WO2017038560A1 - Nanocomposite material and nanocomposite material dispersion solution, and photoelectric conversion device - Google Patents

Nanocomposite material and nanocomposite material dispersion solution, and photoelectric conversion device Download PDF

Info

Publication number
WO2017038560A1
WO2017038560A1 PCT/JP2016/074516 JP2016074516W WO2017038560A1 WO 2017038560 A1 WO2017038560 A1 WO 2017038560A1 JP 2016074516 W JP2016074516 W JP 2016074516W WO 2017038560 A1 WO2017038560 A1 WO 2017038560A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanocomposite material
semiconductor
nanoparticles
organic molecule
semiconductor nanoparticles
Prior art date
Application number
PCT/JP2016/074516
Other languages
French (fr)
Japanese (ja)
Inventor
浩充 小川
寛記 中島
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2017537770A priority Critical patent/JPWO2017038560A1/en
Publication of WO2017038560A1 publication Critical patent/WO2017038560A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions

Definitions

  • the present disclosure relates to a nanocomposite material, a nanocomposite dispersion solution, and a photoelectric conversion device.
  • semiconductor nanoparticles having a size of about 10 nm are typical.
  • the nanocomposite material of the present disclosure has hydrogen, at least one of oxygen and hydroxyl groups, and first organic molecules on the surface of the semiconductor nanoparticles.
  • the nanocomposite dispersion solution of the present disclosure is one in which the above-mentioned nanocomposite material is dispersed in the solution.
  • the photoelectric conversion device has the above-described nanocomposite material integrated on a substrate.
  • a passivation film for example, aluminum oxide as an inorganic film
  • a passivation film is required on the surface of the semiconductor nanoparticles.
  • ALD atomic layer deposition
  • the organic molecules attached to suppress the aggregation of the semiconductor nanoparticles are less than the molecular weight. It is necessary to replace it with a low molecular weight organic molecule having a small size.
  • FIG. 1 is an explanatory view schematically showing a nanocomposite material of the present disclosure.
  • the semiconductor nanoparticle 1 has at least one of hydrogen (symbol H in FIG. 1), oxygen (symbol O in FIG. 1), and hydroxyl group (symbol OH in FIG. 1) on the surface 1a.
  • it has organic molecules (hereinafter referred to as first organic molecules 3).
  • the semiconductor nanoparticles 1 are less likely to approach each other due to steric hindrance due to the first organic molecules 3. Thereby, when the dispersion solution containing the semiconductor nanoparticles 1 is produced, the dispersibility of the semiconductor nanoparticles 1 in the solvent can be enhanced.
  • the first organic molecule 3 is bonded to the hydrogen.
  • the bonding force between the semiconductor nanoparticles 1 and the first organic molecules 3 is weaker than that in the case where the first organic molecules 3 are bonded to the semiconductor nanoparticles 1 through oxygen. It becomes easy to form a passivation film made of an inorganic film, a low molecular weight organic molecule (hereinafter referred to as a second organic molecule 5), or the like on the surface 1a.
  • the difference between the first organic molecule 3 and the second organic molecule 5 is due to the difference in molecular weight.
  • the first organic molecule 3 preferably has a molecular weight of 600 to 10,000
  • the second organic molecule 5 has a molecular weight of 100 to 500
  • a difference in molecular weight of 500 or more is preferable.
  • the number of carbon atoms the first organic molecule 3 may have 50 to 900 carbon atoms
  • the second organic molecule 5 may have 100 or less carbon atoms, particularly 8 to 45.
  • the first organic molecule 3 and the second organic molecule 5 may be the same organic compound only having a different molecular weight or carbon number.
  • the proportion of hydrogen present on the surface 1a of the semiconductor nanoparticle 1 includes, for example, the absorption peak intensity (I H ) based on the stretching vibration of atoms and hydrogen constituting the semiconductor nanoparticle, and the semiconductor nanoparticle.
  • the absorption peak intensity (I O ) based on the stretching vibration of atoms and oxygen and the absorption peak intensity (I OH ) based on the stretching vibration of atoms and hydroxyl groups (—OH) constituting the semiconductor nanoparticles are in the following ranges. Is desirable.
  • the absorption peak intensity is obtained using total reflection Fourier transform infrared spectroscopy (FT-IR-ATR).
  • the I H / (I H + I O + I OH ) ratio is 0.1 or more, more hydrogen is present as a termination group on the surface 1 a of the semiconductor nanoparticle 1. For this reason, it becomes easy to substitute the 1st organic molecule 3 for the 2nd organic molecule 5 etc. which are an inorganic film or a low molecular weight organic molecule. The area ratio of the passivation film by these inorganic films or the second organic molecules 5 can be increased.
  • the first organic molecule 3 can be stably bonded to the surface of the semiconductor nanoparticle 1. This makes it possible to maintain high dispersibility in the solvent for a long period of time. Moreover, the manufacturing conditions of the passivation film using the inorganic film or the second organic molecule 5 can be stabilized with respect to the semiconductor nanoparticles 1.
  • the nanocomposite material 10 described above is in a state in which a part of the first organic molecule 3 is hydrogen bonded to the semiconductor nanoparticle 1. For this reason, the bonding force between the semiconductor nanoparticles 1 and the first organic molecules 3 is different from the portion where the first organic molecules 3 are bonded to the semiconductor nanoparticles 1 through oxygen.
  • a part of the first organic molecules 3 can be removed from the surface 1a of the semiconductor nanoparticle 1 under the condition that the first organic molecule 3 is still firmly attached to the surface 1a of the semiconductor nanoparticle 1. .
  • a passivation film composed of the second organic molecule 5 can be stably formed on the surface 1a of the semiconductor nanoparticle 1.
  • the surface 1a of the semiconductor nanoparticle 1 is partially covered with a passivation film made of the second organic molecule 5, and the second organic molecule 3 contributing to dispersibility can be left in the remaining portion.
  • the first organic molecule 3 and the second organic molecule 5 are in a state of being forested on the surface 1 a of the semiconductor nanoparticle 1.
  • the surface 1 a of the semiconductor nanoparticle 1 is partially covered with an inorganic passivation film made of aluminum oxide. Can be formed.
  • the semiconductor nanoparticles 1 thus prepared can maintain high dispersibility in the solution even after the passivation film is formed, it is possible to stably manufacture a device such as a photoelectric conversion film using the nanocomposite material 10. it can.
  • the state in which the bonding force between the semiconductor nanoparticle 1 and the first organic molecule 3 is different in other words, is detected in a stepwise manner according to a change in energy applied to the first organic molecule 5. It means that there is.
  • the semiconductor nanoparticles 1 are given energy (for example, light energy having a wavelength of 200 to 300 nm) from the outside.
  • the first organic molecules 3 having the same molecular weight can be confirmed using a phenomenon in which the first organic molecules 3 are separated from the surface of the nanocomposite material 10 and detected.
  • the phenomenon in which the first organic molecules 3 having the same molecular weight are separated from the surface of the nanocomposite material 10 and detected is not limited to light energy, but also includes differential scanning calorimetry (DSC) and pyrolysis gas chromatography. It can also be confirmed stepwise by a method using heat, such as mass spectrometry (py-GC-MS).
  • the semiconductor nanoparticles 1 should preferably contain hydrogen originally.
  • the organometallic compound for example, silane compound, hydrogenated silsesquioxane
  • an acidic solution for example, hydrogen fluoride water
  • a surfactant are preferably allowed to coexist in the solution.
  • the semiconductor nanoparticle 1 usually has a dangling bond on its surface, and is stabilized by bonding an inorganic functional group such as oxygen or a hydroxyl group to the tip.
  • an inorganic functional group such as oxygen or a hydroxyl group
  • the semiconductor nanoparticle 1 having an inorganic functional group such as oxygen or hydroxyl group bonded to the tip thereof is brought into contact with an acidic solution having a predetermined concentration, oxygen or hydroxyl group originally bound to the surface of the semiconductor nanoparticle 1 is partially obtained. And dangling bonds become active.
  • the nanocomposite material of this embodiment can be obtained.
  • the semiconductor nanoparticles 1 for forming the nanocomposite material the following semiconductor materials capable of forming active dangling bonds on the surface thereof are suitable.
  • the semiconductor nanoparticles 1 for example, those having a band gap (Eg) of 0.15 to 2.0 eV are preferable.
  • one selected from the group consisting of Si, GaAs, InAS, InP, PbS, PbSe, CdSe, CdTe, CuInGaSe, CuInGaS, CuZnGaSe, and CuZnGaS is more preferable.
  • the semiconductor nanoparticles 1 are formed of germanium (Ge), silicon (Si), gallium (Ga), indium (In), arsenic (As), antimony (Sb), copper (Cu), iron (Fe), sulfur ( When it is composed of any one element selected from S), lead (Pb), tellurium (Te) and selenium (Se), it may be amorphous.
  • Amorphous semiconductor nanoparticles have a higher light absorption coefficient than crystalline semiconductor nanoparticles. For this reason, when amorphous semiconductor nanoparticles are applied to an integrated film applied to a photoelectric conversion device, which will be described later, the integrated film is made thinner compared to the case where crystalline semiconductor nanoparticles are applied to the integrated film. Can be achieved.
  • the amount of hydrogen present on the surface 1a of the semiconductor nanoparticle 1 is adjusted by changing the heating temperature and oxygen concentration when the semiconductor nanoparticle 1 is produced from the organometallic compound.
  • Examples of the first organic molecule 3 include TOP (trioctylphosphine), TOPO (trioctylphosphine oxide), oleic acid, oleylamine, octylamine, trioctylamine, hexadecylamine, octanethiol, dodecanethiol, hexylphosphonic acid (HPA), Tetradecylphosphonic acid (TDPA), octylphosphinic acid (OPA), polyoxyethylene or a combination thereof is preferred.
  • TOP trioctylphosphine
  • TOPO trioctylphosphine oxide
  • oleic acid oleylamine
  • octylamine trioctylamine
  • hexadecylamine octanethiol
  • dodecanethiol dodecanethiol
  • HPA hexylphosphonic acid
  • TDPA Tetradecy
  • the nanocomposite material dispersion solution of the present embodiment is obtained by dispersing the nanocomposite material 10 in a solvent.
  • the state in which the nanocomposite material 10 is dispersed refers to a state in which the particulate nanocomposite material 10 is floating so as to keep repelling each other in the solvent.
  • solvent water, methyl alcohol, ethyl alcohol, acetone, toluene, benzene, isopropyl alcohol, phthalate ester, octene, or a combination of several of these may be used.
  • this nanocomposite material dispersion solution may contain hydrogen fluoride in a solvent.
  • hydrogen fluoride is contained in the solvent containing the semiconductor nanoparticles 1, it is easy to remove the oxide film on the surface of the semiconductor nanoparticles 1 existing in the solvent, and it is difficult to form an oxide film in the solvent. From this, it becomes possible to maintain the hydrogen bonds formed on the surface of the semiconductor nanoparticles 1 for a long period of time.
  • the nanocomposite material dispersion solution is not limited to the case where hydrogen fluoride is contained in the solvent constituting the nanocomposite material dispersion solution, and the nanocomposite material dispersion solution may contain a fluorine component. .
  • the silicon-based semiconductor nanoparticle 1 (crystalline silicon)
  • the surface 1a of the semiconductor nanoparticle 1 is in a state modified with a polyoxyethylene compound.
  • the effect of steric hindrance works so that the silicon-based semiconductor nanoparticles 1 have an appropriate distance, and the dispersibility of the silicon-based semiconductor nanoparticles 1 is improved.
  • the polyoxyethylene compound is coordinated to hydrogen and is present on the surface 1 a of the silicon-based semiconductor nanoparticle 1.
  • this portion of the polyoxyethylene compound is likely to be detached from the surface 1 a of the silicon-based semiconductor nanoparticle 1, thereby replacing the inorganic film or the second organic molecule 5 having a smaller molecular weight than the first organic molecule 3. It becomes easy.
  • nanocomposite dispersion solution for example, when particle size distribution measurement is performed by a dynamic light scattering method, an average particle size equivalent to the average particle size when the semiconductor nanoparticles 1 are in the state of primary particles is used. A particle size distribution with a diameter is obtained.
  • a nanocomposite dispersion solution having a particle size distribution having an average particle size equivalent to the average particle size when the semiconductor nanoparticles 1 are primary particles is directly applied to the surface of the semiconductor substrate.
  • the semiconductor nanoparticles 1 contained in the nanocomposite dispersion solution have high fluidity, the semiconductor nanoparticles 1 are easily packed even when they are integrated. Thereby, an integrated film of semiconductor nanoparticles 1 having a high density can be obtained.
  • the nanocomposite material dispersion solution when the first organic molecule 3 is a polyoxyethylene compound, the nanocomposite material dispersion solution has a relatively low molecular weight of about 600 to 10,000, so that the first organic molecules 3 are less entangled. For this reason, the nanocomposite dispersion solution can be maintained for a long time in a state in which the thixotropic property is maintained.
  • an integrated film of quantum dots is formed using the nanocomposite material 10 described above, a highly integrated film is obtained when the semiconductor nanoparticles 1 are integrated, and a photoelectric conversion device with high conversion efficiency is obtained. be able to.
  • the ratio of the semiconductor nanoparticles 1 in the integrated film is preferably 70% or more in terms of an area ratio obtained from cross-sectional observation of the integrated film.
  • the area ratio occupied by the semiconductor nanoparticles 1 is 70% or more, it is preferable to have a particle size distribution within a range of 5 nm when the maximum diameter is 10 nm.
  • FIG. 2 is a schematic cross-sectional view showing an embodiment of the photoelectric conversion device of the present disclosure.
  • the photoelectric conversion device of this embodiment has the integrated film 15 of the above-described nanocomposite material 10 on the main surface of the substrate 11.
  • FIG. 2 shows an example in which the electrode layer 17 is disposed on the lower surface of the substrate 11 made of a semiconductor material, and the transparent conductive film 19 and the glass substrate 21 are disposed in this order on the upper surface of the integrated film 15. Yes.
  • the substrate metals and plastics can be used in addition to the above-described semiconductor materials and glass substrates.
  • the photoelectric conversion device of this embodiment is formed by the nanocomposite material 10 described above, the photoelectric conversion device is a film in which the semiconductor nanoparticles 1 are densely integrated.
  • the second organic molecule 5 having a molecular weight of 100 to 500 when applied as the passivation film formed on the surface 1a of the semiconductor nanoparticle 1, it is formed on the surface 1a of the semiconductor nanoparticle 1. Since the formed second organic molecule 5 becomes a passivation film of a quantum dot as it is, the energy gap of the passivation film can be changed with high accuracy by the number of carbon atoms aligned in the normal direction to the surface of the semiconductor nanoparticle 1. .
  • the second organic molecule 5 is preferably a straight chain having no side chain.
  • the second organic molecule 5 is a straight chain having no side chain
  • the carbon atoms are aligned in the normal direction of the surface 1a. The number of pieces is easily controlled.
  • the integrated film 15 composed of such a nanocomposite material 10 is composed of the nanocomposite material 10 having an excellent carrier confinement effect, high photoelectric conversion efficiency can be obtained.
  • the method for producing the nanocomposite material 10 and the nanocomposite material dispersion solution and the photoelectric conversion device of the present embodiment will be described based on an example in which silicon (Si) is applied as the semiconductor nanoparticle 1.
  • the silicon here is crystalline.
  • silicon particles prepared by a conventional method using tetramethylsilane as a silane compound are prepared.
  • the average particle size of the silicon particles is about 20 nm.
  • the silicon particles are put in water, and a hydrogen fluoride water and a surfactant (polyoxyethylene: molecular weight is about 2000) to be the first organic molecules 3 are added thereto.
  • the aqueous solution containing silicon particles, hydrogen fluoride water and a surfactant is irradiated with light having a wavelength having energy larger than the energy gap of the silicon particles.
  • silicon particles in an aqueous solution are irradiated with light having a specific wavelength
  • the silicon particles absorb light, and holes and electrons are generated in the silicon particles.
  • the generated holes and electrons act, and an etching reaction occurs on the surface of the silicon particles by hydrogen fluoride, so that fine crystalline silicon particles (hereinafter referred to as silicon nanoparticles) are separated from the surface of the silicon particles. come.
  • This reaction continues as long as the energy gap of the silicon particles is larger than the energy of the irradiated light. For this reason, when the energy gap of silicon particles becomes equal to the energy of light, the reaction does not proceed, and silicon nanoparticles having a desired particle size can be obtained.
  • the silicon nanoparticles thus obtained have an average particle size of about 5 nm.
  • silicon nanoparticles are generated under the condition that a surfactant (polyoxyethylene having a molecular weight of about 2000) coexists in an aqueous solution containing a silane compound and hydrogen fluoride.
  • a nanocomposite material 10 containing hydrogen, one of oxygen and hydroxyl groups (—OH), and the first organic molecules 3 can be obtained on the surface of the particles.
  • the nanocomposite material 10 is dispersed in the aqueous solution.
  • polyoxyethylene having a molecular weight of about 200 is added as the second organic molecule 5 to the aqueous solution of the nanocomposite material 10 and stirred at room temperature for about 24 hours.
  • the nanocomposite material 10 in which the second organic molecule 5 is bonded to the surface 1a of the silicon nanoparticle that is the semiconductor nanoparticle 1 can be obtained.
  • a transparent conductive film 19 is formed on the upper surface of the integrated film 15, and then a glass substrate 21 is attached.
  • An electrode layer 17 is formed on the lower surface of the silicon substrate.
  • amorphous silicon may be referred to as amorphous silicon.
  • hydrogenated silsesquioxane (HSQ) is prepared as a raw material.
  • the hydrogenated silsesquioxane is calcined in a predetermined atmosphere.
  • a composite material of amorphous silicon and SiO 2 can be obtained. It is better to finely grind the calcined composite material using a mortar or the like.
  • the amorphous silicon is isolated from the prepared composite material.
  • an etching solution is prepared.
  • a mixed solution of hydrogen fluoride water and methyl alcohol is used.
  • octene acts as a surface modifier for amorphous silicon and is separated into the upper layer of the etching solution.
  • the separated octene layer may be referred to as an octene layer.
  • the finely pulverized composite material is put into an etching solution.
  • the SiO 2 component is etched and dissolved from the composite material of amorphous silicon and SiO 2 .
  • amorphous silicon nanoparticles (hereinafter referred to as amorphous silicon nanoparticles) can be obtained.
  • the etching solution containing amorphous silicon nanoparticles is irradiated with ultraviolet light.
  • the amorphous silicon nanoparticles move to the interface between the etching solution and octene, then react with octene, and octene is adsorbed on the surface of the amorphous silicon nanoparticles.
  • octene is adsorbed on the surface of the amorphous silicon nanoparticles because the double bond of octene is cleaved on the surface of the amorphous silicon nanoparticles and the Si—H bond is radicalized.
  • octene is adsorbed on the surface of the amorphous silicon nanoparticles, whereby the amorphous silicon nanoparticles are dispersed in the octene layer. Thereafter, by collecting the octene layer in which the amorphous silicon nanoparticles are dispersed, a dispersion solution of the amorphous silicon nanoparticles whose surface is modified with octene can be obtained.
  • HSQ hydrogenated silsesquioxane
  • the integrated film 15 including the electrode layer 17 and the transparent conductive film 19 is formed on the silicon substrate in the same process as when the silicon particles are used. Form.
  • crystalline silicon particles prepared by a conventional method using tetramethylsilane as a silane compound were prepared.
  • the average particle size of the silicon particles was 20 nm.
  • the silicon particles were put in water, and hydrogen fluoride water and a surfactant (polyoxyethylene: molecular weight of about 2000) to be the first organic molecule were added thereto.
  • an aqueous solution containing silicon particles, hydrogen fluoride water and a surfactant was irradiated with light having a wavelength having energy larger than the energy gap of the silicon particles.
  • an aqueous solution of a nanocomposite material containing crystalline silicon nanoparticles having an average particle diameter of 5 nm could be obtained from the silicon particles.
  • polyoxyethylene having a molecular weight of about 200 was added as a second organic molecule to the aqueous solution of the nanocomposite, and the mixture was stirred at room temperature for about 24 hours to prepare a nanocomposite dispersion solution.
  • FIG. 3 shows the measurement results of crystalline silicon nanoparticles by FT-IR-ATR. It can be seen that the produced silicon nanoparticles have Si—H bonds as well as Si—O and Si—OH bonds. In this case, the I H / (I H + I O + I OH ) ratio was about 0.52.
  • crystalline silicon nanoparticles obtained by a metal silicon vapor deposition method were prepared, and an integrated film and a photoelectric conversion device were prepared from a nanocomposite material prepared under the same conditions as described above.
  • FT-IR-ATR spectrum of the silicon nanoparticles thus prepared no bond peak derived from Si—H was observed.
  • indium phosphide (InP) particles having an average particle diameter of 5 nm were prepared, and a nanocomposite material and a photoelectric conversion device were produced by the same method as described above.
  • the produced indium phosphide particles also had In—H bonds as well as In—O and In—OH bonds.
  • the I H / (I H + I O + I OH ) ratio was about 0.51.
  • the short circuit current density of the photoelectric conversion apparatus produced using indium phosphide particles was 1.3 times that of the sample of the comparative example.
  • a sample to which amorphous silicon was applied as a silicon nanoparticle was produced.
  • hydrogenated silsesquioxane (HSQ) was prepared as a raw material.
  • this hydrogenated silsesquioxane was calcined in a reducing atmosphere.
  • the calcined powder was pulverized using a mortar. Thus, a composite material of amorphous silicon and SiO 2 was obtained.
  • an operation of isolating amorphous silicon from the prepared composite material was performed.
  • an etching solution was prepared.
  • As the etching solution a mixed solution in which equal amounts of hydrogen fluoride water and methyl alcohol were mixed was used.
  • octene was added to the etching solution.
  • the pulverized composite material was put into an etching solution, and then ultraviolet light (wavelength: 365 nm) was irradiated toward the etching solution containing octene.
  • the nanoparticles were etched to form amorphous silicon nanoparticles and dispersed in the octene layer.
  • the portion of the octene layer in which the amorphous silicon nanoparticles were dispersed was collected.
  • a dispersion solution of amorphous silicon nanoparticles adsorbed with octene was obtained.
  • an integrated film including an electrode layer and a transparent conductive film was formed on a silicon substrate by the same process as in Example 1, and a photoelectric conversion device was manufactured.
  • FIG. 4 shows the measurement results of silicon nanoparticles by FT-IR-ATR.
  • the produced amorphous silicon nanoparticles also had Si—H bonds as well as Si—O bonds and Si—OH bonds.
  • the I H / (I H + I O + I OH ) ratio was about 0.32.
  • the thickness of the integrated film was converted as a unit thickness.
  • the short circuit current density was about 1.2 times that of the sample of the comparative example.
  • SYMBOLS 1 Semiconductor nanoparticle 1a ... The surface 3 (semiconductor nanoparticle) ... 1st organic molecule 5 ... Second organic molecule 10 ... Nanocomposite material 11 ... Substrate 15 ... Integrated film 17 ... .... Electrode layer 19 ... Transparent conductive film 21 ... Glass substrate

Abstract

A nanocomposite material 10 has, on a surface 1a of a semiconductor nanoparticle 1, at least one of hydrogen, oxygen, and a hydroxyl group, and a first organic molecule 3. In the nanocomposite material dispersion solution according to the present invention, the abovementioned nanocomposite material is dispersed in a solution. In the photoelectric conversion device according to the present invention, the abovementioned nanocomposite material is accumulated on a substrate.

Description

ナノ複合材料およびナノ複合材料分散溶液、ならびに光電変換装置Nanocomposite material, nanocomposite dispersion solution, and photoelectric conversion device
 本開示は、ナノ複合材料およびナノ複合材料分散溶液、ならびに光電変換装置に関する。 The present disclosure relates to a nanocomposite material, a nanocomposite dispersion solution, and a photoelectric conversion device.
 近年、太陽電池や半導体レーザなどの光電変換装置は、その光電変換効率を高めることを目的に量子ドットを利用することが提案されている(例えば、特許文献1を参照)。 Recently, photoelectric conversion devices such as solar cells and semiconductor lasers have been proposed to use quantum dots for the purpose of increasing the photoelectric conversion efficiency (see, for example, Patent Document 1).
 ここで、太陽電池などの光電変換装置に利用される量子ドットとしては、サイズが約10nm程度の半導体ナノ粒子が代表的なものである。 Here, as a quantum dot used in a photoelectric conversion device such as a solar cell, semiconductor nanoparticles having a size of about 10 nm are typical.
特開2006-114815号公報JP 2006-1114815 A
 本開示のナノ複合材料は、半導体ナノ粒子の表面に、水素と、酸素および水酸基のうち少なくとも一方と、第1有機分子とを有してなるものである。 The nanocomposite material of the present disclosure has hydrogen, at least one of oxygen and hydroxyl groups, and first organic molecules on the surface of the semiconductor nanoparticles.
 本開示のナノ複合材料分散溶液は、上記のナノ複合材料が溶液中に分散しているものである。 The nanocomposite dispersion solution of the present disclosure is one in which the above-mentioned nanocomposite material is dispersed in the solution.
 本開示の光電変換装置は、基板上に、上記のナノ複合材料が集積されているものである。 The photoelectric conversion device according to the present disclosure has the above-described nanocomposite material integrated on a substrate.
本開示のナノ複合材料を模式的に示す説明図である。It is explanatory drawing which shows typically the nanocomposite material of this indication. 本開示の光電変換装置の一実施形態を示す断面模式図である。It is a cross-sectional schematic diagram which shows one Embodiment of the photoelectric conversion apparatus of this indication. 結晶質のシリコンナノ粒子の全反射フーリエ変換赤外分光法(FT-IR-ATR)によるスペクトルである。It is the spectrum by the total reflection Fourier transform infrared spectroscopy (FT-IR-ATR) of a crystalline silicon nanoparticle. アモルファスシリコンナノ粒子の全反射フーリエ変換赤外分光法(FT-IR-ATR)によるスペクトルである。It is the spectrum by the total reflection Fourier transform infrared spectroscopy (FT-IR-ATR) of an amorphous silicon nanoparticle.
 半導体ナノ粒子を、例えば、太陽電池用の量子ドットとして適用しようとすると、半導体ナノ粒子の表面には、パシベーション膜(無機質膜として、例えば、酸化アルミニウム)が必要となる。 For example, when semiconductor nanoparticles are applied as quantum dots for solar cells, a passivation film (for example, aluminum oxide as an inorganic film) is required on the surface of the semiconductor nanoparticles.
 このような無機質膜のパシベーション膜を形成するには、例えば、原子層堆積法(ALD : Atomic Layer Deposition)が用いられる。 In order to form such an inorganic film passivation film, for example, an atomic layer deposition method (ALD: “Atomic Deposition”) is used.
 この場合、半導体ナノ粒子同士の凝集を抑えるために、半導体ナノ粒子の表面には、予め、有機分子を付着させて分散性を高めておく必要がある。 In this case, in order to suppress aggregation between the semiconductor nanoparticles, it is necessary to increase dispersibility by attaching organic molecules to the surface of the semiconductor nanoparticles in advance.
 このとき、有機分子を付着させる半導体ナノ粒子の表面に酸素Oや水酸基OHが多く存在すると、半導体ナノ粒子に対して有機分子が強く結合することになる。 At this time, if a large amount of oxygen O or hydroxyl OH is present on the surface of the semiconductor nanoparticles to which the organic molecules are attached, the organic molecules are strongly bonded to the semiconductor nanoparticles.
 このため、上記した原子層堆積法による量子ドットの作製工程において、半導体ナノ粒子の表面から有機分子を取り除くことが困難となり、その後の無機質膜の形成が困難になる。 For this reason, it becomes difficult to remove organic molecules from the surface of the semiconductor nanoparticles in the quantum dot production process by the atomic layer deposition method described above, and it is difficult to form an inorganic film thereafter.
 また、量子ドットの表面に形成するパシベーション膜として、リガンドと称する低分子量の有機分子を形成する場合にも、半導体ナノ粒子同士の凝集を抑えるために付着させている有機分子を、これよりも分子量の小さい低分子量の有機分子に置き換える必要がある。 In addition, when forming low molecular weight organic molecules called ligands as a passivation film to be formed on the surface of the quantum dots, the organic molecules attached to suppress the aggregation of the semiconductor nanoparticles are less than the molecular weight. It is necessary to replace it with a low molecular weight organic molecule having a small size.
 この場合にも半導体ナノ粒子の表面に酸素Oや水酸基OHが多く存在すると、有機分子が低分子量の有機分子によって置き換わり難く、半導体ナノ粒子の表面に低分子量の有機分子からなるパシベーション膜を形成することが困難となる。 Also in this case, when there are a lot of oxygen O and hydroxyl OH on the surface of the semiconductor nanoparticles, the organic molecules are hardly replaced by the low molecular weight organic molecules, and a passivation film composed of the low molecular weight organic molecules is formed on the surface of the semiconductor nanoparticles. It becomes difficult.
 本開示は上記課題に鑑みてなされたものである。 This disclosure has been made in view of the above problems.
 図1は、本開示のナノ複合材料を模式的に示す説明図である。本実施形態のナノ複合材料10は、半導体ナノ粒子1が、その表面1aに、水素(図1の符号H)と、酸素(図1の符号O)および水酸基(図1の符号OH)うち少なくとも一方と、有機分子(以下、第1有機分子3とする。)とを有している。 FIG. 1 is an explanatory view schematically showing a nanocomposite material of the present disclosure. In the nanocomposite material 10 of this embodiment, the semiconductor nanoparticle 1 has at least one of hydrogen (symbol H in FIG. 1), oxygen (symbol O in FIG. 1), and hydroxyl group (symbol OH in FIG. 1) on the surface 1a. On the other hand, it has organic molecules (hereinafter referred to as first organic molecules 3).
 半導体ナノ粒子1の表面1aに第1有機分子3を結合させると、第1有機分子3による立体障害により半導体ナノ粒子1同士が互いに近づきにくくなる。これにより、半導体ナノ粒子1を含む分散溶液を作製した場合に、半導体ナノ粒子1の溶媒中における分散性を高めることができる。 When the first organic molecules 3 are bonded to the surface 1 a of the semiconductor nanoparticles 1, the semiconductor nanoparticles 1 are less likely to approach each other due to steric hindrance due to the first organic molecules 3. Thereby, when the dispersion solution containing the semiconductor nanoparticles 1 is produced, the dispersibility of the semiconductor nanoparticles 1 in the solvent can be enhanced.
 このとき、半導体ナノ粒子1の表面1aに終端として水素が存在すると、第1有機分子3が水素との間で結合することになる。このため、半導体ナノ粒子1と第1有機分子3との間の結合力が、第1有機分子3が酸素を介して半導体ナノ粒子1に結合する場合に比べて弱くなり、これにより半導体ナノ粒子1の表面1aに無機質膜や低分子量の有機分子(以下、第2有機分子5とする。)などからなるパッシベーション膜を形成することが容易になる。 At this time, if hydrogen is present at the surface 1a of the semiconductor nanoparticle 1 as a terminal, the first organic molecule 3 is bonded to the hydrogen. For this reason, the bonding force between the semiconductor nanoparticles 1 and the first organic molecules 3 is weaker than that in the case where the first organic molecules 3 are bonded to the semiconductor nanoparticles 1 through oxygen. It becomes easy to form a passivation film made of an inorganic film, a low molecular weight organic molecule (hereinafter referred to as a second organic molecule 5), or the like on the surface 1a.
 ここで、第1有機分子3と第2有機分子5との違いは分子量の違いによるものとなる。第1有機分子3は分子量が600~10000、第2有機分子5は分子量が100~500であり、分子量の差が500以上あるものが良い。また、炭素原子数としては、第1有機分子3は炭素原子数が50~900、第2有機分子5については炭素原子数が100以下、特に、8~45であるのが良い。また、第1有機分子3と第2有機分子5とは、分子量または炭素数が異なるだけの同じ有機化合物であるのが良い。 Here, the difference between the first organic molecule 3 and the second organic molecule 5 is due to the difference in molecular weight. The first organic molecule 3 preferably has a molecular weight of 600 to 10,000, the second organic molecule 5 has a molecular weight of 100 to 500, and a difference in molecular weight of 500 or more is preferable. As for the number of carbon atoms, the first organic molecule 3 may have 50 to 900 carbon atoms, and the second organic molecule 5 may have 100 or less carbon atoms, particularly 8 to 45. Further, the first organic molecule 3 and the second organic molecule 5 may be the same organic compound only having a different molecular weight or carbon number.
 この場合、半導体ナノ粒子1の表面1aに存在する水素の割合としては、例えば、半導体ナノ粒子を構成する原子と水素の伸縮振動に基づく吸収ピーク強度(I)と、半導体ナノ粒子を構成する原子と酸素の伸縮振動に基づく吸収ピーク強度(I)と、半導体ナノ粒子を構成する原子と水酸基(-OH)の伸縮振動に基づく吸収ピーク強度(IOH)が、以下の範囲であることが望ましい。ここで、吸収ピーク強度は、全反射フーリエ変換赤外分光法(FT-IR-ATR)を用いて得られる。 In this case, the proportion of hydrogen present on the surface 1a of the semiconductor nanoparticle 1 includes, for example, the absorption peak intensity (I H ) based on the stretching vibration of atoms and hydrogen constituting the semiconductor nanoparticle, and the semiconductor nanoparticle. The absorption peak intensity (I O ) based on the stretching vibration of atoms and oxygen and the absorption peak intensity (I OH ) based on the stretching vibration of atoms and hydroxyl groups (—OH) constituting the semiconductor nanoparticles are in the following ranges. Is desirable. Here, the absorption peak intensity is obtained using total reflection Fourier transform infrared spectroscopy (FT-IR-ATR).
 つまり、半導体ナノ粒子1の表面1aに第1有機分子3を含むナノ複合材料10について、FT-IR-ATR分析を行ったときに得られるI/(I+I+IOH)比として表される値が0.1~0.9の範囲である。 That is, it is expressed as an I H / (I H + I O + I OH ) ratio obtained when the FT-IR-ATR analysis is performed on the nanocomposite material 10 including the first organic molecule 3 on the surface 1 a of the semiconductor nanoparticle 1. The value obtained is in the range of 0.1 to 0.9.
 I/(I+I+IOH)比が0.1以上であると、半導体ナノ粒子1の表面1aに終端基として存在している水素が多くなる。このため、第1有機分子3を、無機質膜や低分子量の有機分子である第2有機分子5などへ置換させることが容易となる。これら無機質膜や第2有機分子5によるパッシベーション膜の面積割合を大きくすることができる。 When the I H / (I H + I O + I OH ) ratio is 0.1 or more, more hydrogen is present as a termination group on the surface 1 a of the semiconductor nanoparticle 1. For this reason, it becomes easy to substitute the 1st organic molecule 3 for the 2nd organic molecule 5 etc. which are an inorganic film or a low molecular weight organic molecule. The area ratio of the passivation film by these inorganic films or the second organic molecules 5 can be increased.
 一方、I/(I+I+IOH)比が0.9以下であると、半導体ナノ粒子1の表面1aの一部に酸素や水酸基が結合した箇所が残存する。このため、第1有機分子3を半導体ナノ粒子1の表面に安定に結合させた状態にできる。これにより、溶媒中での高い分散性を長期間維持することが可能になる。また、半導体ナノ粒子1に対して無機質膜や第2有機分子5を用いたパッシベーション膜の製造条件を安定化させることができる。 On the other hand, when the I H / (I H + I O + I OH ) ratio is 0.9 or less, a portion where oxygen or a hydroxyl group is bonded to part of the surface 1 a of the semiconductor nanoparticle 1 remains. Therefore, the first organic molecule 3 can be stably bonded to the surface of the semiconductor nanoparticle 1. This makes it possible to maintain high dispersibility in the solvent for a long period of time. Moreover, the manufacturing conditions of the passivation film using the inorganic film or the second organic molecule 5 can be stabilized with respect to the semiconductor nanoparticles 1.
 また、上記したナノ複合材料10は、第1有機分子3の一部が半導体ナノ粒子1に水素結合した状態である。このため、第1有機分子3が半導体ナノ粒子1に酸素を介して結合した箇所との間で、半導体ナノ粒子1と第1有機分子3との間の結合力が異なる状態となっている。 In addition, the nanocomposite material 10 described above is in a state in which a part of the first organic molecule 3 is hydrogen bonded to the semiconductor nanoparticle 1. For this reason, the bonding force between the semiconductor nanoparticles 1 and the first organic molecules 3 is different from the portion where the first organic molecules 3 are bonded to the semiconductor nanoparticles 1 through oxygen.
 これにより、半導体ナノ粒子1の表面1aに依然として第1有機分子3を強固に付着させておきたい条件下で、半導体ナノ粒子1の表面1aから一部の第1有機分子3を取り除くことができる。こうして半導体ナノ粒子1の表面1aに第2有機分子5からなるパシベーション膜を安定して形成することができる。この場合、半導体ナノ粒子1の表面1aは第2有機分子5からなるパシベーション膜によって部分的に被覆された状態となり、残りの部分に分散性に寄与する第2有機分子3を残すことができる。この場合、第1有機分子3と第2有機分子5は、半導体ナノ粒子1の表面1aに林立した状態となっている。 Accordingly, a part of the first organic molecules 3 can be removed from the surface 1a of the semiconductor nanoparticle 1 under the condition that the first organic molecule 3 is still firmly attached to the surface 1a of the semiconductor nanoparticle 1. . Thus, a passivation film composed of the second organic molecule 5 can be stably formed on the surface 1a of the semiconductor nanoparticle 1. In this case, the surface 1a of the semiconductor nanoparticle 1 is partially covered with a passivation film made of the second organic molecule 5, and the second organic molecule 3 contributing to dispersibility can be left in the remaining portion. In this case, the first organic molecule 3 and the second organic molecule 5 are in a state of being forested on the surface 1 a of the semiconductor nanoparticle 1.
 また、第2有機分子5の代わりに、アルミニウムなどの元素を含む有機金属化合物を用いたときには、酸化アルミニウムからなる無機質のパシベーション膜が半導体ナノ粒子1の表面1aに部分的に被覆された状態を形成することができる。 In addition, when an organometallic compound containing an element such as aluminum is used instead of the second organic molecule 5, the surface 1 a of the semiconductor nanoparticle 1 is partially covered with an inorganic passivation film made of aluminum oxide. Can be formed.
 こうして調製される半導体ナノ粒子1は、パシベーション膜が形成された後においても、溶液中で高い分散性を維持できるため、ナノ複合材料10による光電変換膜などのデバイスを安定して製造することができる。 Since the semiconductor nanoparticles 1 thus prepared can maintain high dispersibility in the solution even after the passivation film is formed, it is possible to stably manufacture a device such as a photoelectric conversion film using the nanocomposite material 10. it can.
 なお、半導体ナノ粒子1と第1有機分子3との間の結合力が異なる状態というのは、言い換えると、第1有機分子5が与えられるエネルギーの変化に応じて段階的に検出されるものであることを意味する。 In addition, the state in which the bonding force between the semiconductor nanoparticle 1 and the first organic molecule 3 is different, in other words, is detected in a stepwise manner according to a change in energy applied to the first organic molecule 5. It means that there is.
 具体的には、半導体ナノ粒子1と第1有機分子3との間の結合力が異なる状態は、例えば、半導体ナノ粒子1に外部からエネルギー(例えば、波長200~300nmの光エネルギー)を与えたときに、同じ分子量の第1有機分子3がナノ複合材料10の表面から段階的に離脱して検出される現象を利用して確認することができる。また、こうした同じ分子量の第1有機分子3がナノ複合材料10の表面から段階的に離脱して検出される現象については、光エネルギーに限らず、示差走査熱量分析(DSC)や熱分解ガスクロマト質量分析(py-GC-MS)など、熱を利用した方法によっても段階的に確認することができる。 Specifically, when the bonding strength between the semiconductor nanoparticles 1 and the first organic molecules 3 is different, for example, the semiconductor nanoparticles 1 are given energy (for example, light energy having a wavelength of 200 to 300 nm) from the outside. In some cases, the first organic molecules 3 having the same molecular weight can be confirmed using a phenomenon in which the first organic molecules 3 are separated from the surface of the nanocomposite material 10 and detected. In addition, the phenomenon in which the first organic molecules 3 having the same molecular weight are separated from the surface of the nanocomposite material 10 and detected is not limited to light energy, but also includes differential scanning calorimetry (DSC) and pyrolysis gas chromatography. It can also be confirmed stepwise by a method using heat, such as mass spectrometry (py-GC-MS).
 半導体ナノ粒子1としては、元々水素を含んでいるのが良い。このような半導体ナノ粒子1を製造する場合、半導性の元素とともに水素原子を含む有機金属化合物(例えば、シラン化合物、水素化シルセスキオキサン)を原材料として用いるのが良い。さらには、これに酸性溶液(例えば、フッ化水素水)と界面活性剤とを溶液中で共存させておくのが良い。 The semiconductor nanoparticles 1 should preferably contain hydrogen originally. When manufacturing such a semiconductor nanoparticle 1, it is good to use the organometallic compound (for example, silane compound, hydrogenated silsesquioxane) containing a hydrogen atom with a semiconducting element as a raw material. Furthermore, an acidic solution (for example, hydrogen fluoride water) and a surfactant are preferably allowed to coexist in the solution.
 半導体ナノ粒子1は、通常、その表面にダングリングボンドを有し、この先端に酸素や水酸基などの無機系の官能基が結合して安定化している。先端に酸素や水酸基などの無機系の官能基が結合した半導体ナノ粒子1を所定の濃度の酸性溶液と触れさせると、元々、半導体ナノ粒子1の表面に結合していた酸素や水酸基が部分的に除かれ、ダングリングボンドが活性な状態になる。活性化したダングリングボンドに界面活性剤が結合した構造とすることにより、本実施形態のナノ複合材料を得ることができる。 The semiconductor nanoparticle 1 usually has a dangling bond on its surface, and is stabilized by bonding an inorganic functional group such as oxygen or a hydroxyl group to the tip. When the semiconductor nanoparticle 1 having an inorganic functional group such as oxygen or hydroxyl group bonded to the tip thereof is brought into contact with an acidic solution having a predetermined concentration, oxygen or hydroxyl group originally bound to the surface of the semiconductor nanoparticle 1 is partially obtained. And dangling bonds become active. By adopting a structure in which a surfactant is bonded to an activated dangling bond, the nanocomposite material of this embodiment can be obtained.
 つまり、ナノ複合材料を形成するための半導体ナノ粒子1としては、その表面に活性なダングリングボンドを形成できる以下に示す半導体材料が好適なものとなる。 That is, as the semiconductor nanoparticles 1 for forming the nanocomposite material, the following semiconductor materials capable of forming active dangling bonds on the surface thereof are suitable.
 半導体ナノ粒子1としては、例えば、バンドギャップ(Eg)が0.15~2.0eVを有するものが良い。具体的には、ゲルマニウム(Ge)、シリコン(Si)、ガリウム(Ga)、インジウム(In)、ヒ素(As)、リン(P)、アンチモン(Sb)、銅(Cu)、鉄(Fe)、硫黄(S)、鉛(Pb)、テルル(Te)およびセレン(Se)から選ばれるいずれか1種またはこれらの化合物半導体が良い。 As the semiconductor nanoparticles 1, for example, those having a band gap (Eg) of 0.15 to 2.0 eV are preferable. Specifically, germanium (Ge), silicon (Si), gallium (Ga), indium (In), arsenic (As), phosphorus (P), antimony (Sb), copper (Cu), iron (Fe), Any one selected from sulfur (S), lead (Pb), tellurium (Te), and selenium (Se) or a compound semiconductor thereof is preferable.
 この中で、Si、GaAs、InAS、InP、PbS、PbSe、CdSe、CdTe、CuInGaSe、CuInGaS、CuZnGaSeおよびCuZnGaSの群から選ばれる1種がより好適なものとなる。 Among these, one selected from the group consisting of Si, GaAs, InAS, InP, PbS, PbSe, CdSe, CdTe, CuInGaSe, CuInGaS, CuZnGaSe, and CuZnGaS is more preferable.
 また、半導体ナノ粒子1が、ゲルマニウム(Ge)、シリコン(Si)、ガリウム(Ga)、インジウム(In)、ヒ素(As)、アンチモン(Sb)、銅(Cu)、鉄(Fe)、硫黄(S)、鉛(Pb)、テルル(Te)およびセレン(Se)から選ばれるいずれか1種の単元素からなる場合には非晶質であっても良い。 Further, the semiconductor nanoparticles 1 are formed of germanium (Ge), silicon (Si), gallium (Ga), indium (In), arsenic (As), antimony (Sb), copper (Cu), iron (Fe), sulfur ( When it is composed of any one element selected from S), lead (Pb), tellurium (Te) and selenium (Se), it may be amorphous.
 非晶質の半導体ナノ粒子は結晶質の半導体ナノ粒子よりも光吸収係数が高い。このため、後述する光電変換装置に適用される集積膜に非晶質の半導体ナノ粒子を適用すると、集積膜に結晶質の半導体ナノ粒子を適用した場合に比較して、集積膜の薄層化を図ることができる。 Amorphous semiconductor nanoparticles have a higher light absorption coefficient than crystalline semiconductor nanoparticles. For this reason, when amorphous semiconductor nanoparticles are applied to an integrated film applied to a photoelectric conversion device, which will be described later, the integrated film is made thinner compared to the case where crystalline semiconductor nanoparticles are applied to the integrated film. Can be achieved.
 なお、半導体ナノ粒子1の表面1aに存在する水素の量は、有機金属化合物から半導体ナノ粒子1を製造するときの加熱温度や酸素濃度を変化させて調整する。 The amount of hydrogen present on the surface 1a of the semiconductor nanoparticle 1 is adjusted by changing the heating temperature and oxygen concentration when the semiconductor nanoparticle 1 is produced from the organometallic compound.
 第1有機分子3としては、例えば、TOP(trioctylphosphine)、TOPO(trioctylphosphine oxide)、オレイン酸、オレイルアミン、オクチルアミン、トリオクチルアミン、ヘキサデシルアミン、オクタンチオール、ドデカンチオール、ヘキシルホスホン酸(HPA)、テトラデシルホスホン酸(TDPA)、オクチルホスフィン酸(OPA)、ポリオキシエチレンまたはこれらの組み合わせが良い。 Examples of the first organic molecule 3 include TOP (trioctylphosphine), TOPO (trioctylphosphine oxide), oleic acid, oleylamine, octylamine, trioctylamine, hexadecylamine, octanethiol, dodecanethiol, hexylphosphonic acid (HPA), Tetradecylphosphonic acid (TDPA), octylphosphinic acid (OPA), polyoxyethylene or a combination thereof is preferred.
 次に、本実施形態のナノ複合材料分散溶液は、上記のナノ複合材料10が溶媒中に分散したものである。ここで、ナノ複合材料10が分散した状態というのは、粒子状のナノ複合材料10が溶媒中に互いに反発した状態を保つようにして浮遊している状態のことを言う。 Next, the nanocomposite material dispersion solution of the present embodiment is obtained by dispersing the nanocomposite material 10 in a solvent. Here, the state in which the nanocomposite material 10 is dispersed refers to a state in which the particulate nanocomposite material 10 is floating so as to keep repelling each other in the solvent.
 この場合、溶媒としては、水、メチルアルコール、エチルアルコール、アセトン、トルエン、ベンゼン、イソプロピルアルコール、フタル酸エステル、オクテンまたはこれらのうちの数種の組み合わせが良い。 In this case, as the solvent, water, methyl alcohol, ethyl alcohol, acetone, toluene, benzene, isopropyl alcohol, phthalate ester, octene, or a combination of several of these may be used.
 また、このナノ複合材料分散溶液は、溶媒中にフッ化水素を含んでいても良い。半導体ナノ粒子1を含む溶媒中にフッ化水素が含まれるときには、溶媒中に存在する半導体ナノ粒子1の表面の酸化膜を除去し易く、また、溶媒中においても酸化膜が形成され難くなることから半導体ナノ粒子1の表面に形成された水素結合を長期に渡って維持することが可能になる。この場合、ナノ複合材料分散溶液としては、これを構成している溶媒中にフッ化水素が含まれている場合に限らず、ナノ複合材料分散溶液中にフッ素成分が含まれているものでも良い。 Further, this nanocomposite material dispersion solution may contain hydrogen fluoride in a solvent. When hydrogen fluoride is contained in the solvent containing the semiconductor nanoparticles 1, it is easy to remove the oxide film on the surface of the semiconductor nanoparticles 1 existing in the solvent, and it is difficult to form an oxide film in the solvent. From this, it becomes possible to maintain the hydrogen bonds formed on the surface of the semiconductor nanoparticles 1 for a long period of time. In this case, the nanocomposite material dispersion solution is not limited to the case where hydrogen fluoride is contained in the solvent constituting the nanocomposite material dispersion solution, and the nanocomposite material dispersion solution may contain a fluorine component. .
 例えば、シリコン系の半導体ナノ粒子1(結晶質のシリコンのこと)の表面1aに、第1有機分子3として、分子量が600~2000のポリオキシエチレン系化合物が存在する状態にすると、シリコン系の半導体ナノ粒子1の表面1aがポリオキシエチレン系化合物によって修飾された状態になる。これによりシリコン系の半導体ナノ粒子1間が適度な間隔となるように立体障害の効果が働き、シリコン系の半導体ナノ粒子1の分散性が向上する。このとき、シリコン系の半導体ナノ粒子1の表面1aに水素が結合していると、ポリオキシエチレン系化合物が水素と配位結合してシリコン系の半導体ナノ粒子1の表面1aに存在することになる。こうして、この部分のポリオキシエチレン系化合物がシリコン系の半導体ナノ粒子1の表面1aから外れやすくなり、これにより無機質膜や第1有機分子3よりも分子量の小さい第2有機分子5との置換が容易となる。 For example, when a polyoxyethylene compound having a molecular weight of 600 to 2000 is present as the first organic molecule 3 on the surface 1a of the silicon-based semiconductor nanoparticle 1 (crystalline silicon), The surface 1a of the semiconductor nanoparticle 1 is in a state modified with a polyoxyethylene compound. As a result, the effect of steric hindrance works so that the silicon-based semiconductor nanoparticles 1 have an appropriate distance, and the dispersibility of the silicon-based semiconductor nanoparticles 1 is improved. At this time, if hydrogen is bonded to the surface 1 a of the silicon-based semiconductor nanoparticle 1, the polyoxyethylene compound is coordinated to hydrogen and is present on the surface 1 a of the silicon-based semiconductor nanoparticle 1. Become. Thus, this portion of the polyoxyethylene compound is likely to be detached from the surface 1 a of the silicon-based semiconductor nanoparticle 1, thereby replacing the inorganic film or the second organic molecule 5 having a smaller molecular weight than the first organic molecule 3. It becomes easy.
 このようなナノ複合材料分散溶液について、例えば、動的光散乱法による粒度分布測定を行った場合には、半導体ナノ粒子1が1次粒子の状態であるときの平均粒径と同等の平均粒径をもつ粒度分布が得られる。 For such a nanocomposite dispersion solution, for example, when particle size distribution measurement is performed by a dynamic light scattering method, an average particle size equivalent to the average particle size when the semiconductor nanoparticles 1 are in the state of primary particles is used. A particle size distribution with a diameter is obtained.
 また、半導体ナノ粒子1が1次粒子の状態であるときの平均粒径と同等の平均粒径をもつような粒度分布を成しているナノ複合材料分散溶液を、そのまま半導体基板の表面に塗布した場合には、ナノ複合材料分散溶液中に含まれる半導体ナノ粒子1の流動性が高いことから、半導体ナノ粒子1を集積させた際にも最密充填しやすいものとなる。これにより密度の高い半導体ナノ粒子1の集積膜を得ることができる。 In addition, a nanocomposite dispersion solution having a particle size distribution having an average particle size equivalent to the average particle size when the semiconductor nanoparticles 1 are primary particles is directly applied to the surface of the semiconductor substrate. In this case, since the semiconductor nanoparticles 1 contained in the nanocomposite dispersion solution have high fluidity, the semiconductor nanoparticles 1 are easily packed even when they are integrated. Thereby, an integrated film of semiconductor nanoparticles 1 having a high density can be obtained.
 この場合、ナノ複合材料分散溶液は、第1有機分子3がポリオキシエチレン系化合物であるときには、分子量が600~10000程度と比較的低いために、第1有機分子3同士の絡みも少ない。このため、ナノ複合材料分散溶液がチキソトロピー性を維持した状態で長期間維持することができる。その結果、上記したナノ複合材料10により量子ドットの集積膜を形成した場合には、半導体ナノ粒子1が集積されたときに密度の高い集積膜が得られ、変換効率の高い光電変換装置を得ることができる。 In this case, when the first organic molecule 3 is a polyoxyethylene compound, the nanocomposite material dispersion solution has a relatively low molecular weight of about 600 to 10,000, so that the first organic molecules 3 are less entangled. For this reason, the nanocomposite dispersion solution can be maintained for a long time in a state in which the thixotropic property is maintained. As a result, when an integrated film of quantum dots is formed using the nanocomposite material 10 described above, a highly integrated film is obtained when the semiconductor nanoparticles 1 are integrated, and a photoelectric conversion device with high conversion efficiency is obtained. be able to.
 このような光電変換装置に適用される集積膜としては、当該集積膜に占める半導体ナノ粒子1の割合が集積膜の断面観察から得られる面積比で70%以上となるのが良い。因みに、半導体ナノ粒子1の占める面積比を70%以上にするときには、最大径が10nmであるときに5nm以内の範囲の粒度分布を有するようにすると良い。 As an integrated film applied to such a photoelectric conversion device, the ratio of the semiconductor nanoparticles 1 in the integrated film is preferably 70% or more in terms of an area ratio obtained from cross-sectional observation of the integrated film. Incidentally, when the area ratio occupied by the semiconductor nanoparticles 1 is 70% or more, it is preferable to have a particle size distribution within a range of 5 nm when the maximum diameter is 10 nm.
 図2は、本開示の光電変換装置の一実施形態を示す断面模式図である。本実施形態の光電変換装置は、基板11の主面上に、上記したナノ複合材料10の集積膜15を有するものである。図2には、半導体材料からなる基板11の下面に電極層17が配置され、一方、集積膜15の上面に透明導電膜19およびガラス基板21がこの順に配置されているものを一例として示している。なお、基板としては、上記した半導体材料からなる基板やガラス基板の他に、金属やプラスチックスも適用できる。 FIG. 2 is a schematic cross-sectional view showing an embodiment of the photoelectric conversion device of the present disclosure. The photoelectric conversion device of this embodiment has the integrated film 15 of the above-described nanocomposite material 10 on the main surface of the substrate 11. FIG. 2 shows an example in which the electrode layer 17 is disposed on the lower surface of the substrate 11 made of a semiconductor material, and the transparent conductive film 19 and the glass substrate 21 are disposed in this order on the upper surface of the integrated film 15. Yes. As the substrate, metals and plastics can be used in addition to the above-described semiconductor materials and glass substrates.
 本実施形態の光電変換装置は、上記したナノ複合材料10により形成されるものであるため、半導体ナノ粒子1が高密度に集積された膜となっている。 Since the photoelectric conversion device of this embodiment is formed by the nanocomposite material 10 described above, the photoelectric conversion device is a film in which the semiconductor nanoparticles 1 are densely integrated.
 また、この光電変換装置において、半導体ナノ粒子1の表面1aに形成するパシベーション膜として、分子量が100~500である第2有機分子5を適用した場合には、半導体ナノ粒子1の表面1aに形成された第2有機分子5がそのまま量子ドットのパシベーション膜となるため、半導体ナノ粒子1の表面に対する法線方向に並んだ炭素原子の個数によってパシベーション膜のエネルギーギャップを高精度に変化させることができる。この場合、第2有機分子5としては、側鎖を有しない直鎖状のものが良い。第2有機分子5が側鎖を有しない直鎖状のものであると、半導体ナノ粒子1の表面1aに第2有機分子5が結合したときに、その表面1aの法線方向に並ぶ炭素原子の個数が制御されやすい。 Further, in this photoelectric conversion device, when the second organic molecule 5 having a molecular weight of 100 to 500 is applied as the passivation film formed on the surface 1a of the semiconductor nanoparticle 1, it is formed on the surface 1a of the semiconductor nanoparticle 1. Since the formed second organic molecule 5 becomes a passivation film of a quantum dot as it is, the energy gap of the passivation film can be changed with high accuracy by the number of carbon atoms aligned in the normal direction to the surface of the semiconductor nanoparticle 1. . In this case, the second organic molecule 5 is preferably a straight chain having no side chain. When the second organic molecule 5 is a straight chain having no side chain, when the second organic molecule 5 is bonded to the surface 1a of the semiconductor nanoparticle 1, the carbon atoms are aligned in the normal direction of the surface 1a. The number of pieces is easily controlled.
 このようなナノ複合材料10により構成される集積膜15は、キャリアの閉じ込め効果に優れたナノ複合材料10により構成されるものとなるため、高い光電変換効率を得ることができる。 Since the integrated film 15 composed of such a nanocomposite material 10 is composed of the nanocomposite material 10 having an excellent carrier confinement effect, high photoelectric conversion efficiency can be obtained.
 次に、本実施形態のナノ複合材料10およびナノ複合材料分散溶液、ならびに光電変換装置を製造する方法について、半導体ナノ粒子1として、シリコン(Si)を適用した例を基に説明する。ここでのシリコンは結晶質である。 Next, the method for producing the nanocomposite material 10 and the nanocomposite material dispersion solution and the photoelectric conversion device of the present embodiment will be described based on an example in which silicon (Si) is applied as the semiconductor nanoparticle 1. The silicon here is crystalline.
 まず、シラン化合物としてテトラメチルシランを用いて常法により調製したシリコン粒子を準備する。シリコン粒子の平均粒径は約20nmである。次に、このシリコン粒子を水中に入れ、これにフッ化水素水と第1有機分子3となる界面活性剤(ポリオキシエチレン:分子量は約2000)を添加する。 First, silicon particles prepared by a conventional method using tetramethylsilane as a silane compound are prepared. The average particle size of the silicon particles is about 20 nm. Next, the silicon particles are put in water, and a hydrogen fluoride water and a surfactant (polyoxyethylene: molecular weight is about 2000) to be the first organic molecules 3 are added thereto.
 次に、シリコン粒子、フッ化水素水および界面活性剤を含む水溶液に対し、シリコン粒子が持つエネルギーギャップよりも大きいエネルギーを有する波長の光を照射する。 Next, the aqueous solution containing silicon particles, hydrogen fluoride water and a surfactant is irradiated with light having a wavelength having energy larger than the energy gap of the silicon particles.
 この場合、水溶液中のシリコン粒子に特定の波長を有する光を照射すると、シリコン粒子が光を吸収し、シリコン粒子内にホールと電子が発生する。次いで、発生したホールと電子が作用し、フッ化水素によりシリコン粒子の表面にエッチング反応が起き、シリコン粒子の表面から微粒の結晶質のシリコン粒子(以下、シリコンナノ粒子という。)が分離してくる。この反応はシリコン粒子のエネルギーギャップが、照射する光のエネルギーより大きい限り継続する。このためシリコン粒子のエネルギーギャップが光のエネルギーと同等になると反応が進行しなくなり、所望の粒径を有するシリコンナノ粒子を得ることができる。こうして得られるシリコンナノ粒子は平均粒径が約5nmである。 In this case, when silicon particles in an aqueous solution are irradiated with light having a specific wavelength, the silicon particles absorb light, and holes and electrons are generated in the silicon particles. Next, the generated holes and electrons act, and an etching reaction occurs on the surface of the silicon particles by hydrogen fluoride, so that fine crystalline silicon particles (hereinafter referred to as silicon nanoparticles) are separated from the surface of the silicon particles. come. This reaction continues as long as the energy gap of the silicon particles is larger than the energy of the irradiated light. For this reason, when the energy gap of silicon particles becomes equal to the energy of light, the reaction does not proceed, and silicon nanoparticles having a desired particle size can be obtained. The silicon nanoparticles thus obtained have an average particle size of about 5 nm.
 この製法では、シリコンナノ粒子が、シラン化合物およびフッ化水素を含む水溶液中に界面活性剤(分子量が約2000のポリオキシエチレン)を共存させた条件下で生成するものであることから、シリコンナノ粒子の表面に水素と、酸素および水酸基(-OH)のうちの一方と、第1有機分子3とを含むナノ複合材料10を得ることができる。この場合、ナノ複合材料10は水溶液中に分散した状態となっている。 In this production method, silicon nanoparticles are generated under the condition that a surfactant (polyoxyethylene having a molecular weight of about 2000) coexists in an aqueous solution containing a silane compound and hydrogen fluoride. A nanocomposite material 10 containing hydrogen, one of oxygen and hydroxyl groups (—OH), and the first organic molecules 3 can be obtained on the surface of the particles. In this case, the nanocomposite material 10 is dispersed in the aqueous solution.
 次に、このナノ複合材料10の水溶液中に、第2有機分子5として分子量が約200のポリオキシエチレンを加え、室温にて約24時間撹拌する。この操作により、半導体ナノ粒子1であるシリコンナノ粒子の表面1aに第2有機分子5が結合したナノ複合材料10を得ることができる。 Next, polyoxyethylene having a molecular weight of about 200 is added as the second organic molecule 5 to the aqueous solution of the nanocomposite material 10 and stirred at room temperature for about 24 hours. By this operation, the nanocomposite material 10 in which the second organic molecule 5 is bonded to the surface 1a of the silicon nanoparticle that is the semiconductor nanoparticle 1 can be obtained.
 次に、得られたナノ複合材料分散溶液をシリコン基板上に塗布した後、洗浄および加熱によって余分の有機成分や水分を除去し、集積膜15を形成する。 Next, after applying the obtained nanocomposite dispersion solution on a silicon substrate, excess organic components and moisture are removed by washing and heating, and the integrated film 15 is formed.
 次に、集積膜15の上面に透明導電膜19を形成し、次いで、ガラス基板21を貼り付ける。シリコン基板の下層面には電極層17を形成する。 Next, a transparent conductive film 19 is formed on the upper surface of the integrated film 15, and then a glass substrate 21 is attached. An electrode layer 17 is formed on the lower surface of the silicon substrate.
 次に、半導体ナノ粒子1として、非晶質のシリコンを適用した例について説明する。以下、非晶質のシリコンをアモルファスシリコンと言う場合がある。 Next, an example in which amorphous silicon is applied as the semiconductor nanoparticle 1 will be described. Hereinafter, amorphous silicon may be referred to as amorphous silicon.
 まず、原料として、水素化シルセスキオキサン(HSQ)を準備する。次に、この水素化シルセスキオキサンを所定の雰囲気中にて仮焼する。この仮焼処理によりアモルファスシリコンとSiOとの複合材料を得ることができる。仮焼した複合材料は乳鉢などを用いて細かく粉砕しておく方が良い。 First, hydrogenated silsesquioxane (HSQ) is prepared as a raw material. Next, the hydrogenated silsesquioxane is calcined in a predetermined atmosphere. By this calcination treatment, a composite material of amorphous silicon and SiO 2 can be obtained. It is better to finely grind the calcined composite material using a mortar or the like.
 次に、調製した複合材料からアモルファスシリコンを単離させる。まず、エッチング溶液を調製する。エッチング溶液としてはフッ化水素水とメチルアルコールとの混合溶液を用いる。ここで、エッチング溶液にオクテンを添加しておくのが良い。この場合、オクテンはアモルファスシリコンの表面修飾剤としてはたらき、エッチング溶液の上層に分離した状態となる。以下、分離したオクテンの層をオクテン層という場合がある。 Next, the amorphous silicon is isolated from the prepared composite material. First, an etching solution is prepared. As the etching solution, a mixed solution of hydrogen fluoride water and methyl alcohol is used. Here, it is preferable to add octene to the etching solution. In this case, octene acts as a surface modifier for amorphous silicon and is separated into the upper layer of the etching solution. Hereinafter, the separated octene layer may be referred to as an octene layer.
 次に、細かく粉砕した上記の複合材料をエッチング溶液中に投入する。複合材料をエッチング溶液中に投入すると、アモルファスシリコンとSiOとの複合材料からSiO成分がエッチングされて溶解していく。こうして、アモルファスシリコンのナノ粒子(以下、アモルファスシリコンナノ粒子という。)を得ることができる。このとき、アモルファスシリコンナノ粒子を含むエッチング溶液に対して紫外光を照射する。アモルファスシリコンナノ粒子を含むエッチング溶液に対して紫外光を照射すると、アモルファスシリコンナノ粒子が、エッチング溶液とオクテンとの界面へ移動した後、オクテンと反応し、アモルファスシリコンナノ粒子の表面にオクテンが吸着する。この場合、アモルファスシリコンナノ粒子の表面にオクテンが吸着するのは、アモルファスシリコンナノ粒子の表面においてオクテンの二重結合が開裂し、Si-H結合がラジカル化するためである。こうして、アモルファスシリコンナノ粒子の表面にオクテンが吸着することにより、アモルファスシリコンナノ粒子がオクテン層に分散するようになる。この後、アモルファスシリコンナノ粒子が分散したオクテン層を回収することで、オクテンによって表面修飾されたアモルファスシリコンナノ粒子の分散溶液を得ることができる。 Next, the finely pulverized composite material is put into an etching solution. When the composite material is put into the etching solution, the SiO 2 component is etched and dissolved from the composite material of amorphous silicon and SiO 2 . In this way, amorphous silicon nanoparticles (hereinafter referred to as amorphous silicon nanoparticles) can be obtained. At this time, the etching solution containing amorphous silicon nanoparticles is irradiated with ultraviolet light. When the etching solution containing amorphous silicon nanoparticles is irradiated with ultraviolet light, the amorphous silicon nanoparticles move to the interface between the etching solution and octene, then react with octene, and octene is adsorbed on the surface of the amorphous silicon nanoparticles. To do. In this case, octene is adsorbed on the surface of the amorphous silicon nanoparticles because the double bond of octene is cleaved on the surface of the amorphous silicon nanoparticles and the Si—H bond is radicalized. Thus, octene is adsorbed on the surface of the amorphous silicon nanoparticles, whereby the amorphous silicon nanoparticles are dispersed in the octene layer. Thereafter, by collecting the octene layer in which the amorphous silicon nanoparticles are dispersed, a dispersion solution of the amorphous silicon nanoparticles whose surface is modified with octene can be obtained.
 なお、アモルファスシリコンナノ粒子の場合、元々、原料として、水素化シルセスキオキサン(HSQ)を用いるものであるため、後述するように、アモルファスシリコンナノ粒子の表面に少なくとも水素が結合し、さらに第1有機分子3を有するナノ複合材料10を得ることができる。この場合、ナノ複合材料10は、オクテンなどの有機溶媒中に分散した状態となっている。 In the case of amorphous silicon nanoparticles, hydrogenated silsesquioxane (HSQ) is originally used as a raw material. Therefore, as will be described later, at least hydrogen is bonded to the surface of the amorphous silicon nanoparticles, and A nanocomposite material 10 having one organic molecule 3 can be obtained. In this case, the nanocomposite material 10 is in a state of being dispersed in an organic solvent such as octene.
 次に、ナノ粒子を含むナノ複合材料分散溶液についても、上述したシリコン粒子を用いた場合と同様の工程にて、シリコン基板上に、電極層17および透明導電膜19を備えた集積膜15を形成する。 Next, with respect to the nanocomposite dispersion solution containing nanoparticles, the integrated film 15 including the electrode layer 17 and the transparent conductive film 19 is formed on the silicon substrate in the same process as when the silicon particles are used. Form.
 まず、シラン化合物としてテトラメチルシランを用いて常法により調製した結晶質のシリコン粒子を準備した。シリコン粒子の平均粒径は20nmであった。次に、このシリコン粒子を水中に入れ、これにフッ化水素水と第1有機分子となる界面活性剤(ポリオキシエチレン:分子量が約2000)を添加した。 First, crystalline silicon particles prepared by a conventional method using tetramethylsilane as a silane compound were prepared. The average particle size of the silicon particles was 20 nm. Next, the silicon particles were put in water, and hydrogen fluoride water and a surfactant (polyoxyethylene: molecular weight of about 2000) to be the first organic molecule were added thereto.
 次に、シリコン粒子、フッ化水素水および界面活性剤を含む水溶液に対し、シリコン粒子が持つエネルギーギャップよりも大きいエネルギーを有する波長の光を照射した。こうして、シリコン粒子から平均粒径が5nmの結晶質のシリコンナノ粒子を含むナノ複合材料の水溶液を得ることができた。 Next, an aqueous solution containing silicon particles, hydrogen fluoride water and a surfactant was irradiated with light having a wavelength having energy larger than the energy gap of the silicon particles. Thus, an aqueous solution of a nanocomposite material containing crystalline silicon nanoparticles having an average particle diameter of 5 nm could be obtained from the silicon particles.
 次に、このナノ複合材料の水溶液中に、第2有機分子として分子量が約200のポリオキシエチレンを加え、室温にて約24時間の撹拌を行って、ナノ複合材料分散溶液を調製した。 Next, polyoxyethylene having a molecular weight of about 200 was added as a second organic molecule to the aqueous solution of the nanocomposite, and the mixture was stirred at room temperature for about 24 hours to prepare a nanocomposite dispersion solution.
 次に、得られたナノ複合材料分散溶液をシリコン基板上に塗布した後、洗浄および加熱によって余分の有機成分や水分を除去し、集積膜を形成した。次に、集積膜の上面に透明導電膜を形成し、次いで、ガラス基板を貼り付けた、また、シリコン基板の下層面には電極層を形成した。こうして上記したシリコンナノ粒子の集積膜を有する光電変換装置を作製した。 Next, after the obtained nanocomposite material dispersion solution was applied onto a silicon substrate, excess organic components and moisture were removed by washing and heating to form an integrated film. Next, a transparent conductive film was formed on the upper surface of the integrated film, then a glass substrate was attached, and an electrode layer was formed on the lower surface of the silicon substrate. Thus, a photoelectric conversion device having the above-described integrated film of silicon nanoparticles was produced.
 こうして作製した光電変換装置から、表面研磨によって集積膜の部分を露出させて、結晶質のシリコンナノ粒子のFT-IR-ATRを測定した。図3に、結晶質のシリコンナノ粒子のFT-IR-ATRによる測定結果を示した。作製したシリコンナノ粒子は、Si-Oおよび、Si-OH結合とともに、Si-H結合を有していることが分かる。この場合、I/(I+I+IOH)比は約0.52であった。 From the photoelectric conversion device thus fabricated, the portion of the integrated film was exposed by surface polishing, and FT-IR-ATR of crystalline silicon nanoparticles was measured. FIG. 3 shows the measurement results of crystalline silicon nanoparticles by FT-IR-ATR. It can be seen that the produced silicon nanoparticles have Si—H bonds as well as Si—O and Si—OH bonds. In this case, the I H / (I H + I O + I OH ) ratio was about 0.52.
 比較例として、金属シリコンの蒸着法により得られた結晶質のシリコンナノ粒子を準備し、上記と同様の条件にてナノ複合材料を調製したものから集積膜および光電変換装置を作製した。こうして作製したシリコンナノ粒子のFT-IR-ATRスペクトルにはSi-Hに由来する結合ピークが認められなかった。 As a comparative example, crystalline silicon nanoparticles obtained by a metal silicon vapor deposition method were prepared, and an integrated film and a photoelectric conversion device were prepared from a nanocomposite material prepared under the same conditions as described above. In the FT-IR-ATR spectrum of the silicon nanoparticles thus prepared, no bond peak derived from Si—H was observed.
 作製した光電変換装置について、1SUNの条件で発電性能を評価したところ、両試料ともに短絡電流密度は1mA/cmを超えるものではなかったが、I/(I+I+IOH)比が0.52の試料は、比較例の試料に比較して、集積膜の厚みを単位厚みとして換算したときの短絡電流密度が1.4倍の値を示した。 When the power generation performance of the manufactured photoelectric conversion device was evaluated under the condition of 1 SUN, the short-circuit current density of both samples did not exceed 1 mA / cm 2 , but the I H / (I H + I O + I OH ) ratio was The sample of 0.52 showed a value of 1.4 times the short-circuit current density when the thickness of the integrated film was converted as a unit thickness as compared with the sample of the comparative example.
 次に、平均粒径が5nmのリン化インジウム(InP)粒子を用意し、上記と同様の方法によりナノ複合材料および光電変換装置を作製した。作製したリン化インジウム粒子もまた、In-Oおよび、In-OH結合とともに、In-H結合を有するものとなっていた。I/(I+I+IOH)比は約0.51であった。また、リン化インジウム粒子を用いて作製した光電変換装置の短絡電流密度は、比較例の試料の1.3倍であった。 Next, indium phosphide (InP) particles having an average particle diameter of 5 nm were prepared, and a nanocomposite material and a photoelectric conversion device were produced by the same method as described above. The produced indium phosphide particles also had In—H bonds as well as In—O and In—OH bonds. The I H / (I H + I O + I OH ) ratio was about 0.51. Moreover, the short circuit current density of the photoelectric conversion apparatus produced using indium phosphide particles was 1.3 times that of the sample of the comparative example.
 次に、シリコンナノ粒子として、アモルファスシリコンを適用した試料を作製した。まず、原料として、水素化シルセスキオキサン(HSQ)を準備した。次に、この水素化シルセスキオキサンを還元雰囲気中にて仮焼した。仮焼条件は、雰囲気をアルゴン(Ar):酸素(O)=90%:10%、最高温度を900℃、最高温度での保持時間を1時間とした。仮焼粉末は乳鉢を用いて粉砕しておいた。こうしてアモルファスシリコンとSiOとの複合材料を得た。 Next, a sample to which amorphous silicon was applied as a silicon nanoparticle was produced. First, hydrogenated silsesquioxane (HSQ) was prepared as a raw material. Next, this hydrogenated silsesquioxane was calcined in a reducing atmosphere. The calcination conditions were argon (Ar): oxygen (O) = 90%: 10%, the maximum temperature was 900 ° C., and the holding time at the maximum temperature was 1 hour. The calcined powder was pulverized using a mortar. Thus, a composite material of amorphous silicon and SiO 2 was obtained.
 次に、調製した複合材料からアモルファスシリコンを単離させる操作を行った。まず、エッチング溶液を調製した。エッチング溶液としてはフッ化水素水とメチルアルコールとを等量混合した混合溶液を用いた。次いで、このエッチング溶液にオクテンを添加した。 Next, an operation of isolating amorphous silicon from the prepared composite material was performed. First, an etching solution was prepared. As the etching solution, a mixed solution in which equal amounts of hydrogen fluoride water and methyl alcohol were mixed was used. Next, octene was added to the etching solution.
 次に、粉砕した上記の複合材料をエッチング溶液中に投入し、続いて、オクテンを含むエッチング溶液に向けて紫外光(波長:365nm)を照射した。この操作によりナノ粒子がエッチングされてアモルファスシリコンナノ粒子となりオクテン層に分散した。この後、アモルファスシリコンナノ粒子が分散したオクテン層の部分を回収した。こうしてオクテンが吸着したアモルファスシリコンナノ粒子の分散溶液を得ることができた。 Next, the pulverized composite material was put into an etching solution, and then ultraviolet light (wavelength: 365 nm) was irradiated toward the etching solution containing octene. By this operation, the nanoparticles were etched to form amorphous silicon nanoparticles and dispersed in the octene layer. Thereafter, the portion of the octene layer in which the amorphous silicon nanoparticles were dispersed was collected. Thus, a dispersion solution of amorphous silicon nanoparticles adsorbed with octene was obtained.
 次に、実施例1と同様の工程により、シリコン基板上に、電極層および透明導電膜を備えた集積膜を形成し、光電変換装置を作製した。 Next, an integrated film including an electrode layer and a transparent conductive film was formed on a silicon substrate by the same process as in Example 1, and a photoelectric conversion device was manufactured.
 こうして作製した光電変換装置から、表面研磨によって集積膜の部分を露出させて、アモルファスシリコンナノ粒子のFT-IR-ATRを測定した。図4に、シリコンナノ粒子のFT-IR-ATRによる測定結果を示した。作製したアモルファスシリコンナノ粒子の場合も、Si-O結合およびSi-OH結合とともに、Si-H結合を有するものであった。この場合、I/(I+I+IOH)比は約0.32であった。 From the photoelectric conversion device thus fabricated, the portion of the integrated film was exposed by surface polishing, and FT-IR-ATR of the amorphous silicon nanoparticles was measured. FIG. 4 shows the measurement results of silicon nanoparticles by FT-IR-ATR. The produced amorphous silicon nanoparticles also had Si—H bonds as well as Si—O bonds and Si—OH bonds. In this case, the I H / (I H + I O + I OH ) ratio was about 0.32.
 アモルファスシリコンナノ粒子を用いて作製した光電変換装置について、上記した結晶質のシリコンナノ粒子の場合と同様の方法にて発電性能を評価したところ、この場合、集積膜の厚みを単位厚みとして換算した短絡電流密度は比較例の試料の1.2倍ほどであった。 About the photoelectric conversion device produced using amorphous silicon nanoparticles, when the power generation performance was evaluated by the same method as in the case of the crystalline silicon nanoparticles described above, in this case, the thickness of the integrated film was converted as a unit thickness. The short circuit current density was about 1.2 times that of the sample of the comparative example.
1・・・・・・・・・・半導体ナノ粒子
1a・・・・・・・・・(半導体ナノ粒子の)表面
3・・・・・・・・・・第1有機分子
5・・・・・・・・・・第2有機分子
10・・・・・・・・・ナノ複合材料
11・・・・・・・・・基板
15・・・・・・・・・集積膜
17・・・・・・・・・電極層
19・・・・・・・・・透明導電膜
21・・・・・・・・・ガラス基板
DESCRIPTION OF SYMBOLS 1 ... Semiconductor nanoparticle 1a ... The surface 3 (semiconductor nanoparticle) ... 1st organic molecule 5 ... Second organic molecule 10 ... Nanocomposite material 11 ... Substrate 15 ... Integrated film 17 ... .... Electrode layer 19 ... Transparent conductive film 21 ... Glass substrate

Claims (7)

  1.  半導体ナノ粒子の表面に、水素と、酸素および水酸基のうち少なくとも一方と、第1有機分子とを有してなることを特徴とするナノ複合材料。 A nanocomposite material comprising hydrogen, at least one of oxygen and hydroxyl groups, and a first organic molecule on the surface of semiconductor nanoparticles.
  2.  前記ナノ複合材料の全反射フーリエ変換赤外分光法から求められる、
    前記半導体ナノ粒子を構成する原子と水素との結合に基づく吸収ピーク強度をI
    前記半導体ナノ粒子を構成する原子と酸素との結合に基づく吸収ピーク強度をIO、
    および前記半導体ナノ粒子を構成する原子と水酸基との結合に基づく吸収ピーク強度をIOHとしたとき、I/(I+I+IOH)比が0.1~0.9の範囲にあることを特徴とする請求項1に記載のナノ複合材料。
    Obtained from total reflection Fourier transform infrared spectroscopy of the nanocomposite material,
    The absorption peak intensity based on the bond between the atoms constituting the semiconductor nanoparticles and hydrogen is expressed as I H ,
    The absorption peak intensity based on the bond between the atoms constituting the semiconductor nanoparticles and oxygen is I 2 O,
    When the absorption peak intensity based on the bond between the atoms constituting the semiconductor nanoparticles and the hydroxyl group is defined as I OH , the I H / (I H + I O + I OH ) ratio is in the range of 0.1 to 0.9. The nanocomposite material according to claim 1.
  3.  前記第1有機分子は、与えられるエネルギーの変化に応じて段階的に検出されることを特徴とする請求項1または2に記載のナノ複合材料。 The nano-composite material according to claim 1 or 2, wherein the first organic molecule is detected stepwise according to a change in applied energy.
  4.  前記半導体ナノ粒子の表面に、さらに、前記第1有機分子よりも分子量の小さい第2有機分子および無機質膜のうちの少なくとも一方を有していることを特徴とする請求項1乃至3のうちいずれかに記載のナノ複合材料。 4. The semiconductor nanoparticle according to claim 1, further comprising at least one of a second organic molecule having a molecular weight smaller than that of the first organic molecule and an inorganic film on the surface of the semiconductor nanoparticle. The nanocomposite material according to the above.
  5.  前記半導体ナノ粒子が、アモルファスシリコンであることを特徴とする請求項1乃至4のうちいずれかに記載のナノ複合材料。 The nanocomposite material according to any one of claims 1 to 4, wherein the semiconductor nanoparticles are amorphous silicon.
  6.  請求項1乃至5のうちいずれかに記載のナノ複合材料が溶媒中に分散していることを特徴とするナノ複合材料分散溶液。 A nanocomposite dispersion solution, wherein the nanocomposite material according to any one of claims 1 to 5 is dispersed in a solvent.
  7.  基板上に、請求項1乃至5のうちいずれかに記載のナノ複合材料が集積されていることを特徴とする光電変換装置。 A photoelectric conversion device, wherein the nanocomposite material according to any one of claims 1 to 5 is integrated on a substrate.
PCT/JP2016/074516 2015-08-29 2016-08-23 Nanocomposite material and nanocomposite material dispersion solution, and photoelectric conversion device WO2017038560A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017537770A JPWO2017038560A1 (en) 2015-08-29 2016-08-23 Nanocomposite material, nanocomposite dispersion solution, and photoelectric conversion device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015169884 2015-08-29
JP2015-169884 2015-08-29
JP2016064008 2016-03-28
JP2016-064008 2016-03-28

Publications (1)

Publication Number Publication Date
WO2017038560A1 true WO2017038560A1 (en) 2017-03-09

Family

ID=58187285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/074516 WO2017038560A1 (en) 2015-08-29 2016-08-23 Nanocomposite material and nanocomposite material dispersion solution, and photoelectric conversion device

Country Status (2)

Country Link
JP (1) JPWO2017038560A1 (en)
WO (1) WO2017038560A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5429708A (en) * 1993-12-22 1995-07-04 The Board Of Trustees Of The Leland Stanford Junior University Molecular layers covalently bonded to silicon surfaces
JP2010514585A (en) * 2007-01-03 2010-05-06 ナノグラム・コーポレイション Silicon / germanium nanoparticle inks, doped particles, printing methods, and processes for semiconductor applications
JP2010287880A (en) * 2009-06-12 2010-12-24 Korea Iron & Steel Co Ltd Photovoltaic device, and method of manufacturing the same
JP2014093328A (en) * 2012-10-31 2014-05-19 Fujifilm Corp Semiconductor film, semiconductor film manufacturing method, solar cell, light-emitting diode, thin film transistor and electronic device
JP2014193792A (en) * 2013-03-29 2014-10-09 Bridgestone Corp Method for producing silicon fine particles
JP2015140295A (en) * 2014-01-30 2015-08-03 株式会社ブリヂストン Method of producing silicon fine particles
JP2016072286A (en) * 2014-09-26 2016-05-09 京セラ株式会社 Nanocomposite material and nanocomposite material dispersion solution, and photoelectric conversion device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4336856B2 (en) * 2006-04-10 2009-09-30 株式会社 東北テクノアーチ Organic modified fine particles
JP2008063427A (en) * 2006-09-07 2008-03-21 Kaneka Corp Thermoplastic resin composition containing ultrafine particle
WO2012060418A1 (en) * 2010-11-02 2012-05-10 株式会社ブリヂストン Method for manufacturing resin material, resin material, method for manufacturing solar cell module, and solar cell module

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5429708A (en) * 1993-12-22 1995-07-04 The Board Of Trustees Of The Leland Stanford Junior University Molecular layers covalently bonded to silicon surfaces
JP2010514585A (en) * 2007-01-03 2010-05-06 ナノグラム・コーポレイション Silicon / germanium nanoparticle inks, doped particles, printing methods, and processes for semiconductor applications
JP2010287880A (en) * 2009-06-12 2010-12-24 Korea Iron & Steel Co Ltd Photovoltaic device, and method of manufacturing the same
JP2014093328A (en) * 2012-10-31 2014-05-19 Fujifilm Corp Semiconductor film, semiconductor film manufacturing method, solar cell, light-emitting diode, thin film transistor and electronic device
JP2014193792A (en) * 2013-03-29 2014-10-09 Bridgestone Corp Method for producing silicon fine particles
JP2015140295A (en) * 2014-01-30 2015-08-03 株式会社ブリヂストン Method of producing silicon fine particles
JP2016072286A (en) * 2014-09-26 2016-05-09 京セラ株式会社 Nanocomposite material and nanocomposite material dispersion solution, and photoelectric conversion device

Also Published As

Publication number Publication date
JPWO2017038560A1 (en) 2018-06-28

Similar Documents

Publication Publication Date Title
Arora et al. Recent progress in contact, mobility, and encapsulation engineering of InSe and GaSe
Huang et al. Large-area synthesis of monolayer WSe 2 on a SiO 2/Si substrate and its device applications
Choi et al. Diameter-controlled and surface-modified Sb2Se3 nanowires and their photodetector performance
JP6271716B2 (en) Printing ink containing silicon / germanium nanoparticles and a high viscosity alcohol solvent
Tavakoli et al. Physicochemical properties of hybrid graphene–lead sulfide quantum dots prepared by supercritical ethanol
TW201334197A (en) Structures incorporating silicon nanoparticle inks, densified silicon materials from nanoparticle silicon deposits and corresponding methods
JP2018113471A (en) Large-grain crystallized metal chalcogenide film, colloidal solution of amorphous particles, and preparation method
Kim et al. Plasma-induced phase transformation of SnS2 to SnS
Jana et al. Negative Thermal Quenching and Size‐Dependent Optical Characteristics of Highly Luminescent Phosphorene Nanocrystals
CN110277308B (en) Preparation of copper selenide nanoparticles
Hao et al. Visible to near-infrared photodetector with novel optoelectronic performance based on graphene/S-doped InSe heterostructure on h-BN substrate
TWI552373B (en) Cigs nanoparticle ink formulation having a high crack-free limit
Patra et al. Investigations on LSPR effect of Cu/Al nanostructures on ZnO nanorods towards photodetector applications
Hussein et al. Doping the bismuth into the host’s Cu2ZnSnS4 semiconductor as a novel material for thin film solar cell
KR101318939B1 (en) Method of preparing silicon nanoparticles and method for preparing dispersions containing silicon nanoparticles
Sui et al. Indium effect on structural, optical and electrical properties of Cu2InxZn1-xSnS4 alloy thin films for solar cell
Yuan et al. A fast-response and transparent solution–processed ultraviolet photodetector based on ZnO quantum–sized nanoparticles
KR20120121113A (en) Manufacturing method of Solar cell
Lian et al. Nanometer-thick metastable zinc blende γ-MnTe single-crystalline films for high-performance ultraviolet and broadband photodetectors
WO2017038560A1 (en) Nanocomposite material and nanocomposite material dispersion solution, and photoelectric conversion device
Jung et al. Stable colloidal quantum dot-based infrared photodiode: multiple passivation strategy
Kim et al. Topological insulator bismuth selenide grown on black phosphorus for sensitive broadband photodetection
Sneha et al. Interlayer coupling and diode characteristics of heterostructures of solution processed MoS2: ReS2 nanocrystals
Mohapatra et al. Large-Scale Synthesis of Colloidal Si Nanocrystals and Their Helium Plasma Processing into Spin-On, Carbon-Free Nanocrystalline Si Films
Ahmad et al. Influence of boron nitride nanoparticles in the electrical and photoconduction characteristics of planar boron nitride-graphene oxide composite layer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841592

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017537770

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841592

Country of ref document: EP

Kind code of ref document: A1