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Abstract 

The stress and fracture analysis of multilayered materials and structures 

containing crack-like defects is of interest in many research areas, such as 

composites, bio-mechanics, and geomechanics, and engineering applications, such 

as coatings, electronics, and adhesive joints. The main objective of this thesis is to 

further develop a general methodology and utilise it for the examination of fracture 

problems in multilayered materials. The general methodology is based upon the 

distributed dislocation technique and edge dislocation solutions obtained within 

the framework of plane theory of linear elasticity.  This methodology has been 

shaped by the seminal contributions of many researchers over the past fifty years 

and currently represents a powerful tool for the analysis of crack problems.  

New theoretical models and techniques are developed in the present thesis 

for a range of multi-disciplinary problems utilising the adopted methodology. The 

research gaps and objectives are formulated specifically for each problem and 

discussed in separate chapters of this thesis. The solution of each of these 

problems represents an original and substantial contribution towards the respective 

area of research. The significant outcomes of this thesis include: a new approach 

for the analysis of reinforced cracks in layered media, a new mechanism for height 

control of hydraulic fractures in layered hydrocarbon reservoirs, and a new 

predictive model for skier-triggered avalanches. 

The original contributions of this thesis also include a new fundamental 

solution for an interfacial edge dislocation, which recovers all previously 

published solutions for edge dislocations in isotropic multilayered media. The 

obtained solution can be utilised to derive the governing integral equations for a 

wide variety of quasi-static crack problems in linearly elastic and isotropic 

multilayered materials, without any restrictions on the crack orientation or number 

of elastic layers. Therefore, the newly obtained solution further extends the general 
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methodology to effectively solve a wide class of fracture problems in multilayered 

materials and structures. 

This thesis is presented in the form of a compendium of publications in 

high impact specialist journals. The main body of the thesis contains four articles 

which are united by the above mentioned theme and methodology. Three 

appendices are also included, which represent a compilation of the candidate’s 

publications on related topics. A complete publication list is provided in the 

forthcoming pages. 
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Chapter 1 

Introduction 

In this introductory chapter, an overview of multilayered materials and 

structures is presented, focussing on their engineering applications and prevalence 

in nature. It is highlighted that the stress and fracture analysis of these materials 

and structures is important in a number of engineering and research contexts. The 

fracture mechanisms of multilayered media as well as the common methods for the 

solution of crack problems are also reviewed. Descriptive summaries of the 

subsequent chapters are presented to highlight the specific research gaps addressed 

in each chapter of this thesis. 

1.1 Multilayered materials 

Multilayered materials and structures find a variety of applications in 

modern engineering. For example, composite laminates, which are formed by 

stacking several layers of fiber-reinforced plies, are increasingly used in the design 

of various structural components across many industries. Composite laminates 

offer many advantages in comparison with traditional structural materials. These 

include high strength combined with low weight, improved stiffness and durability 

(Reddy, 2004). Other advantages include better manufacturability, which is 

important in the fabrication of aerodynamically-efficient shapes for aerospace and 

automotive applications (Soutis, 2005). Additionally, the layered arrangement 

readily permits for the integration of actuators, smart sensors, processors and 

interconnections within the composite laminates, transforming them into 

“intelligent structures” (Crawley, 1994).  

https://dx.doi.org/10.1016/j.paerosci.2005.02.004
https://dx.doi.org/10.2514/3.12161
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Another important category of multilayered media is protective surface 

coatings for structures operating in a harsh environment. Examples include the 

wear-resistant coatings for machining and cutting tools (Dolinšek et al., 2001), 

anticorrosive coatings used in construction and marine applications (Sørensen et 

al., 2009) and thermal barrier coatings in gas turbine engines, nuclear power 

plants, space shuttles, etc. (Nguyen et al., 2010; Miller, 1987). The application of 

protective coating can significantly increase the lifespan and integrity of the 

structures without increasing their weight and cost (Stern, 1996).  

In other engineering applications, multilayered structures are selected for 

reasons other than the strength and durability considerations. These include 

periodically layered mechanical filters for vibration isolation (Zhuang et al., 2003; 

Sackman et al., 1989), piezoelectric multilayer actuators (Pritchard et al., 2001) 

and microelectromechanical systems or MEMS (Dunn et al., 2002). These 

structures may face integrity problems due to the mismatch in material properties 

and experience failure under thermal or electro-magnetic loading. 

Multilayered arrangements are also prevalent in nature, ranging in length 

scale from a few micrometres to several kilometres. Hierarchical biological 

materials, such as sea shells, glass sponges, nacre and tooth enamel, possess a 

layered microstructure (Dunlop and Fratzl, 2010). An understanding of the unique 

toughening mechanisms of these biological materials has led to the development 

of a new class of bio-inspired synthetic composites, which possess a combination 

of high strength and toughness (Mirkhalaf et al., 2014; Walley et al., 2012; 

Barthelat and Zhu, 2011; Espinosa et al., 2011; Bonderer et al., 2008; Munch et 

al., 2008; Podsiadlo et al., 2007; Tang et al., 2003).  

Geological materials, such as sedimentary rocks, soil, ice and snow also 

display a multilayered or stratified arrangement on the macro-scale (Reading, 

1996). Sedimentary rocks are exploited for natural resources like coal, fossil fuels 

and mineral ores and the study of the sequence of strata in sedimentary rock and 

https://dx.doi.org/10.1016/S0043-1648(01)00620-2
https://dx.doi.org/10.1007/s11998-008-9144-2
https://dx.doi.org/10.1007/s11998-008-9144-2
https://dx.doi.org/10.4028/www.scientific.net/KEM.417-418.197
https://dx.doi.org/10.1016/0257-8972(87)90003-X
https://dx.doi.org/10.1016/S0022-5096(02)00100-X
https://dx.doi.org/10.1115/1.3265634
https://dx.doi.org/10.1179/bct.2001.100.6.265
https://dx.doi.org/10.1109/JMEMS.2002.800932
https://dx.doi.org/10.1146/annurev-matsci-070909-104421
https://dx.doi.org/10.1038/ncomms4166
https://dx.doi.org/10.1088/1748-3182/7/4/046004
https://dx.doi.org/10.1557/jmr.2011.65
https://dx.doi.org/10.1038/ncomms1172
https://dx.doi.org/10.1126/science.1148726
https://dx.doi.org/10.1126/science.1164865
https://dx.doi.org/10.1126/science.1164865
https://dx.doi.org/10.1126/science.1143176
https://dx.doi.org/10.1038/nmat906
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ice sheets is the main source of scientific knowledge about the Earth's history 

(Boggs, 2006). The layered structure of soils and sedimentary rocks is an 

important consideration in the design of foundations and other sub-surface 

structures (Hansbo, 1994).  

To improve the reliability, integrity and fracture resistance of engineering 

multilayered structures, an understanding of their mechanical behaviour and 

fracture mechanisms is required. This understanding is also essential in the 

interpretation and forecasting of natural events such as snow avalanches, 

mudslides or fault propagation in rocks. In the next section, common fracture 

mechanisms of multilayered materials are briefly reviewed. 

1.2 Fracture mechanisms in multilayered materials 

The fracture of materials is generally considered from two different points of 

view (Erdogan, 1972). In the first approach, the failure conditions of the structure 

are estimated by using probabilistic strength theories, which assume that the 

material is statistically homogeneous and the existing imperfections (which are 

unavoidable) are randomly distributed. In the second approach, one is interested in 

the initiation of fracture from ‘localized’ imperfections, which are known, or 

assumed, to exist in the material. This approach is deterministic in nature and the 

fracture conditions are identified by an appropriate equality or criterion. In this 

criterion, a calculated fracture controlling parameter, such as stress intensity 

factor, is compared with the corresponding material constant obtained 

experimentally. Problems belonging to the second category are of interest in this 

thesis. 

The ‘localized’ defects or imperfections found in multilayered materials are 

typically in the form of voids, cracks and inclusions. In composite laminates, 

delamination is the most intrinsic form of localized damage and can be formed as 

an intra-layer crack, or as an interfacial crack between two adjacent layers of the 

laminate (Garg, 1988). Delamination damage can be introduced at the 

http://dx.doi.org/10.1016/0013-7944(72)90018-5
https://dx.doi.org/10.1016/0013-7944(88)90181-6
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manufacturing stage due to improper curing or as a result of machining operations 

for creating fastener holes and cut-outs in the laminates (Ho-Cheng and Dharan, 

1990). During operation, these defects may be caused by low speed impact e.g. 

dropped tools (Lin and Lee, 1990), thermal fatigue loading or differential swelling 

of layers in the presence of moisture (Evans and Hutchinson, 2007; Teh, et al. 

2005).  

Depending on the structural loading, delamination may or may not be a 

critical failure mode. In composite laminates, which are designed to carry large in-

plane stresses and negligible transverse or interlaminar stresses, delamination is 

usually a secondary failure mode leading to the overall reduction in strength and 

stiffness of the component as well as promoting out-of-plane buckling under 

compression (Short et al., 2002; Melin and Schon, 2001; Gaudenzi, 1997; Bolotin 

1996; Nilsson et al., 1993; Hutchinson and Suo, 1991). In the case of layered snow 

covers on mountain slopes, significant transverse shear stresses exist due to 

gravitational loads and the delamination of weak interfaces under skier loading has 

been linked to triggering of avalanches (Schweizer and Camponovo, 2001; 

McClung and Schweizer, 1999).  

When transverse cracking is the predominant failure mode, multilayered 

structures can exhibit a higher resistance to fracture than their homogenous 

constituents. This is attributed to different toughening mechanisms, such as the 

deflection and branching of the transverse crack at interfaces and crack-tip 

blunting within ductile layers. These toughening mechanisms are responsible for 

the remarkable fracture resistance of some biological materials, such as nacre, 

tooth enamel and mollusc shells (Fratzl et al., 2007; Menig et al., 2000). These 

toughening mechanisms also play an important role in propagation, arrest and 

containment of fluid driven fractures, such as dykes, mineral veins, pressurised 

joints and man-made hydraulic fractures in subterranean rocks (Philipp et al., 

2013; Gudmundsson et al., 2010; Lam and Cleary, 1984). To prevent structural 

failure by transverse cracking, multilayered composite structures can also be 

https://dx.doi.org/10.1115/1.2899580
https://dx.doi.org/10.1115/1.2899580
https://dx.doi.org/10.1177/002199839002401105
https://dx.doi.org/10.1016/j.surfcoat.2007.03.029
https://dx.doi.org/10.1109/TCAPT.2005.848572
https://dx.doi.org/10.1109/TCAPT.2005.848572
https://dx.doi.org/10.1016/S0263-8223(02)00052-1
https://dx.doi.org/10.1016/S0266-3538(01)00085-9
https://dx.doi.org/10.1016/S0263-8223(98)80017-2
https://dx.doi.org/10.1016/1359-8368(95)00035-6
https://dx.doi.org/10.1016/1359-8368(95)00035-6
https://dx.doi.org/10.1016/0022-5096(93)90025-B
http://www.seas.harvard.edu/hutchinson/papers/416.pdf
http://www.slf.ch/ueber/mitarbeiter/homepages/schweizj/publications/Schweizer_Camponovo_SkierTriggering_AnnGlaciol32_2001.pdf
http://www.wsl.ch/info/mitarbeitende/schweizj/publications/McClung_Schweizer_Skier_triggering_1999.pdf
https://dx.doi.org/10.1002/adma.200602394
https://dx.doi.org/10.1016/S1359-6454(99)00443-7
https://dx.doi.org/10.3389/feart.2013.00004
https://dx.doi.org/10.3389/feart.2013.00004
https://dx.doi.org/10.1016/j.jsg.2009.08.013
https://dx.doi.org/10.1002/nag.1610080607
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designed to promote crack deflection at interfaces (Li, 2000; Gupta et al., 1992; He 

and Hutchinson, 1989) or crack-tip blunting in ductile layers (Zechner and 

Kolednik, 2013; Markaki and Clyne, 2002).  

1.3 Numerical solution techniques 

The analysis of crack problems in multilayered media, such as those 

mentioned above, often requires the use of numerical techniques. The accurate 

analysis of stresses in multilayered structures is challenging (Pagano, 1978) and in 

the presence of cracks, there is the additional complexity of correctly modelling 

the singular behaviour at the crack tip.  

The finite element method presents an attractive approach for modelling 

crack problems in multilayered structures. However, the implementation of 

standard FE techniques requires the entire domain of the problem geometry to be 

discretised, which can be computationally expensive and often impractical in the 

case of multilayered structures composed of a large number of layers. Mesh 

refinement is required to capture the high stress gradients around material 

interfaces and other stress concentrators, which adds to the computational cost. 

Another shortcoming of the finite element method is that the conventional singular 

finite elements do not explicitly account for the different strengths of singular 

behaviour as well as the possible oscillatory nature of the near crack tip stress and 

displacement field, which can occur at bimaterial interfaces (Suo, 1990; Bogy, 

1971; Williams, 1959). As a result, the relevant fracture parameters can only be 

estimated using a highly refined mesh, which is both computationally expensive 

and error-prone (Raju, 1987). Recent developments in the element formulations 

addressing these shortcoming are reviewed in Carrera and Demasi (2002), Cho and 

Averill (2000), and Her (2000). However, even with the advanced formulations a 

benchmarking solution is still required to verify FE calculations.  

An alternative approach to the solution of crack problems in multilayered 

materials is the distributed dislocation technique (DDT). In this approach, which 

https://dx.doi.org/10.1023/A:1007603809972
https://dx.doi.org/10.1115/1.2899511
https://dx.doi.org/10.1016/0020-7683(89)90021-8
https://dx.doi.org/10.1016/0020-7683(89)90021-8
https://dx.doi.org/10.1016/j.engfracmech.2012.11.007
https://dx.doi.org/10.1016/j.engfracmech.2012.11.007
https://dx.doi.org/10.1016/S0921-5093(01)01344-2
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https://dx.doi.org/10.1016/0013-7944(87)90220-7
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will be described further in the next chapter, only the crack boundary needs to be 

discretised and the exact nature of the stress singularity can be built into the 

solution of the governing integral equations (Hills et al., 1996; Erdogan et al., 

1973). Material anisotropy can also be included in the formulation at the expense 

of mathematical complexity and increased computational effort (Chen and 

Pindera, 2006; Azhdari et al., 2000; Pindera, 1991). Although the analysis of 

multilayered media using DDT is still quite challenging, this method is more 

efficient than the finite element analysis, specifically when parametric 

investigations need to be conducted or benchmarking solutions are required. 

During the 1970s, Erdogan and co-workers pioneered the application of the 

DDT and provided the integral equation formulations for a variety of crack 

problems in multilayered materials, some of which are reviewed in Erdogan 

(1972). Hutchinson and co-workers also utilised this approach to consider the 

problems of crack path selection in two or three layered systems composed of 

isotropic or orthotropic layers and their results are summarised in Hutchinson and 

Suo (1991). The present work builds upon the seminal contributions of past 

researchers and utilises DDT to examine a set of crack problems in multilayered 

media, which have not been considered previously.  

Other numerical techniques in which only the boundaries of the problem 

geometry need to be discretised include the boundary collocation method and the 

boundary element method. These methods are not reviewed here and the reader is 

referred to Aliabadi and Rooke (1991). 

1.4 Methodology and details of publications 

The methodology implemented throughout the thesis is based on the 

systematic application of DDT for the analysis of crack problems in multilayered 

media. Although the adopted methodology is quite general, the scope of the 

present research is restricted to the examination of quasi-static crack problems in 

linearly elastic and isotropic multilayer materials and structures. 

http://dx.doi.org/10.1115/1.2201883
http://dx.doi.org/10.1115/1.2201883
https://dx.doi.org/10.1016/S0020-7683(99)00137-7
https://dx.doi.org/10.1016/0961-9526(91)90028-Q
http://dx.doi.org/10.1016/0013-7944(72)90018-5
http://dx.doi.org/10.1016/0013-7944(72)90018-5
http://www.seas.harvard.edu/hutchinson/papers/416.pdf
http://www.seas.harvard.edu/hutchinson/papers/416.pdf
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The problems under consideration in the present thesis are diverse and multi-

disciplinary in nature. For this reason, research gaps and objectives are formulated 

within each chapter rather than identifying a set of global research objectives at the 

outset. The order in which these chapters are presented has been chosen to best 

show the progression of the research, which involves the derivation and validation 

of a new dislocation solution (Chapter 3) and the development of new theoretical 

models using DDT (Chapters 4-6). Brief summaries containing the context, 

specific research gaps, method and outcomes of each of the articles are provided 

next. 

Chapter 3: The stress field due to an interfacial edge dislocation in a multilayered 

medium 

This chapter is concerned with the development and validation of a new 

fundamental solution for an interfacial edge dislocation which can be applied 

within the framework of DDT to analyse crack problems in general multilayered 

media without any restrictions on the crack orientation and number of layers. 

Currently available integral equation formulations for general multilayered 

materials can only be applied for the analysis of delamination problems, in which 

the cracks are located along or parallel to the interfaces (Chen and Pindera, 2006; 

Kucherov and Ryvkin, 2002; Erdogan and Gupta, 1971a, 1971b). The analysis of 

arbitrarily oriented, kinking or branching cracks using the distributed dislocation 

approach is limited to the rather simple case of a bimaterial medium i.e. an elastic 

medium composed of two perfectly bonded and dissimilar elastic half planes (Hills 

et al, 1996; Hutchinson and Suo, 1991; Erdogan, 1972).  The obtained solution 

addresses these shortcomings and can be applied to all of the above mentioned 

situations.   

The complex potential method of Muskhelishvili and Fourier transform 

techniques are applied to obtain the new solution. The multilayered medium under 

consideration is composed of perfectly bonded, linearly elastic and isotropic 

http://dx.doi.org/10.1115/1.2201883
http://dx.doi.org/10.1023/A:1020914902780
https://dx.doi.org/10.1016/0020-7683(71)90017-5
http://dx.doi.org/10.1016/0020-7683(71)90082-5
http://www.seas.harvard.edu/hutchinson/papers/416.pdf
http://dx.doi.org/10.1016/0013-7944(72)90018-5
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layers. The obtained solution recovers all previous solutions for embedded or 

interfacial edge dislocations in isotropic layered media (Kuo, 2014; Savage, 1998; 

Kelly et al., 1995; Fleck et al., 1991; Suo and Hutchinson, 1990; Comninou and 

Dundurs, 1983; Lee and Dundurs, 1973). Within the DDT framework, the current 

solution is employed to derive the governing singular integral equations for an 

interfacial crack in an arbitrary multilayered medium. The results obtained by 

Kucherov and Ryvkin (2002) and Erdogan and Gupta (1971b) for specific 

geometries are recovered from the appropriate solutions of the governing singular 

integral equations. 

The edge dislocation solution and the governing singular equations 

developed in this chapter generalise the specific approaches developed in the 

following chapters. For example, Chapters 4 and 5 utilise the solution for an edge 

dislocation in an elastic layer obtained by Fleck et al. (1991). The more general 

solution presented in this chapter recovers the latter solution in its exact form. A 

new screw dislocation solution presented in Chapter 6 was also obtained using the 

approach developed in this chapter.    

Chapter 4: Stress analysis of a crack in a fiber-reinforced layered composite 

In this chapter, the plane elasticity problem of an elastic layer bonded to two 

dissimilar elastic half-planes is considered. The elastic layer contains an embedded 

crack, which is oriented perpendicular to the interfaces and reinforced by bridging 

fibers. The problem of a crack reinforced by bridging tractions has been examined 

previously in the context of fiber-reinforced composites (Budiansky et al., 1986; 

Marshall et al., 1985) and also in the context of crack repair by adhesively bonded 

composite patches (Rose, 1982). However, the problem of a reinforced crack in a 

layered medium has not been examined previously. The latter problem may arise, 

for example, in structural engineering applications where one needs to estimate the 

residual strength of a fiber-reinforced cement structure containing a macroscopic 

http://dx.doi.org/10.1016/j.ijsolstr.2013.12.032
http://dx.doi.org/10.1029/97JB02562
http://dx.doi.org/10.1088/0022-3727/28/3/013
http://dx.doi.org/10.1016/0020-7683(91)90069-R
http://dx.doi.org/10.1007/BF00018123
http://dx.doi.org/10.1016/0013-7944(83)90142-X
http://dx.doi.org/10.1016/0013-7944(83)90142-X
http://dx.doi.org/10.1016/0020-7225(73)90071-2
http://dx.doi.org/10.1023/A:1020914902780
http://dx.doi.org/10.1016/0020-7683(71)90082-5
http://dx.doi.org/10.1016/0020-7683(91)90069-R
https://dx.doi.org/10.1016/0022-5096(86)90035-9
https://dx.doi.org/10.1016/0001-6160(85)90124-5
https://dx.doi.org/10.1007/BF00019638
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defect near the free surface or near a bonded interface with another steel structure 

(Shah and Ouyang, 1991).  

The DDT is used to formulate the crack problem and the displacement-

dependant bridging tractions along the crack faces are incorporated into the 

governing singular integral equation. The Gauss-Chebyshev quadrature is applied 

to reduce the singular integral equation to a system of non-linear algebraic 

equations and the Newton-Raphson iterative scheme is implemented to obtain a 

numerical solution to the resulting system of non-linear algebraic equations. 

The dependence of the critical applied stress required to initiate matrix 

fracture and fiber failure upon the mismatch in elastic properties is established 

though a parametric study. It is demonstrated that any reduction in failure stress 

due to material mismatch can be alleviated by increasing the bridging traction on 

the crack faces, for example, by increasing the volume fraction of the fibers or by 

selecting fibers with greater stiffness. 

Chapter 5: Height control of multiple hydraulic fractures in layered media 

This chapter is related to the hydraulic fracturing of hydrocarbon bearing 

rock layers. In particular, the problem of height containment of multiple hydraulic 

fractures emanating from a horizontal wellbore is considered. Horizontal well 

drilling is a key production technology for extracting hydrocarbons from thin 

reservoirs situated in layered rock formations (Joshi, 1991) and the horizontal 

wells are often fractured at multiple sites to enhance the production rate from these 

reservoirs (Economides and Martin, 2010). It is desirable to contain the hydraulic 

fractures within the target layer, since uncontrolled fracture growth diminishes the 

overall efficiency of the fracturing treatment and affects the environment 

negatively (Warpinski et al., 1982).  

Several mechanisms for fracture height control have been examined 

previously, focussing on a single hydraulic fracture emanating from a vertical 

https://dx.doi.org/10.1111/j.1151-2916.1991.tb06836.x
http://dx.doi.org/10.2118/134424-MS
http://dx.doi.org/10.2118/8932-PA
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wellbore (Cleary, 1980). However, the more practical problem, which involves 

multiple closely-spaced hydraulic fractures, has not received much attention. To 

address this gap, the plane problem of an elastic layer containing multiple 

equidistant cracks and bonded to dissimilar elastic half-planes is considered and 

fracturing fluid pressure control is proposed as a possible mechanism for height 

control during hydraulic fracturing. The theoretical model is based on DDT and it 

incorporates not only the effect of mismatch in elastic properties between the 

reservoir and the bounding layers, but also the interaction effect between the 

neighbouring cracks.  

It is demonstrated that when the fracture spacing becomes comparable to the 

fracture height, the interaction between the fractures produces a shielding effect. In 

this case, the fracturing fluid pressure that ensures fracture containment is greater 

and the fracture opening is smaller, in comparison to the case of a single isolated 

fracture. The dependence of the fracturing fluid pressure and fracture opening 

upon the fracture spacing is established through dimensionless parametric studies 

as well as case studies. The obtained results can assist in the selection of the 

fracture spacing and proppant size for a fracturing treatment involving multiple 

hydraulic fractures. 

Chapter 6: A new predictive model for the onset of skier-triggered avalanches 

This chapter is concerned with the onset conditions for skier-triggered dry 

snow slab avalanches in stratified snow slopes. Dry snow slab avalanches involve 

the release of large volumes of cohesive snow that slide down the mountain slope 

and often lead to fatalities and property damage. Such avalanches originate from 

localized initial failure in a weak layer beneath the cohesive snow slab followed by 

rapid crack propagation within this weak layer (van Herwijnen and Jamieson, 

2007; Schweizer et al., 2003).  

Several previous models for the fracture failure of the weak layer assume the 

failure initiation to occur in mode II from a pre-existing defect or deficit zone 

http://dx.doi.org/10.2118/9260-MS
https://dx.doi.org/10.1016/j.coldregions.2007.02.004
https://dx.doi.org/10.1016/j.coldregions.2007.02.004
https://dx.doi.org/10.1029/2002RG000123
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(Bažant et al., 2003; Bader and Salm, 1990; McClung, 1979, 1981). In this 

chapter, any assumptions regarding pre-existing defects of unknown shape are 

avoided. Instead, it is suggested that crack-like defects of high aspect-ratio may be 

generated under skier loading as a result of ‘localized’ weak layer failure. The high 

aspect-ratio of the skier induced defect would promote the failure initiation of the 

weak layer in mode III rather than in mode II. 

All existing models for the onset of snow avalanches are based on beam 

theories and energy balance equations, which, strictly speaking, are only 

applicable when the defect length is significantly greater than the slab thickness. 

However, these models predict a critical defect size of the order of 0.1 – 10 m, 

which is of the same order of magnitude as the thickness of the snow slab obtained 

from several field observations (Perla, 1977). This contradicts the basic 

assumptions of beam theories.  

In this chapter, a new model based on the DDT is developed to address the 

above discussed shortcomings. The anti-plane problem of an elastic layer bonded 

to a rigid substrate and containing an embedded crack parallel to the interface is 

considered and the critical crack length is evaluated using the brittle fracture 

criterion. The solution for a screw dislocation in the same geometry is utilised to 

develop the governing integral equation and the solution approach is analogous to 

the approach developed in Chapter 3 for an interfacial edge dislocation in a 

multilayered medium. The size of the skier-induced defect is evaluated from the 

solution for a concentrated line load acting normal to the surface of an elastic layer 

bonded to a rigid substrate in conjunction with a simple compressive failure 

criterion. For a range of values of the snowpack properties, the critical defect size 

is compared with the size of the skier-induced defect to identify conditions 

favourable for avalanche onset. 

https://dx.doi.org/10.1029/2002JB001884
https://dx.doi.org/10.1016/S0165-232X(05)80007-2
https://dx.doi.org/10.1029/JB084iB07p03519
https://dx.doi.org/10.1029/JB086iB11p10783
https://dx.doi.org/10.1139/t77-021
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1.5 Concluding remarks 

In this introductory chapter, the overall significance of the undertaken 

research was highlighted. A chapter-wise summary of the specific research gaps 

addressed in this thesis was also provided. The research methodology is elaborated 

further in the next chapter, in which the fundamentals of LEFM and DDT are 

presented. 
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Chapter 2 

Background on LEFM and DDT 

In the present chapter, a brief overview of the key concepts of Linear Elastic 

Fracture Mechanics (LEFM) and interfacial fracture mechanics is provided and the 

general approach for the solution to crack problems using the Distributed 

Dislocation Technique (DDT) and dislocation solutions is described. Although the 

present chapter intends to provide the necessary background information on the 

methodology adopted in this thesis, it is assumed that the reader is already familiar 

with LEFM, interfacial fracture mechanics and DDT. Parts of this background 

chapter are based on more in-depth and complete references, particularly Hills et 

al. (1996) and Erdogan et al. (1973). 

2.1 Basic concepts of LEFM 

LEFM pertains to the examination of solid bodies weakened by cracks under 

the idealisation of linearly-elastic material behaviour and small deformations. One 

of the fundamental results of LEFM is that the stress fields around sharp crack tips 

are singular in nature.  In the analysis of plane crack problems, the stress 

singularity has the general form of 𝑟𝜆, where 𝑟 is the radial distance from the crack 

or notch tip and 𝜆 is a real or complex number and Re(𝜆) ≥ −1. The latter 

condition arises from the finite strain energy considerations in the area 

encapsulating the crack tip under the plane assumptions of the theory of elasticity. 

The order or strength of the singularity, 𝜆, is established numerically from analysis 

of near-tip region (𝑟 → 0) or analytically utilising, for example, the eigenfunction 

expansion technique. A review of some well-known results is provided later in this 

chapter. 
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Under plane stress or plane strain assumptions the solution near the crack tip 

can be represented in the form of an infinite series with a singular leading term. 

Therefore, there exists a small region surrounding the crack tip in which the 

singular term of the asymptotic solution dominates the stress and strain fields. The 

normalised magnitude of this singular term is often referred to as the stress 

intensity factor, 𝐾 and the region in which the stress intensity factor fully 

characterises the stress and displacement fields is known as the 𝐾-dominance 

region. The near-tip stress distribution in the 𝐾-dominance region has a universal 

form (see for e.g. Table 1). The problem geometry and loading influence the 

stresses within the 𝐾-dominance zone only through the stress intensity factor, 𝐾, 

or combination of stress intensity factors corresponding to  different fracture 

modes.  

 

Fig. 1: Schematic representation of small-scale yielding at the crack tip. 

It should be highlighted that the stress singularities predicted within the 

framework of LEFM arise from the assumptions of a linear elastic continuum, 

small deformations and a perfectly sharp crack tip. In reality, the material cannot 

sustain infinitely large stresses and a ‘process-zone’ or region, characterised by 

non-linear and discontinuous deformations, always exist in the close vicinity of the 

crack tip, which also cannot be perfectly sharp.  Nonetheless, the singular elastic 

solution can adequately represent the actual stress field around the crack tip, 

Process

zone

𝐾-dominance 

region

Crack
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provided that the tip radius or the characteristic length associated with the process-

zone are negligible in size when compared to the size of the 𝐾-dominance region, 

as illustrated in Fig. 1. Under these conditions, referred to as ‘small scale 

yielding’, the fracture/crack extension criteria can be fully characterised in terms 

of the stress intensity factor alone (Irwin, 1957). For this reason, a variety of 

analytical, numerical and experimental approaches have been developed over the 

past decades for the evaluation of the stress intensity factor as a function of the 

problem geometry and loading conditions. One of these approaches, based on the 

DDT is discussed in more detail later in this chapter. 

2.2 Stress singularities in plane elasticity  

Within the plane elasticity framework, the stresses directly ahead of a crack 

tip in a homogenous, isotropic linear elastic plate have an inverse square root 

singular behaviour, as shown in Table 1. This fundamental result was obtained by 

Williams (1957) using the eigenfuntion series expansion method. The order of the 

stress singularity is the same for a crack tip embedded in a homogenous, 

anisotropic medium (Sih and Liebowitz, 1968) or a non-homogenous, linearly 

elastic material with continuous and piece-wise differentiable material properties 

(Jin and Noda, 1994; Eischen, 1987). 

If the material properties are discontinuous at the crack tip, the stress 

singularity may no longer be of the form 𝑟−1 2⁄ . A classic example is an interfacial 

crack between two dissimilar isotropic materials under in-plane (Mode I or Mode 

II) remote loading. Here the crack tip stresses and displacement take the following 

asymptotic form as 𝑟 → 0 (Williams, 1959) 

𝜎𝑟𝑟, 𝜎𝜃𝜃, 𝜎𝑟𝜃~𝑟
−1 2⁄ +𝑖𝜖 = 𝑟−1 2⁄ [cos(𝜖 ln 𝑟) + 𝑖 sin(𝜖 ln 𝑟)], 

𝑢𝑟 , 𝑢𝜃~𝑟
1 2⁄ [cos(𝜖 ln 𝑟) + 𝑖 sin(𝜖 ln 𝑟)], 

(1) 

where, 

http://www.ewp.rpi.edu/hartford/~ernesto/Su2014/Korea-PW/Fracture/Readings/Other/Irwin1956-StressesStrainsNearEndofaCrack.pdf
http://authors.library.caltech.edu/47558/1/382747.pdf
https://dx.doi.org/10.1115/1.2901529
https://dx.doi.org/10.1007/BF00042121
http://authors.library.caltech.edu/47557/1/199.full.pdf
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Table 1: Summary of two-dimensional asymptotic solutions inside the 𝐾-dominance zone 

for a crack tip embedded in a homogenous material (Hills et al., 1996). 
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The form of the Eq. (1) implies that the behaviour of the stress and displacement 

fields is oscillatory in nature leading to interpenetration of crack faces. England 

(1965) has demonstrated that under remote general loading this inadmissible 

physical phenomenon is confined to a very small region of order 10−4 of crack 

length and can be disregarded in most practical situations. For combinations of 

material properties, when the parameter 𝜖 = 0, the inverse square root singularity 

(𝑟−1 2⁄ ) is recovered. It should also be noted that this oscillating singular behaviour 

does not occur for an interfacial crack under anti-plane (Mode III) loading for any 

combination of material properties. 

For a more general plane elasticity problem of a straight crack terminating at 

a straight interface at an arbitrary angle, the order of the singularity depends upon 

the elastic constants of the constituents as well as the angle of incidence. The 

dominant term(s) in the series expansion for the stress field as 𝑟 → 0 is of the 

order of 𝑟𝜆, where the eigenvalue(s) 𝜆 can be real or complex and Re(𝜆) ≥ −1. 

For a bimaterial isotropic composite, Bogy (1971a) derived the following 

characteristic equation for obtaining 𝜆 (Hills et al., 1996): 

0 = [𝐴𝛽2 − (2𝐴 − 𝐵)𝛽 + 𝐴 − 𝐵 + 1]𝛼2

+[(−2𝐴 + 𝐵 + 𝐶)𝛽3 + (4𝐴 − 2𝐵 − 𝐶 + 𝐷 + 2)𝛽2 − (2𝐴 − 𝐵 − 𝐶)𝛽 + 𝐶 − 𝐷]𝛼

+(𝐴 − 𝐵 − 𝐶 + 𝐷 + 𝐸 + 1)𝛽4 − (2𝐴 − 𝐵 − 𝐶)𝛽3 + (𝐴 + 𝐶 − 𝐷 − 2𝐸)𝛽2 − 𝐶𝛽 + 𝐸,

 

where, (2) 

𝐴(𝜃, 𝜆) = 4(1 + 𝜆)4 sin4 𝜃 + sin2[(1 + 𝜆)(2𝜃 − 𝜋)], 

𝐵(𝜃, 𝜆) = 4(1 + 𝜆)2 sin2 𝜃 + 2 sin2[(1 + 𝜆)(2𝜃 − 𝜋)], 

𝐶(𝜃, 𝜆) = 4(1 + 𝜆)2 sin2 𝜃 {sin2[(1 + 𝜆)𝜃] + sin2[(1 + 𝜆)(𝜃 − 𝜋)] − 1}, 

𝐷(𝜃, 𝜆) = 2{sin2[(1 + 𝜆)𝜃] + sin2[(1 + 𝜆)(𝜃 − 𝜋)] − 1}, 

https://dx.doi.org/10.1115/1.3408975
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𝐸(𝜃, 𝜆) = cos2(𝜆𝜋), 

and 𝛼 and 𝛽 are Dundur’s parameter 

𝛼 =
𝜇2(𝜅1 + 1)−𝜇1(𝜅2 + 1)

𝜇2(𝜅1 + 1)+𝜇1(𝜅2 + 1)
, 𝛽 =

𝜇2(𝜅1 − 1) − 𝜇1(𝜅2 − 1)

𝜇2(𝜅1 + 1)+𝜇1(𝜅2 + 1)
. 

Setting 𝜃 = 0,±2𝜋 the above equations recover the case of the crack lying along 

the interface yielding 𝜆 = −1 2⁄ ± 𝑖𝜖. If 𝛼 = 𝛽 = 0 is substituted in the above 

equation, the expected result of 𝜆 = −1 2⁄  is obtained.  

Another commonly encountered singularity is associated with the kinking of 

a straight crack. If the crack is open in the vicinity of the kink, the singularity at 

the kink is the same as that at the apex of a wedge. Bogy (1971b) derived the 

characteristic equation for the bonded bimaterial wedge geometry, which can be 

utilised to identify the order of singularity for a crack going through an interface or 

kinking at an interface. The latter solution also recovers Williams’ (1952) results 

for a homogenous wedge or an angular corner in an infinite plate. A review of 

methods for finding the stress singularities at the apex of isotropic elastic wedges 

is provided by Dempsey and Sinclair (1981). The equivalent problem of 

anisotropic bimaterial wedges was considered by Kuo and Bogy (1974a, 1974b). 

The singularities at a crack-tip terminating at the interface in an anisotropic 

bimaterial are examined by Ting and Hoang (1984) for a crack lying perpendicular 

to the interface and by Deng (1993), Suo (1990) and Ting (1986) for an interfacial 

crack. In the present thesis only plane crack problems are considered. A review of 

stress singularities arising in three-dimensional fracture mechanics can be found in 

Pook (2013), Kotousov et al. (2013) and Kotousov and Lew (2006).  

https://dx.doi.org/10.1115/1.3408786
http://authors.library.caltech.edu/47672/1/382785.pdf
https://dx.doi.org/10.1007/BF00041942
https://dx.doi.org/10.1115/1.3423225
https://dx.doi.org/10.1115/1.3423223
https://dx.doi.org/10.1016/0020-7683(84)90011-8
https://dx.doi.org/10.1115/1.2900743
http://www.seas.harvard.edu/suo/papers/004.pdf
https://dx.doi.org/10.1016/0020-7683(86)90031-4
https://dx.doi.org/10.1111/ffe.12074
https://dx.doi.org/10.1016/j.engfracmech.2013.04.010
https://dx.doi.org/10.1016/j.ijsolstr.2005.06.037
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2.3 Fundamentals of DDT 

DDT is a powerful semi-analytical approach for obtaining accurate solutions 

to plane crack problems using the principle of superposition. The technique 

originated from the pioneering work of Bilby, Cottrell and Swinden (1963), and 

Bilby and Eshelby (1968) and involves the representation of the displacement 

discontinuity along the crack faces by a continuous distribution of ‘strain nuclei’. 

These strain nuclei can be edge and screw dislocations or their dipoles for two-

dimensional problems or dislocation loops for three dimensional problems (Hills et 

al., 1996).  

The technique can be introduced in a simple manner through the example 

problem of a straight crack in an infinite plane subjected to remote tensile loading, 

as illustrated in Fig. 2. From Bueckner’s theorem (Cartwright and Rooke, 1979; 

Bueckner, 1958), the solution to this problem can be obtained by a superposition 

of two problems, shown in Figs. 2b and 2c, respectively. The first problem 

involves finding the stresses arising in the uncracked body due to the applied or 

external loading, and particularly, the tractions at the location of the crack, as 

shown in Fig. 2b. In the second problem, the cracked body, which is free from the 

applied loading, is considered and rigid material is inserted between the crack 

faces in a manner such that the resulting tractions along the location of the crack 

are equal and opposite to the ones found in the first problem.  

The inserted material between the crack faces can be visualised as a 

combination of infinitesimally thin strips, the first strip beginning at one crack tip 

and extending along the crack direction, as illustrated in Fig. 3a. By adding more 

strips of material along the crack (Fig. 3b) and by taking others away (Fig. 3c), the 

exact crack geometry can be reproduced (Fig. 3d) (Codrington, 2008). The single 

inserted strip of material is called an edge dislocation, and although it has precisely 

the same characteristics as the edge dislocation arising as a lattice defect, in the 

present context the material is treated as a continuum, i.e. the presence of any 

lattice defects is not implied.  

http://www.jstor.org/stable/pdf/2414499.pdf?acceptTC=true
http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA088218
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Fig. 2: Application of Bueckner’s superposition principle: (a) overall problem, (b) stresses 

in the perfect body, (c) corrective tractions on crack faces. 

 

Fig. 3: The insertion of material between crack faces, (a) a single edge dislocation, (b) 

addition of more dislocations, (c) removal of dislocations, and (d) final crack geometry 

(adapted from Codrington, 2008). 
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The stress and displacement fields generated by a continuous distribution of 

dislocations (Fig. 3d) can be obtained by integrating the solution for a single edge 

dislocation over the length of the crack. The net state of stress in the cracked body 

can then be obtained using superposition, as illustrated in Fig. 2. The requirement 

of zero net traction on the crack faces yields a singular integral equation for 

determining the distributed dislocation density along the crack. In general, the 

governing integral equations need to be solved numerically and the methods 

relevant to the present thesis are discussed in Section 2.6. The complete solution 

for stress and displacement fields in the cracked body as well as the crack tip stress 

intensity factors can be inferred from the solution for the dislocation density (Hills 

et al., 1996). In the next section, some of the fundamental edge and screw 

dislocation solutions in multilayered elastic media are reviewed. These solutions 

are required to formulate the governing integral equation for crack problems in 

various geometries.  

2.4 Review of dislocation solutions in multilayered media 

The fundamental solutions for edge and screw dislocations in homogenous 

elastic media of infinite extent are well known (Weertman, 1996). These plane 

solutions were also extended to the case of finite thickness plates by Kotousov and 

Wang, (2002). Although these solutions are quite useful, most problem geometries 

of practical interest involve boundaries along which certain traction and 

displacement conditions need to be satisfied. A number of plane dislocation 

solutions are available for such problems, for e.g. dislocations near elastic 

inclusions of arbitrary shape (Shi and Li, 2003; Li and Shi, 2002) and a crack 

(Zhang et al., 1995; Ohr et al., 1985) and in a bimaterial wedge (Kelly et al., 1994; 

Hein and Erdogan, 1971).  

In this section, attention is focussed on dislocation solutions in multilayered 

media, which are composed of two or more linearly elastic materials perfectly 

bonded along straight interfaces. Dislocation solutions for these geometries are 

https://dx.doi.org/10.1016/S0020-7225(02)00041-1
https://dx.doi.org/10.1016/S0020-7225(02)00041-1
https://dx.doi.org/10.1007/s00707-002-0987-9
https://dx.doi.org/10.1016/S1359-6462(02)00113-6
https://dx.doi.org/10.1063/1.359775
https://dx.doi.org/10.1063/1.334412
https://dx.doi.org/10.1115/1.2901596
https://dx.doi.org/10.1007/BF00184307
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needed to obtain the governing integral equations for a variety of plane crack 

problems discussed in Chapter 1. The solutions for edge and screw dislocations in 

both isotropic and anisotropic multilayers are reviewed below.  

Perhaps the simplest problem geometry involving a straight interface is a 

bimaterial elastic medium composed of two perfectly bonded half-planes. The 

solutions for an edge dislocation in this medium were obtained by Dundurs and 

Mura (1964), Dundurs and Sendeckyj (1965) and Comninou (1977) for the 

isotropic case, and by Barnett and Lothe (1974), Qu and Li (1991), and Ting 

(1992) for the anisotropic case. The corresponding solutions for a screw 

dislocation were given by Head (1953), and Martin and McGee (1969), for an 

isotropic bimaterial and by Chou (1966), Chou and Pande (1973) and Barnett and 

Lothe (1974), for the anisotropic case. Nakahara et al. (1972) and Suo (1990) 

presented the general approach for obtaining the stress fields due to various 

singularities, such as point force, screw dislocation and edge dislocation at a 

bimaterial interface for the isotropic and anisotropic cases, respectively. 

An elastic layer of finite width, which is bonded to dissimilar elastic half-

planes on both sides, represents the next step in terms of complexity of the 

problem geometry. The problem of an edge dislocation in an isotropic elastic strip 

was considered by Nabarro and Kostlan (1978), Moss and Hoover (1978), and Suo 

and Hutchinson (1990). Chu (1982) obtained the analogous solution for the case of 

a screw dislocation. The similar problem for anisotropic strips was considered by 

Chou (1963) and Wu and Chiu (1994) for edge dislocations and Lee et al. (2001) 

for screw dislocations. The problems involving edge dislocations in isotropic 

layer-substrate media have been examined by Weeks et al. (1968), Lee and 

Dundurs (1973), and Kelly et al. (1995). The solutions for edge and screw 

dislocations in anisotropic layer-substrate systems was derived by Wu and Wang 

(2007) and Wang and Wu (2005), respectively. A general method for obtaining the 

stress fields due to singularities in isotropic and anisotropic trimaterials, composed 

https://dx.doi.org/10.1016/0022-5096(64)90017-1
https://dx.doi.org/10.1016/0022-5096(64)90017-1
https://dx.doi.org/10.1063/1.1702981
https://dx.doi.org/10.1080/14786437708239797
https://dx.doi.org/10.1088/0305-4608/4/10/010
https://dx.doi.org/10.1007/BF00041220
https://dx.doi.org/10.1093/qjmam/45.1.119
https://dx.doi.org/10.1093/qjmam/45.1.119
https://dx.doi.org/10.1080/14786440108520278
https://dx.doi.org/10.1016/0001-6160(69)90037-6
https://dx.doi.org/10.1002/pssb.19660170206
https://dx.doi.org/10.1063/1.1662761
https://dx.doi.org/10.1088/0305-4608/4/10/010
https://dx.doi.org/10.1088/0305-4608/4/10/010
https://dx.doi.org/10.1016/0025-5416(72)90101-2
http://www.seas.harvard.edu/suo/papers/004.pdf
https://dx.doi.org/10.1063/1.324511
https://dx.doi.org/10.1063/1.324512
https://dx.doi.org/10.1007/BF00018123
https://dx.doi.org/10.1007/BF00018123
https://dx.doi.org/10.1063/1.331043
https://dx.doi.org/10.1063/1.1729266
https://dx.doi.org/10.1016/0020-7683(94)00115-D
https://dx.doi.org/10.1016/S0167-6636(00)00061-2
https://dx.doi.org/10.1016/0020-7225(68)90016-5
https://dx.doi.org/10.1016/0020-7225(73)90071-2
https://dx.doi.org/10.1016/0020-7225(73)90071-2
https://dx.doi.org/10.1088/0022-3727/28/3/013
https://dx.doi.org/10.1177/1081286505055756
https://dx.doi.org/10.1177/1081286505055756
https://dx.doi.org/10.1016/j.enganabound.2005.01.013
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of an elastic strip sandwiched between two dissimilar elastic half-planes, was 

suggested by Choi and Earmme (2001, 2002). 

 The above mentioned solutions are restricted to two or three layer 

geometries. Several researchers have presented methodologies for the analysis of 

general or periodic multilayer geometries. For e.g. the method for obtaining the 

solution for an edge dislocation in isotropic multilayers was presented by Khanna 

and Kotousov (2015) and Kuo (2014). Alshits and Kirchner (1995a, 1995b) 

proposed theoretical solutions for line defects in anisotropic multilayers based on 

Fourier transform method, but reported computational difficulties in the numerical 

evaluation of Fourier integrals. Wang et al. (2007) presented an alternative 

approach for the derivation of screw and edge dislocation solutions in a general 

anisotropic multilayered medium. In the proposed method, a continuous 

distribution of virtual dislocations is placed along the interfaces and the 

equilibrium and continuity conditions along the interfaces are utilised to formulate 

the governing system of singular integral equations. These equations are converted 

to non-singular Fredholm integral equations of the second kind using special 

integral transforms, which are solved numerically. Further, the authors also present 

selected numerical results for two and three layer anisotropic media. However, a 

direct application of the developed solutions to solve crack problems in anisotropic 

media is still lacking. 

2.5 General form of singular integral equations under consideration 

Singular integral equations arise in the formulation of mixed boundary value 

problems in several areas of applied mechanics and physics. In particular, they 

play an important role in the solution of a variety of contact and crack problems in 

solid mechanics. The problems under consideration in the present thesis all deal 

with embedded or interfacial cracks in multilayered media. For this group of 

problems, the system of singular integral equation contains kernels with simple 

https://dx.doi.org/10.1016/S0020-7683(01)00230-X
https://dx.doi.org/10.1016/S0020-7683(01)00231-1
https://dx.doi.org/10.1016/j.ijsolstr.2015.06.030
https://dx.doi.org/10.1016/j.ijsolstr.2015.06.030
https://dx.doi.org/10.1016/j.ijsolstr.2013.12.032
http://dx.doi.org/10.1080/01418619508243922
https://dx.doi.org/10.1080/01418619508243923
https://dx.doi.org/10.1016/j.ijsolstr.2006.06.042
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Cauchy-type singularities and can be expressed in the following general form 

(Erdogan et al., 1973): 

𝐴( )𝜓( ) +
1

𝜋
∫𝐵(𝑡)𝜓(𝑡)

𝑑𝑡

𝑡 −  

𝑏

𝑎

+∫𝐾( , 𝑡)𝜓(𝑡)d𝑡

𝑏

𝑎

= 𝑓( ), (𝑎 <  < 𝑏) (3) 

where 𝜓 = (𝜓𝑖), (𝑖 = 1,… ,𝑁) is the set of unknown function which can be 

interpreted as the dislocation densities, the square matrices 𝐴 = (𝑎𝑖𝑗) and 𝐵 =

(𝑏𝑖𝑗), (𝑖, 𝑗 = 1,… ,𝑁) are known with 𝐴 ± 𝐵 non-singular in 𝑎 <  < 𝑏, the 

elements 𝑘𝑖𝑗( , 𝑡) of the square matrix 𝐾 are Fredholm kernels, and the vector 

𝑓 = (𝑓𝑖), (𝑖 = 1,… ,𝑁) consists of the known functions which can be interpreted 

as the traction components on the crack surface.  

For the problems in which the crack kinks, terminates or deflects at an 

interface, or penetrates several layers, the kernels 𝑘𝑖𝑗 no longer remain simple 

Fredholm kernels and become unbounded as   and 𝑡 approach the irregular point 

simultaneously. In this case, the principal part of the system of equations (3) is said 

to have a generalised Cauchy kernel (Erdogan et al., 1973). In the latter case, the 

matrix of the fundamental functions (which characterise the order of the 

singularity of the unknown functions 𝜓𝑖) can be obtained by a direct application of 

the function theoretic methods to the integral equations or by the asymptotic 

analysis of the solution at the irregular point (Hills et al., 1996; Erdogan et al., 

1973). Problems of this kind are not examined in the present thesis. Hence, the 

forthcoming discussion of the numerical solution techniques focusses only on 

integral equations containing kernels with simple Cauchy-type singularities.  
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2.6 Numerical solution techniques 

In the general system of singular integral equations (3), diagonalising the 

matrices 𝐴 and 𝐵 simultaneously, the principal part of the system can be 

uncoupled (Erdogan et al., 1973). Thus, any numerical technique developed for the 

solution of a single equation may be generalised for application to a system of 

equations. It is then sufficient to review the numerical solution methods only for 

the following integral equation: 

𝐴𝜙( ) +
𝐵

𝜋
∫
𝜙(𝑡)

𝑡 −  
𝑑𝑡

1

−1

+ ∫𝑘( , 𝑡)𝜙(𝑡)𝑑𝑡

1

−1

= 𝑓( ), (−1 <  < 1), (4) 

where the original interval (𝑎, 𝑏) is normalised to be (−1,1) without any loss of 

generality, and 𝐴 and 𝐵 are known constants. The functions 𝜙, 𝑘, 𝑓, and the 

constants 𝐴, 𝐵 may be real or complex. The fundamental function of the principal 

part of the integral Eq. (4) can be obtained as (Erdogan et al., 1973; 

Muskhelishvili, 1953) 

𝑤( ) = (1 −  )𝛼(1 +  )𝛽 , (5) 

where 

𝛼 =
1

2𝜋i
log (

𝐴 − i𝐵

𝐴 + i𝐵
) + 𝑁, 

𝛽 = −
1

2𝜋i
log (

𝐴 − i𝐵

𝐴 + i𝐵
) +𝑀, 

−1 < Re(𝛼) < 1, −1 < Re(𝛽) < 1, 

κ = −(𝛼 + 𝛽) = −(𝑁 +𝑀), 

and 𝑁 and 𝑀 are integers. The index of the integral equation κ is either −1, 0 or 

+1, and is determined from the physical nature of the problem. In the case of 

𝜅 = 1, the solution contains one arbitrary constant that is determined from an 

equilibrium or compatibility condition of the form 
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∫𝜙(𝑡)d𝑡

1

−1

= 𝐶. (6) 

 If the known constant 𝐶 is taken to be zero, the above condition may be 

interpreted as the requirement of no relative displacement (opening or sliding) at 

the crack tips. For 𝜅 = 0, the inversion of Eq. (4) does not contain any arbitrary 

constants. When 𝜅 = −1, the solution does not contain any arbitrary constants, but 

the following consistency equation must be satisfied (Erdogan et al., 1973) 

∫[𝑓( ) − ∫𝑘( , 𝑡)𝜙(𝑡)d𝑡

1

−1

]
d 

𝑤( )

1

−1

= 0. (7) 

In the problems under consideration in the present thesis, only the integral 

equations with index +1 are encountered. Therefore, the discussion on numerical 

solution methods is restricted to the case of 𝜅 = +1. The details of the solution 

procedures for the other cases are similar, and covered in Erdogan et al. (1973). 

Solution by Jacobi polynomials (used in Chapter 3) 

The solution for the unknown function 𝜙( ) in Eq. (4), may be expressed in terms 

of the fundamental function, 𝑤( ) as follows: 

𝜙( ) = 𝑤( )𝑔( ), (8) 

where 𝑔( ) is a bounded continuous function in the closed interval [-1,1] and can 

always be represented in terms of an infinite series. Observing that 𝑤( ) defined 

in Eq. (5) is the weight function of the Jacobi polynomial 𝑃𝑛
(𝛼,𝛽)( ), (𝑛 = 0,1, … ), 

the function 𝜙( ) may be written as 

𝜙( ) =∑𝑐𝑛𝑤( )𝑃𝑛
(𝛼,𝛽)( )

 

0

, (9) 

where 𝑐𝑛 (𝑛 = 0,1, …) are undetermined constants. Using the following result 

valid for κ = (−1,0,1) (Erdogan et al., 1973; Tricomi, 1957): 
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1

𝜋
∫𝑤(𝑡)𝑃𝑛

(𝛼,𝛽)(𝑡)
𝑑𝑡

𝑡 −  

1

−1

= −
𝐴

𝐵
𝑤( )𝑃𝑛

(𝛼,𝛽)( )

−2−𝜅
Γ(𝛼)Γ(1 − 𝛼)

𝜋
𝑃𝑛−𝜅
(−𝛼,−𝛽)( ), (| | < 1),

 (10) 

and substituting Eq. (9) into Eq. (4), the following equation can be obtained: 

∑𝑐𝑛 [−
2−𝜅𝑏

sin 𝜋𝛼
𝑃𝑛−𝜅
(−𝛼,−𝛽)( ) + ℎ𝑛( )]

 

0

= 𝑓( ), 

ℎ𝑛( ) = ∫𝑤(𝑡)𝑃𝑛
(𝛼,𝛽)(𝑡)𝑘( , 𝑡)𝑑𝑡

1

−1

, (−1 <  < 1). 

(11) 

The functional Eq. (11) can be reduced to an infinite system of algebraic equations 

with respect to 𝑐𝑛 by expanding both sides into series of Jacobi polynomials 

𝑃𝑘
(−𝛼,−𝛽)( ) (𝑘 = 0,1, …). Using orthogonality relations for Jacobi polynomials 

and truncating the series to the first 𝑁 + 1 terms results in (Erdogan et al., 1973): 

−
2−1𝑏

sin 𝜋𝛼
𝜃𝑘
(−𝛼,−𝛽)

𝑐𝑘+1 +∑𝑑𝑛𝑘𝑐𝑛

𝑁

𝑘=0

= 𝐹𝑘 , (𝑘 = 0,1, … ,𝑁) (12) 

where 

𝜃𝑘
(𝛼,𝛽)

=
2𝛼+𝛽+1

2𝑘 + 𝛼 + 𝛽 + 1

Γ(𝑘 + 𝛼 + 1)Γ(𝑘 + 𝛽 + 1)

𝑘! Γ(𝑘 + 𝛼 + 𝛽 + 1)
, 

𝑑𝑛𝑘 = ∫𝑃𝑘
(−𝛼,−𝛽)( )𝑤(−𝛼,−𝛽,  )ℎ𝑛( )𝑑 

1

−1

, 

𝐹𝑘 = ∫𝑃𝑘
(−𝛼,−𝛽)( )𝑤(−𝛼, −𝛽,  )𝑓( )𝑑 

1

−1

, 

and 
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𝑤(−𝛼,−𝛽,  ) = (1 −  )−𝛼(1 +  )−𝛽 = 𝑤−1( ). 

For 𝜅 = +1, the 𝑁 + 1 equations given by (12) contain 𝑁 + 2 unknown constants, 

𝑐0, … , 𝑐𝑁+1. The additional equation for a unique solution can be obtained from the 

equilibrium or compatibility condition given by Eq. (6) as follows: 

𝑐0𝜃0(𝛼, 𝛽) = 𝐶. (13) 

The general solution procedure described above can also be applied for solution of 

singular integral equations of the first kind of the form 

1

𝜋
∫
𝜙(𝑡)

𝑡 −  
𝑑𝑡

1

−1

+ ∫𝑘( , 𝑡)𝜙(𝑡)𝑑𝑡

1

−1

= 𝑓( ), (−1 <  < 1), (14) 

which correspond to the more specific case of 𝐴 = 0 and 𝐵 = 1 in Eq. (4). 

However, in the present thesis another method is utilised to solve integral 

equations of this type, which is described next. 

Solution by Gauss-Chebyshev quadrature (used in Chapters 4-6) 

The singular integral Eq. (14) can be reduced to the following algebraic system 

(Erdogan et al., 1973): 

1

𝜋
∑𝑊𝑗𝑔(𝑡𝑗) [

1

𝑡𝑗 −  𝑖
+ 𝜋𝑘( 𝑖, 𝑡𝑗)]

𝑛

𝑗=1

= 𝑓( 𝑖), (𝑖 = 1, … , 𝑛 − 𝜅), (15) 

where 𝜅 is the index of the integral equation, 𝑡𝑗 are the integration points and  𝑖 

are the collocation points. Only the case of 𝜅 = 1 is considered here and it 

corresponds to the integrable singularities at both ends, i.e. 𝛼 = −1 2⁄ = 𝛽 in Eq. 

(5). In this case, the fundamental function 𝑤( ) becomes the weight function of 

the Chebyshev polynomials of the first kind (𝑇𝑛). The integration and collocation 

points in Eq. (15) are chosen as roots of the Chebyshev polynomials according to 

(Erdogan et al., 1973): 
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𝑊𝑗 = 𝜋 𝑛⁄ ,

𝑇𝑛(𝑡𝑗) = 0, 𝑡𝑗 = cos (𝜋
2𝑗 − 1

2𝑛
) , (𝑗 = 1,… , 𝑛), 

𝑈𝑛−1( 𝑖) = 0,  𝑖 = cos
𝜋𝑖

𝑛
, (𝑖 = 1,… , 𝑛 − 1).

 (16) 

The additional condition given by Eq. (5) can be represented as 

∑𝑊𝑗𝑔(𝑡𝑗)

𝑛

1

= 𝐶. (17) 

Eqs. (15) and (17) provide 𝑛 linear algebraic equations to determine 𝑔(𝑡𝑗), 

(𝑗 = 1,… , 𝑛). 

2.7 Concluding remarks 

 In this chapter, the fundamentals of LEFM and the DDT were briefly 

discussed in the context of the current research topic, which is the analysis of 

crack problems in multilayered elastic media. In addition, the two-dimensional 

dislocation solutions in multilayered elastic media were reviewed. A new 

fundamental solution for edge dislocation in multilayered media to be presented in 

the next chapter represents a natural extension of the previous results. The next 

and following chapters are a collection of the candidate’s publications based on the 

general methodology described above.  
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1. Introduction

Many modern composites and advanced material systems, such
as protective coatings, laminated ceramics, microelectronic
devices, layered nanofilms, functionally graded materials and
adhesive joints, are examples of multi-layered structures
(Sackman et al. 1989; Holleck et al. 1990; Roeder and Sun, 2001;
Chen and Pindera, 2006; Khanna and Kotousov, 2014). These struc-
tures are also prevalent in nature, ranging from the nano-scale
structures, which provide unique properties to bio-materials such
as nacre, tooth enamel and bone (Sellinger et al. 1998; Gao et al.
2003) to the large scale structures such as stratified rock forma-
tions in the earth’s crust (Daneshy, 1978; Gudmundsson et al.
2010; Khanna and Kotousov, 2015).

Accurate analysis of fracture problems in multi-layered lami-
nates is of great practical interest in many engineering applica-
tions, for example, in the study of delamination damage (Bolotin,
1996; Garg, 1988), in the design of crack arresting interfaces
(Cook et al. 1964; He and Hutchinson, 1989; Gupta et al. 1992;
Li, 2000), when describing the toughness behavior of natural com-
posites (Okumura and de-Gennes, 2001) and in the modeling of
hydraulic fracture propagation in heterogeneous oil/gas reservoirs
(Cleary, 1978).
The distributed dislocation technique (DDT), which is based on
the pioneering work of Bilby and Eshelby (1968), can provide an
efficient procedure for analyzing a variety of crack problems in
such multi-layered structures. In this technique, the mixed
boundary-value crack problem is reduced to a system of coupled
singular integral equations of the Cauchy type with kernels formu-
lated in terms of the unknown displacement discontinuities. The
literature is replete with solutions to crack problems in
multi-layered composites obtained by the distributed dislocation
approach (for e.g. Erdogan and Gupta, 1971a,b; Erdogan, 1972;
Kucherov and Ryvkin, 2002; Chen and Pindera, 2006). In every case
we find that there is some restriction on the geometry tackled;
either because the crack is chosen to be normal or parallel to the
interfaces. However, several crack problems of practical interest
in multi-layered structures may require the analysis of inclined,
kinking or branching cracks (Garg, 1988).

In this paper, we consider a general multi-layered composite,
composed of perfectly bonded isotropic elastic layers, and present
the solution for the elastic field induced by an interfacial edge dis-
location. The present solution is more general than other available
solutions for embedded or interfacial edge dislocations in: a
film-substrate medium (Savage, 1998; Kelly et al., 1995;
Comninou and Dundurs, 1983; Lee and Dundurs, 1973), a layer
joining two substrates (Fleck et al. 1991), two bonded layers (Suo
and Hutchinson, 1990) and a general multilayered composite
(Kuo, 2014). The obtained solution can be implemented using the
framework of the distributed dislocation technique to formulate
the governing singular integral equations for a wide variety of
51
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crack problems in multi-layered media, in particular problems
involving inclined or kinking cracks. The obtained solution can also
be used to study the interaction between ‘real’ edge dislocations
and interfaces in multilayered composites (Nix, 1998; Misra et al.
1998; Misra and Kung, 2001).

The present solution is developed using the complex potential
method of Muskhelishvili and the Fourier transform method for
strip problems, based on the approach outlined by Fleck et al.
(1991) for an embedded dislocation in an elastic layer. The details
of the solution are covered in Sections 2–4 and Appendix A. In
Section 5, the solution is validated against the solution obtained
by Kelly et al. (1995) for an interfacial edge dislocation in a
layer-substrate medium. To demonstrate the application of the
present solution, the problem of an interfacial crack in a general
multilayered composite is formulated in Section 6. Selected
numerical results are presented for the interfacial crack problem
and compared with classical solution obtained by Erdogan and
Gupta (1971b) and more recent results of Kucherov and Ryvkin
(2002).
2. Problem formulation

Consider the plane elasticity problem of a multi-layered med-
ium, composed of mþ n layers, as shown in Fig. 1. The elastic prop-
erties of the layers are defined by the shear modulus, l and
Poisson’s ratio, m. The top and bottom layers are of infinite extent
and the intermediate layers are of arbitrary thickness. Free bound-
aries can be modeled by setting the shear modulus of elasticity of
the top and bottom layers to a very small value approaching zero,
while the embedded dislocation corresponds to the case when
l�1 ¼ l1 and m�1 ¼ m1. The layers are perfectly bonded, except
for an edge dislocation along the interface between layers L1 and
L�1. The origin of the coordinate system lies at the location of the
edge dislocation and the x -axis is aligned with the interfaces.

The solution to the plane elasticity problem shown in Fig. 1 is
obtained using the approach outlined by Fleck et al. (1991). First,
we consider a composite medium composed of two homogenous
elastic half-planes, with a bimaterial interface along y ¼ 0. The
elastic properties of the material above the interface ðy > 0) are
denoted by l1; m1 and those of the material below the interface
(y < 0) are denoted by l�1; m�1. The stress and displacement field
due to an interfacial edge dislocation in this medium are well
known.
Fig. 1. An edge dislocation in a multi-layered composite.
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The material in the region, di < y < diþ1, is then allowed to
transform to material liþ1; miþ1 (i ¼ 1; . . . ; n� 1) and the material
in the region, �cjþ1 < y < �cj, is allowed to transform to material
l�ðjþ1Þ; m�ðjþ1Þ (j ¼ 1; . . . ;m� 1). The transformation occurs in a
manner which does not alter the stress state anywhere, but gener-
ates a displacement mismatch at the interfaces. The displacement
jump at the interfaces is denoted by Duðx; diÞ þ iDvðx; diÞ for y > 0
and Duðx;�cjÞ þ iDvðx;�cjÞ for y < 0.

Finally, the problem of the multi-layered medium is considered,
with the displacement jumps prescribed at the interfaces equal in
magnitude but opposite in sign to those obtained previously. The
corrective stress field required to generate these displacement
jumps is then evaluated. The net stress field is obtained as a super-
position of this corrective stress field and the known solution for
stress field in a bimaterial due to an interfacial edge dislocation.

3. Problem 1: Edge dislocation at a bimaterial interface

Consider a composite medium with a planar interface along
y ¼ 0, with an interfacial dislocation at the origin. The elastic prop-
erties of the material above the interface ðy > 0Þ are denoted by
l1; m1 and those of the material below the interface (y < 0) are
denoted by l�1; m�1. The displacement field in the medium is con-
tinuous everywhere, except for the half-plane given by x < 0 and
y ¼ 0, along which it is discontinuous. The jump in displacement
is given by

uðx; 0þÞ þ ivðx; 0þÞ � uðx; 0�Þ � ivðx; 0�Þ ¼ ðbx þ ibyÞHð�xÞ; ð1Þ

where bx and by are the glide and climb components of the Burger’s
vector and HðxÞ is the Heaviside step function.

3.1. Stress and displacement fields

The stress and displacement fields in each region can be conve-
niently expressed in terms of Muskhelishvili’s complex potentials
uðzÞ and wðzÞ according to Muskhelishvili (1958)

rxx þ ryy ¼ 2½u0ðzÞ þu0ðzÞ�; ð2Þ

ryy � rxx þ 2irxy ¼ 2½�zu00ðzÞ þ w0ðzÞ�; ð3Þ

2lðuþ ivÞ ¼ juðzÞ � zu0ðzÞ � wðzÞ: ð4Þ

where l is the shear modulus, j ¼ 3� 4m is Kolosov’s constant.
For an interfacial edge dislocation, as shown in Fig. 2, the com-

plex potentials are given by Zhang and Li (1992), Hui and Lagoudas
(1990) as

u1ðzÞ ¼ C1
b
ip

ln z; w1ðzÞ ¼ C�1

�b
�ip

ln z; ð5Þ

in region 1 (y > 0) and

u�1ðzÞ ¼ C�1
b
ip

ln z; w�1ðzÞ ¼ C1

�b
�ip

ln z; ð6Þ

in region 2 (y < 0), respectively. Here z ¼ xþ iy, b ¼ bx þ iby and the
constants C1 and C�1 are defined as

C1 ¼
l1l�1

l1 þ l�1j1
¼ l1

j1 þ 1
1þ a
1� b

; C�1 ¼
l1l�1

l1j�1 þ l�1

¼ l1

j1 þ 1
1þ a
1þ b

: ð7Þ

The constants a and b are Dundur’s elastic mismatch parame-
ters, which are defined as:



Fig. 2. The climb (by) and glide (bx) component of an interfacial edge dislocation.
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a ¼ l1ðj�1 þ 1Þ � l�1ðj1 þ 1Þ
l1ðj�1 þ 1Þ þ l�1ðj1 þ 1Þ ; b ¼ l1ðj�1 � 1Þ � l�1ðj1 � 1Þ

l1ðj�1 þ 1Þ þ l�1ðj1 þ 1Þ ;

ð8Þ

By substituting Eq. (5) into Eqs. (2) and (3), the stress field in the
upper half-space, y > 0, can be obtained as

rxxðx; y > 0Þ ¼ bx

p
� y

r4 fð5C1 þ C�1Þx2 þ ðC1 þ C�1Þy2g
h i

þ by

p þ x
r4 fð3C1 � C�1Þx2 � ðC1 þ C�1Þy2g

h i
; ð9Þ
ryyðx; y > 0Þ ¼ bx

p
þ y

r4 fðC1 þ C�1Þx2 � ð3C1 � C�1Þy2g
h i

þ by

p
þ x

r4 fðC1 þ C�1Þx2 þ ð5C1 þ C�1Þy2g
h i

; ð10Þ
rxxðx; y > 0Þ ¼ bx

p
þ x

r4 fðC1 þ C�1Þx2 � ð3C1 � C�1Þy2g
h i

þ by

p
þ y

r4 fð3C1 � C�1Þx2 � ðC1 þ C�1Þy2g
h i

: ð11Þ

Similarly, the displacement field in region 1 ðy > 0Þ can be
obtained by substituting Eq. (5) into Eq. (4), which yields

2l1uðx; y > 0Þ ¼ 1
p

ðj1C1 þ C�1Þ tan�1 y
x
þ C1

2xy
x2 þ y2

� �
bx

�

þ j1C1 � C�1

2

� �
lnðx2 þ y2Þ � C1

x2 � y2

x2 þ y2

� �
by

�
ð12Þ
2l1vðx; y > 0Þ ¼ 1
p
� j1C1 � C�1

2

� �
lnðx2 þ y2Þ þ C1

x2 � y2

x2 þ y2

� �
bx

�

þ ðj1C1 þ C�1Þ tan�1 y
x
� C1

2xy
x2 þ y2

� �
by

�
: ð13Þ

In Eqs. (12) and (13), j is Kolosov’s constant, which is defined in
terms of the Poisson’s ratio m as

j ¼
3� 4m in plane strain;
3�m
1þm in plane stress:

(
ð14Þ

The stresses and displacements in the lower half-space, i.e.
y < 0, can be obtained by interchanging the subscripts 1 and �1
in Eqs. (9)–(14) or by replacing b with �b if Dundur’s parameters
are used. In the case when l1 ¼ l�1 ¼ l0 and j1 ¼ j�1 ¼ j0, then
C1 ¼ C�1 ¼ l0=ðj0 þ 1Þ and Eqs. (9)–(13) yield the standard results
for the elastic fiend due to an edge dislocation in an infinite
homogenous medium.

3.2. Displacement discontinuities induced at the interfaces

The material in the region, di < y < diþ1, is then allowed to
transform to material liþ1; miþ1 (i ¼ 1; . . . ;n� 1) and the material
in the region, �cjþ1 < y < �cj, is allowed to transform to material
l�ðjþ1Þ; m�ðjþ1Þ (j ¼ 1; . . . ;m� 1). However, the Muskhelishvili
potentials given by Eqs. (5) and (6) are kept fixed. As a result, the
stresses given by Eqs. (2) and (3) remain unaltered but displace-
ment jumps are registered at the interfaces when using Eq. (4)
across a material interface. The resulting displacement jump is
defined as

Duðx; diÞ þ iDvðx; diÞ ¼ uðx;dþi Þ þ ivðx;dþi Þ � uðx;d�i Þ
� ivðx;d�i Þ ð15Þ

for an interface located above the origin, i.e. y > 0 and

Duðx;�cjÞ þ iDvðx;�cjÞ ¼ uðx;�cþj Þ þ ivðx;�cþj Þ � uðx;�c�j Þ
� ivðx;�c�j Þ ð16Þ

for an interface located below the origin, i.e. y < 0. The usual con-
vention is adopted for evaluating the one-sided limits, i.e. y! dþi
means that y approaches di from above and y! d�i means that y
approaches di from below.

In boundary matching problem, such as the present one, the
displacement mismatch is expressed more conveniently in differ-
ential from, thus avoiding the integration constants associated
with rigid-body motions. The jump in displacement gradient at
an interface located in the region y > 0, can be evaluated substitut-
ing Eqs. (12) and (13) into Eq. (15), which yields

D
@u
@x
ðx;diÞ ¼ �

bx

p
jiþ1C1 þ C�1

2liþ1
� jiC1 þ C�1

2li

� �
di

ðx2 þ d2
i Þ

"

þ C1

2liþ1
� C1

2li

� �
2diðx2 � d2

i Þ

ðx2 þ d2
i Þ

2

3
5

þ by

p
jiþ1C1 � C�1

2liþ1
� jiC1 � C�1

2li

� �
x

ðx2 þ d2
i Þ

"

� C1

2liþ1
� C1

2li

� �
4xd2

i

ðx2 þ d2
i Þ

2

3
5; ð17Þ
53



4 A. Khanna, A. Kotousov / International Journal of Solids and Structures 72 (2015) 1–10
and

D
@v
@x
ðx; diÞ ¼ �

bx

p
jiþ1C1 � C�1

2liþ1
� jiC1 � C�1

2li

� �
x

ðx2 þ d2
i Þ

"

þ C1

2liþ1
� C1

2li

� �
4xd2

i

ðx2 þ d2
i Þ

2

3
5

� by

p
jiþ1C1 þ C�1

2liþ1
� jiC1 þ C�1

2li

� �
di

ðx2 þ d2
i Þ

"

� C1

2liþ1
� C1

2li

� �
2diðx2 � d2

i Þ

ðx2 þ d2
i Þ

2

3
5; ð18Þ

where i ¼ 1; . . . ;n� 1. The jump in displacement gradient at an
interface located in the region y < 0, can be evaluated in a similar
manner as

D
@u
@x
ðx;�cjÞ ¼

bx

p
j�jC�1 þ C1

2l�j
� j�ðjþ1ÞC�1 þ C1

2l�ðjþ1Þ

!
cj

ðx2 þ c2
j Þ

"

þ C�1

2l�j
� C�1

2l�ðjþ1Þ

!
2cjðx2 � c2

j Þ
ðx2 þ c2

j Þ
2

3
5

þ by

p
j�jC�1 � C1

2l�j
� j�ðjþ1ÞC�1 � C1

2l�ðjþ1Þ

!
x

ðx2 þ c2
j Þ

"

� C�1

2l�j
� C�1

2l�ðjþ1Þ

!
4xc2

j

ðx2 þ c2
j Þ

2

3
5; ð19Þ

and

D
@v
@x
ðx;�cjÞ ¼ �

bx

p
j�jC�1 � C1

2l�j
� j�ðjþ1ÞC�1 � C1

2l�ðjþ1Þ

!
x

ðx2 þ c2
j Þ

"

þ C�1

2l�j
� C�1

2l�ðjþ1Þ

!
4xc2

j

ðx2 þ c2
j Þ

2

3
5

þ by

p
j�jC�1 þ C1

2l�j
� j�ðjþ1ÞC�1 þ C1

2l�ðjþ1Þ

!
cj

ðx2 þ c2
j Þ

"

� C�1

2l�j
� C�1

2l�ðjþ1Þ

!
2cjðx2 � c2

j Þ
ðx2 þ c2

j Þ
2

3
5; ð20Þ

where j ¼ 1; . . . ;m� 1.
4. Problem 2: Dislocation-free strip problem

The displacement field should be continuous across a perfectly
bonded interface. However, using the same Muskhelishvili
complex potential for layers with different material properties
introduces discontinuity or jump in the displacement field at the
bimaterial interfaces. These jumps are prescribed in gradient form
by Eqs. (17)–(20). In this section, we consider the bonded system
shown in Fig. 1, having stress-free infinite boundaries and pre-
scribed displacement jumps at the interfaces, equal in magnitude,
and of opposite sign to those obtained previously. The latter
problem is treated with the Airy stress function formulation. The
unknown Airy stress function, uðx; yÞ is determined by matching
the free boundary conditions in the far field and by satisfying
the traction equilibrium and displacement jump conditions at the
54
interfaces. The corrective stresses and displacement field can be
obtained in terms of the solution for uðx; yÞ.

4.1. General solution for stress and displacement fields in a strip

In the absence of body forces, the general solution for Airy’s
stress function, uðx; yÞ, in a strip can be obtained as the following
Fourier integral (Selvadurai, 2000)

uðx; yÞ ¼ 1ffiffiffiffiffiffiffi
2p
p

Z 1

�1
½ðAðnÞ þ BðnÞyÞe�jnjy þ ðCðnÞ

þ DðnÞyÞeþjnjy�e�inxdn: ð21Þ

where the unknown constants A, B, C and D are determined by
applying the boundary conditions and regularity conditions
applicable to a particular problem. Without loss of generality, the
unknown constants A, B, C and D, in the general solution for
uðx; yÞ can be decomposed according to

AðnÞ ¼
ffiffiffip
2

p bx

jnj2
AxðnÞ þ i by

jnj2
AyðnÞ

h i
; BðnÞ ¼

ffiffiffip
2

p bx
jnjBxðnÞ þ i by

jnjByðnÞ
h i

;

CðnÞ ¼
ffiffiffip
2

p bx

jnj2
CxðnÞ þ i by

jnj2
CyðnÞ

h i
; DðnÞ ¼

ffiffiffip
2

p bx
jnjDxðnÞ þ i by

jnjDyðnÞ
h i

;

ð22Þ

such that Ax, Bx, Cx and Dx are even functions of the variable n,
whereas, Ay, By, Cy and Dy are odd functions of n. The constants bx

and by are the components of the Burger’s vector of the edge
dislocation.

By substituting Eq. (22) into Eq. (21), the solution for uðx; yÞ
can be decomposed into its even and odd components according
to

uðx; yÞ ¼ ubx
ðx; yÞ þuby

ðx; yÞ; ð23Þ

where

ubx
ðx; yÞ ¼ bx

Z 1

0

Ax

n2 þ
Bx

n
y

� �
e�ny þ Cx

n2 þ
Dx

n
y

� �
eny

� �
cosðnxÞdn;

ð24Þ

and

uby
ðx; yÞ ¼ by

Z 1

0

Ay

n2 þ
By

n
y

� �
e�ny þ Cy

n2 þ
Dy

n
y

� �
eny

� �
sinðnxÞdn:

ð25Þ

The corrective stress components can be obtained as follows

r�xx¼ bx

Z 1

0
ðAxþðny�2ÞBxÞe�nyþðCxþðnyþ2ÞDxÞeny
	 


cosðnxÞdn

þby

Z 1

0
ðAyþðny�2ÞByÞe�nyþðCyþðnyþ2ÞDyÞeny
	 


sinðnxÞdn;

ð26Þ

r�yy ¼ �bx

Z 1

0
ðAx þ nyBxÞe�ny þ ðCx þ nyDxÞeny
	 


cosðnxÞdn

� by

Z 1

0
ðAy þ nyByÞe�ny þ ðCy þ nyDyÞeny
	 


sinðnxÞdn; ð27Þ

r�xy¼ bx

Z 1

0
½ð�Axþð1�nyÞBxÞe�nyþðCxþð1þnyÞDxÞeny�sinðnxÞdn

�by

Z 1

0
½ð�Ayþð1�nyÞByÞe�nyþðCyþð1þnyÞDyÞeny�cosðnxÞdn:

ð28Þ

The displacement components are given in gradient form as
follows
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@u�

@x
¼ bx

2l

Z 1

0
Axþ ny�jþ1

2

� �
Bx

� �
e�nyþ Cxþ nyþjþ1

2

� �
Dx

� �
eny

� �

�cosðnxÞdnþ by

2l

Z 1

0
ðAyþ ny�jþ1

2

� �
ByÞe�ny

�

þ Cyþ nyþjþ1
2

� �
Dy

� �
eny

�
sinðnxÞdn; ð29Þ

@v�
@x
¼ bx

2l

Z 1

0
�Ax þ 1� ny� jþ 1

2

� �
Bx

� �
e�ny

�

þ Cx þ 1þ ny� jþ 1
2

� �
Dx

� �
eny

�
sinðnxÞdn

� by

2l

Z 1

0
�Ay þ 1� ny� jþ 1

2

� �
By

� �
e�ny

�

þ Cy þ 1þ ny� jþ 1
2

� �
Dy

� �
eny

�
cosðnxÞdn: ð30Þ
4.2. Bimaterial interface conditions

The unknown constants A, B, C and D in the general solution for
uðx; yÞ associated with each layer can be obtained by utilizing the
conditions of displacement continuity and traction equilibrium,
written as

uðx; yþÞ þ ivðx; yþÞ ¼ uðx; y�Þ þ ivðx; y�Þ; ð31Þ

ryyðx; yþÞ þ irxyðx; yþÞ ¼ ryyðx; y�Þ þ irxyðx; y�Þ: ð32Þ

Since the general solution for uðx; yÞ is a Fourier integral, the
unknown constants can be determined more readily if the
bimaterial interface conditions are expressed in the Fourier
domain. The traction equilibrium condition Eq. (32) yields the
following bimaterial interface conditions

~r�yyðx;d
þ
i Þ ¼ ~r�yyðx;d

�
i Þ; ~r�xyðx; d

þ
i Þ ¼ ~r�xyðx; d

�
i Þ; ð33Þ

~r�yyðx;�cþj Þ ¼ ~r�yyðx;�c�j Þ; ~r�xyðx;�cþj Þ ¼ ~r�xyðx;�c�j Þ; ð34Þ

and

~r�yyðx;0Þ ¼ ~r�yyðx; 0Þ; ~r�xyðx; 0Þ ¼ ~r�xyðx; 0Þ: ð35Þ

where i ¼ 1; . . . ;n� 1, j ¼ 1; . . . ;m� 1 and the tilde symbol
represents the Fourier transform with respect to the variable x.
The displacement continuity condition Eq. (31) requires that

D
@~u�

@x
ðx; diÞ ¼ �D

@~u
@x
ðx;diÞ; D

@~m�

@x
ðx;diÞ ¼ �D

@~m
@x
ðx;diÞ; ð36Þ

D
@~u�

@x
ðx; cjÞ ¼ �D

@~u
@x
ðx; cjÞ; D

@~m�

@x
ðx; cjÞ ¼ �D

@~m
@x
ðx; cjÞ; ð37Þ

and

D
@~u�

@x
ðx; 0Þ ¼ 0; D

@~v�
@x
ðx; 0Þ ¼ 0: ð38Þ

i.e. the displacement gradient jump due to the correction field must
be equal and opposite to the displacement gradient jump due to the
dislocation field, given by Eqs. (17)–(20).

Each layer has four constants A, B, C and D associated with it.
Hence, there are a total of 4ðmþ nÞ constants to be determined.
The interface conditions provide a total of 4ðmþ n� 1Þ equations
and the remaining four equations are supplied by the far-field
boundary conditions, i.e. r�xyðx; y! �1Þ ¼ 0 and r�yyðx; y!
�1Þ ¼ 0. To make the presentation of these equations more man-
ageable, the effects of bx and by are considered separately and the
equations are presented in Appendix A.
5. Validation of the dislocation solution

The problem of an edge dislocation in an elastic layer bonded to
a half-space has been considered previously by several researchers
(Savage, 1998; Kelly et al. 1995; Comninou and Dundurs, 1983; Lee
and Dundurs, 1973). As a verification example, we consider the
particular case when the edge dislocation lies at the interface
between the elastic layer and the half-plane and compare the
obtained result for corrective tractions along the interface to those
obtained using the solution of Kelly et al. (1995). The corrective
tractions along the interface can be obtained by letting y ¼ 0 in
Eqs. (27) and (28)

r�yyðx; 0Þ ¼ �bx

Z 1

0
ðA1

x þ C1
x Þ cosðnxÞdn� by

Z 1

0
ðA1

y þ C1
yÞ sinðnxÞdn;

ð39Þ

r�xyðx; 0Þ ¼ bx

Z 1

0
ð�A1

x þ B1
x þ C1

x þ D1
x Þ sinðnxÞdn

� by

Z 1

0
ð�A1

y þ B1
y þ C1

y þ D1
yÞ cosðnxÞdn: ð40Þ

The Fourier integrals in Eqs. (39) and (40) are evaluated numer-
ically by truncating the upper limit of the integrals to n ¼ n�. The
unknown constants in these integrals are obtained by setting
d1 ¼ h, c1 !1 and l2=l1 ! 0 (see Fig. 1) and then solving the sys-
tem of linear equations given in Appendix A at each value of n. The
corresponding results for corrective tractions based on the solution
of Kelly et al. (1995) can be obtained by setting d ¼ 0 and y ¼ 0 in
Eq. B1 of the original paper and then following the procedure
described in the paper. The corrective tractions at the interface
obtained using the two methods are compared in Fig. 3 and an
excellent agreement is observed. This implies that the general
solution obtained in the present work correctly recovers the sim-
pler case considered previously. Further validation is also con-
ducted in Section 6.3.

6. Interfacial crack in an arbitrarily layered medium

The obtained solution for an interfacial edge dislocation can be
utilized to solve a variety of crack problems in an arbitrarily lay-
ered composite using the framework of the distributed dislocation
technique. As an example, the problem of an interfacial crack with
oscillatory singularity is considered.

6.1. Main definitions

For an interfacial crack of length 2a, the complex stress
intensity factor K can be defined as (Rice, 1988)

K ¼ K1 þ iK2 ¼ lim
r!0

rþie
ffiffiffiffiffiffiffiffiffi
2pr
p

½ryyðrÞ þ irxyðrÞ�
n o

; ð41Þ

where r is the distance ahead of the crack tip and e is the oscillatory
index defined as

e ¼ 1
2p

log
1þ b
1� b

� �
: ð42Þ

The right hand crack tip, located at x ¼ a, will be considered
hereafter for definiteness. The local r � h coordinate system under
consideration has its origin at x ¼ a; y ¼ 0. The crack tip stresses,
the relative displacement of the crack faces and the displacement
gradients in the K-dominance zone are as follows (Hills et al.,
1996):

ryyðrÞ þ irxyðrÞ ¼
Kffiffiffiffiffiffiffiffiffi
2pr
p r�ie; ð43Þ
55



(a) (b)

Fig. 3. The numerical results for the corrective tractions along the interface for the case of (a) a glide dislocation, and (b) a climb dislocation. The solid lines correspond to the
proposed solution and the dotted lines correspond to the solution obtained by Kelly et al. (1995). The calculations were performed for obtained for a ¼ 0:8, b ¼ 0:2 and h ¼ 1.
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dxðrÞ þ idyðrÞ ¼ fuðr;þpÞ � uðr;�pÞg þ ifvðr;þpÞ � vðr;�pÞg

¼ K

ffiffiffiffiffi
2r
p

r
r�ie

ð1� 2ieÞC
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q ; ð44Þ

BðrÞ ¼ BxðrÞ þ iByðrÞ ¼
@

@r
½dxðrÞ þ idyðrÞ� ¼ i

�Kffiffiffiffiffiffiffiffiffi
2pr
p rþie

C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q ; ð45Þ

where �K is the complex conjugate of K and C is the effective
bimaterial modulus, defined as

C ¼ 2l1

ðj1 þ 1Þ
1� a
1� b2 ¼

2l�1

ðj�1 þ 1Þ
1þ a
1� b2 : ð46Þ

For interfacial cracks, the quantity that is physically more
important is the strain energy release rate G, which is related to
the absolute value of the complex stress intensity factor,
jKj ¼ K �K , as

G ¼ jKj
4C

: ð47Þ

The energy release rate, G is uninfluenced by oscillatory
character of the solution and the crack-face interpenetration
implied by the open model, if the zone of interpenetration is fully
encapsulated within the zone of K dominance. It is convenient to
normalize G by the known result for a crack at the bimaterial
interface between two elastic half-planes, subjected to uniform
remote loading (Rice and Sih, 1965)

Kb ¼ ðr1yy þ ir1xyÞð1� 2ieÞ
ffiffiffiffiffiffi
pa
p

ð2aÞþie
: ð48Þ

Denoting the corresponding energy release rate by Gb, the
normalized energy release rate can be written as

Ĝ ¼ G
Gb
¼ K �K
ð1þ 4e2ÞðpaÞðr12

yy þ r12
xy Þ

: ð49Þ
6.2. Governing singular integral equations

We assume that the loading is predominantly tensile, so that
any stress oscillations or material interpenetration are confined
to a region very close to the crack tips, and the open crack formu-
lation can be implemented. If the crack faces are open at all points,
the tractions must vanish along the entire crack, and the governing
integral equations are (Hills et al., 1996; Erdogan et al., 1973)

�p
C

�ryyðxÞ ¼ �bpBxðxÞ þ
Z þa

�a

ByðkÞ
x� k

dkþ
Z þa

�a
BxðkÞKxyyðx; kÞ
	

þ ByðkÞKyyyðx; kÞ


dk; jxj < a; ð50Þ
56
�p
C

�rxyðxÞ ¼ þbpByðxÞ þ
Z þa

�a

BxðkÞ
x� k

dkþ
Z þa

�a
½BxðkÞKxxyðx; kÞ

þ ByðkÞKyxyðx; kÞ�dk; jxj < a; ð51Þ

where �ryyðxÞ and �rxyðxÞ are the normal and shear stresses at the
crack location in the absence of the crack. The kernels Kijkðx; kÞ are
regular bounded functions describing the influence of the layered
structure, and can be obtained from Eqs. (39) and (40) as

Kxyyðx; kÞ ¼ �
p
C

Z 1

0
ðA1

x þ C1
x Þ cos½nðx� kÞ�dn; ð52Þ

Kyyyðx; kÞ ¼ �
p
C

Z 1

0
ðA1

y þ C1
yÞ sin½nðx� kÞ�dn; ð53Þ

Kxxyðx; kÞ ¼
p
C

Z 1

0
ð�A1

x þ B1
x þ C1

x þ D1
x Þ sin½nðx� kÞ�dn; ð54Þ

Kyxyðx; kÞ ¼ �
p
C

Z 1

0
ð�A1

y þ B1
y þ C1

y þ D1
yÞ cos½nðx� kÞ�dn: ð55Þ

The governing equations, Eqs. (50) and (51), can be normalized
by setting s ¼ k=a and t ¼ x=a and combined into one single com-
plex equation as follows:

FðtÞ ¼ �bBðtÞ � i
p

Z þ1

�1

BðsÞ
t � s

dsþ
Z 1

�1
½BðsÞK 01ðt; sÞ

þ BðsÞK 02ðt; sÞ�ds; ð56Þ

where,

FðtÞ ¼ � 1
C
½�ryyðtÞ � i�rxyðtÞ�; ð57Þ

BðtÞ ¼ BxðtÞ þ iByðtÞ; ð58Þ

and

K 01ðt; sÞ ¼
a

2p
fðK 0xyy � K 0yxyÞ � iðK 0yyy þ K 0xxyÞg; ð59Þ

K 02ðt; sÞ ¼
a

2p
fðK 0xyy þ K 0yxyÞ þ iðK 0yyy � K 0xxyÞg: ð60Þ

The over-bar denotes the complex conjugate, i.e.
BðsÞ ¼ BxðsÞ � iByðsÞ. The crack must have no net dislocation con-
tent, i.e. the crack faces must physically come together at both
ends. This condition requires thatZ þ1

�1
BðsÞds ¼ 0: ð61Þ

The solution for the complex dislocation density function, BðxÞ,
can be obtained by solving the governing Eq. (56) subject to the
uniqueness condition (61). Here, the method for solving integral
equations of second kind given by Erdogan et al. (1973) is used.



(a) (b)

Fig. 4. (a) Interfacial crack in a layer-substrate sandwich, and (b) Normalized energy release rate vs. normalized layer thickness for Aluminum–Epoxy–Aluminum composite.
The cross symbol represents theoretical bound for c1=2a! 0.

(a) (b)

Fig. 5. (a) Interfacial crack in periodic bimaterial medium, and (b) Normalized energy release rate vs. layer thickness ratio.

A. Khanna, A. Kotousov / International Journal of Solids and Structures 72 (2015) 1–10 7
An alternative method, as discussed by Ma and Korsunsky (2004)
can also be implemented. Once the solution for BðxÞ is known,
the complex stress intensity factor and energy release rate can be
determined in terms of the obtained solution for the dislocation
density function.

6.3. Verification examples

The edge dislocation solution obtained in the present work is
applied to some previously considered plane strain problems of
an interfacial crack in multi-layered media. The first of these is a
composite medium comprising of a single layer bounded by two
half-spaces and with crack along one of the two bimaterial inter-
faces (Fig. 4a). This problem was solved previously by Erdogan
and Gupta (1971b), also using the method described in
Section 6.2, however using a different dislocation solution.
Fig. 4b shows the numerical results for the normalized energy

release rate, Ĝ as a function of the normalized layer thickness,
c1=2a. The results are evaluated for an Aluminum–Epoxy–Alumin
um composite, i.e. l1 ¼ l�2 ¼ 26:52 GPa, l�1 ¼ 1:15 GPa,
m1 ¼ m�2 ¼ 0:3 and m�1 ¼ 0:35. The results obtained by Erdogan
and Gupta (1971b) were retrieved from Table 3 of the latter paper.

The second problem involves an interfacial crack in a composite
medium comprising of alternating layers of two materials (Fig. 5a).
This problem was considered more recently by Kucherov and
Ryvkin (2002) and Kucherov (2003). The numerical results for

the normalized energy release rate, Ĝ, as a function of the layer
thickness ratio, h1=h2, are shown in Fig. 5b. The results are evalu-
ated for Dundur’s parameters, a ¼ 0:8 and b ¼ 0:2 and
Hmin ¼minfh1=2a;h2=2ag ¼ 1. The corresponding results were
retrieved from Fig. 5.4 of Kucherov (2003).

For both crack problems, there is close agreement between the
numerical results obtained using the present dislocation solution
and the numerical results obtained in previous studies using a dif-
ferent approach. This serves as an indirect validation of the
obtained edge dislocation solution and also demonstrates the
application of the solution to crack problems.

7. Concluding Remarks

In this paper, we consider a general multi-layered composite,
composed of perfectly bonded isotropic elastic layers, and present
the solution for the elastic field induced by an interfacial edge dis-
location. Composite structures with a finite number of layers can
be modeled by setting the shear modulus of elasticity of the top
and bottom layers to a very small value approaching zero, while
the embedded dislocation corresponds to the case when l�1 ¼ l1

and m�1 ¼ m1. The obtained solution for an interfacial edge disloca-
tion in a multi-layered medium can be used in conjunction with
the distributed dislocation technique (DDT) to solve crack prob-
lems involving multiple interacting cracks in a multi-layered med-
ium, with no restriction on the crack orientation, position and
loading. Several validation examples are included to demonstrate
the accuracy of the obtained solution.
57
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Appendix A. Equations of compatibility and equilibrium at the
interfaces

Case 1: bx ¼ 1, by ¼ 0:
The system of four equations associated with an interface

located at y ¼ di is given by

ðAi
x þ ndiB

i
xÞe�ndi þ ðCi

x þ ndiD
i
xÞendi � ðAiþ1

x þ ndiB
iþ1
x Þe�ndi

� ðCiþ1
x þ ndiD

iþ1
x Þendi ¼ 0; ðA:1Þ

� ð�Ai
x þ ð1� ndiÞBi

xÞe�ndi � ðCi
x þ ð1þ ndiÞDi

xÞendi

þ ð�Aiþ1
x þ ð1� ndiÞBiþ1

x Þe�ndi þ ðCiþ1
x þ ð1þ ndiÞDiþ1

x Þendi ¼ 0;

ðA:2Þ

� 1
2li

Ai
xþ ndi�

jiþ1
2

� �
Bi

x

� �
e�ndi � 1

2li
Ci

xþðndiþ
jiþ1

2
ÞDi

x

� �
endi

þ 1
2liþ1

Aiþ1
x þ ndi�

jiþ1þ1
2

� �
Biþ1

x

� �
e�ndi

þ 1
2liþ1

Ciþ1
x þ ndiþ

jiþ1þ1
2

� �
Diþ1

x

� �
endi ¼�D

@~u
@x

x;dið Þ; ðA:3Þ

and

� 1
2li

�Ai
xþ 1�ndi�

jiþ1
2

� �
Bi

x

� �
e�ndi

� 1
2li

Ci
xþ 1þndi�

jiþ1
2

� �
Di

x

� �
endi

þ 1
2liþ1

�Aiþ1
x þ 1�ndi�

jiþ1þ1
2

� �
Biþ1

x

� �
e�ndi

þ 1
2liþ1

Ciþ1
x þ 1þndi�

jiþ1þ1
2

� �
Diþ1

x

� �
endi ¼�D

@~m
@x
ðx;diÞ: ðA:4Þ

where i ¼ 1; . . . ; n� 1. The right hand side of Eqs. (A3) and (A4)
can be evaluated by taking the appropriate Fourier transforms of
Eqs. (17) and (18), respectively. For bx ¼ 1 and by ¼ 0,

D
@~u
@x
ðx;diÞ¼

2
p

Z 1

0
D
@u
@x
ðx;diÞcosðnxÞdx

¼ 1
p
� jiþ1C1þC�1

2liþ1
�jiC1þC�1

2li

� �
þ2

C1

2liþ1
� C1

2li

� �
ndi

� �
e�ndi ;

ðA:5Þ

And

D
@~m
@x
ðx;diÞ ¼

2
p

Z 1

0
D
@u
@x
ðx;diÞsinðnxÞdx

¼�1
p

jiþ1C1�C�1

2liþ1
�jiC1�C�1

2li

� �
þ2

C1

2liþ1
�C�1

2li

� �
ndi

� �
e�ndi

ðA:6Þ

Similarly, the system of four equations associated with an interface
located at y ¼ �cj is given by

A�ðjþ1Þ
x � ncjB

�ðjþ1Þ
x

� �
encj þ C�ðjþ1Þ

x � ncjD
�ðjþ1Þ
x

� �
e�ncj

� A�j
x � ncjB

�j
x

� �
encj � C�j

x � ncjD
�j
x

� �
e�ncj ¼ 0; ðA:7Þ

� �A�ðjþ1Þ
x þ ð1þ ncjÞB�ðjþ1Þ

x

� �
encj � C�ðjþ1Þ

x þ ð1� ncjÞD�ðjþ1Þ
x

� �
e�ncj

þ �A�j
x þ ð1þ ncjÞB�j

x

� �
encj þ C�j

x þ ð1� ncjÞD�j
x

� �
e�ncj ¼ 0;

ðA:8Þ
58
� 1
2l�ðjþ1Þ

A�ðjþ1Þ
x þ �ncj �

j�ðjþ1Þ þ 1
2

� �
B�ðjþ1Þ

x

� �
encj

� 1
2l�ðjþ1Þ

C�ðjþ1Þ
x þ �ncj þ

j�ðjþ1Þ þ 1
2

� �
D�ðjþ1Þ

x

� �
e�ncj

þ 1
2l�j

A�j
x þ �ncj �

j�j þ 1
2

� �
B�j

x

� �
encj

þ 1
2l�j

C�j
x þ �ncj þ

j�j þ 1
2

� �
D�j

x

� �
e�ncj ¼ �D

@~u
@x
ðx;�cjÞ; ðA:9Þ

and

� 1
2l�ðjþ1Þ

�A�ðjþ1Þ
x þ 1þ ncj �

j�ðjþ1Þ þ 1
2

� �
B�ðjþ1Þ

x

� �
encj

� 1
2l�ðjþ1Þ

C�ðjþ1Þ
x þ 1� ncj �

j�ðjþ1Þ þ 1
2

� �
D�ðjþ1Þ

x

� �
e�ncj

þ 1
2l�j

�A�j
x þ 1þ ncj �

j�j þ 1
2

� �
B�j

x

� �
encj

þ 1
2l�j

C�j
x þ 1� ncj �

j�j þ 1
2

� �
D�j

x

� �
e�ncj ¼ �D

@~m
@x
ðx;�cjÞ

ðA:10Þ

where j ¼ 1; . . . ;m� 1. The right hand side of Eqs. (A9) and (A10)
can be evaluated by taking the appropriate Fourier transforms of
Eqs. (19) and (20), respectively. For bx ¼ 1 and by ¼ 0,

D
@~u
@x
ðx;�cjÞ ¼

2
p

Z 1

0
D
@u
@x
ðx;�cjÞ cosðnxÞdx

¼ � 1
p
� j�jC�1 þ C1

2l�j
� j�ðjþ1ÞC�1 þ C1

2l�ðjþ1Þ

 !"

þ 2
C�1

2l�j
� C�1

2l�ðjþ1Þ

 !
ncj

#
e�ncj ; ðA:11Þ

and

D
@~m
@x
ðx;�cjÞ ¼

2
p

Z 1

0
D
@u
@x
ðx;�cjÞ sinðnxÞdx

¼ � 1
p

j�jC�1 � C1

2l�j
� j�ðjþ1ÞC�1 � C1

2l�ðjþ1Þ

 !"

þ 2
C�1

2l�j
� C�1

2l�ðjþ1Þ

 !
ncj

#
e�ncj : ðA:12Þ

The system of equations for the interface located along y ¼ 0 are
given by

A�1
x þ C�1

x � A1
x � C1

x ¼ 0; ðA:13Þ

A�1
x � B�1

x � C�1
x � D�1

x � A1
x þ B1

x þ C1
x þ D1

x ¼ 0; ðA:14Þ

� 1
2l�1

A�1
x �

j�1 þ 1
2

B�1
x

� �
� 1

2l�1
C�1

x þ
j�1 þ 1

2
D�1

x

� �

þ 1
2l1

A1
x �

j1 þ 1
2

B1
x

� �
þ 1

2l1
C1

x þ
j1 þ 1

2
D1

x

� �
¼ 0; ðA:15Þ

And

� 1
2l�1

�A�1
x þ 1�j�1þ1

2

� �
B�1

x

� �

� 1
2l�1

C�1
x þ 1�j�1þ1

2

� �
D�1

x

� �

þ 1
2l1

�A1
x þ 1�j1þ1

2

� �
B1

x

� �
þ 1

2l1
C1

x þ 1�j1þ1
2

� �
D1

x

� �
¼0: ðA:16Þ

Finally, the far-field boundary conditions, i.e. r�xyðx; y! �1Þ ¼
0 and r�yyðx; y! �1Þ ¼ 0, imply that
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Cn
x ¼ 0; Dn

x ¼ 0; ðA:17Þ

A�m
x ¼ 0; B�m

x ¼ 0: ðA:18Þ

For an arbitrary medium composed of mþ n layers, a system of
4ðmþ nÞ linear equation can be obtained from Eqs. (A1)–(A18). A
global matrix can then be assembled in an appropriate manner
to find the 4ðmþ nÞ unknown constants associated with an edge
dislocation of strength bx ¼ 1 and by ¼ 0.

Case 2: bx ¼ 0, by ¼ 1:
The system of equations for this case take the exact same form

as Case 1, except the constants Ax, Bx, Cx and Dx need to be replaced
by Ay, By, Cy and Dy, respectively. Also, the right hand sides of Eqs.
(A3), (A4), (A9) and (A10) need to be replaced by

�D
@~u
@x
ðx;diÞ¼�

2
p

Z 1

0
D
@u
@x
ðx;diÞsinðnxÞdx

¼ 1
p �

jiþ1C1�C�1

2liþ1
�jiC1�C�1

2li

� �
þ2

C1

2liþ1
� C1

2li

� �
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respectively.
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Brittle matrix composites such as fiber-reinforced cements and ceramics are often bonded to dissimilar
materials such as metals or other ceramics. The mismatch in elastic properties can affect the growth of
matrix cracks located near the bonded interface. In this paper, a bonded system comprising of an elastic
layer sandwiched between two identical elastic half-spaces is considered. A mathematical model is
developed based on the distributed dislocation technique, for the analysis of a bridged straight crack
embedded in the elastic layer. The bridging tractions are considered to be dependent on the crack open-
ing displacement. The stress field is assumed to be plane stress or plane strain and all three-dimensional
effects are disregarded.

The numerical results include the critical stress required to initiate failure of the matrix and the failure
of fibers bridging the crack. The dependencies of these critical values upon the thickness of the composite
layer as well as the mismatch in elastic properties are presented in dimensionless form. The results can be
used to estimate the residual strength of bonded composites with a flaw near the material interface.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The problem of crack bridging by reinforcements has been trea-
ted extensively in the literature over the past fifty years. There are
several practical contexts where the residual strength of a compo-
nent is controlled by a reinforced macro-crack. The reinforcements
can be attributed, as in the present case, to fibers in a brittle-matrix
composite [1,2] or they can be externally applied, as in the case of
adhesively bonded patches often utilized to repair damaged com-
posite plate or shell structures [3–5]. The bridging reinforcement
obstructs the opening of the crack and hence, leads to a reduction
in the stress intensity factors at the crack tips restricting the crack
growth and reducing the risk of failure of the structural compo-
nents [6]. The analytical procedure for evaluating the stress
intensity factor associated with the bridging reinforcement
involves the application of a displacement-dependent traction
constraint over the crack faces and solving the resultant integral
equation for crack opening [7].

There are several studies characterizing the failure mechanics of
reinforced brittle matrix composites containing pre-existing cracks
[8–11]. The problems addressed in these studies involve cracks in a
homogenous material. However, brittle matrix composites such as
fiber-reinforced cements and ceramics are often bonded to
dissimilar materials such as metals or other ceramics [12,13]. The
mismatch in elastic properties can affect the growth of cracks
located at or near the bonded interface. To obtain the solution to
such problems, one can readily adapt or extend the existing
solutions to crack problems in composite materials without fiber
reinforcement (see for e.g. Chen and Sih [14], Erdogan [15] and
Hills et al. [16]). The system of governing singular integral equa-
tions needs be modified to incorporate the traction on the crack
faces due to reinforcement. Such an approach has been utilized
previously to solve the problem of a fiber-reinforced slant crack
located near a free surface [17] and the problem of a fiber-
reinforced interfacial crack in a bi-material composite [18].

In the present work a different problem is considered, which is a
bonded system comprising of an elastic layer sandwiched between
two identical half-spaces. Stress analysis is conducted for a straight
crack embedded in the composite layer and located perpendicular
to the material interfaces. A number of governing dimensionless
parameters are identified in order to establish the effect of (1)
the distance of the crack tips from the material interfaces, and
(2) the mismatch in elastic properties on the stress intensity factor.
The developed method based on the distributed dislocation tech-
nique, is extended to two other related problems which are solved
in the Appendices. The first is the stress analysis of a crack in an
aircraft panel repaired by a composite patch and the second prob-
lem involves a crack in a bonded ceramic lying perpendicular to a
bi-material interface.
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Nomenclature

Symbol description (Dimensions)
x co-ordinate along the length of the crack [L]
y co-ordinate perpendicular to the crack [L]
2a length of the crack [L]
2h width of the elastic layer containing the crack [L]
l shear modulus ½ML�1T�2�
j Kolosov’s constant [–]
rxx,rxy,ryy the stresses in the composite at a point (x,y) ½ML�1T�2�
uy(x,0+) displacement of the positive crack face in the y-direc-

tion [L]
d(x) crack opening displacement [L]
f volume fraction of the bridging fibers [–]
S strength of individual fibers ½ML�1T�2�
R radius of individual fibers [L]
s frictional stress at the fiber/matrix interface

½ML�1T�2�
g micro-mechanical constant ½ML�3=2T�2�
rf(x) average stress in the bridging fibers along the crack

½ML�1T�2�
p(x) bridging traction due to the fibers ½ML�1T�2�
r1 remote tensile load opening the crack ½ML�1T�2�
rult bridging traction required to initiate fiber failure

½ML�1T�2�
uult crack face displacement required to initiate fiber fail-

ure [L]
by(x) distributed dislocation density [–]

t dummy integration variable along the crack length [L]
Gð2Þyyy dislocation influence function [L�1]

Dimensionless parameters
a,b Dundur’s parameters
X normalized co-ordinate along crack length
R1 normalized remote tensile load
Ryy(X,0) normalized bridging traction along the crack
Rk value of R1 required to initiate matrix cracking
Rs value of R1 required to initiate fiber failure
A normalized crack length
H normalized width of elastic layer
U(X) normalized crack face displacement
By(X) normalized distributed dislocation density
KN normalized stress intensity factor

Subscripts
1 region outside the elastic layer, i.e. x < � h, x > h
2 region inside the elastic layer, i.e. jxj < h

Superscripts
(1) region 1, located along x < � h
(2) region 2, located along jxj < h
(3) region 3, located along x > h
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2. Problem formulation

Consider the bonded structure shown in Fig. 1. The problem is
2D and all three-dimensional effects are disregarded, such as, the
corner (vertex) singularity [19], scale effect [20] and variation of
the stress intensity factor across the crack front [21]. Only Mode
I loading of the crack is considered. The elastic layer of thickness
2h contains a straight crack of length 2a < 2h and the crack lies per-
pendicular to the material interface. The half-planes occupy region
1 (x < �h) and region 3 (x > h) and have identical elastic constants,
Fig. 1. Formulation of the problem: a bridged crack symmetrically embedded in an
elastic layer perpendicular to the material interfaces.
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denoted by j1 and l1. The elastic layer, which contains the crack,
occupies region 2 (jxj < h) and described by elastic constants
denoted as j2 and l2. Here j is the Kolosov’s constant and l is
the shear modulus of the material. The composite material is uni-
formly loaded perpendicular to the crack faces, such that

rxx ¼ rxy ¼ 0; x2 þ y2 !1 ð1aÞ
rð2Þyy ¼ r1; x2 þ y2 !1 ð1bÞ

rð1Þyy ¼ r 3ð Þ
yy ¼ r1

l1

l2

ðj2 þ 1Þ
j1 þ 1ð Þ ; x2 þ y2 !1; ð1cÞ

where the super-script (1) indicates region 1 (x < � h), the super-
script (2) indicates region 2 (jxj < h) and the super-script (3) indi-
cates region 3 (x > h). For this particular remote loading, the crack
is subjected to failure mode I (opening failure mode) only.

The crack is bridged by uni-directional fibers, which are aligned
perpendicular to its length. The bridging fibers restrain the opening
of the crack and consequently, causes a reduction in the stress
intensities at the crack tip. In continuum approximation (crack
length� fiber spacing), the bridging traction due to the individual
fibers can be replaced by a continuous distribution of bridging trac-
tions, p(x) on the crack surface [1]. Hence, the boundary conditions
along the crack face i.e. y = 0 can be represented as

rð2Þyy ðx; y ¼ 0Þ ¼ pðxÞ; jxj < a ð2aÞ
rð2Þxy ðx; y ¼ 0Þ ¼ 0; �1 < x <1 ð2bÞ
uyðx; y ¼ 0Þ ¼ 0; x 6 �a; x P a: ð2cÞ

where p(x) is the net bridging traction on the crack face.
The bridging traction p(x) at a location x is defined as p(x) = frf

(x), where f is the volume fraction of the fibers and rf(x) is the aver-
age stress in the fibers [1]. Failure of individual fibers occurs when
the stress rf in the fibers exceeds the fiber strength, S. Thus, fiber
failure within the crack occurs when p(x) > fS = rult.
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The bridging traction p(x) is dependent upon the crack opening
displacement d(x), or equivalently on the crack face displacement
defined as u(x) = d(x)/2 = uy(x,y ? 0+). In the present case, the trac-
tion law proposed by Marshall et al. [1] for frictionally bonded
composites is utilized:

pðxÞ ¼ g
ffiffiffiffiffiffiffiffiffi
uðxÞ

p
H uult � uðxÞð Þ; H uult � uðxÞð Þ ¼

1; uðxÞ 6 uult;

0; uðxÞ > uult :

�
ð3Þ

In the above model, the bridging traction is proportional to the
square root of the crack face displacement and the failure of fibers
occurs when u(x) > uult. Here g is a constant, uult = (fS/g)2 and H(.) is
the Heaviside step function. The constant g was determined by a
one-dimensional analysis of the frictional bond between the fiber
and matrix by Marshall et al. [1] as:

g ¼ 4sf 2Ef Ec

REm 1� fð Þ

" #1=2

; ð4Þ

where s is the frictional stress between the fiber and matrix in the
region of fiber/matrix sliding, f is the volume fraction of the fibers
and R is the radius of the individual fibers. The constants Ec, Em

and Ef are the Young’s moduli of the composite, matrix and fibers
respectively, related according to the mixture rule as
Ec = fEf + (1 � f)Em.

3. Governing integral equation

Following the procedure of Bilby and Eshelby [22], the govern-
ing integral equation for crack opening can be written in terms of
the distributed dislocation density function, by(x). The distributed
dislocation density is related to the crack face displacement
according to:

uðxÞ ¼ �1
2

Z x

�1
by tð Þdt; byðxÞ ¼ �2

duðxÞ
dx

: ð5Þ

The normal stress along the crack length can be written as a super-
position of two auxiliary problems: (1) the normal stress in the
absence of the crack (i.e. in a perfect body), r1 and (2) the normal
stress in the elastic layer due to a continuous distribution of edge
dislocations of density by(x) along the crack length, �rð2Þyy ðx; 0Þ. Thus,

rð2Þyy ðx; 0Þ ¼ r1 þ �rð2Þyy ðx;0Þ; jxj 6 a; ð6Þ

where �rð2Þyy ðx;0Þ is given by:

�rð2Þyy ðx; 0Þ ¼
2l2

p j2 þ 1ð Þ

Z þa

�a
by tð Þ 1

x� t
þ Gð2Þyyyðx� t;0Þ

� �
dt: ð7Þ

In the above integral equation, the first singular term relates to the
homogeneous dislocation solution and the second bounded part of
the kernel, Gð2Þyyy, describes the influence of the material interfaces
located along x = ±h. An expression for Gð2Þyyy was derived by Fleck
et al. [23] using Airy’s stress function approach and Fourier trans-
form method and their method of determining the influence func-
tion is summarized briefly in Appendix C for the sake of
completeness of this paper. The influence function Gð2Þyyyðx;0Þ is
dependent on the thickness of the elastic layer 2h, the crack length
2a, and Dundur’s parameters a and b, which are defined as

a ¼ l1ðj2 þ 1Þ � l2 j1 þ 1ð Þ
l2ðj1 þ 1Þ þ l1 j2 þ 1ð Þ ; b ¼ l1 j2 � 1ð Þ � l2 j1 � 1ð Þ

l2ðj1 þ 1Þ þ l1ðj2 þ 1Þ :

These parameters characterize the degree of mismatch in the elastic
properties between materials 1 and 2.

Substituting Eq. (7) into Eq. (6) and utilizing the boundary con-
dition (2a), the governing integral equation in terms of the
unknown dislocation density function, by(t), can be obtained as
2l2

p j2 þ 1ð Þ

Z þa

�a
byðtÞ

1
x� t

þ Gð2Þyyyðx� t;0Þ
� �

dt þ r1 � pðxÞ

¼ 0; jxj 6 a; ð8Þ

where the bridging traction p(x) is given by Eq. (3). The unknown
dislocation density function, by(x) must also satisfy the condition
[24]:Z þa

�a
byðtÞdt ¼ 0; ð9Þ

which corresponds to the physical condition that the crack should
have no net dislocation content or the faces of the crack come
together at x = ±a.

4. Dimensionless form of the governing integral equation

To facilitate numerical solution, the scaled coordinate X is intro-
duced such that x = aX. Similarly a dummy integration variable n is
introduced such that t = an. Also, the following dimensionless
parameters are introduced:

R1 ¼
r1
rn

; A ¼ a
an
; H ¼ h

a
; U ¼ u

un
; By ¼

a
un

by; KN ¼
K
Kc
: ð10Þ

Here, R1 is the normalized tensile stress, A is the normalized crack
length, H is the normalized thickness of the elastic layer, U is the
normalized crack face displacement, By is the normalized distrib-
uted dislocation density function and KN is the normalized stress
intensity factor at the crack tip. The normalizing parameters used
in this study are the same as those introduced by Marshall and
Cox [8] in order to facilitate the comparison of numerical results.
These are defined as:

rn ¼
3g2K2

c

E1

" #1=3

; an ¼
p
4

9E1Kc

g2

" #2=3

; un ¼
r2
1

g2 ; ð11Þ

where Kc is the fracture toughness of the fiber–matrix composite,
which occupies region 2, see Fig. 1.

In non-dimensional form, the relationship between the crack
opening and distributed dislocation density given by Eq. (5), can
be written as

UðXÞ ¼ 1
2

Z 1

X
ByðnÞdn; �1 6 X 6 1: ð12Þ

Similarly, the governing integral Eq. (8) can be written in non-
dimensional form as:

R1
3p2A

Z 1

�1
ByðnÞ

1
X � n

þ Gð2Þyyy X � n; 0ð Þ
� �

dnþ FðXÞ ¼ 0; �1 6 X 6 1;

ð13Þ

where the function F(X) is given by

FðXÞ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffi
UðXÞ

p
H

rult

rn
� R1

ffiffiffiffiffiffiffiffiffiffiffi
UðXÞ

p� �
:

The criterion for fiber failure is R1
ffiffiffiffiffiffiffiffiffiffiffi
UðXÞ

p
¼ rult=rn . Finally, Eq. (9)

can be re-written as:Z 1

�1
ByðnÞdn ¼ 0: ð14Þ

An efficient numerical solution to the system of Eqs. (15) and (17),
can be obtained by utilizing the Gauss–Chebyshev quadrature
method, which reduces the governing singular Eqs. (13) and (14)
to a system of non-linear algebraic equations, which can be readily
solved using Newton–Raphson iteration method and Gaussian elim-
ination [25].
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5. Numerical solution procedure

The interval �1 6 X 6 1 is discretized into N points and a set of
indices are defined as i = 1 . . . N and j = 1 . . . N �1. The integration
and collocation points over the interval �1 6 X 6 1 are given by
si = cos(p(2i �1)/2N) and tj = cos(p j/N) respectively. The asymp-
totic behavior at the crack tips is built into the solution for
By(X) by writing the edge dislocation density function as
By(X) = W(X)U(X) where W(X) = (1 � X)�1/2 is the fundamental
solution and U(X) is an unknown regular function to be deter-
mined at N points along the interval �1 6 X 6 1. The Eq. (13) can
be discretized into a system of N � 1 equations with N unknowns
as:

R1
3pAN

XN

i¼1

UðsiÞ
1

tj � si
þ Gð2Þyyy tj � si;0

� 	� �
þ FðtjÞ ¼ 0; ð15Þ

where,

FðtjÞ ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffi
UðtjÞ

q
H

rult

rn
� R1

ffiffiffiffiffiffiffiffiffiffiffi
UðtjÞ

q� �
:

The normalized crack opening U(tj) can be obtained from Eq. (12)
as:

UðtjÞ ¼
p

2N

Xj

i¼1

UðsiÞ: ð16Þ

Similarly, Eq. (14) can be discretized to obtain the Nth equation:

p
N

XN

i¼1

UðsiÞ ¼ 0: ð17Þ

The system of N � N non-linear equations given by (15) and (17) is
solved using the Newton–Raphson iterative scheme, as follows. Let
the array {U} = [U(s1), U(s2), . . . U(sN)]T contain the unknown values
of the function U at the N points along the length of the crack. Then,
the kth iteration for {U} is given by:

fUgk ¼ fUgk�1 � J½ ��1
k�1fSgk�1; k ¼ 1;2; . . . ð18Þ

The vector {S}k�1 is the L.H.S. of Eq. (15) evaluated for {U} = {U}k�1.
The N � N matrix [J] is the Jacobian matrix containing partial deriv-
atives, the elements of which are given by:

Jj;i ¼
R1

3pAN
1

tj � si
þ Gð2Þyyy tj � si;0

� 	� �
� p

4N
1ffiffiffiffiffiffiffiffiffiffiffi

UðtjÞ
p

H j� ið ÞH rult

rn
� R1

ffiffiffiffiffiffiffiffiffiffiffi
UðtjÞ

q� �
; JN;i ¼

p
N
: ð19Þ

For the first iteration, i.e. k = 1, an initial guess {U}0 is required. The
initial guess {U}0 must be chosen such that U(tj) is non-zero for all
tj. This is because the components of the Jacobian matrix contain
the term U(tj)�1/2 which is singular for U(tj) = 0. In this paper, {U}0

= [s1,s2, . . . sN]T was chosen, where si = cos(p(2i � 1)/2N). It provides
rapid convergence for the entire range of governing parameters
considered in the numerical study. The solution for {U} is consid-
ered to be converged when k{U}k � {U}k�1k/k{U}k�1k < �. The
parameter � can be chosen to be arbitrarily small and it controls
the accuracy and convergence of the calculations. In the present cal-
culations. � = 10�10.

Once a converged solution for the function U is obtained, the
normal stress along the crack i.e. �1 6 X 6 1, y = 0 is given by:

RyyðtjÞ
R1

¼ R1
3pAN

XN

i¼1

UðsiÞ
1

tj � si
þ Gð2Þyyy tj � si; 0

� 	� �
þ 1; ð20Þ

and the normalized stress intensity factors at the crack tips i.e. at
X = ±1 are given by:
68
KN �1ð Þ ¼ � R2
1

2
ffiffiffi
A
p U �1ð Þ: ð21Þ

The value of normalized tensile stress R1 for which KN = 1 is
denoted by Rk. At this stress, matrix failure occurs in material 1.
Also, the value of normalized tensile stress R1 for which
ðrult=rnÞ ¼ R1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðUÞ

p
is denoted by Rs. At this stress, fiber failure

is initiated within the crack. The values of Rk and Rs depend upon
the normalized thickness of the elastic layer H and Dundurs’ param-
eters a and b which characterize the degree of mismatch in the elas-
tic properties. In the next section, selected numerical results are
presented, which demonstrate the most interesting features of the
obtained solution.
6. Numerical results

The numerical procedure described previously was applied to
solve the governing Eqs. (13) and (14) for a fully bridged straight
crack. The solution procedure involves guessing the unknown
crack length over which fiber failure occurs, in order to obtain
self-consistent solutions for the normalized crack opening, U(X)
and the normal stress along the crack location, Ryy(X). The number
of integration points N is kept sufficiently high in order to ensure
that the results are accurate up to four significant figures.

Firstly, the solutions for Rk and Rs were obtained for the case of
no material interface, i.e. H ?1. The results are shown in Fig. 2
along with the numerical results for a penny shaped crack obtained
by Marshall and Cox [8]. Due to the difference in the problem
geometry (straight crack considered in the present work vs. penny
shaped crack considered by Marshall and Cox [8]), the numerical
values in the two sets of curves differ slightly. However, in both
cases, the normalized stress required for matrix cracking, Rk con-
verges to a value of 0.794 (Fig. 2(a)) and the value of applied stress
required to initiate fiber failure, Rs converges to the value of the
normalized fiber strength, Rult (Fig. 2(b)). This comparison serves
as a validation of the numerical procedure presented in this paper.

Next, the effect of crack tip distance from the interface on the
solutions for Rk and Rs was examined. The results are presented
in Fig. 3 for two extreme cases: when a = �1, i.e. the crack lies close
to a free boundary (l1 = 0) and when a = +1, i.e. the crack lies close
to a rigid boundary (l1 ?1). In both cases, the value of b is taken
as a/4. All other material combinations are expected to lie in
between these two extremes. The calculations are performed for
H = 1.01, 1.5 and 2.0 (H = 1 corresponds to the crack tip touching
the interface and H ?1 corresponds to the absence of a material
interface). The solution for the applied stress required to initiate
matrix cracking Rk is presented in Fig. 3(a). At this stress, the nor-
malized stress intensity factor at the crack tips KN = 1. The follow-
ing observations can be made from the figure:

1. When the crack lies close to the free surface, the stress intensity
factor at the crack tips increases and hence, the stress required
to initiate matrix cracking Rk, decreases. The opposite is true
when the crack lies close to a rigid boundary. However, the
effect of the boundary diminishes as H increases and can be
ignored for H > 2. This observation is in agreement with the
general trend observed in crack problems in bonded composite
materials [15].

2. For the chosen values of the parameter H, the stress required to
initiate matrix failure Rk changes only slightly as H goes from
1 to 2. It changes quite significantly as H goes from 2 to 1.5
and the change is more pronounced as H goes from 1.5 to
1.01. Hence, the rate of change of the stress intensity factor
increases rapidly as the crack tip approaches the boundary or
as H ? 1.
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Fig. 2. Solution for Rk and Rs for a fully bridged matrix crack disregarding the material interfaces. The solid curves correspond to the numerical results obtained for a straight
crack in the present work and the dotted curves correspond to the results for a penny shaped crack obtained by Marshall and Cox [8].
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Fig. 3. Solution for Rk and Rs for a fully bridged crack for various values of the normalized thickness of the elastic layer, H. The curves furthest away from the solid curve
correspond to H = 1.01. The curves closest to the solid curve correspond to H = 2. The intermediate curves correspond to H = 1.05.

A. Khanna, A. Kotousov / Composite Structures 118 (2014) 139–148 143
3. With increasing normalized crack length A, the solution for Rk

in the layered composite approaches the solution for Rk in a
homogenous material. Based on Eqs. (10) and (11), the param-
eter A / g4/3, where g is the constant of proportionality appear-
ing in Eq. (3). Keeping other parameters constant, an increase in
the bridging traction corresponds to an increase in g and subse-
quently, an increase in the normalized crack length A. Thus, the
effect of the material interface diminishes with increased bridg-
ing traction. This result agrees with the findings of Ni and
Nemat-Nasser [18] and Lee [17] for different problem
geometries.

The solution for the applied stress required to initiate fiber fail-
ure Rs, which is presented in Fig. 3(b), follows the same trends as
described previously. At this stress, the fiber failure criterion is sat-
isfied at the point of maximum opening within the crack i.e.
Rult ¼ R1

ffiffiffiffiffiffiffiffiffiffi
Uð0Þ

p
. As the normalized crack length A increases, the

value of Rs converges to the value of Rult.
To demonstrate the effect of the elastic property mismatch, the

solutions for Rk and Rs are evaluated for H = 1.01 and different val-
ues of Dundur’s parameters a and b. The chosen values of a are
ja j = 1, 0.75, 0.50, 0.25 and 0. The value of b is taken as a/4 in all
cases, which implies that the Poisson’s ratios of the two materials
are chosen to be identical and the condition of plain strain domi-
nates the stress state near the crack. The results are presented in
Fig. 4 and the following observations can be made from the figure:

1. When a < 0, the stress intensity factor at the crack tips as well
as the maximum crack opening displacement increase. Hence,
the stress required to initiate matrix cracking and fiber failure,
Rk and Rs decrease. The opposite is true when a > 0.

2. As jaj varies from 0 to 1, the change in values of Rk and Rs is
quite uniform, unlike the change in values of Rk and Rs with
H (shown in Fig. 3).

3. As before, the effect of the material interface diminishes with
increasing the normalized crack length, A.

The distributed dislocation technique is also applied to solve
the related problem a crack in an aircraft panel repaired by a com-
posite patch in Appendix A. The results for a crack in a bonded
ceramic lying perpendicular to a bi-material interface are given
in Appendix B. A related problem of a crack located at an arbitrary
69
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Fig. 4. Solution for Rk and Rs for a fully bridged matrix crack for H = 1.01 and various values of Dundur’s parameter, a. Four curves each are presented for a > 0 (l1 > l2) and
a < 0(l1 < l2). These correspond to jaj = 1 (outermost), 0.75, 0.50 and 0.25 (innermost). The solid curves correspond to the solution for a = 0 i.e. l1 = l2.
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angle in an elastic layer can also be solved using the dislocation
solution outlined in Appendix C.

7. Concluding remarks

The mismatch in elastic properties between adjacent layers of a
bonded structure can influence the stress intensity factor solution
when the crack is located near the material interface. In the pres-
ent work, a simple 2D problem geometry (shown in Fig. 1) was
considered in order to demonstrate this effect. The general trends
observed for unbridged cracks in bonded composite materials
[15] were found applicable to the present problem as well. For
example, the effect of the boundaries is significant only when the
distance from the boundary is of the order of the crack length. Also,
the effect of the boundary on the stress intensity factor rapidly
increases as the crack tip approached the material interface. In
addition, the effect of the material interface was found to diminish
with increasing bridging traction, as demonstrated in previous
studies [17,18].

The related problem of a cracked plate repaired by a composite
patch was also considered and analyzed with the developed
method. It was found that for typical material combinations, the
mismatch in elastic properties between the patched and
unpatched regions of the plate leads to an increase in the stress
intensity factor (and hence, crack growth rate) when the crack tips
were in the vicinity of the patch boundaries.

The novelty of the present work is that the governing integral
equations for the crack problem were written in terms of the edge
dislocation density rather than the crack opening displacement.
The governing integral equations obtained in this form were solved
readily using the numerical procedure outlined previously and the
solution procedure did not experience the computational difficul-
ties outlined by Marshall and Cox [8]. The developed method can
be easily generalized to a number of other problem geometries,
which can be handled in the similar manner due to the abundance
of dislocation solutions available in the literature (for e.g. [16,15]).

Appendix A. Crack repaired by a composite patch

The mathematical formulation present in within the paper can
be readily extended solve the problem of a crack in an aircraft
panel repaired by a composite patch. The problem geometry is
essentially the same as that shown in Fig. 1. A strip of composite
material of width 2h is bonded to the aircraft panel along jxj 6 h.
The thickness of the plate is denoted by tP and the thickness of
70
the patch is denoted by tR. A straight crack of length 2a < 2h lies
within the patched region, perpendicular to the boundaries of
the patch. Additionally, the plate is restrained against out-of-plane
bending either with the use of stiffeners or due to symmetry in the
case of the two-sided patch repair.

The reinforced region of the plate can be treated as an elastic
inclusion of higher stiffness than the surrounding plate [26]. The
applicability of the inclusion analogy to bonded reinforcements
has been verified numerically and experimentally [27]. The plate
and the reinforcement are taken to be isotropic materials with
equal Poisson’s ratios. This considerably simplifies the presenta-
tion of the results, however it is acknowledged that the reinforce-
ment and plate can be orthotropic. The elastic constants of the
inclusion are then given by:

lI ¼ ðlPtP þ lRtRÞ=tI; jI ¼ jP ¼ jR; ðA1Þ

where (jP,lP) and (jR,lR) are the elastic constants of the plate and
reinforcement, respectively. The thickness of the inclusion, tI can be
chosen arbitrarily and was chosen to be tI = tP + tR by Muki and
Sternberg [28]. In the present context, it is chosen to be equal to
the plate thickness, i.e. tI = tP since the latter implies continuity of
stress across the inclusion boundaries [26].

The elastic constants of the unrepaired regions of the plate, i.e.
the half-planes occupying region 1 (x < � h) and region 3 (x > h) are
identical and denoted by (j,l1) � (jP ,lP). The elastic inclusion,
which contains the crack, occupies region 2 (jxj < h) and has elastic
constants denoted by (j ,l2) � (jI,lI).

The governing integral equation is identical to Eq. (8), except
the bridging traction p(x) is modeled by elastic-perfectly plastic
springs [29]:

pðxÞ ¼
8l2
jþ1ð Þ kuðxÞ; uðxÞ < uP ;

8l2
jþ1ð Þ kuP � rP; uðxÞP uP:

8<
: ðA2Þ

In the above constitutive model, k is a constant with dimension
(Length)�1 characterizing the spring stiffness in the linear range,
uP is the characteristic displacement beyond which the spring
response changes from being elastic to perfectly plastic and rP

can be interpreted as the yield stress for the springs. Also, the
dimensionless parameters are redefined as:

R1 ¼
r1
rP

; A ¼ 4ka
p

; H ¼ h
a
; U ¼ u

uP
; KN ¼

K
ffiffiffi
k
p

prP
: ðA3Þ

To obtain some numerical results corresponding to typical material
combinations, the values of Dundur’s parameters need to be



Fig. B1. A bridged crack located perpendicular to a bi-material interface.
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estimated. For example, consider an aluminium plate of thickness
tP = 1.5 mm, Young’s Modulus EP = 69 GPa and Poisson’s ratio
mP = 0.33 which is bonded to a boron-epoxy laminate of thickness
tR = 0.75 mm. The boron-epoxy laminate is an orthotropic material
containing uni-directional fibers, which are aligned perpendicular
to the crack. The material properties are: ERx = 19 GPa, ERy = 210 GPa,
lRxy = 4.8 GPa and myx = 0.35 [3]. To simplify the analysis, the rein-
forcement is treated as an isotropic material with Young’s modulus
equal to its longitudinal Young’s modulus ERy i.e. ER = 210 GPa and
Poisson’s ratio equal to that of the plate, i.e. mR = 0.33. The corre-
sponding values of the shear moduli of the plate, reinforcement
and inclusion are lP = 26 GPa, lR = 79 GPa and lI = 65.5 GPa,
respectively. The values of Dundur’s parameters are calculated as
a = �0.4317 and b = � 0.1087. The dependence of the stress inten-
sity factor at the crack tip upon the distance from the material inter-
face is demonstrated in Fig. A1 for this particular set of values of the
Dundur’s parameters.

The results obtained for the present case converge to the results
obtained by Cox and Rose [29] for large distance from patch
boundaries (H ?1). However, it can be observed that up until
H = 1.5, the effect of patch boundaries is insignificant for a range
of values of applied stress. Thus, for a patch of width 1.5 times or
greater than the crack length, the effect of patch boundaries on
stress intensity factor and crack growth rate can be disregarded.
As the crack approaches the patch boundary (H = 1.01), there is a
significant increase in the stress intensity factor at the crack tips.
Other factors, such as the high stresses in the plate, adhesive and
laminate near the edges of the laminate, owing to the finite geom-
etry of the patch (edge effect), would also contribute to the
increase in stress intensity factor at such a distance [30].

Appendix B. Crack near a bi-material interface

For a straight crack, lying perpendicular to a bi-material inter-
face, as shown in Fig. B1, the governing integral equation for this
crack problem is given by

2l2

p j2 þ 1ð Þ

Z bþa

b�a
by tð Þ 1

x� t
þ Gð2Þyyy x; tð Þ

� �
dt þ r1 � pðxÞ ¼ 0;

b� a 6 x 6 bþ a: ðB1Þ

where the influence function is given by [16]

Gð2Þyyy ¼
aþ b2

1� b2

1
xþ t

þ b� a
1þ b

� 2t

xþ tð Þ2
þ 4t2

xþ tð Þ3

" #
;

Fig. A1. The effect of the distance from the patch boundary on the stress intensity
factor. Calculations were performed for Dundur’s parameters a = � 0.4317 and
b = � 0.1087.
and the normalized distance from the interface is defined as B = b/a.
Due to the asymmetry of the problem, the stress intensity factor

at the two crack tips are different and subsequently the solution for
Rk or the stress required to initiate matrix cracking are different at
the two crack tips. The dimensionless parameters for this problem
are also given by Eq. (10). The results are shown in Fig. B2 for
B = 1.01 and a = ±1.

It can be observed from Fig. B2 that the solution for Rk differs
significantly at the two crack tips in the case a crack located near
a bi-material interface (Fig. B1). The effect of the material interface
is more pronounced at the crack tip close to the interface and is not
quite significant at the far crack tip, even for small values of the
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Fig. B2. Solution for Rk for a fully bridged matrix crack for B = 1.01. The curves
adjacent to the solid curve correspond to the solution for Rk at the crack tip away
from the interface. The curves away from the solid curve correspond to the crack tip
near the interface.
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Fig. C1. Edge dislocation in an elastic layer.
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normalized crack length A. As before, the solution for Rk

approaches the solution in the absence of a material interface, as
the value of the normalized crack length increases. In other words,
the effect of the material interface diminishes as the bridging trac-
tion increases.

Appendix C. Solution for an edge dislocation in an elastic layer
bounded by two identical elastic half-spaces

The solution for an edge dislocation in an elastic layer sand-
wiched between two identical elastic half-planes (Fig. C1) was uti-
lized to derive the governing integral Eq. (8). The dislocation
solution used in the present work was originally obtained by Fleck
et al. [23] using Airy’s stress function approach and Fourier trans-
forms. It is briefly presented here for the sake of completeness.

Consider an edge dislocation with components bx and by, which
is located at the origin of the coordinate system. It lies at a distance
c from the boundary between regions 2–3 and at a distance d from
the boundary between regions 1–2. The thickness of the elastic
layer containing the dislocation is 2h = c + d.

The stresses induced at a point (x,y) due to an edge dislocation
located at the origin (as shown in Fig. C1) are given by [16]:

rðiÞxx x;yð Þ¼ 2l2

pðj2þ1Þ bx GðiÞxxx�
y
r4

3x2þy2
� 	h i

þby GðiÞyxxþ
x
r4

x2�y2
� 	h in o

; ðC1Þ

rðiÞxy x;yð Þ¼ 2l2

pðj2þ1Þ bx GðiÞxxyþ
x
r4

x2�y2
� 	h i

þby GðiÞyxyþ
y
r4

x2�y2
� 	h in o

; ðC2Þ

rðiÞyy x;yð Þ¼ 2l2

pðj2þ1Þ bx GðiÞxyyþ
y
r4

x2�y2
� 	h i

þby GðiÞyyyþ
x
r4

x2þ3y2
� 	h in o

; ðC3Þ

where the influence functions GðiÞlmn depend upon the problem geom-
etry. For the problem shown in Fig. C1, a total of 18 influence func-
tions need to be listed, 6 associated with each region. The stresses in
region ‘1’ are given by taking i = 1, the stresses in region ‘2’ by tak-
ing i = 2 and in region ‘3’ by taking i = 3. The first subscript of the
influence function GðiÞlmn corresponds to the component of the Bur-
ger’s vector of the edge dislocation, and the second and third sub-
scripts correspond to the component of stress induced. The
influence functions obtained by Fleck et al. [23] are listed as
follows:

2l2GðiÞxxx x;yð Þ
pðj2þ1Þ ¼

Z 1

0
� Bi

1�kxBi
2


 �
ekx� Bi

3�kxBi
4


 �
e�kx

h i
sinky dk: ðC4Þ

2l2GðiÞxxy x;yð Þ
pðj2þ1Þ ¼

Z 1

0
Bi

1� kxþ1ð ÞBi
2


 �
ekx� Bi

3� kx�1ð ÞBi
4


 �
e�kx

h i
cosky dk; ðC5Þ

2l2GðiÞxyy x;yð Þ
pðj2þ1Þ ¼

Z 1

0
Bi

1� kxþ2ð ÞBi
2


 �
ekxþ Bi

3� kx�2ð ÞBi
4


 �
e�kx

h i
sinky dk; ðC6Þ

2l2GðiÞyxx x;yð Þ
pðj2þ1Þ ¼

Z 1

0
� Ai

1�kxAi
2


 �
ekx� Ai

3�kxAi
4


 �
e�kx

h i
cosky dk; ðC7Þ

2l2GðiÞyxy x;yð Þ
pðj2þ1Þ ¼

Z 1

0
� Ai

1� kxþ1ð ÞAi
2


 �
ekxþ Ai

3� kx�1ð ÞAi
4


 �
e�kx

h i
sinky dk; ðC8Þ

2l2GðiÞyyy x;yð Þ
pðj2þ1Þ ¼

Z 1

0
Ai

1� kxþ2ð ÞAi
2


 �
ekxþ Ai

3� kx�2ð ÞAi
4


 �
e�kx

h i
cosky dk: ðC9Þ

There are a total of 8 constants associated with each region of the
material. Let the constants Ai

j be designated by Cj in region ‘1’, Dj

in region ‘2’ and Ej in region ‘3’. Similarly, let the constants Bi
j be des-

ignated by Fj in region ‘1’, Gj in region ‘2’ and Hj in region ‘3’. The
outer regions (regions ‘1’ and ‘3’, made of material 1) are semi-infi-
nite and their far-field boundaries are free of stresses and displace-
ment gradients. This implies that as x ? �1, the influence
functions Gð1Þlmn must vanish i.e. the constants C3 = C4 = 0 and
F3 = F4 = 0. Similarly, as x ?1, the influence functions Gð3Þlmn must
vanish i.e. the constants E1 = E2 = 0 and H1 = H2 = 0 in region ‘3’.
There remains a total of 16 constants to be determined, of which
8 correspond to region ‘2’ or the elastic layer and 4 constants
correspond to each of the two half-spaces. These constants were
72
determined by Fleck et al. [23] by matching tractions and displace-
ment gradients at the strip boundaries x = � d and x = c, which were
written in terms of the Fourier transformation variable, k. In sym-
bolic form, the unknown constants are related to the known
displacement gradient mismatch as

M1 M2 0
M3 0 M4

� � D
E
C

2
64

3
75 ¼ v1

v2

� �
; ðC10Þ

and

M1 M2 0
M3 0 M4

� � G
H
F

2
64

3
75 ¼ w1

w2

� �
; ðC11Þ

where the constants are contained in the vectors

C ¼
C1

C2

� �
; D ¼

D1

D2

D3

D4

2
6664

3
7775; E ¼

E3

E4

� �
; F ¼

F1

F2

� �
;

G ¼

G1

G2

G3

G4

2
6664

3
7775; H ¼

H3

H4

� �
;

and the matrices are defined as [23]:

M1¼ e�kd

�1 kc �e�2kc kce�2kc

�1 1þkcð Þ e�2kc 1�kcð Þe�2kc

0 P1
2 0 �P1

2 e�2kc

0 P1
2 0 P1

2 e�2kc

2
66664

3
77775;

M2¼ e�k 2hþcð Þ

1 �kc

�1 kc�1ð Þ
�P2 P2kcþ 1

2

�P2 �P2 1�kcð Þ� 1
2

2
6664

3
7775; M4¼ e�k 2hþdð Þ

1 kd

1 kd�1ð Þ
0 �1

2

0 �1
2

2
6664

3
7775;

M3¼ e�kc

�e�2kd �kde�2kd �1 �kd

�e�2kd 1�kdð Þe�2kd 1 1þkdð Þ
�P2e�2kd �P2kdþP1

2

� 	
e�2kd �P2 �P2kd�P1

2

P2e�2kd P2 kd�1ð ÞþP1
2

� 	
e�2kd �P2 �P2 kdþ1ð ÞþP1

2

2
66664

3
77775:

The vectors containing the known displacement gradient mismatch
at x = � d and x = c are given by [23]:
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v1 ¼ �
1
p

2l2P1

j2 þ 1
e�2k hþcð Þ

0
0

� a 1�kcð Þþbkc
1þa

b 1�kcð Þþakc
1þa

2
66664

3
77775;

v2 ¼ �
1
p

2l2P1

j2 þ 1
e�2k hþdð Þ

0
0

a 1�kdð Þþbkd
1þa

b 1�kdð Þþakd
1þa

2
66664

3
77775;

w1 ¼ �
1
p

2l2P1

j2 þ 1
e�2k hþcð Þ

0
0

�b 1þkcð Þþakc
1þa

�a 1þkcð Þþbkc
1þa

2
66664

3
77775;

and

w2 ¼ �
1
p

2l2P1

j2 þ 1
e�2k hþdð Þ

0
0

�b 1þkdð Þþakd
1þa

a 1þkdð Þ�bkd
1þa

2
66664

3
77775:

Here a and b are Dundur’s bi-material parameters and the parame-
ters P1 and P2 are functions of Dundur’s bi-material parameters a
and b, and are defined as:

P1 ¼
1þ a
1� a

; P2 ¼
a� b
1� a

:

For the stress analysis of a crack which is completely embedded in
region ‘2’, only the constants Di and Gi need to be determined. Explicit
expressions for these constants can be obtained by partitioning the
matrices M1,M2,M3 and M4 into smaller 2-row units ([31]), such that

M111½ � M112½ � M21½ � 0½ �
M121½ � M122½ � M22½ � 0½ �
M311½ � M312½ � 0½ � M41½ �
½M321� M322½ � 0½ � M42½ �

2
6664

3
7775

D12f g
D34f g
Ef g
Cf g

2
6664

3
7775 ¼

v11f g
v12f g
v21f g
v22f g

2
6664

3
7775: ðC12Þ

The vectors {C} and {E} can be eliminated using Gaussian elimina-
tion, to obtain (Giurgiutiu et al., 1998):

D12f g ¼
D1

D2

� �
¼ M�

21

� 
� M�

22

� 
M�

12

� �1 M�
11

� 
 ��1

v�22

� �
� M�

22

� 
M�

12

� �1 v�11

� �
 �
; ðC13Þ

D34f g ¼
D3

D4

� �
¼ M�

12

� 
� M�

11

� 
M�

21

� �1 M�
22

� 
 ��1

v�11

� �
� M�

11

� 
M�

21

� �1 v�22

� �
 �
: ðC14Þ

Similarly, the vectors {F} and {H} can be eliminated to obtain
(Giurgiutiu et al., 1998):

G12f g ¼
G1

G2

� �
¼ M�

21

� 
� M�

22

� 
M�

12

� �1 M�
11

� 
 ��1

w�22

� �
� M�

22

� 
M�

12

� �1 w�11

� �
 �
; ðC15Þ

G34f g ¼
G3

G4

� �
¼ M�

12

� 
� M�

11

� 
M�

21

� �1 M�
22

� 
 ��1

w�11

� �
� M�

11

� 
M�

21

� �1 w�22

� �
 �
; ðC16Þ

where

M�
11

� 
¼ M321½ � � M42½ � M41½ ��1 M311½ �; M�

12

� 
¼ M322½ � � M42½ � M41½ ��1 M312½ �;

M�
21

� 
¼ M121½ � � M22½ � M21½ ��1 M111½ �; M�

22

� 
¼ M122½ � � M22½ � M21½ ��1 M112½ �;

v�11

� �
¼ v22f g� M42½ � M41½ ��1 v21f g; v�22

� �
¼ v12f g� M22½ � M21½ ��1 v11f g;
and

w�11

� �
¼ w22f g � M42½ � M41½ ��1 w21f g; w�22

� �
¼ w12f g � M22½ � M21½ ��1 w11f g:

The above dislocation solution can be utilized to solve problems
involving an arbitrarily oriented crack which is completely embed-
ded in the elastic layer. It is noted that the solution to the above
problem was also provided by Omoike and Vilmann [32] using a
series representation of the bounded kernels. The present work
deals with the stress analysis of a crack located along jxj 6 a,y = 0
(see Fig. 1). The influence functions in the elastic layer along the line
of the crack, y = 0 are be obtained by substituting i = 2 and y = 0 into
Eqs. (C4)–(C9):

Gð2Þxxyðx;0Þ ¼
pðj2 þ 1Þ

2l2

Z 1

0
G1 � kxþ 1ð ÞG2ð Þekx

�
� G3 � kx� 1ð ÞG4ð Þe�kx


dk; ðC17Þ

GðiÞyxxðx;0Þ ¼
pðj2 þ 1Þ

2l2

Z 1

0
� D1 � kxD2ð Þekx
�

� D3 � kxD4ð Þe�kx

dk; ðC18Þ

Gð2Þyyyðx;0Þ ¼
pðj2 þ 1Þ

2l2

Z 1

0
D1 � kxþ 2ð ÞD2ð Þekx

�
þ D3 � kx� 2ð ÞD4ð Þe�kx


dk; ðC19Þ

Gð2Þxxxðx;0Þ ¼ Gð2Þxyyðx;0Þ ¼ Gð2Þyxyðx; 0Þ ¼ 0: ðC20Þ

The integrals in Eqs. (C17)–(C19) need to be evaluated numerically
over the interval 0 to kmax, where kmax is the upper limit of the inte-
gral. These integrals are rapidly convergent and the choice of kmax

would depend upon the desired numerical accuracy. The constants
Di and Gi are functions of the variable k and must be evaluated at
each value of k either by using Eqs. (C13)–(C16) or by the direct
numerical inversion of Eqs. (C10) and (C11).

Now consider a dislocation at (x,y) = (t,0) with infinitesimal Bur-
ger’s vector dby = By(t)dt, where By(t) is the dislocation density. The
stresses along the line of the crack due to this dislocation can be
obtained by setting bx = 0, y = 0, and by replacing x by x � t in
Eqs. (C1)–(C3):

rð2Þxx ðx;0Þ ¼
2l2

pðj2 þ 1Þ
1

x� t
þ Gð2Þyxxðx� t;0Þ

� �
By tð Þdt; ðC21Þ

rð2Þyy ðx;0Þ ¼
2l2

pðj2 þ 1Þ
1

x� t
þ Gð2Þyyyðx� t;0Þ

� �
By tð Þdt; ðC22Þ

rð2Þxy ðx;0Þ ¼ 0: ðC23Þ
The stresses due to a continuous distribution of dislocations along
the crack-line are then given by

�rð2Þxx ðx;0Þ ¼
2l2

pðj2 þ 1Þ

Z þa

�a

1
x� t

þ Gð2Þyxxðx� t; 0Þ
� �

By tð Þdt; ðC24Þ

�rð2Þyy ðx;0Þ ¼
2l2

pðj2 þ 1Þ

Z þa

�a

1
x� t

þ Gð2Þyyyðx� t; 0Þ
� �

By tð Þdt: ðC25Þ

Note that the values of the constants and (see Fig. C1) would be
c = h � t and d = h + t for a dislocation located at x = t. These values
must be utilized when evaluating the influence functions appearing
in Eqs. (C24) and (C25) at each value of t.
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Abstract: It is proposed that catastrophic failure of the weak layer occurs in Mode III when 13 

a skier travelling downslope induces a defect of critical size within the weak layer. 14 

Theoretical models are developed to calculate the size of the skier-induced defect as well 15 

as the critical defect size required for the onset of failure within the weak layer. The latter 16 

model utilizes the distributed dislocation technique in contrast to the previous approaches 17 

based on beam theories and energy balance equations, which are strictly applicable only 18 

when the defect length is significantly greater than the slab thickness. Case studies are 19 

conducted for typical snow-pack properties and realistic failure conditions are identified.   20 
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1. Introduction 21 

The fracture sequence prior to the release of a skier-triggered dry snow slab 22 

avalanche is now well understood. A skier travelling along the snow surface initiates a 23 

defect in a buried weak layer. If the skier-induced defect exceeds a critical size, it 24 

propagates in an unstable manner, resulting in the loss of support and possible release of 25 

the overlying snow slab [van Herwijnen and Jamieson, 2007; Schweizer et al., 2003]. For 26 

the case of a stationary skier, experimental studies have demonstrated that localized 27 

collapse or failure may occur over an area of the weak layer directly underneath the skier 28 

[Schweizer and Camponovo, 2001]. Therefore, it is reasonable to expect that a skier 29 

travelling downslope would produce a defect which extends significantly along the 30 

direction of the skier’s trajectory as illustrated in Fig.1, provided that the spatial variability 31 

in the snow cover properties is small and the healing time for the formed defect is 32 

sufficiently long. 33 

 34 

Fig. 1: Schematic representation of an elongated defect (𝑏 ≫ 𝑎) induced in a buried weak 35 

layer by a skier travelling downslope. 36 
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The skier-induced defect can be idealized as a crack embedded within the snow-37 

pack and fracture mechanics approaches may be utilized to identify the critical defect size 38 

required unstable failure of the weak layer. Several analytical and finite element fracture 39 

mechanical models have been developed in this context, notably the shear-slip model of 40 

McClung [1979], which assumes ductile crack propagation in pure mode II and the “anti-41 

crack” model of Heierli et al. [2008], which permits both slope-parallel and slope normal 42 

displacements within the weak layer. However, it can be argued that these models are 43 

inadequate for analyzing the defect geometry shown in Fig. 1, as explained next. 44 

Consider the simplified problem of an elliptical crack embedded in an elastic 45 

medium of infinite extent and subjected to uniform shear tractions along its major axis. The 46 

points along the crack front are subjected to a combination of mode II and mode III loading, 47 

with pure mode II loading at the two points which lie along the major axis of the crack and 48 

pure mode III loading at the two points which lie along its minor axis. Using the exact 49 

analytical solution, it can be shown that the ratio of the mode III stress intensity factor 50 

along the minor axis to mode II stress intensity factor along the major axis is proportional 51 

to √𝑏 𝑎⁄ , where 𝑏 is the half-length of the crack along the major axis and 𝑎 is the half-52 

length along the minor axis [Saha and Roy, 2001].  53 

This argument can also be extended to the present problem geometry in which a 54 

crack-like defect is embedded within the snow-pack and subjected to shear loading. The 55 

existing analytical models, which assume plane strain conditions (2D problem geometry) 56 

and consider failure of the weak layer in mode II, are indeed applicable for roughly circular 57 

shaped defects (𝑏 ≈ 𝑎), or when the defects extend in the direction perpendicular to the 58 

shear loading (𝑎 ≫ 𝑏). However, these models will provide a non-conservative assessment 59 
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of avalanche risk in the case of an elongated defect which extends along the direction of 60 

the shear loading (𝑏 ≫ 𝑎) as shown in Fig.1. To address this gap, we formulate a 61 

conservative model in the present article and conduct the stress analysis of the problem 62 

within the two-dimensional anti-plane shear (mode III) formulation.    63 

2. Modeling assumptions and problem formulation 64 

Snow is a porous material with a complex microstructure and spatial variability in 65 

its material properties [Schweizer et al., 2003; Shapiro et al., 1997; Mellor, 1975]. There is 66 

also a significant variation in the material properties of snow over the depth of the snow-67 

pack, attributed to the densification and the metamorphism of snow crystals [Jamieson and 68 

Johnston, 1999; Bradley et al., 1977]. Striving for simplicity, the snow-pack is idealized as 69 

a linearly elastic and brittle solid and the variations of the mechanical properties and density 70 

of the snow-pack are neglected. Although the deformation and failure of snow are highly 71 

rate and temperature-dependent, its behavior is largely elastic and brittle at high loading 72 

rates (dynamic loading) or low temperatures [Narita, 1980; Mellor, 1975]. Modelling of 73 

snow as a brittle, elastic and homogenous solid is quite common and normally required for 74 

the theoretical analysis of the problem.  75 

The weak layer is idealized as an infinitesimally thin interface which experiences 76 

localized failure under the skier-induced loading. Experimental observations suggest that 77 

the nature of the initial localized failure within the weak layer is complex and depends upon 78 

the crystal structure of the weak layer, slope angle and loading rate [Reiweger et al., 2015; 79 

Reiweger and Schweizer, 2013; McClung and Schweizer, 1999]. Nonetheless, it is well 80 

known that weak layer failure mostly occurs by shear slip and that the shear strength of 81 
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snow increases proportionally with the normal compressive load [Reiweger et al., 2015; 82 

Jamieson and Johnston, 1998]. In order to identify the localized weak layer failure 83 

condition, the present study adopts the Mohr-Coulomb failure criterion since it reasonably 84 

describe the above mentioned experimentally observed trends. Other empirical failure 85 

criteria can also be implemented within the present framework, but at the expense of 86 

additional unknown material parameters. Another failure mechanism, mainly relevant to 87 

the failure of thick weak layers, is the crushing or collapse of the weak layer under 88 

compressive loading. The latter phenomenon is disregarded in the present study for 89 

simplicity reasons and is investigated elsewhere [Heierli et al., 2011; Heierli and Zaiser, 90 

2008; Heierli et al., 2008]. 91 

The skier loading is idealized as a uniformly distributed normal load acting over a 92 

rectangular region on the surface of the snow slab. The skier’s weight component parallel 93 

to the slope is neglected since the dynamic friction coefficient between the snow surface 94 

and the ski base is expected to be quite low [Mellor, 1975; Bowden and Hughes, 1939]. 95 

Although the skier loading is dynamic, Schweizer and Camponovo [2001] suggested that 96 

as a first approximation, it is appropriate to evaluate skier-induced stresses from the static 97 

elastic solution.  98 

The stress analysis of the defect bearing snow pack is conducted within the two-99 

dimensional anti-plane shear formulation. As shown in Fig. 1, the defect is idealized as a 100 

crack embedded in an elastic half-space and the disturbance in the stress state due to the 101 

presence of the crack is determined by solving an auxiliary problem in which the only 102 

external loads acting on the medium are the tractions applied to the crack surfaces. This is 103 

in accordance with Bueckner’s superposition principle [Cartwright and Rooke, 1979; 104 

96



7 

 

Bueckner, 1958]. The variation of the elastic properties and density along the depth of the 105 

snow pack can be incorporated into the present framework by modelling the snow-pack as 106 

a layered medium and using the method presented by Khanna and Kotousov [2015]. 107 

However, this additional effort is outside the scope of the present article.  108 

The critical defect size required for unstable failure initiation within the weak layer 109 

is estimated using the brittle fracture criterion, i.e. when the strain energy release rate 110 

exceeds the fracture energy of the material. Additional complexity may be introduced to 111 

the current model by incorporating a process-zone of finite size around the crack tips, at 112 

the expense of the introduction of additional fitting parameters [Bažant et al., 2003; 113 

McClung, 2015, 1981, 1979]. Recent literature also reports the use of a volume-based strain 114 

energy density approach to identify the brittle fracture conditions in a wide range of 115 

materials under mixed-mode loading conditions [Berto and Lazzarin, 2014, 2009; Lazzarin 116 

et al., 2009]. However, experimental data necessary to calibrate the models based on this 117 

approach are lacking in the case of snow. The mathematical models for estimating the size 118 

of the skier induced defect and the critical defect size required for unstable failure of the 119 

weak layer are presented in following sections. 120 

3. Size of the skier-induced defect 121 

The size of a skier induced defect would depend upon the strength of the weak layer 122 

as well as the stress state within the weak layer. In order to determine the stress state, we 123 

adopt an approach routinely utilized in civil engineering applications such as the design of 124 

foundations and roadways [Selvadurai, 1979]. The snow slab is idealized as an elastic half-125 

space and only the slope normal component of the skier’s weight is considered. The skier’s 126 
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weight, 𝑚𝑔, is uniformly distributed over a rectangular region of length 2𝐿 and width 2𝑤, 127 

and the resulting normal stress on the slab surface is given by 128 

𝜎𝑦(𝑦 = ℎ) = {
𝜎𝑜 , |𝑥| ≤ 𝑤, |𝑧| ≤ 𝐿,

0, |𝑥| ≤ 𝑤, |𝑧| ≤ 𝐿,
 (1) 

where 𝜎𝑜 = 𝑚𝑔 𝑐𝑜𝑠 𝜃 4𝐿𝑤⁄  and 𝜃 is the slope angle. The corresponding stresses in the 129 

interior of the slab are obtained by utilizing the fundamental solution for a concentrated 130 

normal force acting on the boundary of an elastic half-space as the Green’s function [Sadd, 131 

2013]. The normal and shear stress components acting along the plane of the weak layer 132 

(𝑦 = 0) under combined loading can be obtained as: 133 

𝜎𝑦(𝑦 = 0) = −𝜌𝑔ℎ cos 𝜃 −
3𝜎𝑜
2𝜋

∫ ∫
ℎ3

𝑅5
d𝜉

𝐿

−𝐿

d𝜂

𝑤

−𝑤

 (2) 

𝜏𝑥𝑦(𝑦 = 0) = −
3𝜎𝑜
2𝜋

∫ ∫
(𝑥 − 𝜂)ℎ2

𝑅5
d𝜉

𝐿

−𝐿

d𝜂

𝑤

−𝑤

 (3) 

𝜏𝑧𝑦(𝑦 = 0) = −𝜌𝑔ℎ sin 𝜃 −
3𝜎𝑜
2𝜋

∫ ∫
(𝑧 − 𝜉)ℎ2

𝑅5
d𝜉

𝐿

−𝐿

d𝜂

𝑤

−𝑤

 (4) 

where 𝑅2 = (𝑥 − 𝜂)2+(𝑧 − 𝜉)2 + ℎ2, 𝜌 is the density of the snow slab, ℎ is the depth of 134 

the weak layer from the slab surface and 𝜃 is the slope angle.  135 

In order to identify the localized failure conditions within the weak layer, the Mohr-136 

Coulomb failure criterion is utilized. The failure criterion requires two material parameters, 137 

namely the cohesive strength 𝑐, and the internal friction angle, 𝜙 of the weak layer. 138 

Localized failure occurs by frictional slip if 139 

|𝜏| ≥ 𝑐 − 𝜎 tan𝜙 (5) 

where 𝜎 and 𝜏 are the normal and shear stress components acting on the slip plane. It is 140 

postulated that the slip plane must be aligned with the plane of the weak layer in order to 141 
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produce a defect at the macro-scale. Hence, the expression for normal stress given by Eq. 142 

(2) must be substituted into Eq. (5). For the shear stress component in Eq. (5), one must 143 

substitute the maximum shear stress acting on the slip plane, 𝑦 = 0. Using stress 144 

transformation equations, the following simple expression for the maximum in-plane shear 145 

stress component is obtained 146 

|𝜏|max = √𝜏𝑥𝑦2 + 𝜏𝑧𝑦2 . (6) 

The right hand side of Eq. (6) is determined using Eqs. (3)-(4). 147 

4. Critical defect size 148 

The skier induced defect is idealized as a crack in an elastic half-plane subject to 149 

Mode III loading (see Fig. 1). The solutions for stresses and displacements near the crack 150 

tip and the critical defect size are obtained using the distributed dislocation technique. The 151 

displacement discontinuity along the crack faces is mathematically represented by a 152 

continuous distribution of screw dislocations. The unknown dislocation density is obtained 153 

in terms of the tractions prescribed along the crack line by solving a singular integral 154 

equation. The required solution for stress and displacement fields in the vicinity of the 155 

crack tip is then derived in terms of the dislocation density.  156 

For the problem geometry shown in Fig. 1, the tractions arising on the crack faces 157 

due to the continuous distribution of dislocation can be obtained as follows [Erdogan and 158 

Gupta, 1971] 159 
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�̂�𝑦𝑧(𝑠, 0) =
2𝜇

𝜋
∫
𝑏(𝑡)d𝑡

𝑡 − 𝑠

1

−1

+
2𝜇

𝜋
∫𝑘(𝑠, 𝑡)𝑏(𝑡)d𝑡

1

−1

, |𝑠| < 1, (7) 

where 𝑠 = 𝑥 𝑎⁄  is the normalized coordinate along the crack length, 𝑡 is a dummy 160 

integration variable, 𝑏(𝑡) = d𝐵𝑧(𝑡) d𝑡⁄  is the dislocation density and 𝑘(𝑠, 𝑡) is given by 161 

the Fourier integral 162 

𝑘(𝑠, 𝑡) = −𝑎∫ 𝑒−2𝜉ℎ sin 𝜉𝑎(𝑡 − 𝑠) d𝜉

∞

0

= −
(𝑡 − 𝑠)

(𝑡 − 𝑠)2 + 4(ℎ 𝑎⁄ )2
. (8) 

The tractions along the crack faces due to the external loading can be obtained as 163 

𝜎𝑦𝑧(𝑠, 0) = 𝜏𝑜 = 𝜌𝑔ℎ sin 𝜃. The requirement of no-net tractions along the crack faces, i.e. 164 

�̂�𝑦𝑧(𝑠, 0) + 𝜎𝑦𝑧(𝑠, 0) = 0, yields the integral equation for the unknown dislocation density 165 

as follows 166 

1

𝜋
∫
𝑏(𝑡)d𝑡

𝑡 − 𝑠

1

−1

+
1

𝜋
∫𝑘(𝑠, 𝑡)𝑏(𝑡)d𝑡

1

−1

=
2𝜏𝑜
𝜇

, |𝑠| < 1, (9) 

Eq. (9) must be solved under the following single-valuedness condition 167 

∫𝑏(𝑡)d𝑡

1

−1

= 0. (10) 

which represents the requirement of the continuity of displacements for |𝑠| > 1. The 168 

unknown dislocation density can be written as 169 

𝑏(𝑠) = 𝜔(𝑠)𝑅(𝑠), (11) 

such that aside from the analytic function 𝜔(𝑠), the behavior of 𝑏(𝑠) around |𝑠| = 1 is 170 

entirely determined by the fundamental function of the singular integral equation, 𝑅(𝑠). 171 

Since the crack opening displacement is parabolic in form rather than a cusp, at 𝑠 = ±1, 172 

the dislocation density 𝑏(𝑠) must have a singularity. The latter situation arises when the 173 

stresses at the crack tips are finite, which is typical for various cohesive zone models 174 
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[Palmer and Rice, 1973; Barenblatt, 1962; Dugdale, 1960]. The appropriate form of the 175 

function 𝑅(𝑠) is given by Erdogan and Gupta [1971] as 176 

𝑅(𝑠) = (1 − 𝑠2)−
1
2. (12) 

The Gauss-Chebyshev quadrature formulae for singular integrals can be employed to 177 

reduce the singular integral equation of first kind, Eq. (9) and the side condition, Eq. (10) 178 

to a linear system of algebraic equations [Erdogan et al., 1973; Hills et al., 1996]. For the 179 

choice of fundamental function (singular at both ends), Eqs. (9) and (10) can be reduced to 180 

the following algebraic system  181 

2𝜏𝑜
𝜇

=
1

𝑁
∑𝜔(𝑡𝑖) [

1

𝑡𝑖 − 𝑠𝑘
+ 𝑎𝑘(𝑠𝑘, 𝑡𝑖)]

𝑁

𝑖=1

, 𝑘 = 1,… ,𝑁 − 1, (13) 

𝜋

𝑁
∑𝜔(𝑡𝑖) = 0

𝑁

𝑖=1

, (14) 

where the set of 𝑁 discrete integration points are given by 182 

𝑡𝑖 = cos (𝜋
2𝑖 − 1

2𝑁
) , 𝑖 = 1,… ,𝑁, (15) 

and the 𝑁 − 1 collocation points are given by 183 

𝑠𝑘 = cos (𝜋
𝑘

𝑁
) , 𝑘 = 1,… ,𝑁 − 1. (16) 

The system of algebraic Eqs. (13)-(14) can be solved, for example, by Gaussian elimination 184 

to obtain a solution for the analytic function 𝜔 at discrete integration points, 𝑡𝑖. The mode 185 

III stress intensity factor may be obtained in terms of the solution as [Hills et al., 1996] 186 

𝐾III =
𝜇

2
√𝜋𝑎𝜔(+1), (17) 

where the value of 𝜔 at the end-point 𝑠 = +1 may be evaluated by using the interpolation 187 

formula [Krenk, 1975] 188 
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𝜔(+1) =
1

𝑁
∑

sin [
𝜋
4𝑁

(2𝑖 − 1)(2𝑁 − 1)]

sin [
𝜋
4𝑁

(2𝑖 − 1)]
𝜔(𝑡𝑖)

𝑁

𝑖=1

. (18) 

The energy release rate is related to the mode III stress intensity factor according to 𝐺 =189 

𝐾III
2 2𝜇⁄  [Hills et al., 1996]. Based on the brittle fracture mechanics criteria, unstable crack 190 

propagation occurs when the energy release rate, 𝐺 exceeds the specific fracture energy of 191 

the material 𝐺𝑐. Using Eq. (17), the critical crack length required for unstable crack 192 

propagation may then be expressed as  193 

𝑎cr =
8𝐺𝑐

𝜋𝜇𝜔2(+1)
. (19) 

where 𝜔(+1) can be calculated using Eq. (18). The critical crack length obtained using 194 

Eq. (19) can be used to identify the threshold strength of the weak layer, below which 195 

catastrophic failure is imminent.  196 

5. Parametric study 197 

In the following numerical calculations, the shear modulus and Poisson’s ratio of 198 

the slab are set at 𝜇 = 1 MPa and 𝜈 = 0.2, respectively [Mellor, 1975]. The density of the 199 

slab is taken as 𝜌 = 200 kg/m3 and the slope angle 𝜃 = 40° [Perla, 1977].  The skier load 200 

defined in Eq. (1) is taken as 𝜎𝑜 = 2 kPa, which roughly corresponds to a skier of mass 201 

𝑚 = 95 kg, a ski area of 1.8 m × 0.2 m and a slope angle, 𝜃 = 40°. The in-situ values of 202 

the strength and fracture resistance of the weak layer vary considerably due to their strong 203 

dependence on the weak layer microstructure. Therefore, an extensive parametric study is 204 

conducted in terms of these model variables.  205 

  206 

102



13 

 

Table 1. Critical defect size, 𝑎cr (m) calculated using Eq. (19) 207 

Weak layer 

depth, ℎ (m) 

Weak layer fracture energy, 𝐺𝑐 (J/m2) 

0.01 0.05 0.10 

0.1 0.241 0.653 0.970 

0.3 0.044 0.203 0.356 

0.5 0.016 0.079 0.156 

1.0 0.004 0.020 0.040 

 208 

Fig. 2: Combinations of the weak layer strength parameters, 𝑐 and 𝜙 which allow for the 209 

skier-induced defect to reach the critical size for avalanche onset. 210 

 211 

103



14 

 

Firstly, the critical defect size, 𝑎cr is evaluated for various values of the weak layer 212 

depth, ℎ and the fracture energy, 𝐺𝑐 using Eq. (19). The range of values selected for ℎ and 213 

𝐺𝑐 are representative of typical field measurements [Schweizer et al., 2011]. The calculated 214 

values of 𝑎𝑐𝑟 are reported in Table 1 and span two orders of magnitude. As expected, the 215 

critical defect size gets smaller with increasing depth and decreasing fracture energy. After 216 

that, all possible combinations of 𝑐 and 𝜙 are identified which allow for the skier-induced 217 

defect to reach a size 𝑎 ≥ 𝑎cr. The results of the parametric study are presented in Figs. 2a-218 

d. In producing these figures, combinations of 𝑐 and 𝜙 which lead to complete failure of 219 

the weak layer under self-weight are ignored. 220 

In the following discussion, the term ‘failure’ and ‘failure onset’ are used to 221 

describe the unstable propagation of the skier-induced defect within the weak layer under 222 

mode III conditions. The purple region in Figs. 2a-d indicates that failure does not occur 223 

for that particular combination of 𝑐 and 𝜙. In all four sub-figures, the region corresponding 224 

to failure at 𝐺𝑐 = 0.01 J/m2 is the largest and the region corresponding to failure at 𝐺𝑐 =225 

0.1 J/m2 is the smallest. The overlap of the various failure regions is quite obvious in Fig. 226 

2b, but indistinguishable in Figs. 2a, c and d. For a particular combination of weak layer 227 

depth and fracture energy, area of the failure region on the 𝑐 − 𝜙 graph has a positive 228 

correlation with the likelihood of failure. This is because a large area of the failure region 229 

implies that failure can take place for a wide range of values 𝑐 and 𝜙 in turn making it more 230 

likely. The general tendencies which can be deduced from Figs. 2a-d are:  231 

1. The failure onset in shallow weak layers requires the cohesive strength to be much 232 

lower in comparison with weak layers which are buried deeper.  233 
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2. Failure onset is more likely at small values of the weak layer fracture energy. 234 

However, the influence of the weak layer fracture energy on the likelihood of failure 235 

diminishes with increasing depth of the weak layer. 236 

3. Irrespective of the value of the weak layer fracture energy, the likelihood of failure 237 

onset first increases with increasing weak layer depth, but then decreases. This trend 238 

is in agreement with field observations of several hundred skier-triggered avalanche 239 

events reported in Herwijnen and Jamieson [2007] and Schweizer and Jamieson 240 

[2000].  241 

The authors were unable to find experimental results or observations, which would confirm 242 

the first two general tendencies predicted by the analytical model. These might form a 243 

scope for future post-avalanche observations or experimental studies. 244 

6. Conclusion 245 

A new model for avalanche onset due to the skier-triggered failure of a buried weak 246 

layer is proposed. The model does not assume a pre-existing defect or deficit zone within 247 

the weak layer, but it instead incorporates the skier-induced defect into failure initiation 248 

conditions. A parametric study is conducted to demonstrate the plausibility of the proposed 249 

model and identify the conditions favorable for avalanche onset.  250 

There is room for further analysis of the skier-triggered avalanche phenomenon 251 

based on the present model. For instance, the influence of snow densification on the 252 

likelihood of avalanche onset can be investigated in a future study. To facilitate such 253 

efforts, the computer routine used to obtain the results in Section 5 has been included in 254 
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the supplementary document. Refinement of the present model by removing some of its 255 

simplifying assumptions would probably increase its accuracy as a predictive tool.  256 
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Introduction  

The rigidity of the rocky substratum is several orders of magnitudes higher than 

the rigidity of the snowpack. For a weak layer located very close to the rocky substratum, 

the strong mismatch in the elastic properties would significantly affect the size of the 

skier induced defect or the critical defect size required for avalanche release. Within this 

supplementary document, we derive the elastic solutions which were incorporated in the 

present models to account for the presence of the rigid substratum. In these solutions, the 

snowpack is idealized as an elastic layer bonded to a rigid substratum.  

 In Section S1, we develop a solution for stresses in the elastic layer due to a 

concentrated line load acting normal to its free surface. This solution is used within 

Section 3 of the main article to obtain the size of the skier induced defect in the weak 

layer. In Section S2, we obtain the solution for stresses due to a screw dislocation for the 

same geometry. The latter solution is utilized within the framework of the Distributed 

Dislocation Technique to model the anti-plane crack in Section 4 of the main article.   
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Text S1. Stresses in an elastic layer bonded to a rigid substrate and subjected to a 
concentrated line load perpendicular to its free surface 

Following the general approach presented in [Khanna and Kotousov, 2015] the 

solution to the plane problem of interest is obtained by superposing the solutions to two 

auxiliary problems, as shown in Fig. S1. Problem 1 involves finding the displacement 

gradient along 𝑦 = ℎ due to a concentrated line load acting normal to the surface of an 

elastic half-plane. Problem 2 involves finding the corrective stresses which yield 

displacement gradients equal in magnitude and opposite to those obtained in Problem 1 

along 𝑦 = ℎ and which satisfy traction-free boundary condition is specified along 𝑦 = 0. 

The solution approach utilizes the Airy’s stress function formulation and Fourier 

transform techniques.  

 

Figure S1. Principle of superposition applied to the plane problem an elastic layer 
bonded to a rigid substrate and subjected to a concentrated line load. 

The solution to Problem 1 is derived from the fundamental solution for a wedge 

loaded by a force at its vertex, which was originally obtained by Flamant in 1892. In 

accordance with Barber [2010] the Airy’s stress function for Problem 1 is  

 

𝑦

 

ℎ

 
  

   

  
 
   

=  
   

  
 
   

   
   0 =    

   0 = 0

𝑦

 

ℎ

Problem 1: Concentrated line 

load normal to a half-plane
Problem 2: Boundary-value 

problem on an elastic strip

 

Rigid boundary

𝑦

 

ℎ =
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Φ( ) =  
 

𝜋
  cos  =  

 

𝜋
 tan− (

𝑦

 
) . (S1) 

The corresponding stresses are 

   
( )

=  
2   𝑦

𝜋(   𝑦 ) 
    

( )
=  

2 𝑦3

𝜋(   𝑦 ) 
    

( )
=  

2  𝑦 

𝜋(   𝑦 ) 
. (S2) 

Using Hooke’s law to find the strains and then integrating, the displacement field can be 

obtained, correct to a constant, as 

2𝜇  
( )

=  
 

2𝜋
{(𝜅  1) tan− (

 

𝑦
)  

2 𝑦

   𝑦 
}  (S3) 

2𝜇  
( )

=  
 

2𝜋
{

2  

   𝑦 
 

(𝜅  1)

2
log(   𝑦 )}  (S4) 

where 𝜇 is the shear modulus of the elastic layer and 𝜅 is Kolosov’s constant. These 

elastic constants can be related to the Young’s modulus 𝐸 and Poisson’s ratio 𝜈 of the 

layer according to: 

𝜇 =
𝐸

2(1  𝜈)
  (S5) 

𝜅 = {

3  4𝜈 in plane strain 

3  𝜈

1  𝜈
 in plane stress.

 (S6) 

In the present problem it is convenient to express the displacements in gradient form to 

remove constants associated with the rigid body motion. The corresponding displacement 

gradients are 

   
( )

  
=  

 

4𝜋𝜇

𝑦

(   𝑦 ) 
{(𝜅  1)   (𝜅  3)𝑦 }  (S7) 

   
( )

  
=  

 

4𝜋𝜇

 

(   𝑦 ) 
{(𝜅  1)   (𝜅  5)𝑦 }. (S8) 

 The solution to Problem 2 can be obtained by using Fourier transform techniques. 

The appropriate Airy’s stress function, which satisfies the biharmonic equation can be 

written as the Fourier integral 
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Φ( ) =
 

4𝜋
∫ [(

𝐴

𝜉 
 

𝐵

𝜉
𝑦) 𝑒−𝜉  (

𝐶

𝜉 
 

𝐷

𝜉
𝑦) 𝑒𝜉 ] cos(𝜉 ) 𝑑𝜉

∞

0 

. (S9) 

From (S9), the corrective stresses can be obtained as 

   
( )

=
 

4𝜋
∫[(𝐴  (𝜉𝑦  2)𝐵)𝑒−𝜉  (𝐶  (𝜉𝑦  2)𝐷)𝑒𝜉 ] cos(𝜉 ) 𝑑𝜉

∞

0 

  (S10) 

   
( )

=  
 

4𝜋
∫[(𝐴  𝜉𝑦𝐵)𝑒−𝜉  (𝐶  𝜉𝑦𝐷)𝑒𝜉 ] cos(𝜉 ) 𝑑𝜉

∞

0 

  (S11) 

   
( )

=
 

4𝜋
∫[( 𝐴  (1  𝜉𝑦)𝐵)𝑒−𝜉  (𝐶  (1  𝜉𝑦)𝐷)𝑒𝜉 ] sin(𝜉 ) 𝑑𝜉

∞

0 

. (S12) 

The corresponding displacement components are given in the gradient form as 

   
( )

  
=

1

2𝜇

 

4𝜋
∫ [(𝐴  (𝜉𝑦  

𝜅  1

2
) 𝐵)𝑒−𝜉 

∞
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 (𝐶  (𝜉𝑦  
𝜅  1

2
) 𝐷) 𝑒𝜉 ] cos(𝜉 ) 𝑑𝜉  

(S13) 

   
( )

  
=

1

2𝜇

 

4𝜋
∫ [( 𝐴  (1  𝜉𝑦  

𝜅  1

2
) 𝐵)𝑒−𝜉 

∞

0

 (𝐶  (1  𝜉𝑦  
𝜅  1

2
) 𝐷) 𝑒𝜉 ] sin(𝜉 ) 𝑑𝜉. 

(S14) 

The unknown constants 𝐴, 𝐵, 𝐶 and 𝐷 can be determined using the appropriate boundary 

conditions along 𝑦 = 0 and 𝑦 = ℎ. Since the stresses and displacements corresponding to 

Problem 2 are given in terms of Fourier integrals, the boundary conditions can be 

expressed in the Fourier domain to obtain a system of linear equations in terms of the 

unknown constants. The traction-free boundary condition along 𝑦 = 0 can be written as 

 ̃  
( )(  0) = 0  (S15) 

 ̃  
( )(  0) = 0  (S16) 
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where the tilde over-bar represents the Fourier transform with respect to the variable  . 

The displacement boundary condition along 𝑦 = ℎ can be written in the Fourier domain 

as 

  ̃ 
( )

  
(  ℎ) =  

  ̃ 
( )

  
(  ℎ)  (S17) 

  ̃ 
( )

  
(  ℎ) =  

  ̃ 
( )

  
(  ℎ). (S18) 

Substituting Eqs. (S11) and (S12) into boundary conditions (S15) and (S16), respectively 

yields 

 𝐴  𝐶 = 0  (S19) 

 𝐴  𝐵  𝐶  𝐷 = 0. (S20) 

Similarly, substituting Eqs. (S13) and (S7) into (S17) yields 

1

2𝜇

 

4𝜋
[(𝐴  (𝜉ℎ  

𝜅  1

2
) 𝐵)𝑒−𝜉  (𝐶  (𝜉ℎ  

𝜅  1

2
) 𝐷) 𝑒𝜉 ]

=  
  ̃ 

( )

  
(  ℎ) 

 (S21) 

and substituting Eqs. (S14) and (S8) into (S18) results in 

1

2𝜇

 

4𝜋
[( 𝐴  (1  𝜉ℎ  

𝜅  1

2
) 𝐵) 𝑒−𝜉  (𝐶  (1  𝜉ℎ  

𝜅  1

2
) 𝐷) 𝑒𝜉 ]

=  
  ̃ 

( )

  
(  ℎ).

 (S22) 

The right hand side of Eqs. (S21)-(S22) can be obtained as  

  ̃ 
( )

  
(  ℎ) =

2

𝜋
∫

   
( )

  
(  ℎ) cos(𝜉 ) 𝑑 

∞

0

=  
1
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4𝜋
{(𝜅  1)(2  𝜉ℎ)ℎ  (𝜅  3)(1  𝜉ℎ)}𝑒−𝜉  

 (S23) 

  ̃ 
( )

  
(  ℎ) =

2

𝜋
∫

   
( )

  
(  ℎ) sin(𝜉 ) 𝑑 

∞

0

=  
1

2𝜇

 

4𝜋
{(𝜅  1)(2  𝜉ℎ)  (𝜅  5)𝜉ℎ}𝑒−𝜉 .

 (S24) 

Eqs. (S21)-(S22) can be further simplified to 
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𝑒− 𝜉 𝐴  (𝜉ℎ  
𝜅  1

2
) 𝑒− 𝜉 𝐵  𝐶  (𝜉ℎ  

𝜅  1

2
) 𝐷

= {(𝜅  1)(2  𝜉ℎ)ℎ  (𝜅  3)(1  𝜉ℎ)}𝑒− 𝜉  

 (S25) 

 𝑒− 𝜉 𝐴  (1  𝜉ℎ  
𝜅  1

2
) 𝑒− 𝜉 𝐵  𝐶  (1  𝜉ℎ  

𝜅  1

2
) 𝐷

= {(𝜅  1)(2  𝜉ℎ)  (𝜅  5)𝜉ℎ}𝑒− 𝜉 .

 (S26) 

Together, Eqs. (S19), (S20), (S25) and (S26) form a system of four linear 

equations which can be solved to find the unknown constants in the general solution for 

Φ( )(  𝑦). The solution to the problem under consideration is given by Φ = Φ( )  

Φ( ). In particular, the normal compressive stress at the location of the weak layer, 

   (  ℎ ) can be obtained from Eqs. (S2) and (S11) as 

   (  ℎ ) =  
2 ℎ 

3

𝜋(   ℎ 
 ) 

 
 

4𝜋
∫[(𝐴  𝜉ℎ 𝐵)𝑒−𝜉 1  (𝐶  𝜉ℎ 𝐷)𝑒𝜉 1] cos(𝜉 ) 𝑑𝜉

∞

0 

. 

(S27) 

Text S2. Stresses due to a screw dislocation in an elastic layer bonded to a rigid 
substrate 

A screw dislocation in an elastic layer produces a two-dimensional stress state, in 

which the in-plane displacements,   ,   are zero everywhere, while the out-of-plane 

displacement,  𝑧 is independent of the 𝑧-coordinate. The non-zero stress components are 

related to the out-of-plane displacement according to 

  𝑧 = 𝜇
  𝑧

  
   𝑧 = 𝜇

  𝑧

 𝑦
. (S28) 

In the absence of body forces, the out-of-plane displacement must satisfy the Laplace 

equation, i.e.  

∇  𝑧 = 0  (S29) 

to ensure that the stresses given by Eq. (S28) satisfy the three-dimensional equilibrium 

equations. Such a stress state is known as anti-plane shear.   

The solution to this problem proceeds in the same manner as the solution obtain in 

Section S1. The principle of superposition is used to decompose the problem under 

consideration into two auxiliary problems, as illustrated in Fig. S2.    
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Figure S2. Notation for the bonded multi-layered medium. 

Problem 1 considers a screw dislocation in an infinite body, which represents a 

cut along  > 0,𝑦 = 0, such that the two faces of the cut experience a relative out-of-

plane displacement,  𝑧
( )(  0)   𝑧

( )(  2𝜋) = 𝐵𝑧. A suitable solution which satisfies Eq. 

(S29) is given by [Barber, 2010] 

 𝑧
( )

=
𝐵𝑧

2𝜋
tan− (

𝑦

 
)    𝑧

( )
=  

𝜇𝐵𝑧

2𝜋

𝑦

   𝑦 
   𝑧

( )
=

𝜇𝐵𝑧

2𝜋

 

   𝑦 
. (S30) 

From Eq. (S30), we obtain the out-of-plane shear component at 𝑦 = ℎ  as  

  𝑧
( )(  ℎ ) =

𝜇𝐵𝑧

2𝜋

 

   ℎ 
   (S31) 

and the out-of-plane displacement at 𝑦 =  ℎ  in gradient form as 

 

  
 𝑧

( )(   ℎ ) =
𝐵𝑧

2𝜋

ℎ 

   ℎ 
 . (S32) 

 The general solution for Problem 2 can be obtained using Fourier transform 

techniques as before, in this case by taking the Fourier transform of Eq. (S29) and solving 

 

 

 

  𝑧
 

  
 
  −  

=  
  𝑧

 

  
 
  −  

  𝑧
   ℎ =    𝑧

   ℎ 

Problem 1: Screw dislocation 

in an infinite space
Problem 2: Boundary-value 

problem on an elastic strip

=

𝑦

 ℎ

ℎ 

ℎ 

Rigid boundary

𝑦

 

ℎ 

ℎ 

𝑦

 ℎ

ℎ 

ℎ 
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the resulting ordinary differential equation. Only the skew-symmetric (odd) part of the 

general solution needs to be considered, i.e. 

 𝑧
( )(  𝑦) =

2

𝜋
∫(𝐴𝑒𝜉  𝐵𝑒−𝜉 ) sin(𝜉 ) 𝑑𝜉

∞

0

. (S33) 

By differentiating Eq. (S33), we obtain 

  𝑧
( )(  ℎ ) =

2𝜇

𝜋
∫ 𝜉(𝐴𝑒𝜉 1  𝐵𝑒−𝜉 1) sin(𝜉 ) 𝑑𝜉

∞

0

  (S34) 

and 

 

  
 𝑧

( )(   ℎ ) =
2

𝜋
∫ 𝜉(𝐴𝑒−𝜉   𝐵𝑒𝜉  ) cos(𝜉 ) 𝑑𝜉

∞

0

. (S35) 

The corrective solution of Problem 2 must cancel out the shear tractions along 𝑦 = ℎ  as 

well as the out-of-plane displacement at 𝑦 =  ℎ , given by Eqs. (S31) and (S32), 

respectively. In Fourier domain, these boundary conditions can be written as 

 ̃ 𝑧
( )(  ℎ ) =   ̃ 𝑧

( )(  ℎ )  (S36) 

 

  
 ̃𝑧

( )(   ℎ ) =  
 

  
 ̃𝑧

( )(   ℎ )  (S37) 

where the tilde over-bar represents the Fourier transform with respect to the variable  . 

After some algebraic manipulations, the boundary conditions (S36) and (S37) yields the 

system of two equations 

𝐴  𝑒− 𝜉 1𝐵 =  
𝐵𝑧

4𝜉
𝑒− 𝜉 1   (S38) 

𝑒−𝜉  𝐴  𝑒𝜉  𝐵 =  
𝐵𝑧

4𝜉
𝑒− 𝜉    (S39) 

which can be solved simultaneously to obtain the unknown constants 𝐴 and 𝐵. The 

solution to the problem of a screw dislocation in an elastic layer can then be obtained as a 

superposition of the solutions to Problems 1 and 2. For example, the expression for the 

out-of-plane shear traction along 𝑦 = 0 due to a dislocation present at  = 𝑡 can be 

obtained as  
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  𝑧(  0) =
𝜇𝐵𝑧

2𝜋
{

1

  𝑡
 ∫ (

𝑒− 𝜉   2𝑒− 𝜉  𝑒− 𝜉 1

1  𝑒− 𝜉 
) sin{𝜉(  𝑡)} 𝑑𝜉

∞

0

}. (S40) 

Text S3. Influence of rigid boundary along 𝒚 =  𝒉𝟐 on the solutions for the critical 
crack length and threshold compressive strength of weak layer. 

To identify conditions under which the presence of the rocky substratum, i.e. the 

parameter ℎ , can be ignored, we perform some calculations based on the values of input 

parameters defined in Section 5, with 𝐺𝑐 = 0.1 J/m
2
, 𝑓 = 0 and ℎ = 0.5 m. Fig. S3a 

shows the dependence of the critical crack length required for unstable crack propagation 

on the distance of the weak layer from the rocky substratum, obtained using Eq. (15). The 

solid curve was obtained by substituting the numerical value of the parameter ℎ  in the 

Fredholm kernel given by Eq. (5). The dotted curve was obtained by setting ℎ → ∞ in 

the same expression. For a weak layer located half-way along the depth of a snow-pack, 

i.e. for ℎ = ℎ , only a 0.55% deviation was observed in the value of the critical crack 

length when the presence of the rigid substratum is ignored. The deviation is even smaller 

for ℎ > ℎ . Based on the obtained values of the critical crack length, the dependence of 

the threshold value of the compressive strength on the distance of the weak layer from the 

rocky substratum was derived. The solid curve in Fig. S3b was obtained by using Eq. (3) 

and the dotted curve was obtained by ignoring the last term of the same equation. As in 

the case of Fig. S3a, a very small deviation of 2% or less was observed in the threshold 

value of the compressive strength for ℎ ≥ ℎ .  
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Figure. S3: Dependence of (a) the critical crack length, 𝑎𝑐𝑟 and (b) the critical value of 

the weak layer compressive strength,  𝑐
∗ on the distance of the weak layer from the rocky 

substratum, h . 

 

Figure. S4: Dependence of the critical crack length, 𝑎𝑐𝑟 on the weak layer depth, ℎ , 

weak layer fracture energy, 𝐺𝑐, coefficient of friction between crack faces, 𝑓 and 

snowpack density 𝜌.  
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Chapter 7 

Summary and Recommendations 

The methodology and mathematical techniques utilised in the current work 

are largely based upon the pioneering contributions of several researchers, 

particularly Erdogan and his colleagues. The original contribution of the present 

thesis comes in the form of a newly formulated fundamental edge dislocation 

solution (Chapter 3), which can further extend the applicability of the adopted 

methodology. The novelty of the present thesis lies in the diverse applications and 

multi-disciplinary nature of the investigated problems. In this closing chapter, the 

main research outcomes of the thesis are summarised and recommendations for the 

extension of the current work are provided. The chapter concludes with a broader 

discussion on possible directions for future research.    

7.1 Summary of the main outcomes 

The publications which form the main body of the present thesis demonstrate 

the application of new and existing theoretical techniques and solutions for the 

analysis of practical problems related to the fracture of multilayered materials. 

Each of these publications represents an original and significant contribution to the 

respective area of research. A chapter-wise summary of the main research 

outcomes is presented below.  

Chapter 3: The stress field due to an interfacial edge dislocation in a multi-

layered medium 

In this chapter, a solution for the stress field induced by an interfacial edge 

dislocation in a multilayered medium was obtained using the complex potential 
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method and Fourier transform techniques. It was demonstrated that the obtained 

solution is more general than all previously published solutions for edge 

dislocations in isotropic multilayered media. The new solution can be utilised to 

derive the governing integral equations for a wide variety of quasi-static crack 

problems in linearly elastic and isotropic multilayered materials. The obtained 

solution is applicable to the analysis of crack problems without any restrictions on 

the crack orientation or number of elastic layers, which represents one of the main 

advantages. Additionally, the derived solution is easy to implement and a 

supplementary computer code was provided in Khanna and Kotousov (2015).  

Chapter 4: Stress analysis of a crack in a fiber-reinforced layered composite 

In this chapter, a general approach was developed for the analysis of 

reinforced cracks in the vicinity of boundaries or interfaces in layered materials. 

The crack bridging reinforcements were modelled as a continuous distribution of 

displacement-dependant tractions along the crack faces. A numerical solution 

procedure based on the Newton-Raphson iterative scheme was utilized, since it 

does not impose any restrictions on the functional form of the relationship between 

the bridging tractions and the crack opening displacement. A parametric study was 

conducted to establish the dependence of the stress intensity factor upon the 

mismatch in elastic properties at the interfaces and the magnitude of the bridging 

tractions. The numerical results presented in this chapter can be applied for 

evaluating the residual strength of fiber-reinforced composites weakened by 

macroscopic cracks or cracked plates repaired by adhesively bonded composite 

patches. 

Chapter 5: Controlling the Height of Multiple Hydraulic Fractures in Layered 

Media 

In this chapter, fracturing-fluid pressure control was proposed as a possible 

mechanism for the containment of hydraulic fractures in hydrocarbon reservoirs. 

Subsequently, a simplified theoretical model was developed to evaluate the height 
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and the maximum opening of the hydraulic fractures during the fracturing stage as 

a function of the fracturing-fluid pressure. The effects of the spacing between 

adjacent fractures and the elastic mismatch in the layered reservoir were 

incorporated in the theoretical model. The feasibility of the suggested mechanism 

was demonstrated through a set of case studies in which the limiting values of the 

fracturing-fluid pressure were estimated. The obtained results can assist in the 

selection of the appropriate stimulation strategies during hydraulic fracturing. 

Chapter 6: A new predictive model for the onset of skier-triggered avalanches 

In this chapter, a new theoretical model was proposed for the onset of dry 

snow slab avalanches due to the skier-triggered failure of weak subsurface layers 

or interfaces. The model is based on the hypothesis that crack-like defects of high 

aspect-ratio can be generated in the weak layer or at interface under skier loading. 

The high aspect-ratio of the skier-induced defect would promote failure initiation 

of the weak layer in mode III rather than in mode II. Theoretical models were 

developed for calculating the size of the skier-induced defect and the critical defect 

size required for avalanche onset. The latter model utilised a new solution for a 

screw dislocation in an elastic layer, derived using the approach developed in 

Chapter 3. Case studies were conducted for typical snow-pack properties to 

identify the combination of snow-pack properties which provide the necessary 

conditions for unstable snow pack failure. The new model can be utilised as a 

forecast tool for skier-triggered avalanches and serve as a benchmark for 

numerical approaches.  

7.2 Recommendations for future work 

The theoretical models developed in the present thesis can be extended 

further for the examination of many related crack problems in multilayered media.  

In this section, recommendations regarding future works are provided in a chapter-

wise form, focusing on the immediate extension of the work presented in the 

current thesis.   
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Chapter 3: The stress field due to an interfacial edge dislocation in a multi-

layered medium 

The governing integral equations for a variety of quasi-static crack problems 

in multilayered media can be derived in a straightforward manner using the 

dislocation solution obtained in Chapter 3. It would be of practical interest to 

analyse problems involving transverse cracking and crack path selection in 

multilayered materials using the DDT framework, which have not been attempted 

before. Previous works utilizing DDT are largely limited to simple two or three 

layer geometries (Romeo and Ballarini, 1995; Gupta et al., 1992; Fleck et al, 1991; 

He and Hutchinson, 1989; Erdogan and Biricikoglu, 1973; Gupta, 1973).  

Another practical interest would be the further analysis of the obtained edge 

dislocation solution for some limiting cases of the geometry and material 

properties of multilayered materials. For example, many natural and engineering 

composites are comprised of multiple stiff and thin layers interleaved in a 

relatively soft matrix. It is believed that semi-analytical solutions or asymptotic 

approximations can be derived for these limiting and practically important cases. 

This will eliminate numerous difficulties with fracture analysis of such 

composites, in particular, analysis of transverse cracks intersecting a large number 

of layers.   

Chapter 4: Stress analysis of a crack in a fiber-reinforced layered composite 

The general approach presented in Chapter 4 can be extended to the analysis 

of several related problems involving reinforced materials and crack-bridging 

mechanisms, without imposing any restrictions on the orientation of the cracks or 

the functional form of the relationship between the bridging tractions and the crack 

opening displacement. One such problem is the stress analysis of delamination 

damage in laminate composites reinforced by transverse stitching (Dransfield et 

al., 1994). Another area of future work can involve the development of plasticity-

induced fatigue crack growth models for multilayered materials, which are 

https://dx.doi.org/10.1115/1.2895990
https://dx.doi.org/10.1115/1.2899511
http://dx.doi.org/10.1016/0020-7683(91)90069-R
https://dx.doi.org/10.1016/0020-7683(89)90021-8
https://dx.doi.org/10.1016/0020-7225(73)90004-9
https://dx.doi.org/10.1016/0020-7683(73)90108-X
https://dx.doi.org/10.1016/0266-3538(94)90019-1
https://dx.doi.org/10.1016/0266-3538(94)90019-1
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currently widely implemented in fatigue life and damage tolerance analyses in 

metallic structures. The absence of such models significantly limits the wider 

utilisation of composites in many industries and applications. 

Chapter 5: Controlling the Height of Multiple Hydraulic Fractures in Layered 

Media 

The theoretical model developed in Chapter 5 could be extended for the 

analysis of problems involving fluid-driven fractures, such as dykes, mineral veins 

and pressurised joints, which penetrate several rock layers (Phillips et al., 2013). 

Several studies postulate that the variation in the magnitude of the in-plane stresses 

along the thickness of multilayered rock formations has a strong influence on 

propagation of fluid-driven fractures across several layers (Gudmundsson and 

Brenner, 2001; Warpinski et al., 1982). This additional consideration must be 

taken into account in the extended models. 

The developed dislocation models can also be applied to many related 

problems in rocks, such as analysis of performance of hydraulic fractures partially 

filled with proppant packs. Some initial research has been published in articles by 

the applicant and included in the appendices (Bortolan Neto et al., 2015; Khanna 

et al., 2014; Kotousov et al., 2014). An immediate extension would be an 

incorporation of the layered structure of geological formations into these 

theoretical models. 

Chapter 6: A new predictive model for the onset of skier-triggered avalanches 

The snow pack, which was modelled as a homogenous elastic layer in 

Chapter 6, may also be composed of several layers with different elastic properties 

(Habermann et al., 2008). The theoretical approach can be readily extended for the 

latter case. Additional complexity can be introduced to the predictive model by 

considering a finite sized process-zone at the crack tips as suggested by several 

researchers (Bažant et al., 2003; McClung, 1979). The current work can be 

https://dx.doi.org/10.3389/feart.2013.00004
https://dx.doi.org/10.1046/j.1365-3121.2001.00380.x
https://dx.doi.org/10.1046/j.1365-3121.2001.00380.x
https://dx.doi.org/10.2118/8932-PA
https://dx.doi.org/10.1016/j.ijrmms.2014.11.005
https://dx.doi.org/10.1016/j.ijengsci.2013.08.012
https://dx.doi.org/10.1016/j.ijengsci.2013.08.012
https://dx.doi.org/10.1016/j.mechmat.2013.08.004
https://dx.doi.org/10.1016/j.coldregions.2008.05.003
https://dx.doi.org/10.1029/2002JB001884
https://dx.doi.org/10.1029/JB084iB07p03519
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extended to develop predictive models for other large-scale natural phenomena 

leading to humanitarian disasters. These include mud slides and naturally triggered 

snow avalanches. 

7.3 Concluding remarks 

Throughout the present thesis, a common methodology was utilised and 

further developed for the examination of crack problems of practical interest. The 

publications included in the main body of the thesis dealt with the analysis of 

crack problems in linearly elastic and isotropic multilayered materials. The 

significance of the main outcomes of these publications has been summarised in 

this closing chapter. The adopted methodology was also utilised by the candidate 

outside the context of the present research topic. The appendices to this thesis 

comprise of the candidate’s publications on the latter problems. 

A significant advancement beyond the scope of the current thesis would 

involve the application of DDT for the solution of crack problems in anisotropic 

multilayers, particularly for the examination of fatigue crack growth in laminate 

composites. Modelling fatigue crack growth and other composite related problems 

is challenging and computationally expensive, even in the isotropic case. The 

robustness and computational efficiency of currently available dislocation 

solutions and integral equation formulations for the more practical case of 

anisotropic multilayer has not been critically examined. Perhaps, future work 

could focus on the development of a robust framework for the analysis of practical 

problems such as the calculation of crack path, rate of fatigue crack growth and 

life of anisotropic laminate composites.  
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a b s t r a c t

Hydraulic or fluid-driven fracturing techniques are often utilised to enhance the production of oil or gas
from hydrocarbon reservoirs. There are a number of engineering guidelines to identify the optimum
fracture dimensions (i.e. length and average opening) and optimum fracture conductivity, which
maximize the efficiency of a given hydraulic fracturing procedure. However, the fracture dimensions
as well as conductivity during the production stage may be below the expected design values due to the
compressive in-situ stresses, the non-uniform distribution of the proppant within the fracture, as well as
the compressibility of the fractured rock and proppant pack.

In this paper, the performance of the hydraulic fracture, which is partially filled with a compressible
proppant pack, is evaluated using a simple mathematical model. The mathematical model incorporates
the aforementioned effects of proppant compressibility and in-situ stresses. A case study is conducted to
investigate phenomena such as: the residual opening of fracture faces not supported by the proppant
pack, the compaction of the proppant pack under the action of the confining stresses and the subsequent
reduction in the permeability of the proppant pack.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Hydraulic fracturing is a well stimulation technology used in
the oil and gas industry for enhancing hydrocarbon recovery and
alleviating near wellbore damage [1]. This technique consists of
initiating, propagating and opening a fracture from the wellbore
towards a hydrocarbon-bearing layer by a pressurised fluid.
Granular particles called “proppants”, which range from natural
sands to synthetic materials, are pumped into the created fracture
along with the fracturing fluid. Once the injection pressure is
relieved, they hold open, or “prop” the fracture and prevent its
closure due to the in-situ compressive stresses. The proppant filled
fracture provides a narrow but very conductive flow path towards
the wellbore, increasing significantly the conductivity and produc-
tion rate of the reservoir.

Several models have been developed in the past for estimating
the conditions for fracture initiation and growth in rocks [1–6].
These models are used to predict the geometry of the hydraulic
fracture for particular fracturing treatment conditions or to identify
fracturing conditions which lead to an optimum fracture geometry.

However, the increment in well productivity due to the hydraulic
fracture ultimately depends upon the performance of the proppant
pack, which controls the length, opening and conductivity of a
fracture during the production stage [7,8]. During the proppant
injection stage, the sedimentation and screen out of proppant
particles may prevent the transport of proppant particles along the
entire length of the fracture. As a result, the propped or effective
length of the fracture can be much smaller than the length of the
fracture initially created during the fluid injection stage [9–11].
During the production stage, the width of the propped fracture also
diminishes due to the compaction of the proppant pack and the
embedment of proppant particles into the fracture surface [12]. The
conductivity of the proppant pack during the production stage
may also decline by a few orders of magnitude, compared to the
conductivity measured under laboratory conditions, due to several
physical and chemical mechanisms [12]. By incorporating the effects
of these phenomena, a more realistic estimate of the production rate
from the fractured well can be obtained.

The authors have recently considered the some of these effects
separately. For e.g. the problem of a fracture partially filled with an
incompressible proppant pack has been considered in [13,14] and the
effects of proppant pack compaction on the opening and conductivity
of the fractures have been considered in [15–18]. In the present work,
a more general problem of a fracture partially filled with a loose
granular assembly of proppant particles is considered. The fracture is
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subjected to confining stresses, which result in the closure of the
unpropped fracture segments as well as rearrangement of proppant
particles in the pack, leading to a reduction in fracture opening and
conductivity. In the next section, the mathematical formulation of
the problem and the modelling assumption are described. Selected
case studies and numerical results are presented which demonstrate
the effect of the in-situ confining stresses, propped length and
proppant pack compressibility on the performance of hydraulic
fractures.

2. Problem formulation and modelling assumptions

Consider an isotropic, homogenous, linearly elastic rock forma-
tion with Young’s modulus E and Poisson’s ratio ν. It is penetrated
by a vertical hydraulic fracture of length 2lf and height 2hf . For the
co-ordinate system shown in Fig. 1, the reservoir lies along the x–y
plane, the wellbore lies perpendicular to the reservoir along the
z-axis and the fracture is located along the x–z plane. The problem
geometry is symmetric about the x and y axes.

The problem is formulated in 2D, as illustrated in Fig. 2, i.e. all
parameters remain constant along the z-axis. In this 2D formula-
tion, the fracture geometry is described by the Khristianovic–
Geertsma–de Klerk (KGD) model [19,20] and the initial opening
profile of the fracture, δ0 xð Þ, is given in accordance with the linear
elastic fracture mechanics, by

δ0 xð Þ ¼ 4
E
σ1þpf

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l2f0�x2

q
; ð1Þ

where E is the reduced Young’s modulus defined as E¼ E= 1�ν2
� �

for plane strain conditions, σ1 is the remote stress normal to the
fracture and pf is the fluid pressure within the fracture during the
fracturing treatment. The stresses are assumed to be positive in
tension and negative in compression. Since the KGD fracture
geometry is based on the plane strain assumption, it implies that
the opening or width of the fracture is independent of fracture
height [3]. More sophisticated models describing the fracture

geometry are available in the literature [2–6], however, the plane
strain 2D model is more suitable for analytical studies, such as the
present one [15,21]. The results based on the KGD model can be
reasonably extended to other fracture geometries in the case of
short fractures or in the near tip region, which can be modelled
locally as a plane strain geometry [22]. Eq. (1) also assumes
uniform fluid pressure in the fracture during the fracturing stage,
which is the case when the fracture propagates in the toughness
dominated regime and there is no significant fluid leak off into the
reservoir [21,23].

The fracture is filled with a proppant pack of permeability kp
and porosity η, up to a length 2lpr2lf . The proppant pack is
assumed to be a granular assembly made up of proppant particles
and the deformation of the proppant pack is linked largely to the
rearrangement and densification of the loosely arranged particle
assembly and the subsequent changes in pore volume. The
deformation of the proppant pack is modelled by Terzaghi’s soil
consolidation model [23,24]. This model is chosen due to its
simplicity, since only one parameter governs the deformation vs.
stress behaviour or the overall compressibility of the proppant
pack. More sophisticated compaction models can be used at the
expense of additional empirical parameters or coefficients [25].

The compaction of the proppant pack and the subsequent
reduction the porous space between the particles also lead to a
reduction in permeability of the proppant pack. This dependence of
the permeability on the porosity of the proppant pack is modelled
using the empirical Kozeny–Carman equation [26]. It should be
noted that the rearrangement of the proppant particles is only one
of many mechanisms which lead to the reduction in permeability of
the proppant pack during the production stage. Other mechanisms
such as crushing and diagenesis of proppant particles and deposi-
tion of fines in the pore space [27–29], can also be incorporated into
the empirical relationship between permeability and porosity.

During the production stage, it is assumed that the flow within
the pore space of the proppant pack as well as the reservoir rock
(i.e. at the micro-scale) occurs at small Reynolds number (NReo1)
and can be described by the linearized form of Navier–Stokes
equation [28]. Hence, the flow in the reservoir and the flow within
the fracture are described by Darcy’s law on the macro-scale.
Conditions under which the macroscopic flow cannot be adequately
described by Darcy’s law as well as models which provide a better
correlation between pressure drop and flow rate under these
conditions, have been reviewed elsewhere [28,34,40]. Poro-elastic
effects have also been excluded, which implies that the fluid flow in
the reservoir is not coupled with the state of stress in the reservoir.

The aperture and length of the hydraulic fracture at the
production stage are defined as the residual fracture opening,
2δ xð Þ and length, 2lf , respectively. The residual opening and length
of the fracture depend on the distribution and compressibility of
the proppant pack, confining stresses, elastic properties of the
reservoir, and on the initial fracture geometry. These are unknown
and need to be determined as a solution to a mixed boundary value
problem. The solution method that is developed and presented in
the next section is based on the distributed dislocation technique,
which is a quite standard tool in fracture mechanics modelling [30].

3. Residual opening and length of the hydraulic fracture

The solution for the residual opening and length of the
hydraulic fracture can be obtained from the following boundary
value problem:

σyy x; yð Þ ¼ σ1; x2þy2-1; ð2aÞ

σyy x;0ð Þ ¼ σp xð Þ; xj jo lp; ð2bÞ

r

Fig. 1. Schematic diagram of a partially propped hydraulic fracture considered in
the problem formulation (figure not to scale), (a) cross-sectional view and
(b) plan view.

Fig. 2. The 2D approximated of a hydraulic fracture partially filled with proppant
and subject to remote confining stress. (a) The initial opening and length of the
fracture due to a uniform internal pressure pf , (b) the residual opening and length
of the fracture once the stimulating fluid pressure is removed.
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σyy x;0ð Þ ¼ 0; lpo xj jr lf ; ð2cÞ

δ xð Þ ¼ 2uyðx;0Þ ¼ 0; xj jZ lf : ð2dÞ
The unknown residual length of the fracture, lf lies in the

interval lpr lf r lf o, where lp is the length of the proppant pack
and lf o is the initial length of the fracture. It is determined using
the condition of zero stress intensity factor at the crack tips xj j ¼ lf .

Following the procedure of Bilby and Eshelby [31], the crack
can be represented by a continuous distribution of dislocations
along � lf rxr lf , such that the density of dislocations at a point x
along the fracture is given by by xð Þ. The distributed dislocation
density is related to the crack opening according to:

by xð Þ ¼ �dδ xð Þ
dx

; δ xð Þ ¼ �
Z x

�1
by tð Þdt: ð3Þ

The normal stress along the location of the crack can be written
as

σyy x;0ð Þ ¼ σ1þσyy x;0ð Þ; xj jr lf ; ð4Þ

where σ1 is the normal stress in the absence of the crack and
σyy x;0ð Þ is the normal stress in the material due to a continuous
distribution of edge dislocations of density by xð Þ located along the
crack line. The expression for σyy x;0ð Þ is given by [32]:

σyy x;0ð Þ ¼ E
4π

Z þ lf

� lf

by tð Þ
x�t

dt; xj jr lf : ð5Þ

The governing equation in terms of the unknown distributed
dislocation density function can be obtained by substituting
boundary conditions (2b) and (2c) into Eq. (4):

E
4π

Z þ lf

� lf

by tð Þ
x�t

dt ¼ σp xð Þ�σ1; xj jo lp;

E
4π

Z þ lf

� lf

by tð Þ
x�t

dt ¼ �σ1; lpo xj jo lf : ð6Þ

The governing Eq. (6) is a non-linear singular integral equation
containing the Cauchy kernel and is supplemented with the
following single-valued condition for the dislocation density
function:Z lf

� lf
by tð Þdt ¼ 0: ð7Þ

The condition given by Eq. (7) implies that the crack faces must
physically come together at the crack tips [32].

The compressive behaviour of proppant pack i.e. the non-linear
relationship between σp xð Þ and δ xð Þ is described using Terzaghi’s
one dimensional soil consolidation model. The relationship
between the deformation of the proppant pack and the compres-
sive stress acting on the proppant pack σp xð Þ can be written as

σp xð Þ ¼ exp
λ xð Þ
C

� �
σp0; ð8Þ

where C is the proppant pack compressibility index and λ xð Þ the
proppant settlement ratio defined as

λ xð Þ ¼ δ0 xð Þ�δ xð Þ
δ0 xð Þ ; ð9Þ

and σp0 is the compressive stress at which the thickness of the
pack is δ0.

This model is empirical in nature and does not distinguish
between various mechanisms leading to the compaction of the
proppant pack. It simply provides a linearized dependence of the
settlement ratio, λ on the logarithm of the compressive stress, σp

according to Eq. (8). The value of the compressibility index, C is
assumed to be constant over the range of applied compressive

stresses and treated as an empirical constant. However, it should
be noted that Eq. (8) is not suitable for modelling the deformation
response of granular soils or proppant packs at very low or very
high compressive stresses, since the behaviour of the proppant
pack is nonlinear under these conditions and the compressibility
of the pack is quite low [24].

Once the solution for the distributed dislocation density by xð Þ
along the crack length is known, the residual fracture opening is
calculated using Eq. (3) and the residual fracture length is
calculated by using the condition of zero stress intensity factor
at the crack tips or at xj j ¼ lf . The solution procedure for the
governing non-linear singular integral Eq. (6) is based on Newton–
Raphson iteration scheme and Gauss–Chebyshev quadrature
method and is described and validated in detail elsewhere [15].

4. Effect of proppant compressibility on the porosity and
permeability of the proppant pack

The compaction of the proppant pack under the confining
stresses of the reservoir leads to a reduction in the porosity of the
proppant pack. The porosity, η, of the proppant pack can be
defined as [28]:

η¼ Vp

Vb
¼ 1�Vs

Vb
; ð10Þ

where Vb is the bulk volume of the proppant pack, Vp is the
volume of the porous space within the proppant pack and Vs is the
volume of the solid phase (comprising of proppant particles) and
Vb ¼ VpþVs. From Eq. (10) it follows that the residual porosity, η,
is related to the initial porosity, η0, according to:

η¼ 1�Vb0

Vb
1�η0
� �

; ð11Þ

where Vb0 is the bulk volume of the proppant pack during the
stimulation stage (before compaction) and Vb is the bulk volume
of the proppant pack during the production stage (after compac-
tion). The bulk volume of the proppant pack at these stages can be
calculated from the geometry of the hydraulic fracture as:

Vb0 ¼ 2hf

Z lp

� lp
δ0 xð Þdx;Vb ¼ 2hf

Z lp

� lp
δ xð Þdx: ð12Þ

The residual porosity of the proppant pack, η, can be calculated
by substituting Eq. (12) into Eq. (11).

The model for proppant-pack compaction, given by Eqs. (8) and
(9), must be used with care as it can provide physically mean-
ingless values of η beyond a certain value of the ratio Vb0=Vb. To
demonstrate this idea, consider the ideal case of a stable pack of
equal sized spheres, for which the porosity lies in the range of
0:2595�0:4764, depending on the pack arrangement [33]. Sub-
stituting η0 ¼ 0:4764 and η¼ 0:2595 in Eq. (11) yields the critical
value of the ratio Vb0=Vb ¼ 1:4142. For a given value of compres-
sibility index C, if the ratio Vb0=Vb calculated using Eq. (12)
exceeds the critical value of 1:4142, the porosity would be less
than the minimum possible value of 0:2595. This is a limitation of
the present formulation.

The relationship between the permeability and porosity of the
proppant pack is modelled by the Kozeny–Carman equation, given
by

kp ¼ F

A2

η3

ð1�ηÞ2
; ð13Þ

where F is a geometric factor and A is the specific surface area
[26,28]. The ratio between the residual permeability of the proppant
pack (after compaction) and the initial permeability (before
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compaction) can be obtained from Eq. (13) as:

kp
kp;0

¼ η
η0

� �3 1�η0
1�η

� �2

; ð14Þ

where it is assumed that the initial porosity, η0, and the initial
permeability, kp;0, are known beforehand.

The effect of the in-situ compressive stress σ1 and the
proppant pack compressibility on the porosity and permeability
of the proppant pack can be obtained using the method described
in this section. The change in permeability affects the fluid flow in
the fracture, the governing equations for which are presented in
the next section.

5. Steady flow of fluid within the hydraulic fracture

The governing equation for steady-state fluid flow within the
fracture, as obtained by Zazovskii and Todua [35] is used here as it
incorporates variable fracture opening and permeability along the
length of the fracture. It can be written as:

S xð Þkf xð Þ
Z lf

� lf

ψ tð Þ
x�t

dtþ4πhf kr
Z x

� lf
ψ tð Þdt ¼Qμ

π
2

1þsgn x� lf
� �� �

;

ð15Þ
where the unknown function ψ xð Þ multiplied by the constant
2kr=μ gives the fluid flux into the fracture. Eq. (15) is similar to the
governing equation for crack opening, Eq. (6) in that both are
singular integral equations containing the Cauchy kernel and an
unknown density function. The numerical solution to the equation
can be obtained using the Gauss–Chebyshev quadrature method.
In the above equation, 2hf and 2lf are the height and length of
hydraulic fracture, respectively, kr is the permeability of the
reservoir, μ is the viscosity of the fluid, Q is the fluid production
rate at the wellbore and Sf xð Þ ¼ 2hf δ xð Þ is the cross-sectional area
of the fracture. The fracture permeability kf xð Þ is defined as [12]:

kf xð Þ ¼ kp; xj jo lpδ
2 xð Þ=12; lpo xj jr lf

n
: ð16Þ

Eq. (16) implies that the permeability of the fracture is equal to
the permeability of the proppant pack in the propped region of the
fracture ( xj jo lp) and is given by Boussinesq’s formula for flow in a
narrow gap between two plates [36,37] in the un-propped region
of the fracture (lpo xj jr lf ).

The governing Eq. (15) is supplemented by the following
single-valued condition for the fluid flux distribution:

Q ¼ 4
hf kr
μ

Z lf

� lf
ψ ξ
� �

dξ: ð17Þ

Physically, Eq. (17) represents the conservation of mass of the
reservoir fluid i.e. the net fluid flux into the fracture is equal to the
fluid production rate at the wellbore, Q . The method for the
selection of dimensionless variables and solution of the governing
Eq. (15) is described in [13].

6. The well productivity index

The well productivity index, J is one of the main indicators of
the performance of a well. The productivity index is classically
defined as the ratio of the well production rate, Q and the pressure
drawdown [1]:

J ¼ Q
pr�pw

¼ 4π
α

hrkr
Bμ

JD; ð18Þ

where pr is the reservoir pressure, pw is the wellbore pressure, JD is
the dimensionless productivity index, B the formation volume
factor and α a constant for appropriate units (i.e. α¼ 1 for SI units

and α¼ 887:22 for traditional oilfield units). For a producing well
of radius rw lying at the centre of a circular reservoir of radius rr , JD
is given by [1,38]:

JD ¼ 1
ln rr=rw
� �: ð19Þ

For a well intersected by a hydraulic fracture of finite con-
ductivity, the dimensionless productivity index is given by [35]

JD ¼ ln
1
Ix

� �
�

Z 1

�1
ψ Xð Þln Xð ÞdX

" #�1

; ð20Þ

where Ix ¼ lf =rr is the penetration ratio and X ¼ x=lf is the normal-
ised distance from the wellbore along the length of the fracture.

The above expression for dimensionless productivity index can
be normalised against the value of JD of a fracture with infinite

conductivity, for which ψ Xð Þ ¼ π�1 1�X2
� ��1=2

and the integralR 1
�1Ψ Xð Þln Xð ÞdX ¼ � ln 2. Hence, the normalised productivity

index of the fracture is given by

J ¼ ln 2� ln
1
Ix;0

� �	 

ln

1
Ix;0

1
Lf

� �
�

Z 1

�1
Ψ Xð Þln Xð ÞdX

" #�1

; ð21Þ

where Ix;0 ¼ lf ;0=rr is the initial or design value of the penetration
ratio and Lf ¼ lf =lf0 is the normalised residual length of the
fracture. The normalised productivity index has a maximum value
equal to 1 as the fracture conductivity tends to infinity.

7. Validation of empirical models against experimental results

The modelling outcomes of the present work, depend upon the
validity of the empirical models as well as the chosen values for
empirical constants such as the compressibility index, C, the initial
porosity, ηo and initial permeability, kp;0, of the proppant pack. The
method for validating the empirical models and obtaining these
properties from experimental data is described in this section. As
an example, a particular set of experimental results obtained from
[40] are considered. These results were obtained for a type of
sintered ceramic proppant known as Carbolites, manufactured by
CARBO Ceramics Inc. The mesh size of the used proppant pack was
18/12, which means that the diameter of the proppant particles
was in the range of 1000–1700 μm.

7.1. Terzaghi’s soil consolidation model

The empirical consolidation model described in Section 4 is
typically used for cohesive soils such as clays and provides a linearized
dependence of the settlement ratio, λ on the compressive stress,
log σp

� �
according to Eq. (8) [24]. The model is used in the present

work to describe the compaction of the proppant pack and the value
of the compressibility index of the proppant pack is assumed to be
constant over the range of applied compressive stresses.

The actual deformation behaviour of a proppant pack can be
observed by plotting experimental results for e vs. log 10 σp

� �
,

where e is the void ratio of the sample at the compressive stress
σp. The void ratio is related to the porosity of the proppant pack
according to e¼ η= 1�η

� �
. For the example of the Carbolites 18/12

proppant, the experimental results are shown in Fig. 5. In this
particular case, a straight line provides a reasonable fit for the e vs.
log 10 σp

� �
data, which implies that it is reasonable to use the

empirical Terzaghi model to describe the compaction of the
proppant pack. The value of compressibility index C is the slope
of the e vs. log 10 σp

� �
plot [39] and in this particular example,

C ¼ 0:0583. Based on the classification provided in Table 3, the
given proppant pack is slightly compressible.
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It should be noted that the empirical model is unable to
distinguish between the various mechanisms which govern prop-
pant pack deformation. These include: the rearrangement of
particles in the pack, the elastic or plastic deformation of the
individual particles, crushing of particles, etc. However, this does
not severely limit the applicability of the model to practical
problems since the empirical model can reasonably incorporate
all of these deformation mechanisms, provided that an averaged
value of the compressibility index C is taken over a wide range of
compressive stresses.

7.2. Kozeny–Carman equation

The Kozeny–Carman relationship, which is given by Eq. (14),
was used to predict the dependence of permeability on the
confining stress. As an example, the predictions of the Kozeny–
Carman equation are compared with the experimentally measured
values of permeability at different values of confining stress
(Fig. 6). In Eq. (14), the empirical constants denoting the reference
values of porosity and permeability were chosen to be η0 ¼ 0:338
and kp;0 ¼ 171 Darcy, respectively. These were the experimentally
measured values of porosity and permeability at the lowest level
of confining stress, which was 6.89 MPa (1000 psi) [40].

In general, a good agreement was observed between the Kozeny–
Carman model and the experimental results, which suggests that
the empirical model is appropriate for use in the present problem.
However, it can be observed that the experimentally measured
values of permeability are lower than the prediction of the Kozeny–
Carman equation at high confining stresses (420.68 MPa, 3000 psi).
The maximum deviation is approximately 13:5%, and occurs at the
highest value of confining stress, which is 34.47 MPa (5000 psi).

The discrepancy can partly be attributed to the experimental
methods of porosity and permeability measurements. The porosity
was calculated indirectly from the measurements of proppant
pack compaction, whereas permeability measurements were
made directly using accurate pressure transducers [40]. The
production of fine debris at high confining stresses, could have
potentially caused significant blocking of the porous space of the
proppant pack without much compaction of the proppant pack. In
this case, it is expected that the experimentally measured value of
permeability would be lower than predicted value of permeability,
which is based on indirect porosity measurements, even though
the empirical model can potentially incorporate non-linear effects
such as proppant crushing.

It should also be mentioned that the effect of other perme-
ability reduction mechanisms such as the improper clean-up of
fracturing fluid, fines migration from the reservoir, diagenesis of
the proppant pack [27–29] can also be incorporated in the fluid
flow model (Sections 5 and 6) without any modification of the
analytical framework.

8. Results and discussion

In this section, the effects of proppant compressibility and com-
pressive stresses on the residual opening and length of the fracture,
proppant pack permeability as well as on the well productivity are
demonstrated. The results are presented in terms of normalised and
dimensionless parameters, which are summarised in Table 1. From
Eq. (21), it can be observed that the normalised productivity index J,
depends upon the normalised residual length of the fracture, Lf and
the normalised fluid flux along the fracture length, ψ Xð Þ. The function
ψ xð Þ is obtained by solving the singular integral Eq. (15) and the
solution depends upon the normalised residual opening profile WðXÞ
and dimensionless fracture conductivity Cfd.

The normalised residual length of the fracture Lf and the
residual opening W Xð Þ depend upon the values of the dimension-
less confining stress σ, proppant pack compressibility C and
normalised proppant length Lp. This dependence is described in
Section 3. The value of the dimensionless fracture conductivity
depends upon the residual length and opening of the fracture as
well as the proppant pack permeability. It can be written as

Cfd ¼
δ 0ð Þ
2πlf

kp
kr

¼ Cfd;0
δ 0ð Þ
δ0 0ð Þ

kp
kp;0

Lf0
Lf

; ð22Þ

where Cfd;0 is the design value of the fracture conductivity defined
in Table 1. The factor δ 0ð Þ=δ0 0ð Þ represents the reduction in the
maximum opening of the fracture near the wellbore due to the
compressibility of the proppant pack. The factor kp=kp;0 represents
the reduction in permeability due to the compaction of the
proppant pack under the effect of the confining stresses and is
calculated in Section 4. The factor Lf0=Lf is the ratio of the initial
and residual length of a partially filled fracture. The design value of
fracture conductivity, Cfd;0 is multiplied by these factors to obtain
the actual value of dimensionless fracture conductivity Cfd, as
shown in Eq. (22).

For the purpose of the numerical study, the normalised
productivity index, J is calculated as a function of the design value
of the dimensionless fracture conductivity, Cfd;0 for different
values of dimensionless confining stress σ, proppant pack com-
pressibility C, and normalised propped length of fracture, Lp. The
range of these values covering the most common conditions in
hydrocarbon reservoirs is summarised in Table 2 and a description
of the chosen values is provided next.

For a typical sandstone reservoir with plane strain Young’s
modulus, E¼ 10 GPa, the values of σ given in Table 2 corresponds
to compressive stresses σ1 ¼ 1, 10 and 100 MPa, respectively.
According to the classification suggested by Coduto [39] as shown

Table 1
Normalised and dimensionless parameters.

Parameter Definition

X ¼ x=lf Normalised length coordinate
Lp ¼ lp=lf0 Normalised propped length of fracture
Lf ¼ lf =lf0 Normalised residual length of fracture
W Xð Þ ¼ δ xð Þ=δ0 0ð Þ Normalised residual opening of fracture
σ ¼ σ1=E Dimensionless confining stresses

CfD;0 ¼ δo 0ð Þ=2πlf0
� �

kp;0=kr
� �

Dimensionless fracture conductivity

Table 2
Normalised and dimensionless parameters.

Parameter Numerical value

σ 10�4 10�3 10�2

C 10�3 10�2 10�1

Lp 1:0 0:5 0:1

Table 3
Classification of the proppant pack compressibility [39].

Compressibility, C Classification

0–0.05 Very slightly compressible
0.05–0.10 Slightly compressible
0.10–0.20 Moderately compressible
0.20–0.35 Highly compressible
40.35 Very highly compressible
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in Table 3, the values of C ¼ 10�3 and 10�2 correspond to very
slightly compressibility of the proppant pack, whereas C ¼ 10�1

corresponds to a slightly compressible pack. Finally, the value of
Lp ¼ 1:0 implies that the fracture is fully filled with proppant,
Lp ¼ 0:5 implies that the fracture is half-filled with proppant and
Lp ¼ 0:1 implies that one-tenth of the fracture is filled with
proppant.

Besides these main governing parameters, the values of three
other parameters: the initial porosity of proppant pack η0, the
design value of penetration ratio Ix;0 ¼ lf0=rr and the maximum
initial opening of the fracture δo 0ð Þ, also need to be chosen.
These values are kept fixed and are chosen to be η0 ¼ 0:4764
(which is the porosity of a cubic assembly of spherical particles),
Ix;0 ¼ 1 (which implies the initial fracture spans the entire

Fig. 3. Normalised residual opening of a hydraulic fracture filled with a compressive proppant pack.

Table 4
Numerical results for Lp ¼ 1:0.

Lp ¼ 1:0 σ ¼ 10�4 σ ¼ 10�3 σ ¼ 10�2

C 0 10�3 10�2 10�1 0 10�3 10�2 10�1 0 10�3 10�2 10�1

δ 0ð Þ=δ0 0ð Þ 1.000 0.998 0.980 0.810 1.000 0.998 0.980 0.801 1.000 0.998 0.980 0.800
kp=kp;0 1.000 0.989 0.897 0.267 1.000 0.989 0.897 0.246 1.000 0.989 0.897 0.244
lf =lf0 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Cfd=Cfd;0 1.000 0.987 0.879 0.216 1.000 0.987 0.879 0.197 1.000 0.987 0.879 0.195

JðCfd;0 ¼ 1Þ 0.749 0.746 0.726 0.453 0.749 0.746 0.726 0.437 0.749 0.746 0.726 0.435

Table 5
Numerical results for Lp ¼ 0:5.

Lp ¼ 0:5 σ ¼ 10�4 σ ¼ 10�3 σ ¼ 10�2

C 0 10�3 10�2 10�1 0 10�3 10�2 10�1 0 10�3 10�2 10�1

δ 0ð Þ=δ0 0ð Þ 1.000 0.997 0.979 0.795 1.000 0.997 0.979 0.788 1.000 0.997 0.979 0.788
kp=kp;0 1.000 0.980 0.877 0.189 1.000 0.980 0.877 0.163 1.000 0.980 0.877 0.162
lf =lf0 1.000 0.980 0.962 0.819 0.608 0.504 0.504 0.504 0.511 0.504 0.504 0.504
Cfd=Cfd;0 1.000 0.996 0.892 0.184 1.643 1.937 1.702 0.255 1.955 1.937 1.702 0.253

JðCfd;0 ¼ 1Þ 0.772 0.689 0.650 0.320 0.383 0.323 0.321 0.262 0.327 0.323 0.321 0.261
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reservoir) and δo 0ð Þ ¼ 10�4 � 2lf0 (i.e. the initial fracture opening
is four orders of magnitude smaller than the initial fracture
length).

First, consider the numerical results for the residual opening
profile of the fracture as shown in Fig. 3. The solid lines are taken
from [13] and represent the residual opening of a fracture filled
with incompressible proppant (C ¼ 0). The broken lines represent
the case of compressible proppant packs. The compressibility of the
proppant pack affects the residual opening as well as the residual
length of the fracture. As the proppant compressibility increases,
the residual opening of the fracture decreases. This also leads to a
reduction in the permeability of the proppant pack. Numerical
values for the reduction in fracture opening as well as reduction in
proppant permeability are given in Tables 4–6 for a range of values
of the governing parameters. It can also be observed from Fig. 3,
that the residual length of the fracture, Lf is essentially equal to the
propped length of the fracture, Lp except for the case of very low

confining stresses (σ ¼ 10�4). Even at very low confining stresses,
the residual length of a fracture partially filled with compressible
proppant is much shorter when compared to the incompressible
proppant case.

Next, consider the effect of proppant compressibility and con-
fining stress on the normalised productivity index, J as shown in
Fig. 4. The solid lines (C ¼ 0) are taken from [13] and represent the
productivity index of a fracture filled with incompressible proppant.
The broken lines represent the results for the case of a compressible
proppant pack. The value of the normalised productivity index is
governed by the dimensionless fracture conductivity, Cfd and the
normalised residual length of the fracture, Lf and is calculated using
Eq. (21). It can be observed from Fig. 4 that for a given design value
of the dimensionless fracture conductivity Cfd;0, the value of the
normalised productivity index decreases with increasing proppant
compressibility, C and increasing dimensionless confining stress, σ.
In Fig. 4(g)–(i), the results corresponding to C ¼ 0:1 are omitted.

Table 6
Numerical results for Lp ¼ 0:1.

Lp ¼ 0:1 σ ¼ 10�4 σ ¼ 10�3 σ ¼ 10�2

C 0 10�3 10�2 10�1 0 10�3 10�2 10�1 0 10�3 10�2 10�1

δ 0ð Þ=δ0 0ð Þ 1.000 0.994 0.962 0.623 1.000 0.994 0.962 0.617 1.000 0.994 0.962 0.623
kp=kp;0 1.000 0.961 0.761 – 1.000 0.961 0.760 – 1.000 0.961 0.760 –

lf0=lf 0.809 0.348 0.334 0.206 0.206 0.105 0.105 0.100 0.113 0.105 0.105 0.100
Cfd=Cfd;0 1.234 2.738 2.191 – 4.851 9.050 6.933 – 8.821 9.050 6.93 –

JðCfd;0 ¼ 1Þ 0.508 0.238 0.228 – 0.176 0.131 0.131 – 0.135 0.131 0.131 –

Fig. 4. Normalised productivity index vs. the design value of dimensionless fracture conductivity.
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This is because the model of proppant pack permeability provides
physically meaningless values for this set of parameters (see
discussion in Section 4).

9. Conclusion

In the present work, the fracture mechanics problem of a
hydraulic fracture partially filled with a compressible proppant
pack is studied. The confining stress leads to the partial closure of
the unpropped fracture segments as well as the compaction of the
proppant pack. The compaction of the proppant pack, in turn, also
leads to a reduction of the average fracture opening as well as a
reduction in the proppant pack permeability. A simple fluid flow
model is utilized to quantify the effect of confining stress and
partial filling of the fracture on the productivity index of the well.

The developed mathematical model provides a balance
between the complexity and comprehension, which is crucial for

engineering applications. The numerical results are obtained using
the well-established and reliable solution techniques such as
Gauss–Chebyshev quadrature method and Newton–Raphson itera-
tion scheme. It is believed that the presented numerical results are
reproducible and can be independently verified. The latter is often
impossible with sophisticated numerical approaches, which cur-
rently dominate the research area.

It was found that the residual length of a fracture partially filled
with proppant is essentially the same as the propped length of the
fracture, at moderate to high values of confining stress. This means
that any unpropped regions in the fracture will most likely close
during the production stage. The aim of a fracturing treatment
must be to maximize proppant transport in the fracture, since the
productivity index of a fully filled fracture is greater than a
partially filled fracture. There should be some means to estimate
the extent of propped transport in a fracture in order to determine
the residual length of the fracture and the productivity index of
the fractured well, for example, with the help of radioactive tracer
particles.

It was demonstrated in the present work that the residual
opening of the fracture and the permeability of the proppant pack
might be significantly lower than the expected or design values
(see Tables 4–6). A method for obtaining the dependence of the
residual opening and permeability on the confining stress, using
experimental results, was also presented. We believe that the
outcomes of this work can guide the design of hydraulic fracturing
stimulations and aid in the selection of appropriate proppant for
achieving the maximum efficiency of fracture stimulations.
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The problem of steady state fluid production from a hydraulic fracture subject to remote
compressive stresses is considered. The fracture is partially filled with proppant and the
distribution of proppant is symmetric about the wellbore. The unpropped fracture seg-
ments can provide additional length to the fracture and highly conductive pathways for
fluid flow. However, these fracture segments are susceptible to closure due to the confining
stresses. The governing equations for fracture opening and fluid flow into the fracture are
solved numerically using the Gauss–Chebyshev quadrature technique and a sensitivity
study is conducted to investigate the effect of the residual opening of the unpropped frac-
ture segments on the performance of a hydraulic fracture. The range of governing param-
eters is identified for which the residual opening of a fracture leads to production
enhancement.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Hydraulic fracturing is a widely applied technique in oil and gas industries for enhancing the productivity of wells drilled
in low-permeability reservoirs (Valkò & Economides, 1995). Among many parameters, the increase in well productivity due
to the fracturing treatment also depends upon the residual opening of the fracture which incorporates the length, width and
shape of the fracture during the production stage. Typically, a fracture is only partially filled with proppant due to the plug-
ging of proppant particles between the asperous fracture walls or their sedimentation during the proppant injection stage.
Partial filling of a hydraulic fracture can lead to a complex residual opening profile during the production stage (Bortolan
Neto & Kotousov, 2012b; Bortolan Neto & Kotousov, 2013) and complete closure of the unpropped fracture segments. Such
effects have not been incorporated in the existing analytical solutions for fluid production from hydraulic fractures (Diyashev
& Economides, 2006; Entov & Murzenko, 1994; Kanevskaya & Kats, 1996; Valkò & Economides, 1995). The presence of un-
propped fracture segments with much higher conductivity than the sand-filled or propped fracture may significantly alter
the inflow performance of the fracture and subsequently the production rate. It is of practical importance to investigate
the effect of residual opening of a partially filled fracture on the well productivity. In particular, the range of governing
parameters for which fracture residual opening has a significant impact on production must be identified (McLennan
et al., 2008; Mukherjee et al., 1995).

In this paper, a hydraulic fracture which is partially filled with proppant is modelled as a straight crack opened by a rigid
inclusion and subject to remote compressive stresses as illustrated in Fig. 1. The solution to the mechanical problem is
obtained by using the distributed dislocation technique (Bilby and Eshelby, 1968, chap. 2). This solution for the residual
opening profile is substituted into the governing equations for fluid production to evaluate the effect of residual fracture
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Fig. 1. Schematic representation of a partially filled hydraulic fracture as a 2D crack opened by a rigid inclusion and subject to remote compressive stresses
(a) The initial crack geometry prior to the injection of proppant and (b) The residual opening profile of the crack upon the removal of the fracturing fluid
pressure.
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opening on the inflow performance of a hydraulic fracture. The main objective of the simplified modelling is to evaluate the
effect of the residual opening on the production rate and to investigate general tendencies of the numerical solution by con-
ducting a case study.

2. Mathematical model

Consider a fracture of initial length 2Lo and maximum opening 2d as shown in Fig. 1(a). The fracture is partially supported
by a proppant pack and subject to remote confining stresses. Due to the confining stresses, closure of the un-propped seg-
ments of the fracture occurs and the equilibrium crack length 2L needs to be determined (Fig. 1(b)). The coordinate x is
aligned with the length of the fracture and the problem is symmetric about x = 0. The symmetry of the problem is utilized
in the mathematical model and the governing equations are written over the interval �L � x � 0.

2.1. Residual opening profile

The opening profile of a crack subject to uniform internal pressure is given by:
48
f ðxÞ ¼ 2d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� x=Loð Þ2

q
ð1Þ
The elliptical opening profile defined in Eq. (1) is commonly used to model the opening of hydraulic fractures and is referred
as the KGD fracture geometry (Valkò & Economides, 1995). It is used to represent the initial opening profile of the fracture as
shown in Fig. 1.

The residual opening profile of a crack opened by a rigid inclusion over |x| 6 a can be calculated by considering the fol-
lowing boundary value problem:
2wðxÞ ¼ f ðxÞ; jxj 6 a; ð2aÞ

wðxÞ ¼ 0; jxjP L; ð2bÞ

ryyðx; 0Þ ¼ �ro; a < jxj < L; ð2cÞ

rxyðx; 0Þ ¼ 0; jxj <1; ð2dÞ
where 2w(x) is the residual opening profile and ro is the remote confining stress. The sign convention for stress is positive
under tension. The unknown equilibrium crack length L is determined using the condition of no stress singularity at the crack
tips i.e. x = ± L.

The boundary value problem (2) can be formulated in terms of the function b(x) associated with the edge dislocation den-
sity (Hills et al., 1996). The edge dislocation density function b(x) is related to the crack opening as follows:
bðxÞ ¼ �2
dwðxÞ

dx
; wðxÞ ¼ �1

2

Z x

�1
bðtÞdt: ð3Þ
For the coordinate system shown in Fig. 1, the edge dislocation density is an odd function of x i.e. b(x) = �b (�x). Utilising the
symmetry of the problem, the following Föppl integral equation can be written for the edge dislocation density function
(Kotousov et al., 2013):
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p

Z �a

�L

t2bðt2Þ
x2 � t2

2

dt2 ¼
2
p

Z 0

�a

t1f 0ðt1Þ
x2 � t2

1

dt1 þ
4roð1� m2Þ

E
; �L 6 x 6 �a; ð4Þ
where t1 and t2 are dummy integration variables, ro is the confining stress and E and m are the Young’s modulus and Poisson’s
ratio of the rock. In the limit x ? a+, the crack opening must be continuous i.e. the following additional condition must be
satisfied:
f ðaþÞ ¼ �
Z �a

�L
bðtÞdt: ð5Þ
The solution to equation (4) subject to condition (5) yields the unknown dislocation density b(x) over the interval
�L 6 x 6 �a and the residual opening profile of the crack can be calculated using Eq. (3).

2.2. Fluid flow into the fracture

The steady state two-dimensional flow from the reservoir towards the hydraulically fractured well is described by the
following system of equations (Zazovskii & Todua, 1990):
uðx; yÞ ¼ � k
l
rpðx; yÞ ð6Þ

divu ¼ 0 ð7Þ
For the one-dimensional flow in a fracture with variable opening 2w(x) , which is partially filled with proppant, the following
system of equations can be written:
vðxÞ ¼
� kf

l
dpf

dx ; 0 6 jxj < a

� w2ðxÞ
3l

dpf

dx ; a < jxj 6 L

8<
: ; ð8Þ

d
dx
ðwðxÞvðxÞÞ þ qðxÞ ¼ 0 ð9Þ
Here u and v are the seepage flow velocities in the reservoir and the fracture, p and pf are the respective fluid pressures, l is
the fluid viscosity, k is the reservoir permeability, kf is the permeability of the proppant pack, w(x) is half of the residual
opening of the fracture and q(x) is the fluid flux per unit thickness which enters one of the faces of the fracture. Eqs. (7)
and (9) are the continuity equations for flow in the reservoir and the fracture respectively. Eq. (6) is the Darcy’s law for fluid
flow in the porous reservoir and Eq. (8) is the governing equation for one-dimensional flow in the partially filled fracture.
Darcy’s law is used in the propped region of the fracture and Boussinesq’s formula for laminar flow between two plates is
used in the unpropped region of the fracture (Balueva & Zazovskii, 1995). In addition to Eq. (6)–(9), the conditions of con-
tinuity of fluid flux and fluid pressure at the fracture surfaces have to be fulfilled. These can be written as:
qðxÞ ¼ uyðx;0Þ; jxj < L; ð10Þ

Pf ðxÞ ¼ pðx; 0Þ; jxj < L: ð11Þ
From Eqs. (6) and (7) it follows that the fluid pressure in the reservoir satisfies the Laplace equation
r2pðx; yÞ ¼ 0; ð12Þ
the solution to which is obtained in terms of an auxiliary function w(x) defined as:
wðxÞ ¼ @pðx; 0Þ
@y

; wðxÞ ¼
w1ðxÞ; jxj < a
w2ðxÞ; a < jxj < L

0; jxj > L

8><
>: ð13Þ
The function w(x) multiplied by the constant �k/l yields the fluid flux q(x) entering the fracture. Due to the symmetry of the
problem, w(x) is even, i.e. w(x) = w(�x) and the unknown functions w1(x) and w2(x) represent the fluid flux entering the
propped and unpropped regions of the fracture, respectively.

The general solution to the Laplace equation (15) subject to boundary condition (13) over the region
�1 < x 6 0;0 6 y <1 is given by Polyanin (2002):
pðx; yÞ ¼ 1
p

Z �a

�L
w2ðt2Þ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � t2

2

� �2 þ y2

q
dt2 þ

1
p

Z 0

�a
w1ðt1Þ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � t2

1

� �2 þ y2

q
dt1: ð14Þ
The pressure gradient along the fracture can be obtained by differentiating Eq. (14) with respect to x and by utilizing con-
dition (11). This results into:
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dpf

dx
¼ @pðx;0Þ

@x
¼ 2

p

Z �a

�L

w2 t2ð Þx
x2 � t2

2

dt2 þ
2
p

Z 0

�a

w1ðt1Þx
x2 � t2

1

dt1; �L 6 x 6 0: ð15Þ
Eq. (15) is used to derive the governing equation for fluid flow in the fracture. The governing equation over the unpropped
region �L 6 x 6 �a is:
2w3ðxÞ
3p

Z 0

�a

w1ðt1Þx
x2 � t2

1

dt1 þ
Z �a

�L

w2ðt2Þx
x2 � t2

2

dt2

" #
þ k

Z x

�L
w2ðt2Þdt2 ¼ 0 ð16Þ
and over the propped region i.e. �a 6 x 6 0 is:
2kf wðxÞ
p

Z 0

�a

w1ðt1Þx
x2 � t2

1

dt1 þ
Z �a

�L

w2ðt2Þx
x2 � t2

2

dt2

" #
þ k

Z 0

�a
w1ðt1Þdt1 þ

Z �a

�L
w2ðt2Þdt2

� �
¼ 0: ð17Þ
At x = �a, the right hand sides of Eqs. (16) and (17) become equal because of the continuity of the fluid flux at |x| = a. The
derivation of the governing Eqs. (16) and (17) follows directly from Zazovskii and Todua (1990), hence the details are omit-
ted. The integral equations (16) and (17) are supplemented by the condition of conservation of mass:Z Z� �
2k
l

0

�a
w1ðt1Þdt1 þ

�a

�L
w2ðt2Þdt2 ¼ Q ; ð18Þ
i.e. the total fluid flux entering the fracture must be equal to the rate of fluid production at the wellbore.

2.3. Dimensionless form of governing equations

To obtain the dimensionless form of equations of the governing Eqs. (4), (5), (16), (17), and (18), the following dimension-
less parameters are introduced:
dðxÞ ¼ wðxÞ
d

; A ¼ a
L
; �r ¼ 4roð1� m2Þ

E
; C ¼ 1

p
kf

k
d
L
; W ¼ kL

Qu
w; k ¼ 3kf

d2 : ð19Þ
The parameter d(x) is the normalized residual opening of the crack, A is the dimensionless propped length of the fracture, �r is
the dimensionless confining stress, C is the dimensionless fracture conductivity, W is the dimensionless fluid flux entering
the fracture and j is the dimensionless proppant pack permeability.

In addition, the scaled coordinates X1 and X2 are introduced over the intervals �a 6 x 6 0 and �L 6 x 6 �a, respectively.
The scale transformation x = (X1�1)a/2 is performed over �a 6 x 6 0 to provide �1 6 X1 6 1 and the scale transformation
x = X2(L�a)/2�(L + a)/2 is performed over the interval �L 6 x 6 �a resulting in �1 6 X2 6 1. Two dummy integration vari-
ables n1 and n2 are introduced such that t1 = (n1�1)a/2 and t2 = n2(L�a)/2�(L + a)/2. Subsequently, the governing equations
for fracture residual opening (4), (5) can be written in terms of dimensionless variables as:
2
p

Z 1

�1

ð1� AÞn2 � ð1þ AÞ½ �bðn2Þdn2

ð1� AÞðX2 þ n2Þ � 2ð1þ AÞ½ �ðX2 � n2Þ
¼ 2

p

Z 1

�1

A2ðn1 � 1Þf 0ðn1Þdn1

ð1� AÞX2 � An1 � 1½ � ð1� AÞX2 þ An1 � ð1þ 2AÞ½ � þ
�r ð20Þ
and
 Z 1

�1
bðn2Þdn2 ¼ �

2f ðaþÞ
L� a

: ð21Þ
The normalized residual opening d(X2) over the interval �1 6 X2 6 1 is given by:
dðX2Þ ¼ �
L� a

4

Z X2

�1
bðn2Þdn2: ð22Þ
It follows from Eq. (1) that the normalized residual opening over the interval �1 6 X1 6 1 is simply given by
dðX1Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X2

1

q
.

The governing equation for fluid flux distribution (16)–(18) can be re-written in terms of dimensionless parameters intro-
duced by Eq. (19) as:
d3ðX2Þ
j

Z 1

�1

A ð1� AÞX2 � ð1þ AÞ½ �W1ðn1Þdn1

ð1� AÞX2 þ An1 � ð1þ 2AÞ½ � ð1� AÞX2 � An1 � 1½ � þ
Z 1

�1

ð1� AÞX2 � ð1þ AÞ½ �W2ðn2Þdn2

ð1� AÞðX2 þ n2Þ � 2ð1þ AÞ½ �ðX2 � n2Þ

� �

þ 1
4C
ð1� AÞ

Z X2

�1
W2ðn2Þdn2

� �
¼ 0; ð23Þ

dðX1Þ
Z 1

�1

Að1� AÞðX1 � 1ÞW2ðn2Þdn2

AX1 þ ð1� AÞn2 � ð1þ 2AÞ½ � AX1 � ð1� AÞn2 þ 1½ � þ
Z 1

�1

ðX1 � 1ÞW1ðn1Þdn1

ðX1 þ n1 � 2ÞðX1 � n1Þ

� �

þ 1
4C

A
Z X1

�1
W1ðn1Þdn1 þ ð1� AÞ

Z 1

�1
W2ðn2Þdn2

� �
¼ 0 ð24Þ
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and
A
Z 1

�1
W1ðn1Þdn1 þ ð1� AÞ

Z 1

�1
W2ðn2Þdn2 ¼ 1: ð25Þ
Finally, Eq. (13) can be written in dimensionless form as
WðXÞ ¼
W1ðXÞ; 0 6 jXj 6 A

W2ðXÞ; A 6 jXj 6 1

�
; ð26Þ
where X = x/L is the normalized coordinate along the fracture length.
A numerical procedure based on Gauss–Chebyshev quadrature method is utilized for obtaining the solution to the system

of Eqs. (20)–(25). It is described in Appendix A. In the next section, the well productivity index is defined as a function of the
fluid flux distribution W (X) along the fracture length.

3. Well productivity index

The well productivity index is a common parameter widely used to describe the inflow performance of a hydraulic frac-
ture. For a well producing at a constant rate and located at the centre of a circular reservoir, the well productivity index J is
given by (Valkò and Economides, 1995):
J ¼ Qh
pe � pw

¼ 2phk
l

JD; ð27Þ
where Q is the production rate per unit thickness, h is the thickness of the reservoir, pe is the constant reservoir pressure at
the outer boundary of the circular reservoir (r = re), pw is the fluid pressure at the wellbore (r = rw) and JD is the dimensionless
well productivity index. For a well with no fracture, the dimensionless well productivity index is simply given by JD = 1/ln(re/
rw) Valkò & Economides (1995) and for a well containing a symmetric hydraulic fracture, the dimensionless productivity in-
dex JD is given by Zazovskii and Todua, (1990):
JD ¼ ln
re

L
�
Z 1

�1
WðXÞ ln X dX

� ��1

: ð28Þ
In order to evaluate the effect of residual opening on the performance of a hydraulic fracture, the hydraulic fracture is com-
pared to a fracture of length 2Lo with an infinite conductivity C ?1. In practice, values of C > 100 can be treated as infinite
conductivity and this situation is referred as an ideal fracture. The fluid flux distribution for an ideal fracture is given by W
(X) = p�1(1�X2)�1/2 and the dimensionless productivity index becomes JD = 1/ln(2re/Lo). Thus, the normalized productivity
index of the hydraulic fracture is given by:
J ¼ ln 2re=Lo

ln re=L�
R 1
�1 WðXÞ ln X dX

: ð29Þ
The limit J ? 1 implies that the equilibrium length of the fracture 2L is equal to the initial length 2Lo and the fracture has
infinite conductivity. The closer J is to unity, the better is the performance of the hydraulically fractured well.

4. Numerical results and discussion

In this section, some interesting numerical calculations are presented for a fracture of an initial length 2Lo = 100 m and
maximum opening 2d = 1 cm which lies at the centre of a circular reservoir of radius re = 500 m. During a hydraulic fracturing
treatment, the fracture dimensions can be estimated using a variety of mathematical models such as those provided in Valkò
and Economides (1995) and Mikhailov et al., (2011). Three values of the dimensionless confining stress are chosen for the
sensitivity study: r = 10�4 , 10�3 and 10�2. For a typical sandstone reservoir with Young’s modulus E = 20 GPa and Poisson’s
ratio m = 0.25, these value represent confining stresses in the range of 2–200 MPa. Further, two cases of proppant filling are
considered: when only a small region in the vicinity of the wellbore is filled with proppant, say a/Lo = 0.1 and when half of
the fracture is filled with proppant i.e. a/Lo = 0.5. For these parameters, the effect of residual opening on the well productivity
index is investigated.

4.1. Normalized residual opening

The dependence of the residual opening upon the confining stress is shown in Fig. 2. At r = 10�4 (corresponding to very
low confining stress) the deformation of the unpropped fracture segment is not significant whereas at r = 10�2 (correspond-
ing to very high confining stress) almost complete closure of the unpropped fracture segment occurs. Table 1 contains the
numerical values for the equilibrium crack length and the dimensionless propped length of the fracture corresponding to the
curves in Fig. 2.
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(a) (b)

Fig. 2. The dependence of the residual opening profile on the confining stress (a) a/Lo = 0.1 and (b) a/Lo = 0.5 . The dotted line represents the initial fracture
opening profile.

Table 1
Equilibrium crack length L/Lo and dimensionless propped length A of the fracture.

a/Lo �r L/Lo A = a/L a/Lo �r L/Lo A = a/L

0.1 10�4 0.809 0.124 0.5 10�4 1.000 0.500
10�3 0.204 0.490 10�3 0.608 0.822
10�2 0.112 0.893 10�2 0.511 0.978
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4.2. Dimensionless fluid flux distribution

For given residual opening profile d(X) and dimensionless propped length A, the dimensionless fluid flux distribution W
(X) is governed by the dimensionless proppant pack permeability j and the dimensionless fracture conductivity C. The range
of these two parameters for which the sensitivity study is identified first.

The proppant pack comprises of several layers of spherical proppant particles packed between the walls of the fracture,
hence fluid flow in the propped region of the fracture occurs via a network of interconnected pores within the proppant pack.
On the other hand, the fluid flow path in the unpropped fracture segments is unrestricted i.e. there is negligible resistance to
flow. It implies that the parameter j << 1 (Khanna et al., 2012). Preliminary numerical calculations conducted in the present
work suggests that the value of the parameter j does not effect the solution for W (X) significantly for j 6 10�2. Thus, all
calculations for W (X) are performed for j = 10�2. Similar arguments can be made regarding the dimensionless fracture con-
ductivity C. The solution for W (X) does not change significantly beyond C > 100 , which corresponds to the ideal fracture. On
the other hand, for values of C < 0.01, the fluid flux is concentrated in a very small region in the vicinity of the wellbore and
the length of the fracture does not significantly affect the production. Hence, the range 0:01 6 C 6 100 is considered in the
present sensitivity study.

To demonstrate the effect of partial filling of the fracture on the fluid flux distribution W (X), numerical calculations are

performed for a fracture with an elliptical opening profile dðXÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� X2

p
. The values of dimensionless propped length are

chosen to be A = 0.1 and 0.5 and the values of dimensionless fracture conductivity are chosen to be C = 0.1 and 10. The results
are shown in Fig. 3. As expected, the partial filling of the fracture does not effect the fluid flux distribution at high fracture
conductivity (Fig. 3(c) and (d)). For poor fracture conductivity, the partial filling of the fracture dramatically alters the fluid
flux distribution along the fracture length. By comparing the solutions for W (X) for partially filled (solid line) and fully filled
fractures (dotted line), see Fig. 3(a) and (b), it can be observed that in the case of partially filled fractures, the majority of the
fluid enters the unpropped regions of the fracture. However, negative fluid flux near |X| = A implies that a significant amount
of the produced fluid leaks out of the fracture near the interface between the propped and unpropped region.

4.3. Simplified fluid flow model

It can be observed from Fig. 3(c) and (d), that for moderately high fracture conductivity the effect of permeability mis-
match between the propped and unpropped fracture segments does not have a significant effect on the fluid flux distribution
and hence, the well productivity. At low values of fracture conductivity (Fig. 3(a) and (b), the permeability mismatch leads to
significant modification in the fluid flux distribution. However the well productivity given by Eq. (29) involves the integral of
the fluid flux distribution over the length of the fracture. Thus, it can be expected that this quantity would be weakly sen-
sitive to the permeability mismatch between the propped and unpropped fracture segments.
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Fig. 3. Dimensionless fluid flux distribution along the fracture length. The dotted line corresponds to a fracture which is fully filled with proppant. It is
identical for Fig. 3(a) and (b) and for Fig. 3(c) and (d).
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It was also pointed out in Zazovskii and Todua (1990) that the well productivity is not significantly affected by the shape
of the fracture especially at high values of fracture conductivity. Therefore, a much simpler model for fluid production is pro-
posed by introducing the following assumptions:

1. The residual opening of the fracture over the length 2L is assumed to be constant, i.e. 2wðxÞ ¼ 2d; jxj 6 L.
2. The permeability of the unpropped fracture length is assumed to be the same as the permeability of the propped length.

Hence, the fracture permeability kf ¼ constant; jxj 6 L.

Based on these assumptions, the governing equations of fluid flow (23)–(25) are reduced to the following equations given
by Zazovskii and Todua (1990):
Z 1

�1

WðnÞdn
X � n

þ 1
C

Z X

�1
WðnÞdn ¼ 1þ sgnðXÞ

2C
ð30Þ
and
 Z 1

�1
WðnÞdn ¼ 1; ð31Þ
where the dimensionless coordinate �1 6 X 6 1 corresponds to �� L 6 x 6 L. The approximate solution obtained using Eqs.
(30) and (31) is substituted into Eq. (29) and the results for well productivity index are compared to model developed in
Section 2.2.

4.4. Well productivity index

Using Eq. (29), the effect of residual opening on the normalized well productivity index J can be investigated as well. In
Fig. 4, the normalized well productivity index is calculated for the different residual opening profiles shown in Fig. 2. An in-
crease in dimensionless confining stress leads to closure of the unpropped fracture segments and subsequent reduction in
the productivity index of a partially filled fracture. By comparing Fig. 4(a) and (b), it can also be observed that the residual
opening has a greater impact on well productivity when a shorter length of the fracture is filled with proppant.

The curves in Fig. 4 corresponding to r = 10�2, essentially represent the productivity of a fracture with no residual open-
ing. Conversely, the curves corresponding to r = 10�4 represent the productivity of a fracture with negligible closure of the
unpropped segments. A typical fracture is normally subjected to the confining stresses corresponding to the dimensionless
confining stress of r = 10�3 (Valkò & Economides, 1995). Accounting for the residual opening in such fractures leads to an
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Fig. 4. The effect of residual opening on the inflow performance of a hydraulic fracture (a) only 10% of the fracture is filled with proppant (b) 50% of the
fracture is filled with proppant.
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increase of roughly 5–10% in the predicted well productivity index. For lower confining stresses the increase can reach up to
50% as shown in Fig. 4(a). This implies that the residual opening of a partially filled fracture is a secondary mechanism of
productivity enhancement in fractures, specifically in low confining stress environment.

Fig. 4 also shows the comparison of the results for normalized well productivity obtained using the fluid flow model
developed in Sections 2.2 (solid lines) and the simplified model proposed in Section 4.3 (dotted lines). The simplified model
provides acceptable results for a wide range of the governing parameters, except for the situation when a fracture with small
propped length a/Lo is subject to small dimensionless stress r. The comparison provides a useful result, namely the increase
in well productivity is primarily due to additional fracture length rather than the shape of the fracture or the high conduc-
tivity of the un-propped fracture segments. Nonetheless, the fluid flow model developed in Section 2.2 should be viewed as
non-trivial since:

1. The residual opening phenomenon is of significance only when the propped length a/Lo and dimensionless stress r are
small. It is in this range of governing parameters that we see the discrepancy between the developed model and its sim-
plified version.

2. It was shown (as in Fig. 3(a) and (b) of the manuscript) that for a fracture with poor conductivity, the presence of highly
conductive residual opening may not be beneficial. The proppant pack essentially acts as a plug in this situation leading to
the leak-off of the fluid produced by the unpropped region back into the reservoir.

Another permeability enhancement mechanism which can lead to an increase of the production rate is the roughness in-
duced opening of the fracture (Kotousov et al., 2011) in which case the height of the prominent surface asperities primarily
governs the fracture conductivity (Zou et al., 2013). This mechanism is disregarded in the current study but can be also incor-
porated into the developed mathematical model (Bortolan Neto & Kotousov, 2012a).
σ ×

(a) (b)

Fig. 5. Validation of numerical results: (a) Equilibrium crack length vs. dimensionless confining stress (b) Dimensionless fluid flux distribution along the
fracture length.
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5. Conclusion

The steady state fluid production from a partially filled hydraulic fracture was considered within a simplified mathematical
formulation, which utilised the symmetry of the proppant distribution about the wellbore. The governing equation of the
mechanical problem represents a Föppl-type integral equation, which was solved numerically. The solution for the residual
profile was utilised in the fluid flow model, which provided a way for the calculation of the productivity index. The results indi-
cated that the residual opening profile has a significant influence of the productivity rate at relatively low dimensionless con-
fining stresses (ratio of the confining stresses to Young’s modulus of the rock). The influence diminishes with an increase of the
confining stresses. For typical or averaged conditions the effect of the residual opening on the productivity index is about 10%.

The considered model does not take into account many other non-linear effects. One of them mentioned above is the
roughness induced opening of hydraulic fractures. Another important effect, which can significantly influence the flow in
narrow fracture channels is the compressibility of proppant (Bortolan Neto & Kotousov, 2012b; Bortolan Neto & Kotousov,
2013). Accounting for the compressibility of the proppant pack will lead to the coupling of the mechanical and fluid problem
and the solution can still be obtained numerically based in the method outlined in the Appendix A. However, this is a scope
for future work.

Appendix A. Numerical solution technique

Gauss–Chebyshev quadrature method is utilized to obtain the numerical solutions to the system of singular integral
equations (see Ref. Hills et al., 1996). By implementing the quadrature method, the singular integral equations can be con-
verted to systems of linear equations which can be solved readily using Gaussian elimination.

The interval�1 6 X1 6 1 is discretized into N points, the interval�1 6 X2 6 1j = 1. . .M is discretized into M points and the
following indices are defined: i = 1. . .N , k = 1. . .N�1 and l = 1. . .M�1. The integration and collocation points over the interval
�1 6 X1 6 1 are given by si = cos (p(2i�1)/2N) and tk = cos (pk/N) respectively. The integration and collocation points over
the interval �1 6 X2 6 1 are given by Sj = cos (p(2j�1)/2M) and Tl = cos (pl/M) respectively. The discretized form of the gov-
erning equations is presented next.

A.1. Residual opening profile

The governing equation for the edge dislocation density (20) contains the Cauchy kernel (X2�n2)�1. The asymptotic
behaviour is built into the solution for by writing the edge dislocation density function as b(X2) = W(X2)H (X2) where
W(X2) = (1�X2)�1/2 is the fundamental solution and H (X2) is an unknown regular function to be determined at M points
along the interval �1 6 X2 6 1. The Eqs. (20) and (21) are discretized as:
2
M

XM

j¼1

ð1� AÞSj � ð1þ AÞ
� 	

HðSjÞ
ð1� AÞðTl þ SjÞ � 2ð1þ AÞ
� 	

ðTl � SjÞ
¼ 2

p

Z 1

�1

A2ðn1 � 1Þf 0ðn1Þdn1

ð1� AÞTl � An1 � 1½ � ð1� AÞTl þ An1 � ð1þ 2AÞ½ � þ
�r ðA1Þ
and
p
M

XM

j¼1

HðSjÞ ¼ �
2f ðaþÞ
L� a

: ðA2Þ
Together, Eqs. (A1) and (A2) form a system of M linear equations which are solved to obtain the unknown edge dislocation
density function b(X2). The residual opening profile can be then calculated using Eq. (22).

The mode-I stress intensity factors at x = �L and x = �a, i.e. at X2 = ± 1 are given by Hills et al. (1996):
KIð�1Þ ¼ �4ð1� m2Þ
E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pðL� aÞ

p
Hð�1Þ: ðA3Þ
For given values of r, a and Lo, the equilibrium crack length L is found by trial and error such that the value of KI(�1) � 0, i.e.
there is no stress singularity at the crack tips.

A.2. Fluid flux distribution

The governing equations for fluid flow (23) and (24) also contain the Cauchy kernel and the fluid flux distribution can be
written as W1(X1) = W(X1)U1(X1) and W 2(X2) = W(X2)U 2(X2) where W(X) = (1�X2)�1/2 as before and U 1(X1) and U 2(X2) are
unknown regular functions to be determined. Eq. (23) can be written as a system of M�1 equations:
d3ðTlÞ
j

p
N

XN

i¼1

U1ðsiÞA ð1� AÞTl � ð1þ AÞ½ �
½ð1� AÞTl þ Asi � ð1þ 2AÞ�½ð1� AÞTl � Asi � 1� þ

p
M

XM

j¼1

U2ðSjÞ½ð1� AÞTl � ð1þ AÞ�
ð1� AÞðTl þ SjÞ � 2ð1þ AÞ
� 	

ðTl � SjÞ

" #

þ ð1� AÞ
4C

p
M

XM

j¼l

U2ðSjÞ ¼ 0: ðA4Þ
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Similarly, equation (24) can be written as a system of N - 1 linear equations:
56
dðtkÞ
p
M

XM
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U2ðSjÞAð1� AÞðtk � 1Þ
½Atk þ ð1� AÞSj � ð1þ 2AÞ�½Atk � ð1� AÞSj þ 1� þ

p
N
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þ 1
4C
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U1ðsiÞ þ ð1� AÞ p
M

XM

j¼1

U2ðSjÞ
" #

¼ 0: ðA5Þ
Two additional linear equations are provided by Eq. (25) and the condition of continuity of fluid pressure at |x| = a:
A
p
N

XN

i¼1

U1ðsiÞ þ ð1� AÞ p
M

XM

j¼1

U2ðSjÞ ¼ 1; ðA6Þ

U1ð�1Þ ¼ U2ðþ1Þ: ðA7Þ
Together Eqs. (A4)–(A7) represent a system of N + M linear equations which can be solved to obtain the unknown fluid flux
distribution in the fracture.

Appendix B. Validation of the numerical results

B.1. Residual opening profile

The analytical method for obtaining the solution to the problem of a crack opened by a rigid inclusion and subject to re-
mote confining stresses was presented in Maiti (1980). The analytical method is suitable for calculating the unknown equi-
librium crack length but faces computational difficulties when calculating the residual opening profile. Hence, a numerical
approach was utilized in the present work. The numerical method is validated by comparing the obtained results for the un-
known equilibrium crack length to the results obtained using the analytical solution. The comparison is shown in Fig. 5(a)
where the calculations were performed for a crack with an aspect ratio d/Lo = 10�4 and a normalized propped length A = 0.5.

B.2. Fluid flux distribution

The problem of flow towards a fracture which is fully filled with proppant was solved in Zazovskii and Todua (1990). The
mathematical model was extended to the problem of a partially filled fracture in the present work. The numerical results can
be compared against the solution obtained in Zazovskii and Todua (1990) by choosing d(X) = 1 and j = 1. The former condi-
tion implies that the fracture has constant opening and the latter implies that there is no mismatch in the permeability of the
propped and unpropped fracture segments. The comparison is shown in Fig. 5(b) for A = 0.2 and two different values of the
dimensionless fracture conductivity C. The chosen values of C are indicated above the respective curves. The singularity in
present solution for W (X) at X = A is due to the numerical formulation.
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A solution to the problem of a rigid cylindrical inclusion pressed between two elastic half
spaces is obtained using the distributed dislocation technique. The solution is compared
with previously published analytical and numerical results for a rigid cylindrical inclusion
bounded by two parabolic arcs with rounded corners. A simplified solution to the problem
based on the classical contact theory and well-known results for crack problems is also
suggested and validated. The simplified solution agrees well with analytical results in
the case when the length of the opening around inclusion is much larger than the length
of the contact zone.
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1. Introduction

The problem of a rigid inclusion pressed between two
elastic half spaces has many important applications, for
example, in the investigation of friction properties of flat
surfaces in the presence of contamination, in the design
of various engineering components like fasteners and in
various particle technologies such as hydraulic fracturing
which involve the injection of small particles (proppant)
into artificial fractures or natural cracks present in oil/gas
bearing rocks.

The two dimensional problem of a crack opened by a ri-
gid inclusion was first considered by Lowengrub and Sriv-
astav (1970). These researchers used the theory of dual and
triple integral equations based on Fourier transform tech-
niques of Sneddon (1957) and obtained a solution by
assuming that the length of the contact between the inclu-
sion and the solid body is known. However, in these types
of problems, the contact area is generally not known in ad-
vance and has to be determined from the smooth tangency
of the crack surface at the inclusion ends (Barenblatt, 1962;
Cherepanov, 1979). Maiti (1980) reduced the problem with
unknown equilibrium contact length to a Föppl integral
equation, for which the solution can be easily found in
closed form, see Tricomi (1985). However, in the problems
considered by Lowengrub and Srivastav (1970) and Maiti
(1980), the elastic spaces were assumed to be free from
stresses at infinity, so that the opened area and resultant
stresses are due to the presence of the rigid inclusion only.

Alblas presented a closed-form solutions to the problem
of a rigid cylindrical inclusion, bounded by two parabolic
arcs with rounded corners and pressed between two iden-
tical elastic half spaces (Alblas, 1974) or two elastics layers
of equal thickness (Alblas, 1975). The unknown contact re-
gion is calculated by solving a transcendental equation
involving elliptic integrals. An approximate solution to
these problems based on the Chebyshev polynomials was
presented by Gladwell (1977). The latter solution con-
verges to Alblas’ closed form analytical solution when the
depth of the elastic layers is roughly twice larger than
the length of the opening. The numerical approach devel-
oped by Gladwell was specifically suitable for the parabolic
shape of the rigid inclusion as many of the integrals in-
volved in the solution may be computed explicitly. How-
ever, both solutions experience computational difficulties
at a relatively small length of the contact between the
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Fig. 1. Problem geometry and coordinate system.
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inclusion and half spaces, which corresponds to large
opening areas or relatively thin elastic layers (Gladwell,
1977).

A related axisymmetric problem in which a rigid ob-
late spheroidal inclusion is pressed between two dissim-
ilar elastic half-spaces was considered by Gladwell and
Hara (1981). The problem is quite relevant to the analysis
of a rigid spherical proppant pressed between the faces of
a crack in an oil/gas bearing rock; however the analysis
of Gladwell and Hara (1981) was based on the assump-
tion that the contact radius between the inclusion and
the elastic half space is known in advance. An axisym-
metric inclusion problem with an unknown equilibrium
contact length between the half spaces was first solved
by Selvadurai (1993) in terms of Hankel transforms for
a rigid disc-shaped inclusion of constant thickness. The
analysis was intended to serve as a simplified model for
the fracture and proppant interaction scenario (Selvadu-
rai, 1993, 1994). Selvadurai (1993) also presented an
alternative method in which the problem of a rigid disc
inclusion between two elastic half-spaces was decom-
posed into two auxiliary problems which are: (1) the
problem of a penny shaped crack opened by rigid disc
inclusion and (2) an annular crack subject to uniform
tensile stress. The two methods were found to be in
excellent agreement.

Several other similar problems have been considered
more recently. These include the problem of a non-axisym-
metric inclusion of constant thickness pressed between
elastic half-spaces (Gladwell, 1995), the indentation of a
pre-compressed penny shaped crack by a rigid disc (Sel-
vadurai, 2000), the separation of dissimilar elastic half
spaces due to axisymmetric stress fields (Selvadurai,
2003) and the separation of dissimilar piezoelectric half
spaces by a rigid disc inclusion (Eskandari et al., 2009).

In this paper, the class of plane strain problems initiated
by Alblas (1974) is revisited and two solution techniques
are described for the problem of a rigid cylindrical inclu-
sion pressed between two identical half-spaces. Firstly,
an approximate solution to the problem is obtained based
on the assumption that the length of the opened region be-
tween the half spaces is much larger than the size of the
inclusion. In this simplified solution, it is also assumed that
the stress distribution over the zone of contact is described
by the classical Hertz theory of contact stresses between a
rigid circular cylinder and an elastic half space (Johnson,
1985). Secondly, a method is developed based on the ap-
proach of Maiti (1980), which is reformulated in terms of
unknown distributed dislocation densities (Codrington
and Kotousov, 2007; Hills et al., 1996). The solution is ob-
tained by the superposition of analytical results for the
Föppl integral equation and the analytical solution for
two collinear cracks in an infinite plate subjected to uni-
form remote stress on infinity given by Willmore (1949).
This approach is analogous to Selvadurai’s solution for disc
shaped inclusions. The two solution methods are com-
pared with the previously published analytical and numer-
ical results for rigid inclusions of parabolic shape. The
dislocation solution also confirms the applicability of the
simplified approximate solution in the case of large open-
ings around parabolic and circular rigid inclusions.
62
2. Problem formulation

Consider a rigid cylindrical inclusion with the shape,
which permits a snug and smooth contact, squeezed by
two semi-infinite elastic spaces. The elastic spaces are sub-
jected to remote compressive stress, ro as illustrated in
Fig. 1. As a result of elastic deformations, an area
ðjxj 6 a; y ¼ 0Þ between two elastic half spaces is open.
The shape of the inclusion determines the profile of the
opening over the contact region between the spaces and
the inclusion given by jxj 6 c. Due to absence of the cohe-
sion between the elastic half spaces and between the half
spaces and inclusion, there must be no stress singularities
in the problem solution, in particular at the end of the
inclusion contact zone ðjxj ¼ cÞ and at the point where
the half spaces join together (jxj ¼ a). Moreover, the half
opened length a, and the length of contact c are not known
in advance and have to be determined from the solution of
the problem.

The solution to the problem can be obtained as a super-
position of the applied stress ryy = ro and a corrective solu-
tion, which negates the induced stresses along the opening,
c < x < a (Codrington and Kotousov, 2007; Hills et al., 1996).
The corrective solution in the case of frictionless contact
can be found from the consideration of the following
mixed value boundary-value problem:

dyðx;0Þ ¼ 2uyðx;0Þ ¼ f ðxÞ; jxj 6 c; ð1aÞ
uyðx; 0Þ ¼ 0; jxj > a; ð1bÞ
ryyðx; 0Þ ¼ �ro; c < jxj < a; ð1cÞ
rxyðx; 0Þ ¼ 0 jxj <1; ð1dÞ

where dy(x, 0) = dy(x) is the crack opening.
The formulated boundary-value problem (1) can be sig-

nificantly simplified if one assumes that the length of the
contact area is much smaller than the characteristic size
of the inclusion and the length of the opening. In this case,
in accordance with the Saint–Venant principle, the distri-
bution of the contact stresses between elastic half spaces
and the rigid inclusion has to follow the classical Hertz the-
ory (Johnson, 1985). An approximate solution based on
these simplifications will be developed next.



Fig. 2. Decomposition of the problem.
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3. Long crack approximation

In the simplified solution, it is assumed that the local
geometry of the contact area can be approximated by a
second order polynomial (Alblas, 1974), which can be writ-
ten as

f ðxÞ ¼ d� x2

2R
; ð2Þ

where d and R are constants. The first constant d represents
the depth of the inclusion and the second constant R – the
local radius of curvature at the origin of the coordinate sys-
tem, x = 0, which is also the axis of symmetry of the prob-
lem, see Fig. 2.

The stress intensity factor at the end of the opening
ðjxj ¼ aÞ has to vanish as there is no cohesion between half
spaces as described above. When the length of the opening
area is much larger than the length of the contact i.e. a� c
the distribution of the contact pressure can be replaced by
a concentrated force, P for the purpose of stress intensity
factor calculations at jxj ¼ a. This results into the following
equation (Sanford, 2003):

Pffiffiffiffiffiffi
pa
p � ro

ffiffiffiffiffiffi
pa
p

¼ 0: ð3Þ

In the previous equation, the first term represents the
stress intensity factor due to a couple of opening forces
of magnitude P applied in the centre of the crack. The sec-
ond term is the stress intensity factor is due to the remote
stress ro. From Eq. (3) the force acting on the inclusion is
simply

P ¼ ropa: ð4Þ

The distribution of the contact stresses can be approxi-
mated by the equation derived from the classical Hertz
theory (Johnson, 1985). For the contact between a rigid cyl-
inder and elastic half space, the distribution of the contact
stresses is given by the following expression:

rcðxÞ ¼
2P
pc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

c2

r
: ð5Þ

Combining (5) and (4), the length of the contact area can be
determined from the following equation:

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P
p

1þ j
2l

R

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ro

1þ j
2l

Ra

s
; ð6Þ

where l is the shear modulus and j is the Kolosov’s con-
stant, j = 3 � 4m in plane strain and j = (3 � m)/(1 + m) in
plane stress and m is Poison’s ratio. However, it seems,
only the plane strain case is relevant to practical
applications.

From the previous equation, the applied remote stress
can be found as a function of the material properties and
the geometry of the problem as

ro ¼
2l

1þ j
c2

Ra
: ð7Þ

Substitution of the last equation into the contact stress dis-
tribution (5) results in the relationship
rcðxÞ ¼
4l

1þ j
c
R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

c2

r
: ð8Þ

The displacement of the crack faces (half of the crack open-
ing displacement) due to the contact stress applied to the
crack faces (8) can be found as

vPðxÞ ¼ �
1
p

1þ j
8l

Z c

�c
rcðnÞ ln

a� xn�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � n2

p
a� xnþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � n2

p dn: ð9Þ

The displacement of the crack faces due to the applied re-
mote stress ro can be expressed as

vrðxÞ ¼ �
1þ j

4l ro

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � x2
p

: ð10Þ

The continuity condition at x = 0 requires that

vPð0Þ � vrð0Þ ¼ d; ð11Þ

or, finally,

� 1
p

Z c

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� n2

c2

s
ln

a2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � n2

p
a2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � n2

p dn� c2

2Ra
¼ d: ð12Þ

A system of two Eqs. (6) and (12) can be utilised to find un-
known parameters of the problem a and c. However, it is
clear that the obtained approximate solution does not sat-
isfy some boundary conditions, such as (1a) or (1c). The use
of the continuity equation (11) is ambiguous to some ex-
tent and it can be replaced, for example, by a similar con-
tinuity equation for an arbitrary point located in the
contact area. However, it is expected that Eqs. (6) and
(12) provide an accurate solution to the problem when ra-
tio a/R is sufficiently large. The analysis of this equation
and a comparison with exact solutions will be presented
later in this paper. In the next section, inclusion problem
is formulated in terms of the distributed dislocation
technique.

4. The distributed dislocation approach

To solve the boundary-value problem (1) let us intro-
duce the function b(n) associated with the edge dislocation
density (Bilby and Eshelby, 1968; Hills et al., 1996).

bðnÞ ¼ � @dðnÞ
@n

; ð13Þ
163
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1

and utilising the symmetry of the problem, the following
integral equation can be written

2
p

Z a

c

nbðnÞ
x2 � n2 dn ¼ 2

p

Z c

0

nf 0ðnÞ
x2 � n2 dnþ r0

ðjþ 1Þ
2l

: ð14Þ

Further, from Eq. (13) it follows that

dðx; yÞ ¼
Z a

x
bðnÞdn: ð15Þ

In the limit x ? c� the following additional continuity con-
dition, similar to Eq. (11) has to be satisfied:

f ðc�Þ ¼
Z a

c
bðnÞdn: ð16Þ

To determine a and c, the smooth tangency of the crack
surface with the inclusion at jxj ¼ c and zero slope at
jxj ¼ a is utilised in the solution method. Once the disloca-
tion density is found, the normal stresses arising along the
crack line due to a continuous distribution of dislocations
are given by Hills et al. (1996)

ryðx;0Þ ¼ ryðxÞ ¼
2l

pðjþ 1Þ

Z a

�a

bðnÞ
x� n

dn: ð17Þ

The solution to the problem under consideration can be
obtained as a superposition of solutions of two supplemen-
tary problems shown in Fig. 3. The approach is analogous
to a previously obtained solution for disc shaped inclusions
(Selvadurai, 1993).

The first problem is a straight crack in an infinite solid
opened by a rigid inclusion. This problem was considered
by Maiti (1980). The second problem represents two col-
linear cracks occupying the region c 6 x 6 a and subjected
to remote tensile stress ro. It was first solved by Willmore
(1949) using the complex variable approach. To superpose
these two solutions both of them are represented through
the dislocation densities (Kotousov, 2007). Then, the dislo-
cation density function b(x) of the problem under consider-
ation can be found as a difference between the dislocation
density functions of the inclusion problem, bq(x) and the
collinear cracks problem br(x), i.e.

bðxÞ ¼ bqðxÞ � brðxÞ: ð18Þ

where bq(x) can be obtained from the Föppl integral
equation

2
p

Z a

c

nbðnÞ
x2 � n2 dn ¼ 2

p

Z c

0

nf 0ðnÞ
x2 � n2 dn; ð19Þ

The dislocation density function br(x) can be determined
from the following integral equation
Fig. 3. Approximation of contact problem.
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2
p

Z a

c

nbðnÞ
x2 � n2 dn ¼ �r0

ðjþ 1Þ
2l

: ð20Þ

The solution to the Föppl integral equation (19) can be
written in two alternative forms (Maiti, 1980), as follows

b1qðxÞ ¼ �
2
p

a2 � x2

x2 � c2

� �1=2 Z a

c

n2 � c2

a2 � n2

!1=2
nFðnÞ

x2 � n2 dn

þ C1

ðx2 � c2Þ1=2ða2 � x2Þ1=2 ; ð21Þ

and constant

C1 ¼
a

KðkÞ f ðc�Þþ 2
p

Z a

c

Z a

c

a2�x2

x2�c2

� �1=2
n2�c2

a2�n2

!1=2
nFðnÞ

x2�n2 dndx

0
@

1
A;
ð22Þ

where the parameter

k ¼ a2 � c2

a2

� �1=2

: ð23Þ

The second alternative form of the solution of the Föppl
integral equation (19) is

b2qðnÞ ¼ �
2
p

x2 � c2

a2 � x2

� �1=2 Z a

c

a2 � n2

n2 � c2

!1=2
nFðnÞ

x2 � n2 dn

þ C2

ðx2 � c2Þ1=2ða2 � x2Þ1=2 ; ð24Þ

with

C2 ¼
a

KðkÞ f ðc�Þþ 2
p

Z a

c

Z a

c

x2�c2

a2�x2

� �1=2 a2�n2

n2�c2

!1=2
nFðnÞ

x2�n2 dndx

0
@

1
A:
ð25Þ

The solution to the collinear crack problem is well known
and can be written in terms of the dislocation density as:

brðxÞ ¼ ro
jþ 1

2l
x2 � a2 EðkÞ

KðkÞ

ðx2 � c2Þ1=2ða2 � x2Þ1=2 ; ð26Þ

where K(k) and E(k) are the complete elliptic integrals of
the first and second kind with parameter k given by Eq.
(23).

Similar to the solution of the Föppl integral equation
(21)–(26), the solution of the superposed problem can also
be written in two alternative forms:

bðxÞ ¼ b1qðxÞ � br; ð27aÞ

and

bðxÞ ¼ b2qðxÞ � br: ð27bÞ

These solution must be free from stress singularities, in
particular at jxj ¼ c and jxj ¼ a. The condition of the smooth
tangency of the crack surface with the inclusion at jxj ¼ c
applied to Eq. (27a) leads to the following relationship:

a2 � c2

pc

� �1=2 Z c

0

2nf 0ðnÞ
ðc2 � n2Þ1=2ða2 � n2Þ1=2 dn� pC1

a2 � c2

 !

� ro
jþ 1

2l
ffiffiffiffiffiffi
pc
p 1

k
aEðkÞ
cKðkÞ �

c
a

� �
¼ 0: ð28Þ



Fig. 4. Parabolic inclusion pressed between elastic half spaces.

Fig. 5. Variation of dimensionless opening length with contact length
parameter.
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The absence of the stress singularity condition at jxj ¼ a
applied to Eq. (27b) results into another integral equation:

a2 � c2

pa

� �1=2 Z c

0

2nf 0ðnÞ
ðc2 � n2Þ1=2ða2 � n2Þ1=2 dnþ pC2

a2 � c2

 !

þ ro
jþ 1

2l
ffiffiffiffiffiffi
pa
p 1

k
1� EðkÞ

KðkÞ

� �
¼ 0: ð29Þ

The solution to the system of algebraic equations (28) and
(29) can be obtained by using a simple iterative procedure
as follows. At a fixed ratio c/R and a guess value of the ratio
Fig. 6. Variation of dimensionless stresses at
a/R, the required compressive stress ro is first found from
Eq. (28) exactly. Then, all three values (c/R, a/R and ro)
are substituted into Eq. (29). If Eq. (29) is satisfied with
the desired accuracy then these values are taken as a solu-
tion to the problem at the specified c/R ratio. If the desired
accuracy is not achieved then a new and corrected value of
a/R and the new calculated value of ro from Eq. (28) are
substituted again into Eq. (29). The left part of Eq. (29)
demonstrates a monotonic behaviour if it is considered
as a function of a/R, thus the classical dichotomy method
can be applied in the selection of the corrected value of
a/R. The procedure is to be repeated until the desired accu-
racy or a specified convergence condition is achieved.
Monotonic functions a/R and ro from variable c/R can also
be inverted to get the relationship of c/R and a/R as func-
tions of the compressive stress ro.

Once c and a are obtained, the distributed dislocation
density function b(x) is fully determined. The crack open-
ing displacement d(x) can be found from Eq. (15), while
the stress distribution can be evaluated from the disloca-
tion density function solution b(x) superposed with the ap-
plied stress as described earlier

ryðx;0Þ ¼ ryðxÞ ¼
2l

pðjþ 1Þ

Z a

�a

bðnÞ
x� n

dnþ ro: ð30Þ
5. Results

5.1. Parabolic cylindrical inclusion

Consider first a rigid cylinder bounded by two parabolic
arcs with rounded corners and pressed between two elas-
tic half spaces with compressive stress ro applied on infin-
ity (see Fig. 4).

f ðxÞ ¼ 2d� x2

q
: ð31Þ

Solution to this problem can be obtained from the system
of equations (28) and (29) by substituting into these equa-
tions the following expressions:

f 0ðxÞ ¼ �2
x
q
; ð32Þ
infinity with contact length parameter.
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Fig. 7. Circular inclusion pressed between elastic half spaces.
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1

and

FðxÞ ¼ 4
p

jþ 1
2l

c � xtanh�1ðc=xÞ
q

: ð33Þ

A comparison of the present solution with the previously
published results and with the simplified Eq. (12) is shown
in Figs. 5 and 6.

From the above figures, it is seen that the present solu-
tion and the results obtained by Gladwell (1977) agree
very well and the simplified equation provides a very good
approximation to the problem for ratios c/a < 0.5. It is
worth to note that Gladwell’s solution was obtained for a
relatively limited range of ratios c/a (0:4 6 c=a 6 0:9) be-
cause of difficulties associated with the computational pro-
cedure at low values of the nondimensional contact length
parameter as described in the Introduction. The present
approach does not experience such difficulties and can be
easily generalised for other shapes of cylindrical inclusions.
However, it must also be noted from Fig. 6 or otherwise
that in order to approach a c/a ratio of one, the required
compressive stress ro would tend to infinity. A more inter-
esting problem of practical interest, which is a circular
shape inclusion pressed between two elastic half spaces
will be considered next.

5.2. Circular cylindrical inclusion

The shape of circular inclusion (Fig. 7) can be written as

f ðxÞ ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � x2

p
; jxj 6 c; ð34Þ
Fig. 8. Variation of dimensionless opening l
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which leads to the following expressions for functions f 0ðxÞ
and F(x)

f 0ðxÞ ¼ � 2xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � x2

p ; ð35Þ

and

FðxÞ ¼ 2
p

Z c

0

nf 0ðnÞ
x2 � n2 dn

¼ � 4
p

xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � x2

p tanh�1 c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � x2

p
x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2 � c2

p
þ 4

p
tan�1 c ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 � c2
p 0

: ð36Þ

Similar to the previously considered case, the substitution
of these functions into the system of equations (30) and
(31) provides a solution to the problem, which is summa-
rised in Figs. 8 and 9. To obtain the approximate solution
in the case of cylindrical inclusion, which is valid for small
c/a ratios, one has to substitute d = R = q and solve the
transcendental equation (12) in order to find the geometric
parameters of the problem while the applied stress
corresponding to this geometry can be calculated using
Eq. (6).

From Figs. 8 and 9, it is seen that the simplified equa-
tion still provides a good evaluation of the dimensionless
opening and stress on infinity, but at smaller ratios of the
dimensionless contact length parameter c/a in comparison
with the case of a parabolic shaped inclusion considered
previously. Comparing Figs. 5 and 6 obtained for parabolic
shape inclusion with Figs. 8 and 9 for circular inclusion one
can conclude that the shape of the inclusion significantly
affects the convergence of the approximate and exact
solutions.
6. Discussion and conclusion

The exact inversion of Föppl integral and distributed
dislocation approach were combined to obtain a closed
form solution in integrals to the problem of rigid cylindri-
cal inclusion pressed between elastic half spaces. This
method was validated against previously published
ength with contact length parameter.



Fig. 9. Variation of dimensionless stresses at infinity with contact length parameter.
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results for a rigid cylindrical inclusion bounded by two
parabolic arcs with rounded corners. A very good agree-
ment was observed between the present method and past
approaches.

The present analytical method has few advantages. It
does not experience any computational difficulties and re-
sults are readily obtained for a wide range of problem’s
geometries. However, for other than rubber-like materials,
the developed method as well as the previous results can
reasonably be applied only for relatively small ratios of
the dimensionless opening length, c/a, as the large defor-
mations around the rigid inclusion at moderate values of
dimensionless opening ratios can violate the fundamental
assumptions of the linear theory of elasticity. Nevertheless,
from the Saint Venant’s principle, the obtained results,
such as stress and strain fields, are expected to be accurate
away from the inclusion contact zone, which can experi-
ence large deformations as a result of contact stresses.

In addition we developed an approximate solution to
the problem under consideration for relatively small val-
ues of dimensionless opening ratios. This approximate
solution is practically identical to the exact solution at
c/a � 0.4 for parabolic and 0.1 for circular inclusions. This
approximate solution, unlike the accurate approaches,
can be easily extended to other geometries of cylindrical
inclusions and incorporate friction, crushing, plasticity
and other non-linear effects, which were neglected in the
current study. In order to incorporate these effects,
one needs to establish a local deformation law and
incorporate it into the solution procedure, similar to the
Hertz equation utilised in the present paper.
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