. For example, in some Linux

distribution packages the kernel images are larger than 4MB. An initrd image can be

tailor-built with instructions to install only the needed driver modules. This allows a

single generic Linux kernel to be used in all kinds of Linux system configurations. In

theory, a generic Linux kernel only needs the RAM disk driver to start. All other drivers

may be installed as modules from the initrd. There are many tools to create an initrd

image. A good example is the mkinitrd command in Linux. It creates an initrd.gz file and

also an initrd-tree directory containing the initrd file system. If needed, the initrd-tree can

be modified to generate a new initrd image. Older initrd.gz images are compressed EXT2

file systems, which can be uncompressed and mounted as a loop file system. Newer initrd

images are cpio archive files, which can be manipulated by the cpio utility program.

Assume that initrd.img is a RAM disk image file. First, rename it as initrd.gz and run gunzip

to uncompress it. Then run

 mkdir temp; cd temp; # use a temp DIR

 cpio -id < ../initrd # extract initrd contents

to extract the contents. After examining and modifying files in initrd-tree, run

 find . | cpio -o -H newc | gzip > ../initrd.gz

to create a new initrd.gz file.

 Loading initrd image is similar to loading kernel image, only simpler. There is no

specific requirement on the loading address of initrd, except for a maximum high address

limit of 0xFE000000. (The reader may consult Chapter 15 on SMP for reasons). Other

than this restriction, any reasonable loading address seems to work fine. The hd-booter

loads the Linux kernel to 1MB and initrd to 32MB. After loading completes, the booter

must write the loading address and size of the initrd image to SETUP at the byte offsets

24 and 28, respectively. Then it jumps to execute SETUP at 0x9020. Early SETUP code

does not care about the segment register settings. In kernel 2.6, SETUP requires

DS=0x9000 in order to access BOOT as the beginning of its data segment.

3.4.6. Linux and MTX Hard Disk Booter

 A complete listing of the hd-booter code is in BOOTERS/HD/MBR.ext4/. The booter

can boot both MTX and Linux with initial RAM disk support. It can also boot Windows

by chain-booting. For the sake of brevity, we only show the booting Linux part here.

!---------------- hd-booter's bs.s file -------------------------

 BOOSEG = 0x9800

 SSP = 32*1024 ! 32KB bss + stack; may be adjusted

 .globl _main,_prints,_dap,_dp,_bsector,_vm_gdt ! IMPORT

 .globl _diskr,_getc,_putc,_getds,_setds, ! EXPORT

 .globl _cp2himem,_jmp_setup

! MBR loaded at 0x07C0. Load entire booter to 0x9800

start: mov ax, #BOOTSEG

 mov es, ax

 xor bx, bx ! clear BX = 0

 mov dx, #0x0080 ! head 0, HD

 xor cx, cx

 incb cl ! cyl 0, sector 1

 incb cl

 mov ax, #0x0220 ! READ 32 sectors, booter size up to 16KB

 int 0x13

! far jump to (0x9800, next) to continue execution there

 jmpi next, BOOSEG ! CS=BOOTSEG, IP=next

next:

 mov ax, cs ! set CPU segment registers

 mov ds, ax ! we know ES,CS=0x9800. Let DS=CS

 mov ss, ax

 mov es, ax ! CS=DS=SS=ES=0x9800

 mov sp, #SSP ! 32 KB stack

 call _main ! call main() in C

 test ax, ax ! check return value from main()

 je error ! main() return 0 if error

 jmpi 0x7C00,0x0000 ! otherwise, as a chain booter

_diskr:

 mov dx, #0x0080 ! drive=0x80 for HD

 mov ax, #0x4200

 mov si, #_dap

 int 0x13 ! call BIOS INT13-42 read the block

 jb error ! to error if CarryBit is on

 ret

error:

 mov bx, #bad

 push bx

 call _prints

 int 0x19 ! reboot

bad: .asciz "\n\rError!\n\r"

_jmp_setup:

 mov ax, 0x9000 ! for SETUP in 2.6 kernel:

 mov ds, ax ! DS must point at 0x9000

 jmpi 0, 0x9020 ! jmpi to execute SETUP at 0x9020

_getc: ! same as before

_putc: ! same as before

_getds: ! return DS value

_setds: ! set DS to a segment

!----------------------- cp2himem() ------------------------------

! for each batch of k<=16 blocks, load to RM=0x10000 (at most 64KB)

! then call cp2himem() to copy it to VM=0x100000 + k*4096

!---

_cp2himem:

 push bp

 mov bp, sp

 mov cx, 4[bp] ! words to copy (32*1024 or less)

 mov si, #_vm_gdt

 mov ax, #0x8700

 int 0x15

 jc error

 pop bp

 ret

/************ Algorithm of hd-booter's bc.c file **************/

#define BOOTSEG 0x9800

#include "bio.c" // I/O functions such as printf()

#include "bootLinux.c" // C code of Linux booter

int main()

{

 (1). initialize dap for INT13-42 calls;

 (2). read MBR sector;

 (3). print partition table;

 (4). prompt for a partition to boot;

 (5). if (partition type == LINUX)

 bootLinux(partition); // no return

 (6). load partition's local MBR to 0x07C0;

 chain-boot from partition's local MBR;

}

/************ Algorithm of bootLinux.c file ****************/

boot-Linux-bzImage Algorithm:

{

 (1). read superblock to get blockSize,inodeSize,inodes_per_group

 (2). read Group Descriptor 0 to get inode start block

 (3). read in the root INODE and let INODE *ip point at root INODE

 (4). prompt for a Linux kernel image filename to boot

 (5). tokenize image filename and search for image's INODE

 (6). handle symbolic-link filenames

 (7). load BOOT+SETUP of Linux bzImage to 0x9000;

 (8). set video mode word at 506 in BOOT to 773 (for small font).

 (9). set root dev word at 508 in BOOT to (0x03, pno) (/dev/hdapno)

(10). set bootflags word at offset 16 in SETUP to 0x2001

(11). compute number of kernel sectors in last block of SETUP

(12). load kernel sectors to 0x1000, then cp2himem() to 1MB

(13). load kernel blocks to high memory, each time load 64KB

(14). load initrd image to 32 MB in high memory

(15). write initrd address and size to offsets (24,28) in SETUP

(16). jmp_setup() to execute SETUP code at 0x9020

}

 In the above algorithm, step (8) is optional. Step (9) sets the root device, which is

needed only if no initrd image is loaded. With an initrd image, the root device is

determined by the initrd image. Step (10) is mandatory, which tells SETUP that the

kernel image is loaded by an "up-to-date" boot loader. Otherwise, the SETUP code would

consider the loaded kernel image invalid and refuse to start up the Linux kernel.

3.4.7. Boot EXT4 Partitions

At the time of this writing, many Linux distributions are switching to EXT4 [Cao et al.,

2007] as the default file system. It is fairly easy to modify the booter to boot MTX and

Linux from EXT4 partitions. Here, we briefly describe the EXT4 file system and the

needed modifications to the HD booter.

(1). In EXT4, the i_block[15] array of an inode contains a header and 4 extents structures,

each 12 bytes long, as shown below.

 |<------ u32 i_block[15] area -------->|

 |header|extent1|extent2|extent3|extent4|

 struct ext3_extent_header {

 u16 eh_magic; // 0xF30A

 u16 eh_entries; // number of valid entries

 u16 eh_max; // capacity of store in entries

 u16 eh_depth; // has tree real underlaying blocks?

 u32 eh_generation; // generation of the tree

 };

 struct ext3_extent {

 u32 ee_block; // first logical block extent covers

 u16 ee_len; // number of blocks covered by extent

 u16 ee_start_hi; // high 16 bits of physical block

 u32 ee_start; // low 32 bits of physical block

 };

The root directory does not use extents, so i_block[0] is still the first data block.

(2). The GD and INODE types are the same as they are in EXT2, but the INODE size is

256 bytes. The SUPER block's magic number is also the same as in EXT2, but we may

test s_feature_incompat (> 0x240) to determine whether it's an EXT4 file system.

(3). Blocks in each extent are contiguous. There is no need to scan for contiguous blocks

when loading an image; just load a sequence of blocks directly. For HDs, the block size is

4KB. The maximum number of blocks per loading is still limited to 16 or less. Shown

below are the search() and load() functions for EXT4 file system. Integrating them into

the HD booter is left as an exercise.

/******* serach for name in an EXT4 DIR INODE ********/

u32 search(INODE *ip, char *name)

{

 u16 i; u32 ino;

 struct ext3_extent_header *hdp;

 struct ext3_extent *ep;

 char buf[BLK];

 hdp = (struct ext3_extent_header *)&(ip->i_block[0]);

 ep = (struct ext3_extent *)&(ip->i_block[3]);

 for (i=0; i<4; i++){

 if (hdp->eh_entries == 0){

 getblk((u32)ip->i_block[0], buf, 1);

 i = 4; // no other extents

 }

 else{

 ep = (struct ext3_extent *)&(ip->i_block[3]);

 getblk((u32)ep->ee_start, buf, 1);

 }

 if (ino = find(buf, name)) // find name string in buf[]

 return ino;

 }

 return 0;

}

/******** load blocks of an INODE with EXT4 extent *********/

int loadExt4(INODE *ip, u16 startblk)

{

 int i,j,k,remain; u32 *up;

 struct ext3_extent_header *hdp;

 struct ext3_extent *ep;

 int ext;

 u32 fblk, beginblk;

 hdp = (struct ext3_extent_header *)ip->i_block;

 ep = (struct ext3_extent *)ip->i_block + 1;

 ext = 1;

 while(1){

 if (ep->ee_len==0)

 break;

 beginblk = 0;

 if (ext==1) // if first extent: begin from startblk

 beginblk = startblk;

 k = 16; // load 16 contisuous blocks at a time

 fblk = ep->ee_start + beginblk;

 remain = ep->ee_len - beginblk;

 while(remain >= k){

 getblk((u32)(fblk), 0, k);

 cp_vm(k, '.');

 fblk += k;

 remain -= k;

 }

 if (remain){

 getblk((u32)(fblk), 0, remain);

 cp_vm(remain, '.');

 }

 ext++; ep++; // next extent

 }

}

Figure 3.18 shows the screen of the hd-booter when booting a generic Linux kernel with

initial RAM disk image, initrd.gz, from an EXT4 partition.

 Figure 3.18. Booting Linux bzImage with initrd from EXT4 Partition

3.4.8. Install HD Booter

 Now that we have a hard disk booter, the next problem is where to install it? Obviously,

the beginning part of the booter must be installed in the HD's MBR since that's where the

booting process begins. The question is where to install the remaining parts of the booter?

The location chosen must not interfere with the hard disk's normal contents. At the same

time it must be easy for the stage1 booter to find. The question has an interesting answer.

By convention, each HD partition begins at a (logical) track boundary. Since the MBR is

already in track 0, partition 1 actually begins from track 1. A track usually has 63 sectors.

We can certainly put a fairly big and powerful booter in the unused space of track 0.

Unfortunately, once the good news gets around, it seems that everybody tries to use that

hidden space for some special usage. For example, GRUB installs its stage2 booters there,

so does our hd-booter. Naturally, as a Chinese proverb says, "A single mountain cannot

accommodate two tigers", only one tiger can live there at a time. The hd-booter can be

installed to a HD as follows.
 (1) dd if=hd-booter of=/dev/hda bs=16 count=27

 (2) dd if=hd-booter of=/dev/hda bs=512 seek=1

Assume that the booter size is less than 31KB (the hd-booter size is about 10KB). Step (1)

dumps the first 432 bytes of the booter to the MBR without disturbing the partition table,

which begins at byte 444. Step (2) dumps the entire booter to sectors 1 and beyond.

During booting, BIOS loads the MBR to 0x07C00 and executes the beginning part of the

hd-booter. The hd-booter reloads the entire booter, beginning from sector 1, to 0x98000

and continues execution in the new segment. The actual number of sectors to load can be

adjusted to suit the booter size, but loading a few extra sectors causes no harm.

 Although installing the hd-booter is simple, a word of caution is in order. Murphy's

law says anything that can go wrong will go wrong. Writing to a hard disk's MBR is very

risky. A simple careless mistake may destroy the partition table and/or corrupt the HD

contents, rendering the HD either non-bootable or useless. It is therefore advised not to

install the booter to a HD unless you are absolutely sure of what you are doing. Before

attempting to install the booter, it's a good idea to write down the HD's partition table on

a piece of paper in case you have to restore it. A safer way to test the HD booter is to

install it to a floppy disk. For FD drives that support loading cylinders, we only need to

modify one line in the above assembly code: change mov dx, #0x0080 to mov dx,

#0x0000, so that the booter will be re-loaded from a FD when it begins to run. Once the

booter starts running, it actually boots from the HD. Since the HD is accessed in read-

only mode, the scheme should be safe. Instead of a real HD, the reader may use a virtual

HD. Similarly, the HD booter may also be installed to a USB drive. In that case, no

changes are needed.

3.5. CD/DVD-ROM Booter

 A bootable CD/DVD is created in two steps. First, create an iso9660 file system

[Standard ECMA-119, 1987] containing a CD/DVD booter. Then write the iso image to a

CD/DVD by a CD/DVD burning tool. The resulting CD/DVD is bootable. If desired, the

iso file can also be used directly as a virtual CD. In this section, we shall show how to

develop booter programs for CD/DVD booting.

3.5.1. Emulation CDROM Booting

 From a programming point of view, emulation booting is trivial. There is not much

one needs to (or can) do other than preparing a bootable disk image. The following shows

how to do emulation booting.

3.5.1.1. Emulation-FD Booting

 Assume that fdimage is a bootable floppy disk image (size = 1.44MB). Under Linux,

use the sh command

 mkisofs -o /tmp/fcd.iso -v -d -R -J -N -b fdimage -c boot.catalog ./

to create a /tmp/fcd.iso file from the current directory. The reader may consult Linux man

page of mkisofs for the meaning of the various flags. The iso file is a bootable CD image.

It can be written to a real CD/DVD disc by using a suitable CD/DVD burning tool, such

as Nero or K3b under Linux. It can also be used as a virtual CD on most virtual machines.

Then boot from either a real or a virtual CD/DVD. After booting up, the environment is

exactly the same as that of booting from a floppy disk.

Example 1: BOOTERS/CD/emuFD demonstrates emulation-FD booting. It contains a

MTX system, MTXimage, based on MTX5.1 of Chapter 5. When creating a bootable CD

image, it is used as the emulation-boot image. Upon booting up from the CD, MTX runs

as if it had been booted up from a FD. As pointed out before, the MTX kernel can only

access the MTXimage on the CD as if it were a FD drive, but it cannot access anything

else on the CD.

3.5.1.2. Emulation-HD Booting

 Similarly, assume that hdimage is a single-partition hard disk image with a HD booter

installed in the MBR. Under Linux, use the sh command

 mkisofs -o /tmp/hcd.iso -v -d -R -J -N -b hdimage -hard-disk-booting -c boot.catalog .

to create a bootable CD image and burn the hcd.iso file to a CD/DVD disc. After booting

up, the environment is exactly the same as that of booting from the first hard disk.

Example 2: BOOTER/CD/emuHD demonstrates emulation-HD booting. In the emuHD

directory, hdimage is single-partition hard disk image. It contains a MTX system in

partition 1 and a MTX booter (hd-booter of Section 3.4.5) in MBR. In the example, the

hdimage is used as the hard-disk-boot image to create a bootable CDROM image. When

booting from the CDROM, the sequence of actions is identical to that of booting MTX

from a HD partition. When the MTX kernel runs, the environment is the same as that of

running from the C: drive. All I/O operations to the emulated hard disk use INT13-42

calls to BIOS. Again, the MTX kernel can only access the hdimage but nothing else on

the CDROM.

3.5.2. No-emulation CDROM Booting

 In no-emulation booting, if the loading requirements are simple, e.g. just load the OS

image to a segment in real-mode memory, then there is no need for a separate booter

because the entire OS image can be loaded by BIOS during booting.

3.5.2.1. No-emulation Booting of MTX

 Example 3: BOOTERS/CD/MTXCD demonstrates no-emulation booting of MTX. It

contains a MTX system, which is again based on MTX5.1. However, the MTX kernel is

modified to include an iso loader and a simple iso file system traversing program. The

MTX kernel is used as the no-emulation booting image. During booting, the entire MTX

kernel is loaded to the segment 0x1000 and runs from there. When the MTX starts to run,

it must create a process with a user mode image from a /bin/u1 file, which means it must

be able to read the CDROM contents. Loading the user mode image file is done by the

isoloader. The program cd.c supports basic iso9660 file system operations, such as ls, cd,

pwd and cat. These allow a process to navigate the file system tree on the CDROM. The

example is intended to show that a booted up OS kernel can access the CDROM contents

if it has drivers to interpret the iso file system on the CDROM.

3.5.2.2. No-emulation Linux Booter

 In no-emulation CDROM booting, a separate booter is needed only if the loading

requirements of an OS image are non-trivial, such as that of Linux. In the following, we

shall develop an iso-booter for booting Linux bzImage with initial RAM disk support

from CDROM. To do this, we need some background information about the iso9660 file

system, which are summarized below.

For data storage, CDROM uses 2048-byte sectors, which are addressed in LBA just

like HD sectors. The data format in an iso9660 file system represents what may be called

a masterpiece of legislative compromise. It supports both the old 8.3 filenames of DOS

and, with Rock Ridge extension, it also supports Unix-style filenames and attributes. To

accommodate machines using different byte orders, all multi-byte values are stored twice

in both little-endian and big-endian formats. To support international encoding, chars in

Joliet extension are stored in 16-bit Unicode. An iso9660 CDROM contains a sequence

of Volume Descriptors (VDs), which begin at sector 16. Each VD has a type identifier,

where 0=BOOT, 1=Primary, 2=Supplementary and 255=End of the VD table. Unix-style

files are under the supplementary VD, which contains, among other thing, the following

fields.
 u8 type = VD's type

 u32 type_l_path_table = start sector of Little_endian path_table

 u32 path_table_size = path_table size in bytes.

 root_directory_record = root DIR iso_directory_record

The steps of traversing a Unix-style file system on a CDROM are as follows.

1. From sector 16, read in and step through the Volume Descriptors to search for the

Supplementary VD (SVD), which has type=2.

2. SVD.root_directory_record is an iso_directory_record (DIR) of 34 bytes.

 struct iso_directory_record {

 unsigned char length;

 unsigned char ext_attr_length;

 char extent[8];

 char size[8];

 char date[7];

 unsigned char flags;

 char file_unit_size;

 char interleave;

 char volume_sequence_number[4];

 unsigned char name_len;

 char name[0];

 };

3. Multi-byte values are in stored in both little-endian and big-endian format. For

example, DIR.extent = char extent[8] = [4-byte-little-endian, 4-byte-big-endian]. To get

a DIR's extent (start sector), we may use u32 extent = *(u32 *)DIR.extent, which extracts

only the first 4 little-endian bytes. Similarly for DIR.size, etc.

4. In an iso file system, FILE and DIR records are identical. Therefore, entries in a

directory record are also directory records. The following algorithm shows how to search

for a name string in a DIR record.

/** Algorithm of search for fname string in DIR **/

DIR *search(DIR, fname)

 { sector = DIR.extent (begin sector# of DIR record);

 while(DIR.size){

 read sector into a char buf[2048];

 char *cp = buf; DIR *dp = buf; // both point at buf beginning

 while(cp < buf+2048){

 each record has a length, a name_len and a name in 16-bit

 Unicode. Convert name to ascii, then compare with fname;

 if (found) we actually have fname's RECORD;

 return DIR record (pointer);

 else advance cp by record length, pull dp to next record;

 } // until buf[] end

 DIR.size -= 2048; sector++;

 } // until DIR.size=0

 }

5. To search for the DIR record of a pathname, e.g. /a/b/c/d, tokenize the pathname into

component name strings. Start from the root DIR, search for each component name in the

current DIR. The steps are are similar to that of finding the inode of a pathname in an

EXT2/EXT3 file system.

6. If we allow .. in a pathname, we must be able to get the parent of the current DIR.

Similar to a Unix directory, the second entry in an iso9660 directory contains the extent

of the parent directory. For each .. entry we may either return the parent DIR's extent or a

DIR pointer to the second record. Alternatively, we may also search the path table to find

the parent DIR's extent. This method is left as an exercise.

 With this background information, we are ready to show the details of an iso-booter.

First, the iso.h file contains the types of volume descriptor, directory record and path

table. All entries are defined as char arrays. For ease of reference, arrays of size 1 are

redefined simply as char. The primary and supplementary volume descriptors differ in

only in 2 fields, flags and escape, which are unspecified in the former but specified in the

latter. Since these fields are irrelevant during booting, we only use the supplementary

volume descriptor. Both iso_directory_record and iso_path_table are open-ended

structures, in which the name field may vary, depending on the name_len. When stepping

through these records we must advance by the actual record length. Similarly, when

copying a directory record we must use memcpy(p1,p2, p2->length) to ensure that the

entire record is copied.

In the iso-booter, BOOTSEG is set to 0x07C0, rather than 0x9800. This is because

many older PCs, e.g. some Dell and IBM Thinkpad laptops, seem to ignore the -boot-

load-seg option and always load the boot image to the segment 0x07C0. For maximum

compatibility, the iso-booter is loaded to the segment 0x07C0 and runs from there

without relocation. This works out fine for Linux, which does not use the memory area

between 0x07C0 and 0x1000. The iso-booter's bs.s file is the same as that of the hd-

booter, with only a minor difference in the beginning part. When the iso-booter starts, it

is already completely loaded in and it does not need to relocate. However, it must use the

boot drive number passed in by BIOS, as shown below.

!------------------ iso-booter's bs.s file -------------------------

! In no-emulation booting, many PCs always load booted image to 0x07C0.

! Only some PCs honor the -boot-load-seg=SEGMENT option. So use 0x07C0

!--

 BOOTSEG = 0x07C0

 SSP = 32*1024

! .globls : SAME as in hd-booter

 .globl _drive ! boot drive# in C code, passed in DL

 jmpi start,BOOTSEG ! upon entry, set CS to BOOTSEG=0x07C0

start:

 mov ax,cs ! set other CPU segment registers

 mov ds,ax ! we know ES,CS=0x07C0. Let DS=CS

 mov ss,ax ! SS = CS ===> all point to 0x07C0

 mov es,ax

 mov sp,#SSP ! SP = 32KB

 mov _drive,dx ! save drive# from BIOS to _drive in C

 call _main ! call main() in C

! Remaining .s code: SAME AS in hd-booter but use the boot drive#

The iso-booter's C code and algorithms are also similar to the hd-booter. For the sake of

brevity, we only show the parts that are unique to the iso-booter. A complete listing of the

iso-booter code is in BOOTERS/CD/isobooter/ directory.

/*****************iso-booter's bc.c file **********************/

#define BOOTSEG 0x07C0

#include "iso.h" // iso9660 file types

#include "bio.c" // contains I/O functions

main()

{

 (1). initialize dap and vm_gdt for BIOS calls

 (2). find supplement Volume Descriptor to get root_dir_record

 (3). get linux bzImage filename to boot or use default=/vmlinuz;

 (4). load(filename);

 (5). loadrd("initrd.gz");

 (6). jmp_setup();

 }

}

/************* iso-booter's bootLinux.c file ***********************/

u32 bsector; // getnsector() base sector

u32 zsector, zsize; // bzImage's begin sector# & size

struct vmgdt { // same as in hd-booter }

init_vm_gdt(){ // same as in hd-booter }

// get nsectors from bsector+rsector to dp-segment

u16 getnsector(u16 rsector, u16 nsector);

{

 dp->nsector = nsector;

 dp->addr = (u16)0; // load to dp->segment:0

 dp->s1 = (u32)(bsector + (u32)rsector); // rsector = offset

 readcd(); // same as diskr() but use boot drive#

}

// loadimage() : load 32 CD-sectors to high memory

int loadimage(u16 imageStart, u32 imageSize)

{

 u16 i, nsectors;

 nsectors = imageSize/2048 + 1;

 i = imageStart;

 // load 32 CD sectors at a time to 0x1000; then cp2himem();

 while(i < nsectors){

 getnsector(i, 32);

 cp2himem(32*1024);

 gdtp->vm_addr += (u32)0x10000;

 putc('.');

 i += 32;

 }

}

// dirname() : convert DIR name in Unicode-2 to ascii in temp[]

char temp[256];

char *dirname(struct iso_directory_record *dirp)

{ int i;

 for (i=0; i<dirp->name_len; i+=2){

 temp[i/2] = dirp->name[i+1];

 }

 temp[dirp->name_len/2] = 0;

 return temp;

}

// search DIR record for name; return pointer to name's record

struct iso_directory_record *search(struct iso_directory_record *dirp,

char *name)

{

 char *cp, dname[256];

 int i, loop, count;

 u32 extent, size;

 struct iso_directory_record *ddp, *parent;

 printf("search for %s\n", name);

 extent = *(u32 *)dirp->extent;

 size = *(long*)dirp->size;

 loop = 0;

 while(size){

 count = 0;

 getSector(extent, rbuf);

 cp = rbuf;

 ddp = (struct iso_directory_record *)rbuf;

 if (strcmp(name,"..")==0){ // for .., return 2nd record pointer

 cp += ddp->length;

 ddp = (struct iso_directory_record *)cp;

 return ddp;

 }

 while (cp < rbuf + SECSIZE){

 if (ddp->length==0)

 break;

 strcpy(dname, dirname(ddp)); // assume supplementary VD only

 if (loop==0){ // . and .. only in the first sector

 if (count==0) strcpy(dname, ".");

 if (count==1) strcpy(dname, "..");

 }

 printf("%s ", dname);

 if (strcasecmp(dname, name)==0){ // ignore case

 printf(" ==> found %s : ", name);

 return ddp;

 }

 count++;

 cp += ddp->length;

 ddp = (struct iso_directory_record *)cp;

 }

 size -= SECSIZE;

 extent++;

 loop++;

 }

 return 0;

}

// getfile() : return pointer to filename's iso_record

struct iso_directory_record *getfile(char *filename)

{ int i;

 struct iso_directory_record *dirp;

 tokenize(filename); // same as in hd-booter;

 dirp = root;

 for (i=0; i<nnames; i++){

 dirp = search(dirp, name[i]);

 if (dirp == 0){

 printf("no such name %s\n", name[i]);

 return 0;

 }

 // check DIR type

 if (i < nnames-1){ // check DIR type but ignore symlinks

 if ((dirp->flags & 0x02) == 0){

 printf("%s is not a DIR\n", name[i]);

 return 0;

 }

 }

 }

 return dirp;

}

int load_rd(char *rdname) // load_rd() : load initrd.gz image

{

 u32 rdstart,rdsize; // initrd's start sector & size

 // (1). set vm_addr to initrd's loading address at 32MB

 dirp = getfile(rdname);

 rdstart = *(u32 *)dirp->extent; // start sector of zImage on CD

 rdsize = *(long *)dirp->size; // size in bytes

 // (2). load initrd image

 dp->segment = 0x1000;

 bsector = rdstart;

 loadimage((u16)0,(u32)rdsize);

 // (3). write initrd loading address and size to SETUP

}

int load(char *filename) // load() : load Linux bzImage

{

 struct iso_directory_record *dirp;

 dirp = getfile(filename);

 // dirp now points at bzImage's RECORD

 zsector = *(u32 *)dirp->extent; // start sector of bzImage on CD

 zsize = *(long *)dirp->size; // size in bytes

 /******* SAME AS in hd-booter except CD-sector size=2KB ******

 get number of 512-byte setup sectors in filename's BOOT sector

 load BOOT+SETUP to 0x9000

 set boot parameters in loaded BOOT+SETUP

 load kernel fraction sectors in SETUP to 1MB in high memory

 ***/

 // continue to load kernel 2KB CD-sectors to high memory

 dp->segment = 0x1000;

 loadimage((u16)setupBlks, (u32)zsize);

 load_rd("/initrd.gz"); // assume initrd.gz filename

 jmp_setup();

}

Under Linux, run mk to generate a boot image file iso-booter as before. Next, run

 mkisofs -o /tmp/iso-booter.iso -v -d -R -J -N -no-emul-boot \

 -boot-load-size 20 \ # (512-byte) sectors to load

 -b iso-booter \ # boot image file

 -c boot.catalog ./ # from files in current directory

to generate an iso image, which can be burned to a CD disc or used as a virtual CD.

3.5.3. Comparison with isolinux CDROM Booter

 isolinux [Sylinux project] is a CD/DVD Linux boot-loader. It is used in almost all

CD/DVD based Linux distributions. As an example, the bootable CD/DVD of Slackware

Linux 13.1 distribution contains

 |-- isolinux/ : isolinux.bin, isolinux.cfg, initrd.img

 /-- |-- kernels/ : huge.s/bzImage: bootable Linux bzImage file

 |-- slackware/ : Linux distribution packages

where isolinux.bin is the (no-emulation) booter of the CD/DVD. During booting,

isolinux.bin consults isolinux.cfg to decide which Linux kernel to load. Bootable Linux

kernels are in the kernels/ directory. The user may choose a kernel that closely matches

the target system hardware or use the default kernel. With a kernel file name, isolinux.bin

loads the kernel and the initial ramdisk image, initrd.img, which is compressed root file

system based on BusyBox. Then it executes SETUP. When the Linux kernel starts, it

mounts initrd.img as the root device.

Example 4. Replace isolinux booter with iso-booter: The iso-booter can be used to

replace the isolinux booter in a Linux distribution. As a specific example,

BOOTERS/CD/slackCD/ is a copy of the Slackware 13.1 boot CD but without the

installing packages of Linux. It uses the iso-booter of this book to generate a bootable iso

image. During booting, enter /kernels/bzImage as the kernel and /isolinux/initrd.img as

the initial ramdisk image. Slackware’s install environment should start up.

Example 5. Boot generic Linux bzImage with initrd.gz: In the BOOTERS/CD/linuxCD/

directory, vmlinuz is a generic Linux kernel, which must be booted with an initial

ramdisk image. The initrd.gz file is generated by the mkinitrd command using files in the

/boot/initrd-tree/ directory. The iso-booter can boot up a generic Linux kernel and load

the initrd.gz for the Linux kernel to start. Figure 4.19 shows the booting screen of the iso-

booter. It loads the Linux kernel to 1MB and initrd.gz to 16MB.

 Figure 3.19. CDOM iso-booter Screen

Example 6. Linux LiveCD: We can boot up a Linux kernel from a CD and let it run on

the CD directly. First, create a CD containing a base Linux system. Install the iso-booter

on the CD to boot up a generic Linux kernel with an initrd image. While running on the

ramdisk, load the isofs driver module. Then mount the CD and switch root file system to

the CD. Linux would run on the booting CD directly (albeit in read-only mode). This is

the basis of what's commonly known as a Linux LiveCD. For more information, the

reader may consult the numerous LiveCD sites on the Internet.

Example 7. MTX Install CD: The iso-booter is the booter of MTXinstallCD.iso. It boots

up a generic Linux kernel (version 2.6) and loads an initial RAM disk image, initrd.gz.

When Linux boots up, it runs on the RAM disk image, which is used to install MTX from

the CDROM.

3.6. USB Drive Booter

 USB drives are storage devices connected to the USB bus. From a user point of view,

USB drives are similar to hard disks. A USB drive can be divided into partitions. Each

partition can be formatted as a unique file system and installed with a different operating

system. To make a USB drive bootable, we install a booter to the USB drive's MBR and

configure BIOS to boot from the USB drive. On some PCs, e.g. HP and Compaq, the

USB drive must have a bootable partition marked as active. During booting, BIOS

emulates the booting USB drive as C: drive. The booting actions are exactly the same as

that of booting from a hard disk. The booted up environment is also the same as if booted

up from the first hard disk. Any booter that works for hard disk should also work for USB

drives. Therefore, USB booting is identical to hard disk booting. However, depending on

the booted up OS, there may be a difference. Usually, an OS that boots up from a hard

disk can run directly on the hard disk. This may not be true if the OS is booted up from a

USB drive. In the following, we use two specific examples to illustrate the difference.

3.6.1. MTX on USB Drive

MTX.bios is a MTX system which can be installed and run on either a floppy disk or a

hard disk partition. In MTX.bios, all I/O operations are based on BIOS. When running on

a FD, it uses BIOS INT13 to read-write floppy disk in CHS format. When running on a

HD, it uses INT13-42 to read-write hard disk sectors in LBA. The following example

shows how to install and run MTX.bios on a USB drive.

Example 7. /BOOTERS/USB/usbmtx demonstrates running MTX on a USB drive,

denoted by /dev/sda. If the PC’s HD is a SATA drive, change the USB drive to /dev/sdb.

First, run the sh script, install.usb.sh, to install MTX to a USB drive partition.

 mke2fs /dev/sda3 -b 1024 8192 # assume USB drive partition 3

 mount /dev/sda3 /mnt

 mount –o loop MTX.bios /tmp # mount MTX.bios

 cp -av /tmp/* /mnt

 umount /mnt; umount /tmp

Next, install hd-booter to the USB drive by
 dd if=hd-booter of=/dev/sda bs=16 count=27

 dd if=hd-booter of=/dev/sda bs=16 seek=1

Then boot from the USB drive under QEMU, as in

 qemu –hda /dev/sda

When the MTX kernel starts, it can access the USB drive through BIOS INT13-42 on

drive number 0x80. Since the environment is exactly the same as if running on a hard

disk, MTX will run on the USB drive.

3.6.2. Linux on USB Drive

 The last booting example is to create a so called "Linux Live USB". A live USB refers

to a USB drive containing a complete operating system, which can boot up and run on the

USB drive directly. Due to its portability and convenience, Linux live USB has received

much attention and generated a great deal of interests among Linux users in recent years.

The numerous "Linux live USB" sites and postings on the Internet attest to its popularity.

When it first started in the late 90's the storage capacity of USB drives was relatively

small. The major effort of earlier work was to create "small" Linux systems that can fit

into USB drives. As the storage capacity of USB drives increases, this is no longer a

restriction. At the time of this writing, 32 to 64 GB USB drives are very common and

affordable. It is now possible to install a full featured Linux system on a USB drive still

with plenty free space for applications and data. Most Linux live USB installations seem

to require a special setup environment, such as Linux running on a live CD. This example

is intended to show that it is fairly easy to create a Linux live USB from a standard Linux

distribution package. To be more specific, we shall again use Slackware Linux 13.1,

which is based on Linux kernel version 2.6.33.4, as an example. The Slackware Linux

distribution package consists of several CDs or a single DVD disc. The steps to create a

Linux live USB are as follows.

(1). Install Slackware 13.1 to a USB drive partition. Slackware 13.1 uses /dev/sda as the

primary hard disk. The USB drive should be named /dev/sdb. Install Linux to a USB

partition, e.g. /dev/sdb1, by following the installation procedures. Since our hd-booter can

boot from both EXT3 and EXT4 partitions, the reader may choose either EXT3 or EXT4

file system.

(2). After installing Linux, the reader may install LILO as the Linux booter. However,

when the Linux kernel boots up, it will fail to run because it cannot mount the USB

partition (8,17) as root device. As in CDROM booting, the missing link is again an initial

RAM disk image. The Linux kernel must run on a ramdisk first in order for it to install

the needed USB drivers and activate the USB drive. So the problem is how to create such

an initrd.gz file.

(3). While still in the installation environment, the USB partition is mounted on /mnt,

which already has all the Linux commands and driver modules. Enter the following

commands or run the commands as a sh script.

 cd /mnt; chroot /mnt # change root to /mnt

 # create initrd-tree with USB drivers

 mkinitrd -c -k 2.6.33.4 -f ext4 -r /dev/sdb1 –m crc16: \

 jbd2:mbcache:ext4:usb-storage:ehci-hcd:uhci-hcd:ohci-hcd

 echo 10 > /boot/initrd-tree/wait-for-root # write to wait-for-root

 mkinitrd # generate initrd.gz again

 # if install lilo as booter

 echo "initrd = /boot/initrd.gz" >> /etc/lilo.conf # append lilo.conf

 lilo # install lilo again

 # install hd-booter to USB drive

 # dd if=hd-booter of=/dev/sda bs=16 count=27

 # dd if=hd-booter of=/dev/sda bs=512 seek=1

 The above commands create a /boot/initrd.gz with USB driver modules in /boot of the

USB partition. In the directory /boot/initrd-tree/ created by mkinitrd, the default value of

wait-for-root is 1 second, which is too short for USB drives. If the value is too small,

initrc may be unable to mount the USB drive, leaving the Linux kernel stuck on the initial

ramdisk. Change it to a larger value, e.g. 10, to let the initrc process wait for 10 seconds

before trying to mount the USB partition. After booting up Linux, the reader may try

different delay values to suit the USB drive. Instead of LILO, the reader may also install

the hd-booter to the USB drive. Mount a CDROM or another USB drive containing the

above sh script and the hd-booter. Run the above sh script and install the hd-booter by

un-commenting the last two lines. Then boot from the USB drive. Linux should come up

and run on the USB drive.

3.7. Listing of Booter Programs

All the booters developed in this chapter have been tested on both real PCs and many

versions of virtual machines. The booter programs are in the BOOTERS directory on the

MTX install CD. Figure 3.20 shows a complete list of the booter programs.

 Figure 3.20. List of Booter Programs

 Problems
1. FD booting:

(1). Assume that a one-segment program is running in the segment 0x1000.

 What must be the CPU's segment registers?

(2). When calling BIOS to load FD sectors into memory, how to specify the memory

address?

(3). In getblk(u16 blk, char buf[]), the CHS parameters are computed as
 (C,H,S)=((2*blk)/36, ((2*blk)%36)/18, ((2*blk)%36)%18);

The conversion formula can be simplified, e.g. C = blk/18, etc. Try to simplify the CHS

expression. Write a C program to verify that your simplified expressions are correct, i.e.

they generates the same (C,H,S) values as the original algorithm.

2. Assume: The loading segment of MTX is 0x1000. During booting, BIOS loads the first

512 bytes of a 1KB MTX booter to the segment 0x07C0. The booter should run right

where it is first loaded, i.e. in the segment 0x07C0 without relocation.

 (1). What must the booter do first?

 (2). How to set the CPU's segment registers?

 (3). What's the maximum run-time image size of the booter?

3. On the MTX install CD, OneFDlinux.img is an EXT2 file system containing a

bootable Linux zImage in the /boot directory.

(1). Using it as a virtual FD, verify that Linux can boot up and run on the same FD.

(2). Replace the booter in Block 0 with a suitable Linux booter developed in this chapter.

4. Prove that when loading FD sectors into memory, we can load at most 4 consecutive

sectors without crossing either cylinder or 64KB boundaries.

5. Modify the FD booter that uses the cross-country algorithm to load by tracks.

6. Ramdisk Programming: Assume: A MTX boot FD contains
 |booter|MTX kernel image|ramdiskImage|

 where ramdiskImage in the last 128 blocks is a root file system for the MTX kernel.

When the MTX kernel starts, it loads the ramdiskImage to the segment 0x8000. Then the

MTX kernel uses the memory area between 0x8000 to 0xA000 as a ramdisk and runs on

the ramdisk. Wrtie C code for the functions

 getblk(u16 blk, char buf[1024]) / putblk(u16 blk, char buf[1024])

which read/write a 1KB block from/to the ramdisk. HINT: use get_word()/put_word().

7. Under Linux, write a C program to print all the partitions of a hard disk.

8. Write a C program, showblock, which prints all the disk block numbers of a file in an

EXT4 file system. The program should run as follows.

 showblock DEVICE PATHNAME

 e.g. showblock /dev/sda2 /a/b/c/d # /dev/sda2 for SATA hard disk partition 2

9. Assume that /boot/osimage is a bootable OS image. Write a C program, which finds

the disk blocks of the OS image and store them in a /osimage.blocks file. Then write a

booter, which simply loads the disk blocks in the /osimage.blocks file. Such a booter may

be called an offline booter. The Linux boot-loader, LILO, uses this scheme. Discuss the

advantages and disadvantages of off-line booters.

10. When booting a Linux bzImage, if the Linux kernel does not begin at a block

boundary, loading the Linux kernel is rather complex. Given a Linux bzImage, devise a

scheme which makes the Linux kernel always begin at a block boundary.

12. Modify the hd-booter to accept input parameters. For example, when the booter starts,

the user may enter an input line

 kernel=/boot/newvmlinuz initrd=/boot/initrd.gz root=/dev/sda7

where each parameter is of the form KEYWORD=value.

13. Modify the hd-booter to allow symbolic-link filenames for initrd.gz in the hd-booter.

14. The iso-booter does not handle symbolic-link filenames. Modify the C code to allow

symbolic links.

15. Use the path table of an iso9660 file system to find the parent directory record.

16. USB booting: In some USB drives, a track may have less than 20 sectors. The hd-

booter size is just over 10KB. How to install the hd-booter to such USB drives?

Use the hd-booter and a Linux distribution package, e.g. Slackware 14.0, to create a

Linux Live USB.

17. The ultimate version of MTX supports SMP in 32-bit protected mode, which is

developed in Chapter 15 of this book. The bootable image of a SMP_MTX is a file

consisting of the following pieces:
 Sector 0 1 2 3 | 4

 |BOOT|SETUP| APentry | MTX kernel |

where APentry is the startup code of non-boot processors in a SMP system. During

booting, the booter loads BOOT+SETUP to 0x90000, APentry to 0x91000, and the MTX

kernel to 0x10000. After loading completes, it sends the CPU to execute SETUP at

0x90200. Modify the MTX booter for booting SMP_MTX images.

18. Write a loader for loading a.out files into memory for execution. When loading an

a.out file, it is more convenient to load the file by blocks. Assume that a one-segment

a.out file (with header) is loaded at the segment address 0x2000, and it should run in that

segment.

(1). How to set up the CPU's segment registers?

(2). Show how to eliminate the 32-byte header after loading a.out to a segment.

 References

1. BusyBox: www.busybox.net

2. GNU GRUB Project: www.gnu.org/software/grub/

3. Cao, M., Bhattacharya, S, Tso, T., "Ext4: The Next Generation of Ext2/3 File system",

IBM Linux Technology Center, 2007.

4. Comer, D.E., "Internetworking with TCP/IP: Principles, Protocols, and Architecture,

3/E", Prentice-Hall, 1995.

5. Comer,D.E., Stevens,D.L., "Internetworking With TCP/IP: Design, Implementation,

and Internals, 3/E", Prentice-Hall, 1998.

http://www.busybox.net/
http://www.gnu.org/software/grub/

6. Jones, M.T, "Linux initial RAM disk (initrd) overview", IBM developerworks, linux,

Technical library, 2006

7. Slakware Linux: slackware.osuosl.org/slackware/README.initrd

8. Standard ECMA-119, Volume and File Structure of CDROM for Information

Interchange,2nd edition, December 1987.

9. Syslinux project, www.syslinux.org

10. Stevens, C.E, Merkin, S. The "El Torito" Bootable CD-ROM Format Specification,

Version 1.0, January, 1995

 Chapter 3 Figure Captions

Figure 3.1. Bootable FDs by Contents

Figure 3.2 . A simple Bootable FD layout

Figure 3.3. Bootable FD with RAM disk Image

Figure 3.4. FD with EXT2 file system and MTX kernel

Figure 3.5. Hard Disk Partitions

Figure 3.6. CD/DVD Boot Options

Figure 3.7. MTX Boot Disk layout

Figure 3.8. Run-time image of booter

Figure 3.9. Linear Sector and CHS addressing

Figure 3.10. Booting Screen of MTX.sector Booter

Figure 3.11. Bootable Linux Image

Figure 3.12. Linux Boot Disk layout

Figure 3.13. Single-FD Linux running on Ramdisk

Figure 3.14. Booting Linux by Loading Cylinders

Figure 3.15. Booting MTX from a File System

Figure 3.16. Booting Linux from a File System

Figure 3.17. Link List of Extended Partitions

Figure 3.18. Booting Linux bzImage with initrd from EXT4 Partition

Figure 3.19. CDOM iso-booter Screen

Figure 3.20. List of Booter Programs

